WorldWideScience

Sample records for wind turbine efficiency

  1. Evaluation of wind farm efficiency and wind turbine wakes at the Nysted offshore wind farm

    DEFF Research Database (Denmark)

    Barthelmie, Rebecca Jane; Jensen, L.E.

    2010-01-01

    be quantified, albeit with relatively large uncertainty due to stochastic effects in the data. There is evidence of the ‘deep array effect’ in that wake losses in the centre of the wind farm are under-estimated by the wind farm model WAsP, although overall efficiency of the wind farm is well predicted due......Here, we quantify relationships between wind farm efficiency and wind speed, direction, turbulence and atmospheric stability using power output from the large offshore wind farm at Nysted in Denmark. Wake losses are, as expected, most strongly related to wind speed variations through the turbine...... thrust coefficient; with direction, atmospheric stability and turbulence as important second order effects. While the wind farm efficiency is highly dependent on the distribution of wind speeds and wind direction, it is shown that the impact of turbine spacing on wake losses and turbine efficiency can...

  2. Efficiency of the DOMUS 750 vertical-axis wind turbine

    Science.gov (United States)

    Hallock, Kyle; Rasch, Tyler; Ju, Guoqiang; Alonso-Marroquin, Fernando

    2017-06-01

    The aim of this paper is to present some preliminary results on the efficiency of a wind turbine for an off-grid housing unit. To generate power, the unit uses a photovoltaic solar array and a vertical-axis wind turbine (VAWT). The existing VAWT was analysed to improve efficiency and increase power generation. There were found to be two main sources of inefficiency: 1. the 750W DC epicyclic generator performed poorly in low winds, and 2. the turbine blades wobbled, allowing for energy loss due to off-axis rotation. A 12V DC permanent magnet alternator was chosen that met the power requirements of the housing unit and would generate power at lower wind speeds. A support bracket was designed to prevent the turbine blades from wobbling.

  3. Superconducting Wind Turbine Generators

    OpenAIRE

    Yunying Pan; Danhzen Gu

    2016-01-01

    Wind energy is well known as a renewable energy because its clean and less polluted characteristic, which is the foundation of development modern wind electricity. To find more efficient wind turbine is the focus of scientists around the world. Compared from conventional wind turbines, superconducting wind turbine generators have advantages at zero resistance, smaller size and lighter weight. Superconducting wind turbine will inevitably become the main trends in this area. This paper intends ...

  4. Design of a novel and efficient lantern wind turbine

    Science.gov (United States)

    Ibrahim, M. D.; Wong, L. K.; Anyi, M.; Yunos, Y. S.; Rahman, M. R. A.; Mohta, M. Z.

    2017-04-01

    Wind turbine generates renewable energy when the forces acted on the turbine blades cause the rotation of the generator to produce clean electricity. This paper proposed a novel lantern wind turbine design compared to a conventional design model. Comparison is done based on simulation on coarse and fine meshing with all the results converged. Results showed that the pressure difference on the surface of novel design lantern wind turbine is much higher compared to the conventional wind turbine. Prototype is already manufactured and experimental result would be discussed in a separate future publication

  5. Aerodynamics of Wind Turbines

    DEFF Research Database (Denmark)

    Hansen, Martin Otto Laver

    Aerodynamics of Wind Turbines is the established essential text for the fundamental solutions to efficient wind turbine design. Now in its second edition, it has been entirely updated and substantially extended to reflect advances in technology, research into rotor aerodynamics and the structural...... response of the wind turbine structure. Topics covered include increasing mass flow through the turbine, performance at low and high wind speeds, assessment of the extreme conditions under which the turbine will perform and the theory for calculating the lifetime of the turbine. The classical Blade Element...... Momentum method is also covered, as are eigenmodes and the dynamic behavior of a turbine. The new material includes a description of the effects of the dynamics and how this can be modeled in an aeroelastic code, which is widely used in the design and verification of modern wind turbines. Further...

  6. Aerodynamics of wind turbines

    DEFF Research Database (Denmark)

    Hansen, Martin Otto Laver

    Aerodynamics of Wind Turbines is the established essential text for the fundamental solutions to efficient wind turbine design. Now in its third edition, it has been substantially updated with respect to structural dynamics and control. The new control chapter now includes details on how to design...... Turbines (VAWT). Topics covered include increasing mass flow through the turbine, performance at low and high wind speeds, assessment of the extreme conditions under which the turbine will perform and the theory for calculating the lifetime of the turbine. The classical Blade Element Momentum method...... is also covered, as are eigenmodes and the dynamic behaviour of a turbine. The book describes the effects of the dynamics and how this can be modelled in an aeroelastic code, which is widely used in the design and verification of modern wind turbines. Furthermore, it examines how to calculate...

  7. Horizontal Axis Wind Turbine Blade Design Methodologies for Efficiency Enhancement—A Review

    Directory of Open Access Journals (Sweden)

    Shafiqur Rehman

    2018-02-01

    Full Text Available Among renewable sources of energy, wind is the most widely used resource due to its commercial acceptance, low cost and ease of operation and maintenance, relatively much less time for its realization from concept till operation, creation of new jobs, and least adverse effect on the environment. The fast technological development in the wind industry and availability of multi megawatt sized horizontal axis wind turbines has further led the promotion of wind power utilization globally. It is a well-known fact that the wind speed increases with height and hence the energy output. However, one cannot go above a certain height due to structural and other issues. Hence other attempts need to be made to increase the efficiency of the wind turbines, maintaining the hub heights to acceptable and controllable limits. The efficiency of the wind turbines or the energy output can be increased by reducing the cut-in-speed and/or the rated-speed by modifying and redesigning the blades. The problem is tackled by identifying the optimization parameters such as annual energy yield, power coefficient, energy cost, blade mass, and blade design constraints such as physical, geometric, and aerodynamic. The present paper provides an overview of the commonly used models, techniques, tools and experimental approaches applied to increase the efficiency of the wind turbines. In the present review work, particular emphasis is made on approaches used to design wind turbine blades both experimental and numerical, methodologies used to study the performance of wind turbines both experimentally and analytically, active and passive techniques used to enhance the power output from wind turbines, reduction in cut-in-speed for improved wind turbine performance, and lastly the research and development work related to new and efficient materials for the wind turbines.

  8. Wind turbine

    Science.gov (United States)

    Cheney, Jr., Marvin C.

    1982-01-01

    A wind turbine of the type having an airfoil blade (15) mounted on a flexible beam (20) and a pitch governor (55) which selectively, torsionally twists the flexible beam in response to wind turbine speed thereby setting blade pitch, is provided with a limiter (85) which restricts unwanted pitch change at operating speeds due to torsional creep of the flexible beam. The limiter allows twisting of the beam by the governor under excessive wind velocity conditions to orient the blades in stall pitch positions, thereby preventing overspeed operation of the turbine. In the preferred embodiment, the pitch governor comprises a pendulum (65,70) which responds to changing rotor speed by pivotal movement, the limiter comprising a resilient member (90) which engages an end of the pendulum to restrict further movement thereof, and in turn restrict beam creep and unwanted blade pitch misadjustment.

  9. Aerodynamics of wind turbines

    DEFF Research Database (Denmark)

    Hansen, Martin Otto Laver

    Aerodynamics of Wind Turbines is the established essential text for the fundamental solutions to efficient wind turbine design. Now in its third edition, it has been substantially updated with respect to structural dynamics and control. The new control chapter now includes details on how to design...

  10. Aerodynamics of Wind Turbines

    DEFF Research Database (Denmark)

    Hansen, Martin Otto Laver

    Aerodynamics of Wind Turbines is the established essential text for the fundamental solutions to efficient wind turbine design. Now in its second edition, it has been entirely updated and substantially extended to reflect advances in technology, research into rotor aerodynamics and the structural...

  11. Aerodynamics of wind turbines

    DEFF Research Database (Denmark)

    Hansen, Martin Otto Laver

    Aerodynamics of Wind Turbines is the established essential text for the fundamental solutions to efficient wind turbine design. Now in its third edition, it has been substantially updated with respect to structural dynamics and control. The new control chapter now includes details on how to design...... a classical pitch and torque regulator to control rotational speed and power, while the section on structural dynamics has been extended with a simplified mechanical system explaining the phenomena of forward and backward whirling modes. Readers will also benefit from a new chapter on Vertical Axis Wind...... Turbines (VAWT). Topics covered include increasing mass flow through the turbine, performance at low and high wind speeds, assessment of the extreme conditions under which the turbine will perform and the theory for calculating the lifetime of the turbine. The classical Blade Element Momentum method...

  12. Vertical axis wind turbine

    International Nuclear Information System (INIS)

    Obretenov, V.; Tsalov, T.; Chakarov, T.

    2012-01-01

    In recent years, the interest in wind turbines with vertical axis noticeably increased. They have some important advantages: low cost, relatively simple structure, reliable packaging system of wind aggregate long period during which require no maintenance, low noise, independence of wind direction, etc.. The relatively low efficiency, however, makes them applicable mainly for small facilities. The work presents a methodology and software for approximately aerodynamic design of wind turbines of this type, and also analyzed the possibility of improving the efficiency of their workflow

  13. Feasibility of large-scale calorimetric efficiency measurement for wind turbine generator drivetrains

    Science.gov (United States)

    Pagitsch, Michael; Jacobs, Georg; Schelenz, Ralf; Bosse, Dennis; Liewen, Christian; Reisch, Sebastian; Deicke, Matthias

    2016-09-01

    In the course of the global energy turnaround, the importance of wind energy is increasing continuously. For making wind energy more competitive with fossil energy, reducing the costs is an important measure. One way to reach this goal is to improve the efficiency. As the major potentials have already been exploited, improvements in the efficiency are made in small steps. One of the main preconditions for enabling these development activities is the sufficiently accurate measurement of the efficiency. This paper presents a method for measuring the efficiency of geared wind turbine generator drivetrains with errors below 0.5% by directly quantifying the power losses. The presented method is novel for wind turbines in the multi- MW-class.

  14. Aerodynamics of wind turbines

    CERN Document Server

    Hansen, Martin O L

    2015-01-01

    Aerodynamics of Wind Turbines is the established essential text for the fundamental solutions to efficient wind turbine design. Now in its third edition, it has been substantially updated with respect to structural dynamics and control. The new control chapter now includes details on how to design a classical pitch and torque regulator to control rotational speed and power, while the section on structural dynamics has been extended with a simplified mechanical system explaining the phenomena of forward and backward whirling modes. Readers will also benefit from a new chapter on Vertical Axis W

  15. Offshore Wind Turbine Design

    DEFF Research Database (Denmark)

    Frandsen, Sten; Hansen, Erik Asp; Ibsen, Lars Bo

    2006-01-01

    Current offshore wind turbine design methods have matured to a 1st generation state, manifested in the draft of a possible standard, IEC 61400-3 (2005). It is now time to investigate the possibilities of improving existing methods. To do so in an efficient manner a clear identification of the most...... important uncertainty drivers specific for offshore wind turbine design loads is required. Describing the initial efforts in a Danish research project, the paper points to focal points for research and development. These are mainly: soil-structure interaction, improved modelling of wave loads from deep...

  16. Analyzing wind turbine directional behavior: SCADA data mining techniques for efficiency and power assessment

    International Nuclear Information System (INIS)

    Castellani, Francesco; Astolfi, Davide; Sdringola, Paolo; Proietti, Stefania; Terzi, Ludovico

    2017-01-01

    Highlights: • The directional behavior of four turbines of an onshore wind farm is investigated. • The positions of the nacelles are discretized to highlight clusterization effects. • The recurrent alignment patterns of the cluster are individuated and analyzed. • The patterns are studied by the point of view of efficiency and power output. • Significative performance deviations arise among the most frequent configurations. - Abstract: SCADA control systems are the keystone for reliable performance optimization of wind farms. Processing into knowledge the amount of information they spread is a challenging task, involving engineering, physics, statistics and computer science skills. This work deals with SCADA data analysis methods for assessing the importance of how wind turbines align in patterns to the wind direction. In particular it deals with the most common collective phenomenon causing clusters of turbines behaving as a whole, rather than as a collection of individuality: wake effects. The approach is based on the discretization of nacelle position measurements and subsequent post-processing through simple statistical methods. A cluster, severely affected by wakes, from an onshore wind farm, is selected as test case. The dominant alignment patterns of the cluster are identified and analyzed by the point of view of power output and efficiency. It is shown that non-trivial alignments with respect to the wind direction arise and important performance deviations occur among the most frequent configurations.

  17. Wind Turbine Providing Grid Support

    DEFF Research Database (Denmark)

    2011-01-01

    A variable speed wind turbine is arranged to provide additional electrical power to counteract non-periodic disturbances in an electrical grid. A controller monitors events indicating a need to increase the electrical output power from the wind turbine to the electrical grid. The controller...... is arranged to control the wind turbine as follows: after an indicating event has been detected, the wind turbine enters an overproduction period in which the electrical output power is increased, wherein the additional electrical output power is taken from kinetic energy stored in the rotor and without...... changing the operation of the wind turbine to a more efficient working point.; When the rotational speed of the rotor reaches a minimum value, the wind turbine enters a recovery period to re-accelerate the rotor to the nominal rotational speed while further contributing to the stability of the electrical...

  18. Turbulence and wind turbines

    DEFF Research Database (Denmark)

    Brand, Arno J.; Peinke, Joachim; Mann, Jakob

    2011-01-01

    The nature of turbulent flow towards, near and behind a wind turbine, the effect of turbulence on the electricity production and the mechanical loading of individual and clustered wind turbines, and some future issues are discussed.......The nature of turbulent flow towards, near and behind a wind turbine, the effect of turbulence on the electricity production and the mechanical loading of individual and clustered wind turbines, and some future issues are discussed....

  19. CFD analysis of a Darrieus wind turbine

    Science.gov (United States)

    Niculescu, M. L.; Cojocaru, M. G.; Pricop, M. V.; Pepelea, D.; Dumitrache, A.; Crunteanu, D. E.

    2017-07-01

    The Darrieus wind turbine has some advantages over the horizontal-axis wind turbine. Firstly, its tip speed ratio is lower than that of the horizontal-axis wind turbine and, therefore, its noise is smaller, privileging their placement near populated areas. Secondly, the Darrieus wind turbine does needs no orientation mechanism with respect to wind direction in contrast to the horizontal-axis wind turbine. However, the efficiency of the Darrieus wind turbine is lower than that of the horizontal-axis wind turbine since its aerodynamics is much more complex. With the advances in computational fluids and computers, it is possible to simulate the Darrieus wind turbine more accurately to understand better its aerodynamics. For these reasons, the present papers deals with the computational aerodynamics of a Darrieus wind turbine applying the state of the art of CFD methods (anisotropic turbulence models, transition from laminar to turbulent, scale adaptive simulation) to better understand its unsteady behavior.

  20. Wind Turbine Technologies

    DEFF Research Database (Denmark)

    Hansen, Anca Daniela

    2017-01-01

    The wind turbine technology is a very complex technology involving multidisciplinary and broad technical disciplines such as aerodynamics, mechanics, structure dynamics, meteorology as well as electrical engineering addressing the generation, transmission, and integration of wind turbines...... into the power system. Wind turbine technology has matured over the years and become the most promising and reliable renewable energy technology today. It has moved very fast, since the early 1980s, from wind turbines of a few kilowatts to today’s multimegawatt-sized wind turbines [13]. Besides their size......, the design of wind turbines has changed from being convention driven to being optimized driven within the operating regime and market environment. Wind turbine designs have progressed from fixed speed, passive controlled and with drive trains with gearboxes, to become variable speed, active controlled...

  1. Efficiency and reliability improvement in wind turbine converters by grid converter adaptive control

    DEFF Research Database (Denmark)

    Trintis, Ionut; Munk-Nielsen, Stig; Abrahamsen, Flemming

    2013-01-01

    This paper presents a control method that reduces the losses in wind turbine converters adaptively controlling the grid converter. The dc-link voltage adapts its reference based on the system state and therefore reduces the stored energy, and is therefore kept at the minimum necessary for the grid...... and generator side. Operating in this way, the electrical and thermal stress factors are decreased on the power electronic devices, increasing their lifetime. The simulation results using this method show efficiency increase and devices temperature cycles slightly decreased. Experimental results on a wind...

  2. Design of a wind turbine rotor for maximum aerodynamic efficiency

    DEFF Research Database (Denmark)

    Johansen, Jeppe; Aagaard Madsen, Helge; Gaunaa, Mac

    2009-01-01

    maximum aerodynamic efficiency. The rotor is designed assuming constant induction for most of the blade span, but near the tip region, a constant load is assumed instead. The rotor design is obtained using an actuator disc model, and is subsequently verified using both a free-wake lifting line method...

  3. Wind Turbines Wake Aerodynamics

    DEFF Research Database (Denmark)

    Vermeer, L.; Sørensen, Jens Nørkær; Crespo, A.

    2003-01-01

    The aerodynamics of horizontal axis wind turbine wakes is studied. The contents is directed towards the physics of power extraction by wind turbines and reviews both the near and the far wake region. For the near wake, the survey is restricted to uniform, steady and parallel flow conditions......, thereby excluding wind shear, wind speed and rotor setting changes and yawed conditions. The emphasis is put on measurements in controlled conditions.For the far wake, the survey focusses on both single turbines and wind farm effects, and the experimental and numerical work are reviewed; the main interest...... is to study how the far wake decays downstream, in order to estimate the effect produced in downstream turbines.The article is further restricted to horizontal axis wind turbines and excludes all other types of turbines....

  4. Computationally Efficient Modelling of Dynamic Soil-Structure Interaction of Offshore Wind Turbines on Gravity Footings

    DEFF Research Database (Denmark)

    Damgaard, Mads; Andersen, Lars Vabbersgaard; Ibsen, Lars Bo

    2014-01-01

    The formulation and quality of a computationally efficient model of offshore wind turbine surface foundations is examined. The aim is to establish a model, workable in the frequency and time domain, that can be applied in aeroelastic codes for fast and reliable evaluation of the dynamic structural...... to wave propagating in the subsoil–even for soil stratifications with low cut-in frequencies. In this regard, utilising discrete second-order models for the physical interpretation of a rational filter puts special demands on the Newmark β-scheme, where the time integration in most cases only provides...

  5. Small wind turbine

    OpenAIRE

    Vélez Castellano, Didier

    2010-01-01

    The main objective is to develop a project on installing a small wind turbine at the University of Glyndwr in Wrexham Wales. Today are immersed in a world seeking clean energy for reduce greenhouse gases because this problem is becoming a global reality. So installing a small wind turbine at the university would provide large quantity of clean energy to supply a workshop and also reduce the expulsion of CO2 into the atmosphere. The main characteristic of the turbine under...

  6. Wind turbine state estimation

    DEFF Research Database (Denmark)

    Knudsen, Torben

    2014-01-01

    the results using full-scale wind turbine data. The previously developed methods were based on extended Kalman filtering. This method has several drawback compared to unscented Kalman filtering which has therefore been developed. The unscented Kalman filter was first tested on linear and non-linear test cases......Dynamic inflow is an effect which is normally not included in the models used for wind turbine control design. Therefore, potential improvement from including this effect exists. The objective in this project is to improve the methods previously developed for this and especially to verify...... which was successful. Then the estimation of a wind turbine state including dynamic inflow was tested on a simulated NREL 5MW turbine was performed. This worked perfectly with wind speeds from low to nominal wind speed as the output prediction errors where white. In high wind where the pitch actuator...

  7. Noise from wind turbines

    International Nuclear Information System (INIS)

    Andersen, B.; Larsen, P.

    1993-01-01

    Denmark has 3200 wind turbines with an installed maximum capacity of 418MW. The most important Danish research projects into wind turbine noise and the main results are listed. These date from 1983. Two comprehensive studies are currently in progress. The first is an analytical and empirical investigation of aerodynamic noise from wind turbine rotors and has so far dealt mainly with tip noise. The measurement method, using a hard board mounted microphone on the ground near the turbine, is described. Four different tip designs have been tested. Some examples of reference sound power level spectra for three of the designs are presented. During the past two years a computerbased data acquisition system has been used for real-time determination of sound power levels. The second study, which has just commenced, is on annoyance from wind turbine noise. It will include noise measurements, masking calculations and a social survey on the perceived nuisance. (UK)

  8. WIND TURBINES FOR WIND POWER INSTALLATIONS

    Directory of Open Access Journals (Sweden)

    Barladean A.S.

    2008-04-01

    Full Text Available The problem of wind turbine choice for wind power stations is examined in this paper. It is shown by comparison of parameters and characteristics of wind turbines, that for existing modes and speeds of wind in territory of Republic of Moldova it is necessary to use multi-blade small speed rotation wind turbines of fan class.

  9. Aeroservoelasticity of Wind Turbines

    DEFF Research Database (Denmark)

    Kallesøe, Bjarne Skovmose

    2007-01-01

    This thesis deals with the fundamental aeroelastic interaction between structural motion, Pitch action and control for a wind turbine blade. As wind turbines become larger, the interaction between pitch action, blade motion, aerodynamic forces, and control become even more important to understand...... to a 2D blade section model, and it can be used instead of this in many applications, giving a transparent connection to a real wind turbine blade. In this work the aeroelastic blade model is used to analyze interaction between pitch action, blade motion and wind speed variations. Furthermore the model...... conditions. So, a new aeroelastic blade model has been derived, which includes important features of large wind turbines, yet simple enough to be suitable for analytical analysis and control design....

  10. Wind turbines and infrasound

    International Nuclear Information System (INIS)

    Howe, B.

    2006-01-01

    This paper provided the results of a study conducted to assess the impacts of wind farm-induced infrasound on nearby residences and human populations. Infrasound occurs at frequencies below those considered as detectable by human hearing. Infrasonic levels caused by wind turbines are often similar to ambient levels of 85 dBG or lower that are caused by wind in the natural environment. This study examined the levels at which infrasound poses a threat to human health or can be considered as an annoyance. The study examined levels of infrasound caused by various types of wind turbines, and evaluated acoustic phenomena and characteristics associated with wind turbines. Results of the study suggested that infrasound near modern wind turbines is typically not perceptible to humans through either auditory or non-auditory mechanisms. However, wind turbines often create an audible broadband noise whose amplitude can be modulated at low frequencies. A review of both Canadian and international studies concluded that infrasound generated by wind turbines should not significantly impact nearby residences or human populations. 17 refs., 2 tabs., 4 figs

  11. Noise from wind turbines

    International Nuclear Information System (INIS)

    Andersen, B.; Jakobsen, J.

    1992-11-01

    Based on a previous project concerning the calculation of the amount of noise emanating from wind turbine arrays, this one examines the subject further by investigating whether there could be significant differences in the amount of noise made by individual wind turbines in an array, and whether the noise is transmitted in varying directions - so that when it is carried in the same direction as the wind blows it would appear to be louder. The aim was also to determine whether the previously used method of calculation lacked precision. It was found that differences in noise niveaux related to individual wind turbines were insignificant and that noise was not so loud when it was not borne in the direction of the wind. It was necessary to change the method of calculation as reckoning should include the influence of the terrain, wind velocity and distance. The measuring and calculation methods are exemplified and the resulting measurements are presented in detail. (AB)

  12. Wind turbine pitch optimization

    DEFF Research Database (Denmark)

    Biegel, Benjamin; Juelsgaard, Morten; Stoustrup, Jakob

    2011-01-01

    We consider a static wind model for a three-bladed, horizontal-axis, pitch-controlled wind turbine. When placed in a wind field, the turbine experiences several mechanical loads, which generate power but also create structural fatigue. We address the problem of finding blade pitch profiles......% compared to any constant pitch profile while sacrificing at most 7% of the maximum attainable output power. Using iterative learning, we show that very similar performance can be achieved by using only load measurements, with no knowledge of the wind field or wind turbine model....... for maximizing power production while simultaneously minimizing fatigue loads. In this paper, we show how this problem can be approximately solved using convex optimization. When there is full knowledge of the wind field, numerical simulations show that force and torque RMS variation can be reduced by over 96...

  13. Monitoring of wind turbines

    Science.gov (United States)

    White, Jonathan R.; Adams, Douglas E.; Paquette, Josh

    2017-07-25

    Method and apparatus for determining the deflection or curvature of a rotating blade, such as a wind turbine blade or a helicopter blade. Also, methods and apparatus for establishing an inertial reference system on a rotating blade.

  14. Ducted wind turbines : A potential energy shaper

    NARCIS (Netherlands)

    Dighe, V.V.

    2016-01-01

    In order to harvest wind resources more efficiently and to the greatest extent possible, unconventional wind turbine designs have been proposed, but never gained any acceptance in the marketplace. A team of researchers from TU Delft plans to revisit the concept of ducted wind turbines, which have

  15. Vertical axis wind turbines

    Science.gov (United States)

    Krivcov, Vladimir [Miass, RU; Krivospitski, Vladimir [Miass, RU; Maksimov, Vasili [Miass, RU; Halstead, Richard [Rohnert Park, CA; Grahov, Jurij [Miass, RU

    2011-03-08

    A vertical axis wind turbine is described. The wind turbine can include a top ring, a middle ring and a lower ring, wherein a plurality of vertical airfoils are disposed between the rings. For example, three vertical airfoils can be attached between the upper ring and the middle ring. In addition, three more vertical airfoils can be attached between the lower ring and the middle ring. When wind contacts the vertically arranged airfoils the rings begin to spin. By connecting the rings to a center pole which spins an alternator, electricity can be generated from wind.

  16. Wind turbine state estimation

    OpenAIRE

    Knudsen, Torben

    2014-01-01

    Dynamic inflow is an effect which is normally not included in the models used for wind turbine control design. Therefore, potential improvement from including this effect exists. The objective in this project is to improve the methods previously developed for this and especially to verify the results using full-scale wind turbine data. The previously developed methods were based on extended Kalman filtering. This method has several drawback compared to unscented Kalman filtering which has the...

  17. Wind turbines and health

    International Nuclear Information System (INIS)

    Rideout, K.; Copes, R.; Bos, C.

    2010-01-01

    This document summarized the potential health hazards associated with wind turbines, such as noise and low frequency sound, vibration and infrasound; electromagnetic fields (EMF); shadow flicker; and ice throw and structural failure. Various symptoms can be attributed to wind turbines, including dizziness, sleep disruption, and headaches. A review of available research regarding potential health affects to residents living in close proximity to wind turbines showed that the sound level associated with wind turbines at common residential setbacks is not sufficient to damage hearing, but may lead to annoyance and sleep disturbance. Research has shown that wind turbines are not a significant source of EMF exposure, and although shadows caused by the blades may be annoying, they are not likely to cause epileptic seizures at normal operational speeds. The risk of injury from ice throw can be minimized with setbacks of 200 to 400 m. Examples of Canadian wind turbine setback guidelines and regulations were also offered. It was concluded that setbacks and operational guidelines can be utilized in combination to address safety hazards, sound levels, land use issues, and impacts on people. 46 refs., 2 tabs., 2 figs.

  18. European wind turbine catalogue

    International Nuclear Information System (INIS)

    1994-01-01

    The THERMIE European Community programme is designed to promote the greater use of European technology and this catalogue contributes to the fulfillment of this aim by dissemination of information on 50 wind turbines from 30 manufacturers. These turbines are produced in Europe and are commercially available. The manufacturers presented produce and sell grid-connected turbines which have been officially approved in countries where this approval is acquired, however some of the wind turbines included in the catalogue have not been regarded as fully commercially available at the time of going to print. The entries, which are illustrated by colour photographs, give company profiles, concept descriptions, measured power curves, prices, and information on design and dimension, safety systems, stage of development, special characteristics, annual energy production, and noise pollution. Lists are given of wind turbine manufacturers and agents and of consultants and developers in the wind energy sector. Exchange rates used in the conversion of the prices of wind turbines are also given. Information can be found on the OPET network (organizations recognised by the European Commission as an Organization for the Promotion of Energy Technologies (OPET)). An article describes the development of the wind power industry during the last 10-15 years and another article on certification aims to give an overview of the most well-known and acknowledged type approvals currently issued in Europe. (AB)

  19. Wind turbines and health

    Energy Technology Data Exchange (ETDEWEB)

    Rideout, K.; Copes, R.; Bos, C. [National Colaborating Centre for Environmental Health, Vancouver, BC (Canada)

    2010-01-15

    This document summarized the potential health hazards associated with wind turbines, such as noise and low frequency sound, vibration and infrasound; electromagnetic fields (EMF); shadow flicker; and ice throw and structural failure. Various symptoms can be attributed to wind turbines, including dizziness, sleep disruption, and headaches. A review of available research regarding potential health affects to residents living in close proximity to wind turbines showed that the sound level associated with wind turbines at common residential setbacks is not sufficient to damage hearing, but may lead to annoyance and sleep disturbance. Research has shown that wind turbines are not a significant source of EMF exposure, and although shadows caused by the blades may be annoying, they are not likely to cause epileptic seizures at normal operational speeds. The risk of injury from ice throw can be minimized with setbacks of 200 to 400 m. Examples of Canadian wind turbine setback guidelines and regulations were also offered. It was concluded that setbacks and operational guidelines can be utilized in combination to address safety hazards, sound levels, land use issues, and impacts on people. 46 refs., 2 tabs., 2 figs.

  20. New wind turbines of high profitability

    International Nuclear Information System (INIS)

    Vrsalovic, I.

    1999-01-01

    To generate more quantities of electric energy from wind it is necessary to use the new type of wind turbine built in regulable mantle's nozzle, which the free air stream of wind replaces in programmed i.e. regulated and partially concentrated. In this way their efficiency is multiplied. New turbines are getting more power (P = f(v 3 )) from cube of higher speeds from weaker and medium winds. Short economic analysis evidently indicates that profit achieved by new wind turbines is 5 (five) times higher than that by conventional turbines. (author)

  1. The Influence of Structural Morphology on the Efficiency of Building Integrated Wind Turbines (BIWT

    Directory of Open Access Journals (Sweden)

    Hassam Nasarullah Chaudhry

    2014-08-01

    Full Text Available A numerical investigation was carried out to determine the impact of structural morphology on the power generation capacity of building-integrated wind turbines. The performance of the turbines was analysed using the specifications of the Bahrain Trade Centre which was taken as the benchmark model, the results of which were compared against triangular, square and circular cross-sections of the same building. The three-dimensional Reynolds-Averaged Navier-Stokes (RANS equations along with the momentum and continuity equations were solved for obtaining the velocity and pressure field. Simulating a reference wind speed of 6 m/s, the findings from the study quantified an estimate power generation of 6.4 kW indicating a capacity factor of 2.9 % for the benchmark model. The square and circular configurations however determined greater capacity factors of 12.2 % and 19.9 %, recording an estimated power production capability of 26.9 kW and 35.1 kW and confirming the largest extraction of the incoming wind stream. The optimum cross-sectional configuration for installing wind turbines in high-rise buildings was the circular orientation as the average wind speed at the wind turbines was accelerated by 0.3 m/s resulting in an overall augmentation of 5 %. The results from this study therefore highlighted that circular building morphology is the most viable building orientation, particularly suited to regions with a dominant prevailing wind direction.

  2. Next Generation Wind Turbine

    Energy Technology Data Exchange (ETDEWEB)

    Cheraghi, S. Hossein [Western New England Univ., Springfield, MA (United States); Madden, Frank [FloDesign Wind Turbine Corp., Waltham, MA (United States)

    2012-09-01

    The goal of this collaborative effort between Western New England University's College of Engineering and FloDesign Wind Turbine (FDWT) Corporation to wok on a novel areodynamic concept that could potentially lead to the next generation of wind turbines. Analytical studies and early scale model tests of FDWT's Mixer/Ejector Wind Turbine (MEWT) concept, which exploits jet-age advanced fluid dynamics, indicate that the concept has the potential to significantly reduce the cost of electricity over conventional Horizontal Axis Wind Turbines while reducing land usage. This project involved the design, fabrication, and wind tunnel testing of components of MEWT to provide the research and engineering data necessary to validate the design iterations and optimize system performance. Based on these tests, a scale model prototype called Briza was designed, fabricated, installed and tested on a portable tower to investigate and improve the design system in real world conditions. The results of these scale prototype efforts were very promising and have contributed significantly to FDWT's ongoing development of a product scale wind turbine for deployment in multiple locations around the U.S. This research was mutually beneficial to Western New England University, FDWT, and the DOE by utilizing over 30 student interns and a number of faculty in all efforts. It brought real-world wind turbine experience into the classroom to further enhance the Green Engineering Program at WNEU. It also provided on-the-job training to many students, improving their future employment opportunities, while also providing valuable information to further advance FDWT's mixer-ejector wind turbine technology, creating opportunities for future project innovation and job creation.

  3. Floating wind turbine system

    Science.gov (United States)

    Viterna, Larry A. (Inventor)

    2009-01-01

    A floating wind turbine system with a tower structure that includes at least one stability arm extending therefrom and that is anchored to the sea floor with a rotatable position retention device that facilitates deep water installations. Variable buoyancy for the wind turbine system is provided by buoyancy chambers that are integral to the tower itself as well as the stability arm. Pumps are included for adjusting the buoyancy as an aid in system transport, installation, repair and removal. The wind turbine rotor is located downwind of the tower structure to allow the wind turbine to follow the wind direction without an active yaw drive system. The support tower and stability arm structure is designed to balance tension in the tether with buoyancy, gravity and wind forces in such a way that the top of the support tower leans downwind, providing a large clearance between the support tower and the rotor blade tips. This large clearance facilitates the use of articulated rotor hubs to reduced damaging structural dynamic loads. Major components of the turbine can be assembled at the shore and transported to an offshore installation site.

  4. Wind turbines and idiopathic symptoms

    DEFF Research Database (Denmark)

    Blanes-Vidal, Victoria; Schwartz, Joel

    2016-01-01

    Whether or not wind turbines pose a risk to human health is a matter of heated debate. Personal reactions to other environmental exposures occurring in the same settings as wind turbines may be responsible of the reported symptoms. However, these have not been accounted for in previous studies. We...... investigated whether there is an association between residential proximity to wind turbines and idiopathic symptoms, after controlling for personal reactions to other environmental co-exposures. We assessed wind turbine exposures in 454 residences as the distance to the closest wind turbine (Dw) and number...... of wind turbines

  5. Wind Turbine Acoustics

    Science.gov (United States)

    Hubbard, Harvey H.; Shepherd, Kevin P.

    2009-01-01

    Wind turbine generators, ranging in size from a few kilowatts to several megawatts, are producing electricity both singly and in wind power stations that encompass hundreds of machines. Many installations are in uninhabited areas far from established residences, and therefore there are no apparent environmental impacts in terms of noise. There is, however, the potential for situations in which the radiated noise can be heard by residents of adjacent neighborhoods, particularly those neighborhoods with low ambient noise levels. A widely publicized incident of this nature occurred with the operation of the experimental Mod-1 2-MW wind turbine, which is described in detail elsewhere. Pioneering studies which were conducted at the Mod-1 site on the causes and remedies of noise from wind turbines form the foundation of much of the technology described in this chapter.

  6. Wind turbine control and monitoring

    CERN Document Server

    Luo, Ningsu; Acho, Leonardo

    2014-01-01

    Maximizing reader insights into the latest technical developments and trends involving wind turbine control and monitoring, fault diagnosis, and wind power systems, 'Wind Turbine Control and Monitoring' presents an accessible and straightforward introduction to wind turbines, but also includes an in-depth analysis incorporating illustrations, tables and examples on how to use wind turbine modeling and simulation software.   Featuring analysis from leading experts and researchers in the field, the book provides new understanding, methodologies and algorithms of control and monitoring, comput

  7. Wind turbine noise diagnostics

    International Nuclear Information System (INIS)

    Richarz, W.; Richarz, H.

    2009-01-01

    This presentation proposed a self-consistent model for broad-band noise emitted from modern wind turbines. The simple source model was consistent with the physics of sound generation and considered the unique features of wind turbines. Although the acoustics of wind turbines are similar to those of conventional propellers, the dimensions of wind turbines pose unique challenges in diagnosing noise emission. The general features of the sound field were deduced. Source motion and source directivity appear to be responsible for amplitude variations. The amplitude modulation is likely to make wind-turbine noise more audible, and may be partly responsible for annoyance that has been reported in the literature. Acoustic array data suggests that broad-band noise is emitted predominantly during the downward sweep of each rotor blade. Source motion and source directivity account for the observed pattern. Rotor-tower interaction effects are of lesser importance. Predicted amplitude modulation ranges from 1 dB to 6dB. 2 refs., 9 figs.

  8. Wind Turbine Control: Robust Model Based Approach

    DEFF Research Database (Denmark)

    Mirzaei, Mahmood

    . This is because, on the one hand, control methods can decrease the cost of energy by keeping the turbine close to its maximum efficiency. On the other hand, they can reduce structural fatigue and therefore increase the lifetime of the wind turbine. The power produced by a wind turbine is proportional...... to the square of its rotor radius, therefore it seems reasonable to increase the size of the wind turbine in order to capture more power. However as the size increases, the mass of the blades increases by cube of the rotor size. This means in order to keep structural feasibility and mass of the whole structure...... reasonable, the ratio of mass to size should be reduced. This trend results in more flexible structures. Control of the flexible structure of a wind turbine in a wind field with stochastic nature is very challenging. In this thesis we are examining a number of robust model based methods for wind turbine...

  9. Reliability Analysis of Wind Turbines

    DEFF Research Database (Denmark)

    Toft, Henrik Stensgaard; Sørensen, John Dalsgaard

    2008-01-01

    In order to minimise the total expected life-cycle costs of a wind turbine it is important to estimate the reliability level for all components in the wind turbine. This paper deals with reliability analysis for the tower and blades of onshore wind turbines placed in a wind farm. The limit states......) the reliability level for a wind turbine placed in a wind farm is considered, and wake effects from neighbouring wind turbines is taken into account. An illustrative example with calculation of the reliability for mudline bending of the tower is considered. In the example the design is determined according...

  10. Parameter study of LM 9. 7 m wind turbine blades. Measurement of efficiency curves and breaking proficiency of an LM 9. 7 m wind turbine blade mounted on a WM 20 S wind turbine produced by Wind Matic. Parameterstudium af LM 9. 7 m vinge. Maaling af effektkurver og bremseevne for LM 9. 7 m vinge monteret paa WM 20 S vindmoelle fra Wind Matic

    Energy Technology Data Exchange (ETDEWEB)

    Gjerding, J.B.

    1988-08-15

    Measurements of performance and breaking efficiency of a LM 9.7 m wind turbine blade mounted on a WM 20 S wind turbine produced by the firm Wind Matic in Denmark. Measurements were made, taking account of wind speed and direction, electric power production, the number of rotations, air pressure and temperature with a scanning frequency of 17 Hz, nacelle orientation and using a mean period of one minute. (AB).

  11. Superconducting wind turbine generators

    DEFF Research Database (Denmark)

    Abrahamsen, Asger Bech; Mijatovic, Nenad; Seiler, Eugen

    2010-01-01

    We have examined the potential of 10 MW superconducting direct drive generators to enter the European offshore wind power market and estimated that the production of about 1200 superconducting turbines until 2030 would correspond to 10% of the EU offshore market. The expected properties of future...... offshore turbines of 8 and 10 MW have been determined from an up-scaling of an existing 5 MW turbine and the necessary properties of the superconducting drive train are discussed. We have found that the absence of the gear box is the main benefit and the reduced weight and size is secondary. However......, the main challenge of the superconducting direct drive technology is to prove that the reliability is superior to the alternative drive trains based on gearboxes or permanent magnets. A strategy of successive testing of superconducting direct drive trains in real wind turbines of 10 kW, 100 kW, 1 MW and 10...

  12. Wind turbines, is it just wind?

    International Nuclear Information System (INIS)

    Boiteux, M.

    2012-01-01

    The author first outlines that wind energy is not only random, but almost absent in extreme situations when it would be needed (for example and notably, very cold weather without wind). He suggests the association of a gas turbine to each wind turbine, so that the gas turbine will replace non operating wind turbines. He notices that wind turbines are not proximity energy as they were said to be, and that profitability in fact requires tens of grouped giant wind turbines. He also outlines the high cost of construction of grids for the connection of these wind turbines. Thus, he states that wind energy is far from being profitable in the present conditions of electricity tariffs in France

  13. Type IV Wind Turbine Model

    DEFF Research Database (Denmark)

    Hansen, Anca Daniela; Margaris, Ioannis D.

    (WPP) will be considered. The aggregate WPP model, which will be based on the upscaling of the individual wind turbine model on the electrical part, will make use of an equivalent wind speed. The implemented model follows the basic structure of the generic standard Type 4 wind turbine model proposed...... by the International Electrotechnical Commission (IEC), in the IEC61400-27-1 Committee Draft for electrical simulation models for wind power generation, which is currently under review, [1]. The Type 4 wind turbine model described in this report includes a set of adjustments of the standard Type 4 wind turbine model...... project to be incorporated in the wind power plant level. This document describes the Type 4 wind turbine simulation model, implemented in the EaseWind project. The implemented wind turbine model is one of the initial necessary steps toward integrating new control services in the wind power plant level...

  14. LES investigation of infinite staggered wind-turbine arrays

    International Nuclear Information System (INIS)

    Yang, Xiaolei; Sotiropoulos, Fotis

    2014-01-01

    The layouts of turbines affect the turbine wake interactions and thus the wind farm performance. The wake interactions in infinite staggered wind-turbine arrays are investigated and compared with infinite aligned turbine arrays in this paper. From the numerical results we identify three types of wake behaviours, which are significantly different from wakes in aligned wind-turbine arrays. For the first type, each turbine wake interferes with the pair of staggered downstream turbine wakes and the aligned downstream turbine. For the second type, each turbine wake interacts with the first two downstream turbine wakes but does not show significant interference with the second aligned downstream turbine. For the third type, each turbine wake recovers immediately after passing through the gap of the first two downstream turbines and has little interaction with the second downstream turbine wakes The extracted power density and power efficiency are also studied and compared with aligned wind-turbine arrays

  15. Wind conditions for wind turbine design

    Energy Technology Data Exchange (ETDEWEB)

    Maribo Pedersen, B.

    1999-04-01

    Delegates from Europe and USA attended the meeting and discussed general aspects of wind conditions for wind turbine design. The subjects and the presented papers covered a very broad range of aspects of wind conditions and related influence on the wind turbine. (EHS)

  16. Materials and Additive Manufacturing for Energy Efficiency in Wind Turbine and Aircraft Industries

    Energy Technology Data Exchange (ETDEWEB)

    Datskos, Panos G [ORNL; Polyzos, Georgios [ORNL; Clemons, Art [ORNL; Bolton, Paul [Piedmont Propulsion Systems, LLC; Hollander, Aaron [First Aviation Services Inc., Westport, CT

    2016-05-04

    The purpose of this project was to develop surface treatments which will inhibit the formation of ice on turbine blades and propellers. ORNL worked with Piedmont Propulsion Systems, LLC and First Aviation Services Inc. to demonstrate a new surface treatment for two primary markets, aviation and wind turbines, as well as secondary markets such as power lines, bridges, boats, roofs and antennas among others. Exploring alternative surface treatments for wind turbines will provide anti-icing properties and erosion/abrasion prevention properties similar to those for aviation applications. A series of superhydrophobic coating materials was synthesized and successfully applied on anti-ice tape materials that could be used in a wide range of wind turbine and aviation applications to prevent ice accumulation. The coatings developed in this project were based on superhydrophobic particles of different geometries and sizes that were homogeneously dispersed in polymeric binders. The superhydrophobic features of the coatings are volumetric and their abrasion resistance was evaluated. Future research will involve the demonstration of anti-icing properties of the surface treatment developed in this project.

  17. Wind turbine reliability analysis

    OpenAIRE

    Pinar Pérez, Jesús María; García Márquez, Fausto Pedro; Tobias, Andrew Mark; Papaelias, Mayorkinos

    2013-01-01

    Against the background of steadily increasing wind power generation worldwide, wind turbine manufacturers are continuing to develop a range of configurations with different combinations of pitch control, rotor speeds, gearboxes, generators and converters. This paper categorizes the main designs, focusing on their reliability by bringing together and comparing data from a selection of major studies in the literature. These are not particularly consistent but plotting failure rates against hour...

  18. Tornado type wind turbines

    Science.gov (United States)

    Hsu, Cheng-Ting

    1984-01-01

    A tornado type wind turbine has a vertically disposed wind collecting tower with spaced apart inner and outer walls and a central bore. The upper end of the tower is open while the lower end of the structure is in communication with a wind intake chamber. An opening in the wind chamber is positioned over a turbine which is in driving communication with an electrical generator. An opening between the inner and outer walls at the lower end of the tower permits radially flowing air to enter the space between the inner and outer walls while a vertically disposed opening in the wind collecting tower permits tangentially flowing air to enter the central bore. A porous portion of the inner wall permits the radially flowing air to interact with the tangentially flowing air so as to create an intensified vortex flow which exits out of the top opening of the tower so as to create a low pressure core and thus draw air through the opening of the wind intake chamber so as to drive the turbine.

  19. Wind turbine spoiler

    Science.gov (United States)

    Sullivan, W.N.

    An aerodynamic spoiler system for a vertical axis wind turbine includes spoilers on the blades initially stored near the rotor axis to minimize drag. A solenoid latch adjacent the central support tower releases the spoilers and centrifugal force causes the spoilers to move up the turbine blades away from the rotor axis, thereby producing a braking effect and actual slowing of the associated wind turbine, if desired. The spoiler system can also be used as an infinitely variable power control by regulated movement of the spoilers on the blades over the range between the undeployed and fully deployed positions. This is done by the use of a suitable powered reel and cable located at the rotor tower to move the spoilers.

  20. Wind Turbine Blade

    DEFF Research Database (Denmark)

    2010-01-01

    The invention relates to a blade for a wind turbine, particularly to a blade that may be produced by an advanced manufacturing process for producing a blade with high quality structural components. Particularly, the structural components, which are preferably manufactured from fibre reinforced...

  1. OUT Success Stories: Advanced Airfoils for Wind Turbines

    International Nuclear Information System (INIS)

    Jones, J.; Green, B.

    2000-01-01

    New airfoils have substantially increased the aerodynamic efficiency of wind turbines. It is clear that these new airfoils substantially increased energy output from wind turbines. Virtually all new blades built in this country today use these advanced airfoil designs

  2. Wind Turbine Test Wind Matic WM 15S

    DEFF Research Database (Denmark)

    Friis Pedersen, Troels

    The report describes standard measurements performed on a Wind-Matic WM 15S, 55 kW wind turbine. The measurements carried out and reported here comprises the power output, system efficiency, energy production, transmission efficiency, rotor power, rotor efficiency, air-brakes efficiency, dynamical...... behaviour of the turbine, loads at cut-in and braking, rotor torque at stopped condition, and noise emission....

  3. Reliability Analysis of Wind Turbines

    DEFF Research Database (Denmark)

    Toft, Henrik Stensgaard; Sørensen, John Dalsgaard

    2008-01-01

    In order to minimise the total expected life-cycle costs of a wind turbine it is important to estimate the reliability level for all components in the wind turbine. This paper deals with reliability analysis for the tower and blades of onshore wind turbines placed in a wind farm. The limit states...... consideres are in the ultimate limit state (ULS) extreme conditions in the standstill position and extreme conditions during operating. For wind turbines, where the magnitude of the loads is influenced by the control system, the ultimate limit state can occur in both cases. In the fatigue limit state (FLS......) the reliability level for a wind turbine placed in a wind farm is considered, and wake effects from neighbouring wind turbines is taken into account. An illustrative example with calculation of the reliability for mudline bending of the tower is considered. In the example the design is determined according...

  4. Wind Turbine Test. Wind Matic WM 17S

    DEFF Research Database (Denmark)

    Friis Pedersen, Troels

    The report describes standard measurements performed on a Wind-Matic WM 17S, 75 kW wind turbine. The measurements carried out and reported here comprises the power output, system efficiency, energy production, transmission efficiency, rotor power, rotor efficiency, air-brakes efficiency, structural...

  5. Great expectations: large wind turbines

    International Nuclear Information System (INIS)

    De Vries, E.

    2001-01-01

    This article focuses on wind turbine product development, and traces the background to wind turbines from the first generation 1.5 MW machines in 1995-6, plans for the second generation 3-5 MW class turbines to meet the expected boom in offshore wind projects, to the anticipated installation of a 4.5 MW turbine, and offshore wind projects planned for 2000-2002. The switch by the market leader Vestas to variable speed operation in 2000, the new product development and marketing strategy taken by the German Pro + Pro consultancy in their design of a 1.5 MW variable speed pitch control concept, the possible limiting of the size of turbines due to logistical difficulties, opportunities offered by air ships for large turbines, and the commissioning of offshore wind farms are discussed. Details of some 2-5 MW offshore wind turbine design specifications are tabulated

  6. Aeroservoelasticity of wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Skovmose Kallesoee, B.

    2007-12-14

    This thesis deals with the fundamental aeroelastic interaction between structural motion, Pitch action and control for a wind turbine blade. As wind turbines become larger, the interaction between pitch action, blade motion, aerodynamic forces, and control become even more important to understand and address. The main contribution of this thesis is the development of an aeroelastic blade model which on the one hand includes the important effects of steady state blade deformation, gravity and pitch action, and on the other it is transparent, suitable for analytical analysis and parameter studies, and furthermore linear and therefore suitable for control design. The development of the primary aeroelastic blade model is divided into four steps: 1) Nonlinear partial differential equations (PDEs) of structural blade motion are derived together with equations of pitch action and rotor speed; the individual terms in these equations are discussed and given physical interpretations; 2) Steady state blade deformation and induced velocities are computed by combining the PDEs with a steady state aerodynamic model; 3) Aeroelastic modes of motion are computed by combining the linearized PDEs with a linear unsteady aerodynamic model; this model is used to analyze how blade deformation effects the modes of motion; and 4) the linear aeroelastic blade model is derived by a modal expansion of the linearized PDEs combined with a linear unsteady aerodynamic model. The aeroelastic blade model has many similarities to a 2D blade section model, and it can be used instead of this in many applications, giving a transparent connection to a real wind turbine blade. In this work the aeroelastic blade model is used to analyze interaction between pitch action, blade motion and wind speed variations. Furthermore the model is used to develop a state estimator for estimating the wind speed and wind shear, and to suggest a load reducing controller. The state estimator estimates the wind shear very

  7. Small Wind Turbine Technology Assessment

    International Nuclear Information System (INIS)

    Avia Aranda, F.; Cruz Cruz, I.

