WorldWideScience

Sample records for wind turbine operates

  1. Operation and control of large wind turbines and wind farms

    Energy Technology Data Exchange (ETDEWEB)

    Soerensen, Poul; Hansen, Anca D.; Thomsen, Kenneth (and others)

    2005-09-01

    This report is the final report of a Danish research project 'Operation and control of large wind turbines and wind farms'. The objective of the project has been to analyse and assess operational strategies and possibilities for control of different types of wind turbines and different wind farm concepts. The potentials of optimising the lifetime/energy production ratio by means of using revised operational strategies for the individual wind turbines are investigated. Different strategies have been simulated, where the power production is decreased to an optimum when taking loads and actual price of produced electricity into account. Dynamic models and control strategies for the wind farms have also been developed, with the aim to optimise the operation of the wind farms considering participation in power system control of power (frequency) and reactive power (voltage), maximise power production, keep good power quality and limit mechanical loads and life time consumption. The project developed models for 3 different concepts for wind farms. Two of the concepts use active stall controlled wind turbines, one with AC connection and one with modern HVDC/VSC connection of the wind farm. The third concept is based on pitch controlled wind turbines using doubly fed induction generators. The models were applied to simulate the behaviour of the wind farm control when they were connected to a strong grid, and some initial simulations were performed to study the behaviour of the wind farms when it was isolated from the main grid on a local grid. Also the possibility to use the available information from the wind turbine controllers to predict the wind speed has been investigated. The main idea has been to predict the wind speed at a wind turbine using up-wind measurements of the wind speed in another wind turbine. (au)

  2. Load Extrapolation During Operation for Wind Turbines

    DEFF Research Database (Denmark)

    Toft, Henrik Stensgaard; Sørensen, John Dalsgaard

    2008-01-01

    In the recent years load extrapolation for wind turbines has been widely considered in the wind turbine industry. Loads on wind turbines during operations are normally dependent on the mean wind speed, the turbulence intensity and the type and settings of the control system. All these parameters...... must be taken into account when characteristic load effects during operation are determined. In the wind turbine standard IEC 61400-1 a method for load extrapolation using the peak over threshold method is recommended. In this paper this method is considered and some of the assumptions are examined...

  3. Operation Design of Wind Turbines in Strong Wind Conditions

    DEFF Research Database (Denmark)

    Shen, Wen Zhong; Montes, Melissa Barroso; Odgaard, Peter Fogh

    2012-01-01

    and variable speed pitch regulated wind turbines. The variable speed design is more suitable for wind turbines to run at very high wind speeds which can help the turbine braking system to stop the turbine at the new "cut-out" wind speed. Reference power, rotational speed and pitch angle have been designed...... optimally. In order to reduce the possible increased loading, fatigue due to the wind gusts, control strategies have been considered for both constant sped and variable speed pitch regulated wind turbines. The control study shows that the designed controllers can reduce the standard deviations efficiently......In order to reduce the impact on the electrical grid from the shutdown of MW wind turbines at wind speeds higher than the cut-out wind speed of 25 m/s, we propose in this paper to run the turbines at high wind speeds up to 40 m/s. Two different operation designs are made for both constant speed...

  4. Wind turbine reliability :understanding and minimizing wind turbine operation and maintenance costs.

    Energy Technology Data Exchange (ETDEWEB)

    Walford, Christopher A. (Global Energy Concepts. Kirkland, WA)

    2006-03-01

    Wind turbine system reliability is a critical factor in the success of a wind energy project. Poor reliability directly affects both the project's revenue stream through increased operation and maintenance (O&M) costs and reduced availability to generate power due to turbine downtime. Indirectly, the acceptance of wind-generated power by the financial and developer communities as a viable enterprise is influenced by the risk associated with the capital equipment reliability; increased risk, or at least the perception of increased risk, is generally accompanied by increased financing fees or interest rates. This paper outlines the issues relevant to wind turbine reliability for wind turbine power generation projects. The first sections describe the current state of the industry, identify the cost elements associated with wind farm O&M and availability and discuss the causes of uncertainty in estimating wind turbine component reliability. The latter sections discuss the means for reducing O&M costs and propose O&M related research and development efforts that could be pursued by the wind energy research community to reduce cost of energy.

  5. Operation and Equivalent Loads of Wind Turbines in Large Wind Farms

    Science.gov (United States)

    Andersen, Soren Juhl; Sorensen, Jens Norkaer; Mikkelsen, Robert Flemming

    2017-11-01

    Wind farms continue to grow in size and as the technology matures, the design of wind farms move towards including dynamic effects besides merely annual power production estimates. The unsteady operation of wind turbines in large wind farms has been modelled with EllipSys3D(Michelsen, 1992, and Sørensen, 1995) for a number of different scenarios using a fully coupled large eddy simulations(LES) and aero-elastic framework. The turbines are represented in the flow fields using the actuator line method(Sørensen and Shen, 2002), where the aerodynamic forces and deflections are derived from an aero-elastic code, Flex5(Øye, 1996). The simulations constitute a database of full turbine operation in terms of both production and loads for various wind speeds, turbulence intensities, and turbine spacings. The operating conditions are examined in terms of averaged power production and thrust force, as well as 10min equivalent flapwise bending, yaw, and tilt moment loads. The analyses focus on how the performance and loads change throughout a given farm as well as comparing how various input parameters affect the operation and loads of the wind turbines during different scenarios. COMWIND(Grant 2104-09- 067216/DSF), Nordic Consortium on Optimization and Control of Wind Farms, Eurotech Greentech Wind project, Winds2Loads, and CCA LES. Ressources Granted on SNIC and JESS. The Vestas NM80 turbine has been used.

  6. 3D-PTV around Operational Wind Turbines

    Science.gov (United States)

    Brownstein, Ian; Dabiri, John

    2016-11-01

    Laboratory studies and numerical simulations of wind turbines are typically constrained in how they can inform operational turbine behavior. Laboratory experiments are usually unable to match both pertinent parameters of full-scale wind turbines, the Reynolds number (Re) and tip speed ratio, using scaled-down models. Additionally, numerical simulations of the flow around wind turbines are constrained by the large domain size and high Re that need to be simulated. When these simulations are preformed, turbine geometry is typically simplified resulting in flow structures near the rotor not being well resolved. In order to bypass these limitations, a quantitative flow visualization method was developed to take in situ measurements of the flow around wind turbines at the Field Laboratory for Optimized Wind Energy (FLOWE) in Lancaster, CA. The apparatus constructed was able to seed an approximately 9m x 9m x 5m volume in the wake of the turbine using artificial snow. Quantitative measurements were obtained by tracking the evolution of the artificial snow using a four camera setup. The methodology for calibrating and collecting data, as well as preliminary results detailing the flow around a 2kW vertical-axis wind turbine (VAWT), will be presented.

  7. Operating wind turbines in strong wind conditions by using feedforward-feedback control

    International Nuclear Information System (INIS)

    Feng, Ju; Sheng, Wen Zhong

    2014-01-01

    Due to the increasing penetration of wind energy into power systems, it becomes critical to reduce the impact of wind energy on the stability and reliability of the overall power system. In precedent works, Shen and his co-workers developed a re-designed operation schema to run wind turbines in strong wind conditions based on optimization method and standard PI feedback control, which can prevent the typical shutdowns of wind turbines when reaching the cut-out wind speed. In this paper, a new control strategy combing the standard PI feedback control with feedforward controls using the optimization results is investigated for the operation of variable-speed pitch-regulated wind turbines in strong wind conditions. It is shown that the developed control strategy is capable of smoothening the power output of wind turbine and avoiding its sudden showdown at high wind speeds without worsening the loads on rotor and blades

  8. Generalized gain scheduling for deloaded wind turbine operation

    DEFF Research Database (Denmark)

    Venne, Philippe; Guillaud, X.; Teodorescu, Remus

    2010-01-01

    to regulate both power production and rotor speed under any wind speed conditions. In this paper, a novel controller for deloaded wind turbine operation is presented. This controller is made possible by a Cp table inversion procedure allowing generalized gain scheduling for linearization of the pitch response......The ability to produce less power than what is available from a wind source, a condition known as deloaded operation, is needed for a wind turbine to reproduce synchronous machine behavior in terms of inertial response and frequency droop regulation. Deloaded operation requires the ability...

  9. Condition analysis and operating lifetime extension concepts for wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Korzeniewski, Thomas [GMA-Engineering GmbH, Hamburg (Germany). Business Unit Wind Energy

    2014-11-01

    In Germany the basis for the expansion of wind energy was already laid at the beginning of the 1990s. Hence, the first wind turbines already started to reach the end of their permitted lifetime. At that time as today the different wind turbine types were engineered for an operational lifetime of 20 years. As reliable wind turbines types were already available in the 1990s, it is technically and commercially reasonable to consider the extension of their operational lifetime. Of particular interest is the lifetime extension of wind turbine types installed in the beginning of the 2000s. During that period many wind turbine types were launched which absolutely correspond to state-of-the-art technology.

  10. Crack Monitoring of Operational Wind Turbine Foundations.

    Science.gov (United States)

    Perry, Marcus; McAlorum, Jack; Fusiek, Grzegorz; Niewczas, Pawel; McKeeman, Iain; Rubert, Tim

    2017-08-21

    The degradation of onshore, reinforced-concrete wind turbine foundations is usually assessed via above-ground inspections, or through lengthy excavation campaigns that suspend wind power generation. Foundation cracks can and do occur below ground level, and while sustained measurements of crack behaviour could be used to quantify the risk of water ingress and reinforcement corrosion, these cracks have not yet been monitored during turbine operation. Here, we outline the design, fabrication and field installation of subterranean fibre-optic sensors for monitoring the opening and lateral displacements of foundation cracks during wind turbine operation. We detail methods for in situ sensor characterisation, verify sensor responses against theoretical tower strains derived from wind speed data, and then show that measured crack displacements correlate with monitored tower strains. Our results show that foundation crack opening displacements respond linearly to tower strain and do not change by more than ±5 μ m. Lateral crack displacements were found to be negligible. We anticipate that the work outlined here will provide a starting point for real-time, long-term and dynamic analyses of crack displacements in future. Our findings could furthermore inform the development of cost-effective monitoring systems for ageing wind turbine foundations.

  11. Computer control for remote wind turbine operation

    Energy Technology Data Exchange (ETDEWEB)

    Manwell, J.F.; Rogers, A.L.; Abdulwahid, U.; Driscoll, J. [Univ. of Massachusetts, Amherst, MA (United States)

    1997-12-31

    Light weight wind turbines located in harsh, remote sites require particularly capable controllers. Based on extensive operation of the original ESI-807 moved to such a location, a much more sophisticated controller than the original one has been developed. This paper describes the design, development and testing of that new controller. The complete control and monitoring system consists of sensor and control inputs, the control computer, control outputs, and additional equipment. The control code was written in Microsoft Visual Basic on a PC type computer. The control code monitors potential faults and allows the turbine to operate in one of eight states: off, start, run, freewheel, low wind shut down, normal wind shutdown, emergency shutdown, and blade parking. The controller also incorporates two {open_quotes}virtual wind turbines,{close_quotes} including a dynamic model of the machine, for code testing. The controller can handle numerous situations for which the original controller was unequipped.

  12. Wind turbine operated sailboat

    Energy Technology Data Exchange (ETDEWEB)

    Hall, R.

    1990-07-31

    A wind powered boat is disclosed which incorporates a vertical axis rotary turbine. A shaft portion extends downwardly from the turbine to a water pump, with the boat being provided with a forwardly opening inlet and a rearwardly opening outlet from the water pump. When rotating, the turbine operates the pump by the shaft to draw in water through the inlet, thereby creating a low pressure area in front of the boat, and to force the water out through the outlet for propelling the boat. In a preferred embodiment, the boat has a catamaran construction or is a large ocean going vessel with enough width to provide a buffer to either side of the turbine, and the turbine is the Darrieus rotor type. The pump is a standard centrifugal type of pump. A self adjusting braking device for the turbine is also disclosed, which prevents over-rotation and is also capable of storing heat energy generated during braking. 4 figs.

  13. Survey of variable speed operation of wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, Ola; Hylander, J.; Thorborg, K. [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Electric Power Engineering

    1996-12-01

    During the last five years the production and operation of variable-speed wind turbines have advanced from a few experimental machines to a serial production of at least 10 MW of installed capacity of variable speed machines per week. The rated power of serial wind turbines is today around 600 kW and for the prototypes up to 3000 kW. Variable speed operation of wind turbines can be obtained with several different types of electrical generating systems, such as synchronous generators with diode rectifiers and thyristor inverters or induction generators with IGBT-converters, for the wide speed range. For the narrow speed range the wound motor induction generator with a rotor cascade or a controlled rotor resistance is preferable. The development of permanent magnetic material and the reduction of costs of the power electronic components have opened a possibility of designing cost-effective wind turbines with a directly driven generator. Pitch control together with variable speed will make it possible to limit the power variation within a few percent, 2 to 5 %, of the rated power. 7 refs, 4 figs, 2 tabs

  14. Empirical investigation on using wind speed volatility to estimate the operation probability and power output of wind turbines

    International Nuclear Information System (INIS)

    Liu, Heping; Shi, Jing; Qu, Xiuli

    2013-01-01

    Highlights: ► Ten-minute wind speed and power generation data of an offshore wind turbine are used. ► An ARMA–GARCH-M model is built to simultaneously forecast wind speed mean and volatility. ► The operation probability and expected power output of the wind turbine are predicted. ► The integrated approach produces more accurate wind power forecasting than other conventional methods. - Abstract: In this paper, we introduce a quantitative methodology that performs the interval estimation of wind speed, calculates the operation probability of wind turbine, and forecasts the wind power output. The technological advantage of this methodology stems from the empowered capability of mean and volatility forecasting of wind speed. Based on the real wind speed and corresponding wind power output data from an offshore wind turbine, this methodology is applied to build an ARMA–GARCH-M model for wind speed forecasting, and then to compute the operation probability and the expected power output of the wind turbine. The results show that the developed methodology is effective, the obtained interval estimation of wind speed is reliable, and the forecasted operation probability and expected wind power output of the wind turbine are accurate

  15. Active vibration-based structural health monitoring system for wind turbine blade: Demonstration on an operating Vestas V27 wind turbine

    DEFF Research Database (Denmark)

    Tcherniak, Dmitri; Mølgaard, Lasse Lohilahti

    2017-01-01

    enough to be able to propagate the entire blade length. This article demonstrates the system on a Vestas V27 wind turbine. One blade of the wind turbine was equipped with the system, and a 3.5-month monitoring campaign was conducted while the turbine was operating normally. During the campaign, a defect......—a trailing-edge opening—was artificially introduced into the blade and its size was gradually increased from the original 15 to 45 cm. Using a semi-supervised learning algorithm, the system was able to detect even the smallest amount of damage while the wind turbine was operating under different weather......This study presents a structural health monitoring system that is able to detect structural defects of wind turbine blade such as cracks, leading/trailing-edge opening, or delamination. It is shown that even small defects of at least 15 cm size can be detected remotely without stopping the wind...

  16. Gain-scheduled Linear Quadratic Control of Wind Turbines Operating at High Wind Speed

    DEFF Research Database (Denmark)

    Østergaard, Kasper Zinck; Stoustrup, Jakob; Brath, Per

    2007-01-01

    This paper addresses state estimation and linear quadratic (LQ) control of variable speed variable pitch wind turbines. On the basis of a nonlinear model of a wind turbine, a set of operating conditions is identified and a LQ controller is designed for each operating point. The controller gains...... are then interpolated linearly to get a control law for the entire operating envelope. A nonlinear state estimator is designed as a combination of two unscented Kalman filters and a linear disturbance estimator. The gain-scheduling variable (wind speed) is then calculated from the output of these state estimators...

  17. Wind turbines, is it just wind?

    International Nuclear Information System (INIS)

    Boiteux, M.

    2012-01-01

    The author first outlines that wind energy is not only random, but almost absent in extreme situations when it would be needed (for example and notably, very cold weather without wind). He suggests the association of a gas turbine to each wind turbine, so that the gas turbine will replace non operating wind turbines. He notices that wind turbines are not proximity energy as they were said to be, and that profitability in fact requires tens of grouped giant wind turbines. He also outlines the high cost of construction of grids for the connection of these wind turbines. Thus, he states that wind energy is far from being profitable in the present conditions of electricity tariffs in France

  18. Measurements of Operational Wind Turbine Noise in UK Waters.

    Science.gov (United States)

    Cheesman, Samuel

    2016-01-01

    The effects of wind farm operational noise have not been addressed to the same extent as their construction methods such as piling and drilling of the foundations despite their long operational lifetimes compared with weeks of construction. The results of five postconstruction underwater sound-monitoring surveys on wind farms located throughout the waters of the British Isles are discussed. These wind farms consist of differing turbine power outputs, from 3 to 3.6 MW, and differing numbers of turbines. This work presents an overview of the results obtained and discusses both the levels and frequency components of the sound in several metrics.

  19. Optimum Operational Parameters for Yawed Wind Turbines

    Directory of Open Access Journals (Sweden)

    David A. Peters

    2011-01-01

    Full Text Available A set of systematical optimum operational parameters for wind turbines under various wind directions is derived by using combined momentum-energy and blade-element-energy concepts. The derivations are solved numerically by fixing some parameters at practical values. Then, the interactions between the produced power and the influential factors of it are generated in the figures. It is shown that the maximum power produced is strongly affected by the wind direction, the tip speed, the pitch angle of the rotor, and the drag coefficient, which are specifically indicated by figures. It also turns out that the maximum power can take place at two different optimum tip speeds in some cases. The equations derived herein can also be used in the modeling of tethered wind turbines which can keep aloft and deliver energy.

  20. Extrapolating Satellite Winds to Turbine Operating Heights

    DEFF Research Database (Denmark)

    Badger, Merete; Pena Diaz, Alfredo; Hahmann, Andrea N.

    2016-01-01

    Ocean wind retrievals from satellite sensors are typically performed for the standard level of 10 m. This restricts their full exploitation for wind energy planning, which requires wind information at much higher levels where wind turbines operate. A new method is presented for the vertical...... extrapolation of satellitebased wind maps. Winds near the sea surface are obtained from satellite data and used together with an adaptation of the Monin–Obukhov similarity theory to estimate the wind speed at higher levels. The thermal stratification of the atmosphere is taken into account through a long...

  1. Optical monitoring and operational modal analysis of large wind turbines

    NARCIS (Netherlands)

    Özbek, M.

    2013-01-01

    Identification of the dynamic properties and the corresponding structural response of wind turbines is essential for optimizing the energy produced, ensuring safe and reliable operation and increasing the life-time of the system. As the sizes of modern wind turbines increase, their dynamic behaviors

  2. Small Horizontal Axis Wind Turbine under High Speed Operation: Study of Power Evaluation

    Science.gov (United States)

    Moh. M. Saad, Magedi; Mohd, Sofian Bin; Zulkafli, Mohd Fadhli Bin; Abdullah, Aslam Bin; Rahim, Mohammad Zulafif Bin; Subari, Zulkhairi Bin; Rosly, Nurhayati Binti

    2017-10-01

    Mechanical energy is produced through the rotation of wind turbine blades by air that convert the mechanical energy into electrical energy. Wind turbines are usually designed to be use for particular applications and design characteristics may vary depending on the area of use. The variety of applications is reflected on the size of turbines and their infrastructures, however, performance enhancement of wind turbine may start by analyzing the small horizontal axis wind turbine (SHAWT) under high wind speed operation. This paper analyzes the implementations of SHAWT turbines and investigates their performance in both simulation and real life. Depending on the real structure of the rotor geometry and aerodynamic test, the power performance of the SHAWT was simulated using ANSYS-FLUENT software at different wind speed up to 33.33 m/s (120km/h) in order to numerically investigate the actual turbine operation. Dynamic mesh and user define function (UDF) was used for revolving the rotor turbine via wind. Simulation results were further validated by experimental data and hence good matching was yielded. And for reducing the energy producing cost, car alternator was formed to be used as a small horizontal wind turbine. As a result, alternator-based turbine system was found to be a low-cost solution for exploitation of wind energy.

  3. WIND TURBINE OPERATION PARAMETER CHARACTERISTICS AT A GIVEN WIND SPEED

    Directory of Open Access Journals (Sweden)

    Zdzisław Kamiński

    2014-06-01

    Full Text Available This paper discusses the results of the CFD simulation of the flow around Vertical Axis Wind Turbine rotor. The examined rotor was designed following patent application no. 402214. The turbine operation is characterised by parameters, such as opening angle of blades, power, torque, rotational velocity at a given wind velocity. Those parameters have an impact on the performance of entire assembly. The distribution of forces acting on the working surfaces in the turbine can change, depending on the angle of rotor rotation. Moreover, the resultant force derived from the force acting on the oncoming and leaving blades should be as high as possible. Accordingly, those parameters were individually simulated over time for each blade in three complete rotations. The attempts to improve the performance of the entire system resulted in a new research trend to improve the performance of working turbine rotor blades.

  4. Safety considerations in the design and operation of large wind turbines

    Science.gov (United States)

    Reilly, D. H.

    1979-01-01

    The engineering and safety techniques used to assure the reliable and safe operation of large wind turbine generators utilizing the Mod 2 Wind Turbine System Program as an example is described. The techniques involve a careful definition of the wind turbine's natural and operating environments, use of proven structural design criteria and analysis techniques, an evaluation of potential failure modes and hazards, and use of a fail safe and redundant component engineering philosophy. The role of an effective quality assurance program, tailored to specific hardware criticality, and the checkout and validation program developed to assure system integrity are described.

  5. Operating wind turbines in strong wind conditions by using feedforward-feedback control

    DEFF Research Database (Denmark)

    Feng, Ju; Shen, Wen Zhong

    2014-01-01

    Due to the increasing penetration of wind energy into power systems, it becomes critical to reduce the impact of wind energy on the stability and reliability of the overall power system. In precedent works, Shen and his co-workers developed a re-designed operation schema to run wind turbines in s...

  6. Draft-circular on wind turbines. Concept-circulaire wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    1983-01-01

    Criteria for providing licenses to build and operate a wind turbine are surveyed. Factors to consider are: characteristics of the landscape, density of population, town and country planning, environmental aspects (birds), safety and nuisance. National regulations for wind turbines will simplify licensing procedures and improve legal security.

  7. Probabilistic Design of Wind Turbines

    DEFF Research Database (Denmark)

    Toft, Henrik Stensgaard

    During the last decades, wind turbines have been continuously developed with the aim of maximizing the life cycle benefits (production of electricity) minus the costs of planning, materials, installation, operation & maintenance as well as possible failure. In order to continue this development...... turbines and the central topics considered are statistical load extrapolation of extreme loads during operation and reliability assessment of wind turbine blades. Wind turbines differ from most civil engineering structures by having a control system which highly influences the loading. In the literature......, methods for estimating the extreme load-effects on a wind turbine during operation, where the control system is active, have been proposed. But these methods and thereby the estimated loads are often subjected to a significant uncertainty which influences the reliability of the wind turbine...

  8. Adaptive Control of a Utility-Scale Wind Turbine Operating in Region 3

    Science.gov (United States)

    Frost, Susan A.; Balas, Mark J.; Wright, Alan D.

    2009-01-01

    Adaptive control techniques are well suited to nonlinear applications, such as wind turbines, which are difficult to accurately model and which have effects from poorly known operating environments. The turbulent and unpredictable conditions in which wind turbines operate create many challenges for their operation. In this paper, we design an adaptive collective pitch controller for a high-fidelity simulation of a utility scale, variable-speed horizontal axis wind turbine. The objective of the adaptive pitch controller in Region 3 is to regulate generator speed and reject step disturbances. The control objective is accomplished by collectively pitching the turbine blades. We use an extension of the Direct Model Reference Adaptive Control (DMRAC) approach to track a reference point and to reject persistent disturbances. The turbine simulation models the Controls Advanced Research Turbine (CART) of the National Renewable Energy Laboratory in Golden, Colorado. The CART is a utility-scale wind turbine which has a well-developed and extensively verified simulator. The adaptive collective pitch controller for Region 3 was compared in simulations with a bas celliansesical Proportional Integrator (PI) collective pitch controller. In the simulations, the adaptive pitch controller showed improved speed regulation in Region 3 when compared with the baseline PI pitch controller and it demonstrated robustness to modeling errors.

  9. Operation and control of large wind turbines and wind farms. Final report

    DEFF Research Database (Denmark)

    Sørensen, Poul Ejnar; Hansen, Anca Daniela; Thomsen, Kenneth

    2005-01-01

    good power quality and limit mechanical loads and life time consumption. The projectdeveloped models for 3 different concepts for wind farms. Two of the concepts use active stall controlled wind turbines, one with AC connection and one with modern HVDC/VSC connection of the wind farm. The third concept...... is based on pitch controlled windturbines using doubly fed induction generators. The models were applied to simulate the behaviour of the wind farm control when they were connected to a strong grid, and some initial simulations were performed to study the behaviour of the wind farms whenit was isolated...... concepts. The potentials of optimising the lifetime/energy production ratio by means of using revised operational strategies for the individual wind turbines are investigated. Different strategies have beensimulated, where the power production is decreased to an optimum when taking loads and actual price...

  10. Wind Turbine Technologies

    DEFF Research Database (Denmark)

    Hansen, Anca Daniela

    2017-01-01

    , and with or without gearboxes, using the latest in power electronics, aerodynamics, and mechanical drive train designs [4]. The main differences between all wind turbine concepts developed over the years, concern their electrical design and control. Today, the wind turbines on the market mix and match a variety......, the design of wind turbines has changed from being convention driven to being optimized driven within the operating regime and market environment. Wind turbine designs have progressed from fixed speed, passive controlled and with drive trains with gearboxes, to become variable speed, active controlled......,6] and to implement modern control system strategies....

  11. Ground-level climate at a peatland wind farm in Scotland is affected by wind turbine operation

    Science.gov (United States)

    Armstrong, Alona; Burton, Ralph R.; Lee, Susan E.; Mobbs, Stephen; Ostle, Nicholas; Smith, Victoria; Waldron, Susan; Whitaker, Jeanette

    2016-04-01

    The global drive to produce low-carbon energy has resulted in an unprecedented deployment of onshore wind turbines, representing a significant land use change for wind energy generation with uncertain consequences for local climatic conditions and the regulation of ecosystem processes. Here, we present high-resolution data from a wind farm collected during operational and idle periods that shows the wind farm affected several measures of ground-level climate. Specifically, we discovered that operational wind turbines raised air temperature by 0.18 °C and absolute humidity (AH) by 0.03 g m-3 during the night, and increased the variability in air, surface and soil temperature throughout the diurnal cycle. Further, the microclimatic influence of turbines on air temperature and AH decreased logarithmically with distance from the nearest turbine. These effects on ground-level microclimate, including soil temperature, have uncertain implications for biogeochemical processes and ecosystem carbon cycling, including soil carbon stocks. Consequently, understanding needs to be improved to determine the overall carbon balance of wind energy.

  12. New guidelines for wind turbine gearboxes

    Energy Technology Data Exchange (ETDEWEB)

    McNiff, B. [McNiff Light Industry, Blue Hill, ME (United States); Errichello, R. [GEARTECH, Townsend, MT (United States)

    1997-12-31

    The American Gear Manufacturers Association in cooperation with the American Wind Energy Association will soon be publishing AGMA/AWEA 921-A97 {open_quotes}Recommended Practices for Design and Specification of Gearboxes for Wind Turbine Generator Systems.{close_quotes} Much has been learned about the unique operation and loading of gearboxes in wind turbine applications since the burgeoning of the modern wind turbine industry in the early 1980`s. AGMA/AWEA 921-A97 documents this experience in a manner that provides valuable information to assist gear manufacturers and wind turbine designers, operators, and manufacturers in developing reliable wind turbine gearboxes. The document provides information on procurement specification development, wind turbine architecture, environmental considerations, and gearbox load determination, as well as the design, manufacturing, quality assurance, lubrication, operation and maintenance of wind turbine gearboxes. This paper presents the salient parts of the practices recommended in AGMA/AWEA 921-A97.

  13. Application of OMA to an Operating Wind Turbine: now including Vibration Data from the Blades

    DEFF Research Database (Denmark)

    Tcherniak, Dmitri; Larsen, Gunner Chr.

    2013-01-01

    due to the rotor rotation) as well as the considerable aerodynamic damping make OMA of operating wind turbines a difficult task. While in the previous works OMA was based on data provided by sensors mounted on the wind turbine tower and nacelle, we here attempt to improve the results by instrumenting......The presented study continues the work on application of Output Only Modal Analysis (OMA) to operating wind turbines. It is known from previous studies that issues like the time-varying nature of the equations of motion of an operating wind turbine (in particular the significant harmonic components...... discusses the technical challenges regarding blade instrumentation and data acquisition, data processing applied to eliminate the time-varying nature of an operating wind turbine in the resulting eigenvalue problem and, finally, it presents and discusses the initial results....

  14. Modified Adaptive Control for Region 3 Operation in the Presence of Wind Turbine Structural Modes

    Science.gov (United States)

    Frost, Susan Alane; Balas, Mark J.; Wright, Alan D.

    2010-01-01

    Many challenges exist for the operation of wind turbines in an efficient manner that is reliable and avoids component fatigue and failure. Turbines operate in highly turbulent environments resulting in aerodynamic loads that can easily excite turbine structural modes, possibly causing component fatigue and failure. Wind turbine manufacturers are highly motivated to reduce component fatigue and failure that can lead to loss of revenue due to turbine down time and maintenance costs. The trend in wind turbine design is toward larger, more flexible turbines that are ideally suited to adaptive control methods due to the complexity and expense required to create accurate models of their dynamic characteristics. In this paper, we design an adaptive collective pitch controller for a high-fidelity simulation of a utility-scale, variable-speed horizontal axis wind turbine operating in Region 3. The objective of the adaptive pitch controller is to regulate generator speed, accommodate wind gusts, and reduce the excitation of structural modes in the wind turbine. The control objective is accomplished by collectively pitching the turbine blades. The adaptive collective pitch controller for Region 3 was compared in simulations with a baseline classical Proportional Integrator (PI) collective pitch controller. The adaptive controller will demonstrate the ability to regulate generator speed in Region 3, while accommodating gusts, and reducing the excitation of certain structural modes in the wind turbine.

  15. Detection of Damage in Operating Wind Turbines by Signature Distances

    Directory of Open Access Journals (Sweden)

    James F. Manwell

    2013-01-01

    Full Text Available Wind turbines operate in the atmospheric boundary layer and are subject to complex random loading. This precludes using a deterministic response of healthy turbines as the baseline for identifying the effect of damage on the measured response of operating turbines. In the absence of such a deterministic response, the stochastic dynamic response of the tower to a shutdown maneuver is found to be affected distinctively by damage in contrast to wind. Such a dynamic response, however, cannot be established for the blades. As an alternative, the estimate of blade damage is sought through its effect on the third or fourth modal frequency, each found to be mostly unaffected by wind. To discern the effect of damage from the wind effect on these responses, a unified method of damage detection is introduced that accommodates different responses. In this method, the dynamic responses are transformed to surfaces via continuous wavelet transforms to accentuate the effect of wind or damage on the dynamic response. Regions of significant deviations between these surfaces are then isolated in their corresponding planes to capture the change signatures. The image distances between these change signatures are shown to produce consistent estimates of damage for both the tower and the blades in presence of varying wind field profiles.

  16. Structural Reliability Aspects in Design of Wind Turbines

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard

    2007-01-01

    Reliability assessment, optimal design and optimal operation and maintenance of wind turbines are an area of significant interest for the fast growing wind turbine industry for sustainable production of energy. Offshore wind turbines in wind farms give special problems due to wake effects inside...... the farm. Reliability analysis and optimization of wind turbines require that the special conditions for wind turbine operation are taken into account. Control of the blades implies load reductions for large wind speeds and parking for high wind speeds. In this paper basic structural failure modes for wind...... turbines are described. Further, aspects are presented related to reliability-based optimization of wind turbines, assessment of optimal reliability level and operation and maintenance....

  17. Effect of operating methods of wind turbine generator system on net power extraction under wind velocity fluctuations in fields

    Energy Technology Data Exchange (ETDEWEB)

    Wakui, Tetsuya; Yamaguchi, Kazuya; Hashizume, Takumi [Waseda Univ., Advanced Research Inst. for Science and Engineering, Tokyo (Japan); Outa, Eisuke [Waseda Univ., Mechanical Engineering Dept., Tokyo (Japan); Tanzawa, Yoshiaki [Nippon Inst. of Technology, Mechanical Engineering Dept., Saitama (Japan)

    1999-01-01

    The effect of how a wind turbine generator system is operated is discussed from the viewpoint of net power extraction with wind velocity fluctuation in relation to the scale and the dynamic behaviour of the system. On a wind turbine generator system consisting of a Darrieus-Savonius hybrid wind turbine, a load generator and a battery, we took up two operating methods: constant tip speed ratio operation for a stand-alone system (Scheme 1) and synchronous operation by connecting a grid (Scheme 2). With our simulation model, using the result of the net extracting power, we clarified that Scheme 1 is more effective than Scheme 2 for small-scale systems. Furthermore, in Scheme 1, the appropriate rated power output of the system under each wind condition can be confirmed. (Author)

  18. Wind turbine

    Science.gov (United States)

    Cheney, Jr., Marvin C.

    1982-01-01

    A wind turbine of the type having an airfoil blade (15) mounted on a flexible beam (20) and a pitch governor (55) which selectively, torsionally twists the flexible beam in response to wind turbine speed thereby setting blade pitch, is provided with a limiter (85) which restricts unwanted pitch change at operating speeds due to torsional creep of the flexible beam. The limiter allows twisting of the beam by the governor under excessive wind velocity conditions to orient the blades in stall pitch positions, thereby preventing overspeed operation of the turbine. In the preferred embodiment, the pitch governor comprises a pendulum (65,70) which responds to changing rotor speed by pivotal movement, the limiter comprising a resilient member (90) which engages an end of the pendulum to restrict further movement thereof, and in turn restrict beam creep and unwanted blade pitch misadjustment.

  19. Wind turbine improvements by wind-lidar-based preview and control

    DEFF Research Database (Denmark)

    Mikkelsen, Torben

    2014-01-01

    Wind turbines equipped with laser prevision hold potential for up to 6+ years lifetime extension. Forward looking wind lidars integrated within operational wind turbines providing feed-forward control can reduce the daily operation loads. The turbine lifetime may in this way be extended by up to 30...

  20. Wind turbines and health

    International Nuclear Information System (INIS)

    Rideout, K.; Copes, R.; Bos, C.

    2010-01-01

    This document summarized the potential health hazards associated with wind turbines, such as noise and low frequency sound, vibration and infrasound; electromagnetic fields (EMF); shadow flicker; and ice throw and structural failure. Various symptoms can be attributed to wind turbines, including dizziness, sleep disruption, and headaches. A review of available research regarding potential health affects to residents living in close proximity to wind turbines showed that the sound level associated with wind turbines at common residential setbacks is not sufficient to damage hearing, but may lead to annoyance and sleep disturbance. Research has shown that wind turbines are not a significant source of EMF exposure, and although shadows caused by the blades may be annoying, they are not likely to cause epileptic seizures at normal operational speeds. The risk of injury from ice throw can be minimized with setbacks of 200 to 400 m. Examples of Canadian wind turbine setback guidelines and regulations were also offered. It was concluded that setbacks and operational guidelines can be utilized in combination to address safety hazards, sound levels, land use issues, and impacts on people. 46 refs., 2 tabs., 2 figs.

  1. Risk-Based Operation and Maintenance of Offshore Wind Turbines

    DEFF Research Database (Denmark)

    Nielsen, Jannie Jessen; Sørensen, John Dalsgaard

    2009-01-01

    For offshore wind turbines costs to operation and maintenance are substantial. This paper describes a risk-based lifecycle approach for optimal planning of operation and maintenance. The approach is based on pre-posterior Bayesian decision theory. Deterioration mechanisms such as fatigue, corrosion...

  2. Applying micro scales of horizontal axis wind turbines for operation in low wind speed regions

    International Nuclear Information System (INIS)

    Pourrajabian, Abolfazl; Ebrahimi, Reza; Mirzaei, Masoud

    2014-01-01

    Highlights: • Three micro-turbines with output power less than 1 kW were designed for operation in low wind speed regions. • In addition to the output power, starting time was considered as a key parameter during the design. • The effects of generator resistive torque and number of blades on the performance of the turbines were investigated. - Abstract: Utilizing the micro scales of wind turbines could noticeably supply the demand for the electricity in low wind speed regions. Aerodynamic design and optimization of the blade, as a main part of a wind turbine, were addressed in the study. Three micro scales of horizontal axis wind turbines with output power of 0.5, 0.75 and 1 kW were considered and the geometric optimization of the blades in terms of the two involved parameters, chord and twist, was undertaken. In order to improve the performance of the turbines at low wind speeds, starting time was included in an objective function in addition to the output power – the main and desirable goal of the wind turbine blade design. A purpose-built genetic algorithm was employed to maximize both the output power and the starting performance which were calculated by the blade-element momentum theory. The results emphasize that the larger values of the chord and twist at the root part of the blades are indispensable for the better performance when the wind speed is low. However, the noticeable value of the generator resistive torque could largely delay the starting of the micro-turbines especially for the considered smaller size, 0.5 kW, where the starting aerodynamic torque could not overcome the generator resistive torque. For that size, an increase in the number of blades improved both the starting performance and also output power

  3. Wind turbine optimal control during storms

    International Nuclear Information System (INIS)

    Petrović, V; Bottasso, C L

    2014-01-01

    This paper proposes a control algorithm that enables wind turbine operation in high winds. With this objective, an online optimization procedure is formulated that, based on the wind turbine state, estimates those extremal wind speed variations that would produce maximal allowable wind turbine loads. Optimization results are compared to the actual wind speed and, if there is a danger of excessive loading, the wind turbine power reference is adjusted to ensure that loads stay within allowed limits. This way, the machine can operate safely even above the cut-out wind speed, thereby realizing a soft envelope-protecting cut-out. The proposed control strategy is tested and verified using a high-fidelity aeroservoelastic simulation model

  4. An Introduction to Operational Modal Identification of Offshore Wind Turbine Structures

    DEFF Research Database (Denmark)

    Damgaard, Mads

    excitation originating from the rotating rotor and broadband excitation from air turbulence is present, which sets limitations on the applicability of operational modal analysis to wind turbine structures. The technical memorandum contains an introduction to the theory within experimental modal analysis and......The present technical memorandum “An Introduction to Operational Modal Identification of Offshore Wind Turbine Structures” is prepared in connection with an ongoing Ph.D study at Aalborg University. The memorandum is intended for use in the civil engineering field and may serve as an inspiration...

  5. Design of Wind Turbine Vibration Monitoring System

    Directory of Open Access Journals (Sweden)

    Shoubin Wang

    2013-04-01

    Full Text Available In order to ensure safety of wind turbine operation and to reduce the occurrence of faults as well as to improve the reliability of wind turbine operation, a vibration monitoring for wind turbine is developed. In this paper, it analyses the enlargement of all the parts of the structure and the working mechanism, the research method of wind turbine operation vibration is introduced, with the focus being the use of the sensor principle. Finally the hardware design and software of this system is introduced and the main function of this system is described, which realizes condition monitoring of the work state of wind turbines.

  6. Fatigue Load Modeling and Control for Wind Turbines based on Hysteresis Operators

    DEFF Research Database (Denmark)

    Barradas Berglind, Jose de Jesus; Wisniewski, Rafal; Soltani, Mohsen

    2015-01-01

    method based on hysteresis operators, which can be used in control loops. Furthermore, we propose a model predictive control (MPC) strategy that incorporates the online fatigue estimation through the objective function, where the ultimate goal in mind is to reduce the fatigue load of the wind turbine......The focus of this work is on fatigue load modeling and controller design for the wind turbine level. The main purpose is to include a model of the damage effects caused by the fatigue of the wind turbine components in the controller design process. This paper addresses an online fatigue estimation...

  7. Computational modelling of an operational wind turbine and validation with LIDAR

    Science.gov (United States)

    Creech, Angus; Fruh, Wolf-Gerrit; Clive, Peter

    2010-05-01

    We present a computationally efficient method to model the interaction of wind turbines with the surrounding flow, where the interaction provides information on the power generation of the turbine and the generated wake behind the turbine. The turbine representation is based on the principle of an actuator volume, whereby the energy extraction and balancing forces on the fluids are formulated as body forces which avoids the extremely high computational costs of boundary conditions and forces. Depending on the turbine information available, those forces can be derived either from published turbine performance specifications or from their rotor and blade design. This turbine representation is then coupled to a Computational Fluid Dynamics package, in this case the hr-adaptive Finite-Element code Fluidity from Imperial College, London. Here we present a simulation of an operational 950kW NEG Micon NM54 wind turbine installed in the west of Scotland. The calculated wind is compared with LIDAR measurements using a Galion LIDAR from SgurrEnergy. The computational domain extends over an area of 6km by 6km and a height of 750m, centred on the turbine. The lower boundary includes the orography of the terrain and surface roughness values representing the vegetation - some forested areas and some grassland. The boundary conditions on the sides are relaxed Dirichlet conditions, relaxed to an observed prevailing wind speed and direction. Within instrumental errors and model limitations, the overall flow field in general and the wake behind the turbine in particular, show a very high degree of agreement, demonstrating the validity and value of this approach. The computational costs of this approach are such that it is possible to extend this single-turbine example to a full wind farm, as the number of required mesh nodes is given by the domain and then increases only linearly with the number of turbines

  8. Model Predictive Control of Wind Turbines

    DEFF Research Database (Denmark)

    Henriksen, Lars Christian

    Wind turbines play a major role in the transformation from a fossil fuel based energy production to a more sustainable production of energy. Total-cost-of-ownership is an important parameter when investors decide in which energy technology they should place their capital. Modern wind turbines...... the need for maintenance of the wind turbine. Either way, better total-cost-of-ownership for wind turbine operators can be achieved by improved control of the wind turbines. Wind turbine control can be improved in two ways, by improving the model on which the controller bases its design or by improving...

  9. Reliability Modeling of Wind Turbines

    DEFF Research Database (Denmark)

    Kostandyan, Erik

    Cost reductions for offshore wind turbines are a substantial requirement in order to make offshore wind energy more competitive compared to other energy supply methods. During the 20 – 25 years of wind turbines useful life, Operation & Maintenance costs are typically estimated to be a quarter...... for Operation & Maintenance planning. Concentrating efforts on development of such models, this research is focused on reliability modeling of Wind Turbine critical subsystems (especially the power converter system). For reliability assessment of these components, structural reliability methods are applied...... to one third of the total cost of energy. Reduction of Operation & Maintenance costs will result in significant cost savings and result in cheaper electricity production. Operation & Maintenance processes mainly involve actions related to replacements or repair. Identifying the right times when...

  10. Tjæreborg Wind Turbine

    DEFF Research Database (Denmark)

    Øye, Stig

    1991-01-01

    This paper presents results from the fourth measurement camapign at the Tjæreborg (Tjaereborg) WInd Turbine during operation with stepwise pitch angle changes. The measurements cover one hour of operation at wind speeds between 7 and 10 m/s aceraging approximately 8.7 m/s.......This paper presents results from the fourth measurement camapign at the Tjæreborg (Tjaereborg) WInd Turbine during operation with stepwise pitch angle changes. The measurements cover one hour of operation at wind speeds between 7 and 10 m/s aceraging approximately 8.7 m/s....

  11. Economics for wind turbines in Denmark. Investments, operation and maintenance costs for selected vintages of turbines

    International Nuclear Information System (INIS)

    Hjuler Jensen, P.; Morthorst, P.E.; Skriver, S.; Rasmussen, M.; Larsen, H.; Hansen, L.H.; Nielsen, P.; Lemming, J.

    2002-10-01

    During the last two decades of operational experience with wind turbines in Denmark, a number of investigations on wind energy economics have been carried out on behalf of the Danish Energy Agency. The aim of this study has been to analyse the development of investments cost, O and M-cost, insurance costs etc. including the economic and technical lifetime of wind turbines. Based on a questionnaire and an existing database, time series for O and M-cost components are established going back to the early 80's. These time series are used to analyse the development of O and M-costs during the lifetime of different turbine sizes and vintages. A major issue of the project is to use the results achieved for older turbines (55kW to 150 kW) to establish an expected development of O and M-costs for newer larger turbines, typically of the 500kW to 750kW sizes. (au)

  12. Operation of a wind turbine-flywheel energy storage system under conditions of stochastic change of wind energy.

    Science.gov (United States)

    Tomczewski, Andrzej

    2014-01-01

    The paper presents the issues of a wind turbine-flywheel energy storage system (WT-FESS) operation under real conditions. Stochastic changes of wind energy in time cause significant fluctuations of the system output power and as a result have a negative impact on the quality of the generated electrical energy. In the author's opinion it is possible to reduce the aforementioned effects by using an energy storage of an appropriate type and capacity. It was assumed that based on the technical parameters of a wind turbine-energy storage system and its geographical location one can determine the boundary capacity of the storage, which helps prevent power cuts to the grid at the assumed probability. Flywheel energy storage was selected due to its characteristics and technical parameters. The storage capacity was determined based on an empirical relationship using the results of the proposed statistical and energetic analysis of the measured wind velocity courses. A detailed algorithm of the WT-FESS with the power grid system was developed, eliminating short-term breaks in the turbine operation and periods when the wind turbine power was below the assumed level.

  13. Value centric approaches to the design, operations and maintenance of wind turbines

    Science.gov (United States)

    Khadabadi, Madhur Aravind

    Wind turbine maintenance is emerging as an unexpectedly high component of turbine operating cost, and there is an increasing interest in managing this cost. This thesis presents an alternative view of maintenance as a value-driver, and develops an optimization algorithm to evaluate the value delivered by different maintenance techniques. I view maintenance as an operation that moves the turbine to an improved state in which it can generate more power and, thus, earn more revenue. To implement this approach, I model the stochastic deterioration of the turbine in two dimensions: the deterioration rate, and the extent of deterioration, and then use maintenance to improve the state of the turbine. The value of the turbine is the difference between the revenue from to the power generation and the costs incurred in operation and maintenance. With a focus on blade deterioration, I evaluate the value delivered by implementing two different maintenance schemes, predictive maintenance and scheduled maintenance. An example of predictive maintenance technique is the use of Condition Monitoring Systems to precisely detect deterioration. I model Condition Monitoring System (CMS) of different degrees of fidelity, where a higher fidelity CMS would allow the blade state to be determined with a higher precision. The same model is then applied for the scheduled maintenance technique. The improved state information obtained from these techniques is then used to derive an optimal maintenance strategy. The difference between the value of the turbine with and without the inspection type can be interpreted as the value of the inspection. The results indicate that a higher fidelity (and more expensive) inspection method does not necessarily yield the highest value, and, that there is an optimal level of fidelity that results in maximum value. The results also aim to inform the operator of the impact of regional parameters such as wind speed, variance and maintenance costs to the optimal

  14. Reliability Analysis of Wind Turbines

    DEFF Research Database (Denmark)

    Toft, Henrik Stensgaard; Sørensen, John Dalsgaard

    2008-01-01

    In order to minimise the total expected life-cycle costs of a wind turbine it is important to estimate the reliability level for all components in the wind turbine. This paper deals with reliability analysis for the tower and blades of onshore wind turbines placed in a wind farm. The limit states...... consideres are in the ultimate limit state (ULS) extreme conditions in the standstill position and extreme conditions during operating. For wind turbines, where the magnitude of the loads is influenced by the control system, the ultimate limit state can occur in both cases. In the fatigue limit state (FLS......) the reliability level for a wind turbine placed in a wind farm is considered, and wake effects from neighbouring wind turbines is taken into account. An illustrative example with calculation of the reliability for mudline bending of the tower is considered. In the example the design is determined according...

  15. Small Wind Turbine Technology Assessment

    International Nuclear Information System (INIS)

    Avia Aranda, F.; Cruz Cruz, I.

    1999-01-01

    The result of the study carried out under the scope of the ATYCA project Test Plant of Wind Systems for Isolated Applications, about the state of art of the small wind turbine technology (wind turbines with swept area smaller than 40 m 2 ) is presented. The study analyzes the collected information on 60 models of wind turbines from 23 manufacturers in the worldwide market. Data from Chinese manufacturers, that have a large participation in the total number of small wind turbines in operation, are not included, due to the unavailability of the technical information. (Author) 15 refs

  16. Integrated analysis of wind turbines - The impact of power systems on wind turbine design

    DEFF Research Database (Denmark)

    Barahona Garzón, Braulio

    Megawatt-size wind turbines nowadays operate in very complex environmental conditions, and increasingly demanding power system requirements. Pursuing a cost-effective and reliable wind turbine design is a multidisciplinary task. However nowadays, wind turbine design and research areas...... conditions that stem from disturbances in the power system. An integrated simulation environment, wind turbine models, and power system models are developed in order to take an integral perspective that considers the most important aeroelastic, structural, electrical, and control dynamics. Applications...... of the integrated simulation environment are presented. The analysis of an asynchronous machine, and numerical simulations of a fixedspeed wind turbine in the integrated simulation environment, demonstrate the effects on structural loads of including the generator rotor fluxes dynamics in aeroelastic studies. Power...

  17. Robust, Gain-Scheduled Control of Wind Turbines

    DEFF Research Database (Denmark)

    Østergaard, Kasper Zinck

    Wind turbines are today large and efficient machines, which are combined into wind farms operating on par with conventional power plants. When looking back, this is significantly different from the status only a few years ago, when wind turbines were sold mainly to private people. This change...... in turbine owners has resulted in a new focus on operational reliability instead of turbine size. This research deals with investigating model-based gain-scheduling control of wind turbines by use of linear parameter varying (LPV) methods. The numerical challenges grow quickly with the model size...

  18. Great expectations: large wind turbines

    International Nuclear Information System (INIS)

    De Vries, E.

    2001-01-01

    This article focuses on wind turbine product development, and traces the background to wind turbines from the first generation 1.5 MW machines in 1995-6, plans for the second generation 3-5 MW class turbines to meet the expected boom in offshore wind projects, to the anticipated installation of a 4.5 MW turbine, and offshore wind projects planned for 2000-2002. The switch by the market leader Vestas to variable speed operation in 2000, the new product development and marketing strategy taken by the German Pro + Pro consultancy in their design of a 1.5 MW variable speed pitch control concept, the possible limiting of the size of turbines due to logistical difficulties, opportunities offered by air ships for large turbines, and the commissioning of offshore wind farms are discussed. Details of some 2-5 MW offshore wind turbine design specifications are tabulated

  19. Wind Turbine Providing Grid Support

    DEFF Research Database (Denmark)

    2011-01-01

    changing the operation of the wind turbine to a more efficient working point.; When the rotational speed of the rotor reaches a minimum value, the wind turbine enters a recovery period to re-accelerate the rotor to the nominal rotational speed while further contributing to the stability of the electrical......A variable speed wind turbine is arranged to provide additional electrical power to counteract non-periodic disturbances in an electrical grid. A controller monitors events indicating a need to increase the electrical output power from the wind turbine to the electrical grid. The controller...... is arranged to control the wind turbine as follows: after an indicating event has been detected, the wind turbine enters an overproduction period in which the electrical output power is increased, wherein the additional electrical output power is taken from kinetic energy stored in the rotor and without...

  20. Effects of gain-scheduling methods in a classical wind turbine controller on wind turbine aeroservoelastic modes and loads

    DEFF Research Database (Denmark)

    Tibaldi, Carlo; Henriksen, Lars Christian; Hansen, Morten Hartvig

    2014-01-01

    The eects of dierent gain-scheduling methods for a classical wind turbine controller, operating in full load region, on the wind turbine aeroservoelastic modes and loads are investigated in this work. The dierent techniques are derived looking at the physical problem to take into account the chan......The eects of dierent gain-scheduling methods for a classical wind turbine controller, operating in full load region, on the wind turbine aeroservoelastic modes and loads are investigated in this work. The dierent techniques are derived looking at the physical problem to take into account...

  1. Wind Turbine Contingency Control Through Generator De-Rating

    Science.gov (United States)

    Frost, Susan; Goebel, Kai; Balas, Mark

    2013-01-01

    Maximizing turbine up-time and reducing maintenance costs are key technology drivers for wind turbine operators. Components within wind turbines are subject to considerable stresses due to unpredictable environmental conditions resulting from rapidly changing local dynamics. In that context, systems health management has the aim to assess the state-of-health of components within a wind turbine, to estimate remaining life, and to aid in autonomous decision-making to minimize damage to the turbine. Advanced contingency control is one way to enable autonomous decision-making by providing the mechanism to enable safe and efficient turbine operation. The work reported herein explores the integration of condition monitoring of wind turbines with contingency control to balance the trade-offs between maintaining system health and energy capture. The contingency control involves de-rating the generator operating point to achieve reduced loads on the wind turbine. Results are demonstrated using a high fidelity simulator of a utility-scale wind turbine.

  2. Evaluation of the impact of adjusting the angle of the axis of a wind turbine rotor relative to the flow of air stream on operating parameters of a wind turbine model

    Directory of Open Access Journals (Sweden)

    Gumuła Stanisław

    2017-01-01

    Full Text Available The aim of this study was to determine the effect of regulation of an axis of a wind turbine rotor to the direction of wind on the volume of energy produced by wind turbines. A role of an optimal setting of the blades of the wind turbine rotor was specified, as well. According to the measurements, changes in the tilt angle of the axis of the wind turbine rotor in relation to the air stream flow direction cause changes in the use of wind energy. The publication explores the effects of the operating conditions of wind turbines on the possibility of using wind energy. A range of factors affect the operation of the wind turbine, and thus the volume of energy produced by the plant. The impact of design parameters of wind power plant, climatic factors or associated with the location seismic challenges can be shown from among them. One of the parameters has proved to be change settings of the rotor axis in relation to direction of flow of the air stream. Studies have shown that the accurate determination of the optimum angle of the axis of the rotor with respect to flow of air stream strongly influences the characteristics of the wind turbine.

  3. Fatigue-Damage Estimation and Control for Wind Turbines

    DEFF Research Database (Denmark)

    Barradas Berglind, Jose de Jesus

    How can fatigue-damage for control of wind turbines be represented? Fatigue-damage is indeed a crucial factor in structures such as wind turbines that are exposed to turbulent and rapidly changing wind flow conditions. This is relevant both in their design stage and during the control......, the inclusion of fatigue-damage within feedback control loops is of special interest. Four strategies in total are proposed in this work: three for the wind turbine level and one for the wind farm level. On one hand, the three strategies in the turbine level are based on hysteresis operators and strive......-damage estimation in wind turbine components, to the mixed objective operation of wind energy conversion systems, and to the synthesis of control strategies that include hysteresis operators....

  4. The suitability of the IEC 61400-2 wind model for small wind turbines operating in the built environment★

    Directory of Open Access Journals (Sweden)

    Evans Samuel P.

    2017-01-01

    Full Text Available This paper investigates the applicability of the assumed wind fields in International Electrotechnical Commission (IEC standard 61400 Part 2, the design standard for small wind turbines, for a turbine operating in the built environment, and the effects these wind fields have on the predicted performance of a 5 kW Aerogenesis turbine using detailed aeroelastic models developed in Fatigue Aerodynamics Structures and Turbulence (FAST. Detailed wind measurements were acquired at two built environment sites: from the rooftop of a Bunnings Ltd. warehouse at Port Kennedy (PK (Perth, Australia and from the small wind turbine site at the University of Newcastle at Callaghan (Newcastle, Australia. For both sites, IEC 61400-2 underestimates the turbulence intensity for the majority of the measured wind speeds. A detailed aeroelastic model was built in FAST using the assumed wind field from IEC 61400-2 and the measured wind fields from PK and Callaghan as an input to predict key turbine performance parameters. The results of this analysis show a modest increase in the predicted mean power for the higher turbulence regimes of PK and Callaghan as well as higher variation in output power. Predicted mean rotor thrust and blade flapwise loading showed a minor increase due to higher turbulence, with mean predicted torque almost identical but with increased variations due to higher turbulence. Damage equivalent loading for the blade flapwise moment was predicted to be 58% and 11% higher for a turbine operating at Callaghan and PK respectively, when compared with IEC 61400-2 wind field. Time series plots for blade flapwise moments and power spectral density plots in the frequency domain show consistently higher blade flapwise bending moments for the Callaghan site with both the sites showing a once-per-revolution response.

  5. Wind Turbine Converter Control Interaction with Complex Wind Farm Systems

    DEFF Research Database (Denmark)

    Kocewiak, Lukasz Hubert; Hjerrild, Jesper; Bak, Claus Leth

    2013-01-01

    . The same wind turbine converter control strategy is evaluated in two different wind farms. It is emphasised that the grid-side converter controller should be characterised by sufficient harmonic/noise rejection and adjusted depending on wind farms to which it is connected. Various stability indices......This study presents wind turbine converter stability analysis of wind farms in frequency domain. The interaction between the wind turbine control system and the wind farm structure in wind farms is deeply investigated. Two wind farms (i.e. Horns Rev II and Karnice) are taken into consideration...... in this study. It is shown that wind farm components, such as long high-voltage alternating current cables and park transformers, can introduce significant low-frequency series resonances seen from the wind turbine terminals that can affect wind turbine control system operation and overall wind farm stability...

