WorldWideScience

Sample records for wind stress components

  1. Interaction between main components in wind farms

    DEFF Research Database (Denmark)

    Holdyk, Andrzej; Koldby, Erik

    and the simplicity of the measurement methods using the device makes it a good candidate for performing black-box modelling of multiports whenever such models are not available from the manufacturers. Parametric variation method developed for EMT simulations in ATP-EMTP is a good tool for performing large...... with Frequency Domain Severity Factor proved to be a robust tool in assessing stresses on electric components arising from transient phenomena in offshore wind farms, including the voltage magnitude and frequency of oscillations. Quarter-wave resonance frequency is a good approximation of resonance frequency...... as well as performing parametric variation studies. Methods and tools were developed and shown to perform and estimate the severity of a potential mid- and high- frequency interaction between electric components in OWFs by robust sensitivity analysis in commercial EMT simulation tool. Performing...

  2. Probabilistic Modeling of Wind Turbine Drivetrain Components

    DEFF Research Database (Denmark)

    Rafsanjani, Hesam Mirzaei

    Wind energy is one of several energy sources in the world and a rapidly growing industry in the energy sector. When placed in offshore or onshore locations, wind turbines are exposed to wave excitations, highly dynamic wind loads and/or the wakes from other wind turbines. Therefore, most components...... in a wind turbine experience highly dynamic and time-varying loads. These components may fail due to wear or fatigue, and this can lead to unplanned shutdown repairs that are very costly. The design by deterministic methods using safety factors is generally unable to account for the many uncertainties. Thus......, a reliability assessment should be based on probabilistic methods where stochastic modeling of failures is performed. This thesis focuses on probabilistic models and the stochastic modeling of the fatigue life of the wind turbine drivetrain. Hence, two approaches are considered for stochastic modeling...

  3. Stochastic Modeling Of Wind Turbine Drivetrain Components

    DEFF Research Database (Denmark)

    Rafsanjani, Hesam Mirzaei; Sørensen, John Dalsgaard

    2014-01-01

    reliable components are needed for wind turbine. In this paper focus is on reliability of critical components in drivetrain such as bearings and shafts. High failure rates of these components imply a need for more reliable components. To estimate the reliability of these components, stochastic models...... are needed for initial defects and damage accumulation. In this paper, stochastic models are formulated considering some of the failure modes observed in these components. The models are based on theoretical considerations, manufacturing uncertainties, size effects of different scales. It is illustrated how...

  4. Dispersive stresses in wind farms

    Science.gov (United States)

    Segalini, Antonio; Braunbehrens, Robert; Hyvarinen, Ann

    2017-11-01

    One of the most famous models of wind farms is provided by the assumption that the farm can be approximated as a horizontally-homogeneous forest canopy with vertically-varying force intensity. By means of this approximation, the flow-motion equations become drastically simpler, as many of the three-dimensional effects are gone. However, the application of the horizontal average operator to the RANS equations leads to the appearance of new transport terms (called dispersive stresses) originating from the horizontal (small-scale) variation of the mean velocity field. Since these terms are related to the individual turbine signature, they are expected to vanish outside the roughness sublayer, providing a definition for the latter. In the present work, an assessment of the dispersive stresses is performed by means of a wake-model approach and through the linearised code ORFEUS developed at KTH. Both approaches are very fast and enable the characterization of a large number of wind-farm layouts. The dispersive stress tensor and its effect on the turbulence closure models are investigated, providing guidelines for those simulations where it is impossible to resolve the farm at a turbine scale due to grid requirements (as, for instance, mesoscale simulations).

  5. Compatibility Between Electric Components in Wind Farms

    DEFF Research Database (Denmark)

    Holdyk, Andrzej; Holbøll, Joachim; Arana Aristi, Iván

    2011-01-01

    The paper describes a method for investigation of the compatibility between electric components in wind farms by identifying critical resonances at different points of an offshore wind farm (OWF), based on systematic variation of critical parameters. In this way, the design of future OWF can...... be improved at a very early stage of the process. It is also revealed what parameters are the most important ones when considering compatibility. It was observed that a change of capacitance in the collection grid shifts the resonance peaks. A change in WT transformer capacitances influences the admittance...

  6. Fatigue Reliability Analysis of Wind Turbine Cast Components

    DEFF Research Database (Denmark)

    Rafsanjani, Hesam Mirzaei; Sørensen, John Dalsgaard; Fæster, Søren

    2017-01-01

    .) and to quantify the relevant uncertainties using available fatigue tests. Illustrative results are presented as obtained by statistical analysis of a large set of fatigue data for casted test components typically used for wind turbines. Furthermore, the SN curves (fatigue life curves based on applied stress......The fatigue life of wind turbine cast components, such as the main shaft in a drivetrain, is generally determined by defects from the casting process. These defects may reduce the fatigue life and they are generally distributed randomly in components. The foundries, cutting facilities and test...... facilities can affect the verification of properties by testing. Hence, it is important to have a tool to identify which foundry, cutting and/or test facility produces components which, based on the relevant uncertainties, have the largest expected fatigue life or, alternatively, have the largest reliability...

  7. Temporal and spatial patterns in wind stress and wind stress curl over the central Southern California Bight

    Science.gov (United States)

    Noble, Marlene A.; Rosenberger, Kurt J.; Rosenfeld, Leslie K.; Robertson, George L.

    2012-01-01

    In 2001, the U.S. Geological Survey, together with several other federal and municipal agencies, began a series of field programs to determine along and cross-shelf transport patterns over the continental shelves in the central Southern California Bight. As a part of these programs, moorings that monitor winds were deployed off the Palos Verdes peninsula and within San Pedro Bay for six 3–4 month summer and winter periods between 2001 and 2008. In addition, nearly continuous records of winds for this 7-year period were obtained from a terrestrial site at the coast and from a basin site offshore of the long-term coastal site. The mean annual winds are downcoast at all sites. The alongshelf components of wind stress, which are the largest part of the low-frequency wind stress fields, are well correlated between basin, shelf and coastal sites. On average, the amplitude of alongshelf fluctuations in wind stress are 3–4 times larger over the offshore basin, compared to the coastal site, irrespective of whether the fluctuations represent the total, or just the correlated portion of the wind stress field. The curl in the large-scale wind stress tends to be positive, especially in the winter season when the mean wind stress is downcoast and larger at the offshore basin site than at the beach. However, since the fluctuation in wind stress amplitudes are usually larger than the mean, periods of weak negative curl do occur, especially in the summer season when the largest normalized differences in the amplitude of wind stress fluctuations are found in the nearshore region of the coastal ocean. Even though the low-frequency wind stress field is well-correlated over the continental shelf and offshore basins, out to distances of 35 km or more from the coast, winds even 10 km inshore of the beach do not represent the coastal wind field, at least in the summer months. The seasonal changes in the spatial structures in wind stress amplitudes suggest that an assessment of the

  8. CWTC business plan; Wind turbine component centre

    Energy Technology Data Exchange (ETDEWEB)

    Hjuler Jensen, P; Hillestroem, A; Markou, H; Berring, P; Friis, P

    2011-04-15

    This report presents the Business Plan for the establishment of the Wind Turbine Component Centre (CWTC) to meet the objectives of performing theoretical research and experimental testing. The core idea of a CWTC is to support the Danish wind energy industry and research activities at the component level improving the competitive advantage of that industry. The CWTC will in itself operate its activities, including access to test and experimental facilities, on a semi commercial basis. The business model for the CWTC presented is based on revenues coming from component manufacturers as well as research grants, and will include membership fees as well as hourly payment and larger projects where payment is a limited project sum. The presented roadmap model clarifies the development path towards a fully developed CWTC, which will cover test of all important components along the drive-train as well as offering a comprehensive systematic understanding of the entire drive-train. The CWTC will over time market and sell its products and services on a global scale, but first and foremost the CWTC is established to support and strengthen the Danish wind energy industry and specifically the Danish sub suppliers to the Danish wind turbine industry and also the Danish research establishments. The presented organizational structure reflects that there are certain functions that are separated from the operations and it also reflects that scientific staffing are hired in on a project basis. Machine operators will be hired in on a permanent basis. The breakdown of the cost for running the rig, both for R and D and commercial projects is presented. The income from the other activities is calculated based on the cost for the research staff, both for R and D activities and commercial. In the first year the income will be 100% from R and D activities, which is the cost for the staff to set-up the test-rig, the guidelines and test procedures, and partly for running the rig. Within 3

  9. Wind Stress, QuikSCAT SeaWinds, 0.25 degrees, Global, Science Quality, Curl

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch distributes science quality wind stress data in zonal, meridional, modulus, and wind stress curl sets. This data begins with wind velocity...

  10. Wind Stress, QuikSCAT SeaWinds, 0.25 degrees, Global, Science Quality, Meridional

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch distributes science quality wind stress data in zonal, meridional, modulus, and wind stress curl sets. This data begins with wind velocity...

  11. Wind Stress, QuikSCAT SeaWinds, 0.25 degrees, Global, Science Quality, Zonal

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch distributes science quality wind stress data in zonal, meridional, modulus, and wind stress curl sets. This data begins with wind velocity...

  12. Wind Stress, QuikSCAT SeaWinds, 0.25 degrees, Global, Science Quality, Modulus

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch distributes science quality wind stress data in zonal, meridional, modulus, and wind stress curl sets. This data begins with wind velocity...

  13. Southern Ocean carbon-wind stress feedback

    Science.gov (United States)

    Bronselaer, Ben; Zanna, Laure; Munday, David R.; Lowe, Jason

    2018-02-01

    The Southern Ocean is the largest sink of anthropogenic carbon in the present-day climate. Here, Southern Ocean pCO2 and its dependence on wind forcing are investigated using an equilibrium mixed layer carbon budget. This budget is used to derive an expression for Southern Ocean pCO2 sensitivity to wind stress. Southern Ocean pCO2 is found to vary as the square root of area-mean wind stress, arising from the dominance of vertical mixing over other processes such as lateral Ekman transport. The expression for pCO2 is validated using idealised coarse-resolution ocean numerical experiments. Additionally, we show that increased (decreased) stratification through surface warming reduces (increases) the sensitivity of the Southern Ocean pCO2 to wind stress. The scaling is then used to estimate the wind-stress induced changes of atmospheric pCO_2 in CMIP5 models using only a handful of parameters. The scaling is further used to model the anthropogenic carbon sink, showing a long-term reversal of the Southern Ocean sink for large wind stress strength.

  14. Transportation of Large Wind Components: A Permitting and Regulatory Review

    Energy Technology Data Exchange (ETDEWEB)

    Levine, Aaron [National Renewable Energy Lab. (NREL), Golden, CO (United States); Cook, Jeff [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-09-01

    This report summarizes permitting and regulatory issues associated with transporting wind turbine blades, towers, and nacelles as well as large transformers (wind components). These wind components are commonly categorized as oversized and overweight (OSOW) and require specific permit approvals from state and local jurisdictions. The report was developed based on a Quadrennial Energy Review (QER) recommendation on logistical requirements for the transportation of 'oversized or high-consequence energy materials, equipment, and components.'

  15. T-stresses for internally cracked components

    International Nuclear Information System (INIS)

    Fett, T.

    1997-12-01

    The failure of cracked components is governed by the stresses in the vicinity of the crack tip. The singular stress contribution is characterised by the stress intensity factor K, the first regular stress term is represented by the so-called T-stress. T-stress solutions for components containing an internal crack were computed by application of the Bundary Collocation Method (BCM). The results are compiled in form of tables or approximative relations. In addition a Green's function of T-stresses is proposed for internal cracks which enables to compute T-stress terms for any given stress distribution in the uncracked body. (orig.) [de

  16. Subcontractors and Component Suppliers in the Swedish Wind Power Industry

    International Nuclear Information System (INIS)

    Takeuchi, Linn

    2003-05-01

    This paper studies the Swedish component suppliers in the wind power industry. This group has not received much attention so far, and today very little is known. This study addresses the fact that the Swedish component suppliers have not been able to penetrate the wind power market despite the Swedish industry's strength in mechanical and electrical engineering. The aims of this paper were to gather information regarding the existing production and to identify factors that affect the Swedish component suppliers' scope to penetrate the wind turbine market. To date, although Sweden has spent considerable amounts of money on projects involving wind turbines, there is no series production of large wind turbines in Sweden. The historical development of the wind turbine industry suggests this alone would have inhibited the development of component production in Sweden. Yet, the country's proximity and good access to large wind turbine producing countries should be an advantage. Various factors and issues are identified and discussed in this paper that are relevant for the Swedish component suppliers' scope to penetrate the wind turbine market. These include market and product development, buyer-supplier relationships, export and sourcing behaviors, and time of market entry. This is a first step towards increasing the knowledge of Swedish component production and it is recognized that more studies are required. Various areas where relevant knowledge is largely missing or scarce are identified and discussed as well, and should serve as relevant starting points for continued research

  17. Subcontractors and Component Suppliers in the Swedish Wind Power Industry

    Energy Technology Data Exchange (ETDEWEB)

    Takeuchi, Linn

    2003-05-01

    This paper studies the Swedish component suppliers in the wind power industry. This group has not received much attention so far, and today very little is known. This study addresses the fact that the Swedish component suppliers have not been able to penetrate the wind power market despite the Swedish industry's strength in mechanical and electrical engineering. The aims of this paper were to gather information regarding the existing production and to identify factors that affect the Swedish component suppliers' scope to penetrate the wind turbine market. To date, although Sweden has spent considerable amounts of money on projects involving wind turbines, there is no series production of large wind turbines in Sweden. The historical development of the wind turbine industry suggests this alone would have inhibited the development of component production in Sweden. Yet, the country's proximity and good access to large wind turbine producing countries should be an advantage. Various factors and issues are identified and discussed in this paper that are relevant for the Swedish component suppliers' scope to penetrate the wind turbine market. These include market and product development, buyer-supplier relationships, export and sourcing behaviors, and time of market entry. This is a first step towards increasing the knowledge of Swedish component production and it is recognized that more studies are required. Various areas where relevant knowledge is largely missing or scarce are identified and discussed as well, and should serve as relevant starting points for continued research.

  18. Stochastic Models of Defects in Wind Turbine Drivetrain Components

    DEFF Research Database (Denmark)

    Rafsanjani, Hesam Mirzaei; Sørensen, John Dalsgaard

    2013-01-01

    The drivetrain in a wind turbine nacelle typically consists of a variety of heavily loaded components, like the main shaft, bearings, gearbox and generator. The variations in environmental load challenge the performance of all the components of the drivetrain. Failure of each of these components...

  19. Wind Stress Variability Observed Over Coastal Waters

    Science.gov (United States)

    Ortiz-Suslow, D. G.; Haus, B. K.; Laxague, N.; Williams, N. J.; Graber, H. C.

    2016-02-01

    The wind stress on the ocean surface generates waves, drives currents, and enhances gas exchange; and a significant amount of work has been done to characterize the air-sea momentum flux in terms of bulk oceanographic and atmospheric parameters. However, the majority of this work to develop operational algorithms has been focused on the deep ocean and the suitability of these methods in the coastal regime has not been evaluated. The findings from a two-part field campaign will be presented which highlight the divergence of nearshore wind stress observations from conventional, deep water results. The first set of data comes from a coastal region near a relatively small, natural tidal inlet. A high degree of spatial variability was observed in both the wind stress magnitude and direction, suggestive of coastal processes (e.g., depth-limited wave affects and horizontal current shear) modulating the momentum flux from the atmosphere to the ocean surface. These shallow-water processes are typically not accounted for in conventional parameterizations. Across the experimental domain and for a given wind speed, the stress magnitude was found to be nearly 2.5 times that predicted by conventional methods; also, a high propensity for stress steering off the mean azimuthal wind direction (up to ±70 degrees) was observed and linked to horizontal current gradients produced by the tidal inlet. The preliminary findings from a second data set taken in the vicinity of the macrotidal Columbia River Mouth will also be presented. Compared to the first data set, a similar degree of variability is observed here, but the processes responsible for this are present at a much larger scale. Specifically, the Columbia River Mouth observations were made in the presence of significant swell wave energy and during periods of very high estuarine discharge. The relative angle between the wind and swell direction is expected to be significant with regards to the observed momentum flux. Also, these

  20. Measurements for stresses in machine components

    CERN Document Server

    Yakovlev, V F

    1964-01-01

    Measurements for Stresses in Machine Components focuses on the state of stress and strain of components and members, which determines the service life and strength of machines and structures. This book is divided into four chapters. Chapter I describes the physical basis of several methods of measuring strains, which includes strain gauges, photoelasticity, X-ray diffraction, brittle coatings, and dividing grids. The basic concepts of the electric strain gauge method for measuring stresses inside machine components are covered in Chapter II. Chapter III elaborates on the results of experim

  1. Dynamics stresses in pipelines and components

    International Nuclear Information System (INIS)

    Prates, C.L.M.; Stukart, R.N.L.; Halbritter, A.L.

    1982-01-01

    The procedure to generate the dynamic stresses caused by external events, necessary for the structural calculation of pipelines and components in nuclear power plants is presented. A special attention is given to the stress caused by the action of earthquakes and exterior explosions. In the dynamic analysis of pipeline and components is usually to show the stresses procedured by these events under the response spectra form. The methodology to obtain these response spectra is shown and discussed. Some pratical examples of spectra from nuclear power plant building are still shown. (E.G.) [pt

  2. Electrical components library for HAWC2; Wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Cutululis, N.A.; Larsen, Torben J.; Soerensen, Poul; Hansen, Anca D. (Risoe National Lab., DTU, Wind Energy Dept., Roskilde (DK)); Iov, F. (Aalborg Univ., Institute of Energy Technology (DK))

    2007-12-15

    The work presented in this report is part of the EFP project called ''A Simulation Platform to Model, Optimize and Design Wind Turbines'' partly funded by the Danish Energy Authority under contract number 1363/04-0008. The project is carried out in cooperation between Risoe National Laboratory and Aalborg University. In this project, the focus is on the development of a simulation platform for wind turbine systems using different simulation tools. This report presents the electric component library developed for use in the aeroelastic code HAWC2. The developed library includes both steady state and dynamical models for fixed and variable speed wind turbines. A simple steady-state slip model was developed for the fixed speed wind turbine. This model is suitable for aeroelastic design of wind turbines under normal operation. A dynamic model of an induction generator for the fixed speed wind turbine was developed. The model includes the dynamics of the rotor fluxes. The model is suitable for a more detailed investigation of the mechanical-electrical interaction, both under normal and fault operation. For the variable speed wind turbine, a steadystate model, typically used in aeroelastic design, was implemented. The model can be used for normal and, to some extent, for fault operation. The reduced order dynamic model of a DFIG was implemented. The model includes only the active power controller and can be used for normal operation conditions. (au)

  3. The relationship between the statistics of open ocean currents and the temporal correlations of the wind stress

    International Nuclear Information System (INIS)

    Bel, Golan; Ashkenazy, Yosef

    2013-01-01

    We study the statistics of wind-driven open ocean currents. Using the Ekman layer model for the integrated currents, we investigate analytically and numerically the relationship between the wind-stress distribution and its temporal correlations and the statistics of the open ocean currents. We found that temporally long-range correlated winds result in currents whose statistics is proportional to the wind-stress statistics. On the other hand, short-range correlated winds lead to Gaussian distributions of the current components, regardless of the stationary distribution of the winds, and therefore to a Rayleigh distribution of the current amplitude, if the wind stress is isotropic. We found that the second moment of the current speed exhibits a maximum as a function of the correlation time of the wind stress for a non-zero Coriolis parameter. The results were validated using an oceanic general circulation model. (paper)

  4. Methods of measuring residual stresses in components

    International Nuclear Information System (INIS)

    Rossini, N.S.; Dassisti, M.; Benyounis, K.Y.; Olabi, A.G.

    2012-01-01

    Highlights: ► Defining the different methods of measuring residual stresses in manufactured components. ► Comprehensive study on the hole drilling, neutron diffraction and other techniques. ► Evaluating advantage and disadvantage of each method. ► Advising the reader with the appropriate method to use. -- Abstract: Residual stresses occur in many manufactured structures and components. Large number of investigations have been carried out to study this phenomenon and its effect on the mechanical characteristics of these components. Over the years, different methods have been developed to measure residual stress for different types of components in order to obtain reliable assessment. The various specific methods have evolved over several decades and their practical applications have greatly benefited from the development of complementary technologies, notably in material cutting, full-field deformation measurement techniques, numerical methods and computing power. These complementary technologies have stimulated advances not only in measurement accuracy and reliability, but also in range of application; much greater detail in residual stresses measurement is now available. This paper aims to classify the different residual stresses measurement methods and to provide an overview of some of the recent advances in this area to help researchers on selecting their techniques among destructive, semi destructive and non-destructive techniques depends on their application and the availabilities of those techniques. For each method scope, physical limitation, advantages and disadvantages are summarized. In the end this paper indicates some promising directions for future developments.

  5. Reliability of Wind Turbine Components-Solder Elements Fatigue Failure

    DEFF Research Database (Denmark)

    Kostandyan, Erik; Sørensen, John Dalsgaard

    2012-01-01

    on the temperature mean and temperature range. Constant terms and model errors are estimated. The proposed methods are useful to predict damage values for solder joint in power electrical components. Based on the proposed methods it is described how to find the damage level for a given temperature loading profile....... The proposed methods are discussed for application in reliability assessment of Wind Turbine’s electrical components considering physical, model and measurement uncertainties. For further research it is proposed to evaluate damage criteria for electrical components due to the operational temperature...

  6. Structural Reliability Methods for Wind Power Converter System Component Reliability Assessment

    DEFF Research Database (Denmark)

    Kostandyan, Erik; Sørensen, John Dalsgaard

    2012-01-01

    Wind power converter systems are essential subsystems in both off-shore and on-shore wind turbines. It is the main interface between generator and grid connection. This system is affected by numerous stresses where the main contributors might be defined as vibration and temperature loadings....... The temperature variations induce time-varying stresses and thereby fatigue loads. A probabilistic model is used to model fatigue failure for an electrical component in the power converter system. This model is based on a linear damage accumulation and physics of failure approaches, where a failure criterion...... is defined by the threshold model. The attention is focused on crack propagation in solder joints of electrical components due to the temperature loadings. Structural Reliability approaches are used to incorporate model, physical and statistical uncertainties. Reliability estimation by means of structural...

  7. Enhancement of wind stress evaluation method under storm conditions

    Science.gov (United States)

    Chen, Yingjian; Yu, Xiping

    2016-12-01

    Wind stress is an important driving force for many meteorological and oceanographical processes. However, most of the existing methods for evaluation of the wind stress, including various bulk formulas in terms of the wind speed at a given height and formulas relating the roughness height of the sea surface with wind conditions, predict an ever-increasing tendency of the wind stress coefficient as the wind speed increases, which is inconsistent with the field observations under storm conditions. The wave boundary layer model, which is based on the momentum and energy conservation, has the advantage to take into account the physical details of the air-sea interaction process, but is still invalid under storm conditions without a modification. By including the energy dissipation due to the presence of sea spray, which is speculated to be an important aspect of the air-sea interaction under storm conditions, the wave boundary layer model is improved in this study. The improved model is employed to estimate the wind stress caused by an idealized tropical cyclone motion. The computational results show that the wind stress coefficient reaches its maximal value at a wind speed of about 40 m/s and decreases as the wind speed further increases. This is in fairly good agreement with the field data.

  8. Multi-component wind measurements of wind turbine wakes performed with three LiDARs

    Science.gov (United States)

    Iungo, G. V.; Wu, Y.-T.; Porté-Agel, F.

    2012-04-01

    LiDARs are performed over the mean vertical symmetry plane of the wind turbine wake, while a third LiDAR measures the incoming wind over a vertical plane parallel to the mean wind direction and lying outside of the wake. One LiDAR is placed in proximity of the wind turbine location and measures pointing downstream, whereas a second LiDAR is located along the mean wind direction at a downstream distance of 6.5 diameters and measures pointing upstream. For these measurements axial and vertical velocity components are retrieved only for measurement points where the two laser beams result to be roughly orthogonal. Statistics of the two velocity components show in the near wake at hub height strong flow fluctuations with magnitudes about 30% of the mean value, and a gradual reduction for downstream distances larger than three rotor diameters.

  9. Wind Stress, METOP ASCAT, 0.25 degrees, Global, Near Real Time, Curl

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch distributes near real time wind stress data in zonal, meridional, modulus, and wind stress curl sets. This data begins with wind velocity...

  10. Wind Stress, METOP ASCAT, 0.25 degrees, Global, Near Real Time, Meridional

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch distributes near real time wind stress data in zonal, meridional, modulus, and wind stress curl sets. This data begins with wind velocity...

  11. Wind Stress, METOP ASCAT, 0.25 degrees, Global, Near Real Time, Zonal

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch distributes near real time wind stress data in zonal, meridional, modulus, and wind stress curl sets. This data begins with wind velocity...

  12. Wind Stress, METOP ASCAT, 0.25 degrees, Global, Near Real Time, Modulus

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch distributes near real time wind stress data in zonal, meridional, modulus, and wind stress curl sets. This data begins with wind velocity...

  13. Monthly mean wind stress along the coast of the north Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Shetye, S.R.; Shenoi, S.S.C.; Antony, M.K.; Krishnakumar, V.

    Monthly-mean wind stress and its longshore and offshore components have been computed using the bulk aerodynamic method for each of a string of 36 two-degree-latitude by two-degree-longitude squares along the coast of the north Indian Ocean...

  14. Genesis Solar Wind Science Canister Components Curated as Potential Solar Wind Collectors and Reference Contamination Sources

    Science.gov (United States)

    Allton, J. H.; Gonzalez, C. P.; Allums, K. K.

    2016-01-01

    The Genesis mission collected solar wind for 27 months at Earth-Sun L1 on both passive and active collectors carried inside of a Science Canister, which was cleaned and assembled in an ISO Class 4 cleanroom prior to launch. The primary passive collectors, 271 individual hexagons and 30 half-hexagons of semiconductor materials, are described in. Since the hard landing reduced the 301 passive collectors to many thousand smaller fragments, characterization and posting in the online catalog remains a work in progress, with about 19% of the total area characterized to date. Other passive collectors, surfaces of opportunity, have been added to the online catalog. For species needing to be concentrated for precise measurement (e.g. oxygen and nitrogen isotopes) an energy-independent parabolic ion mirror focused ions onto a 6.2 cm diameter target. The target materials, as recovered after landing, are described in. The online catalog of these solar wind collectors, a work in progress, can be found at: http://curator.jsc.nasa.gov/gencatalog/index.cfm This paper describes the next step, the cataloging of pieces of the Science Canister, which were surfaces exposed to the solar wind or component materials adjacent to solar wind collectors which may have contributed contamination.

  15. An Exploration of Wind Stress Calculation Techniques in Hurricane Storm Surge Modeling

    Directory of Open Access Journals (Sweden)

    Kyra M. Bryant

    2016-09-01

    Full Text Available As hurricanes continue to threaten coastal communities, accurate storm surge forecasting remains a global priority. Achieving a reliable storm surge prediction necessitates accurate hurricane intensity and wind field information. The wind field must be converted to wind stress, which represents the air-sea momentum flux component required in storm surge and other oceanic models. This conversion requires a multiplicative drag coefficient for the air density and wind speed to represent the air-sea momentum exchange at a given location. Air density is a known parameter and wind speed is a forecasted variable, whereas the drag coefficient is calculated using an empirical correlation. The correlation’s accuracy has brewed a controversy of its own for more than half a century. This review paper examines the lineage of drag coefficient correlations and their acceptance among scientists.

  16. Statistical downscaling of historical monthly mean winds over a coastal region of complex terrain. II. Predicting wind components

    Energy Technology Data Exchange (ETDEWEB)

    Kamp, Derek van der [University of Victoria, Pacific Climate Impacts Consortium, Victoria, BC (Canada); University of Victoria, School of Earth and Ocean Sciences, Victoria, BC (Canada); Curry, Charles L. [Environment Canada University of Victoria, Canadian Centre for Climate Modelling and Analysis, Victoria, BC (Canada); University of Victoria, School of Earth and Ocean Sciences, Victoria, BC (Canada); Monahan, Adam H. [University of Victoria, School of Earth and Ocean Sciences, Victoria, BC (Canada)

    2012-04-15

    A regression-based downscaling technique was applied to monthly mean surface wind observations from stations throughout western Canada as well as from buoys in the Northeast Pacific Ocean over the period 1979-2006. A predictor set was developed from principal component analysis of the three wind components at 500 hPa and mean sea-level pressure taken from the NCEP Reanalysis II. Building on the results of a companion paper, Curry et al. (Clim Dyn 2011), the downscaling was applied to both wind speed and wind components, in an effort to evaluate the utility of each type of predictand. Cross-validated prediction skill varied strongly with season, with autumn and summer displaying the highest and lowest skill, respectively. In most cases wind components were predicted with better skill than wind speeds. The predictive ability of wind components was found to be strongly related to their orientation. Wind components with the best predictions were often oriented along topographically significant features such as constricted valleys, mountain ranges or ocean channels. This influence of directionality on predictive ability is most prominent during autumn and winter at inland sites with complex topography. Stations in regions with relatively flat terrain (where topographic steering is minimal) exhibit inter-station consistencies including region-wide seasonal shifts in the direction of the best predicted wind component. The conclusion that wind components can be skillfully predicted only over a limited range of directions at most stations limits the scope of statistically downscaled wind speed predictions. It seems likely that such limitations apply to other regions of complex terrain as well. (orig.)

  17. Reliability Analysis of Fatigue Failure of Cast Components for Wind Turbines

    OpenAIRE

    Hesam Mirzaei Rafsanjani; John Dalsgaard Sørensen

    2015-01-01

    Fatigue failure is one of the main failure modes for wind turbine drivetrain components made of cast iron. The wind turbine drivetrain consists of a variety of heavily loaded components, like the main shaft, the main bearings, the gearbox and the generator. The failure of each component will lead to substantial economic losses such as cost of lost energy production and cost of repairs. During the design lifetime, the drivetrain components are exposed to variable loads from winds and waves an...

  18. Reliability & availability of wind turbine electrical & electronic components

    NARCIS (Netherlands)

    Tavner, P.; Faulstich, S.; Hahn, B.; Bussel, van G.J.W.

    2010-01-01

    Recent analysis of European onshore wind turbine reliability data has shown that whilst wind turbine mechanical subassemblies tend to have relatively low failure rates but long downtimes, electrical and electronic subassemblies have relatively high failure rates and short downtimes. For onshore wind

  19. Offshore Wind Power Plant Technology Catalogue - Components of wind power plants, AC collection systems and HVDC systems

    DEFF Research Database (Denmark)

    Das, Kaushik; Antonios Cutululis, Nicolaos

    2017-01-01

    Traditionally, Offshore Wind Power Plants (OWPPs) are connected through many com-ponents as shown in the figure 1. An OWPP consists of controllable, variable speed Wind Turbines (WTs). These WTs are connected through Medium Voltage (MV) sub-marine cables typically at voltage level of upto 33-66 k...... for the cables as well reduce the power losses through them....

  20. Estimation of wind stress using dual-frequency TOPEX data

    Science.gov (United States)

    Elfouhaily, Tanos; Vandemark, Douglas; Gourrion, Jéro‸me; Chapron, Bertrand

    1998-10-01

    The TOPEX/POSEIDON satellite carries the first dual-frequency radar altimeter. Monofrequency (Ku-band) algorithms are presently used to retrieve surface wind speed from the altimeter's radar cross-section measurement (σ0Ku). These algorithms work reasonably well, but it is also known that altimeter wind estimates can be contaminated by residual effects, such as sea state, embedded in the σ0Ku measurement. Investigating the potential benefit of using two frequencies for wind retrieval, it is shown that a simple evaluation of TOPEX data yields previously unavailable information, particularly for high and low wind speeds. As the wind speed increases, the dual-frequency data provides a measurement more directly linked to the short-scale surface roughness, which in turn is associated with the local surface wind stress. Using a global TOPEX σ0° data set and TOPEX's significant wave height (Hs) estimate as a surrogate for the sea state's degree of development, it is also shown that differences between the two TOPEX σ0 measurements strongly evidence nonlocal sea state signature. A composite scattering theory is used to show how the dual-frequency data can provide an improved friction velocity model, especially for winds above 7 m/s. A wind speed conversion is included using a sea state dependent drag coefficient fed with TOPEX Hs data. Two colocated TOPEX-buoy data sets (from the National Data Buoy Center (NDBC) and the Structure des Echanges Mer-Atmosphre, Proprietes des Heterogeneites Oceaniques: Recherche Expérimentale (SEMAPHORE) campaign) are employed to test the new wind speed algorithm. A measurable improvement in wind speed estimation is obtained when compared to the monofrequency Witter and Chelton [1991] model.

  1. Variation of air--water gas transfer with wind stress and surface viscoelasticity

    OpenAIRE

    Frew, Nelson M.; Bock, Erik J.; McGillis, Wade R.; Karachintsev, Andrey V.; Hara, Tetsu; Münsterer, Thomas; Jähne, Bernd

    1995-01-01

    Previous parameterizations of gas transfer velocity have attempted to cast this quantity as a function of wind speed or wind-stress. This study demonstrates that the presence of a surface film is effective at reducing the gas transfer velocity at constant wind-stress. Gas exchange experiments were performed at WHOI and UH using annular wind-wave tanks of different scales. Systematic variations of wind-stress and surfactant concentration (Triton-X-100) were explored to determ...

  2. Soil erosion rates caused by wind and saltating sand stresses in a wind tunnel

    International Nuclear Information System (INIS)

    Ligotke, M.W.

    1993-02-01

    Wind erosion tests were performed in a wind tunnel in support of the development of long-term protective barriers to cap stabilized waste sites at the Hanford Site. Controlled wind and saltating sand erosive stresses were applied to physical models of barrier surface layers to simulate worst-case eolian erosive stresses. The goal of these tests was to provide information useful to the design and evaluation of the surface layer composition of an arid-region waste site barrier concept that incorporates a deep fine-soil reservoir. A surface layer composition is needed that will form an armor resistant to eolian erosion during periods of extreme dry climatic conditions, especially when such conditions result in the elimination or reduction of vegetation by water deprivation or wildfire. Because of the life span required of Hanford waste barriers, it is important that additional work follow these wind tunnel studies. A modeling effort is planned to aid the interpretation of test results with respect to the suitability of pea gravel to protect the finite-soil reservoir during long periods of climatic stress. It is additionally recommended that wind tunnel tests be continued and field data be obtained at prototype or actual barrier sites. Results wig contribute to barrier design efforts and provide confidence in the design of long-term waste site caps for and regions

  3. On the impact of multi-axial stress states on trailing edge bondlines in wind turbine rotor blades

    Science.gov (United States)

    Noever Castelos, Pablo; Balzani, Claudio

    2016-09-01

    For a reliable design of wind turbine systems all of their components have to be designed to withstand the loads appearing in the turbine's lifetime. When performed in an integral manner this is called systems engineering, and is exceptionally important for components that have an impact on the entire wind turbine system, such as the rotor blade. Bondlines are crucial subcomponents of rotor blades, but they are not much recognized in the wind energy research community. However, a bondline failure can lead to the loss of a rotor blade, and potentially of the entire turbine, and is extraordinarily relevant to be treated with strong emphasis when designing a wind turbine. Modern wind turbine rotor blades with lengths of 80 m and more offer a degree of flexibility that has never been seen in wind energy technology before. Large deflections result in high strains in the adhesive connections, especially at the trailing edge. The latest edition of the DNV GL guideline from end of 2015 demands a three-dimensional stress analysis of bondlines, whereas before an isolated shear stress proof was sufficient. In order to quantify the lack of safety from older certification guidelines this paper studies the influence of multi-axial stress states on the ultimate and fatigue load resistance of trailing edge adhesive bonds. For this purpose, detailed finite element simulations of the IWES IWT-7.5-164 reference wind turbine blades are performed. Different yield criteria are evaluated for the prediction of failure and lifetime. The results show that the multi-axial stress state is governed by span-wise normal stresses. Those are evidently not captured in isolated shear stress proofs, yielding non-conservative estimates of lifetime and ultimate load resistance. This finding highlights the importance to include a three-dimensional stress state in the failure analysis of adhesive bonds in modern wind turbine rotor blades, and the necessity to perform a three-dimensional characterization

  4. Stress analysis for nuclear power plant components

    International Nuclear Information System (INIS)

    Mueller, R.A.

    1981-09-01

    The general procedure for a meaningful stress evaluation will be outlined. The extremely aggravated conditions prevailing at elevated temperatures, at which creep effects can no longer be neglected, will also be touched upon briefly. (E.G.) [pt

  5. Stress concentration effects in high pressure components

    International Nuclear Information System (INIS)

    Aller, J.E.

    1990-01-01

    This paper examines the stress concentration effects of sideholes in thick walled, high pressure cylinders. It has been shown that the theoretical stress concentration factor at the intersection of a small crossbore in a closed end, thick walled cylinder varies between 3.0 and 4.0. Tests have shown that this effect can be greatly reduced in practice by carefully radiusing the bore intersection and autofrettaging the cylinder. It has also been shown that the minimum stress concentration factor occurs when the main bore and sidehole or crossbore have the same diameter, and the radius of the intersection is approximately equal to the sidehole radius. When the bore and sidehole intersection angle decreases from 90 degrees, the stress concentration factor increases significantly. Knowledge of these fundamental relationships can be used in maintaining, as well ad designing, high pressure equipment

  6. Electrical and non-electrical environment of wind turbine main components

    DEFF Research Database (Denmark)

    Holboell, J.; Henriksen, M.; Olsen, R.S.

    of the electrical components or even lead to catastrophic component failure. In the present paper, results are presented from investigations on existing standards which give detailed descriptions of the environmental and operational conditions of wind turbine components. It is found that there is currently a lack...... of application standards for wind turbine electrical equipment. Component-level environmental requirements as given in equipment-specific standards are compared with the environment described in the IEC's 61400 series concerning wind turbines. Based on methods defined in IEC 60721, the non-electrical environment...... of wind turbine is described by means of specific classes. In the paper, new class combinations are suggested covering the different operating conditions the components are exposed to. The class combinations include factors of climatic, mechanical and chemical character. The factors occur in different...

  7. Transportation of Large Wind Components: A Review of Existing Geospatial Data

    Energy Technology Data Exchange (ETDEWEB)

    Mooney, Meghan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Maclaurin, Galen [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-09-01

    This report features the geospatial data component of a larger project evaluating logistical and infrastructure requirements for transporting oversized and overweight (OSOW) wind components. The goal of the larger project was to assess the status and opportunities for improving the infrastructure and regulatory practices necessary to transport wind turbine towers, blades, and nacelles from current and potential manufacturing facilities to end-use markets. The purpose of this report is to summarize existing geospatial data on wind component transportation infrastructure and to provide a data gap analysis, identifying areas for further analysis and data collection.

  8. Vertical-axial component wind turbine with a high coefficient using for wind energy

    International Nuclear Information System (INIS)

    Yersin, Ch. Sh.; Manatbev, R.K.; Yersina, A. K.; Tulepbergenov, A. K.

    2012-01-01

    The report presents the results of research and development on of promising wind units carousel type with a high ratio utilization of wind energy. This devices use a well-known invention – the wind turbine Darrieus. The rotation of the turbine is due to the action of ascensional power to aerodynamic well-streamlined symmetrical about the chord wing profiles of NASA, which are working wind turbine blades. The shaft rotation can be connected with the working blades of one of two ways: using the “swings” or the way “troposkino”. Darrieus turbine has a ratio utilization of wind energy xmax=045. Despite the fact that this is a good indicator of the efficiency of the turbine working, the proposed option allows us to significantly increase the value of this coefficient. The bases methodology of this research is a method of technical and technological research and development design of prospective wind energy construction (WES). Key words: wind turbine, the blade, coefficient utilization of wind energy

  9. Problems of stress analysis of fuelling machine head components

    International Nuclear Information System (INIS)

    Mathur, D.D.

    1975-01-01

    The problem of stress analysis of fuelling machine head components are discussed. To fulfil the functional requirements, the components are required to have certain shapes where stress problems cannot be matched to a catalogue of pre-determined solutions. The areas where complex systems of loading due to hydrostatic pressure, weight, moments and temperature gradients coupled with the intricate shapes of the components make it difficult to arrive at satisfactory solutions. Particularly, the analysis requirements of the magazine housing, end cover, gravloc clamps and centre support are highlighted. An experimental stress analysis programme together with a theoretical finite element analysis is perhaps the answer. (author)

  10. The Alignment of the Mean Wind and Stress Vectors in the Unstable Surface Layer

    Science.gov (United States)

    Bernardes, M.; Dias, N. L.

    2010-01-01

    A significant non-alignment between the mean horizontal wind vector and the stress vector was observed for turbulence measurements both above the water surface of a large lake, and over a land surface (soybean crop). Possible causes for this discrepancy such as flow distortion, averaging times and the procedure used for extracting the turbulent fluctuations (low-pass filtering and filter widths etc.), were dismissed after a detailed analysis. Minimum averaging times always less than 30 min were established by calculating ogives, and error bounds for the turbulent stresses were derived with three different approaches, based on integral time scales (first-crossing and lag-window estimates) and on a bootstrap technique. It was found that the mean absolute value of the angle between the mean wind and stress vectors is highly related to atmospheric stability, with the non-alignment increasing distinctively with increasing instability. Given a coordinate rotation that aligns the mean wind with the x direction, this behaviour can be explained by the growth of the relative error of the u- w component with instability. As a result, under more unstable conditions the u- w and the v- w components become of the same order of magnitude, and the local stress vector gives the impression of being non-aligned with the mean wind vector. The relative error of the v- w component is large enough to make it undistinguishable from zero throughout the range of stabilities. Therefore, the standard assumptions of Monin-Obukhov similarity theory hold: it is fair to assume that the v- w stress component is actually zero, and that the non-alignment is a purely statistical effect. An analysis of the dimensionless budgets of the u- w and the v- w components confirms this interpretation, with both shear and buoyant production of u- w decreasing with increasing instability. In the v- w budget, shear production is zero by definition, while buoyancy displays very low-intensity fluctuations around

  11. Wind stress, curl and vertical velocity in the Bay of Bengal during southwest monsoon, 1984

    Digital Repository Service at National Institute of Oceanography (India)

    Babu, M.T.; Heblekar, A.K.; Murty, C.S.

    Wind distribution observed during southwest monsoon of 1984 has used to derive the mean wind stress for the season at every 1 degree square grid and curl over the Bay of Bengal. Two regions of maximum wind stress are present over the Bay of Bengal...

  12. Objective and subjective assessment of tonal components in noise from UK wind farm sites

    International Nuclear Information System (INIS)

    McKenzie, A.R.

    1997-01-01

    The level of any tonal components in the noise from a wind farm site can be quantified using objective analysis procedures. These procedures are, however, open to a certain amount of interpretation. an automated assessment procedure has, therefore, been developed which is appropriate to the needs of the wind turbine industry. This paper describes a study to compare the results of objective assessments carried out using this method with the results of carefully controlled subjective listening tests for samples of wind turbine noise from nine U.K. wind farm sites. (author)

  13. Blended 6-Hourly Sea Surface Wind Vectors and Wind Stress on a Global 0.25 Degree Grid (1987-2011)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Blended Global Sea Surface Winds products contain ocean surface wind vectors and wind stress on a global 0.25 degree grid, in multiple time resolutions of...

  14. Modulating wind power plant output using different frequency modulation components for damping grid oscillations

    DEFF Research Database (Denmark)

    2017-01-01

    A method, controller, wind power plant, and computer program product are disclosed for operating a wind power plant comprising a plurality of wind turbines, the wind power plant producing a plant power output. The method comprises receiving a modulation request signal indicating a requested...... modulation of the plant power output, the requested modulation specifying a modulation frequency. The method further comprises generating a respective power reference signal for each of at least two wind turbines of the plurality of wind turbines selected to fulfill the requested modulation, Each generated...... power reference signal includes a respective modulation component corresponding to a portion of the requested modulation and having a frequency different than the modulation frequency....

  15. Wind stress over the Arabian Sea from ship reports and Seasat scatterometer data

    Science.gov (United States)

    Perigaud, C.; Minster, J. F.; Delecluse, P.

    1989-01-01

    Seasat scatterometer data over the Arabian Sea are used to build wind-stress fields during July and August 1978. They are first compared with 3-day wind analyses from ship data along the Somali coast. Seasat scatterometer specifications of 2-m/s and 20-deg accuracy are fulfilled in almost all cases. The exceptions are for winds stronger than 14 m/s, which are underestimated by the scatterometer by 15 percent. Wind stress is derived from these wind data using a bulk formula with a drag coefficient depending on the wind intensity. A successive-correction objective analysis is used to build the wind-stress field over the Arabian Sea with 2 x 2-deg and 6-day resolution. The final wind-stress fields are not significantly dependent on the objective analysis because of the dense coverage of the scatterometer. The combination of scatterometer and coastal ship data gives the best coverage to resolve monsoon wind structures even close to the coast. The final wind stress fields show wind features consistent with other monthly mean wind stress field. However, a high variability is observed on the 6-day time scale.

  16. Intercomparison of the Charnock and COARE bulk wind stress formulations for coastal ocean modelling

    Directory of Open Access Journals (Sweden)

    J. M. Brown

    2013-08-01

    Full Text Available The accurate parameterisation of momentum and heat transfer across the air–sea interface is vital for realistic simulation of the atmosphere–ocean system. In most modelling applications accurate representation of the wind stress is required to numerically reproduce surge, coastal ocean circulation, surface waves, turbulence and mixing. Different formulations can be implemented and impact the accuracy of the instantaneous and long-term residual circulation, the surface mixed layer, and the generation of wave-surge conditions. This, in turn, affects predictions of storm impact, sediment pathways, and coastal resilience to climate change. The specific numerical formulation needs careful selection to ensure the accuracy of the simulation. Two wind stress parameterisations widely used in the ocean circulation and the storm surge communities respectively are studied with focus on an application to the NW region of the UK. Model–observation validation is performed at two nearshore and one estuarine ADCP (acoustic Doppler current profiler stations in Liverpool Bay, a hypertidal region of freshwater influence (ROFI with vast intertidal areas. The period of study covers both calm and extreme conditions to test the robustness of the 10 m wind stress component of the Coupled Ocean–Atmosphere Response Experiment (COARE bulk formulae and the standard Charnock relation. In this coastal application a realistic barotropic–baroclinic simulation of the circulation and surge elevation is set-up, demonstrating greater accuracy occurs when using the Charnock relation, with a constant Charnock coefficient of 0.0185, for surface wind stress during this one month period.

  17. Reliability Analysis of Fatigue Fracture of Wind Turbine Drivetrain Components

    DEFF Research Database (Denmark)

    Berzonskis, Arvydas; Sørensen, John Dalsgaard

    2016-01-01

    in the volume of the casted ductile iron main shaft, on the reliability of the component. The probabilistic reliability analysis conducted is based on fracture mechanics models. Additionally, the utilization of the probabilistic reliability for operation and maintenance planning and quality control is discussed....

  18. Swell impact on wind stress and atmospheric mixing in a regional coupled atmosphere-wave model

    DEFF Research Database (Denmark)

    Wu, Lichuan; Rutgersson, Anna; Sahlée, Erik

    2016-01-01

    Over the ocean, the atmospheric turbulence can be significantly affected by swell waves. Change in the atmospheric turbulence affects the wind stress and atmospheric mixing over swell waves. In this study, the influence of swell on atmospheric mixing and wind stress is introduced into an atmosphere-wave-coupled...... regional climate model, separately and combined. The swell influence on atmospheric mixing is introduced into the atmospheric mixing length formula by adding a swell-induced contribution to the mixing. The swell influence on the wind stress under wind-following swell, moderate-range wind, and near......-neutral and unstable stratification conditions is introduced by changing the roughness length. Five year simulation results indicate that adding the swell influence on atmospheric mixing has limited influence, only slightly increasing the near-surface wind speed; in contrast, adding the swell influence on wind stress...

  19. Compressive residual stresses as a preventive measure against stress corrosion cracking on turbine components

    International Nuclear Information System (INIS)

    Berger, C.; Ewald, J.; Fischer, K.; Gruendler, O.; Potthast, E.; Stuecker, E.; Winzen, G.

    1987-01-01

    Disk type low pressure turbine rotors have been designed for a large variety of power plant applications. Developing disk type rotors required a concerted effort to design a shaft/disk shrink fit with a minimum of tensile stress concentrations in order to aim for the lowest possible susceptibility to corrosive attack, i.e. stress corrosion cracking. As a result of stresses, the regions of greatest concern are the shrink fit boundaries and the keyways of turbine disks. These stresses are caused by service loading, i.e. centrifugal and shrinkage stresses and by manufacturing procedure, i.e. residual stresses. The compressive residual stresses partly compensate the tensile service stresses so that an increase of compressive residual stresses decreases the whole stress state of the component. Special manufacturing procedures, e.g. accelerated cooling after tempering can induce compressive residual stresses up to about 400 MPa in the hub bore region of turbine disk

  20. Reliability Assessment of Offshore Wind Turbines Considering Faults of Electrical / Mechanical Components

    DEFF Research Database (Denmark)

    Kostandyan, Erik; Sørensen, John Dalsgaard

    2013-01-01

    For offshore wind turbines, the cost contribution to Cost of Energy from inspections and Operation & Maintenance can be substantial, and can be expected to increase when wind farms are placed at deeper water depths, further from the coast and in more harsh environments. Estimates of the reliability...... is considered and related to reliability estimation by taking into account faults e.g. due to failure of an electrical component or loss of grid....

  1. Wind pressure testing of tornado safe room components made from wood

    Science.gov (United States)

    Robert Falk; Deepak Shrestha

    2016-01-01

    To evaluate the ability of a wood tornado safe room to resist wind pressures produced by a tornado, two safe room com-ponents were tested for wind pressure strength. A tornado safe room ceiling panel and door were static-pressure-tested according to ASTM E 330 using a vacuum test system. Re-sults indicate that the panels had load capacities from 2.4 to 3.5 times that...

  2. Reliability of mechanical components subjected to combined alternating and mean stresses with a nonconstant stress ratio

    International Nuclear Information System (INIS)

    Kececioglu, D.; Lamarre, G.B.

    1979-01-01

    The reliability of reactor mechanical components and structural members, submitted to external loads which induce alternating bending stresses and mean shear stresses at the critical section where failure has a high probability of occurring, is predicted assuming that the ratio of the distributed alternating stress to the mean stress is also distributed and yields a bivariate failure-governing, combined alternating and mean, stress distribution. A computer programmed methodology is developed to calculate the reliability under these conditions given the associated distributional Goodman diagram for a reactor component or structural member. (orig.)

  3. Reliability Analysis of Fatigue Failure of Cast Components for Wind Turbines

    Directory of Open Access Journals (Sweden)

    Hesam Mirzaei Rafsanjani

    2015-04-01

    Full Text Available Fatigue failure is one of the main failure modes for wind turbine drivetrain components made of cast iron. The wind turbine drivetrain consists of a variety of heavily loaded components, like the main shaft, the main bearings, the gearbox and the generator. The failure of each component will lead to substantial economic losses such as cost of lost energy production and cost of repairs. During the design lifetime, the drivetrain components are exposed to variable loads from winds and waves and other sources of loads that are uncertain and have to be modeled as stochastic variables. The types of loads are different for offshore and onshore wind turbines. Moreover, uncertainties about the fatigue strength play an important role in modeling and assessment of the reliability of the components. In this paper, a generic stochastic model for fatigue failure of cast iron components based on fatigue test data and a limit state equation for fatigue failure based on the SN-curve approach and Miner’s rule is presented. The statistical analysis of the fatigue data is performed using the Maximum Likelihood Method which also gives an estimate of the statistical uncertainties. Finally, illustrative examples are presented with reliability analyses depending on various stochastic models and partial safety factors.

  4. Identification of Neuregulin-2 as a novel stress granule component.

    Science.gov (United States)

    Kim, Jin Ah; Jayabalan, Aravinth Kumar; Kothandan, Vinoth Kumar; Mariappan, Ramesh; Kee, Younghoon; Ohn, Takbum

    2016-08-01

    Stress Granules (SGs) are microscopically visible, phase dense aggregates of translationally stalled messenger ribonucleoprotein (mRNP) complexes formed in response to distinct stress conditions. It is generally considered that SG formation is induced to protect cells from conditions of stress. The precise constituents of SGs and the mechanism through which SGs are dynamically regulated in response to stress are not completely understood. Hence, it is important to identify proteins which regulate SG assembly and disassembly. In the present study, we report Neuregulin-2 (NRG2) as a novel component of SGs; furthermore, depletion of NRG2 potently inhibits SG formation. We also demonstrate that NRG2 specifically localizes to SGs under various stress conditions. Knockdown of NRG2 has no effect on stress-induced polysome disassembly, suggesting that the component does not influence early step of SG formation. It was also observed that reduced expression of NRG2 led to marginal increase in cell survival under arsenite-induced stress. [BMB Reports 2016; 49(8): 449-454].

  5. Classification of stresses in pressure components using the GLOSS diagram

    International Nuclear Information System (INIS)

    Seshadri, R.

    1990-01-01

    Discontinuity stresses in pressure components are classified as secondary stresses at temperatures below the creep range. The stresses are considered to be deformation-controlled in that shakedown occurs after several load cycles. There are situations, however, where the discontinuity stresses may not be deformation-controlled, and follow-up action might occur. A conservative approach would be to classify the resulting mixed-mode response as a load-controlled situation. The subsequent design could then be unduly wasteful. A simple method for evaluating the mixed-mode response is a technique known as the generalized local stress-strain (GLOSS) analysis. The underlying theory relates the follow-up process to the deformation-controlled uniaxial relaxation. The slope of the mixed-mode response trajectory on the GLOSS diagram determines the relative proportions of deformation and load-controlled actions. In this paper, use is made of the GLOSS diagram to classify stresses or damage due to follow-up in pressure components for temperature below the creep range and elevated temperatures. Some ASME code related perspectives are also discussed in the paper

  6. Harmonic Stability Analysis of Offshore Wind Farm with Component Connection Method

    DEFF Research Database (Denmark)

    Hou, Peng; Ebrahimzadeh, Esmaeil; Wang, Xiongfei

    2017-01-01

    In this paper, an eigenvalue-based harmonic stability analysis method for offshore wind farm is proposed. Considering the internal cable connection layout, a component connection method (CCM) is adopted to divide the system into individual blocks as current controller of converters, LCL filters...

  7. Reliability Analysis of Fatigue Failure of Cast Components for Wind Turbines

    DEFF Research Database (Denmark)

    Rafsanjani, Hesam Mirzaei; Sørensen, John Dalsgaard

    2015-01-01

    to substantial economic losses such as cost of lost energy production and cost of repairs. During the design lifetime, the drivetrain components are exposed to variable loads from winds and waves and other sources of loads that are uncertain and have to be modeled as stochastic variables. The types of loads...

  8. Three-component model of solar wind--interstellar medium interaction: some numerical results

    International Nuclear Information System (INIS)

    Baranov, V.; Ermakov, M.; Lebedev, M.

    1981-01-01

    A three-component (electrons, protons, H atoms) model for the interaction between the local interstellar medium and the solar wind is considered. A numerical analysis has been performed to determine how resonance charge exchange in interstellar H atoms that have penetrated the solar wind would affect the two-shock model developed previously by Baranov et al. In particular, if n/sub Hinfinity//n/sub e/infinity>10 (n/sub Hinfinity/, n/sub e/infinity denote the number density of H atoms and electrons in the local ISM) the inner shock may approach the sun as closely as the outer planetary orbits

  9. On risk-based operation and maintenance of offshore wind turbine components

    DEFF Research Database (Denmark)

    Nielsen, Jannie Jessen; Sørensen, John Dalsgaard

    2011-01-01

    Operation and maintenance are significant contributors to the cost of energy for offshore wind turbines. Optimal planning could rationally be based on Bayesian pre-posterior decision theory, and all costs through the lifetime of the structures should be included. This paper contains a study...... of a generic case where the costs are evaluated for a single wind turbine with a single component. Costs due to inspections, repairs, and lost production are included in the model. The costs are compared for two distinct maintenance strategies, namely with and without inclusion of periodic imperfect...

  10. Dynamics of the standard deviations of three wind velocity components from the data of acoustic sounding

    Science.gov (United States)

    Krasnenko, N. P.; Kapegesheva, O. F.; Shamanaeva, L. G.

    2017-11-01

    Spatiotemporal dynamics of the standard deviations of three wind velocity components measured with a mini-sodar in the atmospheric boundary layer is analyzed. During the day on September 16 and at night on September 12 values of the standard deviation changed for the x- and y-components from 0.5 to 4 m/s, and for the z-component from 0.2 to 1.2 m/s. An analysis of the vertical profiles of the standard deviations of three wind velocity components for a 6-day measurement period has shown that the increase of σx and σy with altitude is well described by a power law dependence with exponent changing from 0.22 to 1.3 depending on the time of day, and σz depends linearly on the altitude. The approximation constants have been found and their errors have been estimated. The established physical regularities and the approximation constants allow the spatiotemporal dynamics of the standard deviation of three wind velocity components in the atmospheric boundary layer to be described and can be recommended for application in ABL models.

  11. Statistical analysis of manufacturing defects on fatigue life of wind turbine casted Component

    DEFF Research Database (Denmark)

    Rafsanjani, Hesam Mirzaei; Sørensen, John Dalsgaard; Mukherjee, Krishnendu

    2014-01-01

    Wind turbine components experience heavily variable loads during its lifetime and fatigue failure is a main failure mode of casted components during their design working life. The fatigue life is highly dependent on the microstructure (grain size and graphite form and size), number, type, location...... and size of defects in the casted components and is therefore rather uncertain and needs to be described by stochastic models. Uncertainties related to such defects influence prediction of the fatigue strengths and are therefore important in modelling and assessment of the reliability of wind turbine...... for the fatigue life, namely LogNormal and Weibull distributions. The statistical analyses are performed using the Maximum Likelihood Method and the statistical uncertainty is estimated. Further, stochastic models for the fatigue life obtained from the statistical analyses are used for illustration to assess...

  12. Exergy analysis of components of integrated wind energy / hydrogen / fuel cell

    International Nuclear Information System (INIS)

    Hernandez Galvez, G.; Pathiyamattom, J.S.; Sanchez Gamboa, S.

    2009-01-01

    Exergy analysis is made of three components of an integrated wind energy to hydrogen fuel cell: wind turbine, fuel cell (PEMFC) and electrolyzer (PEM). The methodology used to assess how affect the second law efficiency of the electrolyzer and the FC parameters as temperature and operating pressure and membrane thickness. It develop methods to evaluate the influence of changes in the air density and height of the tower on the second law efficiency of the turbine. This work represents a starting point for developing the global availability analysis of an integrated wind / hydrogen / fuel cells, which can be used as a tool to achieve the optimum design of the same. The use of this system contribute to protect the environment

  13. Usage of Parameterized Fatigue Spectra and Physics-Based Systems Engineering Models for Wind Turbine Component Sizing: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Parsons, Taylor; Guo, Yi; Veers, Paul; Dykes, Katherine; Damiani, Rick

    2016-01-26

    Software models that use design-level input variables and physics-based engineering analysis for estimating the mass and geometrical properties of components in large-scale machinery can be very useful for analyzing design trade-offs in complex systems. This study uses DriveSE, an OpenMDAO-based drivetrain model that uses stress and deflection criteria to size drivetrain components within a geared, upwind wind turbine. Because a full lifetime fatigue load spectrum can only be defined using computationally-expensive simulations in programs such as FAST, a parameterized fatigue loads spectrum that depends on wind conditions, rotor diameter, and turbine design life has been implemented. The parameterized fatigue spectrum is only used in this paper to demonstrate the proposed fatigue analysis approach. This paper details a three-part investigation of the parameterized approach and a comparison of the DriveSE model with and without fatigue analysis on the main shaft system. It compares loads from three turbines of varying size and determines if and when fatigue governs drivetrain sizing compared to extreme load-driven design. It also investigates the model's sensitivity to shaft material parameters. The intent of this paper is to demonstrate how fatigue considerations in addition to extreme loads can be brought into a system engineering optimization.

  14. Residual stress improving method for reactor structural component and residual stress improving device therefor

    Energy Technology Data Exchange (ETDEWEB)

    Enomoto, Kunio; Otaka, Masahiro; Kurosawa, Koichi; Saito, Hideyo; Tsujimura, Hiroshi; Tamai, Yasukata; Urashiro, Keiichi; Mochizuki, Masato

    1996-09-03

    The present invention is applied to a BWR type reactor, in which a high speed jetting flow incorporating cavities is collided against the surface of reactor structural components to form residual compression stresses on the surface layer of the reactor structural components thereby improving the stresses on the surface. Namely, a water jetting means is inserted into the reactor container filled with reactor water. Purified water is pressurized by a pump and introduced to the water jetting means. The purified water jetted from the water jetting means and entraining cavities is abutted against the surface of the reactor structural components. With such procedures, since the purified water is introduced to the water jetting means by the pump, the pump is free from contamination of radioactive materials. As a result, maintenance and inspection for the pump can be facilitated. Further, since the purified water injection flow entraining cavities is abutted against the surface of the reactor structural components being in contact with reactor water, residual compression stresses are exerted on the surface of the reactor structural components. As a result, occurrence of stress corrosion crackings of reactor structural components is suppressed. (I.S.)

  15. Residual stress improving method for reactor structural component and residual stress improving device therefor

    International Nuclear Information System (INIS)

    Enomoto, Kunio; Otaka, Masahiro; Kurosawa, Koichi; Saito, Hideyo; Tsujimura, Hiroshi; Tamai, Yasukata; Urashiro, Keiichi; Mochizuki, Masato.

    1996-01-01

    The present invention is applied to a BWR type reactor, in which a high speed jetting flow incorporating cavities is collided against the surface of reactor structural components to form residual compression stresses on the surface layer of the reactor structural components thereby improving the stresses on the surface. Namely, a water jetting means is inserted into the reactor container filled with reactor water. Purified water is pressurized by a pump and introduced to the water jetting means. The purified water jetted from the water jetting means and entraining cavities is abutted against the surface of the reactor structural components. With such procedures, since the purified water is introduced to the water jetting means by the pump, the pump is free from contamination of radioactive materials. As a result, maintenance and inspection for the pump can be facilitated. Further, since the purified water injection flow entraining cavities is abutted against the surface of the reactor structural components being in contact with reactor water, residual compression stresses are exerted on the surface of the reactor structural components. As a result, occurrence of stress corrosion crackings of reactor structural components is suppressed. (I.S.)

  16. Stress analysis of composite wind turbine blade by finite element method

    Science.gov (United States)

    Yeh, Meng-Kao; Wang, Chen-Hsu

    2017-10-01

    In this study, the finite element analysis software ANSYS was used to analyze the composite wind turbine blade. The wind turbine blade model used is adopted from the 5 MW model of US National Renewable Energy Laboratory (NREL). The wind turbine blade is a sandwich structure, comprising outermost carbon fiber cloth/epoxy composites, the inner glass fiber/vinylester layers, and PVC foam core, together with stiffeners. The wind pressure is converted into the load on the blade structure. The stress distribution and deformation of wind turbine blade were obtained by considering different pitch angles and at different angular positions. The Tsai-Hill criterion was used to determine the failure of wind turbine blade. The results show that at the 0° pitch angle, the wind turbine blade is subjected to the largest combined load and therefore the stress is the largest; with the increasing pitch angle, the load gradually decreases and the stress is also smaller. The stress and displacement are the greatest when the wind blade is located at 120° angular position from its highest vertex.

  17. TAO/TRITON, RAMA, and PIRATA Buoys, Daily, 1989-present, Wind Stress

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset has daily Wind Stress data from the TAO/TRITON (Pacific Ocean, https://www.pmel.noaa.gov/gtmba/ ), RAMA (Indian Ocean,...

  18. TAO/TRITON, RAMA, and PIRATA Buoys, 5-Day, 1989-present, Wind Stress

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset has 5-day Wind Stress data from the TAO/TRITON (Pacific Ocean, https://www.pmel.noaa.gov/gtmba/ ), RAMA (Indian Ocean,...

  19. TAO/TRITON, RAMA, and PIRATA Buoys, Monthly, 1989-present, Wind Stress

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset has monthly Wind Stress data from the TAO/TRITON (Pacific Ocean, https://www.pmel.noaa.gov/gtmba/ ), RAMA (Indian Ocean,...