    1999-01-01

    The result of the study carried out under the scope of the ATYCA project Test Plant of Wind Systems for Isolated Applications, about the state of art of the small wind turbine technology (wind turbines with swept area smaller than 40 m 2 ) is presented. The study analyzes the collected information on 60 models of wind turbines from 23 manufacturers in the worldwide market. Data from Chinese manufacturers, that have a large participation in the total number of small wind turbines in operation, are not included, due to the unavailability of the technical information. (Author) 15 refs

  8. Superconducting wind turbine generators

    DEFF Research Database (Denmark)

    Mijatovic, Nenad

    in this thesis is a part of a larger endeavor, the Superwind project that focused on identifying the potentials that HTS machines could offer to the wind industry and addressing some of the challenges in the process. In order to identify these challenges, I have designed and constructed an HTS machine......A HTS machine could be a way to address some of the technical barriers offshore wind energy is about to face. Due to the superior power density of HTS machines, this technology could become a milestone on which many, including the wind industry, will rely on in the future. The work presented...... experimental setup which is made to serve as precursor, leading towards an optimized HTS machine concept proposed for wind turbines. In part, the work presented in this thesis will focus on the description of the experimental setup and reasoning behind the choices made during the design. The setup comprises...

  9. Controls of Hydraulic Wind Turbine

    OpenAIRE

    Zhang Yin; Kong Xiangdong; Hao Li; Ai Chao

    2016-01-01

    In this paper a hydraulic wind turbine generator system was proposed based on analysis the current wind turbines technologies. The construction and principles were introduced. The mathematical model was verified using MATLAB and AMsim. A displacement closed loop of swash plate of motor and a speed closed loop of generator were setup, a PID control is introduced to maintain a constant speed and fixed frequency at wind turbine generator. Simulation and experiment demonstrated that the system ca...

  10. Introduction to wind turbine aerodynamics

    CERN Document Server

    Schaffarczyk, Alois Peter

    2014-01-01

    Wind-Turbine Aerodynamics is a self-contained textbook which shows how to come from the basics of fluid mechanics to modern wind turbine blade design. It presents a fundamentals of fluid dynamics and inflow conditions, and gives a extensive introduction into theories describing the aerodynamics of wind turbines. After introducing experiments the book applies the knowledge to explore the impact on blade design.The book is an introduction for professionals and students of very varying levels.

  11. Wind Turbine Radar Cross Section

    Directory of Open Access Journals (Sweden)

    David Jenn

    2012-01-01

    Full Text Available The radar cross section (RCS of a wind turbine is a figure of merit for assessing its effect on the performance of electronic systems. In this paper, the fundamental equations for estimating the wind turbine clutter signal in radar and communication systems are presented. Methods of RCS prediction are summarized, citing their advantages and disadvantages. Bistatic and monostatic RCS patterns for two wind turbine configurations, a horizontal axis three-blade design and a vertical axis helical design, are shown. The unique electromagnetic scattering features, the effect of materials, and methods of mitigating wind turbine clutter are also discussed.

  12. Controls of Hydraulic Wind Turbine

    Directory of Open Access Journals (Sweden)

    Zhang Yin

    2016-01-01

    Full Text Available In this paper a hydraulic wind turbine generator system was proposed based on analysis the current wind turbines technologies. The construction and principles were introduced. The mathematical model was verified using MATLAB and AMsim. A displacement closed loop of swash plate of motor and a speed closed loop of generator were setup, a PID control is introduced to maintain a constant speed and fixed frequency at wind turbine generator. Simulation and experiment demonstrated that the system can connect grid to generate electric and enhance reliability. The control system demonstrates a high performance speed regulation and effectiveness. The results are great significant to design a new type hydraulic wind turbine system.

  13. Innovative Design of Vertical Axis Wind Turbine

    DEFF Research Database (Denmark)

    Chougule, Prasad

    2013-01-01

    The wind turbines can be classified as: i) Horizontal axis wind turbines (HAWT), and ii) Vertical axis wind turbines (VAWT). The HAWT is fully developed and the size is growing higher. Whereas, the VAWT is not developed because of the less efficiency and vibration issues of big structure. However......, and its aerodynamic characteristics are obtained by an experimental method. A new design is called D2퐴 − 푉퐴푊푇 and a test ring is made to validate the numerical results. A double multiple stream tube method (DMSTM) and blade element method (BEM) are used to determine the numerical performance of a proposed...

  14. Probabilistic Design of Wind Turbines

    DEFF Research Database (Denmark)

    Toft, Henrik Stensgaard

    During the last decades, wind turbines have been continuously developed with the aim of maximizing the life cycle benefits (production of electricity) minus the costs of planning, materials, installation, operation & maintenance as well as possible failure. In order to continue this development...... turbines and the central topics considered are statistical load extrapolation of extreme loads during operation and reliability assessment of wind turbine blades. Wind turbines differ from most civil engineering structures by having a control system which highly influences the loading. In the literature......, methods for estimating the extreme load-effects on a wind turbine during operation, where the control system is active, have been proposed. But these methods and thereby the estimated loads are often subjected to a significant uncertainty which influences the reliability of the wind turbine...

  15. Reliability Modeling of Wind Turbines

    DEFF Research Database (Denmark)

    Kostandyan, Erik

    Cost reductions for offshore wind turbines are a substantial requirement in order to make offshore wind energy more competitive compared to other energy supply methods. During the 20 – 25 years of wind turbines useful life, Operation & Maintenance costs are typically estimated to be a quarter...... the actions should be made and the type of actions requires knowledge on the accumulated damage or degradation state of the wind turbine components. For offshore wind turbines, the action times could be extended due to weather restrictions and result in damage or degradation increase of the remaining...... for Operation & Maintenance planning. Concentrating efforts on development of such models, this research is focused on reliability modeling of Wind Turbine critical subsystems (especially the power converter system). For reliability assessment of these components, structural reliability methods are applied...

  16. Reliability assessment of Wind turbines

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard

    2015-01-01

    Wind turbines can be considered as structures that are in between civil engineering structures and machines since they consist of structural components and many electrical and machine components together with a control system. Further, a wind turbine is not a one-of-a-kind structure...... but manufactured in series production based on many component tests, some prototype tests and zeroseries wind turbines. These characteristics influence the reliability assessment where focus in this paper is on the structural components. Levelized Cost Of Energy is very important for wind energy, especially when...... comparing to other energy sources. Therefore much focus is on cost reductions and improved reliability both for offshore and onshore wind turbines. The wind turbine components should be designed to have sufficient reliability level with respect to both extreme and fatigue loads but also not be too costly...

  17. Model Predictive Control with Constraints of a Wind Turbine

    DEFF Research Database (Denmark)

    Henriksen, Lars Christian; Poulsen, Niels Kjølstad

    2007-01-01

    Model predictive control of wind turbines offer a more systematic approach of constructing controllers that handle constraints while focusing on the main control objective. In this article several controllers are designed for different wind conditions and appropriate switching conditions ensure...... an efficient control of the wind turbine over the entire range of wind speeds. Both onshore and floating offshore wind turbines are tested with the controllers....

  18. Wind turbine airfoil catalogue

    DEFF Research Database (Denmark)

    Bertagnolio, F.; Sørensen, Niels N.; Johansen, Jeppe

    2001-01-01

    The aim of this work is two-sided. Firstly, experimental results obtained for numerous sets of airfoil measurements (mainly intended for wind turbine applications) are collected and compared with computational results from the 2D Navier-Stokes solverEllipSys2D, as well as results from the panel...... data. A study correlating the available data and this classification is performed. It is found that transition modelling is to a large extent responsible forthe poor quality of the computational results for most of the considered airfoils. The transition model mechanism that leads...

  19. Wind turbine airfoil catalogue

    OpenAIRE

    Bertagnolio, F.; Sørensen, Niels N.; Johansen, Jeppe; Fuglsang, P.

    2001-01-01

    The aim of this work is two-sided. Firstly, experimental results obtained for numerous sets of airfoil measurements (mainly intended for wind turbine applications) are collected and compared with computational results from the 2D Navier-Stokes solverEllipSys2D, as well as results from the panel method code XFOIL. Secondly, we are interested in validating the code EllipSys2D and finding out for which airfoils it does not perform well compared to the experiments, as well as why, when it does so...

  20. Wind Turbine Contingency Control Through Generator De-Rating

    Science.gov (United States)

    Frost, Susan; Goebel, Kai; Balas, Mark

    2013-01-01

    Maximizing turbine up-time and reducing maintenance costs are key technology drivers for wind turbine operators. Components within wind turbines are subject to considerable stresses due to unpredictable environmental conditions resulting from rapidly changing local dynamics. In that context, systems health management has the aim to assess the state-of-health of components within a wind turbine, to estimate remaining life, and to aid in autonomous decision-making to minimize damage to the turbine. Advanced contingency control is one way to enable autonomous decision-making by providing the mechanism to enable safe and efficient turbine operation. The work reported herein explores the integration of condition monitoring of wind turbines with contingency control to balance the trade-offs between maintaining system health and energy capture. The contingency control involves de-rating the generator operating point to achieve reduced loads on the wind turbine. Results are demonstrated using a high fidelity simulator of a utility-scale wind turbine.

  1. Reliability Modeling of Wind Turbines

    DEFF Research Database (Denmark)

    Kostandyan, Erik

    the actions should be made and the type of actions requires knowledge on the accumulated damage or degradation state of the wind turbine components. For offshore wind turbines, the action times could be extended due to weather restrictions and result in damage or degradation increase of the remaining...

  2. Wind Turbine Controller to Mitigate Structural Loads on a Floating Wind Turbine Platform

    Energy Technology Data Exchange (ETDEWEB)

    Fleming, Paul A.; Peiffer, Antoine; Schlipf, David

    2016-06-24

    This paper summarizes the control design work that was performed to optimize the controller of a wind turbine on the WindFloat structure. The WindFloat is a semi-submersible floating platform designed to be a support structure for a multi-megawatt power-generating wind turbine. A controller developed for a bottom-fixed wind turbine configuration was modified for use when the turbine is mounted on the WindFloat platform. This results in an efficient platform heel resonance mitigation scheme. In addition several control modules, designed with a coupled linear model, were added to the fixed-bottom baseline controller. The approach was tested in a fully coupled nonlinear aero-hydroelastic simulation tool in which wind and wave disturbances were modeled. This testing yielded significant improvements in platform global performance and tower-base-bending loading.

  3. Adhesive Joints in Wind Turbine Blades

    DEFF Research Database (Denmark)

    Jørgensen, Jeppe Bjørn

    The industrial goal of this PhD project is to enable manufacturing of larger wind turbine blades by improving the existing design methods for adhesive joints. This should improve the present joint design such that more efficient wind turbine blades can be produced. The main scientific goal...... of the project is to develop new- and to improve the existing design rules for adhesive joints in wind turbine blades. The first scientific studies of adhesive joints were based on stress analysis, which requires that the bond-line is free of defects, but this is rarely the case for a wind turbine blade. Instead...... curing and test temperatures) on the formation of transverse cracks in the adhesive were tested experimentally. It was assumed that the transverse cracks evolved due to a combination of mechanical- and residual stresses in the adhesive. A new approach was developed that allows the residual stress...

  4. Wind turbine assisted diesel generator systems

    Science.gov (United States)

    Schienbein, L. A.

    1981-12-01

    The need to reduce the cost of energy in remote communities served by diesel generators has led to the investigation of the use of wind energy to replace some or all of the fuel consumed. The development of wind-turbine-assisted diesel generators in Canada has progressed from the design and testing of a 12-kW unit to the design of a prototype 100-kW wind turbine diesel hybrid. This paper presents the results of the 12-kW tests and the implementation of the test results, and the results of further engineering and cost analyses in the design of a prototype 100-kW wind turbine diesel hybrid system. The value of wind energy in a wind turbine diesel hybrid is greatly improved if the diesel generator system itself is designed to operate more efficiently at part load, with or without wind power assistance. Excess wind energy and wind turbine power fluctuations (which result in voltage and frequency fluctuations) can be minimized by selecting the best rotor operating speed.

  5. Wind Turbines Adaptation to the Variability of the Wind Field

    Science.gov (United States)

    Ulianov, Yuriy; Martynenko, Gennadii; Misaylov, Vitaliy; Soliannikova, Iuliia

    2010-05-01

    WIND TURBINES ADAPTATION TO THE VARIABILITY OF THE WIND FIELD The subject of our scientific research is wind power turbines (WPT) with the horizontal axis which were now common in the world. Efficient wind turbines work is largely determined by non-stationarity of the wind field, expressed in its gustiness, the presence of vertical and horizontal shifts of wind speed and direction. At critical values of the wind parameters WPT has aerodynamic and mechanical overload, leading to breakdowns, premature wear and reduce the life of the wind turbine. To prevent accidents at the peak values of wind speed it is used the regulatory system of windwheels. WPT control systems provide a process orientation of the wind turbine rotor axis in the line of the mean wind. Wind turbines are also equipped with braking device used to protect against breakdowns when a significant increase in the wind. In general, all these methods of regulation are not always effective. Thus, in practice there may be situations when the wind speed is many times greater than the stated limit. For example, if there are microbursts in the atmospheric boundary layer, low-level wind shears caused by its gust front, storms, etc. It is required for a wind power turbine adaptation to intensive short-term wind impulses and considerable vertical wind shifts that the data about them shall be obtained ahead of time. To do this it is necessary to have the information on the real structure of the wind field in the area of the blade sweep for the minimum range against the wind that is determined by the mean speed and the system action time. The implementation of acoustic and laser traditional wind sounding systems is limited by ambient acoustic noise, by heavy rain, snowfall and by fog. There are free of these disadvantages the inclined radioacoustic sounding (IRASS) technique which works for a system of remote detection and control of wind gusts. IRASS technique is realized as low-potential Doppler pulse radar

  6. Wind technology development: Large and small turbines

    Science.gov (United States)

    Thresher, R. W.; Hock, S. M.; Loose, R. R.; Goldman, P.

    1994-12-01

    Wind technology has developed rapidly over the last decade with the design and development of advanced systems with improved performance, higher reliability, and lower costs. During the past several years, substantial gains have been made in wind turbine designs, lowering costs to an average of $0.05/kWh while further technology development is expected to allow the cost to drop below $0.04/kWh by 2000. As a result, wind is expected to be one of the least expensive forms of new electric generation in the next century. This paper will present the technology developments for both utility-scale wind turbines and remote, small-village wind turbines that are currently available or in development. Technology innovations are being adapted for remote and stand-alone power applications with smaller wind turbines. Hybrid power systems using smaller 1 to 50 (kW) wind turbines are being developed for non-grid-connected electrical generation applications. These village power systems typically use wind energy, photovoltaics, battery storage, and conventional diesel generators to power remote communities. Smaller turbines are being explored for application as distributed generation sources on utility grids to supply power during periods of peak demand, avoiding costly upgrades in distribution equipment. New turbine designs now account for turbulence-induced loads, unsteady aerodynamic stall effects, and complex fatigue loads, making use of new technology developments such as advanced airfoils. The new airfoils increase the energy capture, improve the operating efficiency, and reduce the sensitivity of the airfoils to operation roughness. Electronic controls are allowing variable rotor speed operation; while aerodynamic control devices, such as ailerons and flaps, are used to modulate power or stop the rotor in high-speed conditions. These technology trends and future turbine configurations are being sponsored and explored by the U.S. Department of Energy's Wind Energy Program.

  7. Megawatt wind turbines gaining momentum

    International Nuclear Information System (INIS)

    Oehlenschlaeger, K.; Madsen, B.T.

    1996-01-01

    Through the short history of the modern wind turbine, electric utilities have made it amply clear that they have held a preference for large scale wind turbines over smaller ones, which is why wind turbine builders through the years have made numerous attempts develop such machines - machines that would meet the technical, aesthetic and economic demands that a customer would require. Considerable effort was put into developing such wind turbines in the early 1980s. There was the U.S. Department of Energy's MOD 1-5 program, which ranged up to 3.2 MW, Denmark's Nibe A and B, 630 kW turbine and the 2 MW Tjaereborg machine, Sweden's Naesudden, 3 MW, and Germany's Growian, 3 MW. Most of these were dismal failures, though some did show the potential of MW technology. (au)

  8. Potential health impact of wind turbines

    International Nuclear Information System (INIS)

    2010-05-01

    In response to public health concerns about wind turbines, a study was conducted to review the scientific evidence on the potential health effects of wind turbines. Several research questions were examined, including scientific evidence on the potential health impacts of wind turbines; the relationship between wind turbine noise and health; the relationship between low frequency sound, infrasound and health; assessment of exposure to wind turbines; wind turbine health and safety hazards and Ontario wind turbine setbacks; community consultation prior to wind farm construction and data gaps and research needs. The study showed that although some people living near wind turbines reported symptoms such as dizziness, headaches, and sleep disturbance, the scientific evidence available to date does not demonstrate a direct causal link between wind turbine noise and adverse health effects. The sound level from wind turbines at common residential setbacks is not sufficient to cause hearing impairment or other direct health effects, although some people may find it annoying. 41 refs., 1 appendix.

  9. Potential health impact of wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-05-15

    In response to public health concerns about wind turbines, a study was conducted to review the scientific evidence on the potential health effects of wind turbines. Several research questions were examined, including scientific evidence on the potential health impacts of wind turbines; the relationship between wind turbine noise and health; the relationship between low frequency sound, infrasound and health; assessment of exposure to wind turbines; wind turbine health and safety hazards and Ontario wind turbine setbacks; community consultation prior to wind farm construction and data gaps and research needs. The study showed that although some people living near wind turbines reported symptoms such as dizziness, headaches, and sleep disturbance, the scientific evidence available to date does not demonstrate a direct causal link between wind turbine noise and adverse health effects. The sound level from wind turbines at common residential setbacks is not sufficient to cause hearing impairment or other direct health effects, although some people may find it annoying. 41 refs., 1 appendix.

  10. Operation Design of Wind Turbines in Strong Wind Conditions

    DEFF Research Database (Denmark)

    Shen, Wen Zhong; Montes, Melissa Barroso; Odgaard, Peter Fogh

    2012-01-01

    optimally. In order to reduce the possible increased loading, fatigue due to the wind gusts, control strategies have been considered for both constant sped and variable speed pitch regulated wind turbines. The control study shows that the designed controllers can reduce the standard deviations efficiently...

  11. Aerodynamics of wind turbines emerging topics

    CERN Document Server

    Amano, R S

    2014-01-01

    Focusing on Aerodynamics of Wind Turbines with topics ranging from Fundamental to Application of horizontal axis wind turbines, this book presents advanced topics including: Basic Theory for Wind turbine Blade Aerodynamics, Computational Methods, and Special Structural Reinforcement Technique for Wind Turbine Blades.

  12. Advances in the Assessment of Wind Turbine Operating Extreme Loads via More Efficient Calculation Approaches

    Energy Technology Data Exchange (ETDEWEB)

    Graf, Peter; Damiani, Rick R.; Dykes, Katherine; Jonkman, Jason M.

    2017-01-09

    A new adaptive stratified importance sampling (ASIS) method is proposed as an alternative approach for the calculation of the 50 year extreme load under operational conditions, as in design load case 1.1 of the the International Electrotechnical Commission design standard. ASIS combines elements of the binning and extrapolation technique, currently described by the standard, and of the importance sampling (IS) method to estimate load probability of exceedances (POEs). Whereas a Monte Carlo (MC) approach would lead to the sought level of POE with a daunting number of simulations, IS-based techniques are promising as they target the sampling of the input parameters on the parts of the distributions that are most responsible for the extreme loads, thus reducing the number of runs required. We compared the various methods on select load channels as output from FAST, an aero-hydro-servo-elastic tool for the design and analysis of wind turbines developed by the National Renewable Energy Laboratory (NREL). Our newly devised method, although still in its infancy in terms of tuning of the subparameters, is comparable to the others in terms of load estimation and its variance versus computational cost, and offers great promise going forward due to the incorporation of adaptivity into the already powerful importance sampling concept.

  13. Robust, Gain-Scheduled Control of Wind Turbines

    DEFF Research Database (Denmark)

    Østergaard, Kasper Zinck

    Wind turbines are today large and efficient machines, which are combined into wind farms operating on par with conventional power plants. When looking back, this is significantly different from the status only a few years ago, when wind turbines were sold mainly to private people. This change...... in turbine owners has resulted in a new focus on operational reliability instead of turbine size. This research deals with investigating model-based gain-scheduling control of wind turbines by use of linear parameter varying (LPV) methods. The numerical challenges grow quickly with the model size...

  14. Noise immission from wind turbines

    International Nuclear Information System (INIS)

    1999-01-01

    The project has dealt with practical ways to reduce the influence of background noise caused by wind acting on the measuring microphones. The uncertainty of measured noise emission (source strength) has been investigated. The main activity was a Round Robin Test involving measurements by five laboratories at the same wind turbine. Each laboratory brought its own instrumentation and performed the measurements and analyses according to their interpretation. The tonality of wind turbine noise is an essential component of the noise impact on the environment. In the present project the uncertainty in the newest existing methods for assessing tonality was investigated. The project included noise propagation measurements in different weather conditions around wind turbines situated in different types of terrain. The results were used to validate a noise propagation model developed in the project. Finally, the project also included a study with listeners evaluating recordings of wind turbine noise. The results are intended as guidance for wind turbine manufacturers in identifying the aspects of wind turbine noise most important to annoyance. (author)

  15. Operation Design of Wind Turbines in Strong Wind Conditions

    DEFF Research Database (Denmark)

    Shen, Wen Zhong; Montes, Melissa Barroso; Odgaard, Peter Fogh

    2012-01-01

    and variable speed pitch regulated wind turbines. The variable speed design is more suitable for wind turbines to run at very high wind speeds which can help the turbine braking system to stop the turbine at the new "cut-out" wind speed. Reference power, rotational speed and pitch angle have been designed...

  16. Active control: Wind turbine model

    DEFF Research Database (Denmark)

    Bindner, H.

    1999-01-01

    This report is a part of the reporting of the work done in the project 'Active Control of Wind Turbines'. This project aim is to develop a simulation model for design of control systems for turbines with pitch control and to use that model to designcontrollers. This report describes the model...... developed for controller design and analysis. Emphasis has been put on establishment of simple models describing the dynamic behavior of the wind turbine in adequate details for controller design. This hasbeen done with extensive use of measurements as the basis for selection of model complexity and model....... The models are all formulated as linear differential equations. The models are validated throughcomparisons with measurements performed on a Vestas WD 34 400 kW wind turbine. It is shown from a control point of view simple linear models can be used to describe the dynamic behavior of a pitch controlled wind...

  17. Reliability Assessment Of Wind Turbines

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard

    2014-01-01

    Reduction of cost of energy for wind turbines are very important in order to make wind energy competitive compared to other energy sources. Therefore the turbine components should be designed to have sufficient reliability but also not be too costly (and safe). This paper presents models...... for uncertainty modeling and reliability assessment of especially the structural components such as tower, blades, substructure and foundation. But since the function of a wind turbine is highly dependent on many electrical and mechanical components as well as a control system also reliability aspects...... of these components are discussed and it is described how there reliability influences the reliability of the structural components. Two illustrative examples are presented considering uncertainty modeling, reliability assessment and calibration of partial safety factors for structural wind turbine components exposed...

  18. Probabilistic Design of Wind Turbines

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Toft, H.S.

    2010-01-01

    Probabilistic design of wind turbines requires definition of the structural elements to be included in the probabilistic basis: e.g., blades, tower, foundation; identification of important failure modes; careful stochastic modeling of the uncertain parameters; recommendations for target reliability....... It is described how uncertainties in wind turbine design related to computational models, statistical data from test specimens, results from a few full-scale tests and from prototype wind turbines can be accounted for using the Maximum Likelihood Method and a Bayesian approach. Assessment of the optimal...... reliability level by cost-benefit optimization is illustrated by an offshore wind turbine example. Uncertainty modeling is illustrated by an example where physical, statistical and model uncertainties are estimated....

  19. Meteorological Controls on Wind Turbine Wakes

    DEFF Research Database (Denmark)

    Barthelmie, Rebecca J.; Hansen, Kurt Schaldemose; Pryor, S.C.

    2013-01-01

    The primary control on the magnitude of the power losses induced by wind turbine wakes in large wind farms is the hub-height wind speed via its link to the turbine thrust coefficient. Hence, at low to moderate wind speeds (between cut-in and rated turbine wind speeds) when the thrust coefficient ...

  20. Integrating Structural Health Management with Contingency Control for Wind Turbines

    Directory of Open Access Journals (Sweden)

    Kai Goebel

    2013-01-01

    Full Text Available Maximizing turbine up-time and reducing maintenance costs are key technology drivers for wind turbine operators. Components within wind turbines are subject to considerable stresses due to unpredictable environmental conditions resulting from rapidly changing local dynamics. In that context, systems health management has the aim to assess the state-of-health of components within a wind turbine, to estimate remaining life, and to aid in autonomous decision-making to minimize damage to the turbine. Advanced contingency control is one way to enable autonomous decision-making by providing the mechanism to enable safe and efficient turbine operation. The work reported herein explores the integration of condition monitoring of wind turbine blades with contingency control to balance the trade-offs between maintaining system health and energy capture. Results are demonstrated using a high fidelity simulator of a utility-scale wind turbine.

  1. The aerodynamics of wind turbines

    DEFF Research Database (Denmark)

    Sørensen, Jens Nørkær; Mikkelsen, Robert Flemming; Troldborg, Niels

    2013-01-01

    In the paper we present state-of-the-art of research in wind turbine aerodynamics. We start be giving a brief historical review and a survey over aerodynamic research in wind energy. Next, we focus on some recent research results obtained by our wind energy group at Department of Mechanical...... Engineering at DTU. In particular, we show some new results on the classical problem of the ideal rotor and present a series of new results from an on-going research project dealing with the modelling and simulation of turbulent flow structures in the wake behind wind turbines....

  2. Lightning protection of wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Soerensen, T.; Brask, M.H. [DEFU (Denmark); Jensen, F.V.; Raben, N. [SEAS (Denmark); Saxov, J. [Nordjyllandsvaerket (Denmark); Nielsen, L. [Vestkraft (Denmark); Soerensen, P.E. [Risoe National Lab. (Denmark)

    1999-03-01

    Lightning damage to wind turbines is a serious problem for Danish power companies, who have experienced some cases with very costly lightning damage and a large number of cases with minor damage. The most costly cases include one catastrophic damage to an entire wind turbine, and several cases of destruction of blades, main bearings, generators and control systems. Over the years there have been several hundreds of cases with minor damage - typically damage and interruptions of the control and communication systems, or the power systems. The Danish power companies anticipate that the lightning threat will be even bigger for the large off-shore wind turbine installations that are currently being planned in Denmark. Furthermore, it is known from the off-shore wind turbines at Vindeby in Denmark that the costs of inspection and particularly repair work must be expected to be much higher off-shore as compared to wind turbines on land. These considerations was the background for a two year project concerned with investigation of lighting damages and with the formulation of a DEFU Recommendation for lightning protection of wind turbines, which was published in January 1999. The project was funded by the Danish power companies Elsam, Eltra, Elkraft and by DEFU. (au)

  3. Foundations for offshore wind turbines.

    Science.gov (United States)

    Byrne, B W; Houlsby, G T

    2003-12-15

    An important engineering challenge of today, and a vital one for the future, is to develop and harvest alternative sources of energy. This is a firm priority in the UK, with the government setting a target of 10% of electricity from renewable sources by 2010. A component central to this commitment will be to harvest electrical power from the vast energy reserves offshore, through wind turbines or current or wave power generators. The most mature of these technologies is that of wind, as much technology transfer can be gained from onshore experience. Onshore wind farms, although supplying 'green energy', tend to provoke some objections on aesthetic grounds. These objections can be countered by locating the turbines offshore, where it will also be possible to install larger capacity turbines, thus maximizing the potential of each wind farm location. This paper explores some civil-engineering problems encountered for offshore wind turbines. A critical component is the connection of the structure to the ground, and in particular how the load applied to the structure is transferred safely to the surrounding soil. We review previous work on the design of offshore foundations, and then present some simple design calculations for sizing foundations and structures appropriate to the wind-turbine problem. We examine the deficiencies in the current design approaches, and the research currently under way to overcome these deficiencies. Designs must be improved so that these alternative energy sources can compete economically with traditional energy suppliers.

  4. Extreme Response for Wind Turbines

    DEFF Research Database (Denmark)

    Toft, Henrik Stensgaard; Sørensen, John Dalsgaard

    2009-01-01

    The characteristic load on wind turbines during operation are among others dependent on the mean wind speed, the turbulence intensity and type and settings of the control system. The characteristic load during operation is normally estimated by statistical extrapolation of a limited number...... of simulated 10min time series of the response according to the wind turbine standard IEC 61400-1. However, this method assumes that the individual 10min time series and the extracted peaks from the time series are independent. In the present paper is this assumption investigated based on field measurements...

  5. Reliability assessment of Wind turbines

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard

    2015-01-01

    but manufactured in series production based on many component tests, some prototype tests and zeroseries wind turbines. These characteristics influence the reliability assessment where focus in this paper is on the structural components. Levelized Cost Of Energy is very important for wind energy, especially when...... comparing to other energy sources. Therefore much focus is on cost reductions and improved reliability both for offshore and onshore wind turbines. The wind turbine components should be designed to have sufficient reliability level with respect to both extreme and fatigue loads but also not be too costly...... (and safe). In probabilistic design the single components are designed to a level of reliability, which accounts for an optimal balance between failure consequences, cost of operation & maintenance, material costs and the probability of failure. Furthermore, using a probabilistic design basis...

  6. Ultimate loading of wind turbines

    DEFF Research Database (Denmark)

    Larsen, Gunner Chr.; Ronold, K.; Ejsing Jørgensen, Hans

    1999-01-01

    An extreme loading study has been conducted comprising a general wind climate analysis as well as a wind turbine reliability study. In the wind climate analysis, the distribution of the (horizontal) turbulence standard deviation, conditioned on the meanwind speed, has been approximated by fitting......, a design turbulence intensity for off-shore application is proposed which, in the IEC code framework, is applicable for extreme as well as for fatigue loaddetermination. In order to establish a rational method to analyse wind turbine components with respect to failure in ultimate loading, and in addition...... to the event of failure in ultimate loading in flapwise bending in the normal operating condition of a site-specific turbine....

  7. Active control: Wind turbine model

    Energy Technology Data Exchange (ETDEWEB)

    Bindner, Henrik

    1999-07-01

    This report is a part of the reporting of the work done in the project `Active Control of Wind Turbines`. This project aim is to develop a simulation model for design of control systems for turbines with pitch control and to use that model to design controllers. This report describes the model developed for controller design and analysis. Emphasis has been put on establishment of simple models describing the dynamic behavior of the wind turbine in adequate details for controller design. This has been done with extensive use of measurements as the basis for selection of model complexity and model validation as well as parameter estimation. The model includes a simple model of the structure of the turbine including tower and flapwise blade bending, a detailed model of the gear box and induction generator, a linearized aerodynamic model including modelling of induction lag and actuator and sensor models. The models are all formulated as linear differential equations. The models are validated through comparisons with measurements performed on a Vestas WD 34 400 kW wind turbine. It is shown from a control point of view simple linear models can be used to describe the dynamic behavior of a pitch controlled wind turbine. The model and the measurements corresponds well in the relevant frequency range. The developed model is therefore applicable for controller design. (au) EFP-91. 18 ills., 22 refs.

  8. Shoosing the appropriate size wind turbine

    Energy Technology Data Exchange (ETDEWEB)

    Lynette, R. [FloWind Corp., San Rafael, CA (United States)

    1996-12-31

    Within the past several years, wind turbines rated at 400 kW and higher have been introduced into the market, and some manufacturers are developing machines rated at 750 - 1,000+ kW. This raises the question: What is the appropriate size for utility-grade wind turbines today? The answer depends upon the site where the machines will be used and the local conditions. The issues discussed in the paper are: (1) Site-Related (a) Visual, noise, erosion, television interference, interference with aviation (b) Siting efficiency (2) Logistics (a) Adequacy of roads and bridges to accept large vehicles (b) Availability and cost of cranes for erection and maintenance (c) Capability of local repair/overhauls (3) Cost Effectiveness (a) Capital costs (1) Wind Turbine (2) Infrastructure costs (b) Maintenance costs (4) Technical/Financial Risk. 1 fig., 1 tab.

  9. Structural Reliability of Wind Turbine Blades

    DEFF Research Database (Denmark)

    Dimitrov, Nikolay Krasimirov

    and design. Reliability-based analysis methods have the potential of being a valuable tool which can improve the state of knowledge by explaining the uncertainties, and form the probabilistic basis for calibration of deterministic design tools. The present thesis focuses on reliability-based design of wind...... turbine blades. The main purpose is to draw a clear picture of how reliability-based design of wind turbines can be done in practice. The objectives of the thesis are to create methodologies for efficient reliability assessment of composite materials and composite wind turbine blades, and to map...... the uncertainties in the processes, materials and external conditions that have an effect on the health of a composite structure. The study considers all stages in a reliability analysis, from defining models of structural components to obtaining the reliability index and calibration of partial safety factors...

  10. Wind Turbines and Human Health

    Science.gov (United States)

    Knopper, Loren D.; Ollson, Christopher A.; McCallum, Lindsay C.; Whitfield Aslund, Melissa L.; Berger, Robert G.; Souweine, Kathleen; McDaniel, Mary

    2014-01-01

    The association between wind turbines and health effects is highly debated. Some argue that reported health effects are related to wind turbine operation [electromagnetic fields (EMF), shadow flicker, audible noise, low-frequency noise, infrasound]. Others suggest that when turbines are sited correctly, effects are more likely attributable to a number of subjective variables that result in an annoyed/stressed state. In this review, we provide a bibliographic-like summary and analysis of the science around this issue specifically in terms of noise (including audible, low-frequency noise, and infrasound), EMF, and shadow flicker. Now there are roughly 60 scientific peer-reviewed articles on this issue. The available scientific evidence suggests that EMF, shadow flicker, low-frequency noise, and infrasound from wind turbines are not likely to affect human health; some studies have found that audible noise from wind turbines can be annoying to some. Annoyance may be associated with some self-reported health effects (e.g., sleep disturbance) especially at sound pressure levels >40 dB(A). Because environmental noise above certain levels is a recognized factor in a number of health issues, siting restrictions have been implemented in many jurisdictions to limit noise exposure. These setbacks should help alleviate annoyance from noise. Subjective variables (attitudes and expectations) are also linked to annoyance and have the potential to facilitate other health complaints via the nocebo effect. Therefore, it is possible that a segment of the population may remain annoyed (or report other health impacts) even when noise limits are enforced. Based on the findings and scientific merit of the available studies, the weight of evidence suggests that when sited properly, wind turbines are not related to adverse health. Stemming from this review, we provide a number of recommended best practices for wind turbine development in the context of human health. PMID:24995266

  11. Wind turbines and human health.

    Science.gov (United States)

    Knopper, Loren D; Ollson, Christopher A; McCallum, Lindsay C; Whitfield Aslund, Melissa L; Berger, Robert G; Souweine, Kathleen; McDaniel, Mary

    2014-01-01

    The association between wind turbines and health effects is highly debated. Some argue that reported health effects are related to wind turbine operation [electromagnetic fields (EMF), shadow flicker, audible noise, low-frequency noise, infrasound]. Others suggest that when turbines are sited correctly, effects are more likely attributable to a number of subjective variables that result in an annoyed/stressed state. In this review, we provide a bibliographic-like summary and analysis of the science around this issue specifically in terms of noise (including audible, low-frequency noise, and infrasound), EMF, and shadow flicker. Now there are roughly 60 scientific peer-reviewed articles on this issue. The available scientific evidence suggests that EMF, shadow flicker, low-frequency noise, and infrasound from wind turbines are not likely to affect human health; some studies have found that audible noise from wind turbines can be annoying to some. Annoyance may be associated with some self-reported health effects (e.g., sleep disturbance) especially at sound pressure levels >40 dB(A). Because environmental noise above certain levels is a recognized factor in a number of health issues, siting restrictions have been implemented in many jurisdictions to limit noise exposure. These setbacks should help alleviate annoyance from noise. Subjective variables (attitudes and expectations) are also linked to annoyance and have the potential to facilitate other health complaints via the nocebo effect. Therefore, it is possible that a segment of the population may remain annoyed (or report other health impacts) even when noise limits are enforced. Based on the findings and scientific merit of the available studies, the weight of evidence suggests that when sited properly, wind turbines are not related to adverse health. Stemming from this review, we provide a number of recommended best practices for wind turbine development in the context of human health.

  12. Time Series Model of Wind Speed for Multi Wind Turbines based on Mixed Copula

    Directory of Open Access Journals (Sweden)

    Nie Dan

    2016-01-01

    Full Text Available Because wind power is intermittent, random and so on, large scale grid will directly affect the safe and stable operation of power grid. In order to make a quantitative study on the characteristics of the wind speed of wind turbine, the wind speed time series model of the multi wind turbine generator is constructed by using the mixed Copula-ARMA function in this paper, and a numerical example is also given. The research results show that the model can effectively predict the wind speed, ensure the efficient operation of the wind turbine, and provide theoretical basis for the stability of wind power grid connected operation.

  13. Models for wind turbines - a collection

    DEFF Research Database (Denmark)

    2002-01-01

    This report is a collection of notes which were intended to be short communications. Main target of the work presented is to supply new approaches to stability investigations of wind turbines. The author's opinion is that an efficient, systematicstability analysis can not be performed for large...

  14. Diffuser augmented wind turbine analysis code

    Science.gov (United States)

    Carroll, Jonathan

    Wind Energy is becoming a significant source of energy throughout the world. This ever increasing field will potentially reach the limit of availability and practicality with the wind farm sites and size of the turbine itself. Therefore, it is necessary to develop innovative wind capturing devices that can produce energy in the locations where large conventional horizontal axis wind turbines (HAWTs) are too impractical to install and operate. A diffuser augmented wind turbine (DAWT) is one such innovation. DAWTs increase the power output of the rotor by increasing the wind speed into the rotor using a duct. Currently, developing these turbines is an involved process using time consuming Computational Fluid Dynamics codes. A simple and quick design tool is necessary for designers to develop efficient energy capturing devices. This work lays out the theory for a quick analysis tool for DAWTs using an axisymmetric surface vorticity method. This method allows for quick analysis of duct, hubs and rotors giving designers a general idea of the power output of the proposed hub, blade and duct geometry. The method would be similar to the way blade element momentum theory is used to design conventional HAWTs. It is determined that the presented method is viable for preliminary design of DAWTs.

  15. WindPACT Reference Wind Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Dykes, Katherine L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Rinker, Jennifer [Former National Renewable Energy Laboratory (NREL) employee

    2018-04-02

    To fully understand how loads and turbine cost scale with turbine size, it is necessary to have identical turbine models that have been scaled to different rated powers. The report presents the WindPACT baseline models, which are a series of four baseline models that were designed to facilitate investigations into the scalings of loads and turbine cost with size. The models have four different rated powers (750 kW, 1.5 MW, 3.0 MW, and 5.0 MW), and each model was designed to its specified rated power using the same design methodology. The models were originally implemented in FAST_AD, the predecessor to NREL's open-source wind turbine simulator FAST, but have yet to be implemented in FAST. This report contains the specifications for all four WindPACT baseline models - including structural, aerodynamic, and control specifications - along with the inherent assumptions and equations that were used to calculate the model parameters. It is hoped that these baseline models will serve as extremely useful resources for investigations into the scalings of costs, loads, or optimization routines.

  16. Vertical axis wind turbine airfoil

    Science.gov (United States)

    Krivcov, Vladimir; Krivospitski, Vladimir; Maksimov, Vasili; Halstead, Richard; Grahov, Jurij Vasiljevich

    2012-12-18

    A vertical axis wind turbine airfoil is described. The wind turbine airfoil can include a leading edge, a trailing edge, an upper curved surface, a lower curved surface, and a centerline running between the upper surface and the lower surface and from the leading edge to the trailing edge. The airfoil can be configured so that the distance between the centerline and the upper surface is the same as the distance between the centerline and the lower surface at all points along the length of the airfoil. A plurality of such airfoils can be included in a vertical axis wind turbine. These airfoils can be vertically disposed and can rotate about a vertical axis.

  17. Model Predictive Control of Wind Turbines

    DEFF Research Database (Denmark)

    Henriksen, Lars Christian

    Wind turbines play a major role in the transformation from a fossil fuel based energy production to a more sustainable production of energy. Total-cost-of-ownership is an important parameter when investors decide in which energy technology they should place their capital. Modern wind turbines...... are controlled by pitching the blades and by controlling the electro-magnetic torque of the generator, thus slowing the rotation of the blades. Improved control of wind turbines, leading to reduced fatigue loads, can be exploited by using less materials in the construction of the wind turbine or by reducing...... the need for maintenance of the wind turbine. Either way, better total-cost-of-ownership for wind turbine operators can be achieved by improved control of the wind turbines. Wind turbine control can be improved in two ways, by improving the model on which the controller bases its design or by improving...

  18. Efficient preliminary floating offshore wind turbine design and testing methodologies and application to a concrete spar design.

    Science.gov (United States)

    Matha, Denis; Sandner, Frank; Molins, Climent; Campos, Alexis; Cheng, Po Wen

    2015-02-28

    The current key challenge in the floating offshore wind turbine industry and research is on designing economic floating systems that can compete with fixed-bottom offshore turbines in terms of levelized cost of energy. The preliminary platform design, as well as early experimental design assessments, are critical elements in the overall design process. In this contribution, a brief review of current floating offshore wind turbine platform pre-design and scaled testing methodologies is provided, with a focus on their ability to accommodate the coupled dynamic behaviour of floating offshore wind systems. The exemplary design and testing methodology for a monolithic concrete spar platform as performed within the European KIC AFOSP project is presented. Results from the experimental tests compared to numerical simulations are presented and analysed and show very good agreement for relevant basic dynamic platform properties. Extreme and fatigue loads and cost analysis of the AFOSP system confirm the viability of the presented design process. In summary, the exemplary application of the reduced design and testing methodology for AFOSP confirms that it represents a viable procedure during pre-design of floating offshore wind turbine platforms. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  19. Materials for Wind Turbine Blades: An Overview.

    Science.gov (United States)

    Mishnaevsky, Leon; Branner, Kim; Petersen, Helga Nørgaard; Beauson, Justine; McGugan, Malcolm; Sørensen, Bent F

    2017-11-09

    A short overview of composite materials for wind turbine applications is presented here. Requirements toward the wind turbine materials, loads, as well as available materials are reviewed. Apart from the traditional composites for wind turbine blades (glass fibers/epoxy matrix composites), natural composites, hybrid and nanoengineered composites are discussed. Manufacturing technologies for wind turbine composites, as well their testing and modelling approaches are reviewed.

  20. Materials for Wind Turbine Blades: An Overview

    DEFF Research Database (Denmark)

    Mishnaevsky, Leon; Branner, Kim; Petersen, Helga Nørgaard

    2017-01-01

    A short overview of composite materials for wind turbine applications is presented here. Requirements toward the wind turbine materials, loads, as well as available materials are reviewed. Apart from the traditional composites for wind turbine blades (glass fibers/epoxy matrix composites), natural...... composites, hybrid and nanoengineered composites are discussed. Manufacturing technologies for wind turbine composites, as well their testing and modelling approaches are reviewed....

  1. Magnet Free Generators - 3rd Generation Wind Turbine Generators

    DEFF Research Database (Denmark)

    Jensen, Bogi Bech; Mijatovic, Nenad; Henriksen, Matthew Lee

    2013-01-01

    This paper presents an introduction to superconducting wind turbine generators, which are often referred to as 3rd generation wind turbine generators. Advantages and challenges of superconducting generators are presented with particular focus on possible weight and efficiency improvements. A comp....... A comparison of the rare earth usage in different topologies of permanent magnet generators and superconducting generators is also presented....

  2. Nonlinear Dynamics of Wind Turbine Wings

    DEFF Research Database (Denmark)

    Larsen, Jesper Winther

    Wind turbines with a nominal effect of 5MW with a rotor diameter of up to 126m are produced today. With the increasing size wind turbines also become more and more optimized with respect to structural dimensions and material usage, without increasing the stiffness proportionally. Consequently......, large wind turbines become increasingly flexible and dynamically sensitive. This project focuses on the structural analysis of highly flexible wind turbine wings, and the aerodynamic loading of wind turbine wings under large changes in flow field due to elastic deformations and changing wind conditions....

  3. Wind turbine with lightning protection system

    DEFF Research Database (Denmark)

    2016-01-01

    The present invention relates to a wind turbine comprising a lightning protection system comprising a waveguide interconnecting a communication device and a signal-carrying structure. In other aspects, the present invention relates to the use of a waveguide in a lightning protection system...... of a wind turbine, a power splitter and its use in a lightning protection system of a wind turbine....

  4. Ultimate Strength of Wind Turbine Blades under Multiaxial Loading

    DEFF Research Database (Denmark)

    Haselbach, Philipp Ulrich

    Modern wind turbine rotor blades are sophisticated lightweight structures, optimised towards achieving the best compromise between aerodynamic and structural design as well as a cost efficient manufacturing processes. They are usually designed for a lifetime of minimum 20 years, where they must...... endure a variety of weather conditions including uncontrollable, extreme winds without developing damage and fracture. The trend in the development of wind turbines is towards larger, more efficient wind turbines, placed offshore, where access is difficult and repairs costly. In consequence, failures...

  5. Built Environment Wind Turbine Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    Smith, J. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Forsyth, T. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Sinclair, K. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Oteri, F. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2012-11-01

    The market currently encourages BWT deployment before the technology is ready for full-scale commercialization. To address this issue, industry stakeholders convened a Rooftop and Built-Environment Wind Turbine Workshop on August 11 - 12, 2010, at the National Wind Technology Center, located at the U.S. Department of Energy’s National Renewable Energy Laboratory in Boulder, Colorado. This report summarizes the workshop.

  6. An investigation on wind turbine resonant vibrations

    DEFF Research Database (Denmark)

    Tibaldi, Carlo; Kim, Taeseong; Larsen, Torben J.

    2016-01-01

    Wind turbine resonant vibrations are investigated based on aeroelastic simulations both in frequency and time domain. The investigation focuses on three different aspects: the need of a precise modeling when a wind turbine is operating close to resonant conditions; the importance of estimating wind...... turbine loads also at low turbulence intensity wind conditions to identify the presence of resonances; and the wind turbine response because of external excitations. In the first analysis, three different wind turbine models are analysed with respect to the frequency and damping of the aeroelastic modes....... Fatigue loads on the same models are then investigated with two different turbulence intensities to analyse the wind turbine response. In the second analysis, a wind turbine model is excited with an external force. This analysis helps in identifying the modes that might be excited, and therefore...

  7. Dynamic modeling and simulation of wind turbines

    International Nuclear Information System (INIS)

    Ghafari Seadat, M.H.; Kheradmand Keysami, M.; Lari, H.R.

    2002-01-01

    Using wind energy for generating electricity in wind turbines is a good way for using renewable energies. It can also help to protect the environment. The main objective of this paper is dynamic modeling by energy method and simulation of a wind turbine aided by computer. In this paper, the equations of motion are extracted for simulating the system of wind turbine and then the behavior of the system become obvious by solving the equations. The turbine is considered with three blade rotor in wind direction, induced generator that is connected to the network and constant revolution for simulation of wind turbine. Every part of the wind turbine should be simulated for simulation of wind turbine. The main parts are blades, gearbox, shafts and generator

  8. Rotor and wind turbine formalism

    DEFF Research Database (Denmark)

    Branlard, Emmanuel Simon Pierre

    2017-01-01

    The main conventions used in this book for the study of rotors are introduced in this chapter. The main assumptions and notations are provided. The formalism specific to wind turbines is presented. The forces, moments, velocities and dimensionless coefficients used in the study of rotors...