  6. Wake meandering of a model wind turbine operating in two different regimes

    Science.gov (United States)

    Foti, Daniel; Yang, Xiaolei; Campagnolo, Filippo; Maniaci, David; Sotiropoulos, Fotis

    2018-05-01

    The flow behind a model wind turbine under two different turbine operating regimes (region 2 for turbine operating at optimal condition with the maximum power coefficient and 1.4-deg pitch angle and region 3 for turbine operating at suboptimal condition with a lower power coefficient and 7-deg pitch angle) is investigated using wind tunnel experiments and numerical experiments using large-eddy simulation (LES) with actuator surface models for turbine blades and nacelle. Measurements from the model wind turbine experiment reveal that the power coefficient and turbine wake are affected by the operating regime. Simulations with and without a nacelle model are carried out for each operating condition to study the influence of the operating regime and nacelle on the formation of the hub vortex and wake meandering. Statistics and energy spectra of the simulated wakes are in good agreement with the measurements. For simulations with a nacelle model, the mean flow field is composed of an outer wake, caused by energy extraction by turbine blades, and an inner wake directly behind the nacelle, while for the simulations without a nacelle model, the central region of the wake is occupied by a jet. The simulations with the nacelle model reveal an unstable helical hub vortex expanding outward toward the outer wake, while the simulations without a nacelle model show a stable and columnar hub vortex. Because of the different interactions of the inner region of the wake with the outer region of the wake, a region with higher turbulence intensity is observed in the tip shear layer for the simulation with a nacelle model. The hub vortex for the turbine operating in region 3 remains in a tight helical spiral and intercepts the outer wake a few diameters further downstream than for the turbine operating in region 2. Wake meandering, a low-frequency large-scale motion of the wake, commences in the region of high turbulence intensity for all simulations with and without a nacelle model

  7. LPV Control for the Full Region Operation of a Wind Turbine Integrated with Synchronous Generator

    Science.gov (United States)

    Grigoriadis, Karolos M.; Nyanteh, Yaw D.

    2015-01-01

    Wind turbine conversion systems require feedback control to achieve reliable wind turbine operation and stable current supply. A robust linear parameter varying (LPV) controller is proposed to reduce the structural loads and improve the power extraction of a horizontal axis wind turbine operating in both the partial load and the full load regions. The LPV model is derived from the wind turbine state space models extracted by FAST (fatigue, aerodynamics, structural, and turbulence) code linearization at different operating points. In order to assure a smooth transition between the two regions, appropriate frequency-dependent varying scaling parametric weighting functions are designed in the LPV control structure. The solution of a set of linear matrix inequalities (LMIs) leads to the LPV controller. A synchronous generator model is connected with the closed LPV control loop for examining the electrical subsystem performance obtained by an inner speed control loop. Simulation results of a 1.5 MW horizontal axis wind turbine model on the FAST platform illustrates the benefit of the LPV control and demonstrates the advantages of this proposed LPV controller, when compared with a traditional gain scheduling PI control and prior LPV control configurations. Enhanced structural load mitigation, improved power extraction, and good current performance were obtained from the proposed LPV control. PMID:25884036

  8. LPV Control for the Full Region Operation of a Wind Turbine Integrated with Synchronous Generator

    Directory of Open Access Journals (Sweden)

    Guoyan Cao

    2015-01-01

    Full Text Available Wind turbine conversion systems require feedback control to achieve reliable wind turbine operation and stable current supply. A robust linear parameter varying (LPV controller is proposed to reduce the structural loads and improve the power extraction of a horizontal axis wind turbine operating in both the partial load and the full load regions. The LPV model is derived from the wind turbine state space models extracted by FAST (fatigue, aerodynamics, structural, and turbulence code linearization at different operating points. In order to assure a smooth transition between the two regions, appropriate frequency-dependent varying scaling parametric weighting functions are designed in the LPV control structure. The solution of a set of linear matrix inequalities (LMIs leads to the LPV controller. A synchronous generator model is connected with the closed LPV control loop for examining the electrical subsystem performance obtained by an inner speed control loop. Simulation results of a 1.5 MW horizontal axis wind turbine model on the FAST platform illustrates the benefit of the LPV control and demonstrates the advantages of this proposed LPV controller, when compared with a traditional gain scheduling PI control and prior LPV control configurations. Enhanced structural load mitigation, improved power extraction, and good current performance were obtained from the proposed LPV control.

  9. Tjæreborg Wind Turbine (Esbjerg)

    DEFF Research Database (Denmark)

    Øye, Stig

    1991-01-01

    This paper presents the first measured timeseries for the Tjæreborg (Tjaereborg) Wind Turbine during operation with stepwise pitch angle changes.......This paper presents the first measured timeseries for the Tjæreborg (Tjaereborg) Wind Turbine during operation with stepwise pitch angle changes....

  10. Some aspects on wind turbines monitoring. General considerations and loads on horizontal wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Cuerva, A.

    1996-12-01

    The concept Monitoring applied to the Wind Energy technology is similar to the definition used in other branches of Science or Engineering, this is knowing values of variables which have to do with a mechanic system, in our case a wind turbine. These mentioned parameters may have different relationships to our wind turbine; some of them come from the environment the machine is operating in, others, are a measure of how properly the machine is working, and finally, the rest are an assessment of the ``system`s health`` during its ``life``. In this chapter we will answer questions such as: What do we need to measure? Why is Monitoring mandatory (from the different points of view of people involved in this world)? How can we measure a wind turbine depending on our objectives (Technic, tools, guidance, recommendations, etc)? And finally What can we expect in the near future?. The author wants the reader to keep the idea in mind that Monitoring means the richest and most accurate knowledge on wind turbine`s operation (Its environment, performances of health). This is the first step that allows us to optimize the operation mode of the machine and improve it (design, manufacturing, even the used modeling tools). When there is so much money involved, this fact becomes a must. (Author)

  11. On risk-based operation and maintenance of offshore wind turbine components

    DEFF Research Database (Denmark)

    Nielsen, Jannie Jessen; Sørensen, John Dalsgaard

    2011-01-01

    Operation and maintenance are significant contributors to the cost of energy for offshore wind turbines. Optimal planning could rationally be based on Bayesian pre-posterior decision theory, and all costs through the lifetime of the structures should be included. This paper contains a study...... of a generic case where the costs are evaluated for a single wind turbine with a single component. Costs due to inspections, repairs, and lost production are included in the model. The costs are compared for two distinct maintenance strategies, namely with and without inclusion of periodic imperfect...

  12. Wind Turbine Acoustics

    Science.gov (United States)

    Hubbard, Harvey H.; Shepherd, Kevin P.

    2009-01-01

    Wind turbine generators, ranging in size from a few kilowatts to several megawatts, are producing electricity both singly and in wind power stations that encompass hundreds of machines. Many installations are in uninhabited areas far from established residences, and therefore there are no apparent environmental impacts in terms of noise. There is, however, the potential for situations in which the radiated noise can be heard by residents of adjacent neighborhoods, particularly those neighborhoods with low ambient noise levels. A widely publicized incident of this nature occurred with the operation of the experimental Mod-1 2-MW wind turbine, which is described in detail elsewhere. Pioneering studies which were conducted at the Mod-1 site on the causes and remedies of noise from wind turbines form the foundation of much of the technology described in this chapter.

  13. Illustration of Modern Wind Turbine Ancillary Services

    DEFF Research Database (Denmark)

    Margaris, Ioannis D.; Hansen, Anca Daniela; Sørensen, Poul Ejnar

    2010-01-01

    Increasing levels of wind power penetration in modern power systems has set intensively high standards with respect to wind turbine technology during the last years. Security issues have become rather critical and operation of wind farms as conventional power plants is becoming a necessity as wind...... turbines replace conventional units on the production side. This article includes a review of the basic control issues regarding the capability of the Doubly Fed Induction Generator (DFIG) wind turbine configuration to fulfill the basic technical requirements set by the system operators and contribute...

  14. Numerical simulations with a FSI-calibrated actuator disk model of wind turbines operating in stratified ABLs

    Science.gov (United States)

    Gohari, S. M. Iman; Sarkar, Sutanu; Korobenko, Artem; Bazilevs, Yuri

    2017-11-01

    Numerical simulations of wind turbines operating under different regimes of stability are performed using LES. A reduced model, based on the generalized actuator disk model (ADM), is implemented to represent the wind turbines within the ABL. Data from the fluid-solid interaction (FSI) simulations of wind turbines have been used to calibrate and validate the reduced model. The computational cost of this method to include wind turbines is affordable and incurs an overhead as low as 1.45%. Using this reduced model, we study the coupling of unsteady turbulent flow with the wind turbine under different ABL conditions: (i) A neutral ABL with zero heat-flux and inversion layer at 350m, in which the incoming wind has the maximum mean shear between the heights of upper-tip and lower-tip; (2) A shallow ABL with surface cooling rate of -1 K/hr wherein the low level jet occurs at the wind turbine hub height. We will discuss how the differences in the unsteady flow between the two ABL regimes impact the wind turbine performance.

  15. Sandia SWiFT Wind Turbine Manual.

    Energy Technology Data Exchange (ETDEWEB)

    White, Jonathan; LeBlanc, Bruce Philip; Berg, Jonathan Charles; Bryant, Joshua; Johnson, Wesley D.; Paquette, Joshua

    2016-01-01

    The Scaled Wind Farm Technology (SWiFT) facility, operated by Sandia National Laboratories for the U.S. Department of Energy's Wind and Water Power Program, is a wind energy research site with multiple wind turbines scaled for the experimental study of wake dynamics, advanced rotor development, turbine control, and advanced sensing for production-scale wind farms. The SWiFT site currently includes three variable-speed, pitch-regulated, three-bladed wind turbines. The six volumes of this manual provide a detailed description of the SWiFT wind turbines, including their operation and user interfaces, electrical and mechanical systems, assembly and commissioning procedures, and safety systems. Further dissemination only as authorized to U.S. Government agencies and their contractors; other requests shall be approved by the originating facility or higher DOE programmatic authority. 111 UNCLASSIFIED UNLIMITED RELEASE Sandia SWiFT Wind Turbine Manual (SAND2016-0746 ) approved by: Department Manager SWiFT Site Lead Dave Minster (6121) Date Jonathan White (6121) Date SWiFT Site Supervisor Dave Mitchell (6121) Date Note: Document revision logs are found after the title page of each volume of this manual. iv

  16. Some aspects on wind turbines monitoring. General considerations and loads on horizontal wind turbines

    International Nuclear Information System (INIS)

    Cuerva, A.

    1996-01-01

    The concept Monitoring applied to the Wind Energy technology is similar to the definition used in other branches of Science or Engineering, this is knowing values of variables which have to do with a mechanic system, in our case a wind turbine. These mentioned parameters may have different relationships to our wind turbine; some of them come from the environment the machine is operating in, others, are a measure of how properly the machine is working, and finally, the rest are an assessment of the systems health during its life. In this chapter we will answer questions such as: What do we need to measure? Why is Monitoring mandatory (from the different points of view of people involved in this world)? How can we measure a wind turbine depending on our objectives (Technic, tools, guidance, recommendations, etc.)? And finally What can we expect in the near future? The author wants the reader to keep the idea in mind that Monitoring means the richest and most accurate knowledge on wind turbine's operation (Its environment, performances or health). This is the first step that allows us to optimize the operation mode of the machine and improve it (design, manufacturing, even the used modeling tools). When there is so much money involved, this fact becomes a must. (Author)

  17. On System Identification of Wind Turbines

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Perisic, Nevena; Pedersen, B.J.

    Recently several methods have been proposed for the system identification of wind turbines which can be considered as a linear time-varying system due to the operating conditions. For the identification of linear wind turbine models, either black-box or grey-box identification can be used....... The operational model analysis (OMA) methodology can provide accurate estimates of the natural frequencies, damping ratios and mode shapes of the systems as long as the measurements have a low noise to signal ratio. However, in order to take information about the wind turbine into account a grey...

  18. Towards a Risk-based Decision Support for Offshore Wind Turbine Installation and Operation & Maintenance

    DEFF Research Database (Denmark)

    Gintautas, Tomas; Sørensen, John Dalsgaard; Vatne, Sigrid Ringdalen

    2016-01-01

    Costs of operation & maintenance, assembly, transport and installation of offshore wind turbines contribute significantly to the total cost of offshore wind farm. These operations are mostly carried out by specific ships that have to be hired for the operational phase and for duration of installa......Costs of operation & maintenance, assembly, transport and installation of offshore wind turbines contribute significantly to the total cost of offshore wind farm. These operations are mostly carried out by specific ships that have to be hired for the operational phase and for duration...... of installation process, respectively. Duration, and therefore ship hiring costs is, among others, driven by waiting time for weather windows for weather-sensitive operations. Today, state of the art decision making criteria for weather-sensitive operations are restrictions to the significant wave height...... and the average wind velocity at reference height. However, actual limitations are physical, related to response of equipment used e.g. crane wire tension, rotor assembly motions while lifting, etc. Transition from weather condition limits to limits on physical equipment response in decision making would improve...

  19. Optimal, Risk-based Operation and Maintenance Planning for Offshore Wind Turbines

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard

    2008-01-01

    For offshore wind turbines costs to operation and maintenance are substantial. This paper describes a risk-based life-cycle approach for optimal planning of operation and maintenance. The approach is based on pre-posterior Bayesian decision theory. Deterioration mechanisms such as fatigue...

  20. Design and operating experience on the US Department of Energy experimental Mod-0 100-kW wind turbine

    Science.gov (United States)

    Glasgow, J. C.; Birchenough, A. G.

    1978-01-01

    The experimental wind turbine was designed and fabricated to assess technology requirements and engineering problems of large wind turbines. The machine has demonstrated successful operation in all of its design modes and served as a prototype developmental test bed for the Mod-0A operational wind turbines which are currently used on utility networks. The mechanical and control system are described as they evolved in operational tests and some of the experience with various systems in the downwind rotor configurations are elaborated.

  1. Experiences and results from Elkraft 1 MW wind turbine

    Energy Technology Data Exchange (ETDEWEB)

    Raben, N; Jensen, F V [SEAS Distribution A.m.b.A., Wind Power Dept., Haslev (Denmark); Oeye, S [DTU, Inst. for Energiteknik, Lyngby (Denmark); Markkilde Petersen, S; Antoniou, I [Risoe National Lab., Wind Energy and Atmospheric Physics Dept., Roskilde (Denmark)

    1999-03-01

    The Elkraft 1 MW Demonstration wind turbine was at the time of installation in 1993 the largest stall controlled wind turbine in the world. It was constructed to allow accurate comparison of two different forms of operation: pitch control and stall control. A comprehensive programme for the investigation of the two operation modes was established. This paper presents the main experiences from five years of operation and measurements. For a three-year period the wind turbine was in operation in stall controlled mode. During this period the turbine faced problems of various significance. Especially lightning strikes and unusually poor wind conditions caused delays of the project. In early 1997, the wind turbine was modified to enable pitch controlled operation. The gearbox ratio was changed in order to allow higher rotor speed, the hydraulic system was altered and new control software was installed. Tests were carried out successfully during the spring of 1997 and the wind turbine has since been operating as a pitch controlled wind turbine. The most significant events and problems are presented and commented in this paper along with results from the measurement programme. The results cover both stall and pitch controlled operation and include power curves, annual energy production, structural loads, fatigue loads etc. (au) 10 refs.

  2. Assessment of C-Type Darrieus Wind Turbine Under Low Wind Speed Condition

    Science.gov (United States)

    Misaran, M. S.; Rahman, Md. M.; Muzammil, W. K.; Ismail, M. A.

    2017-07-01

    Harvesting wind energy in in a low wind speed region is deem un-economical if not daunting task. Study shows that a minimum cut in speed of 3.5 m/s is required to extract a meaningful wind energy for electricity while a mean speed of 6 m/s is preferred. However, in Malaysia the mean speed is at 2 m/s with certain potential areas having 3 m/s mean speed. Thus, this work aims to develop a wind turbine that able to operate at lower cut-in speed and produce meaningful power for electricity generation. A C-type Darrieus blade is selected as it shows good potential to operate in arbitrary wind speed condition. The wind turbine is designed and fabricated in UMS labs while the performance of the wind turbine is evaluated in a simulated wind condition. Test result shows that the wind turbine started to rotate at 1 m/s compared to a NACA 0012 Darrieus turbine that started to rotate at 3 m/s. The performance of the turbine shows that it have good potential to be used in an intermittent arbitrary wind speed condition as well as low mean wind speed condition.

  3. Grid support capabilities of wind turbines

    DEFF Research Database (Denmark)

    Michalke, Gabriele; Hansen, Anca Daniela

    2013-01-01

    Wind power has gained a significant penetration level in several power systems all over the world. Due to this reason modern wind turbines are requested to contribute to power system support. Power system operators have thus introduced grid codes, which specify a set of requirements for wind...... turbines, such as fault ride-through and reactive power supply during voltage sags. To date different wind turbine concepts exist on the market comprising different control features in order to provide ancillary services to the power system. In the first place the present chapter emphasizes the most...... important issues related to wind power grid integration. Then different wind turbine concepts are characterized and their grid support capabilities are analysed and compared. Simulation cases are presented in which the respective wind turbine concepts are subjected to a voltage dip specified in a grid code....

  4. Investigation of Wind Turbine Rotor Concepts for Offshore Wind Farms

    International Nuclear Information System (INIS)

    Ceyhan, Özlem; Grasso, Francesco

    2014-01-01

    Current plans in offshore wind energy developments call for further reduction of cost of energy. In order to contribute to this goal, several wind turbine rotor concepts have been investigated. Assuming the future offshore wind turbines will operate only in the offshore wind farms, the rotor concepts are not only evaluated for their stand-alone performances and their potential in reducing the loads, but also for their performance in an offshore wind farm. In order to do that, the 10MW reference wind turbine designed in Innwind.EU project is chosen as baseline. Several rotor parameters have been modified and their influences are investigated for offshore wind turbine design purposes. This investigation is carried out as a conceptual parametrical study. All concepts are evaluated numerically with BOT (Blade optimisation tool) software in wind turbine level and with Farmflow software in wind farm level for two wind farm layouts. At the end, all these concepts are compared with each other in terms of their advantages and disadvantages

  5. Wind Predictions Upstream Wind Turbines from a LiDAR Database

    Directory of Open Access Journals (Sweden)

    Soledad Le Clainche

    2018-03-01

    Full Text Available This article presents a new method to predict the wind velocity upstream a horizontal axis wind turbine from a set of light detection and ranging (LiDAR measurements. The method uses higher order dynamic mode decomposition (HODMD to construct a reduced order model (ROM that can be extrapolated in space. LiDAR measurements have been carried out upstream a wind turbine at six different planes perpendicular to the wind turbine axis. This new HODMD-based ROM predicts with high accuracy the wind velocity during a timespan of 24 h in a plane of measurements that is more than 225 m far away from the wind turbine. Moreover, the technique introduced is general and obtained with an almost negligible computational cost. This fact makes it possible to extend its application to both vertical axis wind turbines and real-time operation.

  6. Wind turbines fundamentals, technologies, application, economics

    CERN Document Server

    Hau, Erich

    2013-01-01

    "Wind Turbines" addresses all those professionally involved in research, development, manufacture and operation of wind turbines. It provides a cross-disciplinary overview of modern wind turbine technology and an orientation in the associated technical, economic and environmental fields.  In its revised third edition, special emphasis has been given to the latest trends in wind turbine technology and design, such as gearless drive train concepts, as well as on new fields of application, in particular the offshore utilisation of wind energy. The author has gained experience over decades designing wind energy converters with a major industrial manufacturer and, more recently, in technical consulting and in the planning of large wind park installations, with special attention to economics.

  7. A Study of Wind Turbine Comprehensive Operational Assessment Model Based on EM-PCA Algorithm

    Science.gov (United States)

    Zhou, Minqiang; Xu, Bin; Zhan, Yangyan; Ren, Danyuan; Liu, Dexing

    2018-01-01

    To assess wind turbine performance accurately and provide theoretical basis for wind farm management, a hybrid assessment model based on Entropy Method and Principle Component Analysis (EM-PCA) was established, which took most factors of operational performance into consideration and reach to a comprehensive result. To verify the model, six wind turbines were chosen as the research objects, the ranking obtained by the method proposed in the paper were 4#>6#>1#>5#>2#>3#, which are completely in conformity with the theoretical ranking, which indicates that the reliability and effectiveness of the EM-PCA method are high. The method could give guidance for processing unit state comparison among different units and launching wind farm operational assessment.

  8. Wind turbine remote control using Android devices

    Science.gov (United States)

    Rat, C. L.; Panoiu, M.

    2018-01-01

    This paper describes the remote control of a wind turbine system over the internet using an Android device, namely a tablet or a smartphone. The wind turbine workstation contains a LabVIEW program which monitors the entire wind turbine energy conversion system (WECS). The Android device connects to the LabVIEW application, working as a remote interface to the wind turbine. The communication between the devices needs to be secured because it takes place over the internet. Hence, the data are encrypted before being sent through the network. The scope was the design of remote control software capable of visualizing real-time wind turbine data through a secure connection. Since the WECS is fully automated and no full-time human operator exists, unattended access to the turbine workstation is needed. Therefore the device must not require any confirmation or permission from the computer operator in order to control it. Another condition is that Android application does not have any root requirements.

  9. Extreme Response for Wind Turbines

    DEFF Research Database (Denmark)

    Toft, Henrik Stensgaard; Sørensen, John Dalsgaard

    2009-01-01

    The characteristic load on wind turbines during operation are among others dependent on the mean wind speed, the turbulence intensity and type and settings of the control system. The characteristic load during operation is normally estimated by statistical extrapolation of a limited number...... of simulated 10min time series of the response according to the wind turbine standard IEC 61400-1. However, this method assumes that the individual 10min time series and the extracted peaks from the time series are independent. In the present paper is this assumption investigated based on field measurements...

  10. On the Fatigue Analysis of Wind Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Sutherland, Herbert J.

    1999-06-01

    Modern wind turbines are fatigue critical machines that are typically used to produce electrical power from the wind. Operational experiences with these large rotating machines indicated that their components (primarily blades and blade joints) were failing at unexpectedly high rates, which led the wind turbine community to develop fatigue analysis capabilities for wind turbines. Our ability to analyze the fatigue behavior of wind turbine components has matured to the point that the prediction of service lifetime is becoming an essential part of the design process. In this review paper, I summarize the technology and describe the ''best practices'' for the fatigue analysis of a wind turbine component. The paper focuses on U.S. technology, but cites European references that provide important insights into the fatigue analysis of wind turbines.

  11. Radar Cross Section (RCS) Simulation for Wind Turbines

    Science.gov (United States)

    2013-06-01

    wind turbines are unsafe to operate. Also, helical wind turbines generally have less environmental concerns such as killing birds , especially in...SECTION (RCS) SIMULATION FOR WIND TURBINES by Cuong Ton June 2013 Thesis Advisor: David C. Jenn Second Reader: Ric Romero THIS PAGE...TITLE AND SUBTITLE RADAR CROSS SECTION (RCS) SIMULATION FOR WIND TURBINES 5. FUNDING NUMBERS 6. AUTHOR(S) Cuong Ton 7. PERFORMING ORGANIZATION

  12. Optimal Control and Operation Strategy for Wind Turbines Contributing to Grid Primary Frequency Regulation

    Directory of Open Access Journals (Sweden)

    Mun-Kyeom Kim

    2017-09-01

    Full Text Available This study introduces a frequency regulation strategy to enable the participation of wind turbines with permanent magnet synchronous generators (PMSGs. The optimal strategy focuses on developing the frequency support capability of PMSGs connected to the power system. Active power control is performed using maximum power point tracking (MPPT and de-loaded control to supply the required power reserve following a disturbance. A kinetic energy (KE reserve control is developed to enhance the frequency regulation capability of wind turbines. The coordination with the de-loaded control prevents instability in the PMSG wind system due to excessive KE discharge. A KE optimization method that maximizes the sum of the KE reserves at wind farms is also adopted to determine the de-loaded power reference for each PMSG wind turbine using the particle swarm optimization (PSO algorithm. To validate the effectiveness of the proposed optimal control and operation strategy, three different case studies are conducted using the PSCAD/EMTDC simulation tool. The results demonstrate that the optimal strategy enhances the frequency support contribution from PMSG wind turbines.

  13. Ice accretion modeling for wind turbine rotor blades

    Energy Technology Data Exchange (ETDEWEB)

    Chocron, D.; Brahimi, T.; Paraschivoiu, I.; Bombardier, J.A. [Ecole Polytechnique de Montreal (Canada)

    1997-12-31

    The increasing application of wind energy in northern climates implies operation of wind turbines under severe atmospheric icing conditions. Such conditions are well known in the Scandinavian countries, Canada and most of Eastern European countries. An extensive study to develop a procedure for the prediction of ice accretion on wind turbines rotor blades appears to be essential for the safe and economic operation of wind turbines in these cold regions. The objective of the present paper is to develop a computer code capable of simulating the shape and amount of ice which may accumulate on horizontal axis wind turbine blades when operating in icing conditions. The resulting code is capable to predict and simulate the formation of ice in rime and glaze conditions, calculate the flow field and particle trajectories and to perform thermodynamic analysis. It also gives the possibility of studying the effect of different parameters that influence ice formation such as temperature, liquid water content, droplet diameter and accretion time. The analysis has been conducted on different typical airfoils as well as on NASA/DOE Mod-0 wind turbine. Results showed that ice accretion on wind turbines may reduce the power output by more than 20%.

  14. Time Series Model of Wind Speed for Multi Wind Turbines based on Mixed Copula

    Directory of Open Access Journals (Sweden)

    Nie Dan

    2016-01-01

    Full Text Available Because wind power is intermittent, random and so on, large scale grid will directly affect the safe and stable operation of power grid. In order to make a quantitative study on the characteristics of the wind speed of wind turbine, the wind speed time series model of the multi wind turbine generator is constructed by using the mixed Copula-ARMA function in this paper, and a numerical example is also given. The research results show that the model can effectively predict the wind speed, ensure the efficient operation of the wind turbine, and provide theoretical basis for the stability of wind power grid connected operation.

  15. Predicting Faults in Wind Turbines Using SCADA Data

    DEFF Research Database (Denmark)

    Borchersen, Anders Bech; Larsen, Jesper Abildgaard; Stoustrup, Jakob

    2013-01-01

    The cost of operation and maintenance of wind turbines is a significant part of the overall cost of wind turbines. To reduce this cost a method for enabling early fault detection is proposed and tested in this paper. The method is taking advantage of the fact that wind turbines in wind farms...... and tested on historical Supervisory Control And Data Acquisition (SCADA) data from nine operational turbines over a testing period of nine months. The performance of the fault detection is found to be acceptable based on the testing period. During the testing period several gear related services were...

  16. Simulation model of an active stall wind turbine controller

    Energy Technology Data Exchange (ETDEWEB)

    Jauch, C.; Hansen, A.D.; Soerensen, P. [Risoe National Lab., Wind Energy Dept., Rosilde (Denmark); Blaabjerg, F. [Aalborg Univ., Inst. of Energy Technology (Denmark)

    2004-07-01

    This paper describes an active stall wind turbine controller. The objective is to develop a general model of an active stall controller in order to simulate the operation of grid connected active stall wind turbines. The active stall turbine concept and its control strategies are presented and evaluated on the basis of simulations. The presented controller is described for continuous operation under all wind speeds from start-up wind speed to shut doven wind speed. Due to its parametric implementation it is general i.e. it can represent different active stall wind turbine controllers and can be implemented in different simulation tools. (au)

  17. Cost-effective Design and Operation of Variable Speed Wind Turbines. Closing the Gap between the Control Engineering and the Wind Engineering Community

    Energy Technology Data Exchange (ETDEWEB)

    Molenaar, D.P.

    2003-02-18

    Wind has the potential to play a more important role in the future world electricity supply, provided that the cost per kilowatt hour is further reduced. The cost of wind-generated electricity can be effectively reduced by improvements in both wind turbine design and operation. In this thesis a design tool has been developed that offers the possibility to generate accurate and reliable dynamic models of the complete wind turbine. The models can be either used to evaluate the impact that design choices have on the economic viability, or to assess the dynamic behavior of the selected wind turbine configuration under various conditions.

  18. Design and operating experience on the U.S. Department of Energy Experimental Mod-O 100 kW Wind Turbine

    Science.gov (United States)

    Glasgow, J. C.; Birchenough, A. G.

    1978-01-01

    The Mod-O 100 kW Experimental Wind Turbine was designed and fabricated by NASA, as part of the Federal Wind Energy Program, to assess technology requirements and engineering problems of large wind turbines. The machine became operational in October 1975 and has demonstrated successful operation in all of its design modes. During the course of its operations the machine has generated a wealth of experimental data and has served as a prototype developmental test bed for the Mod-OA operational wind turbines which are currently used on utility networks. This paper describes the mechanical and control systems as they evolved in operational tests and describes some of the experience with various systems in the downwind rotor configuration.

  19. Wake characteristics of wind turbines in utility-scale wind farms

    Science.gov (United States)

    Yang, Xiaolei; Foti, Daniel; Sotiropoulos, Fotis

    2017-11-01

    The dynamics of turbine wakes is affected by turbine operating conditions, ambient atmospheric turbulent flows, and wakes from upwind turbines. Investigations of the wake from a single turbine have been extensively carried out in the literature. Studies on the wake dynamics in utility-scale wind farms are relatively limited. In this work, we employ large-eddy simulation with an actuator surface or actuator line model for turbine blades to investigate the wake dynamics in utility-scale wind farms. Simulations of three wind farms, i.e., the Horns Rev wind farm in Denmark, Pleasant Valley wind farm in Minnesota, and the Vantage wind farm in Washington are carried out. The computed power shows a good agreement with measurements. Analysis of the wake dynamics in the three wind farms is underway and will be presented in the conference. This work was support by Xcel Energy (RD4-13). The computational resources were provided by National Renewable Energy Laboratory.

  20. Long-term global response analysis of a vertical axis wind turbine supported on a semi-submersible floating platform: Comparison between operating and non-operating wind turbine load cases

    DEFF Research Database (Denmark)

    Collu, Maurizio; Manuel, Lance; Borg, Michael

    2015-01-01

    This study continues [1] the examination of the long-term global response of a floating vertical axis wind turbine (VAWT) situated off the Portuguese coast in the Atlantic Ocean. The VAWT, which consists of a 5-MW 3-bladed H-type rotor developed as part of the EU-FP7 H2OCEAN project, is assumed...... is adopted, as well as also taking into account the drag generated by the wind turbine tower. Short-term turbine load and platform motion statistics are established for individual sea states that are analysed. The long-term reliability yields estimates of 50-year loads and platform motions that takes...... to be mounted on the OC4 semi-submersible floating platform. Adding a non-operational load case (wind speed 35m/s), the sea states identified are used to carry out coupled dynamics simulations using the FloVAWT design tool, for which an improved wave elevation and relative force/moment time signals approach...

  1. InfraSound from wind turbines : observations from Castle River wind farm. Volume 1

    International Nuclear Information System (INIS)

    Edworthy, J.; Hepburn, H.

    2005-01-01

    Although infrasound has been discussed as a concern by groups opposed to wind farm facilities, there is very little information available about infrasound and wind turbines. This paper presented details of a project conducted by VisionQuest, the largest wind power producer in Canada. Three sensor types were used: precision sound analyzer, seismic geophones, and calibrated microphones to take measurements in low, medium and high winds. The project also measured infrasound when the wind farm was not operating. Acquisition geometry was presented, as well as details of apparent attenuations of wind noise. It was noted that high wind noise was a dominant factor and that there was little difference when the wind farm was not operational. It was suggested that turbines have no impact with high wind, since wind noise is not attenuated with distance. It was noted that increased geophone amplitudes indicate high wind coupled motion which is attenuated when the turbines are on. Results indicate that all frequencies showed attenuation with distance. Evidence showed that low frequency sound pressure levels were often lower when the turbines were switched on. Where turbines contributed to sound pressure levels, the magnitude of the contribution was below levels of concern to human health. Ambient sound pressure levels were much higher than contributions from wind turbines. It was concluded that wind itself generates infrasound. Wind turbines generate low levels of infrasound, detectable very close to facilities at low to medium wind speeds. Wind turbines may reduce ambient infrasound levels at high wind speeds by converting the energy from the wind into electricity. refs., tabs., figs

  2. Electrical components library for HAWC2; Wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Cutululis, N.A.; Larsen, Torben J.; Soerensen, Poul; Hansen, Anca D. (Risoe National Lab., DTU, Wind Energy Dept., Roskilde (DK)); Iov, F. (Aalborg Univ., Institute of Energy Technology (DK))

    2007-12-15

    The work presented in this report is part of the EFP project called ''A Simulation Platform to Model, Optimize and Design Wind Turbines'' partly funded by the Danish Energy Authority under contract number 1363/04-0008. The project is carried out in cooperation between Risoe National Laboratory and Aalborg University. In this project, the focus is on the development of a simulation platform for wind turbine systems using different simulation tools. This report presents the electric component library developed for use in the aeroelastic code HAWC2. The developed library includes both steady state and dynamical models for fixed and variable speed wind turbines. A simple steady-state slip model was developed for the fixed speed wind turbine. This model is suitable for aeroelastic design of wind turbines under normal operation. A dynamic model of an induction generator for the fixed speed wind turbine was developed. The model includes the dynamics of the rotor fluxes. The model is suitable for a more detailed investigation of the mechanical-electrical interaction, both under normal and fault operation. For the variable speed wind turbine, a steadystate model, typically used in aeroelastic design, was implemented. The model can be used for normal and, to some extent, for fault operation. The reduced order dynamic model of a DFIG was implemented. The model includes only the active power controller and can be used for normal operation conditions. (au)

  3. A quantitative analysis of the impact of wind turbines on operational Doppler weather radar data

    Science.gov (United States)

    Norin, L.

    2015-02-01

    In many countries wind turbines are rapidly growing in numbers as the demand for energy from renewable sources increases. The continued deployment of wind turbines can, however, be problematic for many radar systems, which are easily disturbed by turbines located in the radar line of sight. Wind turbines situated in the vicinity of Doppler weather radars can lead to erroneous precipitation estimates as well as to inaccurate wind and turbulence measurements. This paper presents a quantitative analysis of the impact of a wind farm, located in southeastern Sweden, on measurements from a nearby Doppler weather radar. The analysis is based on 6 years of operational radar data. In order to evaluate the impact of the wind farm, average values of all three spectral moments (the radar reflectivity factor, absolute radial velocity, and spectrum width) of the nearby Doppler weather radar were calculated, using data before and after the construction of the wind farm. It is shown that all spectral moments, from a large area at and downrange from the wind farm, were impacted by the wind turbines. It was also found that data from radar cells far above the wind farm (near 3 km altitude) were affected by the wind farm. It is shown that this in part can be explained by detection by the radar sidelobes and by scattering off increased levels of dust and turbulence. In a detailed analysis, using data from a single radar cell, frequency distributions of all spectral moments were used to study the competition between the weather signal and wind turbine clutter. It is shown that, when weather echoes give rise to higher reflectivity values than those of the wind farm, the negative impact of the wind turbines is greatly reduced for all spectral moments.

  4. Blade design and operating experience on the MOD-OA 200 kW wind turbine at Clayton, New Mexico

    Science.gov (United States)

    Linscott, B. S.; Shaltens, R. K.

    1979-01-01

    Two 60 foot long aluminum wind turbine blades were operated for over 3000 hours on the MOD-OA wind turbine. The first signs of blade structural damage were observed after 400 hours of operation. Details of the blade design, loads, cost, structural damage, and repair are discussed.

  5. Lubricants : the lifeblood of wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Tremblay, Y. [Petro-Canada, Calgary, AB (Canada)

    2009-07-01

    With the significant investments in wind turbine equipment, companies need to exercise due diligence when it comes to the types of lubricants and fluids used. Mechanical and equipment issues can often be eliminated with improved maintenance practices and the appropriate selection of lubricants. This presentation discussed lubricants as being the lifeblood of wind turbines. The presentation first provided an overview and discussed wind turbine trends and application trends. The technical aspects of fluid formation were presented. Lubrication maintenance practices and oil monitoring were discussed. Last, key industry tests, and OEM specifications for bearings, gearboxes, and wind turbines were identified. It was concluded that improved maintenance practices in combination with the correct lubricant selection can address several operating problems. figs.

  6. Tacholess order-tracking approach for wind turbine gearbox fault detection

    Institute of Scientific and Technical Information of China (English)

    Yi WANG; Yong XIE; Guanghua XU; Sicong ZHANG; Chenggang HOU

    2017-01-01

    Monitoring of wind turbines under variablespeed operating conditions has become an important issue in recent years.The gearbox of a wind turbine is the most important transmission unit;it generally exhibits complex vibration signatures due to random variations in operating conditions.Spectral analysis is one of the main approaches in vibration signal processing.However,spectral analysis is based on a stationary assumption and thus inapplicable to the fault diagnosis of wind turbines under variable-speed operating conditions.This constraint limits the application of spectral analysis to wind turbine diagnosis in industrial applications.Although order-tracking methods have been proposed for wind turbine fault detection in recent years,current methods are only applicable to cases in which the instantaneous shaft phase is available.For wind turbines with limited structural spaces,collecting phase signals with tachometers or encoders is difficult.In this study,a tacholess order-tracking method for wind turbines is proposed to overcome the limitations of traditional techniques.The proposed method extracts the instantaneous phase from the vibration signal,resamples the signal at equiangular increments,and calculates the order spectrum for wind turbine fault identification.The effectiveness of the proposed method is experimentally validated with the vibration signals of wind turbines.

  7. Tacholess order-tracking approach for wind turbine gearbox fault detection

    Science.gov (United States)

    Wang, Yi; Xie, Yong; Xu, Guanghua; Zhang, Sicong; Hou, Chenggang

    2017-09-01

    Monitoring of wind turbines under variable-speed operating conditions has become an important issue in recent years. The gearbox of a wind turbine is the most important transmission unit; it generally exhibits complex vibration signatures due to random variations in operating conditions. Spectral analysis is one of the main approaches in vibration signal processing. However, spectral analysis is based on a stationary assumption and thus inapplicable to the fault diagnosis of wind turbines under variable-speed operating conditions. This constraint limits the application of spectral analysis to wind turbine diagnosis in industrial applications. Although order-tracking methods have been proposed for wind turbine fault detection in recent years, current methods are only applicable to cases in which the instantaneous shaft phase is available. For wind turbines with limited structural spaces, collecting phase signals with tachometers or encoders is difficult. In this study, a tacholess order-tracking method for wind turbines is proposed to overcome the limitations of traditional techniques. The proposed method extracts the instantaneous phase from the vibration signal, resamples the signal at equiangular increments, and calculates the order spectrum for wind turbine fault identification. The effectiveness of the proposed method is experimentally validated with the vibration signals of wind turbines.

  8. On risk-based operation and maintenance of offshore wind turbine components

    International Nuclear Information System (INIS)

    Jessen Nielsen, Jannie; Dalsgaard Sorensen, John

    2011-01-01

    Operation and maintenance are significant contributors to the cost of energy for offshore wind turbines. Optimal planning could rationally be based on Bayesian pre-posterior decision theory, and all costs through the lifetime of the structures should be included. This paper contains a study of a generic case where the costs are evaluated for a single wind turbine with a single component. Costs due to inspections, repairs, and lost production are included in the model. The costs are compared for two distinct maintenance strategies, namely with and without inclusion of periodic imperfect inspections. Finally the influence of different important parameters, e.g. failure rate, reliability of inspections, inspection interval, and decision rule for repairs, is evaluated.

  9. Control of variable speed wind turbines with doubly-fed induction generators

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, A.D.; Soerensen, P.; Iov, F.; Blaabjerg, F.

    2005-07-01

    The paper presents an overall control method for variable speed pitch controlled wind turbines with doubly-fed induction generators (DFIG). Emphasis is on control strategies and algorithms applied at each hierarchical control level of the wind turbine. The objectives of the control system are: 1) to control the power drawn from the wind turbine in order to track the wind turbine maximum power operation point, 2) to limit the power in case of large wind speeds, and 3) to control the reactive power interchanged between the wind turbine generator and the grid. The present control method is designed for normal continuous operations. The strongest feature of the implemented control method is that it allows the turbine to operate with the optimum power efficiency over a wide range of wind speeds. The model of the variable speed, variable pitch wind turbine with doubly-fed induction generator is implemented in the dynamic power system simulation tool DlgSILENT PowerFactory which allows investigation of the dynamic performance of grid-connected wind turbines within realistic electrical grid models. Simulation results are presented and analysed in different normal operating conditions. (author)

  10. Flicker Mitigation of Grid Connected Wind Turbines Using STATCOM

    DEFF Research Database (Denmark)

    Sun, Tao; Chen, Zhe; Blaabjerg, Frede

    2004-01-01

    to the point of common coupling (PCC) to relieve the flicker produced by grid connected wind turbines and the corresponding control scheme is described in detail. Simulation results show that STATCOM is an effective measure to mitigate the flicker level during continuous operation of grid connected wind......Grid connected wind turbines may produce flicker during continuous operation. In this paper flicker emission of grid connected wind turbines with doubly fed induction generators is investigated during continuous operation. A STATCOM using PWM voltage source converter (VSC) is connected in shunt...

  11. Inverse load calculation procedure for offshore wind turbines and application to a 5-MW wind turbine support structure: Inverse load calculation procedure for offshore wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Pahn, T. [Pahn Ingenieure, Am Seegraben 17b 03051 Cottbus Germany; Rolfes, R. [Institut f?r Statik und Dynamik, Leibniz Universit?t Hannover, Appelstra?e 9A 30167 Hannover Germany; Jonkman, J. [National Renewable Energy Laboratory, 15013 Denver West Parkway Golden Colorado 80401 USA

    2017-02-20

    A significant number of wind turbines installed today have reached their designed service life of 20 years, and the number will rise continuously. Most of these turbines promise a more economical performance if they operate for more than 20 years. To assess a continued operation, we have to analyze the load-bearing capacity of the support structure with respect to site-specific conditions. Such an analysis requires the comparison of the loads used for the design of the support structure with the actual loads experienced. This publication presents the application of a so-called inverse load calculation to a 5-MW wind turbine support structure. The inverse load calculation determines external loads derived from a mechanical description of the support structure and from measured structural responses. Using numerical simulations with the software fast, we investigated the influence of wind-turbine-specific effects such as the wind turbine control or the dynamic interaction between the loads and the support structure to the presented inverse load calculation procedure. fast is used to study the inverse calculation of simultaneously acting wind and wave loads, which has not been carried out until now. Furthermore, the application of the inverse load calculation procedure to a real 5-MW wind turbine support structure is demonstrated. In terms of this practical application, setting up the mechanical system for the support structure using measurement data is discussed. The paper presents results for defined load cases and assesses the accuracy of the inversely derived dynamic loads for both the simulations and the practical application.

  12. Siemens Wind Power 3.6 MW wind turbines for large offshore wind farms

    Energy Technology Data Exchange (ETDEWEB)

    Akhmatov, Vladislav; Nygaard Nielsen, Joergen; Thisted, Jan; Groendahl, Erik; Egedal, Per; Noertoft Frydensbjerg, Michael; Jensen, Kim Hoej [Siemens Wind Power A/S, Brande (Denmark)

    2008-07-01

    Siemens Wind power A/S is the key player on the offshore wind power market. The Siemens Wind Power 3.6 MW variable-speed wind turbine is among the word's largest, most advanced and competitive wind turbines with a solid portfolio of large offshore wind farms. Transmission system operators and developers require dynamic wind turbine models for evaluation of fault-ride-through capability and investigations of power system stability. The even larger size of the on- and offshore wind farms has entailed that the grid impact of the voltage and frequency control capability of the wind farm can be appropriated modelled and evaluated. Siemens Wind Power has developed a dynamic model of the 3.6 MW variable-speed wind turbine with the fault-ride-through sequences and models of the voltage and frequency controllers to be applied for large offshore wind farms. The dynamic models have been implemented in the commercially available simulation tools such as DIgSILENT PowerFactory and Siemens PTI PSS/E and successfully validated from measurements. (orig.)

  13. Dynamic wind turbine models in power system simulation tool

    DEFF Research Database (Denmark)

    Hansen, Anca D.; Iov, Florin; Sørensen, Poul

    , connection of the wind turbine at different types of grid and storage systems. Different control strategies have been developed and implemented for these wind turbine concepts, their performance in normal or fault operation being assessed and discussed by means of simulations. The described control......This report presents a collection of models and control strategies developed and implemented in the power system simulation tool PowerFactory DIgSILENT for different wind turbine concepts. It is the second edition of Risø-R-1400(EN) and it gathers and describes a whole wind turbine model database...... of the interaction between the mechanical structure of the wind turbine and the electrical grid during different operational modes. The report provides thus a description of the wind turbines modelling, both at a component level and at a system level. The report contains both the description of DIgSILENT built...

  14. Analysis of turbine-grid interaction of grid-connected wind turbine using HHT

    Science.gov (United States)

    Chen, A.; Wu, W.; Miao, J.; Xie, D.

    2018-05-01

    This paper processes the output power of the grid-connected wind turbine with the denoising and extracting method based on Hilbert Huang transform (HHT) to discuss the turbine-grid interaction. At first, the detailed Empirical Mode Decomposition (EMD) and the Hilbert Transform (HT) are introduced. Then, on the premise of decomposing the output power of the grid-connected wind turbine into a series of Intrinsic Mode Functions (IMFs), energy ratio and power volatility are calculated to detect the unessential components. Meanwhile, combined with vibration function of turbine-grid interaction, data fitting of instantaneous amplitude and phase of each IMF is implemented to extract characteristic parameters of different interactions. Finally, utilizing measured data of actual parallel-operated wind turbines in China, this work accurately obtains the characteristic parameters of turbine-grid interaction of grid-connected wind turbine.

  15. Integrating Structural Health Management with Contingency Control for Wind Turbines

    Directory of Open Access Journals (Sweden)

    Kai Goebel

    2013-01-01

    Full Text Available Maximizing turbine up-time and reducing maintenance costs are key technology drivers for wind turbine operators. Components within wind turbines are subject to considerable stresses due to unpredictable environmental conditions resulting from rapidly changing local dynamics. In that context, systems health management has the aim to assess the state-of-health of components within a wind turbine, to estimate remaining life, and to aid in autonomous decision-making to minimize damage to the turbine. Advanced contingency control is one way to enable autonomous decision-making by providing the mechanism to enable safe and efficient turbine operation. The work reported herein explores the integration of condition monitoring of wind turbine blades with contingency control to balance the trade-offs between maintaining system health and energy capture. Results are demonstrated using a high fidelity simulator of a utility-scale wind turbine.

  16. Wind resource estimation and siting of wind turbines

    DEFF Research Database (Denmark)

    Lundtang Petersen, Erik; Mortensen, N.G.; Landberg, L.

    1994-01-01

    Detailed knowledge of the characteristics of the natural wind is necessary for the design, planning and operational aspect of wind energy systems. Here, we shall only be concerned with those meteorological aspects of wind energy planning that are termed wind resource estimation. The estimation...... of the wind resource ranges from the overall estimation of the mean energy content of the wind over a large area - called regional assessment - to the prediction of the average yearly energy production of a specific wind turbine at a specific location - called siting. A regional assessment will most often...... lead to a so-called wind atlas. A precise prediction of the wind speed at a given site is essential because for aerodynamic reasons the power output of a wind turbine is proportional to the third power of the wind speed, hence even small errors in prediction of wind speed may result in large deviations...

  17. Reliability Modeling of Wind Turbines

    DEFF Research Database (Denmark)

    Kostandyan, Erik

    Cost reductions for offshore wind turbines are a substantial requirement in order to make offshore wind energy more competitive compared to other energy supply methods. During the 20 – 25 years of wind turbines useful life, Operation & Maintenance costs are typically estimated to be a quarter...... and uncertainties are quantified. Further, estimation of annual failure probability for structural components taking into account possible faults in electrical or mechanical systems is considered. For a representative structural failure mode, a probabilistic model is developed that incorporates grid loss failures...

  18. Evaluation of different operational strategies for lithium ion battery systems connected to a wind turbine for primary frequency regulation and wind power forecast accuracy improvement

    Energy Technology Data Exchange (ETDEWEB)

    Swierczynski, Maciej; Stroe, Daniel Ioan; Stan, Ana Irina; Teodorescu, Remus; Andreasen, Soeren Juhl [Aalborg Univ. (Denmark). Dept. of Energy Technology

    2012-07-01

    High penetration levels of variable wind energy sources can cause problems with their grid integration. Energy storage systems connected to wind turbine/wind power plants can improve predictability of the wind power production and provide ancillary services to the grid. This paper investigates economics of different operational strategies for Li-ion systems connected to wind turbines for wind power forecast accuracy improvement and primary frequency regulation. (orig.)

  19. Wind turbines: is there a human health risk?

    Science.gov (United States)

    Roberts, Jennifer D; Roberts, Mark A

    2013-04-01

    The term "Wind Turbine Syndrome" was coined in a recently self-published book, which hypothesized that a multitude of symptoms such as headache and dizziness resulted from wind turbines generating low frequency sound (LFS). The objective of this article is to provide a summary of the peer-reviewed literature on the research that has examined the relationship between human health effects and exposure to LFS and sound generated from the operation of wind turbines. At present, a specific health condition has not been documented in the peer-reviewed literature that has been classified as a disease caused by exposure to sound levels and frequencies generated by the operation of wind turbines. Communities are experiencing a heightened sense of annoyance and fear from the development and siting of wind turbine farms. High-quality research and effective risk communication can advance this course from one of panic to one of understanding and exemplification for other environmental advancements.

  20. Risk-based Operation and Maintenance for Offshore Wind Turbines

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Nielsen, Jannie Jessen

    2011-01-01

    For offshore wind turbines, costs to Operation and Maintenance (OM) are substantial, and can be expected to increase when wind farms are placed at deeper water depths and in more harsh environments. Traditional strategies for OM include corrective and preventive (scheduled and condition...... statistics and costs of the different operations. The different OM strategies are described and compared in an illustrative example with focus on which types of information that are needed. Special focus is on comparison between risk-based maintenance strategies and the conventional maintenance planning...... and are often the driving mechanisms for failures / faults that need maintenance. Observations of the degree of damage can increase the reliability of predictions and decrease the costs of OM if integrated in a risk-based framework theoretically based on pre-posterior Bayesian decision theory. The mathematical...

  1. Radar-cross-section reduction of wind turbines. part 1.

    Energy Technology Data Exchange (ETDEWEB)

    Brock, Billy C.; Loui, Hung; McDonald, Jacob J.; Paquette, Joshua A.; Calkins, David A.; Miller, William K.; Allen, Steven E.; Clem, Paul Gilbert; Patitz, Ward E.

    2012-03-05

    In recent years, increasing deployment of large wind-turbine farms has become an issue of growing concern for the radar community. The large radar cross section (RCS) presented by wind turbines interferes with radar operation, and the Doppler shift caused by blade rotation causes problems identifying and tracking moving targets. Each new wind-turbine farm installation must be carefully evaluated for potential disruption of radar operation for air defense, air traffic control, weather sensing, and other applications. Several approaches currently exist to minimize conflict between wind-turbine farms and radar installations, including procedural adjustments, radar upgrades, and proper choice of low-impact wind-farm sites, but each has problems with limited effectiveness or prohibitive cost. An alternative approach, heretofore not technically feasible, is to reduce the RCS of wind turbines to the extent that they can be installed near existing radar installations. This report summarizes efforts to reduce wind-turbine RCS, with a particular emphasis on the blades. The report begins with a survey of the wind-turbine RCS-reduction literature to establish a baseline for comparison. The following topics are then addressed: electromagnetic model development and validation, novel material development, integration into wind-turbine fabrication processes, integrated-absorber design, and wind-turbine RCS modeling. Related topics of interest, including alternative mitigation techniques (procedural, at-the-radar, etc.), an introduction to RCS and electromagnetic scattering, and RCS-reduction modeling techniques, can be found in a previous report.

  2. Superconducting Wind Turbine Generators

    Directory of Open Access Journals (Sweden)

    Yunying Pan

    2016-08-01

    Full Text Available Wind energy is well known as a renewable energy because its clean and less polluted characteristic, which is the foundation of development modern wind electricity. To find more efficient wind turbine is the focus of scientists around the world. Compared from conventional wind turbines, superconducting wind turbine generators have advantages at zero resistance, smaller size and lighter weight. Superconducting wind turbine will inevitably become the main trends in this area. This paper intends to introduce the basic concept and principle of superconductivity, and compare form traditional wind turbine to obtain superiority, then to summary three proposed machine concept.While superconductivity have difficulty  in modern technology and we also have proposed some challenges in achieving superconducting wind turbine finally.

  3. Active vibration-based SHM system: demonstration on an operating Vestas V27 wind turbine

    DEFF Research Database (Denmark)

    Tcherniak, Dmitri; Mølgaard, Lasse Lohilahti

    2016-01-01

    with the system and a 3.5 month monitoring campaign was conducted while the turbine was operating normally. During the campaign, a defect – a trailing edge opening – was artificially introduced into the blade and its size was gradually increased from the original 15 cm to 45 cm. Using an unsupervised learning......This study presents a system that is able to detect defects like cracks, leading/trailing edge opening or delamination of at least 15 cm size, remotely, without stopping the wind turbine. The system is vibration-based: mechanical energy is artificially introduced by means of an electromechanical......-to-noise ratio. At the same time, the corresponding wavelength is short enough to deliver required damage detection resolution and long enough to be able to propagate the entire blade length. The paper demonstrates the system on a 225 kW Vesta s V27 wind turbine. One blade of the wind turbine was equipped...

  4. Power Curve of the AWEC-60 wind turbine

    International Nuclear Information System (INIS)

    Avia, F.

    1992-01-01

    The experimental wind turbine AWEC-60 was developed to evaluate the possibilities of the Large Wind turbines, from the technical and economical point of view. The project was developed by a spanish-german group, integrated by Union Fenosa, Asinel, M.A.N. Neue Technologie and the Instituto de Energias Renovables from CIEMAT, starting the operation during the year 1990. In this paper, the obtention of the wind turbine power curve is presented, which has been obtained in agreement with the Recommended Practices for Wind Turbine Testing and Evaluation from the Executive Committee for the Research and Development on Wind Energy, of the International Energy Agency (AIE). Using the functioning data of the wind turbine correspondig to the first quarter of the year 1991, the power curves have been obtained, and the results have been compared with the curves measured in other similar Large wind turbines. (Author) 7 refs

  5. Risk-Based Operation and Maintenance Planning for Offshore Wind Turbines

    DEFF Research Database (Denmark)

    Nielsen, Jannie Jessen; Sørensen, John Dalsgaard

    2010-01-01

    Operation and maintenance (O&M) are large contributors to the cost of energy for offshore wind turbines. Optimal planning of O&M should include use of inspections and monitoring results to make decisions that minimize the expected costs through the lifetime of the structures. For offshore...... structures it is especially important because of the dependence on weather windows for inspections and repairs to be possible. A model has been developed to estimate the expected costs to corrective and condition based maintenance for a wind turbine with a single component. The deterioration of the component...... is simulated, and the expected costs are found for different strategies. An application example shows that condition based maintenance has the potential of reducing the costs, and a risk based approach can be used to find the optimal strategy for O&M. Further the influence of failure rate and damage parameters...

  6. Market Suitability and Performance Tradeoffs Offered by Commercial Wind Turbines across Differing Wind Regimes

    Directory of Open Access Journals (Sweden)

    Souma Chowdhury

    2016-05-01

    Full Text Available The suitability of turbine configurations to different wind resources has been traditionally restricted to considering turbines operating as standalone entities. In this paper, a framework is thus developed to investigate turbine suitability in terms of the minimum cost of energy offered when operating as a group of optimally-micro-sited turbines. The four major steps include: (i characterizing the geographical variation of wind regimes in the onshore U.S. market; (ii determining the best performing turbines for different wind regimes through wind farm layout optimization; (iii developing a metric to quantify the expected market suitability of available turbine configurations; and (iv exploring the best tradeoffs between the cost and capacity factor yielded by these turbines. One hundred thirty one types of commercial turbines offered by major global manufacturers in 2012 are considered for selection. It is found that, in general, higher rated power turbines with medium tower heights are the most favored. Interestingly, further analysis showed that “rotor diameter/hub height” ratios greater than 1.1 are the least attractive for any of the wind classes. It is also observed that although the “cost-capacity factor” tradeoff curve expectedly shifted towards higher capacity factors with increasing wind class, the trend of the tradeoff curve remained practically similar.

  7. Wind turbine reliability : a database and analysis approach.

    Energy Technology Data Exchange (ETDEWEB)

    Linsday, James (ARES Corporation); Briand, Daniel; Hill, Roger Ray; Stinebaugh, Jennifer A.; Benjamin, Allan S. (ARES Corporation)

    2008-02-01

    The US wind Industry has experienced remarkable growth since the turn of the century. At the same time, the physical size and electrical generation capabilities of wind turbines has also experienced remarkable growth. As the market continues to expand, and as wind generation continues to gain a significant share of the generation portfolio, the reliability of wind turbine technology becomes increasingly important. This report addresses how operations and maintenance costs are related to unreliability - that is the failures experienced by systems and components. Reliability tools are demonstrated, data needed to understand and catalog failure events is described, and practical wind turbine reliability models are illustrated, including preliminary results. This report also presents a continuing process of how to proceed with controlling industry requirements, needs, and expectations related to Reliability, Availability, Maintainability, and Safety. A simply stated goal of this process is to better understand and to improve the operable reliability of wind turbine installations.