  20. Protection of surface assets on Mars from wind blown jettisoned spacecraft components

    Science.gov (United States)

    Paton, Mark

    2017-07-01

    Jettisoned Entry, Descent and Landing System (EDLS) hardware from landing spacecraft have been observed by orbiting spacecraft, strewn over the Martian surface. Future Mars missions that land spacecraft close to prelanded assets will have to use a landing architecture that somehow minimises the possibility of impacts from these jettisoned EDLS components. Computer modelling is used here to investigate the influence of wind speed and direction on the distribution of EDLS components on the surface. Typical wind speeds encountered in the Martian Planetary Boundary Layer (PBL) were found to be of sufficient strength to blow items having a low ballistic coefficient, i.e. Hypersonic Inflatable Aerodynamic Decelerators (HIADs) or parachutes, onto prelanded assets even when the lander itself touches down several kilometres away. Employing meteorological measurements and careful characterisation of the Martian PBL, e.g. appropriate wind speed probability density functions, may then benefit future spacecraft landings, increase safety and possibly help reduce the delta v budget for Mars landers that rely on aerodynamic decelerators.

  1. A Component Mode Synthesis Algorithm for Multibody Dynamics of Wind Turbines

    DEFF Research Database (Denmark)

    Holm-Jørgensen, Kristian; Nielsen, Søren R.K.

    2009-01-01

    A system reduction scheme related to a multibody formulation of wind turbine dynamics is devised. Each substructure is described in its own frame of reference, which is moving freely in the vicinity of the moving substructure, in principle without any constraints to the rigid body part of the mot......A system reduction scheme related to a multibody formulation of wind turbine dynamics is devised. Each substructure is described in its own frame of reference, which is moving freely in the vicinity of the moving substructure, in principle without any constraints to the rigid body part...... of the motion of the substructure. The system reduction is based on a component mode synthesis method, where the response of the internal degrees of freedom of the substructure is described as the quasi-static response induced by the boundary degrees of freedom via the constraint modes superimposed...

  2. On risk-based operation and maintenance of offshore wind turbine components

    International Nuclear Information System (INIS)

    Jessen Nielsen, Jannie; Dalsgaard Sorensen, John

    2011-01-01

    Operation and maintenance are significant contributors to the cost of energy for offshore wind turbines. Optimal planning could rationally be based on Bayesian pre-posterior decision theory, and all costs through the lifetime of the structures should be included. This paper contains a study of a generic case where the costs are evaluated for a single wind turbine with a single component. Costs due to inspections, repairs, and lost production are included in the model. The costs are compared for two distinct maintenance strategies, namely with and without inclusion of periodic imperfect inspections. Finally the influence of different important parameters, e.g. failure rate, reliability of inspections, inspection interval, and decision rule for repairs, is evaluated.

  3. Effect of the weld joint configuration on stressed components, residual stresses and mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Cevik, Bekir; Oezer, Alpay; Oezcatalbas, Yusuf [Gazi Univ., Ankara (Turkey)

    2014-03-01

    The effect of the weld joint configuration on components has been studied, which are under service loads, under repair or construction and the residual stresses as well as the mechanical properties of the joint have been determined. For this purpose, a horizontal positioned tensile testing device and a semi-automatic MIG welding machine have been used and then the weld joints of the plates were subjected to different elastic stresses. When the temperature of the joined elements decreased to room temperature, applied elastic stresses were released. By this means, the effects of the existing tensile stresses in the joined parts and the tensile stresses created by the welding processes were investigated. The tensile stresses occurring in the joined elements were determined by using the photo-elasticity analysis method and the hole-drilling method. Also, tensile-shear tests were applied in order to determine the effect of permanent tensile loads on the mechanical properties of the joint. Experimental results showed that the application of corner welded lap joints for components under tensile loading significantly decrease the shear strength and yielding capacities of the joint. (orig.)

  4. Wind-Induced Fatigue Analysis of High-Rise Steel Structures Using Equivalent Structural Stress Method

    Directory of Open Access Journals (Sweden)

    Zhao Fang

    2017-01-01

    Full Text Available Welded beam-to-column connections of high-rise steel structures are susceptive to fatigue damage under wind loading. However, most fatigue assessments in the field of civil engineering are mainly based on nominal stress or hot spot stress theories, which has the disadvantage of dependence on the meshing styles and massive curves selected. To address this problem, in this paper, the equivalent structural stress method with advantages of mesh-insensitive quality and capability of unifying different stress-life curves (S-N curves into one is introduced to the wind-induced fatigue assessment of a large-scale complicated high-rise steel structure. The multi-scale finite element model is established and the corresponding wind loading is simulated. Fatigue life assessments using equivalent structural stress method, hot spot stress method and nominal stress method are performed, and the results are verified and comparisons are made. The mesh-insensitive quality is also verified. The results show that the lateral weld toe of the butt weld connecting the beam flange plate and the column is the location where fatigue damage most likely happens. Nominal stress method considers fatigue assessment of welds in a more global way by averaging all the stress on the weld section while in equivalent structural stress method and hot spot method local stress concentration can be taken into account more precisely.

  5. 75 FR 2159 - In the Matter of Certain Variable Speed Wind Turbines and Components Thereof; Termination of...

    Science.gov (United States)

    2010-01-14

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-641] In the Matter of Certain Variable Speed Wind Turbines and Components Thereof; Termination of Investigation With Final Determination of No..., and the sale within the United States after importation of certain variable speed wind turbines and...

  6. A Non-Linear Upscaling Approach for Wind Turbines Blades Based on Stresses

    NARCIS (Netherlands)

    Castillo Capponi, P.; Van Bussel, G.J.W.; Ashuri, T.; Kallesoe, B.

    2011-01-01

    The linear scaling laws for upscaling wind turbine blades show a linear increase of stresses due to the weight. However, the stresses should remain the same for a suitable design. Application of linear scaling laws may lead to an upscaled blade that may not be any more a feasible design. In this

  7. Acceptance and stress effects of aircraft obstruction markings of wind turbines

    International Nuclear Information System (INIS)

    Pohl, Johannes; Hübner, Gundula; Mohs, Anja

    2012-01-01

    A dominant resistance factor against wind power projects seems to be their visual impact on the landscape. In addition stress effects from aircraft obstruction markings are an emerging topic related to acceptance. As the height of wind turbines increases, so does the number of mandatory obstruction markings. Recently, obstruction markings have caused a growing number of complaints from residents. Whether obstruction markings indeed cause stress or even substantial annoyance remains an open question. To analyse the stress impact of obstruction markings, we used environmental and stress psychology methodologies. Residents (N=420) with direct sight of turbines at 13 wind farms participated in a questionnaire survey. Evidence of substantial annoyance caused by obstruction markings was not found. However, residents exposed to xenon lights reported more intense and multifaceted stress responses than exposed to LED or colour markings on blades. Moreover, xenon lights negatively affected the general acceptance of wind energy. Additionally, synchronised navigation lights were found to be less annoying than non-synchronised lights under certain weather conditions. Markings with light intensity adjustment proved to be advantageous. To reduce stress and increase social acceptance of wind power, xenon lights should be abandoned, navigation lights synchronised, and light intensity adjustment applied. - Research highlights: ► Wind turbine obstruction markings influence the social acceptance of wind energy. ► Residents exposed to xenon lights reported more intense stress responses than exposed to LED or colour markings. ► Synchronised lights were found to be less annoying under certain weather conditions. ► Markings with light intensity adjustment proved to be advantageous. ► Evidence of substantial annoyance caused by obstruction markings was not found.

  8. Remote wind stress influence on mean sea level in a subtropical coastal region

    Directory of Open Access Journals (Sweden)

    Mabel Calim Costa

    2012-09-01

    Full Text Available The purpose of this study was to assess the relative influence of remote wind stress on mean sea level (MSL variations in the coastal region of Cananeia (Sao Paulo State, Southern Brazil during the period from 1/1/1955 to 12/31/1993. An optimized low-pass Thompson filter for the study area, and spectral analysis (cross spectrum, coherence and phase lag of the relationship between the MSL and both parallel (T// and perpendicular (T| wind stress components were applied. These were extracted from four grid points of the NCEP/NCAR global model. The predominance of annual oscillations as those of greatest coherence and energy, of periods of approximately 341 days (frequency of 0.00293 cpd and 410 days (frequency of 0.00244 cpd, respectively, were observed. Offshore NCEP/NCAR grid points were those with the highest coherence and energy throughout the study in relation to the observed MSL. This may be linked to the restriction of the NCEP/NCAR model as regards the inland limit. It is also concluded that remote wind stress may play an important role in several MSL time scales, including the annual ones. Based on criteria such as coherence and energy peaks, the wind stress component of greatest effect on MSL was the parallel one.O presente estudo tem por objetivo avaliar a influência relativa de tensão do vento remoto na variação do nível médio do mar (NMM para a região costeira de Cananéia (SP durante o período de 1/1/1955 a 31/12/1993. Foram aplicados um filtro de passa-baixa de Thompson (1983, otimizado para a região de Cananéia, além de análise espectral (espectro cruzado, coerência e defasagem entre o NMM e as componentes paralela (T// e perpendicular (T| da tensão do vento. Estas foram extraídas de quatro pontos de grade do modelo global NCEP/NCAR. Observou-se a predominância das oscilações anuais como aquelas de maior coerência e energia, destacando-se os períodos de aproximadamente 341 dias (frequência de 0,00293 cpd e 410

  9. Diurnal Dynamics of Standard Deviations of Three Wind Velocity Components in the Atmospheric Boundary Layer

    Science.gov (United States)

    Shamanaeva, L. G.; Krasnenko, N. P.; Kapegesheva, O. F.

    2018-04-01

    Diurnal dynamics of the standard deviation (SD) of three wind velocity components measured with a minisodar in the atmospheric boundary layer is analyzed. Statistical analysis of measurement data demonstrates that the SDs for x- and y-components σx and σy lie in the range from 0.2 to 4 m/s, and σz = 0.1-1.2 m/s. The increase of σx and σy with the altitude is described sufficiently well by a power law with exponent changing from 0.22 to 1.3 depending on time of day, and σz increases by a linear law. Approximation constants are determined and errors of their application are estimated. It is found that the maximal diurnal spread of SD values is 56% for σx and σy and 94% for σz. The established physical laws and the obtained approximation constants allow the diurnal dynamics of the SDs for three wind velocity components in the atmospheric boundary layer to be determined and can be recommended for application in models of the atmospheric boundary layer.

  10. Sensitivity of ocean oxygenation to variations in tropical zonal wind stress magnitude

    Science.gov (United States)

    Ridder, Nina N.; England, Matthew H.

    2014-09-01

    Ocean oxygenation has been observed to have changed over the past few decades and is projected to change further under global climate change due to an interplay of several mechanisms. In this study we isolate the effect of modified tropical surface wind stress conditions on the evolution of ocean oxygenation in a numerical climate model. We find that ocean oxygenation varies inversely with low-latitude surface wind stress. Approximately one third of this response is driven by sea surface temperature anomalies; the remaining two thirds result from changes in ocean circulation and marine biology. Global mean O2 concentration changes reach maximum values of +4 μM and -3.6 μM in the two most extreme perturbation cases of -30% and +30% wind change, respectively. Localized changes lie between +92 μM under 30% reduced winds and -56 μM for 30% increased winds. Overall, we find that the extent of the global low-oxygen volume varies with the same sign as the wind perturbation; namely, weaker winds reduce the low-oxygen volume on the global scale and vice versa for increased trade winds. We identify two regions, one in the Pacific Ocean off Chile and the other in the Indian Ocean off Somalia, that are of particular importance for the evolution of oxygen minimum zones in the global ocean.

  11. On Different Maintenance Strategies for Casted Components of Offshore Wind Turbines

    DEFF Research Database (Denmark)

    Ambühl, Simon; Sørensen, John Dalsgaard

    . This maintenance tool uses Crude Monte Carlo Simulations to estimate the expected maintenance costs. Corrective and preventive maintenance strategies with a constant inspection interval or a condition monitoring system are considered. Furthermore, transportation from shore to the wind turbines by boat...... and transportation strategy. The case study shows that the maintenance expenses of casted components correspond to roughly 5% of the overall expected maintenance costs when using a corrective maintenance strategy. This amount can be decreased to roughly 2% when using a condition monitoring system and following...

  12. Examples of fatigue lifetime and reliability evaluation of larger wind turbine components

    DEFF Research Database (Denmark)

    Tarp-Johansen, N.J.

    2003-01-01

    This report is one out of several that constitute the final report on the ELSAM funded PSO project “Vindmøllekomponenters udmattelsesstyrke og levetid”, project no. 2079, which regards the lifetime distribution of larger wind turbine components in ageneric turbine that has real life dimensions....... Though it was the initial intention of the project to consider only the distribution of lifetimes the work reported in this document provides also calculations of reliabilities and partial load safetyfactors under specific assumptions about uncertainty sources, as reliabilities are considered...

  13. Experimental stress analysis for determination of residual stresses and integrity monitoring of components and systems

    International Nuclear Information System (INIS)

    1993-01-01

    For an analysis of the safety-related significance of residual stresses, mechanical, magnetic as well as ultrasonic and diffraction methods can be applied as testing methods. The results of an interlaboratory test concerning the experimental determination of residual stresses in a railway track are included. Further, questions are analyzed concerning the in-service inspections of components and systems with regard to their operational safety and life. Measurement methods are explained by examples from power plant engineering, nuclear power plant engineering, construction and traffic engineering as well as aeronautics. (DG) [de

  14. Feasibility of a Simple Small Wind Turbine with Variable-Speed Regulation Made of Commercial Components

    Directory of Open Access Journals (Sweden)

    Jesús Peláez Vara

    2013-07-01

    Full Text Available The aim of this study was to propose and evaluate a very small wind turbine (VSWT that competes with commercial grid-connected VSWTs in terms of simplicity, robustness and price. Its main components are a squirrel-cage induction generator (SCIG driven by a frequency converter. The system has a direct-drive shaft, and may be constructed with commercial equipment. Simulation of the wind turbine effect is done with a motor. A control program regulates the variable-speed of rotation through three operational modes: (i to drive the turbine to its optimum operation point; (ii to limit its maximum rotational speed; and (iii to limit the maximum power it generates. Two tests were performed, in order to evaluate the dynamic response of this system under variable wind speeds. The tests demonstrate that the system operates at the optimum operational point of the turbine, and within the set limits of maximum rotational speed and maximum generated power. The drop in performance in relation to its nominal value is about 75%, when operating at 50% of the nominal power. In summary, this VSWT with its proposed control program is feasible and reliable for operating direct-shaft grid-connected VSWTs.

  15. NDE of stresses in thick-walled components by ultrasonic methods

    International Nuclear Information System (INIS)

    Goebbels, K.; Pitsch, H.; Schneider, E.; Nowack, H.

    1985-01-01

    The possibilty of measuring stresses - especially residual stresses - by ultrasonic methods has been presented at the 4th and 5th International Conference on NDE in Nuclear Industry. This contribution now presents results of several applications to thick walled components such as turbines and generators for power plants. The measurement technique using linearly polarized shear waves allows one to characterize the homogeneitry of the residual stress situation along and around cylindrically shaped components. Some important results show that the stress distribution integrated over the cross section of the component has not followed in any case the simple relations derived by stress analysts. Conclusions referring to the stress situation inside the components are discussed

  16. Background of SIFs and Stress Indices for Moment Loadings of Piping Components

    International Nuclear Information System (INIS)

    Wais, E. A.; Rodabaugh, E. C.

    2005-01-01

    This report provides background information, references, and equations for twenty-four piping components (thirteen component SIFs and eleven component stress indices) that justify the values or expressions for the SIFs and indices

  17. Alignment of stress, mean wind, and vertical gradient of the velocity vector

    DEFF Research Database (Denmark)

    Berg, Jacob; Mann, Jakob; Patton, E.G.

    2012-01-01

    In many applications in the atmospheric surface layer the turbulent-viscosity hypothesis is applied, i.e. the stress vector can be described through the vertical gradient of velocity. In the atmospheric surface layer, where the Coriolis force and baroclinic effects are considered negligible......, this is supposedly a good approximation. High resolution large-eddy simulation (LES) data show that it is indeed the case. Through analysis of WindCube lidar measurements accompanied by sonic measurements we show that this is, on the other hand, rarely the case in the real atmosphere. This might indicate that large...... of atmospheric boundary layer modeling. The measurements are from the Danish wind turbine test sites at Høvsøre. With theWindCube lidar we are able to reach heights of 250 meters and hence capture the entire atmospheric surface layer both in terms of wind speed and the direction of the mean stress vector....

  18. Protection algorithm for a wind turbine generator based on positive- and negative-sequence fault components

    DEFF Research Database (Denmark)

    Zheng, Tai-Ying; Cha, Seung-Tae; Crossley, Peter A.

    2011-01-01

    A protection relay for a wind turbine generator (WTG) based on positive- and negative-sequence fault components is proposed in the paper. The relay uses the magnitude of the positive-sequence component in the fault current to detect a fault on a parallel WTG, connected to the same power collection...... feeder, or a fault on an adjacent feeder; but for these faults, the relay remains stable and inoperative. A fault on the power collection feeder or a fault on the collection bus, both of which require an instantaneous tripping response, are distinguished from an inter-tie fault or a grid fault, which...... in the fault current is used to decide on either instantaneous or delayed operation. The operating performance of the relay is then verified using various fault scenarios modelled using EMTP-RV. The scenarios involve changes in the position and type of fault, and the faulted phases. Results confirm...

  19. Test Results of a Nb3Sn Wind/React ''Stress-Managed'' Block Dipole

    International Nuclear Information System (INIS)

    McInturff, A.; Bish, P.; Blackburn, R.; Diaczenko, N.; Elliott, T.; Hafalia Jr., R.; Henchel, W.; Jaisle, A.; Lau, W.; Lietzke, A.; McIntyre, P.; Noyes, P.; Nyman, M.; Sattarov, A.; Sattarov, A.

    2006-01-01

    A second phase of a highfield dipole technology development has been tested. A Nb3Sn block-coil model dipole was fabricated, using magnetic mirror geometry and wind/react coil technology. The primary objective of this phase was to make a first experimental test of the stress-management strategy pioneered at Texas A and M. In this strategy a high-strength support matrix is integrated with the windings to intercept Lorentz stress from the inner winding so that it does not accumulate in the outer winding. The magnet attained a field that was consistent with short sample limit on the first quench; there was no training. The decoupling of Lorentz stress between inner and outer windings was validated. In ramp rate studies the magnet exhibited a remarkable robustness in rapid ramping operation. It reached 85 percent of short sample(ss) current even while ramping 2-3 T/s. This robustness is attributed to the orientation of the Rutherford cables parallel to the field in the windings, instead of the transverse orientation that characterizes common dipole designs. Test results are presented and the next development phase plans are discussed

  20. Casting defects and fatigue behaviour of ductile cast iron for wind turbine components: A comprehensive study

    Energy Technology Data Exchange (ETDEWEB)

    Haerkegaard, G. [Norwegian University of Science and Technology, Dept. of Engineering Design and Materials, Trondheim (Norway); Shirani, M.

    2011-12-15

    Two types of EN-GJS-400-18-LT ductile cast iron were investigated in this research, clean baseline material in the shape of castings with different thicknesses and also defective material from a rejected wind turbine hub. P-S-N curves for baseline EN-GJS-400-18-LT specimens with different dimensions and from castings with different thicknesses at different load ratios were established. Geometrical size effect, technological size effects and mean stress effect on fatigue strength of baseline EN-GJS-400-18-LT were evaluated. Fatigue strength of baseline EN-GJS-400-18-LT was compared with that of defective material from the rejected hub. The effect of defects type, shape, size and position on fatigue strength of this material was evaluated. The hypothesis that the endurance observed in an S-N test can be predicted based on the analysis of crack growth from casting defects through defect-free 'base' material was tested for the analyzed defective material. 3D X-ray computed tomography was use to detect defects in defective specimens and find the defect size distribution. The obtained defect size distribution for the defective material was used in random defect analysis to establish the scatter of fatigue life for defective specimens. Finally both safe-life design and damage tolerant design of wind turbine castings were analyzed and compared. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Numerical analysis of residual stresses reconstruction for axisymmetric glass components

    Science.gov (United States)

    Tao, Bo; Xu, Shuang; Yao, Honghui

    2018-01-01

    A non-destructive measurement method for 3D stress state in a glass cylinder using photoelasticity has been analyzed by simulation in this research. Based on simulated stresses in a glass cylinder, intensity of the cylinder in a circular polariscope can be calculated by Jones calculus. Therefore, the isoclinic angle and optical retardation can be obtained by six steps phase shifting technique. Through the isoclinic angle and optical retardation, the magnitude and distribution of residual stresses inside the glass cylinder in cylindrical coordinate system can be reconstructed. Comparing the reconstructed stresses with numerical simulated stresses, the results verify this non-destructive method can be used to reconstruct the 3D stresses. However, there are some mismatches in axial stress, radial stress and circumferential stress.

  2. A probability evaluation method of early deterioration condition for the critical components of wind turbine generator systems

    DEFF Research Database (Denmark)

    Hu, Y.; Li, H.; Liao, X

    2016-01-01

    method of early deterioration condition for critical components based only on temperature characteristic parameters. First, the dynamic threshold of deterioration degree function was proposed by analyzing the operational data between temperature and rotor speed. Second, a probability evaluation method...... of early deterioration condition was presented. Finally, two cases showed the validity of the proposed probability evaluation method in detecting early deterioration condition and in tracking their further deterioration for the critical components.......This study determines the early deterioration condition of critical components for a wind turbine generator system (WTGS). Due to the uncertainty nature of the fluctuation and intermittence of wind, early deterioration condition evaluation poses a challenge to the traditional vibration...

  3. Satellite Observations of Imprint of Oceanic Current on Wind Stress by Air-Sea Coupling.

    Science.gov (United States)

    Renault, Lionel; McWilliams, James C; Masson, Sebastien

    2017-12-18

    Mesoscale eddies are present everywhere in the ocean and partly determine the mean state of the circulation and ecosystem. The current feedback on the surface wind stress modulates the air-sea transfer of momentum by providing a sink of mesoscale eddy energy as an atmospheric source. Using nine years of satellite measurements of surface stress and geostrophic currents over the global ocean, we confirm that the current-induced surface stress curl is linearly related to the current vorticity. The resulting coupling coefficient between current and surface stress (s τ [N s m -3 ]) is heterogeneous and can be roughly expressed as a linear function of the mean surface wind. s τ expresses the sink of eddy energy induced by the current feedback. This has important implications for air-sea interaction and implies that oceanic mean and mesoscale circulations and their effects on surface-layer ventilation and carbon uptake are better represented in oceanic models that include this feedback.

  4. WIND TURBINES CAUSE CHRONIC STRESS IN BADGERS (MELES MELES) IN GREAT BRITAIN.

    Science.gov (United States)

    Agnew, Roseanna C N; Smith, Valerie J; Fowkes, Robert C

    2016-07-01

    A paucity of data exists with which to assess the effects of wind turbines noise on terrestrial wildlife, despite growing concern about the impact of infrasound from wind farms on human health and well-being. In 2013, we assessed whether the presence of turbines in Great Britain impacted the stress levels of badgers ( Meles meles ) in nearby setts. Hair cortisol levels were used to determine if the badgers were physiologically stressed. Hair of badgers living 10 km from a wind farm. This demonstrates that affected badgers suffer from enhanced hypothalamo-pituitary-adrenal activity and are physiologically stressed. No differences were found between the cortisol levels of badgers living near wind farms operational since 2009 and 2012, indicating that the animals do not become habituated to turbine disturbance. Cortisol levels in the affected badgers did not vary in relation to the distance from turbines within 1 km, wind farm annual power output, or number of turbines. We suggest that the higher cortisol levels in affected badgers is caused by the turbines' sound and that these high levels may affect badgers' immune systems, which could result in increased risk of infection and disease in the badger population.

  5. Two-component wind fields over ocean waves using atmospheric lidar and motion estimation algorithms

    Science.gov (United States)

    Mayor, S. D.

    2016-02-01

    Numerical models, such as large eddy simulations, are capable of providing stunning visualizations of the air-sea interface. One reason for this is the inherent spatial nature of such models. As compute power grows, models are able to provide higher resolution visualizations over larger domains revealing intricate details of the interactions of ocean waves and the airflow over them. Spatial observations on the other hand, which are necessary to validate the simulations, appear to lag behind models. The rough ocean environment of the real world is an additional challenge. One method of providing spatial observations of fluid flow is that of particle image velocimetry (PIV). PIV has been successfully applied to many problems in engineering and the geosciences. This presentation will show recent research results that demonstate that a PIV-style approach using pulsed-fiber atmospheric elastic backscatter lidar hardware and wavelet-based optical flow motion estimation software can reveal two-component wind fields over rough ocean surfaces. Namely, a recently-developed compact lidar was deployed for 10 days in March of 2015 in the Eureka, California area. It scanned over the ocean. Imagery reveal that breaking ocean waves provide copius amounts of particulate matter for the lidar to detect and for the motion estimation algorithms to retrieve wind vectors from. The image below shows two examples of results from the experiment. The left panel shows the elastic backscatter intensity (copper shades) under a field of vectors that was retrieved by the wavelet-based optical flow algorithm from two scans that took about 15 s each to acquire. The vectors, that reveal offshore flow toward the NW, were decimated for clarity. The bright aerosol features along the right edge of the sector scan were caused by ocean waves breaking on the beach. The right panel is the result of scanning over the ocean on a day when wave amplitudes ranged from 8-12 feet and whitecaps offshore beyond the

  6. Scales of North Atlantic wind stress curl determined from the comprehensive ocean-atmosphere data set

    Science.gov (United States)

    Ehret, Laura L.; O'Brien, James J.

    1989-01-01

    Nineteen years of wind data over the North Atlantic are used to calculate a field of wind stress curl. An empirical orthogonal function (EOF) analysis is performed on this field, resulting in spatial patterns of wind stress curl and associated time series. A Monte Carlo technique is used to establish the statistical significance of each spatial pattern, and the associated time series are spectrally analyzed. The first four statistically significant EOF modes represent more than 50 percent of the curl variance, and the spatial patterns of curl associated with these modes exhibit the major elements of North Atlantic climatology. Most of the time series spectral variance is contained in annual and semiannual frequencies. The features observed include the individual annual variation of the subtropical high and the subpolar low, the annual oscillation of intensity between pressure centers, the influence of localized strong SST gradients and associated cyclogenesis regions, and the constant nature of the trades.

  7. The Internal Stress Evaluation of Pultruded Blades for a Darrieus Wind Turbine

    DEFF Research Database (Denmark)

    Baran, Ismet; Tutum, Cem Celal; Hattel, Jesper Henri

    2013-01-01

    This paper investigates the integrated modeling of a pultruded NACA0018 blade profile which is a part of the FP7 EU project DeepWind. The pultrusion process simulation is combined with the preliminary subsequent in-service load scenario. In particular, the process induced residual stresses...

  8. The Internal Stress Evaluation of Pultruded Blades for a Darrieus Wind Turbine

    NARCIS (Netherlands)

    Baran, Ismet; Tutum, Cem C.; Hattel, Jesper Henri

    2013-01-01

    This paper investigates the integrated modeling of a pultruded NACA0018 blade profile which is a part of the FP7 EU project DeepWind. The pultrusion process simulation is combined with the preliminary subsequent in-service load scenario. In particular, the process induced residual stresses and

  9. TropFlux wind stresses over the tropical oceans: Evaluation and comparison with other products

    Digital Repository Service at National Institute of Oceanography (India)

    PraveenKumar, B.; Vialard, J.; Lengaigne, M.; Murty, V.S.N.; McPhaden, M.J.; Cronin, M.F.; Pinsard, F.; Reddy, K.G.

    Convergence Zones. ERA-I and TropFlux display the best agreement with in situ data, with correlations more than 0.93 and rms-differences less than 0.012 Nm sup(-2). TropFlux wind stresses exhibit a small, but consistent improvement (at all timescales and most...

  10. Initialization shock in decadal hindcasts due to errors in wind stress over the tropical Pacific

    Science.gov (United States)

    Pohlmann, Holger; Kröger, Jürgen; Greatbatch, Richard J.; Müller, Wolfgang A.

    2017-10-01

    Low prediction skill in the tropical Pacific is a common problem in decadal prediction systems, especially for lead years 2-5 which, in many systems, is lower than in uninitialized experiments. On the other hand, the tropical Pacific is of almost worldwide climate relevance through its teleconnections with other tropical and extratropical regions and also of importance for global mean temperature. Understanding the causes of the reduced prediction skill is thus of major interest for decadal climate predictions. We look into the problem of reduced prediction skill by analyzing the Max Planck Institute Earth System Model (MPI-ESM) decadal hindcasts for the fifth phase of the Climate Model Intercomparison Project and performing a sensitivity experiment in which hindcasts are initialized from a model run forced only by surface wind stress. In both systems, sea surface temperature variability in the tropical Pacific is successfully initialized, but most skill is lost at lead years 2-5. Utilizing the sensitivity experiment enables us to pin down the reason for the reduced prediction skill in MPI-ESM to errors in wind stress used for the initialization. A spurious trend in the wind stress forcing displaces the equatorial thermocline in MPI-ESM unrealistically. When the climate model is then switched into its forecast mode, the recovery process triggers artificial El Niño and La Niña events at the surface. Our results demonstrate the importance of realistic wind stress products for the initialization of decadal predictions.

  11. Impacts of Wind Stress Changes on the Global Heat Transport, Baroclinic Instability, and the Thermohaline Circulation

    Directory of Open Access Journals (Sweden)

    Jeferson Prietsch Machado

    2016-01-01

    Full Text Available The wind stress is a measure of momentum transfer due to the relative motion between the atmosphere and the ocean. This study aims to investigate the anomalous pattern of atmospheric and oceanic circulations due to 50% increase in the wind stress over the equatorial region and the Southern Ocean. In this paper we use a coupled climate model of intermediate complexity (SPEEDO. The results show that the intensification of equatorial wind stress causes a decrease in sea surface temperature in the tropical region due to increased upwelling and evaporative cooling. On the other hand, the intensification of wind stress over the Southern Ocean induces a regional increase in the air and sea surface temperatures which in turn leads to a reduction in Antarctic sea ice thickness. This occurs in association with changes in the global thermohaline circulation strengthening the rate of Antarctic Bottom Water formation and a weakening of the North Atlantic Deep Water. Moreover, changes in the Southern Hemisphere thermal gradient lead to modified atmospheric and oceanic heat transports reducing the storm tracks and baroclinic activity.

  12. Data Collection for Current U.S. Wind Energy Projects: Component Costs, Financing, Operations, and Maintenance; January 2011 - September 2011

    Energy Technology Data Exchange (ETDEWEB)

    Martin-Tretton, M.; Reha, M.; Drunsic, M.; Keim, M.

    2012-01-01

    DNV Renewables (USA) Inc. (DNV) used an Operations and Maintenance (O&M) Cost Model to evaluate ten distinct cost scenarios encountered under variations in wind turbine component failure rates. The analysis considers: (1) a Reference Scenario using the default part failure rates within the O&M Cost Model, (2) High Failure Rate Scenarios that increase the failure rates of three major components (blades, gearboxes, and generators) individually, (3) 100% Replacement Scenarios that model full replacement of these components over a 20 year operating life, and (4) Serial Failure Scenarios that model full replacement of blades, gearboxes, and generators in years 4 to 6 of the wind project. DNV selected these scenarios to represent a broad range of possible operational experiences. Also in this report, DNV summarizes the predominant financing arrangements used to develop wind energy projects over the past several years and provides summary data on various financial metrics describing those arrangements.

  13. Dissecting Low Atmospheric Pressure Stress: Transcriptome Responses to the Components of Hypobaria in Arabidopsis [Experiment 2

    Data.gov (United States)

    National Aeronautics and Space Administration — Controlled hypobaria presents biology with an environment that is never encountered in terrestrial ecology yet the apparent components of hypobaria are stresses...

  14. Dissecting Low Atmospheric Pressure Stress: Transcriptome Responses to the Components of Hypobaria in Arabidopsis [Experiment 1

    Data.gov (United States)

    National Aeronautics and Space Administration — Controlled hypobaria presents biology with an environment that is never encountered in terrestrial ecology yet the apparent components of hypobaria are stresses...

  15. Variability of wind stress and currents at selected locations over the north Indian Ocean during 1977 and 1979 summer monsoon seasons

    Digital Repository Service at National Institute of Oceanography (India)

    Gopalakrishna, V.V.; Sadhuram, Y.; RameshBabu, V.; Rao, M.V.

    Intra-seasonal variability of wind stress, wind stress curl and currents at different locations over the northern Indian Ocean during two contrasting monsoon seasons has been investigated making use of the time series data collected during MONSOON...

  16. Calibration of an experimental six component wind tunnel block balance using optical fibre sensors

    CSIR Research Space (South Africa)

    de Ponte, JD

    2016-05-01

    Full Text Available In order to meet the increasingly stringent requirements for wind tunnel balances, as expressed by the wind tunnel testing community, balance design philosophy needs to be further expanded to include alternative sensor, material, design...

  17. Design and development of an experimental six component wind tunnel block balance using optical fibre sensors.

    CSIR Research Space (South Africa)

    De Ponte, JD

    2014-05-01

    Full Text Available In order to meet the increasingly stringent requirements for wind tunnel balances, as expressed by the wind tunnel testing community, balance design philosophy needs to be further expanded to include alternative sensor, material, design...

  18. Validation of stress prediction during solidification of cast components

    CSIR Research Space (South Africa)

    Paine, AP

    2007-07-01

    Full Text Available to solidify and undergoes changes in phases where different material laws are valid. In the fluid state the metal is almost stress free but as the part starts to solidify and shrink, stresses are induced in the casting due to constraints from the mould. Some...

  19. Analysis of Mechanical Stresses Due to Voltage Dips in Fixed-Speed Wind Turbines

    DEFF Research Database (Denmark)

    Veluri, Badrinath; Santos-Martin, David; Jensen, Henrik Myhre

    2011-01-01

    stresses transients that may have a detrimental effect on the fatigue life of drivetrain system due to voltage dips. A rainflow cycle counting method for the stress history during the voltage dip event, analyses mean and amplitudes of the counted cycles, their occurrence moment and time of duration.......Voltage dips due to electrical grid faults generate transients of the generator electromagnetic torque which result in significant high stresses and noticeable vibrations for the wind turbine mechanical system. These events may also have a detrimental effect on the fatigue life of important...

  20. Validated Loads Prediction Models for Offshore Wind Turbines for Enhanced Component Reliability

    DEFF Research Database (Denmark)

    Koukoura, Christina

    To improve the reliability of offshore wind turbines, accurate prediction of their response is required. Therefore, validation of models with site measurements is imperative. In the present thesis a 3.6MW pitch regulated-variable speed offshore wind turbine on a monopole foundation is built...... are used for the modification of the sub-structure/foundation design for possible material savings. First, the background of offshore wind engineering, including wind-wave conditions, support structure, blade loading and wind turbine dynamics are presented. Second, a detailed description of the site...

  1. On the impact of multi-axial stress states on trailing edge bondlines in wind turbine rotor blades

    OpenAIRE

    Castelos, Pablo Noever; Balzani, Claudio

    2016-01-01

    For a reliable design of wind turbine systems all of their components have to be designed to withstand the loads appearing in the turbine's lifetime. When performed in an integral manner this is called systems engineering, and is exceptionally important for components that have an impact on the entire wind turbine system, such as the rotor blade. Bondlines are crucial subcomponents of rotor blades, but they are not much recognized in the wind energy research community. However, a bondline fai...

  2. Neutron diffraction measurements of residual stress in a powder metallurgy component

    International Nuclear Information System (INIS)

    Schneider, L.C.R.; Hainsworth, S.V.; Cocks, A.C.F.; Fitzpatrick, M.E.

    2005-01-01

    Residual stresses in a typical industrial green component were determined using neutron diffraction. The measured residual stresses were found to correlate with cross-sectional variations. Residual stress at the edge of the compact in contact with the die wall during compaction reached up to +80 MPa (tension) and -100 MPa (compression)

  3. Procedures for the design of the main mechanical components of a wind system; Dimensionamento dos componentes mecanicos principais de aerogeradores

    Energy Technology Data Exchange (ETDEWEB)

    Hirata, M.H.; Marco Filho, F. de [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia

    1990-12-31

    Procedures for the design of the main mechanical components of a wind system were developed. One of the main concerns was related to the possibility of its use in small micro-computers. This goal was reached and an APPLE II computer was used. The resulting algorithm permits a friendly interaction between man and machine. 5 refs., 12 figs

  4. Aspergillus oryzae AoSO is a novel component of stress granules upon heat stress in filamentous fungi.

    Directory of Open Access Journals (Sweden)

    Hsiang-Ting Huang

    Full Text Available Stress granules are a type of cytoplasmic messenger ribonucleoprotein (mRNP granule formed in response to the inhibition of translation initiation, which typically occurs when cells are exposed to stress. Stress granules are conserved in eukaryotes; however, in filamentous fungi, including Aspergillus oryzae, stress granules have not yet been defined. For this reason, here we investigated the formation and localization of stress granules in A. oryzae cells exposed to various stresses using an EGFP fusion protein of AoPab1, a homolog of Saccharomyces cerevisiae Pab1p, as a stress granule marker. Localization analysis showed that AoPab1 was evenly distributed throughout the cytoplasm under normal growth conditions, and accumulated as cytoplasmic foci mainly at the hyphal tip in response to stress. AoSO, a homolog of Neurospora crassa SO, which is necessary for hyphal fusion, colocalized with stress granules in cells exposed to heat stress. The formation of cytoplasmic foci of AoSO was blocked by treatment with cycloheximide, a known inhibitor of stress granule formation. Deletion of the Aoso gene had effects on the formation and localization of stress granules in response to heat stress. Our results suggest that AoSO is a novel component of stress granules specific to filamentous fungi. The authors would specially like to thank Hiroyuki Nakano and Kei Saeki for generously providing experimental and insightful opinions.

  5. Northeast storms ranked by wind stress and wave-generated bottom stress observed in Massachusetts Bay, 1990-2006

    Science.gov (United States)

    Butman, B.; Sherwood, C.R.; Dalyander, P.S.

    2008-01-01

    Along the coast of the northeastern United States, strong winds blowing from the northeast are often associated with storms called northeasters, coastal storms that strongly influence weather. In addition to effects caused by wind stress, the sea floor is affected by bottom stress associated with these storms. Bottom stress caused by orbital velocities associated with surface waves integrated over the duration of a storm is a metric of storm strength at the sea floor. Near-bottom wave-orbital velocities calculated by using measurements of significant wave height and dominant wave period and the parametric spectral method described in Wiberg and Sherwood [Wiberg, P.L., Sherwood, C.R. Calculating wave-generated bottom orbital velocities from surface wave parameters. Computers in Geosciences, in press] compared well with observations in Massachusetts Bay. Integrated bottom-wave stress (called IWAVES), calculated at 30 m water depth, and a companion storm-strength metric, integrated surface wind stress at 10 m (called IWINDS), are used to provide an overview of the strength, frequency, and timing of large storms in Massachusetts Bay over a 17-year period from January 1990 through December 2006. These new metrics reflect both storm duration and intensity. Northeast storms were the major cause of large waves in Massachusetts Bay because of the long fetch to the east: of the strongest 10% of storms (n=38) ranked by IWAVES, 22 had vector-averaged wind stress from the northeast quadrant. The Blizzard of December 1992, the Perfect Storm of October 1991, and a December 2003 storm were the strongest three storms ranked by IWAVES and IWINDS, and all were northeasters. IWAVES integrated over the winter season (defined as October-May) ranged by about a factor of 11; the winters with the highest integrated IWAVES were 1992-1993 and 2004-2005 and the winter with the lowest integrated IWAVES was 2001-2002. May 2005 was the only month in the 17-year record that two of the nine

  6. Statistical and time domain signal analysis of the thermal behaviour of wind turbine drive train components under dynamic operation conditions

    International Nuclear Information System (INIS)

    Nienhaus, K; Baltes, R; Bernet, C; Hilbert, M

    2012-01-01

    Gearboxes and generators are fundamental components of all electrical machines and the backbone of all electricity generation. Since the wind energy represents one of the key energy sources of the future, the number of wind turbines installed worldwide is rapidly increasing. Unlike in the past wind turbines are more often positioned in arctic as well as in desert like regions, and thereby exposed to harsh environmental conditions. Especially the temperature in those regions is a key factor that defines the design and choice of components and materials of the drive train. To optimize the design and health monitoring under varying temperatures it is important to understand the thermal behaviour dependent on environmental and machine parameters. This paper investigates the behaviour of the stator temperature of the double fed induction generator of a wind turbine. Therefore, different scenarios such as start of the turbine after a long period of no load, stop of the turbine after a long period of full load and others are isolated and analysed. For each scenario the dependences of the temperature on multiple wind turbine parameters such as power, speed and torque are studied. With the help of the regression analysis for multiple variables, it is pointed out which parameters have high impact on the thermal behaviour. Furthermore, an analysis was done to study the dependences in the time domain. The research conducted is based on 10 months of data of a 2 MW wind turbine using an adapted data acquisition system for high sampled data. The results appear promising, and lead to a better understanding of the thermal behaviour of a wind turbine drive train. Furthermore, the results represent the base of future research of drive trains under harsh environmental conditions, and it can be used to improve the fault diagnosis and design of electrical machines.

  7. Response of the Benguela upwelling systems to spatial variations in the wind stress

    Science.gov (United States)

    Fennel, Wolfgang; Junker, Tim; Schmidt, Martin; Mohrholz, Volker

    2012-08-01

    In this paper we combine field observations, numerical modeling and an idealized analytical theory to study some features of the Benguela upwelling system. The current system can be established through a combination of observations and realistic simulations with an advanced numerical model. The poleward undercurrent below the equator-ward coastal jet is often found as a countercurrent that reaches the sea surface seaward of the coastal jet. The coastal band of cold upwelled water appears to broaden from south to north and at the northern edge of the wind band an offshore flow is often detected, which deflects the coastal Angola current to the west. These features can be explained and understood with an idealized analytical model forced by a spatially variable wind. A crucial role is played by the wind stress curl, which shapes the oceanic response through Ekman-pumping. The interplay of the curl driven effects and the coastal Ekman upwelling together with the coastal jet, Kelvin waves, and the undercurrent is the key to understand the formation of the three-dimensional circulation patterns in the Benguela system. While the numerical model is based on the full set of primitive equations, realistic topography and forcing, the analytic model uses a linear, flat-bottomed f-plane ocean, where the coast is a straight wall and the forcing is represented by an alongshore band of dome-shaped wind stress. Although the analytical model is highly idealized it is very useful to grasp the basic mechanisms leading to the response patterns.

  8. Increased component safety through improved methods for residual stress analysis. Subprojects. Consideration of real component geometries (phase 1). Final report

    International Nuclear Information System (INIS)

    Nau, Andreas; Scholtes, B.

    2014-01-01

    Residual stresses can be result in both detrimental as well as beneficial consequences on the component's strength and lifetime. A most detailed knowledge of the residual stress state is a pre-requisite for the assessment of the component's performance. The mechanical methods for residual stress measurements are classified in non-destructive, destructive and semi-destructive methods. The two commonly used (semi-destructive) mechanical methods are the hole drilling and the ring core method. In the context of reactor safety research of the Federal Ministry of Economic Affairs and Energy (BMWi), two fundamental and interacting weak points of the hole drilling as well as of the ring core method are investigated. On the one hand, there are effects concerning geometrical boundary conditions of the components and on the other hand, there are influences of plasticity due to notch effects. Both aspects affect the released strain field, when the material is removed and finally, the calculated residual stresses. The first issue mentioned above is under the responsibility of Institute of Materials Engineering - Metallic Materials (Kassel University) and the last one will be investigated by University of Stuttgart-Otto-Graf-Institut - materials testing institute. Within the framework of this project it could be demonstrated that updated calibration coefficients lead to more reliable residual stress calculation in contrast to existing ones. These findings are valid for points of measurements on components without geometrical boundary effects like edges or shoulders. Reasons are high developed Finite-Element software packages and the opportunity of modelling the point of measurement (hole geometry, layout of the strain gauges) and its vicinity more in detail. Special challenges are multi-axial residual stress depth distributions and the geometry of components composing edges and claddings. Unlike existing analyses considering uni-axial and homogeneous stress states, bi

  9. Stress corrosion on austenitic stainless steels components after sodium draining

    International Nuclear Information System (INIS)

    Champeix, L.; Baque, P.; Chairat, C.

    1980-04-01

    The damage study performed on 316 pipes of a loop after two leakages allows to conclude that a stress corrosion process in sodium hydroxide environment has induced trans-crystaline cracks. The research of conditions inducing such a phenomenon is developed, including parametric tests under uniaxial load and some tests on pipe with welded joints. In aqueous sodium hydroxide, two corrosion processes have been revealed: a general oxidization increasing with environment aeration and a transcrystalline cracking appearing for stresses of the order of yield strength. Other conditions such a temperature (upper than 100 0 C) and time exposures (some tens of hours) are necessary. Cautions in order to limit introduction of wet air into drained loop and a choice of appropriate preheating conditions when restarting the installation must permit to avoid such a type of incident

  10. Investigation of residual stresses in thick-walled vessels with combination of autofrettage and wire-winding

    International Nuclear Information System (INIS)

    Sedighi, M.; Jabbari, A.H.

    2013-01-01

    Wire-winding and autofrettage processes can be used to introduce beneficial residual stress in the cylinder of thick-walled pressure vessels. In both techniques, internal residual compressive stress will increase internal pressure capacity, improve fatigue life and reduce fatigue crack initiation. The purpose of this paper is to analyze the effects of wire-winding on an autofrettaged thick-walled vessel. Direct method which is a modified Variable Material Properties (VMP) method has been used in order to calculate residual stresses in an autofrettaged vessel. Since wire-winding is done after autofrettage process, the tangent and/or Young's modulus could be changed. For this reason, a new wire-winding method based on Direct Method is introduced. The obtained results for wire-wound autofrettaged vessels are validated by finite element method. The results show that by using this approach, the residual hoop stresses in a wire-wound autofrettaged vessel have a more desirable distribution in the cylinder. -- Highlights: • Combination of autofrettage and wire-winding in pressure vessels has been presented. • A new method based on Direct method is presented for wire-winding process. • Residual hoop stresses are compared in vessels cylinders for different cases. • The residual hoop stress has a more desirable stress distribution. • The benefits of the combined vessel are highlighted in comparison with single cases

  11. Adding insult to injury: The development of psychosocial stress in Ontario wind turbine communities.

    Science.gov (United States)

    Walker, Chad; Baxter, Jamie; Ouellette, Danielle

    2015-05-01

    Though historically dismissed as not-in-my-backyard (NIMBY) attitudes, reports of psychosocial stress linked to wind energy developments have emerged in Ontario, Canada. While the debate and rhetoric intensify concerning whether wind turbines 'actually' cause 'health' effects, less sincere attention has been given to the lived experience and mental well-being of those near turbines. Drawing on theories of environmental stress, this grounded theory, mixed-method (n = 26 interviews; n = 152 questionnaires) study of two communities in 2011 and 2012 traces how and why some wind turbine community residents suffer substantial changes to quality of life, develop negative perceptions of 'the other' and in some cases, experience intra-community conflict. Policy-related forces, along with existing community relationships may help explain much of these differences between communities. We suggest a move beyond debating simply whether or not 'annoyance' represents a 'health impact' and instead focus on ways to minimize and attenuate these feelings of threat (risk) and stress at the community level. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Biobehavioral Intervention for Cancer Stress: Conceptualization, Components, and Intervention Strategies

    Science.gov (United States)

    Andersen, Barbara L.; Golden-Kreutz, Deanna M.; Emery, Charles F.; Thiel, Debora L.

    2009-01-01

    Trials testing the efficacy of psychological interventions for cancer patients had their beginnings in the 1970s. Since then, hundreds of trials have found interventions to be generally efficacious. In this article, we describe an intervention grounded in a conceptual model that includes psychological, behavioral, and biological components. It is…

  13. A NEW THREE-DIMENSIONAL SOLAR WIND MODEL IN SPHERICAL COORDINATES WITH A SIX-COMPONENT GRID

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Xueshang; Zhang, Man; Zhou, Yufen, E-mail: fengx@spaceweather.ac.cn [SIGMA Weather Group, State Key Laboratory for Space Weather, Center for Space Science and Applied Research, Chinese Academy of Sciences, Beijing 100190 (China)

    2014-09-01

    In this paper, we introduce a new three-dimensional magnetohydrodynamics numerical model to simulate the steady state ambient solar wind from the solar surface to 215 R {sub s} or beyond, and the model adopts a splitting finite-volume scheme based on a six-component grid system in spherical coordinates. By splitting the magnetohydrodynamics equations into a fluid part and a magnetic part, a finite volume method can be used for the fluid part and a constrained-transport method able to maintain the divergence-free constraint on the magnetic field can be used for the magnetic induction part. This new second-order model in space and time is validated when modeling the large-scale structure of the solar wind. The numerical results for Carrington rotation 2064 show its ability to produce structured solar wind in agreement with observations.

  14. Simulation of Time-Varying Spatially Uniform Pressure and Near-Surface Wind Flows on Building Components and Cladding

    Directory of Open Access Journals (Sweden)

    Seraphy Y. Shen

    2017-05-01

    Full Text Available This paper describes a new full-scale (FS testing apparatus for conducting performance evaluations of FS building envelope systems. The simulator can generate spatially uniform, time-varying pressure conditions associated with Saffir–Simpson Hurricane Wind Scale Category 5 winds while compensating for large air leakage through the specimen and also operate a high-speed wind tunnel, both with dynamic control. This paper presents system details, operating characteristics, and an early case study on the performance of large sectional door systems under wind pressure loading. Failure mechanisms are discussed, and finite element modeling is validated for two specimens. It demonstrates successful dynamic load control for large component and cladding systems, as well as simulation of flows near the building surface. These capabilities serve to complement other FS wind tunnel facilities by offering tools to generate ultimate load conditions on portions of the building. Further, the paper successfully demonstrates the utility of combining physical testing and computational analysis as a matter of routine, which underscores the potential of evolving FS testing to encompass cyber–physical approaches.

  15. Turbulent Reynolds stress and quadrant event activity in wind flow over a coastal foredune

    Science.gov (United States)

    Chapman, Connie A.; Walker, Ian J.; Hesp, Patrick A.; Bauer, Bernard O.; Davidson-Arnott, Robin G. D.

    2012-05-01

    Recent research on quasi-instantaneous turbulent kinematic Reynolds stresses (RS, - u'w') and decomposed quadrant event activity (e.g., ejections and sweeps) over dunes in fluvial settings and in wind tunnels has shown that turbulent stresses at the toe of a dune often exceed time-averaged, streamwise shear stress (ρ u * 2) estimates. It is believed that semi-coherent turbulent structures are conveyed toward the bed along concave streamlines in this region and that impact of these structures cause fluctuations in local surface stresses that assist in grain entrainment. This has been hypothesized to explain how sand is supplied to the windward slope through a region of flow stagnation. Toward the crest, surface stress increases and becomes dominated by streamwise accelerations resulting from streamline compression and convexity that suppress vertical motions. High-frequency (32 Hz) measurements of turbulent wind flow from 3-D ultrasonic anemometers are analyzed for oblique onshore flow over a vegetated coastal foredune in Prince Edward Island, Canada. Reynolds stress and quadrant activity distributions varied with height (0.60 m and 1.66 m) and location over the dune. In general, quadrant 2 ejection (u' 0) and quadrant 4 sweep activity (u' > 0, w' 0, w' > 0) and quadrant 3 inward interaction (u' dune and may help to explain sand transport potential and dune maintenance. For example, areas with a high frequency of ejection and sweep activity may have higher rates of sediment entrainment and transport, whereas areas with lower ejection and sweep activity and an increase in outward and inward interactions, which contribute negatively to Reynolds stress generation, may experience a greater potential for deposition. Further research on associations between quadrant event activity and coincident sand transport is required to confirm this hypothesis and the resultant significance of the flow exuberance effect in aeolian dune morphodynamics.

  16. Fatigue life estimation of welded components considering welding residual stress relaxation and its mean stress effect

    International Nuclear Information System (INIS)

    Han, Seung Ho; Han, Jeong Woo; Shin, Byung Chun; Kim, Jae Hoon

    2003-01-01

    The fatigue life of welded joints is sensitive to welding residual stress and complexity of their geometric shapes. To predict the fatigue life more reasonably, the effects of welding residual stress and its relaxation on their fatigue strengths should be considered quantitatively, which are often regarded to be equivalent to the effects of mean stresses by external loads. The hot-spot stress concept should be also adopted which can reduce the dependence of fatigue strengths for various welding details. Considering the factors mentioned above, a fatigue life prediction model using the modified Goodman's diagram was proposed. In this model, an equivalent stress was introduced which is composed of the mean stress based on the hot-spot stress concept and the relaxed welding residual stress. From the verification of the proposed model to real welding details, it is proved that this model can be applied to predict reasonably their fatigue lives

  17. Fatigue life estimation considering welding residual stress and hot-spot stress of welded components

    International Nuclear Information System (INIS)

    Han, S. H.; Lee, T. K.; Shin, B. C.

    2002-01-01

    The fatigue life of welded joints is sensitive to welding residual stress and complexity of their geometric shapes. To predict the fatigue life more reasonably, the effects of welding residual stress and its relaxation have to be considered quantitatively which are equivalent to mean stress by external loads. The hot-spot stress concept should be also adopted which can be reduce the dependence of fatigue strengths for various welding details. Considering the factors mentioned above, a fatigue life prediction model using the modified Goodman's diagram was proposed. In this model, an equivalent stress was introduced which are composed of the mean stress based on the hot-spot stress concept and the relaxed welding residual stress. From the verification of the proposed model to real welding details, it is confirmed that this model can be applied to predict reasonably their fatigue lives

  18. Fatigue assessment of laserbeam welded PM steel components by the notch stress approach

    Energy Technology Data Exchange (ETDEWEB)

    Waterkotte, R. [Schaeffler Technologies GmbH and Co. KG, Herzogenaurach (Germany); Sonsino, C.M. [Fraunhofer Institute for Structural Durability and System Reliability LBF, Darmstadt (Germany); Baumgartner, J.

    2011-10-15

    The local fatigue strength of a laserbeam weld of a complex engine component, which joins a PM with a formed sheet component, was assessed by the notch stress concept with the fictitious reference radius of r{sub ref}= 0.05 mm. First, simplified specimens, following the main geometric dimensions of the parts, were manufactured. On these specimens the fatigue strength was identified by tests and the notch stresses calculated by finite element analysis. Based on these results a design SN-curve was derived to assess the fatigue strength of the engine component. The numerical assessment of the welded joint was verified by proof tests with the component. The assessment could be improved by considering statistical and stress gradient dependent size effects according to the concept of the highly stressed volume. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Experimental study of wind tunnel performance by a two-component laserDopplerAnemometer

    Directory of Open Access Journals (Sweden)

    M Pourmahabadian

    2005-10-01

    Full Text Available Background and Aims: This survey studies the wind tunnel performance by a two- componentlaser Doppler Anemometer, so some experiments were carried out to assess the performance of awind tunnel.Method: The tunnel was capable to produce air velocity of up to 40 m/s.. Measurements ofvelocity profiles have been made actors the test section of wind tunnel through the using a twocomponentfiber optic Laser Doppler anemometer. Measurements of velocity profiles andturbulence intensities have been made across the test section of the wind tunnel using a twocomponentfiber optic Laser Doppler anemometer (I.D.A for wind speeds ranging from 1 to3m/s.Results: Performance rests of velocity profiles at a given flow rate and various position of aerosolgenerator showed that although uniformity of flow dependent to the place of an atomizer (asaerosol generator but the variation of wind speed across the test section meets the wind speedrequirements, as specified by US EPAfor 3m/s only.Conclusion:At time which particles velocity reach to less than one micron, the air velocity relateson the similarity of particles and

  20. Design of components of reinforced concrete stressed by seismic loads

    International Nuclear Information System (INIS)

    Sitka, R.

    1980-01-01

    The example of the type of frame investigated shows that the ductility of the system assumed for standard dimensioning of such a frame lies between two and four. According to the system and the loading different requirements may result for the cross-section, that will have to be observed in design. Derived from these requirements rules are given for the design of frames stiffening in horizontal direction that will guarantee a minimum level of ductility. These rules concern the design of joint and node regions, utilization of the compressive force of the concrete as well as guidance and graduation of the reinforcement according to stud and bolt. By means of some examples of damaged components the effects of violating these rules are made clear. (orig./DG) [de

  1. Maintaining the Background Dust Opacity During Northern Hemisphere Summer Mars Using Wind Stress Based Dust Lifting

    Science.gov (United States)

    Jha, V.; Kahre, M. A.

    2017-12-01

    The Mars atmosphere has low levels of dust during Northern Hemisphere (NH) spring and summer (the non-dusty season) and increased levels during NH autumn and winter (the dusty season). In the absence of regional or global storms, dust devils and local storms maintain a background minimum dust loading during the non-dusty season. While observational surveys and Global Climate Model (GCM) studies suggest that dust devils are likely to be major contributors to the background haze during NH spring and summer, a complete understanding of the relative contribution of dust devils and local dust storms has not yet been achieved. We present preliminary results from an investigation that focuses on the effects of radiatively active water ice clouds on dust lifting processes during these seasons. Water ice clouds are known to affect atmospheric temperatures directly by absorption and emission of thermal infrared radiation and indirectly through dynamical feedbacks. Our goal is to understand how clouds affect the contribution by local (wind stress) dust storms to the background dust haze during NH spring and summer. The primary tool for this work is the NASA Ames Mars GCM, which contains physical parameterizations for a fully interactive dust cycle. Three simulations that included wind stress dust lifting were executed for a period of 5 Martian years: a case that included no cloud formation, a case that included radiatively inert cloud formation and a case that included radiatively active cloud (RAC) formation. Results show that when radiatively active clouds are included, the clouds in the aphelion cloud belt radiatively heat the atmosphere aloft in the tropics (Figure 1). This heating produces a stronger overturning circulation, which in turn produces an enhanced low-level flow in the Hadley cell return branch. The stronger low-level flow drives higher surface stresses and increased dust lifting in those locations. We examine how realistic these simulated results are by

  2. Design & Evaluation of a Protection Algorithm for a Wind Turbine Generator based on the fault-generated Symmetrical Components

    DEFF Research Database (Denmark)

    Zheng, T. Y.; Cha, Seung-Tae; Lee, B. E.

    2011-01-01

    A protection relay for a wind turbine generator (WTG) based on the fault-generated symmetrical components is proposed in the paper. At stage 1, the relay uses the magnitude of the positive-sequence component in the fault current to distinguish faults on a parallel WTG, connected to the same feeder......, or on an adjacent feeder from those on the connected feeder, on the collection bus, at an inter-tie or at a grid. For the former faults, the relay should remain stable and inoperative whilst the instantaneous or delayed tripping is required for the latter faults. At stage 2, the fault type is first evaluated using...... the relationships of the fault-generated symmetrical components. Then, the magnitude of the positive-sequence component in the fault current is used again to decide on either instantaneous or delayed operation. The operating performance of the relay is then verified using various fault scenarios modelled using...

  3. Welding residual stress improvement in internal components by water jet peening

    International Nuclear Information System (INIS)

    Enomoto, K.; Hirano, K.; Hayashi, M.; Hayashi, E.

    1996-01-01

    Cavitations are generated when highly pressurized water is jetted in water. Surface residual stress is improved remarkably due to the peening effect of extremely high pressure caused by the collapse of cavitation bubbles. This technique is called water jet peening (WJP). WJP is expected to be an effective maintenance technique for the prevention of stress corrosion cracking caused by residual stress in various components of power generating plants. Various kinds of specimens were water jet peened to evaluate the fundamental characteristics of WJP and to select the most appropriate conditions for the residual stress improvement. Test results showed that WJP markedly improved the tensile residual stress caused by welding and grinding to the high compressive residual stress and seems to prevent the stress corrosion cracking

  4. A generic approach for a linear elastic fracture mechanics analysis of components containing residual stress

    International Nuclear Information System (INIS)

    Lee, Hyeong Y.; Nikbin, Kamran M.; O'Dowd, Noel P.

    2005-01-01

    A review of through thickness transverse residual stress distribution measurements in a number of components, manufactured from a range of steels, has been carried out. Residual stresses introduced by welding and mechanical deformation have been considered. The geometries consisted of welded T-plate joints, pipe butt joints, tube-on-plate joints, tubular Y-joints and tubular T-joints as well as cold bent tubes and repair welds. In addition, the collected data cover a range of engineering steels including ferritic, austenitic, C-Mn and Cr-Mo steels. The methods used to measure the residual stresses also varied. These included neutron diffraction, X-ray diffraction and deep hole drilling techniques. Measured residual stress data, normalised by their respective yield stress have shown an inverse linear correlation versus the normalised depth of the region containing the residual stress (up to 0.5 of the component thickness). A simplified generic residual stress profile based on a linear fit to the data is proposed for the case of a transverse residual tensile stress field. Whereas the profiles in assessment procedures are case specific the proposed linear profile can be varied to produce a combination of membrane and bending stress distributions to give lower or higher levels of conservatism on stress intensity factors, depending on the amount of case specific data available or the degree of safety required

  5. A countermeasure for external stress corrosion cracking in piping components by means of residual stress improvement on the outer surface

    International Nuclear Information System (INIS)

    Tanaka, Yasuhiro; Umemoto, Tadahiro

    1988-01-01

    Many techniques have been proposed as countermeasures for the External Stress Corrosion Cracking (ESCC) on austenitic stainless steel piping caused by sea salt particles. However, not one seems perfect. The method proposed here is an expansion of IHSI (Induction Heating Stress Improvement) which has been successfully implemented in many nuclear power plants as a remedy for Intergranular Stress Corrossion Cracking. The proposed method named EIHSI (External IHSI) can make the residual stress compressive on the outer surface of the piping components. In order to confirm the effectiveness of EIHSI, one series of tests were conducted on a weld joint between the pipe flange and the straight pipe. The measured residual stresses and also the results of the cracking test revealed that EIHSI is a superior method to suppress the ESCC. The outline of EIHSI and the verification tests are presented in this paper. (author)

  6. Variations of Sea Surface Temperature, Wind Stress, and Rainfall over the Tropical Atlantic and South America.

    Science.gov (United States)

    Nobre, Paulo; Srukla, J.

    1996-10-01

    Empirical orthogonal functions (E0Fs) and composite analyses are used to investigate the development of sea surface temperature (SST) anomaly patterns over the tropical Atlantic. The evolution of large-scale rainfall anomaly patterns over the equatorial Atlantic and South America are also investigated. 71e EOF analyses revealed that a pattern of anomalous SST and wind stress asymmetric relative to the equator is the dominant mode of interannual and longer variability over the tropical Atlantic. The most important findings of this study are as follows.Atmospheric circulation anomalies precede the development of basinwide anomalous SST patterns over the tropical Atlantic. Anomalous SST originate off the African coast simultaneously with atmospheric circulation anomalies and expand westward afterward. The time lag between wind stress relaxation (strengthening) and maximum SST warming (cooling) is about two months.Anomalous atmospheric circulation patterns over northern tropical Atlantic are phase locked to the seasonal cycle. Composite fields of SLP and wind stress over northern tropical Atlantic can be distinguished from random only within a few months preceding the March-May (MAM) season. Observational evidence is presented to show that the El Niño-Southern Oscillation phenomenon in the Pacific influences atmospheric circulation and SST anomalies over northern tropical Atlantic through atmospheric teleconnection patterns into higher latitudes of the Northern Hemisphere.The well-known droughts over northeastern Brazil (Nordeste) are a local manifestation of a much larger-scale rainfall anomaly pattern encompassing the whole equatorial Atlantic and Amazon region. Negative rainfall anomalies to the south of the equator during MAM, which is the rainy season for the Nordeste region, are related to an early withdrawal of the intertropical convergence zone toward the warm SST anomalies over the northern tropical Atlantic. Also, it is shown that precipitation anomalies

  7. Stress relief of ceramic components in high voltage assemblies. Final report

    International Nuclear Information System (INIS)

    Heinen, R.J.