  9. An integrated modeling method for wind turbines

    Science.gov (United States)

    Fadaeinedjad, Roohollah

    To study the interaction of the electrical, mechanical, and aerodynamic aspects of a wind turbine, a detailed model that considers all these aspects must be used. A drawback of many studies in the area of wind turbine simulation is that either a very simple mechanical model is used with a detailed electrical model, or vice versa. Hence the interactions between electrical and mechanical aspects of wind turbine operation are not accurately taken into account. In this research, it will be shown that a combination of different simulation packages, namely TurbSim, FAST, and Simulink can be used to model the aerodynamic, mechanical, and electrical aspects of a wind turbine in detail. In this thesis, after a review of some wind turbine concepts and software tools, a simulation structure is proposed for studying wind turbines that integrates the mechanical and electrical components of a wind energy conversion device. Based on the simulation structure, a comprehensive model for a three-bladed variable speed wind turbine with doubly-fed induction generator is developed. Using the model, the impact of a voltage sag on the wind turbine tower vibration is investigated under various operating conditions such as power system short circuit level, mechanical parameters, and wind turbine operating conditions. It is shown how an electrical disturbance can cause more sustainable tower vibrations under high speed and turbulent wind conditions, which may disrupt the operation of pitch control system. A similar simulation structure is used to model a two-bladed fixed speed wind turbine with an induction generator. An extension of the concept is introduced by adding a diesel generator system. The model is utilized to study the impact of the aeroelastic aspects of wind turbine (i.e. tower shadow, wind shears, yaw error, turbulence, and mechanical vibrations) on the power quality of a stand-alone wind-diesel system. Furthermore, an IEEE standard flickermeter model is implemented in a

  10. Semiconductor Laser Wind Lidar for Turbine Control

    DEFF Research Database (Denmark)

    Hu, Qi

    This thesis describes an experimentally oriented study of continuous wave (CW) coherent Doppler lidar system design. The main application is remote wind sensing for active wind turbine control using nacelle mounted lidar systems; and the primary focus is to devise an industrial instrument that can...... been investigated. The results hows a much less SNR penalty than expected, due to a finite signal bandwidth of the wind signal.For applications such as active yaw or pitch control, multiple lines of sight are required of the lidar system. Thus, two different beam steering methods have been investigated...... improve the efficiency of harvesting wind energy in commercial wind farms. This work attempts to provide a complete investigation of all the necessary building blocks in a CW wind lidar, from the light source to the optical transceiver. The basic concept of Doppler lidar is introduced along with a brief...

  11. Design of Wind Turbine Vibration Monitoring System

    Directory of Open Access Journals (Sweden)

    Shoubin Wang

    2013-04-01

    Full Text Available In order to ensure safety of wind turbine operation and to reduce the occurrence of faults as well as to improve the reliability of wind turbine operation, a vibration monitoring for wind turbine is developed. In this paper, it analyses the enlargement of all the parts of the structure and the working mechanism, the research method of wind turbine operation vibration is introduced, with the focus being the use of the sensor principle. Finally the hardware design and software of this system is introduced and the main function of this system is described, which realizes condition monitoring of the work state of wind turbines.

  12. Sound wave contours around wind turbine arrays

    International Nuclear Information System (INIS)

    Van Beek, A.; Van Blokland, G.J.

    1993-02-01

    Noise pollution is an important factor in selecting suitable sites for wind turbines in order to realize 1000 MW of wind power as planned by the Dutch government for the year 2000. Therefore an accurate assessment of wind turbine noise is important. The amount of noise pollution from a wind turbine depends on the wind conditions. An existing standard method to assess wind turbine noise is supplemented and adjusted. In the first part of the investigation the method was developed and applied for a solitary sound source. In the second part attention is paid to the use of the method for wind turbine arrays. It appears that the adjusted method results in a shift of the contours of the permitted noise level. In general the contours are 15-25% closer to the wind farm, which means that the minimal permitted distance between houses and wind turbine arrays can be reduced. 14 figs., 1 tab., 4 appendices, 7 refs

  13. Dynamic survey of wind turbine vibrations

    Science.gov (United States)

    Chiang, Chih-Hung; Hsu, Keng-Tsang; Cheng, Chia-Chi; Pan, Chieh-Chen; Huang, Chi-Luen; Cheng, Tao-Ming

    2016-04-01

    Six wind turbines were blown to the ground by the wind gust during the attack of Typhoon Soudelor in August 2015. Survey using unmanned aerial vehicle, UAV, found the collapsed wind turbines had been broken at the lower section of the supporting towers. The dynamic behavior of wind turbine systems is thus in need of attention. The vibration of rotor blades and supporting towers of two wind turbine systems have been measured remotely using IBIS, a microwave interferometer. However the frequency of the rotor blade can be analyzed only if the microwave measurements are taken as the wind turbine is parked and secured. Time-frequency analyses such as continuous wavelet transform and reassigned spectrograms are applied to the displacement signals obtained. A frequency of 0.44Hz exists in both turbines B and C at various operating conditions. Possible links between dynamic characteristics and structural integrity of wind turbine -tower systems is discussed.

  14. Smart Wind Turbine : Analysis and Autonomous Flap

    NARCIS (Netherlands)

    Bernhammer, L.O.

    2015-01-01

    Wind turbines convert kinetic energy of the wind into electrical energy. Unfortunately, this process is everything but constant, as the wind source shows large fluctuations with high and low frequencies. This turbulence, together with the wind shear and yawed inflow, excites the turbine structure,

  15. Aerial sensor for wind turbines Design, implementation and demonstration of the technology

    DEFF Research Database (Denmark)

    Schmidt Paulsen, Uwe; Moñux, Oscar

    The EUDP‐2012 proposal, “Improved wind turbine efficiency using synchronized sensors” is a project which focuses on improving the efficiency of energy production, primarily for wind turbines, but as a spinoff, also traditional power plants. It builds on the experience and proven technology from...... three previous wind turbine projects: ‐ A wing mounted inflow sensor for wind turbines. This system has gone through multiple stages of development, and will be greatly enhanced by the synchronization technology from this project....

  16. Method and apparatus for wind turbine braking

    Science.gov (United States)

    Barbu, Corneliu [Laguna Hills, CA; Teichmann, Ralph [Nishkayuna, NY; Avagliano, Aaron [Houston, TX; Kammer, Leonardo Cesar [Niskayuna, NY; Pierce, Kirk Gee [Simpsonville, SC; Pesetsky, David Samuel [Greenville, SC; Gauchel, Peter [Muenster, DE

    2009-02-10

    A method for braking a wind turbine including at least one rotor blade coupled to a rotor. The method includes selectively controlling an angle of pitch of the at least one rotor blade with respect to a wind direction based on a design parameter of a component of the wind turbine to facilitate reducing a force induced into the wind turbine component as a result of braking.

  17. Wind turbine storage systems

    International Nuclear Information System (INIS)

    Ibrahim, H.; Ilinca, A.; Perron, J.

    2005-01-01

    Electric power is often produced in locations far from the point of utilization which creates a challenge in stabilizing power grids, particularly since electricity cannot be stored. The production of decentralized electricity by renewable energy sources offers a greater security of supply while protecting the environment. Wind power holds the greatest promise in terms of environmental protection, competitiveness and possible applications. It is known that wind energy production is not always in phase with power needs because of the uncertainty of wind. For that reason, energy storage is the key for the widespread integration of wind energy into the power grids. This paper proposed various energy storage methods that can be used in combination with decentralized wind energy production where an imbalance exists between electricity production and consumption. Energy storage can play an essential role in bringing value to wind energy, particularly if electricity is to be delivered during peak hours. Various types of energy storage are already in use or are being developed. This paper identified the main characteristics of various electricity storage techniques and their applications. They include stationary or embarked storage for long or short term applications. A comparison of characteristics made it possible to determine which types of electricity storage are best suited for wind energy. These include gravity energy; thermal energy; compressed air energy; coupled storage with natural gas; coupled storage with liquefied gas; hydrogen storage for fuel cells; chemical energy storage; storage in REDOX batteries; storage by superconductive inductance; storage in supercondensers; and, storage as kinetic energy. 21 refs., 21 figs

  18. Wind Turbine Converter Control Interaction with Complex Wind Farm Systems

    DEFF Research Database (Denmark)

    Kocewiak, Lukasz Hubert; Hjerrild, Jesper; Bak, Claus Leth

    2013-01-01

    in this study. It is shown that wind farm components, such as long high-voltage alternating current cables and park transformers, can introduce significant low-frequency series resonances seen from the wind turbine terminals that can affect wind turbine control system operation and overall wind farm stability...

  19. Superconducting Wind Turbine Generators

    DEFF Research Database (Denmark)

    Mijatovic, Nenad

    in this thesis is a part of a larger endeavor, the Superwind project that focused on identifying the potentials that HTS machines could offer to the wind industry and addressing some of the challenges in the process. In order to identify these challenges, I have design and constructed a HTS machine experimental...... still be optimized towards more competitive alternative to conventional machines. Additionally, by constructing the HTS machine setup we went through most of the issues related to the HTS machine design which we managed to address in rather simple manner using everyday materials and therefore proving......A HTS machine could be a way to address some of the technical barriers offshore wind energy is about to face. Due to the superior power density of HTS machines, this technology could become a milestone on which many, including the wind industry, will rely in the future. The work presented...

  20. On the Fatigue Analysis of Wind Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Sutherland, Herbert J.

    1999-06-01

    Modern wind turbines are fatigue critical machines that are typically used to produce electrical power from the wind. Operational experiences with these large rotating machines indicated that their components (primarily blades and blade joints) were failing at unexpectedly high rates, which led the wind turbine community to develop fatigue analysis capabilities for wind turbines. Our ability to analyze the fatigue behavior of wind turbine components has matured to the point that the prediction of service lifetime is becoming an essential part of the design process. In this review paper, I summarize the technology and describe the ''best practices'' for the fatigue analysis of a wind turbine component. The paper focuses on U.S. technology, but cites European references that provide important insights into the fatigue analysis of wind turbines.

  1. RBI Optimization of Offshore Wind Turbines

    DEFF Research Database (Denmark)

    Ramírez, José G. Rangel; Sørensen, John Dalsgaard

    2009-01-01

    Wind turbines for electricity production have increased significantly the last years both in production capability and size. This development is expected to continue also in the coming years. Offshore wind turbines with an electricity production of 5-10 MW are planned. Typically, the wind turbine...... support structure is a steel structure consisting of a tower and a monopile, tripod or jacket type foundation. This paper considers aspects of inspection and maintenance planning of fatigue prone details in jacket and tripod type of wind turbine support structures. Based on risk-based inspection planning...... methods for oil & gas installations, a framework for optimal inspection and maintenance planning of offshore wind turbines is presented. Special aspects for offshore wind turbines considered are the fatigue loading characteristics where usually the wind loading are dominating the wave loading, wake...

  2. Wind Turbine Generator System Acoustic Noise Test Report for the Gaia Wind 11-kW Wind Turbine

    Energy Technology Data Exchange (ETDEWEB)

    Huskey, A.

    2011-11-01

    This report details the acoustic noise test conducted on the Gaia-Wind 11-kW wind turbine at the National Wind Technology Center. The test turbine is a two- bladed, downwind wind turbine with a rated power of 11 kW. The test turbine was tested in accordance with the International Electrotechnical Commission standard, IEC 61400-11 Ed 2.1 2006-11 Wind Turbine Generator Systems -- Part 11 Acoustic Noise Measurement Techniques.

  3. Wind turbine technology principles and design

    CERN Document Server

    Adaramola, Muyiwa

    2014-01-01

    IntroductionPart I: AerodynamicsWind Turbine Blade Design; Peter J. Schubel and Richard J. CrossleyA Shrouded Wind Turbine Generating High Output Power with Wind-Lens Technology; Yuji Ohya and Takashi KarasudaniEcomoulding of Composite Wind Turbine Blades Using Green Manufacturing RTM Process; Brahim AttafAerodynamic Shape Optimization of a Vertical-Axis Wind Turbine Using Differential Evolution; Travis J. Carrigan, Brian H. Dennis, Zhen X. Han, and Bo P. WangPart II: Generators and Gear Systems

  4. Load Extrapolation During Operation for Wind Turbines

    DEFF Research Database (Denmark)

    Toft, Henrik Stensgaard; Sørensen, John Dalsgaard

    2008-01-01

    In the recent years load extrapolation for wind turbines has been widely considered in the wind turbine industry. Loads on wind turbines during operations are normally dependent on the mean wind speed, the turbulence intensity and the type and settings of the control system. All these parameters...... must be taken into account when characteristic load effects during operation are determined. In the wind turbine standard IEC 61400-1 a method for load extrapolation using the peak over threshold method is recommended. In this paper this method is considered and some of the assumptions are examined...

  5. Wind Turbine Manufacturing Process Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Waseem Faidi; Chris Nafis; Shatil Sinha; Chandra Yerramalli; Anthony Waas; Suresh Advani; John Gangloff; Pavel Simacek

    2012-04-26

    To develop a practical inline inspection that could be used in combination with automated composite material placement equipment to economically manufacture high performance and reliable carbon composite wind turbine blade spar caps. The approach technical feasibility and cost benefit will be assessed to provide a solid basis for further development and implementation in the wind turbine industry. The program is focused on the following technology development: (1) Develop in-line monitoring methods, using optical metrology and ultrasound inspection, and perform a demonstration in the lab. This includes development of the approach and performing appropriate demonstration in the lab; (2) Develop methods to predict composite strength reduction due to defects; and (3) Develop process models to predict defects from leading indicators found in the uncured composites.

  6. Maximum efficiency of wind turbine rotors using Joukowsky and Betz approaches

    DEFF Research Database (Denmark)

    Okulov, Valery; Sørensen, Jens Nørkær

    2010-01-01

    On the basis of the concepts outlined by Joukowsky nearly a century ago, an analytical aerodynamic optimization model is developed for rotors with a finite number of blades and constant circulation distribution. In the paper, we show the basics of the new model and compare its efficiency...

  7. PREDICTION OF POWER GENERATION OF SMALL SCALE VERTICAL AXIS WIND TURBINE USING FUZZY LOGIC

    Directory of Open Access Journals (Sweden)

    Altab Hossain

    2009-01-01

    Full Text Available Renewable energy from the wind turbine has been focused for the alternative source of power generation due to the following advances of the of the wind turbine. Firstly, the wind turbine is highly efficient and eco-friendly. Secondly, the turbine has the ability to response for the changeable power generation based on the wind velocity and structural framework. However, the competitive efficiency of the wind turbine is necessary to successfully alternate the conventional power sources. The most relevant factor which affects the overall efficiency of the wind turbine is the wind velocity and the relative turbine dimensions. Artificial intelligence systems are widely used technology that can learn from examples and are able to deal with non-linear problems. Compared with traditional approach, fuzzy logic approach is more efficient for the representation, manipulation and utilization. Therefore, the primary purpose of this work was to investigate the relationship between wind turbine power generation and wind velocity, and to illustrate how fuzzy expert system might play an important role in prediction of wind turbine power generation. The main purpose of the measurement over the small scaled prototype vertical axis wind turbine for the wind velocity is to predict the performance of full scaled H-type vertical axis wind turbine. Prediction of power generation at the different wind velocities has been tested at the Thermal Laboratory of Faculty of Engineering, Universiti Industri Selangor (UNISEL and results concerning the daily prediction have been obtained.

  8. Rule - based Fault Diagnosis Expert System for Wind Turbine

    Directory of Open Access Journals (Sweden)

    Deng Xiao-Wen

    2017-01-01

    Full Text Available Under the trend of increasing installed capacity of wind power, the intelligent fault diagnosis of wind turbine is of great significance to the safe and efficient operation of wind farms. Based on the knowledge of fault diagnosis of wind turbines, this paper builds expert system diagnostic knowledge base by using confidence production rules and expert system self-learning method. In Visual Studio 2013 platform, C # language is selected and ADO.NET technology is used to access the database. Development of Fault Diagnosis Expert System for Wind Turbine. The purpose of this paper is to realize on-line diagnosis of wind turbine fault through human-computer interaction, and to improve the diagnostic capability of the system through the continuous improvement of the knowledge base.

  9. The Smart Wind Turbine

    OpenAIRE

    Halimi, Wissam; Salzmann, Christophe; Gillet, Denis

    2015-01-01

    Remote experimentation is at the core of Science Technology Engineering and Mathematics education supported by e-learning. The development and integration of remote labo- ratories in online learning activities is hindered by the inherited supporting infrastructure’s architecture and implementation. In this paper we present a remote experiment (The Smart Wind Tur- bine) built following the Smart Device Paradigm and integrated in an Inquiry Learning Space: the rich open educational resource def...

  10. A novel floating offshore wind turbine concept

    DEFF Research Database (Denmark)

    Vita, Luca; Schmidt Paulsen, Uwe; Friis Pedersen, Troels

    2009-01-01

    This paper will present a novel concept of a floating offshore wind turbine. The new concept is intended for vertical-axis wind turbine technology. The main purpose is to increase simplicity and to reduce total costs of an installed offshore wind farm. The concept is intended for deep water...

  11. Annoyance rating of wind turbine noise

    International Nuclear Information System (INIS)

    Iredale, R.A.

    1992-01-01

    This paper proposes a simple criterion for noise limitation of wind turbines: 'The La A50 from a Wind Farm should not exceeding the L A50 of the wind generated background plus 5dB at any place of potential complaint'. This criterion is then examined and developed in the light of experience to date with turbine noise complaint and procedures. (author)

  12. Diagnosis of wind turbine rotor system

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Mirzaei, Mahmood; Henriksen, Lars Christian

    2016-01-01

    This paper describes a model free method for monitoring and fault diagnosis of the elements in a rotor system for a wind turbine. The diagnosis as well as the monitoring is done without using any model of the wind turbine and the applied controller or a description of the wind profile. The method...

  13. Optimization of wind turbine rotors

    Energy Technology Data Exchange (ETDEWEB)

    Nygaard, Tor Anders

    1999-07-01

    The Constrained Steepest Descent method has been applied to the optimization of wind turbine rotors through the development of a numerical model. The model consists of an optimization kernel, an aerodynamic model, a structural dynamic model of a rotating beam, and a cost model for the wind turbine. The cost of energy is minimized directly by varying the blade design, the rotational speed and the resulting design of the drive-train and tower. The aerodynamic model is a combination of a fast engineering model based on strip-theory and two and three-dimensional Euler solvers. The two-dimensional Euler solver is used for generation of pre-stall airfoil data. Comparisons with experimental data verify that the engineering model effectively approximates non-stalled flow, except at the blade tip. The three-dimensional Euler solver is in good agreement with the experimental data at the tip, and is therefore a useful supplement for corrections of the tip-loss model, and evaluation of an optimized design. The structural dynamic model evaluates stresses and deformations for the blade. It is based on constitutive relations for a slender beam that are solved with the equations of motions using a finite-difference method. The cost model evaluates the design change of the wind turbine and the resulting costs that occur when a change in blade design modifies the blade mass and the overall forces. The cost model is based on engineering design rules for the drive-train and tower. The model was applied using a Danish 600 kW wind turbine as a reference. Two rotors were optimized using traditional NACA airfoils and a new low-lift airfoil family developed specifically for wind turbine purposes. The cost of energy decreased four percent for the NACA rotor, and seven percent for the low-lift rotor. Optimizations with a high number of degrees of freedom show that a designer has considerable flexibility in choosing some primary parameters such as rated power and rotor diameter, if the rest

  14. Wind turbine influence on surfers wind conditions at Hanstholm

    DEFF Research Database (Denmark)

    Larsen, Torben J.; Andersen, Søren Juhl

    alter the wind conditions on the lee side, which is an important area for wind and kite surfers. The Dynamic Wake Meander Model is used to investigate the wind conditions north east of the planned new turbines at Hanstholm covering a surf area from a location called “Fish Factory” to a location called...... “Hamborg”. This model, which predicts instationary wind conditions behind one or more wind turbines, has previously been used to predict the changed power and load conditions for wind turbines in wind farm conditions. Avery fine agreement to measurements is seen and the model is therefore considered...

  15. Small Wind Research Turbine: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Corbus, D.; Meadors, M.

    2005-10-01

    The Small Wind Research Turbine (SWRT) project was initiated to provide reliable test data for model validation of furling wind turbines and to help understand small wind turbine loads. This report will familiarize the user with the scope of the SWRT test and support the use of these data. In addition to describing all the testing details and results, the report presents an analysis of the test data and compares the SWRT test data to simulation results from the FAST aeroelastic simulation model.

  16. Effects of setting angle and chord length on performance of four blades bionic wind turbine

    Science.gov (United States)

    Yang, Z. X.; Li, G. S.; Song, L.; Bai, Y. F.

    2017-11-01

    With the energy crisis and the increasing environmental pollution, more and more efforts have been made about wind power development. In this paper, a four blades bionic wind turbine was proposed, and the outline of wind turbine was constructed by the fitted curve. This paper attempted to research the effects of setting angle and chord length on performance of four blades bionic wind turbine by computational fluid dynamics (CFD) simulation. The results showed that the setting angle and chord length of the bionic wind turbine has some significant effects on the efficiency of the wind turbine, and within the range of wind speed from 7 m/s to 15 m/s, the wind turbine achieved maximum efficiency when the setting angle is 31 degree and the chord length is 125 mm. The conclusion will work as a guideline for the improvement of wind turbine design

  17. Grid support capabilities of wind turbines

    DEFF Research Database (Denmark)

    Michalke, Gabriele; Hansen, Anca Daniela

    2013-01-01

    Wind power has gained a significant penetration level in several power systems all over the world. Due to this reason modern wind turbines are requested to contribute to power system support. Power system operators have thus introduced grid codes, which specify a set of requirements for wind...... turbines, such as fault ride-through and reactive power supply during voltage sags. To date different wind turbine concepts exist on the market comprising different control features in order to provide ancillary services to the power system. In the first place the present chapter emphasizes the most...... important issues related to wind power grid integration. Then different wind turbine concepts are characterized and their grid support capabilities are analysed and compared. Simulation cases are presented in which the respective wind turbine concepts are subjected to a voltage dip specified in a grid code....

  18. Prototype bucket foundation for wind turbines

    DEFF Research Database (Denmark)

    Ibsen, Lars Bo; Liingaard, Morten

    The first full scale prototype bucket foundation for wind turbines has been installed in October 2002 at Aalborg University offshore test facility in Frederikshavn, Denmark. The suction caisson and the wind turbine have been equipped with an online monitoring system, consisting of 15 accelerometers...... estimates are then compared with numerical simulations of the suction caisson foundation and the wind turbine. The numerical model consists of a finite element section for the wind turbine tower and nacelle. The soil-structure interaction of the soil-foundation section is modelled by lumped-parameter models...

  19. Design Load Basis for Offshore Wind turbines

    DEFF Research Database (Denmark)

    Natarajan, Anand; Hansen, Morten Hartvig; Wang, Shaofeng

    2016-01-01

    DTU Wind Energy is not designing and manufacturing wind turbines and does therefore not need a Design Load Basis (DLB) that is accepted by a certification body. However, to assess the load consequences of innovative features and devices added to existing offshore turbine concepts or new offshore...... turbine concept developed in our research, it is useful to have a full DLB that follows the current design standard and is representative of a general DLB used by the industry. It will set a standard for the offshore wind turbine design load evaluations performed at DTU Wind Energy, which is aligned...

  20. Wind Turbine Generator System Safety and Function Test Report for the Entegrity EW50 Wind Turbine

    Energy Technology Data Exchange (ETDEWEB)

    Smith, J.; Huskey, A.; Jager, D.; Hur, J.

    2012-11-01

    This report summarizes the results of a safety and function test that NREL conducted on the Entegrity EW50 wind turbine. This test was conducted in accordance with the International Electrotechnical Commissions' (IEC) standard, Wind Turbine Generator System Part 2: Design requirements for small wind turbines, IEC 61400-2 Ed.2.0, 2006-03.

  1. Pitchcontrol of wind turbines using model free adaptivecontrol based on wind turbine code

    DEFF Research Database (Denmark)

    Zhang, Yunqian; Chen, Zhe; Cheng, Ming

    2011-01-01

    value is only based on I/O data of the wind turbine is identified and then the wind turbine system is replaced by a dynamic linear time-varying model. In order to verify the correctness and robustness of the proposed model free adaptive pitch controller, the wind turbine code FAST which can predict...

  2. Wind Turbine Generator System Safety and Function Test Report for the Ventera VT10 Wind Turbine

    Energy Technology Data Exchange (ETDEWEB)

    Smith, J.; Huskey, A.; Jager, D.; Hur, J.

    2012-11-01

    This report summarizes the results of a safety and function test that NREL conducted on the Ventera VT10 wind turbine. This test was conducted in accordance with the International Electrotechnical Commissions' (IEC) standard, Wind Turbine Generator System Part 2: Design requirements for small wind turbines, IEC 61400-2 Ed.2.0, 2006-03.

  3. Capturing the journey of wind from the wind turbines (poster)

    NARCIS (Netherlands)

    Giyanani, A.H.; Bierbooms, W.A.A.M.; Van Bussel, G.J.W.

    2015-01-01

    Wind turbine design, control strategies often assume Taylor’s frozen turbulence where the fluctuating part of the wind is assumed to be constant. In practise, the wind turbine faces higher turbulence in case of gusts and lower turbulence in some cases. With Lidar technology, the frozen turbulence

  4. Wind tunnel tests of a free yawing downwind wind turbine

    NARCIS (Netherlands)

    Verelst, D.R.S.; Larsen, T.J.; Van Wingerden, J.W.

    2014-01-01

    This research paper presents preliminary results on a behavioural study of a free yawing downwind wind turbine. A series of wind tunnel tests was performed at the TU Delft Open Jet Facility with a three bladed downwind wind turbine and a rotor radius of 0.8 meters. The setup includes an off the

  5. SUSTAINABLE CONCRETE FOR WIND TURBINE FOUNDATIONS.

    Energy Technology Data Exchange (ETDEWEB)

    BERNDT,M.L.

    2004-06-01

    The use of wind power to generate electricity continues to grow, especially given commitments by various countries throughout the world to ensure that a significant percentage of energy comes from renewable sources. In order to meet such objectives, increasingly larger turbines with higher capacity are being developed. The engineering aspects of larger turbine development tend to focus on design and materials for blades and towers. However, foundations are also a critical component of large wind turbines and represent a significant cost of wind energy projects. Ongoing wind research at BNL is examining two areas: (a) structural response analysis of wind turbine-tower-foundation systems and (b) materials engineering of foundations. This work is investigating the dynamic interactions in wind turbine systems, which in turn assists the wind industry in achieving improved reliability and more cost efficient foundation designs. The results reported herein cover initial studies of concrete mix designs for large wind turbine foundations and how these may be tailored to reduce cost and incorporate sustainability and life cycle concepts. The approach taken was to investigate material substitutions so that the environmental, energy and CO{sub 2}-impact of concrete could be reduced. The use of high volumes of ''waste'' materials in concrete was examined. These materials included fly ash, blast furnace slag and recycled concrete aggregate. In addition, the use of steel fiber reinforcement as a means to improve mechanical properties and potentially reduce the amount of bar reinforcement in concrete foundations was studied. Four basic mixes were considered. These were: (1) conventional mix with no material substitutions, (2) 50% replacement of cement with fly ash, (3) 50% replacement of cement with blast furnace slag and (4) 25% replacement of cement with fly ash and 25% replacement with blast furnace slag. Variations on these mixes included the addition of 1

  6. Operation and control of large wind turbines and wind farms

    Energy Technology Data Exchange (ETDEWEB)

    Soerensen, Poul; Hansen, Anca D.; Thomsen, Kenneth (and others)

    2005-09-01

    This report is the final report of a Danish research project 'Operation and control of large wind turbines and wind farms'. The objective of the project has been to analyse and assess operational strategies and possibilities for control of different types of wind turbines and different wind farm concepts. The potentials of optimising the lifetime/energy production ratio by means of using revised operational strategies for the individual wind turbines are investigated. Different strategies have been simulated, where the power production is decreased to an optimum when taking loads and actual price of produced electricity into account. Dynamic models and control strategies for the wind farms have also been developed, with the aim to optimise the operation of the wind farms considering participation in power system control of power (frequency) and reactive power (voltage), maximise power production, keep good power quality and limit mechanical loads and life time consumption. The project developed models for 3 different concepts for wind farms. Two of the concepts use active stall controlled wind turbines, one with AC connection and one with modern HVDC/VSC connection of the wind farm. The third concept is based on pitch controlled wind turbines using doubly fed induction generators. The models were applied to simulate the behaviour of the wind farm control when they were connected to a strong grid, and some initial simulations were performed to study the behaviour of the wind farms when it was isolated from the main grid on a local grid. Also the possibility to use the available information from the wind turbine controllers to predict the wind speed has been investigated. The main idea has been to predict the wind speed at a wind turbine using up-wind measurements of the wind speed in another wind turbine. (au)

  7. Wind turbine optimal control during storms

    International Nuclear Information System (INIS)

    Petrović, V; Bottasso, C L

    2014-01-01

    This paper proposes a control algorithm that enables wind turbine operation in high winds. With this objective, an online optimization procedure is formulated that, based on the wind turbine state, estimates those extremal wind speed variations that would produce maximal allowable wind turbine loads. Optimization results are compared to the actual wind speed and, if there is a danger of excessive loading, the wind turbine power reference is adjusted to ensure that loads stay within allowed limits. This way, the machine can operate safely even above the cut-out wind speed, thereby realizing a soft envelope-protecting cut-out. The proposed control strategy is tested and verified using a high-fidelity aeroservoelastic simulation model

  8. Status of local planning for wind turbines. Vol. 2: Jutland. Wind turbines - January 1997

    International Nuclear Information System (INIS)

    Information on the status of individual municipalities regarding wind turbine power plans, the content of the plans themselves, key figures on existing wind turbines for each municipality, overall plans for wind power development and key figures for development of wind power in Jutland - in addition to maps and lists of local authorities with either a high or a low coverage of electric power by wind turbines either now or in the future - are found in this volume. (EG)

  9. Optimization of wind turbine rotors

    Energy Technology Data Exchange (ETDEWEB)

    Holmkvist, Jonas

    1998-05-01

    A computer program for aerodynamic optimization of wind turbine rotors has been written in Fortran with the purpose to maximize the annual energy production. The constraints is the maximum power output from the turbine and maximum and minimum values on the design variables. The design of the rotor is described by the chord- and twist distribution. The chord- and twist distributions are described with Bezier splines which, with a few number of control points, are very flexible. The Bezier control points are the design variables which are optimized by the optimization program. The optimization method used in the program is the Method of Moving Asymptotes, MMA, suggested by Krister Svanberg at the Royal Institute of Technology in Stockholm. MMA is a stable method and it seems suitable for this application. It is also in general easy to implement constraints. It seems like there are many local maximum points and the variations in the annual energy production between the total maximum points are very small, so there are many solutions to choose between and finding the global maximum point can be a problem. The problem could possibly be avoided with smaller wind steps near the rated wind. In future versions of the optimization program the Reynolds number dependents of the aerodynamic coefficients should be taken into consideration. Constraints for the thrust and the aerodynamic noise should also be implemented in the program 8 refs, 8 figs, 13 tabs, 14 appendixes

  10. Illustration of Modern Wind Turbine Ancillary Services

    DEFF Research Database (Denmark)

    Margaris, Ioannis D.; Hansen, Anca Daniela; Sørensen, Poul Ejnar

    2010-01-01

    Increasing levels of wind power penetration in modern power systems has set intensively high standards with respect to wind turbine technology during the last years. Security issues have become rather critical and operation of wind farms as conventional power plants is becoming a necessity as wind...... turbines replace conventional units on the production side. This article includes a review of the basic control issues regarding the capability of the Doubly Fed Induction Generator (DFIG) wind turbine configuration to fulfill the basic technical requirements set by the system operators and contribute...

  11. Direct Drive Technology for Wind Turbine Applications

    OpenAIRE

    Azar, Ziad

    2014-01-01

    Siemens Wind Power have developed direct-drive (DD) wind turbine technology over the past decade to meet the future demand for cost effective and reliable onshore and offshore wind power. The increasing power requirements from the industry resulting in higher torque requirements in the drive train, has made it necessary to reduce the complexity and improve reliability of wind turbines by going to DD generator technology.

  12. Aeroelastic instability problems for wind turbines

    DEFF Research Database (Denmark)

    Hansen, Morten Hartvig

    2007-01-01

    This paper deals with the aeroelostic instabilities that have occurred and may still occur for modem commercial wind turbines: stall-induced vibrations for stall-turbines, and classical flutter for pitch-regulated turbines. A review of previous works is combined with derivations of analytical sta...... issues that represent unsolved aeroelostic instability problems for wind turbines. Copyright (c) 2007 John Wiley & Sons, Ltd.......This paper deals with the aeroelostic instabilities that have occurred and may still occur for modem commercial wind turbines: stall-induced vibrations for stall-turbines, and classical flutter for pitch-regulated turbines. A review of previous works is combined with derivations of analytical...... stability limits for typical blade sections that show the fundamental mechanisms of these instabilities. The risk of stall-induced vibrations is mainly related to blade airfoil characteristics, effective direction of blade vibrations and structural damping, whereas the blade tip speed, torsional blade...

  13. Dependency in State Transitions of Wind Turbines

    DEFF Research Database (Denmark)

    Herp, Jürgen; Ramezani, Mohammad Hossein; S. Nadimi, Esmaeil

    2017-01-01

    © 2017 IEEE. Turbine states and predicting the transition into failure states ahead of time is important in operation and maintenance of wind turbines. This study presents a method to monitor state transitions of a wind turbine based on the online inference on residuals. In a Bayesian framework...... the impact machine learning concepts have on the predictive performance of the presented models. In conclusion, a study on model residuals is performed to highlight the contribution to wind turbine monitoring. The presented algorithm can consistently detect the state transition under various configurations...

  14. Airfoil characteristics for wind turbines

    DEFF Research Database (Denmark)

    Bak, C.; Fuglsang, P.; Sørensen, Niels N.

    1999-01-01

    is capable of determining the correct qualitative behaviour for airfoils subject to rotation. The method shows that lift is high at the root compared to 2D airfoil characteristics. Thedifferent systematic methods show the importance of rotational and 3D effects on rotors. Furthermore, the methods show high......Airfoil characteristics for use in the Blade Element Momentum (BEM) method calculating the forces on Horizontal Axis Wind Turbines (HAWT) are derived by use of systematic methods. The investigation and derivation of the airfoil characteristics are basedon four different methods: 1) Inverse momentum...... theory, 2) Actuator disc theory, 3) Numerical optimisation and 4) Quasi-3D CFD computations. The two former methods are based on 3D CFD computations and wind tunnel measurements on a 41-m full-scale rotorwith LM 19.1 blades. The derived airfoil characteristics show that the lift coefficient in stall...

  15. Design Mining Interacting Wind Turbines.

    Science.gov (United States)

    Preen, Richard J; Bull, Larry

    2016-01-01

    An initial study has recently been presented of surrogate-assisted evolutionary algorithms used to design vertical-axis wind turbines wherein candidate prototypes are evaluated under fan-generated wind conditions after being physically instantiated by a 3D printer. Unlike other approaches, such as computational fluid dynamics simulations, no mathematical formulations were used and no model assumptions were made. This paper extends that work by exploring alternative surrogate modelling and evolutionary techniques. The accuracy of various modelling algorithms used to estimate the fitness of evaluated individuals from the initial experiments is compared. The effect of temporally windowing surrogate model training samples is explored. A surrogate-assisted approach based on an enhanced local search is introduced; and alternative coevolution collaboration schemes are examined.

  16. Optimal Structural Reliability of Offshore Wind Turbines

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Tarp-Johansen, N.J.

    2005-01-01

    structures, humans spent little time in the vicinity of offshore wind turbines and the probability of human injury during storm conditions is small. Further environmental pollution will also in general be small in case of failure. One could therefore argue that the reliability level of offshore wind turbines...

  17. Iterative feedback tuning of wind turbine controllers

    NARCIS (Netherlands)

    van Solingen, E.; Mulders, S.P.; van Wingerden, J.W.

    2017-01-01

    Traditionally, wind turbine controllers are designed using first principles or linearized or identified models. The aim of this paper is to show that with an automated, online, and model-free tuning strategy, wind turbine control performance can be significantly increased. For this purpose,

  18. Tjæreborg Wind Turbine (Esbjerg)

    DEFF Research Database (Denmark)

    Øye, Stig

    1991-01-01

    This paper presents the first measured timeseries for the Tjæreborg (Tjaereborg) Wind Turbine during operation with stepwise pitch angle changes.......This paper presents the first measured timeseries for the Tjæreborg (Tjaereborg) Wind Turbine during operation with stepwise pitch angle changes....

  19. Wind Turbine Aerodynamics from an Aerospace Perspective

    NARCIS (Netherlands)

    van Garrel, Arne; ten Pas, Sebastiaan; Venner, Cornelis H.; van Muijden, Jaap

    2018-01-01

    The current challenges in wind turbine aerodynamics simulations share a number of similarities with the challenges that the aerospace industry has faced in the past. Some of the current challenges in the aerospace aerodynamics community are also relevant for today’s wind turbine aerodynamics

  20. Virtual inertia for variable speed wind turbines

    DEFF Research Database (Denmark)

    Zeni, Lorenzo; Rudolph, Andreas Jakob; Münster-Swendsen, Janus

    2013-01-01

    Inertia provision for frequency control is among the ancillary services that different national grid codes will likely require to be provided by future wind turbines. The aim of this paper is analysing how the inertia response support from a variable speed wind turbine (VSWT) to the primary...

  1. Parametric study of composite wind turbine blades

    DEFF Research Database (Denmark)

    Kim, Taeseong; Branner, Kim; Hansen, Anders Melchior

    2011-01-01

    In this paper an anisotropic beam element for a composite wind turbine blades is developed. Eigenvalue analysis with the new beam element is conducted in order to understand its responses associated with the wind turbine performances. From the results of natural frequencies and mode shapes it is ...

  2. Voltage Quality of Grid Connected Wind Turbines

    DEFF Research Database (Denmark)

    Chen, Zhe; Blaabjerg, Frede; Sun, Tao

    2004-01-01

    Grid connected wind turbines may cause quality problems, such as voltage variation and flicker. This paper discusses the voltage variation and flicker emission of grid connected wind turbines with doubly-fed induction generators. A method to compensate flicker by using a voltage source converter...

  3. Reliability-Based Optimization of Wind Turbines

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Tarp-Johansen, N.J.

    2004-01-01

    Reliability-based optimization of the main tower and monopile foundation of an offshore wind turbine is considered. Different formulations are considered of the objective function including benefits and building and failure costs of the wind turbine. Also different reconstruction policies in case...

  4. Dynamic Phase Compensation of wind turbines

    DEFF Research Database (Denmark)

    Soerensen, P.; Skaarup, J.; Iov, Florin

    2004-01-01

    This paper describes a dynamic phase compensation unit for a wind turbine with directly connected induction generators. The compensation unit is based on thyristor switched capacitors, where conventional wind turbine compensations use mechanical contactors to switch the capacitors. The unit modules...

  5. Wind turbines fundamentals, technologies, application, economics

    CERN Document Server

    Hau, Erich

    2013-01-01

    "Wind Turbines" addresses all those professionally involved in research, development, manufacture and operation of wind turbines. It provides a cross-disciplinary overview of modern wind turbine technology and an orientation in the associated technical, economic and environmental fields.  In its revised third edition, special emphasis has been given to the latest trends in wind turbine technology and design, such as gearless drive train concepts, as well as on new fields of application, in particular the offshore utilisation of wind energy. The author has gained experience over decades designing wind energy converters with a major industrial manufacturer and, more recently, in technical consulting and in the planning of large wind park installations, with special attention to economics.

  6. Lightning protection system for a wind turbine

    Science.gov (United States)

    Costin, Daniel P [Chelsea, VT; Petter, Jeffrey K [Williston, VT

    2008-05-27

    In a wind turbine (104, 500, 704) having a plurality of blades (132, 404, 516, 744) and a blade rotor hub (120, 712), a lightning protection system (100, 504, 700) for conducting lightning strikes to any one of the blades and the region surrounding the blade hub along a path around the blade hub and critical components of the wind turbine, such as the generator (112, 716), gearbox (708) and main turbine bearings (176, 724).

  7. Center for Computational Wind Turbine Aerodynamics and Atmospheric Turbulence

    DEFF Research Database (Denmark)

    Sørensen, Jens Nørkær

    2014-01-01

    In order to design and operate a wind farm optimally it is necessary to know in detail how the wind behaves and interacts with the turbines in a farm. This not only requires knowledge about meteorology, turbulence and aerodynamics, but it also requires access to powerful computers and efficient...... software. Center for Computational Wind Turbine Aerodynamics and Atmospheric Turbulence was established in 2010 in order to create a world-leading cross-disciplinary flow center that covers all relevant disciplines within wind farm meteorology and aerodynamics....

  8. 'Wind turbine syndrome': fact or fiction?

    Science.gov (United States)

    Farboud, A; Crunkhorn, R; Trinidade, A

    2013-03-01

    Symptoms, including tinnitus, ear pain and vertigo, have been reported following exposure to wind turbine noise. This review addresses the effects of infrasound and low frequency noise and questions the existence of 'wind turbine syndrome'. This review is based on a search for articles published within the last 10 years, conducted using the PubMed database and Google Scholar search engine, which included in their title or abstract the terms 'wind turbine', 'infrasound' or 'low frequency noise'. There is evidence that infrasound has a physiological effect on the ear. Until this effect is fully understood, it is impossible to conclude that wind turbine noise does not cause any of the symptoms described. However, many believe that these symptoms are related largely to the stress caused by unwanted noise exposure. There is some evidence of symptoms in patients exposed to wind turbine noise. The effects of infrasound require further investigation.

  9. Computational Aerodynamics and Aeroacoustics for Wind Turbines

    DEFF Research Database (Denmark)

    Shen, Wen Zhong

    To analyse the aerodynamic performance of wind turbine rotors, the main tool in use today is the 1D-Blade Element Momentum (BEM) technique combined with 2D airfoil data. Because of its simplicity, the BEM technique is employed by industry when designing new wind turbine blades. However, in order...... to obtain more detailed information of the flow structures and to determine more accurately loads and power yield of wind turbines or cluster of wind turbines, it is required to resort to more sophisticated techniques, such as Computational Fluid Dynamics (CFD). As computer resources keep on improving year...... by year (about ten times every five years from statistics over the last twenty years), CFD has now become a popular tool for studying the aerodynamics of wind turbines. The present thesis consists of 19 selected papers dealing with the development and use of CFD methods for studying the aerodynamics...

  10. Rotating transformers in wind turbine applications

    Energy Technology Data Exchange (ETDEWEB)

    Hylander, J. [Chalmers Univ. of Technology, Goeteborg (Sweden); Engstroem, S. [Aegir konsult AB, Lidingoe (Sweden)

    1996-12-01

    The power consumption of rotating electrical components is often supplied via slip-rings in wind turbines. Slip-ring equipment is expensive and need maintenance and are prone to malfunction. If the slip-rings could be replaced with contact-less equipment better turbines could be designed. This paper presents the design, some FE calculations and some measurements on a prototype rotating transformer. The proposed transformer consists of a secondary rotating winding and a stationary exciting primary winding. The results indicate that this transformer could be used to replace slip-rings in wind turbines. 4 refs, 3 figs

  11. Adaptive Extremum Control and Wind Turbine Control

    DEFF Research Database (Denmark)

    Ma, Xin

    1997-01-01

    This thesis is divided into two parts, i.e., adaptive extremum control and modelling and control of a wind turbine. The rst part of the thesis deals with the design of adaptive extremum controllers for some processes which have the behaviour that process should have as high e ciency as possible...... in parameters, and thus directly lends itself to parameter estimation and adaptive control. The extremum control law is derived based on static optimization of a performance function. For a process with nonlinearity at output the intermediate signal between the linear part and nonlinear part plays an important...... role. If it can be emphasis on control design. The models have beenvalidated by experimental data obtained from an existing wind turbine. The e ective wind speed experienced by the rotor of a wind turbine, which is often required by some control methods, is estimated by using a wind turbine as a wind...

  12. Illustration of Modern Wind Turbine Ancillary Services

    Directory of Open Access Journals (Sweden)

    Ioannis D. Margaris

    2010-06-01

    Full Text Available Increasing levels of wind power penetration in modern power systems has set intensively high standards with respect to wind turbine technology during the last years. Security issues have become rather critical and operation of wind farms as conventional power plants is becoming a necessity as wind turbines replace conventional units on the production side. This article includes a review of the basic control issues regarding the capability of the Doubly Fed Induction Generator (DFIG wind turbine configuration to fulfill the basic technical requirements set by the system operators and contribute to power system security. An overview of ancillary services provided by wind turbine technology nowadays is provided, i.e., fault ride-through capability, reactive power supply and frequency-active power control.

  13. Flicker emission levels from wind turbines

    International Nuclear Information System (INIS)

    Soerensen, P.; Tande, J.O.; Soendergaard, L.M.

    1996-01-01

    The paper presents and verifies a method to calculate the flicker emission levels from wind turbines connected to power distribution systems. The idea of the method is to measure the flicker emission level from a wind turbine with reference conditions and to use these measurements to calculate a flicker coefficient for that specific wind turbine type. This can be done as a part of the approval of a wind turbine type. The flicker coefficient can then be used to calculate the flicker emission level from any wind turbine of that type with any grid and wind conditions. A simple method to determine the total flicker emission level from a number of wind turbines is also presented and verified. The flicker coefficient method is applied to 4 Danish wind turbine types representing stall and pitch control and nominal power from 300 kW to 500 kW. The conclusion is that the flicker emission in certain cases exceeds limits which are expected to be normative in the future. (author)

  14. Meteorological aspects of siting large wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Hiester, T.R.; Pennell, W.T.

    1981-01-01

    This report, which focuses on the meteorological aspects of siting large wind turbines (turbines with a rated output exceeding 100 kW), has four main goals. The first is to outline the elements of a siting strategy that will identify the most favorable wind energy sites in a region and that will provide sufficient wind data to make responsible economic evaluations of the site wind resource possible. The second is to critique and summarize siting techniques that were studied in the Department of Energy (DOE) Wind Energy Program. The third goal is to educate utility technical personnel, engineering consultants, and meteorological consultants (who may have not yet undertaken wind energy consulting) on meteorological phenomena relevant to wind turbine siting in order to enhance dialogues between these groups. The fourth goal is to minimize the chances of failure of early siting programs due to insufficient understanding of wind behavior.

  15. Aerodynamic damping of nonlinearily wind-excited wind turbine blades

    NARCIS (Netherlands)

    Van der Male, P.; Van Dalen, K.N.; Metrikine, A.

    2013-01-01

    This paper presents the first step of the derivation of an aerodynamic damping matrix that can be adopted for the foundation design of a wind turbine. A single turbine blade is modelled as a discrete mass-spring system, representing the flap and edge wise motions. Nonlinear wind forcing is applied,

  16. Resonant vibration control of wind turbine blades

    DEFF Research Database (Denmark)

    Svendsen, Martin Nymann; Krenk, Steen; Høgsberg, Jan Becker

    2010-01-01

    formulation accounts for arbitrary mass density distributions, general elastic crosssection properties and geometric stiffness effects due to internal stresses. A compact, linear formulation for aerodynamic forces with associated stiffness and damping terms is established and added to the structural model....... The efficiency of the resonant controller is demonstrated for a representative turbine blade exposed to turbulent wind loading. It is found that the present explicit tuning procedure yields close to optimal tuning, with very limited modal spill-over and effective reduction of the vibration amplitudes....

  17. Offshore wind turbines reliability, availability and maintenance

    CERN Document Server

    Tavner, Peter

    2012-01-01

    The first book to specifically focus on offshore wind turbine technology and which addresses practically wind turbine reliability and availability. The book draws on the author's experience of power generation reliability and availability and the condition monitoring of that plant to describe the problems facing the developers of offshore wind farms and the solutions available to them to raise availability, reduce cost of energy and improve through life cost.

  18. Aeroelastic modal dynamics of wind turbines including anisotropic effects

    DEFF Research Database (Denmark)

    Skjoldan, Peter Fisker

    and the computationally efficient implicit Floquet analysis in anisotropic conditions. The tool is validated against system identifications with the partial Floquet method on the nonlinear BHawC model of a 2.3 MW wind turbine. System identification results show that nonlinear effects on the 2.3 MW turbine in most cases....... These harmonics appear in calculated frequency responses of the turbine. Extreme wind shear changes the modal damping when the flow is separated due to an interaction between the periodic mode shape and the local aerodynamic damping influenced by a periodic variation in angle of attack....

  19. A Two-Bladed Concept Wind Turbine

    DEFF Research Database (Denmark)

    Kim, Taeseong

    2012-01-01

    This article shows the potential for reducing extreme loads with an innovative design of wind turbine, a partial pitch two-bladed concept turbine. The most extreme conditions to test a turbine are considered to be stand-still combined with a grid failure in which the wind comes from all directions...... from 0 to 360 degrees. All aeroelastic load simulations are done by using the aeroelastic code HAWC2. From the load comparisons between the partial pitch two-bladed turbine and a conventional three-bladed turbine it is observed that the partial pitch two-bladed turbine can reduce the extreme tower...... bottom bending moment by approximately 33% compared to the three-bladed turbine....