  8. Full-load converter connected asynchronous generators for MW class wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Akhmatov, Vladislav

    2005-06-15

    Wind turbines equipped with full-load converter-connected asynchronous generators are a known concept. These have rating up to hundreds of kW and are a feasible concept for MW class wind turbines and may have advantages when compared to conventional wind turbines with directly connected generators. The concept requires the use of full-scale frequency converters, but the mechanical gearbox is smaller than in conventional wind turbines of the same rating. Application of smaller gearbox may reduce the no-load losses in the wind turbines, which is why such wind turbines with converter connected generators may start operation at a smaller wind speed. Wind turbines equipped with such converted connected asynchronous generators are pitch-controlled and variable-speed. This allows better performance and control. The converter control may be applied to support the grid voltage at short-circuit faults and to improve the fault-ride-through capability of the wind turbines, which makes the concepts relevant for large wind farms. The Danish transmission system operator Energinet-DK has implemented the general model of wind turbines equipped with converter connected asynchronous generators with the simulation tool Powerfactory (DlgSilent). The article presents Energinet-DK's experience of modeling this feasible wind turbine concept. (Author)

  9. Wind Turbine Generator System Acoustic Noise Test Report for the Gaia Wind 11-kW Wind Turbine

    Energy Technology Data Exchange (ETDEWEB)

    Huskey, A.

    2011-11-01

    This report details the acoustic noise test conducted on the Gaia-Wind 11-kW wind turbine at the National Wind Technology Center. The test turbine is a two- bladed, downwind wind turbine with a rated power of 11 kW. The test turbine was tested in accordance with the International Electrotechnical Commission standard, IEC 61400-11 Ed 2.1 2006-11 Wind Turbine Generator Systems -- Part 11 Acoustic Noise Measurement Techniques.

  10. Frequency Based Fault Detection in Wind Turbines

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Stoustrup, Jakob

    2014-01-01

    In order to obtain lower cost of energy for wind turbines fault detection and accommodation is important. Expensive condition monitoring systems are often used to monitor the condition of rotating and vibrating system parts. One example is the gearbox in a wind turbine. This system is operated...... in parallel to the control system, using different computers and additional often expensive sensors. In this paper a simple filter based algorithm is proposed to detect changes in a resonance frequency in a system, exemplified with faults resulting in changes in the resonance frequency in the wind turbine...... gearbox. Only the generator speed measurement which is available in even simple wind turbine control systems is used as input. Consequently this proposed scheme does not need additional sensors and computers for monitoring the condition of the wind gearbox. The scheme is evaluated on a wide-spread wind...

  11. Blade-Pitch Control for Wind Turbine Load Reductions

    DEFF Research Database (Denmark)

    Lio, Alan Wai Hou

    Large wind turbines are subjected to the harmful loads that arise from the spatially uneven and temporally unsteady oncoming wind. Such loads are the known sources of fatigue damage that reduce the turbine operational lifetime, ultimately increasing the cost of wind energy to the end-users. In re...

  12. Computational Fluid Dynamics based Fault Simulations of a Vertical Axis Wind Turbines

    International Nuclear Information System (INIS)

    Park, Kyoo-seon; Asim, Taimoor; Mishra, Rakesh

    2012-01-01

    Due to depleting fossil fuels and a rapid increase in the fuel prices globally, the search for alternative energy sources is becoming more and more significant. One of such energy source is the wind energy which can be harnessed with the use of wind turbines. The fundamental principle of wind turbines is to convert the wind energy into first mechanical and then into electrical form. The relatively simple operation of such turbines has stirred the researchers to come up with innovative designs for global acceptance and to make these turbines commercially viable. Furthermore, the maintenance of wind turbines has long been a topic of interest. Condition based monitoring of wind turbines is essential to maintain continuous operation of wind turbines. The present work focuses on the difference in the outputs of a vertical axis wind turbine (VAWT) under different operational conditions. A Computational Fluid Dynamics (CFD) technique has been used for various blade configurations of a VAWT. The results indicate that there is significant degradation in the performance output of wind turbines as the number of blades broken or missing from the VAWT increases. The study predicts the faults in the blades of VAWTs by monitoring its output.

  13. Design of a wind turbine-generator system considering the conformability to wind velocity fluctuations

    Energy Technology Data Exchange (ETDEWEB)

    Wakui, Tetsuya; Hashizume, Takumi; Outa, Eisuke

    1999-07-01

    The conformability of the rated power output of the wind turbine-generator system and of the wind turbine type to wind velocity fluctuations are investigated with a simulation model. The authors examine three types of wind turbines: the Darrieus-Savonius hybrid, the Darrieus proper and the Propeller. These systems are mainly operated at a constant tip speed ratio, which refers to a maximum power coefficient points. As a computed result of the net extracting power, the Darrieus turbine proper has little conformability to wind velocity fluctuations because of its output characteristics. As for the other turbines, large-scale systems do not always have an advantage over small-scale systems as the effect of its dynamic characteristics. Furthermore, it is confirmed that the net extracting power of the Propeller turbine, under wind direction fluctuation, is much reduced when compared with the hybrid wind turbine. Thus, the authors conclude that the appropriate rated power output of the system exists with relation to the wind turbine type for each wind condition.

  14. Imitation of the characteristics of the wind turbine based on DC motor

    Institute of Scientific and Technical Information of China (English)

    LIU Qihui; HE Yikang; ZHAO Rende

    2007-01-01

    This paper analyzed the operating principles and power and torque characteristics of the wind turbine and the direct current motor(DC motor),and investigated the operating characteristics of the wind turbine compared to that of the DC motor.The torque imitation scheme,which has good performance and high feasibility,together with the whole wind turbine imitation system,was provided.The wind turbine imitation system includes not only a hardware platform composed of PC,data-collection board and thyristor-based velocity-regulator,but also monitor software of wind turbine imitation.The experimental results of different occasions verify the correctness and feasibility of the wind turbine imitation scheme proposed in this paper,which provided a valid idea for wind turbine imitation and investigation of wind power generation techniques in the laboratory.

  15. Simulation model of an active-stall fixed-speed wind turbine controller

    Energy Technology Data Exchange (ETDEWEB)

    Jauch, C.; Hansen, A.D.; Sorensen, P.; Blaabjerg, F.

    2004-07-01

    This paper describes an active-stall wind turbine controller. The objective is to develop a general model of an active stall controller in order to simulate the operation of grid connected active stall wind turbines. The active stall turbine concept and its control strategies are presented and evaluated by simulations. The presented controller is described for continuous operation under all wind speeds from start-up wind speed to shut down wind speed. Due to its parametric implementation it is general i. e. it can represent different active stall wind turbine controllers and can be implemented in different simulation tools. (author)

  16. Reducing Turbine Mechanical Loads Using Flow Model-Based Wind Farm Controller

    DEFF Research Database (Denmark)

    Kazda, Jonas; Cutululis, Nicolaos Antonio

    Cumulated O&M costs of offshore wind farms are comparable with wind turbine CAPEX of such wind farm. In wind farms, wake effects can result in up to 80% higher fatigue loads at downstream wind turbines [1] and consequently larger O&M costs. The present work therefore investigates to reduce...... these loads during the provision of grid balancing services using optimal model-based wind farm control. Wind farm controllers coordinate the operating point of wind turbines in a wind farm in order to achieve a given objective. The investigated objective of the control in this work is to follow a total wind...... farm power reference while reducing the tower bending moments of the turbines in the wind farm. The wind farm controller is tested on a 8 turbine array, which is representative of a typical offshore wind farm. The operation of the wind farm is simulated using the dynamic wind farm simulation tool S imWind...

  17. High Power Density Power Electronic Converters for Large Wind Turbines

    DEFF Research Database (Denmark)

    Senturk, Osman Selcuk

    . For these VSCs, high power density is required due to limited turbine nacelle space. Also, high reliability is required since maintenance cost of these remotely located wind turbines is quite high and these turbines operate under harsh operating conditions. In order to select a high power density and reliability......In large wind turbines (in MW and multi-MW ranges), which are extensively utilized in wind power plants, full-scale medium voltage (MV) multi-level (ML) voltage source converters (VSCs) are being more preferably employed nowadays for interfacing these wind turbines with electricity grids...... VSC solution for wind turbines, first, the VSC topology and the switch technology to be employed should be specified such that the highest possible power density and reliability are to be attained. Then, this qualitative approach should be complemented with the power density and reliability...

  18. Experimental evidence for the effect of small wind turbine proximity and operation on bird and bat activity.

    Science.gov (United States)

    Minderman, Jeroen; Pendlebury, Chris J; Pearce-Higgins, James W; Park, Kirsty J

    2012-01-01

    The development of renewable energy technologies such as wind turbines forms a vital part of strategies to reduce greenhouse gas emissions worldwide. Although large wind farms generate the majority of wind energy, the small wind turbine (SWT, units generating wind farms on birds and bats, effects of SWTs on wildlife have not been studied and are likely to be different due to their potential siting in a wider range of habitats. We present the first study to quantify the effects of SWTs on birds and bats. Using a field experiment, we show that bird activity is similar in two distance bands surrounding a sample of SWTs (between 6-18 m hub height) and is not affected by SWT operation at the fine scale studied. At shorter distances from operating turbines (0-5 m), bat activity (measured as the probability of a bat "pass" per hour) decreases from 84% (71-91%) to 28% (11-54%) as wind speed increases from 0 to 14 m/s. This effect is weaker at greater distances (20-25 m) from operating turbines (activity decreases from 80% (65-89%) to 59% (32-81%)), and absent when they are braked. We conclude that bats avoid operating SWTs but that this effect diminishes within 20 m. Such displacement effects may have important consequences especially in landscapes where suitable habitat is limiting. Planning guidance for SWTs is currently lacking. Based on our results we recommend that they are sited at least 20 m away from potentially valuable bat habitat.

  19. Wind turbine rotor aerodynamics : The IEA MEXICO rotor explained

    NARCIS (Netherlands)

    Zhang, Y.

    2017-01-01

    Wind turbines are operating under very complex and uncontrolled environmental conditions, including atmospheric turbulence, atmospheric boundary layer effects, directional and spatial variations in wind shear, etc. Over the past decades, the size of a commercial wind turbine has increased

  20. An optimization approach for wind turbine commitment and dispatch in a wind park

    Energy Technology Data Exchange (ETDEWEB)

    Moyano, Carlos F. [School of Engineering Systems, Faculty of Built Environment and Engineering, Queensland University of Technology, GPO Box 2434, Brisbane, QLD 4001 (Australia); Pecas Lopes, Joao A. [Instituto de Engenharia de Sistemas e Computadores do Porto (Portugal); Faculdade de Engenharia da Universidade do Porto, Campus da FEUP, Rua Dr. Roberto Frias, 378 4200-465 Porto (Portugal)

    2009-01-15

    This paper describes an operational optimization strategy to be adopted at the wind park control level, that enables defining the commitment of wind turbines and their active and reactive power outputs following requests from Wind Park Dispatch Centers, assuming that individual wind turbines short-term wind speed forecasts are known and are expressed as power availability. This operational strategy was also developed with a concern on the minimization of the connection/disconnection changes of the individual wind generators, for a given time horizon. When identifying the active/reactive dispatching policies, wind generators loading capabilities are also taken in account. This optimization tool is especially suited to manage large wind parks. (author)

  1. The 1.5 MW wind turbine of tomorrow

    Energy Technology Data Exchange (ETDEWEB)

    De Wolff, T.J.; Sondergaard, H. [Nordtank Energy Group, Richmond, VA (United States)

    1996-12-31

    The Danish company Nordtank is one of the pioneers within the wind turbine industry. Since 1981 Nordtank has installed worldwide more than 2300 wind turbine generators with a total name plate capacity that is exceeding 350 MW. This paper will describe two major wind turbine technology developments that Nordtank has accomplished during the last year: Site Optimization of Nordtank wind turbines: Nordtank has developed a flexible design concept for its WTGs in the 500/600 kW range, in order to offer the optimal WTG solution for any given site and wind regime. Nordtank`s 1.5 MW wind turbine: In September 1995, Nordtank was the first company to install a commercial 1.5 NM WTG. This paper will document the development process, the design as well as operations of the Nordtank 1.5 MW WTG.

  2. Aeroservoelastic analysis of storm-ride-through control strategies for wind turbines

    DEFF Research Database (Denmark)

    Tibaldi, Carlo; Hansen, Morten Hartvig

    2016-01-01

    An investigation of a control strategy to allow wind turbines to operate at high wind speeds by derating the rotor speed and generator torque set-points is presented. The investigation analyzes the wind turbine aeroservoelastic behavior in the above rated operational range by computing the aerody......An investigation of a control strategy to allow wind turbines to operate at high wind speeds by derating the rotor speed and generator torque set-points is presented. The investigation analyzes the wind turbine aeroservoelastic behavior in the above rated operational range by computing...... the aerodynamic gains and closed-loop eigenvalue solutions using a high-delity linear model. A simple strategy to reduce the reference rotor speed based on a pitch angle feedback is presented and analyzed. It is shown that high aerodynamic gains for operation at high wind speeds requires special handling...... in the scheduling of the controller gains. The computed closed-loop modal frequencies and damping ratios show how most turbine modes become less damped as the rotor speed is derated, and at very high winds the frequency and damping of the first drivetrain torsion mode are significantly reduced. Possible resonance...

  3. Robust Model Predictive Control of a Wind Turbine

    DEFF Research Database (Denmark)

    Mirzaei, Mahmood; Poulsen, Niels Kjølstad; Niemann, Hans Henrik

    2012-01-01

    In this work the problem of robust model predictive control (robust MPC) of a wind turbine in the full load region is considered. A minimax robust MPC approach is used to tackle the problem. Nonlinear dynamics of the wind turbine are derived by combining blade element momentum (BEM) theory...... of the uncertain system is employed and a norm-bounded uncertainty model is used to formulate a minimax model predictive control. The resulting optimization problem is simplified by semidefinite relaxation and the controller obtained is applied on a full complexity, high fidelity wind turbine model. Finally...... and first principle modeling of the turbine flexible structure. Thereafter the nonlinear model is linearized using Taylor series expansion around system operating points. Operating points are determined by effective wind speed and an extended Kalman filter (EKF) is employed to estimate this. In addition...

  4. Determination of performance parameters of vertical axis wind turbines in wind tunnel

    Directory of Open Access Journals (Sweden)

    Nguyen Van Bang

    2017-01-01

    Full Text Available The paper deals with the determination of the performance parameters of a small vertical axis wind turbines (VAWT, which operate by the utilization of drag forces acting on the blades of the turbine. The performance was evaluated by investigating the electrical power output and torque moment of the wind machine. Measurements were performed on the full-scale model and the experimental data are assessed and compared to other types of wind turbines, with respect to its purpose.

  5. Statistical fault diagnosis of wind turbine drivetrain applied to a 5MW floating wind turbine

    OpenAIRE

    Ghane, Mahdi; Rasekhi Nejad, Amir; Blanke, Mogens; Gao, Zhen; Moan, Torgeir

    2016-01-01

    Deployment of large scale wind turbine parks, in particular offshore, requires well organized operation and maintenance strategies to make it as competitive as the classical electric power stations. It is important to ensure systems are safe, profitable, and cost-effective. In this regards, the ability to detect, isolate, estimate, and prognose faults plays an important role. One of the critical wind turbine components is the gearbox. Failures in the gearbox are costly both due to the cost of...

  6. Aerodynamics of Wind Turbines

    DEFF Research Database (Denmark)

    Hansen, Martin Otto Laver

    Aerodynamics of Wind Turbines is the established essential text for the fundamental solutions to efficient wind turbine design. Now in its second edition, it has been entirely updated and substantially extended to reflect advances in technology, research into rotor aerodynamics and the structural...... response of the wind turbine structure. Topics covered include increasing mass flow through the turbine, performance at low and high wind speeds, assessment of the extreme conditions under which the turbine will perform and the theory for calculating the lifetime of the turbine. The classical Blade Element...... Momentum method is also covered, as are eigenmodes and the dynamic behavior of a turbine. The new material includes a description of the effects of the dynamics and how this can be modeled in an aeroelastic code, which is widely used in the design and verification of modern wind turbines. Further...

  7. A ``Cyber Wind Facility'' for HPC Wind Turbine Field Experiments

    Science.gov (United States)

    Brasseur, James; Paterson, Eric; Schmitz, Sven; Campbell, Robert; Vijayakumar, Ganesh; Lavely, Adam; Jayaraman, Balaji; Nandi, Tarak; Jha, Pankaj; Dunbar, Alex; Motta-Mena, Javier; Craven, Brent; Haupt, Sue

    2013-03-01

    The Penn State ``Cyber Wind Facility'' (CWF) is a high-fidelity multi-scale high performance computing (HPC) environment in which ``cyber field experiments'' are designed and ``cyber data'' collected from wind turbines operating within the atmospheric boundary layer (ABL) environment. Conceptually the ``facility'' is akin to a high-tech wind tunnel with controlled physical environment, but unlike a wind tunnel it replicates commercial-scale wind turbines operating in the field and forced by true atmospheric turbulence with controlled stability state. The CWF is created from state-of-the-art high-accuracy technology geometry and grid design and numerical methods, and with high-resolution simulation strategies that blend unsteady RANS near the surface with high fidelity large-eddy simulation (LES) in separated boundary layer, blade and rotor wake regions, embedded within high-resolution LES of the ABL. CWF experiments complement physical field facility experiments that can capture wider ranges of meteorological events, but with minimal control over the environment and with very small numbers of sensors at low spatial resolution. I shall report on the first CWF experiments aimed at dynamical interactions between ABL turbulence and space-time wind turbine loadings. Supported by DOE and NSF.

  8. Pitchcontrol of wind turbines using model free adaptivecontrol based on wind turbine code

    DEFF Research Database (Denmark)

    Zhang, Yunqian; Chen, Zhe; Cheng, Ming

    2011-01-01

    value is only based on I/O data of the wind turbine is identified and then the wind turbine system is replaced by a dynamic linear time-varying model. In order to verify the correctness and robustness of the proposed model free adaptive pitch controller, the wind turbine code FAST which can predict......As the wind turbine is a nonlinear high-order system, to achieve good pitch control performance, model free adaptive control (MFAC) approach which doesn't need the mathematical model of the wind turbine is adopted in the pitch control system in this paper. A pseudo gradient vector whose estimation...... the wind turbine loads and response in high accuracy is used. The results show that the controller produces good dynamic performance, good robustness and adaptability....

  9. Wind conditions for wind turbine design

    Energy Technology Data Exchange (ETDEWEB)

    Maribo Pedersen, B.

    1999-04-01

    Delegates from Europe and USA attended the meeting and discussed general aspects of wind conditions for wind turbine design. The subjects and the presented papers covered a very broad range of aspects of wind conditions and related influence on the wind turbine. (EHS)

  10. Wind Turbines Wake Aerodynamics

    DEFF Research Database (Denmark)

    Vermeer, L.; Sørensen, Jens Nørkær; Crespo, A.

    2003-01-01

    The aerodynamics of horizontal axis wind turbine wakes is studied. The contents is directed towards the physics of power extraction by wind turbines and reviews both the near and the far wake region. For the near wake, the survey is restricted to uniform, steady and parallel flow conditions......, thereby excluding wind shear, wind speed and rotor setting changes and yawed conditions. The emphasis is put on measurements in controlled conditions.For the far wake, the survey focusses on both single turbines and wind farm effects, and the experimental and numerical work are reviewed; the main interest...... is to study how the far wake decays downstream, in order to estimate the effect produced in downstream turbines.The article is further restricted to horizontal axis wind turbines and excludes all other types of turbines....

  11. Co-ordinated voltage control of DFIG wind turbines in uninterrupted operation during grid faults

    DEFF Research Database (Denmark)

    Hansen, Anca Daniela; Michalke, G.; Sørensen, Poul Ejnar

    2007-01-01

    Emphasis in this article is on the design of a co-ordinated voltage control strategy for doubly fed induction generator (DFIG) wind turbines that enhances their capability to provide grid support during grid faults. In contrast to its very good performance in normal operation, the DFIG wind turbine...... concept is quite sensitive to grid faults and requires special power converter protection. The fault ride-through and grid support capabilities of the DFIG address therefore primarily the design of DFIG wind turbine control with special focus on power converter protection and voltage control issues....... A voltage control strategy is designed and implemented in this article, based on the idea that both converters of the DFIG (i.e. rotor-side converter and grid-side converter) participate in the grid voltage control in a co-ordinated manner. By default the grid voltage is controlled by the rotor...

  12. Backup Mechanical Brake System of the Wind Turbine

    Science.gov (United States)

    Sirotkin, E. A.; Solomin, E. V.; Gandzha, S. A.; Kirpichnikova, I. M.

    2018-01-01

    Paper clarifies the necessity of the emergency mechanical brake systems usage for wind turbines. We made a deep analysis of the wind turbine braking methods available on the market, identifying their strengths and weaknesses. The electromechanical braking appeared the most technically reasonable and economically attractive. We described the developed combined electromechanical brake system for vertical axis wind turbine driven from electric drive with variable torque enough to brake over the turbine even on the storm wind speed up to 45 m/s. The progress was made due to the development of specific kinematic brake system diagram and intelligent control system managed by special operation algorithm.

  13. Reliability of wind turbine blades: An overview of materials testing

    DEFF Research Database (Denmark)

    Holmes, John W.; Sørensen, Bent F.; Brøndsted, Povl

    2007-01-01

    an understanding of how damage develops in composite structures, composite materials and adhesives. Designing reliable wind turbine blades also requires the further development of laboratory scale and full scale test methods to evaluate the structural response and durability of new materials under various loading......The structural reliability of wind turbine components can have a profound impact on both the profitability and reputation of a wind turbine manufacturer or supplier of wind turbine components. The issue of reliability is of critical concern when large wind farm co-operatives are considered......, and when wind turbines are located in remote regions where the cost of inspections and repairs can be very high. From a structural viewpoint, wind turbine blades are subjected to very complex loading histories with coupled deformation modes. The long-term reliability of wind turbine blades requires...

  14. Discord amongst the wind turbine buyers with regard to Dutch wind turbine manufacturers

    International Nuclear Information System (INIS)

    Janse, F.

    1992-01-01

    In the Netherlands two medium-large manufacturers of wind turbines exist: NedWind (Hollandia Kloos) and Windmaster Nederland (Begemann Groep). Also Lagerwey, which constructs wind turbines for the private market (farmers, cooperatives), is important for the Dutch market and successfull in Germany. There is a tendency amongst the Dutch energy utilities, which cooperate in the foundation WindPlan, to buy wind turbines from foreign manufacturers. Some energy utilities want to take advantage of the most attractive offers, while others want to cooperate in building up a Dutch wind turbine industry. 5 ills

  15. Power curve of the AWEC-60 wind turbine

    International Nuclear Information System (INIS)

    Avia, F.

    1992-01-01

    The experimental wind turbine AWEC-60 was developed to evaluate the possibilities of the Large Wind turbines, from the technical and economical point of view. The project was developed by a spanish-german group, integrated by Union Fenosa, Asinel, M.A.N. Neue Technologie and the Instituto de Energias Renovables from CIEMAT, starting the operation during the year 1990. In this paper, the obtention of the wind turbine's power curve is presented, which has been obtained in agreement with the 'Recommended Practices for Wind Turbine Testing and Evaluation' from the Executive Committee for the Research and Development on Wind Energy, of the International Energy Agency (AIE). Using the functioning data of the wind turbine corresponding to the first quarter of the year 1991, the power curves have been obtained, and the results have been compared with the curves measured in other similar large windturbines. (author)

  16. Fault ride-through capability of DFIG wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Anca D. [Risoe National Laboratory, Wind Energy Department, P.O. Box 49, DK-4000 Roskilde (Denmark); Michalke, Gabriele [Darmstadt University, Institute for Electrical Power Systems, Landgraf-Georg-Strasse 4, 64283 Darmstadt (Germany)

    2007-07-15

    This paper concentrates on the fault ride-through capability of doubly fed induction generator (DFIG) wind turbines. The main attention in the paper is, therefore, drawn to the control of the DFIG wind turbine and of its power converter and to the ability to protect itself without disconnection during grid faults. The paper provides also an overview on the interaction between variable-speed DFIG wind turbines and the power system subjected to disturbances, such as short circuit faults. The dynamic model of DFIG wind turbine includes models for both mechanical components as well as for all electrical components, controllers and for the protection device of DFIG necessary during grid faults. The viewpoint of the paper is to carry out different simulations to provide insight and understanding of the grid fault impact on both DFIG wind turbines and on the power system itself. The dynamic behaviour of DFIG wind turbines during grid faults is simulated and assessed by using a transmission power system generic model developed and delivered by the Danish Transmission System Operator Energinet.dk in the power system simulation toolbox PowerFactory DIgSILENT. The data for the wind turbines are not linked to a specific manufacturer, but are representative for the turbine and generator type used in variable-speed DFIG wind turbines with pitch control. (author)

  17. Wind Turbine Down-regulation Strategy for Minimum Wake Deficit

    DEFF Research Database (Denmark)

    Ma, Kuichao; Zhu, Jiangsheng; N. Soltani, Mohsen

    2017-01-01

    Down-regulation mode of wind turbine is commonly used no matter for the reserve power for supporting ancillary service to the grid, power optimization in wind farm or reducing power loss in the fault condition. It is also a method to protect faulty turbine. A down-regulation strategy based...... on minimum wake deficit is proposed in this paper, for the power improvement of the downwind turbine in low and medium wind speed region. The main idea is to operate turbine work at an appropriate operating point through rotor speed and torque control. The effectiveness of the strategy is verified...... by comparing with maximum rotor speed strategy. The result shows that the proposed strategy can improve the power of downwind turbine effectively....

  18. Multi-pole permanent magnet synchronous generator wind turbines' grid support capability in uninterrupted operation during grid faults

    DEFF Research Database (Denmark)

    Hansen, Anca Daniela; Michalke, G.

    2009-01-01

    Emphasis in this paper is on the fault ride-through and grid support capabilities of multi-pole permanent magnet synchronous generator (PMSG) wind turbines with a full-scale frequency converter. These wind turbines are announced to be very attractive, especially for large offshore wind farms...... and discussed by means of simulations with the use of a transmission power system generic model developed and delivered by the Danish Transmission System Operator Energinet.dk. The simulation results show how a PMSG wind farm equipped with an additional voltage control can help a nearby active stall wind farm....... A control strategy is presented, which enhances the fault ride-through and voltage support capability of such wind turbines during grid faults. Its design has special focus on power converters' protection and voltage control aspects. The performance of the presented control strategy is assessed...

  19. Turbulence and wind turbines

    DEFF Research Database (Denmark)

    Brand, Arno J.; Peinke, Joachim; Mann, Jakob

    2011-01-01

    The nature of turbulent flow towards, near and behind a wind turbine, the effect of turbulence on the electricity production and the mechanical loading of individual and clustered wind turbines, and some future issues are discussed.......The nature of turbulent flow towards, near and behind a wind turbine, the effect of turbulence on the electricity production and the mechanical loading of individual and clustered wind turbines, and some future issues are discussed....

  20. Wind turbines and human health

    Directory of Open Access Journals (Sweden)

    Loren eKnopper

    2014-06-01

    Full Text Available The association between wind turbines and health effects is highly debated. Some argue that reported health effects are related to wind turbine operation (electromagnetic fields (EMF, shadow flicker, audible noise, low frequency noise, infrasound. Others suggest that when turbines are sited correctly, effects are more likely attributable to a number of subjective variables that result in an annoyed/stressed state. In this review we provide a bibliographic-like summary and analysis of the science around this issue specifically in terms of noise (including audible, low frequency noise and infrasound, EMF and shadow flicker. Now there are roughly 60 scientific peer-reviewed articles on this issue. The available scientific evidence suggests that EMF, shadow flicker, low frequency noise and infrasound from wind turbines are not likely to affect human health; some studies have found that audible noise from wind turbines can be annoying to some. Annoyance may be associated with some self-reported health effects (e.g., sleep disturbance especially at sound pressure levels >40 dB(A. Because environmental noise above certain levels is a recognized factor in a number of health issues, siting restrictions have been implemented in many jurisdictions to limit noise exposure. These setbacks should help alleviate annoyance from noise. Subjective variables (attitudes and expectations are also linked to annoyance and have the potential to facilitate other health complaints via the nocebo effect. Therefore, it is possible that a segment of the population may remain annoyed (or report other health impacts even when noise limits are enforced. Based on the findings and scientific merit of the available studies, the weight of evidence suggests that when sited properly, wind turbines are not related to adverse health. Stemming from this review, we provide a number of recommended best practices for wind turbine development in the context of human health.

  1. Wind turbines and human health.

    Science.gov (United States)

    Knopper, Loren D; Ollson, Christopher A; McCallum, Lindsay C; Whitfield Aslund, Melissa L; Berger, Robert G; Souweine, Kathleen; McDaniel, Mary

    2014-01-01

    The association between wind turbines and health effects is highly debated. Some argue that reported health effects are related to wind turbine operation [electromagnetic fields (EMF), shadow flicker, audible noise, low-frequency noise, infrasound]. Others suggest that when turbines are sited correctly, effects are more likely attributable to a number of subjective variables that result in an annoyed/stressed state. In this review, we provide a bibliographic-like summary and analysis of the science around this issue specifically in terms of noise (including audible, low-frequency noise, and infrasound), EMF, and shadow flicker. Now there are roughly 60 scientific peer-reviewed articles on this issue. The available scientific evidence suggests that EMF, shadow flicker, low-frequency noise, and infrasound from wind turbines are not likely to affect human health; some studies have found that audible noise from wind turbines can be annoying to some. Annoyance may be associated with some self-reported health effects (e.g., sleep disturbance) especially at sound pressure levels >40 dB(A). Because environmental noise above certain levels is a recognized factor in a number of health issues, siting restrictions have been implemented in many jurisdictions to limit noise exposure. These setbacks should help alleviate annoyance from noise. Subjective variables (attitudes and expectations) are also linked to annoyance and have the potential to facilitate other health complaints via the nocebo effect. Therefore, it is possible that a segment of the population may remain annoyed (or report other health impacts) even when noise limits are enforced. Based on the findings and scientific merit of the available studies, the weight of evidence suggests that when sited properly, wind turbines are not related to adverse health. Stemming from this review, we provide a number of recommended best practices for wind turbine development in the context of human health.

  2. Wind Turbines and Human Health

    Science.gov (United States)

    Knopper, Loren D.; Ollson, Christopher A.; McCallum, Lindsay C.; Whitfield Aslund, Melissa L.; Berger, Robert G.; Souweine, Kathleen; McDaniel, Mary

    2014-01-01

    The association between wind turbines and health effects is highly debated. Some argue that reported health effects are related to wind turbine operation [electromagnetic fields (EMF), shadow flicker, audible noise, low-frequency noise, infrasound]. Others suggest that when turbines are sited correctly, effects are more likely attributable to a number of subjective variables that result in an annoyed/stressed state. In this review, we provide a bibliographic-like summary and analysis of the science around this issue specifically in terms of noise (including audible, low-frequency noise, and infrasound), EMF, and shadow flicker. Now there are roughly 60 scientific peer-reviewed articles on this issue. The available scientific evidence suggests that EMF, shadow flicker, low-frequency noise, and infrasound from wind turbines are not likely to affect human health; some studies have found that audible noise from wind turbines can be annoying to some. Annoyance may be associated with some self-reported health effects (e.g., sleep disturbance) especially at sound pressure levels >40 dB(A). Because environmental noise above certain levels is a recognized factor in a number of health issues, siting restrictions have been implemented in many jurisdictions to limit noise exposure. These setbacks should help alleviate annoyance from noise. Subjective variables (attitudes and expectations) are also linked to annoyance and have the potential to facilitate other health complaints via the nocebo effect. Therefore, it is possible that a segment of the population may remain annoyed (or report other health impacts) even when noise limits are enforced. Based on the findings and scientific merit of the available studies, the weight of evidence suggests that when sited properly, wind turbines are not related to adverse health. Stemming from this review, we provide a number of recommended best practices for wind turbine development in the context of human health. PMID:24995266

  3. Matching of wind turbine type and system scale to wind conditions; Chiten no fukyo ni taisuru furyoku turbine no keitai to sytem taikaku no seigosei ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Wakui, T. [Japan Society for the Promotion of Science, Tokyo (Japan); Tanzawa, Y. [Nippon Institute of Technology, Saitama (Japan); Ota, E. [Waseda University, Tokyo (Japan). School of Science and Engineering; Hashizume, T.

    2000-09-25

    The matching of the wind turbine type and system scale of the stand-alone wind turbine generator system to wind conditions is investigated using our dynamic simulation model. This paper examines three types of wind turbines: the Darrieus-Savonius hybrid wind turbine, the Darrieus turbine proper and the up-wind Propeller turbine. These systems are mainly operated at a constant tip speed ratio, which refers to a maximum power coefficient. As a computed result of the net extracting energy under fluctuations of wind speed and direction, the Darrieus turbine proper has little conformability to wind fluctuations because of its output characteristics. As for other wind turbines, large-scale systems do not always have advantages over small-scale systems as the effect of the dynamic characteristics. Furthermore, it is confirmed that the net extracting power of the Propeller turbine under wind direction fluctuations is much reduced when compared with that of the hybrid wind turbine. Thus, it is concluded that the appropriate wind turbine type and system scale exist for each wind condition. (author)

  4. Wind power integration : From individual wind turbine to wind park as a power plant

    NARCIS (Netherlands)

    Zhou, Y.

    2009-01-01

    As power capacities of single wind turbine, single wind park and total wind power installation are continuously increasing, the wind power begins to challenge the safety operation of the power system. This thesis focuses on the grid integration aspects such as the dynamic behaviours of wind power

  5. Transient stability of DFIG wind turbines at an external short-circuit fault

    DEFF Research Database (Denmark)

    Sun, Tao; Chen, Zhe; Blaabjerg, Frede

    2005-01-01

    The fast development of wind power generation brings new requirements for wind turbine integration into the network. After clearance of an external short-circuit fault, gridconnected wind turbines should restore their normal operation without power loss caused by disconnections. This article...... are described in detail. The transient process of grid-connected wind turbines with DFIGs at an external shortcircuit fault is analysed, and in critical post-fault situations a measure is proposed for the voltage recovery of DFIG wind turbines after fault clearance. Simulation results demonstrate...... that in uncritical post-fault situations the control schemes are able to restore the wind turbine's normal operation without disconnections.lt is also proved that the proposed measure is effective in re-establishing the voltage at the wind turbine terminal in critical post-fault situations....

  6. Experimental evidence for the effect of small wind turbine proximity and operation on bird and bat activity.

    Directory of Open Access Journals (Sweden)

    Jeroen Minderman

    Full Text Available The development of renewable energy technologies such as wind turbines forms a vital part of strategies to reduce greenhouse gas emissions worldwide. Although large wind farms generate the majority of wind energy, the small wind turbine (SWT, units generating <50 kW sector is growing rapidly. In spite of evidence of effects of large wind farms on birds and bats, effects of SWTs on wildlife have not been studied and are likely to be different due to their potential siting in a wider range of habitats. We present the first study to quantify the effects of SWTs on birds and bats. Using a field experiment, we show that bird activity is similar in two distance bands surrounding a sample of SWTs (between 6-18 m hub height and is not affected by SWT operation at the fine scale studied. At shorter distances from operating turbines (0-5 m, bat activity (measured as the probability of a bat "pass" per hour decreases from 84% (71-91% to 28% (11-54% as wind speed increases from 0 to 14 m/s. This effect is weaker at greater distances (20-25 m from operating turbines (activity decreases from 80% (65-89% to 59% (32-81%, and absent when they are braked. We conclude that bats avoid operating SWTs but that this effect diminishes within 20 m. Such displacement effects may have important consequences especially in landscapes where suitable habitat is limiting. Planning guidance for SWTs is currently lacking. Based on our results we recommend that they are sited at least 20 m away from potentially valuable bat habitat.

  7. Monitoring fatigue loads on wind turbines using cycle counting data acquisition systems

    Energy Technology Data Exchange (ETDEWEB)

    Soeker, H; Seifert, H [Deutsches Windenergie-Institut (Germany); Fragoulis, A; Vionis, P; Foussekis, D [Center for Renewable Energy Sources (Greece); Dahlberg, J A; Poppen, M [The Aeronautical Research Institue of Sweden (Sweden)

    1996-09-01

    As in any industrial application, the duration of a wind turbine`s life is a key parameter for the evaluation of its economic potential. Assuming a service life of 20 years, components of the turbine have to withstand a number of load cycles of up to 10{sup 8}. Such numbers of load cycles impose high demands on the fatigue characteristics of both, the used materials and the design. Nevertheless, fatigue loading of wind turbine components still remains a parameter of high uncertainty in the design of wind turbines. The specific features of these fatigue loads can be expected to vary with the type of turbine and the site of operation. In order to ensure the reliability of the next generation of larger scale wind turbines improved load assumptions will be of vital importance. Within the scope of the presented research program DEWI, C.R.E.S. and FFA monitored fatigue loads of serial produced wind turbines by means of a monitoring method that uses on-line cycle counting techniques. The blade root bending moments of two pitch controlled, variable speed wind turbines operating in the Hamswehrum wind farm, and also that of a stall controlled, fixed speed wind turbine operating in CRES` complex terrain test site, were measured by DEWI and CRES. In parallel FFA used their database of time series measurements of blade root bending moments on a stall controlled, fixed speed turbine at Alsvik Windfarm in order to derive semi-empirical fatigue load data. The experience gained from application of the on-line measurement technique is discussed with respect to performance, data quality, reliability and cost effectiveness. Investigations on the effects of wind farm and complex terrain operation on the fatigue loads of wind turbine rotor blades are presented. (au)

  8. A wind turbine hybrid simulation framework considering aeroelastic effects

    Science.gov (United States)

    Song, Wei; Su, Weihua

    2015-04-01

    In performing an effective structural analysis for wind turbine, the simulation of turbine aerodynamic loads is of great importance. The interaction between the wake flow and the blades may impact turbine blades loading condition, energy yield and operational behavior. Direct experimental measurement of wind flow field and wind profiles around wind turbines is very helpful to support the wind turbine design. However, with the growth of the size of wind turbines for higher energy output, it is not convenient to obtain all the desired data in wind-tunnel and field tests. In this paper, firstly the modeling of dynamic responses of large-span wind turbine blades will consider nonlinear aeroelastic effects. A strain-based geometrically nonlinear beam formulation will be used for the basic structural dynamic modeling, which will be coupled with unsteady aerodynamic equations and rigid-body rotations of the rotor. Full wind turbines can be modeled by using the multi-connected beams. Then, a hybrid simulation experimental framework is proposed to potentially address this issue. The aerodynamic-dominant components, such as the turbine blades and rotor, are simulated as numerical components using the nonlinear aeroelastic model; while the turbine tower, where the collapse of failure may occur under high level of wind load, is simulated separately as the physical component. With the proposed framework, dynamic behavior of NREL's 5MW wind turbine blades will be studied and correlated with available numerical data. The current work will be the basis of the authors' further studies on flow control and hazard mitigation on wind turbine blades and towers.

  9. Overall control strategy of variable speed doubly-fed induction generator wind turbine

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Anca D.; Soerensen, Poul [Risoe National Laboratory, Roskilde (Denmark). Wind Energy Dept.; Iov, Florin; Blaabjerg, Frede [Aalborg Univ. (Denmark). Inst. of Energy Technology

    2004-07-01

    The variable speed doubly-fed induction generator wind turbine is today the most widely used concept. The paper presents an overall control system of the variable speed DFIG wind turbine, with focus on the control strategies and algorithms applied at each hierarchical control level of the wind turbine. The present control method is designed for normal continuous operations. The strongest feature of the implemented control method is that it allows the turbine to operate with the optimum power efficiency over a wider range of wind speeds. The variable speed/variable pitch wind turbine with doubly-fed induction generator is implemented in the dynamic power system simulation tool DIgSILENT. Simulation results are performed and analyzed in different normal operating conditions.

  10. Wind turbines and infrasound

    International Nuclear Information System (INIS)

    Howe, B.

    2006-01-01

    This paper provided the results of a study conducted to assess the impacts of wind farm-induced infrasound on nearby residences and human populations. Infrasound occurs at frequencies below those considered as detectable by human hearing. Infrasonic levels caused by wind turbines are often similar to ambient levels of 85 dBG or lower that are caused by wind in the natural environment. This study examined the levels at which infrasound poses a threat to human health or can be considered as an annoyance. The study examined levels of infrasound caused by various types of wind turbines, and evaluated acoustic phenomena and characteristics associated with wind turbines. Results of the study suggested that infrasound near modern wind turbines is typically not perceptible to humans through either auditory or non-auditory mechanisms. However, wind turbines often create an audible broadband noise whose amplitude can be modulated at low frequencies. A review of both Canadian and international studies concluded that infrasound generated by wind turbines should not significantly impact nearby residences or human populations. 17 refs., 2 tabs., 4 figs

  11. Microprocessor control of a wind turbine generator

    Science.gov (United States)

    Gnecco, A. J.; Whitehead, G. T.

    1978-01-01

    This paper describes a microprocessor based system used to control the unattended operation of a wind turbine generator. The turbine and its microcomputer system are fully described with special emphasis on the wide variety of tasks performed by the microprocessor for the safe and efficient operation of the turbine. The flexibility, cost and reliability of the microprocessor were major factors in its selection.

  12. Performance Enhancement and Load Reduction on Wind Turbines Using Inflow Measurements

    DEFF Research Database (Denmark)

    Kragh, Knud Abildgaard

    . The load variations on a wind turbine can be alleviated using either yaw or pitch actuation. A method is presented for alleviating load variations using yaw control, and it is shown how the method can be efficiently applied for decreasing the load variations that are caused by a vertical wind shear...... wind energy research is focused on decreasing the cost of the energy that can be produced from the wind. The cost of energy can for example be decreased by ensuring that wind turbines are operated in a way that ensures that the maximum amount of energy is extracted, and that the turbines are not loaded...... excessively. The operation of a wind turbine is governed by a number of controllers that are based on a series of sensors and actuators. Classical wind turbine control utilizes sensors for measuring turbine parameters such as rotor speed, power and shaft torque, as well as actuators for applying generator...

  13. Control of variable speed wind turbine with doubly-fed induction generator

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, A.D.; Soerensen, P. [Risoe National Lab., Wind Energy Dept., Roskilde (Denmark); Iov, F.; Blaabjerg, F. [Aalborg Univ., Inst. of Energy Technology, Aalborg (Denmark)

    2004-07-01

    draIn this paper, a Control method suitable for a variable speed grid connected pitch-controlled wind turbine with doubly-fed induction generator (DFIG) is developed. The targets of the Control system are: 1) to Control the power drawn from the wind turbine in order to track the wind turbine optimum operation point 2) to limit the power in case of high wind speeds and 3) to Control the reactive power interchanged between the wind turbine generator and the grid. The considered configuration of DFIG is an induction generator with a wound rotor connected to the grid through a back-to-back power converter and a stator directly connected to the grid. The paper presents the overall Control system of the variable speed DFIG wind turbine, with focus on the Control strategies and algorithms applied at each hierarchical Control level of the wind turbine. There are two Control levels: a DFIG Control level and wind turbine Control level. The DFIG Control level contains a fast Control of the power converter and of the doubly-fed induction generator and it has as goal to Control the active and reactive power of the wind turbine independently. The wind turbine Control level supervises with Control signals both the DFIG Control level and the hydraulic pitch Control system of the wind turbine. The present Control method is designed for normal continuous operations. The variable speed/variable pitch wind turbine with doubly-fed induction generator is implemented in the dynamic power system simulation tool DIgSILENT, which makes possible to investigate the dynamic performance of gid-connected wind turbines as a part of realistic electrical grid models. Several significant simulation results are performed With the overall Control-implemented algorithm applied on a variable speed, variable pitch wind turbine model. (au)

  14. Wind turbines and idiopathic symptoms

    DEFF Research Database (Denmark)

    Blanes-Vidal, Victoria; Schwartz, Joel

    2016-01-01

    Whether or not wind turbines pose a risk to human health is a matter of heated debate. Personal reactions to other environmental exposures occurring in the same settings as wind turbines may be responsible of the reported symptoms. However, these have not been accounted for in previous studies. We...... investigated whether there is an association between residential proximity to wind turbines and idiopathic symptoms, after controlling for personal reactions to other environmental co-exposures. We assessed wind turbine exposures in 454 residences as the distance to the closest wind turbine (Dw) and number...... of wind turbines

  15. On Practical tuning of Model Uncertainty in Wind Turbine Model Predictive Control

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Hovgaard, Tobias

    2015-01-01

    Model predictive control (MPC) has in previous works been applied on wind turbines with promising results. These results apply linear MPC, i.e., linear models linearized at different operational points depending on the wind speed. The linearized models are derived from a nonlinear first principles...... model of a wind turbine. In this paper, we investigate the impact of this approach on the performance of a wind turbine. In particular, we focus on the most non-linear operational ranges of a wind turbine. The MPC controller is designed for, tested, and evaluated at an industrial high fidelity wind...

  16. Dynamic wind turbine models in power system simulation tool DIgSILENT

    DEFF Research Database (Denmark)

    Hansen, Anca Daniela; Iov, F.; Sørensen, Poul Ejnar

    , connection of the wind turbine at different types of grid and storage systems. Different control strategies have been developed and implemented for these wind turbine concepts, their performance in normal or fault operation being assessed and discussed by means of simulations. The described control......This report presents a collection of models and control strategies developed and implemented in the power system simulation tool PowerFactory DIgSILENT for different wind turbine concepts. It is the second edition of Risø-R-1400(EN) and it gathers and describes a whole wind turbine model database...... of the interaction between the mechanical structure of the wind turbine and the electrical grid during different operational modes. The report provides thus a description of the wind turbines modelling, both at a component level and at a system level. The report contains both the description of DIgSILENT built...

  17. Analysis operating and maintenance cost of Danish wind turbines in 1993

    International Nuclear Information System (INIS)

    Godtfredsen, F.

    1994-10-01

    A study of operation and maintenance (O and M) cost of Danish wind turbines has been carried out. The study is based on a questionnaire survey by the wind turbine owners association. The study shows a significant decline in the O and M cost from 55 kW machines installed in 1980-87 to modern machines. In 1993, the average total O and M cost for 55 kW and 150 kW turbines was approximately 0.22 DKK/kWh and 0.07 DKK/kWh, respectively. For 150 kW turbines, insurance and administration costs amounted to 0.04 DKK/kWh while repair and maintenance costs came to 0.03 DKK/kWh. In 1993, repair and maintenance cost were significantly higher for older vintages of 55 kW and 150 kW turbines, but it is not possible based on this study to conclude whether increasing O and M costs generally comes with increasing age. The statistical basis of this study is not large enough to conclude whether there are positive scale effects for ST's from 105 kW. Similarly, because of relatively few large WT are older than 10 years, it is not possible based on this study to predict the size of major future repair costs/reinvestments. To estimate the O and M costs more exactly, a larger empirical basis is needed. (au) (8 tabs., 17 ills., 11 refs.)

  18. Heat generation by a wind turbine

    Energy Technology Data Exchange (ETDEWEB)

    Corten, G.P. [ECN Wind, Petten (Netherlands)

    2001-01-01

    It will be shown that an actuator disk operating in wind turbine mode extracts more energy from the fluid than can be transferred into useful energy. At the Lanchester-Betz limit the decrease of the kinetic energy in the wind is converted by 2 /3 into useful power and by 1 /3 into heat. Behind the wind turbine the outer flow and the flow that has passed the actuator disk will mix. In this process momentum is conserved but part of the kinetic energy will dissipate in heat via viscous shear. 7 refs.

  19. Center for Computational Wind Turbine Aerodynamics and Atmospheric Turbulence

    DEFF Research Database (Denmark)

    Sørensen, Jens Nørkær

    2014-01-01

    In order to design and operate a wind farm optimally it is necessary to know in detail how the wind behaves and interacts with the turbines in a farm. This not only requires knowledge about meteorology, turbulence and aerodynamics, but it also requires access to powerful computers and efficient s...... software. Center for Computational Wind Turbine Aerodynamics and Atmospheric Turbulence was established in 2010 in order to create a world-leading cross-disciplinary flow center that covers all relevant disciplines within wind farm meteorology and aerodynamics.......In order to design and operate a wind farm optimally it is necessary to know in detail how the wind behaves and interacts with the turbines in a farm. This not only requires knowledge about meteorology, turbulence and aerodynamics, but it also requires access to powerful computers and efficient...

  20. Wind Turbine Generator System Power Performance Test Report for the ARE442 Wind Turbine

    Energy Technology Data Exchange (ETDEWEB)

    van Dam, J.; Jager, D.

    2010-02-01

    This report summarizes the results of a power performance test that NREL conducted on the ARE 442 wind turbine. This test was conducted in accordance with the International Electrotechnical Commission's (IEC) standard, Wind Turbine Generator Systems Part 12: Power Performance Measurements of Electricity Producing Wind Turbines, IEC 61400-12-1 Ed.1.0, 2005-12. However, because the ARE 442 is a small turbine as defined by IEC, NREL also followed Annex H that applies to small wind turbines. In these summary results, wind speed is normalized to sea-level air density.

  1. Aerodynamics of wind turbines

    DEFF Research Database (Denmark)

    Hansen, Martin Otto Laver

    Aerodynamics of Wind Turbines is the established essential text for the fundamental solutions to efficient wind turbine design. Now in its third edition, it has been substantially updated with respect to structural dynamics and control. The new control chapter now includes details on how to design...... Turbines (VAWT). Topics covered include increasing mass flow through the turbine, performance at low and high wind speeds, assessment of the extreme conditions under which the turbine will perform and the theory for calculating the lifetime of the turbine. The classical Blade Element Momentum method...... is also covered, as are eigenmodes and the dynamic behaviour of a turbine. The book describes the effects of the dynamics and how this can be modelled in an aeroelastic code, which is widely used in the design and verification of modern wind turbines. Furthermore, it examines how to calculate...

  2. Starting-up sequence of the AWEC-60 wind turbine

    International Nuclear Information System (INIS)

    Avia, F.; Cruz, M. de la.

    1991-01-01

    One of the most critical status of the wind turbines operation is the starting-up sequence and the connection to the grid, due to the actuating loads that could be several times the loads during operation at rated conditions. Due to this fact, the control strategy is very important during the starting-up sequence in order to minimize the loads on the machine. For this purpose it is necessary to analyze the behaviour of the wind turbine during that sequence in different wind conditions and machine conditions. This report shows the graphic information about fifty starting-up sequences of the AWEC-60 wind turbine of 60 m. diameter and 1200 kW of rated power, recorded in April 1991 and cut-out wind speed. (author)

  3. Wind Speed Preview Measurement and Estimation for Feedforward Control of Wind Turbines

    Science.gov (United States)

    Simley, Eric J.

    Wind turbines typically rely on feedback controllers to maximize power capture in below-rated conditions and regulate rotor speed during above-rated operation. However, measurements of the approaching wind provided by Light Detection and Ranging (lidar) can be used as part of a preview-based, or feedforward, control system in order to improve rotor speed regulation and reduce structural loads. But the effectiveness of preview-based control depends on how accurately lidar can measure the wind that will interact with the turbine. In this thesis, lidar measurement error is determined using a statistical frequency-domain wind field model including wind evolution, or the change in turbulent wind speeds between the time they are measured and when they reach the turbine. Parameters of the National Renewable Energy Laboratory (NREL) 5-MW reference turbine model are used to determine measurement error for a hub-mounted circularly-scanning lidar scenario, based on commercially-available technology, designed to estimate rotor effective uniform and shear wind speed components. By combining the wind field model, lidar model, and turbine parameters, the optimal lidar scan radius and preview distance that yield the minimum mean square measurement error, as well as the resulting minimum achievable error, are found for a variety of wind conditions. With optimized scan scenarios, it is found that relatively low measurement error can be achieved, but the attainable measurement error largely depends on the wind conditions. In addition, the impact of the induction zone, the region upstream of the turbine where the approaching wind speeds are reduced, as well as turbine yaw error on measurement quality is analyzed. In order to minimize the mean square measurement error, an optimal measurement prefilter is employed, which depends on statistics of the correlation between the preview measurements and the wind that interacts with the turbine. However, because the wind speeds encountered by

  4. Estimating annoyance to calculated wind turbine shadow flicker is improved when variables associated with wind turbine noise exposure are considered.

    Science.gov (United States)

    Voicescu, Sonia A; Michaud, David S; Feder, Katya; Marro, Leonora; Than, John; Guay, Mireille; Denning, Allison; Bower, Tara; van den Berg, Frits; Broner, Norm; Lavigne, Eric

    2016-03-01

    The Community Noise and Health Study conducted by Health Canada included randomly selected participants aged 18-79 yrs (606 males, 632 females, response rate 78.9%), living between 0.25 and 11.22 km from operational wind turbines. Annoyance to wind turbine noise (WTN) and other features, including shadow flicker (SF) was assessed. The current analysis reports on the degree to which estimating high annoyance to wind turbine shadow flicker (HAWTSF) was improved when variables known to be related to WTN exposure were also considered. As SF exposure increased [calculated as maximum minutes per day (SFm)], HAWTSF increased from 3.8% at 0 ≤ SFm wind turbine-related features, concern for physical safety, and noise sensitivity. Reported dizziness was also retained in the final model at p = 0.0581. Study findings add to the growing science base in this area and may be helpful in identifying factors associated with community reactions to SF exposure from wind turbines.

  5. Annoyance, detection and recognition of wind turbine noise.

    Science.gov (United States)

    Van Renterghem, Timothy; Bockstael, Annelies; De Weirt, Valentine; Botteldooren, Dick

    2013-07-01

    Annoyance, recognition and detection of noise from a single wind turbine were studied by means of a two-stage listening experiment with 50 participants with normal hearing abilities. In-situ recordings made at close distance from a 1.8-MW wind turbine operating at 22 rpm were mixed with road traffic noise, and processed to simulate indoor sound pressure levels at LAeq 40 dBA. In a first part, where people were unaware of the true purpose of the experiment, samples were played during a quiet leisure activity. Under these conditions, pure wind turbine noise gave very similar annoyance ratings as unmixed highway noise at the same equivalent level, while annoyance by local road traffic noise was significantly higher. In a second experiment, listeners were asked to identify the sample containing wind turbine noise in a paired comparison test. The detection limit of wind turbine noise in presence of highway noise was estimated to be as low as a signal-to-noise ratio of -23 dBA. When mixed with local road traffic, such a detection limit could not be determined. These findings support that noticing the sound could be an important aspect of wind turbine noise annoyance at the low equivalent levels typically observed indoors in practice. Participants that easily recognized wind-turbine(-like) sounds could detect wind turbine noise better when submersed in road traffic noise. Recognition of wind turbine sounds is also linked to higher annoyance. Awareness of the source is therefore a relevant aspect of wind turbine noise perception which is consistent with previous research. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Design and aero-acoustic analysis of a counter-rotating wind turbine

    Science.gov (United States)

    Agrawal, Vineesh V.

    Wind turbines have become an integral part of the energy business because they are one of the most economical and reliable sources of renewable energy. Conventional wind turbines are capable of capturing less than half of the energy present in the wind. Hence, to make the wind turbines more efficient, it is important to increase their performance. A horizontal axis wind turbine with multiple rotors is one concept that can achieve a higher power conversion rate. Also, a concern for wind energy is the noise generated by wind turbines. Hence, an investigation into the acoustic behavior of a multi-rotor horizontal axis wind turbine is required. In response to the need of a wind turbine design with higher power coefficient, a unique design of a counter-rotating horizontal axis wind turbine (CR-HAWT) is proposed. The Blade Element Momentum (BEM) theory is used to aerodynamically design the blades of the two rotors. Modifications are made to the BEM theory to accommodate the interaction of the two rotors. The tower effect on the noise generation of the downwind rotor is investigated. Predictions are made for the total noise generated by the wind turbine at its design operating conditions. A total power coefficient of 65.2% is predicted for the proposed CR-HAWT design. A low tip speed ratio is chosen to minimize the noise generation. The aeroacoustic analysis of the CR-HAWT shows that the noise generated at its design operating conditions is within an acceptable range. Thus, the CR-HAWT is predicted to be a quiet wind turbine with a high power coefficient, making it highly desirable for small wind turbine applications.

  7. Validation of Generic Models for Variable Speed Operation Wind Turbines Following the Recent Guidelines Issued by IEC 61400-27

    Directory of Open Access Journals (Sweden)

    Andrés Honrubia-Escribano

    2016-12-01

    Full Text Available Considerable efforts are currently being made by several international working groups focused on the development of generic, also known as simplified or standard, wind turbine models for power system stability studies. In this sense, the first edition of International Electrotechnical Commission (IEC 61400-27-1, which defines generic dynamic simulation models for wind turbines, was published in February 2015. Nevertheless, the correlations of the IEC generic models with respect to specific wind turbine manufacturer models are required by the wind power industry to validate the accuracy and corresponding usability of these standard models. The present work conducts the validation of the two topologies of variable speed wind turbines that present not only the largest market share, but also the most technological advances. Specifically, the doubly-fed induction machine and the full-scale converter (FSC topology are modeled based on the IEC 61400-27-1 guidelines. The models are simulated for a wide range of voltage dips with different characteristics and wind turbine operating conditions. The simulated response of the IEC generic model is compared to the corresponding simplified model of a wind turbine manufacturer, showing a good correlation in most cases. Validation error sources are analyzed in detail, as well. In addition, this paper reviews in detail the previous work done in this field. Results suggest that wind turbine manufacturers are able to adjust the IEC generic models to represent the behavior of their specific wind turbines for power system stability analysis.

  8. Potential health impact of wind turbines

    International Nuclear Information System (INIS)

    2010-05-01

    In response to public health concerns about wind turbines, a study was conducted to review the scientific evidence on the potential health effects of wind turbines. Several research questions were examined, including scientific evidence on the potential health impacts of wind turbines; the relationship between wind turbine noise and health; the relationship between low frequency sound, infrasound and health; assessment of exposure to wind turbines; wind turbine health and safety hazards and Ontario wind turbine setbacks; community consultation prior to wind farm construction and data gaps and research needs. The study showed that although some people living near wind turbines reported symptoms such as dizziness, headaches, and sleep disturbance, the scientific evidence available to date does not demonstrate a direct causal link between wind turbine noise and adverse health effects. The sound level from wind turbines at common residential setbacks is not sufficient to cause hearing impairment or other direct health effects, although some people may find it annoying. 41 refs., 1 appendix.