    1979-02-01

    Two types of ceramic packages were evaluated to determine the effectiveness of encapsulating the ceramic components in beta eucryptite filled epoxy. The requirements (no high voltage breakdown, no ceramic cracking, and no encapsulant cracking) were met by the spark gap assembly, but the sprytron assembly had cracking in the encapsulant after thermal cycling. The encapsulation of the ceramic component in beta eucryptite filled epoxy with a stress decoupling material selectively applied in the stress concentrated areas were used to prevent cracking in the sprytron encapsulant. This method is proposed as the standard encapsulation process for high voltage ceramic components

  8. Path Analysis of Acculturative Stress Components and Their Relationship with Depression Among International Students in China.

    Science.gov (United States)

    Liu, Yang; Chen, Xinguang; Li, Shiyue; Yu, Bin; Wang, Yan; Yan, Hong

    2016-12-01

    Acculturative stress prevents international students from adapting to the host culture, increasing their risk for depression. International students in China are a growing and at-risk population for acculturative stress and depression. With data from the International Student Health and Behaviour Survey (Yu et al., ) in China, seven acculturative stress components were detected in a previous study (Yu et al., ), including a central component (self-confidence), three distal components (value conflict, identity threat and rejection) and three proximal components (poor cultural competence, opportunity deprivation and homesickness). The current study extended the previous study to investigate the relationship between these components and depression with data also from International Student Health and Behaviour Survey. Participants were 567 students (59% male, 40.4% African, mean age = 22.75, SD = 4.11) recruited in Wuhan, China. The sample scored high on the Acculturative Stress Scale for International Students (M = 92.81, SD = 23.93) and Center for Epidemiologic Studies Short Depression Scale (M = 0.97, SD = 0.53). Acculturative stress was positively associated with depression; the association between the three distal stress components and depression was fully mediated through self-confidence, while the three proximal components had a direct effect and a self-confidence-mediated indirect effect. These findings extended the value of the previous study, highlighted the central role of self-confidence in understanding acculturative stress and depression and provided new data supporting more effective counselling for international students in China. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  9. Numerical simulation of residual stress in piping components at Framatome-ANP

    International Nuclear Information System (INIS)

    Gilies, P.; Franco, C.; Cipiere, M.-F.; Ould, P.

    2005-01-01

    Numerous manufacturing processes induce residual stresses and distortions in piping components and associated welds: quenching of cast pipings, machining and welding. In Pressurized Water Reactors, most of the components have a large thickness for sustaining pressure and distortions are a minor source of concern. This is not the case for residual stresses which may have a strong influence on several type of damage such as fatigue, corrosion, brittle fracture. In low toughness components, residual stress fields may contribute to ductile tearing initiation. These potential damages are mitigated after welding by stress relief heat treatment, which is applied in a systematic manner to ferritic components of the primary system in nuclear reactors. This treatment is not applied on austenitic piping for which the heat treatment temperature is limited due to the risk of sensitization and residual stresses are difficult to eliminate completely. Since on site measurements are costly and difficult to perform, numerical simulation appears to be an attractive tool for estimating residual stress distributions. Framatome-ANP is working on modelling manufacturing processes with that purpose in mind. This paper presents three kinds of applications illustrating efforts on welding, quenching and machining simulation. First a comparison is shown between computations and measurements of residual stress induced by welding of a dissimilar weld metal junction. Then numerical simulations of quenching of a cast stainless steel nozzle are presented. Finally quenching followed by machining and grinding of this cast component are considered in a full simulation of the manufacturing process. Computed distortions and residual stresses are compared with experimental measurements at different stages of the manufacturing process. (authors)

  10. A novel two-component system involved in secretion stress response in Streptomyces lividans.

    Directory of Open Access Journals (Sweden)

    Sonia Gullón

    Full Text Available BACKGROUND: Misfolded proteins accumulating outside the bacterial cytoplasmic membrane can interfere with the secretory machinery, hence the existence of quality factors to eliminate these misfolded proteins is of capital importance in bacteria that are efficient producers of secretory proteins. These bacteria normally use a specific two-component system to respond to the stress produced by the accumulation of the misfolded proteins, by activating the expression of HtrA-like proteases to specifically eliminate the incorrectly folded proteins. METHODOLOGY/PRINCIPAL FINDINGS: Overproduction of alpha-amylase in S. lividans causing secretion stress permitted the identification of a two-component system (SCO4156-SCO4155 that regulates three HtrA-like proteases which appear to be involved in secretion stress response. Mutants in each of the genes forming part of the two-genes operon that encodes the sensor and regulator protein components accumulated misfolded proteins outside the cell, strongly suggesting the involvement of this two-component system in the S. lividans secretion stress response. CONCLUSIONS/SIGNIFICANCE: To our knowledge this is the first time that a specific secretion stress response two-component system is found to control the expression of three HtrA-like protease genes in S. lividans, a bacterium that has been repeatedly used as a host for the synthesis of homologous and heterologous secretory proteins of industrial application.

  11. Analytical Formulation for Sizing and Estimating the Dimensions and Weight of Wind Turbine Hub and Drivetrain Components

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Y. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Parsons, T. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); King, R. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Dykes, K. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Veers, P. [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2015-06-09

    This report summarizes the theory, verification, and validation of a new sizing tool for wind turbine drivetrain components, the Drivetrain Systems Engineering (DriveSE) tool. DriveSE calculates the dimensions and mass properties of the hub, main shaft, main bearing(s), gearbox, bedplate, transformer if up-tower, and yaw system. The level of fi¬ delity for each component varies depending on whether semiempirical parametric or physics-based models are used. The physics-based models have internal iteration schemes based on system constraints and design criteria. Every model is validated against available industry data or finite-element analysis. The verification and validation results show that the models reasonably capture primary drivers for the sizing and design of major drivetrain components.

  12. Wind Tunnel Tests of Parabolic Trough Solar Collectors: March 2001--August 2003

    Energy Technology Data Exchange (ETDEWEB)

    Hosoya, N.; Peterka, J. A.; Gee, R. C.; Kearney, D.

    2008-05-01

    Conducted extensive wind-tunnel tests on parabolic trough solar collectors to determine practical wind loads applicable to structural design for stress and deformation, and local component design for concentrator reflectors.

  13. Prediction of retained residual stresses in laboratory fracture mechanics specimens extracted from welded components

    International Nuclear Information System (INIS)

    Hurlston, R.G.; Sherry, A.H.; James, P.; Sharples, J.K.

    2015-01-01

    The measurement of weld material fracture toughness properties is important for the structural integrity assessment of engineering components. However, welds can contain high levels of residual stress and these can be retained in fracture mechanics specimens, particularly when machined from non-stress relieved welds. Retained residual stresses can make the measurement of valid fracture toughness properties difficult. This paper describes the results of analytical work undertaken to investigate factors that can influence the magnitude and distribution of residual stresses retained in fracture mechanics specimen blanks extracted from as-welded ferritic and austenitic stainless steel plates. The results indicate that significant levels of residual stress can be retained in specimen blanks prior to notching, and that the magnitude and distribution of stress is dependent upon material properties, specimen geometry and size, and extraction location through the thickness of the weld. Finite element modelling is shown to provide a useful approach for estimating the level and distributions of retained residual stresses. A new stress partitioning approach has been developed to estimate retained stress levels and results compare favourably with FE analysis and available experimental data. The approach can help guide the selection of specimen geometry and machining strategies to minimise the level of residual stresses retained in fracture mechanics specimen blanks extracted from non stress-relieved welds and thus improve the measurement of weld fracture toughness properties. - Highlights: • A simplified method for generating realistic weld residual stresses has been developed. • It has been shown that significant levels of residual stress can be retained within laboratory fracture mechanics specimens. • The level and distribution is dependant upon material, specimen type, specimen size and extraction location. • A method has been developed to allow estimates of the

  14. Effect of the combined stress on the life of components under thermal cycling conditions

    International Nuclear Information System (INIS)

    Zuchowski, R.; Zietkowski, L.

    1987-01-01

    The life of structural components subjected to temperature changes is affected, among other factors, by the nature of the stress field. If life prediction for axially stressed components can be accomplished with a number of well established techniques, the behaviour under a complex state of stress and varying temperature conditions still is the object of intensive research. The present study was aimed at assessing the influence of the stress field upon the life of specimens made of chromium-nickel H23N18 steel under thermal cycling conditions. The designation of steel is in accordance with Polish Standards. The experiments were made on thin-walled tubular specimens loaded with various combinations of a static axial force and a static torque. (orig./GL)

  15. X-ray and neutron diffraction determination of residual stresses in a pressed and welded component

    International Nuclear Information System (INIS)

    Albertini, G.; Broda, M.; Fiori, F.; Girardin, E.; Giuliani, A.; Quadrini, E.

    1999-01-01

    Complete text of publication follows. Problems connected with welding and pressing are very important in mechanical design, as these processed create microstructural alterations and internal stresses in the material that cannot be neglected. A pressing steel (FEP13) machine element is considered, designed to support a scooter engine. Two kinds of fatigue are to be supported by the component during operation: high loads at low frequency, due to the interaction of the scooter with the soil and low loads at high frequency due to the engine. The knowledge of the residual stress field occurring before operation is fundamental in order to perform theoretical predictions of the stress state during operation, and also to determine the loads to be used in fatigue tests which the component will be submitted to. The results of X-ray and neutron experiments are presented, carried out across a 'critical' weld in the component. (author)

  16. The effect of crack branching on the residual lifetime of machine components containing stress corrosion cracks

    International Nuclear Information System (INIS)

    Magdowski, R.M.; Uggowitzer, P.J.; Speidel, M.O.

    1985-01-01

    A comparison is presented of theoretical, numerical and experimental investigations concerning the effect of crack branching on the reduction of stress intensity at the tip of single cracks. The results indicate that the division of a single crack into n branches reduces the stress intensity at the branch tips by a factor of about 1/√n. This permits branched cracks to grow to larger depths before becoming critical. The implication is that longer residual lifetimes and longer operating times between inspections can be calculated for machine components with growing branched stress corrosion cracks. (author)

  17. Anisotropy of the Reynolds stress tensor in the wakes of wind turbine arrays in Cartesian arrangements with counter-rotating rotors

    Science.gov (United States)

    Hamilton, Nicholas; Cal, Raúl Bayoán

    2015-01-01

    A 4 × 3 wind turbine array in a Cartesian arrangement was constructed in a wind tunnel setting with four configurations based on the rotational sense of the rotor blades. The fourth row of devices is considered to be in the fully developed turbine canopy for a Cartesian arrangement. Measurements of the flow field were made with stereo particle-image velocimetry immediately upstream and downstream of the selected model turbines. Rotational sense of the turbine blades is evident in the mean spanwise velocity W and the Reynolds shear stress - v w ¯ . The flux of kinetic energy is shown to be of greater magnitude following turbines in arrays where direction of rotation of the blades varies. Invariants of the normalized Reynolds stress anisotropy tensor (η and ξ) are plotted in the Lumley triangle and indicate that distinct characters of turbulence exist in regions of the wake following the nacelle and the rotor blade tips. Eigendecomposition of the tensor yields principle components and corresponding coordinate system transformations. Characteristic spheroids representing the balance of components in the normalized anisotropy tensor are composed with the eigenvalues yielding shapes predicted by the Lumley triangle. Rotation of the coordinate system defined by the eigenvectors demonstrates trends in the streamwise coordinate following the rotors, especially trailing the top-tip of the rotor and below the hub. Direction of rotation of rotor blades is shown by the orientation of characteristic spheroids according to principle axes. In the inflows of exit row turbines, the normalized Reynolds stress anisotropy tensor shows cumulative effects of the upstream turbines, tending toward prolate shapes for uniform rotational sense, oblate spheroids for streamwise organization of rotational senses, and a mixture of characteristic shapes when the rotation varies by row. Comparison between the invariants of the Reynolds stress anisotropy tensor and terms from the mean

  18. Optimism and pessimism are related to different components of the stress response in healthy older people.

    Science.gov (United States)

    Puig-Perez, Sara; Villada, Carolina; Pulopulos, Matias M; Almela, Mercedes; Hidalgo, Vanesa; Salvador, Alicia

    2015-11-01

    Some personality traits have key importance for health because they can affect the maintenance and evolution of different disorders with a high prevalence in older people, including stress pathologies and diseases. In this study we investigated how two relevant personality traits, optimism and pessimism, affect the psychophysiological response of 72 healthy participants (55 to 76 years old) exposed to either a psychosocial stress task (Trier Social Stress Test, TSST) or a control task; salivary cortisol, heart rate (HR) and situational appraisal were measured. Our results showed that optimism was related to faster cortisol recovery after exposure to stress. Pessimism was not related to the physiological stress response, but it was associated with the perception of the stress task as more difficult. Thus, higher optimism was associated with better physiological adjustment to a stressful situation, while higher pessimism was associated with worse psychological adjustment to stress. These results highlight different patterns of relationships, with optimism playing a more important role in the physiological component of the stress response, and pessimism having a greater effect on situational appraisal. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Measuring multiple residual-stress components using the contour method and multiple cuts

    Energy Technology Data Exchange (ETDEWEB)

    Prime, Michael B [Los Alamos National Laboratory; Swenson, Hunter [Los Alamos National Laboratory; Pagliaro, Pierluigi [U. PALERMO; Zuccarello, Bernardo [U. PALERMO

    2009-01-01

    The conventional contour method determines one component of stress over the cross section of a part. The part is cut into two, the contour of the exposed surface is measured, and Bueckner's superposition principle is analytically applied to calculate stresses. In this paper, the contour method is extended to the measurement of multiple stress components by making multiple cuts with subsequent applications of superposition. The theory and limitations are described. The theory is experimentally tested on a 316L stainless steel disk with residual stresses induced by plastically indenting the central portion of the disk. The stress results are validated against independent measurements using neutron diffraction. The theory has implications beyond just multiple cuts. The contour method measurements and calculations for the first cut reveal how the residual stresses have changed throughout the part. Subsequent measurements of partially relaxed stresses by other techniques, such as laboratory x-rays, hole drilling, or neutron or synchrotron diffraction, can be superimposed back to the original state of the body.

  20. Dependence of Wave-Breaking Statistics on Wind Stress and Wave Development

    Science.gov (United States)

    Katsaros, Kristina B.; Atakturk, Serhad S.

    1992-01-01

    Incidence of wave breaking for pure wind driven waves has been studied on Lake Washington at wind speeds up to 8 m/s. Video recordings were employed to identify and categorize the breaking events in terms of micro-scale, spilling and plunging breakers. These events were correlated with the magnitude of the wave spectrum measured with a resistance wire wave gauge and band pass filtered between 6 and 10 Hz. An equivalent percentage of breaking crests were found for spilling and plunging events. Wave forcing as measured by wind stress (or friction velocity, u(sub *), squared) and by inverse wave age, u(sub *)/Cp where Cp is the phase velocity of the waves at the peak of the frequency spectrum, were found to be good prerictors of percentage of breaking crests. When combined in a two parameter regression, those two variables gave small standard deviation and had a high correlation coefficient (66 percent). The combination of u(sub *)(exp 2) and u(sub *)/Cp can be understood in physical terms. Furthermore, for the larger values of u(sub *)(exp 2) the dependence of wave braking and wave age was stronger than at the low end of the values u(sub *)(exp 2) and u(sub *)/Cp. Thus, both the level of wave development as determined by inverse wave age, which we may term relative wind effectiveness for wave forcing and the wind forcing on the water surface determine the incidence of wave breaking. Substituting U(sub 10)(sup 3.75) (which is the dependence of whitecap cover found by Monahan and coworkers) an equivalent correlation was found to the prediction by u(sub *)(exp 2). Slightly better standard deviation value and higher correlation coefficient were found by using a Reynolds number as predictor. A two-parameter regression involving u(sub *)(exp 2) and a Reynold's number proposed by Toba and his colleagues which relates u(sub *)(exp 2) and peak wave frequency, improves the correlation even more but is less easy to interpret in physical terms. The equivalent percentage of

  1. Simplified calculation of thermal stresses - on the reduction of effort in the stress analysis of reactor components

    International Nuclear Information System (INIS)

    Karow, K.

    1984-01-01

    The fatigue behaviour of reactor components is predominantly determined from the in-service thermal stresses. The calculation of such stresses for a number of temperature transients in the adjacent fluid may be expensive, particularly with complicated structures. Under certain conditions this expense can be reduced considerably with the aid of a rule, which permits interpolation of thermal stresses from known reference values instead of calculation. This paper presents the derivation and method of application of this interpolation rule. The derivation procedure is based on well-known proportionalities between thermal stress range Δsigma in the structure and temperature change ΔT and rate of change T of the fluid in the extreme cases of an ideal thermal shock and quasi-steady-state conditions, respectively. For the real transients in between the relationship Δsigma proportional (ΔT)sup(x) Tsup(1-x)αsup(y) is proposed, where x is the shock-degree and lies between 0 and 1, and, additionally, y designates the influence of the heat transfer coefficient α. This formula yields the interpolation rule. The rule permits interpolation of stress ranges for additional thermal transients from at least 3 reference stresses via x and y. The procedure is applicable to any metallic structure, reduces fatigue analysis effort considerably and yields excellent results. The paper is split up into 2 parts. In the following the derivation of the rule is presented. The second part describes its application and will be published shortly. (orig.)

  2. The role of technology transfer for the development of a local wind component industry in Chile

    International Nuclear Information System (INIS)

    Pueyo, Ana; Garcia, Rodrigo; Mendiluce, Maria; Morales, Dario

    2011-01-01

    This paper contributes to the debate about climate change technology transfer by analysing barriers and enablers for a Chilean company starting up the production of wind blades. Literature on the role of technology transfer for the development and deployment of local renewable energy technologies in developing countries often refers to success stories in Brazil, India and China. Instead, this case study highlights the different challenges faced by smaller emerging economies. The paper argues that successful technology transfer in a smaller economy like Chile requires: a minimum internal demand and access to regional markets to attract foreign knowledge providers; a focus in the types of technologies where the recipient country or company have a competitive advantage; and active learning processes by the recipient company. Lessons are drawn for improving the design and implementation of technology-push and market-pull policies in small or medium emerging economies. - Highlights: → We analyse the case of a Chilean company starting up wind blades production. → Technology transfer is required as the relevant knowledge is not available in the country. → We examine the factors that enable technology transfer to draw policy conclusions. → We highlight the particularities of medium sized developing countries.

  3. The role of technology transfer for the development of a local wind component industry in Chile

    Energy Technology Data Exchange (ETDEWEB)

    Pueyo, Ana, E-mail: anapueyo@hotmail.com [Technical University of Madrid (UPM)-Escuela Tecnica Superior de Ingenieros Industriales (ETSII), Madrid (Spain); Garcia, Rodrigo [Centro de Energias Renovables (CER), Santiago de Chile (Chile); Mendiluce, Maria [World Business Council for Sustainable Development (WBCSD), Geneva (Switzerland); Morales, Dario [InnovaChile-CORFO Chile, Santiago de Chile (Chile)

    2011-07-15

    This paper contributes to the debate about climate change technology transfer by analysing barriers and enablers for a Chilean company starting up the production of wind blades. Literature on the role of technology transfer for the development and deployment of local renewable energy technologies in developing countries often refers to success stories in Brazil, India and China. Instead, this case study highlights the different challenges faced by smaller emerging economies. The paper argues that successful technology transfer in a smaller economy like Chile requires: a minimum internal demand and access to regional markets to attract foreign knowledge providers; a focus in the types of technologies where the recipient country or company have a competitive advantage; and active learning processes by the recipient company. Lessons are drawn for improving the design and implementation of technology-push and market-pull policies in small or medium emerging economies. - Highlights: > We analyse the case of a Chilean company starting up wind blades production. > Technology transfer is required as the relevant knowledge is not available in the country. > We examine the factors that enable technology transfer to draw policy conclusions. > We highlight the particularities of medium sized developing countries.

  4. A probability index for surface zonda wind occurrence at Mendoza city through vertical sounding principal components analysis

    Science.gov (United States)

    Otero, Federico; Norte, Federico; Araneo, Diego

    2018-01-01

    The aim of this work is to obtain an index for predicting the probability of occurrence of zonda event at surface level from sounding data at Mendoza city, Argentine. To accomplish this goal, surface zonda wind events were previously found with an objective classification method (OCM) only considering the surface station values. Once obtained the dates and the onset time of each event, the prior closest sounding for each event was taken to realize a principal component analysis (PCA) that is used to identify the leading patterns of the vertical structure of the atmosphere previously to a zonda wind event. These components were used to construct the index model. For the PCA an entry matrix of temperature ( T) and dew point temperature (Td) anomalies for the standard levels between 850 and 300 hPa was build. The analysis yielded six significant components with a 94 % of the variance explained and the leading patterns of favorable weather conditions for the development of the phenomenon were obtained. A zonda/non-zonda indicator c can be estimated by a logistic multiple regressions depending on the PCA component loadings, determining a zonda probability index \\widehat{c} calculable from T and Td profiles and it depends on the climatological features of the region. The index showed 74.7 % efficiency. The same analysis was performed by adding surface values of T and Td from Mendoza Aero station increasing the index efficiency to 87.8 %. The results revealed four significantly correlated PCs with a major improvement in differentiating zonda cases and a reducing of the uncertainty interval.

  5. Effects of the Cognitive-Behavioral Therapy for Stress Management on Executive Function Components.

    Science.gov (United States)

    Santos-Ruiz, Ana; Robles-Ortega, Humbelina; Pérez-García, Miguel; Peralta-Ramírez, María Isabel

    2017-02-13

    This study aims to determine whether it is possible to modify executive function in stressed individuals by means of cognitive-behavioral therapy for stress management. Thirty-one people with high levels of perceived stress were recruited into the study (treatment group = 18; wait-list group = 13). The treatment group received 14 weeks of stress management program. Psychological and executive function variables were evaluated in both groups pre and post-intervention. The treatment group showed improved psychological variables of perceived stress (t = 5.492; p = .001), vulnerability to stress (t = 4.061; p = .001) and superstitious thinking (t = 2.961; p = .009). Likewise, the results showed statistically significant differences in personality variables related to executive function, positive urgency (t = 3.585; p = .002) and sensitivity to reward (t = -2.201; p = .042), which improved after the therapy. These variables showed a moderate to high effect size (oscillates between 1.30 for perceived stress and .566 for sensitivity to reward). The cognitive-behavioral therapy for stress management may be an appropriate strategy for improving personality construct components related to executive function, however effects of the therapy are not showed on performance on the tests of executive function applied, as presented studies previous.

  6. Multiple Two-Component Systems of Streptococcus mutans Regulate Agmatine Deiminase Gene Expression and Stress Tolerance▿

    OpenAIRE

    Liu, Yaling; Burne, Robert A.

    2009-01-01

    Induction of the agmatine deiminase system (AgDS) of Streptococcus mutans requires agmatine and is optimal at low pH. We show here that the VicRK, ComDE, and CiaRH two-component systems influence AgDS gene expression in response to acidic and thermal stresses.

  7. Effect of water stress on yield and yield components of sunflower ...

    African Journals Online (AJOL)

    A field experiment during year 2009 was conducted in the research station of the University of Tehran, College of Abouraihan in Pakdasht region, Iran. The study was aimed to investigate the effect of water stress on seed yield, yield component and some quantitative traits of four sunflower hybrids namely Azargol, Alstar, ...

  8. The application of linear elastic fracture mechanics to thermally stressed welded components

    International Nuclear Information System (INIS)

    Green, D.

    1981-01-01

    Linear Elastic Fracture Mechanics techniques are applied to components constructed from brittle materials and operating at low or ambient temperatures. It is argued that these techniques can justifiably be applied to components at high temperature provided that stresses are thermally induced, self-equilibrating and cyclic. Such loading conditions occur for example in an LMFBR and a simple welded detail containing a crevice is taken as an example. Theoretical and experimental estimates of crack growth in this component are compared and good agreement is shown. (author)

  9. Understanding susceptibility of in-core components to irradiation-assisted stress corrosion cracking

    International Nuclear Information System (INIS)

    Chung, H.M.; Ruther, W.E.; Sanecki, J.E.; Kassner, T.F.

    1991-03-01

    As nuclear plants age and accumulated fluences of core structural components increase, susceptibility of the components to irradiation-assisted stress corrosion cracking (IASCC) is also expected to increase. Irradiation-induced sensitization, commonly associated with an IASCC failure, was investigated in this study to provide a better understanding of long-term structural integrity of safety-significant in-core components. Irradiation-induced sensitization of high- and commercial-purity Type 304 stainless steels irradiated in BWRs was analyzed. 7 refs., 8 figs

  10. Effect of load eccentricity and stress level on monopile support for offshore wind turbines

    DEFF Research Database (Denmark)

    Klinkvort, Rasmus Tofte; Hededal, Ole

    2014-01-01

    on which load is applied with a large eccentricity. With centrifuge tests as the basis, this paper investigates the behaviour of a rigid pile loaded with a high eccentricity. A test series was carried out to simulate idealized monotonic load cases for monopiles supporting an offshore wind turbine....... Centrifuge tests were performed on model monopiles subjected to stress distributions equal to prototype monopiles with pile diameters ranging from 1–5 m and eccentricities ranging from 8.25–17.75 pile diameters. It was possible to identify a unified response of all of these tests by using dimensional...... analysis and Rankine’s passive earth pressure coefficient as a normalization parameter. The normalized ultimate soil resistance was unaffected by acceleration level and load eccentricity, indicating that the failure mechanism was the same for all tests. Based on the centrifuge tests, a reformulation...

  11. Investigation of effective factors of transient thermal stress of the MONJU-System components

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Masaaki; Hirayama, Hiroshi; Kimura, Kimitaka; Jinbo, M. [Toshiba Corp., Kawasaki, Kanagawa (Japan)

    1999-03-01

    Transient thermal stress of each system Component in the fast breeder reactor is an uncertain factor on it's structural design. The temperature distribution in a system component changes over a wide range in time and in space. An unified evaluation technique of thermal, hydraulic, and structural analysis, in which includes thermal striping, temperature stratification, transient thermal stress and the integrity of the system components, is required for the optimum design of tho fast reactor plant. Thermal boundary conditions should be set up by both the transient thermal stress analysis and the structural integrity evaluation of each system component. The reasonable thermal boundary conditions for the design of the MONJU and a demonstration fast reactor, are investigated. The temperature distribution analysis models and the thermal boundary conditions on the Y-piece structural parts of each system component, such as reactor vessel, intermediate heat exchanger, primary main circulation pump, steam generator, superheater and upper structure of reactor core, are illustrated in the report. (M. Suetake)

  12. Service Life Of Main Piping Component Due To Low Thermal Stresses.Fatigue

    International Nuclear Information System (INIS)

    Miroshnik, R.; Jeager, A.; Ben Haim, H.

    1998-01-01

    The paper deals with estimating the service life of the power station Main piping component and describing the repair process for extending of its service life. After a long period of service, several circular fatigue cracks have been discovered at the bottom of the Main piping component chamber. Finite element analyses of transient thermal stresses, caused by power station startup, are carried out in the paper. The calculation results show good agreement between the theoretical locations of the maximum stresses and the actual locations of the cracks. There is a good agreement between theoretical evaluation and actual service life, as well. The possibility of machining out the cracks in order to prevent their growing is examined here. The machining enables us to extend the power station component's life service

  13. Gender and suppression of mid-latency ERP components during stress.

    Science.gov (United States)

    White, Patricia M; Kanazawa, Asako; Yee, Cindy M

    2005-11-01

    Substantial research evidence suggests that women may be more reactive to stress than men. This study examined the influence of gender and stress on suppression of the P50 and N100 components of the auditory event-related potential. During a stressor task, women (n=13) showed disrupted P50 and N100 suppression whereas men (n=15) exhibited only alterations in N100 suppression. Additionally, reduced skin conductance level during stress correlated with impaired P50 suppression and elevated Click 2 amplitude of the P50 response in women. These data suggest that gender differences in response to perceived stress may be an important factor to consider in studies relying upon the P50 suppression paradigm.

  14. Role of sea surface wind stress forcing on transport between Tropical Pacific and Indian Ocean

    Science.gov (United States)

    Zhao, Q.

    Using an Indian-Pacific Ocean Circulation Model (IPOM) a simulation study on the Transports of between Tropical Pacific and Indian Ocean such as Indonesian Through flow (ITF) has been done. IPOM covered the area 25°E-70°W, 35°S-60°N. There are 31 levels in the vertical with 22 levels upper 400m in it. The horizontal resolution is 1/3° lat x 1.5° lon between 10°S and 10°N. The coastline and ocean topography of IPOM is prepared from Scripps topography data on 1x1°grid. Forcing IPOM with monthly observational wind stress in 1990-1999 the interannual variation of sea temperature has been reproduced well, not only on El Nino in the Pacific but also on Indian Ocean Dipole (IOD). Therefore, the oceanic circulations in the tropical ocean are reasonable. The analyses of the oceanic circulations from the simulations suggest that the transport southward through Makassar Strait is the primary route of thermocline water masses from the North Pacific to the Indonesian sea. The transport westward through Bali-Western Australian Transect (BWAT, at 117.5E) can be thought as the final output of ITF through the archipelago to Indian Ocean. The transport westward through BWAT is in 8-12S above 150m, its core centered near surface 10S, which looks like a jet. The westward velocity is more than 50 cm/s. The transport shows significant seasonal and interannual variations. The maximum is in Jul-Oct, minimum in Jan-Mar. These results are consistent with some observation basically. The correlation analyses indict that the variations of transport westward is related with the southeasterly anomaly in the east tropical Indian ocean. The transport variation lags wind anomaly about 3 months. The correlation coefficient is more than 0.6. The transport is strong during IOD, for example in 1994 and 1997. The variations are also related with the northwesterly anomaly in the center equatorial Pacific and the easterly in the eastern equatorial Pacific. The transport is strong in most ENSO

  15. Prefrontal cortex activity is associated with biobehavioral components of the stress response

    Directory of Open Access Journals (Sweden)

    Muriah D Wheelock

    2016-11-01

    Full Text Available Contemporary theory suggests that prefrontal cortex (PFC function is associated with individual variability in the psychobiology of the stress response. Advancing our understanding of this complex biobehavioral pathway has potential to provide insight into processes that determine individual differences in stress susceptibility. The present study used functional magnetic resonance imaging (fMRI to examine brain activity during a variation of the Montreal Imaging Stress Task (MIST in fifty-three young adults. Salivary cortisol was assessed as an index of the stress response, trait anxiety was assessed as an index of an individual’s disposition towards negative affectivity, and self-reported stress was assessed as an index of an individual’s subjective psychological experience. Heart rate and skin conductance responses were also assessed as additional measures of physiological reactivity. Dorsomedial PFC, dorsolateral PFC, and inferior parietal lobule demonstrated differential activity during the MIST. Further, differences in salivary cortisol reactivity to the MIST were associated with ventromedial PFC and posterior cingulate activity, while trait anxiety and self-reported stress were associated with dorsomedial and ventromedial PFC activity respectively. These findings underscore that PFC activity regulates behavioral and psychobiological components of the stress response.

  16. Effect of Defects Distribution on Fatigue Life of Wind Turbine Components

    DEFF Research Database (Denmark)

    Rafsanjani, Hesam Mirzaei; Sørensen, John Dalsgaard

    2015-01-01

    by a Poisson process / field where the defects form clusters that consist of a parent defect and related defects around the parent defect. The fatigue life is dependent on the number, type, location and size of the defects in the component and is therefore quite uncertain and needs to be described...

  17. Modeling Stress Strain Relationships and Predicting Failure Probabilities For Graphite Core Components

    Energy Technology Data Exchange (ETDEWEB)

    Duffy, Stephen [Cleveland State Univ., Cleveland, OH (United States)

    2013-09-09

    This project will implement inelastic constitutive models that will yield the requisite stress-strain information necessary for graphite component design. Accurate knowledge of stress states (both elastic and inelastic) is required to assess how close a nuclear core component is to failure. Strain states are needed to assess deformations in order to ascertain serviceability issues relating to failure, e.g., whether too much shrinkage has taken place for the core to function properly. Failure probabilities, as opposed to safety factors, are required in order to capture the bariability in failure strength in tensile regimes. The current stress state is used to predict the probability of failure. Stochastic failure models will be developed that can accommodate possible material anisotropy. This work will also model material damage (i.e., degradation of mechanical properties) due to radiation exposure. The team will design tools for components fabricated from nuclear graphite. These tools must readily interact with finite element software--in particular, COMSOL, the software algorithm currently being utilized by the Idaho National Laboratory. For the eleastic response of graphite, the team will adopt anisotropic stress-strain relationships available in COMSO. Data from the literature will be utilized to characterize the appropriate elastic material constants.

  18. Analysis of singular interface stresses in dissimilar material joints for plasma facing components

    Energy Technology Data Exchange (ETDEWEB)

    You, J.H. E-mail: jeong-ha.you@ipp.mpg.de; Bolt, H

    2001-10-01

    Duplex joint structures are typical material combinations for the actively cooled plasma facing components of fusion devices. The structural integrity under the incident heat loads from the plasma is one of the most crucial issues in the technology of these components. The most critical domain in a duplex joint component is the free surface edge of the bond interface between heterogeneous materials. This is due to the fact that the thermal stress usually shows a singular intensification in this region. If the plasma facing armour tile consists of a brittle material, the existence of the stress singularity can be a direct cause of failure. The present work introduces a comprehensive analytical tool to estimate the impact of the stress singularity for duplex PFC design and quantifies the relative stress intensification in various materials joints by use of a model formulated by Munz and Yang. Several candidate material combinations of plasma facing armour and metallic heat sink are analysed and the results are compared with each other.

  19. Analysis of singular interface stresses in dissimilar material joints for plasma facing components

    International Nuclear Information System (INIS)

    You, J.H.; Bolt, H.

    2001-01-01

    Duplex joint structures are typical material combinations for the actively cooled plasma facing components of fusion devices. The structural integrity under the incident heat loads from the plasma is one of the most crucial issues in the technology of these components. The most critical domain in a duplex joint component is the free surface edge of the bond interface between heterogeneous materials. This is due to the fact that the thermal stress usually shows a singular intensification in this region. If the plasma facing armour tile consists of a brittle material, the existence of the stress singularity can be a direct cause of failure. The present work introduces a comprehensive analytical tool to estimate the impact of the stress singularity for duplex PFC design and quantifies the relative stress intensification in various materials joints by use of a model formulated by Munz and Yang. Several candidate material combinations of plasma facing armour and metallic heat sink are analysed and the results are compared with each other

  20. Modeling Stress Strain Relationships and Predicting Failure Probabilities For Graphite Core Components

    International Nuclear Information System (INIS)

    Duffy, Stephen

    2013-01-01

    This project will implement inelastic constitutive models that will yield the requisite stress-strain information necessary for graphite component design. Accurate knowledge of stress states (both elastic and inelastic) is required to assess how close a nuclear core component is to failure. Strain states are needed to assess deformations in order to ascertain serviceability issues relating to failure, e.g., whether too much shrinkage has taken place for the core to function properly. Failure probabilities, as opposed to safety factors, are required in order to capture the bariability in failure strength in tensile regimes. The current stress state is used to predict the probability of failure. Stochastic failure models will be developed that can accommodate possible material anisotropy. This work will also model material damage (i.e., degradation of mechanical properties) due to radiation exposure. The team will design tools for components fabricated from nuclear graphite. These tools must readily interact with finite element software--in particular, COMSOL, the software algorithm currently being utilized by the Idaho National Laboratory. For the eleastic response of graphite, the team will adopt anisotropic stress-strain relationships available in COMSO. Data from the literature will be utilized to characterize the appropriate elastic material constants.

  1. Measurement of residual stresses in deposited films of SOFC component materials

    Energy Technology Data Exchange (ETDEWEB)

    Kato, T.; Momma, A.; Nagata, S.; Kasuga, Y. [Electrotechnical Lab., Ibaraki (Japan)

    1996-12-31

    The stress induced in Solid oxide fuel cells (SOFC)s has important influence on the lifetime of SOFC. But the data on stress in SOFC and mechanical properties of SOW component materials have not been accumulated enough to manufacture SOFC. Especially, the data of La{sub 1-x}Sr{sub x}MnO{sub 3} cathode and La{sub 1-x}Sr{sub x}CrO{sub 3} interconnection have been extremely limited. We have estimated numerically the dependences of residual stress in SOFC on the material properties, the cell structure and the fabrication temperatures of the components, but these unknown factors have caused obstruction to simulate the accurate behavior of residual stress. Therefore, the residual stresses in deposited La{sub 1-x}Sr{sub x}MnO{sub 3} and La{sub 1-x}Sr{sub x}CrO{sub 3} films are researched by the observation of the bending behavior of the substrate strips. The films of SOFC component materials were prepared by the RF sputtering method, because: (1) It can fabricate dense films of poor sinterable material such as La{sub 1-x}Sr{sub x}CrO{sub 3} compared with sintering or plasma spray method. (2) For the complicated material such as perovskite materials, the difference between the composition of a film and that of a target material is generally small. (3) It can fabricate a thick ceramics film by improving of the deposition rate. For example, Al{sub 2}O{sub 3} thick films of 50{mu}m can be fabricated with the deposition rate of approximately 5{mu}m/h industrially. In this paper, the dependence of residual stress on the deposition conditions is defined and mechanical properties of these materials are estimated from the results of the experiments.

  2. Prognostic Role of Spiritual Intelligence Components in Pregnant Women’s Depression, Anxiety, and Stress

    Directory of Open Access Journals (Sweden)

    Batul Khodakarami

    2016-06-01

    Full Text Available Background and Objectives: Physiological changes and psychological adaptations during pregnancy period expose pregnant mothers to increased risk of depression, anxiety, and stress. Presently, spiritual intelligence is addressed as one of the most influential issues in mental and emotional health of individuals. This study was conducted aimed at examination of the relationship between spiritual intelligence, on the one hand, and depression, anxiety, and stress, on the other, among pregnant women. Methods: This descriptive-correlative study was performed on 182 pregnant women using Stratified Random Sampling method. Depression, Anxiety, and Stress Scale (DASS-21 and King Spiritual Intelligence Self-Report Inventory were used to evaluate and compare research’s variables. SPSS, version 16, and descriptive-analytical statistical methods were employed to analyze data. Results: Results indicated that there was a negative, significant relationship between all scales of spiritual intelligence components and subscales of depression and stress during pregnancy period (P<0.05. There was a negative, significant relationship between critical existential thinking and personal meaning production, on the one hand, and stress, on the other, in pregnancy period (P<0.05. Multiple regressions analysis indicated that predictor variables explain criterion variables in a significant way. Conclusion: Pregnant women with higher degrees of spiritual intelligence tend to have lower degrees of depression, anxiety, and stress during their pregnancy period.

  3. Nondestructive Induced Residual Stress Assessment in Superalloy Turbine Engine Components Using Induced Positron Annihilation (IPA)

    International Nuclear Information System (INIS)

    Rideout, C. A.; Ritchie, S. J.; Denison, A.

    2007-01-01

    Induced Positron Analysis (IPA) has demonstrated the ability to nondestructively quantify shot peening/surface treatments and relaxation effects in single crystal superalloys, steels, titanium and aluminum with a single measurement as part of a National Science Foundation SBIR program and in projects with commercial companies. IPA measurement of surface treatment effects provides a demonstrated ability to quantitatively measure initial treatment effectiveness along with the effect of operationally induced changes over the life of the treated component. Use of IPA to nondestructively quantify surface and subsurface residual stresses in turbine engine materials and components will lead to improvements in current engineering designs and maintenance procedures

  4. Packaging strategies for printed circuit board components. Volume I, materials & thermal stresses.

    Energy Technology Data Exchange (ETDEWEB)

    Neilsen, Michael K. (Kansas City Plant, Kansas City, MO); Austin, Kevin N.; Adolf, Douglas Brian; Spangler, Scott W.; Neidigk, Matthew Aaron; Chambers, Robert S.

    2011-09-01

    Decisions on material selections for electronics packaging can be quite complicated by the need to balance the criteria to withstand severe impacts yet survive deep thermal cycles intact. Many times, material choices are based on historical precedence perhaps ignorant of whether those initial choices were carefully investigated or whether the requirements on the new component match those of previous units. The goal of this program focuses on developing both increased intuition for generic packaging guidelines and computational methodologies for optimizing packaging in specific components. Initial efforts centered on characterization of classes of materials common to packaging strategies and computational analyses of stresses generated during thermal cycling to identify strengths and weaknesses of various material choices. Future studies will analyze the same example problems incorporating the effects of curing stresses as needed and analyzing dynamic loadings to compare trends with the quasi-static conclusions.

  5. Development of fiber-delivered laser peening system to prevent stress corrosion cracking of reactor components

    International Nuclear Information System (INIS)

    Sano, Y.; Kimura, M.; Yoda, M.; Mukai, N.; Sato, K.; Uehara, T.; Ito, T.; Shimamura, M.; Sudo, A.; Suezono, N.

    2001-01-01

    The authors have developed a system to deliver water-penetrable intense laser pulses of frequency-doubled Nd:YAG laser through optical fiber. The system is capable of improving a residual stress on water immersed metal material remotely, which is effective to prevent the initiation of stress corrosion cracking (SCC) of reactor components. Experimental results showed that a compressive residual stress with enough amplitude and depth was built in the surface layer of type 304 stainless steel (SUS304) by irradiating laser pulses through optical fiber with diameter of 1 mm. A prototype peening head with miniaturized dimensions of 88 mm x 46 mm x 25 mm was assembled to con-firm the accessibility to the heat affected zone (HAZ) along weld lines of a reactor core shroud. The accessibility was significantly improved owing to the flexible optical fiber and the miniaturized peening head. The fiber delivered system opens up the possibility of new applications of laser peening. (author)

  6. Computer-aided stress analysis system for nuclear plant primary components

    International Nuclear Information System (INIS)

    Murai, Tsutomu; Tokumaru, Yoshio; Yamazaki, Junko.

    1980-06-01

    Generally it needs a vast quantity of calculation to make the stress analysis reports of nuclear plant primary components. In Japan, especially, stress analysis reports are under obligation to make for each plant. In Mitsubishi Heavy Industries, Ltd., We have been making great efforts to rationalize the process of analysis for about these ten years. As the result of rationalization up to now, a computer-aided stress analysis system using graphic display, graphic tablet, data file, etc. was accomplished and it needs us only the least hand work. In addition we developed a fracture safety analysis system. And we are going to develop the input generator system for 3-dimensional FEM analysis by graphics terminals in the near future. We expect that when the above-mentioned input generator system is accomplished, it will be possible for us to solve instantly any case of problem. (author)

  7. Genetic component of sensitivity to heat stress for nonreturn rate of Brazilian Holstein cattle.

    Science.gov (United States)

    Santana, M L; Bignardi, A B; Stefani, G; El Faro, L

    2017-08-01

    The objectives of the present study were: 1) to investigate variation in the genetic component of heat stress for nonreturn rate at 56 days after first artificial insemination (NR56); 2) to identify and characterize the genotype by environment interaction (G × E) due to heat stress for NR56 of Brazilian Holstein cattle. A linear random regression model (reaction norm model) was applied to 51,748 NR56 records of 28,595 heifers and multiparous cows. The decline in NR56 due to heat stress was more pronounced in milking cows compared to heifers. The age of females at first artificial insemination and temperature-humidity index (THI) exerted an important influence on the genetic parameters of NR56. Several evidence of G × E on NR56 were found as the high slope/intercept ratio and frequent intersection of reaction norms. Additionally, the genetic correlation between NR56 at opposite extremes of the THI scale reached estimates below zero, indicating that few of the same genes are responsible for NR56 under conditions of thermoneutrality and heat stress. The genetic evaluation and selection for NR56 in Holstein cattle reared under (sub)tropical conditions should therefore take into consideration the genetic variation on age at insemination and G × E due to heat stress. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Stress-based fatigue assessment of major component in NPP using modified Green's function approach

    International Nuclear Information System (INIS)

    Ko, Han Ok; Jhung, Myung Jo; Choi, Jae Boong

    2013-01-01

    In this paper, the modified GFA which can consider temperature-dependent material properties is proposed by using a neural network (NN) and weight factor. To verify the modified GFA, thermal stresses by the proposed method are compared with those by FEM. Finally, pros and cons of the new method as well as technical findings from the assessment are discussed to show applicability of them. In this paper, the modified GFA considering temperature-dependent material properties is proposed by using NN and weight factor. To verify the proposed method, thermal stresses by the modified Green's function are compared with those by FEM and the results between two methods show a good agreement. Finally, it is anticipated that more precise fatigue evaluation is performed by using the proposed method. Recently, 434 nuclear reactors are being operated in the world. Among them, about 40% reactors are being operated beyond their design life or will be approaching their life. During the long term operation, various degradation mechanisms are occurred. Fatigue damage caused by alternating operational stresses in terms of temperature or pressure change is the one of important damage mechanisms in the nuclear power plants (NPPs). Although components important to safety were designed to withstand the fatigue damage, cumulative usage factor (CUF) at some locations can exceed the design limit beyond the design life. So, it is necessary to monitor the fatigue damage of major components during the long term operation. Researches on fatigue monitoring system (FMS) have been widely performed. In USA, the FatiguePro was developed by EPRI and was applied to the CE, WEC, B and W and GE type reactors. In Korea, the Kori unit 1 which started commercial operation in 1978 is being operated beyond its design life. At the stage of the license renewal, various plans for degradation mechanisms were established and reviewed. And, in case of fatigue damage, to monitor the fatigue damage of major components

  9. Oxidative stress protection and stomatal patterning as components of salinity tolerance mechanism in quinoa (Chenopodium quinoa).

    Science.gov (United States)

    Shabala, Lana; Mackay, Alex; Tian, Yu; Jacobsen, Sven-Erik; Zhou, Daowei; Shabala, Sergey

    2012-09-01

    Two components of salinity stress are a reduction in water availability to plants and the formation of reactive oxygen species. In this work, we have used quinoa (Chenopodium quinoa), a dicotyledonous C3 halophyte species displaying optimal growth at approximately 150 mM NaCl, to study mechanisms by which halophytes cope with the afore-mentioned components of salt stress. The relative contribution of organic and inorganic osmolytes in leaves of different physiological ages (e.g. positions on the stem) was quantified and linked with the osmoprotective function of organic osmolytes. We show that the extent of the oxidative stress (UV-B irradiation) damage to photosynthetic machinery in young leaves is much less when compared with old leaves, and attribute this difference to the difference in the size of the organic osmolyte pool (1.5-fold difference under control conditions; sixfold difference in plants grown at 400 mM NaCl). Consistent with this, salt-grown plants showed higher Fv/Fm values compared with control plants after UV-B exposure. Exogenous application of physiologically relevant concentrations of glycine betaine substantially mitigated oxidative stress damage to PSII, in a dose-dependent manner. We also show that salt-grown plants showed a significant (approximately 30%) reduction in stomatal density observed in all leaves. It is concluded that accumulation of organic osmolytes plays a dual role providing, in addition to osmotic adjustment, protection of photosynthetic machinery against oxidative stress in developing leaves. It is also suggested that salinity-induced reduction in stomatal density represents a fundamental mechanism by which plants optimize water use efficiency under saline conditions. Copyright © Physiologia Plantarum 2012.

  10. Various cellular stress components change as the rat ages: An insight into the putative overall age-related cellular stress network.

    Science.gov (United States)

    Cueno, Marni E; Imai, Kenichi

    2018-02-01

    Cellular stress is mainly comprised of oxidative, nitrosative, and endoplasmic reticulum stresses and has long been correlated to the ageing process. Surprisingly, the age-related difference among the various components in each independent stress pathway and the possible significance of these components in relation to the overall cellular stress network remain to be clearly elucidated. In this study, we obtained blood from ageing rats upon reaching 20-, 40-, and 72-wk.-old. Subsequently, we measured representative cellular stress-linked biomolecules (H 2 O 2 , glutathione reductase, heme, NADPH, NADP, nitric oxide, GADD153) and cell signals [substance P (SP), free fatty acid, calcium, NF-κB] in either or both blood serum and cytosol. Subsequently, network analysis of the overall cellular stress network was performed. Our results show that there are changes affecting stress-linked biomolecules and cell signals as the rat ages. Additionally, based on our network analysis data, we postulate that NADPH, H 2 O 2 , GADD153, and SP are the key components and the interactions between these components are central to the overall age-related cellular stress network in the rat blood. Thus, we propose that the main pathway affecting the overall age-related cellular stress network in the rat blood would entail NADPH-related oxidative stress (involving H 2 O 2 ) triggering GADD153 activation leading to SP induction which in-turn affects other cell signals. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Effect of residual stresses on the reliability of components under fatigue

    International Nuclear Information System (INIS)

    Ruestenberg, I.

    1995-01-01

    The assurance of the reliability of mechanical components relative to a variety of failure mechanisms is of decisive technical, industrial, and economic importance. In this dissertation, the reliability, i.e. the probability that the lifetime does not fall below a given value, is examined with respect to the particularly important failure mechanisms of fracture and fatigue. The general problem of uniaxial fatigue is studied on the basis of both continuum damage mechanics and crack mechanics. In particular, the mechanisms of crack initiation, as characterized by the Coffin-Manson-Neuber local strain-life equations for notched components as well as the mechanism of crack growth, as governed by the Paris-Erdogang relation, are taken into account. The nonlinear fatigue damage accumulation process for components subjected to general, cyclic loading histories is modeled by a multilinear damage law which allows, in principle, to characterize the subsequent activation of different fatigue mechanisms. Explicit equations are developed for quintuple-, quadruple-, and triple-linear damage accumulation. Particularly promising appears the triple-linear damage approach which allows, in principle, the identification of a nucleation, an initiation, and a final growth stage up to rupture of fatigue cracks. The beneficial effect of intentionally induced compressive residual stresses on the lifetime of the component is investigated. To this end, an elasto-plastic contact problem, based on Prandtl-Reuss' constitutive equations, is numerically solved, and the residual stress field, as it is typically produced by the mechanical process of cold rolling, is established. Assessments of the effect of adaptation, i.e. the subsequent reduction of the residual stresses due to cyclic in-service loading as well as of the effect of unavoidable surface roughness, introduced by manufacturing processes like forging, are carried out. (author) figs., tabs., refs

  12. Casting and stress-strain simulations of a cast ductile iron component using microstructure based mechanical behavior

    International Nuclear Information System (INIS)

    Olofsson, Jakob; Svensson, Ingvar L

    2012-01-01

    The industrial demand for increased component performance with concurrent reductions in component weight, development times and verifications using physical prototypes drives the need to use the full potential of casting and Finite Element Method (FEM) simulations to correctly predict the mechanical behavior of cast components in service. The mechanical behavior of the component is determined by the casting process, and factors as component geometry and casting process parameters are known to affect solidification and microstructure formation throughout the component and cause local variations in mechanical behavior as well as residual stresses. Though residual stresses are known to be an important factor in the mechanical behavior of the component, the importance of local mechanical behavior is not well established and the material is typically considered homogeneous throughout the component. This paper deals with the influence of solidification and solid state transformation on microstructure formation and the effect of local microstructure variations on the mechanical behavior of the cast component in service. The current work aims to investigate the coupling between simulation of solidification, microstructure and local variations in mechanical behavior and stress-strain simulation. This is done by performing several simulations of a ductile iron component using a recently developed simulation strategy, a closed chain of simulations for cast components, able to predict and describe the local variations in not only elastic but also plastic behavior throughout the component by using microstructural parameters determined by simulations of microstructural evolution in the component during the casting process. In addition the residual stresses are considered. The results show that the FEM simulation results are significantly affected by including microstructure based mechanical behavior. When the applied load is low and the component is subjected to stress levels

  13. The Effect of Drought Stress on Morphological Characteristics and Yield Components of Medicinal Plant Fenugreek

    Directory of Open Access Journals (Sweden)

    N. Bazzazi

    2013-06-01

    Full Text Available Fenugreek (Trigonella foenum-graecum L. is one of the oldest medicinal plants. In order to study water-stress effects on some morphological characteristics of fenugreek, an experiment was carried out in a strip plots based on randomized complete blocks design with three replicates, at Research Farm of Shahrekord University, Shahrekord, Iran, in 2010. The first factor was allocated to four water stress levels (irrigation after depletion of 20 (as control, 40, 60 and 80% of available soil moisture and the second factor was six fenugreek landraces (Shiraz, Ardestan, Tirancheh, Yazd, Jahrom and Hindi. The results of ANOVA and comparison of means indicated that the effect of water stress was significant for all traits and variation was observed among landraces for all the studied characteristics. Mean comparison showed that drought stress reduced days to flowering, days to maturity, plant height and yield components (number of pods per plant, number of seeds per pod and 1000-kernel weight. It was also revealed that water stress caused reduction in biological yield (43% and grain yield (42.3% of all genotypes. Comparison between landraces indicated that maximum biological and grain yield belonged to Ardestan landrace. Assessment of cluster analysis showed that it was possible to classify Ardestan, Shiraz and Tirancheh as a single group having tolerance to water stress. In general, based on obtained results, the Ardestan landrace, with 22.37 g/plant, had the highest biological yield and Hindi landrace, with 73.83 days to maturity, was the most early-maturing one.

  14. Effects of Drought Stress on Canola (Brassica napus L. Genotypes Yield and Yield Components

    Directory of Open Access Journals (Sweden)

    R Khani

    2018-02-01

    Full Text Available Introduction Canola (Brassica napus L. genotypes with wide adaptability to environmental conditions could play a major role in Iran’s oilseed crop production. Selection of high performing genotypes is very important for developing canola cultivation. Water stress can reduce crop yield by affecting both source and sink for assimilation. Canola yield depends on genotype and environmental conditions and response of genotypes to environmental factors. Canola genotypes response to stress depends on the developmental stage and the events occurring prior to and during flowering stage. Resistance to water stress is divided to avoidance and tolerance. Some species are tolerable against water stress. In a while, other species respond ending life cycle, falling leaves and other reactions into water stress. Therefore, investigation of canola genotypes response to water stress in phenological growth stages can be valuable in order to determine resistant or tolerant genotypes. Materials and Methods In order to study the effect of drought stress on canola genotypes yield and its components, an experiment was conducted in 2013-2014 as a split plot based on randomized complete block design with three replications at the research farm, Agricultural and Natural Resources Research Center of East-Azarbaijan, Tabriz-Iran. Three levels of drought stress were considered as main plot (No-stress, stress at the flowering and pod setting growth stages and 18 canola genotypes including HW113, RS12, Karaj1, KR18, L73, L72, HW101, L146, L210, L183, SW101, L5, L201, HW118, KR4, Karaj2, Karaj3 and KS7 as subplots. Flood irrigation was scheduled at 50% field capacity, 30 and 30% field capacity for no-stress, stress at the flowering and pod setting growth stages, respectively; i.e. soil moisture capacity was maintained at 30% by irrigating to 100% field capacity when available moisture reached 30% in drought stress treatments. An ANOVA was conducted using the PROC-GLM procedure

  15. Comparison of residual stresses in sand- and chill casting of ductile cast iron wind turbine main shafts

    International Nuclear Information System (INIS)

    Sonne, M R; Hattel, J H; Frandsen, J O

    2015-01-01

    In this work, simulations of pouring, solidification and cooling, and residual stress evolution of sand and chill cast wind turbine main shafts is performed. The models are made in the commercial software MAGMAsoft. As expected, the cooling rate of the sand casting is shown to be much lower than for the chill casting, resulting in a very course microstructure. From the simulations the nodule count is found to be 17 nodules per mm 2 and 159 nodules per mm 2 for the sand and chill casting, respectively, in the critical region of the main bearing seat. This is verified from nodule counts performed on the real cast main shafts. Residual stress evaluations show an overall increase of the maximum principal stress field for the chill casting, which is expected. However, the stresses are found to be in compression on the surface of the chill cast main shaft, which is unforeseen. (paper)

  16. Turbulent wind at the equatorial segment of an operating Darrieus wind turbine blade

    Science.gov (United States)

    Connell, J. R.; Morris, V. R.

    1989-09-01

    Six turbulent wind time series, measured at equally spaced equator-height locations on a circle 3 m outside a 34-m Darrieus rotor, are analyzed to approximate the wind fluctuations experienced by the rotor. The flatwise lower root-bending stress of one blade was concurrently recorded. The wind data are analyzed in three ways: wind components that are radial and tangential to the rotation of a blade were rotationally sampled; induction and wake effects of the rotor were estimated from the six Eulerian time series; and turbulence spectra of both the measured wind and the modeled wind from the PNL theory of rotationally sampled turbulence. The wind and the rotor response are related by computing the spectral response function of the flatwise lower root-bending stress. Two bands of resonant response that surround the first and second flatwise modal frequencies shift with the rotor rotation rate.

  17. Impacts of the Mesoscale Ocean-Atmosphere Coupling on the Peru-Chile Ocean Dynamics: The Current-Induced Wind Stress Modulation

    Science.gov (United States)

    Oerder, V.; Colas, F.; Echevin, V.; Masson, S.; Lemarié, F.

    2018-02-01

    The ocean dynamical responses to the surface current-wind stress interaction at the oceanic mesoscale are investigated in the South-East Pacific using a high-resolution regional ocean-atmosphere coupled model. Two simulations are compared: one includes the surface current in the wind stress computation while the other does not. In the coastal region, absolute wind velocities are different between the two simulations but the wind stress remains very similar. As a consequence, the mean regional oceanic circulation is almost unchanged. On the contrary, the mesoscale activity is strongly reduced when taking into account the effect of the surface current on the wind stress. This is caused by a weakening of the eddy kinetic energy generation near the coast by the wind work and to intensified offshore eddy damping. We show that, above coherent eddies, the current-stress interaction generates eddy damping through Ekman pumping and eddy kinetic energy dissipation through wind work. This alters significantly the coherent eddy vertical structures compared with the control simulation, weakening the temperature and vorticity anomalies and increasing strongly the vertical velocity anomalies associated to eddies.

  18. Improving model biases in an ESM with an isopycnic ocean component by accounting for wind work on oceanic near-inertial motions.

    Science.gov (United States)

    de Wet, P. D.; Bentsen, M.; Bethke, I.

    2016-02-01

    It is well-known that, when comparing climatological parameters such as ocean temperature and salinity to the output of an Earth System Model (ESM), the model exhibits biases. In ESMs with an isopycnic ocean component, such as NorESM, insufficient vertical mixing is thought to be one of the causes of such differences between observational and model data. However, enhancing the vertical mixing of the model's ocean component not only requires increasing the energy input, but also sound physical reasoning for doing so. Various authors have shown that the action of atmospheric winds on the ocean's surface is a major source of energy input into the upper ocean. However, due to model and computational constraints, oceanic processes linked to surface winds are incompletely accounted for. Consequently, despite significantly contributing to the energy required to maintain ocean stratification, most ESMs do not directly make provision for this energy. In this study we investigate the implementation of a routine in which the energy from work done on oceanic near-inertial motions is calculated in an offline slab model. The slab model, which has been well-documented in the literature, runs parallel to but independently from the ESM's ocean component. It receives wind fields with a frequency higher than that of the coupling frequency, allowing it to capture the fluctuations in the winds on shorter time scales. The additional energy calculated thus is then passed to the ocean component, avoiding the need for increased coupling between the components of the ESM. Results show localised reduction in, amongst others, the salinity and temperature biases of NorESM, confirming model sensitivity to wind-forcing and points to the need for better representation of surface processes in ESMs.

  19. Stresses evolution at high temperature (200°C on the interface of thin films in magnetic components

    Directory of Open Access Journals (Sweden)

    Doumit Nicole

    2014-07-01

    Full Text Available In the field of electronics, the increase of operating temperatures is a major industrial and scientific challenge because it allows reducing mass and volume of components especially in the aeronautic domain. So minimizing our components reduce masses and the use of cooling systems. For that, the behaviours and interface stresses of our components (in particular magnetic inductors and transformers that are constituted of one magnetic layer (YIG or an alumina substrate (Al2O3 representing the substrate and a thin copper film are studied at high temperature (200°C. COMSOL Multiphysics is used to simulate our work and to validate our measurements results. In this paper, we will present stresses results according to the geometrical copper parameters necessary for the component fabrication. Results show that stresses increase with temperature and copper’s thickness while remaining always lower than 200MPa which is the rupture stress value.

  20. A GENERALIZED TWO-COMPONENT MODEL OF SOLAR WIND TURBULENCE AND AB INITIO DIFFUSION MEAN-FREE PATHS AND DRIFT LENGTHSCALES OF COSMIC RAYS

    Energy Technology Data Exchange (ETDEWEB)

    Wiengarten, T.; Fichtner, H.; Kleimann, J.; Scherer, K. [Institut für Theoretische Physik IV, Ruhr-Universität Bochum (Germany); Oughton, S. [Department of Mathematics, University of Waikato, Hamilton 3240 (New Zealand); Engelbrecht, N. E. [Center for Space Research, North-West University, Potchefstroom 2520 (South Africa)

    2016-12-10

    We extend a two-component model for the evolution of fluctuations in the solar wind plasma so that it is fully three-dimensional (3D) and also coupled self-consistently to the large-scale magnetohydrodynamic equations describing the background solar wind. The two classes of fluctuations considered are a high-frequency parallel-propagating wave-like piece and a low-frequency quasi-two-dimensional component. For both components, the nonlinear dynamics is dominanted by quasi-perpendicular spectral cascades of energy. Driving of the fluctuations by, for example, velocity shear and pickup ions is included. Numerical solutions to the new model are obtained using the Cronos framework, and validated against previous simpler models. Comparing results from the new model with spacecraft measurements, we find improved agreement relative to earlier models that employ prescribed background solar wind fields. Finally, the new results for the wave-like and quasi-two-dimensional fluctuations are used to calculate ab initio diffusion mean-free paths and drift lengthscales for the transport of cosmic rays in the turbulent solar wind.

  1. A GENERALIZED TWO-COMPONENT MODEL OF SOLAR WIND TURBULENCE AND AB INITIO DIFFUSION MEAN-FREE PATHS AND DRIFT LENGTHSCALES OF COSMIC RAYS

    International Nuclear Information System (INIS)

    Wiengarten, T.; Fichtner, H.; Kleimann, J.; Scherer, K.; Oughton, S.; Engelbrecht, N. E.

    2016-01-01

    We extend a two-component model for the evolution of fluctuations in the solar wind plasma so that it is fully three-dimensional (3D) and also coupled self-consistently to the large-scale magnetohydrodynamic equations describing the background solar wind. The two classes of fluctuations considered are a high-frequency parallel-propagating wave-like piece and a low-frequency quasi-two-dimensional component. For both components, the nonlinear dynamics is dominanted by quasi-perpendicular spectral cascades of energy. Driving of the fluctuations by, for example, velocity shear and pickup ions is included. Numerical solutions to the new model are obtained using the Cronos framework, and validated against previous simpler models. Comparing results from the new model with spacecraft measurements, we find improved agreement relative to earlier models that employ prescribed background solar wind fields. Finally, the new results for the wave-like and quasi-two-dimensional fluctuations are used to calculate ab initio diffusion mean-free paths and drift lengthscales for the transport of cosmic rays in the turbulent solar wind.

  2. Design and Evaluation of a Protection Relay for a Wind Generator Based on the Positive- and Negative-Sequence Fault Components

    DEFF Research Database (Denmark)

    Zheng, T. Y.; Cha, Seung-Tae; Crossley, P. A.

    2013-01-01

    To avoid undesirable disconnection of healthy wind generators (WGs) or a wind power plant, a WG protection relay should discriminate among faults, so that it can operate instantaneously for WG, connected feeder or connection bus faults, it can operate after a delay for inter-tie or grid faults......, and it can avoid operating for parallel WG or adjacent feeder faults. A WG protection relay based on the positive- and negativesequence fault components is proposed in the paper. At stage 1, the proposed relay uses the magnitude of the positive-sequence component in the fault current to distinguish faults...... at a parallel WG connected to the same feeder or at an adjacent feeder, from other faults at a connected feeder, an inter-tie, or a grid. At stage 2, the fault type is first determined using the relationships between the positive- and negative-sequence fault components. Then, the relay differentiates between...