  20. Frequency Based Fault Detection in Wind Turbines

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Stoustrup, Jakob

    2014-01-01

    In order to obtain lower cost of energy for wind turbines fault detection and accommodation is important. Expensive condition monitoring systems are often used to monitor the condition of rotating and vibrating system parts. One example is the gearbox in a wind turbine. This system is operated...... in parallel to the control system, using different computers and additional often expensive sensors. In this paper a simple filter based algorithm is proposed to detect changes in a resonance frequency in a system, exemplified with faults resulting in changes in the resonance frequency in the wind turbine...... turbine fault detection and fault tolerant control benchmark model, in which one of the included faults results in a change in the gear box resonance frequency. This evaluation shows the potential of the proposed scheme to monitor the condition of wind turbine gear boxes in the existing control system....

  1. Adaptive Controller for Drive System PMSG in Wind Turbine

    Directory of Open Access Journals (Sweden)

    Gnanambal

    2014-07-01

    Full Text Available This paper proposes adaptive Maximum Power Point Tracking (MPPT controller for Permanent Magnet Synchronous Generator (PMSG wind turbine and direct power control for grid side inverter for transformer less integration of wind energy. PMSG wind turbine with two back to back voltage source converters are considered more efficient, used to make real and reactive power control. The optimal control strategy has introduced for integrated control of PMSG Maximum Power Extraction, DC link voltage control and grid voltage support controls. Simulation model using MATLAB Simulink has developed to investigate the performance of proposed control techniques for PMSG wind turbine steady and variable wind conditions. This paper shows that the direct driven grid connected PMSG system has excellent performances and confirms the feasibility of the proposed techniques. While the wind turbine market continues to be dominated by conventional gear-driven wind turbine systems, the direct drive is attracting attention. PM machines are more attractive and superior with higher efficiency and energy yield, higher reliability, and power-to-weight ratio compared with electricity-excited machines.

  2. Flow separation on wind turbines blades

    Science.gov (United States)

    Corten, G. P.

    2001-01-01

    In the year 2000, 15GW of wind power was installed throughout the world, producing 100PJ of energy annually. This contributes to the total electricity demand by only 0.2%. Both the installed power and the generated energy are increasing by 30% per year world-wide. If the airflow over wind turbine blades could be controlled fully, the generation efficiency and thus the energy production would increase by 9%. Power Control To avoid damage to wind turbines, they are cut out above 10 Beaufort (25 m/s) on the wind speed scale. A turbine could be designed in such a way that it converts as much power as possible in all wind speeds, but then it would have to be to heavy. The high costs of such a design would not be compensated by the extra production in high winds, since such winds are rare. Therefore turbines usually reach maximum power at a much lower wind speed: the rated wind speed, which occurs at about 6 Beaufort (12.5 m/s). Above this rated speed, the power intake is kept constant by a control mechanism. Two different mechanisms are commonly used. Active pitch control, where the blades pitch to vane if the turbine maximum is exceeded or, passive stall control, where the power control is an implicit property of the rotor. Stall Control The flow over airfoils is called "attached" when it flows over the surface from the leading edge to the trailing edge. However, when the angle of attack of the flow exceeds a certain critical angle, the flow does not reach the trailing edge, but leaves the surface at the separation line. Beyond this line the flow direction is reversed, i.e. it flows from the trailing edge backward to the separation line. A blade section extracts much less energy from the flow when it separates. This property is used for stall control. Stall controlled rotors always operate at a constant rotation speed. The angle of attack of the flow incident to the blades is determined by the blade speed and the wind speed. Since the latter is variable, it determines

  3. Wind tunnel tests of a free yawing downwind wind turbine

    DEFF Research Database (Denmark)

    Verelst, David Robert; Larsen, Torben J.; van Wingerden, Jan-Willem

    2014-01-01

    . The discussed test cases show that the turbine is stable while operating in free yawing conditions. Further, the effect of the tower shadow passage on the blade flapwise strain measurement is evaluated. Finally, data from the experiment is compared with preliminary simulations using DTU Wind Energy......This research paper presents preliminary results on a behavioural study of a free yawing downwind wind turbine. A series of wind tunnel tests was performed at the TU Delft Open Jet Facility with a three bladed downwind wind turbine and a rotor radius of 0.8 meters. The setup includes an off...

  4. Reliability Modeling of Wind Turbines

    DEFF Research Database (Denmark)

    Kostandyan, Erik

    components. Thus, models of reliability should be developed and applied in order to quantify the residual life of the components. Damage models based on physics of failure combined with stochastic models describing the uncertain parameters are imperative for development of cost-optimal decision tools...... for Operation & Maintenance planning. Concentrating efforts on development of such models, this research is focused on reliability modeling of Wind Turbine critical subsystems (especially the power converter system). For reliability assessment of these components, structural reliability methods are applied....... Further, reliability modeling of load sharing systems is considered and a theoretical model is proposed based on sequential order statistics and structural systems reliability methods. Procedures for reliability estimation are detailed and presented in a collection of research papers....

  5. Probabilistic Modeling of Wind Turbine Drivetrain Components

    DEFF Research Database (Denmark)

    Rafsanjani, Hesam Mirzaei

    Wind energy is one of several energy sources in the world and a rapidly growing industry in the energy sector. When placed in offshore or onshore locations, wind turbines are exposed to wave excitations, highly dynamic wind loads and/or the wakes from other wind turbines. Therefore, most componen....../nodules on fatigue life of cast iron samples. The cast iron samples scanned by 3D tomography equipment at the DTU Wind Energy (Risø campus), and the distribution of nodules are used to estimate the fatigue life....

  6. European wind turbine standards 2 (EWTS-2)

    Energy Technology Data Exchange (ETDEWEB)

    Pierik, J.T.G.; Dekker, J.W.M.; Braam, H. [and others

    1999-03-01

    A summary is given of the main results of the European Wind Turbine Standards II project. EWTS-II was completed in 1998 and included investigations on: 1) wind farms-wind field and turbine loading; 2) complex terrain and fatigue loading; 3) extreme wind conditions; 4) quantification of failure probabilities; 5) integration of blade tests in design; 6) power performance in complex terrain; 7) site evaluation. In addition to these scientific evaluations, the EWTS-II participants established an organization of qualified measuring institute in the field of wind energy, the MEASNET organization. MEASNET unified measurement procedures of the participating institutes and guarantees qualified measurements and mutual acceptance among its members. (LN)

  7. Stochastic wind turbine control in multiblade coordinates

    DEFF Research Database (Denmark)

    Thomsen, Sven Creutz; Niemann, Hans Henrik; Poulsen, Niels Kjølstad

    2010-01-01

    pitch controller design. In this way the variability of the wind can be estimated and compensated for by the controller. The wind turbine model is in general time-variant due to its rotational nature. For this reason the modeling and control is carried out in so-called multiblade coordinates......In this paper we consider wind turbine load attenuation through model based control. Asymmetric loads caused by the wind field can be reduced by pitching the blades individually. To this end we investigate the use of stochastic models of the wind which can be included in a model based individual...

  8. Active load control techniques for wind turbines.

    Energy Technology Data Exchange (ETDEWEB)

    van Dam, C.P. (University of California, Davis, CA); Berg, Dale E.; Johnson, Scott J. (University of California, Davis, CA)

    2008-07-01

    This report provides an overview on the current state of wind turbine control and introduces a number of active techniques that could be potentially used for control of wind turbine blades. The focus is on research regarding active flow control (AFC) as it applies to wind turbine performance and loads. The techniques and concepts described here are often described as 'smart structures' or 'smart rotor control'. This field is rapidly growing and there are numerous concepts currently being investigated around the world; some concepts already are focused on the wind energy industry and others are intended for use in other fields, but have the potential for wind turbine control. An AFC system can be broken into three categories: controls and sensors, actuators and devices, and the flow phenomena. This report focuses on the research involved with the actuators and devices and the generated flow phenomena caused by each device.

  9. Modelling Wind Turbine Inflow: The Induction Zone

    DEFF Research Database (Denmark)

    Meyer Forsting, Alexander Raul

    to the rotor, but requires exact knowledge of the flow deceleration to estimate the available, undis- turbed kinetic energy. Thus this thesis explores, mostly numerically, any wind turbine or environmental dependencies of this deceleration. The computational fluid dynamics model (CFD) employed is validated......A wind turbine decelerates the wind in front of its rotor by extracting kinetic energy. The wind speed reduction is maximal at the rotor and negligible more than five rotor radii upfront. By measuring wind speed this far from the rotor, the turbine’s performance is determined without any rotor bias...... significant parameter. Exploiting this singu- lar dependency, a fast semi-empirical model is devised that accurately predicts the velocity deficit upstream of a single turbine. Near-rotor mea-surements in combination with this model are able to retrieve the kinetic energy available to the turbine in flat...

  10. On System Identification of Wind Turbines

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Perisic, Nevena; Pedersen, B.J.

    Recently several methods have been proposed for the system identification of wind turbines which can be considered as a linear time-varying system due to the operating conditions. For the identification of linear wind turbine models, either black-box or grey-box identification can be used....... The operational model analysis (OMA) methodology can provide accurate estimates of the natural frequencies, damping ratios and mode shapes of the systems as long as the measurements have a low noise to signal ratio. However, in order to take information about the wind turbine into account a grey...

  11. Wind Turbine Power Curves Incorporating Turbulence Intensity

    DEFF Research Database (Denmark)

    Sørensen, Emil Hedevang Lohse

    2014-01-01

    The performance of a wind turbine in terms of power production (the power curve) is important to the wind energy industry. The current IEC-61400-12-1 standard for power curve evaluation recognizes only the mean wind speed at hub height and the air density as relevant to the power production...

  12. Research in Aeroelasticity EFP-2006[Wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Bak, C.

    2007-07-15

    This report contains the results from the Energy Research Project 'Program for Research in Applied Aeroelasticity, EFP-2006' covering the period from 1. April 2006 to 31. March 2007. A summary of the main results from the project is given in the following. The aerodynamics for rotors incl. spinner and winglets were clarified and the needed premises for an optimal rotor were explained. Also, the influence of viscous effects on rotor blades was investigated and the results indicated a range of optimum tip speed ratios. The use of winglets for wind turbine rotor was investigated and it was found that they can be used successfully, but that downwind and short winglets are most efficient. Investigating a strategy for reduction of loads and vibrations at extreme wind speeds showed that there are considerably uncertainties in the numerical models and that the main concluding remark is that measurements on a real blade or a real turbine are needed to further conclude the investigation. In the study of flutter and other torsional vibrations of blades at large deflections, modeling and analysis of the dynamics of a hydraulic pitch system for a 5 MW wind turbine was carried out. It was shown that the compressibility of the hydraulic oil introduced a dynamic mode in the pitch bearing degree of freedom. Also, investigating flutter for blades at large deflections showed that the flutter limit for a 5MW blade was moved significantly compared to blades without large deflections. The influence of modeling nacelle components was investigated by developing a generalized method to interface dynamic systems to the aeroelastic program HAWC2 and by exemplify by modeling the nacelle of an aeroelastic wind turbine model in a more detailed way by including a single planet stage of a gearbox. This simplified gearbox model captures in essence the splitting of the driving torque from the rotor shaft to the frame of the nacelle and to the generator. Investigating the influence of wind

  13. Performance Investigation of A Mix Wind Turbine Using A Clutch Mechanism At Low Wind Speed Condition

    Science.gov (United States)

    Jamanun, M. J.; Misaran, M. S.; Rahman, M.; Muzammil, W. K.

    2017-07-01

    Wind energy is one of the methods that generates energy from sustainable resources. This technology has gained prominence in this era because it produces no harmful product to the society. There is two fundamental type of wind turbine are generally used this day which is Horizontal axis wind turbine (HAWT) and Vertical axis wind turbine (VAWT). The VAWT technology is more preferable compare to HAWT because it gives better efficiency and cost effectiveness as a whole. However, VAWT is known to have distinct disadvantage compared to HAWT; self-start ability and efficiency at low wind speed condition. Different solution has been proposed to solve these issues which includes custom design blades, variable angle of attack mechanism and mix wind turbine. A new type of clutch device was successfully developed in UMS to be used in a mix Savonius-Darrieus wind turbine configuration. The clutch system which barely audible when in operation compared to a ratchet clutch system interconnects the Savonius and Darrieus rotor; allowing the turbine to self-start at low wind speed condition as opposed to a standalone Darrieus turbine. The Savonius height were varied at three different size in order to understand the effect of the Savonius rotor to the mix wind turbine performance. The experimental result shows that the fabricated Savonius rotor show that the height of the Savonius rotor affecting the RPM for the turbine. The swept area (SA), aspect ratio (AR) and tip speed ratio (TSR) also calculated in this paper. The highest RPM recorded in this study is 90 RPM for Savonius rotor 0.22-meter height at 2.75 m/s. The Savonius rotor 0.22-meter also give the highest TSR for each range of speed from 0.75 m/s, 1.75 m/s and 2.75 m/s where it gives 1.03 TSR, 0.76 TSR, and 0.55 TSR.

  14. Speed control at low wind speeds for a variable speed fixed pitch wind turbine

    Energy Technology Data Exchange (ETDEWEB)

    Rosmin, N.; Watson, S.J.; Tompson, M. [Loughborough Univ., Loughborough, Leicestershire (United Kingdom)

    2010-03-09

    The maximum power regulation below rated wind speed is regulated by changing the rotor/generator speed at large frequency range in a fixed pitch, variable speed, stall-regulated wind turbine. In order to capture the power at a maximum value the power coefficient is kept at maximum peak point by maintaining the tip speed ratio at its optimum value. The wind industry is moving from stall regulated fixed speed wind turbines to newer improved innovative versions with better reliability. While a stall regulated fixed pitch wind turbine is among the most cost-effective wind turbine on the market, its problems include noise, severe vibrations, high thrust loads and low power efficiency. Therefore, in order to improve such drawbacks, the rotation of the generator speed is made flexible where the rotation can be controlled in variable speed. This paper discussed the development of a simulation model which represented the behaviour of a stall regulated variable speed wind turbine at low wind speed control region by using the closed loop scalar control with adjustable speed drive. The paper provided a description of each sub-model in the wind turbine system and described the scalar control of the induction machine. It was concluded that by using a constant voltage/frequency ratio of the generator's stator side control, the generator speed could be regulated and the generator torque could be controlled to ensure the power coefficient could be maintained close to its maximum value. 38 refs., 1 tab., 10 figs.

  15. Wind turbine noise modeling : a comparison of modeling methods

    International Nuclear Information System (INIS)

    Wang, L.; Strasser, A.

    2009-01-01

    All wind turbine arrays must undergo a noise impact assessment. DataKustik GmbH developed the Computer Aided Noise Abatement (Cadna/A) modeling software for calculating noise propagation to meet accepted protocols and international standards such as CONCAWE and ISO 9613 standards. The developer of Cadna/A, recommended the following 3 models for simulating wind turbine noise. These include a disk of point sources; a ring of point sources located at the tip of each blade; and a point source located at the top of the wind turbine tower hub. This paper presented an analytical comparison of the 3 models used for a typical wind turbine with a hub tower containing 3 propeller blades, a drive-train and top-mounted generator, as well as a representative wind farm, using Cadna/A. AUC, ISO and IEC criteria requirements for the meteorological input with Cadna/A for wind farm noise were also discussed. The noise predicting modelling approach was as follows: the simplest model, positioning a single point source at the top of the hub, can be used to predict sound levels for a typical wind turbine if receptors are located 250 m from the hub; a-weighted sound power levels of a wind turbine at cut-in and cut-off wind speed should be used in the models; 20 by 20 or 50 by 50 meter terrain parameters are suitable for large wind farm modeling; and ISO 9613-2 methods are recommended to predict wind farm noise with various metrological inputs based on local conditions. The study showed that the predicted sound level differences of the 3 wind turbine models using Cadna/A are less than 0.2 dB at receptors located greater than 250 m from the wind turbine hub, which fall within the accuracy range of the calculation method. All 3 models of wind turbine noise meet ISO9613-2 standards for noise prediction using Cadna/A. However, the single point source model was found to be the most efficient in terms of modeling run-time among the 3 models. 7 refs., 3 tabs., 15 figs.

  16. Damage tolerance and structural monitoring for wind turbine blades.

    Science.gov (United States)

    McGugan, M; Pereira, G; Sørensen, B F; Toftegaard, H; Branner, K

    2015-02-28

    The paper proposes a methodology for reliable design and maintenance of wind turbine rotor blades using a condition monitoring approach and a damage tolerance index coupling the material and structure. By improving the understanding of material properties that control damage propagation it will be possible to combine damage tolerant structural design, monitoring systems, inspection techniques and modelling to manage the life cycle of the structures. This will allow an efficient operation of the wind turbine in terms of load alleviation, limited maintenance and repair leading to a more effective exploitation of offshore wind. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  17. Damage tolerance and structural monitoring for wind turbine blades

    DEFF Research Database (Denmark)

    McGugan, Malcolm; Pereira, Gilmar Ferreira; Sørensen, Bent F.

    2015-01-01

    The paper proposes a methodology for reliable design and maintenance of wind turbine rotor blades using a condition monitoring approach and a damage tolerance index coupling the material and structure. By improving the understanding of material properties that control damage propagation...... it will be possible to combine damage tolerant structural design, monitoring systems, inspection techniques and modelling to manage the life cycle of the structures. This will allow an efficient operation of the wind turbine in terms of load alleviation, limited maintenance and repair leading to a more effective...... exploitation of offshore wind....

  18. Modelling of a PMSG Wind Turbine with Autonomous Control

    Directory of Open Access Journals (Sweden)

    Chia-Nan Wang

    2014-01-01

    Full Text Available The aim of this research is to model an autonomous control wind turbine driven permanent magnetic synchronous generator (PMSG which feeds alternating current (AC power to the utility grid. Furthermore, this research also demonstrates the effects and the efficiency of PMSG wind turbine which is integrated by autonomous controllers. In order for well autonomous control, two voltage source inverters are used to control wind turbine connecting with the grid. The generator-side inverter is used to adjust the synchronous generator as well as separating the generator from the grid when necessary. The grid-side inverter controls the power flow between the direct current (DC bus and the AC side. Both of them are oriented control by space vector pulse width modulation (PWM with back-to-back frequency inverter. Moreover, the proportional-integral (PI controller is enhanced to control both of the inverters and the pitch angle of the wind turbine. Maximum power point tracking (MPPT is integrated in generator-side inverter to track the maximum power, when wind speed changes. The simulation results in Matlab Simulink 2012b showing the model have good dynamic and static performance. The maximum power can be tracked and the generator wind turbine can be operated with high efficiency.

  19. Aerodynamic bases and effects of new wind turbines

    International Nuclear Information System (INIS)

    Vrsalovic, I.; Vrsalovic, I.

    2000-01-01

    Wind is a clean and renewable energy sources, however having one failure: low profitability in zones of weaker potential. However, by using a new type of wind turbine built in regulable mantle's nozzle, which replaces the free air stream of wind into into programmed i.e. regulated and partially concentrated one it is possible to generate more quantities of energy from weaker and medium winds. As a result, their efficiency will be multiplied. This article will describe and show the basic elements of aerodynamical construction, stators profiles and control blades of new wind turbines, mechanism of automatic stator regulation (beside rotor regulation) as well as modified diagram of raised medium wind speeds. power calculations and diagrams are showing that new wind turbines in nozzle, of the same diameter of rotor and at same wind speeds, due to aerodynamic activity of nozzle and 'square-cube' relation in that transformation are giving 4,3 times more electric energy than the standard types. The wind speed on rotor is raising according to square of outer diameter (dv 2 ) of stator mantle while power of new turbine in nozzle is growing with cube (v 3 ) of raised speed for normal working area. The costs of construction and operation will rise like speed according square of diameter while the production and profits, like the power, are growing with cube of raised speed. (author)

  20. Improved diffuser for augmenting a wind turbine

    Science.gov (United States)

    Foreman, K.M.; Gilbert, B.L.

    A diffuser for augmenting a wind turbine having means for energizing the boundary layer at several locations along the diffuser walls is improved by the addition of a short collar extending radially outward from the outlet of the diffuser.

  1. Proceedings: Small Wind Turbine Systems, 1981

    Energy Technology Data Exchange (ETDEWEB)

    1981-01-01

    Small wind turbine technology is discussed. Systems development, test programs, utility interface issues, safety and reliability programs, applications, and marketing are discussed. For individual titles, see N83-23723 through N83-23741.

  2. Wind Turbine Drivetrain Condition Monitoring - An Overview

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, S; Veers, P.

    2011-10-01

    This paper provides an overview of wind turbine drivetrain condition monitoring based on presentations from a condition monitoring workshop organized by the National Renewable Energy Laboratory in 2009 and on additional references.

  3. Investigation of Wind Turbine Rotor Concepts for Offshore Wind Farms

    International Nuclear Information System (INIS)

    Ceyhan, Özlem; Grasso, Francesco

    2014-01-01

    Current plans in offshore wind energy developments call for further reduction of cost of energy. In order to contribute to this goal, several wind turbine rotor concepts have been investigated. Assuming the future offshore wind turbines will operate only in the offshore wind farms, the rotor concepts are not only evaluated for their stand-alone performances and their potential in reducing the loads, but also for their performance in an offshore wind farm. In order to do that, the 10MW reference wind turbine designed in Innwind.EU project is chosen as baseline. Several rotor parameters have been modified and their influences are investigated for offshore wind turbine design purposes. This investigation is carried out as a conceptual parametrical study. All concepts are evaluated numerically with BOT (Blade optimisation tool) software in wind turbine level and with Farmflow software in wind farm level for two wind farm layouts. At the end, all these concepts are compared with each other in terms of their advantages and disadvantages

  4. A Flexible Maximum Power Point Tracking Control Strategy Considering Both Conversion Efficiency and Power Fluctuation for Large-inertia Wind Turbines

    Directory of Open Access Journals (Sweden)

    Hongmin Meng

    2017-07-01

    Full Text Available In wind turbine control, maximum power point tracking (MPPT control is the main control mode for partial-load regimes. Efficiency potentiation of energy conversion and power smoothing are both two important control objectives in partial-load regime. However, on the one hand, low power fluctuation signifies inefficiency of energy conversion. On the other hand, enhancing efficiency may increase output power fluctuation as well. Thus the two objectives are contradictory and difficult to balance. This paper proposes a flexible MPPT control framework to improve the performance of both conversion efficiency and power smoothing, by adaptively compensating the torque reference value. The compensation was determined by a proposed model predictive control (MPC method with dynamic weights in the cost function, which improved control performance. The computational burden of the MPC solver was reduced by transforming the cost function representation. Theoretical analysis proved the good stability and robustness. Simulation results showed that the proposed method not only kept efficiency at a high level, but also reduced power fluctuations as much as possible. Therefore, the proposed method could improve wind farm profits and power grid reliability.

  5. Wind turbine rotor aerodynamics : The IEA MEXICO rotor explained

    NARCIS (Netherlands)

    Zhang, Y.

    2017-01-01

    Wind turbines are operating under very complex and uncontrolled environmental conditions, including atmospheric turbulence, atmospheric boundary layer effects, directional and spatial variations in wind shear, etc. Over the past decades, the size of a commercial wind turbine has increased

  6. Available and announced offshore wind turbines

    International Nuclear Information System (INIS)

    Ilzhoefer, L.

    2012-01-01

    At the end of 2011, about 4000 MW of offshore wind capacity had been installed in Europe. With market shares of respectively 50% and 40%, Siemens and Vestas are the dominant manufacturers on this market. In the field of offshore wind, Siemens is primarily successful with its wind turbine type SET3,6 (3.6 MW) and Vestas with the V90 of 3.0 MW. The offshore wind turbines of other manufacturers that have a higher capacity do not play a significant role with their market share. [nl

  7. Power Electronics Converters for Wind Turbine Systems

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Liserre, Marco; Ma, Ke

    2012-01-01

    The steady growth of installed wind power together with the upscaling of the single wind turbine power capability has pushed the research and development of power converters toward full-scale power conversion, lowered cost pr kW, increased power density, and also the need for higher reliability......, in the latter case with attention to series connection and parallel connection either electrical or magnetic ones (multiphase/windings machines/transformers). It is concluded that as the power level increases in wind turbines, medium-voltage power converters will be a dominant power converter configuration...

  8. Aerodynamical noise from wind turbine generators

    International Nuclear Information System (INIS)

    Jakobsen, J.; Andersen, B.

    1993-06-01

    Two extensive measurement series of noise from wind turbines have been made during different modifications of their rotors. One series focused on the influence from the tip shape on the noise, while the other series dealt with the influence from the trailing edge. The experimental layout for the two investigations was identical. The total A-weighted noise from the wind turbine was measured in 1/3 octave bands from 50 Hz to 10 kHz in 1-minute periods simultaneously with wind speed measurements. The microphone was mounted on a hard board on the ground about 40 m directly downwind of the wind turbine, and the wind speed meter was placed at the same distance upwind of the wind turbine 10 m above ground. Regression analysis was made between noise and wind speed in each 1/3 octave band to determine the spectrum at 8 m/s. During the measurements care was taken to avoid influence from background noise, and the influence from machinery noise was minimized and corrected for. Thus the results display the aerodynamic rotor noise from the wind turbines. By use of this measurement technique, the uncertainty has been reduced to 1.5 - 2 dB per 1/3 octave band in the relevant frequency range and to about 1 dB on the total A-weighted levels. (au) (10 refs.)

  9. Sandia SWiFT Wind Turbine Manual.

    Energy Technology Data Exchange (ETDEWEB)

    White, Jonathan; LeBlanc, Bruce Philip; Berg, Jonathan Charles; Bryant, Joshua; Johnson, Wesley D.; Paquette, Joshua

    2016-01-01

    The Scaled Wind Farm Technology (SWiFT) facility, operated by Sandia National Laboratories for the U.S. Department of Energy's Wind and Water Power Program, is a wind energy research site with multiple wind turbines scaled for the experimental study of wake dynamics, advanced rotor development, turbine control, and advanced sensing for production-scale wind farms. The SWiFT site currently includes three variable-speed, pitch-regulated, three-bladed wind turbines. The six volumes of this manual provide a detailed description of the SWiFT wind turbines, including their operation and user interfaces, electrical and mechanical systems, assembly and commissioning procedures, and safety systems. Further dissemination only as authorized to U.S. Government agencies and their contractors; other requests shall be approved by the originating facility or higher DOE programmatic authority. 111 UNCLASSIFIED UNLIMITED RELEASE Sandia SWiFT Wind Turbine Manual (SAND2016-0746 ) approved by: Department Manager SWiFT Site Lead Dave Minster (6121) Date Jonathan White (6121) Date SWiFT Site Supervisor Dave Mitchell (6121) Date Note: Document revision logs are found after the title page of each volume of this manual. iv

  10. Assessment of wind turbine load measurement instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Morfiadakis, E.; Papadopoulos, K. [CRES (Greece); Borg, N. van der [ECN, Petten (Netherlands); Petersen, S.M. [Risoe, Roskilde (Denmark); Seifert, H. [DEWI, Wilhelmshaven (Germany)

    1999-03-01

    In the framework of Sub-Task3 `Wind turbine load measurement instrumentation` of EU-project `European Wind Turbine Testing Procedure Development`, the load measurement techniques have been assessed by laboratory, full scale and numerical tests. The existing methods have been reviewed with emphasis on the strain gage application techniques on composite materials and recommendations are provided for the optimisation of load measurement techniques. (au) EU. 14 refs.

  11. Wind turbine sound - metric and guidelines

    OpenAIRE

    Larsson, Conny; Öhlund, Olof

    2014-01-01

    The meteorological conditions vary over the globe but also change over the day and the year and vary a lot depending on the terrain for a certain location. The meteorological parameters govern both the wind turbine emission sound levels and the sound propagation conditions and therefore gives rise to different sound immission levels. Long-time measurements of meteorological effects on sound propagation from wind turbines over forest areas have been performed at two sites in Sweden for more th...

  12. Passively cooled direct drive wind turbine

    Science.gov (United States)

    Costin, Daniel P [Chelsea, VT

    2008-03-18

    A wind turbine is provided that passively cools an electrical generator. The wind turbine includes a plurality of fins arranged peripherally around a generator house. Each of the fins being oriented at an angle greater than zero degrees to allow parallel flow of air over the fin. The fin is further tapered to allow a constant portion of the fin to extend beyond the air stream boundary layer. Turbulence initiators on the nose cone further enhance heat transfer at the fins.

  13. Reliability-Based Design of Wind Turbine Foundations

    DEFF Research Database (Denmark)

    Firouzianbandpey, Sarah

    reliable, affordable, clean and renewable energy. Wind turbines have gained popularity among other renewable energy generators by having both technically and economically efficient features and by offering competitive production prices compared to other renewable energy sources. Therefore, it is a key...... green energy technology in breaking the fossil fuel dependency. The costs of foundations for offshore wind turbines typically amount to 20–30% of the total wind turbine budget. Thus, an optimized design of these foundations will improve the cost effectiveness by matching a suitable target reliability...... level. The overall aim of the present PhD thesis is to facilitate a low-cost foundation design for future offshore wind farms by focusing on the geotechnical site assessment. First, a number of well-established techniques for soil classification based on cone penetration test (CPT) data have been...

  14. Floating Foundations for Offshore Wind Turbines

    DEFF Research Database (Denmark)

    Andersen, Morten Thøtt

    The concept of harnessing the power of the wind dates all the way back to the first ships traversing the seas. Later, windmills enabled the use of wind power for industrial purposes. Since then, technology has allowed the production of clean renewable energy through the use of wind turbines......-stage physical prototype testing in wave basins without wind generating capabilities, and hence allows testing of a wider range of concepts....

  15. Structural Reliability Aspects in Design of Wind Turbines

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard

    2007-01-01

    Reliability assessment, optimal design and optimal operation and maintenance of wind turbines are an area of significant interest for the fast growing wind turbine industry for sustainable production of energy. Offshore wind turbines in wind farms give special problems due to wake effects inside...... the farm. Reliability analysis and optimization of wind turbines require that the special conditions for wind turbine operation are taken into account. Control of the blades implies load reductions for large wind speeds and parking for high wind speeds. In this paper basic structural failure modes for wind...

  16. Moment of Inertia Dependence of Vertical Axis Wind Turbines in Pulsating Winds

    Directory of Open Access Journals (Sweden)

    Yutaka Hara

    2012-01-01

    Full Text Available Vertical Axis Wind Turbines (VAWTs are unaffected by changes in wind direction, and they have a simple structure and the potential for high efficiency due to their lift driving force. However, VAWTs are affected by changes in wind speed, owing to effects originating from the moment of inertia. In this study, changes in the rotational speed of a small VAWT in pulsating wind, generated by an unsteady wind tunnel, are investigated by varying the wind cycle and amplitude parameters. It is shown that the responses observed experimentally agree with simulations based on torque characteristics obtained under steady rotational conditions. Additionally, a simple equation expressing the relationship between the rotational change width and amplitude of the pulsating wind is presented. The energy efficiency in a pulsating wind remains constant with changes in both the moment of inertia and the wind cycle; however, the energy efficiency decreases when the wind amplitude is large.

  17. Commercialization of an Advanced Gearless Midsize Wind Turbine

    Energy Technology Data Exchange (ETDEWEB)

    McKay, Chris [Northern Power Systems, Inc., Barre, VT (United States); Ellis, Kyle [Northern Power Systems, Inc., Barre, VT (United States)

    2017-03-24

    The objective of this project was the development and eventual commercialization of a Gearless Wind Turbine of rated power 450 kW. While the product was to be based on existing technology, a significant amount of new engineering effort was expected to be required to ensure maximum efficiency and realistic placement within the market. Expected benefits included positive impact on green job creation in over 15 states as well as strengthen the U.S. domestic capacity for turbine engineering.

  18. Behavior of bats at wind turbines.

    Science.gov (United States)

    Cryan, Paul M; Gorresen, P Marcos; Hein, Cris D; Schirmacher, Michael R; Diehl, Robert H; Huso, Manuela M; Hayman, David T S; Fricker, Paul D; Bonaccorso, Frank J; Johnson, Douglas H; Heist, Kevin; Dalton, David C

    2014-10-21

    Wind turbines are causing unprecedented numbers of bat fatalities. Many fatalities involve tree-roosting bats, but reasons for this higher susceptibility remain unknown. To better understand behaviors associated with risk, we monitored bats at three experimentally manipulated wind turbines in Indiana, United States, from July 29 to October 1, 2012, using thermal cameras and other methods. We observed bats on 993 occasions and saw many behaviors, including close approaches, flight loops and dives, hovering, and chases. Most bats altered course toward turbines during observation. Based on these new observations, we tested the hypotheses that wind speed and blade rotation speed influenced the way that bats interacted with turbines. We found that bats were detected more frequently at lower wind speeds and typically approached turbines on the leeward (downwind) side. The proportion of leeward approaches increased with wind speed when blades were prevented from turning, yet decreased when blades could turn. Bats were observed more frequently at turbines on moonlit nights. Taken together, these observations suggest that bats may orient toward turbines by sensing air currents and using vision, and that air turbulence caused by fast-moving blades creates conditions that are less attractive to bats passing in close proximity. Tree bats may respond to streams of air flowing downwind from trees at night while searching for roosts, conspecifics, and nocturnal insect prey that could accumulate in such flows. Fatalities of tree bats at turbines may be the consequence of behaviors that evolved to provide selective advantages when elicited by tall trees, but are now maladaptive when elicited by wind turbines.

  19. Dynamic Properties of Offshore Wind Turbine Foundations

    DEFF Research Database (Denmark)

    Damgaard, Mads

    frequencies. The highly variable and cyclic loads on the rotor, tower and foundation, caused by wind and wave loads as well as low-frequent excitations from the rotor blades, all demand special fatigue design considerations and create an even greater demand for a fuller appreciation of how the wind turbine...... and material damping in the soil. Modal properties in terms of natural frequencies and corresponding damping ratios of offshore wind turbines are investigated by full-scale modal testing and simple numerical quasi-static simulations. The analyses show distinctly time-varying inherent modal properties that...... of the soil indicates that the modal properties and cross-wind fatigue loads of offshore wind turbines are strongly affected by the interrelation effects between the foundation and subsoil....

  20. Damping Wind and Wave Loads on a Floating Wind Turbine

    DEFF Research Database (Denmark)

    Christiansen, Søren; Bak, Thomas; Knudsen, Torben

    2013-01-01

    Offshore wind energy capitalizes on the higher and less turbulent wind speeds at sea. To enable deployment of wind turbines in deep-water locations, structures are being explored, where wind turbines are placed on a floating platform. This combined structure presents a new control problem, due...... to the partly unconstrained movement of the platform and ocean wave excitation. If this additional complexity is not dealt with properly, this may lead to a significant increase in the structural loads and, potentially, instability of the controlled system. In this paper, the wave excitation is investigated......, and we show the influence that both wind speed, wave frequencies and misalignment between wind and waves have on the system dynamics. A new control model is derived that extends standard turbine models to include the hydrodynamics, additional platform degrees of freedom, the platform mooring system...

  1. Study on the glaze ice accretion of wind turbine with various chord lengths

    Science.gov (United States)

    Liang, Jian; Liu, Maolian; Wang, Ruiqi; Wang, Yuhang

    2018-02-01

    Wind turbine icing often occurs in winter, which changes the aerodynamic characteristics of the blades and reduces the work efficiency of the wind turbine. In this paper, the glaze ice model is established for horizontal-axis wind turbine in 3-D. The model contains the grid generation, two-phase simulation, heat and mass transfer. Results show that smaller wind turbine suffers from more serious icing problem, which reflects on a larger ice thickness. Both the collision efficiency and heat transfer coefficient increase under smaller size condition.

  2. Load prediction of stall regulated wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Bjoerck, A.; Dahlberg, J.Aa. [Aeronautical Research Inst. of Sweden, Bromma (Sweden); Carlen, I. [Chalmers Univ. of Technology, Goeteborg (Sweden). Div. of Marine Structural Engineering; Ganander, H. [Teknikgruppen AB, Sollentua (Sweden)

    1996-12-01

    Measurements of blade loads on a turbine situated in a small wind farm shows that the highest blade loads occur during operation close to the peak power i.e. when the turbine operates in the stall region. In this study the extensive experimental data base has been utilised to compare loads in selected campaigns with corresponding load predictions. The predictions are based on time domain simulations of the wind turbine structure, performed by the aeroelastic code VIDYN. In the calculations a model were adopted in order to include the effects of dynamic stall. This paper describes the work carried out so far within the project and key results. 5 refs, 10 figs

  3. Analysis of counter-rotating wind turbines

    DEFF Research Database (Denmark)

    Shen, Wen Zhong; Zakkam, Vinod Arun Kumar; Sørensen, Jens Nørkær

    2007-01-01

    This paper presents a study on the performance of a wind turbine with two counter-rotating (CRWT) rotors. The characteristics of the two counter-rotating rotors are on a 3-bladed Nordtank 500 kW rotor. The analysis has been carried out by using an Actuator Line technique implemented in the Navier......-Stokes code EllipSys3D. The analysis shows that the Annual Energy Production can be increased to about 43.5 %, as compared to a wind turbine with a single rotor. In order to determine the optimal settings of the CRWT turbine, parameters such as distance between two rotors and rotational speed have been...

  4. Innovative multi rotor wind turbine designs

    Energy Technology Data Exchange (ETDEWEB)

    Kale, S.A.; Sapali, S.N. [College of Engineering. Mechanical Engineering Dept, Pune (India)

    2012-07-01

    Among the renewable energy sources, today wind energy is the most recognized and cost effective. Developers and researchers in this sector are optimistic and continuously working innovatively to improve the technology. The wind power obtained is proportional to the swept area of wind turbine. The swept area is increased by using a single rotor of large diameter or multi rotors in array. The rotor size is growing continuously with mature technology. Multi rotor technology has a long history and the multi rotor concept persists in a variety of modern innovative systems but the concept has fallen out of consideration in mainstream design from the perception that is complex and unnecessary as very large single rotor units are now technically feasible. This work addresses the evaluation of different multi rotor wind turbine systems. These innovative wind turbines are evaluated on the basis of feasibility, technological advantages, security of expected power performance, cost, reliability, impact of innovative system, comparison with existing wind turbine design. The findings of this work will provide guidelines for the practical and economical ways for further research on the multi rotor wind turbines. (Author)

  5. Jet spoiler arrangement for wind turbine

    Science.gov (United States)

    Cyrus, Jack D.; Kadlec, Emil G.; Klimas, Paul C.

    1985-01-01

    An air jet spoiler arrangement is provided for a Darrieus-type vertical axis wind-powered turbine. Air is drawn into hollow turbine blades through air inlets at the ends thereof and is ejected in the form of air jets through small holes or openings provided along the lengths of the blades. The air jets create flow separation at the surfaces of the turbine blades, thereby inducing stall conditions and reducing the output power. A feedback control unit senses the power output of the turbine and controls the amount of air drawn into the air inlets accordingly.

  6. Modal Parameter Identification of New Design of Vertical Axis Wind Turbine

    DEFF Research Database (Denmark)

    Chougule, Prasad; Nielsen, Søren R.K.

    2013-01-01

    Vertical axis wind turbines have lower power efficiency than the horizontal axis wind turbines. However vertical axis wind turbines are proven to be economical and noise free on smaller scale. A new design of three bladed vertical axis wind turbine by using two airfoils in construction of each...... blade has been proposed to improve power efficiency. The purpose of two airfoils in blade design of vertical axis wind turbine is to create high lift which in turns gives higher power output. In such case the structural parameter identification is important to understand the system behavior due to its...... Abaqus cae software. The study is limited to evaluate lowest fundamental modal frequencies and mode shapes of proposed wind turbine....

  7. Using a New Modification on Wind Turbine Ventilator for Improving Indoor Air Quality

    Directory of Open Access Journals (Sweden)

    Louay Abdul salam Rasheed

    2018-02-01

    Full Text Available This paper describes a newly modified wind turbine ventilator that can achieve highly efficient ventilation. The new modification on the conventional wind turbine ventilator system may be achieved by adding a Savonius wind turbine above the conventional turbine to make it work more efficiently and help spinning faster. Three models of the Savonius wind turbine with 2, 3, and 4 blades' semicircular arcs are proposed to be placed above the conventional turbine of wind ventilator to build a hybrid ventilation turbine. A prototype of room model has been constructed and the hybrid turbine is placed on the head of the room roof. Performance's tests for the hybrid turbine with a different number of blades and different values of wind speeds have been conducted. The experimental test results show that the performance of the improved ventilation turbine with three blades is the best. It is found that the maximum rotation speed of the improved turbine is 107rpm, while the air flow rate is 0.0103m3/s and the air change rate per hour is 32.67hr-1, at a wind speed of 3m/s. The proposed design has been achieved an increase in the turbine rotational speed, increase of the extraction rate of the indoor air and the air-changes per hour, provided the requisite ventilation and improved the quality of the indoor air.

  8. Computational method for the design of wind turbine blades

    Energy Technology Data Exchange (ETDEWEB)

    Vitale, A.J. [Instituto Argentino de Oceanografia, Camino La Carrindanga Km. 7.5, CC 804, B8000FWB Bahia Blanca (Argentina); Universidad Tecnologica Nacional Facultad Regional Bahia Blanca, GESE, 11 de Abril 461, B8000LMI Bahia Blanca (Argentina); Universidad Nacional del Sur, Dpto. de Ing. Electrica y de Computadoras, Av. Alem 1253, 8000 Bahia Blanca (Argentina); Rossi, A.P. [Universidad Tecnologica Nacional Facultad Regional Bahia Blanca, GESE, 11 de Abril 461, B8000LMI Bahia Blanca (Argentina); Universidad Nacional del Sur, Dpto. de Ing. Electrica y de Computadoras, Av. Alem 1253, 8000 Bahia Blanca (Argentina)

    2008-07-15

    Zeus Disenador was developed to design low-power, horizontal-axis wind turbine blades, by means of an iterative algorithm. With this software, it is possible to obtain the optimum blade shape for a wind turbine to satisfy energy requirements of an electric system with optimum rotor efficiency. The number of blades, the airfoil curves and the average wind velocity can be specified by the user. The user can also request particular edge conditions for the width of the blades and for the pitch angle. Results are provided in different windows. Two- and three-dimensional graphics show the aspect of the resultant blade. Numerical results are displayed for blade length, blade surface, pitch angle variation along the blade span, rotor angular speed, rotor efficiency and rotor output power. Software verifications were made by comparing rotor power and rotor efficiency for different designs. Results were similar to those provided by commercial wind generator manufacturers. (author)

  9. Experimental evaluation of wind turbines maximum power point tracking controllers

    International Nuclear Information System (INIS)

    Camblong, H.; Martinez de Alegria, I.; Rodriguez, M.; Abad, G.

    2006-01-01

    Wind energy technology has experienced important improvements this last decade. The transition from fixed speed to variable speed wind turbines has been a significant element of these improvements. It has allowed adapting the turbine rotational speed to the wind speed variations with the aim of optimizing the aerodynamic efficiency. A classic controller that has slow dynamics relative to the mechanical dynamics of the drive train is implemented in commercial wind turbines. The objective of the work related in this paper has been to evaluate the implementation, on a test bench, of a controller whose dynamics can be adjusted to be faster and to compare in particular its aerodynamic efficiency with the conventional controller. In theory, the higher dynamics of the non-classic controller has to lead to a better efficiency. A 180 kW wind turbine whose simulation model has been validated with field data is emulated on an 18 kW test bench. The emulator has also been validated. Test bench trials are a very useful step between numerical simulation and trials on the real system because they allow analyzing some phenomena that may not appear in simulations without endangering the real system. The trials on the test bench show that the non-conventional controller leads to a higher aerodynamic efficiency and that this is offset by higher mechanical torque and electric power fluctuations. Nevertheless, the amplitudes of these fluctuations are relatively low compared to their rated values

  10. Wind resource estimation and siting of wind turbines

    DEFF Research Database (Denmark)

    Lundtang Petersen, Erik; Mortensen, N.G.; Landberg, L.

    1994-01-01

    Detailed knowledge of the characteristics of the natural wind is necessary for the design, planning and operational aspect of wind energy systems. Here, we shall only be concerned with those meteorological aspects of wind energy planning that are termed wind resource estimation. The estimation...... of the wind resource ranges from the overall estimation of the mean energy content of the wind over a large area - called regional assessment - to the prediction of the average yearly energy production of a specific wind turbine at a specific location - called siting. A regional assessment will most often...

  11. On the wind speed reduction in the center of large clusters of wind turbines

    DEFF Research Database (Denmark)

    Frandsen, Sten Tronæs

    1992-01-01

    of the wind speed assuming the wind turbines effectively act as roughness elements. The model makes use of similarities to so-called canopy flows, where the surface drag and the drag on individual obstacles are added to form the total drag. Results are compared with existing models for reduction of efficiency...

  12. On Using Wind Speed Preview to Reduce Wind Turbine Tower Oscillations

    DEFF Research Database (Denmark)

    Kristalny, Maxim; Madjidian, Daria; Knudsen, Torben

    2013-01-01

    We investigate the potential of using previewed wind speed measurements for damping wind turbine fore-aft tower oscillations. Using recent results on continuous-time H 2 preview control, we develop a numerically efficient framework for the feedforward controller synthesis. One of the major benefits...

  13. Infrasound emission generated by wind turbines

    Science.gov (United States)

    Ceranna, Lars; Pilger, Christoph

    2014-05-01

    Aerodynamic noise emissions from the continuously growing number of wind turbines in Germany are creating increasing problems for infrasound recording systems. Such systems are equipped with highly sensitive micro pressure sensors, which are accurately measuring acoustic signals in a frequency range inaudible to humans. At infrasound station IGADE, north of Bremen, a constantly increasing background noise has been observed throughout the years since its installation in 2005. The spectral peaks are reflecting well the blade passing harmonics, which vary with prevailing wind speeds. Overall, a decrease is noted for the infrasound array's detection capability. This aspect is particularly important for the other two sites of the German infrasound stations I26DE in the Bavarian Forest and I27DE in Antarctica, because plans for installing wind turbines near these locations are being under discussion. These stations are part of the International Monitoring System (IMS) verifying compliance with the Comprehensive Nuclear-Test-Ban Treaty (CTBT), and have to meet stringent specifications with respect to infrasonic background noise. Therefore data obtained during a field experiment with mobile micro-barometer stations for measuring the infrasonic pressure level of a single horizontal-axis wind turbine have been revisited. The results of this experiment successfully validate a theoretical model which estimates the generated sound pressure level of wind turbines and makes it possible to specify the minimum allowable distance between wind turbines and infrasound stations for undisturbed recording. Since the theoretical model also takes wind turbine design parameters into account, suitable locations for planned infrasound stations outside the determined disturbance range can be found, which will be presented; and vice versa, the model calculations' results for fixing the minimum distance for wind turbines planned for installation in the vicinity of an existing infrasound array.

  14. Computational aerodynamics and aeroacoustics for wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Shen, W.Z.

    2009-10-15

    The present thesis consists of 19 selected papers dealing with the development and use of CFD methods for studying the aerodynamics and aero-acoustics of wind turbines. The papers are written in the period from 1997 to 2008 and numbered according to the list in page v. The work consists of two parts: an aerodynamic part based on Computational Fluid Dynamics and an aero-acoustic part based on Computational Aero Acoustics for wind turbines. The main objective of the research was to develop new computational tools and techniques for analysing flows about wind turbines. A few papers deal with applications of Blade Element Momentum (BEM) theory to wind turbines. In most cases the incompressible Navier-Stokes equations in primitive variables (velocity-pressure formulation) are employed as the basic governing equations. However, since fluid mechanical problems essentially are governed by vortex dynamics, it is sometimes advantageous to use the concept of vorticity (defined as the curl of velocity). In vorticity form the Navier-Stokes equations may be formulated in different ways, using a vorticity-stream function formulation, a vorticity-velocity formulation or a vorticity-potential-stream function formulation. In [1] - [3] two different vorticity formulations were developed for 2D and 3D wind turbine flows. In [4] and [5] numerical techniques for avoiding pressure oscillations were developed when solving the velocity-pressure coupling system in the in-house EllipSys2D/3D code. In [6] - [8] different actuator disc techniques combined with CFD are presented. This includes actuator disc, actuator line and actuator surface techniques, which were developed to simulate flows past one or more wind turbines. In [9] and [10] a tip loss correction method that improves the conventional models was developed for use in combination with BEM or actuator/Navier-Stokes computations. A simple and efficient technique for determining the angle of attack for flow past a wind turbine rotor

  15. Large superconducting wind turbine generators

    DEFF Research Database (Denmark)

    Abrahamsen, Asger Bech; Magnusson, Niklas; Jensen, Bogi Bech

    2012-01-01

    and the rotation speed is lowered in order to limit the tip speed of the blades. The ability of superconducting materials to carry high current densities with very small losses might facilitate a new class of generators operating with an air gap flux density considerably higher than conventional generators...... and thereby having a smaller size and weight [1, 2]. A 5 MW superconducting wind turbine generator forms the basics for the feasibility considerations, particularly for the YBCO and MgB2 superconductors entering the commercial market. Initial results indicate that a 5 MW generator with an active weight of 34...... tons, diameter of 4.2 m and length of 1.2 m can be realized using superconductors carrying 300 A/mm2 in a magnetic field of 4 T and an air gap flux density of the order 2.5 T. The results are compared to the performance of available superconductors, as well as the near future forecasted performance....

  16. Wind or water turbine power augmentation using the system of guiding surfaces

    Science.gov (United States)

    Bashurin, V. P.; Budnikov, I. N.; Hatunkin, V. Yu; Klevtsov, V. A.; Ktitorov, L. V.; Lazareva, A. S.; Meshkov, E. E.; Novikova, I. A.; Pletenev, F. A.; Yanbaev, G. M.