  9. Variability of the Wind Turbine Power Curve

    Directory of Open Access Journals (Sweden)

    Mahesh M. Bandi

    2016-09-01

    Full Text Available Wind turbine power curves are calibrated by turbine manufacturers under requirements stipulated by the International Electrotechnical Commission to provide a functional mapping between the mean wind speed v ¯ and the mean turbine power output P ¯ . Wind plant operators employ these power curves to estimate or forecast wind power generation under given wind conditions. However, it is general knowledge that wide variability exists in these mean calibration values. We first analyse how the standard deviation in wind speed σ v affects the mean P ¯ and the standard deviation σ P of wind power. We find that the magnitude of wind power fluctuations scales as the square of the mean wind speed. Using data from three planetary locations, we find that the wind speed standard deviation σ v systematically varies with mean wind speed v ¯ , and in some instances, follows a scaling of the form σ v = C × v ¯ α ; C being a constant and α a fractional power. We show that, when applicable, this scaling form provides a minimal parameter description of the power curve in terms of v ¯ alone. Wind data from different locations establishes that (in instances when this scaling exists the exponent α varies with location, owing to the influence of local environmental conditions on wind speed variability. Since manufacturer-calibrated power curves cannot account for variability influenced by local conditions, this variability translates to forecast uncertainty in power generation. We close with a proposal for operators to perform post-installation recalibration of their turbine power curves to account for the influence of local environmental factors on wind speed variability in order to reduce the uncertainty of wind power forecasts. Understanding the relationship between wind’s speed and its variability is likely to lead to lower costs for the integration of wind power into the electric grid.

  10. When wind turbines go to the sea

    International Nuclear Information System (INIS)

    Dupin, L.

    2010-01-01

    Land wind turbines are not designed to operate in the open seas. In order to enhance their reliability, facilitate their maintenance and increase their power, existing technologies are adapted to the offshore constraints (direct drive for the blades, maintenance optimization, etc.) while innovating designs (such as vertical axis wind turbines, floating platforms, etc.) are presently tested. Several of these new concepts are described

  11. New Urban Vertical Axis Wind Turbine Design

    Directory of Open Access Journals (Sweden)

    Alexandru-Mihai CISMILIANU

    2015-12-01

    Full Text Available This paper develops a different approach for enhancing the performance of Vertical Axis Wind Turbines for the use in the urban or rural environment and remote isolated residential areas. Recently the vertical axis wind turbines (VAWT have become more attractive due to the major advantages of this type of turbines in comparison to the horizontal axis wind turbines. We aim to enhance the overall performance of the VAWT by adding a second set of blades (3 x 2=6 blades following the rules of biplane airplanes. The model has been made to operate at a maximum power in the range of the TSR between 2 to 2.5. The performances of the VAWT were investigated numerically and experimentally and justify the new proposed design.

  12. In-operation learning of optimal wind farm operation strategy

    OpenAIRE

    Oliva Gratacós, Joan

    2017-01-01

    In a wind farm, power losses due to wind turbine wake effects can be up to 30-40% under certain conditions. As the global installed wind power capacity increases, the mitigation of wake effects in wind farms is gaining more importance. Following a conventional control strategy, each individual turbine maximizes its own power production without taking into consideration its effects on the performance of downstream turbines. Therefore, this control scheme results in operation con...

  13. Rule - based Fault Diagnosis Expert System for Wind Turbine

    Directory of Open Access Journals (Sweden)

    Deng Xiao-Wen

    2017-01-01

    Full Text Available Under the trend of increasing installed capacity of wind power, the intelligent fault diagnosis of wind turbine is of great significance to the safe and efficient operation of wind farms. Based on the knowledge of fault diagnosis of wind turbines, this paper builds expert system diagnostic knowledge base by using confidence production rules and expert system self-learning method. In Visual Studio 2013 platform, C # language is selected and ADO.NET technology is used to access the database. Development of Fault Diagnosis Expert System for Wind Turbine. The purpose of this paper is to realize on-line diagnosis of wind turbine fault through human-computer interaction, and to improve the diagnostic capability of the system through the continuous improvement of the knowledge base.

  14. Operating capability as a PQ/PV node of a direct-drive wind turbine based on a permanent magnet synchronous generator

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, L.M.; Garcia, C.A. [Department of Electrical Engineering, University of Cadiz, EPS Algeciras, Avda. Ramon Puyol s/n,11202 Algeciras (Cadiz) (Spain); Jurado, F. [Department of Electrical Engineering, University of Jaen, EPS Linares, C/ Alfonso X n . 28, 23700 Linares (Jaen) (Spain)

    2010-06-15

    This paper describes the modelling and control system of a direct-drive PMSG wind turbine for effective active and reactive power generation control and voltage control at the grid connection point. This study focuses on the maximum power capability of the wind turbine, which is limited by its generator and power converter. The ability of this model and control strategy are assessed by means of simulations and discussed at length. The results of our study show that a PMSG wind turbine is able to actively participate in grid operation because it can independently control active and reactive power production (operating as a PQ node) or the active power and voltage at the connection node (operating as a PV node). (author)

  15. Condition Parameter Modeling for Anomaly Detection in Wind Turbines

    Directory of Open Access Journals (Sweden)

    Yonglong Yan

    2014-05-01

    Full Text Available Data collected from the supervisory control and data acquisition (SCADA system, used widely in wind farms to obtain operational and condition information about wind turbines (WTs, is of important significance for anomaly detection in wind turbines. The paper presents a novel model for wind turbine anomaly detection mainly based on SCADA data and a back-propagation neural network (BPNN for automatic selection of the condition parameters. The SCADA data sets are determined through analysis of the cumulative probability distribution of wind speed and the relationship between output power and wind speed. The automatic BPNN-based parameter selection is for reduction of redundant parameters for anomaly detection in wind turbines. Through investigation of cases of WT faults, the validity of the automatic parameter selection-based model for WT anomaly detection is verified.

  16. Blade Bearing Friction Estimation of Operating Wind Turbines

    DEFF Research Database (Denmark)

    Perisic, Nevena; Pedersen, Bo Juul; Kirkegaard, Poul Henning

    2012-01-01

    Blade root bearing on a wind turbine (WTG) enables pitching of blades for power control and rotor braking and is a WTG critical component. As the size of modern WTGs is constantly increasing, this leads to relatively less rigid bearings, more sensitive to deformations, thus WTG operational...... reliability can be increased by continuous monitoring of blade bearing. High blade bearing friction is undesirable, as it may be associated with excessive heating of the surfaces, damage and/or inefficient operation. Thus, continuous observation of bearing friction level is crucial for blade bearing health...... monitoring systems. A novel algorithm for online monitoring of bearing friction level is developed combining physical knowledge about pitch system dynamics with state estimator, i.e. observer theory and signal processing assuming realistic sensor availability. Results show estimation of bearing friction...

  17. Structured Linear Parameter Varying Control of Wind Turbines

    DEFF Research Database (Denmark)

    Adegas, Fabiano Daher; Sloth, Christoffer; Stoustrup, Jakob

    2012-01-01

    High performance and reliability are required for wind turbines to be competitive within the energy market. To capture their nonlinear behavior, wind turbines are often modeled using parameter-varying models. In this chapter, a framework for modelling and controller design of wind turbines is pre...... in the controller synthesis are solved by an iterative LMI-based algorithm. The resulting controllers can also be easily implemented in practice due to low data storage and simple math operations. The performance of the LPV controllers is assessed by nonlinear simulations results....

  18. On the Turbulent Mixing in Horizontal Axis Wind Turbine Wakes

    NARCIS (Netherlands)

    Lignarolo, L.E.M.

    2016-01-01

    The wake flow of a horizontal axis wind turbine is characterised by lower wind speed and higher turbulence than the free-stream conditions. When clustered in large wind farms, wind turbines regularly operate inside the wake of one or more upstream machines. This is a major cause of energy production

  19. Urban wind turbines. Guidelines for small wind turbines in the built environment

    International Nuclear Information System (INIS)

    Cace, J.; Ter Horst, E.; Syngellakis, K.; Niel, M.; Clement, P.; Heppener, R.; Peirano, E.

    2007-02-01

    The objective of the WINEUR project (Wind Energy Integration in the Urban Environment) is to determine the deployability of small wind turbines in built environments while identifying the current significant constraints and possible solutions. The purpose of this document is to Inform the stakeholders about the state of the development of small wind turbines for the built environment; Provide practical guidelines to actors dealing with installation of small wind turbines in urban areas; and Provide recommendations for future products and for market development

  20. Turbine Control Strategies for Wind Farm Power Optimization

    DEFF Research Database (Denmark)

    Mirzaei, Mahmood; Göçmen Bozkurt, Tuhfe; Giebel, Gregor

    2015-01-01

    In recent decades there has been increasing interest in green energies, of which wind energy is the most important one. In order to improve the competitiveness of the wind power plants, there are ongoing researches to decrease cost per energy unit and increase the efficiency of wind turbines...... and wind farms. One way of achieving these goals is to optimize the power generated by a wind farm. One optimization method is to choose appropriate operating points for the individual wind turbines in the farm. We have made three models of a wind farm based on three difference control strategies...... the generated power by changing the power reference of the individual wind turbines. We use the optimization setup to compare power production of the wind farm models. This paper shows that for the most frequent wind velocities (below and around the rated values), the generated powers of the wind farms...

  1. Risk assessment of wind turbines close to highways

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Sørensen, Jens Nørkær; Lemming, Jørgen Kjærgaard

    2012-01-01

    with a spacing of 400m. As an example the generally accepted risk on highways in increased with less than 0.1% in wind turbines are installed more than 150 meters from the highway. The risk due to ice throw from a wind turbine in operation is seen to be slightly greater than the risk if the wind turbine......) and a spacing of 400-500 m along the road. The studies show that the probability per kilometer that a person in a vehicle is killed due to total or partial collapse (damage) of a wind turbine can be assumed to be of minor importance. The probability per kilometer will be less than 5 10-12 for wind turbines...... that are more than 60 meters from the road. This risk is considered acceptable using the ALARP principle and comparing with the general, well-documented risk on roads in Denmark which in 2009 was 2 10-9. The analysis also shows that the height of the turbines and the distance between them is of less importance...

  2. Fatigue-Damage Estimation and Control for Wind Turbines

    OpenAIRE

    Barradas Berglind, Jose de Jesus

    2015-01-01

    How can fatigue-damage for control of wind turbines be represented? Fatigue-damage is indeed a crucial factor in structures such as wind turbines that are exposed to turbulent and rapidly changing wind flow conditions. This is relevant both in their design stage and during the control of their operation. Accordingly, the most recognized methods of fatigue-damage estimation are discussed in this thesis.In wind energy conversion systems there is an intrinsic trade-off between power generation m...

  3. Noise from wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Fegeant, Olivier [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Building Sciences

    2002-02-01

    A rapid growth of installed wind power capacity is expected in the next few years. However, the siting of wind turbines on a large scale raises concerns about their environmental impact, notably with respect to noise. To this end, variable speed wind turbines offer a promising solution for applications in densely populated areas like the European countries, as this design would enable an efficient utilisation of the masking effect due to ambient noise. In rural and recreational areas where wind turbines are sited, the ambient noise originates from the action of wind on the vegetation and about the listener's ear (pseudo-noise). It shows a wind speed dependence similar to that of the noise from a variable speed wind turbine and can therefore mask the latter for a wide range of conditions. However, a problem inherent to the design of these machines is their proclivity to pure tone generation, because of the enhanced difficulty of avoiding structural resonances in the mechanical parts. Pure tones are deemed highly annoying and are severely regulated by most noise policies. In relation to this problem, the vibration transmission of structure-borne sound to the tower of the turbine is investigated, in particular when the tower is stiffened at its upper end. Furthermore, since noise annoyance due to wind turbine is mostly a masking issue, the wind-related sources of ambient noise are studied and their masking potentials assessed. With this aim, prediction models for wind-induced vegetation noise and pseudo-noise have been developed. Finally, closely related to the effect of masking, is the difficulty, regularly encountered by local authorities and wind farm developers, to measure noise immission from wind turbines. A new measurement technique has thus been developed in the course of this work. Through improving the signal-to-noise ratio between wind turbine noise and ambient noise, the new technique yields more accurate measurement results.

  4. Load prediction of stall regulated wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Bjoerck, A.; Dahlberg, J.Aa. [Aeronautical Research Inst. of Sweden, Bromma (Sweden); Carlen, I. [Chalmers Univ. of Technology, Goeteborg (Sweden). Div. of Marine Structural Engineering; Ganander, H. [Teknikgruppen AB, Sollentua (Sweden)

    1996-12-01

    Measurements of blade loads on a turbine situated in a small wind farm shows that the highest blade loads occur during operation close to the peak power i.e. when the turbine operates in the stall region. In this study the extensive experimental data base has been utilised to compare loads in selected campaigns with corresponding load predictions. The predictions are based on time domain simulations of the wind turbine structure, performed by the aeroelastic code VIDYN. In the calculations a model were adopted in order to include the effects of dynamic stall. This paper describes the work carried out so far within the project and key results. 5 refs, 10 figs

  5. Assessment of Wind Parameter Sensitivity on Extreme and Fatigue Wind Turbine Loads

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, Amy N [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sethuraman, Latha [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Jonkman, Jason [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Quick, Julian [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-01-12

    Wind turbines are designed using a set of simulations to ascertain the structural loads that the turbine could encounter. While mean hub-height wind speed is considered to vary, other wind parameters such as turbulence spectra, sheer, veer, spatial coherence, and component correlation are fixed or conditional values that, in reality, could have different characteristics at different sites and have a significant effect on the resulting loads. This paper therefore seeks to assess the sensitivity of different wind parameters on the resulting ultimate and fatigue loads on the turbine during normal operational conditions. Eighteen different wind parameters are screened using an Elementary Effects approach with radial points. As expected, the results show a high sensitivity of the loads to the turbulence standard deviation in the primary wind direction, but the sensitivity to wind shear is often much greater. To a lesser extent, other wind parameters that drive loads include the coherence in the primary wind direction and veer.

  6. CSA guide to Canadian wind turbine codes and standards

    International Nuclear Information System (INIS)

    2008-01-01

    The Canadian wind energy sector has become one of the fastest-growing wind energy markets in the world. Growth of the industry has been supported by various government agencies. However, many projects have experienced cost over-runs or cancellations as a result of unclear regulatory requirements, and wind energy developers are currently subject to a variety of approval processes involving several different authorities. This Canadian Standards Association (CSA) guide provided general information on codes and standards related to the design, approval, installation, operation, and maintenance of wind turbines in Canada. CSA codes and standards were developed by considering 5 new standards adopted by the International Electrotechnical Commission (IEC) Technical Committee on Wind Turbines. The standards described in this document related to acoustic noise measurement techniques; power performance measurements of electricity-producing wind turbines; lightning protection for wind turbine generator systems; design requirements for turbines; and design requirements for small wind turbines. The guide addressed specific subject areas related to the development of wind energy projects that involve formal or regulatory approval processes. Subject areas included issues related to safety, environmental design considerations, site selection, and mechanical systems. Information on associated standards and codes was also included

  7. Practical experience and economic aspects of small wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    1984-01-01

    Workshop proceedings presented cover operating experience and development of wind turbines installed in the UK by Northern Engineering Industries plc companies, the Howden aerogenerator installed in Orkney, and the commissioning of a vertical-axis generator in a remote location. The National Wind Turbine Test Centre, the Caithness Wind Project, the South of Scotland Electricity Board's activities, economics of small scale wind power and commercialisation are discussed.

  8. The relevance of the dynamic stall effect for transient fault operations of active-stall wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Jauch, Clemens; Soerensen, Poul; Jensen, Birgitte Bak

    2005-06-15

    This article describes a methodology to quantify the influence of dynamic stall on transient fault operations of active-stall turbines. The model of the dynamic stall effect is introduced briefly. The behaviour of the dynamic stall model during a transient fault operation is described mathematically, and from this its effect quantified. Two quantities are chosen to describe the influence of the dynamic stall effect: one is active power and the other is time delay. Subsequently a transient fault scenario is simulated with and without the dynamic stall effect and the differences discussed. From this comparison, the conclusion is drawn that the dynamic stall effect has some influence on the post-fault behaviour of the wind turbine, and it is hence suggested that the dynamic stall effect is considered if an active-stall wind turbine is to be modelled realistically. (Author)

  9. Wind tunnel tests of a free yawing downwind wind turbine

    DEFF Research Database (Denmark)

    Verelst, David Robert; Larsen, Torben J.; van Wingerden, Jan-Willem

    2014-01-01

    . The discussed test cases show that the turbine is stable while operating in free yawing conditions. Further, the effect of the tower shadow passage on the blade flapwise strain measurement is evaluated. Finally, data from the experiment is compared with preliminary simulations using DTU Wind Energy......This research paper presents preliminary results on a behavioural study of a free yawing downwind wind turbine. A series of wind tunnel tests was performed at the TU Delft Open Jet Facility with a three bladed downwind wind turbine and a rotor radius of 0.8 meters. The setup includes an off...... the shelf three bladed hub, nacelle and generator on which relatively flexible blades are mounted. The tower support structure has free yawing capabilities provided at the base. A short overview on the technical details of the experiment is given as well as a brief summary of the design process...

  10. Dependency in State Transitions of Wind Turbines

    DEFF Research Database (Denmark)

    Herp, Jürgen; Ramezani, Mohammad Hossein; S. Nadimi, Esmaeil

    2017-01-01

    © 2017 IEEE. Turbine states and predicting the transition into failure states ahead of time is important in operation and maintenance of wind turbines. This study presents a method to monitor state transitions of a wind turbine based on the online inference on residuals. In a Bayesian framework...... be abstracted from generated data. Two models are presented: 1) assuming independence and 2) assuming dependence between states. In order to select the right models, machine learning is utilized to update hyperparameters on the conditional probabilities. Comparing fixed to learned hyperparameters points out...... the impact machine learning concepts have on the predictive performance of the presented models. In conclusion, a study on model residuals is performed to highlight the contribution to wind turbine monitoring. The presented algorithm can consistently detect the state transition under various configurations...

  11. Laminar-Turbulent transition on Wind Turbines

    DEFF Research Database (Denmark)

    Martinez Hernandez, Gabriel Gerardo

    The present thesis deals with the study of the rotational effects on the laminar-turbulent transition on wind turbine blades. Linear stability theory is used to formulate the stability equations that include the effect of rotation. The mean flow required as an input to stability computations...... parametrized and adapted to an wind turbine rotor geometry. The blade is resolved in radial sections along which calculations are performed. The obtained mean flow is classified according to the parameters used on the rotating configuration, geometry and operational conditions. The stability diagrams have been...... to define the resultant wave magnitude and direction. The propagation of disturbances in the boundary layers in three dimensional flows is relatively a complicated phenomena. The report discusses the available methods and techniques used to predict the transition location. Some common wind turbine airfoils...

  12. Maximum Energy Yield Oriented Turbine Control in PMSG based Wind Farm

    OpenAIRE

    Tian, Jie; Zhou, Dao; Su, Chi; Blaabjerg, Frede; Chen, Zhe

    2017-01-01

    : In the modern power systems, with the fast integration of the wind power into the grid, it turns to develop large-scale offshore wind farms equipped with the permanent magnet synchronous generator (PMSG) wind turbine. In large-scale offshore wind farms, the wind turbine operating reliability and the wake effect in the wind farm became important issues. The pitch angle and tip speed ratio are the two degrees of freedom for the PMSG wind turbine active power control, which are also the determ...

  13. Electrical and non-electrical environment of wind turbine main components

    DEFF Research Database (Denmark)

    Holboell, J.; Henriksen, M.; Olsen, R.S.

    of the electrical components or even lead to catastrophic component failure. In the present paper, results are presented from investigations on existing standards which give detailed descriptions of the environmental and operational conditions of wind turbine components. It is found that there is currently a lack...... of application standards for wind turbine electrical equipment. Component-level environmental requirements as given in equipment-specific standards are compared with the environment described in the IEC's 61400 series concerning wind turbines. Based on methods defined in IEC 60721, the non-electrical environment...... of wind turbine is described by means of specific classes. In the paper, new class combinations are suggested covering the different operating conditions the components are exposed to. The class combinations include factors of climatic, mechanical and chemical character. The factors occur in different...

  14. Starting-up sequence of the AWEC-6 0 wind turbine

    International Nuclear Information System (INIS)

    Avia, F.; Cruz, M. de la

    1991-01-01

    One of the most critical status of the wind turbines operation is the starting-up sequence and the connection to the grid, due to the actuating loads that could be several times the loads during operation at rated conditions. Due to this fact, the control strategy is very important during the starting-up sequence in order to minimize the loads on the machine. For this purpose it is necessary to analyze the behaviour of the wind turbine during that sequence in different wind conditions and machine conditions This report shows the graphic Information about fifty starting-up sequences of the AWEC-60 wind turbine of 60 m diameter and 1200 kW of rated power, recorded in April 1991 and covering all the operation range between cut-in and cut-out wind speed. (Author) 2 refs

  15. Dynamic wind turbine models in power system simulation tool DIgSILENT

    DEFF Research Database (Denmark)

    Hansen, A.D.; Jauch, C.; Sørensen, Poul Ejnar

    2004-01-01

    . This model database should be able to support the analysis of the interaction between the mechanical structure of the wind turbine and the electrical grid during different operational modes. The reportprovides a description of the wind turbines modelling, both at a component level and at a system level......-electrical components of the wind turbine (wind model, aerodynamic model, mechanical model). Theinitialisation issues on the wind turbine models into the power system simulation are also presented. However, the main attention in this report is drawn to the modelling at the system level of two wind turbine concepts: 1...... of the wind turbine at different types of grid and storage systems. For both these two concepts, control strategies are developed and implemented, their performance assessed and discussed by means of simulations....

  16. Offshore wind turbines and bird activity at Blyth

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    In 1996, a study was implemented to ultimately determine the impact of two 2MW wind turbines situated 900 metres offshore of the north-east of England. The turbines, with a hub height of 66 metres, began operation in December 2000. Earlier, similar studies were carried out on a row of wind turbines mounted on the harbour wall of the nearby town of Blyth. The report gives details of (i) total mortality and mortality due to the turbines; (ii) number of bird strikes; (iii) habitat displacement; (iv) feeding grounds; (v) flight routes and (vi) impact on bird populations of a nearby Site of Special Scientific Interest. The study was conducted by AMEC Wind Limited under contract to the DTI.

  17. Wind turbine control and monitoring

    CERN Document Server

    Luo, Ningsu; Acho, Leonardo

    2014-01-01

    Maximizing reader insights into the latest technical developments and trends involving wind turbine control and monitoring, fault diagnosis, and wind power systems, 'Wind Turbine Control and Monitoring' presents an accessible and straightforward introduction to wind turbines, but also includes an in-depth analysis incorporating illustrations, tables and examples on how to use wind turbine modeling and simulation software.   Featuring analysis from leading experts and researchers in the field, the book provides new understanding, methodologies and algorithms of control and monitoring, comput

  18. Dynamic wind turbine models in power system simulation tool DIgSILENT

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, A.D.; Iov, F.; Soerensen, Poul.; Cutululis, N.; Jauch, C.; Blaabjerg, F.

    2007-08-15

    This report presents a collection of models and control strategies developed and implemented in the power system simulation tool PowerFactory DIgSILENT for different wind turbine concepts. It is the second edition of Risoe-R-1400(EN) and it gathers and describes a whole wind turbine model database built-op and developed during several national research projects, carried out at Risoe DTU National Laboratory for Sustainable Energy and Aalborg University, in the period 2001-2007. The overall objective of these projects was to create a wind turbine model database able to support the analysis of the interaction between the mechanical structure of the wind turbine and the electrical grid during different operational modes. The report provides thus a description of the wind turbines modelling, both at a component level and at a system level. The report contains both the description of DIgSILENT built-in models for the electrical components of a grid connected wind turbine (e.g. induction generators, power converters, transformers) and the models developed by the user, in the dynamic simulation language DSL of DIgSILENT, for the non-electrical components of the wind turbine (wind model, aerodynamic model, mechanical model). The initialisation issues on the wind turbine models into the power system simulation are also presented. The main attention in the report is drawn to the modelling at the system level of the following wind turbine concepts: (1) Fixed speed active stall wind turbine concept (2) Variable speed doubly-fed induction generator wind turbine concept (3) Variable speed multi-pole permanent magnet synchronous generator wind turbine concept These wind turbine concept models can be used and even extended for the study of different aspects, e.g. the assessment of power quality, control strategies, connection of the wind turbine at different types of grid and storage systems. Different control strategies have been developed and implemented for these wind turbine

  19. Wind turbine rotor blade monitoring using digital image correlation: a comparison to aeroelastic simulations of a multi-megawatt wind turbine

    International Nuclear Information System (INIS)

    Winstroth, J; Ernst, B; Seume, J R; Schoen, L

    2014-01-01

    Optical full-field measurement methods such as Digital Image Correlation (DIC) provide a new opportunity for measuring deformations and vibrations with high spatial and temporal resolution. However, application to full-scale wind turbines is not trivial. Elaborate preparation of the experiment is vital and sophisticated post processing of the DIC results essential. In the present study, a rotor blade of a 3.2 MW wind turbine is equipped with a random black-and-white dot pattern at four different radial positions. Two cameras are located in front of the wind turbine and the response of the rotor blade is monitored using DIC for different turbine operations. In addition, a Light Detection and Ranging (LiDAR) system is used in order to measure the wind conditions. Wind fields are created based on the LiDAR measurements and used to perform aeroelastic simulations of the wind turbine by means of advanced multibody codes. The results from the optical DIC system appear plausible when checked against common and expected results. In addition, the comparison of relative out-ofplane blade deflections shows good agreement between DIC results and aeroelastic simulations

  20. Wind turbine rotor blade monitoring using digital image correlation: a comparison to aeroelastic simulations of a multi-megawatt wind turbine

    Science.gov (United States)

    Winstroth, J.; Schoen, L.; Ernst, B.; Seume, J. R.

    2014-06-01

    Optical full-field measurement methods such as Digital Image Correlation (DIC) provide a new opportunity for measuring deformations and vibrations with high spatial and temporal resolution. However, application to full-scale wind turbines is not trivial. Elaborate preparation of the experiment is vital and sophisticated post processing of the DIC results essential. In the present study, a rotor blade of a 3.2 MW wind turbine is equipped with a random black-and-white dot pattern at four different radial positions. Two cameras are located in front of the wind turbine and the response of the rotor blade is monitored using DIC for different turbine operations. In addition, a Light Detection and Ranging (LiDAR) system is used in order to measure the wind conditions. Wind fields are created based on the LiDAR measurements and used to perform aeroelastic simulations of the wind turbine by means of advanced multibody codes. The results from the optical DIC system appear plausible when checked against common and expected results. In addition, the comparison of relative out-ofplane blade deflections shows good agreement between DIC results and aeroelastic simulations.

  1. Recommendation for an European wind turbine safety standard

    Energy Technology Data Exchange (ETDEWEB)

    Hjuler Jensen, P.; Hauge Madsen, P.; Winther-Jensen, M.; Machielse, L.; Stam, W.; Einsfeld, V.; Woelfel, E.; Elliot, G.; Wilde, L. de

    1988-09-15

    The objective is to establish an European standard for wind safety which should apply for all member countries of the European Communities. The document contains a list of recommended safety requirements in relation to the system, structure, electrical installations, operation and maintenance of wind turbines. The recommended safety standards cover electricity producing wind turbines connected to electricity grids in both single and cluster applications and with a swept area in excess of 25 square meters and/or a rated power of 10kW. The document should be used in combination with The European Standards for Wind Turbine Loads and other relevant European Standards. Environmental condition, with the emphasis of wind conditions and more extreme climatic conditions, are also considered in relation to safety requirements. (AB).

  2. Wind turbine power coefficient estimation by soft computing methodologies: Comparative study

    International Nuclear Information System (INIS)

    Shamshirband, Shahaboddin; Petković, Dalibor; Saboohi, Hadi; Anuar, Nor Badrul; Inayat, Irum; Akib, Shatirah; Ćojbašić, Žarko; Nikolić, Vlastimir; Mat Kiah, Miss Laiha; Gani, Abdullah

    2014-01-01

    Highlights: • Variable speed operation of wind turbine to increase power generation. • Changeability and fluctuation of wind has to be accounted. • To build an effective prediction model of wind turbine power coefficient. • The impact of the variation in the blade pitch angle and tip speed ratio. • Support vector regression methodology application as predictive methodology. - Abstract: Wind energy has become a large contender of traditional fossil fuel energy, particularly with the successful operation of multi-megawatt sized wind turbines. However, reasonable wind speed is not adequately sustainable everywhere to build an economical wind farm. In wind energy conversion systems, one of the operational problems is the changeability and fluctuation of wind. In most cases, wind speed can vacillate rapidly. Hence, quality of produced energy becomes an important problem in wind energy conversion plants. Several control techniques have been applied to improve the quality of power generated from wind turbines. In this study, the polynomial and radial basis function (RBF) are applied as the kernel function of support vector regression (SVR) to estimate optimal power coefficient value of the wind turbines. Instead of minimizing the observed training error, SVR p oly and SVR r bf attempt to minimize the generalization error bound so as to achieve generalized performance. The experimental results show that an improvement in predictive accuracy and capability of generalization can be achieved by the SVR approach in compare to other soft computing methodologies

  3. A review of damage detection methods for wind turbine blades

    International Nuclear Information System (INIS)

    Li, Dongsheng; Song, Gangbing; Ren, Liang; Li, Hongnan; Ho, Siu-Chun M

    2015-01-01

    Wind energy is one of the most important renewable energy sources and many countries are predicted to increase wind energy portion of their whole national energy supply to about twenty percent in the next decade. One potential obstacle in the use of wind turbines to harvest wind energy is the maintenance of the wind turbine blades. The blades are a crucial and costly part of a wind turbine and over their service life can suffer from factors such as material degradation and fatigue, which can limit their effectiveness and safety. Thus, the ability to detect damage in wind turbine blades is of great significance for planning maintenance and continued operation of the wind turbine. This paper presents a review of recent research and development in the field of damage detection for wind turbine blades. Specifically, this paper reviews frequently employed sensors including fiber optic and piezoelectric sensors, and four promising damage detection methods, namely, transmittance function, wave propagation, impedance and vibration based methods. As a note towards the future development trend for wind turbine sensing systems, the necessity for wireless sensing and energy harvesting is briefly presented. Finally, existing problems and promising research efforts for online damage detection of turbine blades are discussed. (topical review)

  4. Evaluating the impact of electrical grid connection on the wind turbine performance for Hofa wind farm scheme in Jordan

    International Nuclear Information System (INIS)

    Abderrazzaq, M.H.; Aloquili, O.

    2008-01-01

    The growth of wind energy is attributed to the development of turbine size and the increase in number of units in each wind farm. The current modern design of large wind turbines (WT) is directed towards producing efficient, sensitive and reliable units. To achieve this goal, modern turbines are equipped with several devices which are operated with highly advanced electronic circuits. Sensing instruments, measuring devices and control processes of major systems and subsystems are based on various types of electronic apparatus and boards. These boards are very sensitive to the voltage variations caused by abnormal conditions in both the turbine itself and the electric grid to which the wind farm is connected. This paper evaluates wind farm records and proposes a number of methods to overcome such obstacles associated with the design of large wind turbines. Several cases of grid abnormality such as sudden feeder interruption due to the short circuit, network disconnection, voltage variation and circuit breaker opening affecting wind turbines operation and availability are classified and presented. The weight of such impact is determined for each type of disturbances associated with electronic problems in the wind turbine. Wind turbine performance at Hofa wind farm scheme in Jordan is taken as a case study

  5. Wind tunnel study of the wind turbine interaction with a boundary-layer flow: Upwind region, turbine performance, and wake region

    Science.gov (United States)

    Bastankhah, M.; Porté-Agel, F.

    2017-06-01

    Comprehensive wind tunnel experiments were carried out to study the interaction of a turbulent boundary layer with a wind turbine operating under different tip-speed ratios and yaw angles. Force and power measurements were performed to characterize the variation of thrust force (both magnitude and direction) and generated power of the wind turbine under different operating conditions. Moreover, flow measurements, collected using high-resolution particle-image velocimetry as well as hot-wire anemometry, were employed to systematically study the flow in the upwind, near-wake, and far-wake regions. These measurements provide new insights into the effect of turbine operating conditions on flow characteristics in these regions. For the upwind region, the results show a strong lateral asymmetry under yawed conditions. For the near-wake region, the evolution of tip and root vortices was studied with the use of both instantaneous and phase-averaged vorticity fields. The results suggest that the vortex breakdown position cannot be determined based on phase-averaged statistics, particularly for tip vortices under turbulent inflow conditions. Moreover, the measurements in the near-wake region indicate a complex velocity distribution with a speed-up region in the wake center, especially for higher tip-speed ratios. In order to elucidate the meandering tendency of far wakes, particular focus was placed on studying the characteristics of large turbulent structures in the boundary layer and their interaction with wind turbines. Although these structures are elongated in the streamwise direction, their cross sections are found to have a size comparable to the rotor area, so that they can be affected by the presence of the turbine. In addition, the study of spatial coherence in turbine wakes reveals that any statistics based on streamwise velocity fluctuations cannot provide reliable information about the size of large turbulent structures in turbine wakes due to the effect of wake

  6. Integrating Systems Health Management with Adaptive Controls for a Utility-Scale Wind Turbine

    Science.gov (United States)

    Frost, Susan A.; Goebel, Kai; Trinh, Khanh V.; Balas, Mark J.; Frost, Alan M.

    2011-01-01

    Increasing turbine up-time and reducing maintenance costs are key technology drivers for wind turbine operators. Components within wind turbines are subject to considerable stresses due to unpredictable environmental conditions resulting from rapidly changing local dynamics. Systems health management has the aim to assess the state-of-health of components within a wind turbine, to estimate remaining life, and to aid in autonomous decision-making to minimize damage. Advanced adaptive controls can provide the mechanism to enable optimized operations that also provide the enabling technology for Systems Health Management goals. The work reported herein explores the integration of condition monitoring of wind turbine blades with contingency management and adaptive controls. Results are demonstrated using a high fidelity simulator of a utility-scale wind turbine.

  7. Aerodynamics of wind turbines emerging topics

    CERN Document Server

    Amano, R S

    2014-01-01

    Focusing on Aerodynamics of Wind Turbines with topics ranging from Fundamental to Application of horizontal axis wind turbines, this book presents advanced topics including: Basic Theory for Wind turbine Blade Aerodynamics, Computational Methods, and Special Structural Reinforcement Technique for Wind Turbine Blades.

  8. United States Air Force Academy (USAFA) Vertical Axis Wind Turbine.

    Science.gov (United States)

    1980-09-01

    Rotors, SAND76-0131. Albuquerque: July 1977. 10. Oliver, R.C. and P.R. Nixon. "Design Procedure for Coupling Savonius and Darrieus Wind Turbines ", Air...May 17-20, 1976. -65- 16. Blackwell, B.F., R.E. Sheldahl, and L.V. Feltz. Wind Tunnel Performance Data for the Darrieus Wind Turbine with NACA 0012...a 5.8 m/s (13 mph) wind . At 100 rpm, the Darrieus turbine would be fully self-sustaining and acceleration would continue to an operating tip speed

  9. Equivalent models of wind farms by using aggregated wind turbines and equivalent winds

    International Nuclear Information System (INIS)

    Fernandez, L.M.; Garcia, C.A.; Saenz, J.R.; Jurado, F.

    2009-01-01

    As a result of the increasing wind farms penetration on power systems, the wind farms begin to influence power system, and therefore the modeling of wind farms has become an interesting research topic. In this paper, new equivalent models of wind farms equipped with wind turbines based on squirrel-cage induction generators and doubly-fed induction generators are proposed to represent the collective behavior on large power systems simulations, instead of using a complete model of wind farms where all the wind turbines are modeled. The models proposed here are based on aggregating wind turbines into an equivalent wind turbine which receives an equivalent wind of the ones incident on the aggregated wind turbines. The equivalent wind turbine presents re-scaled power capacity and the same complete model as the individual wind turbines, which supposes the main feature of the present equivalent models. Two equivalent winds are evaluated in this work: (1) the average wind from the ones incident on the aggregated wind turbines with similar winds, and (2) an equivalent incoming wind derived from the power curve and the wind incident on each wind turbine. The effectiveness of the equivalent models to represent the collective response of the wind farm at the point of common coupling to grid is demonstrated by comparison with the wind farm response obtained from the detailed model during power system dynamic simulations, such as wind fluctuations and a grid disturbance. The present models can be used for grid integration studies of large power system with an important reduction of the model order and the computation time

  10. Methodology for wind turbine blade geometry optimization

    Energy Technology Data Exchange (ETDEWEB)

    Perfiliev, D.

    2013-11-01

    Nowadays, the upwind three bladed horizontal axis wind turbine is the leading player on the market. It has been found to be the best industrial compromise in the range of different turbine constructions. The current wind industry innovation is conducted in the development of individual turbine components. The blade constitutes 20-25% of the overall turbine budget. Its optimal operation in particular local economic and wind conditions is worth investigating. The blade geometry, namely the chord, twist and airfoil type distributions along the span, responds to the output measures of the blade performance. Therefore, the optimal wind blade geometry can improve the overall turbine performance. The objectives of the dissertation are focused on the development of a methodology and specific tool for the investigation of possible existing wind blade geometry adjustments. The novelty of the methodology presented in the thesis is the multiobjective perspective on wind blade geometry optimization, particularly taking simultaneously into account the local wind conditions and the issue of aerodynamic noise emissions. The presented optimization objective approach has not been investigated previously for the implementation in wind blade design. The possibilities to use different theories for the analysis and search procedures are investigated and sufficient arguments derived for the usage of proposed theories. The tool is used for the test optimization of a particular wind turbine blade. The sensitivity analysis shows the dependence of the outputs on the provided inputs, as well as its relative and absolute divergences and instabilities. The pros and cons of the proposed technique are seen from the practical implementation, which is documented in the results, analysis and conclusion sections. (orig.)

  11. Comparison study between wind turbine and power kite wakes

    Science.gov (United States)

    Haas, T.; Meyers, J.

    2017-05-01

    Airborne Wind Energy (AWE) is an emerging technology in the field of renewable energy that uses kites to harvest wind energy. However, unlike for conventional wind turbines, the wind environment in AWE systems has not yet been studied in much detail. We propose a simulation framework using Large Eddy Simulation to model the wakes of such kite systems and offer a comparison with turbine-like wakes. In order to model the kite effects on the flow, a lifting line technique is used. We investigate different wake configurations related to the operation modes of wind turbines and airborne systems in drag mode. In the turbine mode, the aerodynamic torque of the blades is directly added to the flow. In the kite drag mode, the aerodynamic torque of the wings is directly balanced by an opposite torque induced by on-board generators; this results in a total torque on the flow that is zero. We present the main differences in wake characteristics, especially flow induction and vorticity fields, for the depicted operation modes both with laminar and turbulent inflows.

  12. Maximum Energy Yield Oriented Turbine Control in PMSG based Wind Farm

    DEFF Research Database (Denmark)

    Tian, Jie; Zhou, Dao; Su, Chi

    2017-01-01

    : In the modern power systems, with the fast integration of the wind power into the grid, it turns to develop large-scale offshore wind farms equipped with the permanent magnet synchronous generator (PMSG) wind turbine. In large-scale offshore wind farms, the wind turbine operating reliability...... and the wake effect in the wind farm became important issues. The pitch angle and tip speed ratio are the two degrees of freedom for the PMSG wind turbine active power control, which are also the determining factors of the wind turbine lifetime. As the energy production of the wind turbine is the product...... of its active power and lifetime, the energy production can be maximised by optimising its pitch angle and tip speed ratio. In this study, the energy production of a 2 MW PMSG wind turbine is maximised by optimising its pitch angle and tip speed ratio. Moreover, taking into account the wake effect...

  13. Optimal Wind Turbines Micrositing in Onshore Wind Farms Using Fuzzy Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Jun Yang

    2015-01-01

    Full Text Available With the fast growth in the number and size of installed wind farms (WFs around the world, optimal wind turbines (WTs micrositing has become a challenge from both technological and mathematical points of view. An appropriate layout of wind turbines is crucial to obtain adequate performance with respect to the development and operation of the wind power plant during its life span. This work presents a fuzzy genetic algorithm (FGA for maximizing the economic profitability of the project. The algorithm considers a new WF model including several important factors to the design of the layout. The model consists of wake loss, terrain effect, and economic benefits, which can be calculated by locations of wind turbines. The results demonstrate that the algorithm performs better than genetic algorithm, in terms of maximum values of net annual value of wind power plants and computational burden.

  14. Wind turbine supply in Canada

    International Nuclear Information System (INIS)

    Snodin, H.

    2007-01-01

    This study reported on wind turbine supplies to the Canadian market. The report was written to address concerns for Canada's supply outlook in the near future due to the booming wind energy market. Turbine shortages have arisen as a result of continued growth in both European and North American markets. Long lead-times on turbine orders are now increasing the pressure to lock in turbine supply during the initial phases of the development process. Future growth of the wind energy industry will be impacted if turbine supply difficulties continue to contribute to uncertainties in the development process. The report provided an overview of the North American and global wind energy markets, as well as a summary of telephone interviews conducted with turbine suppliers. The implications for the future of turbine supply to the Canadian market were also analyzed. It was concluded that policy-makers should focus on supporting the expansion of manufacturing facilities for small wind turbines and control infrastructure in Canada 7 refs., 3 figs

  15. Wind Turbine and Wind Power Plant Modelling Aspects for Power System Stability Studies

    DEFF Research Database (Denmark)

    Altin, Müfit; Hansen, Anca Daniela; Göksu, Ömer

    2014-01-01

    Large amount of wind power installations introduce modeling challenges for power system operators at both the planning and operational stages of power systems. Depending on the scope of the study, the modeling details of the wind turbine or the wind power plant are required to be different. A wind...... turbine model which is developed for the short-term voltage stability studies can be inaccurate and sufficient for the frequency stability studies. Accordingly, a complete and detailed wind power plant model for every kind of study is not feasible in terms of the computational time and also...... and wind power plants are reviewed for power system stability studies. Important remarks of the models are presented by means of simulations to emphasize the impact of these modelling details on the power system....

  16. WindPACT Reference Wind Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Dykes, Katherine L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Rinker, Jennifer [Former National Renewable Energy Laboratory (NREL) employee

    2018-04-02

    To fully understand how loads and turbine cost scale with turbine size, it is necessary to have identical turbine models that have been scaled to different rated powers. The report presents the WindPACT baseline models, which are a series of four baseline models that were designed to facilitate investigations into the scalings of loads and turbine cost with size. The models have four different rated powers (750 kW, 1.5 MW, 3.0 MW, and 5.0 MW), and each model was designed to its specified rated power using the same design methodology. The models were originally implemented in FAST_AD, the predecessor to NREL's open-source wind turbine simulator FAST, but have yet to be implemented in FAST. This report contains the specifications for all four WindPACT baseline models - including structural, aerodynamic, and control specifications - along with the inherent assumptions and equations that were used to calculate the model parameters. It is hoped that these baseline models will serve as extremely useful resources for investigations into the scalings of costs, loads, or optimization routines.

  17. Directionality Effects of Aligned Wind and Wave Loads on a Y-Shape Semi-Submersible Floating Wind Turbine under Rated Operational Conditions

    Directory of Open Access Journals (Sweden)

    Shengtao Zhou

    2017-12-01

    Full Text Available The Y-shape (triangular semi-submersible foundation has been adopted by most of the built full-scale floating wind turbines, such as Windfloat, Fukushima Mirai and Shimpuu. Considering the non-fully-symmetrical shape and met-ocean condition, the foundation laying angle relative to wind/wave directions will not only influence the downtime and power efficiency of the floating turbine, but also the strength and fatigue safety of the whole structure. However, the dynamic responses induced by various aligned wind and wave load directions have scarcely been investigated comparatively before. In our study, the directionality effects are investigated by means of combined wind and wave tests and coupled multi-body simulations. By comparing the measured data in three load directions, it is found that the differences of platform motions are mainly derived from the wave loads and larger pitch motion can always be observed in one of the directions. To make certain the mechanism underlying the observed phenomena, a coupled multi-body dynamic model of the floating wind turbine is established and validated. The numerical results demonstrate that the second-order hydrodynamic forces contribute greatly to the directionality distinctions for surge and pitch, and the first-order hydrodynamic forces determine the variations of tower base bending moments and nacelle accelerations. These findings indicate the directionality effects should be predetermined comprehensively before installation at sea, which is important for the operation and maintenance of the Y-shape floating wind turbines.

  18. Virtual tool for simulation and wind turbine design

    International Nuclear Information System (INIS)

    Monteiro Farias, Gustavo; Barros Galhardo, Marcos André; Tavares Pinho, João

    2015-01-01

    This paper presents an educational tool to simulate wind turbines in a virtual environment. This tool can be used for research applications as well as to evaluate the operation conditions of a wind turbine by reproducing its behaviour. The first step is to apply the Blade Element Theory in order to obtain the induction factors when the tip- speed ratio and the airfoil characteristics are configured. With these values as starting point, the geometric shape of the wind blade is created and visualized. In order to evaluate the performance of the turbine, an integration method is applied, and then the power coefficient curve is plotted versus the tip-speed ratio. The power coefficient curve reaches the maximum value at the rated operation, which is essential to the transient behaviour of the wind turbine. The transient model described in this work shows the influence of all efforts acting on the rotor, which disturb the rotation. The inertial mass of the components and the air density are set up during the simulation.Using the virtual instrumentation applied to the transient model together with a 3D computer animation, the variables of the program can be controlled and visualized in graphics, and the animation of the wind turbine shows when it accelerates or decelerates the shaft rotation due to the variation of the wind speed. The tool provides the power supplied by the wind rotor to the electric generator, which can be evaluated at the end of the simulation. (full text)

  19. Wind turbine noise diagnostics

    International Nuclear Information System (INIS)

    Richarz, W.; Richarz, H.

    2009-01-01

    This presentation proposed a self-consistent model for broad-band noise emitted from modern wind turbines. The simple source model was consistent with the physics of sound generation and considered the unique features of wind turbines. Although the acoustics of wind turbines are similar to those of conventional propellers, the dimensions of wind turbines pose unique challenges in diagnosing noise emission. The general features of the sound field were deduced. Source motion and source directivity appear to be responsible for amplitude variations. The amplitude modulation is likely to make wind-turbine noise more audible, and may be partly responsible for annoyance that has been reported in the literature. Acoustic array data suggests that broad-band noise is emitted predominantly during the downward sweep of each rotor blade. Source motion and source directivity account for the observed pattern. Rotor-tower interaction effects are of lesser importance. Predicted amplitude modulation ranges from 1 dB to 6dB. 2 refs., 9 figs.

  20. Actuator Line Modeling of Wind Turbine Wakes

    DEFF Research Database (Denmark)

    Troldborg, Niels

    2009-01-01

    This thesis contains a comprehensive 3D Navier-Stokes computational study of the characteristics of wakes of wind turbines operating in various flow conditions including interacting wakes between a row of turbines. The computations were carried out using the actuator line technique combined...

  1. Magnus wind turbines as an alternative to the blade ones

    International Nuclear Information System (INIS)

    Bychkov, N M; Dovgal, A V; Kozlov, V V

    2007-01-01

    Experimental and calculated data on a wind turbine equipped with rotating cylinders instead of traditional blades are reported. Optimal parameters and the corresponding operational characteristics of the windwheel are given in comparison with those of the blade wind turbines

  2. Reliability-Based Planning of Inspection, Operation and Maintenance for Offshore Oil & Gas Structures and Wind Turbines

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard

    2011-01-01

    Reliability-based cost-optimal planning of inspection, maintenance and operation has many applications. In this paper applications for planning of inspections for oil & gas jacket structures and of operation and maintenance of offshore wind turbines are described and illustrated by examples....

  3. Flicker study on variable speed wind turbines with doubly fed induction generators

    DEFF Research Database (Denmark)

    Sun, Tao; Chen, Zhe; Blaabjerg, Frede

    2005-01-01

    to a conclusion that the factors mentioned above have different influences on flicker emission compared with that in the case of the fixed speed wind turbine. Flicker mitigation is realized by output reactive power control of the variable speed wind turbine with doubly fed induction generator. Simulation results...... show the wind turbine output reactive power control provides an effective means for flicker mitigation regardless of mean wind speed, turbulence intensity and short circuit capacity ratio.......Grid connected wind turbines may produce flicker during continuous operation. This paper presents a simulation model of a MW-level variable speed wind turbine with a doubly fed induction generator developed in the simulation tool of PSCAD/EMTDC. Flicker emission of variable speed wind turbines...

  4. Aero-hydro-elastic simulation platform for wave energy systems and floating wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Kallesoee, B.S.

    2011-01-15

    This report present results from the PSO project 2008-1-10092 entitled Aero-Hydro-Elastic Simulation Platform for Wave Energy Systems and floating Wind Turbines that deals with measurements, modelling and simulations of the world's first combined wave and wind energy platform. The floating energy conversion platform, Poseidon, is owned and operated by Floating Power Plant A/S. The platform has been operating for two test periods; one period where it was operating as a wave energy conversion platform only and one period where the three turbines was mounted and the platform operated as a combined wind and wave energy platform. The PSO project has equipped the platform with comprehensive measurements equipment for measuring platform motion, wave and wind conditions and turbine loads. Data from the first test period has been used for determine if the turbine could be mounted on the platform. Preliminary analysis of data from the second test period indicates that the platform is suitable as wind turbine foundation and that the turbines reduce the platform motion. (Author)

  5. Assessment of Wind Parameter Sensitivity on Ultimate and Fatigue Wind Turbine Loads: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, Amy N [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sethuraman, Latha [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Jonkman, Jason [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Quick, Julian [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-02-13

    Wind turbines are designed using a set of simulations to ascertain the structural loads that the turbine could encounter. While mean hub-height wind speed is considered to vary, other wind parameters such as turbulence spectra, sheer, veer, spatial coherence, and component correlation are fixed or conditional values that, in reality, could have different characteristics at different sites and have a significant effect on the resulting loads. This paper therefore seeks to assess the sensitivity of different wind parameters on the resulting ultimate and fatigue loads on the turbine during normal operational conditions. Eighteen different wind parameters are screened using an Elementary Effects approach with radial points. As expected, the results show a high sensitivity of the loads to the turbulence standard deviation in the primary wind direction, but the sensitivity to wind shear is often much greater. To a lesser extent, other wind parameters that drive loads include the coherence in the primary wind direction and veer.

  6. Wind Power Plant Control Optimisation with Incorporation of Wind Turbines and STATCOMs

    DEFF Research Database (Denmark)

    Petersen, Lennart; Kryezi, Fitim; Iov, Florin

    2015-01-01

    This paper addresses a detailed design and tuning of a wind power plant slope voltage control with reactive power contribution of wind turbines and STATCOMS. First, small-signal models of a single wind turbine and the whole wind power plant are developed, being appropriate for voltage control...... assessment. An exemplary wind power plant located in the United Kingdom and the corresponding grid code requirements are used as a base case. The final design and tuning process of the voltage controller results in a guidance, proposed for this particular control architecture. It provides qualitative...... outcomes regarding the impact of system delays, grid conditions and various operating conditions of the wind power plant, with and without incorporation of STATCOMS....

  7. Observer Backstepping Control for Variable Speed Wind Turbine

    DEFF Research Database (Denmark)

    Galeazzi, Roberto; Gryning, Mikkel Peter Sidoroff; Blanke, Mogens

    2013-01-01

    . The nonlinear controller aims at regulating the generator torque such that an optimal tip-speed ratio can be obtained. Simply relying on the measured rotor angular velocity the proposed observer backstepping controller guarantees global asymptotic tracking of the desired trajectory while maintaining a globally......This paper presents an observer backstepping controller as feasible solution to variable speed control of wind turbines to maximize wind power capture when operating between cut-in and rated wind speeds. The wind turbine is modeled as a two-mass drive-train system controlled by the generator torque...

  8. Next Generation Wind Turbine

    Energy Technology Data Exchange (ETDEWEB)

    Cheraghi, S. Hossein [Western New England Univ., Springfield, MA (United States); Madden, Frank [FloDesign Wind Turbine Corp., Waltham, MA (United States)

    2012-09-01

    The goal of this collaborative effort between Western New England University's College of Engineering and FloDesign Wind Turbine (FDWT) Corporation to wok on a novel areodynamic concept that could potentially lead to the next generation of wind turbines. Analytical studies and early scale model tests of FDWT's Mixer/Ejector Wind Turbine (MEWT) concept, which exploits jet-age advanced fluid dynamics, indicate that the concept has the potential to significantly reduce the cost of electricity over conventional Horizontal Axis Wind Turbines while reducing land usage. This project involved the design, fabrication, and wind tunnel testing of components of MEWT to provide the research and engineering data necessary to validate the design iterations and optimize system performance. Based on these tests, a scale model prototype called Briza was designed, fabricated, installed and tested on a portable tower to investigate and improve the design system in real world conditions. The results of these scale prototype efforts were very promising and have contributed significantly to FDWT's ongoing development of a product scale wind turbine for deployment in multiple locations around the U.S. This research was mutually beneficial to Western New England University, FDWT, and the DOE by utilizing over 30 student interns and a number of faculty in all efforts. It brought real-world wind turbine experience into the classroom to further enhance the Green Engineering Program at WNEU. It also provided on-the-job training to many students, improving their future employment opportunities, while also providing valuable information to further advance FDWT's mixer-ejector wind turbine technology, creating opportunities for future project innovation and job creation.

  9. World trend - a 10% growth per year for small wind turbines

    International Nuclear Information System (INIS)

    Kane, M.

    2016-01-01

    A decline was expected for small wind turbine business with the advent of bigger wind turbines but it is really not the case. In 2014 the growth rate was about 10 % with a cumulated power installed that year of 830 MW for small wind turbines. China (41% of the installed capacity), United-States (30%) and Great-Britain (15%) are the 3 main players. About 1 million wind turbines are operating in the world - it means 8.3% (∼ 70.000 units) more than a year before. (A.C.)

  10. Noise emission from wind turbines in wake. Project report

    Energy Technology Data Exchange (ETDEWEB)

    Dam Madsen, K.; Plovsing, B. (DELTA, Hoersholm (Denmark)); Soerensen, Thomas (EMD International A/S, Aalborg (Denmark)); Aagaard Madsen, H.; Bertagnolio, F. (Technical Univ. of Denmark, Risoe National Lab. for Sustainable Energy, Roskilde (Denmark))

    2011-03-15

    When installing wind turbines in clusters or wind farms the inflow conditions to the wind turbines can be disturbed due to wake effects from other wind turbines. The effect of wake on noise generation from wind turbines are described in this report. The work is based on measurements carried out on a M80 2 MW wind turbine. To investigate the relationship between the far field noise levels and the surface pressure and inflow angles measured by sensors on an instrumented wind turbine blade, a parabolic measurement system (PMMS) was designed and tested as part of this project. Based on the measurement results obtained with surface pressure sensors and results from the far field measurements using the PMMS it is concluded that: The variance of surface pressure at the trailing edge (TE) agrees with the theory with regard to variation of pressure spectra with varying inflow angle (AoA) to the blade. Low frequency TE surface pressure increases with increased AoA and high frequency surface pressure decreases with increased AoA. It seems that the TE surface pressure remains almost unaltered during wake operation. Results from the surface transducers at the leading edge (LE) and the inflow angles determined from the pitot tube indicates that the inflow at LE is more turbulent in wake for the same AoA and with a low frequency characteristic, thereby giving rise to more low frequency noise generated during wake operation. The far field measurements supports that on one hand there will be produced relative more low frequency noise due to a turbulent inflow to the blade and on the other hand there will be produced less noise in the broader frequency range/high frequency range due to a lower inflow angle caused by the wind deficit in the wake. The net effect of wake on the total noise level is unresolved. As a secondary result it is seen that noise observed from a position on the ground is related to directional effects of the noise radiated from the wind turbine blade. For an

  11. Noise immission from wind turbines

    International Nuclear Information System (INIS)

    1999-01-01

    The project has dealt with practical ways to reduce the influence of background noise caused by wind acting on the measuring microphones. The uncertainty of measured noise emission (source strength) has been investigated. The main activity was a Round Robin Test involving measurements by five laboratories at the same wind turbine. Each laboratory brought its own instrumentation and performed the measurements and analyses according to their interpretation. The tonality of wind turbine noise is an essential component of the noise impact on the environment. In the present project the uncertainty in the newest existing methods for assessing tonality was investigated. The project included noise propagation measurements in different weather conditions around wind turbines situated in different types of terrain. The results were used to validate a noise propagation model developed in the project. Finally, the project also included a study with listeners evaluating recordings of wind turbine noise. The results are intended as guidance for wind turbine manufacturers in identifying the aspects of wind turbine noise most important to annoyance. (author)

  12. Spatial mapping and attribution of Wyoming wind turbines

    Science.gov (United States)

    O'Donnell, Michael S.; Fancher, Tammy S.