  3. Genetic Components of Root Architecture Remodeling in Response to Salt Stress

    KAUST Repository

    Julkowska, Magdalena; Koevoets, Iko Tamar; Mol, Selena; Hoefsloot, Huub CJ; Feron, Richard; Tester, Mark A.; Keurentjes, Joost J.B.; Korte, Arthur; Haring, Michel A; de Boer, Gert-Jan; Testerink, Christa

    2017-01-01

    Salinity of the soil is highly detrimental to plant growth. Plants respond by a redistribution of root mass between main and lateral roots, yet the genetic machinery underlying this process is still largely unknown. Here, we describe the natural variation among 347 Arabidopsis thaliana accessions in root system architecture (RSA) and identify the traits with highest natural variation in their response to salt. Salt-induced changes in RSA were associated with 100 genetic loci using genome-wide association studies (GWAS). Two candidate loci associated with lateral root development were validated and further investigated. Changes in CYP79B2 expression in salt stress positively correlated with lateral root development in accessions, and cyp79b2 cyp79b3 double mutants developed fewer and shorter lateral roots under salt stress, but not in control conditions. By contrast, high HKT1 expression in the root repressed lateral root development, which could be partially rescued by addition of potassium. The collected data and Multi-Variate analysis of multiple RSA traits, available through the Salt_NV_Root App, capture root responses to salinity. Together, our results provide a better understanding of effective RSA remodeling responses, and the genetic components involved, for plant performance in stress conditions.

  4. Genetic Components of Root Architecture Remodeling in Response to Salt Stress

    KAUST Repository

    Julkowska, Magdalena

    2017-11-07

    Salinity of the soil is highly detrimental to plant growth. Plants respond by a redistribution of root mass between main and lateral roots, yet the genetic machinery underlying this process is still largely unknown. Here, we describe the natural variation among 347 Arabidopsis thaliana accessions in root system architecture (RSA) and identify the traits with highest natural variation in their response to salt. Salt-induced changes in RSA were associated with 100 genetic loci using genome-wide association studies (GWAS). Two candidate loci associated with lateral root development were validated and further investigated. Changes in CYP79B2 expression in salt stress positively correlated with lateral root development in accessions, and cyp79b2 cyp79b3 double mutants developed fewer and shorter lateral roots under salt stress, but not in control conditions. By contrast, high HKT1 expression in the root repressed lateral root development, which could be partially rescued by addition of potassium. The collected data and Multi-Variate analysis of multiple RSA traits, available through the Salt_NV_Root App, capture root responses to salinity. Together, our results provide a better understanding of effective RSA remodeling responses, and the genetic components involved, for plant performance in stress conditions.

  5. Comparison of residual stresses in sand- and chill casting of ductile cast iron wind turbine main shafts

    DEFF Research Database (Denmark)

    Sonne, Mads Rostgaard; Frandsen, J. O.; Hattel, Jesper Henri

    2015-01-01

    In this work, simulations of pouring, solidification and cooling, and residual stress evolution of sand and chill cast wind turbine main shafts is performed. The models are made in the commercial software MAGMAsoft. As expected, the cooling rate of the sand casting is shown to be much lower than...... for the chill casting, resulting in a very course microstructure.From the simulations the nodule count is found to be 17 nodules per mm2 and 159 nodules permm2 for the sand and chill casting, respectively, in the critical region of the main bearing seat.This is verified from nodule counts performed on the real...... cast main shafts. Residual stressevaluations show an overall increase of the maximum principal stress field for the chill casting,which is expected. However, the stresses are found to be in compression on the surface of thechill cast main shaft, which is unforeseen....

  6. Status report: Intergranular stress corrosion cracking of BWR core shrouds and other internal components

    International Nuclear Information System (INIS)

    1996-03-01

    On July 25, 1994, the US Nuclear Regulatory Commission (NRC) issued Generic Letter (GL) 94-03 to obtain information needed to assess compliance with regulatory requirements regarding the structural integrity of core shrouds in domestic boiling water reactors (BWRs). This report begins with a brief description of the safety significance of intergranular stress corrosion cracking (IGSCC) as it relates to the design and function of BWR core shrouds and other internal components. It then presents a brief history of shroud cracking events both in the US and abroad, followed by an indepth summary of the industry actions to address the issue of IGSCC in BWR core shrouds and other internal components. This report summarizes the staff's basis for issuing GL 94-03, as well as the staff's assessment of plant-specific responses to GL 94-03. The staff is continually evaluating the licensee inspection programs and the results from examinations of BWR core shrouds and other internal components. This report is representative of submittals to and evaluations by the staff as of September 30, 1995. An update of this report will be issued at a later date

  7. Estimating the maritime component of aerosol optical depth and its dependency on surface wind speed using satellite data

    Directory of Open Access Journals (Sweden)

    Y. Lehahn

    2010-07-01

    Full Text Available Six years (2003–2008 of satellite measurements of aerosol parameters from the Moderate Resolution Imaging Spectroradiometer (MODIS and surface wind speeds from Quick Scatterometer (QuikSCAT, the Advanced Microwave Scanning Radiometer (AMSR-E, and the Special Sensor Microwave Imager (SSM/I, are used to provide a comprehensive perspective on the link between surface wind speed and marine aerosol optical depth over tropical and subtropical oceanic regions. A systematic comparison between the satellite derived fields in these regions allows to: (i separate the relative contribution of wind-induced marine aerosol to the aerosol optical depth; (ii extract an empirical linear equation linking coarse marine aerosol optical depth and wind intensity; and (iii identify a time scale for correlating marine aerosol optical depth and surface wind speed. The contribution of wind induced marine aerosol to aerosol optical depth is found to be dominated by the coarse mode elements. When wind intensity exceeds 4 m/s, coarse marine aerosol optical depth is linearly correlated with the surface wind speed, with a remarkably consistent slope of 0.009±0.002 s/m. A detailed time scale analysis shows that the linear correlation between the fields is well kept within a 12 h time frame, while sharply decreasing when the time lag between measurements is longer. The background aerosol optical depth, associated with aerosols that are not produced in-situ through wind driven processes, can be used for estimating the contributions of terrestrial and biogenic marine aerosol to over-ocean satellite retrievals of aerosol optical depth.

  8. Transformer sound level caused by core magnetostriction and winding stress displacement variation

    Directory of Open Access Journals (Sweden)

    Chang-Hung Hsu

    2017-05-01

    Full Text Available Magnetostriction caused by the exciting variation of the magnetic core and the current conducted by the winding wired to the core has a significant result impact on a power transformer. This paper presents the sound of a factory transformer before on-site delivery for no-load tests. This paper also discusses the winding characteristics from the transformer full-load tests. The simulation and the measurement for several transformers with capacities ranging from 15 to 60 MVA and high voltage 132kV to low voltage 33 kV are performed. This study compares the sound levels for transformers by no-load test (core/magnetostriction and full-load test (winding/displacement ε. The difference between the simulated and the measured sound levels is about 3dB. The results show that the sound level depends on several parameters, including winding displacement, capacity, mass of the core and windings. Comparative results of magnetic induction of cores and the electromagnetic force of windings for no-load and full-load conditions are examined.

  9. Residual transpiration as a component of salinity stress tolerance mechanism: a case study for barley.

    Science.gov (United States)

    Hasanuzzaman, Md; Davies, Noel W; Shabala, Lana; Zhou, Meixue; Brodribb, Tim J; Shabala, Sergey

    2017-06-19

    While most water loss from leaf surfaces occurs via stomata, part of this loss also occurs through the leaf cuticle, even when the stomata are fully closed. This component, termed residual transpiration, dominates during the night and also becomes critical under stress conditions such as drought or salinity. Reducing residual transpiration might therefore be a potentially useful mechanism for improving plant performance when water availability is reduced (e.g. under saline or drought stress conditions). One way of reducing residual transpiration may be via increased accumulation of waxes on the surface of leaf. Residual transpiration and wax constituents may vary with leaf age and position as well as between genotypes. This study used barley genotypes contrasting in salinity stress tolerance to evaluate the contribution of residual transpiration to the overall salt tolerance, and also investigated what role cuticular waxes play in this process. Leaves of three different positions (old, intermediate and young) were used. Our results show that residual transpiration was higher in old leaves than the young flag leaves, correlated negatively with the osmolality, and was positively associated with the osmotic and leaf water potentials. Salt tolerant varieties transpired more water than the sensitive variety under normal growth conditions. Cuticular waxes on barley leaves were dominated by primary alcohols (84.7-86.9%) and also included aldehydes (8.90-10.1%), n-alkanes (1.31-1.77%), benzoate esters (0.44-0.52%), phytol related compounds (0.22-0.53%), fatty acid methyl esters (0.14-0.33%), β-diketones (0.07-0.23%) and alkylresorcinols (1.65-3.58%). A significant negative correlation was found between residual transpiration and total wax content, and residual transpiration correlated significantly with the amount of primary alcohols. Both leaf osmolality and the amount of total cuticular wax are involved in controlling cuticular water loss from barley leaves under well

  10. Dissecting Low Atmospheric Pressure Stress: Transcriptome Responses to the Components of Hypobaria in Arabidopsis.

    Science.gov (United States)

    Zhou, Mingqi; Callaham, Jordan B; Reyes, Matthew; Stasiak, Michael; Riva, Alberto; Zupanska, Agata K; Dixon, Mike A; Paul, Anna-Lisa; Ferl, Robert J

    2017-01-01

    Controlled hypobaria presents biology with an environment that is never encountered in terrestrial ecology, yet the apparent components of hypobaria are stresses typical of terrestrial ecosystems. High altitude, for example, presents terrestrial hypobaria always with hypoxia as a component stress, since the relative partial pressure of O 2 is constant in the atmosphere. Laboratory-controlled hypobaria, however, allows the dissection of pressure effects away from the effects typically associated with altitude, in particular hypoxia, as the partial pressure of O 2 can be varied. In this study, whole transcriptomes of plants grown in ambient (97 kPa/pO 2 = 21 kPa) atmospheric conditions were compared to those of plants transferred to five different atmospheres of varying pressure and oxygen composition for 24 h: 50 kPa/pO 2 = 10 kPa, 25 kPa/pO 2 = 5 kPa, 50 kPa/pO 2 = 21 kPa, 25 kPa/pO 2 = 21 kPa, or 97 kPa/pO 2 = 5 kPa. The plants exposed to these environments were 10 day old Arabidopsis seedlings grown vertically on hydrated nutrient plates. In addition, 5 day old plants were also exposed for 24 h to the 50 kPa and ambient environments to evaluate age-dependent responses. The gene expression profiles from roots and shoots showed that the hypobaric response contained more complex gene regulation than simple hypoxia, and that adding back oxygen to normoxic conditions did not completely alleviate gene expression changes in hypobaric responses.

  11. Biochemical components and dry matter of lemon and mandarin hybrids under salt stress

    Directory of Open Access Journals (Sweden)

    Francisco V. da S. Sá

    Full Text Available ABSTRACT The objective was to study the biochemical changes and dry matter content in lemon and mandarin hybrids under salt stress during rootstock formation. For this, a study was conducted in randomized complete block, using a 2 x 5 factorial scheme, with two salinity levels (0.3 and 4.0 dS m-1 applied in five citrus rootstock genotypes (1. TSKC x CTARG - 019; 2. LRF; 3. TSKC x (LCR x TR - 040; 4. LCRSTC and 5. LVK, with three replicates and four plants per plot. At 90 days after sowing, saline treatments started to be applied and continued until 120 days after sowing, the moment in which the plants were collected for evaluation of biochemical characteristics and phytomass accumulation. The increase in water salinity negatively affected the biochemical components and dry matter accumulation of citrus genotypes. The genotypes TSKC x (LCR x TR - 040, LCRSTC and LVK were the least affected by salt stress, standing out as the materials most tolerant to salinity.

  12. Stress analysis of two-dimensional C/C composite components for HTGR's core restraint techanism

    International Nuclear Information System (INIS)

    Satoshi Hanawa; Taiju Shibata; Jyunya Sumita; Masahiro Ishihara; Tatsuo Iyoku; Kazuhiro Sawa

    2005-01-01

    Carbon fiber reinforced carbon matrix composite (C/C composite) is one of the most promising materials for HTGRs core components due to their high strength as well as high temperature resistibility. One of the most attractive applications of C/C composite is the core restraint mechanism. The core restraint mechanism is located around the reflector block and it works to tighten reactor core blocks so as to restrict un-supposition flow pass of coolant gas (bypass flow) in the core. The restriction of bypass flow reads to the high efficiency of coolant flow rate inside of the reactor core. For the future HTGRs and VHTR (Very High Temperature Reactor), it is important to develop the core restraint mechanism with C/C composite substitute for metallic materials as used for HTTR. For the application of C/C composite to core restraint mechanism, it is important to investigate the applicability of C/C composite in viewpoint of structural integrity. In the present study, supposing the application of 2D-C/C composite to core restraint mechanism, thermal stress behavior was analyzed by considering the thickness of the C/C composite and the gap between reflector block and core restraint. It was shown from the thermal stress analysis that the circumferential stress decreases with increasing the gap and that the restraint force increases with increasing the thickness. By optimizing the thickness of C/C composite and gap between reflector block and core restraint, the C/C composite is applicable to the core restraint mechanism. (authors)

  13. Experimental and numerical simulation of the behaviour of building components under alternating thermal stresses

    International Nuclear Information System (INIS)

    Stegmeyer, R.

    1985-01-01

    This publication is intended to clear up to what extent the results from laboratory experiments on components thermally stressed on several axes can be transferred. The turbine shaft was used for this purpose and was geometrically simulated on a reduced scale by means of a test body (model). The deviations of shape due to the design, such as shaft shoulders, grooves etc. were simulated by notches and the position of the expected crack was defined in this way. A 1% Cr steel was selected as the material, for which many results of experiments on laboratory samples were available. The turbine shaft steel 28 CrMoNiV 4 9 was used. With a specially designed experimental rig, it was possible to expose the model to a changing temperature stress, as it occurs during starting and shutdown of turbines. Different notch radii made it possible to vary the strains at the bottom of the notches due to temperature gradients. After developing special travel transducers, the strain behaviour of the sample could be determined relative to the temperature. The crack characteristics obtained were compared with the characteristics of single axis experiments at constant temperature. Fractographic examination of fatigue cracks made it possible to determine the growth of cracks per load change from the existing vibration strip (da/dN). The stress intensity factor was derived from a modified theoretical expression and the characteristic designed from it was compared with crack growth measurements on CT samples. Accompanying numerical and empirical processes (according to Neuber) were examined by direct comparison of the measured strains with the calculated or estimated strains. Finally, regulations such as the ASME code and TRD 301 were applied to the model experiments and evaluated. (orig.) [de

  14. Identification and characterization of sigma, a novel component of the Staphylococcus aureus stress and virulence responses.

    Directory of Open Access Journals (Sweden)

    Lindsey N Shaw

    Full Text Available S. aureus is a highly successful pathogen that is speculated to be the most common cause of human disease. The progression of disease in S. aureus is subject to multi-factorial regulation, in response to the environments encountered during growth. This adaptive nature is thought to be central to pathogenesis, and is the result of multiple regulatory mechanisms employed in gene regulation. In this work we describe the existence of a novel S. aureus regulator, an as yet uncharacterized ECF-sigma factor (sigma(S, that appears to be an important component of the stress and pathogenic responses of this organism. Using biochemical approaches we have shown that sigma(S is able to associates with core-RNAP, and initiate transcription from its own coding region. Using a mutant strain we determined that sigma(S is important for S. aureus survival during starvation, extended exposure to elevated growth temperatures, and Triton X-100 induced lysis. Coculture studies reveal that a sigma(S mutant is significantly outcompeted by its parental strain, which is only exacerbated during prolonged growth (7 days, or in the presence of stressor compounds. Interestingly, transcriptional analysis determined that under standard conditions, S. aureus SH1000 does not initiate expression of sigS. Assays performed hourly for 72 h revealed expression in typically background ranges. Analysis of a potential anti-sigma factor, encoded downstream of sigS, revealed it to have no obvious role in the upregulation of sigS expression. Using a murine model of septic arthritis, sigS-mutant infected animals lost significantly less weight, developed septic arthritis at significantly lower levels, and had increased survival rates. Studies of mounted immune responses reveal that sigS-mutant infected animals had significantly lower levels of IL-6, indicating only a weak immunological response. Finally, strains of S. aureus lacking sigS were far less able to undergo systemic dissemination

  15. The Impact of Stress Urinary Incontinence on Individual Components of Quality of Life in Malaysian Women.

    Science.gov (United States)

    Lim, Renly; Liong, Men Long; Leong, Wing Seng; Lau, Yong Khee; Khan, Nurzalina Abdul Karim; Yuen, Kah Hay

    2018-02-01

    To assess the impact of stress urinary incontinence (SUI) on individual components of quality of life (QoL) using both condition-specific and generic questionnaires, and to compare the results of the 2 instruments with a control group. Women with or without SUI aged ≥21 years old were recruited. Subjects completed the International Consultation of Incontinence-Urinary Incontinence Short Form (ICIQ-UI-SF), International Consultation of Incontinence-Lower Urinary Tract Symptoms Quality of Life (ICIQ-LUTSqol), and EQ-5D questionnaires. A total of 120 women with SUI and 145 controls participated. The ICIQ-LUTSqol total score (mean ± standard deviation) was significantly higher in the SUI group (38.96 ± 10.28) compared with the control group (20.78 ± 2.73) (P women with SUI affected "moderately" or "a lot." When measured using the EQ-5D questionnaire, there were significantly higher percentages of patients with SUI who had problems with usual activities, pain or discomfort, and anxiety or depression (P Women suffering from SUI have significantly poorer QoL compared with continent women when measured using both condition-specific and generic QoL measures. Clinicians should pay closer attention to the impact of SUI on individual components of QoL, particularly limitations on physical activities and jobs, which were the 2 most impairing and frequently reported components of QoL. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Modelling the effect of coating on the stresses and microstructure evolution in chill casting of wind turbine main shafts

    DEFF Research Database (Denmark)

    Sonne, Mads Rostgaard; Thorborg, J.; Hattel, Jesper Henri

    2017-01-01

    The purpose of the present work is to quantify the effect of the inside coating on chills for casting of large wind turbine main shafts with respect to the evolution of internal stresses. These are known to affect the lifetime of the chills, and this is a major cost for the foundries today. Simul......, it is concluded that the material quality obtained from casting the main shafts in chills (and hence the performance of the part) is still much better than for sand casting, even though a very thick layer of coating is applied. Copyright © 2017 John Wiley & Sons, Ltd....... in the simulations. The outcome is validated by comparisons with samples taken out from a critical region of main shafts cast in sand and in chills. The results reveal minor reductions in the maximum principal stresses on the inner and outer surfaces of the chill of 3.1% and 18.5%, respectively, from changing...

  17. A Technique for Mitigating Thermal Stress and Extending Life Cycle of Power Electronic Converters Used for Wind Turbines

    Directory of Open Access Journals (Sweden)

    Canras Batunlu

    2015-11-01

    Full Text Available Over the last two decades, various models have been developed to assess and improve the reliability of power electronic conversion systems (PECs with a focus on those used for wind turbines. However, only few studies have dealt with mitigating the PECs thermo-mechanical effects on their reliability taking into account variations in wind characteristics. This work critically investigates this issue and attempts to offer a mitigating technique by, first, developing realistic full scale (FS and partial scale (PS induction generator models combined with two level back-to-back PECs. Subsequently, deriving a driving algorithm, which reduces PEC’s operating temperature by controlling its switching patterns. The developed switching procedure ensures minimum temperature fluctuations by adapting the variable DC link and system’s frequency of operation. It was found for both FS and PS topologies, that the generator side converters have higher mean junction temperatures where the grid side ones have more fluctuations on their thermal profile. The FS and PS cycling temperatures were reduced by 12 °C and 5 °C, respectively. Moreover, this led to a significant improvement in stress; approximately 27 MPa stress reduction for the FS induction generator PEC.

  18. A Survey of the Relationship between Climatic Heat Stress Indices and Fundamental Milk Components Considering Uncertainty

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Marami Milani

    2015-11-01

    Full Text Available The main purpose of this study is to assess the relationship between four bioclimatic indices for cattle (environmental stress, heat load, modified heat load, and respiratory rate predictor indices and three main milk components (fat, protein, and milk yield considering uncertainty. The climate parameters used to calculate the climate indices were taken from the NASA-Modern Era Retrospective-Analysis for Research and Applications (NASA-MERRA reanalysis from 2002 to 2010. Cow milk data were considered for the same period from April to September when the cows use the natural pasture. The study is based on a linear regression analysis using correlations as a summarizing diagnostic. Bootstrapping is used to represent uncertainty information in the confidence intervals. The main results identify an interesting relationship between the milk compounds and climate indices under all climate conditions. During spring, there are reasonably high correlations between the fat and protein concentrations vs. the climate indices, whereas there are insignificant dependencies between the milk yield and climate indices. During summer, the correlation between the fat and protein concentrations with the climate indices decreased in comparison with the spring results, whereas the correlation for the milk yield increased. This methodology is suggested for studies investigating the impacts of climate variability/change on food and agriculture using short term data considering uncertainty.

  19. An effect of humid climate on micro structure and chemical component of natural composite (Boehmeria nivea-Albizia falcata based wind turbine blade

    Directory of Open Access Journals (Sweden)

    Sudarsono S.

    2018-01-01

    Full Text Available In this work, wind turbine blade NACA 4415 is fabricated from natural composite of Boehmeria nivea and Albizia falcate. The composite fabrication method used is hand lay up method. The aim of the work is to investigate an effect of humid climate of coastal area on micro structure and chemical composition of composite material of the blade. The wind turbine is tested at Pantai Baru, Bantul, Yogyakarta for 5.5 months. The micro structure scanning is performed with Scanning Electron Microscope (SEM and material component is measured with Energy Dispersive X-ray spectrometer (EDS. The samples are tested before and after the use within 5.5 month at the location. The results show that composite material inexperienced interface degradation and insignificant change of micro structure. From EDS test, it is observed that Na filtration reduces C and increases O in composite material after 5.5 months.

  20. An effect of humid climate on micro structure and chemical component of natural composite (Boehmeria nivea-Albizia falcata) based wind turbine blade

    Science.gov (United States)

    Sudarsono, S.; Purwanto; Sudarsono, Johny W.

    2018-02-01

    In this work, wind turbine blade NACA 4415 is fabricated from natural composite of Boehmeria nivea and Albizia falcate. The composite fabrication method used is hand lay up method. The aim of the work is to investigate an effect of humid climate of coastal area on micro structure and chemical composition of composite material of the blade. The wind turbine is tested at Pantai Baru, Bantul, Yogyakarta for 5.5 months. The micro structure scanning is performed with Scanning Electron Microscope (SEM) and material component is measured with Energy Dispersive X-ray spectrometer (EDS). The samples are tested before and after the use within 5.5 month at the location. The results show that composite material inexperienced interface degradation and insignificant change of micro structure. From EDS test, it is observed that Na filtration reduces C and increases O in composite material after 5.5 months.

  1. Rigid MATLAB drivetrain model of a 500 kW wind turbine for predicting maximum gear tooth stresses in a planetary gearbox using multibody gear constraints

    DEFF Research Database (Denmark)

    Jørgensen, Martin Felix; Pedersen, Niels Leergaard; Sørensen, Jens Nørkær

    2014-01-01

    multiple planetary gears are not taken into account. Finite Element Method (FEM) calculations show that when the wind turbine runs close to the maximum wind speed, the maximum gear tooth stress is in the range of 500–700 MPa, which is considered to be realistic using a “worst-case” method. The presented...... for not only transferring torque but also for calculating the gear tooth and internal body reaction forces. The method is appropriate for predicting gear tooth stresses without considering all the complexity of gear tooth geometries. This means that, e.g. gear tooth load-sharing and load-distribution among...

  2. Strength and Reliability of Wood for the Components of Low-cost Wind Turbines: Computational and Experimental Analysis and Applications

    DEFF Research Database (Denmark)

    Mishnaevsky, Leon; Freere, Peter; Sharma, Ranjan

    2009-01-01

    of experiments and computational investigations. Low cost testing machines have been designed, and employed for the systematic analysis of different sorts of Nepali wood, to be used for the wind turbine construction. At the same time, computational micromechanical models of deformation and strength of wood......This paper reports the latest results of the comprehensive program of experimental and computational analysis of strength and reliability of wooden parts of low cost wind turbines. The possibilities of prediction of strength and reliability of different types of wood are studied in the series...... are developed, which should provide the basis for microstructure-based correlating of observable and service properties of wood. Some correlations between microstructure, strength and service properties of wood have been established....

  3. Numerical simulation of stress distribution in Inconel 718 components realized by metal injection molding during supercritical debinding

    Science.gov (United States)

    Agne, Aboubakry; Barrière, Thierry

    2018-05-01

    Metal injection molding (MIM) is a process combining advantages of thermoplastic injection molding and powder metallurgy process in order to manufacture components with complex and near net-shape geometries. The debinding of a green component can be performed in two steps, first by using solvent debinding in order to extract the organic part of the binder and then by thermal degradation of the rest of the binder. A shorter and innovative method for extracting an organic binder involves the use of supercritical fluid instead of a regular solvent. The debinding via a supercritical fluid was recently investigated to extract organic binders contained in components obtained by Metal Injection Molding. It consists to put the component in an enclosure subjected to high pressure and temperature. The supercritical fluid has various properties depending on these two conditions, e.g., density and viscosity. The high-pressure combined with the high temperature during the process affect the component structure. Three mechanisms contributing to the deformation of the component can been differentiated: thermal expansion, binder extraction and supercritical fluid effect on the outer surfaces of the component. If one supposes that, the deformation due to binder extraction is negligible, thermal expansion and the fluid effect are probably the main mechanisms that can produce several stress. A finite-element model, which couples fluid-structures interaction and structural mechanics, has been developed and performed on the Comsol Multiphysics® finite-element software platform allowed to estimate the stress distribution during the supercritical debinding of MIM component composed of Inconel 718 powders, polypropylene, polyethylene glycol and stearic acid as binder. The proposed numerical simulations allow the estimation of the stress distribution with respect to the processing parameters for MIM components during the supercritical debinding process using a stationary solver.

  4. Estimation of spacial geo-stress components in rock samples by using the Kaiser effect of acoustic emission

    International Nuclear Information System (INIS)

    Kanagawa, Tadashi; Hayashi, Masao; Nakasa, Hiroyasu.

    1976-01-01

    The spacial remaining stress component of the rock core sample is experimentally obtained by using Kaiser effect of acoustic emission (AE), and the estimated ground pressure is compared with the natural ground pressure measured by the conventional over-coring method, in order to see the feasiblity of AE method. In this experiments of AE, 111 specimens were cut out in all directions of the rock cores (tuff) sampled from the place where the ground pressure was measured by the over-coring method, and the generation of AE caused by the load was measured. Whereby, the stress components in three directions are determined. As a result of comparison, t the AE method is proved to be effective enough to estimate the ground pressure of rock geo-dynamically. In the application of the Kaiser effect to the estimation of the geo-stress in rock samples, one of the most difficult problems is how to eliminate the obstruction of erroneous AE signals caused by the strong stress concentration at the end corners of the rock specimen. As the result of comparison, the values obtained by the AE method have a tendency of greater than the values obtained by the over-coring method. It is conceived that the AE method can easily detect the maximum stress value for geo historical long time, and that the stress concentration is apt to mix in AE method by boring. (Iwakiri, K.)

  5. The relationship between the microwave radar cross section and both wind speed and stress: Model function studies using Frontal Air-Sea Interaction Experiment data

    Science.gov (United States)

    Weissman, David E.; Davidson, Kenneth L.; Brown, Robert A.; Friehe, Carl A.; Li, Fuk

    1994-01-01

    The Frontal Air-Sea Interaction Experiment (FASINEX) provided a unique data set with coincident airborne scatterometer measurements of the ocean surface radar cross section (RCS)(at Ku band) and near-surface wind and wind stress. These data have been analyzed to study new model functions which relate wind speed and surface friction velocity (square root of the kinematic wind stress) to the radar cross section and to better understand the processes in the boundary layer that have a strong influence on the radar backscatter. Studies of data from FASINEX indicate that the RCS has a different relation to the friction velocity than to the wind speed. The difference between the RCS models using these two variables depends on the polarization and the incidence angle. The radar data have been acquired from the Jet Propulsion Laboratory airborne scatterometer. These data span 10 different flight days. Stress measurements were inferred from shipboard instruments and from aircraft flying at low altitudes, closely following the scatterometer. Wide ranges of radar incidence angles and environmental conditions needed to fully develop algorithms are available from this experiment.

  6. Current components, physical, ocean circulation, wind circulation, and other data from moored buoys, CTD casts, drifting buoys, and in situ wind recorders from AIRCRAFT and other platforms from the North Atlantic Ocean and other locations as part of the Seasonal Response of the Equatorial Atlantic Experiment/Français Océan et Climat dans l'Atlantique Equatorial (SEQUAL/FOCAL) project from 1980-01-25 to 1985-12-18 (NODC Accession 8700111)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current components, physical, ocean circulation, wind circulation, and other data were collected from moored buoys, CTD casts, drifting buoys, and in situ wind...

  7. Tropical Atlantic biases and their relation to surface wind stress and terrestrial precipitation

    Science.gov (United States)

    Richter, Ingo; Xie, Shang-Ping; Wittenberg, Andrew T.; Masumoto, Yukio

    2012-03-01

    Most coupled general circulation models (GCMs) perform poorly in the tropical Atlantic in terms of climatological seasonal cycle and interannual variability. The reasons for this poor performance are investigated in a suite of sensitivity experiments with the Geophysical Fluid Dynamics Laboratory (GFDL) coupled GCM. The experiments show that a significant portion of the equatorial SST biases in the model is due to weaker than observed equatorial easterlies during boreal spring. Due to these weak easterlies, the tilt of the equatorial thermocline is reduced, with shoaling in the west and deepening in the east. The erroneously deep thermocline in the east prevents cold tongue formation in the following season despite vigorous upwelling, thus inhibiting the Bjerknes feedback. It is further shown that the surface wind errors are due, in part, to deficient precipitation over equatorial South America and excessive precipitation over equatorial Africa, which already exist in the uncoupled atmospheric GCM. Additional tests indicate that the precipitation biases are highly sensitive to land surface conditions such as albedo and soil moisture. This suggests that improving the representation of land surface processes in GCMs offers a way of improving their performance in the tropical Atlantic. The weaker than observed equatorial easterlies also contribute remotely, via equatorial and coastal Kelvin waves, to the severe warm SST biases along the southwest African coast. However, the strength of the subtropical anticyclone and along-shore winds also play an important role.

  8. Tropical Atlantic biases and their relation to surface wind stress and terrestrial precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Richter, Ingo [Research Institute for Global Change, JAMSTEC, Yokohama (Japan); University of Hawaii at Manoa, International Pacific Research Center, Honolulu, HI (United States); Xie, Shang-Ping [University of Hawaii at Manoa, International Pacific Research Center, Honolulu, HI (United States); University of Hawaii at Manoa, Department of Meteorology, Honolulu, HI (United States); Wittenberg, Andrew T. [NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, NJ (United States); Masumoto, Yukio [Research Institute for Global Change, JAMSTEC, Yokohama (Japan)

    2012-03-15

    Most coupled general circulation models (GCMs) perform poorly in the tropical Atlantic in terms of climatological seasonal cycle and interannual variability. The reasons for this poor performance are investigated in a suite of sensitivity experiments with the Geophysical Fluid Dynamics Laboratory (GFDL) coupled GCM. The experiments show that a significant portion of the equatorial SST biases in the model is due to weaker than observed equatorial easterlies during boreal spring. Due to these weak easterlies, the tilt of the equatorial thermocline is reduced, with shoaling in the west and deepening in the east. The erroneously deep thermocline in the east prevents cold tongue formation in the following season despite vigorous upwelling, thus inhibiting the Bjerknes feedback. It is further shown that the surface wind errors are due, in part, to deficient precipitation over equatorial South America and excessive precipitation over equatorial Africa, which already exist in the uncoupled atmospheric GCM. Additional tests indicate that the precipitation biases are highly sensitive to land surface conditions such as albedo and soil moisture. This suggests that improving the representation of land surface processes in GCMs offers a way of improving their performance in the tropical Atlantic. The weaker than observed equatorial easterlies also contribute remotely, via equatorial and coastal Kelvin waves, to the severe warm SST biases along the southwest African coast. However, the strength of the subtropical anticyclone and along-shore winds also play an important role. (orig.)

  9. Determining the von Mises stress power spectral density for frequency domain fatigue analysis including out-of-phase stress components

    NARCIS (Netherlands)

    Bonte, M.H.A.; de Boer, Andries; Liebregts, R.

    This paper provides a new formula to take into account phase differences in the determination of an equivalent von Mises stress power spectral density (PSD) from multiple random inputs. The obtained von Mises PSD can subsequently be used for fatigue analysis. The formula was derived for use in the

  10. Advanced structural wind engineering

    CERN Document Server

    Kareem, Ahsan

    2013-01-01

    This book serves as a textbook for advanced courses as it introduces state-of-the-art information and the latest research results on diverse problems in the structural wind engineering field. The topics include wind climates, design wind speed estimation, bluff body aerodynamics and applications, wind-induced building responses, wind, gust factor approach, wind loads on components and cladding, debris impacts, wind loading codes and standards, computational tools and computational fluid dynamics techniques, habitability to building vibrations, damping in buildings, and suppression of wind-induced vibrations. Graduate students and expert engineers will find the book especially interesting and relevant to their research and work.

  11. Coupled wave and surge modelling for the eastern Irish Sea and implications for model wind-stress

    Science.gov (United States)

    Brown, Jennifer M.; Wolf, Judith

    2009-05-01

    We revisit the surge of November 1977, a storm event which caused damage on the Sefton coast in NW England. A hindcast has been made with a coupled surge-tide-wave model, to investigate whether a wave-dependent surface drag is necessary for accurate surge prediction, and also if this can be represented by an optimised Charnock parameter. The Proudman Oceanographic Laboratory Coastal Modelling System-Wave Model (POLCOMS-WAM) has been used to model combined tides, surges, waves and wave-current interaction in the Irish Sea on a 1.85 km grid. This period has been previously thoroughly studied, e.g. Jones and Davies [Jones, J.E., Davies, A.M., 1998. Storm surge computations for the Irish Sea using a three-dimensional numerical model including wave-current interaction. Continental Shelf Research 18(2), 201-251] and we build upon this previous work to validate the POLCOMS-WAM model to test the accuracy of surge elevation predictions in the study area. A one-way nested approach has been set up from larger scale models to the Irish Sea model. It was demonstrated that (as expected) swell from the North Atlantic does not have a significant impact in the eastern Irish Sea. To capture the external surge generated outside of the Irish Sea a (1/9° by 1/6°) model extending beyond the continental shelf edge was run using the POLCOMS model for tide and surge. The model results were compared with tide gauge observations around the eastern Irish Sea. The model was tested with different wind-stress formulations including Smith and Banke [Smith, S.D., Banke, E.G., 1975. Variation of the surface drag coefficient with wind speed. Quarterly Journal of the Royal Meteorology Society, 101(429), 665-673] and Charnock [Charnock, H., 1955. Wind-stress on a water surface. Quarterly Journal of the Royal Meteorological Society, 81(350), 639-640]. In order to get a single parameterisation that works with wave-coupling, the wave-derived surface roughness length has been imposed in the surge model

  12. Detection of gear cracks in a complex gearbox of wind turbines using supervised bounded component analysis of vibration signals collected from multi-channel sensors

    Science.gov (United States)

    Li, Zhixiong; Yan, Xinping; Wang, Xuping; Peng, Zhongxiao

    2016-06-01

    In the complex gear transmission systems, in wind turbines a crack is one of the most common failure modes and can be fatal to the wind turbine power systems. A single sensor may suffer with issues relating to its installation position and direction, resulting in the collection of weak dynamic responses of the cracked gear. A multi-channel sensor system is hence applied in the signal acquisition and the blind source separation (BSS) technologies are employed to optimally process the information collected from multiple sensors. However, literature review finds that most of the BSS based fault detectors did not address the dependence/correlation between different moving components in the gear systems; particularly, the popular used independent component analysis (ICA) assumes mutual independence of different vibration sources. The fault detection performance may be significantly influenced by the dependence/correlation between vibration sources. In order to address this issue, this paper presents a new method based on the supervised order tracking bounded component analysis (SOTBCA) for gear crack detection in wind turbines. The bounded component analysis (BCA) is a state of art technology for dependent source separation and is applied limitedly to communication signals. To make it applicable for vibration analysis, in this work, the order tracking has been appropriately incorporated into the BCA framework to eliminate the noise and disturbance signal components. Then an autoregressive (AR) model built with prior knowledge about the crack fault is employed to supervise the reconstruction of the crack vibration source signature. The SOTBCA only outputs one source signal that has the closest distance with the AR model. Owing to the dependence tolerance ability of the BCA framework, interfering vibration sources that are dependent/correlated with the crack vibration source could be recognized by the SOTBCA, and hence, only useful fault information could be preserved in

  13. Age-Specific Determinants of Pulse Wave Velocity among Metabolic Syndrome Components, Inflammatory Markers, and Oxidative Stress.

    Science.gov (United States)

    Kim, Minkyung; Kim, Minjoo; Yoo, Hye Jin; Lee, Seung Yeon; Lee, Sang-Hyun; Lee, Jong Ho

    2018-02-01

    Pulse wave velocity (PWV) is thought to have different relationships with metabolic syndrome (MS) components, inflammatory markers, and oxidative stress, according to age. However, age-specific determinants of PWV have not yet been studied. We investigated age-dependent relationships among PWV and MS components, inflammatory markers, and oxidative stress. A total of 4,318 subjects were divided into 4 groups: 19-34 y (n=687), 35-44 y (n=1,413), 45-54 y (n=1,384), and 55-79 y (n=834). MS components, brachial-ankle PWV (baPWV), high-sensitivity C-reactive protein (hs-CRP), and oxidative stress markers were measured. There were age-related increases in MS, body mass index (BMI), waist circumference, systolic blood pressure (SBP), diastolic BP (DBP), triglycerides, glucose, hs-CRP, oxidized low-density lipoprotein (LDL), 8-epi-prostaglandin F 2α (8-epi-PGF 2α ), and baPWV. BaPWV was significantly associated with sex and elevated BP in the 19-34 y group; with age, sex, BMI, elevated BP and triglycerides in the 35-44 y group; with age, sex, elevated BP, fasting glucose, hs-CRP and oxidized LDL in the 45-54 y group; and with age, BMI, elevated BP, fasting glucose and oxidized LDL in the 55-79 y group. Our results show that age-related increases in baPWV are associated with age-related changes in MS components, inflammatory markers, and oxidative stress. However, each of these factors has an age-specific, different impact on arterial stiffness. In particular, oxidative stress may be independently associated with arterial stiffness in individuals older than 45 y.

  14. Reactivity to Stress and the Cognitive Components of Math Disability in Grade 1 Children

    Science.gov (United States)

    MacKinnon McQuarrie, Maureen A.; Siegel, Linda S.; Perry, Nancy E.; Weinberg, Joanne

    2014-01-01

    This study investigated the relationship among working memory, processing speed, math performance, and reactivity to stress in 83 Grade 1 children. Specifically, 39 children with math disability (MD) were compared to 44 children who are typically achieving (TA) in mathematics. It is the first study to use a physiological index of stress (salivary…

  15. Proportion of various dendromass components of spruce (Picea abies), and partial models for modification of wind speed and radiation by pure spruce stands

    International Nuclear Information System (INIS)

    Wollmerstädt, J.; Sharma, S.C.; Marsch, M.

    1992-01-01

    Means for quantifying dendromass components of spruce stands have been discussed, and partial models for modification of radiation and wind by the pure spruce stand were developed. By means of a sampling procedure, the components needle dry mass and branchwood dry mass without needles of individual trees are recorded. Using the relationship between branch basal diameter and needle respectively branchwood dry mass, the total needle and branchwood dry mass of trees is estimated. Based on that, stand or regional parameters for the allometric function between diameter breast height and needle respectively branchwood dry mass can be determined for defined H/D-clusters. Published data from various sources were used in this paper. The lowest coefficients of determination were found in H/D-cluster 120 (H/D-values over 114). Therefore, further differentiation within this range seems to be necessary. For assimilation models, there should be quantification of needle dry mass separately for needle age classes and morphological characteristics of needles. Basis for the estimate of tree-bole volume is the relationship between H/D-value and oven-dry weight. There are problems as far as methods for quantifying the subterranean dendromass (e.g. dynamics of fine roots) are concerned; this is requiring considerable efforts, too. Spatial structure was also described by allometric functions (crown length and crown cover in relation to diameter breast height). For the partial model to express wind modification by the stand, standardized wind profiles as related to crown canopy density were used. The modification of radiation by the stand is closely related with the vertical needle mass distribution (sum curves). These two partial models have to be considered as an approach for the description of the modifying effect by the stocking [de

  16. A study of stresses in powder compacted components during and after ejection

    DEFF Research Database (Denmark)

    Redanz, Pia

    2001-01-01

    A finite strain finite element method is used to examine the residual stresses in a cup-shaped powder compact. Two rate-independent strain hardening porous material models are used: the combined material model (Fleck, N.A., Kuhn, L.T., McMeeking, R.M., 1992a. J. Mech. Phys. Solids 40 (5), 1139......-1162) and a material model which includes the dependency of inter-particle cohesive strength (Fleck, N.A., 1995. J. Mech. Phys. Solids 43, 1409-1431). The residual stress state in the unloaded cup is highly dependent on the compaction process and less dependent on the ejection route. The maximum principal stress...... plotted during ejection shows that higher stresses are found during the ejection process than those found in the completely unloaded specimen. The degree of inter-particle cohesive strength has hardly any effect on the porosity distributions in the compacts but it has a strong influence on the stress...

  17. PWSCC Growth Assessment Model Considering Stress Triaxiality Factor for Primary Alloy 600 Components

    Directory of Open Access Journals (Sweden)

    Jong-Sung Kim

    2016-08-01

    Full Text Available We propose a primary water stress corrosion cracking (PWSCC initiation model of Alloy 600 that considers the stress triaxiality factor to apply to finite element analysis. We investigated the correlation between stress triaxiality effects and PWSCC growth behavior in cold-worked Alloy 600 stream generator tubes, and identified an additional stress triaxiality factor that can be added to Garud's PWSCC initiation model. By applying the proposed PWSCC initiation model considering the stress triaxiality factor, PWSCC growth simulations based on the macroscopic phenomenological damage mechanics approach were carried out on the PWSCC growth tests of various cold-worked Alloy 600 steam generator tubes and compact tension specimens. As a result, PWSCC growth behavior results from the finite element prediction are in good agreement with the experimental results.

  18. Determining the von Mises stress power spectral density for frequency domain fatigue analysis including out-of-phase stress components

    Science.gov (United States)

    Bonte, M. H. A.; de Boer, A.; Liebregts, R.

    2007-04-01

    This paper provides a new formula to take into account phase differences in the determination of an equivalent von Mises stress power spectral density (PSD) from multiple random inputs. The obtained von Mises PSD can subsequently be used for fatigue analysis. The formula was derived for use in the commercial vehicle business and was implemented in combination with Finite Element software to predict and analyse fatigue failure in the frequency domain.

  19. Role of multiaxial stress state in the hydrogen-assisted rolling-contact fatigue in bearings for wind turbines

    Directory of Open Access Journals (Sweden)

    J. Toribio

    2015-07-01

    Full Text Available Offshore wind turbines often involve important engineering challenges such as the improvement of hydrogen embrittlement resistance of the turbine bearings. These elements frequently suffer the so-called phenomenon of hydrogen-assisted rolling-contact fatigue (HA-RCF as a consequence of the synergic action of the surrounding harsh environment (the lubricant supplying hydrogen to the material and the cyclic multiaxial stress state caused by in-service mechanical loading. Thus the complex phenomenon could be classified as hydrogen-assisted rolling-contact multiaxial fatigue (HA-RC-MF. This paper analyses, from the mechanical and the chemical points of view, the so-called ball-on-rod test, widely used to evaluate the hydrogen embrittlement susceptibility of turbine bearings. Both the stress-strain states and the steady-state hydrogen concentration distribution are studied, so that a better elucidation can be obtained of the potential fracture places where the hydrogen could be more harmful and, consequently, where the turbine bearings could fail during their life in service.

  20. Wind Turbine Contingency Control Through Generator De-Rating

    Science.gov (United States)

    Frost, Susan; Goebel, Kai; Balas, Mark

    2013-01-01

    Maximizing turbine up-time and reducing maintenance costs are key technology drivers for wind turbine operators. Components within wind turbines are subject to considerable stresses due to unpredictable environmental conditions resulting from rapidly changing local dynamics. In that context, systems health management has the aim to assess the state-of-health of components within a wind turbine, to estimate remaining life, and to aid in autonomous decision-making to minimize damage to the turbine. Advanced contingency control is one way to enable autonomous decision-making by providing the mechanism to enable safe and efficient turbine operation. The work reported herein explores the integration of condition monitoring of wind turbines with contingency control to balance the trade-offs between maintaining system health and energy capture. The contingency control involves de-rating the generator operating point to achieve reduced loads on the wind turbine. Results are demonstrated using a high fidelity simulator of a utility-scale wind turbine.

  1. A comparative study of different techniques in the stress analysis of a nuclear component

    International Nuclear Information System (INIS)

    Dickenson, P.W.; Floyd, C.G.

    1985-01-01

    The inner surface stresses around the corner between the cylindrical wall and end plate of a flat ended pressure vessel have been determined using finite element, boundary element and photoelastic techniques. The results demonstrate severe deficiencies under certain conditions in the performance of the quadrilateral axisymmetric finite element which is commonly used in this type of analysis. The boundary element method is shown to provide an alternative analysis route giving more accurate results. The hybrid formulation finite element is also found to give reasonable results for the analysis of stresses in regions of rapidly varying stress. (orig.)

  2. Cold and Heat Stress Diversely Alter Both Cauliflower Respiration and Distinct Mitochondrial Proteins Including OXPHOS Components and Matrix Enzymes

    Science.gov (United States)

    Rurek, Michał; Czołpińska, Magdalena; Pawłowski, Tomasz Andrzej; Krzesiński, Włodzimierz; Spiżewski, Tomasz

    2018-01-01

    Complex proteomic and physiological approaches for studying cold and heat stress responses in plant mitochondria are still limited. Variations in the mitochondrial proteome of cauliflower (Brassica oleracea var. botrytis) curds after cold and heat and after stress recovery were assayed by two-dimensional polyacrylamide gel electrophoresis (2D PAGE) in relation to mRNA abundance and respiratory parameters. Quantitative analysis of the mitochondrial proteome revealed numerous stress-affected protein spots. In cold, major downregulations in the level of photorespiratory enzymes, porine isoforms, oxidative phosphorylation (OXPHOS) and some low-abundant proteins were observed. In contrast, carbohydrate metabolism enzymes, heat-shock proteins, translation, protein import, and OXPHOS components were involved in heat response and recovery. Several transcriptomic and metabolic regulation mechanisms are also suggested. Cauliflower plants appeared less susceptible to heat; closed stomata in heat stress resulted in moderate photosynthetic, but only minor respiratory impairments, however, photosystem II performance was unaffected. Decreased photorespiration corresponded with proteomic alterations in cold. Our results show that cold and heat stress not only operate in diverse modes (exemplified by cold-specific accumulation of some heat shock proteins), but exert some associations at molecular and physiological levels. This implies a more complex model of action of investigated stresses on plant mitochondria. PMID:29547512

  3. Barotropic Eulerian residual circulation in the Gulf of California due to the M{sub 2} tide and wind stress

    Energy Technology Data Exchange (ETDEWEB)

    Argote, M. L.; Lavin, M. F.; Amador, A. [Departamento de Oceanografia Fisica, CICESE, Ensenada, Baja California (Mexico)

    1998-07-01

    A vertically integrated, non-linear numerical model in finite differences is used to analyze two forcing mechanisms of the mean barotropic circulation in the Gulf of California: topographic rectification due to tidal currents (M{sub 2}) and wind stress. Under tidal forcing the nonlinearities of the momentum equations induce unorganized strong tidal induced residual currents (u{sub e} > 5 cm s{sup -}1) in the channels between the islands, and along-isobath anticyclonic circulation in the Northern Gulf, with speeds u{sub 3} < 2.5 cm s{sup -}1 over the edge of Delfin Basin. These numerical results are in agreement with analytical results, which indicate that the tidal-induced currents are mostly due to the advective terms, and that continuity and the Coriolis term (but regulated by bottom friction) are responsible for the along-isobath flow. The quadratic bottom friction plays a role in generating mean currents only in the very shallow area off the Colorado River Delta. The effect of wind stress was modeled by imposing upon the running M{sub 2} model a constant surface stress ( r = 0.016 Pa), from the NW for winter conditions and from the SE for summer conditions. The wind-induced circulation was obtained by averaging over a tidal cycle and then subtracting the tidal residuals. The two wind directions produce almost identical circulation patterns, but with opposite directions. For the NW wind stress, the main features of the predicted circulation are: (a) In the Northern Gulf an anticyclonic circulation pattern, with the strongest currents (up to {approx} 10 cm s-1) following the bathymetry of the rim of Delfin Basin, Wagner Basin and the mainland coast off Bahia Adair and Bahia San Jorge. There is also a southward flow along the peninsula coast, from the Colorado River to Bahia San Luis Gonzaga. (b) In the Southern Gulf, there is a strong flow ({approx} 10 to 15 cm s{sup -}1) to the SE over the continental shelf along the mainland coast. A somewhat less well

  4. Heat transfer and structure stress analysis of micro packaging component of high power light emitting diode

    Directory of Open Access Journals (Sweden)

    Hsu Chih-Neng

    2013-01-01

    Full Text Available This paper focuses on the heat transfer and structural stress analysis of the micro- scale packaging structure of a high-power light emitting diode. The thermal-effect and thermal-stress of light emitting diode are determined numerically. Light emitting diode is attached to the silicon substrate through the wire bonding process by using epoxy as die bond material. The silicon substrate is etched with holes at the bottom and filled with high conductivity copper material. The chip temperature and structure stress increase with input power consumption. The micro light emitting diode is mounted on the heat sink to increase the heat dissipation performance, to decrease chip temperature, to enhance the material structure reliability and safety, and to avoid structure failure as well. This paper has successfully used the finite element method to the micro-scale light emitting diode heat transfer and stress concentration at the edges through etched holes.

  5. Apolipoprotein J/Clusterin is a novel structural component of human erythrocytes and a biomarker of cellular stress and senescence.

    Directory of Open Access Journals (Sweden)

    Marianna H Antonelou

    Full Text Available BACKGROUND: Secretory Apolipoprotein J/Clusterin (sCLU is a ubiquitously expressed chaperone that has been functionally implicated in several pathological conditions of increased oxidative injury, including aging. Nevertheless, the biological role of sCLU in red blood cells (RBCs remained largely unknown. In the current study we identified sCLU as a component of human RBCs and we undertook a detailed analysis of its cellular topology. Moreover, we studied the erythrocytic membrane sCLU content during organismal aging, in conditions of increased organismal stress and accelerated RBCs senescence, as well as during physiological in vivo cellular senescence. METHODOLOGY/PRINCIPAL FINDINGS: By using a combination of molecular, biochemical and high resolution microscopical methods we found that sCLU is a novel structural component of RBCs extra- and intracellular plasma membrane and cytosol. We observed that the RBCs membrane-associated sCLU decreases during organismal aging or exposure to acute stress (e.g. smoking, in patients with congenital hemolytic anemia, as well as during RBCs in vivo senescence. In all cases, sCLU reduction paralleled the expression of typical cellular senescence, redox imbalance and erythrophagocytosis markers which are also indicative of the senescence- and oxidative stress-mediated RBCs membrane vesiculation. CONCLUSIONS/SIGNIFICANCE: We propose that sCLU at the mature RBCs is not a silent remnant of the erythroid precursors, but an active component being functionally implicated in the signalling mechanisms of cellular senescence and oxidative stress-responses in both healthy and diseased organism. The reduced sCLU protein levels in the RBCs membrane following cell exposure to various endogenous or exogenous stressors closely correlates to the levels of cellular senescence and redox imbalance markers, suggesting the usefulness of sCLU as a sensitive biomarker of senescence and cellular stress.

  6. Feasibility study on measuring axial and transverse stress/strain components in composite materials using Bragg sensors

    Science.gov (United States)

    Luyckx, G.; Degrieck, J.; De Waele, W.; Van Paepegem, W.; Van Roosbroeck, J.; Chah, K.; Vlekken, J.; McKenzie, I.; Obst, A.

    2017-11-01

    A fibre optic sensor design is proposed for simultaneously measuring the 3D stress (or strain) components and temperature inside thermo hardened composite materials. The sensor is based on two fibre Bragg gratings written in polarisation maintaining fibre. Based on calculations of the condition number, it will be shown that reasonable accuracies are to be expected. First tests on the bare sensors and on the sensors embedded in composite material, which confirm the expected behaviour, will be presented.

  7. A Unique Fungal Two-Component System Regulates Stress Responses, Drug Sensitivity, Sexual Development, and Virulence of Cryptococcus neoformans

    Science.gov (United States)

    Bahn, Yong-Sun; Kojima, Kaihei; Cox, Gary M.

    2006-01-01

    The stress-activated mitogen-activated protein kinase (MAPK) pathway is widely used by eukaryotic organisms as a central conduit via which cellular responses to the environment effect growth and differentiation. The basidiomycetous human fungal pathogen Cryptococcus neoformans uniquely uses the stress-activated Pbs2-Hog1 MAPK system to govern a plethora of cellular events, including stress responses, drug sensitivity, sexual reproduction, and virulence. Here, we characterized a fungal “two-component” system that controls these fundamental cellular functions via the Pbs2-Hog1 MAPK cascade. A typical response regulator, Ssk1, modulated all Hog1-dependent phenotypes by controlling Hog1 phosphorylation, indicating that Ssk1 is the major upstream signaling component of the Pbs2-Hog1 pathway. A second response regulator, Skn7, governs sensitivity to Na+ ions and the antifungal agent fludioxonil, negatively controls melanin production, and functions independently of Hog1 regulation. To control these response regulators, C. neoformans uses multiple sensor kinases, including two-component–like (Tco) 1 and Tco2. Tco1 and Tco2 play shared and distinct roles in stress responses and drug sensitivity through the Hog1 MAPK system. Furthermore, each sensor kinase mediates unique cellular functions for virulence and morphological differentiation. Our findings highlight unique adaptations of this global two-component MAPK signaling cascade in a ubiquitous human fungal pathogen. PMID:16672377

  8. Recover the story of a component or the determination of the welding residual stresses

    International Nuclear Information System (INIS)

    Genette, P.; Dupas, Ph.; Waeckel, F.

    1998-01-01

    Mechanical components in nuclear power plants can keep track of the welding processes they had undergone before to entrying into service. The memory of these past events can postpone or enhance possible damage phenomena on these components. Nowadays, numerical simulation software, such as the Code ASTER, enable to reproduce numerically these welding processes so that their mechanical consequences be retrieved. (authors)

  9. Inverse method for stress monitoring in pressure components of steam generators

    International Nuclear Information System (INIS)

    Duda, P.

    2003-01-01

    The purpose of this work is to formulate a space marching method, which can be used to solve inverse multidimensional heat conduction problems. The method is designed to reconstruct the transient temperature distribution in a whole construction element based on measured temperatures taken at selected points inside or on the outer surface of the construction element. Next, the Finite Element Method is used to calculate thermal stresses and stresses caused by other loads such as, for instance, internal pressure. The developed method for solving temperature and total stress distribution will be tested using the measured temperatures generated from a direct solution. Transient temperature and total stress distribution obtained from method presented below will be compared with the values obtained from the direct solution. Finally, the presented method will be applied in order to monitor temperature and stress distribution in an outlet header using the real measured temperature values at seven points on the header's outer surface during the power boiler's shut down operation. The presented method allows to optimize the power block's start-up and shut-down operations, contributes to the reduction of heat loss during these operations and to the extension of power block's life. The fatigue and creep usage factor can be computed in an on-line mode. The presented method herein can be applied to monitoring systems that work in conventional as well as in nuclear power plants. (author)

  10. Application of photoelasticity to study stress in component of the fuel element of nuclear reator

    International Nuclear Information System (INIS)

    Diniz, S.M.C.

    1987-11-01

    The fuel assembly, in the core of the nuclear reactor, is submitted to a system of forces (weight, buoyancy and hydraulic lift-up) with a resultant oriented in the direction of the coolant flow. To assure the assembly stability, under all operation conditions of the nuclear reactor, a holding-down device composed of four leaf springs is used. The safe/operation of the reactor depends on the capacity of such springs to support the maximum loads applied on them. The strictly mathematical methods for stress analysis of these springs are very complex, due to several factors such as: tri-dimensional geometry, changing loading, plastic strains and stress concentration. The stress analysis of these springs was performed using the photoelastic method. This technique has been proved to be adequate to the leaf spring analysis. In order to permit the evaluation of the potentialities of the employed method the Photoelasticity is decribed in its multiples purposes; that is, two-dimensional problems, stress frozen technique and reflection photoelasticity. The results obtained certify the role of the Photoelasticity, as a powerfull tool to the stress analyst and to the nuclear industry as well. (author) [pt

  11. Consequences of Reducing the Cost of PV Modules on a PV Wind Diesel Hybrid System with Limited Sizing Components

    Directory of Open Access Journals (Sweden)

    Jones S. Silva

    2012-01-01

    Full Text Available The use of renewable resources for power supply in family homes has passed the stage of utopia to became a reality, with limits set by technical and economic parameters. This paper presents the results of a project originated from the initiative of a middle-class family to achieve energy independence at home. The starting point was the concept of home with “zero energy” in which the total energy available is equal to the energy consumed. The solution devised to meet the energy demand of the residence in question is a PV wind diesel hybrid system connected to the grid, with the possibility of energy storage in batteries and in the form of heating water and the environment of the house. As a restriction, the family requested that the system would represent little impact to the lifestyle and landscape. This paper aims to assess the consequences of reductions in the cost of the PV modules on the optimization space, as conceived by the software Homer. The results show that for this system, a 50% reduction in the cost of PV modules allows all viable solutions including PV modules.

  12. Storage-induced increase in biomarkers of oxidative stress and inflammation in red blood cell components

    DEFF Research Database (Denmark)

    Kücükakin, Bülent; Kocak, Volkan; Lykkesfeldt, Jens

    2011-01-01

    of buffy-coat reduced red cells in SAG-M additive solution, by assessing biomarkers of oxidative and inflammatory stress during a storage period of 35 days. Study design and methods. Ten units of RBCs were stored for 35 days. Samples were collected from the units at storage days 1, 3, 7, 14, 21, 28 and 35......, respectively. The samples were analysed for various biomarkers expressing the oxidative stress and inflammation, including malondialdehyde (MDA), α-tocopherol (AT), dehydroascorbic acid (DHA), ascorbate (ASC), YKL-40 and interleukin-6 (IL-6). Results. The levels ofMDA, ASC, DHA, IL-6 and YKL-40 changed...... significantly during the storage period (p oxidative and inflammatory stress during a storage period...

  13. Self-Assembly of 3D DNA Crystals Containing a Torsionally Stressed Component.

    Science.gov (United States)

    Hernandez, Carina; Birktoft, Jens J; Ohayon, Yoel P; Chandrasekaran, Arun Richard; Abdallah, Hatem; Sha, Ruojie; Stojanoff, Vivian; Mao, Chengde; Seeman, Nadrian C

    2017-11-16

    There is an increasing appreciation for structural diversity of DNA that is of interest to both DNA nanotechnology and basic biology. Here, we have explored how DNA responds to torsional stress by building on a previously reported two-turn DNA tensegrity triangle and demonstrating that we could introduce an extra nucleotide pair (np) into the original sequence without affecting assembly and crystallization. The extra np imposes a significant torsional stress, which is accommodated by global changes throughout the B-DNA duplex and the DNA lattice. The work reveals a near-atomic structure of naked DNA under a torsional stress of approximately 14%, and thus provides an example of DNA distortions that occur without a requirement for either an external energy source or the free energy available from protein or drug binding. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Integrated circuits and molecular components for stress and feeding: implications for eating disorders.

    Science.gov (United States)

    Hardaway, J A; Crowley, N A; Bulik, C M; Kash, T L

    2015-01-01

    Eating disorders are complex brain disorders that afflict millions of individuals worldwide. The etiology of these diseases is not fully understood, but a growing body of literature suggests that stress and anxiety may play a critical role in their development. As our understanding of the genetic and environmental factors that contribute to disease in clinical populations like anorexia nervosa, bulimia nervosa and binge eating disorder continue to grow, neuroscientists are using animal models to understand the neurobiology of stress and feeding. We hypothesize that eating disorder clinical phenotypes may result from stress-induced maladaptive alterations in neural circuits that regulate feeding, and that these circuits can be neurochemically isolated using animal model of eating disorders. © 2014 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  15. Job satisfaction, occupational stress, burnout and work engagement as components of work-related wellbeing

    Directory of Open Access Journals (Sweden)

    Sebastiaan Rothmann

    2008-11-01

    Full Text Available The objective of this study was to investigate the relationship between job satisfaction, occupational stress, burnout and work engagement as dimensions of work-related wellbeing in a sample of members of the police force in South Africa. A survey design was used. Stratifed random samples of members of the police force (N = 677 were taken in the North West Province of South Africa. The Minnesota Job Satisfaction Questionnaire, Police Stress Inventory, Maslach Burnout Inventory – General Survey and Utrecht Work Engagement Scale were used as measuring instruments. The results provided support for a four-factorial model of work-related wellbeing consisting of the following dimensions: job satisfaction (indicating pleasure vs. displeasure, occupational stress (indicating anxiety vs. comfort, burnout (indicating fatigue vs. vigour, and engagement (indicating enthusiasm vs. depression.

  16. Stress and fatigue analyses of primary circuit components of NPP using FEM

    International Nuclear Information System (INIS)

    Gal, P.

    2015-01-01

    This poster is a short illustration of the numerical assessment of the VVER-440 reactor pressure vessel (RPV) main flange. RPV main flange consists in free flange, pressure ring, flange bolts, nut and nickel gasket. Operating temperature transient modes, like heat up regime can lead to serious tension in bolts. So temperature fields have to be calculated. The fatigue assessment of the main flange bolt requires the determination of the coefficient of stress concentrators in bolt thread. Stress concentrators can be computed through FEM or given by norms (PNAEG). The most significant value of fatigue usage factor is in the first thread connection between bolt and nut. A finite element method (FEM) is used for calculation stress and temperature distribution in the reactor flange. The reassessment was performed according Czech normative document NTD-A.S.I. and VERLIFE

  17. Quantitative trait loci identified for blood chemistry components of an advanced intercross line of chickens under heat stress.

    Science.gov (United States)

    Van Goor, Angelica; Ashwell, Christopher M; Persia, Michael E; Rothschild, Max F; Schmidt, Carl J; Lamont, Susan J

    2016-04-14

    Heat stress in poultry results in considerable economic losses and is a concern for both animal health and welfare. Physiological changes occur during periods of heat stress, including changes in blood chemistry components. A highly advanced intercross line, created from a broiler (heat susceptible) by Fayoumi (heat resistant) cross, was exposed to daily heat cycles for seven days starting at 22 days of age. Blood components measured pre-heat treatment and on the seventh day of heat treatment included pH, pCO2, pO2, base excess, HCO3, TCO2, K, Na, ionized Ca, hematocrit, hemoglobin, sO2, and glucose. A genome-wide association study (GWAS) for these traits and their calculated changes was conducted to identify quantitative trait loci (QTL) using a 600 K SNP panel. There were significant increases in pH, base excess, HCO3, TCO2, ionized Ca, hematocrit, hemoglobin, and sO2, and significant decreases in pCO2 and glucose after 7 days of heat treatment. Heritabilities ranged from 0.01-0.21 for pre-heat measurements, 0.01-0.23 for measurements taken during heat, and 0.00-0.10 for the calculated change due to heat treatment. All blood components were highly correlated within measurement days, but not correlated between measurement days. The GWAS revealed 61 QTL for all traits, located on GGA (Gallus gallus chromosome) 1, 3, 6, 9, 10, 12-14, 17, 18, 21-28, and Z. A functional analysis of the genes in these QTL regions identified the Angiopoietin pathway as significant. The QTL that co-localized for three or more traits were on GGA10, 22, 26, 28, and Z and revealed candidate genes for birds' response to heat stress. The results of this study contribute to our knowledge of levels and heritabilities of several blood components of chickens under thermoneutral and heat stress conditions. Most components responded to heat treatment. Mapped QTL may serve as markers for genomic selection to enhance heat tolerance in poultry. The Angiopoietin pathway is likely involved in the

  18. Usefulness of creep work-time relation for determining stress intensity limit of high-temperature components

    International Nuclear Information System (INIS)

    Kim, Woo Gon; Ryu, Woo Seog; Lee, Kyung Yong

    2003-01-01

    In order to determine creep stress intensity limit of high-temperature components, the usefulness of the creep work and time equation, defined as W c t p = B (where W c = σ ε is the total creep work done during creep, and p and B are constants), was investigated using the experimental data. For this purpose, the creep tests for generating 1.0% strain for commercial type 316 stainless steel were conducted with different stresses; 160 MPa, 150 MPa, 145 MPa, 140 MPa and 135 MPa at 593 .deg. C. The plots of log W c - log t showed a good linear relation up to 10 5 hr, and the results of the creep work-time relation for p, B and stress intensity values showed good agreement to those of Isochronous Stress-Strain Curves (ISSC) presented in ASME BPV NH. The relation can be simply obtained with only several short-term 1% strain data without ISSC which can be obtained by long-term creep data. Particularly, this relation is useful in estimating stress intensity limit for new and emerging class of high-temperature creeping materials

  19. Modeling of Residual Stress and Machining Distortion in Aerospace Components (PREPRINT)

    Science.gov (United States)

    2010-03-01

    John Gayda, “The Effect of Heat Treatment on Residual Stress and Machining Distortions in Advanced Nickel Base Disk Alloys,” NASA/TM-2001-210717. 2...Wei-Tsu Wu, Guoji Li, Juipeng Tang, Shesh Srivatsa, Ravi Shankar, Ron Wallis, Padu Ramasundaram and John Gayda, “A process modeling system for heat...Materials Processing Technology 98 (2000) 189-195. 6. M.A. Rist, S. Tin, B.A. Roder, J.A. James, and M.R. Daymond , “Residual Stresses in a

  20. Structural analysis and stress criteria of advanced LMFBR-fuel element components

    International Nuclear Information System (INIS)

    Seehafer, H.-J.