    2016-04-01

    As fluid flows through a conventional wind or hydro turbine, it slows from losing energy to extraction from a turbine and spreads out to a wider area. This results in a loss of turbine efficiency. In order to exploit wind or water flow power more effectively, it was suggested to place the turbine inside a system of specially designed airfoils (‘a flow booster’). One part of the booster (‘a nozzle’) improves the turbine performance by speeding up the flow acting on the turbine blades. The other part of the accelerating system (‘a diffuser’) creates a field of low pressure behind the turbine which helps to draw more mass flow to the turbine and avoid the loss of efficiency due to flow deceleration. The flow booster accumulates the kinetic energy of the flow (e.g. river flow or wind) in a small volume where the smaller turbine can be installed. Another possible application of the booster could be the improvement of wind turbine efficiency during low wind period. The present paper also discusses the possibility of kinetic energy accumulation by the use of several accelerating systems of different sizes—the smaller one can be installed inside the bigger one. It helps to accumulate even more kinetic energy on the turbine blades. We call this method the kinetic energy cumulation. Lab and field experiments and CFD simulations of shrouded turbine demonstrate significant increase in velocity in comparison of those for conventional (bare) turbines.

  17. Wind or water turbine power augmentation using the system of guiding surfaces

    International Nuclear Information System (INIS)

    Bashurin, V P; Ktitorov, L V; Lazareva, A S; Pletenev, F A; Budnikov, I N; Hatunkin, V Yu; Klevtsov, V A; Meshkov, E E; Novikova, I A; Yanbaev, G M

    2016-01-01

    As fluid flows through a conventional wind or hydro turbine, it slows from losing energy to extraction from a turbine and spreads out to a wider area. This results in a loss of turbine efficiency. In order to exploit wind or water flow power more effectively, it was suggested to place the turbine inside a system of specially designed airfoils (‘a flow booster’). One part of the booster (‘a nozzle’) improves the turbine performance by speeding up the flow acting on the turbine blades. The other part of the accelerating system (‘a diffuser’) creates a field of low pressure behind the turbine which helps to draw more mass flow to the turbine and avoid the loss of efficiency due to flow deceleration. The flow booster accumulates the kinetic energy of the flow (e.g. river flow or wind) in a small volume where the smaller turbine can be installed. Another possible application of the booster could be the improvement of wind turbine efficiency during low wind period. The present paper also discusses the possibility of kinetic energy accumulation by the use of several accelerating systems of different sizes—the smaller one can be installed inside the bigger one. It helps to accumulate even more kinetic energy on the turbine blades. We call this method the kinetic energy cumulation. Lab and field experiments and CFD simulations of shrouded turbine demonstrate significant increase in velocity in comparison of those for conventional (bare) turbines. (paper)

  18. Frequency based Wind Turbine Gearbox Fault Detection applied to a 750 kW Wind Turbine

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Nejad, Amir R.

    2014-01-01

    turbines. One of the critical components in modern wind turbines is the gearbox. Failures in the gearbox are costly both due to the cost of the gearbox itself, but also due to lost power generation during repair of it. Wind turbine gearboxes are consequently monitored by condition monitoring systems...... operating in parallel with the control system, and also uses additional sensors measuring different accelerations and noises, etc. In this paper gearbox data from high fidelity gearbox model of a 750 kW wind turbine gearbox, simulated with and without faults are used to shown the potential of frequency...

  19. Acoustic Tests of Small Wind Turbines: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Migliore, P.; van Dam, J.; Huskey, A.

    2003-10-01

    Eight small wind turbines ranging from 400 watts to 100 kW in rated power were tested for acoustic emissions at the U.S. Department of Energy's National Renewable Energy Laboratory. Rigorous test procedures based on international standards were followed for measurements and data analyses. Results are presented in the form of sound pressure level versus wind speed, where the sound was recorded downwind of the turbine at a distance equal to the hub height plus half the rotor diameter. When there was sufficient separation between wind turbine noise and background noise, the apparent sound power level was calculated. In several cases, this was not possible. The implications of this problem are discussed briefly. Some of the configurations tested were specifically developed to reduce the noise level of their predecessors. Test data for these machines demonstrate marked progress toward quieter turbines.

  20. Nonlinear Multibody Dynamics of Wind Turbines

    DEFF Research Database (Denmark)

    Holm-Jørgensen, Kristian

    The continuing development of wind turbines aim at higher effect production and reducing the purchase and maintenance costs for the customers. This demands that the components in the wind turbine are optimized closer to the limit than previously. In order to determine the design loads...... turbine blade with large nonlinear displacements it has shown most favorable to use the end points in the substructure for updating the moving frames. For speeding up dynamical simulations for use in e.g. active control or parameter studies, system reduction of substructures in the multibody formulation...... at the assembling point. This method is more general and can also be used to model the blade in e.g. two substructures or to model other components in the wind turbine. To determine the structural properties of a blade for use in beam element models, a FEmodel is implemented which besides the more common beam...

  1. Wind turbine remote control using Android devices

    Science.gov (United States)

    Rat, C. L.; Panoiu, M.

    2018-01-01

    This paper describes the remote control of a wind turbine system over the internet using an Android device, namely a tablet or a smartphone. The wind turbine workstation contains a LabVIEW program which monitors the entire wind turbine energy conversion system (WECS). The Android device connects to the LabVIEW application, working as a remote interface to the wind turbine. The communication between the devices needs to be secured because it takes place over the internet. Hence, the data are encrypted before being sent through the network. The scope was the design of remote control software capable of visualizing real-time wind turbine data through a secure connection. Since the WECS is fully automated and no full-time human operator exists, unattended access to the turbine workstation is needed. Therefore the device must not require any confirmation or permission from the computer operator in order to control it. Another condition is that Android application does not have any root requirements.

  2. Study on wind turbine arrangement for offshore wind farms

    DEFF Research Database (Denmark)

    Shen, Wen Zhong; Mikkelsen, Robert Flemming

    2011-01-01

    In this paper, the separation distance between two neighboring offshore wind turbines has been carried out by using the Actuator Line/Navier-Stokes technique developed at the Technical University of Denmark (DTU). Under offshore atmospheric conditions, Large Eddy Simulation has been performed for...... to the turbulence mixing. This study hints that the optimal separation distance between neighboring turbines for offshore wind farms should be 7 rotor diameters....

  3. Modelling of lightning streamer formation and propagation in wind turbine blades

    DEFF Research Database (Denmark)

    Candela Garolera, Anna; Holbøll, Joachim; Madsen, Søren Find

    2013-01-01

    The positioning of lightning air terminations along a wind turbine blade is a complex issue to consider when designing the lightning protection of wind turbine blades. According to the IEC 61400-24 on lightning protection of wind turbines, the interception efficiency depends on the effectiveness ...... models can involve a high level of detail and therefore be used in the detailed positioning of air terminations in blades equipped with conductive elements such as carbon fiber or electrical monitoring systems (load, temperature, etc.)....

  4. Flow separation on wind turbines blades

    NARCIS (Netherlands)

    Corten, G.P.

    2001-01-01

    In the year 2000, 15GW of wind power was installed throughout the world, producing 100PJ of energy annually. This contributes to the total electricity demand by only 0.2%. Both the installed power and the generated energy are increasing by 30% per year world-wide. If the airflow over wind turbine

  5. Power electronics converters for wind turbine systems

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Liserre, Marco; Ma, Ke

    2011-01-01

    The steady growth of installed wind power which reached 200 GW capacity in 2010, together with the up-scaling of the single wind turbine power capability - 7 MW’s has been announced by manufacturers - has pushed the research and development of power converters towards full scale power conversion,...

  6. Tjæreborg Wind Turbine

    DEFF Research Database (Denmark)

    Øye, Stig

    1991-01-01

    This paper presents results from the fourth measurement camapign at the Tjæreborg (Tjaereborg) WInd Turbine during operation with stepwise pitch angle changes. The measurements cover one hour of operation at wind speeds between 7 and 10 m/s aceraging approximately 8.7 m/s....

  7. Wind turbine wake measurement in complex terrain

    DEFF Research Database (Denmark)

    Hansen, Kurt Schaldemose; Larsen, Gunner Chr.; Menke, Robert

    2016-01-01

    SCADA data from a wind farm and high frequency time series measurements obtained with remote scanning systems have been analysed with focus on identification of wind turbine wake properties in complex terrain. The analysis indicates that within the flow regime characterized by medium to large...

  8. Multilevel converters for 10 MW Wind Turbines

    DEFF Research Database (Denmark)

    Ma, Ke; Blaabjerg, Frede

    2011-01-01

    Several promising multi-level converter configurations for 10 MW Wind Turbines both with direct drive and one-stage gear box drive using Permanent Magnet Synchronous Generator (PMSG) are proposed, designed and compared. Reliability is a crucial indicator for large scale wind power converters...

  9. Fatigue Reliability of Offshore Wind Turbine Systems

    DEFF Research Database (Denmark)

    Marquez-Dominguez, Sergio; Sørensen, John Dalsgaard

    2012-01-01

    Optimization of the design of offshore wind turbine substructures with respect to fatigue loads is an important issue in offshore wind energy. A stochastic model is developed for assessing the fatigue failure reliability. This model can be used for direct probabilistic design and for calibration...... of appropriate partial safety factors / fatigue design factors (FDF) for steel substructures of offshore wind turbines (OWTs). The fatigue life is modeled by the SN approach. Design and limit state equations are established based on the accumulated fatigue damage. The acceptable reliability level for optimal...... fatigue design of OWTs is discussed and results for reliability assessment of typical fatigue critical design of offshore steel support structures are presented....

  10. Predicting Faults in Wind Turbines Using SCADA Data

    DEFF Research Database (Denmark)

    Borchersen, Anders Bech; Larsen, Jesper Abildgaard; Stoustrup, Jakob

    2013-01-01

    The cost of operation and maintenance of wind turbines is a significant part of the overall cost of wind turbines. To reduce this cost a method for enabling early fault detection is proposed and tested in this paper. The method is taking advantage of the fact that wind turbines in wind farms are ...

  11. Load attenuating passively adaptive wind turbine blade

    Science.gov (United States)

    Veers, Paul S.; Lobitz, Donald W.

    2003-01-07

    A method and apparatus for improving wind turbine performance by alleviating loads and controlling the rotor. The invention employs the use of a passively adaptive blade that senses the wind velocity or rotational speed, and accordingly modifies its aerodynamic configuration. The invention exploits the load mitigation prospects of a blade that twists toward feather as it bends. The invention includes passively adaptive wind turbine rotors or blades with currently preferred power control features. The apparatus is a composite fiber horizontal axis wind-turbine blade, in which a substantial majority of fibers in the blade skin are inclined at angles of between 15 and 30 degrees to the axis of the blade, to produces passive adaptive aeroelastic tailoring (bend-twist coupling) to alleviate loading without unduly jeopardizing performance.

  12. Advantages on monitoring wind turbine nacelle oscillation

    DEFF Research Database (Denmark)

    Skrimpas, Georgios Alexandros; Marhadi, Kun Saptohartyadi; Hilmisson, Reynir

    2015-01-01

    and vibrations on blades, tower and drive train components, which may jeopardize their working condition. The present paper deals with the comparison and analysis of vibration signals from wind turbines subjected to various failure modes and operating conditions, such as blade misalignment, pitch malfunction......, ice accretion, damaged blade tips and yaw system defects. Theoretical analysis of nacelle movement at down wind and lateral direction is presented along with field results from multi megawatt wind turbines. Additionally the paper discusses the employment of nacelle accelerometers for cross reference......Nacelle oscillation monitoring, where accelerometers are mounted on the nacelle frame, is integral part of modern condition monitoring systems towards holistic and consistent health assessment of wind turbines. It enables detection of abnormal behavior associated to increased stresses...

  13. Wind Turbine Micropitting Workshop: A Recap

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, S.

    2010-02-01

    Micropitting is a Hertzian fatigue phenomenon that affects many wind turbine gearboxes, and it affects the reliability of the machines. With the major growth and increasing dependency on renewable energy, mechanical reliability is an extremely important issue. The U.S. Department of Energy has made a commitment to improving wind turbine reliability and the National Renewable Energy Laboratory (NREL) has started a gearbox reliability project. Micropitting as an issue that needed attention came to light through this effort. To understand the background of work that had already been accomplished, and to consolidate some level of collective understanding of the issue by acknowledged experts, NREL hosted a wind turbine micropitting workshop, which was held at the National Wind Technology Center in Boulder, Colorado, on April 15 and 16, 2009.

  14. Equivalent models of wind farms by using aggregated wind turbines and equivalent winds

    International Nuclear Information System (INIS)

    Fernandez, L.M.; Garcia, C.A.; Saenz, J.R.; Jurado, F.

    2009-01-01

    As a result of the increasing wind farms penetration on power systems, the wind farms begin to influence power system, and therefore the modeling of wind farms has become an interesting research topic. In this paper, new equivalent models of wind farms equipped with wind turbines based on squirrel-cage induction generators and doubly-fed induction generators are proposed to represent the collective behavior on large power systems simulations, instead of using a complete model of wind farms where all the wind turbines are modeled. The models proposed here are based on aggregating wind turbines into an equivalent wind turbine which receives an equivalent wind of the ones incident on the aggregated wind turbines. The equivalent wind turbine presents re-scaled power capacity and the same complete model as the individual wind turbines, which supposes the main feature of the present equivalent models. Two equivalent winds are evaluated in this work: (1) the average wind from the ones incident on the aggregated wind turbines with similar winds, and (2) an equivalent incoming wind derived from the power curve and the wind incident on each wind turbine. The effectiveness of the equivalent models to represent the collective response of the wind farm at the point of common coupling to grid is demonstrated by comparison with the wind farm response obtained from the detailed model during power system dynamic simulations, such as wind fluctuations and a grid disturbance. The present models can be used for grid integration studies of large power system with an important reduction of the model order and the computation time

  15. The design of wind turbine for electrical power generation in Malaysian wind characteristics

    International Nuclear Information System (INIS)

    Abas Ab Wahab; Chong Wen Thong

    2000-01-01

    The paper describes the study of a wind turbine for electrical power generation in Malaysia wind characteristics. In this research, the wind turbine is designs based on the local wind characteristics and tries to avoid the problems faced in the past (turbine design, access, manpower and technical). The new wind turbine rotor design for a medium speed wind speed turbine utilises the concept of open-close type of horizontal axis (up-wind) wind turbine is intended to widen the optimum performance range for electrical generation in Malaysia wind characteristics. The wind turbine has been designed to cut-in at a lower speed, and to provide the rotation speed that high enough to run a generator. The analysis and design of new low speed wind turbine blades and open-close turbine rotor and prediction of turbine performance are being detailed in this paper. (Author)

  16. Lightning protection for wind turbines in Vietnam

    Directory of Open Access Journals (Sweden)

    Thuan Nguyen

    2017-01-01

    Full Text Available Wind energy has become increasingly important in the total electrical energy supply mix in Vietnam over the last few years. Small, kW turbines were installed in isolated areas a decade ago, while wind farms of several MW to few hundred MW are now being connected directly to national grid, with many additional projects in planning or under construction to fulfill an objective of 6% of the total installed capacity by 2030 (approximately 6200 MW of wind energy component. The increase in wind farm generation results in increased damage from lightning. In this paper, the annual frequency of lightning strikes to wind turbines in Vietnam is calculated using electrogeometric model. Reported lightning incidents to three major wind farms in Vietnam are summarized. Possible causes of failure are discussed, and an EMTP simulation for each incident was performed accordingly. The simulations suggest the failure mechanisms as well the potential of improved grounding to reduce lightning induced damage in future windfarms.

  17. A neuro-fuzzy controlling algorithm for wind turbine

    Energy Technology Data Exchange (ETDEWEB)

    Li Lin [Tampere Univ. of Technology (Finland); Eriksson, J.T. [Tampere Univ. of Technology (Finland)

    1995-12-31

    The wind turbine control system is stochastic and nonlinear, offering a demanding field for different control methods. An improved and efficient controller will have great impact on the cost-effectiveness of the technology. In this article, a design method for a self-organizing fuzzy controller is discussed, which combines two popular computational intelligence techniques, neural networks and fuzzy logic. Based on acquisited dynamic parameters of the wind, it can effectively predict wind changes in speed and direction. Maximum power can always be extracted from the kinetic energy of the wind. Based on the stimulating experiments applying nonlinear dynamics to a `Variable Speed Fixed Angle` wind turbine, it is demonstrated that the proposed control model 3rd learning algorithm provide a predictable, stable and accurate performance. The robustness of the controller to system parameter variations and measurement disturbances is also discussed. (author)

  18. Importance of Dynamic Inflow Model Predictive Control of Wind Turbines

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Knudsen, Torben; Overgaard, Anders

    2015-01-01

    The efficiency of including dynamic inflow in the model based design of wind turbine controller has been discussed for many years in the wind energy community with out getting to a safe conclusion. This paper delivers a good argument in favor of including dynamic inflow. The main contributions...... pronounces. For this the well accepted NREL 5MW reference turbine simulated with FAST is used. The main result is a reduction in tower fatigue load at 22% while power error, rotor speed error, generator torque and pitch rate is improved from 2 to 33%....

  19. Modern Control Design for Flexible Wind Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Wright, A. D.

    2004-07-01

    Control can improve energy capture and reduce dynamic loads in wind turbines. In the 1970s and 1980s, wind turbines used classical control designs to regulate power and speed. The methods used, however, were not always successful. Modern turbines are larger, mounted on taller towers, and more dynamically active than their predecessors. Control systems to regulate turbine power and maintain stable, closed-loop behavior in the presence of turbulent wind inflow will be critical for these designs. This report applies modern state-space control design methods to a two-bladed teetering hub upwind machine at the National Wind Technology Center (NWTC), which is managed by the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) in Golden, Colorado. The design objective is to regulate turbine speed and enhance damping in several low-damped flexible modes of the turbine. Starting with simple control algorithms based on linear models, complexity is added incrementally until the desired performance is firmly established.

  20. Trends in Wind Turbine Generator Systems

    DEFF Research Database (Denmark)

    Polinder, Henk; Ferreira, Jan Abraham; Jensen, Bogi Bech

    2013-01-01

    This paper reviews the trends in wind turbine generator systems. After discussing some important requirements and basic relations, it describes the currently used systems: the constant speed system with squirrel-cage induction generator, and the three variable speed systems with doubly fed...... induction generator (DFIG), with gearbox and fully rated converter, and direct drive (DD). Then, possible future generator systems are reviewed. Hydraulic transmissions are significantly lighter than gearboxes and enable continuously variable transmission, but their efficiency is lower. A brushless DFIG...... is a medium speed generator without brushes and with improved low-voltage ride-through characteristics compared with the DFIG. Magnetic pseudo DDs are smaller and lighter than DD generators, but need a sufficiently low and stable magnet price to be successful. In addition, superconducting generators can...

  1. Models for wind turbines - a collection

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, G.C.; Hansen, M.H. (eds.); Baumgart, A.

    2002-02-01

    This report is a collection of notes which were intended to be short communications. Main target of the work presented is to supply new approaches to stability investigations of wind turbines. The authors opinion is that an efficient, systematic stability analysis can not be performed for large systems of differential equations (i.e. the order of the differential equations > 100), because numerical 'effects' in the solution of the equations of motion as initial value problem, eigenvalue problem or whatsoever become predominant. It is therefore necessary to find models which are reduced to the elementary coordinates but which can still describe the physical processes under consideration with sufficiently good accuracy. Such models are presented. (au)

  2. Compliance effects on dynamically pitching wind turbine airfoils

    Science.gov (United States)

    Magstadt, Andrew S.

    The effects of elastic compliance in dynamically pitching wind turbine blades have been investigated. A numerical model guided wind tunnel testing, which used unsteady surface pressure measurements and phase-locked Particle Imaging Velocimetry to gather aerodynamic information. Using a torsionally compliant member, aeroelastic effects on the unsteady aerodynamics were compared against the results from a corresponding rigidly pitching airfoil to isolate the effects of compliance. The novel experimental apparatus and data acquisition techniques developed at the University of Wyoming showed that the presence of compliance can alter flow-field structures and increase dynamic loading. The high sensitivity of this nonlinear system suggests the formation of fluid-structure instabilities in large-scale turbines and demonstrates the potential for aerodynamic control as a means to mitigate adverse loading effects and improve wind turbine efficiency.

  3. Experiment and Analysis of Car Alternator for Wind Turbine Application

    Directory of Open Access Journals (Sweden)

    Pudji Irasari

    2012-03-01

    Full Text Available This paper discusses experiment and analysis to find out the feasibility of a car alternator to be used as a generator for wind turbine. The experiment was conducted twice. The first experiment was to characterize the alternator to determine the mechanical transmission ratio. In this experiment the alternator was driven by a lathe machine and its output power was supplied to charge a battery. In the second experiment the alternator was integrated with the turbine blades and they were tested as a unit system. In both experiments, the electric generation of alternator was executed with fixed excitation current method. The correlation between the alternator characteristic and the tip speed ratio gives the mechanical transmission ratio of 1 : 3. The experiment results show that the efficiency of alternator is around 50% and cut-in wind speed (after correction is 6.35 m/s indicating that alternator is not feasible for wind turbine system application. 

  4. Design of wind turbine airfoils based on maximum power coefficient

    DEFF Research Database (Denmark)

    Cheng, Jiangtao; Chen, Jin; Cheng, Jiangtao

    2010-01-01

    Based on the blade element momentum (BEM) theory, the power coefficient of a wind turbine can be expressed in function of local tip speed ratio and lift-drag ratio. By taking the power coefficient in a predefined range of angle of attack as the final design objective and combining with an airfoil...... behaviors, noise emission as well as wind turbine service life. To show the performance of the new design technique, a new airfoil with relative thickness of 18% is designed. Comparisons with a wind turbine airfoil (NACA 63418) at Re=2×106 and Re=6×106 for free and fixed transitions show that the new...... airfoil has a higher power efficiency, better designed lift at off-design condition, better stall behavior, less sensitivity to leading edge roughness and lower noise emission. © 2010 Journal of Mechanical Engineering....

  5. Unsteady aerodynamic modelling of wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Coton, F.N.; Galbraith, R.A. [Univ. og Glasgow, Dept. of Aerospace Engineering, Glasgow (United Kingdom)

    1997-08-01

    The following current and future work is discussed: Collaborative wind tunnel based PIV project to study wind turbine wake structures in head-on and yawed flow. Prescribed wake model has been embedded in a source panel representation of the wind tunnel walls to allow comparison with experiment; Modelling of tower shadow using high resolution but efficient vortex model in tower shadow domain; Extension of model to yawing flow; Upgrading and tuning of unsteady aerodynamic model for low speed, thick airfoil flows. Glasgow has a considerable collection of low speed dynamic stall data. Currently, the Leishman - Beddoes model is not ideally suited to such flows. For example: Range of stall onset criteria used for dynamic stall prediction including Beddoes. Wide variation of stall onset prediction. Beddoes representation was developed primarily with reference to compressible flows. Analyses of low speed data from Glasgow indicate deficiencies in the current model; Predicted versus measured response during ramp down motion. Modification of the Beddoes representation is required to obtain a fit with the measured data. (EG)

  6. Grid integration impacts on wind turbine design and development

    DEFF Research Database (Denmark)

    Hansen, Anca Daniela; Cutululis, Nicolaos Antonio; Sørensen, Poul Ejnar

    2009-01-01

    This paper presents an overall perspective on contemporary issues like wind power plants and grid integration. The purpose is to present and discuss the impacts of emerging new grid connection requirements on modern wind turbines. The grid integration issue has caused several new challenges...... to the wind turbine design and development. The survival of different wind turbine concepts and controls is strongly conditioned by their ability to comply with stringent grid connection requirements, imposed by utility companies. Beside its impact on the mechanical design and control of wind turbines......, the grid integration aspect has also an effect on wind turbines' role in the power system, on wind turbine technologies' survival on the market, as well as on the wind turbines' loads. Over the last years, it became obviously, that there it is an increasing need for design and research of wind turbines...

  7. Fault Detection of Wind Turbines with Uncertain Parameters

    DEFF Research Database (Denmark)

    Tabatabaeipour, Seyed Mojtaba; Odgaard, Peter Fogh; Bak, Thomas

    2012-01-01

    on the torque coefficient. High noise on the wind speed measurement, nonlinearities in the aerodynamic torque and uncertainties on the parameters make fault detection a challenging problem. We use an effective wind speed estimator to reduce the noise on the wind speed measurements. A set-membership approach...... is detected. For representation of these sets we use zonotopes and for modeling of uncertainties we use matrix zonotopes, which yields a computationally efficient algorithm. The method is applied to the wind turbine benchmark problem without and with uncertainties. The result demonstrates the effectiveness...

  8. Impact of wind turbines on birds

    International Nuclear Information System (INIS)

    Clausager, I.; Nohr, H.

    1996-01-01

    The paper is a review of the present knowledge on impacts of wind turbines on birds, requested by the Danish Ministry of the Environment and Energy. The main conclusions of the review are, that in nearly all the studies so far the numbers of birds recorded colliding with wind turbines have been limited. Some studies indicate that stationary (breeding) birds inside the wind turbine area in the short run habituate to wind turbines, especially the noise and visual impacts, and that the risk for collision becomes low. However, some of the few more long term studies indicate that a negative impact may occur in later generations of breeding birds. In some studies a disturbance effect on bird species, which temporarily stay inside a wind turbine area in order to forage or rest, is observed. The degree of impact is species-specific. An effect is typically recorded inside a zone of up to 250-800 m, with geese and waders as the most sensitive groups of birds. (author)

  9. Industrial wind turbines and adverse health effects.

    Science.gov (United States)

    Jeffery, Roy D; Krogh, Carmen M E; Horner, Brett

    2014-01-01

    Some people living in the environs of industrial wind turbines (IWTs) report experiencing adverse health and socioeconomic effects. This review considers the hypothesis that annoyance from audible IWTs is the cause of these adverse health effects. We searched PubMed and Google Scholar for articles published since 2000 that included the terms "wind turbine health," "wind turbine infrasound," "wind turbine annoyance," "noise annoyance" or "low frequency noise" in the title or abstract. Industrial wind turbines produce sound that is perceived to be more annoying than other sources of sound. Reported effects from exposure to IWTs are consistent with well-known stress effects from persistent unwanted sound. If placed too close to residents, IWTs can negatively affect the physical, mental and social well-being of people. There is sufficient evidence to support the conclusion that noise from audible IWTs is a potential cause of health effects. Inaudible low-frequency noise and infrasound from IWTs cannot be ruled out as plausible causes of health effects.

  10. Assessment and prediction of wind turbine noise

    International Nuclear Information System (INIS)

    Lowson, M.V.

    1993-01-01

    The significance of basic aerodynamic noise sources for wind turbine noise are assessed, using information on the aero-acoustic mechanisms of other rotors, which have been studied in depth for many years. From the analysis, areas of potential improvement in wind turbine noise prediction are defined. Suggestions are made for approaches to wind turbine noise control which separate the noise problems at cut-in from those at rated power. Some of these offer the possibility of noise reduction without unfavourable effects on performance. Based on this analysis, a new model for prediction of wind turbine noise is presented and comparisons made between prediction and experiment. The model is based on well established aeroacoustic theory and published laboratory data for the two principal sources, inflow turbulence and boundary layer trailing edge interaction. The new method gives good agreement with experiment with the case studied so far. Parametric trends and sensitivities for the model are presented. Comparisons with previous prediction methods are also given. A consequence of the new model is to put more emphasis on boundary layer trailing edge interaction as a noise source. There are prospects for reducing noise from this source detail changes to the wind turbine design. (author)

  11. Dependence of optimal wind turbine spacing on wind farm length

    NARCIS (Netherlands)

    Stevens, Richard Johannes Antonius Maria

    2016-01-01

    Recent large eddy simulations have led to improved parameterizations of the effective roughness height of wind farms. This effective roughness height can be used to predict the wind velocity at hub-height as function of the geometric mean of the spanwise and streamwise turbine spacings and the

  12. Control of variable speed wind turbines with doubly-fed induction generators

    DEFF Research Database (Denmark)

    Hansen, A. D.; Soerensen, Poul; Iov, Florin

    2004-01-01

    The paper presents an overall control method for variable speed pitch controlled wind turbines with double-feed induction generators (DFIG). Emphasis is on control strategies and algorithms applied at each hierarchical control level of the wind turbine. The objectives of the control system are: 1...... for normal continuous operations. The strongest feature of the implemented control method is that it allows the turbine to operate with the optimum power efficiency over a wider range of wind speeds. The model of the variable speed, variable pitch wind turbine with doubly-fed induction generator...

  13. Evaluating the impact of electrical grid connection on the wind turbine performance for Hofa wind farm scheme in Jordan

    International Nuclear Information System (INIS)

    Abderrazzaq, M.H.; Aloquili, O.

    2008-01-01

    The growth of wind energy is attributed to the development of turbine size and the increase in number of units in each wind farm. The current modern design of large wind turbines (WT) is directed towards producing efficient, sensitive and reliable units. To achieve this goal, modern turbines are equipped with several devices which are operated with highly advanced electronic circuits. Sensing instruments, measuring devices and control processes of major systems and subsystems are based on various types of electronic apparatus and boards. These boards are very sensitive to the voltage variations caused by abnormal conditions in both the turbine itself and the electric grid to which the wind farm is connected. This paper evaluates wind farm records and proposes a number of methods to overcome such obstacles associated with the design of large wind turbines. Several cases of grid abnormality such as sudden feeder interruption due to the short circuit, network disconnection, voltage variation and circuit breaker opening affecting wind turbines operation and availability are classified and presented. The weight of such impact is determined for each type of disturbances associated with electronic problems in the wind turbine. Wind turbine performance at Hofa wind farm scheme in Jordan is taken as a case study

  14. Advances in wind turbine blade design and materials

    DEFF Research Database (Denmark)

    Wind energy is gaining critical ground in the area of renewable energy, with wind energy being predicted to provide up to 8% of the world’s consumption of electricity by 2021. Advances in wind turbine blade design and materials reviews the design and functionality of wind turbine rotor blades...... of wind turbine blades. The final part of the book describes advances in wind turbine blade materials, development and testing, including biobased composites, surface protection and coatings, structural performance testing and the design, manufacture and testing of small wind turbine blades. Advances...... in wind turbine blade design and materials offers a comprehensive review of the recent advances and challenges encountered in wind turbine blade materials and design, and will provide an invaluable reference for researchers and innovators in the field of wind energy production, including materials...

  15. Feasibility of Small Wind Turbines in Ontario: Integrating Power Curves with Wind Trends

    Directory of Open Access Journals (Sweden)

    Masaō Ashtine

    2016-12-01

    Full Text Available Micro-scale/small wind turbines, unlike larger utility-scale turbines, produce electricity at a rate of 300 W to 10 kW at their rated wind speed and are typically below 30 m in hub-height. These wind turbines have much more flexibility in their costs, maintenance and siting, owing to their size, and can provided wind energy in areas much less suited for direct supply to the grid system. In the future under climate change, the energy landscape will likely shift from the present centralized electricity generation and delivery system to a more distributed and locally-generated electricity and delivery system. In the new system configuration, the role of relatively small sustainable electricity generators like small wind turbines will likely become more prominent. However, the small wind industry has been substantially slow to progress in Ontario, Canada, and there is much debate over its viability in a growing energy dependent economy. This study seeks to demonstrate the performance of a small wind turbine, and speculate on its potential power output and trend over Ontario historically over the last 33 years using the North American Regional Reanalysis (NARR data. We assessed the efficiency of a Bergey Excel 1 kW wind turbine at the pre-established Kortright Centre for Conservation test site, located north of Toronto. Using a novel approach, the Bergey optimized power curve was incorporated with reanalysis data to establish power output across Ontario at three-hour resolution. Small turbine-based wind power around the Great Lakes and eastern James Bay increased during winter and fall, contributing up to 10% of the annual electricity demand in some regions in Ontario. We purport that increases in power output are driven by long-term reductions in sea and lake ice concentrations affecting atmospheric stability in surrounding regions.

  16. Realization and control of a wind turbine connected to the grid by using PMSG

    International Nuclear Information System (INIS)

    Dahbi, Abdeldjalil; Hachemi, Mabrouk; Nait-Said, Nasreddine; Nait-Said, Mohamed-Said

    2014-01-01

    Highlights: • Realization and control of a wind turbine. • Control of the system. • Injection to grid. - Abstract: This paper studies the control of a variable-speed wind turbine using the permanent magnet synchronous generator (PMSG) driven by a wind turbine emulator. The wind turbine is realized by imposing the wind profile on emulator to behave as the real wind turbine when it receives the same wind profile. This wind turbine is connected to the grid by means of a two back-to-back voltage-fed pulse width-modulation (PWM) converters to interface the generator and the grid. This paper has three main objectives, the first is realization of the wind turbine emulator, the second is extracting and exploiting the maximum power from the wind, the third is feeding the grid by high-power and good electrical energy quality; to achieve that, we applied the strategies of maximum power point tracking (MPPT) using optimal torque control which allows the PMSG to operate at an optimal speed. The inverter is used for delivering power to the grid, controlled in a way to deliver only the active power into the grid, thus we have unit power factor. DC-link voltage is also controlled by the inverter. This paper shows the dynamic performances of the complete system by its simulation using Matlab Simulink. Experimental results has verified and validated the wind turbine emulator and the efficiency of MPPT control method using a variable wind profile

  17. Wind tunnel tests of a free yawing downwind wind turbine

    Science.gov (United States)

    Verelst, D. R. S.; Larsen, T. J.; van Wingerden, J. W.

    2014-12-01

    This research paper presents preliminary results on a behavioural study of a free yawing downwind wind turbine. A series of wind tunnel tests was performed at the TU Delft Open Jet Facility with a three bladed downwind wind turbine and a rotor radius of 0.8 meters. The setup includes an off the shelf three bladed hub, nacelle and generator on which relatively flexible blades are mounted. The tower support structure has free yawing capabilities provided at the base. A short overview on the technical details of the experiment is given as well as a brief summary of the design process. The discussed test cases show that the turbine is stable while operating in free yawing conditions. Further, the effect of the tower shadow passage on the blade flapwise strain measurement is evaluated. Finally, data from the experiment is compared with preliminary simulations using DTU Wind Energy's aeroelastic simulation program HAWC2.

  18. Who should own the nearshore wind turbines?

    DEFF Research Database (Denmark)

    Jensen, Louise Krog; Sperling, Karl

    This report examines the possibility for non-profit organisations to participate in tenders for nearshore wind turbines in Denmark under the current frame-work conditions in the area. The point of departure is a case study of the non-profit organisation Wind People’s attempt to participate with a...... their academic professional network to pull the strings and get in touch with relevant persons and actors when organising a tender or a project....... with a popular project in the Danish tender for 350 MW nearshore wind turbines. A series of in-depth interviews have been carried out with Wind People’s staff in order to make an in-depth analysis of their actions and experiences of entering into the market for nearshore wind turbines. The report concludes...... that it is not possible for non-profit organisations to participate with popular projects in connection with tenders for nearshore wind turbines in Denmark under the current framework conditions. Therefore, it is necessary to make a modification of the framework conditions. In itself, this is not sufficient to pave...

  19. Wind power production: from the characterisation of the wind resource to wind turbine technologies

    International Nuclear Information System (INIS)

    Beslin, Guy; Multon, Bernard

    2016-01-01

    Illustrated by graphs and tables, this article first describes the various factors and means related to the assessment of wind resource in the World, in Europe, and the factors which characterize a local wind resource. In this last respect, the authors indicate how local topography is taken into account to calculate wind speed, how time variations are taken into account (at the yearly, seasonal or daily level), the different methods used to model a local wind resource, how to assess the power recoverable by a wind turbine with horizontal axis (notion of Betz limit). In the second part, the authors present the different wind turbines, their benefits and drawbacks: vertical axis, horizontal axis (examples of a Danish-type wind turbine, of wind turbines designed for extreme conditions). Then, they address the technology of big wind turbines: evolution of technology and of commercial offer, aerodynamic characteristics of wind turbine and benefit of a varying speed (technological solutions, importance of the electric generator). They describe how to choose a wind turbine, how product lines are organised, how the power curve and energy capacity are determined. The issue of integration of wind energy into the power system is then addressed. The next part addressed the economy of wind energy production (annualized production cost, order of magnitude of wind electric power production cost). Future trends are discussed and offshore wind energy production is briefly addressed

  20. Extrapolating Satellite Winds to Turbine Operating Heights

    DEFF Research Database (Denmark)

    Badger, Merete; Pena Diaz, Alfredo; Hahmann, Andrea N.

    2016-01-01

    Ocean wind retrievals from satellite sensors are typically performed for the standard level of 10 m. This restricts their full exploitation for wind energy planning, which requires wind information at much higher levels where wind turbines operate. A new method is presented for the vertical...... extrapolation of satellitebased wind maps. Winds near the sea surface are obtained from satellite data and used together with an adaptation of the Monin–Obukhov similarity theory to estimate the wind speed at higher levels. The thermal stratification of the atmosphere is taken into account through a long...... effects and also, to some extent, for the limited number of satellite samples. The satellite-based and NWP-simulated wind profiles are almost equally accurate with respect to those from the mast. However, the satellite-based maps have a higher spatial resolution, which is particularly important...

  1. The Darrieus wind turbine for electrical power generation

    Science.gov (United States)

    Robinson, M. L.

    1981-06-01

    Aspects of wind as an energy source and the momentum theory of wind turbines are briefly examined. Types of Darrieus wind turbine are described; attention is given to a turbine with airfoil blades curved in troposkein form, and a turbine with straight blades of fixed or variable pitch. The Darrieus vertical-axis wind turbine is then considered with regard to aerodynamics, annual energy output, structures, control systems, and energy storage. Brief reviews of selected Darrieus wind turbine projects are given, including those at Magdalen Islands, Canada, Sandia Laboratories, Reading University, and Australia and New Zealand.

  2. Modeling of wind turbines for power system studies

    Energy Technology Data Exchange (ETDEWEB)

    Petru, T.

    2001-05-01

    When wind turbines are installed into the electric grid, the power quality is affected. Today, strict installation recommendations often prevail due to a lack of knowledge on this subject. Consequently, it is important to predict the impact of wind turbines on the electric grid before the turbines are installed. The thesis describes relevant power quality issues, discusses different configurations of wind turbines with respect to power quality and draw requirements regarding wind turbine modeling. A model of a stall-regulated, fixed-speed wind turbine system is introduced and its power quality impact on the electric grid is evaluated. The model is verified with field measurements.

  3. Wind turbine blade waste in 2050.

    Science.gov (United States)

    Liu, Pu; Barlow, Claire Y

    2017-04-01

    Wind energy has developed rapidly over the last two decades to become one of the most promising and economically viable sources of renewable energy. Although wind energy is claimed to provide clean renewable energy without any emissions during operation, but it is only one side of the coin. The blades, one of the most important components in the wind turbines, made with composite, are currently regarded as unrecyclable. With the first wave of early commercial wind turbine installations now approaching their end of life, the problem of blade disposal is just beginning to emerge as a significant factor for the future. This paper is aimed at discovering the magnitude of the wind turbine blade waste problem, looking not only at disposal but at all stages of a blade's lifecycle. The first stage of the research, the subject of this paper, is to accurately estimate present and future wind turbine blade waste inventory using the most recent and most accurate data available. The result will provide a solid reference point to help the industry and policy makers to understand the size of potential environmental problem and to help to manage it better. This study starts by estimating the annual blade material usage with wind energy installed capacity and average blade weight. The effect of other waste contributing factors in the full lifecycle of wind turbine blades is then included, using industrial data from the manufacturing, testing and in-service stages. The research indicates that there will be 43 million tonnes of blade waste worldwide by 2050 with China possessing 40% of the waste, Europe 25%, the United States 16% and the rest of the world 19%. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  4. Shape Optimization of Wind Turbine Blades

    DEFF Research Database (Denmark)

    Wang, Xudong; Shen, Wen Zhong; Zhu, Wei Jun

    2009-01-01

    of the rotor. The design variables used in the current study are the blade shape parameters, including chord, twist and relative thickness. To validate the implementation of the aerodynamic/aero-elastic model, the computed aerodynamic results are compared to experimental data for the experimental rotor used......This paper presents a design tool for optimizing wind turbine blades. The design model is based on an aerodynamic/aero-elastic code that includes the structural dynamics of the blades and the Blade Element Momentum (BEM) theory. To model the main aero-elastic behaviour of a real wind turbine...... in the European Commision-sponsored project Model Experiments in Controlled Conditions, (MEXICO) and the computed aero-elastic results are examined against the FLEX code for flow post the Tjereborg 2 MW rotor. To illustrate the optimization technique, three wind turbine rotors of different sizes (the MEXICO 25 k...

  5. Laminar-Turbulent transition on Wind Turbines

    DEFF Research Database (Denmark)

    Martinez Hernandez, Gabriel Gerardo

    The present thesis deals with the study of the rotational effects on the laminar-turbulent transition on wind turbine blades. Linear stability theory is used to formulate the stability equations that include the effect of rotation. The mean flow required as an input to stability computations...... parametrized and adapted to an wind turbine rotor geometry. The blade is resolved in radial sections along which calculations are performed. The obtained mean flow is classified according to the parameters used on the rotating configuration, geometry and operational conditions. The stability diagrams have been...... to define the resultant wave magnitude and direction. The propagation of disturbances in the boundary layers in three dimensional flows is relatively a complicated phenomena. The report discusses the available methods and techniques used to predict the transition location. Some common wind turbine airfoils...

  6. System Reliability for Offshore Wind Turbines

    DEFF Research Database (Denmark)

    Marquez-Dominguez, Sergio; Sørensen, John Dalsgaard

    2013-01-01

    Deeper waters and harsher environments are the main factors that make the electricity generated by offshore wind turbines (OWTs) expensive due to high costs of the substructure, operation & maintenance and installation. The key goal of development is to decrease the cost of energy (CoE). In conse......Deeper waters and harsher environments are the main factors that make the electricity generated by offshore wind turbines (OWTs) expensive due to high costs of the substructure, operation & maintenance and installation. The key goal of development is to decrease the cost of energy (Co...... in inspections or measurements from condition monitoring systems. Finally, an example is established to illustrate the practical application of this framework for jacket type wind turbine substructure considering system effects....

  7. Performance of spanish wind turbines

    International Nuclear Information System (INIS)

    Lago, C.

    1995-01-01

    In this document we can find a statistical evaluation for the wind energy generation from each spanish wind farm referred to 1994, going on with the work that has been carried out since 1992, by initiative of the Wind Energy Division from Renewable Energy Institute. The purpose of this work is to contribute with interesting information for the wind environment and offer a global view from monthly performances of different wind farms. (Author)

  8. Magnus wind turbines as an alternative to the blade ones

    International Nuclear Information System (INIS)

    Bychkov, N M; Dovgal, A V; Kozlov, V V

    2007-01-01

    Experimental and calculated data on a wind turbine equipped with rotating cylinders instead of traditional blades are reported. Optimal parameters and the corresponding operational characteristics of the windwheel are given in comparison with those of the blade wind turbines

  9. International Review of Grid Connection Requirements for Wind Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Jauch, Clemens; Soerensen, Poul [Risoe National Laboratory, Roskilde (Denmark). Wind Energy Dept.; Bak-Jensen, Birgitte [Aalborg Univ. (Denmark). Inst. of Energy Technology

    2004-07-01

    Some of the latest and most relevant grid connection requirements for wind turbines of different countries are summarized and discussed. The inherent implications of these requirements for current wind turbine technology are outlined and discussed.

  10. Experimental studies of Savonius wind turbines with variations sizes and fin numbers towards performance

    Science.gov (United States)

    Utomo, Ilham Satrio; Tjahjana, Dominicus Danardono Dwi Prija; Hadi, Syamsul

    2018-02-01

    The use of renewable energy in Indonesia is still low. Especially the use of wind energy. Wind turbine Savonius is one turbine that can work with low wind speed. However, Savonius wind turbines still have low efficiency. Therefore it is necessary to modify. Modifications by using the fin are expected to increase the positive drag force by creating a flow that can enter the overlap ratio of the gap. This research was conducted using experimental approach scheme. Parameters generated from the experiment include: power generator, power coefficient, torque coefficient. The experimental data will be collected by variation of fin area, horizontal finning, at wind speed 3 m/s - 4,85 m/s. Experimental results show that with the addition of fin can improve the performance of wind turbine Savonius 11%, and by using the diameter of 115 mm fin is able to provide maximum performance in wind turbine Savonius.

  11. Wind Turbine Control Impact on Stability of Wind Farms Based on Real-Life Systems Analysis

    DEFF Research Database (Denmark)

    Kocewiak, Lukasz Hubert; Hjerrild, Jesper; Bak, Claus Leth

    2012-01-01

    that wind farm components such as long HVAC cables and park transformers can introduce significant low-frequency series resonances seen form the wind turbine terminals which can affect wind turbine control system operation and overall wind farm stability. The same wind turbine converter control strategy...

  12. Modified Adaptive Control for Region 3 Operation in the Presence of Wind Turbine Structural Modes

    Science.gov (United States)

    Frost, Susan Alane; Balas, Mark J.; Wright, Alan D.

    2010-01-01

    Many challenges exist for the operation of wind turbines in an efficient manner that is reliable and avoids component fatigue and failure. Turbines operate in highly turbulent environments resulting in aerodynamic loads that can easily excite turbine structural modes, possibly causing component fatigue and failure. Wind turbine manufacturers are highly motivated to reduce component fatigue and failure that can lead to loss of revenue due to turbine down time and maintenance costs. The trend in wind turbine design is toward larger, more flexible turbines that are ideally suited to adaptive control methods due to the complexity and expense required to create accurate models of their dynamic characteristics. In this paper, we design an adaptive collective pitch controller for a high-fidelity simulation of a utility-scale, variable-speed horizontal axis wind turbine operating in Region 3. The objective of the adaptive pitch controller is to regulate generator speed, accommodate wind gusts, and reduce the excitation of structural modes in the wind turbine. The control objective is accomplished by collectively pitching the turbine blades. The adaptive collective pitch controller for Region 3 was compared in simulations with a baseline classical Proportional Integrator (PI) collective pitch controller. The adaptive controller will demonstrate the ability to regulate generator speed in Region 3, while accommodating gusts, and reducing the excitation of certain structural modes in the wind turbine.

  13. Methods and apparatus for rotor load control in wind turbines

    Science.gov (United States)

    Moroz, Emilian Mieczyslaw

    2006-08-22

    A wind turbine having a rotor, at least one rotor blade, and a plurality of generators, of which a first generator is configured to provide power to an electric grid and a second generator is configured to provide power to the wind turbine during times of grid loss. The wind turbine is configured to utilize power provided by the second generator to reduce loads on the wind turbine during times of grid loss.

  14. Health effects related to wind turbine noise exposure

    DEFF Research Database (Denmark)

    Schmidt, Jesper Hvass; Klokker, Mads

    2014-01-01

    BACKGROUND: Wind turbine noise exposure and suspected health-related effects thereof have attracted substantial attention. Various symptoms such as sleep-related problems, headache, tinnitus and vertigo have been described by subjects suspected of having been exposed to wind turbine noise...... existing statistically-significant evidence indicating any association between wind turbine noise exposure and tinnitus, hearing loss, vertigo or headache. LIMITATIONS: Selection bias and information bias of differing magnitudes were found to be present in all current studies investigating wind turbine...

  15. OPTIMISATION OF WIND TURBINE WITH DIFFUSER USING CFD TOOL

    OpenAIRE

    Mr. K Prakash, R.Sreeju , S.Vijaychandran, A.R.Sridharan

    2017-01-01

    A wind turbine or wind power plant is a device that converts kinetic energy from the wind into electric current. Mechanical energy is simply created when the wind turbine blades spin and a generator is turned, thus producing electricity. Diffuser can increase turbine power output primarily by increasing mass flow rate through the blades because of controlled diffusion of the turbine wake which which lowers the exit plane pressure considerably below atmospheric, and secondarily by reducing bla...

  16. CFD for wind and tidal offshore turbines

    CERN Document Server

    Montlaur, Adeline

    2015-01-01

    The book encompasses novel CFD techniques to compute offshore wind and tidal applications. Computational fluid dynamics (CFD) techniques are regarded as the main design tool to explore the new engineering challenges presented by offshore wind and tidal turbines for energy generation. The difficulty and costs of undertaking experimental tests in offshore environments have increased the interest in the field of CFD which is used to design appropriate turbines and blades, understand fluid flow physical phenomena associated with offshore environments, predict power production or characterise offshore environments, amongst other topics.

  17. Torsional Performance of Wind Turbine Blades

    DEFF Research Database (Denmark)

    Branner, Kim; Berring, Peter; Berggreen, Christian

    2007-01-01

    The present work investigates how well different finite element modeling techniques can predict bending and torsion behavior of a wind turbine blade. Two shell models are investigated. One model has element offsets and the other has the elements at the mid-thickness surfaces of the model. The last...... two models investigated use a combination of shell and solid elements. The results from the numerical investigations are compared with measurements from testing of a section of a full-scale wind turbine blade. It is found that only the combined shell/solid models give reliable results in torsion. Both...