    2010-01-01

    This Wyoming wind-turbine data set represents locations of wind turbines found within Wyoming as of August 1, 2009. Each wind turbine is assigned to a wind farm. For each turbine, this report contains information about the following: potential megawatt output, rotor diameter, hub height, rotor height, land ownership, county, wind farm power capacity, the number of units currently associated with its wind farm, the wind turbine manufacturer and model, the wind farm developer, the owner of the wind farm, the current purchaser of power from the wind farm, the year the wind farm went online, and the status of its operation. Some attributes are estimates based on information that was obtained through the American Wind Energy Association and miscellaneous online reports. The locations are derived from August 2009 true-color aerial photographs made by the National Agriculture Imagery Program; the photographs have a positional accuracy of approximately ?5 meters. The location of wind turbines under construction during the development of this data set will likely be less accurate than the location of turbines already completed. The original purpose for developing the data presented here was to evaluate the effect of wind energy development on seasonal habitat used by greater sage-grouse. Additionally, these data will provide a planning tool for the Wyoming Landscape Conservation Initiative Science Team and for other wildlife- and habitat-related projects underway at the U.S. Geological Survey's Fort Collins Science Center. Specifically, these data will be used to quantify disturbance of the landscape related to wind energy as well as quantifying indirect disturbances to flora and fauna. This data set was developed for the 2010 project 'Seasonal predictive habitat models for greater sage-grouse in Wyoming.' This project's spatially explicit seasonal distribution models of sage-grouse in Wyoming will provide resource managers with tools for conservation planning. These

  13. Floating axis wind turbines for offshore power generation—a conceptual study

    International Nuclear Information System (INIS)

    Akimoto, Hiromichi; Tanaka, Kenji; Uzawa, Kiyoshi

    2011-01-01

    The cost of energy produced by offshore wind turbines is considered to be higher than land based ones because of the difficulties in construction, operation and maintenance on offshore sites. To solve the problem, we propose a concept of a wind turbine that is specially designed for an offshore environment. In the proposed concept, a floater of revolutionary shape supports the load of the wind turbine axis. The floater rotates with the turbine and the turbine axis tilts to balance the turbine thrust, buoyancy and gravity. The tilt angle is passively adjustable to wind force. The angle is 30° at rated power. The simplicity of the system leads to further cost reduction of offshore power generation.

  14. Wind turbine blade waste in 2050.

    Science.gov (United States)

    Liu, Pu; Barlow, Claire Y

    2017-04-01

    Wind energy has developed rapidly over the last two decades to become one of the most promising and economically viable sources of renewable energy. Although wind energy is claimed to provide clean renewable energy without any emissions during operation, but it is only one side of the coin. The blades, one of the most important components in the wind turbines, made with composite, are currently regarded as unrecyclable. With the first wave of early commercial wind turbine installations now approaching their end of life, the problem of blade disposal is just beginning to emerge as a significant factor for the future. This paper is aimed at discovering the magnitude of the wind turbine blade waste problem, looking not only at disposal but at all stages of a blade's lifecycle. The first stage of the research, the subject of this paper, is to accurately estimate present and future wind turbine blade waste inventory using the most recent and most accurate data available. The result will provide a solid reference point to help the industry and policy makers to understand the size of potential environmental problem and to help to manage it better. This study starts by estimating the annual blade material usage with wind energy installed capacity and average blade weight. The effect of other waste contributing factors in the full lifecycle of wind turbine blades is then included, using industrial data from the manufacturing, testing and in-service stages. The research indicates that there will be 43 million tonnes of blade waste worldwide by 2050 with China possessing 40% of the waste, Europe 25%, the United States 16% and the rest of the world 19%. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  15. Automatic Identification of Closed-Loop Wind Turbine Dynamics via Genetic Programming

    Energy Technology Data Exchange (ETDEWEB)

    La Cava, William; Danai, Kourosh; Lackner, Matthew; Spector, Lee; Fleming, Paul; Wright, Alan

    2015-10-03

    Wind turbines are nonlinear systems that operate in turbulent environments. As such, their behavior is difficult to characterize accurately across a wide range of operating conditions by physically meaningful models. Customarily, data-based models of wind turbines are defined in 'black box' format, lacking in both conciseness and physical intelligibility. To address this deficiency, we identify models of a modern horizontal-axis wind turbine in symbolic form using a recently developed symbolic regression method. The method used relies on evolutionary multi-objective optimization to produce succinct dynamic models from operational data without 'a priori' knowledge of the system. We compare the produced models with models derived by other methods for their estimation capacity and evaluate the tradeoff between model intelligibility and accuracy. Several succinct models are found that predict wind turbine behavior as well as or better than more complex alternatives derived by other methods.

  16. Wind turbines and bats: towards a peaceful coexistence

    International Nuclear Information System (INIS)

    Heitz, P.

    2013-01-01

    The most important hazard for a bat is the collision with a rotating blade. The risk of collision depends on the wrong positioning of a wind turbine in the hunting area of a local population of bats and on the complex behaviour of bats. All the 34 species of bats living in France are protected species. Recommendations issued by the ministry of ecology include to perform preliminary impact studies on bat population before the installation of a wind turbine farm, to perform impact studies during wind turbine operations and to take measures to have the least impact as possible. The number of wind farms being on the rise, the knowledge of the behaviour of bats is getting more accurate through the use of dedicated instruments. (A.C.)

  17. RELIABILITY OF MACHINE ELEMENTS IN WIND TURBINES

    Directory of Open Access Journals (Sweden)

    Willi GRUENDER

    2010-06-01

    Full Text Available Worldwide electrical energy production generated by wind turbines grows at a rate of 30 percent. This doubles the total production every three years. At the same time the power of individual stations goes up by 20 percent annually. Whereas today the towers, rotors and drive trains have to handle 5 MW, in about six to eight years they might produce up to fifteen MW. As a consequence, enormous pressure is put on the wind turbine manufacturers, the component suppliers and the operators. And because prototype and field testing is limited by its expense, the design of new turbines demands thorough analysis and simulation. Looking at the critical components of a wind turbine this paper describes advanced design tools which help to anticipate failures, but also assists in optimizing reliability and service life. Development of the software tools has been supported by research activities in many universities.

  18. Reliability assessment of Wind turbines

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard

    2015-01-01

    Wind turbines can be considered as structures that are in between civil engineering structures and machines since they consist of structural components and many electrical and machine components together with a control system. Further, a wind turbine is not a one-of-a-kind structure...... but manufactured in series production based on many component tests, some prototype tests and zeroseries wind turbines. These characteristics influence the reliability assessment where focus in this paper is on the structural components. Levelized Cost Of Energy is very important for wind energy, especially when...... comparing to other energy sources. Therefore much focus is on cost reductions and improved reliability both for offshore and onshore wind turbines. The wind turbine components should be designed to have sufficient reliability level with respect to both extreme and fatigue loads but also not be too costly...

  19. Software tool for horizontal-axis wind turbine simulation

    Energy Technology Data Exchange (ETDEWEB)

    Vitale, A.J. [Instituto Argentino de Oceanografia, Camino La Carrindanga Km. 7, 5 CC 804, B8000FWB Bahia Blanca (Argentina); Universidad Tecnologica Nacional Facultad Regional Bahia Blanca, GESE, 11 de Abril 461, B8000LMI Bahia Blanca (Argentina); Dpto. de Ing. Electrica y de Computadoras, Universidad Nacional del Sur, Av. Alem 1253, 8000 Bahia Blanca (Argentina); Rossi, A.P. [Universidad Tecnologica Nacional Facultad Regional Bahia Blanca, GESE, 11 de Abril 461, B8000LMI Bahia Blanca (Argentina); Dpto. de Ing. Electrica y de Computadoras, Universidad Nacional del Sur, Av. Alem 1253, 8000 Bahia Blanca (Argentina)

    2008-07-15

    The main problem of a wind turbine generator design project is the design of the right blades capable of satisfying the specific energy requirement of an electric system with optimum performance. Once the blade has been designed for optimum operation at a particular rotor angular speed, it is necessary to determine the overall performance of the rotor under the range of wind speed that it will encounter. A software tool that simulates low-power, horizontal-axis wind turbines was developed for this purpose. With this program, the user can calculate the rotor power output for any combination of wind and rotor speeds, with definite blade shape and airfoil characteristics. The software also provides information about distribution of forces along the blade span, for different operational conditions. (author)

  20. Floating wind turbine system

    Science.gov (United States)

    Viterna, Larry A. (Inventor)

    2009-01-01

    A floating wind turbine system with a tower structure that includes at least one stability arm extending therefrom and that is anchored to the sea floor with a rotatable position retention device that facilitates deep water installations. Variable buoyancy for the wind turbine system is provided by buoyancy chambers that are integral to the tower itself as well as the stability arm. Pumps are included for adjusting the buoyancy as an aid in system transport, installation, repair and removal. The wind turbine rotor is located downwind of the tower structure to allow the wind turbine to follow the wind direction without an active yaw drive system. The support tower and stability arm structure is designed to balance tension in the tether with buoyancy, gravity and wind forces in such a way that the top of the support tower leans downwind, providing a large clearance between the support tower and the rotor blade tips. This large clearance facilitates the use of articulated rotor hubs to reduced damaging structural dynamic loads. Major components of the turbine can be assembled at the shore and transported to an offshore installation site.

  1. Optimal sensor placement for modal testing on wind turbines

    Science.gov (United States)

    Schulze, Andreas; Zierath, János; Rosenow, Sven-Erik; Bockhahn, Reik; Rachholz, Roman; Woernle, Christoph

    2016-09-01

    The mechanical design of wind turbines requires a profound understanding of the dynamic behaviour. Even though highly detailed simulation models are already in use to support wind turbine design, modal testing on a real prototype is irreplaceable to identify site-specific conditions such as the stiffness of the tower foundation. Correct identification of the mode shapes of a complex mechanical structure much depends on the placement of the sensors. For operational modal analysis of a 3 MW wind turbine with a 120 m rotor on a 100 m tower developed by W2E Wind to Energy, algorithms for optimal placement of acceleration sensors are applied. The mode shapes used for the optimisation are calculated by means of a detailed flexible multibody model of the wind turbine. Among the three algorithms in this study, the genetic algorithm with weighted off-diagonal criterion yields the sensor configuration with the highest quality. The ongoing measurements on the prototype will be the basis for the development of optimised wind turbine designs.

  2. Acoustic and geophysical measurement of infrasound from turbines at wind farms

    Energy Technology Data Exchange (ETDEWEB)

    Hepburn, H.G. [Hepburn Exploration Inc., Canmore, AB (Canada)

    2005-07-01

    An experiment was conducted at the Castle River Wind Farm in southern Alberta to measure and characterize infrasound from the turbines. The wind farm contains one 600 MW turbine and fifty-nine 660 MW wind turbines. Three types of sensors were used to measure both the low and high frequency acoustic energy and geophysical sound levels. These included low frequency geophones, acoustic microphones and a precision sound analyzer. Data was recorded for low, medium and high wind states, with the entire wind turbine array operating, and with the entire wind farm stopped. Downwind telemetry measurements were recorded for 30 continuous 50 metre offsets, up to a distance of 1450 metres from the wind farm. The objective of the project was to characterize the ambient noise levels and sound emitted by the turbines. Measurements were taken for wind speed and direction, atmospheric pressure, atmospheric temperature and turbine related data. Visual observations included atmospheric conditions, extraneous sources of noise such as aircraft, trains, motor vehicle traffic, highway noise, bird song, crickets and the rotational state of the turbines. It was concluded that for studying low frequency sound, the linear dB scale should be used instead of the dBA scale. Measurements of frequencies down to 6.3 Hz, showed that infrasound emission from the Castle River Wind Farm is not a significant concern. Lower frequencies down to about 2.5 Hz also confirmed that infrasound emissions are not significantly above the ambient noise levels. Any infrasound emissions were strongly coupled to the ground and were attenuated quickly. Time domain measurements showed that at all wind speeds and for frequencies up to 270 Hz, wind noise was actually attenuated when the wind farm is in operation. The noise levels were higher when the turbines were not turning. This finding was confirmed through spectral analysis. 12 refs., 2 tabs., 46 figs.

  3. CFD analysis of a Darrieus wind turbine

    Science.gov (United States)

    Niculescu, M. L.; Cojocaru, M. G.; Pricop, M. V.; Pepelea, D.; Dumitrache, A.; Crunteanu, D. E.

    2017-07-01

    The Darrieus wind turbine has some advantages over the horizontal-axis wind turbine. Firstly, its tip speed ratio is lower than that of the horizontal-axis wind turbine and, therefore, its noise is smaller, privileging their placement near populated areas. Secondly, the Darrieus wind turbine does needs no orientation mechanism with respect to wind direction in contrast to the horizontal-axis wind turbine. However, the efficiency of the Darrieus wind turbine is lower than that of the horizontal-axis wind turbine since its aerodynamics is much more complex. With the advances in computational fluids and computers, it is possible to simulate the Darrieus wind turbine more accurately to understand better its aerodynamics. For these reasons, the present papers deals with the computational aerodynamics of a Darrieus wind turbine applying the state of the art of CFD methods (anisotropic turbulence models, transition from laminar to turbulent, scale adaptive simulation) to better understand its unsteady behavior.

  4. Detection of Wind Evolution and Lidar Trajectory Optimization for Lidar-Assisted Wind Turbine Control

    Directory of Open Access Journals (Sweden)

    David Schlipf

    2015-11-01

    Full Text Available Recent developments in remote sensing are offering a promising opportunity to rethink conventional control strategies of wind turbines. With technologies such as lidar, the information about the incoming wind field - the main disturbance to the system - can be made available ahead of time. Initial field testing of collective pitch feedforward control shows, that lidar measurements are only beneficial if they are filtered properly to avoid harmful control action. However, commercial lidar systems developed for site assessment are usually unable to provide a usable signal for real time control. Recent research shows, that the correlation between the measurement of rotor effective wind speed and the turbine reaction can be modeled and that the model can be used to optimize a scan pattern. This correlation depends on several criteria such as turbine size, position of the measurements, measurement volume, and how the wind evolves on its way towards the rotor. In this work the longitudinal wind evolution is identified with the line-of-sight measurements of a pulsed lidar system installed on a large commercial wind turbine. This is done by staring directly into the inflowing wind during operation of the turbine and fitting the coherence between the wind at different measurement distances to an exponential model taking into account the yaw misalignment, limitation to line-of-sight measurements and the pulse volume. The identified wind evolution is then used to optimize the scan trajectory of a scanning lidar for lidar-assisted feedforward control in order to get the best correlation possible within the constraints of the system. Further, an adaptive filer is fitted to the modeled correlation to avoid negative impact of feedforward control because of uncorrelated frequencies of the wind measurement. The main results of the presented work are a first estimate of the wind evolution in front of operating wind turbines and an approach which manufacturers of

  5. RBI Optimization of Offshore Wind Turbines

    DEFF Research Database (Denmark)

    Ramírez, José G. Rangel; Sørensen, John Dalsgaard

    2009-01-01

    methods for oil & gas installations, a framework for optimal inspection and maintenance planning of offshore wind turbines is presented. Special aspects for offshore wind turbines considered are the fatigue loading characteristics where usually the wind loading are dominating the wave loading, wake......Wind turbines for electricity production have increased significantly the last years both in production capability and size. This development is expected to continue also in the coming years. Offshore wind turbines with an electricity production of 5-10 MW are planned. Typically, the wind turbine...... support structure is a steel structure consisting of a tower and a monopile, tripod or jacket type foundation. This paper considers aspects of inspection and maintenance planning of fatigue prone details in jacket and tripod type of wind turbine support structures. Based on risk-based inspection planning...

  6. Wind Climate Parameters for Wind Turbine Fatigue Load Assessment

    DEFF Research Database (Denmark)

    Toft, Henrik Stensgaard; Svenningsen, Lasse; Moser, Wolfgang

    2016-01-01

    Site-specific assessment of wind turbine design requires verification that the individual wind turbine components can survive the site-specific wind climate. The wind turbine design standard, IEC 61400-1 (third edition), describes how this should be done using a simplified, equivalent wind climate...... climate required by the current design standard by comparing damage equivalent fatigue loads estimated based on wind climate parameters for each 10 min time-series with fatigue loads estimated based on the equivalent wind climate parameters. Wind measurements from Boulder, CO, in the United States...

  7. Dissipation of Turbulence in the Wake of a Wind Turbine

    Science.gov (United States)

    Lundquist, J. K.; Bariteau, L.

    2015-02-01

    The wake of a wind turbine is characterized by increased turbulence and decreased wind speed. Turbines are generally deployed in large groups in wind farms, and so the behaviour of an individual wake as it merges with other wakes and propagates downwind is critical in assessing wind-farm power production. This evolution depends on the rate of turbulence dissipation in the wind-turbine wake, which has not been previously quantified in field-scale measurements. In situ measurements of winds and turbulence dissipation from the wake region of a multi-MW turbine were collected using a tethered lifting system (TLS) carrying a payload of high-rate turbulence probes. Ambient flow measurements were provided from sonic anemometers on a meteorological tower located near the turbine. Good agreement between the tower measurements and the TLS measurements was established for a case without a wind-turbine wake. When an operating wind turbine is located between the tower and the TLS so that the wake propagates to the TLS, the TLS measures dissipation rates one to two orders of magnitude higher in the wake than outside of the wake. These data, collected between two and three rotor diameters downwind of the turbine, document the significant enhancement of turbulent kinetic energy dissipation rate within the wind-turbine wake. These wake measurements suggest that it may be useful to pursue modelling approaches that account for enhanced dissipation. Comparisons of wake and non-wake dissipation rates to mean wind speed, wind-speed variance, and turbulence intensity are presented to facilitate the inclusion of these measurements in wake modelling schemes.

  8. European wind turbine catalogue

    International Nuclear Information System (INIS)

    1994-01-01

    The THERMIE European Community programme is designed to promote the greater use of European technology and this catalogue contributes to the fulfillment of this aim by dissemination of information on 50 wind turbines from 30 manufacturers. These turbines are produced in Europe and are commercially available. The manufacturers presented produce and sell grid-connected turbines which have been officially approved in countries where this approval is acquired, however some of the wind turbines included in the catalogue have not been regarded as fully commercially available at the time of going to print. The entries, which are illustrated by colour photographs, give company profiles, concept descriptions, measured power curves, prices, and information on design and dimension, safety systems, stage of development, special characteristics, annual energy production, and noise pollution. Lists are given of wind turbine manufacturers and agents and of consultants and developers in the wind energy sector. Exchange rates used in the conversion of the prices of wind turbines are also given. Information can be found on the OPET network (organizations recognised by the European Commission as an Organization for the Promotion of Energy Technologies (OPET)). An article describes the development of the wind power industry during the last 10-15 years and another article on certification aims to give an overview of the most well-known and acknowledged type approvals currently issued in Europe. (AB)

  9. Active and passive fault-tolerant LPV control of wind Turbines

    DEFF Research Database (Denmark)

    Sloth, Christoffer; Esbensen, Thomas; Stoustrup, Jakob

    2010-01-01

    This paper addresses the design and comparison of active and passive fault-tolerant linear parameter-varying (LPV) controllers for wind turbines. The considered wind turbine plant model is characterized by parameter variations along the nominal operating trajectory and includes a model of an inci...

  10. Bioinspired turbine blades offer new perspectives for wind energy

    Science.gov (United States)

    Cognet, V.; Courrech du Pont, S.; Dobrev, I.; Massouh, F.; Thiria, B.

    2017-02-01

    Wind energy is becoming a significant alternative solution for future energy production. Modern turbines now benefit from engineering expertise, and a large variety of different models exists, depending on the context and needs. However, classical wind turbines are designed to operate within a narrow zone centred around their optimal working point. This limitation prevents the use of sites with variable wind to harvest energy, involving significant energetic and economic losses. Here, we present a new type of bioinspired wind turbine using elastic blades, which passively deform through the air loading and centrifugal effects. This work is inspired from recent studies on insect flight and plant reconfiguration, which show the ability of elastic wings or leaves to adapt to the wind conditions and thereby to optimize performance. We show that in the context of energy production, the reconfiguration of the elastic blades significantly extends the range of operating regimes using only passive, non-consuming mechanisms. The versatility of the new turbine model leads to a large increase of the converted energy rate, up to 35%. The fluid/elasticity mechanisms involved for the reconfiguration capability of the new blades are analysed in detail, using experimental observations and modelling.

  11. Estimating Health Condition of the Wind Turbine Drivetrain System

    Directory of Open Access Journals (Sweden)

    Peng Qian

    2017-10-01

    Full Text Available Condition Monitoring (CM has been considered as an effective method to enhance the reliability of wind turbines and implement cost-effective maintenance. Thus, adopting an efficient approach for condition monitoring of wind turbines is desirable. This paper presents a data-driven model-based CM approach for wind turbines based on the online sequential extreme learning machine (OS-ELM algorithm. A physical kinetic energy correction model is employed to normalize the temperature change to the value at the rated power output to eliminate the effect of variable speed operation of the turbines. The residual signal, obtained by comparing the predicted values and practical measurements, is processed by the physical correction model and then assessed with a Bonferroni interval method for fault diagnosis. Models have been validated using supervisory control and data acquisition (SCADA data acquired from an operational wind farm, which contains various types of temperature data of the gearbox. The results show that the proposed method can detect more efficiently both the long-term aging characteristics and the short-term faults of the gearbox.

  12. Dynamic response of wind turbine towers in warm permafrost

    Institute of Scientific and Technical Information of China (English)

    Benjamin Still; ZhaoHui Joey Yang; Simon Evans; FuJun Niu

    2014-01-01

    Wind is a great source of renewable energy in western Alaska. Consistent winds blow across the barren tundra underlain by warm permafrost in the winter season, when the energy demand is the highest. Foundation engineering in warm permafrost has always been a challenge in wind energy development. Degrading warm permafrost poses engineering issues to design, construction, and operation of wind turbines. This paper describes the foundation design of a wind turbine built in western Alaska. It presents a sys-tem for response monitoring and load assessment, and data collected from September 2013 to March 2014. The dynamic proper-ties are assessed based on the monitoring data, and seasonal changes in the dynamic properties of the turbine tower-foundation system and likely resonance between the spinning blades and the tower structure are discussed. These analyses of a wind turbine in warm permafrost are valuable for designing or retrofitting of foundations in warm permafrost.

  13. Wind Turbines Support Techniques during Frequency Drops — Energy Utilization Comparison

    Directory of Open Access Journals (Sweden)

    Ayman B. Attya

    2014-08-01

    Full Text Available The supportive role of wind turbines during frequency drops is still not clear enough, although there are many proposed algorithms. Most of the offered techniques make the wind turbine deviates from optimum power generation operation to special operation modes, to guarantee the availability of reasonable power support, when the system suffers frequency deviations. This paper summarizes the most dominant support algorithms and derives wind turbine power curves for each one. It also conducts a comparison from the point of view of wasted energy, with respect to optimum power generation. The authors insure the advantage of a frequency support algorithm, they previously presented, as it achieved lower amounts of wasted energy. This analysis is performed in two locations that are promising candidates for hosting wind farms in Egypt. Additionally, two different types of wind turbines from two different manufacturers are integrated. Matlab and Simulink are the implemented simulation environments.

  14. Numerical modeling of wind turbine aerodynamic noise in the time domain.

    Science.gov (United States)

    Lee, Seunghoon; Lee, Seungmin; Lee, Soogab

    2013-02-01

    Aerodynamic noise from a wind turbine is numerically modeled in the time domain. An analytic trailing edge noise model is used to determine the unsteady pressure on the blade surface. The far-field noise due to the unsteady pressure is calculated using the acoustic analogy theory. By using a strip theory approach, the two-dimensional noise model is applied to rotating wind turbine blades. The numerical results indicate that, although the operating and atmospheric conditions are identical, the acoustical characteristics of wind turbine noise can be quite different with respect to the distance and direction from the wind turbine.

  15. Noise from wind turbines

    International Nuclear Information System (INIS)

    Andersen, B.; Larsen, P.

    1993-01-01

    Denmark has 3200 wind turbines with an installed maximum capacity of 418MW. The most important Danish research projects into wind turbine noise and the main results are listed. These date from 1983. Two comprehensive studies are currently in progress. The first is an analytical and empirical investigation of aerodynamic noise from wind turbine rotors and has so far dealt mainly with tip noise. The measurement method, using a hard board mounted microphone on the ground near the turbine, is described. Four different tip designs have been tested. Some examples of reference sound power level spectra for three of the designs are presented. During the past two years a computerbased data acquisition system has been used for real-time determination of sound power levels. The second study, which has just commenced, is on annoyance from wind turbine noise. It will include noise measurements, masking calculations and a social survey on the perceived nuisance. (UK)

  16. Fundamentals for remote structural health monitoring of wind turbine blades - a preproject. Annex A. Cost-benefit for embedded sensors in large wind turbine blades

    OpenAIRE

    Hansen, L.G.; Lading, Lars

    2002-01-01

    This report contains the results of a cost-benefit analysis for the use of embed-ded sensors for damage detection in large wind turbine blades - structural health monitoring - (in connection with remote surveillance) of large wind turbine placedoff-shore. The total operating costs of a three-bladed 2MW turbine placed offshore either without sensors or with sensors are compared. The price of a structural health monitoring system of a price of 100 000 DKK (per tur-bine) results in a break-event...

  17. Horizontal Axis Wind Turbine Blade Design Methodologies for Efficiency Enhancement—A Review

    Directory of Open Access Journals (Sweden)

    Shafiqur Rehman

    2018-02-01

    Full Text Available Among renewable sources of energy, wind is the most widely used resource due to its commercial acceptance, low cost and ease of operation and maintenance, relatively much less time for its realization from concept till operation, creation of new jobs, and least adverse effect on the environment. The fast technological development in the wind industry and availability of multi megawatt sized horizontal axis wind turbines has further led the promotion of wind power utilization globally. It is a well-known fact that the wind speed increases with height and hence the energy output. However, one cannot go above a certain height due to structural and other issues. Hence other attempts need to be made to increase the efficiency of the wind turbines, maintaining the hub heights to acceptable and controllable limits. The efficiency of the wind turbines or the energy output can be increased by reducing the cut-in-speed and/or the rated-speed by modifying and redesigning the blades. The problem is tackled by identifying the optimization parameters such as annual energy yield, power coefficient, energy cost, blade mass, and blade design constraints such as physical, geometric, and aerodynamic. The present paper provides an overview of the commonly used models, techniques, tools and experimental approaches applied to increase the efficiency of the wind turbines. In the present review work, particular emphasis is made on approaches used to design wind turbine blades both experimental and numerical, methodologies used to study the performance of wind turbines both experimentally and analytically, active and passive techniques used to enhance the power output from wind turbines, reduction in cut-in-speed for improved wind turbine performance, and lastly the research and development work related to new and efficient materials for the wind turbines.

  18. Nonlinear Dynamics of Wind Turbine Wings

    DEFF Research Database (Denmark)

    Larsen, Jesper Winther

    , large wind turbines become increasingly flexible and dynamically sensitive. This project focuses on the structural analysis of highly flexible wind turbine wings, and the aerodynamic loading of wind turbine wings under large changes in flow field due to elastic deformations and changing wind conditions....

  19. Probabilistic characterization of wind turbine blades via aeroelasticity and spinning finite element formulation

    Science.gov (United States)

    Velazquez, Antonio; Swartz, R. Andrew

    2012-04-01

    Wind energy is an increasingly important component of this nation's renewable energy portfolio, however safe and economical wind turbine operation is a critical need to ensure continued adoption. Safe operation of wind turbine structures requires not only information regarding their condition, but their operational environment. Given the difficulty inherent in SHM processes for wind turbines (damage detection, location, and characterization), some uncertainty in conditional assessment is expected. Furthermore, given the stochastic nature of the loading on turbine structures, a probabilistic framework is appropriate to characterize their risk of failure at a given time. Such information will be invaluable to turbine controllers, allowing them to operate the structures within acceptable risk profiles. This study explores the characterization of the turbine loading and response envelopes for critical failure modes of the turbine blade structures. A framework is presented to develop an analytical estimation of the loading environment (including loading effects) based on the dynamic behavior of the blades. This is influenced by behaviors including along and across-wind aero-elastic effects, wind shear gradient, tower shadow effects, and centrifugal stiffening effects. The proposed solution includes methods that are based on modal decomposition of the blades and require frequent updates to the estimated modal properties to account for the time-varying nature of the turbine and its environment. The estimated demand statistics are compared to a code-based resistance curve to determine a probabilistic estimate of the risk of blade failure given the loading environment.

  20. Constructing a Plastic Bottle Wind Turbine as a Practical Aid for Learning about Using Wind Energy to Generate Electricity

    Science.gov (United States)

    Appleyard, S. J.

    2009-01-01

    A simple horizontal axis wind turbine can be easily constructed using a 1.5 l PET plastic bottle, a compact disc and a small dynamo. The turbine operates effectively at low wind speeds and has a rotational speed of 500 rpm at a wind speed of about 14 km h[superscript -1]. The wind turbine can be used to demonstrate the relationship between open…

  1. Wind turbine technology principles and design

    CERN Document Server

    Adaramola, Muyiwa

    2014-01-01

    IntroductionPart I: AerodynamicsWind Turbine Blade Design; Peter J. Schubel and Richard J. CrossleyA Shrouded Wind Turbine Generating High Output Power with Wind-Lens Technology; Yuji Ohya and Takashi KarasudaniEcomoulding of Composite Wind Turbine Blades Using Green Manufacturing RTM Process; Brahim AttafAerodynamic Shape Optimization of a Vertical-Axis Wind Turbine Using Differential Evolution; Travis J. Carrigan, Brian H. Dennis, Zhen X. Han, and Bo P. WangPart II: Generators and Gear Systems

  2. Adaptive Backstepping Control of Lightweight Tower Wind Turbine

    DEFF Research Database (Denmark)

    Galeazzi, Roberto; Borup, Kasper Trolle; Niemann, Hans Henrik

    2015-01-01

    the angular deflection of the tower with respect to the vertical axis in response to variations in wind speed. The controller is shown to guarantee asymptotic tracking of the reference trajectory. The performance of the control system is evaluated through deterministic and stochastic simulations including......This paper investigates the feasibility of operating a wind turbine with lightweight tower in the full load region exploiting an adaptive nonlinear controller that allows the turbine to dynamically lean against the wind while maintaining nominal power output. The use of lightweight structures...... for towers and foundations would greatly reduce the construction cost of the wind turbine, however extra features ought be included in the control system architecture to avoid tower collapse. An adaptive backstepping collective pitch controller is proposed for tower point tracking control, i.e. to modify...

  3. Dynamic modeling and simulation of wind turbines

    International Nuclear Information System (INIS)

    Ghafari Seadat, M.H.; Kheradmand Keysami, M.; Lari, H.R.

    2002-01-01

    Using wind energy for generating electricity in wind turbines is a good way for using renewable energies. It can also help to protect the environment. The main objective of this paper is dynamic modeling by energy method and simulation of a wind turbine aided by computer. In this paper, the equations of motion are extracted for simulating the system of wind turbine and then the behavior of the system become obvious by solving the equations. The turbine is considered with three blade rotor in wind direction, induced generator that is connected to the network and constant revolution for simulation of wind turbine. Every part of the wind turbine should be simulated for simulation of wind turbine. The main parts are blades, gearbox, shafts and generator

  4. Power control of a wind farm with active stall wind turbines and AC grid connection

    DEFF Research Database (Denmark)

    Hansen, Anca Daniela; Sørensen, Poul; Iov, Florin

    both the control on wind turbine level as well as the central control on the wind farm level. The ability of active stall wind farms with AC grid connection to regulate the power production to the reference power ordered by the operators is assessed and discussed by means of simulations.......This paper describes the design of a centralised wind farm controller for a wind farm made-up exclusively of active stall wind turbines with AC grid connection. The overall aim of such controller is to enable the wind farms to provide the best grid support. The designed wind farm control involves...

  5. Wind Turbine Radar Cross Section

    Directory of Open Access Journals (Sweden)

    David Jenn

    2012-01-01

    Full Text Available The radar cross section (RCS of a wind turbine is a figure of merit for assessing its effect on the performance of electronic systems. In this paper, the fundamental equations for estimating the wind turbine clutter signal in radar and communication systems are presented. Methods of RCS prediction are summarized, citing their advantages and disadvantages. Bistatic and monostatic RCS patterns for two wind turbine configurations, a horizontal axis three-blade design and a vertical axis helical design, are shown. The unique electromagnetic scattering features, the effect of materials, and methods of mitigating wind turbine clutter are also discussed.

  6. Study on the abnormal data rejection and normal condition evaluation applied in wind turbine farm

    Science.gov (United States)

    Zhang, Ying; Qian, Zheng; Tian, Shuangshu

    2016-01-01

    The condition detection of wind turbine is always an important issue which attract more and more attentions because of the rapid development of wind farm. And the on-line data analysis is also difficult since a lot of measured data is collected. In this paper, the abnormal data rejection and normal condition evaluation of wind turbine is processed. At first, since there are large amounts of abnormal data in the normal operation of wind turbine, which is probably caused by fault, maintenance downtime, power-limited operation and failure of wind speed sensor, a novel method is proposed to reject abnormal data in order to make more accurate analysis for the wind turbine condition. The core principle of this method is to fit the wind power curves by using the scatter diagram. The data outside the area covered by wind power curves is the abnormal data. The calculation shows that the abnormal data is rejected effectively. After the rejection, the vibration signals of wind turbine bearing which is a critical component are analyzed and the relationship between the vibration characteristic value and the operating condition of wind turbine is discussed. It will provide powerful support for the accurate fault analysis of wind turbine.

  7. Wake losses optimization of offshore wind farms with moveable floating wind turbines

    International Nuclear Information System (INIS)

    Rodrigues, S.F.; Teixeira Pinto, R.; Soleimanzadeh, M.; Bosman, Peter A.N.; Bauer, P.

    2015-01-01

    Highlights: • We present a layout optimization framework for wind farms with moveable turbines. • Using moveable wind turbines in optimized layouts maximizes energy production. • Turbine and wind farm designers should cooperate to optimize offshore wind projects. - Abstract: In the future, floating wind turbines could be used to harvest energy in deep offshore areas where higher wind mean speeds are observed. Currently, several floating turbine concepts are being designed and tested in small scale projects; in particular, one concept allows the turbine to move after installation. This article presents a novel layout optimization framework for wind farms composed of moveable floating turbines. The proposed framework uses an evolutionary optimization strategy in a nested configuration which simultaneously optimizes the anchoring locations and the wind turbine position within the mooring lines for each individual wind direction. The results show that maximum energy production is obtained when moveable wind turbines are deployed in an optimized layout. In conclusion, the framework represents a new design optimization tool for future offshore wind farms composed of moveable floating turbines

  8. ASSESSMENT OF THE IMPACT OF THE NATIONAL GRID AND OF THE MAINTENANCE PERIODS ON THE OPTIMIZATION OF THE WIND TURBINE OPERATION

    Directory of Open Access Journals (Sweden)

    GHEORGHE SAMOILESCU

    2016-06-01

    Full Text Available The upsurge in the value of wind energy in Romania may have occurred due to a constructive development of wind turbines, their dimensions and the increase in their number of units in wind farms. The modern design of large wind turbines, corroborated with an appropriate wind speed leads to a significant production of green energy. In order to obtain a greater amount of energy, modern turbines are fitted with many devices which are exploited by high -tech electronic circuits. Instruments of remote detection, measurement devices and control processes of the main measurement systems are based on various types of electronic apparatus. These appliances are very sensitive to tension variation caused by abnormal conditions of turbine operation and by the national electrical grid which the wind farm is connected to. The paper aims at providing an assessment of a wind farm registers as well as a set of methods meant to overcome such obstacles related to designing large wind turbines. Similarly, the paper offers a classification of the various types of abnormalities that appear in the installation connected to the electric grid, such as a sudden power cut, unplugging or tension variation. The difficulty of such an impact is to be determined for every type of disorder associated to electronic glitches occurring in wind turbines .

  9. Energy and exergy efficiency comparison of horizontal and vertical axis wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Pope, K.; Dincer, I.; Naterer, G.F. [Faculty of Engineering and Applied Science, University of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa, Ontario (Canada)

    2010-09-15

    In this paper, an energy and exergy analysis is performed on four different wind power systems, including both horizontal and vertical axis wind turbines. Significant variability in turbine designs and operating parameters are encompassed through the selection of systems. In particular, two airfoils (NACA 63(2)-215 and FX 63-137) commonly used in horizontal axis wind turbines are compared with two vertical axis wind turbines (VAWTs). A Savonius design and Zephyr VAWT benefit from operational attributes in wind conditions that are unsuitable for airfoil type designs. This paper analyzes each system with respect to both the first and second laws of thermodynamics. The aerodynamic performance of each system is numerically analyzed by computational fluid dynamics software, FLUENT. A difference in first and second law efficiencies of between 50 and 53% is predicted for the airfoil systems, whereas 44-55% differences are predicted for the VAWT systems. Key design variables are analyzed and the predicted results are discussed. The exergetic efficiency of each wind turbine is studied for different geometries, design parameters and operating conditions. It is shown that the second law provides unique insight beyond a first law analysis, thereby providing a useful design tool for wind power development. (author)

  10. Small Vertical Axis Wind Turbines: aerodynamics and starting behavior

    Directory of Open Access Journals (Sweden)

    Horia DUMITRESCU

    2013-12-01

    Full Text Available In urban areas the wind is very turbulent and unstable with fast changes in direction andvelocity. In these environments, the use of small vertical axis wind turbines (VAWT becomesincreasingly attractive due to several advantages over horizontal axis wind turbines (HAWT.However, such designs have received much less attention than the more common propeller-typedesigns and the understanding of same aspects of their operation remains, to this day, incomplete.This is particularly true of their starting characteristics. Indeed, same authors heuristically maintainthat they cannot start without external assistance. This paper reviews the cause of the inability of thelow solidity fixed pitch vertical axis wind turbines to self-start, and investigates the way ofovercoming this draw back.

  11. Flicker Study on Variable Speed Wind Turbines with Permanent Magnet Synchronous Generator

    DEFF Research Database (Denmark)

    Hu, Weihao; Chen, Zhe; Wang, Yue

    2008-01-01

    capacity, grid impedance angle) are analyzed. Flicker mitigation is realized by output reactive power control of the variable speed wind turbines with PMSG. Simulation results show the output reactive power control is an effective measure to mitigate the flicker during continuous operation of grid......Grid connected wind turbines are fluctuating power sources that may produce flicker during continuous operation. This paper presents a simulation model of a MW-level variable speed wind turbines with a permanent magnet synchronous generator (PMSG) and a full-scale converter developed...... in the simulation tool of PSCAD/EMTDC. Flicker emission of this system is investigated during continuous operation. The dependence of flicker emission on wind characteristics (mean speed, turbulence intensity), 3p torque oscillations due to wind shear and tower shadow effects and grid conditions (short circuit...

  12. Design of a wind turbine pitch angle controller for power system stabilisation

    Energy Technology Data Exchange (ETDEWEB)

    Jauch, Clemens; Soerensen, Poul [Risoe National Laboratory, Wind Energy Department, P.O. Box 49, DK-4000 Roskilde (Denmark); Islam, Syed M. [Department of Electrical and Computer Engineering, Curtin University of Technology, GPO Box U1987, Perth, WA 6845 (Australia); Bak Jensen, Birgitte [Institute of Energy Technology, Aalborg University, Pontoppidanstraede 101, DK-9220 Aalborg East (Denmark)

    2007-11-15

    The design of a PID pitch angle controller for a fixed speed active-stall wind turbine, using the root locus method is described in this paper. The purpose of this controller is to enable an active-stall wind turbine to perform power system stabilisation. For the purpose of controller design, the transfer function of the wind turbine is derived from the wind turbine's step response. The performance of this controller is tested by simulation, where the wind turbine model with its pitch angle controller is connected to a power system model. The power system model employed here is a realistic model of the North European power system. A short circuit fault on a busbar close to the wind turbine generator is simulated, and the dynamic responses of the system with and without the power system stabilisation of the wind turbines are presented. Simulations show that in most operating points the pitch controller can effectively contribute to power system stabilisation. (author)

  13. Design of a wind turbine pitch angle controller for power system stabilisation

    DEFF Research Database (Denmark)

    Jauch, Clemens; Islam, S.M.; Sørensen, Poul Ejnar

    2007-01-01

    The design of a PID pitch angle controller for a fixed speed active-stall wind turbine, using the root locus method is described in this paper. The purpose of this controller is to enable an active-stall wind turbine to perform power system stabilisation. For the purpose of controller design......, the transfer function of the wind turbine is derived from the wind turbine's step response. The performance of this controller is tested by simulation, where the wind turbine model with its pitch angle controller is connected to a power system model. The power system model employed here is a realistic model...... of the North European power system. A short circuit fault on a busbar close to the wind turbine generator is simulated, and the dynamic responses of the system with and without the power system stabilisation of the wind turbines are presented. Simulations show that in most operating points the pitch controller...

  14. Dynamic modelling and analysis of a wind turbine with variable speed

    NARCIS (Netherlands)

    Steinbuch, M.

    1986-01-01

    On behalf of the operation of the Dutch National Wind Farm, which is under construction now, a study is being performed on the control system design of variable speed wind turbines. To realize this a non-linear dynamic model of a wind turbine with synchronous generator and AC/ DC/AC conversion has

  15. Grid Simulator for Testing a Wind Turbine on Offshore Floating Platform

    Energy Technology Data Exchange (ETDEWEB)

    Gevorgian, V.

    2012-02-01

    An important aspect of such offshore testing of a wind turbine floating platform is electrical loading of the wind turbine generator. An option of interconnecting the floating wind turbine with the onshore grid via submarine power cable is limited by many factors such as costs and associated environmental aspects (i.e., an expensive and lengthy sea floor study is needed for cable routing, burial, etc). It appears to be a more cost effective solution to implement a standalone grid simulator on a floating platform itself for electrical loading of the test wind turbine. Such a grid simulator must create a stable fault-resilient voltage and frequency bus (a micro grid) for continuous operation of the test wind turbine. In this report, several electrical topologies for an offshore grid simulator were analyzed and modeled.

  16. Wind tunnel experiments to prove a hydraulic passive torque control concept for variable speed wind turbines

    NARCIS (Netherlands)

    Diepeveen, N.F.B.; Jarquin-Laguna, A.

    2014-01-01

    In this paper the results are presented of experiments to prove an innovative concept for passive torque control of variable speed wind turbines using fluid power technology. It is demonstrated that by correctly configuring the hydraulic drive train, the wind turbine rotor operates at or near

  17. Accelerated rain erosion of wind turbine blade coatings

    DEFF Research Database (Denmark)

    Zhang, Shizhong

    . There are four chapters in the thesis. In chapter 1, a literature survey provides background information to the field. Topics discussed are the global wind energy development, possible wind turbine constructions, blade structures and materials, blade coatings, and liquid erosion mechanisms. In chapter 2......During operation, the fast-moving blades of wind turbines are exposed to continuous impacts with rain droplets, hail, insects, or solid particles. This can lead to erosion of the blades, whereby the electrical efficiency is compromised and expensive repairs may be required. One possible solution...

  18. System Identification of Wind Turbines for Structural Health Monitoring

    DEFF Research Database (Denmark)

    Perisic, Nevena

    Structural health monitoring is a multi-disciplinary engineering field that should allow the actual wind turbine maintenance programmes to evolve to the next level, hence increasing safety and reliability and decreasing turbines downtime. The main idea is to have a sensing system on the structure...... cases are considered, two practical problems from the wind industry are studied, i.e. monitoring of the gearbox shaft torque and the tower root bending moments. The second part of the thesis is focused on the influence of friction on the health of the wind turbine and on the nonlinear identification...... that monitors the system responses and notifies the operator when damages or degradations have been detected. However, some of the response signals that contain important information about the health of the wind turbine components cannot be directly measured, or measuring them is highly complex and costly...

  19. Dynamic wind turbine models in power system simulation tool DIgSILENT

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, A.C.; Jauch, C.; Soerensen, P.; Iov, F.; Blaabjerg, F.

    2003-12-01

    The present report describes the dynamic wind turbine models implemented in the power system simulation tool DIgSILENT (Version 12.0). The developed models are a part of the results of a national research project, whose overall objective is to create a model database in different simulation tools. This model database should be able to support the analysis of the interaction between the mechanical structure of the wind turbine and the electrical grid during different operational modes. The report provides a description of the wind turbines modelling, both at a component level and at a system level. The report contains both the description of DIgSILENT built-in models for the electrical components of a grid connected wind turbine (e.g. induction generators, power converters, transformers) and the models developed by the user, in the dynamic simulation language DSL of DIgSILENT, for the non-electrical components of the wind turbine (wind model, aerodynamic model, mechanical model). The initialisation issues on the wind turbine models into the power system simulation are also presented. However, the main attention in this report is drawn to the modelling at the system level of two wind turbine concepts: 1. Active stall wind turbine with induction generator 2. Variable speed, variable pitch wind turbine with doubly fed induction generator. These wind turbine concept models can be used and even extended for the study of different aspects, e.g. the assessment of power quality, control strategies, connection of the wind turbine at different types of grid and storage systems. For both these two concepts, control strategies are developed and implemented, their performance assessed and discussed by means of simulations. (au)

  20. Damage detection in wind turbine blades using acoustic techniques

    Energy Technology Data Exchange (ETDEWEB)

    Juengert, A., E-mail: anne.juengert@mpa.uni-stuttgart.de [Univ. of Stuttgart, Materialpruefungsanstalt Stuttgart, Stuttgart (Germany)

    2013-05-15

    Facing climate change, the use of renewable energy gains importance. The wind energy sector grows very fast. Bigger and more powerful wind turbines will be built in the coming decades and the safety and reliability of the turbines will become more important. Wind turbine blades have to be inspected at regular intervals, because they are highly stressed during operation and a blade breakdown can cause big economic damages. The turbine blades consist of fiber reinforced plastics (GFRP/CFRP) and sandwich areas containing wood or plastic foam. The blades are manufactured as two halves and glued together afterwards. Typical damages are delaminations within the GFRP or the sandwich and missing adhesive or deficient bond at the bonding surfaces. The regular inspections of wind turbine blades are performed manually by experts and are limited to visual appraisals and simple tapping tests. To improve the inspections of wind turbine blades non-destructive testing techniques using acoustic waves are being developed. To detect delaminations within the laminates of the turbine blade, a local resonance spectroscopy was used. To detect missing bond areas from the outside of the blade the impulse-echo-technique was applied. This paper is an updated reprint of an article published on ndt.net in 2008. (author)

  1. Damage detection in wind turbine blades using acoustic techniques

    International Nuclear Information System (INIS)

    Juengert, A.

    2013-01-01

    Facing climate change, the use of renewable energy gains importance. The wind energy sector grows very fast. Bigger and more powerful wind turbines will be built in the coming decades and the safety and reliability of the turbines will become more important. Wind turbine blades have to be inspected at regular intervals, because they are highly stressed during operation and a blade breakdown can cause big economic damages. The turbine blades consist of fiber reinforced plastics (GFRP/CFRP) and sandwich areas containing wood or plastic foam. The blades are manufactured as two halves and glued together afterwards. Typical damages are delaminations within the GFRP or the sandwich and missing adhesive or deficient bond at the bonding surfaces. The regular inspections of wind turbine blades are performed manually by experts and are limited to visual appraisals and simple tapping tests. To improve the inspections of wind turbine blades non-destructive testing techniques using acoustic waves are being developed. To detect delaminations within the laminates of the turbine blade, a local resonance spectroscopy was used. To detect missing bond areas from the outside of the blade the impulse-echo-technique was applied. This paper is an updated reprint of an article published on ndt.net in 2008. (author)

  2. The design of wind turbine for electrical power generation in Malaysian wind characteristics

    International Nuclear Information System (INIS)

    Abas Ab Wahab; Chong Wen Thong

    2000-01-01

    The paper describes the study of a wind turbine for electrical power generation in Malaysia wind characteristics. In this research, the wind turbine is designs based on the local wind characteristics and tries to avoid the problems faced in the past (turbine design, access, manpower and technical). The new wind turbine rotor design for a medium speed wind speed turbine utilises the concept of open-close type of horizontal axis (up-wind) wind turbine is intended to widen the optimum performance range for electrical generation in Malaysia wind characteristics. The wind turbine has been designed to cut-in at a lower speed, and to provide the rotation speed that high enough to run a generator. The analysis and design of new low speed wind turbine blades and open-close turbine rotor and prediction of turbine performance are being detailed in this paper. (Author)

  3. Statistical fault diagnosis of wind turbine drivetrain applied to a 5MW floating wind turbine

    Science.gov (United States)

    Ghane, Mahdi; Nejad, Amir R.; Blanke, Mogens; Gao, Zhen; Moan, Torgeir

    2016-09-01

    Deployment of large scale wind turbine parks, in particular offshore, requires well organized operation and maintenance strategies to make it as competitive as the classical electric power stations. It is important to ensure systems are safe, profitable, and cost-effective. In this regards, the ability to detect, isolate, estimate, and prognose faults plays an important role. One of the critical wind turbine components is the gearbox. Failures in the gearbox are costly both due to the cost of the gearbox itself and also due to high repair downtime. In order to detect faults as fast as possible to prevent them to develop into failure, statistical change detection is used in this paper. The Cumulative Sum Method (CUSUM) is employed to detect possible defects in the downwind main bearing. A high fidelity gearbox model on a 5-MW spar-type wind turbine is used to generate data for fault-free and faulty conditions of the bearing at the rated wind speed and the associated wave condition. Acceleration measurements are utilized to find residuals used to indirectly detect damages in the bearing. Residuals are found to be nonGaussian, following a t-distribution with multivariable characteristic parameters. The results in this paper show how the diagnostic scheme can detect change with desired false alarm and detection probabilities.

  4. Evaluation of different turbine concepts for wind power

    Energy Technology Data Exchange (ETDEWEB)

    Eriksson, Sandra; Bernhoff, Hans; Leijon, Mats [Swedish Centre for Renewable Electric Energy Conversion, Division for Electricity and Lightning Research, Box 534, 751 21 Uppsala (Sweden)

    2008-06-15

    Every year the number of installed wind power plants in the world increases. The horizontal axis wind turbine is the most common type of turbine but there exist other types. Here, three different wind turbines are considered; the horizontal axis wind turbine and two different concepts of vertical axis wind turbines; the Darrieus turbine and the H-rotor. This paper aims at making a comparative study of these three different wind turbines from the most important aspects including structural dynamics, control systems, maintenance, manufacturing and electrical equipment. A case study is presented where three different turbines are compared to each other. Furthermore, a study of blade areas for different turbines is presented. The vertical axis wind turbine appears to be advantageous to the horizontal axis wind turbine in several aspects. (author)

  5. Transient Analysis of Grid-Connected Wind Turbines with DFIG After an External Short-Circuit Fault

    DEFF Research Database (Denmark)

    Sun, Tao; Chen, Zhe; Blaabjerg, Frede

    2004-01-01

    The fast development of wind power generation brings new requirements for wind turbine integration to the network. After the clearance of an external short-circuit fault, the grid-connected wind turbine should restore its normal operation with minimized power losses. This paper concentrates...... on transient analysis of variable speed wind turbines with doubly fed induction generator (DFIG) after an external short-circuit fault. A simulation model of a MW-level variable speed wind turbine with DFIG developed in PSCAD/EMTDC is presented, and the control and protection schemes are described in detail....... After the clearance of an external short-circuit fault the control schemes manage to restore the wind turbine?s normal operation, and their performances are demonstrated by simulation results both during the fault and after the clearance of the fault....

  6. Development of wind turbines for safe operation in alpine environments - Annual report

    Energy Technology Data Exchange (ETDEWEB)

    Barber, S.; Abhari, R.

    2009-08-15

    Many favourable sites for wind farms, particularly in the Swiss Alps, are located in cold, wet regions where the build-up of ice is a risk and therefore limits the installation of wind turbines. The aim of this work is to quantify and understand in detail the effects of blade icing on wind turbine performance and to propose mitigation strategies. The project is unique in that it is carried out using a multi-disciplinary approach that combines (1) analysis of field data, (2) controlled experiments on a sub-scale wind turbine model and (3) 3D Computational Fluid Dynamics. In part (1) the wind data and full-scale wind turbine power and icing measurements from the Alpine Test Site Guetsch over one year are analysed. Icing on the blades is estimated to cause approximately a 2% loss in Annual Energy Production (AEP). Other losses due to the particular location of the turbine in complex terrain are found to reduce the expected AEP by up to 23%. These major losses must be further investigated in controlled experiments. The analysis of photographs of ice on the blades, alongside numerical simulations, enables five ice geometries to be defined for Guetsch atmospheric conditions (altitude: 2331 m above sea level). One further 'extreme' ice shape is also defined, which is representative of ice formed on wind turbines installed at lower altitude sites such as the Berne Jura (altitude: 800 to 1500 m). In part (2), experiments are undertaken in the new sub-scale wind turbine test facility at ETH Zuerich using a novel method to quantify performance. The defined ice shapes are attached to the blades and the performance compared. The five shapes representative of the ice formed at Guetsch are found to reduce the Annual Energy Production by up to 2%. However, the 'extreme' ice shape could result in a loss in Annual Energy Production of up to 17%. Furthermore, the presence of ice on the most outboard 5% of the blade is found to be key to performance. Ice removal or

  7. Spatial mapping and attribution of Wyoming wind turbines, 2012

    Science.gov (United States)

    O'Donnell, Michael S.; Fancher, Tammy S.

    2014-01-01

    These data represent locations of wind turbines found within Wyoming as of August 2012. We assigned each wind turbine to a wind farm and, in these data, provide information about each turbine’s potential megawatt output, rotor diameter, hub height, rotor height, the status of the land ownership where the turbine exists, the county each turbine is located in, wind farm power capacity, the number of units currently associated with each wind farm, the wind turbine manufacturer and model, the wind farm developer, the owner of the wind farm, the current purchaser of power from the wind farm, the year the wind farm went online, and the status of its operation. Some of the attributes are estimates based on the information we found via the American Wind Energy Association and other on-line reports. The locations are derived from National Agriculture Imagery Program (2009 and 2012) true color aerial photographs and have a positional accuracy of approximately +/-5 meters. These data will provide a planning tool for wildlife- and habitat-related projects underway at the U.S. Geological Survey’s Fort Collins Science Center and other government and non-government organizations. Specifically, we will use these data to support quantifying disturbances of the landscape as related to wind energy as well as to quantify indirect disturbances to flora and fauna. This data set represents an update to a previous version by O’Donnell and Fancher (2010).

  8. Effects of Yaw Error on Wind Turbine Running Characteristics Based on the Equivalent Wind Speed Model

    Directory of Open Access Journals (Sweden)

    Shuting Wan

    2015-06-01

    Full Text Available Natural wind is stochastic, being characterized by its speed and direction which change randomly and frequently. Because of the certain lag in control systems and the yaw body itself, wind turbines cannot be accurately aligned toward the wind direction when the wind speed and wind direction change frequently. Thus, wind turbines often suffer from a series of engineering issues during operation, including frequent yaw, vibration overruns and downtime. This paper aims to study the effects of yaw error on wind turbine running characteristics at different wind speeds and control stages by establishing a wind turbine model, yaw error model and the equivalent wind speed model that includes the wind shear and tower shadow effects. Formulas for the relevant effect coefficients Tc, Sc and Pc were derived. The simulation results indicate that the effects of the aerodynamic torque, rotor speed and power output due to yaw error at different running stages are different and that the effect rules for each coefficient are not identical when the yaw error varies. These results may provide theoretical support for optimizing the yaw control strategies for each stage to increase the running stability of wind turbines and the utilization rate of wind energy.

  9. Wind Turbine Blade Life-Time Assessment Model for Preventive Planning of Operation and Maintenance

    Directory of Open Access Journals (Sweden)

    Mihai Florian

    2015-09-01

    Full Text Available Out of the total wind turbine failure events, blade damage accounts for a substantial part, with some studies estimating it at around 23%. Current operation and maintenance (O&M practices typically make use of corrective type maintenance as the basic approach, implying high costs for repair and replacement activities as well as large revenue losses, mainly in the case of offshore wind farms. The recent development and evolution of condition monitoring techniques, as well as the fact that an increasing number of installed turbines are equipped with online monitoring systems, offers a large amount of information on the blades structural health to the decision maker. Further, inspections of the blades are often performed in connection with service. In light of the obtained information, a preventive type of maintenance becomes feasible, with the potential of predicting the blades remaining life to support O&M decisions for avoiding major failure events. The present paper presents a fracture mechanics based model for estimating the remaining life of a wind turbine blade, focusing on the crack propagation in the blades adhesive joints. A generic crack propagation model is built in Matlab based on a Paris law approach. The model is used within a risk-based maintenance decision framework to optimize maintenance planning for the blades lifetime.

  10. Cross-Wind Modal Properties of Offshore Wind Turbines Identified by Full Scale Testing

    DEFF Research Database (Denmark)

    Damgaard, Mads; Ibsen, Lars Bo; Andersen, Lars Vabbersgaard

    2013-01-01

    -2011, the paper evaluates the first natural frequency and modal damping of the structures. In addition, fitting of theoretical energy spectra to measured response spectra of operating turbines is presented as an alternative method of determining the system damping. Analyses show distinctly time-dependent cross......Cross-wind vibrations due to wave loading misaligned with wind turbulence are often a design driver for offshore wind turbine foundations. The phenomenon is characterised by increasing fatigue loads compared to the fore-aft fatigue and a small amount of system damping since almost no aerodynamic...

  11. A Benchmark Evaluation of Fault Tolerant Wind Turbine Control Concepts

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Stoustrup, Jakob

    2015-01-01

    As the world’s power supply to a larger and larger degree depends on wind turbines, it is consequently and increasingly important that these are as reliable and available as possible. Modern fault tolerant control (FTC) could play a substantial part in increasing reliability of modern wind turbin...... accommodation is handled in software sensor and actuator blocks. This means that the wind turbine controller can continue operation as in the fault free case. The other two evaluated solutions show some potential but probably need improvements before industrial applications....