    1975-01-01

    As the use of tie rods in the core means a loss of reactor power, new grid attachment concepts have been developed within the SNR-project providing the attachment of the grids at the wrapper tubes. The purpose of this report is to describe the mechanical design procedure for grid spacers, to find out the most promising grid attachment and to investigate the influence of uncertain conditions on the stress level in grid spacers. The stress which is expected to relax due to irradiation-induced creep has been estimated

  1. Haemophilus parasuis CpxRA two-component system confers bacterial tolerance to environmental stresses and macrolide resistance.

    Science.gov (United States)

    Cao, Qi; Feng, Fenfen; Wang, Huan; Xu, Xiaojuan; Chen, Huanchun; Cai, Xuwang; Wang, Xiangru

    2018-01-01

    Haemophilus parasuis is an opportunistic pathogen localized in the upper respiratory tracts of pigs, its infection begins from bacterial survival under complex conditions, like hyperosmosis, oxidative stress, phagocytosis, and sometimes antibiotics as well. The two-component signal transduction (TCST) system serves as a common stimulus-response mechanism that allows microbes to sense and respond to diverse environmental conditions via a series of phosphorylation reactions. In this study, we investigated the role of TCST system CpxRA in H. parasuis in response to different environmental stimuli by constructing the ΔcpxA and ΔcpxR single deletion mutants as well as the ΔcpxRA double deletion mutant from H. parasuis serotype 4 isolate JS0135. We demonstrated that H. parasuis TCST system CpxRA confers bacterial tolerance to stresses and bactericidal antibiotics. The CpxR was found to play essential roles in mediating oxidative stress, osmotic stresses and alkaline pH stress tolerance, as well as macrolide resistance (i.e. erythromycin), but the CpxA deletion did not decrease bacterial resistance to abovementioned stresses. Moreover, we found via RT-qPCR approach that HAPS_RS00160 and HAPS_RS09425, both encoding multidrug efflux pumps, were significantly decreased in erythromycin challenged ΔcpxR and ΔcpxRA mutants compared with wild-type strain JS0135. These findings characterize the role of the TCST system CpxRA in H. parasuis conferring stress response tolerance and bactericidal resistance, which will deepen our understanding of the pathogenic mechanism in H. parasuis. Copyright © 2017 Elsevier GmbH. All rights reserved.

  2. Emotional-volitional components of operator reliability. [sensorimotor function testing under stress

    Science.gov (United States)

    Mileryan, Y. A.

    1975-01-01

    Sensorimotor function testing in a tracking task under stressfull working conditions established a psychological characterization for a successful aviation pilot: Motivation significantly increased the reliability and effectiveness of their work. Their acitivities were aimed at suppressing weariness and the feeling of fear caused by the stress factors; they showed patience, endurance, persistence, and a capacity for lengthy volitional efforts.

  3. Precipitate growth in multi-component systems with stress relaxation by diffusion and creep

    Czech Academy of Sciences Publication Activity Database

    Svoboda, Jiří; Fischer, F. D.; Riedel, H.; Kozeschnik, E.

    2016-01-01

    Roč. 82, JUL (2016), s. 112-126 ISSN 0749-6419 EU Projects: European Commission(XE) 309916 Institutional support: RVO:68081723 Keywords : Strengthening mechanisms * Phase transformation * Creep * Stress relaxation * Precipitation kinetics Subject RIV: BJ - Thermodynamics Impact factor: 5.702, year: 2016

  4. Constitutive modeling and finite element procedure development for stress analysis of prismatic high temperature gas cooled reactor graphite core components

    International Nuclear Information System (INIS)

    Mohanty, Subhasish; Majumdar, Saurindranath; Srinivasan, Makuteswara

    2013-01-01

    Highlights: • Finite element procedure developed for stress analysis of HTGR graphite component. • Realistic fluence profile and reflector brick shape considered for the simulation. • Also realistic H-451 grade material properties considered for simulation. • Typical outer reflector of a GT-MHR type reactor considered for numerical study. • Based on the simulation results replacement of graphite bricks can be scheduled. -- Abstract: High temperature gas cooled reactors, such as prismatic and pebble bed reactors, are increasingly becoming popular because of their inherent safety, high temperature process heat output, and high efficiency in nuclear power generation. In prismatic reactors, hexagonal graphite bricks are used as reflectors and fuel bricks. In the reactor environment, graphite bricks experience high temperature and neutron dose. This leads to dimensional changes (swelling and or shrinkage) of these bricks. Irradiation dimensional changes may affect the structural integrity of the individual bricks as well as of the overall core. The present paper presents a generic procedure for stress analysis of prismatic core graphite components using graphite reflector as an example. The procedure is demonstrated through commercially available ABAQUS finite element software using the option of user material subroutine (UMAT). This paper considers General Atomics Gas Turbine-Modular Helium Reactor (GT-MHR) as a bench mark design to perform the time integrated stress analysis of a typical reflector brick considering realistic geometry, flux distribution and realistic irradiation material properties of transversely isotropic H-451 grade graphite

  5. Constitutive modeling and finite element procedure development for stress analysis of prismatic high temperature gas cooled reactor graphite core components

    Energy Technology Data Exchange (ETDEWEB)

    Mohanty, Subhasish, E-mail: smohanty@anl.gov [Argonne National Laboratory, South Cass Avenue, Argonne, IL 60439 (United States); Majumdar, Saurindranath [Argonne National Laboratory, South Cass Avenue, Argonne, IL 60439 (United States); Srinivasan, Makuteswara [U.S. Nuclear Regulatory Commission, Washington, DC 20555 (United States)

    2013-07-15

    Highlights: • Finite element procedure developed for stress analysis of HTGR graphite component. • Realistic fluence profile and reflector brick shape considered for the simulation. • Also realistic H-451 grade material properties considered for simulation. • Typical outer reflector of a GT-MHR type reactor considered for numerical study. • Based on the simulation results replacement of graphite bricks can be scheduled. -- Abstract: High temperature gas cooled reactors, such as prismatic and pebble bed reactors, are increasingly becoming popular because of their inherent safety, high temperature process heat output, and high efficiency in nuclear power generation. In prismatic reactors, hexagonal graphite bricks are used as reflectors and fuel bricks. In the reactor environment, graphite bricks experience high temperature and neutron dose. This leads to dimensional changes (swelling and or shrinkage) of these bricks. Irradiation dimensional changes may affect the structural integrity of the individual bricks as well as of the overall core. The present paper presents a generic procedure for stress analysis of prismatic core graphite components using graphite reflector as an example. The procedure is demonstrated through commercially available ABAQUS finite element software using the option of user material subroutine (UMAT). This paper considers General Atomics Gas Turbine-Modular Helium Reactor (GT-MHR) as a bench mark design to perform the time integrated stress analysis of a typical reflector brick considering realistic geometry, flux distribution and realistic irradiation material properties of transversely isotropic H-451 grade graphite.

  6. Human cold stress of strong local-wind "Hijikawa-arashi" in Japan, based on the UTCI index and thermo-physiological responses

    Science.gov (United States)

    Ohashi, Yukitaka; Katsuta, Takumi; Tani, Haruka; Okabayashi, Taiki; Miyahara, Satoshi; Miyashita, Ryoji

    2018-03-01

    We investigated the cold stress caused by a strong local wind called "Hijikawa-arashi," through in situ vital measurements and the Universal Thermal Climate Index (UTCI). This wind is a very interesting winter phenomenon, localized in an area within 1 km of the seashore in Ozu City, Ehime Prefecture in Japan. When a strong Hijikawa-arashi (HA) occurred at 14-15 m s-1, the UTCI decreased to - 30 °C along the bridge where commuting residents are the most exposed to strong and cold winds. On the bridge, most participants in our experiment felt "very cold" or "extremely cold." The UTCI of HA can be predicted from a multiple regression equation using wind speed and air temperature. The cold HA wind is also harmful to human thermo-physiological responses. It leads to higher blood pressure and increased heart rate, both of which act as cardiovascular stress triggers. Increases of 6-10 mmHg and 3-6 bpm for every 10 °C reduction in UTCI were seen on all observational days, including HA and non-HA days. In fact, the participants' body skin temperatures decreased by approximately 1.2 to 1.7 °C for every 10 °C reduction in UTCI. Thus, the UTCI variation due to the HA outbreak corresponded well with the cold sensation and thermo-physiological responses in humans. This result suggests that daily UTCI monitoring enables the prediction of thermo-physiological responses to the HA cold stress.

  7. Human cold stress of strong local-wind "Hijikawa-arashi" in Japan, based on the UTCI index and thermo-physiological responses.

    Science.gov (United States)

    Ohashi, Yukitaka; Katsuta, Takumi; Tani, Haruka; Okabayashi, Taiki; Miyahara, Satoshi; Miyashita, Ryoji

    2018-03-30

    We investigated the cold stress caused by a strong local wind called "Hijikawa-arashi," through in situ vital measurements and the Universal Thermal Climate Index (UTCI). This wind is a very interesting winter phenomenon, localized in an area within 1 km of the seashore in Ozu City, Ehime Prefecture in Japan. When a strong Hijikawa-arashi (HA) occurred at 14-15 m s -1 , the UTCI decreased to - 30 °C along the bridge where commuting residents are the most exposed to strong and cold winds. On the bridge, most participants in our experiment felt "very cold" or "extremely cold." The UTCI of HA can be predicted from a multiple regression equation using wind speed and air temperature. The cold HA wind is also harmful to human thermo-physiological responses. It leads to higher blood pressure and increased heart rate, both of which act as cardiovascular stress triggers. Increases of 6-10 mmHg and 3-6 bpm for every 10 °C reduction in UTCI were seen on all observational days, including HA and non-HA days. In fact, the participants' body skin temperatures decreased by approximately 1.2 to 1.7 °C for every 10 °C reduction in UTCI. Thus, the UTCI variation due to the HA outbreak corresponded well with the cold sensation and thermo-physiological responses in humans. This result suggests that daily UTCI monitoring enables the prediction of thermo-physiological responses to the HA cold stress.

  8. The stress components effect on the Fe-based microwires magnetostatic and magnetostrictive properties

    Energy Technology Data Exchange (ETDEWEB)

    Rodionova, V. [Institute of Physics & Technology and STP “Fabrika” Immanuel Kant Baltic Federal University, A. Nevskogo 14, Kaliningrad 236041 (Russian Federation); National University of Science and Technology “MISIS”, Leninsky prospect 4, Moscow 119049 (Russian Federation); Baraban, I.; Chichay, K.; Litvinova, A. [Institute of Physics & Technology and STP “Fabrika” Immanuel Kant Baltic Federal University, A. Nevskogo 14, Kaliningrad 236041 (Russian Federation); Perov, N. [Institute of Physics & Technology and STP “Fabrika” Immanuel Kant Baltic Federal University, A. Nevskogo 14, Kaliningrad 236041 (Russian Federation); Faculty of Physics, Lomonosov Moscow State University, Leninskie Gory 1-2, Moscow 119991 (Russian Federation)

    2017-01-15

    For glass-coated amorphous ferromagnetic Fe-based microwires both joint and separate effect of metallic nucleus diameter, d, and the ratio of metallic nucleus diameter to the total diameter of microwire in glass shell, d/D, on magnetic properties is investigated. Thereby the contribution of both shell-induced stresses, associated with the ratio of diameters, and internal nucleus stresses (residual, quenching), associated with the diameter of the nucleus are estimated. A strong and non-monotonic effect of the metallic nucleus diameter and metallic nucleus diameter/total microwire diameter ratio on magnetostatic and magnetostrictive properties was established. For analysis, we considered magnetically bi-stable microwires of “classic” Fe{sub 77.5}Si{sub 7.5}B{sub 15} alloy with positive magnetostriction coefficient.

  9. The stress components effect on the Fe-based microwires magnetostatic and magnetostrictive properties

    International Nuclear Information System (INIS)

    Rodionova, V.; Baraban, I.; Chichay, K.; Litvinova, A.; Perov, N.

    2017-01-01

    For glass-coated amorphous ferromagnetic Fe-based microwires both joint and separate effect of metallic nucleus diameter, d, and the ratio of metallic nucleus diameter to the total diameter of microwire in glass shell, d/D, on magnetic properties is investigated. Thereby the contribution of both shell-induced stresses, associated with the ratio of diameters, and internal nucleus stresses (residual, quenching), associated with the diameter of the nucleus are estimated. A strong and non-monotonic effect of the metallic nucleus diameter and metallic nucleus diameter/total microwire diameter ratio on magnetostatic and magnetostrictive properties was established. For analysis, we considered magnetically bi-stable microwires of “classic” Fe_7_7_._5Si_7_._5B_1_5 alloy with positive magnetostriction coefficient.

  10. Constraints on Stress Components at the Internal Singular Point of an Elastic Compound Structure

    Science.gov (United States)

    Pestrenin, V. M.; Pestrenina, I. V.

    2017-03-01

    The classical analytical and numerical methods for investigating the stress-strain state (SSS) in the vicinity of a singular point consider the point as a mathematical one (having no linear dimensions). The reliability of the solution obtained by such methods is valid only outside a small vicinity of the singular point, because the macroscopic equations become incorrect and microscopic ones have to be used to describe the SSS in this vicinity. Also, it is impossible to set constraint or to formulate solutions in stress-strain terms for a mathematical point. These problems do not arise if the singular point is identified with the representative volume of material of the structure studied. In authors' opinion, this approach is consistent with the postulates of continuum mechanics. In this case, the formulation of constraints at a singular point and their investigation becomes an independent problem of mechanics for bodies with singularities. This method was used to explore constraints at an internal singular point (representative volume) of a compound wedge and a compound rib. It is shown that, in addition to the constraints given in the classical approach, there are also constraints depending on the macroscopic parameters of constituent materials. These constraints turn the problems of deformable bodies with an internal singular point into nonclassical ones. Combinations of material parameters determine the number of additional constraints and the critical stress state at the singular point. Results of this research can be used in the mechanics of composite materials and fracture mechanics and in studying stress concentrations in composite structural elements.

  11. Analysis of Effective and Internal Cyclic Stress Components in the Inconel Superalloy Fatigued at Elevated Temperature

    Czech Academy of Sciences Publication Activity Database

    Šmíd, Miroslav; Petrenec, Martin; Polák, Jaroslav; Obrtlík, Karel; Chlupová, Alice

    2011-01-01

    Roč. 278, 4 July (2011), s. 393-398 ISSN 1022-6680. [European Symposium on Superalloys and their Application. Wildbad Kreuth, 25.5.2010-28.5.2010] R&D Projects: GA ČR GA106/08/1631 Institutional research plan: CEZ:AV0Z20410507 Keywords : low cycle fatigue * superalloys * high temperature * hysteresis loop * effective and internal stresses Subject RIV: JL - Materials Fatigue, Friction Mechanics; JL - Materials Fatigue, Friction Mechanics (UFM-A)

  12. Evaluation of Chitosan Nanoparticles Effects on Yield and Yield Components of Barley (Hordeum vulgare L. under Late Season Drought Stress

    Directory of Open Access Journals (Sweden)

    Faride Behboudi

    2018-01-01

    Full Text Available As a step towards the profitable employment of nanoparticles (NPs in agriculture, effects of chitosan NPs was probed on barley plants under late season drought stress. A factorial experiment was performed based on a randomized complete block design with three replications. The experimental factors included the chitosan NPs concentrations (0 (control, 30, 60 and 90 ppm, application methods (foliar and soil application and irrigation regimes (well-watered and withholding of irrigation for 15 days after pollination. The barley seeds were separately planted in pots. Then, the NPs were added to them through the soil and foliar application at three stages. The results indicated that using the chitosan NPs, especially 60 and 90 ppm, significantly increased the leaf area (LA, the leaf color (SPAD, the number of grain per spike, the grain yield and the harvest index compared to the control. Also, drought stress significantly decreased the yield and yield components compared to the well-watered plants. In contrast, using the chitosan NPs in plants under drought stress significantly increased the relative water content (RWC, the 1000-grain weight, the grain protein, the proline content, the catalase (CAT and the superoxide dismutase (SOD compared to the control. There was no a significant difference between two methods of using NPs in most studied traits. The results highlighted that using the chitosan NPs, especially 60 and 90 ppm, in both irrigation regimes can significantly improve the majority of the studied traits compared to the control and mitigate the harmful effects of drought stress.

  13. Cyclic stress-strain behaviour under thermomechanical fatigue conditions - Modeling by means of an enhanced multi-component model

    Energy Technology Data Exchange (ETDEWEB)

    Christ, H J [Institut fuer Werkstofftechnik, Universitaet Siegen, D-57068 Siegen (Germany); Bauer, V, E-mail: hans-juergen.christ@uni-siegen.d [Wieland Werke AG, Graf-Arco Str. 36, D-89072 Ulm (Germany)

    2010-07-01

    The cyclic stress-strain behaviour of metals and alloys in cyclic saturation can reasonably be described by means of simple multi-component models, such as the model based on a parallel arrangement of elastic-perfectly plastic elements, which was originally proposed by Masing already in 1923. This model concept was applied to thermomechanical fatigue loading of two metallic engineering materials which were found to be rather oppositional with respect to cyclic plastic deformation. One material is an austenitic stainless steel of type AISI304L which shows dynamic strain aging (DSA) and serves as an example for a rather ductile alloy. A dislocation arrangement was found after TMF testing deviating characteristically from the corresponding isothermal microstructures. The second material is a third-generation near-gamma TiAl alloy which is characterized by a very pronounced ductile-to-brittle transition (DBT) within the temperature range of TMF cycling. Isothermal fatigue testing at temperatures below the DBT temperature leads to cyclic hardening, while cyclic softening was found to occur above DBT. The combined effect under TMF leads to a continuously developing mean stress. The experimental observations regarding isothermal and non-isothermal stress-strain behaviour and the correlation to the underlying microstructural processes was used to further develop the TMF multi-composite model in order to accurately predict the TMF stress-strain response by taking the alloy-specific features into account.

  14. Individual differences in anxiety responses to stressful situations : A three-mode component analysis model

    NARCIS (Netherlands)

    Van Mechelen, Iven; Kiers, Henk A.L.

    1999-01-01

    The three-mode component analysis model is discussed as a tool for a contextualized study of personality. When applied to person x situation x response data, the model includes sets of latent dimensions for persons, situations, and responses as well as a so-called core array, which may be considered

  15. Trending analysis of incidents involving primary water stress corrosion cracking on Alloy 600 components at U.S. PWRs

    International Nuclear Information System (INIS)

    Takahara, Shogo; Watanabe, Norio

    2006-01-01

    Primary Water Stress Corrosion Cracking (PWSCC) which occurs on Nickel based alloy (Alloy 600) is a worldwide concern since early 1980's. Recently several significant degradations that originate from PWSCC in the reactor coolant pressure boundary (RCPB) components have been observed at U.S. PWR plants (e.g. Oconee-3, Davis Besse). The United States Nuclear Regulation Commission (NRC) has issued generic communications to address this problem and, in response to the Davis Besse event in 2002, gave the inspection order EA-03-009 for the PWR licensees to implement the inspection of the reactor vessel heads depending upon the effective degradation years. As well, in Japan, PWSCC is considered one of the safety issues, in particular, for aged nuclear power plants and actually, some plants have experienced PWSCC on RCPB components. In the present study, we analyzed the U.S. experience with Alloy 600 degradation by reviewing the licensee event reports from 1999 to 2005 and examined the trend of them mainly focusing on affected components, characteristics of cracking and inspection approaches for detecting the PWSCC. This study indicates that PWSCC is found to be occurred on the RCPB components exposed to the environment with high temperature such as the reactor vessel head, and has the tendency to happen for specific manufactures and material according to the RCPB components. As well, it is shown that for several components, the non-destructive examination is generally needed to detect and/or confirm the PWSCC after the visual inspection and different repair techniques are applied depending on the components affected. (author)

  16. A Component-Minimized Single-Phase Active Power Decoupling Circuit with Reduced Current Stress to Semiconductor Switches

    DEFF Research Database (Denmark)

    Tang, Yi; Blaabjerg, Frede

    2015-01-01

    inductor. With such a configuration, this leg can control the current going into the two output capacitors connected in series for power decoupling, and the other leg can control the line current according to active and reactive power requirement. The proposed topology does not require additional passive...... component, e.g. inductors or film capacitors for ripple energy storage because this task can be accomplished by the dc-link capacitors, and therefore its implementation cost can be minimized. Another unique feature of the proposed topology is that the current stress of power semiconductors can be reduced...

  17. The Offshore New European Wind Atlas

    Science.gov (United States)

    Karagali, I.; Hahmann, A. N.; Badger, M.; Hasager, C.; Mann, J.

    2017-12-01

    The New European Wind Atlas (NEWA) is a joint effort of research agencies from eight European countries, co-funded under the ERANET Plus Program. The project is structured around two areas of work: development of dynamical downscaling methodologies and measurement campaigns to validate these methodologies, leading to the creation and publication of a European wind atlas in electronic form. This atlas will contain an offshore component extending 100 km from the European coasts. To achieve this, mesoscale models along with various observational datasets are utilised. Scanning lidars located at the coastline were used to compare the coastal wind gradient reproduced by the meso-scale model. Currently, an experimental campaign is occurring in the Baltic Sea, with a lidar located in a commercial ship sailing from Germany to Lithuania, thus covering the entire span of the south Baltic basin. In addition, satellite wind retrievals from scatterometers and Synthetic Aperture Radar (SAR) instruments were used to generate mean wind field maps and validate offshore modelled wind fields and identify the optimal model set-up parameters.The aim of this study is to compare the initial outputs from the offshore wind atlas produced by the Weather & Research Forecasting (WRF) model, still in pre-operational phase, and the METOP-A/B Advanced Scatterometer (ASCAT) wind fields, reprocessed to stress equivalent winds at 10m. Different experiments were set-up to evaluate the model sensitivity for the various domains covered by the NEWA offshore atlas. ASCAT winds were utilised to assess the performance of the WRF offshore atlases. In addition, ASCAT winds were used to create an offshore atlas covering the years 2007 to 2016, capturing the signature of various spatial wind features, such as channelling and lee effects from complex coastal topographical elements.

  18. Simulation of a flexible wind turbine response to a grid fault

    DEFF Research Database (Denmark)

    Hansen, Anca Daniela; Cutululis, Nicolaos Antonio; Sørensen, Poul Ejnar

    2007-01-01

    The purpose of this work is to illustrate the impact of a grid fault on the mechanical loads of a wind turbine. Grid faults generate transients in the generator electromagnetic torque, which are propagated in the wind turbine, stressing its mechanical components. Grid faults are normally simulated...... in power system simulation tools applying simplified mechanical models of the drive train. This paper presents simulations of the wind turbine load response to grid faults with an advanced aeroelastic computer code (HAWC2). The core of this code is an advanced model for the flexible structure of the wind...... turbines, taking the flexibility of the tower, blades and other components of the wind turbines into account. The effect of a grid fault on the wind turbine flexible structure is assessed for a typical fixed speed wind turbine, equipped with an induction generator....

  19. The very low-frequency band of heart rate variability represents the slow recovery component after a mental stress task.

    Directory of Open Access Journals (Sweden)

    Harunobu Usui

    Full Text Available The very low-frequency (VLF band of heart rate variability (HRV has different characteristics compared with other HRV components. Here we investigated differences in HRV changes after a mental stress task. After the task, the high-frequency (HF band and ratio of high- to low-frequency bands (LF/HF immediately returned to baseline. We evaluated the characteristics of VLF band changes after a mental stress task. We hypothesized that the VLF band decreases during the Stroop color word task and there would be a delayed recovery for 2 h after the task (i.e., the VLF change would exhibit a "slow recovery". Nineteen healthy, young subjects were instructed to rest for 10 min, followed by a Stroop color word task for 20 min. After the task, the subjects were instructed to rest for 120 min. For all subjects, R-R interval data were collected; analysis was performed for VLF, HF, and LF/HF ratio. HRV during the rest time and each 15-min interval of the recovery time were compared. An analysis of the covariance was performed to adjust for the HF band and LF/HF ratio as confounding variables of the VLF component. HF and VLF bands significantly decreased and the LF/HF ratio significantly increased during the task compared with those during rest time. During recovery, the VLF band was significantly decreased compared with the rest time. After the task, the HF band and LF/HF ratio immediately returned to baseline and were not significantly different from the resting values. After adjusting for HF and LF/HF ratio, the VLF band had significantly decreased compared with that during rest. The VLF band is the "slow recovery" component and the HF band and LF/HF ratio are the "quick recovery" components of HRV. This VLF characteristic may clarify the unexplained association of the VLF band in cardiovascular disease prevention.

  20. The very low-frequency band of heart rate variability represents the slow recovery component after a mental stress task.

    Science.gov (United States)

    Usui, Harunobu; Nishida, Yusuke

    2017-01-01

    The very low-frequency (VLF) band of heart rate variability (HRV) has different characteristics compared with other HRV components. Here we investigated differences in HRV changes after a mental stress task. After the task, the high-frequency (HF) band and ratio of high- to low-frequency bands (LF/HF) immediately returned to baseline. We evaluated the characteristics of VLF band changes after a mental stress task. We hypothesized that the VLF band decreases during the Stroop color word task and there would be a delayed recovery for 2 h after the task (i.e., the VLF change would exhibit a "slow recovery"). Nineteen healthy, young subjects were instructed to rest for 10 min, followed by a Stroop color word task for 20 min. After the task, the subjects were instructed to rest for 120 min. For all subjects, R-R interval data were collected; analysis was performed for VLF, HF, and LF/HF ratio. HRV during the rest time and each 15-min interval of the recovery time were compared. An analysis of the covariance was performed to adjust for the HF band and LF/HF ratio as confounding variables of the VLF component. HF and VLF bands significantly decreased and the LF/HF ratio significantly increased during the task compared with those during rest time. During recovery, the VLF band was significantly decreased compared with the rest time. After the task, the HF band and LF/HF ratio immediately returned to baseline and were not significantly different from the resting values. After adjusting for HF and LF/HF ratio, the VLF band had significantly decreased compared with that during rest. The VLF band is the "slow recovery" component and the HF band and LF/HF ratio are the "quick recovery" components of HRV. This VLF characteristic may clarify the unexplained association of the VLF band in cardiovascular disease prevention.

  1. Integrating Structural Health Management with Contingency Control for Wind Turbines

    Directory of Open Access Journals (Sweden)

    Kai Goebel

    2013-01-01

    Full Text Available Maximizing turbine up-time and reducing maintenance costs are key technology drivers for wind turbine operators. Components within wind turbines are subject to considerable stresses due to unpredictable environmental conditions resulting from rapidly changing local dynamics. In that context, systems health management has the aim to assess the state-of-health of components within a wind turbine, to estimate remaining life, and to aid in autonomous decision-making to minimize damage to the turbine. Advanced contingency control is one way to enable autonomous decision-making by providing the mechanism to enable safe and efficient turbine operation. The work reported herein explores the integration of condition monitoring of wind turbine blades with contingency control to balance the trade-offs between maintaining system health and energy capture. Results are demonstrated using a high fidelity simulator of a utility-scale wind turbine.

  2. Wind power outlook 2006

    Energy Technology Data Exchange (ETDEWEB)

    anon.

    2006-04-15

    This annual brochure provides the American Wind Energy Association's up-to-date assessment of the wind industry in the United States. This 2006 general assessment shows positive signs of growth, use and acceptance of wind energy as a vital component of the U.S. energy mix.

  3. Sustainable Energy Solutions Task 2.0: Wind Turbine Reliability and Maintainability Enhancement through System-wide Structure Health Monitoring and Modifications to Rotating Components

    Energy Technology Data Exchange (ETDEWEB)

    Twomey, Janet M. [Wichita State Univ., Wichita, KS (United States)

    2010-04-30

    An evaluation of nondestructive structural health monitoring methods was completed with over 132 documents, 37 specifically about wind turbines, summarized into a technology matrix. This matrix lists the technology, what can be monitored with this technology, and gives a short summary of the key aspects of the technology and its application. Passive and active acoustic emission equipment from Physical Acoustics Corp. and Acellent Technologies have been evaluated and selected for use in experimental state loading and fatigue tests of composite wind turbine blade materials. Acoustic Emission (AE) and Active Ultrasonic Testing (AUT), were applied to composite coupons with both simulated and actual damage. The results found that, while composites are more complicated in nature, compared to metallic structures, an artificial neural network analysis could still be used to determine damage. For the AE system, the failure mode could be determined (i.e. fiber breakage, delamination, etc.). The Acellent system has been evaluated to work well with composite materials. A test-rig for reliability testing of the rotating components was constructed. The research on the types of bearings used in the wind turbines indicated that in most of the designs, the main bearings utilized to support the shaft are cylindrical roller bearings. The accelerated degradation testing of a population of bearings was performed. Vibration and acoustic emission data was collected and analyzed in order to identify a representative degradation signal for each bearing to identify the initiation of the degradation process in the bearings. Afterwards, the RMS of the vibration signal from degradation initiation up to the end of the useful life of the bearing was selected to predict the remaining useful life of the bearing. This step included fitting Autoregressive Moving Average (ARMA) models to the degradation signals and approximating the probability distribution function (PDF) of remaining useful life

  4. Evaluation of Relationship Between Auxin and Cytokinine Hormones on Yield and Yield Components of Maize under Drought Stress Condition

    Directory of Open Access Journals (Sweden)

    A Mahrokh

    2016-10-01

    , Karaj, Iran, in 2013. Indole-3-butyric acid and N6-benzyladenin were used as auxin and cytokinin hormones, respectively. Concentration of auxine and cytokinine hormones were 10 and 50 mg per liter, respectively. Harvesting was done from 4.5 m2 at field maturity stage with 14 % grain moisture for estimating grain yield and yield components. SAS software (version 9.1 was used for statistical analysis. Traits means were compared by Duncan's multiple range tests in 5% probably level. Results and Discussion Drought stress effect was significant (P≤0.01 for ear number per plant, row/ear, grain number per m2, 1000 kernels weight and grain yield and it wasn’t significant for kernels/row. Spraying cytokinine hormone was significant (P≤0.01 on ear number per plant, row/ear, grain number per m2 and it was also (P≤0.05 significant for 1000 kernels weight but it wasn’t significant for kernels/row and grain yield. Spraying auxine hormone was significant (P≤0.01 for1000 kernels weight and grain yield and it wasn’t significant forother yield components. The maximum yield was obtained 12.80 and 12.24 tons per hectare in non-stress environment and using auxin hormone in silk emergence stage, respectively. Grain yield was decreased 49.21% under reproductive drought stress and grain yield difference between non drought stress and vegetative drought stress was not significant. Spraying cytokinine hormone increased ear number by 10% in V8-V10 stage. The maximum row/ear was 16.16 kernels per row which was obtained by spraying cytokinine hormone in V8-V10 stage. Spraying cytokinine hormone increased grain number per m2 up to 20.75% in V8-V10 stage but it decreased 1000 kernels weight up to 13.76% in the same stage. The maximum 1000 kernels weight was 313.87 gr that was obtained by spraying auxine hormone in silk emergence stage. Spraying auxine hormone increased grain yield up to 23.38% in silk emergence stage. Conclusions Based on the results of this experiment, maize was

  5. Effects of heat production on the temperature pattern and stresses on frictional hardening of cylindrical components

    International Nuclear Information System (INIS)

    Maksimovich, V.M.; Kratyuk, P.B.; Babei, Yu.I.; Maksimishin, M.D.

    1992-01-01

    Metal heating occurs during pulse hardening which influences the structure, state of strain, and physicomechanical properties, which in turn affects the viability. Difficulties exists in measuring the resulting temperature distributions because of the lag in existing methods. More accurate estimates of temperature distributions may often be obtained using theoretical methods, which involve solving coupled problems in the theory of elasticity and thermal conductivity. In this work, a planar contact case in thermoelasticity is considered for frictional hardening, in which the friction disk and the workpiece are represented as an elastic plunger and the body.It is assumed that the contact normal and tangential stresses are related by Coulomb's law. Also given is a method of solving which enables the definition of the thermoelastic state with a given accuracy in the contact region for high disk speeds. 5 refs., 2 figs., 1 tab

  6. Study for stress analysis and defect evaluation of reactor components using holographic interferometry

    International Nuclear Information System (INIS)

    Jueptner, W.; Geldmacher, J.; Kreis, T.

    1989-07-01

    The results of the studies in phases 1 and 2 of the project RS 1500 699/9 have shown that both in flat and curved structures, materials defects develop under loading stresses very characteristic deformation patterns at the specimens surface. These deformation patterns can be recorded and made visible by holographic interferometry if one uses a method that is capable of measuring exactly even between the interference bands. The best suitable of the tested methods is the phase-shifting method which has been further developed to meet the requirements of the project tasks. The development work achieved better measurements at non-vibration-isolated specimens, and improved hardware and software for digital image processing. This was a vital task, as only computerized image processing allows an economically sensible evaluation of the interferograms. (orig./DG) [de

  7. The influence of cellular structures on flow stress of high strength components manufactured using SLM

    DEFF Research Database (Denmark)

    Mahshid, Rasoul; Hansen, Hans Nørgaard; Loft Højbjerre, Klaus

    2016-01-01

    Additive manufacturing has shown significant improvement in material and machines for high-quality solid freeform fabrication processes such as selective laser melting (SLM). In particular, manufacturing lattice structures using the SLM procedure is of interest. This research examines the effect...... of cellular materials on compression strength. The specimens are manufactured additively using industrial 3D printing systems from high-strength alloy. The material has the right mechanical properties for manufacturing tool components. This includes samples with solid and lattice structures. The Compression...

  8. Wake Effects on Lifetime Distribution in DFIG-based Wind Farms

    DEFF Research Database (Denmark)

    Tian, Jie; Zhou, Dao; Su, Chi

    2017-01-01

    With the increasing size of the wind farms, the impact of the wake effect on the energy yields and lifetime consumption of wind turbine can no longer be neglected. In this paper, the affecting factors like the wind speed and wind direction are investigated in terms of the single wake and multiple...... wakes. As the power converter is the most fragile component among the turbine system, its lifetime estimation can be calculated seen from the thermal stress of the power semiconductor. On the basis of the relationship of the power converter in a 5 MW Doubly-Fed Induction Generator (DFIG) wind turbine...... system and the wind speed, the lifetime consumption of the individual turbine in a 10-turbine and an 80-turbine wind farms can be calculated by considering the real distributions of the wind speed and direction. It can be seen that there is significant lifetime difference among individual turbines...

  9. Electromagnetic and ultrasonic techniques to evaluate stress states of components; Elektromagnetische und Ultraschallverfahren zur Spannungsanalyse an Bauteilen

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, E.; Kern, R.; Theiner, W.A. [Fraunhofer Inst. fuer Zerstoerungsfreie Pruefverfahren, IZFP, Saarbruecken (Germany)

    1999-08-01

    The electromagnetic and ultrasonic techniques are comparably recent NDT methods for determination of stress states of components. They are simple in application, but require pre-measurement preparation: Electromagnetic techniques need calibration, and quantitative stress analysis by ultrasonic techniques needs reference values, i.e. verified materials-specific quantities to be obtained with representative specimens. Electromagnetic and ultrasonic techniques have been developed for specific tests at defined components, and the corresponding instruments and sensors have been used in practice for several years now. The paper summarizes fundamental aspects and explains the state of the art by means of several examples. (orig./CB) [Deutsch] Elektromagnetische und Ultraschallverfahren sind vergleichsweise neue zerstoerungsfreie Verfahren zur Bestimmung von Eigenspannungen in Bauteilen. Ihre Anwendung ist einfach, setzt aber Vorarbeiten voraus: Elektromagnetische Verfahren muessen kalibriert und zur quantitativen Spannungsanalyse mittels Ultraschallverfahren muessen materialspezifische Kenngroessen an repraesentativen Materialproben ermittelt werden. Elektromagnetische und Ultraschallverfahren sind fuer konkrete Anwendungen an Bauteilen entwickelt, angepasste Geraete und Sensoren seit Jahren in der Nutzung. Der Beitrag fasst die Grundlagen zusammen und stellt den Stand der Technik anhand ausgewaehlter Anwendungen dar. (orig.)

  10. Wind Turbine Converter Control Interaction with Complex Wind Farm Systems

    DEFF Research Database (Denmark)

    Kocewiak, Lukasz Hubert; Hjerrild, Jesper; Bak, Claus Leth

    2013-01-01

    . The same wind turbine converter control strategy is evaluated in two different wind farms. It is emphasised that the grid-side converter controller should be characterised by sufficient harmonic/noise rejection and adjusted depending on wind farms to which it is connected. Various stability indices......This study presents wind turbine converter stability analysis of wind farms in frequency domain. The interaction between the wind turbine control system and the wind farm structure in wind farms is deeply investigated. Two wind farms (i.e. Horns Rev II and Karnice) are taken into consideration...... in this study. It is shown that wind farm components, such as long high-voltage alternating current cables and park transformers, can introduce significant low-frequency series resonances seen from the wind turbine terminals that can affect wind turbine control system operation and overall wind farm stability...

  11. Beta-lipotropin is the major component of the plasma opioid response to surgical stress in humans

    Energy Technology Data Exchange (ETDEWEB)

    Porro, C.A.; Facchinetti, F.; Bertellini, E.; Petraglia, F.; Stacca, R.; Barbieri, G.C.; Genazzani, A.R.

    1987-12-07

    There is growing experimental evidence that beta-endorphin immunoreactivity is raised by surgical stress in patients undergoing general anesthesia. As the assay methods employed to date did not allow to fully discriminate between beta-endorphin and its immediate precursor, beta-lipotropin, the authors have investigated in the present study plasma levels of these two peptides by separating them by chromatography on plasma extracts prior to radioimmunoassay. Beta-lipotropin, but not beta-endorphin, plasma levels were found to be significantly elevated during surgery in the general anesthesia group, while no change was found in either peptide concentration in the spinal one. Cortisol plasma levels also increased significantly 90 minutes after the beginning of surgery. Although the sampling time they adopted may have prevented them from detecting an early peak of beta-endorphin during the first 30 minutes of surgery, the major component of the pituitary opioid response to surgical stress appears to be related to beta-lipotropin. This is in agreement with results of experimental work on various kinds of stress in animals and humans and seems to rule out a role for plasma beta-endorphin in post-operative analgesia. 38 references, 1 figure, 1 table.

  12. Wind Forcing of the Pacific Ocean Using Scatterometer Wind Data

    Science.gov (United States)

    Kelly, Kathryn A.

    1999-01-01

    The long-term objective of this research was an understanding of the wind-forced ocean circulation, particularly for the Pacific Ocean. To determine the ocean's response to the winds, we first needed to generate accurate maps of wind stress. For the ocean's response to wind stress we examined the sea surface height (SSH) both from altimeters and from numerical models for the Pacific Ocean.

  13. Effects of Methanol Spraying on Qualitative traits, Yield and Yield Components of Soybean (Glycine max L. under Drought Stress Conditions

    Directory of Open Access Journals (Sweden)

    J Esazadeh Panjali Kharabasi

    2017-12-01

    Full Text Available Introduction Soybean (Glycin max L. is one of the most important oilseed crops in the world. It can provide oil and vegetable protein suitable for feeding humans as well as animals. The productivity Increasing of this crop in Iran has been the subject of continuous investigation over the past few years. It is well known that adequate water supply is considered as a very important factor to affect the accumulation of dry matter in the plant as well as vegetative growth of most crops. Irrigation is an important factor affecting soybean growth and yield and its related components. Exposing soybean plants to soil moisture stress at any phase of its life cycle may lead to a detrimental effect on growth, yield and its components. The methanol spraying can lead to increase in yield, expediting in maturity and reduction in drought stress impacts and water requirement of crops. Material and Methods The experiment was conducted as split plots based on randomized complete block design with three replications at the Research Farm, Faculty of Agriculture of Moghan, Iran, in 2011. Treatments included three levels of drought stress as follows irrigation after, 40 (control, 55 and 70 percentage of available soil moisture depletion as main plots, and four levels of methanol spraying including 0 (control, 7, 21 and 35 volumetric percentage as sub plots. The studied traits were included plant height, leaf area, number of pod and seed per plant, 1000 seed weight, biological and seed yield, stomatal conductance and proline contents. Statistical analysis was carried out using SAS version 9.1 software. Significant difference was set at p ≤ 0.05 by using Duncan’s multiple range test. Results and Discussion The results showed that the plant height, leaf area, number of pod and seed per plant, 1000 seed weight, biological and seed yield, stomatal conductance and proline contents as well as number of leaf per plant significantly affected by drought stress and methanol

  14. Wind Climate Parameters for Wind Turbine Fatigue Load Assessment

    DEFF Research Database (Denmark)

    Toft, Henrik Stensgaard; Svenningsen, Lasse; Moser, Wolfgang

    2016-01-01

    Site-specific assessment of wind turbine design requires verification that the individual wind turbine components can survive the site-specific wind climate. The wind turbine design standard, IEC 61400-1 (third edition), describes how this should be done using a simplified, equivalent wind climate...... climate required by the current design standard by comparing damage equivalent fatigue loads estimated based on wind climate parameters for each 10 min time-series with fatigue loads estimated based on the equivalent wind climate parameters. Wind measurements from Boulder, CO, in the United States...

  15. Wind Generators

    Science.gov (United States)

    1989-01-01

    When Enerpro, Inc. president, Frank J. Bourbeau, attempted to file a patent on a system for synchronizing a wind generator to the electric utility grid, he discovered Marshall Space Flight Center's Frank Nola's power factor controller. Bourbeau advanced the technology and received a NASA license and a patent for his Auto Synchronous Controller (ASC). The ASC reduces generator "inrush current," which occurs when large generators are abruptly brought on line. It controls voltage so the generator is smoothly connected to the utility grid when it reaches its synchronous speed, protecting the components from inrush current damage. Generator efficiency is also increased in light winds by applying lower than rated voltage. Wind energy is utilized to drive turbines to generate electricity for utility companies.

  16. Literature review of models for estimating soil erosion and deposition from wind stresses on uranium-mill-tailings covers

    Energy Technology Data Exchange (ETDEWEB)

    Bander, T.J.

    1982-11-01

    Pacific Northwest Laboratory (PNL) is investigating the use of a rock armoring blanket (riprap) to mitigate wind and water erosion of an earthen radon-suppression cover applied to uranium-mill tailings. The mechanics of wind erosion, as well as of soil deposition, are discussed in this report. Several wind erosion models are reviewed to determine if they can be used to estimate the erosion of soil from a mill-tailings cover. One model, developed by W.S. Chepil, contains the most-important factors that describe variables that influence wind erosion. Particular features of other models are also discussed, as well as the application of Chepil's model to a particular tailings pile. For this particular tailings pile, the estimated erosion was almost one inch per year for an unprotected tailings soil surface. Wide variability in the deposition velocity and lack of adequate deposition models preclude reliable estimates of the rate at which airborne particles are deposited.

  17. Literature review of models for estimating soil erosion and deposition from wind stresses on uranium-mill-tailings covers

    International Nuclear Information System (INIS)

    Bander, T.J.

    1982-11-01

    Pacific Northwest Laboratory (PNL) is investigating the use of a rock armoring blanket (riprap) to mitigate wind and water erosion of an earthen radon-suppression cover applied to uranium-mill tailings. The mechanics of wind erosion, as well as of soil deposition, are discussed in this report. Several wind erosion models are reviewed to determine if they can be used to estimate the erosion of soil from a mill-tailings cover. One model, developed by W.S. Chepil, contains the most-important factors that describe variables that influence wind erosion. Particular features of other models are also discussed, as well as the application of Chepil's model to a particular tailings pile. For this particular tailings pile, the estimated erosion was almost one inch per year for an unprotected tailings soil surface. Wide variability in the deposition velocity and lack of adequate deposition models preclude reliable estimates of the rate at which airborne particles are deposited

  18. Metallic materials for heat exchanger components and highly stressed internal of HTR reactors for nuclear process heat generation

    International Nuclear Information System (INIS)

    1982-01-01

    The programme was aimed at the development and improvement of materials for the high-temperature heat exchanger components of a process steam HTR. The materials must have high resistance to corrosion, i.e. carburisation and internal oxidation, and high long-term toughness over a wide range of temperatures. They must also meet the requirements set in the nuclear licensing procedure, i.e. resistance to cyclic stress and irradiation, non-destructive testing, etc. Initially, it was only intended to improve and qualify commercial alloys. Later on an alloy development programme was initiated in which new, non-commercial alloys were produced and modified for use in a nuclear process heat facility. Separate abstracts were prepared for 19 pays of this volume. (orig./IHOE) [de

  19. Voltage sag influence on fatigue life of the drivetrain of fixed speed wind turbines

    DEFF Research Database (Denmark)

    Veluri, Badrinath; Santos-Martin, David; Jensen, Henrik Myhre

    2011-01-01

    Occurrence of voltage sags due to electrical grid faults and other network disturbances generate transients of the generator electromagnetic torque which result in significant high stresses and noticeable vibrations for the wind turbine mechanical system and may also have a detrimental effect...... on the fatigue life of important drivetrain components. The high penetration of wind energy in the electrical grids demands new requirements for the operation of wind energy conversion systems. Although fixed speed wind turbine technology is nowadays replaced by variable speed wind turbines. In some countries...... by the stator flux oscillations which cause high transients of the generator electromagnetic torque. This paper focuses in estimating the resulting significant stresses transients due to the electromagnetic torque transients, which transmits to the wind turbine mechanical system that may have a detrimental...

  20. Structural Optimization of an Innovative 10 MW Wind Turbine Nacelle

    DEFF Research Database (Denmark)

    Dabrowski, Dariusz; Natarajan, Anand; Stehouwer, Ewoud

    2015-01-01

    For large wind turbine configurations of 10 MW and higher capacities, direct-drives present a more compact solution over conventional geared drivetrains. Further, if the generator is placed in front of the wind turbine rotor, a compact “king-pin” drive is designed, that allows the generator...... to be directly coupled to the hub. In presented study, the structural re-design of the innovative 10 MW nacelle was made using extreme loads obtained from a 10 MW reference wind turbine. On the basis of extreme loads the ultimate stresses on critical nacelle components were determined to ensure integrity...

  1. Cast iron components for the wind power industry. Development of resource saving products and processes in global competition. Final report; Gjutgods till vindkraftsindustrin. Utveckling av resurssnaala produkter och processer i global konkurrens. Slutrapport

    Energy Technology Data Exchange (ETDEWEB)

    Gustavsson, Conny; Gustafsson, Ingela; Petku, Damir [Swedish Foundry Association, Joenkoeping (SE)] [and others

    2006-01-15

    The demand for large cast components in ductile iron for wind power plants has increased strongly. As wind power plants become larger, today up to 4-5 MW, the components grow with them. Weights around 20 tons become common, and are demanded in growing numbers. For most Swedish foundries production of such size components is impossible, but for a few, accustomed to large castings a new growing market has opened. Higher prices for scrap and electricity is however a menace to profit. This project concentrates on factors that may optimize the flow in production, reduce rejections, reduce the consumption of new sand, and to reduce energy consumption in all processes. The project has resulted in ten separate reports, that are included in this publication.

  2. Stress

    Science.gov (United States)

    ... can be life-saving. But chronic stress can cause both physical and mental harm. There are at least three different types of stress: Routine stress related to the pressures of work, family, and other daily responsibilities Stress brought about ...

  3. Increased component safety through improved methods for residual stress analysis. Subprojects. Consideration of real component geometries (phase 2). Final report; Erhoehung der Komponentensicherheit durch verbesserte Verfahren zur Eigenspannungsanalyse. Teilvorhaben. Beruecksichtigung realer Komponentengeometrien (Phase 2). Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Scholtes, B.; Nau, Andreas

    2015-06-01

    Residual stresses can be result in both detrimental as well as beneficial consequences on the component's strength and lifetime. A most detailed knowledge of the residual stress state is a pre-requisite for the assessment of the component's performance. The mechanical methods for residual stress measurements are classified in non-destructive, destructive and semi-destructive methods. The two commonly used (semi-destructive) mechanical methods are the hole drilling and the ring core method. In the context of reactor safety research of the Federal Ministry of Economic Affairs and Energy (BMWi), two fundamental and interacting weak points of the hole drilling as well as ofthe ring core method are investigated. On the one hand, there are effects concerning geometricalboundary conditions of the components and on the other hand, there are influences of plasticity due to notch effects. Both aspects affect the released strain field, when the material is removed and finally, the calculated residual stresses. The first issue mentioned above is under the responsibility of Institute of Materials Engineering - Metallic Materials (KasselUniversity) and the last one will be investigated by University of Stuttgart-Otto-Graf-Institut - materials testing institute. As a consequence of a successful project, the present knowledgebase will be considerably improved and will be available for various engineering fields. Especially,the quantitative consideration of real residual stress states for optimized component designs will be feasible and finally the consequences of residual stresses on the component's safety, which are used in nuclear facilities, can be evaluated. The findings of the application-oriented research period (phase 2) at Kassel University are documented in this report.

  4. Wind energy

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This chapter discusses the role wind energy may have in the energy future of the US. The topics discussed in the chapter include historical aspects of wind energy use, the wind energy resource, wind energy technology including intermediate-size and small wind turbines and intermittency of wind power, public attitudes toward wind power, and environmental, siting and land use issues

  5. Reliability Evaluation of Power Capacitors in a Wind Turbine System

    DEFF Research Database (Denmark)

    Zhou, Dao; Blaabjerg, Frede

    2018-01-01

    With the increasing penetration of wind power, reliable and cost-effective wind energy production is of more and more importance. The doubly-fed induction generator based partial-scale wind power converter is still dominating in the existing wind farms. In this paper, the reliability assessment...... block diagram is used to bridge the gap between the Weibull distribution based component-level individual capacitor and the capacitor bank. A case study of a 2 MW wind power converter shows that the lifetime is significantly reduced from the individual capacitor to the capacitor bank. Besides, the dc...... of power capacitors is studied considering the annual mission profile. According to an electro-thermal stress evaluation, the time-to-failure distribution of both the dc-link capacitor and ac-side filter capacitor is detailed investigated. Aiming for the systemlevel reliability analysis, a reliability...

  6. Increased component safety through improved methods for residual stress analysis. Subprojects. Consideration of real component geometries (phase 1). Final report; Erhoehung der Komponentensicherheit durch verbesserte Verfahren zur Eigenspannungsanalyse. Teilvorhaben. Beruecksichtigung realer Komponentengeometrien (Phase 1). Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Nau, Andreas; Scholtes, B.

    2014-07-24

    Residual stresses can be result in both detrimental as well as beneficial consequences on the component's strength and lifetime. A most detailed knowledge of the residual stress state is a pre-requisite for the assessment of the component's performance. The mechanical methods for residual stress measurements are classified in non-destructive, destructive and semi-destructive methods. The two commonly used (semi-destructive) mechanical methods are the hole drilling and the ring core method. In the context of reactor safety research of the Federal Ministry of Economic Affairs and Energy (BMWi), two fundamental and interacting weak points of the hole drilling as well as of the ring core method are investigated. On the one hand, there are effects concerning geometrical boundary conditions of the components and on the other hand, there are influences of plasticity due to notch effects. Both aspects affect the released strain field, when the material is removed and finally, the calculated residual stresses. The first issue mentioned above is under the responsibility of Institute of Materials Engineering - Metallic Materials (Kassel University) and the last one will be investigated by University of Stuttgart-Otto-Graf-Institut - materials testing institute. Within the framework of this project it could be demonstrated that updated calibration coefficients lead to more reliable residual stress calculation in contrast to existing ones. These findings are valid for points of measurements on components without geometrical boundary effects like edges or shoulders. Reasons are high developed Finite-Element software packages and the opportunity of modelling the point of measurement (hole geometry, layout of the strain gauges) and its vicinity more in detail. Special challenges are multi-axial residual stress depth distributions and the geometry of components composing edges and claddings. Unlike existing analyses considering uni-axial and homogeneous stress states, bi

  7. MERRA 3D IAU Tendency, Wind Components, Time average 3-hourly (1.25x1.25L42) V5.2.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The MAT3CPUDT or tavg3_3d_udt_Cp data product is the MERRA Data Assimilation System 3-Dimensional eastward wind tendencies that is time averaged on pressure levels...

  8. MERRA 3D IAU Tendency, Wind Components, Monthly Mean (1.25x1.25L42) V5.2.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The MATMCPUDT or tavgM_3d_udt_Cp data product is the MERRA Data Assimilation System 3-Dimensional eastward wind tendencies that is time averaged on pressure levels...

  9. Effects of Coenzyme Q10 and Vitamin C on Growth Performance and Blood Components in Broiler Chickens under Heat Stress

    Directory of Open Access Journals (Sweden)

    Raeisi-Zeydabad S

    2017-10-01

    Full Text Available This experiment was carried out to study the effects of Coenzyme Q10 (CoQ10 and vitamin C (VC on growth performance and blood biochemistry in broiler chickens under heat stress conditions. One of three levels of CoQ10 (0, 20, and 40 mg/kg of diet and one of two levels of VC (0 and 250 mg/kg of diet were supplemented to diets of chicks (from 1-42 d of age in a 3 × 2 factorial arrangement. Each dietary treatment had four replicate pens (10 chicks/pen. In order to create chronic heat stress, the house temperature was set at an ambient temperature of 35±2°C for 8 hrs daily (09:00 to 17:00 between 25-42 d of age. Feed intake, body weight gain (BWG, and feed to gain ratio (F:G were recorded at d 10, 25 and 42. At the end of experiment, two chicks/pen were randomly selected to assess blood components. CoQ10 supplementation improved BWG and F:G during 11-25 days, 26-42 days, and the whole period of the experiment (P < 0.05, while VC supplementation improved BWG and F:G only during 11-25 d of age. Blood glucose, cholesterol and triglycerides concentrations were reduced (P < 0.05 by addition of CoQ10 to the diet. Both Supplementation of CoQ10 and VC together lowered heterophil (H count but increased lymphocyte (L count, thereby reducing H/L ratio (P < 0.05. Serum concentrations of corticosterone and T4 were positively affected by dietary supplementation of CoQ10 (P < 0.05, but no differences were obtained with addition of VC to the diet. In conclusion, our observations demonstrated that dietary supplementation of 40 mg/kg CoQ10 or 250 mg/kg VC improves the growth performance of broiler chickens under the heat stress.

  10. Associations of Extrinsic and Intrinsic Components of Work Stress with Health: A Systematic Review of Evidence on the Effort-Reward Imbalance Model.

    Science.gov (United States)

    Siegrist, Johannes; Li, Jian

    2016-04-19

    Mainstream psychological stress theory claims that it is important to include information on people's ways of coping with work stress when assessing the impact of stressful psychosocial work environments on health. Yet, some widely used respective theoretical models focus exclusively on extrinsic factors. The model of effort-reward imbalance (ERI) differs from them as it explicitly combines information on extrinsic and intrinsic factors in studying workers' health. As a growing number of studies used the ERI model in recent past, we conducted a systematic review of available evidence, with a special focus on the distinct contribution of its intrinsic component, the coping pattern "over-commitment", towards explaining health. Moreover, we explore whether the interaction of intrinsic and extrinsic components exceeds the size of effects on health attributable to single components. Results based on 51 reports document an independent explanatory role of "over-commitment" in explaining workers' health in a majority of studies. However, support in favour of the interaction hypothesis is limited and requires further exploration. In conclusion, the findings of this review support the usefulness of a work stress model that combines extrinsic and intrinsic components in terms of scientific explanation and of designing more comprehensive worksite stress prevention programs.

  11. Associations of Extrinsic and Intrinsic Components of Work Stress with Health: A Systematic Review of Evidence on the Effort-Reward Imbalance Model

    Directory of Open Access Journals (Sweden)

    Johannes Siegrist

    2016-04-01

    Full Text Available Mainstream psychological stress theory claims that it is important to include information on people’s ways of coping with work stress when assessing the impact of stressful psychosocial work environments on health. Yet, some widely used respective theoretical models focus exclusively on extrinsic factors. The model of effort-reward imbalance (ERI differs from them as it explicitly combines information on extrinsic and intrinsic factors in studying workers’ health. As a growing number of studies used the ERI model in recent past, we conducted a systematic review of available evidence, with a special focus on the distinct contribution of its intrinsic component, the coping pattern “over-commitment”, towards explaining health. Moreover, we explore whether the interaction of intrinsic and extrinsic components exceeds the size of effects on health attributable to single components. Results based on 51 reports document an independent explanatory role of “over-commitment” in explaining workers’ health in a majority of studies. However, support in favour of the interaction hypothesis is limited and requires further exploration. In conclusion, the findings of this review support the usefulness of a work stress model that combines extrinsic and intrinsic components in terms of scientific explanation and of designing more comprehensive worksite stress prevention programs.

  12. Associations of Extrinsic and Intrinsic Components of Work Stress with Health: A Systematic Review of Evidence on the Effort-Reward Imbalance Model

    Science.gov (United States)

    Siegrist, Johannes; Li, Jian

    2016-01-01

    Mainstream psychological stress theory claims that it is important to include information on people’s ways of coping with work stress when assessing the impact of stressful psychosocial work environments on health. Yet, some widely used respective theoretical models focus exclusively on extrinsic factors. The model of effort-reward imbalance (ERI) differs from them as it explicitly combines information on extrinsic and intrinsic factors in studying workers’ health. As a growing number of studies used the ERI model in recent past, we conducted a systematic review of available evidence, with a special focus on the distinct contribution of its intrinsic component, the coping pattern “over-commitment”, towards explaining health. Moreover, we explore whether the interaction of intrinsic and extrinsic components exceeds the size of effects on health attributable to single components. Results based on 51 reports document an independent explanatory role of “over-commitment” in explaining workers’ health in a majority of studies. However, support in favour of the interaction hypothesis is limited and requires further exploration. In conclusion, the findings of this review support the usefulness of a work stress model that combines extrinsic and intrinsic components in terms of scientific explanation and of designing more comprehensive worksite stress prevention programs. PMID:27104548

  13. Effect of maltose and trehalose on growth, yield and some biochemical components of wheat plant under water stress

    Directory of Open Access Journals (Sweden)

    Hemmat A. Ibrahim

    2016-12-01

    Full Text Available In the greenhouse experiment, wheat plants (Triticum aestivum L. cv. Giza 168 were treated with 10 mM of maltose and trehalose as foliar spray using Tween 20 as wetting agent at 15, 30 and 45 days post sowing with two times of irrigation at 10 and 20 days intervals. Two samples were taken after 45 and 120 days from planting. At the first sample date, plant height, shoot fresh and dry weights and leaf area were recorded. At harvesting time (the second sample no. of spikes/plant, no. of spikelets/plant and weight of 1000 grains were taken. Chemical analyses were conducted in leaves at the first sample date for determination of phenolic compounds, flavonoids, amino acids, reducing sugars, total soluble sugars, protein, proline, PAL, POD, ascorbate peroxidase, catalase, PPO and MDA. The obtained results indicated that maltose and trehalose had significant and positive effect on most growth parameters. Opposite trend was found in plant height, no. of spike/plant and weight of 1000 grains by drought treatment. Maltose and trehalose treatments enhanced in the most biochemical components whereas they decreased PAL and catalase activity. Variable trends in amino acids and ascorbate peroxidase were observed by drought. However, the drought has more stimulative effect in most cases than the first time period of irrigation. The results concluded that foliar applications with maltose or trehalose induced water stress tolerance in wheat plants. Maltose treatment gave the best results in most morphological parameters, grains yield and biochemical components than trehalose treatment.

  14. Effect of Drought Stress onYield and Yield Components of Sesame cultivars under Kerman conditions (Sesamum indicum L.

    Directory of Open Access Journals (Sweden)

    S Farahbakhsh

    2015-04-01

    Full Text Available To investigate effects of drought stress on yield and yield components of sesame in Kerman region a split-plot experiment based onn compelet randomised block design with three replications was carried out in 1388. Irrigation levels (Normal irrigation in all growth stages, witholding water after 50% flowering, witholding water after 50% pod setting and differen t sesame landraces (Jiroft, Shiraz, Ardestan, Dezful, Shahr babak, Gorgan, Sirjan, Markazi, Birjand and Orzueieh were considered as main plots and sub-plots respectively. Plant height, the biggest pod length, noumber of grain per pod, noumber of pod per plant, grain weight per plant, thousand grain weight and grain yield were the measured traits. Results showed all the measured traits were significantly affected by the irrigation treatments. The effects of different landraces on all traits except noumber of grain per plant were significant. Irrigation × landraces interaction affected all measured traits except the biggest pod length significantly. The highest grain yield was recorde for Markezi landrace (845.2 kg –ha under normal irrigation and the lowest one was obtained from Jiroft landrace (104.8 kg –ha with witholding irrigation after 50% flowering.

  15. The iron-sulfur cluster assembly network component NARFL is a key element in the cellular defense against oxidative stress.

    Science.gov (United States)

    Corbin, Monique V; Rockx, Davy A P; Oostra, Anneke B; Joenje, Hans; Dorsman, Josephine C

    2015-12-01

    Aim of this study was to explore cellular changes associated with increased resistance to atmospheric oxygen using high-resolution DNA and RNA profiling combined with functional studies. Two independently selected oxygen-resistant substrains of HeLa cells (capable of proliferating at >80% O2, i.e. hyperoxia) were compared with their parental cells (adapted to growth at 20% O2, but unable to grow at >80% O2). A striking consistent alteration found to be associated with the oxygen-resistant state appeared to be an amplified and overexpressed region on chromosome 16p13.3 harboring 21 genes. The driver gene of this amplification was identified by functional studies as NARFL, which encodes a component of the cytosolic iron-sulfur cluster assembly system. In line with this result we found the cytosolic c-aconitase activity as well as the nuclear protein RTEL1, both Fe-S dependent proteins, to be protected by NARFL overexpression under hyperoxia. In addition, we observed a protective effect of NARFL against hyperoxia-induced loss of sister-chromatid cohesion. NARFL thus appeared to be a key factor in the cellular defense against hyperoxia-induced oxidative stress in human cells. Our findings suggest that new insight into age-related degenerative processes may come from studies that specifically address the involvement of iron-sulfur proteins. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  16. The effects of stress-induced blood components on protein synthesis and secretion in isolated rat hepatocytes

    International Nuclear Information System (INIS)

    Ritchie, A.L.