  18. Aero-acoustic Computations of Wind Turbines

    DEFF Research Database (Denmark)

    Shen, Wen Zhong; Michelsen, Jess; Sørensen, Jens Nørkær

    2002-01-01

    A numerical algorithm for acoustic noise generation is extended to 3D flows. The approach involves two parts comprising a viscous incompressible flow part and an inviscid acoustic part. In order to simulate noise generated from a wind turbine, the incompressible and acoustic equations are written...... in polar coordinates. The developed algorithm is combined with a so-called actuator-line technique in which the loading is distributed along lines representing the blade forces. Computations are carried out for the 500kW Nordtank wind turbine equipped with three LM19 blades. ©2001 The American Institute...

  19. Effectiveness of Changing Wind Turbine Cut-in Speed to Reduce Bat Fatalities at Wind Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Huso, Manuela M. P. [Oregon State Univ., Corvallis, OR (United States); Hayes, John P. [Univ. of Florida, Gainesville, FL (United States)

    2009-04-01

    This report details an experiment on the effectiveness of changing wind turbine cut-in speed on reducing bat fatality from wind turbines at the Casselman Wind Project in Somerset County, Pennsylvania.

  20. Impact of wind turbines on birdlife

    International Nuclear Information System (INIS)

    Benner, J.H.B.; Berkhuizen, J.C.; De Graaff, R.J.; Postma, A.D.; Hendriks, J.H.W.

    1993-05-01

    An overview of wind energy programmes is presented, as well as an analysis of recent studies on the title subject and data on the attitude of nature conservation organisations both from the USA and Europe. The studies were analyzed for legitimacy of assumptions and validity of the conclusions. Most of the wind energy programs and all European studies deal with bird kills and disturbance in coastal areas. The number of victims per turbine per year in this type of area appears to be acceptable. The disturbing effect of wind turbines on breeding birds appears to be negligible. The disturbance of resting and migrating birds by wind turbines however is reasonably clear. As a result of international concern several sites have been designated where siting of wind turbines is prohibited. Well known examples are wetlands of international importance (Ramsar-convention) and European Community Special Protection Areas. Major concern among conservationists is the location of many valuable and vulnerable environmental resources outside the protected areas. Negative attitudes towards wind energy projects are not particularly due to avian considerations, but rather to a general objective to protect landscapes and habitats, undisturbed by human infrastructures and disturbance. It is concluded that all new locations for wind energy projects should be weighed on the disturbance aspect. Reference data for such a weigh are available for coastal areas, although the impact on local migration between feeding grounds and high water refugee areas needs further research. Future research is also needed for application of wind energy both on off-shore locations, grasslands and farmlands. Wind energy developers and conservationists should have a close contact in order to establish consensus on how to deal with remaining uncertainties. 7 figs., 9 tabs., 5 appendices, 37 refs

  1. Crack Monitoring of Operational Wind Turbine Foundations.

    Science.gov (United States)

    Perry, Marcus; McAlorum, Jack; Fusiek, Grzegorz; Niewczas, Pawel; McKeeman, Iain; Rubert, Tim

    2017-08-21

    The degradation of onshore, reinforced-concrete wind turbine foundations is usually assessed via above-ground inspections, or through lengthy excavation campaigns that suspend wind power generation. Foundation cracks can and do occur below ground level, and while sustained measurements of crack behaviour could be used to quantify the risk of water ingress and reinforcement corrosion, these cracks have not yet been monitored during turbine operation. Here, we outline the design, fabrication and field installation of subterranean fibre-optic sensors for monitoring the opening and lateral displacements of foundation cracks during wind turbine operation. We detail methods for in situ sensor characterisation, verify sensor responses against theoretical tower strains derived from wind speed data, and then show that measured crack displacements correlate with monitored tower strains. Our results show that foundation crack opening displacements respond linearly to tower strain and do not change by more than ±5 μ m. Lateral crack displacements were found to be negligible. We anticipate that the work outlined here will provide a starting point for real-time, long-term and dynamic analyses of crack displacements in future. Our findings could furthermore inform the development of cost-effective monitoring systems for ageing wind turbine foundations.

  2. The noise generated by wind turbines

    International Nuclear Information System (INIS)

    Anon.

    2012-01-01

    Sound propagation damps down with distance and varies according to different parameters like wind direction and temperature. This article begins by recalling the basic physics of sound wave propagation and gives a list of common noises and corresponding decibels. The habitual noise of wind turbines 500 m away is 35 decibels which ranks it between a quiet bedroom (30 decibels) and a calm office (40 decibels). The question about whether wind turbines are a noise nuisance is all the more difficult as the feeling of a nuisance is so objective and personal. Any project of wind turbines requires a thorough study of its estimated acoustic impact. This study is a 3 step approach: first the initial noise environment is measured, secondly the propagation of the sound generated by the wind turbine farm is modelled and adequate mitigation measures are proposed to comply the law. The law stipulates that the increase of noise must be less than 5 db during daylight and less than 3 db during night. (A.C.)

  3. Advantages on monitoring wind turbine nacelle oscillation

    DEFF Research Database (Denmark)

    Skrimpas, Georgios Alexandros; Marhadi, Kun Saptohartyadi; Hilmisson, Reynir

    2015-01-01

    Nacelle oscillation monitoring, where accelerometers are mounted on the nacelle frame, is integral part of modern condition monitoring systems towards holistic and consistent health assessment of wind turbines. It enables detection of abnormal behavior associated to increased stresses and vibrati......Nacelle oscillation monitoring, where accelerometers are mounted on the nacelle frame, is integral part of modern condition monitoring systems towards holistic and consistent health assessment of wind turbines. It enables detection of abnormal behavior associated to increased stresses...... and vibrations on blades, tower and drive train components, which may jeopardize their working condition. The present paper deals with the comparison and analysis of vibration signals from wind turbines subjected to various failure modes and operating conditions, such as blade misalignment, pitch malfunction......, ice accretion, damaged blade tips and yaw system defects. Theoretical analysis of nacelle movement at down wind and lateral direction is presented along with field results from multi megawatt wind turbines. Additionally the paper discusses the employment of nacelle accelerometers for cross reference...

  4. Power Electronics as key technology in wind turbines

    DEFF Research Database (Denmark)

    Blaabjerg, Frede

    2005-01-01

    This paper discuss the development in wind turbines in a two-decade perspective looking at the technology based on track records. Different power electronic topologies for interfacing the wind turbine to the grid are discussed and related to the possibility for the wind turbine to act as a power...

  5. Analysis of horizontal axis wind turbine blade using CFD | Nigam ...

    African Journals Online (AJOL)

    Blade is very essential part of HAWT (horizontal axis wind turbine). Forces for Lift and drag on the blade has an important role in the wind turbine performance. The main purpose of this work is to perform CFD analysis of a blade and airfoil of wind turbine using k-ω SST model. In this present study NACA 634 -221 airfoil ...

  6. Load alleviation on wind turbine blades using variable geometry

    DEFF Research Database (Denmark)

    Basualdo, Santiago

    2005-01-01

    ) wind turbines, which mainly operate under this flow condition. The results show evident reductions in the airfoil displacements by using simple control strategies having the airfoil position and its first and second derivatives as input, especially at the system's eigenfrequency. The use of variable...... in loads in real wind turbines. Keywords: Variable Geometry, Wind Turbine, Load Alleviation, Fatigue Load, Trailing Edge Flap....

  7. Structured Linear Parameter Varying Control of Wind Turbines

    DEFF Research Database (Denmark)

    Adegas, Fabiano Daher; Sloth, Christoffer; Stoustrup, Jakob

    2012-01-01

    High performance and reliability are required for wind turbines to be competitive within the energy market. To capture their nonlinear behavior, wind turbines are often modeled using parameter-varying models. In this chapter, a framework for modelling and controller design of wind turbines is pre...

  8. Duration Test Report for the Entegrity EW50 Wind Turbine

    Energy Technology Data Exchange (ETDEWEB)

    Smith, J.; Huskey, A.; Jager, D.; Hur, J.

    2012-12-01

    This report summarizes the results of a duration test that NREL conducted on the Entegrity EW50 wind turbine. This test was conducted in accordance with the International Electrotechnical Commissions' (IEC) standard, Wind Turbine Generator System Part 2: Design requirements for small wind turbines, IEC 61400-2 Ed.2.0, 2006-03.

  9. WIND TURBINE OPERATION PARAMETER CHARACTERISTICS AT A GIVEN WIND SPEED

    Directory of Open Access Journals (Sweden)

    Zdzisław Kamiński

    2014-06-01

    Full Text Available This paper discusses the results of the CFD simulation of the flow around Vertical Axis Wind Turbine rotor. The examined rotor was designed following patent application no. 402214. The turbine operation is characterised by parameters, such as opening angle of blades, power, torque, rotational velocity at a given wind velocity. Those parameters have an impact on the performance of entire assembly. The distribution of forces acting on the working surfaces in the turbine can change, depending on the angle of rotor rotation. Moreover, the resultant force derived from the force acting on the oncoming and leaving blades should be as high as possible. Accordingly, those parameters were individually simulated over time for each blade in three complete rotations. The attempts to improve the performance of the entire system resulted in a new research trend to improve the performance of working turbine rotor blades.

  10. Research in aeroelasticity[Wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Bak, C.

    2006-05-15

    In the Energy Research Project 'Program for Research in Applied Aeroelasticity' (EFP2005), Risoe National Laboratory (Risoe) and the Technical University of Denmark (DTU) have applied and further developed the tools in the aeroelastic design complex. The main results from the project are: 1) Adding a winglet to a wind turbine blade for minimizing the induced drag of the blade led to the biggest increase in power of 1.4%. 2) Transient wind loads during pitch motion are determined using CFD. Compared to the NREL/NASA Ames test, reasonably good agreement is seen. 3) A general method was developed for the determination of 3D angle of attack for rotating blades from either measurements or numerical computations using CFD. 4) A model of the far wake behind wind turbines was developed for stability studies of the tip vortices in the far wake. 5) Investigating the blade root region showed that the power efficiency, CP, locally can be increased significantly beyond the Betz limit, but that the global CP for the rotor cannot exceed the Betz limit. When including tip losses and a minimum blade drag coefficient, a maximum rotor CP in the range of 0.51-0.52 was obtained. 6) A new airfoil family was designed and a 3D airfoil design tool was developed. Compared to the Risoe-B1 family, the new airfoil family showed similar or improved aerodynamic and structural characteristics. 7) Four different airfoils were analyzed to reveal the differences between 2D and 3D CFD. The major conclusions are the dependency of computational results to transition modelling, and the ability of 3D DES calculations to realistically simulate the turbulent wake of an airfoil in stall. 8) The capability of a theory for simulation of Gaussian turbulence driven gust events was demonstrated by emulating a violent shear gust event from a complex site. An asymptotic model for the PDF of the largest excursion from the mean level, during an arbitrary recurrence period, has been derived for a stochastic

  11. Evolution of wind towards wind turbine

    NARCIS (Netherlands)

    Giyanani, A.H.; Bierbooms, W.A.A.M.; Van Bussel, G.J.W.

    2015-01-01

    Remote sensing of the atmospheric variables with the use of LiDAR is a relatively new technology field for wind resource assessment in wind energy. The validation of LiDAR measurements and comparisons is of high importance for further applications of the data.

  12. Transient LES of an offshore wind turbine

    Directory of Open Access Journals (Sweden)

    L. Vollmer

    2017-12-01

    Full Text Available The estimation of the cost of energy of offshore wind farms has a high uncertainty, which is partly due to the lacking accuracy of information on wind conditions and wake losses inside of the farm. Wake models that aim to reduce the uncertainty by modeling the wake interaction of turbines for various wind conditions need to be validated with measurement data before they can be considered as a reliable estimator. In this paper a methodology that enables a direct comparison of modeled with measured flow data is evaluated. To create the simulation data, a model chain including a mesoscale model, a large-eddy-simulation (LES model and a wind turbine model is used. Different setups are compared to assess the capability of the method to reproduce the wind conditions at the hub height of current offshore wind turbines. The 2-day-long simulation of the ambient wind conditions and the wake simulation generally show good agreements with data from a met mast and lidar measurements, respectively. Wind fluctuations due to boundary layer turbulence and synoptic-scale motions are resolved with a lower representation of mesoscale fluctuations. Advanced metrics to describe the wake shape and development are derived from simulations and measurements but a quantitative comparison proves to be difficult due to the scarcity and the low sampling rate of the available measurement data. Due to the implementation of changing synoptic wind conditions in the LES, the methodology could also be beneficial for case studies of wind farm performance or wind farm control.

  13. Wind Turbine Generator System Power Quality Test Report for the Gaia Wind 11-kW Wind Turbine

    Energy Technology Data Exchange (ETDEWEB)

    Curtis, A.; Gevorgian, V.

    2011-07-01

    This report details the power quality test on the Gaia Wind 11-kW Wind Turbine as part of the U.S. Department of Energy's Independent Testing Project. In total five turbines are being tested as part of the project. Power quality testing is one of up to five test that may be performed on the turbines including power performance, safety and function, noise, and duration tests. The results of the testing provide manufacturers with reports that may be used for small wind turbine certification.

  14. Airfoil family design for large offshore wind turbine blades

    International Nuclear Information System (INIS)

    Méndez, B; Munduate, X; Miguel, U San

    2014-01-01

    Wind turbine blades size has scaled-up during last years due to wind turbine platform increase especially for offshore applications. The EOLIA project 2007-2010 (Spanish Goverment funded project) was focused on the design of large offshore wind turbines for deep waters. The project was managed by ACCIONA Energia and the wind turbine technology was designed by ACCIONA Windpower. The project included the design of a wind turbine airfoil family especially conceived for large offshore wind turbine blades, in the order of 5MW machine. Large offshore wind turbines suffer high extreme loads due to their size, in addition the lack of noise restrictions allow higher tip speeds. Consequently, the airfoils presented in this work are designed for high Reynolds numbers with the main goal of reducing blade loads and mantainig power production. The new airfoil family was designed in collaboration with CENER (Spanish National Renewable Energy Centre). The airfoil family was designed using a evolutionary algorithm based optimization tool with different objectives, both aerodynamic and structural, coupled with an airfoil geometry generation tool. Force coefficients of the designed airfoil were obtained using the panel code XFOIL in which the boundary layer/inviscid flow coupling is ineracted via surface transpiration model. The desing methodology includes a novel technique to define the objective functions based on normalizing the functions using weight parameters created from data of airfoils used as reference. Four airfoils have been designed, here three of them will be presented, with relative thickness of 18%, 21%, 25%, which have been verified with the in-house CFD code, Wind Multi Block WMB, and later validated with wind tunnel experiments. Some of the objectives for the designed airfoils concern the aerodynamic behavior (high efficiency and lift, high tangential coefficient, insensitivity to rough conditions, etc.), others concern the geometry (good for structural design

  15. Wind tunnel tests of a free yawing downwind wind turbine

    DEFF Research Database (Denmark)

    Verelst, David Robert; Larsen, Torben J.; van Wingerden, J.W.

    2012-01-01

    During February and April 2012 a series of wind tunnel tests were performed at the TU Delft Open Jet Facility (OJF) with a three bladed downwind wind turbine and a rotor radius of 0.8 meters. The setup includes an off the shelf three bladed hub, nacelle and generator on which relatively flexible ...... in free yawing conditions. Further, the effect of the tower shadow passage on the blade flapwise strain measurement is evaluated. Finally, data from the experiment is compared with preliminary simulations using DTU Wind Energy's aeroelastic simulation program HAWC2.......During February and April 2012 a series of wind tunnel tests were performed at the TU Delft Open Jet Facility (OJF) with a three bladed downwind wind turbine and a rotor radius of 0.8 meters. The setup includes an off the shelf three bladed hub, nacelle and generator on which relatively flexible...

  16. Optimum Operational Parameters for Yawed Wind Turbines

    Directory of Open Access Journals (Sweden)

    David A. Peters

    2011-01-01

    Full Text Available A set of systematical optimum operational parameters for wind turbines under various wind directions is derived by using combined momentum-energy and blade-element-energy concepts. The derivations are solved numerically by fixing some parameters at practical values. Then, the interactions between the produced power and the influential factors of it are generated in the figures. It is shown that the maximum power produced is strongly affected by the wind direction, the tip speed, the pitch angle of the rotor, and the drag coefficient, which are specifically indicated by figures. It also turns out that the maximum power can take place at two different optimum tip speeds in some cases. The equations derived herein can also be used in the modeling of tethered wind turbines which can keep aloft and deliver energy.

  17. Wind Climate Parameters for Wind Turbine Fatigue Load Assessment

    DEFF Research Database (Denmark)

    Toft, Henrik Stensgaard; Svenningsen, Lasse; Moser, Wolfgang

    2016-01-01

    established from the on-site distribution functions of the horizontal mean wind speeds, the 90% quantile of turbulence along with average values of vertical wind shear and air density and the maximum flow inclination. This paper investigates the accuracy of fatigue loads estimated using this equivalent wind...... climate required by the current design standard by comparing damage equivalent fatigue loads estimated based on wind climate parameters for each 10 min time-series with fatigue loads estimated based on the equivalent wind climate parameters. Wind measurements from Boulder, CO, in the United States...... and Høvsøre in Denmark have been used to estimate the natural variation in the wind conditions between 10 min time periods. The structural wind turbine loads have been simulated using the aero-elastic model FAST. The results show that using a 90% quantile for the turbulence leads to an accurate assessment...

  18. Simulation of flow over double-element airfoil and wind tunnel test for use in vertical axis wind turbine

    DEFF Research Database (Denmark)

    Chougule, Prasad; Nielsen, Søren R.K.

    2014-01-01

    Nowadays, small vertical axis wind turbines are receiving more attention due to their suitability in micro-electricity generation. There are few vertical axis wind turbine designs with good power curve. However, the efficiency of power extraction has not been improved. Therefore, an attempt has...... been made to utilize high lift technology for vertical axis wind turbines in order to improve power efficiency. High lift is obtained by double-element airfoil mainly used in aeroplane wing design. In this current work a low Reynolds number airfoil is selected to design a double-element airfoil blade...... for use in vertical axis wind turbine to improve the power efficiency. Double-element airfoil blade design consists of a main airfoil and a slat airfoil. Orientation of slat airfoil is a parameter of investigation in this paper and air flow simulation over double-element airfoil. With primary wind tunnel...

  19. Effects of Icing on Wind Turbine Fatigue Loads

    International Nuclear Information System (INIS)

    Frohboese, Peter; Anders, Andreas

    2007-01-01

    The external conditions occurring at cold climate sites will affect wind turbines in different ways. The effects of ice accretion on wind turbines and the influence on the turbine fatigue loads are examined. The amount of icing prior to turbine installation needs to be estimated by using standard measurement data and considering the geometry of the proposed turbine. A procedure to calculate the expected ice accretion on wind turbines out of standard measurement data is explained and the results are discussed. Different parameters to describe the accreted ice on the turbine are examined separately in a fatigue load calculation. The results of the fatigue load calculation are discussed and selected cases are presented

  20. Wind power integration : From individual wind turbine to wind park as a power plant

    NARCIS (Netherlands)

    Zhou, Y.

    2009-01-01

    As power capacities of single wind turbine, single wind park and total wind power installation are continuously increasing, the wind power begins to challenge the safety operation of the power system. This thesis focuses on the grid integration aspects such as the dynamic behaviours of wind power

  1. Mechanical power efficiency of modified turbine blades

    Science.gov (United States)

    Mahmud, Syahir; Sampebatu, Limbran; Kwang, Suendy Ciayadi

    2017-01-01

    Abstract-The problem of energy crisis has become one of the unsolved issues until today. Indonesia has a lot of non-conventional energy sources that does not utilized effectively yet. For that the available resources must utilized efficiently due to the energy crisis and the growing energy needs. Among the abundant resources of energy, one potential source of energy is hydroelectric energy. This research compares the mechanical power efficiency generated by the Darrieus turbine, Savonius turbine and the Darrieus-Savonius turbine. The comparation of the mechanical power amongst the three turbine starts from the measurement of the water flow rate, water temperature, turbine rotation and force on the shaft on each type of turbine. The comparison will show the mechanical power efficiency of each turbine to find the most efficient turbine that can work optimally. The results show that with 0.637m/s flow velocity and 44.827 Watt of water flow power, the Darrieus-Savonius turbine can generate power equal to 29.927 Watt and shaft force around by 17 N. The Darrieus-Savonius turbine provides around 66.76% efficiency betwen the three turbines; Darrieus turbine, Savonius turbine and the Darrieus-Savonius turbine. Overall, the Darrieus Savonius turbine has the ability to work optimally at the research location.

  2. Reliability of wind turbine blades: An overview of materials testing

    DEFF Research Database (Denmark)

    Holmes, John W.; Sørensen, Bent F.; Brøndsted, Povl

    2007-01-01

    The structural reliability of wind turbine components can have a profound impact on both the profitability and reputation of a wind turbine manufacturer or supplier of wind turbine components. The issue of reliability is of critical concern when large wind farm co-operatives are considered......, and when wind turbines are located in remote regions where the cost of inspections and repairs can be very high. From a structural viewpoint, wind turbine blades are subjected to very complex loading histories with coupled deformation modes. The long-term reliability of wind turbine blades requires...... an understanding of how damage develops in composite structures, composite materials and adhesives. Designing reliable wind turbine blades also requires the further development of laboratory scale and full scale test methods to evaluate the structural response and durability of new materials under various loading...

  3. Built-Environment Wind Turbine Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    Smith, J.; Forsyth, T.; Sinclair, K.; Oteri, F.

    2012-11-01

    Although only a small contributor to total electricity production needs, built-environment wind turbines (BWTs) nonetheless have the potential to influence the public's consideration of renewable energy, and wind energy in particular. Higher population concentrations in urban environments offer greater opportunities for project visibility and an opportunity to acquaint large numbers of people to the advantages of wind projects on a larger scale. However, turbine failures will be equally visible and could have a negative effect on public perception of wind technology. This roadmap provides a framework for achieving the vision set forth by the attendees of the Built-Environment Wind Turbine Workshop on August 11 - 12, 2010, at the U.S. Department of Energy's National Renewable Energy Laboratory. The BWT roadmap outlines the stakeholder actions that could be taken to overcome the barriers identified. The actions are categorized as near-term (0 - 3 years), medium-term (4 - 7 years), and both near- and medium-term (requiring immediate to medium-term effort). To accomplish these actions, a strategic approach was developed that identifies two focus areas: understanding the built-environment wind resource and developing testing and design standards. The authors summarize the expertise and resources required in these areas.

  4. Dynamic wind turbine models in power system simulation tool DIgSILENT

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, A.D.; Iov, F.; Soerensen, Poul.; Cutululis, N.; Jauch, C.; Blaabjerg, F.

    2007-08-15

    This report presents a collection of models and control strategies developed and implemented in the power system simulation tool PowerFactory DIgSILENT for different wind turbine concepts. It is the second edition of Risoe-R-1400(EN) and it gathers and describes a whole wind turbine model database built-op and developed during several national research projects, carried out at Risoe DTU National Laboratory for Sustainable Energy and Aalborg University, in the period 2001-2007. The overall objective of these projects was to create a wind turbine model database able to support the analysis of the interaction between the mechanical structure of the wind turbine and the electrical grid during different operational modes. The report provides thus a description of the wind turbines modelling, both at a component level and at a system level. The report contains both the description of DIgSILENT built-in models for the electrical components of a grid connected wind turbine (e.g. induction generators, power converters, transformers) and the models developed by the user, in the dynamic simulation language DSL of DIgSILENT, for the non-electrical components of the wind turbine (wind model, aerodynamic model, mechanical model). The initialisation issues on the wind turbine models into the power system simulation are also presented. The main attention in the report is drawn to the modelling at the system level of the following wind turbine concepts: (1) Fixed speed active stall wind turbine concept (2) Variable speed doubly-fed induction generator wind turbine concept (3) Variable speed multi-pole permanent magnet synchronous generator wind turbine concept These wind turbine concept models can be used and even extended for the study of different aspects, e.g. the assessment of power quality, control strategies, connection of the wind turbine at different types of grid and storage systems. Different control strategies have been developed and implemented for these wind turbine

  5. Dynamic behavior of parked wind turbine at extreme wind speed

    DEFF Research Database (Denmark)

    Totsuka, Yoshitaka; Imamura, Hiroshi; Yde, Anders

    2016-01-01

    In wind turbine design process, a series of load analysis is generally performed to determine ultimate and fatigue loads under various design load cases (DLCs) which is specified in IEC 61400. These design load scenario covers not only normal operating condition but also startup, shutdown, parked...... of standstill and idling is analyzed by time domain simulations using two different coupled aero-hydro-servo-elastic codes. Trend in modern wind turbines is development of bigger, lighter and more flexible rotors where vibration issues may cause aero-elastic instabilities which have a serious impact...

  6. Large wind turbine development in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Zervos, A. [Center for Renewable Energy Sources, Attikis (Greece)

    1996-12-31

    During the last few years we have witnessed in Europe the development of a new generation of wind turbines ranging from 1000-1500 kW size. They are presently being tested and they are scheduled to reach the market in late 1996 early 1997. The European Commission has played a key role by funding the research leading to the development of these turbines. The most visible initiative at present is the WEGA program - the development, together with Europe`s leading wind industry players of a new generation of turbines in the MW range. By the year 1997 different European manufacturers will have introduced almost a dozen new MW machine types to the international market, half of them rated at 1.5 MW. 3 refs., 3 tabs.

  7. Wind turbine reliability :understanding and minimizing wind turbine operation and maintenance costs.

    Energy Technology Data Exchange (ETDEWEB)

    Walford, Christopher A. (Global Energy Concepts. Kirkland, WA)

    2006-03-01

    Wind turbine system reliability is a critical factor in the success of a wind energy project. Poor reliability directly affects both the project's revenue stream through increased operation and maintenance (O&M) costs and reduced availability to generate power due to turbine downtime. Indirectly, the acceptance of wind-generated power by the financial and developer communities as a viable enterprise is influenced by the risk associated with the capital equipment reliability; increased risk, or at least the perception of increased risk, is generally accompanied by increased financing fees or interest rates. This paper outlines the issues relevant to wind turbine reliability for wind turbine power generation projects. The first sections describe the current state of the industry, identify the cost elements associated with wind farm O&M and availability and discuss the causes of uncertainty in estimating wind turbine component reliability. The latter sections discuss the means for reducing O&M costs and propose O&M related research and development efforts that could be pursued by the wind energy research community to reduce cost of energy.

  8. Wind Turbine Tribology Seminar - A Recap

    Energy Technology Data Exchange (ETDEWEB)

    Errichello, R.; Sheng, S.; Keller, J.; Greco, A.

    2012-02-01

    Tribology is the science and engineering of interacting surfaces in relative motion. It includes the study and application of the principles of friction, lubrication, and wear. It is an important phenomenon that not only impacts the design and operation of wind turbine gearboxes, but also their subsequent maintenance requirements and overall reliability. With the major growth and increasing dependency on renewable energy, mechanical reliability is an extremely important issue. The Wind Turbine Tribology Seminar was convened to explore the state-of-the-art in wind turbine tribology and lubricant technologies, raise industry awareness of a very complex topic, present the science behind each technology, and identify possible R&D areas. To understand the background of work that had already been accomplished, and to consolidate some level of collective understanding of tribology by acknowledged experts, the National Renewable Energy Laboratory (NREL), Argonne National Laboratory (ANL), and the U.S. Department of Energy (DOE) hosted a wind turbine tribology seminar. It was held at the Renaissance Boulder Flatiron Hotel in Broomfield, Colorado on November 15-17, 2011. This report is a summary of the content and conclusions. The presentations given at the meeting can be downloaded. Interested readers who were not at the meeting may wish to consult the detailed publications listed in the bibliography section, obtain the cited articles in the public domain, or contact the authors directly.

  9. Torsional Performance of Wind Turbine Blades

    DEFF Research Database (Denmark)

    Branner, Kim; Berring, Peter; Berggreen, Christian

    2007-01-01

    The present work investigates how well different finite element modeling techniques can predict bending and torsion behavior of a wind turbine blade. Two shell models are investigated. One model has element offsets and the other has the elements at the mid-thickness surfaces of the model. The las...

  10. Wide band characterization of wind turbine reactors

    DEFF Research Database (Denmark)

    Holdyk, Andrzej; Arana Aristi, Ivan; Holbøll, Joachim

    2013-01-01

    This paper presents the results of field measure-ments of the impedance of two commercial available wind turbine reactors, performed by a sweep frequency response analyzer, sFRA. The measurements were taken in the frequency range from 20Hz to 20MHz. Comparable frequency behavior was found in all ...

  11. Results of a wind turbine FDI competition

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Stoustrup, Jakob

    2012-01-01

    In this paper some newly published methods for fault detection and isolation developed for a wind turbine benchmark model are tested, compared and evaluated. These methods have been presented as a part of an international competition. The tested methods cover different types of fault detection...

  12. Floating offshore wind turbines for shallow waters

    NARCIS (Netherlands)

    Bulder, B.H.; Henderson, A.; Huijsmans, R.H.M.; Peeringa, J.M.; Pierik, J.T.G.; Snijders, E.J.B.; Hees, M.Th. van; Wijnants, G.H.; Wolf, M.J.

    2003-01-01

    Bottom mounted Offshore wind turbines seem to have a promising future but they are restricted to shallow waters of Northern Europe. Many projects are planned or are in the phase of construction on the North Sea and the Baltic Sea. All projects that are planned have a water depth up to approximately

  13. Stochastic Modeling Of Wind Turbine Drivetrain Components

    DEFF Research Database (Denmark)

    Rafsanjani, Hesam Mirzaei; Sørensen, John Dalsgaard

    2014-01-01

    reliable components are needed for wind turbine. In this paper focus is on reliability of critical components in drivetrain such as bearings and shafts. High failure rates of these components imply a need for more reliable components. To estimate the reliability of these components, stochastic models...

  14. Review paper on wind turbine aerodynamics

    DEFF Research Database (Denmark)

    Hansen, Martin Otto Laver; Aagaard Madsen, Helge

    2011-01-01

    The paper describes the development and description of the aerodynamic models used to estimate the aerodynamic loads on wind turbine constructions. This includes a status of the capabilities of computation fluid dynamics and the need for reliable airfoil data for the simpler engineering models....... © 2011 American Society of Mechanical Engineers....

  15. Root region airfoil for wind turbine

    Science.gov (United States)

    Tangler, James L.; Somers, Dan M.

    1995-01-01

    A thick airfoil for the root region of the blade of a wind turbine. The airfoil has a thickness in a range from 24%-26% and a Reynolds number in a range from 1,000,000 to 1,800,000. The airfoil has a maximum lift coefficient of 1.4-1.6 that has minimum sensitivity to roughness effects.

  16. Predicting annoyance by wind turbine noise

    NARCIS (Netherlands)

    Janssen, S.A.; Vos, H.; Eisses, A.R.; Pedersen, E.

    2010-01-01

    While wind turbines have beneficial effects for the environment, they inevitably generate environmental noise. In order to protect residents against unacceptable levels of noise, exposure-response relationships are needed to predict the expected percentage of people annoyed or highly annoyed at a

  17. Infrasound from Wind Turbines Could Affect Humans

    Science.gov (United States)

    Salt, Alec N.; Kaltenbach, James A.

    2011-01-01

    Wind turbines generate low-frequency sounds that affect the ear. The ear is superficially similar to a microphone, converting mechanical sound waves into electrical signals, but does this by complex physiologic processes. Serious misconceptions about low-frequency sound and the ear have resulted from a failure to consider in detail how the ear…

  18. Aero-Acoustic Computations of Wind Turbines

    DEFF Research Database (Denmark)

    Zhu, Wei Jun

    2008-01-01

    both for laminar and turbulent flows. Results have shown that sound generation is due to the unsteadiness of the flow field and the spectrum of sound has a strong relation with fluctuating forces on the solid body. Flow and acoustic simulation were also carried out for a wind turbine where general...

  19. Reliability-Based Design of Wind Turbine Foundations – Computational Modelling

    DEFF Research Database (Denmark)

    Vahdatirad, Mohammad Javad

    Among renewable green energy generators, wind turbines are the most technically and economically efficient. Therefore, wind power plants are experiencing a competitive increased trend in global growth. The gas and oil industry is shrouded by political conflict, not the least of which is burning...... increased cost-effectiveness in wind turbines, and an optimized design must be implemented on the expensive structural components. The traditional wind turbine foundation typically expends 25-30% of the total wind turbine budget; thus it is one of the most costly fabrication components. Therefore......, a reduction in foundation cost, and optimizing foundation structural design is the best solution to cost effectiveness. An optimized wind turbine foundation design should provide a suitable target reliability level. Unfortunately, the reliability level is not identified in most current deterministic design...

  20. Low wind speed wind turbine in DIY version

    OpenAIRE

    Van den Bossche, Alex

    2013-01-01

    Wind energy has still a place, as it can generate power in the winter, when less sun is available and when the wind speed is higher. This paper proposes a solution for low cost blades from a polyethylene pipe (PE) and a low cost electric bike generator, which is possible to realize by a do it yourself (DIY) person. It is intended as low wind speed wind turbine (LWWT). The design is rather optimized towards a low cost/swept area, rather than the cost/nominal power. It uses a variant on the fur...

  1. A new generation of wind turbines; Une nouvelle generation d'eoliennes

    Energy Technology Data Exchange (ETDEWEB)

    Nica, H. [Tesnic, Laval, PQ (Canada)

    2008-06-15

    Although homeowners have expressed a desire to use wind energy to supply their electricity needs, many technical barriers have stood in the way of installing wind turbines in urban settings. This was due in part to three-bladed vertical axis turbines, high technical costs, limited performances in urban settings and questionable aesthetics. Tesnic has considered these issues and proposed a completely different turbine that uses a different method for extracting energy from the wind. The first approved 3.6 kW model should appear by the end of 2009. This new turbine is based on the same principal of the steam turbine patented in 1913 by Nikola Tesla. Instead of having blades, the Tesla turbine used closely spaced parallel disks and was recognized as being very robust with a high efficiency rating. Tesnic's new wind powered turbine is a vertical axis turbine with a series of valves that directs the wind on a rotor assembly of disk space. A series of blades on its circumference redirects the wind through the assembly of discs and accelerates the rotation of the rotor. The turbine extracts the wind energy in several ways, including conventional drag and lift, adherence and the vortex effect. This gives a 50 per cent added value of efficiency compared to other wind powered turbines. The global market for small wind powered energy is in full expansion. It has been projected that small turbines with 1 kW capacity will be abundant by 2020. It was noted that for household wind powered energy, the market must consider issues of cost, low maintenance, noise pollution, visual aesthetics, durability and safety. Wind energy can also be used in several industries, including plastics, composites, light metals, textiles and electronics. 2 figs.

  2. Wind Turbine Optimization with WISDEM

    Energy Technology Data Exchange (ETDEWEB)

    Dykes, Katherine L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Damiani, Rick R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Graf, Peter A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Scott, George N [National Renewable Energy Laboratory (NREL), Golden, CO (United States); King, Ryan N [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Guo, Yi [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Quick, Julian [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sethuraman, Latha [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Veers, Paul S [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Ning, Andrew [Brigham Young University

    2018-01-03

    This presentation for the Fourth Wind Energy Systems Engineering Workshop explains the NREL wind energy systems engineering initiative-developed analysis platform and research capability to capture important system interactions to achieve a better understanding of how to improve system-level performance and achieve system-level cost reductions. Topics include Wind-Plant Integrated System Design and Engineering Model (WISDEM) and multidisciplinary design analysis and optimization.

  3. Vertical-axis wind turbine experiments at full dynamic similarity

    Science.gov (United States)

    Duvvuri, Subrahmanyam; Miller, Mark; Brownstein, Ian; Dabiri, John; Hultmark, Marcus

    2017-11-01

    This study presents results from pressurized (upto 200 atm) wind tunnel tests of a self-spinning 5-blade model Vertical-Axis Wind Turbine (VAWT). The model is geometrically similar (scale ratio 1:22) to a commercially available VAWT, which has a rotor diameter of 2.17 meters and blade span of 3.66 meters, and is used at the Stanford university field lab. The use of pressurized air as working fluid allows for the unique ability to obtain full dynamic similarity with field conditions in terms of matched Reynolds numbers (Re), tip-speed ratios (λ), and Mach number (M). Tests were performed across a wide range of Re and λ, with the highest Re exceeding the maximum operational field Reynolds number (Remax) by a factor of 3. With an extended range of accessible Re conditions, the peak turbine power efficiency was seen to occur roughly at Re = 2 Remax and λ = 1 . Beyond Re > 2 Remax the turbine performance is invariant in Re for all λ. A clear demonstration of Reynolds number invariance for an actual full-scale wind turbine lends novelty to this study, and overall the results show the viability of the present experimental technique in testing turbines at field conditions.

  4. Power Performance Test Report for the SWIFT Wind Turbine

    Energy Technology Data Exchange (ETDEWEB)

    Mendoza, I.; Hur, J.

    2012-12-01

    This report summarizes the results of a power performance test that NREL conducted on the SWIFT wind turbine. This test was conducted in accordance with the International Electrotechnical Commission's (IEC) standard, Wind Turbine Generator Systems Part 12: Power Performance Measurements of Electricity Producing Wind Turbines, IEC 61400-12-1 Ed.1.0, 2005-12. However, because the SWIFT is a small turbine as defined by IEC, NREL also followed Annex H that applies to small wind turbines. In these summary results, wind speed is normalized to sea-level air density.

  5. Model-based control of a ballast-stabilized floating wind turbine exposed to wind and waves

    Energy Technology Data Exchange (ETDEWEB)

    Christiansen, Soeren

    2013-01-15

    The wind turbine is a commercial product which is competing against other sources of energy, such as coal and gas. This competition drives a constant development to reduce costs and improve efficiency in order to reduce the total cost of the energy. The latest offshore development is the floating wind turbine, for water depths beyond 50 meters where winds are stronger and less turbulent. A floating wind turbine is subject to not only aerodynamics and wind induced loads, but also to hydrodynamics and wave induced loads. In contrast to a bottom fixed wind turbine, the floating structure, the hydrodynamics and the loads change the dynamic behavior of a floating wind turbine. Consequently, conventional wind turbine control cause instabilities on floating wind turbines. This work addresses the control of a floating spar buoy wind turbine, and focuses on the impact of the additional platform dynamics. A time varying control model is presented based on the wind speed and wave frequency. Estimates of the wind speed and wave frequency are used as scheduling variables in a gain scheduled linear quadratic controller to improve the electrical power production while reducing fatigue. To address the problem of negative damped fore-aft tower motion, additional control loops are suggested which stabilize the response of the onshore controller and reduce the impact of the wave induced loads. This research is then extended to model predictive control, to further address wave disturbances. In the context of control engineering, the dynamics and disturbances of a floating wind turbine have been identified and modeled. The objectives of maximizing the production of electrical power and minimizing fatigue have been reached by using advanced methods of estimation and control. (Author)

  6. Thermodynamic assessment of a wind turbine based combined cycle

    International Nuclear Information System (INIS)

    Rabbani, M.; Dincer, I.; Naterer, G.F.

    2012-01-01

    Combined cycles use the exhaust gases released from a Gas Turbine (GT). Approximately 30–40% of the turbine shaft work is typically used to drive the Compressor. The present study analyzes a system that couples a Wind Turbine (WT) with a combined cycle. It demonstrates how a WT can be used to supply power to the Compressor in the GT cycle and pump fluid through a reheat Rankine cycle, in order to increase the overall power output. Three different configurations are discussed, namely high penetration, low penetration and wind power addition. In the case of a low electricity demand and high penetration configuration, extra wind power is used to compress air which can then be used in the low penetration configuration. During a high load demand, all the wind power is used to drive the pump and compressor and if required additional compressed air is supplied by a storage unit. The analysis shows that increasing the combustion temperature reduces the critical velocity and mass flow rate. Increases in wind speed reduce both energy and exergy efficiency of the overall system. -- Highlights: ► This study analyzes a system that couples a wind turbine with a combined power generation cycle. ► Surplus wind power is used to compress air, which is then stored and used at a later time. ► Increasing the pressure ratio will reduce the work ratio between the Rankine and Brayton cycles. ► A higher combustion temperature will increase the net work output, as well as the system energy and exergy efficiencies.

  7. MACHINE-TRANSFORMER UNITS FOR WIND TURBINES

    Directory of Open Access Journals (Sweden)

    V.I. Panchenko

    2016-03-01

    Full Text Available Background. Electric generators of wind turbines must meet the following requirements: they must be multi-pole; to have a minimum size and weight; to be non-contact, but controlled; to ensure the maximum possible output voltage when working on the power supply system. Multipole and contactless are relatively simply realized in the synchronous generator with permanent magnet excitation and synchronous inductor generator with electromagnetic excitation; moreover the first one has a disadvantage that there is no possibility to control the output voltage, and the second one has a low magnetic leakage coefficient with the appropriate consequences. Purpose. To compare machine dimensions and weight of the transformer unit with induction generators and is an opportunity to prove their application for systems with low RMS-growth rotation. Methodology. A new design of the electric inductor machine called in technical literature as machine-transformer unit (MTU is presented. A ratio for estimated capacity determination of such units is obtained. Results. In a specific example it is shown that estimated power of MTU may exceed the same one for traditional synchronous machines at the same dimensions. The MTU design allows placement of stator coil at some distance from the rotating parts of the machine, namely, in a closed container filled with insulating liquid. This will increase capacity by means of more efficient cooling of coil, as well as to increase the output voltage of the MTU as a generator to a level of 35 kV or more. The recommendations on the certain parameters selection of the MTU stator winding are presented. The formulas for copper cost calculating on the MTU field winding and synchronous salient-pole generator are developed. In a specific example it is shown that such costs in synchronous generator exceed 2.5 times the similar ones in the MTU.

  8. Aerodynamic study of a small horizontal-axis wind turbine

    Directory of Open Access Journals (Sweden)

    Cornelia NITA

    2012-06-01

    Full Text Available The wind energy is deemed as one of the most durable energetic variants of the future because the wind resources are immense. Furthermore, one predicts that the small wind turbine will play a vital role in the urban environment. Unfortunately, nowadays, the noise emissions from wind turbines represent one of the main obstacles to widespread the use in populated zones. Moreover, the energetic efficiency of these wind turbines has to be high even at low and medium wind velocities because, usually the cities are not windy places. The numerical results clearly show that the wakes after the trailing edge are the main noise sources. In order to decrease the power of these noise sources, we should try to decrease the intensity of wakes after the trailing edge, i.e. the aerodynamic fields from pressure and suction sides would have to be almost the same near trailing edge. Furthermore, one observes a strong link between transport (circumferential velocity and acoustic power level, i.e. if the transport velocity increases, the acoustic power level also augments.

  9. Spatial planning of wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-01-01

    This paper proposes guidelines for spatial planning for wind power, based on experience with spatial planning in Belgium, Denmark, France and the Netherlands. In addition experiences from Germany and Ireland have been used. This guidelines quotes all decisive criteria for successful implementation of wind energy: landscape integration, stakeholders involvement, noise and distance from buildings. (author)

  10. Electrical Aspects of Wind Turbines

    DEFF Research Database (Denmark)

    Chen, Zhe; Blaabjerg, Frede

    2009-01-01

    This is the most authoritative single volume on offshore wind power yet published. Distinguished experts, mainly from Europe's leading universities, have contributed a collection of peer reviewed papers on the interfaces between wind power technology and marine engineering. The range of issues...

  11. Offshore Wind Turbine Foundation Design

    DEFF Research Database (Denmark)

    Passon, Patrik

    Offshore wind energy has greatly matured during the last decade with an annually installed energy capacity exceeding 1 GW. A key factor for further large-scale development of offshore wind energy is a cost of energy reduction. Given for example the drop in oil price since summer 2014, which has c...

  12. Dynamic wind turbine models in power system simulation tool

    DEFF Research Database (Denmark)

    Hansen, Anca D.; Iov, Florin; Sørensen, Poul

    This report presents a collection of models and control strategies developed and implemented in the power system simulation tool PowerFactory DIgSILENT for different wind turbine concepts. It is the second edition of Risø-R-1400(EN) and it gathers and describes a whole wind turbine model database...... speed doubly-fed induction generator wind turbine concept 3. Variable speed multi-pole permanent magnet synchronous generator wind turbine concept These wind turbine concept models can be used and even extended for the study of different aspects, e.g. the assessment of power quality, control strategies......, connection of the wind turbine at different types of grid and storage systems. Different control strategies have been developed and implemented for these wind turbine concepts, their performance in normal or fault operation being assessed and discussed by means of simulations. The described control...

  13. Wind Turbine Generator System Acoustic Noise Test Report for the ARE 442 Wind Turbine

    Energy Technology Data Exchange (ETDEWEB)

    Huskey, A.; van Dam, J.

    2010-11-01

    This test was conducted on the ARE 442 as part of the U.S. Department of Energy's (DOE's) Independent Testing project. This project was established to help reduce the barriers of wind energy expansion by providing independent testing results for small turbines. In total, five turbines are being tested at the National Wind Technology Center (NWTC) as a part of this project. Acoustic noise testing is one of up to five tests that may be performed on the turbines, including duration, safety and function, power performance, and power quality tests. The acoustic noise test was conducted to the IEC 61400-11 Edition 2.1.

  14. On the Turbulent Mixing in Horizontal Axis Wind Turbine Wakes

    NARCIS (Netherlands)

    Lignarolo, L.E.M.

    2016-01-01

    The wake flow of a horizontal axis wind turbine is characterised by lower wind speed and higher turbulence than the free-stream conditions. When clustered in large wind farms, wind turbines regularly operate inside the wake of one or more upstream machines. This is a major cause of energy production

  15. Observer Backstepping Control for Variable Speed Wind Turbine

    DEFF Research Database (Denmark)

    Galeazzi, Roberto; Gryning, Mikkel Peter Sidoroff; Blanke, Mogens

    2013-01-01

    This paper presents an observer backstepping controller as feasible solution to variable speed control of wind turbines to maximize wind power capture when operating between cut-in and rated wind speeds. The wind turbine is modeled as a two-mass drive-train system controlled by the generator torq...

  16. Observer Backstepping Control for Variable Speed Wind Turbine

    DEFF Research Database (Denmark)

    Galeazzi, Roberto; Gryning, Mikkel Peter Sidoroff; Blanke, Mogens

    2013-01-01

    This paper presents an observer backstepping controller as feasible solution to variable speed control of wind turbines to maximize wind power capture when operating between cut-in and rated wind speeds. The wind turbine is modeled as a two-mass drive-train system controlled by the generator torque...

  17. Ecodesign framework for developing wind turbines

    DEFF Research Database (Denmark)

    Bonou, Alexandra; Skelton, Kristen; Olsen, Stig Irving

    2016-01-01

    and size, in response to increasing global market demands. Planning, implementing, monitoring, documenting and communicating product related environmental activities of wind turbines in a life cycle management context is the focal point of this article. The development and application of an ecodesign......Despite a wind turbines perceived environmental benefits, there are still many improvements that can be made in the product development process to improve its environmental performance across life cycles. This is especially important as the wind power industry continues to grow, both in volume...... such as workshops, pilots, interviews and life cycle assessment were applied. The ecodesign framework was aligned with the company's formal product lifecycle management process. When combined with life cycle assessment, the framework can identify potential environmental improvements and contribute to coherent...

  18. Wind Tunnel Aeroacoustic Tests of Six Airfoils for Use on Small Wind Turbines; Period of Performance: August 23, 2002 through March 31, 2004

    Energy Technology Data Exchange (ETDEWEB)

    Oerlemans, S.

    2004-08-01

    The U.S. Department of Energy, working through the National Renewable Energy Laboratory, is engaged in a comprehensive research effort to improve our understanding of wind turbine aeroacoustics. Quiet wind turbines are an inducement to widespread deployment, so the goal of NREL's aeroacoustic research is to develop tools that the U.S. wind industry can use in developing and deploying highly efficient, quiet wind turbines at low wind speed sites. NREL's National Wind Technology Center is implementing a multifaceted approach that includes wind tunnel tests, field tests, and theoretical analyses in direct support of low wind speed turbine development by its industry partners. To that end, wind tunnel aerodynamic tests and aeroacoustic tests have been performed on six airfoils that are candidates for use on small wind turbines. Results are documented in this report.

  19. Dynamic Models for Wind Turbines and Wind Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Singh, M.; Santoso, S.

    2011-10-01

    The primary objective of this report was to develop universal manufacturer-independent wind turbine and wind power plant models that can be shared, used, and improved without any restrictions by project developers, manufacturers, and engineers. Manufacturer-specific models of wind turbines are favored for use in wind power interconnection studies. While they are detailed and accurate, their usages are limited to the terms of the non-disclosure agreement, thus stifling model sharing. The primary objective of the work proposed is to develop universal manufacturer-independent wind power plant models that can be shared, used, and improved without any restrictions by project developers, manufacturers, and engineers. Each of these models includes representations of general turbine aerodynamics, the mechanical drive-train, and the electrical characteristics of the generator and converter, as well as the control systems typically used. To determine how realistic model performance is, the performance of one of the models (doubly-fed induction generator model) has been validated using real-world wind power plant data. This work also documents selected applications of these models.