  12. Aerodynamic bases and effects of new wind turbines

    International Nuclear Information System (INIS)

    Vrsalovic, I.; Vrsalovic, I.

    2000-01-01

    Wind is a clean and renewable energy sources, however having one failure: low profitability in zones of weaker potential. However, by using a new type of wind turbine built in regulable mantle's nozzle, which replaces the free air stream of wind into into programmed i.e. regulated and partially concentrated one it is possible to generate more quantities of energy from weaker and medium winds. As a result, their efficiency will be multiplied. This article will describe and show the basic elements of aerodynamical construction, stators profiles and control blades of new wind turbines, mechanism of automatic stator regulation (beside rotor regulation) as well as modified diagram of raised medium wind speeds. power calculations and diagrams are showing that new wind turbines in nozzle, of the same diameter of rotor and at same wind speeds, due to aerodynamic activity of nozzle and 'square-cube' relation in that transformation are giving 4,3 times more electric energy than the standard types. The wind speed on rotor is raising according to square of outer diameter (dv 2 ) of stator mantle while power of new turbine in nozzle is growing with cube (v 3 ) of raised speed for normal working area. The costs of construction and operation will rise like speed according square of diameter while the production and profits, like the power, are growing with cube of raised speed. (author)

  13. Distributed Low-Complexity Controller for Wind Power Plant in Derated Operation

    DEFF Research Database (Denmark)

    Biegel, Benjamin; Madjidian, Daria; Spudic, Vedrana

    2013-01-01

    We consider a wind power plant of megawatt wind turbines operating in derated mode. When operating in this mode, the wind power plant controller is free to distribute power set-points to the individual turbines, as long as the total power demand is met. In this work, we design a controller...... that exploits this freedom to reduce the fatigue on the turbines in the wind power plant. We show that the controller can be designed in a decentralized manner, such that each wind turbine is equipped with a local low-complexity controller relying only on few measurements and little communication. As a basis...... for the controller design, a linear wind turbine model is constructed and verified in an operational wind power plant of megawatt turbines. Due to limitations of the wind power plant available for tests, it is not possible to implement the developed controller; instead the final distributed controller is evaluated...

  14. Modeling and Operational Testing of an Isolated Variable Speed PMSG Wind Turbine with Battery Energy Storage

    Directory of Open Access Journals (Sweden)

    BAROTE, L.

    2012-05-01

    Full Text Available This paper presents the modeling and operational testing of an isolated permanent magnet synchronous generator (PMSG, driven by a small wind turbine with a battery energy storage system during wind speed and load variations. The whole system is initially modeled, including the PMSG, the boost converter and the storage system. The required power for the connected loads can be effectively delivered and supplied by the proposed wind turbine and energy storage systems, subject to an appropriate control method. Energy storage devices are required for power balance and power quality in stand alone wind energy systems. The main purpose is to supply 230 V / 50 Hz domestic appliances through a single-phase inverter. The experimental waveforms, compared to the simulation results, show a good prediction of the electrical variable parameters. Furthermore, it can be seen that the results validate the stability of the supply.

  15. Small Wind Turbine Installation Compatibility Demonstration Methodology

    Science.gov (United States)

    2013-08-01

    wind turbine (HAWT) and one 2.9-kW vertical-axis wind turbine (VAWT), we planned to measure radar, acoustic and seismic, turbulence, bird and...non-issue for small turbines . The majority of studies of bat and bird interactions with wind turbines are for large turbines (BPA 2002; Whittam...et al. 2010). The majority of studies of bat and bird interactions with wind energy facil- ities are for utility-scale turbines (> 1 MW) with

  16. Flicker Mitigation by Speed Control of Permanent Magnet Synchronous Generator Variable-Speed Wind Turbines

    Directory of Open Access Journals (Sweden)

    Yanting Hu

    2013-07-01

    Full Text Available Grid-connected wind turbines are fluctuating power sources that may produce flicker during continuous operation. This paper presents a simulation model of a MW-level variable speed wind turbine with a full-scale back-to-back power converter and permanent magnet synchronous generator (PMSG developed in the simulation tool of PSCAD/EMTDC. Flicker emission of this system is investigated. The 3p (three times per revolution power oscillation due to wind shear and tower shadow effects is the significant part in the flicker emission of variable speed wind turbines with PMSG during continuous operation. A new method of flicker mitigation by controlling the rotational speed is proposed. It smoothes the 3p active power oscillations from wind shear and tower shadow effects of the wind turbine by varying the rotational speed of the PMSG. Simulation results show that damping the 3p active power oscillation by using the flicker mitigation speed controller is an effective means for flicker mitigation of variable speed wind turbines with full-scale back-to-back power converters and PMSG during continuous operation.

  17. Megawatt wind turbines gaining momentum

    International Nuclear Information System (INIS)

    Oehlenschlaeger, K.; Madsen, B.T.

    1996-01-01

    Through the short history of the modern wind turbine, electric utilities have made it amply clear that they have held a preference for large scale wind turbines over smaller ones, which is why wind turbine builders through the years have made numerous attempts develop such machines - machines that would meet the technical, aesthetic and economic demands that a customer would require. Considerable effort was put into developing such wind turbines in the early 1980s. There was the U.S. Department of Energy's MOD 1-5 program, which ranged up to 3.2 MW, Denmark's Nibe A and B, 630 kW turbine and the 2 MW Tjaereborg machine, Sweden's Naesudden, 3 MW, and Germany's Growian, 3 MW. Most of these were dismal failures, though some did show the potential of MW technology. (au)

  18. Flicker Mitigation by Speed Control of Permanent Magnet Synchronous Generator Variable-Speed Wind Turbines

    DEFF Research Database (Denmark)

    Hu, Weihao; Zhang, Yunqian; Chen, Zhe

    2013-01-01

    operation. A new method of flicker mitigation by controlling the rotational speed is proposed. It smoothes the 3p active power oscillations from wind shear and tower shadow effects of the wind turbine by varying the rotational speed of the PMSG. Simulation results show that damping the 3p active power...... oscillation by using the flicker mitigation speed controller is an effective means for flicker mitigation of variable speed wind turbines with full-scale back-to-back power converters and PMSG during continuous operation.......Grid-connected wind turbines are fluctuating power sources that may produce flicker during continuous operation. This paper presents a simulation model of a MW-level variable speed wind turbine with a full-scale back-to-back power converter and permanent magnet synchronous generator (PMSG...

  19. Wind Turbine With Concentric Ducts

    Science.gov (United States)

    Muhonen, A. J.

    1983-01-01

    Wind Turbine device is relatively compact and efficient. Converging inner and outer ducts increase pressure difference across blades of wind turbine. Turbine shaft drives alternator housed inside exit cone. Suitable for installation on such existing structures as water towers, barns, houses, and commercial buildings.

  20. Wind Turbine Acoustic Day 2018

    DEFF Research Database (Denmark)

    Mogensen, Jesper; Søndergaard, Bo; Hünerbein, Sabine Von

    The bi-annual event entitled Wind Turbine Acoustic Day dealing with wind turbine noise issues organized by DTU Wind Energy took place on May, 17th 2018 as its third edition. The abstracts and slides for the presentations are reported....

  1. Field investigation of a wake structure downwind of a VANT (Vertical-Axis Wind Turbine) in a wind farm array

    Science.gov (United States)

    Liu, H. T.; Buck, J. W.; Germain, A. C.; Hinchee, M. E.; Solt, T. S.; Leroy, G. M.; Srnsky, R. A.

    1988-09-01

    The effects of upwind turbine wakes on the performance of a FloWind 17-m vertical-axis wind turbine (VAWT) were investigated through a series of field experiments conducted at the FloWind wind farm on Cameron Ridge, Tehachapi, California. From the field measurements, we derived the velocity and power/energy deficits under various turbine on/off configurations. Much information was provided to characterize the structure of VAWT wakes and to assess their effects on the performance of downwind turbines. A method to estimate the energy deficit was developed based on the measured power deficit and the wind speed distributions. This method may be adopted for other turbine types and sites. Recommendations are made for optimizing wind farm design and operations, as well as for wind energy management.

  2. Experimental Study on New Multi-Column Tension-Leg-Type Floating Wind Turbine

    Science.gov (United States)

    Zhao, Yong-sheng; She, Xiao-he; He, Yan-ping; Yang, Jian-min; Peng, Tao; Kou, Yu-feng

    2018-04-01

    Deep-water regions often have winds favorable for offshore wind turbines, and floating turbines currently show the greatest potential to exploit such winds. This work established proper scaling laws for model tests, which were then implemented in the construction of a model wind turbine with optimally designed blades. The aerodynamic, hydrodynamic, and elastic characteristics of the proposed new multi-column tension-leg-type floating wind turbine (WindStar TLP system) were explored in the wave tank testing of a 1:50 scale model at the State Key Laboratory of Ocean Engineering at Shanghai Jiao Tong University. Tests were conducted under conditions of still water, white noise waves, irregular waves, and combined wind, wave, and current loads. The results established the natural periods of the motion, damping, motion response amplitude operators, and tendon tensions of the WindStar TLP system under different environmental conditions, and thus could serve as a reference for further research. Key words: floating wind turbine, model test, WindStar TLP, dynamic response

  3. Type IV Wind Turbine Model

    DEFF Research Database (Denmark)

    Hansen, Anca Daniela; Margaris, Ioannis D.

    . In the project, this wind turbine model will be further incorporated in a wind power plant model together with the implementation in the wind power control level of the new control functionalities (inertial response, synchronising power and power system damping). For this purpose an aggregate wind power plant......This document is created as part of the EaseWind project. The goal of this project is to develop and investigate new control features for primary response provided by wind power plants. New control features as inertial response, synchronising power and power system damping are of interest to EaseWind...... project to be incorporated in the wind power plant level. This document describes the Type 4 wind turbine simulation model, implemented in the EaseWind project. The implemented wind turbine model is one of the initial necessary steps toward integrating new control services in the wind power plant level...

  4. Reliability Assessment and Energy Loss Evaluation for Modern Wind Turbine Systems

    DEFF Research Database (Denmark)

    Zhou, Dao

    . The cost of energy in wind turbine system is then addressed in Chapter 5, where different wind classes and operation modes of the reactive power injection are taken into account. Finally, the internal and external challenges for power converters in the DFIG systems to ride through balanced grid faults......With a steady increase of the wind power penetration, the demands to the wind power technology are becoming the same as those to the conventional energy sources. In order to fulfill the requirements, power electronics technology is the key for the modern wind turbine systems – both the Doubly...... to explore the reliability and cost of energy in the modern wind turbine systems. Moreover, advanced control strategies have been proposed and developed for an efficient and reliable operation during the normal condition as well as under grid faults. The documented thesis starts with the descriptions...

  5. Cost optimization of wind turbines for large-scale offshore wind farms

    International Nuclear Information System (INIS)

    Fuglsang, P.; Thomsen, K.

    1998-02-01

    This report contains a preliminary investigation of site specific design of off-shore wind turbines for a large off-shore wind farm project at Roedsand that is currently being proposed by ELKRAFT/SEAS. The results were found using a design tool for wind turbines that involve numerical optimization and aeroelastic calculations of response. The wind climate was modeled in detail and a cost function was used to estimate costs from manufacture and installation. Cost of energy is higher for off-shore installations. A comparison of an off-shore wind farm site with a typical stand alone on-shore site showed an increase of the annual production of 28% due to the difference in wind climate. Extreme loads and blade fatigue loads were nearly identical, however,fatigue loads on other main components increased significantly. Optimizations were carried out to find the optimum overall off-shore wind turbine design. A wind turbine for the off-shore wind farm should be different compared with a stand-alone on-shore wind turbine. The overall design changed were increased swept area and rated power combined with reduced rotor speed and tower height. Cost was reduced by 12% for the final 5D/14D off-shore wind turbine from 0.306 DKr/kWh to 0.270 DKr/kWh. These figures include capital costs from manufacture and installation but not on-going costs from maintenance. These results make off-shore wind farms more competitive and comparable to the reference on-shore stand-alone wind turbine. A corresponding reduction of cost of energy could not be found for the stand alone on-shore wind turbine. Furthermore the fatigue loads on wind turbines in on-shore wind farms will increase and cost of energy will increase in favor of off-shore wind farms. (au) EFP-95; EU-JOULE-3; 21 tabs., 7 ills., 8 refs

  6. Wind power production: from the characterisation of the wind resource to wind turbine technologies

    International Nuclear Information System (INIS)

    Beslin, Guy; Multon, Bernard

    2016-01-01

    Illustrated by graphs and tables, this article first describes the various factors and means related to the assessment of wind resource in the World, in Europe, and the factors which characterize a local wind resource. In this last respect, the authors indicate how local topography is taken into account to calculate wind speed, how time variations are taken into account (at the yearly, seasonal or daily level), the different methods used to model a local wind resource, how to assess the power recoverable by a wind turbine with horizontal axis (notion of Betz limit). In the second part, the authors present the different wind turbines, their benefits and drawbacks: vertical axis, horizontal axis (examples of a Danish-type wind turbine, of wind turbines designed for extreme conditions). Then, they address the technology of big wind turbines: evolution of technology and of commercial offer, aerodynamic characteristics of wind turbine and benefit of a varying speed (technological solutions, importance of the electric generator). They describe how to choose a wind turbine, how product lines are organised, how the power curve and energy capacity are determined. The issue of integration of wind energy into the power system is then addressed. The next part addressed the economy of wind energy production (annualized production cost, order of magnitude of wind electric power production cost). Future trends are discussed and offshore wind energy production is briefly addressed

  7. Wind Turbine Tribology Seminar - A Recap

    Energy Technology Data Exchange (ETDEWEB)

    Errichello, R.; Sheng, S.; Keller, J.; Greco, A.

    2012-02-01

    Tribology is the science and engineering of interacting surfaces in relative motion. It includes the study and application of the principles of friction, lubrication, and wear. It is an important phenomenon that not only impacts the design and operation of wind turbine gearboxes, but also their subsequent maintenance requirements and overall reliability. With the major growth and increasing dependency on renewable energy, mechanical reliability is an extremely important issue. The Wind Turbine Tribology Seminar was convened to explore the state-of-the-art in wind turbine tribology and lubricant technologies, raise industry awareness of a very complex topic, present the science behind each technology, and identify possible R&D areas. To understand the background of work that had already been accomplished, and to consolidate some level of collective understanding of tribology by acknowledged experts, the National Renewable Energy Laboratory (NREL), Argonne National Laboratory (ANL), and the U.S. Department of Energy (DOE) hosted a wind turbine tribology seminar. It was held at the Renaissance Boulder Flatiron Hotel in Broomfield, Colorado on November 15-17, 2011. This report is a summary of the content and conclusions. The presentations given at the meeting can be downloaded. Interested readers who were not at the meeting may wish to consult the detailed publications listed in the bibliography section, obtain the cited articles in the public domain, or contact the authors directly.

  8. Torque- and Speed Control of a Pitch Regulated Wind Turbine

    Energy Technology Data Exchange (ETDEWEB)

    Rasila, Mika

    2003-07-01

    Variable speed operated wind turbines has the potential to reduce fatigue loads, compared to fixed speed wind turbines. With pitch controllable rotor blades limitation of the power at high wind speeds is obtained. The thesis describes different controlling aspects concerning wind turbines and how these together can be used to optimize the system's performance. Torque control is used in order to achieve reduction on the mechanical loads on the drive-train for low wind speeds and limitation of power output for high wind speeds. In the high wind speed interval torque control is effective in order to limit the output power if a sufficiently fast pitch actuator is used. In the middle wind speed interval filter utilization can be used to give a reference signal to the controller in order to reduce speed and torque variations.

  9. Controls of Hydraulic Wind Turbine

    Directory of Open Access Journals (Sweden)

    Zhang Yin

    2016-01-01

    Full Text Available In this paper a hydraulic wind turbine generator system was proposed based on analysis the current wind turbines technologies. The construction and principles were introduced. The mathematical model was verified using MATLAB and AMsim. A displacement closed loop of swash plate of motor and a speed closed loop of generator were setup, a PID control is introduced to maintain a constant speed and fixed frequency at wind turbine generator. Simulation and experiment demonstrated that the system can connect grid to generate electric and enhance reliability. The control system demonstrates a high performance speed regulation and effectiveness. The results are great significant to design a new type hydraulic wind turbine system.

  10. Probabilistic Design of Wind Turbines

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Toft, H.S.

    2010-01-01

    Probabilistic design of wind turbines requires definition of the structural elements to be included in the probabilistic basis: e.g., blades, tower, foundation; identification of important failure modes; careful stochastic modeling of the uncertain parameters; recommendations for target reliability....... It is described how uncertainties in wind turbine design related to computational models, statistical data from test specimens, results from a few full-scale tests and from prototype wind turbines can be accounted for using the Maximum Likelihood Method and a Bayesian approach. Assessment of the optimal...... reliability level by cost-benefit optimization is illustrated by an offshore wind turbine example. Uncertainty modeling is illustrated by an example where physical, statistical and model uncertainties are estimated....

  11. Wind Turbine Generator System Safety and Function Test Report for the Entegrity EW50 Wind Turbine

    Energy Technology Data Exchange (ETDEWEB)

    Smith, J.; Huskey, A.; Jager, D.; Hur, J.

    2012-11-01

    This report summarizes the results of a safety and function test that NREL conducted on the Entegrity EW50 wind turbine. This test was conducted in accordance with the International Electrotechnical Commissions' (IEC) standard, Wind Turbine Generator System Part 2: Design requirements for small wind turbines, IEC 61400-2 Ed.2.0, 2006-03.

  12. Prognostics and Health Management of Wind Turbines -- Current Status and Future Opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, Shuangwen

    2017-04-28

    The global wind industry has seen tremendous growth during the past two decades. However, the industry is challenged by premature component failures, which lead to increased turbine downtime and subsequently, cost of energy for wind power. To mitigate the impacts from these failures, the wind industry has been exploring various areas for improvements ranging from product design, new materials or lubricants, to operation and maintenance (O&M) practices. Condition-based maintenance or prognostics and health management (PHM) has been explored as one enabling technology for improving O&M practices. This chapter provides a brief overview of wind turbine PHM with a focus on operational data mining and condition monitoring of drivetrains. Some future research and development opportunities in wind turbine PHM are also briefly discussed.

  13. Lightning protection of wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Soerensen, T; Brask, M H [DEFU (Denmark); Jensen, F V; Raben, N [SEAS (Denmark); Saxov, J [Nordjyllandsvaerket (Denmark); Nielsen, L [Vestkraft (Denmark); Soerensen, P E [Risoe National Lab. (Denmark)

    1999-03-01

    Lightning damage to wind turbines is a serious problem for Danish power companies, who have experienced some cases with very costly lightning damage and a large number of cases with minor damage. The most costly cases include one catastrophic damage to an entire wind turbine, and several cases of destruction of blades, main bearings, generators and control systems. Over the years there have been several hundreds of cases with minor damage - typically damage and interruptions of the control and communication systems, or the power systems. The Danish power companies anticipate that the lightning threat will be even bigger for the large off-shore wind turbine installations that are currently being planned in Denmark. Furthermore, it is known from the off-shore wind turbines at Vindeby in Denmark that the costs of inspection and particularly repair work must be expected to be much higher off-shore as compared to wind turbines on land. These considerations was the background for a two year project concerned with investigation of lighting damages and with the formulation of a DEFU Recommendation for lightning protection of wind turbines, which was published in January 1999. The project was funded by the Danish power companies Elsam, Eltra, Elkraft and by DEFU. (au)

  14. National Renewable Energy Laboratory program on lightning risk and wind turbine generator protection

    Energy Technology Data Exchange (ETDEWEB)

    Muljadi, E. [National Renewable Energy Lab., Golden, CO (United States); McNiff, B. [McNiff Light Industry, Blue Hill, ME (United States)

    1997-12-31

    In the early development of wind turbine generators (WTG) in the United States, wind farms were primarily located in California where lightning activity is the lowest in the United States. As such, lightning protection for wind turbines was not considered to be a major issue for designers or wind farm operators. However, wind turbine installations are expanding into the Midwest, Southwest and other regions of the United States where lightning activity is significantly more intense and lightning damage to wind turbines is more common. There is a growing need, therefore, to better understand lightning activity on wind farms and to improve wind turbine lightning protection systems. In support of the U.S. Department of Energy/Electric Power Research Institute (DOE/EPRI) Utility Wind Turbine Verification Program (TVP), the National Renewable Energy Laboratory (NREL) has recently begun to take steps to determine the extent of damage due to lightning and the effectiveness of various lightning protection techniques for wind power plants. Working through the TVP program, NREL will also perform outreach and education to (1) help manufacturers to provide equipment that is adequately designed to survive lightning, (2) make sure that operators are aware of effective safety procedures, and (3) help site designers and wind farm developers take the risk of lightning into account as effectively as possible.

  15. Advances in wind turbine blade design and materials

    DEFF Research Database (Denmark)

    Wind energy is gaining critical ground in the area of renewable energy, with wind energy being predicted to provide up to 8% of the world’s consumption of electricity by 2021. Advances in wind turbine blade design and materials reviews the design and functionality of wind turbine rotor blades...... as well as the requirements and challenges for composite materials used in both current and future designs of wind turbine blades. Part one outlines the challenges and developments in wind turbine blade design, including aerodynamic and aeroelastic design features, fatigue loads on wind turbine blades......, and characteristics of wind turbine blade airfoils. Part two discusses the fatigue behavior of composite wind turbine blades, including the micromechanical modelling and fatigue life prediction of wind turbine blade composite materials, and the effects of resin and reinforcement variations on the fatigue resistance...

  16. Voltage Recovery of Grid-Connected Wind Turbines with DFIG After a Short-Circuit Fault

    DEFF Research Database (Denmark)

    Sun, Tao; Chen, Zhe; Blaabjerg, Frede

    2004-01-01

    The fast development of wind power generation brings new requirements for wind turbine integration to the network. After clearance of an external short-circuit fault, the voltage at the wind turbine terminal should be re-established with minimized power losses. This paper concentrates on voltage......-establish the wind turbine terminal voltage after the clearance of an external short-circuit fault, and the restore the normal operation of the variable speed wind turbine with DFIG, which has been demonstrated by simulation results....

  17. Study on Actuator Line Modeling of Two NREL 5-MW Wind Turbine Wakes

    Directory of Open Access Journals (Sweden)

    Ziying Yu

    2018-03-01

    Full Text Available The wind turbine wakes impact the efficiency and lifespan of the wind farm. Therefore, to improve the wind plant performance, research on wind plant control is essential. The actuator line model (ALM is proposed to simulate the wind turbine efficiently. This research investigates the National Renewable Energy Laboratory 5 Million Watts (NREL 5-MW wind turbine wakes with Open Field Operation and Manipulation (OpenFOAM using ALM. Firstly, a single NREL 5-MW turbine is simulated. The comparison of the power and thrust with Fatigue, Aerodynamics, Structures, and Turbulence (FAST shows a good agreement below the rated wind speed. The information relating to wind turbine wakes is given in detail. The top working status is proved at the wind speed of 8 m/s and the downstream distance of more than 5 rotor diameters (5D. Secondly, another case with two NREL 5-MW wind turbines aligned is also carried out, in which 7D is validated as the optimum distance between the two turbines. The result also shows that the upstream wind turbine has an obvious influence on the downstream one.

  18. A practical approach to fracture analysis at the trailing edge of wind turbine rotor blades

    DEFF Research Database (Denmark)

    Eder, Martin Alexander; Bitsche, Robert; Nielsen, Magda

    2014-01-01

    Wind turbine rotor blades are commonly manufactured from composite materials by a moulding process. Typically, the wind turbine blade is produced in two halves, which are eventually adhesively joined along their edges. Investigations of operating wind turbine blades show that debonding...

  19. Wind turbine power tracking using an improved multimodel quadratic approach.

    Science.gov (United States)

    Khezami, Nadhira; Benhadj Braiek, Naceur; Guillaud, Xavier

    2010-07-01

    In this paper, an improved multimodel optimal quadratic control structure for variable speed, pitch regulated wind turbines (operating at high wind speeds) is proposed in order to integrate high levels of wind power to actively provide a primary reserve for frequency control. On the basis of the nonlinear model of the studied plant, and taking into account the wind speed fluctuations, and the electrical power variation, a multimodel linear description is derived for the wind turbine, and is used for the synthesis of an optimal control law involving a state feedback, an integral action and an output reference model. This new control structure allows a rapid transition of the wind turbine generated power between different desired set values. This electrical power tracking is ensured with a high-performance behavior for all other state variables: turbine and generator rotational speeds and mechanical shaft torque; and smooth and adequate evolution of the control variables. 2010 ISA. Published by Elsevier Ltd. All rights reserved.

  20. Small power wind turbine (Type DARRIEUS

    Directory of Open Access Journals (Sweden)

    Marcel STERE

    2012-03-01

    Full Text Available This presentation focuses on the calculation for small vertical axis wind turbines (VAWT for an urban application. The fixed-pitch straight – bladed vertical axis wind turbine (SB-VAWT is one of the simplest types of wind turbine and accepts wind from any angle (no yaw system. This turbine is useful for moderate wind speeds (3 - 6 m/s. A case study is presented based upon the use of well documented symmetrical NACA 0012 turbine blade profile. We describe a solution for VAWT. To perform a linear static analysis in the structure, the commercial finite element analysis code ANSYS is used because of its flexibility for handling information in files written in a more or less free format.

  1. Integrated installation for offshore wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Way, J.; Bowerman, H.

    2003-07-01

    A project to investigate the feasibility of integrating the offshore installation of foundation, turbine and tower for offshore wind turbines into one operation is described. Three separate objectives are listed. They are: (1) Telescopic tower study - reversible process incorporating lift and lock mechanisms; (2) Transportation study - technical and economic feasibility of transporting and installing a wind turbine unit via a standard barge with minimal conversion and (3) Self-burial system study - to demonstrate the feasibility of self burial of a slab foundation via controlled jetting beneath the slab. The background to the study and the proposed concepts are discussed. The work carried out to date and the costs are reported together with the findings. Recommendations for future work are listed. The work was carried out by Corus UK Ltd and is managed by Future Energy Solutions for the DTI.

  2. Noise from wind turbines

    International Nuclear Information System (INIS)

    Andersen, B.; Jakobsen, J.

    1992-11-01

    Based on a previous project concerning the calculation of the amount of noise emanating from wind turbine arrays, this one examines the subject further by investigating whether there could be significant differences in the amount of noise made by individual wind turbines in an array, and whether the noise is transmitted in varying directions - so that when it is carried in the same direction as the wind blows it would appear to be louder. The aim was also to determine whether the previously used method of calculation lacked precision. It was found that differences in noise niveaux related to individual wind turbines were insignificant and that noise was not so loud when it was not borne in the direction of the wind. It was necessary to change the method of calculation as reckoning should include the influence of the terrain, wind velocity and distance. The measuring and calculation methods are exemplified and the resulting measurements are presented in detail. (AB)

  3. Wind speed reductions by large-scale wind turbine deployments lower turbine efficiencies and set low wind power potentials

    Science.gov (United States)

    Miller, Lee; Kleidon, Axel

    2017-04-01

    Wind turbines generate electricity by removing kinetic energy from the atmosphere. Large numbers of wind turbines are likely to reduce wind speeds, which lowers estimates of electricity generation from what would be presumed from unaffected conditions. Here, we test how well wind power potentials that account for this effect can be estimated without explicitly simulating atmospheric dynamics. We first use simulations with an atmospheric general circulation model (GCM) that explicitly simulates the effects of wind turbines to derive wind power limits (GCM estimate), and compare them to a simple approach derived from the climatological conditions without turbines [vertical kinetic energy (VKE) estimate]. On land, we find strong agreement between the VKE and GCM estimates with respect to electricity generation rates (0.32 and 0.37 We m-2) and wind speed reductions by 42 and 44%. Over ocean, the GCM estimate is about twice the VKE estimate (0.59 and 0.29 We m-2) and yet with comparable wind speed reductions (50 and 42%). We then show that this bias can be corrected by modifying the downward momentum flux to the surface. Thus, large-scale limits to wind power can be derived from climatological conditions without explicitly simulating atmospheric dynamics. Consistent with the GCM simulations, the approach estimates that only comparatively few land areas are suitable to generate more than 1 We m-2 of electricity and that larger deployment scales are likely to reduce the expected electricity generation rate of each turbine. We conclude that these atmospheric effects are relevant for planning the future expansion of wind power.

  4. The Effect of Wind-Turbine Wakes on Summertime US Midwest Atmospheric Wind Profiles as Observed with Ground-Based Doppler Lidar

    Science.gov (United States)

    Rhodes, Michael E.; Lundquist, Julie K.

    2013-07-01

    We examine the influence of a modern multi-megawatt wind turbine on wind and turbulence profiles three rotor diameters (D) downwind of the turbine. Light detection and ranging (lidar) wind-profile observations were collected during summer 2011 in an operating wind farm in central Iowa at 20-m vertical intervals from 40 to 220 m above the surface. After a calibration period during which two lidars were operated next to each other, one lidar was located approximately 2D directly south of a wind turbine; the other lidar was moved approximately 3D north of the same wind turbine. Data from the two lidars during southerly flow conditions enabled the simultaneous capture of inflow and wake conditions. The inflow wind and turbulence profiles exhibit strong variability with atmospheric stability: daytime profiles are well-mixed with little shear and strong turbulence, while nighttime profiles exhibit minimal turbulence and considerable shear across the rotor disk region and above. Consistent with the observations available from other studies and with wind-tunnel and large-eddy simulation studies, measurable reductions in wake wind-speeds occur at heights spanning the wind turbine rotor (43-117 m), and turbulent quantities increase in the wake. In generalizing these results as a function of inflow wind speed, we find the wind-speed deficit in the wake is largest at hub height or just above, and the maximum deficit occurs when wind speeds are below the rated speed for the turbine. Similarly, the maximum enhancement of turbulence kinetic energy and turbulence intensity occurs at hub height, although observations at the top of the rotor disk do not allow assessment of turbulence in that region. The wind shear below turbine hub height (quantified here with the power-law coefficient) is found to be a useful parameter to identify whether a downwind lidar observes turbine wake or free-flow conditions. These field observations provide data for validating turbine-wake models and wind

  5. Modeling and control of PMSG-based variable-speed wind turbine

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hong-Woo; Ko, Hee-Sang [Wind Energy Research Center, Korea Institute of Energy Research, Yuseong-gu Jang-Dong 71-2,305-343 Daejeon (Korea); Kim, Sung-Soo [Chungbuk National University (Korea)

    2010-01-15

    This paper presents a control scheme of a variable-speed wind turbine with a permanent-magnetic synchronous generator (PMSG) and full-scale back-to-back voltage source converter. A comprehensive dynamical model of the PMSG wind turbine and its control scheme is presented. The control scheme comprises both the wind-turbine control itself and the power-converter control. In addition, since the PMSG wind turbine is able to support actively the grid due to its capability to control independently active and reactive power production to the imposed set-values with taking into account its operating state and limits, this paper presents the supervisory reactive power control scheme in order to regulate/contribute the voltage at a remote location. The ability of the control scheme is assessed and discussed by means of simulations, based on a candidate site of the offshore wind farm in Jeju, Korea. (author)

  6. Application of model predictive control for optimal operation of wind turbines

    Science.gov (United States)

    Yuan, Yuan; Cao, Pei; Tang, J.

    2017-04-01

    For large-scale wind turbines, reducing maintenance cost is a major challenge. Model predictive control (MPC) is a promising approach to deal with multiple conflicting objectives using the weighed sum approach. In this research, model predictive control method is applied to wind turbine to find an optimal balance between multiple objectives, such as the energy capture, loads on turbine components, and the pitch actuator usage. The actuator constraints are integrated into the objective function at the control design stage. The analysis is carried out in both the partial load region and full load region, and the performances are compared with those of a baseline gain scheduling PID controller. The application of this strategy achieves enhanced balance of component loads, the average power and actuator usages in partial load region.

  7. Does noise from wind turbines change due to age?

    International Nuclear Information System (INIS)

    Andersen, B.; Jakobsen, J.

    1995-06-01

    It has been discussed whether the noise from a wind turbine increases due to wear of the mechanical parts or to pollution of the rotor blades. If this is so it should be taken into consideration at the design stage. The noise from wind turbines that had been measured several years before was measured again, and results were compared. A number of modifications of the same wind turbine was made throughout a period of two years during which noise was measured several times. No evidence that noise increases in accordance with the age of the windmill was found. A 75 kW wind turbine seems to have an unchanged A-weighted source strength L WA after a period of 6 years. The level of the tones in the noise from the large generator engaged had increased slightly. The noise from operation of the small generator showed a pronounced increase of one tone (approximately 10 dB), while two other tones were largely unchanged. In the case of periodic measurements of the noise from a 300 kW wind turbine, the gearbox tone noise was found to change markedly, without any obvious pattern. The large, apparently random, fluctuations mask any tendency towards changes of the tone level with time. Repeated measurements of four identical 100 kW wind turbines, show a general tendency towards an increase of the A-weighted source strength (L WA ). The increase of L WA between 1 and 2.7 dB, was found mainly in the frequency range 800 Hz to 3 kHz. The level of the third octave band, which includes a weak gearbox tone (315 Hz), seemed unchanged. Other measurements indicate a constant level of noise during the first three years of operation. (AB)

  8. Market for wind turbines in italy

    International Nuclear Information System (INIS)

    1997-01-01

    Wind power utilization in Italy has not been very popular until the privatization of the ENEL and introduction of subsidies for private electricity producers. The greatest interest is concentrated around large wind turbines. Therefore the Danish manufacturers with know-how within large wind turbines can establish themselves on the Italian market. Cooperation with one of the four local wind turbine manufacturers is advisable. (EG)

  9. Modelling of a PMSG Wind Turbine with Autonomous Control

    Directory of Open Access Journals (Sweden)

    Chia-Nan Wang

    2014-01-01

    Full Text Available The aim of this research is to model an autonomous control wind turbine driven permanent magnetic synchronous generator (PMSG which feeds alternating current (AC power to the utility grid. Furthermore, this research also demonstrates the effects and the efficiency of PMSG wind turbine which is integrated by autonomous controllers. In order for well autonomous control, two voltage source inverters are used to control wind turbine connecting with the grid. The generator-side inverter is used to adjust the synchronous generator as well as separating the generator from the grid when necessary. The grid-side inverter controls the power flow between the direct current (DC bus and the AC side. Both of them are oriented control by space vector pulse width modulation (PWM with back-to-back frequency inverter. Moreover, the proportional-integral (PI controller is enhanced to control both of the inverters and the pitch angle of the wind turbine. Maximum power point tracking (MPPT is integrated in generator-side inverter to track the maximum power, when wind speed changes. The simulation results in Matlab Simulink 2012b showing the model have good dynamic and static performance. The maximum power can be tracked and the generator wind turbine can be operated with high efficiency.

  10. Mitigating the negative impacts of tall wind turbines on bats: Vertical activity profiles and relationships to wind speed.

    Science.gov (United States)

    Wellig, Sascha D; Nusslé, Sébastien; Miltner, Daniela; Kohle, Oliver; Glaizot, Olivier; Braunisch, Veronika; Obrist, Martin K; Arlettaz, Raphaël

    2018-01-01

    Wind turbines represent a source of hazard for bats, especially through collision with rotor blades. With increasing technical development, tall turbines (rotor-swept zone 50-150 m above ground level) are becoming widespread, yet we lack quantitative information about species active at these heights, which impedes proposing targeted mitigation recommendations for bat-friendly turbine operation. We investigated vertical activity profiles of a bat assemblage, and their relationships to wind speed, within a major valley of the European Alps where tall wind turbines are being deployed. To monitor bat activity we installed automatic recorders at sequentially increasing heights from ground level up to 65 m, with the goal to determine species-specific vertical activity profiles and to link them to wind speed. Bat call sequences were analysed with an automatic algorithm, paying particular attention to mouse-eared bats (Myotis myotis and Myotis blythii) and the European free-tailed bat (Tadarida teniotis), three locally rare species. The most often recorded bats were the Common pipistrelle (Pipistrellus pipistrellus) and Savi's pipistrelle (Hypsugo savii). Mouse-eared bats were rarely recorded, and mostly just above ground, appearing out of risk of collision. T. teniotis had a more evenly distributed vertical activity profile, often being active at rotor level, but its activity at that height ceased above 5 ms-1 wind speed. Overall bat activity in the rotor-swept zone declined with increasing wind speed, dropping below 5% above 5.4 ms-1. Collision risk could be drastically reduced if nocturnal operation of tall wind turbines would be restricted to wind speeds above 5 ms-1. Such measure should be implemented year-round because T. teniotis remains active in winter. This operational restriction is likely to cause only small energy production losses at these tall wind turbines, although further analyses are needed to assess these losses precisely.

  11. Wind lens technology and its application to wind and water turbine and beyond

    Directory of Open Access Journals (Sweden)

    Ohya Yuji

    2017-01-01

    Full Text Available Wind lens is a new type of wind power system consisting of a simple brimmed ring structure that surrounds the rotor causing greater wind to pass through the turbine. As a consequence, the turbine's efficiency of capturing energy from the wind gets dramatically increased. A Wind lens turbine can generate 2–5 times the power of an existing wind turbine given at the same rotor diameter and incoming wind speed. This fluid dynamical effect is also effective in the water. We have developed 1–3 kW Wind lens turbines and a 100 kW Wind lens turbine. In addition to the enhanced output power, Wind lens turbine is quiet. The technology is now used in an offshore experiment with a hexagonal float 18 meters in diameter set off the coast of Hakata Bay in Fukuoka City. Moreover, we are now pursuing larger size Wind lens turbines through multi-rotor design consisting of multiple Wind lens turbines in a same vertical plane to embody larger total power output.

  12. Overview and Design of self-acting pitch control mechanism for vertical axis wind turbine using multi body simulation approach

    DEFF Research Database (Denmark)

    Chougule, Prasad; Nielsen, Søren R.K.

    2014-01-01

    Awareness about wind energy is constantly growing in the world. Especially a demand for small scale wind turbine is increasing and various products are available in market. There are mainly two types of wind turbines, horizontal axis wind turbine and vertical axis wind turbines. Horizontal axis...... wind turbines are suitable for high wind speed whereas vertical axis wind turbines operate relatively low wind speed area. Vertical axis wind turbines are cost effective and simple in construction as compared to the horizontal axis wind turbine. However, vertical axis wind turbines have inherent...

  13. Noise annoyance from wind turbines a review

    International Nuclear Information System (INIS)

    Pedersen, Eja

    2003-08-01

    This study summarises present knowledge on noise perception and annoyances from wind turbines in areas were people live or spend recreation time. There are two main types of noise from a wind turbine: mechanical noise and aerodynamic noise. The aerodynamic noise emits from the rotor blades passing the air. It has a swishing character with a modulation that makes it noticeable from the background noise. This part of the wind turbine noise was found to be the most annoying. Field studies performed among people living in the vicinity of wind turbines showed that there was a correlation between sound pressure level and noise annoyance, but annoyance was also influenced by visual factors such as the attitude to wind turbines' impact on the landscape. Noise annoyance was found at lower sound pressure levels than in studies of annoyance from traffic noise. There is no scientific evidence that noise at levels created by wind turbines could cause health problems other than annoyance. No studies on noise from wind turbines in wilderness areas have been found, but the reaction to other noise sources such as aircraft have been studied. In recreational areas, the expectation of quietness is high among visitors, but wind turbines are, in contrary to aircraft, stationary and could be avoided by recreationists. The visual impact of wind turbines might though be the dominant source of annoyance. Regulations on noise from wind turbines are based on different principles. Some states, e.g. Denmark, have a special legislation concerning wind turbines, while others, like Sweden, have used recommendations originally developed for a different noise source. The noise level could either be absolute, as in Germany, or related to the background noise level as in France. This background noise level could be standardised, measured or related to wind speed

  14. Vertical axis wind turbine

    International Nuclear Information System (INIS)

    Obretenov, V.; Tsalov, T.; Chakarov, T.

    2012-01-01

    In recent years, the interest in wind turbines with vertical axis noticeably increased. They have some important advantages: low cost, relatively simple structure, reliable packaging system of wind aggregate long period during which require no maintenance, low noise, independence of wind direction, etc.. The relatively low efficiency, however, makes them applicable mainly for small facilities. The work presents a methodology and software for approximately aerodynamic design of wind turbines of this type, and also analyzed the possibility of improving the efficiency of their workflow

  15. Sound wave contours around wind turbine arrays

    International Nuclear Information System (INIS)

    Van Beek, A.; Van Blokland, G.J.

    1993-02-01

    Noise pollution is an important factor in selecting suitable sites for wind turbines in order to realize 1000 MW of wind power as planned by the Dutch government for the year 2000. Therefore an accurate assessment of wind turbine noise is important. The amount of noise pollution from a wind turbine depends on the wind conditions. An existing standard method to assess wind turbine noise is supplemented and adjusted. In the first part of the investigation the method was developed and applied for a solitary sound source. In the second part attention is paid to the use of the method for wind turbine arrays. It appears that the adjusted method results in a shift of the contours of the permitted noise level. In general the contours are 15-25% closer to the wind farm, which means that the minimal permitted distance between houses and wind turbine arrays can be reduced. 14 figs., 1 tab., 4 appendices, 7 refs

  16. Introduction to wind turbine aerodynamics

    CERN Document Server

    Schaffarczyk, Alois Peter

    2014-01-01

    Wind-Turbine Aerodynamics is a self-contained textbook which shows how to come from the basics of fluid mechanics to modern wind turbine blade design. It presents a fundamentals of fluid dynamics and inflow conditions, and gives a extensive introduction into theories describing the aerodynamics of wind turbines. After introducing experiments the book applies the knowledge to explore the impact on blade design.The book is an introduction for professionals and students of very varying levels.

  17. A Survey of Control Issues in PMSG-Based Small Wind-Turbine Systems

    DEFF Research Database (Denmark)

    Orlando, Natalia Angela; Liserre, Marco; Mastromauro, Rosa Anna

    2013-01-01

    /position estimation, pitch control, braking chopper control, dc/dc converter control, and grid converter control. Specific issues for small wind-turbines arise in the wind energy extraction optimization and limitation and in the innovative concept of “universal” wind-turbine operation, that leads these system...... generators directly connected to the grid, while recently permanent magnet synchronous generators (PMSG) with power converter, either partially or fully controlled, became popular. This paper reviews the control issues related to these small wind-turbine systems: generator torque control, speed...

  18. Wind Turbine Generator Modeling and Simulation Where Rotational Speed is the Controlled Variable

    DEFF Research Database (Denmark)

    Mihet-Popa, Lucian; Blaabjerg, Frede; Boldea, Ion

    2004-01-01

    the interaction between a wind turbine and the power system. The model is intended to simulate the behaviour of the wind turbine using induction generators both during normal operation. Sample simulation results for two induction generators (2/0.5 MW) validate the fundamental issues.......To optimise the power produced in a wind turbine, the speed of the turbine should vary with the wind speed. A simple control method is proposed that will allow an induction machine to run a turbine at its maximum power coefficient. Various types of power control strategies have been suggested...... for application in variable speed wind turbines. The usual strategy is to control the power or the torque acting on the wind turbine shafts. This paper presents an alternative control strategy, where the rotational speed is the controlled variable. The paper describes a model, which is being developed to simulate...

  19. Wind distribution and capacity factor estimation for wind turbines in the coastal region of South Africa

    International Nuclear Information System (INIS)

    Ayodele, T.R.; Jimoh, A.A.; Munda, J.L.; Agee, J.T.

    2012-01-01

    Highlights: ► We evaluate capacity factor of some commercially available wind turbines. ► Wind speed in the sites studied can best be modelled using Weibull distribution. ► Site WM05 has the highest wind power potential while site WM02 has the lowest. ► More wind power can be harnessed during the day period compared to the night. ► Turbine K seems to be the best turbine for the coastal region of South Africa. - Abstract: The operating curve parameters of a wind turbine should match the local wind regime optimally to ensure maximum exploitation of available energy in a mass of moving air. This paper provides estimates of the capacity factor of 20 commercially available wind turbines, based on the local wind characteristics of ten different sites located in the Western Cape region of South Africa. Ten-min average time series wind-speed data for a period of 1 year are used for the study. First, the wind distribution that best models the local wind regime of the sites is determined. This is based on root mean square error (RMSE) and coefficient of determination (R 2 ) which are used to test goodness of fit. First, annual, seasonal, diurnal and peak period-capacity factor are estimated analytically. Then, the influence of turbine power curve parameters on the capacity factor is investigated. Some of the key results show that the wind distribution of the entire site can best be modelled statistically using the Weibull distribution. Site WM05 (Napier) presents the highest capacity factor for all the turbines. This indicates that this site has the highest wind power potential of all the available sites. Site WM02 (Calvinia) has the lowest capacity factor i.e. lowest wind power potential. This paper can assist in the planning and development of large-scale wind power-generating sites in South Africa.

  20. Cooperative wind turbine control for maximizing wind farm power using sequential convex programming

    International Nuclear Information System (INIS)

    Park, Jinkyoo; Law, Kincho H.

    2015-01-01

    Highlights: • The continuous wake model describes well the wake profile behind a wind turbine. • The wind farm power function describes well the power production of a wind farm. • Cooperative control increases the wind farm power efficiency by 7.3% in average. • SCP can be employed to efficiently optimize the control actions of wind turbines. - Abstract: This paper describes the use of a cooperative wind farm control approach to improve the power production of a wind farm. The power production by a downstream wind turbine can decrease significantly due to reduced wind speed caused by the upstream wind turbines, thereby lowering the overall wind farm power production efficiency. In spite of the interactions among the wind turbines, the conventional (greedy) wind turbine control strategy tries to maximize the power of each individual wind turbine by controlling its yaw angle, its blade pitch angle and its generator torque. To maximize the overall wind farm power production while taking the wake interference into account, this study employs a cooperative control strategy. We first derive the wind farm power as a differentiable function of the control actions for the wind turbines in a wind farm. The wind farm power function is then maximized using sequential convex programming (SCP) to determine the optimum coordinated control actions for the wind turbines. Using an example wind farm site and available wind data, we show how the cooperative control strategy improves the power production of the wind farm

  1. Reliability Assessment of Solder Joints in Power Electronic Modules by Crack Damage Model for Wind Turbine Applications

    DEFF Research Database (Denmark)

    Kostandyan, Erik; Sørensen, John Dalsgaard

    2011-01-01

    Wind turbine reliability is an important issue for wind energy cost minimization, especially by reduction of operation and maintenance costs for critical components and by increasing wind turbine availability. To develop an optimal operation and maintenance plan for critical components, it is nec......Wind turbine reliability is an important issue for wind energy cost minimization, especially by reduction of operation and maintenance costs for critical components and by increasing wind turbine availability. To develop an optimal operation and maintenance plan for critical components...... to each other and they operate at a thermal-power cycling environment. Temperature loadings affect the reliability of soldered joints by developing cracks and fatigue processes that eventually result in failure. Based on Miner’s rule a linear damage model that incorporates a crack development...

  2. Investigation of transient models and performances for a doubly fed wind turbine under a grid fault

    DEFF Research Database (Denmark)

    Wang, M.; Zhao, B.; Li, H.

    2011-01-01

    fed induction generator (DFIG), the assessments of the impact on the electrical transient performances were investigated for the doubly fed wind turbine with different representations of wind turbine drive-train dynamics models, different initial operational conditions and different active crowbar...... crowbar on the transient performances of the doubly fed wind turbine were also investigated, with the possible reasonable trip time of crowbar. The investigation have shown that the transient performances are closely correlated with the wind turbine drive train models, initial operational conditions, key...

  3. Meteorological Controls on Wind Turbine Wakes

    DEFF Research Database (Denmark)

    Barthelmie, Rebecca J.; Hansen, Kurt Schaldemose; Pryor, S.C.

    2013-01-01

    , modeling, and predicting this complex and interdependent system is therefore critical to understanding and modeling wind farm power losses due to wakes, and to optimizing wind farm layout. This paper quantifies the impact of these variables on the power loss due to wakes using data from the large offshore......The primary control on the magnitude of the power losses induced by wind turbine wakes in large wind farms is the hub-height wind speed via its link to the turbine thrust coefficient. Hence, at low to moderate wind speeds (between cut-in and rated turbine wind speeds) when the thrust coefficient...

  4. Damping Wind and Wave Loads on a Floating Wind Turbine

    DEFF Research Database (Denmark)

    Christiansen, Søren; Bak, Thomas; Knudsen, Torben

    2013-01-01

    Offshore wind energy capitalizes on the higher and less turbulent wind speeds at sea. To enable deployment of wind turbines in deep-water locations, structures are being explored, where wind turbines are placed on a floating platform. This combined structure presents a new control problem, due......, and we show the influence that both wind speed, wave frequencies and misalignment between wind and waves have on the system dynamics. A new control model is derived that extends standard turbine models to include the hydrodynamics, additional platform degrees of freedom, the platform mooring system...

  5. Smart Wind Turbine: Analysis and Autonomous Flap

    OpenAIRE

    Bernhammer, L.O.

    2015-01-01

    Wind turbines convert kinetic energy of the wind into electrical energy. Unfortunately, this process is everything but constant, as the wind source shows large fluctuations with high and low frequencies. This turbulence, together with the wind shear and yawed inflow, excites the turbine structure, thereby driving the loads and the design of turbines in general and blades in particular. In response to this, several control mechanisms have been applied to wind turbines since the generation of s...

  6. Site-optimization of wind turbine generators

    Energy Technology Data Exchange (ETDEWEB)

    Wolff, T.J. de; Thillerup, J. [Nordtank Energy Group, Richmond, VA (United States)

    1997-12-31

    The Danish Company Nordtank is one of the pioneers within the wind turbine industry. Since 1981 Nordtank has installed worldwide more than 2500 wind turbine generators with a total name plate capacity that is exceeding 450 MW. The opening up of new and widely divergent markets has demanded an extremely flexible approach towards wind turbine construction. The Nordtank product range has expanded considerable in recent years, with the main objective to develop wind energy conversion machines that can run profitable in any given case. This paper will describe site optimization of Nordtank wind turbines. Nordtank has developed a flexible design concept for its WTGs in the 500/750 kW range, in order to offer the optimal WTG solution for any given site and wind regime. Through this flexible design, the 500/750 turbine line can adjust the rotor diameter, tower height and many other components to optimally fit the turbine to each specific project. This design philosophy will be illustrated with some case histories of recently completed projects.

  7. Investigation of the interactions between wind turbines and radio systems aimed at establishing co-siting guidelines. Phase 1: Introduction and modelling of wind turbine scatter, appendices E, F and G

    International Nuclear Information System (INIS)

    Dabis, H.S.; Chignell, R.J.

    1997-01-01

    The potential for wind turbines to interfere with radio systems can be a source of conflict between radio operators and the wind energy community. In this report, the problem of accurately predicting the effects of wind turbines on radio systems with the aim of establishing guidelines for their installation is investigated. Initially models for the scatter mechanisms that occur at the wind turbine are developed. These models predict the wind turbine radar cross section and the modulation effects due to the rotation of the blades. Initial validation of these models is established by comparing the predicted results with a set of measurements obtained from experiments performed on a 20:1 scale model wind turbine. It is shown that generally these results agree well. These results are then used in the guideline formulation to compute, for specific radio systems, regions where wind turbines cannot be installed. Examples using realistic parameters for various radio systems are presented. Further validation of the derived models is required. (author)

  8. Materials for Wind Turbine Blades: An Overview

    DEFF Research Database (Denmark)

    Mishnaevsky, Leon; Branner, Kim; Petersen, Helga Nørgaard

    2017-01-01

    A short overview of composite materials for wind turbine applications is presented here. Requirements toward the wind turbine materials, loads, as well as available materials are reviewed. Apart from the traditional composites for wind turbine blades (glass fibers/epoxy matrix composites), natural...... composites, hybrid and nanoengineered composites are discussed. Manufacturing technologies for wind turbine composites, as well their testing and modelling approaches are reviewed....

  9. Materials for Wind Turbine Blades: An Overview.

    Science.gov (United States)

    Mishnaevsky, Leon; Branner, Kim; Petersen, Helga Nørgaard; Beauson, Justine; McGugan, Malcolm; Sørensen, Bent F

    2017-11-09

    A short overview of composite materials for wind turbine applications is presented here. Requirements toward the wind turbine materials, loads, as well as available materials are reviewed. Apart from the traditional composites for wind turbine blades (glass fibers/epoxy matrix composites), natural composites, hybrid and nanoengineered composites are discussed. Manufacturing technologies for wind turbine composites, as well their testing and modelling approaches are reviewed.

  10. Fatigue Damage Estimation and Data-based Control for Wind Turbines

    DEFF Research Database (Denmark)

    Barradas Berglind, Jose de Jesus; Wisniewski, Rafal; Soltani, Mohsen

    2015-01-01

    based on hysteresis operators, which can be used in control loops. The authors propose a data-based model predictive control (MPC) strategy that incorporates an online fatigue estimation method through the objective function, where the ultimate goal in mind is to reduce the fatigue damage of the wind......The focus of this work is on fatigue estimation and data-based controller design for wind turbines. The main purpose is to include a model of the fatigue damage of the wind turbine components in the controller design and synthesis process. This study addresses an online fatigue estimation method...... turbine components. The outcome is an adaptive or self-tuning MPC strategy for wind turbine fatigue damage reduction, which relies on parameter identification on previous measurement data. The results of the proposed strategy are compared with a baseline model predictive controller....

  11. CFD-based design load analysis of 5MW offshore wind turbine

    Science.gov (United States)

    Tran, T. T.; Ryu, G. J.; Kim, Y. H.; Kim, D. H.

    2012-11-01

    The structure and aerodynamic loads acting on NREL 5MW reference wind turbine blade are calculated and analyzed based on advanced Computational Fluid Dynamics (CFD) and unsteady Blade Element Momentum (BEM). A detailed examination of the six force components has been carried out (three force components and three moment components). Structure load (gravity and inertia load) and aerodynamic load have been obtained by additional structural calculations (CFD or BEM, respectively,). In CFD method, the Reynolds Average Navier-Stokes approach was applied to solve the continuity equation of mass conservation and momentum balance so that the complex flow around wind turbines was modeled. Written in C programming language, a User Defined Function (UDF) code which defines transient velocity profile according to the Extreme Operating Gust condition was compiled into commercial FLUENT package. Furthermore, the unsteady BEM with 3D stall model has also adopted to investigate load components on wind turbine rotor. The present study introduces a comparison between advanced CFD and unsteady BEM for determining load on wind turbine rotor. Results indicate that there are good agreements between both present methods. It is importantly shown that six load components on wind turbine rotor is significant effect under Extreme Operating Gust (EOG) condition. Using advanced CFD and additional structural calculations, this study has succeeded to construct accuracy numerical methodology to estimate total load of wind turbine that compose of aerodynamic load and structure load.

  12. Wind Turbine Generator System Safety and Function Test Report for the Southwest Windpower H40 Wind Turbine

    Energy Technology Data Exchange (ETDEWEB)

    van Dam, J.; Link, H.; Meadors, M.; Bianchi, J.

    2002-06-01

    The objective of this test was to evaluate the safety and function characteristics of the Whisper H40 wind turbine. The general requirements of wind turbine safety and function tests are defined in the IEC standard WT01. The testing was conducted in accordance with the National Wind Technology Center (NWTC) Quality Assurance System, including the NWTC Certification Team Certification Quality Manual and the NWTC Certification Team General Quality Manual for the Testing of Wind Turbines, as well as subordinate documents. This safety and function test was performed as part of the U.S. Department of Energy's Field Verification Program for small wind turbines.

  13. International comparison of requirements for connection of wind turbines to power systems

    Energy Technology Data Exchange (ETDEWEB)

    Jauch, C. [Risoe National Lab., Roskilde (Denmark). Dept. of Wind Energy; Matevosyan, J.; Ackermann, T. [Royal Inst. of Technology, Stockholm (Sweden). Dept. of Electrical Engineering; Bolik, S. [Vestas Wind Systems A/S, Ringkoebing (Denmark)

    2005-07-01

    Power production from wind turbines has increased considerably during the last decade. Therefore today's wind turbines, which are typically set up in wind farms, have a significant influence on the operation of power systems. The efficient and secure operation of power systems is supported by grid codes, which are sets of requirements for all network users (suppliers, customers, etc.). In Europe, several transmission network operators have introduced special grid connection requirements for wind farms. These requirements are mainly based on existing grid codes, initially written for conventional power plants usually equipped with synchronous generators. This article presents a comparison of grid connection requirements for wind farms issued, or proposed as a draft, by transmission network operators in Denmark, Sweden, Germany, Scotland and Ireland. (author)

  14. Transient and dynamic control of a variable speed wind turbine with synchronous generator

    Energy Technology Data Exchange (ETDEWEB)

    Jauch, Clemens [Riso National Laboratory, Wind Energy Department, PO Box 49, DK 4000 Roskilde, (Denmark)

    2007-02-14

    In this article, a controller for dynamic and transient control of a variable speed wind turbine with a full-scale converter-connected high-speed synchronous generator is presented. First, the phenomenon of drive train oscillations in wind turbines with full-scale converter-connected generators is discussed. Based on this discussion, a controller is presented that dampens these oscillations without impacting on the power that the wind turbine injects into the grid. Since wind turbines are increasingly demanded to take over power system stabilizing and control tasks, the presented wind turbine design is further enhanced to support the grid in transient grid events. A controller is designed that allows the wind turbine to ride through transient grid faults. Since such faults often cause power system oscillations, another controller is added that enables the turbine to participate in the damping of such oscillations. It is concluded that the controllers presented keep the wind turbine stable under any operating conditions, and that they are capable of adding substantial damping to the power system. (Author).