    1990-01-01

    The effect of stress-induced blood components were examined, specifically adrenaline and noradrenaline, in the presence and absence of rabbit serum or foetal calf serum, on soluble protein synthesis and secretion by isolated hepatocytes maintained in monolayer culture. Rabbit serum and low doses of adrenaline stimulated soluble protein synthesis and secretion whereas foetal calf serum and high doses of noradrenaline were inhibitory. The effect of noradrenaline on soluble protein synthesis and secretion ocurred in the first 12 hours of incubation. The stimulatory effect of adrenaline was still present after 24 hours of incubation. Preloading of the medium with [ 3 H]-leucine i.e. before the addition of sera and/or catecholamines, showed the [ 3 H]-leucine uptake to have occured to a large extent within the first hour of incubation. Noradrenaline supplementation of the medium at two hourly intervals showed no effect on protein synthesis and secretion. The stability of the cetecholamines and the status of the receptors need to be determined for the effective analysis of the results at any point during the incubation. 17 figs., 15 tabs., 83 refs

  17. Anisotropy of turbulence in wind turbine wakes

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Elvira, Rafael [Comision Nacional de Energia (Spain); Crespo, Antonio; Migoya, Emilio; Manuel, Fernando [Departamento de Ingenieria Energetica y Fluidomecanica, Escuela Tecnica Superior de Ingenieros Industriales, Universidad Politecnica de Madrid, Jose Gutierrez Abascal, 2. 28006 Madrid (Spain); Hernandez, Julio [Departamento de Mecanica, ETSII, Universidad Nacional de Educacion a Distancia, Ciudad Universitaria, 28040 Madrid (Spain)

    2005-10-01

    This work is mainly dedicated to the study of non-isotropic characteristics of turbulence in wind turbine wakes, specifically the shear layer of the near wake. A calculation method based on an explicit algebraic model for the components of the turbulent stress tensor is proposed, and the results are found to be in acceptable agreement with experimental results. Analytical expressions for the estimation of an upper limit of the global turbulence kinetic energy, k, and the individual contributions of each diagonal term in the turbulent stress tensor are proposed. Their predictions are compared with experimental results.

  18. In-situ damage localization for a wind turbine blade through outlier analysis of SDDLV-induced stress resultants

    DEFF Research Database (Denmark)

    Ulriksen, Martin Dalgaard; Tcherniak, Dmitri; Hansen, Lasse Majgaard

    2017-01-01

    . In this article, it is examined whether a vibration-based damage localization approach proposed by the authors can provide such reliable monitoring of the location of a structural damage in a wind turbine blade. The blade, which is analyzed in idle condition, is subjected to unmeasured hits from a mounted...... proved to mitigate noise-induced anomalies and systematic, non-damage-associated adverse effects....

  19. A comparative transcriptomic analysis reveals the core genetic components of salt and osmotic stress responses in Braya humilis.

    Directory of Open Access Journals (Sweden)

    Pengshan Zhao

    Full Text Available Braya humilis is a member of the Euclidieae tribe within the family Brassicaceae. This species exhibits a broad range of adaptations to different climatic zones and latitudes as it has a distribution that ranges from northern Asia to the arctic-alpine regions of northern North America. In China, B. humilis is mainly found on the Qinghai-Tibetan Plateau (QTP and in adjacent arid regions. In this study, we sequenced a sample from an arid region adjacent to the QTP using the Illumina platform generating a total of 46,485 highly accurate unigenes, of which 78.41% were annotated by BLASTing versus public protein databases. The B. humilis transcriptome is characterized by a high level of sequence conservation compared with its close relative, Arabidopsis thaliana. We also used reciprocal blast to identify shared orthologous genes between B. humilis and four other sequenced Brassicaceae species (i.e. A. thaliana, A. lyrata, Capsella rubella, and Thellungiella parvula. To enable precise characterization of orthologous genes, the early-diverging basal angiosperm Amborella trichopoda was also included. A total of 6,689 orthologous genes were identified before stricter criteria for the determination of e-values, amino acid hit lengths, and identity values was applied to further reduce this list. This led to a final list of 381 core orthologous genes for B. humilis; 39 out of these genes are involved in salt and osmotic stress responses and estimations of nonsynonymous/synonymous substitution ratios for this species and A. thaliana orthologs show that these genes are under purifying selection in B. humilis. Expression of six genes was detected in B. humilis seedlings under salt and osmotic stress treatments. Comparable expression patterns to their counterparts in Arabidopsis suggest that these orthologous genes are both sequence and functional conservation. The results of this study demonstrate that the environmental adaptations of B. humilis are mainly the

  20. Increased component safety through improved methods for residual stress analysis. Subprojects. Consideration of the elastic-plastic material properties (phase 1). Final report

    International Nuclear Information System (INIS)

    Mirbach, David von

    2014-01-01

    Residual stresses in mechanical components can result in both detrimental but also beneficial effects on the strength and lifetime of the components. The most detailed knowledge of the residual stress state is of advantage or a pre-requisite for the assessment of the component performance. The mechanical methods for residual stress measurement are divided into the groups of non-destructive and destructive methods. Two commonly used mechanical methods for determination of residual stresses are the hole drilling method and the ring core method which can be regarded as semi-destructive methods. In the context of reactor safety research of the German Federal Ministry of Economic and Technology (BMWi) two fundamental and interacting weak points of the hole drilling method as well as of the ring core method, respectively, in order to determine residual stresses are going to be investigated. As a consequence reliability of the methods will be improved in this joint research project. On the one hand there are effects of geometrical boundary conditions of the components and on the other hand there is the influence of plasticity due to notch effects both affecting the released strain field after removing material and after all the calculated residual stresses. The first issue mentioned above is under the responsibility of the Institute of Materials Engineering (Kassel University) and the last one is investigated by Universitaet of Stuttgart-Otto-Graf-Institut - materials testing institute. As a consequence of a successful project the knowledge base will be considerably improved resulting in benefits for various engineering fields. Especially the quantitative consideration of real residual stress states for optimized component designs will be possible and after all the consequences of residual stresses on safety of components which are used in nuclear facilities can be evaluated. The state of art was reground in the first research chapter and the analysed strain gauges where

  1. Wind: new wind markets

    International Nuclear Information System (INIS)

    Cameron, A.

    2005-01-01

    The June 2005 edition of 'Wind Force 12' suggests that wind could generate 12% of global electricity requirements by 2020. But what moves a potential market into an emerging one? Geographical factors include a good wind resource, plenty of open space and the ability to get the generated electricity to end-users. A country's political framework is equally important, with fixed price systems, renewable quota systems and political will all playing a part. Some potential wind markets around the world are thought to have the conditions necessary to become key players in the wind industry. The emerging markets in countries such as Australia, Brazil, Canada, France, Japan and the Philippines are highlighted as examples

  2. Convergence of PASTA kinase and two-component signaling in response to cell wall stress in Enterococcus faecalis.

    Science.gov (United States)

    Kellogg, Stephanie L; Kristich, Christopher J

    2018-04-09

    Two common signal transduction mechanisms used by bacteria to sense and respond to changing environments are two-component systems (TCSs) and eukaryotic-like Ser/Thr kinases and phosphatases (eSTK/Ps). Enterococcus faecalis is a Gram-positive bacterium and serious opportunistic pathogen that relies on both a TCS and an eSTK/P pathway for intrinsic resistance to cell wall-targeting antibiotics. The TCS consists of a histidine kinase (CroS) and response regulator (CroR) that become activated upon exposure of cells to cell wall-targeting antibiotics, leading to modulation of gene expression. The eSTK/P pathway consists of a transmembrane kinase (IreK) and its cognate phosphatase (IreP), which act antagonistically to mediate antibiotic resistance through an unknown mechanism. Because both CroS/R and IreK/P contribute to enterococcal resistance towards cell wall-targeting antibiotics, we hypothesized these signaling systems are intertwined. To test this hypothesis, we analyzed CroR phosphorylation and CroS/R-dependent gene expression to probe the influence of IreK and IreP on CroS/R signaling. In addition, we analyzed the phosphorylation state of CroS which revealed IreK-dependent phosphorylation of a Thr residue important for CroS function. Our results are consistent with a model in which IreK positively influences CroR-dependent gene expression through phosphorylation of CroS to promote antimicrobial resistance in E. faecalis Importance Two-component signaling systems (TCSs) and eukaryotic-like Ser/Thr kinases (eSTKs) are used by bacteria to sense and adapt to changing environments. Understanding how these pathways are regulated to promote bacterial survival is critical for a more complete understanding of bacterial stress responses and physiology. The opportunistic pathogen Enterococcus faecalis relies on both a TCS (CroS/R) and an eSTK (IreK) for intrinsic resistance to cell wall-targeting antibiotics. We probed the relationship between CroS/R and IreK, revealing

  3. A multi-component parallel-plate flow chamber system for studying the effect of exercise-induced wall shear stress on endothelial cells.

    Science.gov (United States)

    Wang, Yan-Xia; Xiang, Cheng; Liu, Bo; Zhu, Yong; Luan, Yong; Liu, Shu-Tian; Qin, Kai-Rong

    2016-12-28

    In vivo studies have demonstrated that reasonable exercise training can improve endothelial function. To confirm the key role of wall shear stress induced by exercise on endothelial cells, and to understand how wall shear stress affects the structure and the function of endothelial cells, it is crucial to design and fabricate an in vitro multi-component parallel-plate flow chamber system which can closely replicate exercise-induced wall shear stress waveforms in artery. The in vivo wall shear stress waveforms from the common carotid artery of a healthy volunteer in resting and immediately after 30 min acute aerobic cycling exercise were first calculated by measuring the inner diameter and the center-line blood flow velocity with a color Doppler ultrasound. According to the above in vivo wall shear stress waveforms, we designed and fabricated a parallel-plate flow chamber system with appropriate components based on a lumped parameter hemodynamics model. To validate the feasibility of this system, human umbilical vein endothelial cells (HUVECs) line were cultured within the parallel-plate flow chamber under abovementioned two types of wall shear stress waveforms and the intracellular actin microfilaments and nitric oxide (NO) production level were evaluated using fluorescence microscope. Our results show that the trends of resting and exercise-induced wall shear stress waveforms, especially the maximal, minimal and mean wall shear stress as well as oscillatory shear index, generated by the parallel-plate flow chamber system are similar to those acquired from the common carotid artery. In addition, the cellular experiments demonstrate that the actin microfilaments and the production of NO within cells exposed to the two different wall shear stress waveforms exhibit different dynamic behaviors; there are larger numbers of actin microfilaments and higher level NO in cells exposed in exercise-induced wall shear stress condition than resting wall shear stress condition

  4. Effect of Drought Stress at Different Growth Stages on Yield and Yield Components of Six Rice (Oryza sativa L. Genotypes

    Directory of Open Access Journals (Sweden)

    Sharifunnessa Moonmoon

    2017-12-01

    Full Text Available Drought stress affects plant growth and development and ultimately, reduced grain yield of rice. But stress at different growth stages may respond differently which is still unclear. Therefore, a pot experiment was carried out with six rice genotypes to determine the critical growth stage where drought stress effect on yield reduction and to find stress tolerance mechanism in rice genotypes. Drought stress (control i.e. no stress and 40% field capacity, FC was imposed on Binadhan-13, Kalizira, BRRI dhan34, Ukunimodhu, RM-100-16 and NERICA mutant rice genotypes at maximum tillering, panicle initiation and grain filling stages and discontinued when the specific stage was over. The experiment was laid out in a complete randomized design with three replications. Drought stress affected number of effective tiller hill-1, number of spikelets panicle-1, filled grains hill-1, 1000-grain weight and grain yield. Binadhan-13 produced the highest grain yield and the lowest sterility under drought stress at grain filling stage. Percentage of spikelet sterility increased under drought stress (40% FC especially at the panicle initiation stage resulting low grain yield. Among the tested genotypes Binadhan-13 performed well by reducing spikelet sterility under drought stress condition. For 1000-grain weight and grain yield, grain filling stage was found more crucial. From the current research, drought tolerance mechanism was found in genotypes Binadhan-13 and NERICA mutant. [Fundam Appl Agric 2017; 2(3.000: 285-289

  5. A Bayesian model to correct underestimated 3-D wind speeds from sonic anemometers increases turbulent components of the surface energy balance

    Science.gov (United States)

    John M. Frank; William J. Massman; Brent E. Ewers

    2016-01-01

    Sonic anemometers are the principal instruments in micrometeorological studies of turbulence and ecosystem fluxes. Common designs underestimate vertical wind measurements because they lack a correction for transducer shadowing, with no consensus on a suitable correction. We reanalyze a subset of data collected during field experiments in 2011 and 2013 featuring two or...

  6. Decadal Variations of the Western Subarctic Gyre and Main Pycnocline Depth due to Wind Stress Change in the Northern North Pacific

    Science.gov (United States)

    Nagano, A.; Wakita, M.

    2017-12-01

    From the late 1990s to the early 2000s, the western subarctic gyre of the North Pacific, a cyclonic circulation in the western subarctic region, shrank northward associated with a decadal increase of sea surface height (SSH). This gyre change displaced the main pycnocline (halocline) downward and is expected to contribute to the deepening of the overlying temperature minimum layer. This is considered to affect the biogeochemical conditions in the western subarctic region, where is known as substantially slow ocean acidification region. In this study, on the basis of wind stress field data in the subpolar region (40˚N—54˚N, 160˚E—135˚W) during 1979—2014 provided by U.S. National Centers for Environmental Prediction/National Center for Atmospheric Research reanalysis, we estimated the variation in SSH, solving the vorticity gradient equation on the beta plane. Decadal increase in SSH at Station K2 (47˚N, 160˚E), representative point of the western subarctic region, was well produced by the calculation, and the correlation coefficient with altimetric SSH exceeds 0.6. The calculated SSH variation consists of the variations due to the barotropic and baroclinic Rossby wave modes. The gyre shrinkage is found to be caused primarily by the barotropic response to the wind change in the whole subpolar region and secondary by the first baroclinic response. Meanwhile, the decadal deepening of the main pycnocline at K2 is attributed to the baroclinic responses of the higher (second, third, and fourth) vertical modes to the local wind change.

  7. The roles of vertical mixing, solar radiation, and wind stress in a model simulation of the sea surface temperature seasonal cycle in the tropical Pacfic Ocean

    Science.gov (United States)

    Chen, Dake; Busalacchi, Antonio J.; Rothstein, Lewis M.

    1994-01-01

    The climatological seasonal cycle of sea surface temperature (SST) in the tropical Pacific is simulated using a newly developed upper ocean model. The roles of vertical mixing, solar radiation, and wind stress are investigated in a hierarchy of numerical experiments with various combinations of vertical mixing algorithms and surface-forcing products. It is found that the large SST annual cycle in the eastern equatorial Pacific is, to a large extent, controlled by the annually varying mixed layer depth which, in turn, is mainly determined by the competing effects of solar radiation and wind forcing. With the application of our hybrid vertical mixing scheme the model-simulated SST annual cycle is much improved in both amplitude and phase as compared to the case of a constant mixed layer depth. Beside the strong effects on vertical mixing, solar radiation is the primary heating term in the surface layer heat budget, and wind forcing influences SST by driving oceanic advective processes that redistribute heat in the upper ocean. For example, the SST seasonal cycle in the western Pacific basically follows the semiannual variation of solar heating, and the cycle in the central equatorial region is significantly affected by the zonal advective heat flux associated with the seasonally reversing South Equatorial Current. It has been shown in our experiments that the amount of heat flux modification needed to eliminate the annual mean SST errors in the model is, on average, no larger than the annual mean uncertainties among the various surface flux products used in this study. Whereas a bias correction is needed to account for remaining uncertainties in the annual mean heat flux, this study demonstrates that with proper treatment of mixed layer physics and realistic forcing functions the seasonal variability of SST is capable of being simulated successfully in response to external forcing without relying on a relaxation or damping formulation for the dominant surface heat

  8. Metric of the 2–6 day sea-surface temperature response to wind stress in the Tropical Pacific and its sensitivity to the K-Profile Parameterization of vertical mixing

    KAUST Repository

    Wagman, Benjamin M.

    2014-05-04

    Uncertainty in wind forcing has long hampered direct tests of ocean model output against observations for the purpose of refining the boundary layer K-Profile Parameterization (KPP) of oceanic vertical mixing. Considered here is a short-term metric that could be sensitive to the ways in which the KPP directly affects the adjustment of sea surface temperatures for a given change in wind stress. In particular a metric is developed based on the lagged correlation between the 2–6 day filtered wind stress and sea surface temperature. The metric is normalized by estimated observational and model uncertainties such that the significance of differences may be assessed. For this purpose multiple wind reanalysis products and their blended combinations were used to represent the range of forcing uncertainty, while perturbed KPP parameter model runs explore the sensitivity of the metric to the parameterization of vertical mixing. The correlation metric is sensitive to perturbations to most KPP parameters, in ways that accord with expectations, although only a few parameters show a sensitivity on the same order as the sensitivity to switching between wind products. This suggests that uncertainties in wind forcing continue to be a significant limitation for applying direct observational tests of KPP physics. Moreover, model correlations are biased high, suggesting that the model lacks or does not resolve sources of variability on the 2–6 day time scale.

  9. Metric of the 2–6 day sea-surface temperature response to wind stress in the Tropical Pacific and its sensitivity to the K-Profile Parameterization of vertical mixing

    KAUST Repository

    Wagman, Benjamin M.; Jackson, Charles S.; Yao, Fengchao; Zedler, Sarah; Hoteit, Ibrahim

    2014-01-01

    Uncertainty in wind forcing has long hampered direct tests of ocean model output against observations for the purpose of refining the boundary layer K-Profile Parameterization (KPP) of oceanic vertical mixing. Considered here is a short-term metric that could be sensitive to the ways in which the KPP directly affects the adjustment of sea surface temperatures for a given change in wind stress. In particular a metric is developed based on the lagged correlation between the 2–6 day filtered wind stress and sea surface temperature. The metric is normalized by estimated observational and model uncertainties such that the significance of differences may be assessed. For this purpose multiple wind reanalysis products and their blended combinations were used to represent the range of forcing uncertainty, while perturbed KPP parameter model runs explore the sensitivity of the metric to the parameterization of vertical mixing. The correlation metric is sensitive to perturbations to most KPP parameters, in ways that accord with expectations, although only a few parameters show a sensitivity on the same order as the sensitivity to switching between wind products. This suggests that uncertainties in wind forcing continue to be a significant limitation for applying direct observational tests of KPP physics. Moreover, model correlations are biased high, suggesting that the model lacks or does not resolve sources of variability on the 2–6 day time scale.

  10. Increased component safety through improved methods for residual stress analysis. Subprojects. Consideration of the elastic-plastic material properties (Phase 2). Final report

    International Nuclear Information System (INIS)

    Mirbach, David von

    2015-01-01

    Residual stresses in mechanical components can result in both detrimental but also beneficial effects on the strength and lifetime of the components. The most detailed knowledge of the residual stress state is of advantage or a pre-requisite for the assessment of the component performance. Two commonly used methods for determination of residual stresses are the hole drilling method and the ring core method which can be regarded to the mechanical methods. In the context of reactor safety research of the German Federal Ministry of Economic and Energy (BMWi) two fundamental and interacting weak points of the hole drilling method as well as of the ring core method, respectively, in order to determine residual stresses are going to be investigated. As a consequence reliability of the methods will be improved in this joint research project. On the one hand there are effects of geometrical boundary conditions of the components and on the other hand there is the influence of plasticity due to notch effects both affecting the released strain field after removing material and after all the calculated residual stresses. The first issue mentioned above is under the responsibility of the Institute of Materials Engineering (Kassel University) and the last one is investigated by materials testing institute university Stuttgart. As a consequence of a successful project the knowledge base will be considerably improved resulting in benefits for various engineering fields. Especially the quantitative consideration of real residual stress states for optimized component designs will be possible and after all the consequences of residual stresses on safety of components which are used in nuclear facilities can be evaluated. In this second experimental research chapter (phase 2) the findings of the first numerical and theoretical research chapter (phase 1) where proofed. The developed differential calculation method with the method of adaptive calibration functions were compared with the

  11. Stability of CIGS Solar Cells and Component Materials Evaluated by a Step-Stress Accelerated Degradation Test Method: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Pern, F. J.; Noufi, R.

    2012-10-01

    A step-stress accelerated degradation testing (SSADT) method was employed for the first time to evaluate the stability of CuInGaSe2 (CIGS) solar cells and device component materials in four Al-framed test structures encapsulated with an edge sealant and three kinds of backsheet or moisture barrier film for moisture ingress control. The SSADT exposure used a 15oC and then a 15% relative humidity (RH) increment step, beginning from 40oC/40%RH (T/RH = 40/40) to 85oC/70%RH (85/70) as of the moment. The voluminous data acquired and processed as of total DH = 3956 h with 85/70 = 704 h produced the following results. The best CIGS solar cells in sample Set-1 with a moisture-permeable TPT backsheet showed essentially identical I-V degradation trend regardless of the Al-doped ZnO (AZO) layer thickness ranging from standard 0.12 μm to 0.50 μm on the cells. No clear 'stepwise' feature in the I-V parameter degradation curves corresponding to the SSADT T/RH/time profile was observed. Irregularity in I-V performance degradation pattern was observed with some cells showing early degradation at low T/RH < 55/55 and some showing large Voc, FF, and efficiency degradation due to increased series Rs (ohm-cm2) at T/RH ≥ 70/70. Results of (electrochemical) impedance spectroscopy (ECIS) analysis indicate degradation of the CIGS solar cells corresponded to increased series resistance Rs (ohm) and degraded parallel (minority carrier diffusion/recombination) resistance Rp, capacitance C, overall time constant Rp*C, and 'capacitor quality' factor (CPE-P), which were related to the cells? p-n junction properties. Heating at 85/70 appeared to benefit the CIGS solar cells as indicated by the largely recovered CPE-P factor. Device component materials, Mo on soda lime glass (Mo/SLG), bilayer ZnO (BZO), AlNi grid contact, and CdS/CIGS/Mo/SLG in test structures with TPT showed notable to significant degradation at T/RH ≥ 70/70. At T/RH = 85/70, substantial blistering of

  12. Wind power in Norway

    International Nuclear Information System (INIS)

    1998-01-01

    This report analyses business costs and socio-economic costs in the development of wind power in Norway and policy instruments to encourage such a development. It is founded on an analysis of the development of wind power in other countries, notably U.S.A, Denmark, Germany, the Netherlands and Britain. The report describes the institutional background in each country, the policy instruments that have been used and still are and the results achieved. The various cost components in Norwegian wind power development and the expected market price of wind power are also discussed. The discussion of instruments distinguishes between investment oriented and production oriented instruments. 8 refs., 9 figs., 3 tabs

  13. Assessment of Reynolds stress components and turbulent pressure loss using 4D flow MRI with extended motion encoding.

    Science.gov (United States)

    Haraldsson, Henrik; Kefayati, Sarah; Ahn, Sinyeob; Dyverfeldt, Petter; Lantz, Jonas; Karlsson, Matts; Laub, Gerhard; Ebbers, Tino; Saloner, David

    2018-04-01

    To measure the Reynolds stress tensor using 4D flow MRI, and to evaluate its contribution to computed pressure maps. A method to assess both velocity and Reynolds stress using 4D flow MRI is presented and evaluated. The Reynolds stress is compared by cross-sectional integrals of the Reynolds stress invariants. Pressure maps are computed using the pressure Poisson equation-both including and neglecting the Reynolds stress. Good agreement is seen for Reynolds stress between computational fluid dynamics, simulated MRI, and MRI experiment. The Reynolds stress can significantly influence the computed pressure loss for simulated (eg, -0.52% vs -15.34% error; P Reynolds stress (P Reynolds stress tensor. The additional information provided by this method improves the assessment of pressure gradients across a stenosis in the presence of turbulence. Unlike conventional methods, which are only valid if the flow is laminar, the proposed method is valid for both laminar and disturbed flow, a common presentation in diseased vessels. Magn Reson Med 79:1962-1971, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  14. Reliability assessment of Wind turbines

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard

    2015-01-01

    Wind turbines can be considered as structures that are in between civil engineering structures and machines since they consist of structural components and many electrical and machine components together with a control system. Further, a wind turbine is not a one-of-a-kind structure...... but manufactured in series production based on many component tests, some prototype tests and zeroseries wind turbines. These characteristics influence the reliability assessment where focus in this paper is on the structural components. Levelized Cost Of Energy is very important for wind energy, especially when...... comparing to other energy sources. Therefore much focus is on cost reductions and improved reliability both for offshore and onshore wind turbines. The wind turbine components should be designed to have sufficient reliability level with respect to both extreme and fatigue loads but also not be too costly...

  15. Stress

    Science.gov (United States)

    ... taking care of an aging parent. With mental stress, the body pumps out hormones to no avail. Neither fighting ... with type 1 diabetes. This difference makes sense. Stress blocks the body from releasing insulin in people with type 2 ...

  16. Integrating Systems Health Management with Adaptive Controls for a Utility-Scale Wind Turbine

    Science.gov (United States)

    Frost, Susan A.; Goebel, Kai; Trinh, Khanh V.; Balas, Mark J.; Frost, Alan M.

    2011-01-01

    Increasing turbine up-time and reducing maintenance costs are key technology drivers for wind turbine operators. Components within wind turbines are subject to considerable stresses due to unpredictable environmental conditions resulting from rapidly changing local dynamics. Systems health management has the aim to assess the state-of-health of components within a wind turbine, to estimate remaining life, and to aid in autonomous decision-making to minimize damage. Advanced adaptive controls can provide the mechanism to enable optimized operations that also provide the enabling technology for Systems Health Management goals. The work reported herein explores the integration of condition monitoring of wind turbine blades with contingency management and adaptive controls. Results are demonstrated using a high fidelity simulator of a utility-scale wind turbine.

  17. Residual Effect of Chemical and Animal Fertilizers and Compost on Yield, YieldComponents, Physiological Characteristics and Essential Oil Content of Matricaria chamomilla L. under Drought Stress conditions

    Directory of Open Access Journals (Sweden)

    a Ahmadian

    2011-02-01

    Full Text Available Abstract The residual effect of inorganic and organic fertilizers on growth and yield of plants is one of the important problems in nutrition. This study was conducted to determine the residual effect of different fertilizers on yield, yield components, physiological parameters and essential oil percentage of Matricaria chamomilla under drought stress. A split plot arrangement based on randomized completely block design (RCBD with three replication was conducted in 2009, at the University of Zabol. Treatments included W1 (non stress, W2 (75% FC and W3 (50% FC as main plot and three types of residual’s fertilizers: F1 (non fertilizer, F2 (chemical fertilizer, F3 (manure fertilizer and F4 (compost as sub plot. Results showed that water stress at W3 treatment reduced dry flower yield. Low water stress increased essential oil percentage and the highest oil was obtained in W2. In this experiment, free proline and total soluble carbohydrate concentration were increased under water stress. The residual’s manure and compost enhanced flower yield, percentage and yield of essential oil of chamomile at the second year. At a glance, animal manure application and light water stress (75% FC was recommended to obtain best quantitative and qualitative yield. Keywords: Water Stress, Fertilizer, Carbohydrate, Proline, Chamomile

  18. Brown rice and its component, γ-oryzanol, attenuate the preference for high-fat diet by decreasing hypothalamic endoplasmic reticulum stress in mice.

    Science.gov (United States)

    Kozuka, Chisayo; Yabiku, Kouichi; Sunagawa, Sumito; Ueda, Rei; Taira, Shin-Ichiro; Ohshiro, Hiroyuki; Ikema, Tomomi; Yamakawa, Ken; Higa, Moritake; Tanaka, Hideaki; Takayama, Chitoshi; Matsushita, Masayuki; Oyadomari, Seiichi; Shimabukuro, Michio; Masuzaki, Hiroaki

    2012-12-01

    Brown rice is known to improve glucose intolerance and prevent the onset of diabetes. However, the underlying mechanisms remain obscure. In the current study, we investigated the effect of brown rice and its major component, γ-oryzanol (Orz), on feeding behavior and fuel homeostasis in mice. When mice were allowed free access to a brown rice-containing chow diet (CD) and a high-fat diet (HFD), they significantly preferred CD to HFD. To reduce hypothalamic endoplasmic reticulum (ER) stress on an HFD, mice were administered with 4-phenylbutyric acid, a chemical chaperone, which caused them to prefer the CD. Notably, oral administration of Orz, a mixture of major bioactive components in brown rice, also improved glucose intolerance and attenuated hypothalamic ER stress in mice fed the HFD. In murine primary neuronal cells, Orz attenuated the tunicamycin-induced ER stress. In luciferase reporter assays in human embryonic kidney 293 cells, Orz suppressed the activation of ER stress-responsive cis-acting elements and unfolded protein response element, suggesting that Orz acts as a chemical chaperone in viable cells. Collectively, the current study is the first demonstration that brown rice and Orz improve glucose metabolism, reduce hypothalamic ER stress, and, consequently, attenuate the preference for dietary fat in mice fed an HFD.

  19. Effect of prior machining deformation on the development of tensile residual stresses in weld-fabricated nuclear components

    International Nuclear Information System (INIS)

    Prevey, P.S.; Mason, P.W.; Hornbach, D.J.; Molkenthin, J.P.

    1996-01-01

    Austenitic alloy weldments in nuclear systems may be subject to stress-corrosion cracking (SCC) failure if the sum of residual and applied stresses exceeds a critical threshold. Residual stresses developed by prior machining and welding may either accelerate or retard SCC, depending on their magnitude and sign. A combined x-ray diffraction and mechanical procedure was used to determine the axial and hoop residual stress and yield strength distributions into the inside-diameter surface of a simulated Alloy 600 penetration J-welded into a reactor pressure vessel. The degree of cold working and the resulting yield strength increase caused by prior machining and weld shrinkage were calculated from the line-broadening distributions. Tensile residual stresses on the order of +700 MPa were observed in both the axial and the hoop directions at the inside-diameter surface in a narrow region adjacent to the weld heat-affected zone. Stresses exceeding the bulk yield strength were found to develop due to the combined effects of cold working of the surface layers during initial machining and subsequent weld shrinkage. The residual stress and cold work distributions produced by prior machining were found to influence strongly the final residual stress state developed after welding

  20. Development of an Integrated Water and Wind Erosion Model

    Science.gov (United States)

    Flanagan, D. C.; Ascough, J. C.; Wagner, L. E.; Geter, W. F.

    2006-12-01

    Prediction technologies for soil erosion by the forces of wind or water have largely been developed independently from one another, especially within the United States. Much of this has been due to the initial creation of equations and models which were empirical in nature (i.e., Universal Soil Loss Equation, Wind Erosion Equation) and based upon separate water erosion or wind erosion plot and field measurements. Additionally, institutional organizations in place typically divided research efforts and funding to unique wind or water erosion research and modeling projects. However, during the past 20 years computer technologies and erosion modeling have progressed to the point where it is now possible to merge physical process-based computer simulation models into an integrated water and wind erosion prediction system. In a physically- based model, many of the processes which must be simulated for wind and water erosion computations are the same, e.g., climate, water balance, runoff, plant growth, etc. Model components which specifically deal with the wind or water detachment, transport and deposition processes are those that must differ, as well as any necessary parameterization of input variables (e.g., adjusted soil erodibilities, critical shear stresses, etc.) for those components. This presentation describes current efforts towards development of a combined wind and water erosion model, based in part upon technologies present in the Water Erosion Prediction Project (WEPP) and the Wind Erosion Prediction System (WEPS) models. Initial efforts during the past two years have resulted in modular modeling components that allow for prediction of infiltration, surface runoff, and water erosion at a hillslope scale within an Object Modeling System. Additional components currently in development include wind detachment at a single field point, continuous water balance, and unified plant growth. Challenges in this project are many, and include adequate field

  1. Effect of Zeolite, Selenium and Silicon on Yield, Yield Components and Some Physiological Traits of Canola under Salt Stress Conditions

    Directory of Open Access Journals (Sweden)

    A Bybordi

    2016-07-01

    Full Text Available Introduction Canola can be cultivated in large areas of the country due to its specific characteristics such as suitable composition of the fatty acids, its germination ability under low temperature, as well as its good compatibility with different climates. Canola is a high demanding crop in terms of fertilizers so that it uptakes considerable amount of nutrients from the soil during the growing season. Canola cultivation in poor soils or application of imbalanced fertilizers, especially nitrogen, can reduce qualitaty and quantity of final yield. On the other hand, salinity is known as one of the major limiting factors in canola production. Therefore, the aim of this study is the application of zeolite, selenium and silicon treatments to amend soil and increasing salinity tolerance in canola. Materials and Methods In order to study the effect of soil applied zeolite and foliar application of selenium and silicon on yield, yield components and some physiological traits of canola grown under salinity stress, a factorial experiment in randomized complete block design was conducted in Agriculture and Natural Resource Research Center in East Azerbaijan during 2011-2013 cropping seasons. Zeolite was applied at three levels (0, 5 and 10 ton ha-1 and foliar selenium and silicon were applied at three levels as well (each one zero, 2 and 4 g l-1. For this purpose, seedbed was prepared using plow and disk and then plot were designed. Canola seeds, cultivar Okapi, were sown in sandy loam soil with 4 dS.m-1 salinity at the depth of 2-3 cm. Irrigation was performed using local well based on 60% field capacity using the closed irrigation system. Potassium selentae and potassium silicate were used for selenium and silicon treatments. Treatments at rosette and stem elongation stages were sprayed on plants using a calibrated pressurized backpack sprayer. At flowering stage, photosynthesis rate was recorded. Then leaf samples were randomly collected to assay

  2. Online stress corrosion crack and fatigue usages factor monitoring and prognostics in light water reactor components: Probabilistic modeling, system identification and data fusion based big data analytics approach

    Energy Technology Data Exchange (ETDEWEB)

    Mohanty, Subhasish M. [Argonne National Lab. (ANL), Argonne, IL (United States); Jagielo, Bryan J. [Argonne National Lab. (ANL), Argonne, IL (United States); Oakland Univ., Rochester, MI (United States); Iverson, William I. [Argonne National Lab. (ANL), Argonne, IL (United States); Univ. of Illinois at Urbana-Champaign, Champaign, IL (United States); Bhan, Chi Bum [Argonne National Lab. (ANL), Argonne, IL (United States); Pusan National Univ., Busan (Korea, Republic of); Soppet, William S. [Argonne National Lab. (ANL), Argonne, IL (United States); Majumdar, Saurin M. [Argonne National Lab. (ANL), Argonne, IL (United States); Natesan, Ken N. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2014-12-10

    Nuclear reactors in the United States account for roughly 20% of the nation's total electric energy generation, and maintaining their safety in regards to key component structural integrity is critical not only for long term use of such plants but also for the safety of personnel and the public living around the plant. Early detection of damage signature such as of stress corrosion cracking, thermal-mechanical loading related material degradation in safety-critical components is a necessary requirement for long-term and safe operation of nuclear power plant systems.

  3. Work stress: its components and its association with self-reported health outcomes in a garment factory in Bangladesh-Findings from a cross-sectional study.

    Science.gov (United States)

    Steinisch, Maria; Yusuf, Rita; Li, Jian; Rahman, Omar; Ashraf, Hasan M; Strümpell, Christian; Fischer, Joachim E; Loerbroks, Adrian

    2013-11-01

    Bangladesh is one of the leading exporters of ready-made garments (RMG) worldwide producing at very low cost almost exclusively for Western markets. Empirical evidence on psychologically adverse working conditions and their association with health in the RMG setting remains sparse. Drawing on insights from previous ethnographic research, we conducted a cross-sectional epidemiological study among 332 RMG workers in Dhaka, Bangladesh. High work-related demands and poor interpersonal resources represented key components of work stress and were important determinants of poor health. The key work stress components observed in this study partly differed from those identified in Western work place settings. © 2013 The Authors. Published by Elsevier Ltd. All rights reserved.

  4. Wind Energy

    International Nuclear Information System (INIS)

    Rodriguez D, J.M.

    1998-01-01

    The general theory of the wind energy conversion systems is presented. The availability of the wind resource in Colombia and the ranges of the speed of the wind in those which is possible economically to use the wind turbines are described. It is continued with a description of the principal technological characteristics of the wind turbines and are split into wind power and wind-powered pumps; and its use in large quantities grouped in wind farms or in autonomous systems. Finally, its costs and its environmental impact are presented

  5. Hypercholesterolemia Up-Regulates the Expression of Intermedin and Its Receptor Components in the Aorta of Rats via Inducing the Oxidative Stress.

    Science.gov (United States)

    Meng, Qingtao; Shi, Di; Feng, Jiayue; Su, Yanling; Long, Yang; He, Sen; Wang, Si; Wang, Yong; Zhang, Xiangxun; Chen, Xiaoping

    2016-01-01

    Hypercholesterolemia can cause damage to the artery. Intermedin (IMD) is a novel member of the calcitonin gene-related peptide family. This study aims to investigate the aortic expression of IMD and its receptors in hypercholesterolemia without atherosclerosis. Male Wistar rats were fed with high cholesterol diet, with or without simvastatin and vitamin C. Both the malondialdehyde (MDA) and superoxide dismutase (SOD) in plasma and aorta were determined as the oxidative stress biomarkers. The plasma IMD was assessed by radioimmunoassay. Within the aorta, the mRNA expression of IMD along with its receptor components was determined, and the corresponding protein level of the CRLR/RAMPs was also assessed. The hypercholesterolemia rats without atherosclerotic lesion manifested a higher level of MDA and SOD and the plasma IMD elevated. Increased expression of IMD and all its receptor components (CRLR, RAMP1, RAMP2, and RAMP3) were displayed within the aorta. The simvastatin indirectly attenuated oxidative stress by improving lipid profiles, while the vitamin C directly reduced oxidative stress without interfering with the serum lipids. Both simvastatin and vitamin C ameliorated the aortic injury, decreased the plasma IMD level, and recovered the expression of IMD and its receptors within the aorta. The up-regulated expression of IMD is observed within the aorta of the hypercholesterolemia rats. In addition, the oxidative stress participates in the up-regulation. © 2016 by the Association of Clinical Scientists, Inc.

  6. Modelling the water mass circulation in the Aegean Sea. Part I: wind stresses, thermal and haline fluxes

    Directory of Open Access Journals (Sweden)

    I. A. Valioulis

    1994-07-01

    Full Text Available The aim of this work is to develop a computer model capable of simulating the water mass circulation in the Aegean Sea. There is historical, phenomenological and recent experimental evidence of important hydrographical features whose causes have been variably identified as the highly complex bathymetry, the extreme seasonal variations in temperature, the considerable fresh water fluxes, and the large gradients in salinity or temperature across neighbouring water masses (Black Sea and Eastern Mediterranean. In the approach taken here, physical processes are introduced into the model one by one. This method reveals the parameters responsible for permanent and seasonal features of the Aegean Sea circulation. In the first part of the work reported herein, wind-induced circulation appears to be seasonally invariant. This yearly pattern is overcome by the inclusion of baroclinicity in the model in the form of surface thermohaline fluxes. The model shows an intricate pattern of sub-basin gyres and locally strong currents, permanent or seasonal, in accord with the experimental evidence.

  7. Modelling the water mass circulation in the Aegean Sea. Part I: wind stresses, thermal and haline fluxes

    Directory of Open Access Journals (Sweden)

    I. A. Valioulis

    Full Text Available The aim of this work is to develop a computer model capable of simulating the water mass circulation in the Aegean Sea. There is historical, phenomenological and recent experimental evidence of important hydrographical features whose causes have been variably identified as the highly complex bathymetry, the extreme seasonal variations in temperature, the considerable fresh water fluxes, and the large gradients in salinity or temperature across neighbouring water masses (Black Sea and Eastern Mediterranean. In the approach taken here, physical processes are introduced into the model one by one. This method reveals the parameters responsible for permanent and seasonal features of the Aegean Sea circulation. In the first part of the work reported herein, wind-induced circulation appears to be seasonally invariant. This yearly pattern is overcome by the inclusion of baroclinicity in the model in the form of surface thermohaline fluxes. The model shows an intricate pattern of sub-basin gyres and locally strong currents, permanent or seasonal, in accord with the experimental evidence.

  8. Wind energy statistics

    International Nuclear Information System (INIS)

    Holttinen, H.; Tammelin, B.; Hyvoenen, R.

    1997-01-01

    The recording, analyzing and publishing of statistics of wind energy production has been reorganized in cooperation of VTT Energy, Finnish Meteorological (FMI Energy) and Finnish Wind Energy Association (STY) and supported by the Ministry of Trade and Industry (KTM). VTT Energy has developed a database that contains both monthly data and information on the wind turbines, sites and operators involved. The monthly production figures together with component failure statistics are collected from the operators by VTT Energy, who produces the final wind energy statistics to be published in Tuulensilmae and reported to energy statistics in Finland and abroad (Statistics Finland, Eurostat, IEA). To be able to verify the annual and monthly wind energy potential with average wind energy climate a production index in adopted. The index gives the expected wind energy production at various areas in Finland calculated using real wind speed observations, air density and a power curve for a typical 500 kW-wind turbine. FMI Energy has produced the average figures for four weather stations using the data from 1985-1996, and produces the monthly figures. (orig.)

  9. Major Lipid Body Protein: A Conserved Structural Component of Lipid Body Accumulated during Abiotic Stress in S. quadricauda CASA-CC202

    Directory of Open Access Journals (Sweden)

    Arumugam Muthu

    2016-11-01

    Full Text Available Abiotic stress in oleaginous microalgae enhances lipid accumulation and is stored in a specialised organelle called lipid droplets (LDs. Both the LDs and body are enriched with major lipid droplet protein (MLDP. It serves as a major structural component and also plays a key role in recruiting other proteins and enzymes involved in lipid body maturation. In the present study, the presence of MLDP was detected in two abiotic stress condition namely nitrogen starvation and salt stress condition. Previous research reveals that nitrogen starvation enhances lipid accumulation. Therefore, the effect of salt on growth, biomass yield, and fatty acid profile is studied in detail. The specific growth rate of S. quadricauda under the salt stress of 10mM concentration is about 0.174μ and in control, the SGR is 0.241μ. An increase in the doubling time of the cells shows that the rate of cell division decreases during salt stress (2.87–5.17. The dry biomass content also decreased drastically at 50mM salt-treated cells (129mg/L compared to control (236mg/L on the day 20. The analysis of fatty acid composition also revealed that there is a 20% decrease in the saturated fatty acid level and 19.9% increment in monounsaturated fatty acid level, which makes salt-mediated lipid accumulation as a suitable biodiesel precursor.

  10. Major Lipid Body Protein: A Conserved Structural Component of Lipid Body Accumulated during Abiotic Stress in S. quadricauda CASA-CC202

    International Nuclear Information System (INIS)

    Javee, Anand; Sulochana, Sujitha Balakrishnan; Pallissery, Steffi James; Arumugam, Muthu

    2016-01-01

    Abiotic stress in oleaginous microalgae enhances lipid accumulation, which is stored in a specialized organelle called lipid droplets (LDs). Both the LDs or lipid body are enriched with major lipid droplet protein (MLDP). It serves as a major structural component and also plays a key role in recruiting other proteins and enzymes involved in lipid body maturation. In the present study, the presence of MLDP was detected in two abiotic stress condition namely nitrogen starvation and salt stress condition. Previous research reveals that nitrogen starvation enhances lipid accumulation. Therefore, the effect of salt on growth, biomass yield, and fatty acid profile is studied in detail. The specific growth rate of Scenedesmus quadricauda under the salt stress of 10mM concentration is about 0.174 μ and in control, the SGR is 0.241 μ. An increase in the doubling time of the cells shows that the rate of cell division decreases during salt stress (2.87–5.17). The dry biomass content also decreased drastically at 50mM salt-treated cells (129 mg/L) compared to control (236 mg/L) on the day 20. The analysis of fatty acid composition also revealed that there is a 20% decrease in the saturated fatty acid level and 19.9% increment in monounsaturated fatty acid level, which makes salt-mediated lipid accumulation as a suitable biodiesel precursor.

  11. Major Lipid Body Protein: A Conserved Structural Component of Lipid Body Accumulated during Abiotic Stress in S. quadricauda CASA-CC202

    Energy Technology Data Exchange (ETDEWEB)

    Javee, Anand [Biotechnology Division, National Institute for Interdisciplinary Science and Technology (NIIST), Council of Scientific and Industrial Research (CSIR), Trivandrum (India); Sulochana, Sujitha Balakrishnan [Biotechnology Division, National Institute for Interdisciplinary Science and Technology (NIIST), Council of Scientific and Industrial Research (CSIR), Trivandrum (India); Academy of Scientific and Innovative Research (AcSIR), New Delhi (India); Pallissery, Steffi James [Biotechnology Division, National Institute for Interdisciplinary Science and Technology (NIIST), Council of Scientific and Industrial Research (CSIR), Trivandrum (India); Arumugam, Muthu, E-mail: arumugam@niist.res.in [Biotechnology Division, National Institute for Interdisciplinary Science and Technology (NIIST), Council of Scientific and Industrial Research (CSIR), Trivandrum (India); Academy of Scientific and Innovative Research (AcSIR), New Delhi (India)

    2016-11-23

    Abiotic stress in oleaginous microalgae enhances lipid accumulation, which is stored in a specialized organelle called lipid droplets (LDs). Both the LDs or lipid body are enriched with major lipid droplet protein (MLDP). It serves as a major structural component and also plays a key role in recruiting other proteins and enzymes involved in lipid body maturation. In the present study, the presence of MLDP was detected in two abiotic stress condition namely nitrogen starvation and salt stress condition. Previous research reveals that nitrogen starvation enhances lipid accumulation. Therefore, the effect of salt on growth, biomass yield, and fatty acid profile is studied in detail. The specific growth rate of Scenedesmus quadricauda under the salt stress of 10mM concentration is about 0.174 μ and in control, the SGR is 0.241 μ. An increase in the doubling time of the cells shows that the rate of cell division decreases during salt stress (2.87–5.17). The dry biomass content also decreased drastically at 50mM salt-treated cells (129 mg/L) compared to control (236 mg/L) on the day 20. The analysis of fatty acid composition also revealed that there is a 20% decrease in the saturated fatty acid level and 19.9% increment in monounsaturated fatty acid level, which makes salt-mediated lipid accumulation as a suitable biodiesel precursor.

  12. Effect of Mulch and Water Stress on Some Physiological Traits, Yield Components and Grain Yield of Red Kidney bean (Phaseolus vulgaris L.

    Directory of Open Access Journals (Sweden)

    R Amini

    2016-02-01

    Full Text Available Introduction Water use in agricultural production as one of the most important environmental factors affecting plant growth and development, especially in arid and semi-arid climatic conditions of Iran is of special importance (21. One of the ways of alleviating water scarcity is by enhancing its use efficiency or productivity. Improving water use efficiency in arid and semi-arid areas depends on effective conservation of moisture and efficient use of limited water. Mulching is one of the management practices for increasing water use efficiency (WUE . Straw mulch is commonly used as mulch. Straw mulching has potential for increasing soil water storage (16. Mulches modify the microclimate and growing conditions of crops (16, conserve more water and increase water use efficiency (34. Red kidney bean (Phaseolus vulgaris L. is the most important food legume (25 and is an important source of proteins and minerals (28. The majority of red kidney bean production is under drought conditions, and thus yield reductions due to drought are very common (29. This research was carried out to evaluate the effect of wheat straw mulch and water stress on physiological traits, yield components and grain yield of red kidney bean cultivars. Materials and Methods A field experiment was conducted in 2012 at the Research Farm of the Faculty of Agriculture, University of Tabriz, Iran (latitude 38°05_N, longitude 46°17_E, altitude 1360 m above sea level. In order to investigate the effect of mulch on grain yield and yield components of red kidney bean (Phaseolus vulgaris L. cultivars at different water stress treatments, a factorial experiment was conducted based on RCB design with three replications. The factors were including water stress treatment (I1 and I2, irrigation after 60 and 120 mm evaporation from class A pan, respectively; mulch application at two levels (M1: (no mulch and M2: 2 ton ha-1 wheat straw mulch and red kidney bean cultivars including Akhtar and

  13. Determination of mechanical properties of some glass fiber reinforced plastics suitable to Wind Turbine Blade construction

    Science.gov (United States)

    Steigmann, R.; Savin, A.; Goanta, V.; Barsanescu, P. D.; Leitoiu, B.; Iftimie, N.; Stanciu, M. D.; Curtu, I.

    2016-08-01

    The control of wind turbine's components is very rigorous, while the tower and gearbox have more possibility for revision and repairing, the rotor blades, once they are deteriorated, the defects can rapidly propagate, producing failure, and the damages can affect large regions around the wind turbine. This paper presents the test results, performed on glass fiber reinforced plastics (GFRP) suitable to construction of wind turbine blades (WTB). The Young modulus, shear modulus, Poisson's ratio, ultimate stress have been determined using tensile and shear tests. Using Dynamical Mechanical Analysis (DMA), the activation energy for transitions that appear in polyester matrix as well as the complex elastic modulus can be determined, function of temperature.

  14. Evolution of Grain Yield and its Components Relationships in Bread Wheat Genotypes under Full Irrigation and Terminal Water Stress Conditions Using Multivariate Statistical Analysis

    Directory of Open Access Journals (Sweden)

    S Mohammadi

    2014-07-01

    Full Text Available To study relationships between effective traits on wheat grain yield, the varieties Zarrin and Alvand, and some promising lines i.e. C-81-4, C-81-10, C-81-14 and C-82-12 were investigated at three sowing dates including 10 October, 1 November and 21 November. The experiment was carried out using strip plot in RCBD with three replications under two different water conditions including full-irrigation and terminal water stress at Miyandoab Agricultural Research Station in 2005-06 and 2006-07 cropping seasons. The results showed that under both full irrigation and terminal water stress conditions, grain yield had positive and significant correlation with days to heading, days to maturity, plant height, number of spikes/m2 and 1000 grain weight. Stepwise regression analysis revealed that 83 percent of yield variation under non-stressed conditions could be determined by days to maturity and number of spikes/m2 (R2 = 83% whereas these traits explained 87% of yield variation under stress conditions (R2= 87%. Path analysis indicated that number of spikes/m2 and days to maturity had the greatest positive direct and indirect effect on grain yield, under both conditions. The results of factor analysis under non-stressed condition showed that three factors explained 77% of total variation; these factors were called grain yield components, grain characteristics and plant phonology. Under non-stressed condition two factors (that were called grain yield and phenology, and plant morphology explained 88% of total variation. Cluster analysis through ward method, classified days to maturity and number of spikes/m2 in the same cluster where the grain yield was put under both conditions. It was concluded that under different sowing dates, selection based on days to maturity and number spikes/m2 could indirectly led to higher yield under both normal and water stress conditions.

  15. Modelling the day to day wind variability offshore central Chile at about 30 deg. south

    International Nuclear Information System (INIS)

    Rutllant, J.

    1994-07-01

    Cycles of strengthening and relaxation of the winds offshore 30 degrees S at central Chile, are related to the propagation of coastal-lows, a year-round phenomenon occurring with periodicities of about one in five days. Simple physical modelling of the day to day variability of the alongshore wind component at a coastal strip extending offshore up to the Rossby deformation radius of these wave perturbations, is presented in terms of the relevant horizontal pressure gradients and the ageostrophic components arising from the coastal-low propagation. The results of 5-day composites of 8 wind-events each, at the winter and summer halves of the annual cycle, respectively; lead to a good agreement between the observed phase-lag of the winds with respect to the pressure forcing field, stressing the importance of the ageostrophic wind components at the extremes of the pressure wave perturbation associated with the passage of coastal-lows over the Point Lengua de Vaca (30 15 S) area. A possible contribution of the upwelling-favorable wind enhancement at the time of the pressure rise and subsequent fall, ahead of the coastal-low, is postulated through an upwelling-front low-level jet, that would be carried onshore and closer to the surface by the combination of the enhanced coastal upwelling, the coastal depression of the subsidence inversion base and the coastal ageostrophic wind components during the passage of the leading edge of the coastal lows. (author). 26 refs, 5 figs, 1 tab

  16. Wind Turbine Blade

    DEFF Research Database (Denmark)

    2010-01-01

    The invention relates to a blade for a wind turbine, particularly to a blade that may be produced by an advanced manufacturing process for producing a blade with high quality structural components. Particularly, the structural components, which are preferably manufactured from fibre reinforced...

  17. Physics-Based Stress Corrosion Cracking Component Reliability Model cast in an R7-Compatible Cumulative Damage Framework

    Energy Technology Data Exchange (ETDEWEB)

    Unwin, Stephen D.; Lowry, Peter P.; Layton, Robert F.; Toloczko, Mychailo B.; Johnson, Kenneth I.; Sanborn, Scott E.

    2011-07-01

    This is a working report drafted under the Risk-Informed Safety Margin Characterization pathway of the Light Water Reactor Sustainability Program, describing statistical models of passives component reliabilities.

  18. Novel processing of Barkhausen noise signal for assessment of residual stress in surface ground components exhibiting poor magnetic response

    International Nuclear Information System (INIS)

    Vashista, M.; Paul, S.

    2011-01-01

    The Barkhausen Noise Analysis (BNA) technique has been utilised to assess surface integrity of steels. But the BNA technique is not very successful in evaluating surface integrity of ground steels that exhibit poor micro-magnetic response. A new approach has been proposed for the processing of BN signal and two newly proposed parameters, namely 'count' and 'event', have been shown to correlate linearly with the residual stress upon grinding, with judicious choice of user defined 'threshold', even when the micro-magnetic response of the work material is poor. In the present study, residual stress induced upon conventional plunge surface grinding of hardened bearing steel has been investigated along with unhardened bearing steel for benchmarking. Moreover, similar correlation has been established, when primarily compressive stress is induced upon high speed grinding using cBN wheel with moderately deep cut suppressing the micro-magnetic response from the ground medium carbon steel as the work material. - Highlights: → The problem of work materials exhibiting poor BN response and poor Barkhausen Noise response is identified. → A novel signal processing strategy is introduced to address the issue of poor micro-magnetic response of some ferromagnetic material. → Potential of newly introduced BN parameters has been studied. → These two BN parameters exhibited linear correlation with residual stress for work material with poor micro-magnetic response.

  19. An introduction to reactive power compensation for wind farms

    International Nuclear Information System (INIS)

    Nigim, K.A.; Cairo Univ., Giza; Zobaa, A.F.; El Amin, I.

    2005-01-01

    The paper summarises the refereed contributions of seven articles reviewed for publication in the IJETP - Special Issue on 'Reactive compensation for wind farms'. The main goal of the special issue is to provide a forum to exchange information on the reactive power compensation requirements for wind farms and introducing possible price mechanisms for today's deregulated power industry. Uncompensated reactive power causes stress on the hosting utility grid as well as added expenses, which create in difficulties for power purchasing agreements from independent wind energy producers. Wind power producers need to comply with the hosting utility grid interconnection standards, e.g., voltage and frequency, as well as to provide controllable active and reactive sources of power. Active power supply is mainly dependent on the potential of wind power produced and the turbine design. Reactive power demand on the other hand depends on the conversion devices and the recovered power quantity fed to the grid. Static Var Compensators (SVC), Unified Power Quality Conditioners (UPQC), Unified Power Flow Controllers (UPFC), and the Distributed Static Synchronous Compensators (DSTATCOM) are all new emerging devices aimed at regulating the reactive power requirements. The excellent controllability of these devices has paved the way to flexible and dynamic controllers that are capable of regulating the flow of active and reactive power components. These devices are now suggested for the control of the reactive power requirement of wind generators. Studies have demonstrated acceptable voltage stabilisation results. This has increased the penetration level of wind power into existing distribution networks in many countries. (Author)

  20. Stress

    DEFF Research Database (Denmark)

    Keller, Hanne Dauer

    2015-01-01

    Kapitlet handler om stress som følelse, og det trækker primært på de få kvalitative undersøgelser, der er lavet af stressforløb.......Kapitlet handler om stress som følelse, og det trækker primært på de få kvalitative undersøgelser, der er lavet af stressforløb....

  1. Stress !!!

    OpenAIRE

    Fledderus, M.

    2012-01-01

    Twee op de vijf UT-studenten hebben last van ernstige studiestress, zo erg zelfs dat het ze in hun privéleven belemmert. Die cijfers komen overeen met het landelijk beeld van stress onder studenten. Samen met 14 andere universiteits- en hogeschoolbladen enquêteerde UT Nieuws bijna 5500 studenten. Opvallend is dat mannelijke studenten uit Twente zich veel minder druk lijken te maken over hun studie. Onder vrouwen ligt de stress juist erg hoog ten opzichte van het landelijk gemiddelde.

  2. Reliability Analysis of Wind Turbines

    DEFF Research Database (Denmark)

    Toft, Henrik Stensgaard; Sørensen, John Dalsgaard

    2008-01-01

    In order to minimise the total expected life-cycle costs of a wind turbine it is important to estimate the reliability level for all components in the wind turbine. This paper deals with reliability analysis for the tower and blades of onshore wind turbines placed in a wind farm. The limit states...... consideres are in the ultimate limit state (ULS) extreme conditions in the standstill position and extreme conditions during operating. For wind turbines, where the magnitude of the loads is influenced by the control system, the ultimate limit state can occur in both cases. In the fatigue limit state (FLS......) the reliability level for a wind turbine placed in a wind farm is considered, and wake effects from neighbouring wind turbines is taken into account. An illustrative example with calculation of the reliability for mudline bending of the tower is considered. In the example the design is determined according...

  3. COASTING EXTERNAL SHOCK IN WIND MEDIUM: AN ORIGIN FOR THE X-RAY PLATEAU DECAY COMPONENT IN SWIFT GAMMA-RAY BURST AFTERGLOWS

    Energy Technology Data Exchange (ETDEWEB)

    Shen Rongfeng; Matzner, Christopher D., E-mail: rfshen@astro.utoronto.ca, E-mail: matzner@astro.utoronto.ca [Department of Astronomy and Astrophysics, University of Toronto, Ontario M5S 3H4 (Canada)

    2012-01-01

    The plateaus observed in about one half of the early X-ray afterglows are the most puzzling feature in gamma-ray bursts (GRBs) detected by Swift. By analyzing the temporal and spectral indices of a large X-ray plateau sample, we find that 55% can be explained by external, forward shock synchrotron emission produced by a relativistic ejecta coasting in a {rho}{proportional_to}r{sup -2}, wind-like medium; no energy injection into the shock is needed. After the ejecta collects enough medium and transitions to the adiabatic, decelerating blast wave phase, it produces the post-plateau decay. For those bursts consistent with this model, we find an upper limit for the initial Lorentz factor of the ejecta, {Gamma}{sub 0} {<=} 46({epsilon}{sub e}/0.1){sup -0.24}({epsilon}{sub B}/0.01){sup 0.17}; the isotropic equivalent total ejecta energy is E{sub iso} {approx} 10{sup 53}({epsilon}{sub e}/0.1){sup -1.3}({epsilon}{sub B}/0.01){sup -0.09}(t{sub b} /10{sup 4} s) erg, where {epsilon}{sub e} and {epsilon}{sub B} are the fractions of the total energy at the shock downstream that are carried by electrons and the magnetic field, respectively, and t{sub b} is the end of the plateau. Our finding supports Wolf-Rayet stars as the progenitor stars of some GRBs. It raises intriguing questions about the origin of an intermediate-{Gamma}{sub 0} ejecta, which we speculate is connected to the GRB jet emergence from its host star. For the remaining 45% of the sample, the post-plateau decline is too rapid to be explained in the coasting-in-wind model, and energy injection appears to be required.

  4. DISTRIBUTED EXTERNAL SURFACE HARDENING OF CAR DESIGN BY WINDING

    Directory of Open Access Journals (Sweden)

    O. V. Fomin

    2017-04-01

    Full Text Available Purpose. The paper involves coverage of features and results of the research conducted by the authors to determine the feasibility and establishment of pre-stressed-strained state of freight cars by winding in order to improve their strength characteristics. It is also necessary to present the theoretical justification for the effectiveness of the application of this method for car designs and an appropriate example for the tank-car. Methodology. The conducted study is based on an analysis of known works on the subject, mathematical justification and computer modeling. At the calculations of rolling stock components contemporary conventional techniques were used. Findings. Authors found that the winding method for pre-stressed-strained state is effective and appropriate for use in the construction of railway rolling stock and, in particular freight cars. Freight car designs with the pre-stressed-strained state are characterized by a number of strength advantages, among which there is an improvement of the work on the perception of operational loads and resource conservation. Originality. For the first time it is proposed the improvement of bearing capacity of freight car constructions through the creation of its component in the directed stress-strained state. It is also for the first time proposed the use of distributed external surface hardening by the method of winding to create a pre-stress-strained state of structural components of freight cars. The methods for winding designs of freight cars and their implementation were considered. Practical value. The studies developed a number of technical solutions for improving the design of freight cars and tank-container, which has been patented. Corresponding solutions for the tank-car are partially presented. Practical implementation of such solutions will significantly improve the technical, economic and operational performances of car designs.

  5. Project of integrity assessment of flawed components with structural discontinuity (IAF). Data book for estimation stress intensity factor. Surface crack on ICM housing for penetration in reactor vessel

    International Nuclear Information System (INIS)

    2012-12-01

    The project of Integrity Assessment of Flawed Components with Structural Discontinuity (IAF) was entrusted to Japan Power Engineering and Inspection Corporation (JAPEIC) from Nuclear and Industrial Safety Agency (NISA) and started from FY 2001. And then, it was taken over to Japan Nuclear Energy Safety Organization (JNES) which was established in October 2003 and carried out until FY 2007. In the IAF project, weld joints between nickel based alloys and low alloy steels around penetrations in reactor vessel, safe-end of nozzles and shroud supports were selected from among components and pipe arrangements in nuclear power plants, where high residual stresses were generated due to welding and complex structure. Residual stresses around of the weld joints were estimated by finite element analysis method (FEM) with a general modeling method, then the reasonability and the conservativeness was evaluated. In addition, for postulated surface crack of stress corrosion cracking (SCC), a simple calculation method of stress intensity factor (K) required to estimate the crack growth was proposed and the effectiveness was confirmed. JNES compiled results of the IAF project into Data Books of Residual Stress Analysis of Weld Joint, and Data Book of Simplified Stress Intensity Factor Calculation for Penetration of Reactor as typical Structure Discontinuity, respectively. Data Books of Residual Stress Analysis in Weld Joint. 1. Butt Weld Joint of Small Diameter Cylinder (4B Sch40) (JNES-RE-2012-0005), 2. Dissimilar Metal Weld Joint in Safe End (One-Side Groove Joint (JNES-RE-2012-0006), 3. Dissimilar Metal Weld Joint in Safe End (Large Diameter Both-Side Groove Joint) (JNES-RE-2012-0007), 4. Weld Joint around Penetrations in Reactor Vessel (Insert Joint) (JNES-RE-2012-0008), 5. Weld Joint in Shroud Support (H8, H9, H10 and H11 Welds) (JNES-RE-2012-0009), 6. Analysis Model of Dissimilar Metal Weld Joint Applied Post Weld Heat Treatment (PWHT) (JNES-RE-2012-0010). Data Book of

  6. Effect of Black and Clear Polyethylene Mulch on Yield and Yield Components of Melon in Salinity Stress Condition

    Directory of Open Access Journals (Sweden)

    Peyman Jafari

    2017-02-01

    Full Text Available Introduction: The term of Mulch, is the German word (Molsh means the soft, however, not soft, and made of plant debris or synthetic substances. Many positive effects attributed to the use of plastic mulch such as adjusting the temperature in the root environment, conserve moisture, reduce weeds, increase root growth, reduce soil erosion, and soil condensation and improve germination and early plant establishment. The use of mulch can reduce the harmful effects of salt in plants. Materials and Methods: To evaluate the effects of black and clear polyethylene mulch on yield and yield components of melon in salinity stress condition, a study was conducted in 2011 using split plot randomized based on complete block design with three replications in Varamin region. Three salinity levels of irrigation water of 2, 5 and 8 dS-1 as main factor and three plastic mulch treatments (no mulch, clear mulch and black mulch were considered as sub-plots. At harvest and after determining the yield and number of fruits harvested from each plot, the average number of fruits per plant was measured and fruit pulp thickness was recorded with calipers. Results Discussion The results showed interactive effects of salinity and mulch on fruit yield, number of fruits per plant, average fruit weight, fruit length, days to first harvest and fruit soluble solids percentage were statistically significant. In salinity levels of 2, 5 and 8 dS m-1, fruit yield increased, respectively, 19.6, 59, and 45.4 %in clear mulch compared to control. Similarly these increases for the black mulch were equal to 15.7, 41.9, and 21.4 percent, respectively. With 2, 5 and 8 dS m-1 salinity levels, fruit yield in the first harvest were 7.44, 7.72, and 6.98 t ha -1, respectively, which was significantly higher than without mulch and black mulch. Mulch can reduce evaporation and increase the level of moisture in the soil and thereby dilute the salt and reduce the harmful effects of salinity. Some

  7. Renewable Energy Essentials: Wind

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    Subjects for further research, specific to wind energy technology, include more refined resource assessment; materials with higher strength to mass ratios; advanced grid integration and power quality and control technologies; standardisation and certification; development of low-wind regime turbines; improved forecasting; increased fatigue resistance of major components such as gearboxes; better models for aerodynamics and aeroelasticity; generators based on superconductor technology; deep-offshore foundations; and high-altitude 'kite' concepts.