  20. Analytical Aerodynamic Simulation Tools for Vertical Axis Wind Turbines

    International Nuclear Information System (INIS)

    Deglaire, Paul

    2010-01-01

    Wind power is a renewable energy source that is today the fastest growing solution to reduce CO 2 emissions in the electric energy mix. Upwind horizontal axis wind turbine with three blades has been the preferred technical choice for more than two decades. This horizontal axis concept is today widely leading the market. The current PhD thesis will cover an alternative type of wind turbine with straight blades and rotating along the vertical axis. A brief overview of the main differences between the horizontal and vertical axis concept has been made. However the main focus of this thesis is the aerodynamics of the wind turbine blades. Making aerodynamically efficient turbines starts with efficient blades. Making efficient blades requires a good understanding of the physical phenomena and effective simulations tools to model them. The specific aerodynamics for straight bladed vertical axis turbine flow are reviewed together with the standard aerodynamic simulations tools that have been used in the past by blade and rotor designer. A reasonably fast (regarding computer power) and accurate (regarding comparison with experimental results) simulation method was still lacking in the field prior to the current work. This thesis aims at designing such a method. Analytical methods can be used to model complex flow if the geometry is simple. Therefore, a conformal mapping method is derived to transform any set of section into a set of standard circles. Then analytical procedures are generalized to simulate moving multibody sections in the complex vertical flows and forces experienced by the blades. Finally the fast semi analytical aerodynamic algorithm boosted by fast multipole methods to handle high number of vortices is coupled with a simple structural model of the rotor to investigate potential aeroelastic instabilities. Together with these advanced simulation tools, a standard double multiple streamtube model has been developed and used to design several straight bladed

  1. Simulation model of an active stall wind turbine controller

    Energy Technology Data Exchange (ETDEWEB)

    Jauch, C.; Hansen, A.D.; Soerensen, P. [Risoe National Lab., Wind Energy Dept., Rosilde (Denmark); Blaabjerg, F. [Aalborg Univ., Inst. of Energy Technology (Denmark)

    2004-07-01

    This paper describes an active stall wind turbine controller. The objective is to develop a general model of an active stall controller in order to simulate the operation of grid connected active stall wind turbines. The active stall turbine concept and its control strategies are presented and evaluated on the basis of simulations. The presented controller is described for continuous operation under all wind speeds from start-up wind speed to shut doven wind speed. Due to its parametric implementation it is general i.e. it can represent different active stall wind turbine controllers and can be implemented in different simulation tools. (au)

  2. Turbine Control Strategies for Wind Farm Power Optimization

    DEFF Research Database (Denmark)

    Mirzaei, Mahmood; Göçmen Bozkurt, Tuhfe; Giebel, Gregor

    2015-01-01

    and wind farms. One way of achieving these goals is to optimize the power generated by a wind farm. One optimization method is to choose appropriate operating points for the individual wind turbines in the farm. We have made three models of a wind farm based on three difference control strategies...... are different. This means that choosing an appropriate control strategy for the individual wind turbines will result in an increased power production of the wind farm........ Basically, the control strategies determine the steady state operating points of the wind turbines. Except the control strategies of the individual wind turbines, the wind farm models are similar. Each model consists of a row of 5MW reference wind turbines. In the models we are able to optimize...

  3. Minimum Thrust Load Control for Floating Wind Turbine

    DEFF Research Database (Denmark)

    Christiansen, Søren; Bak, Thomas; Knudsen, Torben

    2012-01-01

    — Offshore wind energy capitalizes on the higher and less turbulent wind at sea. Shallow water sites are profitable for deployment of monopile wind turbines at water depths of up to 30 meters. Beyond 30 meters, the wind is even stronger and less turbulent. At these depths, floating wind turbines...... become profitable, capable of accessing unexploited wind resources while reaching regions of new consumers. However, floating wind turbines are subject to reduced structural stiffness which results in instabilities when standard wind turbine control systems are applied. Based on optimal control, this paper...... presents a new minimum thrust control strategy capable of stabilizing a floating wind turbine. The new control strategy explores the freedom of variable generator speed above rated wind speed. A comparison to the traditional constant speed strategy, shows improvements in structural fore-aft oscillations...

  4. Comparison of different methods for evaluation of wind turbine power production based on wind measurements

    Directory of Open Access Journals (Sweden)

    Bezrukovs Valerijs

    2016-01-01

    Full Text Available Investigations of the wind shear up to the height of 200 (m on the Latvian coast of the Baltic Sea have been carried out using a Pentalum SpiDAR laser measuring complex. Based on wind speeds measurements for three levels – 30, 40 and 50 (m, assessment of the operational efficiency of the wind turbines for heights 100, 140 and 180 (m have been performed. For comparison, this analysis involves five different approaches: the Rayleigh frequency distribution, three different Weibull frequency distributions and method based on approximation of the cubic wind speed. Results are compared with measurements on the corresponding heights.

  5. Generators of Modern Wind Turbines

    DEFF Research Database (Denmark)

    Chen, Zhe

    2008-01-01

    In this paper, various types of wind generator configurations, including power electronic grid interfaces, drive trains, are described The performance in power systems is briefed. Then the optimization of generator system is presented. Some investigation results are presented and discussed....

  6. Database on wind characteristics - Analyses of wind turbine design loads

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, G.C.; Hansen, K.S.

    2004-06-01

    The main objective of IEA R and D Wind Annex XVII - Database on Wind Characteristics - has been to provide wind energy planners, designers and researchers, as well as the international wind engineering community in general, with a source of actual wind field data (time series and resource data) observed in a wide range of different wind climates and terrain types. Connected to an extension of the initial Annex period, the scope for the continuation was widened to include also support to the international wind turbine standardisation efforts.. The project partners are Sweden, Norway, U.S.A., The Netherlands and Denmark, with Denmark as the Operating Agent. The reporting of the continuation of Annex XVII falls in two separate parts. Part one accounts in details for the available data in the established database bank, and part two describes various data analyses performed with the overall purpose of improving the design load cases with relevance for to wind turbine structures. The present report constitutes the second part of the Annex XVII reporting. Both fatigue and extreme load aspects are dealt with, however, with the main emphasis on the latter. The work has been supported by The Ministry of Environment and Energy, Danish Energy Agency, The Netherlands Agency for Energy and the Environment (NOVEM), The Norwegian Water Resources and Energy Administration (NVE), The Swedish National Energy Administration (STEM) and The Government of the United States of America. (au)

  7. Design of a shrouded wind turbine for low wind speeds / Jacobus Daniel Human

    OpenAIRE

    Human, Jacobus Daniel

    2014-01-01

    The use of renewable energy is promoted worldwide to be less dependent on fossil fuels and nuclear energy. Therefore research in the field is driven to increase efficiency of renewable energy systems. This study aimed to develop a wind turbine for low wind speeds in South Africa. Although there is a greater tendency to use solar panels because of the local weather conditions, there are some practical implications that have put the use of solar panels in certain areas to an end....

  8. Wind flow through shrouded wind turbines

    Science.gov (United States)

    2017-03-01

    velocity and model angle were varied . Additionally, static wall pressures and cross section flow were studied with the addition of a screen. The pressure...the geometry of a wind lens or flange on the shroud and a gradually diverging shape, proved to accelerate the flow through the duct. 14. SUBJECT...Tunnel velocity and model angle were varied . Additionally, static wall pressures and cross section flow were studied with the addition of a screen. The

  9. Examination of forced unsteady separated flow fields on a rotating wind turbine blade

    Energy Technology Data Exchange (ETDEWEB)

    Huyer, S [Univ. of Colorado, Boulder, CO (US)

    1993-04-01

    The wind turbine industry faces many problems regarding the construction of efficient and predictable wind turbine machines. Steady state, two-dimensional wind tunnel data are generally used to predict aerodynamic loads on wind turbine blades. Preliminary experimental evidence indicates that some of the underlying fluid dynamic phenomena could be attributed to dynamic stall, or more specifically to generation of forced unsteady separated flow fields. A collaborative research effort between the University of Colorado and the National Renewable Energy Laboratory was conducted to systematically categorize the local and global effects of three- dimensional forced unsteady flow fields.

  10. Convergence of Extreme Loads for Offshore Wind Turbine Support Structures

    OpenAIRE

    Stewart, Gordon; Lackner, Matthew; Arwade, Sanjay R.; Myers, Andrew T.; Hallowell, Spencer

    2015-01-01

    Extreme loads of wind turbines are historically difficult to predict through simulation due to uncertainty in input conditions as well as in the simulation models. In addition, many long time series must be simulated for the statistics of the peak loads to become stationary. Offshore wind turbines require even more simulation due to the addition of stochastic wave loading. Floating offshore wind turbines, the subject of this paper, experience free-body motion as a result of wind and wave load...

  11. Wind Turbine Development at Montana State University

    Energy Technology Data Exchange (ETDEWEB)

    Cairns, Douglas S. [Montana State Univ., Bozeman, MT (United States). Mechanical and Industrial Engineering Dept.; Riddle, William [Montana State Univ., Bozeman, MT (United States). Mechanical and Industrial Engineering Dept.; Nelson, Jared [Montana State Univ., Bozeman, MT (United States). Mechanical and Industrial Engineering Dept.; Peterson, William [Montana State Univ., Bozeman, MT (United States). Mechanical and Industrial Engineering Dept.

    2015-02-23

    A survey of wind turbine blade manufacturers, repair companies, wind farm operators, and third party investigators has directed the focus of this investigation on several types of flaws commonly found in wind turbine blades: waviness and porosity/voids. Several commercial scale wind turbine blades were inspected for the development of metrics for the identification, analysis and disposition. Analysis of flaw geometries yielded metrics which utilize specific parameters to physically characterize a defect. Data as it relates flaw parameters to frequencies of occurrence have been complied. Basic statistical analysis shows that the frequency of flaw parameters generally follows standard distributions. A testing program was then developed around this flaw data. Results from static testing indicate that there is strong correlation between flaw parameters and mechanical response. Preliminary results from the in-field data collection effort and coupon level testing have established a protocol by which a defect in a blade can be characterized quantifiably. With this data it is possible to develop probabilistic analysis, damage progression models and criticality assessment tools that will enable improved blade design methodology and the development of a risk management framework which describes the probability of failure for blades with defects.

  12. Power Curves in a Wind Turbine Array: A Numerical Study

    DEFF Research Database (Denmark)

    Meyer Forsting, Alexander Raul

    The impact of measuring a power curve inside a wind turbine array is investigated using computational fluid dynamics. The array consists of five aligned rotors that yaw with the free-stream wind direction. The flow-field in front of a wind turbine array changes with wind direction and hence...... the individual power output of each turbine. By incorporating the current IEC standards on power performance measurements, the bias in the power performance of turbines in an array over an isolated rotor is determined. The power change depends on the position of the turbine in the array and reaches maximally 9...

  13. Semiconductor Laser Lidar Wind Velocity Sensor for Turbine Control

    DEFF Research Database (Denmark)

    Rodrigo, Peter John; Hu, Qi; Pedersen, Christian

    2014-01-01

    A dual line-of-sight CW lidar that measures both wind speed and direction is presented . The wind lidar employs a semiconductor laser, which allows for inexpensive remote sensors geared towards enhanced control of wind turbines .......A dual line-of-sight CW lidar that measures both wind speed and direction is presented . The wind lidar employs a semiconductor laser, which allows for inexpensive remote sensors geared towards enhanced control of wind turbines ....

  14. Overall control strategy of variable speed doubly-fed induction generator wind turbine

    DEFF Research Database (Denmark)

    Hansen, A.D.; Iov, F.; Sørensen, Poul Ejnar

    2004-01-01

    The variable speed doubly-fed induction generator wind turbine is today the most widely used concept. The paper presents an overall control system of the variable speed DFIG wind turbine, with focus on the control strategies and algorithms applied at each hierarchical control level of the wind...... turbine. The present control method is designed for normal continuous operations. The strongest feature of the implemented control method is that it allows the turbine to operate with the optimum power efficiency over a wider range of wind speeds. The variable speed/variable pitch wind turbine with doubly......-fed induction generator is implemented in the dynamic power system simulation tool DIgSILENT. Simulation results are performed and analyzed in different normal operating conditions....

  15. Dynamic responses of a wind turbine drivetrain under turbulent wind and voltage disturbance conditions

    Directory of Open Access Journals (Sweden)

    Chengwu Li

    2016-05-01

    Full Text Available Wind energy is known as one of the most efficient clean renewable energy sources and has attracted extensive research interests in both academic and industry fields. In this study, the effects of turbulent wind and voltage disturbance on a wind turbine drivetrain are analyzed, and a wind turbine drivetrain dynamic model combined with the electric model of a doubly fed induction generator is established. The proposed model is able to account for the dynamic interaction between turbulent wind, voltage disturbance, and mechanical system. Also, the effects of time-varying meshing stiffness, transmission error, and bearing stiffness are included in the mechanical part of the coupled dynamic model. From the resultant model, system modes are computed. In addition, by considering the actual control strategies in the simulation process, the effects of turbulent wind and voltage disturbance on the geared rotor system are analyzed. The computational results show that the turbulent wind and voltage disturbance can cause adverse effects on the wind turbine drivetrain, especially the gearbox. A series of parametric studies are also performed to understand the influences of generator and gearbox parameters on the drivetrain system dynamics. Finally, the appropriate generator parameters having a positive effect on the gearbox in alleviating the extreme loads and the modeling approach for investigating the transient performance of generator are discussed.

  16. Interactive 3D geodesign tool for multidisciplinary wind turbine planning.

    Science.gov (United States)

    Rafiee, Azarakhsh; Van der Male, Pim; Dias, Eduardo; Scholten, Henk

    2018-01-01

    Wind turbine site planning is a multidisciplinary task comprising of several stakeholder groups from different domains and with different priorities. An information system capable of integrating the knowledge on the multiple aspects of a wind turbine plays a crucial role on providing a common picture to the involved groups. In this study, we have developed an interactive and intuitive 3D system (Falcon) for planning wind turbine locations. This system supports iterative design loops (wind turbine configurations), based on the emerging field of geodesign. The integration of GIS, game engine and the analytical models has resulted in an interactive platform with real-time feedback on the multiple wind turbine aspects which performs efficiently for different use cases and different environmental settings. The implementation of tiling techniques and open standard web services support flexible and on-the-fly loading and querying of different (massive) geospatial elements from different resources. This boosts data accessibility and interoperability that are of high importance in a multidisciplinary process. The incorporation of the analytical models in Falcon makes this system independent from external tools for different environmental impacts estimations and results in a unified platform for performing different environmental analysis in every stage of the scenario design. Game engine techniques, such as collision detection, are applied in Falcon for the real-time implementation of different environmental models (e.g. noise and visibility). The interactivity and real-time performance of Falcon in any location in the whole country assist the stakeholders in the seamless exploration of various scenarios and their resulting environmental effects and provides a scope for an interwoven discussion process. The flexible architecture of the system enables the effortless application of Falcon in other countries, conditional to input data availability. The embedded open web

  17. MATHEMATICAL MODELING OF FLOW PARAMETERS FOR SINGLE WIND TURBINE

    Directory of Open Access Journals (Sweden)

    2016-01-01

    Full Text Available It is known that on the territory of the Russian Federation the construction of several large wind farms is planned. The tasks connected with design and efficiency evaluation of wind farm work are in demand today. One of the possible directions in design is connected with mathematical modeling. The method of large eddy simulation developed within the direction of computational hydrodynamics allows to reproduce unsteady structure of the flow in details and to determine various integrated values. The calculation of work for single wind turbine installation by means of large eddy simulation and Actuator Line Method along the turbine blade is given in this work. For problem definition the numerical method in the form of a box was considered and the adapted unstructured grid was used.The mathematical model included the main equations of continuity and momentum equations for incompressible fluid. The large-scale vortex structures were calculated by means of integration of the filtered equations. The calculation was carried out with Smagorinsky model for determination of subgrid scale turbulent viscosity. The geometrical parametersof wind turbine were set proceeding from open sources in the Internet.All physical values were defined at center of computational cell. The approximation of items in equations was ex- ecuted with the second order of accuracy for time and space. The equations for coupling velocity and pressure were solved by means of iterative algorithm PIMPLE. The total quantity of the calculated physical values on each time step was equal to 18. So, the resources of a high performance cluster were required.As a result of flow calculation in wake for the three-bladed turbine average and instantaneous values of velocity, pressure, subgrid kinetic energy and turbulent viscosity, components of subgrid stress tensor were worked out. The re- ceived results matched the known results of experiments and numerical simulation, testify the opportunity

  18. Braking System for Wind Turbines

    Science.gov (United States)

    Krysiak, J. E.; Webb, F. E.

    1987-01-01

    Operating turbine stopped smoothly by fail-safe mechanism. Windturbine braking systems improved by system consisting of two large steel-alloy disks mounted on high-speed shaft of gear box, and brakepad assembly mounted on bracket fastened to top of gear box. Lever arms (with brake pads) actuated by spring-powered, pneumatic cylinders connected to these arms. Springs give specific spring-loading constant and exert predetermined load onto brake pads through lever arms. Pneumatic cylinders actuated positively to compress springs and disengage brake pads from disks. During power failure, brakes automatically lock onto disks, producing highly reliable, fail-safe stops. System doubles as stopping brake and "parking" brake.

  19. Reduction of fatigue loads on jacket substructure through blade design optimization for multimegawatt wind turbines at 50 m water depths

    DEFF Research Database (Denmark)

    NJOMO WANDJI, Wilfried; Pavese, Christian; Natarajan, Anand

    2016-01-01

    This paper addresses the reduction of the fore-aft damage equivalent moment at the tower base for multi-megawatt offshore wind turbines mounted on jacket type substructures at 50 m water depths. The study investigates blade design optimization of a reference 10 MW wind turbine under standard wind...... on the efficient design of other components such as the constituents of the nacelle....

  20. System Identification for the Clipper Liberty C96 Wind Turbine

    Science.gov (United States)

    Showers, Daniel

    System identification techniques are powerful tools that help improve modeling capabilities of real world dynamic systems. These techniques are well established and have been successfully used on countless systems in many areas. However, wind turbines provide a unique challenge for system identification because of the difficulty in measuring its primary input: wind. This thesis first motivates the problem by demonstrating the challenges with wind turbine system identification using both simulations and real data. It then suggests techniques toward successfully identifying a dynamic wind turbine model including the notion of an effective wind speed and how it might be measured. Various levels of simulation complexity are explored for insights into calculating an effective wind speed. In addition, measurements taken from the University of Minnesota's Clipper Liberty C96 research wind turbine are used for a preliminary investigation into the effective wind speed calculation and system identification of a real world wind turbine.

  1. Mapping of grid faults and grid codes[Wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Iov, F. [Aalborg Univ., Inst. of Energy Technology (Denmark); Hansen, Anca D.; Soerensen, Poul; Cutululis, N.A. [Risoe National Lab. - DTU, Wind Enegy Dept., Roskilde (Denmark)

    2007-06-15

    The objective of this project is to investigate into the consequences of the new grid connection requirements for the fatigue and extreme loads of wind turbines. The goal is also to clarify and define possible new directions in the certification process of power plant wind turbines, namely wind turbines, which participate actively in the stabilisation of power systems. Practical experience shows that there is a need for such investigations. The grid connection requirements for wind turbines have increased significantly during the last 5-10 years. Especially the requirements for wind turbines to stay connected to the grid during and after voltage sags, imply potential challenges in the design of wind turbines. These requirements pose challenges for the design of both the electrical system and the mechanical structure of wind turbines. An overview over the frequency of grid faults and the grid connection requirements in different relevant countries is done in this report. The most relevant study cases for the quantification of the loads' impact on the wind turbines' lifetime are defined. The goal of this report is to present a mapping of different grid fault types and their frequency in different countries. The report provides also a detailed overview of the Low Voltage Ride-Through Capabilities for wind turbines in different relevant countries. The most relevant study cases for the quantification of the loads' impact on the wind turbines' lifetime are defined. (au)

  2. Optimized Control Strategy For Over Loaded Offshore Wind Turbines

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Knudsen, Torben; Wisniewski, Rafal

    2015-01-01

    Abstract Optimized control strategy for overloaded offshore wind turbines Introduction Operation and maintenance cost are an important part of cost of energy especially for offshore wind farms. Typically unplanned service is called for due to detection off excessive loads on components, e.......g., the tower. In the process of decreasing the cost of energy of wind turbines it is relevant to continue some level of production while awaiting service and repair of the offshore wind turbine. This is typically done operating the wind turbine in a power de-rated operation mode, assuming that lower power...... generation results in lower loads on the wind turbine, which enables continued production until next service. Approach Recent results in Model Predictive Control (MPC) applied to wind turbines show a potential for presenting possible controller tunings which weighs multiple conflicting objectives...

  3. Power Curve of the AWEC-60 wind turbine

    International Nuclear Information System (INIS)

    Avia, F.

    1992-01-01

    The experimental wind turbine AWEC-60 was developed to evaluate the possibilities of the Large Wind turbines, from the technical and economical point of view. The project was developed by a spanish-german group, integrated by Union Fenosa, Asinel, M.A.N. Neue Technologie and the Instituto de Energias Renovables from CIEMAT, starting the operation during the year 1990. In this paper, the obtention of the wind turbine power curve is presented, which has been obtained in agreement with the Recommended Practices for Wind Turbine Testing and Evaluation from the Executive Committee for the Research and Development on Wind Energy, of the International Energy Agency (AIE). Using the functioning data of the wind turbine correspondig to the first quarter of the year 1991, the power curves have been obtained, and the results have been compared with the curves measured in other similar Large wind turbines. (Author) 7 refs

  4. Enhanced wind turbine noise prediction tool SILANT

    International Nuclear Information System (INIS)

    Boorsma, K.; Schepers, J.G.

    2012-02-01

    Wind turbine noise often is quantified in terms of time averaged overall sound power levels, whilst annoyance due to noise level fluctuations in mid- to high-range frequencies ('swish') are not taken into account. Recent experimental research on wind turbine noise has revealed the major causes of the swishing noise to be due to the directivity of the noise sources and convective amplification effects of the moving turbine blades. The findings have been incorporated in the noise prediction tool SILANT which in addition to sound power levels gives sound pressure level predictions for specified observer positions. The noise sources that are taken into account are trailing edge, inflow and tip noise, using the models of Brooks, Pope and Marcolini (BPM) and Amiet and Lowson. The blade is divided into a number of independent elements for which effective inflow velocity and angle of attack information is a necessary input. A distinction is made between the various profiles along the blade span by including their boundary layer displacement thicknesses at the trailing edge in a profile database. The propagation model includes directivity, convective amplification, Doppler shift and atmospheric absorption. The effect of the retarded time is taken into account individually for the separate elements along the blade span using the time dependent rotor azimuth position. A simple empirical model is applied to quantify meteorological effects influencing refraction and ground effects. Prediction results are compared to SIROCCO project measurements from microphones positioned in a circle around a turbine. The high spatial and temporal resolution of the SILANT simulations gives new insights in the variation of wind turbine inflow and trailing edge noise as a function of observer position, rotor azimuth angle and frequency band. The influence of directivity is illustrated for the dominant noise sources.

  5. Learning in wind turbine development

    NARCIS (Netherlands)

    Kamp, Linda Manon

    2002-01-01

    Both the Netherlands and Denmark started to develop wind energy in the 1970s. Reasons were the oil crisis and the Club of Rome report, which warned of imminent shortages of traditional energy sources like oil and gas. Both countries started this development around 1975 and their governments gave

  6. Wind turbine reliability database update.

    Energy Technology Data Exchange (ETDEWEB)

    Peters, Valerie A.; Hill, Roger Ray; Stinebaugh, Jennifer A.; Veers, Paul S.

    2009-03-01

    This report documents the status of the Sandia National Laboratories' Wind Plant Reliability Database. Included in this report are updates on the form and contents of the Database, which stems from a fivestep process of data partnerships, data definition and transfer, data formatting and normalization, analysis, and reporting. Selected observations are also reported.

  7. Aerodynamic flow deflector to increase large scale wind turbine power generation by 10%.

    Science.gov (United States)

    2015-11-01

    The innovation proposed in this paper has the potential to address both the efficiency demands of wind farm owners as well as to provide a disruptive design innovation to turbine manufacturers. The aerodynamic deflector technology was created to impr...

  8. ASSESSMENT OF A WIND TURBINE INTELLIGENT CONTROLLER FOR ENHANCED ENERGY PRODUCTION AND POLLUTION REDUCTION

    Science.gov (United States)

    This study assessed the enhanced energy production which is possible when variable-speed wind turbines are electronically controlled by an intelligent controller for efficiency optimization and performance improvement. The control system consists of three fuzzy- logic controllers...

  9. Wind turbines in your environment? Wind turbines and energy context

    International Nuclear Information System (INIS)

    2002-02-01

    Renewable energy sources allow to anticipate the depletion of fossil energy reserves and to limit the use of fissile resources. Moreover, their use avoids the emission of enormous amounts of pollutants and greenhouse gases in the atmosphere. This document presents the French energy context (national resources, electricity production and uses); the international political commitments (Kyoto protocol); the position of nuclear power in France and the development of renewable energy sources; and the evolution of the share of wind power with respect to other energy sources in France, in Europe and in the rest of the world. (J.S.)

  10. Final Report - Certifying the Performance of Small Wind Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Sherwood, Larry [Small Wind Certification Council, Clifton Park, NY (United States)

    2015-08-28

    The Small Wind Certification Council (SWCC) created a successful accredited certification program for small and medium wind turbines using the funding from this grant. SWCC certifies small turbines (200 square meters of swept area or less) to the American Wind Energy Association (AWEA) Small Wind Turbine Performance and Safety Standard (AWEA Standard 9.1 – 2009). SWCC also certifies medium wind turbines to the International Electrical Commission (IEC) Power Performance Standard (IEC 61400-12-1) and Acoustic Performance Standard (IEC 61400-11).

  11. Additive Manufacturing of Wind Turbine Molds

    Energy Technology Data Exchange (ETDEWEB)

    Post, Brian [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Richardson, Bradley [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lloyd, Peter [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Love, Lonnie [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Nolet, Stephen [TPI Composites, Scottsdale, AZ (United States); Hannan, James [TPI Composites, Scottsdale, AZ (United States)

    2017-07-01

    The objective of this project was to explore the utility of Big Area Additive Manufacturing (BAAM) for low cost manufacturing of wind turbine molds. Engineers at Oak Ridge National Laboratory (ORNL) and TPI Composites (TPI) collaborated to design and manufacture a printed mold that can be used for resin infusion of wind turbine components. Specific focus was on required material properties (operating temperatures and pressures, coefficient of thermal expansion (CTE), thermal conductivity), surface finish (accuracy and coatings) and system integration (integrated vacuum ports, and heating element). The project began with a simple proof of principle components, targeting surface coatings and material properties for printing a small section (approximately 4’ x 4’ x 2’) of a mold. Next, the second phase scaled up and integrated with the objective of capturing all of the necessary components (integrated heating to accelerate cure time, and vacuum, sealing) for resin infusion on a mold of significant size (8’ x 20’ x 6’).

  12. Damping of wind turbine tower vibrations

    DEFF Research Database (Denmark)

    Brodersen, Mark Laier; Pedersen, Mikkel Melters

    Damping of wind turbine vibrations by supplemental dampers is a key ingredient for the continuous use of monopiles as support for offshore wind turbines. The present thesis consists of an extended summary with four parts and appended papers [P1-P4] concerning novel strategies for damping of tower...... in a stroke amplifying brace, which amplifies the displacement across the damper and thus reduces the desired level of damper force. For optimal damping of the two lowest tower modes, a novel toggle-brace concept for amplifying the bending deformation of the tower is presented. Numerical examples illustrate...... damper with IFFis validated by a series of real time hybrid simulations (RTHS). The experimental results illustrate the ability of the hybrid damper concept to increase damper stroke or attainable damping. The results also show that the actuator signal is quitesensitive to drift due an offset...

  13. Development of Superconducting Wind Turbine Generators

    DEFF Research Database (Denmark)

    Jensen, Bogi Bech; Mijatovic, Nenad; Abrahamsen, Asger Bech

    2012-01-01

    speeds, because high magnetic fields can be produced by coils with very little loss. Three different superconducting wind turbine generator topologies have been proposed by three different companies. One is based on low temperature superconductors (LTS); one is based on high temperature superconductors......In this paper the commercial activities in the field of superconducting machines, particularly superconducting wind turbine generators, are reviewed and presented. Superconducting generators have the potential to provide a compact and light weight drive train at high torques and slow rotational...... (HTS); and one is a fully superconducting generator based on MgB2. It is concluded that there is large commercial interest in superconducting machines, with an increasing patenting activity. Such generators are however not without their challenges. The superconductors have to be cooled down...

  14. Development of superconducting wind turbine generators

    DEFF Research Database (Denmark)

    Jensen, Bogi Bech; Mijatovic, Nenad; Abrahamsen, Asger Bech

    2013-01-01

    speeds, because high magnetic fields can be produced by coils with very little loss. Three different superconducting wind turbine generator topologies have been proposed by three different companies. One is based on low temperature superconductors; one is based on high temperature superconductors......In this paper, the commercial activities in the field of superconducting machines, particularly superconducting wind turbine generators, are reviewed and presented. Superconducting generators have the potential to provide a compact and light weight drive train at high torques and slow rotational......; and one is a fully superconducting generator based on MgB2. It is concluded that there is large commercial interest in superconducting machines, with an increasing patenting activity. Such generators are, however, not without their challenges. The superconductors have to be cooled down to somewhere...

  15. Hybrid Optimization for Wind Turbine Thick Airfoils

    Energy Technology Data Exchange (ETDEWEB)

    Grasso, F. [ECN Wind Energy, Petten (Netherlands)

    2012-06-15

    One important element in aerodynamic design of wind turbines is the use of specially tailored airfoils to increase the ratio of energy capture and reduce cost of energy. This work is focused on the design of thick airfoils for wind turbines by using numerical optimization. A hybrid scheme is proposed in which genetic and gradient based algorithms are combined together to improve the accuracy and the reliability of the design. Firstly, the requirements and the constraints for this class of airfoils are described; then, the hybrid approach is presented. The final part of this work is dedicated to illustrate a numerical example regarding the design of a new thick airfoil. The results are discussed and compared to existing airfoils.

  16. Aeroelastic optimization of MW wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Hartvig Hansen, M.; Zahle, F.

    2011-12-15

    This report contains the results from the Energy Development and Demonstration Project ''Aeroelastic Optimization of MW wind turbine'' (AeroOpt). The project has had the following five Work Packages: 1. Geometric non-linear, anisotropic beam element for HAWC2. 2. Closed-loop eigenvalue analysis of controlled wind turbines. 3. Resonant wave excitation of lateral tower bending modes. 4. Development of next generation aerodynamic design tools. 5. Advanced design and verification of airfoils. The purposes of these Work Packages are briefly described in the Preface and a summary of the results are given in Section 2. Thereafter, the results from each Work Package are described in eight subsequent chapters. (Author)

  17. Some aspects on wind turbines monitoring. General considerations and loads on horizontal wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Cuerva, A.

    1996-12-01

    The concept Monitoring applied to the Wind Energy technology is similar to the definition used in other branches of Science or Engineering, this is knowing values of variables which have to do with a mechanic system, in our case a wind turbine. These mentioned parameters may have different relationships to our wind turbine; some of them come from the environment the machine is operating in, others, are a measure of how properly the machine is working, and finally, the rest are an assessment of the ``system`s health`` during its ``life``. In this chapter we will answer questions such as: What do we need to measure? Why is Monitoring mandatory (from the different points of view of people involved in this world)? How can we measure a wind turbine depending on our objectives (Technic, tools, guidance, recommendations, etc)? And finally What can we expect in the near future?. The author wants the reader to keep the idea in mind that Monitoring means the richest and most accurate knowledge on wind turbine`s operation (Its environment, performances of health). This is the first step that allows us to optimize the operation mode of the machine and improve it (design, manufacturing, even the used modeling tools). When there is so much money involved, this fact becomes a must. (Author)

  18. Wind Turbine Generator System Duration Test Report for the Gaia-Wind 11 kW Wind Turbine

    Energy Technology Data Exchange (ETDEWEB)

    Huskey, A.; Bowen, A.; Jager, D.

    2010-09-01

    This test was conducted as part of the U.S. Department of Energy's (DOE) Independent Testing project. This project was established to help reduce the barriers of wind energy expansion by providing independent testing results for small turbines. In total, five turbines are being tested at the National Renewable Energy Laboratory's (NRELs) National Wind Technology Center (NWTC) as a part of this project. Duration testing is one of up to five tests that may be performed on the turbines, including power performance, safety and function, noise, and power quality tests. The results of the testing will provide the manufacturers with reports that may be used for small wind turbine certification. The test equipment includes a Gaia-Wind 11 kW wind turbine mounted on an 18 m monopole tower. Gaia-Wind Ltd. manufactured the turbine in Denmark, although the company is based in Scotland. The system was installed by the NWTC Site Operations group with guidance and assistance from Gaia-Wind.

  19. Wear Analysis of Wind Turbine Gearbox Bearings

    Energy Technology Data Exchange (ETDEWEB)

    Blau, Peter Julian [ORNL; Walker, Larry R [ORNL; Xu, Hanbing [ORNL; Parten, Randy J [ORNL; Qu, Jun [ORNL; Geer, Tom [ORNL

    2010-04-01

    The objective of this effort was to investigate and characterize the nature of surface damage and wear to wind turbine gearbox bearings returned from service in the field. Bearings were supplied for examination by S. Butterfield and J. Johnson of the National Wind Technology Center (NREL), Boulder, Colorado. Studies consisted of visual examination, optical and electron microscopy, dimensional measurements of wear-induced macro-scale and micro-scale features, measurements of macro- and micro-scale hardness, 3D imaging of surface damage, studies of elemental distributions on fracture surfaces, and examinations of polished cross-sections of surfaces under various etched and non-etched conditions.

  20. Structural Robustness Evaluation of Offshore Wind Turbines

    DEFF Research Database (Denmark)

    Giuliani, Luisa; Bontempi, Franco

    2010-01-01

    Wind turbines are complex structures that should deal with adverse weather conditions, are exposed to impacts or ship collisions and, due to the strategic roles in the energetic supplying, can be the goal of military or malevolent attacks. Even if a structure cannot be design to resist any...... integrity after the impact and permits to identify some characteristics of the system, which are intrinsic to the chosen organization of the elements within the structure....

  1. Active system monitoring applied on wind turbines

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Poulsen, Niels Kjølstad; Parbo, Henrik

    2009-01-01

    A concept for active system monitoring (ASM) applied on wind turbines is presented in this paper. The concept is based on an injection of a small periodic auxiliary signal in the system. An investigation of the signature from the auxiliary input in residual (error) signals can then be applied for...... for an online monitoring of central parameters/elements of the system. Statistical tests are applied on the residual signals for obtaining a correct monitoring....

  2. Siting guidelines for utility application of wind turbines. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Pennell, W.T.

    1983-01-01

    Utility-oriented guidelines are described for identifying viable sites for wind turbines. Topics and procedures are also discussed that are important in carrying out a wind turbine siting program. These topics include: a description of the Department of Energy wind resource atlases; procedures for predicting wind turbine performance at potential sites; methods for analyzing wind turbine economics; procedures for estimating installation and maintenance costs; methods for anlayzing the distribution of wind resources over an area; and instrumentation for documenting wind behavior at potential sites. The procedure described is applicable to small and large utilities. Although the procedure was developed as a site-selection tool, it can also be used by a utility who wishes to estimate the potential for wind turbine penetration into its future generation mix.

  3. Scaling forecast models for wind turbulence and wind turbine power intermittency

    Science.gov (United States)

    Duran Medina, Olmo; Schmitt, Francois G.; Calif, Rudy

    2017-04-01

    The intermittency of the wind turbine power remains an important issue for the massive development of this renewable energy. The energy peaks injected in the electric grid produce difficulties in the energy distribution management. Hence, a correct forecast of the wind power in the short and middle term is needed due to the high unpredictability of the intermittency phenomenon. We consider a statistical approach through the analysis and characterization of stochastic fluctuations. The theoretical framework is the multifractal modelisation of wind velocity fluctuations. Here, we consider three wind turbine data where two possess a direct drive technology. Those turbines are producing energy in real exploitation conditions and allow to test our forecast models of power production at a different time horizons. Two forecast models were developed based on two physical principles observed in the wind and the power time series: the scaling properties on the one hand and the intermittency in the wind power increments on the other. The first tool is related to the intermittency through a multifractal lognormal fit of the power fluctuations. The second tool is based on an analogy of the power scaling properties with a fractional brownian motion. Indeed, an inner long-term memory is found in both time series. Both models show encouraging results since a correct tendency of the signal is respected over different time scales. Those tools are first steps to a search of efficient forecasting approaches for grid adaptation facing the wind energy fluctuations.

  4. Advanced Control of Photovoltaic and Wind Turbines Power Systems

    DEFF Research Database (Denmark)

    Yang, Yongheng; Chen, Wenjie; Blaabjerg, Frede

    2014-01-01

    Much more efforts have been made on the integration of renewable energies into the grid in order to meet the imperative demand of a clean and reliable electricity generation. In this case, the grid stability and robustness may be violated due to the intermittency and interaction of the solar...... and wind renewables. Thus, in this chapter, advanced control strategies, which can enable the power conversion efficiently and reliably, for both photovoltaic (PV) and wind turbines power systems are addressed in order to enhance the integration of those technologies. Related grid demands have been...

  5. Lidar-Enhanced Wind Turbine Control: Past, Present, and Future

    Energy Technology Data Exchange (ETDEWEB)

    Scholbrock, Andrew; Fleming, Paul; Schlipf, David; Wright, Alan; Johnson, Kathryn; Wang, Na

    2016-08-01

    The main challenges in harvesting energy from the wind arise from the unknown incoming turbulent wind field. Balancing the competing interests of reduction in structural loads and increasing energy production is the goal of a wind turbine controller to reduce the cost of producing wind energy. Conventional wind turbines use feedback methods to optimize these goals, reacting to wind disturbances after they have already impacted the wind turbine. Lidar sensors offer a means to provide additional inputs to a wind turbine controller, enabling new techniques to improve control methods, allowing a controller to actuate a wind turbine in anticipation of an incoming wind disturbance. This paper will look at the development of lidar-enhanced controls and how they have been used for various turbine load reductions with pitch actuation, as well as increased energy production with improved yaw control. Ongoing work will also be discussed to show that combining pitch and torque control using feedforward nonlinear model predictive control can lead to both reduced loads and increased energy production. Future work is also proposed on extending individual wind turbine controls to the wind plant level and determining how lidars can be used for control methods to further lower the cost of wind energy by minimizing wake impacts in a wind farm.

  6. Blade-Pitch Control for Wind Turbine Load Reductions

    DEFF Research Database (Denmark)

    Lio, Alan Wai Hou

    Large wind turbines are subjected to the harmful loads that arise from the spatially uneven and temporally unsteady oncoming wind. Such loads are the known sources of fatigue damage that reduce the turbine operational lifetime, ultimately increasing the cost of wind energy to the end-users. In re...

  7. The benefits of geographical dispersion of offshore wind turbines.

    NARCIS (Netherlands)

    Assen van, Vincent

    2012-01-01

    Summary Wind energy is one of the possible solutions to minimise the greenhouse gas emissions of our electricity production. Therefore, the Dutch government aims to install 6000 MW of wind turbines on the Dutch North Sea. The power output of wind turbine

  8. Wind Turbine Generator System Safety and Function Test Report for the Southwest Windpower H40 Wind Turbine

    Energy Technology Data Exchange (ETDEWEB)

    van Dam, J.; Link, H.; Meadors, M.; Bianchi, J.

    2002-06-01

    The objective of this test was to evaluate the safety and function characteristics of the Whisper H40 wind turbine. The general requirements of wind turbine safety and function tests are defined in the IEC standard WT01. The testing was conducted in accordance with the National Wind Technology Center (NWTC) Quality Assurance System, including the NWTC Certification Team Certification Quality Manual and the NWTC Certification Team General Quality Manual for the Testing of Wind Turbines, as well as subordinate documents. This safety and function test was performed as part of the U.S. Department of Energy's Field Verification Program for small wind turbines.

  9. An innovative medium speed wind turbine rotor blade design for low wind regime (electrical power generation)

    International Nuclear Information System (INIS)

    Abas Abd Wahab; Chong Wen Tong

    2001-01-01

    This paper describes the preliminary study of a small-scale wind turbine rotor blade (a low wind speed region turbine). A new wind turbine rotor blade (AE2 blade) for stand alone system has been conceptualized, designed, constructed and tested. The system is a reduced size prototype (half-scaled) to develop an efficient (adapted to Malaysian wind conditions)and cost effective wind energy conversion system (WECS) with local design and production technique. The blades were constructed from aluminium sheet with metal blending technique. The layout and design of rotor blade, its innovative features and test results are presented. Results from indoor test showed that the advantages of AE2 blade in low speed, with the potential of further improvements. The best rotor efficiency, C P attained with simple AE2 blades rotor (number of blade = 3) was 37.3% (Betz efficiency = 63%) at tip speed ratio (TSR) = 3.6. From the fabrication works and indoor testing, the AE2 blade rotor has demonstrated its structural integrity (ease of assembly and transportation), simplicity, acceptable performance and low noise level. (Author)

  10. A REVIEW ON COUNTER-ROTATING WIND TURBINES DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    OPRINA G.

    2016-09-01

    Full Text Available On a dynamic energy market characterized by the constant energy demand increase and economic as well as environmental constraints, the study and development of efficient conversion systems of wind’s energy has been approached by a considerable number of researchers. Given the modern economic and environmental challenges regarding the energy production and consumption, an advance in the research of innovative or improved wind energy conversion solutions has been registered. The objective of this paper is to provide a comprehensive, but not exhaustive overview of research achievements in counter-rotating wind turbine systems development, characterization and use. The review presents the first theoretical results that led to the counterrotating wind turbines development as well as the related methods used for investigating their performance. Valuable results have been found within various studies, which are carried out for different testing systems and conditions. Furthermore, there is still need of extensive studies, taking into account that the counter-rotating wind turbines have to prove their reliability in real operating conditions.

  11. Radar-cross-section reduction of wind turbines. part 1.

    Energy Technology Data Exchange (ETDEWEB)

    Brock, Billy C.; Loui, Hung; McDonald, Jacob J.; Paquette, Joshua A.; Calkins, David A.; Miller, William K.; Allen, Steven E.; Clem, Paul Gilbert; Patitz, Ward E.

    2012-03-05

    In recent years, increasing deployment of large wind-turbine farms has become an issue of growing concern for the radar community. The large radar cross section (RCS) presented by wind turbines interferes with radar operation, and the Doppler shift caused by blade rotation causes problems identifying and tracking moving targets. Each new wind-turbine farm installation must be carefully evaluated for potential disruption of radar operation for air defense, air traffic control, weather sensing, and other applications. Several approaches currently exist to minimize conflict between wind-turbine farms and radar installations, including procedural adjustments, radar upgrades, and proper choice of low-impact wind-farm sites, but each has problems with limited effectiveness or prohibitive cost. An alternative approach, heretofore not technically feasible, is to reduce the RCS of wind turbines to the extent that they can be installed near existing radar installations. This report summarizes efforts to reduce wind-turbine RCS, with a particular emphasis on the blades. The report begins with a survey of the wind-turbine RCS-reduction literature to establish a baseline for comparison. The following topics are then addressed: electromagnetic model development and validation, novel material development, integration into wind-turbine fabrication processes, integrated-absorber design, and wind-turbine RCS modeling. Related topics of interest, including alternative mitigation techniques (procedural, at-the-radar, etc.), an introduction to RCS and electromagnetic scattering, and RCS-reduction modeling techniques, can be found in a previous report.

  12. The Performance Evaluation of Horizontal Axis Wind Turbine Torque and Mechanical Power Generation Affected by the Number of Blade

    OpenAIRE

    Tan Rodney H. G.; Teow Matthew Y. W.

    2016-01-01

    This paper presents the evaluation of horizontal axis wind turbine torque and mechanical power generation and its relation to the number of blades at a given wind speed. The relationship of wind turbine rotational frequency, tip speed, minimum wind speed, mechanical power and torque related to the number of blades are derived. The purpose of this study is to determine the wind energy extraction efficiency achieved for every increment of blade number. Effective factor is introduced to interpre...

  13. Detecting and mitigating wind turbine clutter for airspace radar systems.

    Science.gov (United States)

    Wang, Wen-Qin

    2013-01-01

    It is well recognized that a wind turbine has a large radar cross-section (RCS) and, due to the movement of the blades, the wind turbine will generate a Doppler frequency shift. This scattering behavior may cause severe interferences on existing radar systems including static ground-based radars and spaceborne or airborne radars. To resolve this problem, efficient techniques or algorithms should be developed to mitigate the effects of wind farms on radars. Herein, one transponder-based mitigation technique is presented. The transponder is not a new concept, which has been proposed for calibrating high-resolution imaging radars. It modulates the radar signal in a manner that the retransmitted signals can be separated from the scene echoes. As wind farms often occupy only a small area, mitigation processing in the whole radar operation will be redundant and cost inefficient. Hence, this paper uses a transponder to determine whether the radar is impacted by the wind farms. If so, the effects of wind farms are then mitigated with subsequent Kalman filtering or plot target extraction algorithms. Taking airborne synthetic aperture radar (SAR) and pulse Doppler radar as the examples, this paper provides the corresponding system configuration and processing algorithms. The effectiveness of the mitigation technique is validated by numerical simulation results.

  14. Wind turbine generator trends for site-specific tailoring

    Science.gov (United States)

    Jackson, K.; van Dam, C. P.; Yen-Nakafuji, D.

    2005-10-01

    Turbine optimization for specific wind regimes and climate conditions is becoming more common as the market expands into new territories (offshore, low-wind regimes) and as technology matures. Tailoring turbines for specific sites by varying rotor diameter, tower height and power electronics may be a viable technique to make wind energy more economic and less intermittent. By better understanding the wind resource trends and evaluating important wind turbine performance parameters such as specific power (ratio of rated power and rotor swept area), developers and operators can optimize plant output and better anticipate operational impacts. This article presents a methodology to evaluate site-specific wind data for turbine tailoring. Wind characteristics for the Tehachapi wind resource area in California were utilized for this study. These data were used to evaluate the performance of a range of wind turbine configurations. The goal was to analyse the variations in wind power output for the area, assess the changes in these levels with the time of day and season and determine how turbine configuration affects the output. Wind turbine output was compared with California statewide system electrical demand to evaluate the correlation of the wind resource site with local peak demand loads. A comparison of the commercial value of electricity and corresponding wind generation is also presented using a time-dependent valuation methodology. Copyright

  15. A wind turbine hybrid simulation framework considering aeroelastic effects

    Science.gov (United States)

    Song, Wei; Su, Weihua

    2015-04-01

    In performing an effective structural analysis for wind turbine, the simulation of turbine aerodynamic loads is of great importance. The interaction between the wake flow and the blades may impact turbine blades loading condition, energy yield and operational behavior. Direct experimental measurement of wind flow field and wind profiles around wind turbines is very helpful to support the wind turbine design. However, with the growth of the size of wind turbines for higher energy output, it is not convenient to obtain all the desired data in wind-tunnel and field tests. In this paper, firstly the modeling of dynamic responses of large-span wind turbine blades will consider nonlinear aeroelastic effects. A strain-based geometrically nonlinear beam formulation will be used for the basic structural dynamic modeling, which will be coupled with unsteady aerodynamic equations and rigid-body rotations of the rotor. Full wind turbines can be modeled by using the multi-connected beams. Then, a hybrid simulation experimental framework is proposed to potentially address this issue. The aerodynamic-dominant components, such as the turbine blades and rotor, are simulated as numerical components using the nonlinear aeroelastic model; while the turbine tower, where the collapse of failure may occur under high level of wind load, is simulated separately as the physical component. With the proposed framework, dynamic behavior of NREL's 5MW wind turbine blades will be studied and correlated with available numerical data. The current work will be the basis of the authors' further studies on flow control and hazard mitigation on wind turbine blades and towers.

  16. Study of wind turbine foundations in cold climates

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-11-01

    This report provides an overview of the processes at work in soil in cold climates and their effect on wind turbine foundations. Havsnaes wind farm consists of 48 turbines located in Jaemtland county in central Sweden. Havsnaes has provided an appropriate research environment to investigate the engineering challenges related to the design and construction of wind turbine foundations in sub-arctic conditions and the experienced gained from this project informs this report.

  17. Wind turbine fault detection and fault tolerant control

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Johnson, Kathryn

    2013-01-01

    In this updated edition of a previous wind turbine fault detection and fault tolerant control challenge, we present a more sophisticated wind turbine model and updated fault scenarios to enhance the realism of the challenge and therefore the value of the solutions. This paper describes...... the challenge model and the requirements for challenge participants. In addition, it motivates many of the faults by citing publications that give field data from wind turbine control tests....

  18. Effect of the blade arc angle on the performance of a Savonius wind turbine

    Directory of Open Access Journals (Sweden)

    Zhaoyong Mao

    2015-05-01

    Full Text Available Savonius wind turbine is a common vertical axis wind turbine which simply comprises two or three arc-type blades and can generate power under poor wind conditions. With the aim of increasing the turbine’s power efficiency, the effect of the blade arc angle on the performance of a typical two-bladed Savonius wind turbine is investigated with a transient computational fluid dynamics method. Simulations were based on the Reynolds Averaged Navier–Stokes equations, and the renormalization group k − ε turbulent model was utilized. The numerical method was validated with existing experimental data. The results indicate that the turbine with a blade arc angle of 160 ∘ generates the maximum power coefficient, 0.2836, which is 8.37% higher than that from a conventional Savonius turbine.