  15. Maximizing Energy Capture of Fixed-Pitch Variable-Speed Wind Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Pierce, K.; Migliore, P.

    2000-08-01

    Field tests of a variable-speed, stall-regulated wind turbine were conducted at a US Department of Energy Laboratory. A variable-speed generating system, comprising a doubly-fed generator and series-resonant power converter, was installed on a 275-kW, downwind, two-blade wind turbine. Gearbox, generator, and converter efficiency were measured in the laboratory so that rotor aerodynamic efficiency could be determined from field measurement of generator power. The turbine was operated at several discrete rotational speeds to develop power curves for use in formulating variable-speed control strategies. Test results for fixed-speed and variable-speed operation are presented along with discussion and comparison of the variable-speed control methodologies. Where possible, comparisons between fixed-speed and variable-speed operation are shown.

  16. Wind turbine blade life-time assessment model for preventive planning of operation and maintenance

    DEFF Research Database (Denmark)

    Florian, Mihai; Sørensen, John Dalsgaard

    2014-01-01

    Out of the total wind turbine failure events, blade damage accounts for a substantial part, with some studies estimating it at around 23%. Current operation and maintenance (O&M) practices typically make use of corrective type maintenance as the basic approach, implying high costs for repair...... of information on the blades structural health to the decision maker. Further, inspections of the blades are often performed in connection with service. In light of the obtained information, a preventive type of maintenance becomes feasible, with the potential of predicting the blades remaining life to support O......&M decisions for avoiding major failure events. The present paper presents a fracture mechanics based model for estimating the remaining life of a wind turbine blade, focusing on the crack propagation in the blades adhesive joints. A generic crack propagation model is built in Matlab based on a Paris law...

  17. Wind Turbine Blade Life-Time Assessment Model for Preventive Planning of Operation and Maintenance

    DEFF Research Database (Denmark)

    Florian, Mihai; Sørensen, John Dalsgaard

    2015-01-01

    Out of the total wind turbine failure events, blade damage accounts for a substantial part, with some studies estimating it at around 23%. Current operation and maintenance (O&M) practices typically make use of corrective type maintenance as the basic approach, implying high costs for repair...... of information on the blades structural health to the decision maker. Further, inspections of the blades are often performed in connection with service. In light of the obtained information, a preventive type of maintenance becomes feasible, with the potential of predicting the blades remaining life to support O......&M decisions for avoiding major failure events. The present paper presents a fracture mechanics based model for estimating the remaining life of a wind turbine blade, focusing on the crack propagation in the blades adhesive joints. A generic crack propagation model is built in Matlab based on a Paris law...

  18. Reliability Assessment Of Wind Turbines

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard

    2014-01-01

    Reduction of cost of energy for wind turbines are very important in order to make wind energy competitive compared to other energy sources. Therefore the turbine components should be designed to have sufficient reliability but also not be too costly (and safe). This paper presents models...... for uncertainty modeling and reliability assessment of especially the structural components such as tower, blades, substructure and foundation. But since the function of a wind turbine is highly dependent on many electrical and mechanical components as well as a control system also reliability aspects...... of these components are discussed and it is described how there reliability influences the reliability of the structural components. Two illustrative examples are presented considering uncertainty modeling, reliability assessment and calibration of partial safety factors for structural wind turbine components exposed...

  19. Wind tunnel tests of a free yawing downwind wind turbine

    DEFF Research Database (Denmark)

    Verelst, David Robert; Larsen, Torben J.; van Wingerden, J.W.

    2012-01-01

    During February and April 2012 a series of wind tunnel tests were performed at the TU Delft Open Jet Facility (OJF) with a three bladed downwind wind turbine and a rotor radius of 0.8 meters. The setup includes an off the shelf three bladed hub, nacelle and generator on which relatively flexible ...... in free yawing conditions. Further, the effect of the tower shadow passage on the blade flapwise strain measurement is evaluated. Finally, data from the experiment is compared with preliminary simulations using DTU Wind Energy's aeroelastic simulation program HAWC2....... blades are mounted. The tower support structure has free yawing capabilities provided at the tower base. A short overview on the technical details of the experiment is provided as well as a brief summary of the design process. The discussed test cases show that the turbine is stable while operating...

  20. Performance testing of a small vertical-axis wind turbine

    Energy Technology Data Exchange (ETDEWEB)

    Bravo, R.; Tullis, S.; Ziada, S. [McMaster Univ., Hamilton, ON (Canada). Dept. of Mechanical Engineering

    2007-07-01

    Full-scale wind tunnel testing of a prototype 3.5 kW vertical-axis wind turbine (VAWT) was conducted in a low speed wind tunnel in Ottawa. The tests were conducted to determine nominal power curves as well as the system's structural integrity, safety and operational characteristics. Dimensionless power curves were used to assess the relation between the wind turbine's rotary speed and the produced power for various wind speeds. Tests began at the lowest wind speed and revolutions per minute (RPM) and were gradually increased. A proximity sensor was used to determine the passing frequency of spaced bolts. The aerodynamic performance of the turbine was evaluated using a servo-controlled mechanical variable load with a disc brake calliper and electro-hydraulic servo-actuator. A load cell was used to measure torque produced by the turbine. An active closed loop speed control system was used to regulate the rotary speed of the turbine. The system used a high gain proportional control law to guarantee stability. Calculated power was based on the average rotary speed measurement. Results of the study suggested that the dimensional power performance of the turbine could be predicted from the curve for all rotary speeds and for wind speeds between 8 and 16 m/s. The maximum power coefficient of 0.3 occurred at a tip speed ratio of 1.6. Test results demonstrated that the turbine reached its rated power at 14 m/s. However, the range of tip speed ratios for power production were lower than the range for most other small VAWT. 2 refs., 3 figs.

  1. Grid support of a wind farm with active stall wind turbines and AC grid connection

    DEFF Research Database (Denmark)

    Hansen, Anca Daniela; Sørensen, Poul Ejnar; Iov, F.

    2006-01-01

    grid connection. The designed control system has the task of enabling such a wind farm to provide the best grid support. It is based on two control levels: a supervisory control level, which controls the power production of the whole farm by sending out reference signals to each individual wind turbine......One of the main concerns in the grid integration of large wind farms is their ability to behave as active controllable components in the power system. This article presents the design of a new integrated power control system for a wind farm made up exclusively of active stall wind turbines with AC......, and a local control level, which ensures that the reference power signals at the wind turbine level are reached. The ability of active stall wind farms with AC grid connection to control the power production to the reference power ordered by the operators is assessed and discussed by means of simulations....

  2. Performance Investigation of A Mix Wind Turbine Using A Clutch Mechanism At Low Wind Speed Condition

    Science.gov (United States)

    Jamanun, M. J.; Misaran, M. S.; Rahman, M.; Muzammil, W. K.

    2017-07-01

    Wind energy is one of the methods that generates energy from sustainable resources. This technology has gained prominence in this era because it produces no harmful product to the society. There is two fundamental type of wind turbine are generally used this day which is Horizontal axis wind turbine (HAWT) and Vertical axis wind turbine (VAWT). The VAWT technology is more preferable compare to HAWT because it gives better efficiency and cost effectiveness as a whole. However, VAWT is known to have distinct disadvantage compared to HAWT; self-start ability and efficiency at low wind speed condition. Different solution has been proposed to solve these issues which includes custom design blades, variable angle of attack mechanism and mix wind turbine. A new type of clutch device was successfully developed in UMS to be used in a mix Savonius-Darrieus wind turbine configuration. The clutch system which barely audible when in operation compared to a ratchet clutch system interconnects the Savonius and Darrieus rotor; allowing the turbine to self-start at low wind speed condition as opposed to a standalone Darrieus turbine. The Savonius height were varied at three different size in order to understand the effect of the Savonius rotor to the mix wind turbine performance. The experimental result shows that the fabricated Savonius rotor show that the height of the Savonius rotor affecting the RPM for the turbine. The swept area (SA), aspect ratio (AR) and tip speed ratio (TSR) also calculated in this paper. The highest RPM recorded in this study is 90 RPM for Savonius rotor 0.22-meter height at 2.75 m/s. The Savonius rotor 0.22-meter also give the highest TSR for each range of speed from 0.75 m/s, 1.75 m/s and 2.75 m/s where it gives 1.03 TSR, 0.76 TSR, and 0.55 TSR.

  3. Simultaneous Fault Detection and Sensor Selection for Condition Monitoring of Wind Turbines

    Directory of Open Access Journals (Sweden)

    Wenna Zhang

    2016-04-01

    Full Text Available Data collected from the supervisory control and data acquisition (SCADA system are used widely in wind farms to obtain operation and performance information about wind turbines. The paper presents a three-way model by means of parallel factor analysis (PARAFAC for wind turbine fault detection and sensor selection, and evaluates the method with SCADA data obtained from an operational farm. The main characteristic of this new approach is that it can be used to simultaneously explore measurement sample profiles and sensors profiles to avoid discarding potentially relevant information for feature extraction. With K-means clustering method, the measurement data indicating normal, fault and alarm conditions of the wind turbines can be identified, and the sensor array can be optimised for effective condition monitoring.

  4. Urban small wind turbine applications for reducing GHC emissions

    International Nuclear Information System (INIS)

    Tullis, S.

    2009-01-01

    'Full text:' There are advantages to power generation at or near the points of consumption and this is still true for low carbon sustainable power sources, including wind. Consequently, there is interest in wind power generation in cities and suburbs. The potential now exists for realistic power small-scale generation in building mounted turbines. This presentation provides the benefits and obstacles to their use, as well as details of such turbines and the design and operations requirements for them. The main issues associated with locating turbines in cities and suburbs are: the highly turbulent, unsteady wind in the urban/suburban environment produces lower power outputs; vibration is a large concern on mounting turbines on buildings, and safety (turbine failure or even just ice shedding) with pedestrians below. Past and current thinking has just been straightforward in that it is not worth it, and the previous attempts at simply mounting small-scale turbines on rooftops has done more harm than good to the reputation of the small wind, and wind in general, industries. Recently there has been a reconsideration of urban small wind led by reputable companies such as Quiet Revolution (UK), Turby (NL) and Cleanfield (Canada) combined with academic research. A common feature of all of these companies is the use of vertical axis turbines (VAWTs) to help deal with the highly turbulent, unsteady urban winds. Large-scale VAWTs enjoyed a brief flurry of interest in the 1970s and 80s with large amounts of research done at Sandia and NRC in Canada. Vibration and fatigue in the large-scale turbines were among the issues that led to their decline. These, particularly vibration, remain issues for small-scale turbines, but there are some mitigating strategies available. These are now leading to the development of reputable, practical and reliable turbines that can become part of the urban/suburban environment. (author)

  5. Gone with the wind? The impact of wind turbines on tourism demand

    International Nuclear Information System (INIS)

    Broekel, Tom; Alfken, Christoph

    2015-01-01

    While wind energy production is relatively free from environmental externalities such as air pollution, it is frequently considered to negatively impact landscapes' visual aesthetic values, thereby inducing negative effects on tourism demand. Existing evidence for Germany indeed points towards a negative relationship between tourism demand and wind turbine construction. However, the existing studies primarily rely on interview data and simple bivariate statistics. In contrast, we make use of secondary statistics on tourism and wind turbine locations at the level of German municipalities. Using spatial panel regression techniques, we confirm a negative relation between wind turbines around municipalities and tourism demand for municipalities not located near the coast. In the latter regions, the relation between wind turbines and tourism demand is more complex. - Highlights: • Comprehensive quantitative empirical study on wind turbines and tourism demand. • Consideration of wind turbines in vacation municipalities and in their geographic surroundings. • Novel data set on wind turbines and touristic demand in all German municipalities. • Application of spatial panel analysis in the context of tourism research. • Evidence for a negative relationship between wind turbines and tourism demand.

  6. Prototype bucket foundation for wind turbines

    DEFF Research Database (Denmark)

    Ibsen, Lars Bo; Liingaard, Morten

    The first full scale prototype bucket foundation for wind turbines has been installed in October 2002 at Aalborg University offshore test facility in Frederikshavn, Denmark. The suction caisson and the wind turbine have been equipped with an online monitoring system, consisting of 15 accelerometers...... and a real-time data-acquisition system. The report concerns the in service performance of the wind turbine, with focus on estimation of the natural frequencies of the structure/foundation. The natural frequencies are initially estimated by means of experimental Output-only Modal analysis. The experimental...... estimates are then compared with numerical simulations of the suction caisson foundation and the wind turbine. The numerical model consists of a finite element section for the wind turbine tower and nacelle. The soil-structure interaction of the soil-foundation section is modelled by lumped-parameter models...

  7. Aerodynamics of small-scale vertical-axis wind turbines

    Science.gov (United States)

    Paraschivoiu, I.; Desy, P.

    1985-12-01

    The purpose of this work is to study the influence of various rotor parameters on the aerodynamic performance of a small-scale Darrieus wind turbine. To do this, a straight-bladed Darrieus rotor is calculated by using the double-multiple-streamtube model including the streamtube expansion effects through the rotor (CARDAAX computer code) and the dynamicstall effects. The straight-bladed Darrieus turbine is as expected more efficient with respect the curved-bladed rotor but for a given solidity is operates at higher wind speeds.

  8. Calculation of wind turbine mechanical noise transmitted through the wings

    International Nuclear Information System (INIS)

    Vinther, S.; Kristensen, E.; Johansen, S.; Dam Madsen, K.

    2001-10-01

    A method for calculation of transmission noise radiated from the wind turbine blades has been established. The method is based on a numerical model describing the transmission of vibrations from the gear through the main shaft to the blades. In this project 1 MW and 2 MW wind turbines from BONUS Energy A/S are used as test cases. The numerical model offers the possibility of optimising the transmission system to avoid coincidence between gear excitation frequencies and natural frequencies of the blades. The optimisation can be reached by altering stiffness, mass and damping values for the different elements of the model. The numerical model needs experimental validation and supplementary determination of sound radiation factors for the blades. Therefore, a series of test methods have been developed and tried out. In a test rig for wind turbine, blades dynamic characteristicts and sound radiation factors for the blades were determined. On a 2 MW turbine tests were carried out during normal operation of the turbine. The shaft between the generator and the gearbox was excited in torsion by a hydraulic torsion exciter, and simultaneous response measurements of vibrations on one of the blades were made to estimate frequency response functions between gear and discrete points on the blade. The individual parts of the method have been tested, and the method showed out to supply valuable information about the different means for minimising radiation of transmission noise from the wind turbine blades. In future optimisation of the method, emphasis will be concentrated on the experimental validation provided by measurements on the operating wind turbine to provide a more certain validation of the numerical model. (au)

  9. Tornado type wind turbines

    Science.gov (United States)

    Hsu, Cheng-Ting

    1984-01-01

    A tornado type wind turbine has a vertically disposed wind collecting tower with spaced apart inner and outer walls and a central bore. The upper end of the tower is open while the lower end of the structure is in communication with a wind intake chamber. An opening in the wind chamber is positioned over a turbine which is in driving communication with an electrical generator. An opening between the inner and outer walls at the lower end of the tower permits radially flowing air to enter the space between the inner and outer walls while a vertically disposed opening in the wind collecting tower permits tangentially flowing air to enter the central bore. A porous portion of the inner wall permits the radially flowing air to interact with the tangentially flowing air so as to create an intensified vortex flow which exits out of the top opening of the tower so as to create a low pressure core and thus draw air through the opening of the wind intake chamber so as to drive the turbine.

  10. Aerodynamic analysis of S series wind turbine airfoils by using X foil technique

    International Nuclear Information System (INIS)

    Zaheer, M.A.; Munir, M.A.; Zahid, I.; Rizwan, M.

    2015-01-01

    In order to attain supreme energy from wind turbine economically, blade profile enactment must be acquired. For extracting extreme power from wind, it is necessary to develop rotor models of wind turbine which have high rotation rates and power coefficients. Maximum power can also be haul out by using suitable airfoils at root and tip sections of wind turbine blades. In this research four different S-series airfoils have been selected to study their behavior for maximum power extraction from wind. The wind conditions during the research were scertained from the wind speeds over Kallar Kahar Pakistan. In order to study the wind turbine operation, the extremely important parameters are lift and drag forces. Therefore an endeavor to study lift force and drag force at various sections of wind turbine blade is shown in current research. In order to acquire the utmost power from wind turbine, highest value of sliding ratio is prerequisite. At various wind speeds, performance of several blade profiles was analyzed and for every wind speed, the appropriate blade profile is ascertained grounded on the utmost sliding ratio. For every airfoil, prime angle of attack is resolute at numerous wind speeds. (author)

  11. Enhancing wind turbines efficiency with passive reconfiguration of flexible blades

    Science.gov (United States)

    Cognet, Vincent P. A.; Thiria, Benjamin; Courrech Du Pont, Sylvain; MSC Team; PMMH Team

    2015-11-01

    Nature provides excellent examples where flexible materials are advantageous in a fluid stream. By folding, leaves decrease the drag caused by air stream; and birds' flapping is much more efficient with flexible wings. Motivated by this, we investigate the effect of flexible blades on the performance of a wind turbine. The effect of chordwise flexible blades is studied both experimentally and theoretically on a small wind turbine in steady state. Four parameters are varied: the wind velocity, the resisting torque, the pitch angle, and the blade's bending modulus. We find an optimum efficiency with respect to the bending modulus. By tuning our four parameters, the wind turbine with flexible blades has a high-efficiency range significantly larger than rigid blades', and, furthermore enhances the operating range. These results are all the more important as one of the current issues concerning wind turbines is the enlargement of their operating range. To explain these results, we propose a simple two-dimensional model by discretising the blade along the radius. We take into account the variation of drag and lift coefficients with the bending ability. This model matches experimental observations and demonstrates the contribution of the reconfiguration of the blade. Matiere et Systemes Complexes.

  12. Intelligent control for large-scale variable speed variable pitch wind turbines

    Institute of Scientific and Technical Information of China (English)

    Xinfang ZHANG; Daping XU; Yibing LIU

    2004-01-01

    Large-scale wind turbine generator systems have strong nonlinear multivariable characteristics with many uncertain factors and disturbances.Automatic control is crucial for the efficiency and reliability of wind turbines.On the basis of simplified and proper model of variable speed variable pitch wind turbines,the effective wind speed is estimated using extended Kalman filter.Intelligent control schemes proposed in the paper include two loops which operate in synchronism with each other.At below-rated wind speed,the inner loop adopts adaptive fuzzy control based on variable universe for generator torque regulation to realize maximum wind energy capture.At above-rated wind speed, a controller based on least square support vector machine is proposed to adjust pitch angle and keep rated output power.The simulation shows the effectiveness of the intelligent control.

  13. Aeroservoelasticity of Wind Turbines

    DEFF Research Database (Denmark)

    Kallesøe, Bjarne Skovmose

    2007-01-01

    This thesis deals with the fundamental aeroelastic interaction between structural motion, Pitch action and control for a wind turbine blade. As wind turbines become larger, the interaction between pitch action, blade motion, aerodynamic forces, and control become even more important to understand......, and furthermore linear and therefore suitable for control design. The development of the primary aeroelastic blade model is divided into four steps: 1) Nonlinear partial differential equations (PDEs) of structural blade motion are derived together with equations of pitch action and rotor speed; the individual...... to a 2D blade section model, and it can be used instead of this in many applications, giving a transparent connection to a real wind turbine blade. In this work the aeroelastic blade model is used to analyze interaction between pitch action, blade motion and wind speed variations. Furthermore the model...

  14. Structural health and prognostics management for offshore wind turbines :

    Energy Technology Data Exchange (ETDEWEB)

    Myrent, Noah J.; Kusnick, Joshua F.; Barrett, Natalie C.; Adams, Douglas E.; Griffith, Daniel

    2013-04-01

    Operations and maintenance costs for offshore wind plants are significantly higher than the current costs for land-based (onshore) wind plants. One way to reduce these costs would be to implement a structural health and prognostic management (SHPM) system as part of a condition based maintenance paradigm with smart load management and utilize a state-based cost model to assess the economics associated with use of the SHPM system. To facilitate the development of such a system a multi-scale modeling approach developed in prior work is used to identify how the underlying physics of the system are affected by the presence of damage and faults, and how these changes manifest themselves in the operational response of a full turbine. This methodology was used to investigate two case studies: (1) the effects of rotor imbalance due to pitch error (aerodynamic imbalance) and mass imbalance and (2) disbond of the shear web; both on a 5-MW offshore wind turbine in the present report. Based on simulations of damage in the turbine model, the operational measurements that demonstrated the highest sensitivity to the damage/faults were the blade tip accelerations and local pitching moments for both imbalance and shear web disbond. The initial cost model provided a great deal of insight into the estimated savings in operations and maintenance costs due to the implementation of an effective SHPM system. The integration of the health monitoring information and O&M cost versus damage/fault severity information provides the initial steps to identify processes to reduce operations and maintenance costs for an offshore wind farm while increasing turbine availability, revenue, and overall profit.

  15. Wind turbine with lightning protection system

    DEFF Research Database (Denmark)

    2016-01-01

    The present invention relates to a wind turbine comprising a lightning protection system comprising a waveguide interconnecting a communication device and a signal-carrying structure. In other aspects, the present invention relates to the use of a waveguide in a lightning protection system...... of a wind turbine, a power splitter and its use in a lightning protection system of a wind turbine....

  16. Optimal Structural Reliability of Offshore Wind Turbines

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Tarp-Johansen, N.J.

    2005-01-01

    The main failure modes of modern large wind turbines are fatigue failure of wings, hub, shaft and main tower, local buckling of main tower, and failure of the foundation. This paper considers reliability-based optimal design of wind turbines. Compared to onshore wind turbines and building...... structures, humans spent little time in the vicinity of offshore wind turbines and the probability of human injury during storm conditions is small. Further environmental pollution will also in general be small in case of failure. One could therefore argue that the reliability level of offshore wind turbines...... can be lower than for onshore wind turbines and other civil engineering structures and can be assessed by reliability-based cost-optimization. Specifically this paper considers the main tower and foundation. Both fatigue and ultimate strength failure modes are included. Different formulations...

  17. 12MW: final report; Wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Hasager, C.; Pena, A.; Mikkelsen, T.; Gryning, S.-E.; Courtney, M.; Soerensen, Paul B. (DONG energy)

    2009-06-15

    '12MW: final report' is for the project with the full title '12 MW wind turbines: the scientific basis for their operation at 70 to 270 m height offshore' that had the goal to experimentally investigate the wind and turbulence characteristics between 70 and 270 m above sea level and thereby establish the scientific basis relevant for the next generation of huge 12 MW wind turbines operating offshore. The project started 1st October 2005 and ended 31st March 2009. Firstly was conducted a 6-month experiment at the Horns Rev offshore wind farm deploying a lidar and a sodar on the transformer platform. The observed data were successfully compared to offshore mast data and the wind profile was extended 100 m above previous levels observed in this offshore environment. The wind and turbulence was observed up to 160m above mean sea level. A new normalization was introduced to group the wind profiles into stability groups with variable roughness. Secondly two experiments were conducted at Hoevsoere at the North Sea coast in Jutland. Again the wind profile was extended far beyond previous observed levels, up to 300 m above ground. The analysis showed that the profiles extended far beyond the surface layer and therefore surface layer scale alone could not described the profiles well. In addition the boundary layer height has to be used for the scaling. The boundary layer height was observed by an aerosol lidar at Hoevsoere. The results are published widely, please see the list of publications. (au)

  18. Progress in wind tunnel experimental techniques for wind turbine?

    Institute of Scientific and Technical Information of China (English)

    Jingping XIAO; Li CHEN; Qiang WANG; Qiao WANG

    2016-01-01

    Based on the unsteady aerodynamics experiment (UAE) phase VI and the model experiment in controlled conditions (MEXICO) projects and the related research carried out in China Aerodynamic Research and Development Center (CARDC), the recent progress in the wind tunnel experimental techniques for the wind turbine is sum-marized. Measurement techniques commonly used for di?erent types of wind tunnel ex-periments for wind turbine are reviewed. Important research achievements are discussed, such as the wind tunnel disturbance, the equivalence of the airfoil in?ow condition, the three-dimensional (3D) e?ect, the dynamic in?ow in?uence, the ?ow ?eld structure, and the vortex induction. The corresponding research at CARDC and some ideas on the large wind turbine are also introduced.

  19. Wind Turbine Blade Nondestructive Testing with a Transportable Radiography System

    Directory of Open Access Journals (Sweden)

    J. G. Fantidis

    2011-01-01

    Full Text Available Wind turbines are becoming widely used as they are an environmentally friendly way for energy production without emissions; however, they are exposed to a corrosive environment. In addition, as wind turbines typically are the tallest structures in the surrounding area of a wind farm, it is expected that they will attract direct lightning strikes several times during their operating life. The purpose of this paper is to show that the radiography with a transportable unit is a solution to find defects in the wind turbine blade and reduce the cost of inspection. A transportable neutron radiography system, incorporating an Sb–Be source, has been simulated using the MCNPX code. The simulated system has a wide range of radiography parameters.

  20. A spinner-integrated wind lidar for enhanced wind turbine control

    DEFF Research Database (Denmark)

    Mikkelsen, Torben; Angelou, Nikolas; Hansen, Kasper Hjorth

    2013-01-01

    A field test with a continuous wave wind lidar (ZephIR) installed in the rotating spinner of a wind turbine for unimpeded preview measurements of the upwind approaching wind conditions is described. The experimental setup with the wind lidar on the tip of the rotating spinner of a large 80 m roto...... of the spinner lidar data, is investigated. Finally, the potential for enhancing turbine control and performance based on wind lidar preview measurements in combination with feed-forward enabled turbine controllers is discussed. Copyright © 2012 John Wiley & Sons, Ltd....

  1. Can road traffic mask sound from wind turbines? Response to wind turbine sound at different levels of road traffic sound

    International Nuclear Information System (INIS)

    Pedersen, Eja; Berg, Frits van den; Bakker, Roel; Bouma, Jelte

    2010-01-01

    Wind turbines are favoured in the switch-over to renewable energy. Suitable sites for further developments could be difficult to find as the sound emitted from the rotor blades calls for a sufficient distance to residents to avoid negative effects. The aim of this study was to explore if road traffic sound could mask wind turbine sound or, in contrast, increases annoyance due to wind turbine noise. Annoyance of road traffic and wind turbine noise was measured in the WINDFARMperception survey in the Netherlands in 2007 (n=725) and related to calculated levels of sound. The presence of road traffic sound did not in general decrease annoyance with wind turbine noise, except when levels of wind turbine sound were moderate (35-40 dB(A) Lden) and road traffic sound level exceeded that level with at least 20 dB(A). Annoyance with both noises was intercorrelated but this correlation was probably due to the influence of individual factors. Furthermore, visibility and attitude towards wind turbines were significantly related to noise annoyance of modern wind turbines. The results can be used for the selection of suitable sites, possibly favouring already noise exposed areas if wind turbine sound levels are sufficiently low.

  2. Induced Torques on Synchronous Generators from Operation of Wind Power Plant based on Full-Load Converter Interfaced Wind Turbines

    DEFF Research Database (Denmark)

    Knüppel, Thyge; Nielsen, Jørgen N.; Jensen, Kim H.

    2011-01-01

    It is expected that large wind power plants (WPP) contribute to stable and reliable operation of the electric power system. This includes participation with delivery of system services such as voltage and frequency support. With variable-speed WPPs this can be achieved by adding auxiliary...... be predicted with the presented method. The work is based on a nonlinear, dynamic model of the 3.6 MW Siemens Wind Power wind turbine....... controllers that control the active and reactive power output accordingly. While being designed for a given system service, any feedback control affects the closed-loop behavior of the overall system and thereby its small-signal stability properties. Eigenvalue analysis conveniently determines the stability...

  3. Fundamentals for remote structural health monitoring of wind turbine blades - a preproject. Annex A. Cost-benefit for embedded sensors in large wind turbine blades

    DEFF Research Database (Denmark)

    Hansen, L.G.; Lading, Lars

    2002-01-01

    -bladed 2MW turbine placed offshore either without sensors or with sensors are compared. The price of a structural health monitoring system of a price of 100 000 DKK (per tur-bine) results in a break-eventime of about 3 years. For a price of 300 000 DKK the break-even time is about 8 years. However......This report contains the results of a cost-benefit analysis for the use of embed-ded sensors for damage detection in large wind turbine blades - structural health monitoring - (in connection with remote surveillance) of large wind turbine placedoff-shore. The total operating costs of a three......, the cost/benefit analysis has large uncertainties....

  4. Concurrent Aeroservoelastic Design and Optimization of Wind Turbines

    DEFF Research Database (Denmark)

    Tibaldi, Carlo

    This work develops and investigates methods to integrate controllers in the wind turbine design process and to perform wind turbine optimization. These techniques can exploit the synergy between wind turbine components and generate new design solutions. Two frameworks to perform wind turbine...... optimization design are presented. These tools handle workflows to model a wind turbine and to evaluate loads and performances under specific conditions. Three approaches to evaluate loads are proposed and integrated in the optimization codes. The first method is based on time domain simulations, the second...... simulations, allows the selection of any controller parameter. The methods to evaluate loads and the pole-placement technique are then employed to carry out wind turbine optimization design from an aeroservoelastic prospective. Several analysis of the NREL 5 MW Reference Wind Turbine and the DTU 10 MW...

  5. Active Power Optimal Control of Wind Turbines with Doubly Fed Inductive Generators Based on Model Predictive Control

    Directory of Open Access Journals (Sweden)

    Guo Jiuwang

    2015-01-01

    Full Text Available Because of the randomness and fluctuation of wind energy, as well as the impact of strongly nonlinear characteristic of variable speed constant frequency (VSCF wind power generation system with doubly fed induction generators (DFIG, traditional active power control strategies are difficult to achieve high precision control and the output power of wind turbines is more fluctuated. In order to improve the quality of output electric energy of doubly fed wind turbines, on the basis of analyzing the operating principles and dynamic characteristics of doubly fed wind turbines, this paper proposes a new active power optimal control method of doubly fed wind turbines based on predictive control theory. This method uses state space model of wind turbines, based on the prediction of the future state of wind turbines, moves horizon optimization, and meanwhile, gets the control signals of pitch angle and generator torque. Simulation results show that the proposed control strategies can guarantee the utilization efficiency for wind energy. Simultaneously, they can improve operation stability of wind turbines and the quality of electric energy.

  6. Effects of wind turbines on upland nesting birds in Conservation Reserve Program grasslands

    Science.gov (United States)

    Leddy, K.L.; Higgins, K.F.; Naugle, D.E.

    1999-01-01

    Grassland passerines were surveyed during summer 1995 on the Buffalo Ridge Wind Resource Area in southwestern Minnesota to determine the relative influence of wind turbines on overall densities of upland nesting birds in Conservation Reserve Program (CRP) grasslands. Birds were surveyed along 40 m fixed width transects that were placed along wind turbine strings within three CRP fields and in three CRP fields without turbines. Conservation Reserve Program grasslands without turbines and areas located 180 m from turbines supported higher densities (261.0-312.5 males/100 ha) of grassland birds than areas within 80 m of turbines (58.2-128.0 males/100 ha). Human disturbance, turbine noise, and physical movements of turbines during operation may have disturbed nesting birds. We recommend that wind turbines be placed within cropland habitats that support lower densities of grassland passerines than those found in CRP grasslands.

  7. Vertical axis wind turbines

    Science.gov (United States)

    Krivcov, Vladimir [Miass, RU; Krivospitski, Vladimir [Miass, RU; Maksimov, Vasili [Miass, RU; Halstead, Richard [Rohnert Park, CA; Grahov, Jurij [Miass, RU

    2011-03-08

    A vertical axis wind turbine is described. The wind turbine can include a top ring, a middle ring and a lower ring, wherein a plurality of vertical airfoils are disposed between the rings. For example, three vertical airfoils can be attached between the upper ring and the middle ring. In addition, three more vertical airfoils can be attached between the lower ring and the middle ring. When wind contacts the vertically arranged airfoils the rings begin to spin. By connecting the rings to a center pole which spins an alternator, electricity can be generated from wind.

  8. 'Wind turbine syndrome': fact or fiction?

    Science.gov (United States)

    Farboud, A; Crunkhorn, R; Trinidade, A

    2013-03-01

    Symptoms, including tinnitus, ear pain and vertigo, have been reported following exposure to wind turbine noise. This review addresses the effects of infrasound and low frequency noise and questions the existence of 'wind turbine syndrome'. This review is based on a search for articles published within the last 10 years, conducted using the PubMed database and Google Scholar search engine, which included in their title or abstract the terms 'wind turbine', 'infrasound' or 'low frequency noise'. There is evidence that infrasound has a physiological effect on the ear. Until this effect is fully understood, it is impossible to conclude that wind turbine noise does not cause any of the symptoms described. However, many believe that these symptoms are related largely to the stress caused by unwanted noise exposure. There is some evidence of symptoms in patients exposed to wind turbine noise. The effects of infrasound require further investigation.

  9. Investigation of Reactive Power Control Effects on Flicker and Harmonics Emission of a DFIG Wind Turbine

    Directory of Open Access Journals (Sweden)

    Amir Nagizadeh Ghoogdareh

    2013-01-01

    Full Text Available One of the most important power quality aspects in wind farms is voltage fluctuation or flicker which should be investigated due to the nature of wind speed variations. These variations result in power and voltage fluctuations at the load bus. Moreover, the wind generation systems may be assumed as a harmonics source because of their power electronic converters. There are numerous factors that affect flicker and harmonic emission of grid-connected wind turbines during continuous operation, such as wind characteristics (e.g. mean wind speed, turbulence intensity, type of generator and grid conditions (e.g. short circuit capacity, grid impedance angle. In this paper, an IEC based flickermeter is first modeled and then a variable speed wind turbine has been simulated by Matlab/Simulink software. The flicker and harmonics emissions of wind turbines equipped with DFIG during continuous operation and using output reactive control are investigated. The simulation results show that control of wind turbine output reactive power is an effective means for flicker mitigation during continuous operation. However, there should be a compromise between flicker reduction and harmonics level increase to enhance the whole power quality of wind turbine.

  10. Transient analysis of variable-speed wind turbines at wind speed disturbances and a pitch control malfunction

    International Nuclear Information System (INIS)

    Melicio, R.; Mendes, V.M.F.; Catalao, J.P.S.

    2011-01-01

    As wind power generation undergoes rapid growth, new technical challenges emerge: dynamic stability and power quality. The influence of wind speed disturbances and a pitch control malfunction on the quality of the energy injected into the electric grid is studied for variable-speed wind turbines with different power-electronic converter topologies. Additionally, a new control strategy is proposed for the variable-speed operation of wind turbines with permanent magnet synchronous generators. The performance of disturbance attenuation and system robustness is ascertained. Simulation results are presented and conclusions are duly drawn.

  11. Transient analysis of variable-speed wind turbines at wind speed disturbances and a pitch control malfunction

    Energy Technology Data Exchange (ETDEWEB)

    Melicio, R. [Department of Electromechanical Engineering, University of Beira Interior, R. Fonte do Lameiro, 6201-001 Covilha (Portugal); Mendes, V.M.F. [Department of Electrical Engineering and Automation, Instituto Superior de Engenharia de Lisboa, R. Conselheiro Emidio Navarro, 1950-062 Lisbon (Portugal); Catalao, J.P.S. [Department of Electromechanical Engineering, University of Beira Interior, R. Fonte do Lameiro, 6201-001 Covilha (Portugal); Center for Innovation in Electrical and Energy Engineering, Instituto Superior Tecnico, Technical University of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon (Portugal)

    2011-04-15

    As wind power generation undergoes rapid growth, new technical challenges emerge: dynamic stability and power quality. The influence of wind speed disturbances and a pitch control malfunction on the quality of the energy injected into the electric grid is studied for variable-speed wind turbines with different power-electronic converter topologies. Additionally, a new control strategy is proposed for the variable-speed operation of wind turbines with permanent magnet synchronous generators. The performance of disturbance attenuation and system robustness is ascertained. Simulation results are presented and conclusions are duly drawn. (author)

  12. Status of large scale wind turbine technology development abroad?

    Institute of Scientific and Technical Information of China (English)

    Ye LI; Lei DUAN

    2016-01-01

    To facilitate the large scale (multi-megawatt) wind turbine development in China, the foreign e?orts and achievements in the area are reviewed and summarized. Not only the popular horizontal axis wind turbines on-land but also the o?shore wind turbines, vertical axis wind turbines, airborne wind turbines, and shroud wind turbines are discussed. The purpose of this review is to provide a comprehensive comment and assessment about the basic work principle, economic aspects, and environmental impacts of turbines.

  13. Wind Turbines Adaptation to the Variability of the Wind Field

    Science.gov (United States)

    Ulianov, Yuriy; Martynenko, Gennadii; Misaylov, Vitaliy; Soliannikova, Iuliia

    2010-05-01

    WIND TURBINES ADAPTATION TO THE VARIABILITY OF THE WIND FIELD The subject of our scientific research is wind power turbines (WPT) with the horizontal axis which were now common in the world. Efficient wind turbines work is largely determined by non-stationarity of the wind field, expressed in its gustiness, the presence of vertical and horizontal shifts of wind speed and direction. At critical values of the wind parameters WPT has aerodynamic and mechanical overload, leading to breakdowns, premature wear and reduce the life of the wind turbine. To prevent accidents at the peak values of wind speed it is used the regulatory system of windwheels. WPT control systems provide a process orientation of the wind turbine rotor axis in the line of the mean wind. Wind turbines are also equipped with braking device used to protect against breakdowns when a significant increase in the wind. In general, all these methods of regulation are not always effective. Thus, in practice there may be situations when the wind speed is many times greater than the stated limit. For example, if there are microbursts in the atmospheric boundary layer, low-level wind shears caused by its gust front, storms, etc. It is required for a wind power turbine adaptation to intensive short-term wind impulses and considerable vertical wind shifts that the data about them shall be obtained ahead of time. To do this it is necessary to have the information on the real structure of the wind field in the area of the blade sweep for the minimum range against the wind that is determined by the mean speed and the system action time. The implementation of acoustic and laser traditional wind sounding systems is limited by ambient acoustic noise, by heavy rain, snowfall and by fog. There are free of these disadvantages the inclined radioacoustic sounding (IRASS) technique which works for a system of remote detection and control of wind gusts. IRASS technique is realized as low-potential Doppler pulse radar

  14. Performance enhancement and load reduction on wind turbines using inflow measurements

    Energy Technology Data Exchange (ETDEWEB)

    Abildgaard Kragh, K.

    2013-06-15

    Wind energy is being applied at a larger and larger scale worldwide, and is one of the technologies eligible for accommodating the increasing demand for renewable energy. However, wind energy is still not competitive compared to technologies that are based on fossil energy sources. Therefore, much wind energy research is focused on decreasing the cost of the energy that can be produced from the wind. The cost of energy can for example be decreased by ensuring that wind turbines are operated in a way that ensures that the maximum amount of energy is extracted, and that the turbines are not loaded excessively. The operation of a wind turbine is governed by a number of controllers that are based on a series of sensors and actuators. Classical wind turbine control utilizes sensors for measuring turbine parameters such as rotor speed, power and shaft torque, as well as actuators for applying generator torque and collective pitch angle changes. Thus, classical wind turbine control schemes are based on measurements of the effects of the inflow on the turbine. Therefore, the reactions of the control system to the inflow changes are inherently delayed compared to the actual inflow changes. Because of the inherent delay of the control system, the ability of the system to react promptly to inflow changes is limited. Control schemes that are based on inflow measurements have been developed to overcome the limitations of the classical wind turbine control system. By measuring the inflow directly, actuation can be initiated instantly as the inflow changes. If the inflow is measured upstream of the turbine, actuation can be initiated prior to the occurrence of a wind speed change at the turbine. Hereby, even the actuator delay can be compensated for. Upstream inflow measurements could for example be acquired using ''Light Detection and Ranging''. In this thesis, the potentials for improving the power production and decreasing the load variations of horizontal axis upwind turbines

  15. Blyth Harbour wind farm - operational aspects

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This report is the last in a series of seven on various aspects of the monitoring and evaluation of the Blyth Northumberland off-shore wind farm project. The wind farm was the first to be built in the UK: it consists of two 2MW wind turbines about 1 km from the coast in water of depth 5-6 m. The subject of this report is the actual performance of the wind turbine relative to predicted performance. The study showed up the problems of operating a wind farm at sea and the need for comprehensive testing before installation. The problems encountered were numerous but in no case major. A lightning strike destroyed a turbine blade (for which no replacement was readily available) and there was a cable fault caused by installation deficiencies. Better planning could have avoided lengthy shutdowns. The report covers the availability of the turbines and performance of ancillary equipment.

  16. High Voltage Power Converter for Large Wind Turbine

    DEFF Research Database (Denmark)

    Sztykiel, Michal

    and the feeder cable sections, careful investigation for the relay selective operation has been made, which distinguishes ground faults located at the wind turbine terminals from faults within the protected cables. The obtained results from the computer simulations in EMTDC/PSCAD software show, that the best...... also for different grounding schemes, which impact is the result of the removed step-up transformer. Finally, the ground fault detection scheme for feeder cable system is proposed - with the usage of current differential relay. Due to lack of the galvanic separation between the wind turbines...

  17. Habitat use of bats in relation to wind turbines revealed by GPS tracking

    Science.gov (United States)

    Roeleke, Manuel; Blohm, Torsten; Kramer-Schadt, Stephanie; Yovel, Yossi; Voigt, Christian C.

    2016-07-01

    Worldwide, many countries aim at countering global climate change by promoting renewable energy. Yet, recent studies highlight that so-called green energy, such as wind energy, may come at environmental costs, for example when wind turbines kill birds and bats. Using miniaturized GPS loggers, we studied how an open-space foraging bat with high collision risk with wind turbines, the common noctule Nyctalus noctula (Schreber, 1774), interacts with wind turbines. We compared actual flight trajectories to correlated random walks to identify habitat variables explaining the movements of bats. Both sexes preferred wetlands but used conventionally managed cropland less than expected based on availability. During midsummer, females traversed the land on relatively long flight paths and repeatedly came close to wind turbines. Their flight heights above ground suggested a high risk of colliding with wind turbines. In contrast, males recorded in early summer commuted straight between roosts and foraging areas and overall flew lower than the operating range of most turbine blades, suggesting a lower collision risk. Flight heights of bats suggest that during summer the risk of collision with wind turbines was high for most studied bats at the majority of currently installed wind turbines. For siting of wind parks, preferred bat habitats and commuting routes should be identified and avoided.

  18. The effect of pitch angle on the performance of a vertical-axis wind turbine

    NARCIS (Netherlands)

    Rezaeiha, A.; Kalkman, I.M.; Blocken, B.; Borg, R.P.; Gauci, P.; Staines, C.S.

    2016-01-01

    Wind energy is a highly promising resource to approach a sustainable built environment. Vertical axis wind turbines (VAWT) offer the advantage of omni-directional operation over horizontal axis wind turbines (HAWT). This makes them ideal for utilization in urban environments which are characterized

  19. Wind Penetration with different wind turbine technologies in a weak grid

    International Nuclear Information System (INIS)

    Santos Fuentefria, Ariel; Castro Fernandez, Miguel A.; Martínez García, Antonio

    2012-01-01

    The insertion of wind energy into electric network may provoke stability problems due to stochastic character of wind. The variation in the wind causes voltage variation in the Point of Common Coupling (PCC). In a weakest system that variation is high. Another important factor is wind turbine technology. The use of grid-connected fixed speed wind generator introduces a great consumption of reactive power that can be compensated using different devices as capacitors bank or static var compensator (SVC or STATCOM). In the other hand the variable speed wind turbine have an electronic converter to control the reactive consumption to maintain the PCC voltage more stable. In this paper a comparison between the different types of wind turbines technology is show. It's analyzing the impact in wind power limit for different wind turbine technologies in a weak system. (author)

  20. Behavior of bats at wind turbines.

    Science.gov (United States)

    Cryan, Paul M; Gorresen, P Marcos; Hein, Cris D; Schirmacher, Michael R; Diehl, Robert H; Huso, Manuela M; Hayman, David T S; Fricker, Paul D; Bonaccorso, Frank J; Johnson, Douglas H; Heist, Kevin; Dalton, David C

    2014-10-21

    Wind turbines are causing unprecedented numbers of bat fatalities. Many fatalities involve tree-roosting bats, but reasons for this higher susceptibility remain unknown. To better understand behaviors associated with risk, we monitored bats at three experimentally manipulated wind turbines in Indiana, United States, from July 29 to October 1, 2012, using thermal cameras and other methods. We observed bats on 993 occasions and saw many behaviors, including close approaches, flight loops and dives, hovering, and chases. Most bats altered course toward turbines during observation. Based on these new observations, we tested the hypotheses that wind speed and blade rotation speed influenced the way that bats interacted with turbines. We found that bats were detected more frequently at lower wind speeds and typically approached turbines on the leeward (downwind) side. The proportion of leeward approaches increased with wind speed when blades were prevented from turning, yet decreased when blades could turn. Bats were observed more frequently at turbines on moonlit nights. Taken together, these observations suggest that bats may orient toward turbines by sensing air currents and using vision, and that air turbulence caused by fast-moving blades creates conditions that are less attractive to bats passing in close proximity. Tree bats may respond to streams of air flowing downwind from trees at night while searching for roosts, conspecifics, and nocturnal insect prey that could accumulate in such flows. Fatalities of tree bats at turbines may be the consequence of behaviors that evolved to provide selective advantages when elicited by tall trees, but are now maladaptive when elicited by wind turbines.

  1. Behavior of bats at wind turbines

    Science.gov (United States)

    Cryan, Paul M.; Gorresen, P. Marcos; Hine, Cris D.; Schirmacher, Michael; Diehl, Robert H.; Huso, Manuela M.; Hayman, David T.S.; Fricker, Paul D.; Bonaccorso, Frank J.; Johnson, Douglas H.; Heist, Kevin W.; Dalton, David C.

    2014-01-01

    Wind turbines are causing unprecedented numbers of bat fatalities. Many fatalities involve tree-roosting bats, but reasons for this higher susceptibility remain unknown. To better understand behaviors associated with risk, we monitored bats at three experimentally manipulated wind turbines in Indiana, United States, from July 29 to October 1, 2012, using thermal cameras and other methods. We observed bats on 993 occasions and saw many behaviors, including close approaches, flight loops and dives, hovering, and chases. Most bats altered course toward turbines during observation. Based on these new observations, we tested the hypotheses that wind speed and blade rotation speed influenced the way that bats interacted with turbines. We found that bats were detected more frequently at lower wind speeds and typically approached turbines on the leeward (downwind) side. The proportion of leeward approaches increased with wind speed when blades were prevented from turning, yet decreased when blades could turn. Bats were observed more frequently at turbines on moonlit nights. Taken together, these observations suggest that bats may orient toward turbines by sensing air currents and using vision, and that air turbulence caused by fast-moving blades creates conditions that are less attractive to bats passing in close proximity. Tree bats may respond to streams of air flowing downwind from trees at night while searching for roosts, conspecifics, and nocturnal insect prey that could accumulate in such flows. Fatalities of tree bats at turbines may be the consequence of behaviors that evolved to provide selective advantages when elicited by tall trees, but are now maladaptive when elicited by wind turbines.

  2. Modeling of the UAE Wind Turbine for Refinement of FAST{_}AD

    Energy Technology Data Exchange (ETDEWEB)

    Jonkman, J. M.

    2003-12-01

    The Unsteady Aerodynamics Experiment (UAE) research wind turbine was modeled both aerodynamically and structurally in the FAST{_}AD wind turbine design code, and its response to wind inflows was simulated for a sample of test cases. A study was conducted to determine why wind turbine load magnitude discrepancies-inconsistencies in aerodynamic force coefficients, rotor shaft torque, and out-of-plane bending moments at the blade root across a range of operating conditions-exist between load predictions made by FAST{_}AD and other modeling tools and measured loads taken from the actual UAE wind turbine during the NASA-Ames wind tunnel tests. The acquired experimental test data represent the finest, most accurate set of wind turbine aerodynamic and induced flow field data available today. A sample of the FAST{_}AD model input parameters most critical to the aerodynamics computations was also systematically perturbed to determine their effect on load and performance predictions. Attention was focused on the simpler upwind rotor configuration, zero yaw error test cases. Inconsistencies in input file parameters, such as aerodynamic performance characteristics, explain a noteworthy fraction of the load prediction discrepancies of the various modeling tools.

  3. Wind generation systems for remote communities: market assessment and guidelines for wind turbines selection

    International Nuclear Information System (INIS)

    Brothers, C.

    1993-06-01

    Wind technology and its market potential in remote communities of the Canadian North were discussed. These communities, unserviced by the main utility electricity grid, generate their own electricity using high quality, expensive diesel fuel to power diesel driven generators. The logistics of delivering fuel to these remote communities is an expensive operation. Wind resource in many of these communities is substantial and wind energy is seen as a prime candidate for supplying electricity to many potential sites in the Arctic and also areas in Quebec and Newfoundland. However, the severe service (i.e., cold climate, remote locations with limited facilities) requires special considerations to ensure that equipment installed performs reliably. This report described some demonstration projects in northern Canada over the last ten years, where an understanding of the special needs of wind turbines in remote areas has been developed. A guide which assessed the suitability of wind turbines for Arctic applications was included to assist organisations in preparing requirements to be used in acquiring wind turbines for use in cold regions. Refs., tabs., figs

  4. Aeroelastic instability problems for wind turbines

    DEFF Research Database (Denmark)

    Hansen, Morten Hartvig

    2007-01-01

    This paper deals with the aeroelostic instabilities that have occurred and may still occur for modem commercial wind turbines: stall-induced vibrations for stall-turbines, and classical flutter for pitch-regulated turbines. A review of previous works is combined with derivations of analytical...... stiffness and chordwise position of the center of gravity along the blades are the main parameters for flutter. These instability characteristics are exemplified by aeroelastic stability analyses of different wind turbines. The review of each aeroelastic instability ends with a list of current research...... issues that represent unsolved aeroelostic instability problems for wind turbines. Copyright (c) 2007 John Wiley & Sons, Ltd....

  5. Wind Turbine Development at Montana State University

    Energy Technology Data Exchange (ETDEWEB)

    Cairns, Douglas S. [Montana State Univ., Bozeman, MT (United States). Mechanical and Industrial Engineering Dept.; Riddle, William [Montana State Univ., Bozeman, MT (United States). Mechanical and Industrial Engineering Dept.; Nelson, Jared [Montana State Univ., Bozeman, MT (United States). Mechanical and Industrial Engineering Dept.; Peterson, William [Montana State Univ., Bozeman, MT (United States). Mechanical and Industrial Engineering Dept.

    2015-02-23

    A survey of wind turbine blade manufacturers, repair companies, wind farm operators, and third party investigators has directed the focus of this investigation on several types of flaws commonly found in wind turbine blades: waviness and porosity/voids. Several commercial scale wind turbine blades were inspected for the development of metrics for the identification, analysis and disposition. Analysis of flaw geometries yielded metrics which utilize specific parameters to physically characterize a defect. Data as it relates flaw parameters to frequencies of occurrence have been complied. Basic statistical analysis shows that the frequency of flaw parameters generally follows standard distributions. A testing program was then developed around this flaw data. Results from static testing indicate that there is strong correlation between flaw parameters and mechanical response. Preliminary results from the in-field data collection effort and coupon level testing have established a protocol by which a defect in a blade can be characterized quantifiably. With this data it is possible to develop probabilistic analysis, damage progression models and criticality assessment tools that will enable improved blade design methodology and the development of a risk management framework which describes the probability of failure for blades with defects.

  6. Analysis and design of a vertical axis wind turbine

    OpenAIRE

    Goyena Iriso, Joseba

    2011-01-01

    The main objective of this project is to design a new vertical axis wind turbine, specifically one Giromill wind turbine. The project development requires performing a previous study of the vertical axis wind turbines currently development. This study has to be performed before starting to design the wind turbine. Other very important aim is the development of a new vertical axis wind turbine. The after analyses that will result in the final design of the wind turbine will b...

  7. Wind turbine spoiler

    Science.gov (United States)

    Sullivan, W.N.

    An aerodynamic spoiler system for a vertical axis wind turbine includes spoilers on the blades initially stored near the rotor axis to minimize drag. A solenoid latch adjacent the central support tower releases the spoilers and centrifugal force causes the spoilers to move up the turbine blades away from the rotor axis, thereby producing a braking effect and actual slowing of the associated wind turbine, if desired. The spoiler system can also be used as an infinitely variable power control by regulated movement of the spoilers on the blades over the range between the undeployed and fully deployed positions. This is done by the use of a suitable powered reel and cable located at the rotor tower to move the spoilers.

  8. Innovative multi rotor wind turbine designs

    Energy Technology Data Exchange (ETDEWEB)

    Kale, S.A.; Sapali, S.N. [College of Engineering. Mechanical Engineering Dept, Pune (India)

    2012-07-01

    Among the renewable energy sources, today wind energy is the most recognized and cost effective. Developers and researchers in this sector are optimistic and continuously working innovatively to improve the technology. The wind power obtained is proportional to the swept area of wind turbine. The swept area is increased by using a single rotor of large diameter or multi rotors in array. The rotor size is growing continuously with mature technology. Multi rotor technology has a long history and the multi rotor concept persists in a variety of modern innovative systems but the concept has fallen out of consideration in mainstream design from the perception that is complex and unnecessary as very large single rotor units are now technically feasible. This work addresses the evaluation of different multi rotor wind turbine systems. These innovative wind turbines are evaluated on the basis of feasibility, technological advantages, security of expected power performance, cost, reliability, impact of innovative system, comparison with existing wind turbine design. The findings of this work will provide guidelines for the practical and economical ways for further research on the multi rotor wind turbines. (Author)

  9. Impact of wind turbines on birds

    International Nuclear Information System (INIS)

    Clausager, I.; Nohr, H.

    1996-01-01

    The paper is a review of the present knowledge on impacts of wind turbines on birds, requested by the Danish Ministry of the Environment and Energy. The main conclusions of the review are, that in nearly all the studies so far the numbers of birds recorded colliding with wind turbines have been limited. Some studies indicate that stationary (breeding) birds inside the wind turbine area in the short run habituate to wind turbines, especially the noise and visual impacts, and that the risk for collision becomes low. However, some of the few more long term studies indicate that a negative impact may occur in later generations of breeding birds. In some studies a disturbance effect on bird species, which temporarily stay inside a wind turbine area in order to forage or rest, is observed. The degree of impact is species-specific. An effect is typically recorded inside a zone of up to 250-800 m, with geese and waders as the most sensitive groups of birds. (author)

  10. Adaptive pitch control for variable speed wind turbines

    Science.gov (United States)

    Johnson, Kathryn E [Boulder, CO; Fingersh, Lee Jay [Westminster, CO

    2012-05-08

    An adaptive method for adjusting blade pitch angle, and controllers implementing such a method, for achieving higher power coefficients. Average power coefficients are determined for first and second periods of operation for the wind turbine. When the average power coefficient for the second time period is larger than for the first, a pitch increment, which may be generated based on the power coefficients, is added (or the sign is retained) to the nominal pitch angle value for the wind turbine. When the average power coefficient for the second time period is less than for the first, the pitch increment is subtracted (or the sign is changed). A control signal is generated based on the adapted pitch angle value and sent to blade pitch actuators that act to change the pitch angle of the wind turbine to the new or modified pitch angle setting, and this process is iteratively performed.

  11. DOE/NASA Lewis large-wind-turbine program

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, R.L.

    1982-01-01

    There are several ongoing large wind system development project; ots directed toward meeting the technology requirements for utility applications. First generation tehcnology machines (Mod-0A and Mod-1) and second generation machines (Mod-2) are in opoeration at selected utility sites. Third generation technology machines (Mod-5) are in the design phase and are scheduled for initial operation in 1984 if project funding is continued. An overview of the large wind turbine activities managed by NASA Lewis is provided. These activities include results from the first and second generation field machines (Mod-0A, 01, and -2), the status of the Department of Interior WTS-4 machine for which NASA is responsible for technical management, and the design phase of the third generation wind turbines (Mod-5).

  12. Conceptual survey of Generators and Power Electronics for Wind Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, L.H.; Helle, L.; Blaabjerg, F.; Ritchie, E.; Munk-Nielsen, S.; Bindner, H.; Soerensen, P.; Bak-Jensen, B.

    2001-12-01

    This report presents a survey on generator concepts and power electronic concepts for wind turbines. The report is aimed as a tool for decision-makers and development people with respect to wind turbine manufactures, utilities, and independent system operators as well as manufactures of generators and power electronics. The survey is focused on the electric development of wind turbines and it yields an overview on: State of the art on generators and power electronics; future concepts and technologies within generators and power electronics; market needs in the shape of requirements to the grid connection, and; consistent system solutions, plus an evaluation of these seen in the prospect of market needs. This survey on of generator and power electronic concepts was carried out in co-operation between Aalborg University and Risoe National Laboratory in the scope of the research programme Electric Design and Control. (au)

  13. Effects of Capcitor Bank on Fault Ride Through Capibility of Induction Generator Based Wind Turbines

    DEFF Research Database (Denmark)

    Hu, Y; Chen, Zhe

    2010-01-01

    power system stability and supply security. Some existing wind turbines are still based on fixed speed induction generators, the effects of capacitor bank on such generators are discussed in this paper. The simulation study shows the capacitor bank may costeffectively improve the dynamic performance......Wind turbine installation is increasing rapidly. In some networks, wind power penetration is significantly high and the performance of wind turbine plays an important role in power system operation and control. Especially, the behavior of wind turbines during a power system disturbance would affect...