  8. Response of Yield, Yield Components and Nutrient Concentration of Cumin (Cuminum cyminum L. to Mycorrhizal Symbiosis under Salt Stress Conditions

    Directory of Open Access Journals (Sweden)

    M. Bijhani

    2016-01-01

    Full Text Available To study the effects of mycorrhizal inoculation and salinity stress on the growth, yield and nutrient concentrations of cumin (Cuminum cyminum L., an experiment was carried out as split plot in a completely randomized block design at Zabol University Research Farm in 2013. Treatments consisted of three salinity stresses: 1 (control, 5 and 10 dSm-1, was considered as the main treatments, and four levels of mycorrhizal inoculation (Glomus intraradices, G. etanicatum, G. hoi and non-inoculation as control as the sub-treatments. The effects of salinity on all traits under study, except umbers per plant, were significant, and severe stress (10 dSm-1 reduced 100 seed weight, number of seeds per umbel, concentrations of phosphorus, calcium and magnesium in seeds by 17.71, 11.4, 14.95, 46.08, 13.60 %, respectively, as compared to the control. The numbers of seeds per umbel and phosphorus concentration in seed were highest in G. intraradices with 28.4 and 54.4%, respectively as compared to control and umbels per plant was also maximum (9.7 by using G. etanicatum. Mycorrhizal inoculation did not have significant effect on calcium and magnesium concentrations in seeds and 1000 seed weight. However mycorrhiza × salinity stress interaction was significant about concentration of sodium, potassium and sodium to potassium ratio (Na/K in seeds, as well as seed yield and seed number per plant. Among the species of mycorrhiza, applied G. intraradices had better performance in severe salinity (10 dS-1 and increased seed yield and seed number per plant by 28.5 and 47.6%, respectively in comparision control. The results suggested that mycorrhizal inoculation improves water absorption by plant. Yield increases of plants under different salinity regimes dependent on their mycorrhizal inoculation.

  9. Influence of reference stress formulae on creep and creep-fatigue crack initiation and growth prediction in plate components

    Energy Technology Data Exchange (ETDEWEB)

    Wasmer, K., E-mail: kilian.wasmer@empa.c [Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Advanced Materials Processing, Feuerwerkerstrasse 39, 3602 Thun (Switzerland); Nikbin, K.M.; Webster, G.A. [Department of Mechanical Engineering, Imperial College London, London SW7 2BX (United Kingdom)

    2010-08-15

    Creep and creep-fatigue crack growth in pre-cracked plates of 316L(N) austenitic stainless steel, containing a semi-elliptical surface defect and tested at 650 {sup o}C under combined axial and bending loading, are investigated. The results have been interpreted in terms of the creep fracture mechanics parameter C* and compared with data obtained on standard compact tension (CT) specimens of the same material and batch. In making the assessments, the reference stress method has been used to determine C*. Several formulae exist for calculating the reference stress depending on whether it is based on a 'global' or a 'local' collapse mechanism and the assessment procedure adopted. When using this approach, it has been found that the most satisfactory comparison of crack growth rates with standard CT specimen data is obtained when the 'global' reference stress solution is used in conjunction with mean uniaxial creep properties. It has been found that the main effect of changing the fatigue cycle range from 0.1 to -1.0 is to cause an acceleration in the early stage of cracking.

  10. Influence of reference stress formulae on creep and creep-fatigue crack initiation and growth prediction in plate components

    International Nuclear Information System (INIS)

    Wasmer, K.; Nikbin, K.M.; Webster, G.A.

    2010-01-01

    Creep and creep-fatigue crack growth in pre-cracked plates of 316L(N) austenitic stainless steel, containing a semi-elliptical surface defect and tested at 650 o C under combined axial and bending loading, are investigated. The results have been interpreted in terms of the creep fracture mechanics parameter C* and compared with data obtained on standard compact tension (CT) specimens of the same material and batch. In making the assessments, the reference stress method has been used to determine C*. Several formulae exist for calculating the reference stress depending on whether it is based on a 'global' or a 'local' collapse mechanism and the assessment procedure adopted. When using this approach, it has been found that the most satisfactory comparison of crack growth rates with standard CT specimen data is obtained when the 'global' reference stress solution is used in conjunction with mean uniaxial creep properties. It has been found that the main effect of changing the fatigue cycle range from 0.1 to -1.0 is to cause an acceleration in the early stage of cracking.

  11. Reliability Assessment Of Wind Turbines

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard

    2014-01-01

    Reduction of cost of energy for wind turbines are very important in order to make wind energy competitive compared to other energy sources. Therefore the turbine components should be designed to have sufficient reliability but also not be too costly (and safe). This paper presents models...... for uncertainty modeling and reliability assessment of especially the structural components such as tower, blades, substructure and foundation. But since the function of a wind turbine is highly dependent on many electrical and mechanical components as well as a control system also reliability aspects...... of these components are discussed and it is described how there reliability influences the reliability of the structural components. Two illustrative examples are presented considering uncertainty modeling, reliability assessment and calibration of partial safety factors for structural wind turbine components exposed...

  12. Linear wind generator

    International Nuclear Information System (INIS)

    Kozarov, A.; Petrov, O.; Antonov, J.; Sotirova, S.; Petrova, B.

    2006-01-01

    The purpose of the linear wind-power generator described in this article is to decrease the following disadvantages of the common wind-powered turbine: 1) large bending and twisting moments to the blades and the shaft, especially when strong winds and turbulence exist; 2) significant values of the natural oscillation period of the construction result in the possibility of occurrence of destroying resonance oscillations; 3) high velocity of the peripheral parts of the rotor creating a danger for birds; 4) difficulties, connected with the installation and the operation on the mountain ridges and passages where the wind energy potential is the largest. The working surfaces of the generator in questions driven by the wind are not connected with a joint shaft but each moves along a railway track with few oscillations. So the sizes of each component are small and their number can be rather large. The mechanical trajectory is not a circle but a closed outline in a vertical plain, which consists of two rectilinear sectors, one above the other, connected in their ends by semi-circumferences. The mechanical energy of each component turns into electrical on the principle of the linear electrical generator. A regulation is provided when the direction of the wind is perpendicular to the route. A possibility of effectiveness is shown through aiming of additional quantities of air to the movable components by static barriers

  13. Guide to commercially available wind machines

    Energy Technology Data Exchange (ETDEWEB)

    1978-04-03

    Wind Energy Conversion Systems (WECS) commercially available in the United States are described. The terms used to describe these wind systems are defined and their significance discussed. Lists of manufacturers and distributors, subsystem components and suppliers, and references are provided.

  14. The stress granule component TIA-1 binds tick-borne encephalitis virus RNA and is recruited to perinuclear sites of viral replication to inhibit viral translation.

    Science.gov (United States)

    Albornoz, Amelina; Carletti, Tea; Corazza, Gianmarco; Marcello, Alessandro

    2014-06-01

    Flaviviruses are a major cause of disease in humans and animals worldwide. Tick-borne encephalitis virus (TBEV) is the most important arthropod-borne flavivirus endemic in Europe and is the etiological agent of tick-borne encephalitis, a potentially fatal infection of the central nervous system. However, the contributions of host proteins during TBEV infection are poorly understood. In this work, we investigate the cellular protein TIA-1 and its cognate factor TIAR, which are stress-induced RNA-binding proteins involved in the repression of initiation of translation of cellular mRNAs and in the formation of stress granules. We show that TIA-1 and TIAR interact with viral RNA in TBEV-infected cells. During TBEV infection, cytoplasmic TIA-1 and TIAR are recruited at sites of viral replication with concomitant depletion from stress granules. This effect is specific, since G3BP1, another component of these cytoplasmic structures, remains localized to stress granules. Moreover, heat shock induction of stress granules containing TIA-1, but not G3BP1, is inhibited in TBEV-infected cells. Infection of cells depleted of TIA-1 or TIAR by small interfering RNA (siRNA) or TIA-1(-/-) mouse fibroblasts, leads to a significant increase in TBEV extracellular infectivity. Interestingly, TIAR(-/-) fibroblasts show the opposite effect on TBEV infection, and this phenotype appears to be related to an excess of TIA-1 in these cells. Taking advantage of a TBE-luciferase replicon system, we also observed increased luciferase activity in TIA-1(-/-) mouse fibroblasts at early time points, consistent with TIA-1-mediated inhibition at the level of the first round of viral translation. These results indicate that, in response to TBEV infection, TIA-1 is recruited to sites of virus replication to bind TBEV RNA and modulate viral translation independently of stress granule (SG) formation. This study (i) extends previous work that showed TIA-1/TIAR recruitment at sites of flavivirus replication

  15. Magnetically driven jets and winds

    Science.gov (United States)

    Lovelace, R. V. E.; Berk, H. L.; Contopoulos, J.

    1991-01-01

    Four equations for the origin and propagation of nonrelativistic jets and winds are derived from the basic conservation laws of ideal MHD. The axial current density is negative in the vicinity of the axis and positive at larger radii; there is no net current because this is energetically favored. The magnetic field is essential for the jet solutions in that the zz-component of the magnetic stress acts, in opposition to gravity, to drive matter through the slow magnetosonic critical point. For a representative self-consistent disk/jet solution relevant to a protostellar system, the reaction of the accreted mass expelled in the jets is 0.1, the ratio of the power carried by the jets to the disk luminosity is 0.66, and the ratio of the boundary layer to disk luminosities is less than about 0.13. The star's rotation rate decreases with time even for rotation rates much less than the breakup rate.

  16. Method and apparatus for wind turbine braking

    Science.gov (United States)

    Barbu, Corneliu [Laguna Hills, CA; Teichmann, Ralph [Nishkayuna, NY; Avagliano, Aaron [Houston, TX; Kammer, Leonardo Cesar [Niskayuna, NY; Pierce, Kirk Gee [Simpsonville, SC; Pesetsky, David Samuel [Greenville, SC; Gauchel, Peter [Muenster, DE

    2009-02-10

    A method for braking a wind turbine including at least one rotor blade coupled to a rotor. The method includes selectively controlling an angle of pitch of the at least one rotor blade with respect to a wind direction based on a design parameter of a component of the wind turbine to facilitate reducing a force induced into the wind turbine component as a result of braking.

  17. Proposed research on class I components to test a general approach to accelerated aging under combined stress environments

    International Nuclear Information System (INIS)

    Gillen, K.T.; Salazar, E.A.; Frank, C.W.

    1977-04-01

    This report summarizes research on the aging of Class I components in environments representative of nuclear power plants. It discusses Class IE equipment used in nuclear power plants, typical environments encountered by Class IE components, and aging techniques used to qualify this equipment. General discussions of radiation chemistry of polymers and accelerated aging techniques are also included. Based on the inadequacies of present aging techniques for Class IE equipment, a proposal for an experimental program on electrical cables is presented. One of the main purposes of the proposed work is to obtain relevant data in two areas of particular concern--the effect of radiation dose rate on polymer degradation, and the importance of synergism for combined thermal and radiation environments. A new model that allows combined environment accelerated aging to be carried out is introduced, and it is shown how the experimental data to be generated can be used to test this model

  18. Stress !!!

    NARCIS (Netherlands)

    Fledderus, M.

    2012-01-01

    Twee op de vijf UT-studenten hebben last van ernstige studiestress, zo erg zelfs dat het ze in hun privéleven belemmert. Die cijfers komen overeen met het landelijk beeld van stress onder studenten. Samen met 14 andere universiteits- en hogeschoolbladen enquêteerde UT Nieuws bijna 5500 studenten.

  19. Estimation of Rotor Effective Wind Speed: A Comparison

    DEFF Research Database (Denmark)

    Soltani, Mohsen; Knudsen, Torben; Svenstrup, Mikael

    2013-01-01

    Modern wind turbine controllers use wind speed information to improve power production and reduce loads on the turbine components. The turbine top wind speed measurement is unfortunately imprecise and not a good representative of the rotor effective wind speed. Consequently, many different model...... aero-servo-elastic turbine simulations and real turbine field experiments in different wind scenarios....

  20. An MHD simulation of the effects of the interplanetary magnetic field By component on the interaction of the solar wind with the earth's magnetosphere during southward interplanetary magnetic field

    Science.gov (United States)

    Ogino, T.; Walker, R. J.; Ashour-Abdalla, M.; Dawson, J. M.

    1986-01-01

    The interaction between the solar wind and the earth's magnetosphere has been studied by using a time-dependent three-dimensional MHD model in which the IMF pointed in several directions between dawnward and southward. When the IMF is dawnward, the dayside cusp and the tail lobes shift toward the morningside in the northern magnetosphere. The plasma sheet rotates toward the north on the dawnside of the tail and toward the south on the duskside. For an increasing southward IMF component, the plasma sheet becomes thinner and subsequently wavy because of patchy or localized tail reconnection. At the same time, the tail field-aligned currents have a filamentary layered structure. When projected onto the northern polar cap, the filamentary field-aligned currents are located in the same area as the region 1 currents, with a pattern similar to that associated with auroral surges. Magnetic reconnection also occurs on the dayside magnetopause for southward IMF.

  1. Wind energy

    International Nuclear Information System (INIS)

    Kotevski, Darko

    2003-01-01

    Wind is not only free, it is inexhaustible. Wind energy has come a very long way since the prototypes of just 20 years ago. today's wind turbines are state-of-the-art technology - modular and quick to install anywhere where there is sufficient wind potential to provide secure, centralised or distributed generation. It is a global phenomenon, the world's fastest growing energy sector, a clean and effective modern technology that completely avoids pollution and thus reducing the 'green house' effect. (Original)

  2. Computing the stresses and deformations of the human eye components due to a high explosive detonation using fluid-structure interaction model.

    Science.gov (United States)

    Karimi, Alireza; Razaghi, Reza; Navidbakhsh, Mahdi; Sera, Toshihiro; Kudo, Susumu

    2016-05-01

    In spite the fact that a very small human body surface area is comprised by the eye, its wounds due to detonation have recently been dramatically amplified. Although many efforts have been devoted to measure injury of the globe, there is still a lack of knowledge on the injury mechanism due to Primary Blast Wave (PBW). The goal of this study was to determine the stresses and deformations of the human eye components, including the cornea, aqueous, iris, ciliary body, lens, vitreous, retina, sclera, optic nerve, and muscles, attributed to PBW induced by trinitrotoluene (TNT) explosion via a Lagrangian-Eulerian computational coupling model. Magnetic Resonance Imaging (MRI) was employed to establish a Finite Element (FE) model of the human eye according to a normal human eye. The solid components of the eye were modelled as Lagrangian mesh, while an explosive TNT, air domain, and aqueous were modelled using Arbitrary Lagrangian-Eulerian (ALE) mesh. Nonlinear dynamic FE simulations were accomplished using the explicit FE code, namely LS-DYNA. In order to simulate the blast wave generation, propagation, and interaction with the eye, the ALE formulation with Jones-Wilkins-Lee (JWL) equation defining the explosive material were employed. The results revealed a peak stress of 135.70kPa brought about by detonation upsurge on the cornea at the distance of 25cm. The highest von Mises stresses were observed on the sclera (267.3kPa), whereas the lowest one was seen on the vitreous body (0.002kPa). The results also showed a relatively high resultant displacement for the macula as well as a high variation for the radius of curvature for the cornea and lens, which can result in both macular holes, optic nerve damage and, consequently, vision loss. These results may have implications not only for understanding the value of stresses and strains in the human eye components but also giving an outlook about the process of PBW triggers damage to the eye. Copyright © 2016 Elsevier Ltd

  3. Introduction to wind energy systems

    Science.gov (United States)

    Wagner, H.-J.

    2017-07-01

    This article presents the basic concepts of wind energy and deals with the physics and mechanics of operation. It describes the conversion of wind energy into rotation of turbine, and the critical parameters governing the efficiency of this conversion. After that it presents an overview of various parts and components of windmills. The connection to the electrical grid, the world status of wind energy use for electricity production, the cost situation and research and development needs are further aspects which will be considered.

  4. Wind Turbines Adaptation to the Variability of the Wind Field

    Science.gov (United States)

    Ulianov, Yuriy; Martynenko, Gennadii; Misaylov, Vitaliy; Soliannikova, Iuliia

    2010-05-01

    including combined RF-acoustic antenna installed coaxially with the gondola of the wind power turbine. The work of the technique is synchronized with rotation of blades to eliminate their shielding action. Dangerous in terms of dynamic strength is the wind load pulse, the rise time which is comparable with the period of the natural frequency of the wind turbine elements (blade, tower, rotor, etc.). The amplitude decay of resonant vibrations at critical values of the speed of rotation can be realized through the use of mechanical elastic supports with nonlinear artificial dampers. They have a high coefficient of resistance, but may cause self-excited oscillations. We propose the way to deal with raised vibration of wind turbine elements at the expense of short-term increase of damping in the range of critical rotary axis speeds or during impulsive effects of wind loadings (wind gusts). This is possible through the use of non-linear electromagnetic dampers or active magnetic bearings. Their feature is the possibility of varying the mechanical stiffness and damping properties by changing the electrical parameters of electromagnets. The controlling of these parameters is carried out by the control system (CS) with the information feedback on the spatial-temporal structure of the wind field obtained from IRASS. In the composition of the CS can also be included the rotational speed sensor of the WPT rotor. This approach to the adaptation of wind turbines will allow to reduce vibration and to perform early compensation of the load on their components, which arise under the wind gusts. In addition, corrections about the wind field obtained with IRASS, would increase the mean power of WPT.

  5. Wind Structure and Wind Loading

    DEFF Research Database (Denmark)

    Brorsen, Michael

    The purpose of this note is to provide a short description of wind, i.e. of the flow in the atmosphere of the Earth and the loading caused by wind on structures. The description comprises: causes to the generation of windhe interaction between wind and the surface of the Earthhe stochastic nature...

  6. Episodic and semantic components of autobiographical memories and imagined future events in post-traumatic stress disorder.

    Science.gov (United States)

    Brown, Adam D; Addis, Donna Rose; Romano, Tracy A; Marmar, Charles R; Bryant, Richard A; Hirst, William; Schacter, Daniel L

    2014-01-01

    Individuals with post-traumatic stress disorder (PTSD) tend to retrieve autobiographical memories with less episodic specificity, referred to as overgeneralised autobiographical memory. In line with evidence that autobiographical memory overlaps with one's capacity to imagine the future, recent work has also shown that individuals with PTSD also imagine themselves in the future with less episodic specificity. To date most studies quantify episodic specificity by the presence of a distinct event. However, this method does not distinguish between the numbers of internal (episodic) and external (semantic) details, which can provide additional insights into remembering the past and imagining the future. This study employed the Autobiographical Interview (AI) coding scheme to the autobiographical memory and imagined future event narratives generated by combat veterans with and without PTSD. Responses were coded for the number of internal and external details. Compared to combat veterans without PTSD, those with PTSD generated more external than internal details when recalling past or imagining future events, and fewer internal details were associated with greater symptom severity. The potential mechanisms underlying these bidirectional deficits and clinical implications are discussed.

  7. Wind power

    International Nuclear Information System (INIS)

    Gipe, P.

    2007-01-01

    This book is a translation of the edition published in the USA under the title of ''wind power: renewable energy for home, farm and business''. In the wake of mass blackouts and energy crises, wind power remains a largely untapped resource of renewable energy. It is a booming worldwide industry whose technology, under the collective wing of aficionados like author Paul Gipe, is coming of age. Wind Power guides us through the emergent, sometimes daunting discourse on wind technology, giving frank explanations of how to use wind technology wisely and sound advice on how to avoid common mistakes. Since the mid-1970's, Paul Gipe has played a part in nearly every aspect of wind energy development from installing small turbines to promoting wind energy worldwide. As an American proponent of renewable energy, Gipe has earned the acclaim and respect of European energy specialists for years, but his arguments have often fallen on deaf ears at home. Today, the topic of wind power is cropping up everywhere from the beaches of Cape Cod to the Oregon-Washington border, and one wind turbine is capable of producing enough electricity per year to run 200 average American households. Now, Paul Gipe is back to shed light on this increasingly important energy source with a revised edition of Wind Power. Over the course of his career, Paul Gipe has been a proponent, participant, observer, and critic of the wind industry. His experience with wind has given rise to two previous books on the subject, Wind Energy Basics and Wind Power for Home and Business, which have sold over 50,000 copies. Wind Power for Home and Business has become a staple for both homeowners and professionals interested in the subject, and now, with energy prices soaring, interest in wind power is hitting an all-time high. With chapters on output and economics, Wind Power discloses how much you can expect from each method of wind technology, both in terms of energy and financial savings. The book updated models

  8. The Effects of Drought Stress on Yield, Yield Components and Anti-oxidant of Two Garlic (Allium sativum L. Ecotypes with Different Planting Densities

    Directory of Open Access Journals (Sweden)

    shiva akbari

    2016-07-01

    Full Text Available Introduction Drought stress reduces plant growth by affecting various physiological and biochemical processes, such as photosynthesis, respiration, translocation, ion uptake, carbohydrates, nutrient metabolism and growth promoters. Garlic (Allium sativum L. is an annual bulb crop that has been cultivated since ancient times and was used as a spice and condiment for many centuries. Garlic is an important plant because of its pharmaceutical properties. The optimum yield of this bulb crop depends on well-managed irrigation, fertilization and cultivation practices. In the final and middle stages of growth, garlic is sensitive to water stress and low irrigation is unsuitable in these stages. This experiment was established to study the influence of drought stress and planting density on yield and its components and the non-enzymatic anti-oxidant content of two different garlic ecotypes. Materials and methods This study was conducted in 2011-2012 in a farmland at the south east of Semnan city. The experimental layout was a split-plot factorial with a randomized complete block design with three replications. The treatments were comprised of three factors: irrigation rates (60%, 80% and 100% of estimated crop evapotranspiration (ETC as the main plot and the factorial combination of three levels of planting density (30, 40 and 50 plants.m-2 and two ecotypes (Tabas and Toroud as the sub-plots. To estimate the crop water requirement, different meteorological parameters were collected from Semnan weather station and were used based on FAO-56 water irrigation calculation instructions. After harvesting, ten garlic plants were sampled randomly in each plot and bulb yield components were measured. To calculate the leaves anti-oxidant content, DPPH method was used. The statistical significances of mean values were assessed by analysis of variance and LSD tests at p≤0.05. All calculations were performed using SAS and Mstat-C softwares. Results and discussion

  9. Stress.

    Science.gov (United States)

    Chambers, David W

    2008-01-01

    We all experience stress as a regular, and sometimes damaging and sometimes useful, part of our daily lives. In our normal ups and downs, we have our share of exhaustion, despondency, and outrage--matched with their corresponding positive moods. But burnout and workaholism are different. They are chronic, dysfunctional, self-reinforcing, life-shortening habits. Dentists, nurses, teachers, ministers, social workers, and entertainers are especially susceptible to burnout; not because they are hard-working professionals (they tend to be), but because they are caring perfectionists who share control for the success of what they do with others and perform under the scrutiny of their colleagues (they tend to). Workaholics are also trapped in self-sealing cycles, but the elements are ever-receding visions of control and using constant activity as a barrier against facing reality. This essay explores the symptoms, mechanisms, causes, and successful coping strategies for burnout and workaholism. It also takes a look at the general stress response on the physiological level and at some of the damage American society inflicts on itself.

  10. Proposal of reference stress for a surface flaw on a cylindrical component from a review-with-comparison of the local metal loss assessment rule between API 579-1 and the p-M diagram method

    International Nuclear Information System (INIS)

    Oyamada, Kenji; Konosu, Shinji; Ohno, Takashi

    2011-01-01

    The Remaining Strength Factor (RSF) approach in Part 5 of API 579-1/ASME FFS-1 is an assessment method for a cylindrical component with a local metal loss based on surface correction factors. Also, reference stress solutions that are applied in the Failure Assessment Diagram (FAD) method for a cylindrical component with a crack-like flaw are provided in Annex D using surface correction factors. In the recently-developed p-M diagram method, the reference stress solution for local metal loss evaluation in a cylindrical component is derived using bulging factors, which are similar but not identical to the surface correction factors used in API 579-1/ASME FFS-1. This paper describes the results of a comparative study among the RSF approach, reference stress solutions for the FAD method, and the p-M diagram method, in terms of plastic collapse evaluation of a cylindrical component. These results were compared with the FEA and experimental results to confirm how these estimated stresses could be validated. This study also involves recommended reference stress solutions for a cylindrical component with a crack-like flaw or a local metal loss, which should be adopted as fitness-for-service rules, and a discussion on the influence of the design margin of the construction code on allowable flaw depth. - Highlights: → We compared local metal loss assessment rule between API 579-1 and the p-M method. → Experiments and FEA verified the p-M estimate stress state around a flaw accurate. → API 579-1 for local metal loss may underestimate stress state for certain conditions. → Existing reference stresses for crack-like flaws may underestimate stress state too. → We propose the reference stress for a surface flaw subjected to pressure and moment.

  11. Role of nitric oxide in cadmium-induced stress on growth, photosynthetic components and yield of Brassica napus L.

    Science.gov (United States)

    Jhanji, Shalini; Setia, R C; Kaur, Navjyot; Kaur, Parminder; Setia, Neelam

    2012-11-01

    Experiments were carried out to study the effect of cadmium (Cd) and exogenous nitric oxide (NO) on growth, photosynthetic attributes, yield components and structural features of Brassica napus L. (cv. GSL 1). Cadmium in the growth medium at different levels (1, 2 and 4 Mm) retarded plant growth viz. shoot (27%) and root (51%) length as compared to control. The accumulation of total dry matter and its partitioning to different plant parts was also reduced by 31% due to Cd toxicity. Photosynthetic parameters viz., leaf area plant(-1) (51%), total Chl (27%), Chl a / Chl b ratio (22%) and Hill reaction activity of chloroplasts (42%) were greatly reduced in Cd-treated plants. Cd treatments adversely affected various yield parameters viz., number of branches (23) and siliquae plant(-1) (246), seed number siliqua(-1) (10.3), 1000-seed weight (2.30g) and seed yield plant(-1) (7.09g). Different Cd treatments also suppressed the differentiation of various tissues like vessels in the root with a maximum inhibition caused by 4mM Cd. Exogenous application of nitric oxide (NO) improved the various morpho-physiological and photosynthetic parameters in control as well as Cd-treated plants.

  12. Fatigue damage of steel components

    DEFF Research Database (Denmark)

    Fæster, Søren; Zhang, Xiaodan; Huang, Xiaoxu

    2014-01-01

    Railway rails and the inner ring in roller bearings in wind turbines are both experiencing steel-to-steel contact in small areas with huge loads resulting in extremely high stresses in the base materials......Railway rails and the inner ring in roller bearings in wind turbines are both experiencing steel-to-steel contact in small areas with huge loads resulting in extremely high stresses in the base materials...

  13. P2X7 receptor blockade protects against cisplatin-induced nephrotoxicity in mice by decreasing the activities of inflammasome components, oxidative stress and caspase-3

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yuanyuan; Yuan, Fahuan; Cao, Xuejiao [Department of Nephrology, Xinqiao Hospital, PLA, Third Military Medical University, Chongqing 400037 (China); Zhai, Zhifang [Department of Dermatology, Southwest Hospital, Third Military Medical University, Chongqing 400038 (China); Gang Huang [Department of Medical Genetics, Third Military Medical University, Chongqing 430038 (China); Du, Xiang; Wang, Yiqin; Zhang, Jingbo; Huang, Yunjian; Zhao, Jinghong [Department of Nephrology, Xinqiao Hospital, PLA, Third Military Medical University, Chongqing 400037 (China); Hou, Weiping, E-mail: hwp0518@aliyun.com [Department of Nephrology, Xinqiao Hospital, PLA, Third Military Medical University, Chongqing 400037 (China)

    2014-11-15

    Nephrotoxicity is a common complication of cisplatin chemotherapy and thus limits the use of cisplatin in clinic. The purinergic 2X7 receptor (P2X7R) plays important roles in inflammation and apoptosis in some inflammatory diseases; however, its roles in cisplatin-induced nephrotoxicity remain unclear. In this study, we first assessed the expression of P2X7R in cisplatin-induced nephrotoxicity in C57BL/6 mice, and then we investigated the changes of renal function, histological injury, inflammatory response, and apoptosis in renal tissues after P2X7R blockade in vivo using an antagonist A-438079. Moreover, we measured the changes of nod-like receptor family, pyrin domain containing proteins (NLRP3) inflammasome components, oxidative stress, and proapoptotic genes in renal tissues in cisplatin-induced nephrotoxicity after treatment with A-438079. We found that the expression of P2X7R was significantly upregulated in the renal tubular epithelial cells in cisplatin-induced nephrotoxicity compared with that of the normal control group. Furthermore, pretreatment with A-438079 markedly attenuated the cisplatin-induced renal injury while lightening the histological damage, inflammatory response and apoptosis in renal tissue, and improved the renal function. These effects were associated with the significantly reduced levels of NLRP3 inflammasome components, oxidative stress, p53 and caspase-3 in renal tissues in cisplatin-induced nephrotoxicity. In conclusions, our studies suggest that the upregulated activity of P2X7R might play important roles in the development of cisplatin-induced nephrotoxicity, and P2X7R blockade might become an effective therapeutic strategy for this disease. - Highlights: • The P2X7R expression was markedly upregulated in cisplatin-induced nephrotoxicity. • P2X7R blockade significantly attenuated the cisplatin-induced renal injury. • P2X7R blockade reduced activities of NLRP3 inflammasome components in renal tissue. • P2X7R blockade

  14. Gearless wind power generator

    Energy Technology Data Exchange (ETDEWEB)

    Soederlund, L.; Ridanpaeae, P.; Vihriaelae, H.; Peraelae, R. [Tampere Univ. of Technology (Finland). Lab. of Electricity and Magnetism

    1998-12-31

    During the wind power generator project a design algorithm for a gearless permanent magnet generator with an axially orientated magnetic flux was developed and a 10 kW model machine was constructed. Utilising the test results a variable wind speed system of 100 kW was designed that incorporates a permanent magnet generator, a frequency converter and a fuzzy controller. This system produces about 5-15% more energy than existing types and stresses to the blades are minimised. The type of generator designed in the project represents in general a gearless solution for slow-speed electrical drives. (orig.)

  15. Wind energy technology developments

    DEFF Research Database (Denmark)

    Madsen, Peter Hauge; Hansen, Morten Hartvig; Pedersen, Niels Leergaard

    2014-01-01

    turbine blades and towers are very large series-produced components, which costs and quality are strongly dependent on the manufacturing methods. The industrial wind energy sector is well developed in Denmark, and the competitive advantage of the Danish sector and the potential for job creation...

  16. Theoretical and experimental investigations concerning the problem of quasi-static crack propagation in two-component materials subject to residual stresses

    International Nuclear Information System (INIS)

    Braun, H.P.

    1979-01-01

    With the aim of obtaining microstructural information of multi-component materials fracture-mechanical calculations on continuum-mechanical models of fiber composites were performed. There were ideal sections of material permitting the formulation of suitable mixed boundary value problems of static thermoelasticity whose solutions could be obtained by means of appropriate numerical methods from continuum mechanics. As model loads exclusively thermally induced residual stresses were assumed, being of special interest because of the thermomechanically inhomogeneous structure of composite materials on one hand and having got decisive significance for a number of important areas of application as e.g. aero-space industry, reactor technology and chemical apparatus engineering on the other. The results evaluated numerically are exemplarily examined by means of photoelasticity. (orig./IHOE) [de

  17. Stress corrosion cracking of austenitic stainless steels in PWR primary water: an update of metallurgical investigations performed on French withdrawn components

    International Nuclear Information System (INIS)

    Boursier, J.M.; Gallet, S.; Rouillon, Y.; Bordes, P.

    2002-01-01

    Austenitic stainless steels (AISI 304, 304L, 316 and 316L) are largely used in Nuclear Power Plants because of their good resistance to corrosion and their satisfactory mechanical properties. Nevertheless, on various French PWR Nuclear Power Plants, several cases of corrosion have been encountered in auxiliary circuit portions where deleterious species and oxygen can be present. This paper focuses on the metallurgical investigations performed on pulled out components such as Canopy welds or 'dead legs' (auxiliary circuit portions connected to the main primary loops) in terms of cracking locations and degradation parameters. In addition, some comparisons between Nuclear Power Plant feedback and fundamental research and development studies are discussed, particularly in the scope of temperature, microstructure, stresses (applied and residual) and medium responsible for the degradation. (authors)

  18. Depletion of the Third Complement Component Ameliorates Age-Dependent Oxidative Stress and Positively Modulates Autophagic Activity in Aged Retinas in a Mouse Model

    Directory of Open Access Journals (Sweden)

    Dorota Rogińska

    2017-01-01

    Full Text Available The aim of the study was to investigate the influence of complement component C3 global depletion on the biological structure and function of the aged retina. In vivo morphology (OCT, electrophysiological function (ERG, and the expression of selected oxidative stress-, apoptosis-, and autophagy-related proteins were assessed in retinas of 12-month-old C3-deficient and WT mice. Moreover, global gene expression in retinas was analyzed by RNA arrays. We found that the absence of active C3 was associated with (1 alleviation of the age-dependent decrease in retinal thickness and gradual deterioration of retinal bioelectrical function, (2 significantly higher levels of antioxidant enzymes (catalase and glutathione reductase and the antiapoptotic survivin and Mcl-1/Bak dimer, (3 lower expression of the cellular oxidative stress marker—4HNE—and decreased activity of proapoptotic caspase-3, (4 ameliorated retinal autophagic activity with localization of ubiquitinated protein conjugates commonly along the retinal pigment epithelium (RPE layer, and (5 significantly increased expression of several gene sets associated with maintenance of the physiological functions of the neural retina. Our findings shed light on mechanisms of age-related retinal alterations by identifying C3 as a potential therapeutic target for retinal aging.

  19. ewec 2007 - Europe's premier wind energy event

    International Nuclear Information System (INIS)

    Chaviaropoulos, T.

    2007-01-01

    This online collection of papers - the ewec 2007 proceedings - reflects the various sessions and lectures presented at the ewec wind-energy convention held in Milan in 2007. The first day's sessions looked at the following topics: Renewable Energy Roadmap, the changing structure of the wind industry, politics and programmes, aerodynamics and innovation in turbine design, wind resources and site characterisation (2 sessions), energy scenarios, harmonisation of incentive schemes, structural design and materials, forecasting, integration studies, integrating wind into electricity markets, wind-turbine electrical systems and components, as well as loads, noise and wakes. The second day included sessions on offshore: developments and prospects, extreme wind conditions and forecasting techniques, small wind turbines, distributed generation and autonomous systems cost effectiveness, cost effectiveness of wind energy, financing wind energy concepts, wind and turbulence, wind power plants and grid integration, offshore technology, global challenges and opportunities, aero-elasticity, loads and control, operations and maintenance, carbon trading and the emission trading schemes, investment strategies of power producers, wind power plants and grid integration, wind turbine electrical systems and components, and wakes. The third day offered sessions on environmental issues, condition monitoring, operation and maintenance, structural design and materials, the Up-Wind workshop, winning hearts and minds, offshore technology, advances in measuring methods and advancing drive-train reliability. In a closing session the conference was summarised, awards for poster contributions were made and the Poul la Cour Prize was presented

  20. Contact stresses modeling at the Panda-type fiber single-layer winding and evaluation of their impact on the fiber optic properties

    Science.gov (United States)

    Lesnikova, Yu I.; Smetannikov, O. Yu; Trufanov, A. N.; Trufanov, N. A.

    2017-02-01

    The impact of contact transverse forces on the birefringence of the single-mode polarization-maintaining Panda-type fiber is numerically modeled. It has been established that with a single-row power winding on a cylindrical mandrel, the fiber tension at winding is the principal factor that influences birefringence. When coiling the fiber based on the local defect microbending, the birefringence at the microbending point differs from that of the free fiber by 1.3%.

  1. Floating wind turbine system

    Science.gov (United States)

    Viterna, Larry A. (Inventor)

    2009-01-01

    A floating wind turbine system with a tower structure that includes at least one stability arm extending therefrom and that is anchored to the sea floor with a rotatable position retention device that facilitates deep water installations. Variable buoyancy for the wind turbine system is provided by buoyancy chambers that are integral to the tower itself as well as the stability arm. Pumps are included for adjusting the buoyancy as an aid in system transport, installation, repair and removal. The wind turbine rotor is located downwind of the tower structure to allow the wind turbine to follow the wind direction without an active yaw drive system. The support tower and stability arm structure is designed to balance tension in the tether with buoyancy, gravity and wind forces in such a way that the top of the support tower leans downwind, providing a large clearance between the support tower and the rotor blade tips. This large clearance facilitates the use of articulated rotor hubs to reduced damaging structural dynamic loads. Major components of the turbine can be assembled at the shore and transported to an offshore installation site.

  2. Challenges in wind farm optimization

    DEFF Research Database (Denmark)

    Larsen, Gunner Chr.

    To achieve the optimal economic output from a wind farm over its lifetime, an optimal balance between capital costs, operation and maintenance costs, fatigue lifetime consumption of turbine components and power production is to be determined on a rational basis. This has implications both...... for the wind turbine modeling, where aeroelastic models are required, and for the wind farm flow field description, where in-stationary flow field modeling is needed to capture the complicated mixture of atmospheric boundary layer (ABL) flows and upstream emitted meandering wind turbine wakes, which together...... dictates the fatigue loading of the individual wind turbines. Within an optimization context, the basic challenge in describing the in-stationary wind farm flow field is computational speed. The Dynamic Wake Meandering (DWM) model includes the basic features of a CFD Large Eddy Simulation approach...

  3. Ultimate loading of wind turbines

    DEFF Research Database (Denmark)

    Larsen, Gunner Chr.; Ronold, K.; Ejsing Jørgensen, Hans

    1999-01-01

    An extreme loading study has been conducted comprising a general wind climate analysis as well as a wind turbine reliability study. In the wind climate analysis, the distribution of the (horizontal) turbulence standard deviation, conditioned on the meanwind speed, has been approximated by fitting......, a design turbulence intensity for off-shore application is proposed which, in the IEC code framework, is applicable for extreme as well as for fatigue loaddetermination. In order to establish a rational method to analyse wind turbine components with respect to failure in ultimate loading, and in addition...... a three parameter Weibull distribution to the measured on-shore and off-shore data for wind speed variations. Specific recommendations on off-shore design turbulence intensities are lacking in the presentIEC-code. Based on the present analysis of the off-shore wind climate on two shallow water sites...

  4. A Dynamic Wind Generation Model for Power Systems Studies

    OpenAIRE

    Estanqueiro, Ana

    2007-01-01

    In this paper, a wind park dynamic model is presented together with a base methodology for its application to power system studies. This detailed wind generation model addresses the wind turbine components and phenomena more relevant to characterize the power quality of a grid connected wind park, as well as the wind park response to the grid fast perturbations, e.g., low voltage ride through fault. The developed model was applied to the operating conditions of the selected sets of wind turbi...

  5. On the Fatigue Analysis of Wind Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Sutherland, Herbert J.

    1999-06-01

    Modern wind turbines are fatigue critical machines that are typically used to produce electrical power from the wind. Operational experiences with these large rotating machines indicated that their components (primarily blades and blade joints) were failing at unexpectedly high rates, which led the wind turbine community to develop fatigue analysis capabilities for wind turbines. Our ability to analyze the fatigue behavior of wind turbine components has matured to the point that the prediction of service lifetime is becoming an essential part of the design process. In this review paper, I summarize the technology and describe the ''best practices'' for the fatigue analysis of a wind turbine component. The paper focuses on U.S. technology, but cites European references that provide important insights into the fatigue analysis of wind turbines.

  6. Next Generation Wind Turbine

    Energy Technology Data Exchange (ETDEWEB)

    Cheraghi, S. Hossein [Western New England Univ., Springfield, MA (United States); Madden, Frank [FloDesign Wind Turbine Corp., Waltham, MA (United States)

    2012-09-01

    The goal of this collaborative effort between Western New England University's College of Engineering and FloDesign Wind Turbine (FDWT) Corporation to wok on a novel areodynamic concept that could potentially lead to the next generation of wind turbines. Analytical studies and early scale model tests of FDWT's Mixer/Ejector Wind Turbine (MEWT) concept, which exploits jet-age advanced fluid dynamics, indicate that the concept has the potential to significantly reduce the cost of electricity over conventional Horizontal Axis Wind Turbines while reducing land usage. This project involved the design, fabrication, and wind tunnel testing of components of MEWT to provide the research and engineering data necessary to validate the design iterations and optimize system performance. Based on these tests, a scale model prototype called Briza was designed, fabricated, installed and tested on a portable tower to investigate and improve the design system in real world conditions. The results of these scale prototype efforts were very promising and have contributed significantly to FDWT's ongoing development of a product scale wind turbine for deployment in multiple locations around the U.S. This research was mutually beneficial to Western New England University, FDWT, and the DOE by utilizing over 30 student interns and a number of faculty in all efforts. It brought real-world wind turbine experience into the classroom to further enhance the Green Engineering Program at WNEU. It also provided on-the-job training to many students, improving their future employment opportunities, while also providing valuable information to further advance FDWT's mixer-ejector wind turbine technology, creating opportunities for future project innovation and job creation.

  7. SMILE: experimental results of the WP4 PTS large scale test performed on a component in terms of cracked cylinder involving warm pre-stress

    International Nuclear Information System (INIS)

    Kerkhof, K.; Bezdikian, G.; Moinereau, D.; Dahl, A; Wadier, Y.; Gilles, P.; Keim, E.; Chapuliot, S.; Taylor, N.; Lidbury, D.; Sharples, J.; Budden, P.; Siegele, D.; Nagel, G.; Bass, R.; Emond, D.

    2005-01-01

    The Reactor Pressure Vessel (RPV) is an essential component, which is liable to limit the lifetime duration of PWR plants. The assessment of defects in RPV subjected to pressurized thermal shock (PTS) transients made at an European level generally does not necessarily consider the beneficial effect of the load history (Warm Pre-stress, WPS). The SMILE project - Structural Margin Improvements in aged embrittled RPV with Load history Effects-aims to give sufficient elements to demonstrate, to model and to validate the beneficial WPS effect. It also aims to harmonize the different approaches in the national codes and standards regarding the inclusion of the WPS effect in a RPV structural integrity assessment. The project includes significant experimental work on WPS type experiments with C(T) specimens and a PTS type transient experiment on a large component. This paper deals with the results of the PTS type transient experiment on a component-like specimen subjected to WPS- loading, the so called Validation Test, carried out within the framework of work package WP4. The test specimen consists of a cylindrical thick walled specimen with a thickness of 40 mm and an outer diameter of 160 mm, provided with an internal fully circumferential crack with a depth of about 15 mm. The specified load path type is Load-Cool-Unload-Fracture (LCUF). No crack initiation occurred during cooling (thermal shock loading) although the loading path crossed the fracture toughness curve in the transition region. The benefit of the WPS-effect by final re-loading up to fracture in the lower shelf region, was shown clearly. The corresponding fracture load during reloading in the lower shelf region was significantly higher than the crack initiation values of the original material in the lower shelf region. The post test fractographic evaluation showed that the fracture mode was predominantly cleavage fracture also with some secondary cracks emanating from major crack. (authors)

  8. Wind energy.

    Science.gov (United States)

    Leithead, W E

    2007-04-15

    From its rebirth in the early 1980s, the rate of development of wind energy has been dramatic. Today, other than hydropower, it is the most important of the renewable sources of power. The UK Government and the EU Commission have adopted targets for renewable energy generation of 10 and 12% of consumption, respectively. Much of this, by necessity, must be met by wind energy. The US Department of Energy has set a goal of 6% of electricity supply from wind energy by 2020. For this potential to be fully realized, several aspects, related to public acceptance, and technical issues, related to the expected increase in penetration on the electricity network and the current drive towards larger wind turbines, need to be resolved. Nevertheless, these challenges will be met and wind energy will, very likely, become increasingly important over the next two decades. An overview of the technology is presented.

  9. Shifts in renin-angiotensin system components, angiogenesis, and oxidative stress-related protein expression in the lamina cribrosa region of streptozotocin-induced diabetic mice.

    Science.gov (United States)

    Qian, Xiaobing; Lin, Leilei; Zong, Yao; Yuan, Yongguang; Dong, Yanmin; Fu, Yue; Shao, Wanwen; Li, Yujie; Gao, Qianying

    2018-03-01

    This study aimed to analyse shifts in renin-angiotensin system (RAS) components, angiogenesis, and oxidative stress-related protein expression in the lamina cribrosa (LC) region in streptozotocin (STZ)-induced diabetic mice. Six months after diabetes induction, the retinal vessels of male C57BL/6 J mice were observed by colour photography, fundus fluorescein angiography (FFA), and immunofluorescent staining following incubation with CD31. Immunofluorescence for glial fibrillary acidic protein (GFAP), alpha-smooth muscle actin (α-SMA),and NG2 was also performed. Angiotensin-converting enzyme 1 (ACE1), angiotensin II type I receptor (AT1R), renin, hypoxia-inducible factor 1-alpha (HIF-1α), vascular endothelial growth factor (VEGF), vascular endothelial growth factor receptor 2 (VEGFR2), and haeme oxygenase 1 (HO-1) expression levels were confirmed by immunohistochemical and western blotting analyses. Compared with control mice, diabetic mice had significantly higher blood glucose concentrations (p diabetic mice; however, immunostaining of whole-mount retinas revealed an increased number of retinal vessels. Furthermore, histopathological staining showed significant reduction in the whole retinal thickness. GFAP expression was slightly higher, whereas fewer NG2 + pericytes were observed in diabetic mice than in control mice. ACE1, AT1R, renin, HIF-1α, VEGF, VEGFR2, and HO-1 expression were up-regulated in the LC of the STZ-induced diabetic mice. Collectively, ACE 1, AT1R, HIF-1α, VEGF, VEGFR2, and HO-1 activation in the LC region in diabetic mice may be involved in diabetes via the RAS and induction of angiogenesis and oxidative stress.

  10. The Arabidopsis KH-Domain RNA-Binding Protein ESR1 Functions in Components of Jasmonate Signalling, Unlinking Growth Restraint and Resistance to Stress.

    Directory of Open Access Journals (Sweden)

    Louise F Thatcher

    Full Text Available Glutathione S-transferases (GSTs play important roles in the protection of cells against toxins and oxidative damage where one Arabidopsis member, GSTF8, has become a commonly used marker gene for early stress and defense responses. A GSTF8 promoter fragment fused to the luciferase reporter gene was used in a forward genetic screen for Arabidopsis mutants with up-regulated GSTF8 promoter activity. This identified the esr1-1 (enhanced stress response 1 mutant which also conferred increased resistance to the fungal pathogen Fusarium oxysporum. Through positional cloning, the ESR1 gene was found to encode a KH-domain containing RNA-binding protein (At5g53060. Whole transcriptome sequencing of esr1-1 identified altered expression of genes involved in responses to biotic and abiotic stimuli, hormone signaling pathways and developmental processes. In particular was an overall significant enrichment for jasmonic acid (JA mediated processes in the esr1-1 down-regulated dataset. A subset of these genes were tested for MeJA inducibility and we found the expression of some but not all were reduced in esr1-1. The esr1-1 mutant was not impaired in other aspects of JA-signalling such as JA- sensitivity or development, suggesting ESR1 functions in specific components of the JA-signaling pathway. Examination of salicylic acid (SA regulated marker genes in esr1-1 showed no increase in basal or SA induced expression suggesting repression of JA-regulated genes is not due to antagonistic SA-JA crosstalk. These results define new roles for KH-domain containing proteins with ESR1 unlinking JA-mediated growth and defense responses.

  11. Grid Integration of Offshore Wind | Wind | NREL

    Science.gov (United States)

    Grid Integration of Offshore Wind Grid Integration of Offshore Wind Much can be learned from the existing land-based integration research for handling the variability and uncertainty of the wind resource Arklow Bank offshore wind park consists of seven GE Wind 3.6-MW wind turbines. Integration and

  12. Effect of Foliar Application of Chelate Iron in Common and Nanoparticles Forms on Yield and Yield Components of Cumin (Cuminum cyminum L. under Drought Stress Conditions

    Directory of Open Access Journals (Sweden)

    A Nasiri Dehsorkhi

    2018-05-01

    Full Text Available Introduction Cumin is a member of Apiaceae family and annual plant which is widely cultivated in arid and semi-arid zone. Iran is one of the main producers of this plant. Water deficit is the major limiting factor in crops production. Proper nutrition management under stress conditions could partly help the plant to tolerate different stresses. Various studies were carried out to understand the effect of nanoparticles on the growth of plants. For example, Hong et al. (2005 and Yang et al. (2006 reported that a proper concentration of nano-TiO2 was found to improve the growth of spinach by promoting photosynthesis and nitrogen metabolism. Iran a country with arid and semi-arid climate, always face water deficiency. Thus the aim of this research was investigate the effect of foliar application of chelate iron in common and nanoparticles forms on yield and yield components of cumin (Cuminum cyminum L. under drought stress conditions. Materials and Methods A field experiment was conducted as a split plot in complete randomized block design with three replications in Esfahan city, during the growing season of 2015-2016. Treatments were included three irrigation intervals (5, 10 and 15 days as main plots and Fe foliar application in four levels (control, 2 g L-1 iron chelate, 2 g L-1 Nano-iron chelate, 4 g L-1 iron chelate, 4 g L-1 nano-iron chelate. Foliar application of Fe chelate on leaves was done two times at before and after flowering stage. The plots were 16 m2 with 4 sowing rows, 4 m long. Seeds were placed at 2 to 4 cm depth in each row. All data collected were subjected of analysis of variance (ANOVA using MSTATC software. Significant differences between means refer to the probability level of 0.05 by LSD test. Results and Discussion The results indicated that drought stress decreased the investigated traits significantly but the effect of irrigation by 15 days interval was more than 10 days. Plots which irrigated by 15 days interval showed

  13. Research status and trend of wind turbine aerodynamic noise?

    Institute of Scientific and Technical Information of China (English)

    Xiaodong LI; Baohong BAI; Yingbo XU; Min JIANG

    2016-01-01

    The main components of the wind turbine aerodynamic noise are introduced. A detailed review is given on the theoretical prediction, experimental measurement, and numerical simulation methods of wind turbine noise, with speci?c attention to appli-cations. Furthermore, suppression techniques of wind turbine aerodynamic noise are discussed. The perspective of future research on the wind turbine aerodynamic noise is presented.

  14. Wind Energy

    Energy Technology Data Exchange (ETDEWEB)

    Beurskens, H.J.M. [SET Analysis, Kievitlaan 26, 1742 AD Schagen (Netherlands); Brand, A.J. [Energy research Centre of the Netherlands ECN, Unit Wind Energy, P.O. Box 1, 1755 ZG Petten (Netherlands)

    2013-02-15

    Over the years, wind energy has become a major source of renewable energy worldwide. The present chapter addresses the wind resource, which is available for exploitation for large-scale electricity production, and its specific physical properties. Furthermore, the technical options available to convert the energy of the air flow into mechanical energy and electricity are described. Specific problems of large-scale integration of wind energy into the grid as well as the present and future market developments are described in this chapter. Finally, environmental aspects are discussed briefly.

  15. Wind energy and social acceptability

    International Nuclear Information System (INIS)

    Feurtey, E.

    2008-01-01

    This document was prepared as part of a decentralized collaboration between Quebec and France to share knowledge regarding strategies and best practices in wind power development. It reviewed the social acceptance of Quebec's wind power industry, particularly at the municipal level. The wind industry is growing rapidly in Quebec, and this growth has generated many reactions ranging from positive to negative. The purpose of this joint effort was to describe decision making steps to developing a wind turbine array. The history of wind development in Quebec was discussed along with the various hardware components required in a wind turbine and different types of installations. The key element in implementing wind turbine arrays is to establish public acceptance of the project, followed by a good regulatory framework to define the roles and responsibilities of participants. The production of electricity from wind turbines constitutes a clean and renewable source of energy. Although it is associated with a reduction in greenhouse gas emissions, this form of energy can also have negative environmental impacts, including noise. The revenues generated by wind parks are important factors in the decision making process. Two case studies in Quebec were presented. refs., tabs., figs.

  16. Rationale and study protocol for a multi-component Health Information Technology (HIT) screening tool for depression and post-traumatic stress disorder in the primary care setting.

    Science.gov (United States)

    Biegler, Kelly; Mollica, Richard; Sim, Susan Elliott; Nicholas, Elisa; Chandler, Maria; Ngo-Metzger, Quyen; Paigne, Kittya; Paigne, Sompia; Nguyen, Danh V; Sorkin, Dara H

    2016-09-01

    The prevalence rate of depression in primary care is high. Primary care providers serve as the initial point of contact for the majority of patients with depression, yet, approximately 50% of cases remain unrecognized. The under-diagnosis of depression may be further exacerbated in limited English-language proficient (LEP) populations. Language barriers may result in less discussion of patients' mental health needs and fewer referrals to mental health services, particularly given competing priorities of other medical conditions and providers' time pressures. Recent advances in Health Information Technology (HIT) may facilitate novel ways to screen for depression and other mental health disorders in LEP populations. The purpose of this paper is to describe the rationale and protocol of a clustered randomized controlled trial that will test the effectiveness of an HIT intervention that provides a multi-component approach to delivering culturally competent, mental health care in the primary care setting. The HIT intervention has four components: 1) web-based provider training, 2) multimedia electronic screening of depression and PTSD in the patients' primary language, 3) Computer generated risk assessment scores delivered directly to the provider, and 4) clinical decision support. The outcomes of the study include assessing the potential of the HIT intervention to improve screening rates, clinical detection, provider initiation of treatment, and patient outcomes for depression and post-traumatic stress disorder (PTSD) among LEP Cambodian refugees who experienced war atrocities and trauma during the Khmer Rouge. This technology has the potential to be adapted to any LEP population in order to facilitate mental health screening and treatment in the primary care setting. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Added damping of a wind turbine rotor : Two-dimensional discretization expressing the nonlinear wind-force dependency

    NARCIS (Netherlands)

    Van der Male, P.; Van Dalen, K.N.; Metrikine, A.

    2014-01-01

    In determining wind forces on wind turbine blades, and subsequently on the tower and the foundation, the blade response velocity cannot be neglected. This velocity alters the wind force, which depends on the wind velocity relative to that of the blades This blade response velocity component of the

  18. Vector wind and vector wind shear models 0 to 27 km altitude for Cape Kennedy, Florida, and Vandenberg AFB, California

    Science.gov (United States)

    Smith, O. E.

    1976-01-01

    The techniques are presented to derive several statistical wind models. The techniques are from the properties of the multivariate normal probability function. Assuming that the winds can be considered as bivariate normally distributed, then (1) the wind components and conditional wind components are univariate normally distributed, (2) the wind speed is Rayleigh distributed, (3) the conditional distribution of wind speed given a wind direction is Rayleigh distributed, and (4) the frequency of wind direction can be derived. All of these distributions are derived from the 5-sample parameter of wind for the bivariate normal distribution. By further assuming that the winds at two altitudes are quadravariate normally distributed, then the vector wind shear is bivariate normally distributed and the modulus of the vector wind shear is Rayleigh distributed. The conditional probability of wind component shears given a wind component is normally distributed. Examples of these and other properties of the multivariate normal probability distribution function as applied to Cape Kennedy, Florida, and Vandenberg AFB, California, wind data samples are given. A technique to develop a synthetic vector wind profile model of interest to aerospace vehicle applications is presented.

  19. Commercial wind power

    International Nuclear Information System (INIS)

    Braun, G.W.; Smith, D.R.

    1992-01-01

    In 1990 the 23,000 wind turbines in the world connected to utility grids were rated at a total of 2200 MW and produced 3,353,000,000 kWh of electricity. This represents the residential use of a city with population of 1,000,000 at US energy use rates, or 2,000,000 at European rates. Denmark produced about 2% of its electricity from the wind, while California and Hawaii produced about 1% of theirs. California wind farms produced 76% of the world total, and Pacific Gas and Electric Company (PG and E) received nearly half of this. In addition to these grid-connected turbines, more than 50,000 smaller turbines (averaging about 100 watts each) supplied electricity to remote areas, such as Mongolia. Such non-grid-connected turbines can be components of hybrid generation systems when combined with energy storage and/or complementary power sources. However, the emphasis of this paper is on utility-connected wind turbines. Wind also supplies mechanical energy, such as for water pumping

  20. Guest Editorial Modeling and Advanced Control of Wind Turbines/Wind Farms

    Energy Technology Data Exchange (ETDEWEB)

    Hu, J.; Hou, Y.; Zhu, Z.; Xu, D.; Xu, D.; Muljadi, E.; Liu, F.; Iwanski, G.; Geng, H.; Erlich, I.; Wen, J.; Harnefors, L.; Fan, L.; El Moursi, M. S.; Kjaer, P. C.; Nelson, R. J.; Cardenas, R.; Feng, S.; Islam, S.; Qiao, W.; Yuan, X.

    2017-09-01

    The papers in this special section brings together papers focused on the recent advancements and breakthroughs in the technology of modeling and enhanced active/reactive power control of wind power conversion systems, ranging from components of wind turbines to wind farms.

  1. World Wind

    Data.gov (United States)

    National Aeronautics and Space Administration — World Wind allows any user to zoom from satellite altitude into any place on Earth, leveraging high resolution LandSat imagery and SRTM elevation data to experience...

  2. Wind power

    International Nuclear Information System (INIS)

    2009-01-01

    At the end of 2008,the European wind power capacity had risen to 65,247 MW which is a 15,1% increase on 2007. The financial crisis does not appear to have any real consequences of the wind power sector's activity in 2008. At the end of 2008 the European Union accommodated 53,9% of the world's wind power capacity. The top ten countries in terms of installed wind capacities are: 1) Usa with 25,388 MW, 2) Germany with 23,903 MW, 3) Spain with 16,740 MW, 4) China with 12,200 MW, 5) India with 9,645 MW, 6) Italy with 3,736 MW, 7) France with 3,542 MW, 8) U.K. with 3,406 MW, 9) Denmark with 3,166 MW and 10) Portugal with 2,862 MW. (A.C.)

  3. An introduction to reactive power compensation for wind farms

    Energy Technology Data Exchange (ETDEWEB)

    Nigim, K.A. [Waterloo Univ., Ont. (Canada). Dept. of Electrical and Computer Engineering; Cairo Univ., Giza (Egypt). Faculty of Engineering; Zobaa, A.F.; El Amin, I. [King Fahd Univ. of Petroleum and Minerals, Dhahran (Saudi Arabia). Dept. of Electrical Engineering

    2005-07-01

    The paper summarises the refereed contributions of seven articles reviewed for publication in the IJETP - Special Issue on 'Reactive compensation for wind farms'. The main goal of the special issue is to provide a forum to exchange information on the reactive power compensation requirements for wind farms and introducing possible price mechanisms for today's deregulated power industry. Uncompensated reactive power causes stress on the hosting utility grid as well as added expenses, which create in difficulties for power purchasing agreements from independent wind energy producers. Wind power producers need to comply with the hosting utility grid interconnection standards, e.g., voltage and frequency, as well as to provide controllable active and reactive sources of power. Active power supply is mainly dependent on the potential of wind power produced and the turbine design. Reactive power demand on the other hand depends on the conversion devices and the recovered power quantity fed to the grid. Static Var Compensators (SVC), Unified Power Quality Conditioners (UPQC), Unified Power Flow Controllers (UPFC), and the Distributed Static Synchronous Compensators (DSTATCOM) are all new emerging devices aimed at regulating the reactive power requirements. The excellent controllability of these devices has paved the way to flexible and dynamic controllers that are capable of regulating the flow of active and reactive power components. These devices are now suggested for the control of the reactive power requirement of wind generators. Studies have demonstrated acceptable voltage stabilisation results. This has increased the penetration level of wind power into existing distribution networks in many countries. (Author)

  4. Wind power

    Energy Technology Data Exchange (ETDEWEB)

    1979-01-01

    This publication describes some of the technical, economic, safety and institutional considerations involved in the selection, installation and evaluation of a wind generation system. This information is presented, where possible, in practical, non-technical terms. The first four sections provide background information, theory, and general knowledge, while the remaining six sections are of a more specific nature to assist the prospective owner of a wind generator in his calculations and selections. Meteorological information is provided relating to the wind regime in Nova Scotia. The section on cost analysis discusses some of the factors and considerations which must be examined in order to provide a logical comparison between the alternatives of electricity produced from other sources. The final two sections are brief summaries of the regulations and hazards pertaining to the use of wind generators. The cost of wind-generated electricity is high compared to present Nova Scotia Power Corporation rates, even on Sable Island, Nova Scotia's highest wind area. However, it may be observed that Sable Island is one of the areas of Nova Scotia which is not presently supplied through the power grid and, particularly if there was a significant increase in the price of diesel oil, wind-generated electricity may well be the most economical alternative in that area. Generally speaking, however, where a consumer can purchase electricity at the normal domestic rate, wind generators are not economical, and they will not become economical unless there is a great reduction in their cost, an great increase in electricity rates, or both. Includes glossary. 23 figs., 11 tabs.

  5. The Effect of Chemical, Biological and Organic Nutritional Treatments on Sunflowers Yield and Yield Components under the Influence of Water Deficit Stress

    Directory of Open Access Journals (Sweden)

    fatemeh soleymani

    2016-07-01

    Full Text Available Introduction To achieve the higher economic yield of crop plants, supplying enough nutrients to plants is very important. Moreover, nutrient uptakes by plants is influenced by the soil water contents. However, nowadays chemical fertilizer application is important agronomic factor that has significant effects on growth and quantity and quality of final yield, but traditional nutrient management and excessive use of chemical fertilizers may cause the environmental problems such as contamination of soil and water resources, low quality of agricultural products and reduction of soil fertility. These factors have drawn attention to health and ecological sustainable farming systems (Sharma, 2002. In this context, usage of organic and biological products for plant nutrition is considered as one of the solutions to achieve the goals of sustainable agriculture. Materials and methods To evaluate the effect of various feeding systems on yield and yield components of sunflower (Helianthus annuus L. under the influence of water deficit stress, a split-plot experiment based on randomized complete block design with three replications, was carried out in the Agricultural Faculty of Bu-Ali Sina University during the growing season of 2013-2014. Main plots consisted of two irrigation levels: optimum irrigation and deficit irrigation stress (irrigation after 60 and 120 mm evaporation from evaporation pan, class A, respectively and sub-plots included of nine nutrition systems: 1- no bio or chemical fertilizer application, 2- 100% of the recommended chemical fertilizer , 3- vermicompost, 4- phospho nitro kara, 5- vermicompost+ phospho nitro kara, 6- vermicompost+ ½ chemical fertilizer, 7- phospho nitro kara+ ½ chemical fertilizer, 8- vermicompost+ phospho nitro kara+ ½ chemical fertilizer, 9- ½ proposed chemical fertilizer. Phospho-nitro-kara which contains phosphate solubilizing and nitrogen fixing bacteria (Bacillus coagulans, azotobactr chroocuccum and

  6. Fear extinction and memory reconsolidation as critical components in behavioral treatment for posttraumatic stress disorder and potential augmentation of these processes.

    Science.gov (United States)

    Smith, Noelle B; Doran, Jennifer M; Sippel, Lauren M; Harpaz-Rotem, Ilan

    2017-05-10

    Posttraumatic stress disorder (PTSD) is associated with alterations in critical brain regions such as the amygdala, hippocampus, and prefrontal cortex. This brief review has two objectives: (1) to discuss research examining extinction and reconsolidation processes as mechanisms in PTSD psychotherapy, and (2) present possibilities for augmenting extinction and reconsolidation within treatment through alterations to therapeutic interventions and novel approaches. A key component of many effective PTSD therapies is exposure, which involves intentional confrontation and processing of the traumatic memory. Our review suggests that extinction and reconsolidation processes underlie effective exposure-based treatment, but the neurobiological mechanisms of these processes in behavioral treatments for PTSD remains unclear. We argue that enhancing extinction and/or disrupting reconsolidation of a feared memory may improve the efficacy of existing treatments (e.g., increased change for limited/non-responders, faster/greater changes for responders), which can be done through multiple channels. Potential avenues for augmentation of the processes of extinction and reconsolidation in PTSD psychotherapies are reviewed, including behavioral modifications, pharmacotherapy agents, and the use of devices during therapy. We further suggest that investigations towards understanding the extent to which extinction and reconsolidation processes are necessary in effective PTSD psychotherapy is an important future direction for enhancing clinical care among PTSD populations. Published by Elsevier B.V.