  19. Mapping Ontario’s Wind Turbines: Challenges and Limitations

    Directory of Open Access Journals (Sweden)

    Tanya Christidis

    2013-11-01

    Full Text Available Despite rapid and vast development of wind turbines across the Canadian province of Ontario, there is no map available indicating the location of each wind turbine. A map of this nature is crucial for health and environmental risk research and has many applications in other fields. Research examining health and wind turbines is limited by the available maps showing the nearest community to a wind farm as opposed to each unique wind turbine. Data from provincial-level organizations, developers, and municipalities were collected using government development approval documents, planning documents, and data given directly from municipalities and developers. Wind turbines were mapped using Google Earth, coordinate lists, shapefiles, and translating data from other maps. In total, 1,420 wind turbines were mapped from 56 wind farms. The limitations of each data source and mapping method are discussed. There are numerous challenges in creating a map of this nature, for example incorrect inclusion of wind farms and inaccuracies in wind turbine locations. The resultant map is the first of its kind to be discussed in the literature, can be used for a variety of health and environmental risk studies to assess dose-response, wind turbine density, visibility, and to create sound and vibration models.

  20. Superconductivity for Large Scale Wind Turbines

    Energy Technology Data Exchange (ETDEWEB)

    R. Fair; W. Stautner; M. Douglass; R. Rajput-Ghoshal; M. Moscinski; P. Riley; D. Wagner; J. Kim; S. Hou; F. Lopez; K. Haran; J. Bray; T. Laskaris; J. Rochford; R. Duckworth

    2012-10-12

    A conceptual design has been completed for a 10MW superconducting direct drive wind turbine generator employing low temperature superconductors for the field winding. Key technology building blocks from the GE Wind and GE Healthcare businesses have been transferred across to the design of this concept machine. Wherever possible, conventional technology and production techniques have been used in order to support the case for commercialization of such a machine. Appendices A and B provide further details of the layout of the machine and the complete specification table for the concept design. Phase 1 of the program has allowed us to understand the trade-offs between the various sub-systems of such a generator and its integration with a wind turbine. A Failure Modes and Effects Analysis (FMEA) and a Technology Readiness Level (TRL) analysis have been completed resulting in the identification of high risk components within the design. The design has been analyzed from a commercial and economic point of view and Cost of Energy (COE) calculations have been carried out with the potential to reduce COE by up to 18% when compared with a permanent magnet direct drive 5MW baseline machine, resulting in a potential COE of 0.075 $/kWh. Finally, a top-level commercialization plan has been proposed to enable this technology to be transitioned to full volume production. The main body of this report will present the design processes employed and the main findings and conclusions.

  1. European wind turbine testing procedure developments. Task 1: Measurement method to verify wind turbine performance characteristics

    DEFF Research Database (Denmark)

    Hunter, R.; Friis Pedersen, Troels; Dunbabin, P.

    2001-01-01

    There is currently significant standardisation work ongoing in the context of wind farm energy yield warranty assessment and wind turbine power performance testing. A standards maintenance team is revising the current IEC (EN) 61400-12 Ed 1 standard forwind turbine power performance testing...... standard. The work was wide ranging and addressed 'grey' areas of knowledge, regarding existing methodologies or to carry out basic research in support offundamentally new procedures. The work has given rise to recommendations in all areas of the work, including site calibration procedures, nacelle...

  2. Mixed H2/H∞ Pitch Control of Wind Turbine with a Markovian Jump Model

    DEFF Research Database (Denmark)

    Lin, Zhongwei; Liu, Jizhen; Wu, Qiuwei

    2016-01-01

    of wind turbine. Through sampling the low-frequency wind speed data into separate intervals, the stochastic characteristic of the steady wind speed can be represented as a Markov process, while the high-frequency wind speed in the each interval is regarded as the disturbance input. Then, the traditional...... to guarantee both the disturbance rejection and the mechanical loads objectives, which can reduce the power volatility and the generator torque fluctuation of the whole transmission mechanism efficiently. Simulation results for a 2 MW wind turbine show the effectiveness of the proposed method....

  3. Full Life Wind Turbine Gearbox Lubricating Fluids

    Energy Technology Data Exchange (ETDEWEB)

    Lutz, Glenn A.; Jungk, Manfred; Bryant, Jonathan J.; Lauer, Rebecca S.; Chobot, Anthony; Mayer, Tyler; Palmer, Shane; Kauffman, Robert E.

    2012-02-28

    Industrial gear box lubricants typically are hydrocarbon based mineral oils with considerable amounts of additives to overcome the lack of base fluid properties like wear protection, oxidation stability, load carrying capacity, low temperature solidification and drop of viscosity at higher temperatures. For today's wind turbine gearboxes, the requirements are more severe and synthetic hydrocarbon oils are used to improve on this, but all such hydrocarbon based lubricants require significant amounts of Extreme Pressure (EP) additives to meet performance requirements. Perfluoropolyether (PFPE) fluids provide load carrying capacity as an inherent property. During the course of the project with the main tasks of 'Establish a Benchmark', 'Lubricant Evaluation', 'Full Scale Gearbox Trial' and 'Economic Evaluation', the PAO Reference oil exhibited significant changes after laboratory gear testing, in service operation in the field and full scale gearbox trial. Four hydrocarbon base oils were selected for comparison in the benchmarking exercise and showed variation with respect to meeting the requirements for the laboratory micro-pitting tests, while the PFPE fluid exceeded the requirements even with the material taken after the full scale gear box trial. This is remarkable for a lubricant without EP additives. Laboratory bearing tests performed on the PFPE fluids before and after the full scale gear box trial showed the results met requirements for the industry standard. The PFPE fluid successfully completed the full scale gear box test program which included baseline and progressive staged load testing. The evaluation of gears showed no micro-pitting or objectionable wear. By the final stage, lubricant film thickness had been reduced to just 21% of its original value, this was by design and resulted in a lambda ratio of well below 1. This test design scenario of a low lambda ratio is a very undesirable lubrication condition

  4. Frequency weighted model predictive control of wind turbine

    DEFF Research Database (Denmark)

    Klauco, Martin; Poulsen, Niels Kjølstad; Mirzaei, Mahmood

    2013-01-01

    This work is focused on applying frequency weighted model predictive control (FMPC) on three blade horizontal axis wind turbine (HAWT). A wind turbine is a very complex, non-linear system influenced by a stochastic wind speed variation. The reduced dynamics considered in this work...... are the rotational degree of freedom of the rotor and the tower for-aft movement. The MPC design is based on a receding horizon policy and a linearised model of the wind turbine. Due to the change of dynamics according to wind speed, several linearisation points must be considered and the control design adjusted...... accordingly. In practice is very hard to measure the effective wind speed, this quantity will be estimated using measurements from the turbine itself. For this purpose stationary predictive Kalman filter has been used. Stochastic simulations of the wind turbine behaviour with applied frequency weighted model...

  5. Fatigue-Damage Estimation and Control for Wind Turbines

    DEFF Research Database (Denmark)

    Barradas Berglind, Jose de Jesus

    How can fatigue-damage for control of wind turbines be represented? Fatigue-damage is indeed a crucial factor in structures such as wind turbines that are exposed to turbulent and rapidly changing wind flow conditions. This is relevant both in their design stage and during the control......, the inclusion of fatigue-damage within feedback control loops is of special interest. Four strategies in total are proposed in this work: three for the wind turbine level and one for the wind farm level. On one hand, the three strategies in the turbine level are based on hysteresis operators and strive......-damage estimation in wind turbine components, to the mixed objective operation of wind energy conversion systems, and to the synthesis of control strategies that include hysteresis operators....

  6. A Reliability Based Model for Wind Turbine Selection

    Directory of Open Access Journals (Sweden)

    A.K. Rajeevan

    2013-06-01

    Full Text Available A wind turbine generator output at a specific site depends on many factors, particularly cut- in, rated and cut-out wind speed parameters. Hence power output varies from turbine to turbine. The objective of this paper is to develop a mathematical relationship between reliability and wind power generation. The analytical computation of monthly wind power is obtained from weibull statistical model using cubic mean cube root of wind speed. Reliability calculation is based on failure probability analysis. There are many different types of wind turbinescommercially available in the market. From reliability point of view, to get optimum reliability in power generation, it is desirable to select a wind turbine generator which is best suited for a site. The mathematical relationship developed in this paper can be used for site-matching turbine selection in reliability point of view.

  7. Thermoplastic composite wind turbine blades : Vacuum infusion technology for anionic polyamide-6 composites

    NARCIS (Netherlands)

    van Rijswijk, K.

    2007-01-01

    Due to the increasing costs of fossil fuels and the improved efficiency of wind turbines in the last decade, wind energy has become increasingly cost-efficient and is well on its way of becoming a mainstream source of energy. To maintain a continuous reduction in costs it is necessary to increase

  8. Wind turbine noise propagation modelling: An unsteady approach

    DEFF Research Database (Denmark)

    Barlas, Emre; Zhu, Wei Jun; Shen, Wen Zhong

    2016-01-01

    Wind turbine sound generation and propagation phenomena are inherently time dependent, hence tools that incorporate the dynamic nature of these two issues are needed for accurate modelling. In this paper, we investigate the sound propagation from a wind turbine by considering the effects of unste......Wind turbine sound generation and propagation phenomena are inherently time dependent, hence tools that incorporate the dynamic nature of these two issues are needed for accurate modelling. In this paper, we investigate the sound propagation from a wind turbine by considering the effects...

  9. Fault tolerant control of wind turbines using unknown input observers

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Stoustrup, Jakob

    2012-01-01

    This paper presents a scheme for accommodating faults in the rotor and generator speed sensors in a wind turbine. These measured values are important both for the wind turbine controller as well as the supervisory control of the wind turbine. The scheme is based on unknown input observers, which...... are also used to detect and isolate these faults. The scheme is tested on a known benchmark for FDI and FTC of wind turbines. Tests on this benchmark model show a clear potential of the proposed scheme....

  10. Description and evaluation of foreign wind turbine technology

    International Nuclear Information System (INIS)

    1995-06-01

    It is stated that sales of Danish-manufactured wind turbines abroad are decreasing due to an increase in production, marketing and technology research in other countries. The aim was to give an account of this international development which could form the basis for the future strategies of the Danish Wind turbine industry. The study is based on a survey of relevant literature, interviews with experts on the subject and the collection of the latest data. The survey is limited to wind turbines with a larger capacity than 50 kW. Recommendations are given as to how to conserve and develop the market for Danish wind turbines. (AB) 17 refs

  11. A Method for Modeling of Floating Vertical Axis Wind Turbine

    DEFF Research Database (Denmark)

    Wang, Kai; Hansen, Martin Otto Laver; Moan, Torgeir

    2013-01-01

    It is of interest to investigate the potential advantages of floating vertical axis wind turbine (FVAWT) due to its economical installation and maintenance. A novel 5MW vertical axis wind turbine concept with a Darrieus rotor mounted on a semi-submersible support structure is proposed in this paper....... In order to assess the technical and economic feasibility of this novel concept, a comprehensive simulation tool for modeling of the floating vertical axis wind turbine is needed. This work presents the development of a coupled method for modeling of the dynamics of a floating vertical axis wind turbine...

  12. Backup Mechanical Brake System of the Wind Turbine

    Science.gov (United States)

    Sirotkin, E. A.; Solomin, E. V.; Gandzha, S. A.; Kirpichnikova, I. M.

    2018-01-01

    Paper clarifies the necessity of the emergency mechanical brake systems usage for wind turbines. We made a deep analysis of the wind turbine braking methods available on the market, identifying their strengths and weaknesses. The electromechanical braking appeared the most technically reasonable and economically attractive. We described the developed combined electromechanical brake system for vertical axis wind turbine driven from electric drive with variable torque enough to brake over the turbine even on the storm wind speed up to 45 m/s. The progress was made due to the development of specific kinematic brake system diagram and intelligent control system managed by special operation algorithm.

  13. Some aspects on wind turbines monitoring. General considerations and loads on horizontal wind turbines

    International Nuclear Information System (INIS)

    Cuerva, A.

    1996-01-01

    The concept Monitoring applied to the Wind Energy technology is similar to the definition used in other branches of Science or Engineering, this is knowing values of variables which have to do with a mechanic system, in our case a wind turbine. These mentioned parameters may have different relationships to our wind turbine; some of them come from the environment the machine is operating in, others, are a measure of how properly the machine is working, and finally, the rest are an assessment of the systems health during its life. In this chapter we will answer questions such as: What do we need to measure? Why is Monitoring mandatory (from the different points of view of people involved in this world)? How can we measure a wind turbine depending on our objectives (Technic, tools, guidance, recommendations, etc.)? And finally What can we expect in the near future? The author wants the reader to keep the idea in mind that Monitoring means the richest and most accurate knowledge on wind turbine's operation (Its environment, performances or health). This is the first step that allows us to optimize the operation mode of the machine and improve it (design, manufacturing, even the used modeling tools). When there is so much money involved, this fact becomes a must. (Author)

  14. Aeroelastic modal dynamics of wind turbines including anisotropic effects

    Energy Technology Data Exchange (ETDEWEB)

    Fisker Skjoldan, P.

    2011-03-15

    Several methods for aeroelastic modal analysis of a rotating wind turbine are developed and used to analyse the modal dynamics of two simplified models and a complex model in isotropic and anisotropic conditions. The Coleman transformation is used to enable extraction of the modal frequencies, damping, and periodic mode shapes of a rotating wind turbine by describing the rotor degrees of freedom in the inertial frame. This approach is valid only for an isotropic system. Anisotropic systems, e.g., with an unbalanced rotor or operating in wind shear, are treated with the general approaches of Floquet analysis or Hill's method which do not provide a unique reference frame for observing the modal frequency, to which any multiple of the rotor speed can be added. This indeterminacy is resolved by requiring that the periodic mode shape be as constant as possible in the inertial frame. The modal frequency is thus identified as the dominant frequency in the response of a pure excitation of the mode observed in the inertial frame. A modal analysis tool based directly on the complex aeroelastic wind turbine code BHawC is presented. It uses the Coleman approach in isotropic conditions and the computationally efficient implicit Floquet analysis in anisotropic conditions. The tool is validated against system identifications with the partial Floquet method on the nonlinear BHawC model of a 2.3 MW wind turbine. System identification results show that nonlinear effects on the 2.3 MW turbine in most cases are small, but indicate that the controller creates nonlinear damping. In isotropic conditions the periodic mode shape contains up to three harmonic components, but in anisotropic conditions it can contain an infinite number of harmonic components with frequencies that are multiples of the rotor speed. These harmonics appear in calculated frequency responses of the turbine. Extreme wind shear changes the modal damping when the flow is separated due to an interaction between

  15. Structural Dynamic Behavior of Wind Turbines

    Science.gov (United States)

    Thresher, Robert W.; Mirandy, Louis P.; Carne, Thomas G.; Lobitz, Donald W.; James, George H. III

    2009-01-01

    The structural dynamicist s areas of responsibility require interaction with most other members of the wind turbine project team. These responsibilities are to predict structural loads and deflections that will occur over the lifetime of the machine, ensure favorable dynamic responses through appropriate design and operational procedures, evaluate potential design improvements for their impact on dynamic loads and stability, and correlate load and control test data with design predictions. Load prediction has been a major concern in wind turbine designs to date, and it is perhaps the single most important task faced by the structural dynamics engineer. However, even if we were able to predict all loads perfectly, this in itself would not lead to an economic system. Reduction of dynamic loads, not merely a "design to loads" policy, is required to achieve a cost-effective design. The two processes of load prediction and structural design are highly interactive: loads and deflections must be known before designers and stress analysts can perform structural sizing, which in turn influences the loads through changes in stiffness and mass. Structural design identifies "hot spots" (local areas of high stress) that would benefit most from dynamic load alleviation. Convergence of this cycle leads to a turbine structure that is neither under-designed (which may result in structural failure), nor over-designed (which will lead to excessive weight and cost).

  16. Wind turbine wake in atmospheric turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Rethore, P.-E.

    2009-10-15

    This thesis describes the different steps needed to design a steady-state computational fluid dynamics (CFD) wind farm wake model. The ultimate goal of the project was to design a tool that could analyze and extrapolate systematically wind farm measurements to generate wind maps in order to calibrate faster and simpler engineering wind farm wake models. The most attractive solution was the actuator disc method with the steady state k-epsilon turbulence model. The first step to design such a tool is the treatment of the forces. This thesis presents a computationally inexpensive method to apply discrete body forces into the finite-volume flow solver with collocated variable treatment (EllipSys), which avoids the pressure-velocity decoupling issue. The second step is to distribute the body forces in the computational domain accordingly to rotor loading. This thesis presents a generic flexible method that associates any kind of shapes with the computational domain discretization. The special case of the actuator disc performs remarkably well in comparison with Conway's heavily loaded actuator disc analytical solution and a CFD full rotor computation, even with a coarse discretization. The third step is to model the atmospheric turbulence. The standard k-epsilon model is found to be unable to model at the same time the atmospheric turbulence and the actuator disc wake and performs badly in comparison with single wind turbine wake measurements. A comparison with a Large Eddy Simulation (LES) shows that the problem mainly comes from the assumptions of the eddy-viscosity concept, which are deeply invalidated in the wind turbine wake region. Different models that intent to correct the k-epsilon model's issues are investigated, of which none of them is found to be adequate. The mixing of the wake in the atmosphere is a deeply non-local phenomenon that is not handled correctly by an eddy-viscosity model such as k-epsilon. (author)

  17. Wind Turbine Power Curve Design for Optimal Power Generation in Wind Farms Considering Wake Effect

    DEFF Research Database (Denmark)

    Tian, Jie; Zhou, Dao; Su, Chi

    2017-01-01

    In modern wind farms, maximum power point tracking (MPPT) is widely implemented. Using the MPPT method, each individual wind turbine is controlled by its pitch angle and tip speed ratio to generate the maximum active power. In a wind farm, the upstream wind turbine may cause power loss to its...... downstream wind turbines due to the wake effect. According to the wake model, downstream power loss is also determined by the pitch angle and tip speed ratio of the upstream wind turbine. By optimizing the pitch angle and tip speed ratio of each wind turbine, the total active power of the wind farm can...... be increased. In this paper, the optimal pitch angle and tip speed ratio are selected for each wind turbine by the exhausted search. Considering the estimation error of the wake model, a solution to implement the optimized pitch angle and tip speed ratio is proposed, which is to generate the optimal control...

  18. Computational analysis of vertical axis wind turbine arrays

    Science.gov (United States)

    Bremseth, J.; Duraisamy, K.

    2016-10-01

    Canonical problems involving single, pairs, and arrays of vertical axis wind turbines (VAWTs) are investigated numerically with the objective of understanding the underlying flow structures and their implications on energy production. Experimental studies by Dabiri (J Renew Sustain Energy 3, 2011) suggest that VAWTs demand less stringent spacing requirements than their horizontal axis counterparts and additional benefits may be obtained by optimizing the placement and rotational direction of VAWTs. The flowfield of pairs of co-/counter-rotating VAWTs shows some similarities with pairs of cylinders in terms of wake structure and vortex shedding. When multiple VAWTs are placed in a column, the extent of the wake is seen to spread further downstream, irrespective of the direction of rotation of individual turbines. However, the aerodynamic interference between turbines gives rise to regions of excess momentum between the turbines which lead to significant power augmentations. Studies of VAWTs arranged in multiple columns show that the downstream columns can actually be more efficient than the leading column, a proposition that could lead to radical improvements in wind farm productivity.

  19. Effects of gain-scheduling methods in a classical wind turbine controller on wind turbine aeroservoelastic modes and loads

    DEFF Research Database (Denmark)

    Tibaldi, Carlo; Henriksen, Lars Christian; Hansen, Morten Hartvig

    2014-01-01

    The eects of dierent gain-scheduling methods for a classical wind turbine controller, operating in full load region, on the wind turbine aeroservoelastic modes and loads are investigated in this work. The dierent techniques are derived looking at the physical problem to take into account the chan......The eects of dierent gain-scheduling methods for a classical wind turbine controller, operating in full load region, on the wind turbine aeroservoelastic modes and loads are investigated in this work. The dierent techniques are derived looking at the physical problem to take into account...

  20. Can road traffic mask sound from wind turbines? Response to wind turbine sound at different levels of road traffic sound

    International Nuclear Information System (INIS)

    Pedersen, Eja; Berg, Frits van den; Bakker, Roel; Bouma, Jelte

    2010-01-01

    Wind turbines are favoured in the switch-over to renewable energy. Suitable sites for further developments could be difficult to find as the sound emitted from the rotor blades calls for a sufficient distance to residents to avoid negative effects. The aim of this study was to explore if road traffic sound could mask wind turbine sound or, in contrast, increases annoyance due to wind turbine noise. Annoyance of road traffic and wind turbine noise was measured in the WINDFARMperception survey in the Netherlands in 2007 (n=725) and related to calculated levels of sound. The presence of road traffic sound did not in general decrease annoyance with wind turbine noise, except when levels of wind turbine sound were moderate (35-40 dB(A) Lden) and road traffic sound level exceeded that level with at least 20 dB(A). Annoyance with both noises was intercorrelated but this correlation was probably due to the influence of individual factors. Furthermore, visibility and attitude towards wind turbines were significantly related to noise annoyance of modern wind turbines. The results can be used for the selection of suitable sites, possibly favouring already noise exposed areas if wind turbine sound levels are sufficiently low.

  1. Combined preliminary–detailed design of wind turbines

    Directory of Open Access Journals (Sweden)

    P. Bortolotti

    2016-05-01

    Full Text Available This paper is concerned with the holistic optimization of wind turbines. A multi-disciplinary optimization procedure is presented that marries the overall sizing of the machine in terms of rotor diameter and tower height (often termed “preliminary design” with the detailed sizing of its aerodynamic and structural components. The proposed combined preliminary–detailed approach sizes the overall machine while taking into full account the subtle and complicated couplings that arise due to the mutual effects of aerodynamic and structural choices. Since controls play a central role in dictating performance and loads, control laws are also updated accordingly during optimization. As part of the approach, rotor and tower are sized simultaneously, even in this case capturing the mutual effects of one component over the other due to the tip clearance constraint. The procedure, here driven by detailed models of the cost of energy, results in a complete aero-structural design of the machine, including its associated control laws. The proposed methods are tested on the redesign of two wind turbines, a 2.2 MW onshore machine and a large 10 MW offshore one. In both cases, the optimization leads to significant changes with respect to the initial baseline configurations, with noticeable reductions in the cost of energy. The novel procedures are also exercised on the design of low-induction rotors for both considered wind turbines, showing that they are typically not competitive with conventional high-efficiency rotors.

  2. The Concept of Segmented Wind Turbine Blades: A Review

    Directory of Open Access Journals (Sweden)

    Mathijs Peeters

    2017-07-01

    Full Text Available There is a trend to increase the length of wind turbine blades in an effort to reduce the cost of energy (COE. This causes manufacturing and transportation issues, which have given rise to the concept of segmented wind turbine blades. In this concept, multiple segments can be transported separately. While this idea is not new, it has recently gained renewed interest. In this review paper, the concept of wind turbine blade segmentation and related literature is discussed. The motivation for dividing blades into segments is explained, and the cost of energy is considered to obtain requirements for such blades. An overview of possible implementations is provided, considering the split location and orientation, as well as the type of joint to be used. Many implementations draw from experience with similar joints such as the joint at the blade root, hub and root extenders and joints used in rotor tips and glider wings. Adhesive bonds are expected to provide structural and economic efficiency, but in-field assembly poses a big issue. Prototype segmented blades using T-bolt joints, studs and spar bridge concepts have proven successful, as well as aerodynamically-shaped root and hub extenders.

  3. High Power Electronics - Key Technology for Wind Turbines

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Ma, Ke

    2014-01-01

    In this chapter the developments of technology and market trends in wind power application are discussed. Different wind turbine concepts as well as some dominant and promising power converter solutions are reviewed respectively. Furthermore the control methods, grid demands as well as the emerging...... reliability challenges for the future wind turbines are explained. It is concluded that the wind turbine behavior/performance can be significantly improved by introducing power electronics, and there will be higher requirements for the power electronics performances in wind power application....

  4. The 1.5 MW wind turbine of tomorrow

    Energy Technology Data Exchange (ETDEWEB)

    De Wolff, T.J.; Sondergaard, H. [Nordtank Energy Group, Richmond, VA (United States)

    1996-12-31

    The Danish company Nordtank is one of the pioneers within the wind turbine industry. Since 1981 Nordtank has installed worldwide more than 2300 wind turbine generators with a total name plate capacity that is exceeding 350 MW. This paper will describe two major wind turbine technology developments that Nordtank has accomplished during the last year: Site Optimization of Nordtank wind turbines: Nordtank has developed a flexible design concept for its WTGs in the 500/600 kW range, in order to offer the optimal WTG solution for any given site and wind regime. Nordtank`s 1.5 MW wind turbine: In September 1995, Nordtank was the first company to install a commercial 1.5 NM WTG. This paper will document the development process, the design as well as operations of the Nordtank 1.5 MW WTG.

  5. Wall modeled LES of wind turbine wakes with geometrical effects

    Science.gov (United States)

    Bricteux, Laurent; Benard, Pierre; Zeoli, Stephanie; Moureau, Vincent; Lartigue, Ghislain; Vire, Axelle

    2017-11-01

    This study focuses on prediction of wind turbine wakes when geometrical effects such as nacelle, tower, and built environment, are taken into account. The aim is to demonstrate the ability of a high order unstructured solver called YALES2 to perform wall modeled LES of wind turbine wake turbulence. The wind turbine rotor is modeled using an Actuator Line Model (ALM) while the geometrical details are explicitly meshed thanks to the use of an unstructured grid. As high Reynolds number flows are considered, sub-grid scale models as well as wall modeling are required. The first test case investigated concerns a wind turbine flow located in a wind tunnel that allows to validate the proposed methodology using experimental data. The second test case concerns the simulation of a wind turbine wake in a complex environment (e.g. a Building) using realistic turbulent inflow conditions.

  6. Optimized Control Strategy For Over Loaded Offshore Wind Turbines

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Knudsen, Torben; Wisniewski, Rafal

    2015-01-01

    .g., the tower. In the process of decreasing the cost of energy of wind turbines it is relevant to continue some level of production while awaiting service and repair of the offshore wind turbine. This is typically done operating the wind turbine in a power de-rated operation mode, assuming that lower power...... controller tuning for a given wind turbine. It also enables a very safe and robust comparison between a new control strategy and the present one. Main body of abstract Is it true that power de-rating indeed the best way to reduce loads? The power de-rating approach has the drawback of only indirectly...... and service at offshore location, where accessibility can be problematic. The controller objectives are focused directly on the actual objective like lowering of fore aft fatigue loads, instead of using an indirect objective of de-rating the power production of the wind turbine. This means what the wind...

  7. Power curve of the AWEC-60 wind turbine

    International Nuclear Information System (INIS)

    Avia, F.

    1992-01-01

    The experimental wind turbine AWEC-60 was developed to evaluate the possibilities of the Large Wind turbines, from the technical and economical point of view. The project was developed by a spanish-german group, integrated by Union Fenosa, Asinel, M.A.N. Neue Technologie and the Instituto de Energias Renovables from CIEMAT, starting the operation during the year 1990. In this paper, the obtention of the wind turbine's power curve is presented, which has been obtained in agreement with the 'Recommended Practices for Wind Turbine Testing and Evaluation' from the Executive Committee for the Research and Development on Wind Energy, of the International Energy Agency (AIE). Using the functioning data of the wind turbine corresponding to the first quarter of the year 1991, the power curves have been obtained, and the results have been compared with the curves measured in other similar large windturbines. (author)

  8. Integrated analysis of wind turbines - The impact of power systems on wind turbine design

    DEFF Research Database (Denmark)

    Barahona Garzón, Braulio

    of the integrated simulation environment are presented. The analysis of an asynchronous machine, and numerical simulations of a fixedspeed wind turbine in the integrated simulation environment, demonstrate the effects on structural loads of including the generator rotor fluxes dynamics in aeroelastic studies. Power...

  9. Statistical fault diagnosis of wind turbine drivetrain applied to a 5MW floating wind turbine

    DEFF Research Database (Denmark)

    Ghane, Mahdi; Nejad, Amir R.; Blanke, Mogens

    2016-01-01

    to prevent them to develop into failure, statistical change detection is used in this paper. The Cumulative Sum Method (CUSUM) is employed to detect possible defects in the downwind main bearing. A high fidelity gearbox model on a 5-MW spar-type wind turbine is used to generate data for fault-free and faulty...

  10. Vertical Axis Wind Turbine Design Load Cases Investigation and Comparison with Horizontal Axis Wind Turbine

    DEFF Research Database (Denmark)

    Galinos, Christos; Larsen, Torben J.; Aagaard Madsen, Helge

    2016-01-01

    The paper studies the applicability of the IEC 61400-1 ed.3, 2005 International Standard of wind turbine minimum design requirements in the case of an onshore Darrieus VAWT and compares the results of basic Design Load Cases (DLCs) with those of a 3-bladed HAWT. The study is based on aeroelastic ...

  11. Multi-piece wind turbine rotor blades and wind turbines incorporating same

    Science.gov (United States)

    Moroz,; Mieczyslaw, Emilian [San Diego, CA

    2008-06-03

    A multisection blade for a wind turbine includes a hub extender having a pitch bearing at one end, a skirt or fairing having a hole therethrough and configured to mount over the hub extender, and an outboard section configured to couple to the pitch bearing.

  12. Wind Turbines Make Waves: Why Some Residents near Wind Turbines Become Ill

    Science.gov (United States)

    Havas, Magda; Colling, David

    2011-01-01

    People who live near wind turbines complain of symptoms that include some combination of the following: difficulty sleeping, fatigue, depression, irritability, aggressiveness, cognitive dysfunction, chest pain/pressure, headaches, joint pain, skin irritations, nausea, dizziness, tinnitus, and stress. These symptoms have been attributed to the…

  13. Investigation of the stochastic subspace identification method for on-line wind turbine tower monitoring

    Science.gov (United States)

    Dai, Kaoshan; Wang, Ying; Lu, Wensheng; Ren, Xiaosong; Huang, Zhenhua

    2017-04-01

    Structural health monitoring (SHM) of wind turbines has been applied in the wind energy industry to obtain their real-time vibration parameters and to ensure their optimum performance. For SHM, the accuracy of its results and the efficiency of its measurement methodology and data processing algorithm are the two major concerns. Selection of proper measurement parameters could improve such accuracy and efficiency. The Stochastic Subspace Identification (SSI) is a widely used data processing algorithm for SHM. This research discussed the accuracy and efficiency of SHM using SSI method to identify vibration parameters of on-line wind turbine towers. Proper measurement parameters, such as optimum measurement duration, are recommended.

  14. Self-starting aerodynamics analysis of vertical axis wind turbine

    Directory of Open Access Journals (Sweden)

    Jianyang Zhu

    2015-12-01

    Full Text Available Vertical axis wind turbine is a special type of wind-force electric generator which is capable of working in the complicated wind environment. The self-starting aerodynamics is one of the most important considerations for this kind of turbine. This article aims at providing a systematic synthesis on the self-starting aerodynamic characteristics of vertical axis wind turbine based on the numerical analysis approach. First, the physical model of vertical axis wind turbine and its parameter definitions are presented. Secondary, the interaction model between the vertical axis wind turbine and fluid is developed by using the weak coupling approach; the numerical data of this model are then compared with the wind tunnel experimental data to show its feasibility. Third, the effects of solidity and fixed pitch angle on the self-starting aerodynamic characteristics of the vertical axis wind turbine are analyzed systematically. Finally, the quantification effects of the solidity and fixed pitch angle on the self-starting performance of the turbine can be obtained. The analysis in this study will provide straightforward physical insight into the self-starting aerodynamic characteristics of vertical axis wind turbine.

  15. Design and development of nautilus whorl-wind turbine

    Science.gov (United States)

    R, Pramod; Kumar, G. B. Veeresh; Harsha, P. Sai Sri; Kumar, K. A. Udaya

    2017-07-01

    Our life is directly related to energy and its consumption, and the issues of energy research are extremely important and highly sensitive. Scientists and researchers attempt to accelerate solutions for wind energy generation, design parameters under the influence of novel policies adopted for energy management and the concerns for global warming and climate change. The objective of this study is to design a small wind turbine that is optimized for the constraints that come with residential use. The study is aimed at designing a wind turbine for tapping the low speed wind in urban locations. The design process includes the selection of the wind turbine type and the determination of the blade airfoil, finding the maximum drag model and manufacturing of the turbine economically. In this study, the Nautilus turbine is modeled, simulated and the characteristic curves are plotted. The cutting in wind speed for the turbine is around 1m/s. The turbine rotates in a range of 20 rpm to 500 rpm at wind speeds 1m/s to 10m/s On a below average day at noon where the wind speed are usually low the turbine recorded an rpm of 120 (average value) at 4m/s wind speeds. This study focuses on a computational fluid dynamics analysis of compressible radially outward flow.

  16. Active Blade Pitch Control for Straight Bladed Darrieus Vertical Axis Wind Turbine of New Design

    DEFF Research Database (Denmark)

    Chougule, Prasad; Nielsen, Søren R.K.; Basu, Biswajit

    2013-01-01

    As Development of small vertical axis wind turbines (VAWT) for urban use is becoming an interesting topic both within industry and academia. However, there are few new designs of vertical axis turbines which are customized for building integration. These are getting importance because they operate...... at low rotational speed producing very less noise during operation, although these are less efficient than Horizontal Axis Wind Turbines (HAWT). The efficiency of a VAWT has been significantly improved by H-Darrieus VAWT design based on double airfoil technology as demonstrated by the authors...

  17. Wind Resource Assessment and Requested Wind Turbine Recommendations

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Ken [Municipal Civil Corporation, Gas City, IN (United States); Wolar, John [Municipal Civil Corporation, Gas City, IN (United States)

    2012-10-22

    Alternate Energy Solutions, Inc. (“AESWR”) was engaged by the Town of Brookston (“Brookston”) to assemble, erect and maintain one 60 m XHD meteorological tower manufactured by NRG Systems, Inc.; for monitoring, recording and evaluating collected wind data. It is the opinion of AESWR staff that study results support the development of a wind turbine project at the Bol Family Farm provided: a) additional land is leased for the project; b) project construction costs are controlled; and c) a prudent power purchase agreement is negotiated with a power take-off entity. We believe that a project having an aggregate nameplate rating sized from 6.0 MW to 20 MW would be appropriate for this location. We recommend 100-125 acres of land per installed MW be used as a general rule for acquiring wind energy land lease agreements, total land lease holdings to be acquired would then approach 750 acres to 2,500 acres.

  18. Anisotropy of turbulence in wind turbine wakes

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Elvira, Rafael [Comision Nacional de Energia (Spain); Crespo, Antonio; Migoya, Emilio; Manuel, Fernando [Departamento de Ingenieria Energetica y Fluidomecanica, Escuela Tecnica Superior de Ingenieros Industriales, Universidad Politecnica de Madrid, Jose Gutierrez Abascal, 2. 28006 Madrid (Spain); Hernandez, Julio [Departamento de Mecanica, ETSII, Universidad Nacional de Educacion a Distancia, Ciudad Universitaria, 28040 Madrid (Spain)

    2005-10-01

    This work is mainly dedicated to the study of non-isotropic characteristics of turbulence in wind turbine wakes, specifically the shear layer of the near wake. A calculation method based on an explicit algebraic model for the components of the turbulent stress tensor is proposed, and the results are found to be in acceptable agreement with experimental results. Analytical expressions for the estimation of an upper limit of the global turbulence kinetic energy, k, and the individual contributions of each diagonal term in the turbulent stress tensor are proposed. Their predictions are compared with experimental results.

  19. Wind turbine blade testing under combined loading

    DEFF Research Database (Denmark)

    Roczek-Sieradzan, Agnieszka; Nielsen, Magda; Branner, Kim

    2011-01-01

    The paper presents full-scale blade tests under a combined flap- and edgewise loading. The main aim of this paper is to present the results from testing a wind turbine blade under such conditions and to study the structural behavior of the blade subjected to combined loading. A loading method using...... anchor plates was applied, allowing transverse shear distortion. The global and local deformation of the blade as well as the reproducibility of the test was studied and the results from the investigations are presented....

  20. Wind turbine ring/shroud drive system

    Science.gov (United States)

    Blakemore, Ralph W.

    2005-10-04

    A wind turbine capable of driving multiple electric generators having a ring or shroud structure for reducing blade root bending moments, hub loads, blade fastener loads and pitch bearing loads. The shroud may further incorporate a ring gear for driving an electric generator. In one embodiment, the electric generator may be cantilevered from the nacelle such that the gear on the generator drive shaft is contacted by the ring gear of the shroud. The shroud also provides protection for the gearing and aids in preventing gear lubricant contamination.

  1. Wind turbine blade with viscoelastic damping

    Science.gov (United States)

    Sievers, Ryan A.; Mullings, Justin L.

    2017-01-10

    A wind turbine blade (60) damped by viscoelastic material (54, 54A-F) sandwiched between stiffer load-bearing sublayers (52A, 52B, 56A, 56B) in portions of the blade effective to damp oscillations (38) of the blade. The viscoelastic material may be located in one or more of: a forward portion (54A) of the shell, an aft portion (54D) of the shell, pressure and suction side end caps (54B) of an internal spar, internal webbing walls (54C, 54E), and a trailing edge core (54F).

  2. Airfoil selection methodology for Small Wind Turbines

    DEFF Research Database (Denmark)

    Salgado Fuentes, Valentin; Troya, Cesar; Moreno, Gustavo

    2016-01-01

    a new methodology for airfoil selection used in feasibility and optimization of small wind turbines with low cut-in speed. On the first stage, airfoils data is tested on XFOIL software to check its compatibility with the simulator; then, arithmetic mean criteria is recursively used to discard...... underperformed airfoils; the best airfoil data was exported to Matlab for a deeper analysis. In the second part, data points were interpolated using "splines" to calculate glide ratio and stability across multiple angles of attack, those who present a bigger steadiness were conserved. As a result, 3 airfoils...

  3. Modulated Field Synchronous Generator for Wind Turbines

    Directory of Open Access Journals (Sweden)

    Petru Chioncel

    2013-01-01

    Full Text Available This paper presents a modern electromechanical conversion systemsolution as the modulated field synchronous generator, offering on theone hand, an output voltage with constant frequency in terms of speedvariation of the wind turbine and on the other hand an advantagepower / weight ratio due to the high frequency for which the magneticcircuit of the electric machine is sized. The mathematical model of the modulated field synchronous generator is implemented in MatLABmodeling language, highlighting the command structure on thetransistors bases of the inverter transistors, through which thefunctioning of the electric machine can be studied, especially in terms of the frequency of the delivered voltage.

  4. Fault Tolerant Control of Wind Turbines

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Stoustrup, Jakob; Kinnaert, Michel

    2013-01-01

    This paper presents a test benchmark model for the evaluation of fault detection and accommodation schemes. This benchmark model deals with the wind turbine on a system level, and it includes sensor, actuator, and system faults, namely faults in the pitch system, the drive train, the generator...... of 4.8 MW. The fault detection and isolation (FDI) problem was addressed by several teams, and five of the solutions are compared in the second part of this paper. This comparison relies on additional test data in which the faults occur in different operating conditions than in the test data used...

  5. Wake losses optimization of offshore wind farms with moveable floating wind turbines

    International Nuclear Information System (INIS)

    Rodrigues, S.F.; Teixeira Pinto, R.; Soleimanzadeh, M.; Bosman, Peter A.N.; Bauer, P.

    2015-01-01

    Highlights: • We present a layout optimization framework for wind farms with moveable turbines. • Using moveable wind turbines in optimized layouts maximizes energy production. • Turbine and wind farm designers should cooperate to optimize offshore wind projects. - Abstract: In the future, floating wind turbines could be used to harvest energy in deep offshore areas where higher wind mean speeds are observed. Currently, several floating turbine concepts are being designed and tested in small scale projects; in particular, one concept allows the turbine to move after installation. This article presents a novel layout optimization framework for wind farms composed of moveable floating turbines. The proposed framework uses an evolutionary optimization strategy in a nested configuration which simultaneously optimizes the anchoring locations and the wind turbine position within the mooring lines for each individual wind direction. The results show that maximum energy production is obtained when moveable wind turbines are deployed in an optimized layout. In conclusion, the framework represents a new design optimization tool for future offshore wind farms composed of moveable floating turbines

  6. Wind turbine integrated multipole permanent magnet generator (PMG)

    Energy Technology Data Exchange (ETDEWEB)

    Vilsboell, N.; Pinegin, A.; Goussarov, D.

    1996-01-01

    Designed permanent magnet generator (PMG - 20 kW) possesses a number of advantages: it makes possible to replace gearbox, the generator and possibly the hub of the wind turbine by combining wind rotor with external rotor of the generator; use of rare earth magnets Nd-Fe-B allows to reduce mass and dimensions of the generator; use of the PMG for wind turbines increases the reliability of the construction during the life time, comparing to the conventional design (gearbox, asynchronous generator). The test of the PMG -20 kW informs that design method, developed for calculation of multipole permanent magnet generators is correct in general and meets engineering requirements. The calculation uncertainty of the magnetic system and output characteristics does not exceed 2-3%. The test shows, that the maximum efficiency of the PGM - 20 kW with full load can be achieved as high as 90-91.5% and excels the efficiency of the traditional system `generator-gearbox` by 4-5.5%. Designing permanent magnet generator, it is recommended to take into account voltage stabilization (capacitance). Efficiency is expected to be higher, mass and production cost of the generator can be reduced by 25-30%. The frequency converter shall be used not only for control of rotational speed, but also to obtain sinusoidal capacitive current on the generator side. For PMG - 20 kW the angle between voltage and current should be within the range 0-23%. (au)

  7. Wake losses optimization of offshore wind farms with moveable floating wind turbines

    NARCIS (Netherlands)

    S.F. Rodrigues; R. Teixeira Pinto (Rodrigo); M. Soleimanzadeh (Maryam); P.A.N. Bosman (Peter); P. Bauer (Pavol)

    2015-01-01

    htmlabstractIn the future, floating wind turbines could be used to harvest energy in deep offshore areas where higher wind mean speeds are observed. Currently, several floating turbine concepts are being designed and tested in small scale projects; in particular, one concept allows the turbine to

  8. Duration Test Report for the Viryd CS8 Wind Turbine

    Energy Technology Data Exchange (ETDEWEB)

    Roadman, J.; Murphy, M.; van Dam, J.

    2013-06-01

    This report summarizes the results of a duration noise test that the National Renewable Energy Laboratory (NREL) conducted on the Viryd CS8 wind turbine. This test was conducted in accordance with Clause 9.4 of the International Electrotechnical Commission's (IEC) standard, Wind turbines - Part 2: Design requirements for small wind turbines, IEC 61400-2 Ed. 2.0:2006-03. NREL researchers evaluated the turbine based on structural integrity and material degradation, quality of environmental protection, and dynamic behavior.

  9. The sound power measurement and certification of wind turbines

    International Nuclear Information System (INIS)

    MacKinnon, A.; Henderson, R.

    1992-01-01

    It is anticipated that there will be a substantial growth in the exploitation of renewable energy from the wind over the next few years. A major factor in this expected growth is the environmental acceptance or otherwise of wind turbines and in particular their acoustic characteristics. It is generally accepted within the turbine community that reliable methods of measuring and quantifying a turbine's acoustic signature are essential if this exploitation is to be realised. This paper will seek to review current practice both in the UK and further afield and will describe the development of a practical and reliable test method, which will aid the wind turbine Manufacturer, Developer and Planner. (author)

  10. Light Rotor: The 10-MW reference wind turbine

    DEFF Research Database (Denmark)

    Bak, Christian; Bitsche, Robert; Yde, Anders

    2012-01-01

    This paper describes the design of a rotor and a wind turbine for an artificial 10-MW wind turbine carried out in the Light Rotor project. The turbine called the Light Rotor 10-MW Reference Wind Turbine (LR10-MW RWT), is designed with existing methods and techniques and serves as a reference...... design show a rather well performing wind turbine both in terms of power and loads, but in the further work towards the final design the challenges in the control needs to be solved and the balance between power performance and loads and between structural performance and mass will be investigated...... like the determination of the specific power and upscaling of the turbine. The design of Iteration #2 of the LR10-MW RWT is carried out in a sequence between aerodynamic rotor design, structural design and aero-servo-elastic design. Each of these topics is described. The results from the Iteration #2...

  11. Doubly Fed Drives for Variable Speed Wind Turbines

    DEFF Research Database (Denmark)

    Lindholm, Morten

    2004-01-01

    This thesis deals with the use of variable speed wind turbines. Different wind turbine generator topologies are described. In particular, the reduced variable speed turbine, which uses a doubly fed induction generator, is covered. An overview of the power electronic inverters of interest to the f...... is constructed. Adaptive active flters are used to reduce harmonics and slip harmonics in the stator current. The flters are implemented in both inverters. The active flters reduce the stator harmonics by 20-30 dB. The flters can reduce the slip harmonics at variable speed.......This thesis deals with the use of variable speed wind turbines. Different wind turbine generator topologies are described. In particular, the reduced variable speed turbine, which uses a doubly fed induction generator, is covered. An overview of the power electronic inverters of interest...

  12. State of the art in wind turbine aerodynamics and aeroelasticity

    DEFF Research Database (Denmark)

    Hansen, Martin Otto Laver; Sørensen, Jens Nørkær; Voutsinas, S

    2006-01-01

    A comprehensive review of wind turbine aeroelasticity is given. The aerodynamic part starts with the simple aerodynamic Blade Element Momentum Method and ends with giving a review of the work done applying CFD on wind turbine rotors. In between is explained some methods of intermediate complexity...

  13. Control of Permanent Magnet Synchronous Generator for large wind turbines

    DEFF Research Database (Denmark)

    Busca, Cristian; Stan, Ana-Irina; Stanciu, Tiberiu

    2010-01-01

    Direct Torque Control (DTC) and Field Oriented Control (FOC) are the most dominant control strategies used in generators for wind turbines. In this paper both control methods were implemented on a Permanent Magnet Synchronous Generator (PMSG). The variable speed wind turbine with full scale power...

  14. A deflection monitoring system for a wind turbine blade

    DEFF Research Database (Denmark)

    2017-01-01

    A wind turbine blade comprising a system for monitoring the deflection of a wind turbine blade is described. The system comprises a wireless range-measurement system, having at least one wireless communication device located towards the root end of the blade and at least one wireless communication...

  15. Asynchronous Generators for use in Gearless Wind Turbines

    DEFF Research Database (Denmark)

    Jensen, Bogi Bech; Henriksen, Matthew L.

    2011-01-01

    In this presentation the squirrel cage induction generator is proposed for a direct-drive wind turbine. The squirrel cage induction generator is proposed for direct drive wind turbines, because of its simple and rugged construction and because it does not require rare earth elements, which...

  16. Controller Design Automation for Aeroservoelastic Design Optimization of Wind Turbines

    NARCIS (Netherlands)

    Ashuri, T.; Van Bussel, G.J.W.; Zaayer, M.B.; Van Kuik, G.A.M.

    2010-01-01

    The purpose of this paper is to integrate the controller design of wind turbines with structure and aerodynamic analysis and use the final product in the design optimization process (DOP) of wind turbines. To do that, the controller design is automated and integrated with an aeroelastic simulation

  17. Loads on Wind Turbines Access Platforms with Gratings

    DEFF Research Database (Denmark)

    Andersen, Thomas Lykke; Frigaard, Peter; Rasmussen, Michael R.

    2011-01-01

    The present paper deals with loads on wind turbine access platforms. The many planned new wind turbine parks together with the observed damages on platforms in several existing parks make the topic very important. The paper gives an overview of recently developed design formulae for different types...

  18. Radar Performance Degradation due to the Presence of Wind Turbines

    NARCIS (Netherlands)

    Theil, A.; Ewijk, L.J. van

    2007-01-01

    Wind turbines located in the vicinity of a radar system may affect the system's detection and tracking capability. A description of adverse effects is given in the paper for both primary and secondary radar. In order to judge the consequence of the shadowed volume cast by a wind turbine, results of

  19. Stochastic dynamic stiffness of surface footing for offshore wind turbines

    DEFF Research Database (Denmark)

    Vahdatirad, Mohammadjavad; Andersen, Lars Vabbersgaard; Ibsen, Lars Bo

    2014-01-01

    Highlights •This study concerns the stochastic dynamic stiffness of foundations for large offshore wind turbines. •A simple model of wind turbine structure with equivalent coupled springs at the base is utilized. •The level of uncertainties is quantified through a sensitivity analysis. •Estimatio...... of rare events of first natural frequency applying subset simulation is discussed....

  20. Experimental Investigation of the Wind Turbine Blade Root Flow

    NARCIS (Netherlands)

    Akay, B.; Ferreira, C.S.; Van Bussel, G.J.W.

    2010-01-01

    Several methods from experimental to analytical are used to investigate the aerodynamics of a horizontal axis wind turbine. To understand 3D and rotational effects at the root region of a wind turbine blade, correct modeling of the flow field is essential. Aerodynamic models need to be validated by