  14. Flicker Mitigation by Individual Pitch Control of Variable Speed Wind Turbines With DFIG

    DEFF Research Database (Denmark)

    Zhang, Yunqian; Chen, Zhe; Hu, Weihao

    2014-01-01

    generatorto investigate the flicker emission and mitigation issues. An individual pitch control (IPC) strategy is proposed to reduce the flicker emission at different wind speed conditions. The IPC scheme is proposed and the individual pitch controller is designed according to the generator active power...... and the azimuth angle of the wind turbine. The simulations are performed on the NREL (National Renewable Energy Laboratory) 1.5-MW upwind reference wind turbine model. Simulation results show that damping the generator active power by IPC is an effective means for flicker mitigation of variable speed wind......Due to the wind speed variation, wind shear and tower shadow effects, grid connected wind turbines are the sources of power fluctuations which may produce flicker during continuous operation. This paper presents a model of an MW-level variable-speed wind turbine with a doubly fed induction...

  15. Grid integration impacts on wind turbine design and development

    DEFF Research Database (Denmark)

    Hansen, Anca Daniela; Cutululis, Nicolaos Antonio; Sørensen, Poul Ejnar

    2009-01-01

    This paper presents an overall perspective on contemporary issues like wind power plants and grid integration. The purpose is to present and discuss the impacts of emerging new grid connection requirements on modern wind turbines. The grid integration issue has caused several new challenges......, the grid integration aspect has also an effect on wind turbines' role in the power system, on wind turbine technologies' survival on the market, as well as on the wind turbines' loads. Over the last years, it became obviously, that there it is an increasing need for design and research of wind turbines...... to the wind turbine design and development. The survival of different wind turbine concepts and controls is strongly conditioned by their ability to comply with stringent grid connection requirements, imposed by utility companies. Beside its impact on the mechanical design and control of wind turbines...

  16. Optimized chord and twist angle distributions of wind turbine blade considering Reynolds number effects

    Energy Technology Data Exchange (ETDEWEB)

    Wang, L.; Tang, X. [Univ. of Central Lancashire. Engineering and Physical Sciences, Preston (United Kingdom); Liu, X. [Univ. of Cumbria. Sustainable Engineering, Workington (United Kingdom)

    2012-07-01

    The aerodynamic performance of a wind turbine depends very much on its blade geometric design, typically based on the blade element momentum (BEM) theory, which divides the blade into several blade elements. In current blade design practices based on Schmitz rotor design theory, the blade geometric parameters including chord and twist angle distributions are determined based on airfoil aerodynamic data at a specific Reynolds number. However, rotating wind turbine blade elements operate at different Reynolds numbers due to variable wind speed and different blade span locations. Therefore, the blade design through Schmitz rotor theory at a specific Reynolds number does not necessarily provide the best power performance under operational conditions. This paper aims to provide an optimal blade design strategy for horizontal-axis wind turbines operating at different Reynolds numbers. A fixed-pitch variable-speed (FPVS) wind turbine with S809 airfoil is chosen as a case study and a Matlab program which considers Reynolds number effects is developed to determine the optimized chord and twist angle distributions of the blade. The performance of the optimized blade is compared with that of the preliminary blade which is designed based on Schmitz rotor design theory at a specific Reynolds number. The results demonstrate that the proposed blade design optimization strategy can improve the power performance of the wind turbine. This approach can be further developed for any practice of horizontal axis wind turbine blade design. (Author)

  17. Experimental investigation on the wake interference among wind turbines sited in atmospheric boundary layer winds

    Institute of Scientific and Technical Information of China (English)

    W. Tian; A. Ozbay; X. D. Wang; H.Hu

    2017-01-01

    We examined experimentally the effects of incom-ing surface wind on the turbine wake and the wake interfer-ence among upstream and downstream wind turbines sited in atmospheric boundary layer (ABL) winds. The experi-ment was conducted in a large-scale ABL wind tunnel with scaled wind turbine models mounted in different incom-ing surface winds simulating the ABL winds over typical offshore/onshore wind farms. Power outputs and dynamic loadings acting on the turbine models and the wake flow char-acteristics behind the turbine models were quantified. The results revealed that the incoming surface winds significantly affect the turbine wake characteristics and wake interference between the upstream and downstream turbines. The velocity deficits in the turbine wakes recover faster in the incoming surface winds with relatively high turbulence levels. Varia-tions of the power outputs and dynamic wind loadings acting on the downstream turbines sited in the wakes of upstream turbines are correlated well with the turbine wakes charac-teristics. At the same downstream locations, the downstream turbines have higher power outputs and experience greater static and fatigue loadings in the inflow with relatively high turbulence level, suggesting a smaller effect of wake inter-ference for the turbines sited in onshore wind farms.

  18. Modeling of wind turbines for power system studies

    Energy Technology Data Exchange (ETDEWEB)

    Petru, T.

    2001-05-01

    When wind turbines are installed into the electric grid, the power quality is affected. Today, strict installation recommendations often prevail due to a lack of knowledge on this subject. Consequently, it is important to predict the impact of wind turbines on the electric grid before the turbines are installed. The thesis describes relevant power quality issues, discusses different configurations of wind turbines with respect to power quality and draw requirements regarding wind turbine modeling. A model of a stall-regulated, fixed-speed wind turbine system is introduced and its power quality impact on the electric grid is evaluated. The model is verified with field measurements.

  19. Offshore Code Comparison Collaboration within IEA Wind Task 23: Phase IV Results Regarding Floating Wind Turbine Modeling; Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Jonkman, J.; Larsen, T.; Hansen, A.; Nygaard, T.; Maus, K.; Karimirad, M.; Gao, Z.; Moan, T.; Fylling, I.

    2010-04-01

    Offshore wind turbines are designed and analyzed using comprehensive simulation codes that account for the coupled dynamics of the wind inflow, aerodynamics, elasticity, and controls of the turbine, along with the incident waves, sea current, hydrodynamics, and foundation dynamics of the support structure. This paper describes the latest findings of the code-to-code verification activities of the Offshore Code Comparison Collaboration, which operates under Subtask 2 of the International Energy Agency Wind Task 23. In the latest phase of the project, participants used an assortment of codes to model the coupled dynamic response of a 5-MW wind turbine installed on a floating spar buoy in 320 m of water. Code predictions were compared from load-case simulations selected to test different model features. The comparisons have resulted in a greater understanding of offshore floating wind turbine dynamics and modeling techniques, and better knowledge of the validity of various approximations. The lessons learned from this exercise have improved the participants' codes, thus improving the standard of offshore wind turbine modeling.

  20. Expert group study on recommended practices for wind turbine testing and evaluation. 10. Measurement of noise immission from wind turbines at noise receptor locations

    International Nuclear Information System (INIS)

    Ljunggren, S.

    1997-01-01

    The purpose of this guide is to provide a set of techniques and methods for the measurement and description of wind turbine noise immission, that is, wind turbine noise at receptor locations. These techniques and methods have been prepared so that they can be used by: manufacturers; developers; operators; planning authorities; research and development engineers, for the purpose of verification of compliance with noise immission limits and of noise propagation models. The measurement of noise immission from wind turbines is a complex acoustic task. This guideline cannot cover all possible problems that may be encountered on, for instance: determination of wind speed; measurements in cases of low signal-to-noise ratio; allowance for reflections from buildings. Thus, it is strongly recommended that the measurements described in this guide are always carried out by experienced acousticians. (au)

  1. Critical Speed Control for a Fixed Blade Variable Speed Wind Turbine

    Directory of Open Access Journals (Sweden)

    Morgan Rossander

    2017-10-01

    Full Text Available A critical speed controller for avoiding a certain rotational speed is presented. The controller is useful for variable speed wind turbines with a natural frequency in the operating range. The controller has been simulated, implemented and tested on an open site 12 kW vertical axis wind turbine prototype. The controller is based on an adaptation of the optimum torque control. Two lookup tables and a simple state machine provide the control logic of the controller. The controller requires low computational resources, and no wind speed measurement is needed. The results suggest that the controller is a feasible method for critical speed control. The skipping behavior can be adjusted using only two parameters. While tested on a vertical axis wind turbine, it may be used on any variable speed turbine with the control of generator power.

  2. Reliability and Maintenance for Offshore Wind Turbines and Wave Energy Devices

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard

    2015-01-01

    Wind turbines are in some countries contributing significantly the production of electricity and wave energy devices have the potential to be developed in a similarway. For both offshore wind turbines and wave energy devices reliability is a key issue since costs to operation and maintenance may...... be significant contributors to the Levelized Cost Of Energy and OM costs are highly dependent on the reliability of the components implying that it is important to focus on increasing the reliability as much as is economically reasonable. This paper describes basic aspects for reliability analysis of wind...... turbines and wave energy devices with special focus on structural components. The reliability assessment needs include the effects of the control system and possible faults due to failure of electrical/mechanical components and e.g. loss of grid connection. The target reliability level for wind turbine...

  3. Small wind turbine purchasing guide : off-grid, residential, farm and small business applications

    International Nuclear Information System (INIS)

    2008-11-01

    Consumer interest in the environment and the economic advantages of using wind power are now driving interest in smaller wind turbines that range from micro battery-charging models to 300 kW tower-mounted turbines. Smaller turbines are also becoming increasingly accessible through major retail outlets. This guide discussed basic issues surrounding the purchasing, selection and installation of smaller wind turbines. Guidance related to site selection, permitting and approvals was provided, as well as recommendations related to maintenance and system performance. Information related to compliance, safety and setback and zoning restrictions was also presented. The guide was divided into 5 chapters: (1) an introduction to small wind turbines, (2) assessing site-specific expectations, (3) purchasing and permitting, (4) installation, operation and maintenance, and (6) a permitting checklist for small wind customers. Financial incentives for defraying the capital costs of small wind turbines were discussed, and guidance for determining electrical requirements was also provided. A glossary was included, as well as a list of local wind energy contractor and dealers. 3 tabs., 10 figs

  4. LES investigation of infinite staggered wind-turbine arrays

    International Nuclear Information System (INIS)

    Yang, Xiaolei; Sotiropoulos, Fotis

    2014-01-01

    The layouts of turbines affect the turbine wake interactions and thus the wind farm performance. The wake interactions in infinite staggered wind-turbine arrays are investigated and compared with infinite aligned turbine arrays in this paper. From the numerical results we identify three types of wake behaviours, which are significantly different from wakes in aligned wind-turbine arrays. For the first type, each turbine wake interferes with the pair of staggered downstream turbine wakes and the aligned downstream turbine. For the second type, each turbine wake interacts with the first two downstream turbine wakes but does not show significant interference with the second aligned downstream turbine. For the third type, each turbine wake recovers immediately after passing through the gap of the first two downstream turbines and has little interaction with the second downstream turbine wakes The extracted power density and power efficiency are also studied and compared with aligned wind-turbine arrays

  5. Method and apparatus for wind turbine braking

    Science.gov (United States)

    Barbu, Corneliu [Laguna Hills, CA; Teichmann, Ralph [Nishkayuna, NY; Avagliano, Aaron [Houston, TX; Kammer, Leonardo Cesar [Niskayuna, NY; Pierce, Kirk Gee [Simpsonville, SC; Pesetsky, David Samuel [Greenville, SC; Gauchel, Peter [Muenster, DE

    2009-02-10

    A method for braking a wind turbine including at least one rotor blade coupled to a rotor. The method includes selectively controlling an angle of pitch of the at least one rotor blade with respect to a wind direction based on a design parameter of a component of the wind turbine to facilitate reducing a force induced into the wind turbine component as a result of braking.

  6. Damage Detection in an Operating Vestas V27 Wind Turbine Blade by use of Outlier Analysis

    DEFF Research Database (Denmark)

    Ulriksen, Martin Dalgaard; Tcherniak, Dmitri; Damkilde, Lars

    2015-01-01

    The present paper explores the application of a well-established vibration-based damage detection method to an operating Vestas V27 wind turbine blade. The blade is analyzed in a total of four states, namely, a healthy one plus three damaged ones in which trailing edge openings of increasing sizes...

  7. A REVIEW ON COUNTER-ROTATING WIND TURBINES DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    OPRINA G.

    2016-09-01

    Full Text Available On a dynamic energy market characterized by the constant energy demand increase and economic as well as environmental constraints, the study and development of efficient conversion systems of wind’s energy has been approached by a considerable number of researchers. Given the modern economic and environmental challenges regarding the energy production and consumption, an advance in the research of innovative or improved wind energy conversion solutions has been registered. The objective of this paper is to provide a comprehensive, but not exhaustive overview of research achievements in counter-rotating wind turbine systems development, characterization and use. The review presents the first theoretical results that led to the counterrotating wind turbines development as well as the related methods used for investigating their performance. Valuable results have been found within various studies, which are carried out for different testing systems and conditions. Furthermore, there is still need of extensive studies, taking into account that the counter-rotating wind turbines have to prove their reliability in real operating conditions.

  8. Grid Faults Impact on the Mechanical Loads of Active Stall Wind Turbine

    DEFF Research Database (Denmark)

    Iov, Florin; Cutululis, Nicolaos A.; Hansen, Anca D.

    2008-01-01

    Emphasis in this paper is on the fault ride-through operation impact on the wind turbines structural loads. Grid faults are typically simulated in power system simulation tools using simplified drive train mechanical model, approach which doesn't allow a thorough investigation of structural loads...... as the electrical design of the wind turbine response during grid faults. The two-step simulation procedure is assessed by means of a simulation example. The effect of a grid fault on the structural part of a typical fixed speed wind turbine, equipped with an induction generator, is assessed....

  9. A Two-Bladed Concept Wind Turbine

    DEFF Research Database (Denmark)

    Kim, Taeseong

    2012-01-01

    This article shows the potential for reducing extreme loads with an innovative design of wind turbine, a partial pitch two-bladed concept turbine. The most extreme conditions to test a turbine are considered to be stand-still combined with a grid failure in which the wind comes from all directions...

  10. Shear and Turbulence Estimates for Calculation of Wind Turbine Loads and Responses Under Hurricane Strength Winds

    Science.gov (United States)

    Kosovic, B.; Bryan, G. H.; Haupt, S. E.

    2012-12-01

    Schwartz et al. (2010) recently reported that the total gross energy-generating offshore wind resource in the United States in waters less than 30m deep is approximately 1000 GW. Estimated offshore generating capacity is thus equivalent to the current generating capacity in the United States. Offshore wind power can therefore play important role in electricity production in the United States. However, most of this resource is located along the East Coast of the United States and in the Gulf of Mexico, areas frequently affected by tropical cyclones including hurricanes. Hurricane strength winds, associated shear and turbulence can affect performance and structural integrity of wind turbines. In a recent study Rose et al. (2012) attempted to estimate the risk to offshore wind turbines from hurricane strength winds over a lifetime of a wind farm (i.e. 20 years). According to Rose et al. turbine tower buckling has been observed in typhoons. They concluded that there is "substantial risk that Category 3 and higher hurricanes can destroy half or more of the turbines at some locations." More robust designs including appropriate controls can mitigate the risk of wind turbine damage. To develop such designs good estimates of turbine loads under hurricane strength winds are essential. We use output from a large-eddy simulation of a hurricane to estimate shear and turbulence intensity over first couple of hundred meters above sea surface. We compute power spectra of three velocity components at several distances from the eye of the hurricane. Based on these spectra analytical spectral forms are developed and included in TurbSim, a stochastic inflow turbulence code developed by the National Renewable Energy Laboratory (NREL, http://wind.nrel.gov/designcodes/preprocessors/turbsim/). TurbSim provides a numerical simulation including bursts of coherent turbulence associated with organized turbulent structures. It can generate realistic flow conditions that an operating turbine

  11. Wind lens technology and its application to wind and water turbine and beyond

    OpenAIRE

    Ohya Yuji; Karasudani Takashi; Nagai Tomoyuki; Watanabe Koichi

    2017-01-01

    Wind lens is a new type of wind power system consisting of a simple brimmed ring structure that surrounds the rotor causing greater wind to pass through the turbine. As a consequence, the turbine's efficiency of capturing energy from the wind gets dramatically increased. A Wind lens turbine can generate 2–5 times the power of an existing wind turbine given at the same rotor diameter and incoming wind speed. This fluid dynamical effect is also effective in the water. We have developed 1–3 kW W...

  12. A novel floating offshore wind turbine concept

    DEFF Research Database (Denmark)

    Vita, Luca; Schmidt Paulsen, Uwe; Friis Pedersen, Troels

    2009-01-01

    This paper will present a novel concept of a floating offshore wind turbine. The new concept is intended for vertical-axis wind turbine technology. The main purpose is to increase simplicity and to reduce total costs of an installed offshore wind farm. The concept is intended for deep water...... and large size turbines....

  13. Accident of Large-scale Wind Turbines Disconnecting from Power Grid and Its Protection

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    There were many accidents of large-scale wind turbines disconnecting from power grid in 2011. As single- phase-to-ground fault cannot be correctly detected, single-phase-to-ground fault evolved to phase-to-phase fault. Phase-to-phase fault was isolated slowly, thus leading to low voltage. And wind turbines without enough low voltage ride-through capacity had to be disconnected from the grid. After some wind turbines being disconnected from the grid, overvoltage caused by reactive power surplus made more wind turbines disconnect from the grid. Based on the accident analysis, this paper presents solutions to above problems, including travelling waves based single-phase-to-ground protection, adaptive low voltage protection, integrated protection and control, and high impedance fault detection. The solutions lay foundations in theory and technology to prevent large-scale wind turbines disconnecting from the operating power grid.

  14. Capturing the journey of wind from the wind turbines (poster)

    NARCIS (Netherlands)

    Giyanani, A.H.; Bierbooms, W.A.A.M.; Van Bussel, G.J.W.

    2015-01-01

    Wind turbine design, control strategies often assume Taylor’s frozen turbulence where the fluctuating part of the wind is assumed to be constant. In practise, the wind turbine faces higher turbulence in case of gusts and lower turbulence in some cases. With Lidar technology, the frozen turbulence

  15. Minimum Thrust Load Control for Floating Wind Turbine

    DEFF Research Database (Denmark)

    Christiansen, Søren; Bak, Thomas; Knudsen, Torben

    2012-01-01

    — Offshore wind energy capitalizes on the higher and less turbulent wind at sea. Shallow water sites are profitable for deployment of monopile wind turbines at water depths of up to 30 meters. Beyond 30 meters, the wind is even stronger and less turbulent. At these depths, floating wind turbines be...... and power stability when using the new control strategy.......— Offshore wind energy capitalizes on the higher and less turbulent wind at sea. Shallow water sites are profitable for deployment of monopile wind turbines at water depths of up to 30 meters. Beyond 30 meters, the wind is even stronger and less turbulent. At these depths, floating wind turbines...... presents a new minimum thrust control strategy capable of stabilizing a floating wind turbine. The new control strategy explores the freedom of variable generator speed above rated wind speed. A comparison to the traditional constant speed strategy, shows improvements in structural fore-aft oscillations...

  16. Site calibration for the wind turbine performance evaluation

    International Nuclear Information System (INIS)

    Nam, Yoon Su; Yoo, Neung Soo; Lee, Jung Wan

    2004-01-01

    The accurate wind speed information at the hub height of a wind turbine is very essential to the exact estimation of the wind turbine power performance testing. Several method on the site calibration, which is a technique to estimate the wind speed at the wind turbine's hub height based on the measured wind data using a reference meteorological mast, are introduced. A site calibration result and the wind resource assessment for the TaeKwanRyung test site are presented using three-month wind data from a reference meteorological mast and the other mast temporarily installed at the site of wind turbine. Besides, an analysis on the uncertainty allocation for the wind speed correction using site calibration is performed

  17. Identification of support structure damping of a full scale offshore wind turbine in normal operation

    DEFF Research Database (Denmark)

    Koukoura, Christina; Natarajan, Anand; Vesth, Allan

    2015-01-01

    damping from the decaying time series. The Enhanced Frequency Domain Decomposition (EFDD) method was applied to the wind turbine response under ambient excitation, for estimation of the damping in normal operation. The aero-servo-hydro-elastic tool HAWC2 is validated with offshore foundation load...... maxima of an impulse response caused by a boat impact. The result is used in the verification of the non aerodynamic damping in normal operation for low wind speeds. The auto-correlation function technique for damping estimation of a structure under ambient excitation was validated against the identified...... measurements. The model was tuned to the damping values obtained from the boat impact to match the measured loads. Wind turbulence intensity and wave characteristics used in the simulations are based on site measurements. A flexible soil model is included in the analysis. The importance of the correctly...

  18. Innovative Design of a Darrieus Straight Bladed Vertical Axis Wind Turbine by using Multi Element Airfoil

    DEFF Research Database (Denmark)

    Chougle, Prasad Devendra

    . Mainly, there is the horizontal axis wind turbine (HAWT) and vertical axis wind turbine (VAWT). HAWTs are more popular than VAWTs due to failure of VAWT commercialization during the late of 1980s on a large scale. However, in recent research work it has been documented that VAWTs are more economical......, and the wind tunnel testing of double-element airfoil is performed. It is found that the aerodynamic characteristics of the airfoil increased considerably by delaying the angle of stall. These two facts are very suitable for vertical axis wind turbine since they operate in a larger range of angle of attack......, ±40_, compared to the horizontal axis wind turbines which operate in the range of attack, ±15_. A new design of vertical axis wind turbine is then proposed, and aerodynamic performance is evaluated based on double multiple stream tube methods. The performance parameters are almost doubled compared...

  19. Power Quality of Grid-Connected Wind Turbines with DFIG and Their Interaction with the Grid

    DEFF Research Database (Denmark)

    Sun, Tao

    quality issues of grid-connected wind turbines and the interaction between wind turbines and the grid. The specific goal of the research has been to investigate flicker emission and mitigation of grid-connected wind turbines with doubly fed induction generators (DFIG) during continuous operation...... measures are proposed to mitigate the flicker levels produced by grid-connected wind turbines with DFIG, respectively by wind turbine output reactive power control and using STATCOM. Simulation results demonstrate that these two measures are effective for flicker mitigation regardless of mean wind speed....... To evaluate the flicker levels produced by grid-connected wind turbines with DFIG, a flickermeter model is developed according to the IEC standard IEC 61000-4-15, which simulates the response of the lamp-eye-brain chain and provides on-line statistical analysis ofthe flicker signal and the final results...

  20. Small Wind Turbine Technology Assessment; Estado del Arte de la Tecnologia de Pequeos Aerogeneradores

    Energy Technology Data Exchange (ETDEWEB)

    Avia Aranda, F; Cruz Cruz, I [CIEMAT. Madrid (Spain)

    1999-03-01

    The result of the study carried out under the scope of the ATYCA project Test Plant of Wind Systems for Isolated Applications, about the state of art of the small wind turbine technology (wind turbines with swept area smaller than 40 m``2) is presented. The study analyzes the collected information on 60 models of wind turbines from 23 manufactures in the worldwide market. Data from Chinese manufacturers, that have a large participation in the total number of small turbines in operation, are not included, due to the unavailability of the technical information. (Author) 15 refs.

  1. Structural health and prognostics management for offshore wind turbines :

    Energy Technology Data Exchange (ETDEWEB)

    Griffith, Daniel; Resor, Brian Ray; White, Jonathan Randall; Paquette, Joshua A.; Yoder, Nathanael C.

    2012-12-01

    Operations and maintenance costs for offshore wind plants are expected to be significantly higher than the current costs for onshore plants. One way in which these costs may be able to be reduced is through the use of a structural health and prognostic management system as part of a condition based maintenance paradigm with smart load management. To facilitate the creation of such a system a multiscale modeling approach has been developed to identify how the underlying physics of the system are affected by the presence of damage and how these changes manifest themselves in the operational response of a full turbine. The developed methodology was used to investigate the effects of a candidate blade damage feature, a trailing edge disbond, on a 5-MW offshore wind turbine and the measurements that demonstrated the highest sensitivity to the damage were the local pitching moments around the disbond. The multiscale method demonstrated that these changes were caused by a local decrease in the blades torsional stiffness due to the disbond, which also resulted in changes in the blades local strain field. Full turbine simulations were also used to demonstrate that derating the turbine power by as little as 5% could extend the fatigue life of a blade by as much as a factor of 3. The integration of the health monitoring information, conceptual repair cost versus damage size information, and this load management methodology provides an initial roadmap for reducing operations and maintenance costs for offshore wind farms while increasing turbine availability and overall profit.

  2. Coordinated Control of Wind Turbine and Energy Storage System for Reducing Wind Power Fluctuation

    Energy Technology Data Exchange (ETDEWEB)

    Muljadi, Eduard [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kim, Chunghun [Hanyang University; Chung, Chung Choo [Hanyang University

    2017-11-13

    This paper proposes a coordinated control of wind turbine and energy storage system (ESS). Because wind power (WP) is highly dependent on variable wind speed and could induce a severe stability problem to power system especially when the WP has high penetration level. To solve this problem, many power generation corporations or grid operators recently use the ESS. It has very quick response and good performance for reducing the impact of WP fluctuation but has high cost for its installation. Therefore, it is very important to design the control algorithm considering both ESS capacity and grid reliability. Thus, we propose the control algorithm to mitigate the WP fluctuation by using the coordinated control between wind turbine and ESS considering ESS state of charge (SoC) and the WP fluctuation. From deloaded control according to WP fluctuation and ESS SoC management, we can expect the ESS lifespan expansion and improved grid reliability. The effectiveness of the proposed method is validated in MATLAB/Simulink considering power system including both wind turbine generator and conventional generators which react to system frequency deviation.

  3. Aerodynamic shape optimization of non-straight small wind turbine blades

    International Nuclear Information System (INIS)

    Shen, Xin; Yang, Hong; Chen, Jinge; Zhu, Xiaocheng; Du, Zhaohui

    2016-01-01

    Graphical abstract: Small wind turbine blades with 3D stacking lines (sweep and bend) have been considered and analyzed with an optimization code based on the lifting surface method. The results indicated that the power capture and the rotor thrust can be improved with these more complex geometries. The starting behavior of the small wind turbines can be improved by the optimization of the blade chord and twist angle distribution. - Highlights: • The small wind turbine blade was optimized with non-straight shape. • Lifting surface method with free wake was used for aerodyanmic performace evaluation. • The non-straight shape can be used to increase energy production and decrease the thrust. • The energy production should be sacrificed in order to increase the starting behavior. - Abstract: Small wind turbines usually operate in sub-optimal wind conditions in order to satisfy the demand where it is needed. The aerodynamic performance of small horizontal axis wind turbines highly depends on the geometry. In the present study, the geometry of wind turbine blades are optimized not only in terms of the distribution of the chord and twist angle but also with 3-dimensional stacking line. As the blade with 3-dimensional stacking line is given sweep in the plan of rotation and dihedral in the plan containing the blade and rotor axis, the common used blade element momentum method can no longer provide accurate aerodynamic performance solution. A lifting surface method with free wake model is used as the aerodynamic model in the present work. The annual energy production and the starting performance are selected as optimization objective. The starting performance is evaluated based on blade element method. The optimization of the geometry of the non-straight wind turbine blades is carried out by using a micro-genetic algorithm. Results show that the wind turbine blades with properly designed 3-dimensional stacking line can increase the annual energy production and have

  4. Steady and Unsteady Analysis of NACA 0018 Airfoil in Vertical-Axis Wind Turbine

    DEFF Research Database (Denmark)

    Rogowski, Krzysztof; Hansen, Martin Otto Laver; Maronski, Ryszard

    2018-01-01

    Numerical results are presented for aerodynamic unsteady and steady airfoil characteristtcs of the NACA 0018 airfoil of a two-dimensional vertical-axis wind turbine. A geometrical model of the Darrieus-type wind turbine and the rotor operating parameters used for nurnerieal simulation are taken...

  5. A Semi-active Control System for Wind Turbines

    DEFF Research Database (Denmark)

    Caterino, N.; Georgakis, Christos T.; Trinchillo, F.

    2014-01-01

    A semi-active (SA) control system based on the use of smart magnetorheological (MR) dampers to control the structural response of a wind turbine is proposed herein. The innovative approach is based on the implementation and use of a variable-properties base restraint. This is able to modify in real......, and a control algorithm that instantaneously commands the latter during the motion, making them to modulate the reactive force as needed to achieve the performance goals. The design and operation of such a system are shown with reference to a case study consisting of an almost 100 m tall wind turbine, realized...

  6. Comparative study of Danish and foreign wind turbine economics

    International Nuclear Information System (INIS)

    Godtfredsen, F.

    1993-02-01

    This comparative study indicates that Denmark still is the leading nation in wind turbine technology in regard to economics as well as energy output and nacelle weight per swept rotor area. For roughness class 1, the levellized socioeconomic costs of wind power from Danish wind turbines is DKK 0.396 - 0.536 per kWh compared with production costs of DKK 0.525 for the most economic of the foreign wind turbines investigated. Furthermore it is pointed out, that there seems to be no correlation between generator capacity or swept rotor area and costs of windpower for the wind turbines investigated. Nevertheless there are arguments for the statement that large scale wind turbines will be relatively more economic in the future. Danish wind turbine manufacturers only produce tree-bladed, stall- or pitch regulated wind turbines with constant rotational speed. In Holland, Germany and UK two-bladed wind turbines and turbines with variable speed has been introduced. Still the new concepts are less economic, but not without future interest. (au)

  7. High-efficiency wind turbine

    Science.gov (United States)

    Hein, L. A.; Myers, W. N.

    1980-01-01

    Vertical axis wind turbine incorporates several unique features to extract more energy from wind increasing efficiency 20% over conventional propeller driven units. System also features devices that utilize solar energy or chimney effluents during periods of no wind.

  8. Effect of Geometric Uncertainties on the Aerodynamic Characteristic of Offshore Wind Turbine Blades

    International Nuclear Information System (INIS)

    Ernst, Benedikt; Schmitt, Henning; Seume, Jörg R

    2014-01-01

    Offshore wind turbines operate in a complex unsteady flow environment which causes unsteady aerodynamic loads. The unsteady flow environment is characterized by a high degree of uncertainty. In addition, geometry variations and material imperfections also cause uncertainties in the design process. Probabilistic design methods consider these uncertainties in order to reach acceptable reliability and safety levels for offshore wind turbines. Variations of the rotor blade geometry influence the aerodynamic loads which also affect the reliability of other wind turbine components. Therefore, the present paper is dealing with geometric uncertainties of the rotor blades. These can arise from manufacturing tolerances and operational wear of the blades. First, the effect of geometry variations of wind turbine airfoils on the lift and drag coefficients are investigated using a Latin hypercube sampling. Then, the resulting effects on the performance and the blade loads of an offshore wind turbine are analyzed. The variations of the airfoil geometry lead to a significant scatter of the lift and drag coefficients which also affects the damage-equivalent flapwise bending moments. In contrast to that, the effects on the power and the annual energy production are almost negligible with regard to the assumptions made

  9. Assessment of U.S. Manufacturing Capability for Next-Generation Wind Turbine Drivetrains

    Energy Technology Data Exchange (ETDEWEB)

    Cotrell, J. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Stelhy, T. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2013-09-01

    Robust U.S. wind turbine manufacturing capabilities and supply chains are important for the United States to reduce the cost of electricity generated from wind turbines. These capabilities and supply chains are also critical to the invention and commercialization of new wind turbine technologies while providing high-quality jobs. The development of advanced drivetrain technologies for windturbine applications is advancing the state of the art for drivetrain design by producing higher capacity and operating reliability than conventional drivetrains. Advanced drivetrain technologies such as medium-speed and direct-drive generators, silicon-carbide (SiC) IGBT-based power electronics, and high torque density speed increasers require different manufacturing and supply chaincapabilities that present both risks and opportunities for U.S. wind turbine manufacturers and the wind industry as a whole. The primary objective of this project is to assess how advanced drivetrain technologies and trends will impact U.S. wind turbine manufacturing and its supply chains. The U.S. Department of Energy and other industry participants will use the information from this study toidentify domestic manufacturing gaps, barriers, and opportunities for developing U.S. wind turbine manufacturing capabilities and supply chains for next-generation drivetrain technologies. This report also includes recommendations for prioritizing technology areas for possible investments by public, private, or nonprofit entities that will reduce the cost of wind-generated electricity. Suchinvestments foster opportunities to invent and commercialize new wind turbine technologies, and provide high-quality jobs in the United States.

  10. Aerodynamical noise from wind turbine generators

    International Nuclear Information System (INIS)

    Jakobsen, J.; Andersen, B.

    1993-06-01

    Two extensive measurement series of noise from wind turbines have been made during different modifications of their rotors. One series focused on the influence from the tip shape on the noise, while the other series dealt with the influence from the trailing edge. The experimental layout for the two investigations was identical. The total A-weighted noise from the wind turbine was measured in 1/3 octave bands from 50 Hz to 10 kHz in 1-minute periods simultaneously with wind speed measurements. The microphone was mounted on a hard board on the ground about 40 m directly downwind of the wind turbine, and the wind speed meter was placed at the same distance upwind of the wind turbine 10 m above ground. Regression analysis was made between noise and wind speed in each 1/3 octave band to determine the spectrum at 8 m/s. During the measurements care was taken to avoid influence from background noise, and the influence from machinery noise was minimized and corrected for. Thus the results display the aerodynamic rotor noise from the wind turbines. By use of this measurement technique, the uncertainty has been reduced to 1.5 - 2 dB per 1/3 octave band in the relevant frequency range and to about 1 dB on the total A-weighted levels. (au) (10 refs.)

  11. Prediction models for wind speed at turbine locations in a wind farm

    DEFF Research Database (Denmark)

    Knudsen, Torben; Bak, Thomas; Soltani, Mohsen

    2011-01-01

    In wind farms, individual turbines disturb the wind field by generating wakes that influence other turbines in the farm. From a control point of view, there is an interest in dynamic optimization of the balance between fatigue and production, and an understanding of the relationship between turbines...... on standard turbine measurements such as rotor speed and power produced, an effective wind speed, which represents the wind field averaged over the rotor disc, is derived. The effective wind speed estimator is based on a continuous–discrete extended Kalman filter that takes advantage of nonlinear time varying...... on the result related to effective wind speed, it is possible to predict wind speeds at neighboring turbines, with a separation of over 700 m, up to 1 min ahead reducing the error by 30% compared with a persistence method. The methodological results are demonstrated on data from an off-shore wind farm...

  12. Comparative study of OMA applied to experimental and simulated data from an operating Vestas V27 wind turbine

    DEFF Research Database (Denmark)

    Requeson, Oscar Ramirez; Tcherniak, Dmitri; Larsen, Gunner Chr.

    2015-01-01

    ), and modal analysis requirements are thus fulfilled for the dynamic characterization. Under operation, the system cannot be considered as LTI and must be modelled as a linear periodic time-variant (LPTV) system, which allows for the application of the related theory for such systems. One of these methods...... results, and in turn, numerical and analytical modelling help improve and validate new experimental techniques. Wind turbines are complex dynamic systems that consist of mutually moving substructures under high dynamic loads. At a standstill, the system can be modelled as linear time-invariant (LTI...... which is the assumption of isotropic rotors. Since rotors are never completely isotropic in real life, this paper presents the application of operational modal analysis together with the Coleman transformation on both experimental data from a full-scale Vestas wind turbine with instrumented blades...

  13. Floating Foundations for Offshore Wind Turbines

    DEFF Research Database (Denmark)

    Andersen, Morten Thøtt

    The concept of harnessing the power of the wind dates all the way back to the first ships traversing the seas. Later, windmills enabled the use of wind power for industrial purposes. Since then, technology has allowed the production of clean renewable energy through the use of wind turbines....... These turbines have traditionally been placed on land, but several factors have urged a move to offshore locations. Now the boundaries are being pushed into deeper and deeper waters, where the idea of floating offshore wind turbines has emerged. In less than a decade, these have gone from scattered small...

  14. Rotating transformers in wind turbine applications

    Energy Technology Data Exchange (ETDEWEB)

    Hylander, J. [Chalmers Univ. of Technology, Goeteborg (Sweden); Engstroem, S. [Aegir konsult AB, Lidingoe (Sweden)

    1996-12-01

    The power consumption of rotating electrical components is often supplied via slip-rings in wind turbines. Slip-ring equipment is expensive and need maintenance and are prone to malfunction. If the slip-rings could be replaced with contact-less equipment better turbines could be designed. This paper presents the design, some FE calculations and some measurements on a prototype rotating transformer. The proposed transformer consists of a secondary rotating winding and a stationary exciting primary winding. The results indicate that this transformer could be used to replace slip-rings in wind turbines. 4 refs, 3 figs

  15. Wind turbines - generating noise or electricity?

    International Nuclear Information System (INIS)

    Russell, Eric

    1999-01-01

    Wind turbine technology has made great strides in the past few years. Annual energy output is up by two orders of magnitude and nacelle weight and noise has been halved. Computational fluid dynamics has paid a part in advancing knowledge of air flow and turbulence around wind generators. Current research is focused on how to increase turbine size and improve efficiency. A problem is that while larger wind turbines will produce cheaper electricity, the noise problem will mean that the number of acceptable sites will decrease. The biggest wind generators will need about 800 m clearance from the nearest house. (UK)

  16. Damage tolerance and structural monitoring for wind turbine blades.

    Science.gov (United States)

    McGugan, M; Pereira, G; Sørensen, B F; Toftegaard, H; Branner, K

    2015-02-28

    The paper proposes a methodology for reliable design and maintenance of wind turbine rotor blades using a condition monitoring approach and a damage tolerance index coupling the material and structure. By improving the understanding of material properties that control damage propagation it will be possible to combine damage tolerant structural design, monitoring systems, inspection techniques and modelling to manage the life cycle of the structures. This will allow an efficient operation of the wind turbine in terms of load alleviation, limited maintenance and repair leading to a more effective exploitation of offshore wind. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  17. Sequence Domain Harmonic Modeling of Type-IV Wind Turbines

    DEFF Research Database (Denmark)

    Guest, Emerson; Jensen, Kim Høj; Rasmussen, Tonny Wederberg

    2017-01-01

    -sampled pulsewidth modulation and an analysis of converter generated voltage harmonics due to compensated dead-time. The decoupling capabilities of the proposed the SD harmonic model are verified through a power quality (PQ) assessment of a 3MW Type-IV wind turbine. The assessment shows that the magnitude and phase...... of low-order odd converter generated voltage harmonics are dependent on the converter operating point and the phase of the fundamental component of converter current respectively. The SD harmonic model can be used to make PQ assessments of Type-IV wind turbines or incorporated into harmonic load flows...... for computation of PQ in wind power plants....

  18. Effects of finite aspect ratio on wind turbine airfoil measurements

    DEFF Research Database (Denmark)

    Kiefer, Janik; Miller, Mark A.; Hultmark, Marcus

    2016-01-01

    Wind turbines partly operate in stalled conditions within their operational cycle. To simulate these conditions, it is also necessary to obtain 2-D airfoil data in terms of lift and drag coefficients at high angles of attack. Such data has been obtained previously, but often at low aspect ratios...... and only barely past the stall point, where strong wall boundary layer influence is expected. In this study, the influence of the wall boundary layer on 2D airfoil data, especially in the post stall domain, is investigated. Here, a wind turbine airfoil is tested at different angles of attack and with two...

  19. Market experiences with small wind turbines

    International Nuclear Information System (INIS)

    Van Deijl, T.J.

    1990-01-01

    An overview is given of the marketing experiences of Lagerwey Windturbines with the exploitation of small wind turbines. Attention is paid to the market mechanisms which effect the sale and implementation of small wind turbines: payback of surplus power, provincial and regional subsidies, grid connection costs, energy prices, and flexible solutions for grid connections. Also problems with municipalities with regard to regulations or construction licenses are discussed. Some recommendations are given to stimulate the market for small wind turbines. 1 fig., 1 ref

  20. Small Wind Research Turbine: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Corbus, D.; Meadors, M.

    2005-10-01

    The Small Wind Research Turbine (SWRT) project was initiated to provide reliable test data for model validation of furling wind turbines and to help understand small wind turbine loads. This report will familiarize the user with the scope of the SWRT test and support the use of these data. In addition to describing all the testing details and results, the report presents an analysis of the test data and compares the SWRT test data to simulation results from the FAST aeroelastic simulation model.

  1. Experimental Vision Studies of Flow and Structural Effects on Wind Turbines

    DEFF Research Database (Denmark)

    Najafi, Nadia

    In the present thesis, two modern vision technologies are developed and used to study wind turbines: 1- Stereo vision to study vibrations and dynamics of the Vertical Axes Wind Turbine (VAWT) via operational modal analysis (OMA) 2- Background-oriented Schlieren (BOS) method to study the tip...... vortices that are shed from a Horizontal Axis Wind Turbine (HAWT) blades The thesis starts with an introduction to the stereo vision and OMA and is followed by two practical implementations of the basics derived in the introduction. In the first experiment, we developed the image processing tools...... a Nordtank horizontal axis wind turbine based on the density gradient in the vortex. The BOS method does not need complicated equipment such as special cameras or seeded flow, which makes it a convenient method to study large scale flows. However, the challenging part in the current case is the small...

  2. Vertical-axial component wind turbine with a high coefficient using for wind energy

    International Nuclear Information System (INIS)

    Yersin, Ch. Sh.; Manatbev, R.K.; Yersina, A. K.; Tulepbergenov, A. K.

    2012-01-01

    The report presents the results of research and development on of promising wind units carousel type with a high ratio utilization of wind energy. This devices use a well-known invention – the wind turbine Darrieus. The rotation of the turbine is due to the action of ascensional power to aerodynamic well-streamlined symmetrical about the chord wing profiles of NASA, which are working wind turbine blades. The shaft rotation can be connected with the working blades of one of two ways: using the “swings” or the way “troposkino”. Darrieus turbine has a ratio utilization of wind energy xmax=045. Despite the fact that this is a good indicator of the efficiency of the turbine working, the proposed option allows us to significantly increase the value of this coefficient. The bases methodology of this research is a method of technical and technological research and development design of prospective wind energy construction (WES). Key words: wind turbine, the blade, coefficient utilization of wind energy

  3. Customized DSP-based vibration measurement for wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    LaWhite, N.E.; Cohn, K.E. [Second Wind Inc., Somerville, MA (United States)

    1996-12-31

    As part of its Advanced Distributed Monitoring System (ADMS) project funded by NREL, Second Wind Inc. is developing a new vibration measurement system for use with wind turbines. The system uses low-cost accelerometers originally designed for automobile airbag crash-detection coupled with new software executed on a Digital Signal Processor (DSP) device. The system is envisioned as a means to monitor the mechanical {open_quotes}health{close_quotes} of the wind turbine over its lifetime. In addition the system holds promise as a customized emergency vibration detector. The two goals are very different and it is expected that different software programs will be executed for each function. While a fast Fourier transform (FFT) signature under given operating conditions can yield much information regarding turbine condition, the sampling period and processing requirements make it inappropriate for emergency condition monitoring. This paper briefly reviews the development of prototype DSP and accelerometer hardware. More importantly, it reviews our work to design prototype vibration alarm filters. Two-axis accelerometer test data from the experimental FloWind vertical axis wind turbine is analyzed and used as a development guide. Two levels of signal processing are considered. The first uses narrow band pre-processing filters at key fundamental frequencies such as the 1P, 2P and 3P. The total vibration energy in each frequency band is calculated and evaluated as a possible alarm trigger. In the second level of signal processing, the total vibration energy in each frequency band is further decomposed using the two-axis directional information. Directional statistics are calculated to differentiate between linear translations and circular translations. After analyzing the acceleration statistics for normal and unusual operating conditions, the acceleration processing system described could be used in automatic early detection of fault conditions. 9 figs.

  4. A new oil debris sensor for online condition monitoring of wind turbine gearboxes

    DEFF Research Database (Denmark)

    Wang, Chao; Liu, Hui; Liu, Xiao

    2015-01-01

    Online Condition Monitoring (CM) is a key technology for the Operation and Maintenance (O&M) of wind turbines. Lubricating oil is the blood of the wind turbine gearbox. Metal debris in lubricating oil contains abundant information regarding the ageing and wear/damage of mechanical transmission sy...

  5. Short Circuits of a 10 MW High Temperature Superconducting Wind Turbine Generator

    DEFF Research Database (Denmark)

    Song, Xiaowei (Andy); Liu, Dong; Polinder, Henk

    2016-01-01

    Direct drive high temperature superconducting (HTS) wind turbine generators have been proposed to tackle challenges for ever increasing wind turbine ratings. Due to smaller reactances in HTS generators, higher fault currents and larger transient torques could occur if sudden short circuits happen...... at generator terminals. In this paper, a finite element model that couples magnetic fields and the generator’s equivalent circuits is developed to simulate short circuit faults. Afterwards, the model is used to study the transient performance of a 10 MW HTS wind turbine generator under four different short...... that the short circuits pose great challenges to the generator, and careful consideration should be given to protect the generator. The results presented in this paper would be beneficial to the design, operation and protection of an HTS wind turbine generator....

  6. Short Circuits of a 10-MW High-Temperature Superconducting Wind Turbine Generator

    DEFF Research Database (Denmark)

    Song, Xiaowei (Andy); Liu, Dong; Polinder, Henk

    2017-01-01

    Direct Drive high-temperature superconducting (HTS) wind turbine generators have been proposed to tackle challenges for ever increasing wind turbine ratings. Due to smaller reactances in HTS generators, higher fault currents and larger transient torques could occur if sudden short circuits take...... place at generator terminals. In this paper, a finite element model that couples magnetic fields and the generator's equivalent circuits is developed to simulate short-circuit faults. Afterward, the model is used to study the transient performance of a 10-MW HTS wind turbine generator under four...... show that the short circuits pose great challenges to the generator, and careful consideration should be given to protect the generator. The findings presented in this paper would be beneficial to the design, operation and protection of an HTS wind turbine generator....

  7. Active control: Wind turbine model

    Energy Technology Data Exchange (ETDEWEB)

    Bindner, Henrik

    1999-07-01

    This report is a part of the reporting of the work done in the project `Active Control of Wind Turbines`. This project aim is to develop a simulation model for design of control systems for turbines with pitch control and to use that model to design controllers. This report describes the model developed for controller design and analysis. Emphasis has been put on establishment of simple models describing the dynamic behavior of the wind turbine in adequate details for controller design. This has been done with extensive use of measurements as the basis for selection of model complexity and model validation as well as parameter estimation. The model includes a simple model of the structure of the turbine including tower and flapwise blade bending, a detailed model of the gear box and induction generator, a linearized aerodynamic model including modelling of induction lag and actuator and sensor models. The models are all formulated as linear differential equations. The models are validated through comparisons with measurements performed on a Vestas WD 34 400 kW wind turbine. It is shown from a control point of view simple linear models can be used to describe the dynamic behavior of a pitch controlled wind turbine. The model and the measurements corresponds well in the relevant frequency range. The developed model is therefore applicable for controller design. (au) EFP-91. 18 ills., 22 refs.

  8. Analysis of the Flicker Level Produced by a Fixed-Speed Wind Turbine

    Science.gov (United States)

    Suppioni, Vinicius; P. Grilo, Ahda

    2013-10-01

    In this article, the analysis of the flicker emission during continuous operation of a mid-scale fixed-speed wind turbine connected to a distribution system is presented. Flicker emission is investigated based on simulation results, and the dependence of flicker emission on short-circuit capacity, grid impedance angle, mean wind speed, and wind turbulence is analyzed. The simulations were conducted in different programs in order to provide a more realistic wind emulation and detailed model of mechanical and electrical components of the wind turbine. Such aim is accomplished by using FAST (Fatigue, Aerodynamics, Structures, and Turbulence) to simulate the mechanical parts of the wind turbine, Simulink/MatLab to simulate the electrical system, and TurbSim to obtain the wind model. The results show that, even for a small wind generator, the flicker level can limit the wind power capacity installed in a distribution system.

  9. Increasing power generation in horizontal axis wind turbines using optimized flow control

    Science.gov (United States)

    Cooney, John A., Jr.

    In order to effectively realize future goals for wind energy, the efficiency of wind turbines must increase beyond existing technology. One direct method for achieving increased efficiency is by improving the individual power generation characteristics of horizontal axis wind turbines. The potential for additional improvement by traditional approaches is diminishing rapidly however. As a result, a research program was undertaken to assess the potential of using distributed flow control to increase power generation. The overall objective was the development of validated aerodynamic simulations and flow control approaches to improve wind turbine power generation characteristics. BEM analysis was conducted for a general set of wind turbine models encompassing last, current, and next generation designs. This analysis indicated that rotor lift control applied in Region II of the turbine power curve would produce a notable increase in annual power generated. This was achieved by optimizing induction factors along the rotor blade for maximum power generation. In order to demonstrate this approach and other advanced concepts, the University of Notre Dame established the Laboratory for Enhanced Wind Energy Design (eWiND). This initiative includes a fully instrumented meteorological tower and two pitch-controlled wind turbines. The wind turbines are representative in their design and operation to larger multi-megawatt turbines, but of a scale that allows rotors to be easily instrumented and replaced to explore new design concepts. Baseline data detailing typical site conditions and turbine operation is presented. To realize optimized performance, lift control systems were designed and evaluated in CFD simulations coupled with shape optimization tools. These were integrated into a systematic design methodology involving BEM simulations, CFD simulations and shape optimization, and selected experimental validation. To refine and illustrate the proposed design methodology, a

  10. Power Curve of the AWEC-60 wind turbine; Curva de potencia del aerogenerador AWEC-60

    Energy Technology Data Exchange (ETDEWEB)

    Avia, F

    1992-07-01

    The experimental wind turbine AWEC-60 was developed to evaluate the possibilities of the Large Wind turbines, from the technical and economical point of view. The project was developed by a spanish-german group, integrated by Union Fenosa, Asinel, M.A.N. Neue Technologie and the Instituto de Energias Renovables from CIEMAT, starting the operation during the year 1990. In this paper, the obtention of the wind turbine power curve is presented, which has been obtained in agreement with the Recommended Practices for Wind Turbine Testing and Evaluation from the Executive Committee for the Research and Development on Wind Energy, of the International Energy Agency (AIE). Using the functioning data of the wind turbine correspondig to the first quarter of the year 1991, the power curves have been obtained, and the results have been compared with the curves measured in other similar Large wind turbines. (Author) 7 refs.

  11. Smart Wind Turbine : Analysis and Autonomous Flap

    NARCIS (Netherlands)

    Bernhammer, L.O.

    2015-01-01

    Wind turbines convert kinetic energy of the wind into electrical energy. Unfortunately, this process is everything but constant, as the wind source shows large fluctuations with high and low frequencies. This turbulence, together with the wind shear and yawed inflow, excites the turbine structure,

  12. WindVOiCe, a Self-Reporting Survey: Adverse Health Effects, Industrial Wind Turbines, and the Need for Vigilance Monitoring

    Science.gov (United States)

    Krogh, Carmen M. E.; Gillis, Lorrie; Kouwen, Nicholas; Aramini, Jeff

    2011-01-01

    Industrial wind turbines have been operating in many parts of the globe. Anecdotal reports of perceived adverse health effects relating to industrial wind turbines have been published in the media and on the Internet. Based on these reports, indications were that some residents perceived they were experiencing adverse health effects. The purpose…

  13. Small Wind Turbine Applications: Current Practice in Colorado

    International Nuclear Information System (INIS)

    Green, Jim

    1999-01-01

    Numerous small wind turbines are being used by homeowners in Colorado. Some of these installations are quite recent while others date back to the federal tax-credit era of the early 1980s. Through visits with small wind turbine owners in Colorado, I have developed case studies of six small wind energy applications focusing on the wind turbine technology, wind turbine siting, the power systems and electric loads, regulatory issues, and motivations about wind energy. These case studies offer a glimpse into the current state-of-the-art of small-scale wind energy and provide some insight into issues affecting development of a wider market

  14. Design and development of nautilus whorl-wind turbine

    Science.gov (United States)

    R, Pramod; Kumar, G. B. Veeresh; Harsha, P. Sai Sri; Kumar, K. A. Udaya

    2017-07-01

    Our life is directly related to energy and its consumption, and the issues of energy research are extremely important and highly sensitive. Scientists and researchers attempt to accelerate solutions for wind energy generation, design parameters under the influence of novel policies adopted for energy management and the concerns for global warming and climate change. The objective of this study is to design a small wind turbine that is optimized for the constraints that come with residential use. The study is aimed at designing a wind turbine for tapping the low speed wind in urban locations. The design process includes the selection of the wind turbine type and the determination of the blade airfoil, finding the maximum drag model and manufacturing of the turbine economically. In this study, the Nautilus turbine is modeled, simulated and the characteristic curves are plotted. The cutting in wind speed for the turbine is around 1m/s. The turbine rotates in a range of 20 rpm to 500 rpm at wind speeds 1m/s to 10m/s On a below average day at noon where the wind speed are usually low the turbine recorded an rpm of 120 (average value) at 4m/s wind speeds. This study focuses on a computational fluid dynamics analysis of compressible radially outward flow.

  15. Model Predictive Control for Load Frequency Control with Wind Turbines

    Directory of Open Access Journals (Sweden)

    Yi Zhang

    2015-01-01

    Full Text Available Reliable load frequency (LFC control is crucial to the operation and design of modern electric power systems. Considering the LFC problem of a four-area interconnected power system with wind turbines, this paper presents a distributed model predictive control (DMPC based on coordination scheme. The proposed algorithm solves a series of local optimization problems to minimize a performance objective for each control area. The scheme incorporates the two critical nonlinear constraints, for example, the generation rate constraint (GRC and the valve limit, into convex optimization problems. Furthermore, the algorithm reduces the impact on the randomness and intermittence of wind turbine effectively. A performance comparison between the proposed controller with and that without the participation of the wind turbines is carried out. Good performance is obtained in the presence of power system nonlinearities due to the governors and turbines constraints and load change disturbances.

  16. European wind turbine testing procedure developments. Task 1: Measurement method to verify wind turbine performance characteristics

    DEFF Research Database (Denmark)

    Hunter, R.; Friis Pedersen, Troels; Dunbabin, P.

    2001-01-01

    There is currently significant standardisation work ongoing in the context of wind farm energy yield warranty assessment and wind turbine power performance testing. A standards maintenance team is revising the current IEC (EN) 61400-12 Ed 1 standard forwind turbine power performance testing....... The standard is being divided into four documents. Two of them are drafted for evaluation and verification of complete wind farms and of individual wind turbines within wind farms. This document, and the project itdescribes, has been designed to help provide a solid technical foundation for this revised...... standard. The work was wide ranging and addressed 'grey' areas of knowledge, regarding existing methodologies or to carry out basic research in support offundamentally new procedures. The work has given rise to recommendations in all areas of the work, including site calibration procedures, nacelle...

  17. Impacts of Providing Inertial Response on Dynamic Loads of Wind Turbine Drivetrains: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Girsang, I. P.; Dhupia, J.; Singh, M.; Gevorgian, V.; Muljadi, E.; Jonkman, J.

    2014-09-01

    There has been growing demand from the power industry for wind power plants to support power system operations. One such requirement is for wind turbines to provide ancillary services in the form of inertial response. When the grid frequency drops, it is essential for wind turbine generators (WTGs) to inject kinetic energy stored in their inertia into the grid to help arrest the frequency decline. However, the impacts of inertial response on the structural loads of the wind turbine have not been given much attention. To bridge this gap, this paper utilizes a holistic model for both fixed-speed and variable-speed WTGs by integrating the aeroelastic wind turbine model in FAST, developed by the National Renewable Energy Laboratory, with the electromechanical drivetrain model in SimDriveline and SimPowerSystems.

  18. Model-Based Control of a Ballast-Stabilized Floating Wind Turbine Exposed to Wind and Waves

    DEFF Research Database (Denmark)

    Christiansen, Søren

    2013-01-01

    wind turbine, for water depths beyond 50 meters where winds are stronger and less turbulent. A floating wind turbine is subject to not only aerodynamics and wind induced loads, but also to hy-drodynamics and wave induced loads. In contrast to a bottom fixed wind turbine, the floating structure......, the hydrodynamics and the loads change the dynamic behavior of a floating wind turbine. Consequently, conventional wind turbine control cause instabilities on floating wind turbines. This work addresses the control of a floating spar buoy wind turbine, and focuses on the impact of the additional platform dynamics....... A time varying control model is presented based on the wind speed and wave frequency. Estimates of the wind speed and wave frequency are used as scheduling variables in a gain scheduled linear quadratic controller to improve the electrical power production while reducing fatigue. To address the problem...

  19. Overall control strategy of variable speed doubly-fed induction generator wind turbine

    DEFF Research Database (Denmark)

    Hansen, A.D.; Iov, F.; Sørensen, Poul Ejnar

    2004-01-01

    The variable speed doubly-fed induction generator wind turbine is today the most widely used concept. The paper presents an overall control system of the variable speed DFIG wind turbine, with focus on the control strategies and algorithms applied at each hierarchical control level of the wind tu......-fed induction generator is implemented in the dynamic power system simulation tool DIgSILENT. Simulation results are performed and analyzed in different normal operating conditions....

  20. Improved Formulation for the Optimization of Wind Turbine Placement in a Wind Farm

    Directory of Open Access Journals (Sweden)

    Zong Woo Geem

    2013-01-01

    Full Text Available As an alternative to fossil fuels, wind can be considered because it is a renewable and greenhouse gas-free natural resource. When wind power is generated by wind turbines in a wind farm, the optimal placement of turbines is critical because different layouts produce different efficiencies. The objective of the wind turbine placement problem is to maximize the generated power while minimizing the cost in installing the turbines. This study proposes an efficient optimization formulation for the optimal layout of wind turbine placements under the resources (e.g., number of turbines or budget limit by introducing corresponding constraints. The proposed formulation gave users more conveniences in considering resources and budget bounds. After performing the optimization, results were compared using two different methods (branch and bound method and genetic algorithm and two different objective functions.