  7. Acute consumption of walnuts and walnut components differentially affect postprandial lipemia, endothelial function, oxidative stress, and cholesterol efflux in humans with mild hypercholesterolemia.

    Science.gov (United States)

    Berryman, Claire E; Grieger, Jessica A; West, Sheila G; Chen, Chung-Yen O; Blumberg, Jeffrey B; Rothblat, George H; Sankaranarayanan, Sandhya; Kris-Etherton, Penny M

    2013-06-01

    Walnut consumption improves cardiovascular disease risk; however, to our knowledge, the contribution of individual walnut components has not been assessed. This study evaluated the acute consumption of whole walnuts (85 g), separated nut skins (5.6 g), de-fatted nutmeat (34 g), and nut oil (51 g) on postprandial lipemia, endothelial function, and oxidative stress. Cholesterol efflux (ex vivo) was assessed in the whole walnut treatment only. A randomized, 4-period, crossover trial was conducted in healthy overweight and obese adults (n = 15) with moderate hypercholesterolemia. There was a treatment × time point interaction for triglycerides (P < 0.01) and increased postprandial concentrations were observed for the oil and whole walnut treatments (P < 0.01). Walnut skins decreased the reactive hyperemia index (RHI) compared with baseline (P = 0.02) such that a difference persisted between the skin and oil treatments (P = 0.01). The Framingham RHI was maintained with the oil treatment compared with the skins and whole nut (P < 0.05). There was a treatment effect for the ferric reducing antioxidant potential (FRAP) (P < 0.01), and mean FRAP was greater with the oil and skin treatments compared with the nutmeat (P < 0.01). Cholesterol efflux increased by 3.3% following whole walnut consumption in J774 cells cultured with postprandial serum compared with fasting baseline (P = 0.02). Walnut oil favorably affected endothelial function and whole walnuts increased cholesterol efflux. These 2 novel mechanisms may explain in part the cardiovascular benefits of walnuts.

  8. Design and Implementation of a High Efficiency, Low Component Voltage Stress, Single-Switch High Step-Up Voltage Converter for Vehicular Green Energy Systems

    Directory of Open Access Journals (Sweden)

    Yu-En Wu

    2016-09-01

    Full Text Available In this study, a novel, non-isolated, cascade-type, single-switch, high step-up DC/DC converter was developed for green energy systems. An integrated coupled inductor and voltage lift circuit were applied to simplify the converter structure and satisfy the requirements of high efficiency and high voltage gain ratios. In addition, the proposed structure is controllable with a single switch, which effectively reduces the circuit cost and simplifies the control circuit. With the leakage inductor energy recovery function and active voltage clamp characteristics being present, the circuit yields optimizable conversion efficiency and low component voltage stress. After the operating principles of the proposed structure and characteristics of a steady-state circuit were analyzed, a converter prototype with 450 W, 40 V of input voltage, 400 V of output voltage, and 95% operating efficiency was fabricated. The Renesas MCU RX62T was employed to control the circuits. Experimental results were analyzed to validate the feasibility and effectiveness of the proposed system.

  9. Wind reconstruction algorithm for Viking Lander 1

    Science.gov (United States)

    Kynkäänniemi, Tuomas; Kemppinen, Osku; Harri, Ari-Matti; Schmidt, Walter

    2017-06-01

    The wind measurement sensors of Viking Lander 1 (VL1) were only fully operational for the first 45 sols of the mission. We have developed an algorithm for reconstructing the wind measurement data after the wind measurement sensor failures. The algorithm for wind reconstruction enables the processing of wind data during the complete VL1 mission. The heater element of the quadrant sensor, which provided auxiliary measurement for wind direction, failed during the 45th sol of the VL1 mission. Additionally, one of the wind sensors of VL1 broke down during sol 378. Regardless of the failures, it was still possible to reconstruct the wind measurement data, because the failed components of the sensors did not prevent the determination of the wind direction and speed, as some of the components of the wind measurement setup remained intact for the complete mission. This article concentrates on presenting the wind reconstruction algorithm and methods for validating the operation of the algorithm. The algorithm enables the reconstruction of wind measurements for the complete VL1 mission. The amount of available sols is extended from 350 to 2245 sols.

  10. Wind reconstruction algorithm for Viking Lander 1

    Directory of Open Access Journals (Sweden)

    T. Kynkäänniemi

    2017-06-01

    Full Text Available The wind measurement sensors of Viking Lander 1 (VL1 were only fully operational for the first 45 sols of the mission. We have developed an algorithm for reconstructing the wind measurement data after the wind measurement sensor failures. The algorithm for wind reconstruction enables the processing of wind data during the complete VL1 mission. The heater element of the quadrant sensor, which provided auxiliary measurement for wind direction, failed during the 45th sol of the VL1 mission. Additionally, one of the wind sensors of VL1 broke down during sol 378. Regardless of the failures, it was still possible to reconstruct the wind measurement data, because the failed components of the sensors did not prevent the determination of the wind direction and speed, as some of the components of the wind measurement setup remained intact for the complete mission. This article concentrates on presenting the wind reconstruction algorithm and methods for validating the operation of the algorithm. The algorithm enables the reconstruction of wind measurements for the complete VL1 mission. The amount of available sols is extended from 350 to 2245 sols.

  11. Wind resource analysis. Annual report

    Energy Technology Data Exchange (ETDEWEB)

    Hardy, D. M.

    1978-12-01

    FY78 results of the Wind Resource Analyses task of the ERAB are described. Initial steps were taken to acquire modern atmosphere models of near-surface wind flow and primary data sets used in previous studies of national and regional wind resources. Because numerous assumptions are necessary to interpret available data in terms of wind energy potential, conclusions of previous studies differ considerably. These data analyses may be improved by future SERI research. State-of-the-art atmosphere models are a necessary component of the SERI wind resource analyses capacity. However, these methods also need to be tested and verified in diverse applications. The primary data sets and principal features of the models are discussed.

  12. Winds in cataclysmic variable stars

    International Nuclear Information System (INIS)

    Cordova, F.A.; Ladd, E.F.; Mason, K.O.

    1984-01-01

    Ultraviolet spectrophotometry of two dwarf novae, CN Ori and RX And, at various phases of their outburst cycles confirms that the far uv flux increases dramatically about 1-2 days after the optical outburst begins. At this time the uv spectral line profiles indicate the presence of a high velocity wind. The detectability of the wind depends more on the steepness of the spectrum, and thus on the flux in the extreme ultraviolet, than on the absolute value of the far uv luminosity. The uv continuum during outburst consists of (at least) two components, the most luminous of which is located behind the wind and is completely absorbed by the wind at the line frequencies. Several pieces of evidence suggest that the uv emission lines that are observed in many cataclysmic variables during quiescence have a different location in the binary than the wind, and are affected very little by the outburst

  13. Establishing a Comprehensive Wind Energy Program

    Energy Technology Data Exchange (ETDEWEB)

    Fleeter, Sanford [Purdue University

    2012-09-30

    This project was directed at establishing a comprehensive wind energy program in Indiana, including both educational and research components. A graduate/undergraduate course ME-514 - Fundamentals of Wind Energy has been established and offered and an interactive prediction of VAWT performance developed. Vertical axis wind turbines for education and research have been acquired, instrumented and installed on the roof top of a building on the Calumet campus and at West Lafayette (Kepner Lab). Computational Fluid Dynamics (CFD) calculations have been performed to simulate these urban wind environments. Also, modal dynamic testing of the West Lafayette VAWT has been performed and a novel horizontal axis design initiated. The 50-meter meteorological tower data obtained at the Purdue Beck Agricultural Research Center have been analyzed and the Purdue Reconfigurable Micro Wind Farm established and simulations directed at the investigation of wind farm configurations initiated. The virtual wind turbine and wind turbine farm simulation in the Visualization Lab has been initiated.

  14. Influence of orographically steered winds on Mutsu Bay surface currents

    Science.gov (United States)

    Yamaguchi, Satoshi; Kawamura, Hiroshi

    2005-09-01

    Effects of spatially dependent sea surface wind field on currents in Mutsu Bay, which is located at the northern end of Japanese Honshu Island, are investigated using winds derived from synthetic aperture radar (SAR) images and a numerical model. A characteristic wind pattern over the bay was evidenced from analysis of 118 SAR images and coincided with in situ observations. Wind is topographically steered with easterly winds entering the bay through the terrestrial gap and stronger wind blowing over the central water toward its mouth. Nearshore winds are weaker due to terrestrial blockages. Using the Princeton Ocean Model, we investigated currents forced by the observed spatially dependent wind field. The predicted current pattern agrees well with available observations. For a uniform wind field of equal magnitude and average direction, the circulation pattern departs from observations demonstrating that vorticity input due to spatially dependent wind stress is essential in generation of the wind-driven current in Mutsu Bay.

  15. 3D WindScanner lidar measurements of wind and turbulence around wind turbines, buildings and bridges

    Science.gov (United States)

    Mikkelsen, T.; Sjöholm, M.; Angelou, N.; Mann, J.

    2017-12-01

    WindScanner is a distributed research infrastructure developed at DTU with the participation of a number of European countries. The research infrastructure consists of a mobile technically advanced facility for remote measurement of wind and turbulence in 3D. The WindScanners provide coordinated measurements of the entire wind and turbulence fields, of all three wind components scanned in 3D space. Although primarily developed for research related to on- and offshore wind turbines and wind farms, the facility is also well suited for scanning turbulent wind fields around buildings, bridges, aviation structures and of flow in urban environments. The mobile WindScanner facility enables 3D scanning of wind and turbulence fields in full scale within the atmospheric boundary layer at ranges from 10 meters to 5 (10) kilometers. Measurements of turbulent coherent structures are applied for investigation of flow pattern and dynamical loads from turbines, building structures and bridges and in relation to optimization of the location of, for example, wind farms and suspension bridges. This paper presents our achievements to date and reviews briefly the state-of-the-art of the WindScanner measurement technology with examples of uses for wind engineering applications.

  16. Thermal loading of wind power converter considering dynamics of wind speed

    DEFF Research Database (Denmark)

    Baygildina, Elvira; Peltoniemi, Pasi; Pyrhönen, Olli

    2013-01-01

    The thermal loading of power semiconductors is a crucial performance related to the reliability and cost of the wind power converter. However, the thermal loading impacts by the variation of wind speeds have not yet been clarified, especially when considering the aerodynamic behavior of the wind...... turbines. In this paper, the junction temperatures in the wind power converter are studied under not only steady state, but also turbulent wind speed conditions. The study is based on a 1.5 MW direct-driven turbine system with aerodynamic model described by Unsteady Blade Element Momentum Method (BEMM......), and the thermal stress of power devices is investigated from the frequency spectrum point of view of wind speed. It is concluded that because of the strong inertia effects by the aerodynamic behavior of wind turbines, thermal stress of the semiconductors is relatively more stable and only influenced by the low...

  17. Coastal Ohio Wind Project

    Energy Technology Data Exchange (ETDEWEB)

    Gorsevski, Peter [Bowling Green State Univ., OH (United States); Afjeh, Abdollah [Univ. of Toledo, OH (United States); Jamali, Mohsin [Univ. of Toledo, OH (United States); Bingman, Verner [Bowling Green State Univ., OH (United States)

    2014-04-04

    reduced the wake size and enhanced the vortices in the flow downstream of the turbine-tower compared with the tower alone case. Mean and rms velocity distributions from hot wire anemometer data confirmed that in a downwind configuration, the wake of the tower dominates the flow, thus the flow fields of a tower alone and tower-turbine combinations are nearly the same. For the upwind configuration, the mean velocity shows a narrowing of the wake compared with the tower alone case. The downwind configuration wake persisted longer than that of an upwind configuration; however, it was not possible to quantify this difference because of the size limitation of the wind tunnel downstream of the test section. The water tunnel studies demonstrated that the scale model studies could be used to adequately produce accurate motions to model the motions of a wind turbine platform subject to large waves. It was found that the important factors that affect the platform is whether the platform is submerged or surface piercing. In the former, the loads on the platform will be relatively reduced whereas in the latter case, the structure pierces the wave free surface and gains stiffness and stability. The other important element that affects the movement of the platform is depth of the sea in which the wind turbine will be installed. Furthermore, the wildlife biology component evaluated migratory patterns by different monitoring systems consisting of marine radar, thermal IR camera and acoustic recorders. The types of radar used in the project are weather surveillance radar and marine radar. The weather surveillance radar (1988 Doppler), also known as Next Generation Radar (NEXRAD), provides a network of weather stations in the US. Data generated from this network were used to understand general migratory patterns, migratory stopover habitats, and other patterns caused by the effects of weather conditions. At a local scale our marine radar was used to complement the datasets from NEXRAD and

  18. Assessment of Wind Parameter Sensitivity on Extreme and Fatigue Wind Turbine Loads

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, Amy N [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sethuraman, Latha [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Jonkman, Jason [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Quick, Julian [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-01-12

    Wind turbines are designed using a set of simulations to ascertain the structural loads that the turbine could encounter. While mean hub-height wind speed is considered to vary, other wind parameters such as turbulence spectra, sheer, veer, spatial coherence, and component correlation are fixed or conditional values that, in reality, could have different characteristics at different sites and have a significant effect on the resulting loads. This paper therefore seeks to assess the sensitivity of different wind parameters on the resulting ultimate and fatigue loads on the turbine during normal operational conditions. Eighteen different wind parameters are screened using an Elementary Effects approach with radial points. As expected, the results show a high sensitivity of the loads to the turbulence standard deviation in the primary wind direction, but the sensitivity to wind shear is often much greater. To a lesser extent, other wind parameters that drive loads include the coherence in the primary wind direction and veer.

  19. Assessment of Wind Parameter Sensitivity on Ultimate and Fatigue Wind Turbine Loads: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, Amy N [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sethuraman, Latha [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Jonkman, Jason [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Quick, Julian [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-02-13

    Wind turbines are designed using a set of simulations to ascertain the structural loads that the turbine could encounter. While mean hub-height wind speed is considered to vary, other wind parameters such as turbulence spectra, sheer, veer, spatial coherence, and component correlation are fixed or conditional values that, in reality, could have different characteristics at different sites and have a significant effect on the resulting loads. This paper therefore seeks to assess the sensitivity of different wind parameters on the resulting ultimate and fatigue loads on the turbine during normal operational conditions. Eighteen different wind parameters are screened using an Elementary Effects approach with radial points. As expected, the results show a high sensitivity of the loads to the turbulence standard deviation in the primary wind direction, but the sensitivity to wind shear is often much greater. To a lesser extent, other wind parameters that drive loads include the coherence in the primary wind direction and veer.

  20. WIND VARIABILITY IN BZ CAMELOPARDALIS

    International Nuclear Information System (INIS)

    Honeycutt, R. K.; Kafka, S.; Robertson, J. W.

    2013-01-01

    Sequences of spectra of the nova-like cataclysmic variable (CV) BZ Cam were acquired on nine nights in 2005-2006 in order to study the time development of episodes of wind activity known to occur frequently in this star. We confirm the results of Ringwald and Naylor that the P-Cygni absorption components of the lines mostly evolve from higher expansion velocity to lower velocity as an episode progresses. We also commonly find blueshifted emission components in the Hα line profile, whose velocities and durations strongly suggest that they are also due to the wind. Curiously, Ringwald and Naylor reported common occurrences of redshifted Hα emission components in their BZ Cam spectra. We have attributed these emission components in Hα to occasions when gas concentrations in the bipolar wind (both front side and back side) become manifested as emission lines as they move beyond the disk's outer edge. We also suggest, based on changes in the P-Cygni profiles during an episode, that the progression from larger to smaller expansion velocities is due to the higher velocity portions of a wind concentration moving beyond the edge of the continuum light of the disk first, leaving a net redward shift of the remaining absorption profile. We derive a new orbital ephemeris for BZ Cam, using the radial velocity of the core of the He I λ5876 line, finding P = 0.15353(4). Using this period, the wind episodes in BZ Cam are found to be concentrated near the inferior conjunction of the emission line source. This result helps confirm that the winds in nova-like CVs are often phase dependent, in spite of the puzzling implication that such winds lack axisymmetry. We argue that the radiation-driven wind in BZ Cam receives an initial boost by acting on gas that has been lifted above the disk by the interaction of the accretion stream with the disk, thereby imposing flickering timescales onto the wind events, as well as leading to an orbital modulation of the wind due to the non

  1. Reliability Modeling of Wind Turbines

    DEFF Research Database (Denmark)

    Kostandyan, Erik

    Cost reductions for offshore wind turbines are a substantial requirement in order to make offshore wind energy more competitive compared to other energy supply methods. During the 20 – 25 years of wind turbines useful life, Operation & Maintenance costs are typically estimated to be a quarter...... and uncertainties are quantified. Further, estimation of annual failure probability for structural components taking into account possible faults in electrical or mechanical systems is considered. For a representative structural failure mode, a probabilistic model is developed that incorporates grid loss failures...

  2. Screening of the two-component-system histidine kinases of Listeria monocytogenes EGD-e. LiaS is needed for growth under heat, acid, alkali, osmotic, ethanol and oxidative stresses.

    Science.gov (United States)

    Pöntinen, Anna; Lindström, Miia; Skurnik, Mikael; Korkeala, Hannu

    2017-08-01

    To study the role of each two-component system (TCS) histidine kinase (HK) in stress tolerance of Listeria monocytogenes EGD-e, we monitored the growth of individual HK deletion mutant strains under heat (42.5 °C), acid (pH 5.6), alkali (pH 9.4), osmotic (6% NaCl), ethanol (3.5 vol%), and oxidative (5 mM H 2 O 2 ) stresses. The growth of ΔliaS (Δlmo1021) strain was impaired under each stress, with the most notable decrease under heat and osmotic stresses. The ΔvirS (Δlmo1741) strain showed nearly completely restricted growth at high temperature and impaired growth in ethanol. The growth of ΔagrC (Δlmo0050) strain was impaired under osmotic stress and slightly under oxidative stress. We successfully complemented the HK mutations using a novel allelic exchange based approach. This approach avoided the copy-number problems associated with in trans complementation from a plasmid. The mutant phenotypes were restored to the wild-type level in the complemented strains. This study reveals novel knowledge on the HKs needed for growth of L. monocytogenes EGD-e under abovementioned stress conditions, with LiaS playing multiple roles in stress tolerance of L. monocytogenes EGD-e. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Perspectives of China's wind energy development

    Institute of Scientific and Technical Information of China (English)

    He Dexin; Wang Zhongying

    2009-01-01

    Wind energy is a kind of clean renewable energy, which is also relatively mature in technology, with large-scale development conditions and prospect for the commercialization. The development of wind energy is a systematic project, involving policy, law, technology, economy, society, environment, education and other aspects. The relation-ship among all the aspects should be well treated and coordinated. This paper has discussed the following relationships which should be well coordinated: relationship between wind resources and wind energy development, relationship be-tween the wind turbine generator system and the components, relationship between wind energy technology and wind en-ergy industry, relationship between off-grid wind power and grid-connected wind power, relationship between wind farm and the power grid, relationship between onshore wind power and offshore wind power, relationship between wind energy and other energies, relationship between technology introduction and self-innovation, relationship among foreign-funded, joint ventured and domestic-funded enterprises and relationship between the government guidance and the market regula-tion, as well as giving out some suggestions.

  4. Application of the results of pipe stress analyses into fracture mechanics defect analyses for welds of nuclear piping components; Uebernahme der Ergebnisse von Rohrsystemanalysen (Spannungsanalysen) fuer bruchmechanische Fehlerbewertungen fuer Schweissnaehte an Rohrleitungsbauteilen in kerntechnischen Anlagen

    Energy Technology Data Exchange (ETDEWEB)

    Dittmar, S.; Neubrech, G.E.; Wernicke, R. [TUeV Nord SysTec GmbH und Co.KG (Germany); Rieck, D. [IGN Ingenieurgesellschaft Nord mbH und Co.KG (Germany)

    2008-07-01

    For the fracture mechanical assessment of postulated or detected crack-like defects in welds of piping systems it is necessary to know the stresses in the un-cracked component normal to the crack plane. Results of piping stress analyses may be used if these are evaluated for the locations of the welds in the piping system. Using stress enhancing factors (stress indices, stress factors) the needed stress components are calculated from the component specific sectional loads (forces and moments). For this procedure the tabulated stress enhancing factors, given in the standards (ASME Code, German KTA regulations) for determination and limitation of the effective stresses, are not always and immediately adequate for the calculation of the stress component normal to the crack plane. The contribution shows fundamental possibilities and validity limits for adoption of the results of piping system analyses for the fracture mechanical evaluation of axial and circumferential defects in welded joints, with special emphasis on typical piping system components (straight pipe, elbow, pipe fitting, T-joint). The lecture is supposed to contribute to the standardization of a code compliant and task-related use of the piping system analysis results for fracture mechanical failure assessment. [German] Fuer die bruchmechanische Bewertung von postulierten oder bei der wiederkehrenden zerstoerungsfreien Pruefung detektierten rissartigen Fehlern in Schweissnaehten von Rohrsystemen werden die Spannungen in der ungerissenen Bauteilwand senkrecht zur Rissebene benoetigt. Hierfuer koennen die Ergebnisse von Rohrsystemanalysen (Spannungsanalysen) genutzt werden, wenn sie fuer die Orte der Schweissnaehte im Rohrsystem ausgewertet werden. Mit Hilfe von Spannungserhoehungsfaktoren (Spannungsindizes, Spannungsbeiwerten) werden aus den komponentenweise berechneten Schnittlasten (Kraefte und Momente) die benoetigten Spannungskomponenten berechnet. Dabei sind jedoch die in den Regelwerken (ASME

  5. Zonal surface wind jets across the Red Sea due to mountain gap forcing along both sides of the Red Sea

    KAUST Repository

    Jiang, Houshuo

    2009-01-01

    [1] Mesoscale atmospheric modeling over the Red Sea, validated by in-situ meteorological buoy data, identifies two types of coastal mountain gap wind jets that frequently blow across the longitudinal axis of the Red Sea: (1) an eastward-blowing summer daily wind jet originating from the Tokar Gap on the Sudanese Red Sea coast, and (2) wintertime westward-blowing wind-jet bands along the northwestern Saudi Arabian coast, which occur every 10-20 days and can last for several days when occurring. Both wind jets can attain wind speeds over 15 m s-1 and contribute significantly to monthly mean surface wind stress, especially in the cross-axis components, which could be of importance to ocean eddy formation in the Red Sea. The wintertime wind jets can cause significant evaporation and ocean heat loss along the northeastern Red Sea coast and may potentially drive deep convection in that region. An initial characterization of these wind jets is presented. Copyright 2009 by the American Geophysical Union.

  6. tavgM_3d_udt_Cp: MERRA 3D IAU Tendency, Wind Components, Monthly Mean 1.25 x 1.25 degree V5.2.0 (MATMCPUDT) at GES DISC

    Data.gov (United States)

    National Aeronautics and Space Administration — The MATMCPUDT or tavgM_3d_udt_Cp data product is the MERRA Data Assimilation System 3-Dimensional eastward wind tendencies that is time averaged on pressure levels...

  7. Wind forces and related saltation transport

    NARCIS (Netherlands)

    Leenders, J.K.; van Boxel, J.H.; Sterk, G.

    2005-01-01

    The effect of several wind characteristics on sand transport was studied in three experiments in north Burkina Faso, West Africa. The first experiment is used to analyse the relation between wind speed and shear stress fluctuations across height. The second experiment is used to study the relation

  8. Transient stability of wind turbines connected to a power grid

    Energy Technology Data Exchange (ETDEWEB)

    Counan, C.; Juston, P.; Testud, G.

    1986-09-01

    A wind turbine generator model has been adapted for digital simulation using the E.D.F. transient stability program. Component models of the wind generator are described and computed results are provided.

  9. Wind effect in turbulence parametrization

    Science.gov (United States)

    Colombini, M.; Stocchino, A.

    2005-09-01

    The action of wind blowing over a closed basin ultimately results in a steady shear-induced circulation pattern and in a leeward rising of the free surface—and a corresponding windward lowering—known as wind set-up. If the horizontal dimensions of the basin are large with respect to the average flow depth, the occurrence of local quasi-equilibrium conditions can be expected, i.e. the flow can be assumed to be locally driven only by the wind stress and by the opposing free surface gradient due to set-up. This wind-induced flow configuration shows a strong similarity with turbulent Couette-Poiseuille flow, the one dimensional flow between parallel plates generated by the simultaneous action of a constant pressure gradient and of the shear induced by the relative motion of the plates. A two-equation turbulence closure is then employed to perform a numerical study of turbulent Couette-Poiseuille flows for different values of the ratio of the shear stresses at the two walls. The resulting eddy viscosity vertical distributions are analyzed in order to devise analytical profiles of eddy viscosity that account for the effect of wind. The results of this study, beside allowing for a physical insight on the turbulence process of this class of flows, will allow for a more accurate description of the wind effect to be included in the formulation of quasi-3D and 3D models of lagoon hydrodynamics.

  10. Wind turbine

    Science.gov (United States)

    Cheney, Jr., Marvin C.

    1982-01-01

    A wind turbine of the type having an airfoil blade (15) mounted on a flexible beam (20) and a pitch governor (55) which selectively, torsionally twists the flexible beam in response to wind turbine speed thereby setting blade pitch, is provided with a limiter (85) which restricts unwanted pitch change at operating speeds due to torsional creep of the flexible beam. The limiter allows twisting of the beam by the governor under excessive wind velocity conditions to orient the blades in stall pitch positions, thereby preventing overspeed operation of the turbine. In the preferred embodiment, the pitch governor comprises a pendulum (65,70) which responds to changing rotor speed by pivotal movement, the limiter comprising a resilient member (90) which engages an end of the pendulum to restrict further movement thereof, and in turn restrict beam creep and unwanted blade pitch misadjustment.

  11. Gearbox Fatigue Load Estimation for Condition Monitoring of Wind Turbines

    DEFF Research Database (Denmark)

    Perisic, Nevena; Pedersen, Bo Juul; Kirkegaard, Poul Henning

    2012-01-01

    control and data acquisition (SCADA) system. Estimated loads can be further used for prediction of remaining operating lifetime of turbine components, detection of high stress level or fault detection. An augmented Kalman filter is chosen as the fatigue load estimator because its characteristics well suit......The focus of the paper is on a design of a fatigue load estimator for predictive condition monitoring systems (CMS) of wind turbines. In order to avoid high-price measurement equipment required for direct load measuring, an indirect approach is suggested using only measurements from supervisory...... for the real time application. This paper presents results of the estimation of the gearbox fatigue load, often called shaft torque, using simulated data of wind turbine. Noise sensitivity of the algorithm is investigated by assuming different levels of measurement noise. Shaft torque estimations are compared...

  12. Effect of Different Level of Water Stress and Nitrogen Fertilizer on Yield and Yield Components of Barley in Badjgah (Fars province

    Directory of Open Access Journals (Sweden)

    ali asghar ghaemi

    2016-02-01

    Full Text Available Introduction: Barley is very important to feed humans, livestock, medical, industrial uses, especially in fermentation industries. In Iran, barley crop cultivation was nearly 1.4 million hectares withits production of 1.3 million tons in 2003 (2. Barelyis the oldest crops to environmental stresses such as drought and salinity resistance (3.The different barely growth stages with extreme water requirement can benoted in germination stage, stem elongation, heading the production stage, the stage of flowering and seed production. Typically, for spring and autumn barely respectively 3 and 4 to 5 times irrigation is done during the growing season. The barley water requirement over its life is between 4 and 7 thousand cubic meters and 518 liters of water is needed to produce one kilogram of dry matter. Due to limited water resources and low rainfall in Iran, efficient use of water is absolutely essential and the maximum water utilization must be achieved by applying a minimum amount of water in agriculture. One of the ways to increase productivity in agricultural water is deficit irrigation.Deficit irrigation is an optimization strategy for water use efficiency in irrigation.The purpose of this study was to evaluate the simultaneous effect of fertilizer treatments (150, 225 and 75 kg/ ha and water at three different levels (100%, 75% and 50% of crop water requirement at different growth stages on leaf area index, weight fresh and dried herb and plant nitrogen concentration and the effect of irrigation and nitrogen fertilizer on yield, yield components and productivity of water use. Materials and Method: This research was conducted in Shiraz University in fall 2012 to study the effect of interaction of deficit irrigation and nitrogen fertilizer on yield, yield component and water use efficiency and nitrogen concentration in different stages of barley (Bahman species growth. This experiment were evaluated using a randomized complete block design with s

  13. 78 FR 29364 - Exelon Corporation, Exelon Wind 1, LLC, Exelon Wind 2, LLC, Exelon Wind 3, LLC, Exelon Wind 4...

    Science.gov (United States)

    2013-05-20

    ...-005, QF07-55-005, QF07-56-005, QF07-257-004] Exelon Corporation, Exelon Wind 1, LLC, Exelon Wind 2, LLC, Exelon Wind 3, LLC, Exelon Wind 4, LLC, Exelon Wind 5, LLC, Exelon Wind 6, LLC, Exelon Wind 7, LLC, Exelon Wind 8, LLC, Exelon Wind 9, LLC, Exelon Wind 10, LLC, Exelon Wind 11, LLC, High Plains...

  14. Wind - Prototypes on the landscape

    Science.gov (United States)

    Smith, M. L.

    1981-12-01

    Large wind turbines are shown to be attractive to utilities because of the potential for decreasing gas and oil consumption, the relatively low costs for entry into the field, and the wide distribution of wind energy. The total generating capacity can be increased in incremental steps, experience in construction and operation of large turbines have been gained from the NASA Mod O, OA, 1, and 2 models, and advances in manufacturing processes will make the large turbines competitive as replacement power for oil and gas burning utility generators. The 300 ft rotor Mod 2 machines are described, along with designs for the Mod 5A and Mod 5B wind turbines, with 400 and 422 ft, 6.2 and 7.2 MW rotors and outputs, respectively. Current plans for multi-MW windfarms are reviewed, and the option of using the land around large wind turbines for other purposes is stressed.

  15. Epoxy cracking in the epoxy-impregnated superconducting winding: nonuniform dissipation of stress energy in a wire-epoxy matrix model

    International Nuclear Information System (INIS)

    Tsukamoto, O.; Iwasa, Y.

    1985-01-01

    The authors present the epoxy-crack-induced temperature data of copper wires imbedded in wire-epoxy resin composite model at 4.2 K. The experimental results show that the epoxy-crackinduced temperature rise is higher in the copper wires than in the epoxy matrix, indicating that in stress-induced wire-epoxy failure, stress energy stored in the wire-epoxy matrix is preferrentially dissipated in the wire. A plausible mechanism of the nonuniform dissipation is presented

  16. Worldwide potential of wind energy

    Energy Technology Data Exchange (ETDEWEB)

    Flavin, C

    1982-01-01

    A well-documented discussion is presented dealing with the worldwide potential of wind energy as a source of electrical and mechanical power. It is pointed out that 2% of the solar insolation is converted to wind kinetic energy; it is constantly renewed and nondepletable. Efficiency of windmills are discussed (20 to 40%) and payback periods of less than 5 years are cited. Effects of wind velocity and site location are described. Wind pumps are reviewed and the need for wind pumps, particularly in the developing countries is stressed. The generation of electricity by windmills using small turbines is reviewed and appears promising in areas with wind velocities greater than 12 mi/hr. The development of large windmills and groups of windmills (windfarms) for large scale electrical power is discussed, illustrated, and reviewed (offshore sites included). Environmental and safety problems are considered as well as the role of electrical utilities, government support and research activities. It is concluded that the potential contribution of wind energy is immense and that mechanical windmills may become one of the most important renewable technologies. Electrical generating potential is estimated at 20 to 30% of electrical needs. International programs are discussed briefly. 57 references. (MJJ)

  17. Remote Sensing Wind and Wind Shear System.

    Science.gov (United States)

    Contents: Remote sensing of wind shear and the theory and development of acoustic doppler; Wind studies; A comparison of methods for the remote detection of winds in the airport environment; Acoustic doppler system development; System calibration; Airport operational tests.

  18. Effects of Cross-axis Wind Jet Events on the Northern Red Sea Circulation

    Science.gov (United States)

    Menezes, V. V.; Bower, A. S.; Farrar, J. T.

    2016-12-01

    Despite its small size, the Red Sea has a complex circulation. There are boundary currents in both sides of the basin, a meridional overturning circulation, water mass formation in the northern part and an intense eddy activity. This complex pattern is driven by strong air-sea interactions. The Red Sea has one of the largest evaporation rates of the global oceans (2m/yr), an intricate and seasonally varying wind pattern. The winds blowing over the Northern Rea Sea (NRS, north of 20N) are predominantly southeastward along the main axis all year round; in the southern, they reverse seasonally due to the monsoonal regime. Although the winds are mostly along-axis in the NRS, several works have shown that sometimes during the boreal winter, the winds blow in a cross-axis direction. The westward winds from Saudi Arabia bring relatively cold dry air and dust from the desert, enhancing heat loss and evaporation off the Red Sea. These wind-jet events may contribute to increased eddy activity and are a trigger for water mass formation. Despite that, our knowledge about the cross-axis winds and their effect on NRS circulation is still incipient. In the present work we analyze 10-years of Quikscat scatterometer winds and altimetric sea surface height anomalies, together with 2-yrs of mooring data, to characterize the westward wind jet events and their impacts on the circulation. We show that the cross-axis winds are, indeed, an important component of the wind regime, explaining 11% of wind variability of the NRS (well-described by a 2nd EOF mode). The westward events occur predominantly in the winter, preferentially in January (about 15 events in 10-years) and have a mean duration of 4-5 days, with a maximum of 12 days (north of 22N). There are around 6 events per year, but in 2002-2003 and 2007-2008, twice more events were detected. The westward wind events are found to strongly modify the wind stress curl, causing a distinct positive/negative curl pattern along the main axis

  19. A nonlinear dynamics approach for incorporating wind-speed patterns into wind-power project evaluation.

    Science.gov (United States)

    Huffaker, Ray; Bittelli, Marco

    2015-01-01

    Wind-energy production may be expanded beyond regions with high-average wind speeds (such as the Midwest U.S.A.) to sites with lower-average speeds (such as the Southeast U.S.A.) by locating favorable regional matches between natural wind-speed and energy-demand patterns. A critical component of wind-power evaluation is to incorporate wind-speed dynamics reflecting documented diurnal and seasonal behavioral patterns. Conventional probabilistic approaches remove patterns from wind-speed data. These patterns must be restored synthetically before they can be matched with energy-demand patterns. How to accurately restore wind-speed patterns is a vexing problem spurring an expanding line of papers. We propose a paradigm shift in wind power evaluation that employs signal-detection and nonlinear-dynamics techniques to empirically diagnose whether synthetic pattern restoration can be avoided altogether. If the complex behavior of observed wind-speed records is due to nonlinear, low-dimensional, and deterministic system dynamics, then nonlinear dynamics techniques can reconstruct wind-speed dynamics from observed wind-speed data without recourse to conventional probabilistic approaches. In the first study of its kind, we test a nonlinear dynamics approach in an application to Sugarland Wind-the first utility-scale wind project proposed in Florida, USA. We find empirical evidence of a low-dimensional and nonlinear wind-speed attractor characterized by strong temporal patterns that match up well with regular daily and seasonal electricity demand patterns.

  20. Wind Tunnel Tests for Wind Pressure Distribution on Gable Roof Buildings

    Science.gov (United States)

    2013-01-01

    Gable roof buildings are widely used in industrial buildings. Based on wind tunnel tests with rigid models, wind pressure distributions on gable roof buildings with different aspect ratios were measured simultaneously. Some characteristics of the measured wind pressure field on the surfaces of the models were analyzed, including mean wind pressure, fluctuating wind pressure, peak negative wind pressure, and characteristics of proper orthogonal decomposition results of the measured wind pressure field. The results show that extremely high local suctions often occur in the leading edges of longitudinal wall and windward roof, roof corner, and roof ridge which are the severe damaged locations under strong wind. The aspect ratio of building has a certain effect on the mean wind pressure coefficients, and the effect relates to wind attack angle. Compared with experimental results, the region division of roof corner and roof ridge from AIJ2004 is more reasonable than those from CECS102:2002 and MBMA2006.The contributions of the first several eigenvectors to the overall wind pressure distributions become much bigger. The investigation can offer some basic understanding for estimating wind load distribution on gable roof buildings and facilitate wind-resistant design of cladding components and their connections considering wind load path. PMID:24082851

  1. Wind hazard assessment for Point Lepreau Generating Station

    International Nuclear Information System (INIS)

    Mullin, D.; Moland, M.; Sciaudone, J.C.; Twisdale, L.A.; Vickery, P.J.; Mizzen, D.R.

    2015-01-01

    In response to the CNSC Fukushima Action Plan, NB Power has embarked on a wind hazard assessment for the Point Lepreau Generating Station site that incorporates the latest up to date wind information and modeling. The objective was to provide characterization of the wind hazard from all potential sources and estimate wind-driven missile fragilities and wind pressure fragilities for various structures, systems and components that would provide input to a possible high wind Probabilistic Safety Assessment. The paper will discuss the overall methodology used to assess hazards related to tornadoes, hurricanes and straight-line winds, and site walk-down and hazard/fragility results. (author)

  2. Wind energy

    International Nuclear Information System (INIS)

    Portilla S, L.A.

    1995-01-01

    The wind energy or eolic energy is a consequence of solar energy, the one which is absorbed by the atmosphere and is transformed into energy of movement of large bulks of air. In this process the atmosphere acts as the filter to the solar radiation and demotes the ultraviolet beams that result fatal to life in the Earth. The ionosphere is the most external cap and this is ionized by means of absorption process of ultraviolet radiation arising to the Sun. The atmosphere also acts as a trap to the infrared radiation, it that results from the continual process of energetic degradation. In this way, the interaction between Earth - Atmospheres, is behaved as a great greenhouse, maintaining the constant temperatures, including in the dark nights. Processes as the natural convection (that occur by the thermodynamic phenomenon), equatorial calmness, trade winds and against trade winds and global distribution of the air currents are described. The other hand, techniques as the transformation of the wind into energy and its parameters also are shown

  3. Wind power

    International Nuclear Information System (INIS)

    2006-06-01

    This road-map proposes by the Group Total aims to inform the public on the wind power. It presents the principles, the technology takes off, its applications and technology focus, the global market trends and the outlooks and Total commitments in the domain. (A.L.B.)

  4. Wind Energy Japan

    Energy Technology Data Exchange (ETDEWEB)

    Komatsubara, Kazuyo [Embassy of the Kingdom of the Netherlands, Tokyo (Japan)

    2012-06-15

    An overview is given of wind energy in Japan: Background; Wind Energy in Japan; Japanese Wind Energy Industry; Government Supports; Useful Links; Major Japanese Companies; Profiles of Major Japanese Companies; Major Wind Energy Projects in Japan.

  5. Wind energy systems

    Science.gov (United States)

    Stewart, H. J.

    1978-01-01

    A discussion on wind energy systems involved with the DOE wind energy program is presented. Some of the problems associated with wind energy systems are discussed. The cost, efficiency, and structural design of wind energy systems are analyzed.

  6. MODELLING OF TURBULENT WAKE FOR TWO WIND TURBINES

    Directory of Open Access Journals (Sweden)

    Arina S. Kryuchkova

    2018-01-01

    Full Text Available The construction of several large wind farms (The Ulyanovsk region, the Republic of Adygea, the Kaliningrad region, the North of the Russian Federation is planned on the territory of the Russian Federation in 2018–2020. The tasks, connected with the design of new wind farms, are currently important. One of the possible direction in the design is connected with mathematical modeling. Large eddy method (eddy-resolving simulation, developed within the Computational Fluid Dynamics, allows to reproduce unsteady structure of the flow in details and define various integrated characteristics for wind turbines. The mathematical model included the main equations of continuity and momentum equations for incompressible viscous flow. The large-scale vortex structures were calculated by means of integration the filtered equations. The calculation was carried out using lagrangian dynamic Smagorinsky’s model to define turbulent subgrid viscosity. The parallelepiped-shaped numerical domain and 3 different unstructured meshes (with 2,4,8 million cells were used for numerical simulation.The geometrical parameters of wind turbine were set proceeding to open sources for BlindTest 2–4 project from Internet. All physical values were defined at the center of computational cell. The approximation of items in the equations was performed with the second order of accuracy for time and space. The equations for coupling of velocity, pressure were solved by means of iterative algorithm PIMPLE. The total quantity of the calculated physical values at each time step was equal 18. So, the resources of a high performance computer were required. As a result of flow simulation in the wake for two three-bladed wind turbines the average and instantaneous values of velocity, pressure, subgrid kinetic energy, turbulent viscosity, components of stress tensor were calculated. The received results qualitatively matching the known results of experiment and numerical simulation testify

  7. Differences in the heat stress associated with white sportswear and being semi-nude in exercising humans under conditions of radiant heat and wind at a wet bulb globe temperature of greater than 28 °C.

    Science.gov (United States)

    Tsuji, Michio; Kume, Masashi; Tuneoka, Hideyuki; Yoshida, Tetsuya

    2014-08-01

    This study investigated whether wearing common white sportswear can reduce heat stress more than being semi-nude during exercise of different intensities performed under radiant heat and wind conditions, such as a hot summer day. After a 20-min rest period, eight male subjects performed three 20 min sessions of cycling exercise at a load intensity of 20 % or 50 % of their peak oxygen uptake (VO2peak) in a room maintained at a wet bulb globe temperature (WBGT) of 28.7 ± 0.1 °C using two spot lights and a fan (0.8 m/s airflow). Subjects wore common white sportswear (WS) consisting of a long-sleeved shirt (45 % cotton and 55 % polyester) and short pants (100 % polyester), or only swimming pants (SP) under the semi-nude condition. The mean skin temperature (Tsk) was greater when subjects wore SP than WS under both the 20 % and 50 % exercise conditions. During the 50 % exercise, the rating of perceived exertion (RPE) and thermal sensation (TS), and the increases in esophageal temperature (ΔTes) and heart rate were significantly higher (Pheat storage (S), calculated from the changes in the mean body temperature (0.9Tes + 0.1 Tsk), was significantly lower in the WS trials than in the SP trials during the 20 min resting period before exercise session. However, S was similar between conditions during the 20 % exercise, but was greater in the WS than in the SP trials during 50 % exercise. These results suggest that, under conditions of radiant heat and wind at a WBGT greater than 28 °C, the heat stress associated with wearing common WS is similar to that of being semi-nude during light exercise, but was greater during moderate exercise, and the storage of body heat can be reduced by wearing WS during rest periods.

  8. Aggregated wind power plant models consisting of IEC wind turbine models

    DEFF Research Database (Denmark)

    Altin, Müfit; Göksu, Ömer; Hansen, Anca Daniela

    2015-01-01

    The common practice regarding the modelling of large generation components has been to make use of models representing the performance of the individual components with a required level of accuracy and details. Owing to the rapid increase of wind power plants comprising large number of wind...... turbines, parameters and models to represent each individual wind turbine in detail makes it necessary to develop aggregated wind power plant models considering the simulation time for power system stability studies. In this paper, aggregated wind power plant models consisting of the IEC 61400-27 variable...... speed wind turbine models (type 3 and type 4) with a power plant controller is presented. The performance of the detailed benchmark wind power plant model and the aggregated model are compared by means of simulations for the specified test cases. Consequently, the results are summarized and discussed...

  9. The Economics of Wind Energy

    International Nuclear Information System (INIS)

    Krohn, S.; Morthorst, P.E.; Awerbuch, S.

    2009-03-01

    This report is the result of an effort by the European Wind Energy Association (EWEA) to assemble a team of professional economists to assess the costs, benefits and risks associated with wind power generation. In particular, the authors were asked to evaluate the costs and benefits to society of wind energy compared to other forms of electricity production. In the present context of increasing energy import dependency in industrialised countries as well as the volatility of fuel prices and their impact on GDP, the aspects of energy security and energy diversification have to be given particular weight in such an analysis. Chapter 1 examines the basic (riskless) cost components of wind energy, as it leaves the wind farm, including some international comparisons and a distinction between onshore and offshore technologies. Chapter 2 illustrates other costs, mainly risks that are also part of the investment and thus have to be incorporated in the final price at which electricity coming from wind can be sold in the markets. The chapter discusses why the electricity market for renewable energy sources (RES) is regulated and how different support systems and institutional settings affect the final cost (and hence, price) of wind power. Chapter 3 discusses how the integration of wind energy is modifying the characteristics and management of the electrical system including grids, and how such modifications can affect the global price of electricity. Chapter 4 analyses how the external benefits of wind energy, such as its lower environmental impact and the lower social risk it entails can be incorporated into its valuation. Chapter 5 develops a methodology for the correct economic comparison of electricity costs coming from wind and from fuel-intensive coal and gas power generation. Chapter 5 uses as a starting point the methodology currently applied by the International Energy Agency (IEA) and improves it by incorporating some of the elements described in the previous

  10. Switching Operation Simulations in a Large Offshore Wind Farm with Use of Parametric Variation and Frequency Domain Severity Factor

    DEFF Research Database (Denmark)

    Holdyk, Andrzej; Holbøll, Joachim; Arana, Ivan

    2012-01-01

    Transient voltages resulting from switching operations depend on an interaction between the breaker, the transformer, cables and a neighbourhood grid and imply a risk for the transformer and other components. In this paper the Frequency Domain Severity Factor (FDSF) is used to assess the severity...... of electrical stress imposed on wind turbine transformers by voltage waveforms produced during switching operations. The method is implemented in Matlab together with automatic and systematic variation of parameters. Simulations of a radial energization are performed on a 90MVA offshore wind farm model...

  11. Noise immission from wind turbines

    International Nuclear Information System (INIS)

    1999-01-01

    The project has dealt with practical ways to reduce the influence of background noise caused by wind acting on the measuring microphones. The uncertainty of measured noise emission (source strength) has been investigated. The main activity was a Round Robin Test involving measurements by five laboratories at the same wind turbine. Each laboratory brought its own instrumentation and performed the measurements and analyses according to their interpretation. The tonality of wind turbine noise is an essential component of the noise impact on the environment. In the present project the uncertainty in the newest existing methods for assessing tonality was investigated. The project included noise propagation measurements in different weather conditions around wind turbines situated in different types of terrain. The results were used to validate a noise propagation model developed in the project. Finally, the project also included a study with listeners evaluating recordings of wind turbine noise. The results are intended as guidance for wind turbine manufacturers in identifying the aspects of wind turbine noise most important to annoyance. (author)

  12. Wind Loads on Structures

    DEFF Research Database (Denmark)

    Dyrbye, Claes; Hansen, Svend Ole

    Wind loads have to be taken into account when designing civil engineering structures. The wind load on structures can be systematised by means of the wind load chain: wind climate (global), terrain (wind at low height), aerodynamic response (wind load to pressure), mechanical response (wind...... pressure to structural response) and design criteria. Starting with an introduction of the wind load chain, the book moves on to meteorological considerations, atmospheric boundary layer, static wind load, dynamic wind load and scaling laws used in wind-tunnel tests. The dynamic wind load covers vibrations...... induced by wind turbulence, vortex shedding, flutter and galloping. The book gives a comprehensive treatment of wind effects on structures and it will be useful for consulting engineers designing wind-sensitive structures. It will also be valuable for students of civil engineering as textbook...

  13. Effect of Drought Stress on Water Use Efficiency and Its Components in Several Genotypes and Cultivars of Foxtail Millet (Setaria italica L.

    Directory of Open Access Journals (Sweden)

    M Khazaei

    2018-05-01

    Full Text Available Introduction According to NASA reports about atmospheric earth conditions, in the 30 years later, 45 countries will face with severe droughts and Iran is in the fourth place in this list. Water shortage is one of the most important limiting factors of production that affects plants growth by changing physiological conditions. Using adapted plants is a proper strategy to deal with the effects of water shortage on the status of water restrictions. Foxtail millet is a C4 plant with good compatibility to dry areas and it has high water use efficiency. In medium stress partial stomata closure reduces transpiration more than photosynthesis in this plant and as a result, increase water use efficiency. Materials and Methods This experiment was carried out as split-plot layout based on randomized complete blocks design with four replications at the Agricultural Research Station, University of Birjand in 2014-2015. The main factor was drought stress in three levels including 100, 75 and 50 percent of plant water requirement (no stress as control, moderate stress and severe stress, respectively and the sub-factor was millet genotype in three levels (including Bastan, KFM5 and KFM20. At four leaf stage, 75 plants per square meter were maintained and applied stress. Water use efficiency, evapotranspiration efficiency, harvest index for seed and ear, economic and biological yield were measured at maturity. . Data were analyzed with the SAS software ver 9.1 and the means were compared with Tukey’s test. Results and Discussion The results showed that water use efficiency (WUE was significantly decreased with increasing the intensity of drought stress in all three genotypes but not evapotranspiration efficiency (ETE, ratio of total dry matter to water used. Bastan cultivar had higher water use efficiency in all stress levels and was more affected under moderate stress while it was less affected under severe stress (33 and 31 percent compared to the control

  14. Reliability Modeling of Wind Turbines

    DEFF Research Database (Denmark)

    Kostandyan, Erik

    Cost reductions for offshore wind turbines are a substantial requirement in order to make offshore wind energy more competitive compared to other energy supply methods. During the 20 – 25 years of wind turbines useful life, Operation & Maintenance costs are typically estimated to be a quarter...... for Operation & Maintenance planning. Concentrating efforts on development of such models, this research is focused on reliability modeling of Wind Turbine critical subsystems (especially the power converter system). For reliability assessment of these components, structural reliability methods are applied...... to one third of the total cost of energy. Reduction of Operation & Maintenance costs will result in significant cost savings and result in cheaper electricity production. Operation & Maintenance processes mainly involve actions related to replacements or repair. Identifying the right times when...

  15. Stellar winds

    International Nuclear Information System (INIS)

    Weymann, R.J.

    1978-01-01

    It is known that a steady outflow of material at comparable rates of mass loss but vastly different speeds is now known to be ubiquitous phenomenon among both the luminous hot stars and the luminous but cool red giants. The flows are probably massive enough in both cases to give rise to significant effects on stellar evolution and the mass balance between stars and the interstellar medium. The possible mechanisms for these phenomena as well as the methods of observation used are described. In particular, the mass-loss processes in stars other than the sun that also involve a steady flow of matter are considered. The evidence for their existence is described, and then the question of whether the process thought to produce the solar wind is also responsible for producing these stellar winds is explored

  16. Wind model for low frequency power fluctuations in offshore wind farms

    DEFF Research Database (Denmark)

    Vigueras-Rodríguez, A.; Sørensen, Poul Ejnar; Cutululis, Nicolaos Antonio

    2010-01-01

    of hours, taking into account the spectral correlation between different wind turbines. The modelling is supported by measurements from two large wind farms, namely Nysted and Horns Rev. Measurements from individual wind turbines and meteorological masts are used. Finally, the models are integrated......This paper investigates the correlation between the frequency components of the wind speed Power Spectral Density. The results extend an already existing power fluctuation model that can simulate power fluctuations of wind power on areas up to several kilometers and for time scales up to a couple...

  17. Material laws for room temperature and high temperature, automatic adaptation to experimental data sets and applications to components under multiaxial stress; Stoffgesetze fuer Raum- und Hochtemperatur, automatisierte Anpassung an experimentelle Datensaetze und Anwendungen auf mehrachsig belastete Komponenten

    Energy Technology Data Exchange (ETDEWEB)

    Mohrmann, R.

    1998-12-01

    Models of materials mechanics were applied and improved, and a universal method for adapting the model parameters was developed. Measurements of several steels were processed by this method. The efficiency of the models and method was established by a comparison with measurements of components under multiaxial stress and components with FEA predictions. [German] Im Rahmen dieser Arbeit wurden werkstoffmechanische Modelle angewendet und weiterentwickelt. Fuer diese Modelle wurde eine universelle Methode zur Anpassung der Modellparameter entwickelt. Es wurden Messergebnisse verschiedener Stahlwerkstoffe mit dieser Methode bearbeitet. Die Leistungsfaehigkeit der untersuchten Modelle bzw. der entwickelten Methode wurde durch den Vergleich von Messergebnissen mehrachsig belasteter Komponenten bzw. Bauteilen mit Finite-Element Vorhersagen nachgewiesen. (orig.)

  18. Wind conditions for wind turbine design

    Energy Technology Data Exchange (ETDEWEB)

    Maribo Pedersen, B.

    1999-04-01

    Delegates from Europe and USA attended the meeting and discussed general aspects of wind conditions for wind turbine design. The subjects and the presented papers covered a very broad range of aspects of wind conditions and related influence on the wind turbine. (EHS)

  19. Project of integrity assessment of flawed components with structural discontinuity (IAF). Data book for residual stress analysis in weld joint. Analysis model of dissimilar metal weld joint applied post weld heat treatment (PWHT)

    International Nuclear Information System (INIS)

    2012-12-01

    The project of Integrity Assessment of Flawed Components with Structural Discontinuity (IAF) was entrusted to Japan Power Engineering and Inspection Corporation (JAPEIC) from Nuclear and Industrial Safety Agency (NISA) and started from FY 2001. And then, it was taken over to Japan Nuclear Energy Safety Organization (JNES) which was established in October 2003 and carried out until FY 2007. In the IAF project, weld joints between nickel based alloys and low alloy steels around penetrations in reactor vessel, safe-end of nozzles and shroud supports were selected from among components and pipe arrangements in nuclear power plants, where high residual stresses were generated due to welding and complex structure. Residual stresses around of the weld joints were estimated by finite element analysis method (FEM) with a general modeling method, then the reasonability and the conservativeness was evaluated. In addition, for postulated surface crack of stress corrosion cracking (SCC), a simple calculation method of stress intensity factor (K) required to estimate the crack growth was proposed and the effectiveness was confirmed. JNES compiled results of the IAF project into Data Books of Residual Stress Analysis of Weld Joint, and Data Book of Simplified Stress Intensity Factor Calculation for Penetration of Reactor as typical Structure Discontinuity, respectively. Data Books of Residual Stress Analysis in Weld Joint. 1. Butt Weld Joint of Small Diameter Cylinder (4B Sch40) (JNES-RE-2012-0005), 2. Dissimilar Metal Weld Joint in Safe End (One-Side Groove Joint (JNES-RE-2012-0006), 3. Dissimilar Metal Weld Joint in Safe End (Large Diameter Both-Side Groove Joint) (JNES-RE-2012-0007), 4. Weld Joint around Penetrations in Reactor Vessel (Insert Joint) (JNES-RE-2012-0008), 5. Weld Joint in Shroud Support (H8, H9, H10 and H11 Welds) (JNES-RE-2012-0009), 6. Analysis Model of Dissimilar Metal Weld Joint Applied Post Weld Heat Treatment (PWHT) (JNES-RE-2012-0010). Data Book of

  20. 20% wind by 2030: Overcoming the challenge - U.S. wind supply chain bottlenecks

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, Meghan

    2010-09-15

    The U.S. Department of Energy (DOE) provided PowerAdvocate with funding to evaluate the challenges facing the supply chain and provide strategic solutions to overcoming the short and long term supply chain challenges. PowerAdvocate conducted market research and interviews with wind developers, turbine and component suppliers and offshore wind development experts. PowerAdvocate created a comprehensive model. The model includes labor statistics, wind facility cost forecasting, and component supplier manufacturing investments in order to estimate the total cost to build a supply chain that supports the DOE's 20% by 2030 wind installation goal.

  1. Minority stress model components and affective well-being in a sample of sexual orientation minority adults living with HIV/AIDS.

    Science.gov (United States)

    Cramer, Robert J; Burks, Alixandra C; Plöderl, Martin; Durgampudi, Praveen

    2017-12-01

    To date very little literature exists examining theoretically-based models applied to day-to-day positive and negative affective well-being among lesbian, gay, and bisexual (LGB) persons living with HIV/AIDS (PLWHA). Grounded in the perspective of Meyer, I. H. (2003). Prejudice, social stress, and mental health in lesbian, gay, and bisexual populations: Conceptual issues and research evidence. Psychological Bulletin, 129, 674-697. Minority Stress Model, the present study examined HIV- and sexual orientation-related factors influencing affective well-being (i.e., positive affect, negative affect, life satisfaction, and stress). Participants were 154 HIV-positive LGB adults from an urban area in the southwestern United States. Data were drawn from an archival database (i.e., Project Legacy). The study methodology featured a cross-sectional self-report survey of minority stress, victimization, coping, and emotional well-being, among other subjects. Primary regression results were: (1) males reported less general stress than females; (2) higher internalized HIV-related stigma was associated with elevated negative affect; (3) higher internalized homophobia was associated with elevations in negative affect and general stress; (4) higher coping self-efficacy was associated with lesser negative affect, lesser general stress, greater positive affect, and greater satisfaction with life; (5) a significant interaction between HIV-related victimization and coping self-efficacy showed that coping self-efficacy was positively associated with positive affect only (only for non-victims). Contrary to expectations, coping self-efficacy demonstrated the largest main effects on affective well-being. Results are discussed with regard to potential need for theoretical refinement of Minority Stress Model applied to PLWHA and affective well-being outcomes. Recommendations are offered for future research.

  2. ABF2, an ABRE-binding bZIP factor, is an essential component of glucose signaling and its overexpression affects multiple stress tolerance.

    Science.gov (United States)

    Kim, Sunmi; Kang, Jung-Youn; Cho, Dong-Im; Park, Ji Hye; Kim, Soo Young

    2004-10-01

    Phytohormone abscisic acid (ABA) regulates stress-responsive gene expression during vegetative growth, which is mediated largely by cis-elements sharing the ACGTGGC consensus. Although many transcription factors are known to bind the elements in vitro, only a few have been demonstrated to have in vivo functions and their specific roles in ABA/stress responses are mostly unknown. Here, we report that ABF2, an ABF subfamily member of bZIP proteins interacting with the ABA-responsive elements, is involved in ABA/stress responses. Its overexpression altered ABA sensitivity, dehydration tolerance, and the expression levels of ABA/stress-regulated genes. Furthermore, ABF2 overexpression promoted glucose-induced inhibition of seedling development, whereas its mutation impaired glucose response. The reduced sugar sensitivity was not observed with mutants of two other ABF family members, ABF3 and ABF4. Instead, these mutants displayed defects in ABA, salt, and dehydration responses, which were not observed with the abf2 mutant. Our data indicate distinct roles of ABF family members: whereas ABF3 and ABF4 play essential roles in ABA/stress responses, ABF2 is required for normal glucose response. We also show that ABF2 overexpression affects multiple stress tolerance.

  3. Probabilistic analysis of extreme wind events

    Energy Technology Data Exchange (ETDEWEB)

    Chaviaropoulos, P.K. [Center for Renewable Energy Sources (CRES), Pikermi Attikis (Greece)

    1997-12-31

    A vital task in wind engineering and meterology is to understand, measure, analyse and forecast extreme wind conditions, due to their significant effects on human activities and installations like buildings, bridges or wind turbines. The latest version of the IEC standard (1996) pays particular attention to the extreme wind events that have to be taken into account when designing or certifying a wind generator. Actually, the extreme wind events within a 50 year period are those which determine the ``static`` design of most of the wind turbine components. The extremes which are important for the safety of wind generators are those associated with the so-called ``survival wind speed``, the extreme operating gusts and the extreme wind direction changes. A probabilistic approach for the analysis of these events is proposed in this paper. Emphasis is put on establishing the relation between extreme values and physically meaningful ``site calibration`` parameters, like probability distribution of the annual wind speed, turbulence intensity and power spectra properties. (Author)

  4. Wind Observatory 2017. Analysis of the wind power market, wind jobs and future of the wind industry in France

    International Nuclear Information System (INIS)

    2017-09-01

    Two years after the enactment of the Energy Transition for Green Growth Act, wind power capacity continues to grow in France, exceeding 12 GWatt the end of 2016 and soon to account for 5% of France's electric power consumption. This vitality, which is set to continue in 2017, will help France achieve its objectives of an installed capacity of 15,000 MW in onshore wind by 2018 and 21,800 to 26,000 MW by 2023. The current pace will nevertheless have to be accelerated in order to reach the realistic objective of 26 GW by 2023 mentioned in the multi-annual energy plan (PPE). With 1,400 jobs created in one year and more than 3,300 over the last two years, the relevance of wind power as a driving force of sustainable job creation throughout the country is unequivocally confirmed: the increase in wind power capacity continues to contribute to the growth in employment in the country. Prepared in collaboration with the consulting firm BearingPoint, the 2017 edition of the Observatory aims to give the reader an overview of employment in the wind industry and the wind power market over the period under consideration. Any changes from the three previous editions are highlighted. It is based on a comprehensive census of all market participants on three themes: employment, the market and the future of wind power. The Observatory gives an accurate picture of how the wind energy industry is structured, thereby presenting a precise overview of the wind energy industry and all its components

  5. Cost optimization of wind turbines for large-scale offshore wind farms

    International Nuclear Information System (INIS)

    Fuglsang, P.; Thomsen, K.

    1998-02-01

    This report contains a preliminary investigation of site specific design of off-shore wind turbines for a large off-shore wind farm project at Roedsand that is currently being proposed by ELKRAFT/SEAS. The results were found using a design tool for wind turbines that involve numerical optimization and aeroelastic calculations of response. The wind climate was modeled in detail and a cost function was used to estimate costs from manufacture and installation. Cost of energy is higher for off-shore installations. A comparison of an off-shore wind farm site with a typical stand alone on-shore site showed an increase of the annual production of 28% due to the difference in wind climate. Extreme loads and blade fatigue loads were nearly identical, however,fatigue loads on other main components increased significantly. Optimizations were carried out to find the optimum overall off-shore wind turbine design. A wind turbine for the off-shore wind farm should be different compared with a stand-alone on-shore wind turbine. The overall design changed were increased swept area and rated power combined with reduced rotor speed and tower height. Cost was reduced by 12% for the final 5D/14D off-shore wind turbine from 0.306 DKr/kWh to 0.270 DKr/kWh. These figures include capital costs from manufacture and installation but not on-going costs from maintenance. These results make off-shore wind farms more competitive and comparable to the reference on-shore stand-alone wind turbine. A corresponding reduction of cost of energy could not be found for the stand alone on-shore wind turbine. Furthermore the fatigue loads on wind turbines in on-shore wind farms will increase and cost of energy will increase in favor of off-shore wind farms. (au) EFP-95; EU-JOULE-3; 21 tabs., 7 ills., 8 refs

  6. Wind power in Norway; Vindkraft i Norge

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-01

    This report analyses business costs and socio-economic costs in the development of wind power in Norway and policy instruments to encourage such a development. It is founded on an analysis of the development of wind power in other countries, notably U.S.A, Denmark, Germany, the Netherlands and Britain. The report describes the institutional background in each country, the policy instruments that have been used and still are and the results achieved. The various cost components in Norwegian wind power development and the expected market price of wind power are also discussed. The discussion of instruments distinguishes between investment oriented and production oriented instruments. 8 refs., 9 figs., 3 tabs.

  7. Rotating transformers in wind turbine applications

    Energy Technology Data Exchange (ETDEWEB)

    Hylander, J. [Chalmers Univ. of Technology, Goeteborg (Sweden); Engstroem, S. [Aegir konsult AB, Lidingoe (Sweden)

    1996-12-01

    The power consumption of rotating electrical components is often supplied via slip-rings in wind turbines. Slip-ring equipment is expensive and need maintenance and are prone to malfunction. If the slip-rings could be replaced with contact-less equipment better turbines could be designed. This paper presents the design, some FE calculations and some measurements on a prototype rotating transformer. The proposed transformer consists of a secondary rotating winding and a stationary exciting primary winding. The results indicate that this transformer could be used to replace slip-rings in wind turbines. 4 refs, 3 figs

  8. Evaluation of Quality of Life of Those Living near a Wind Farm.

    Science.gov (United States)

    Mroczek, Bożena; Banaś, Joanna; Machowska-Szewczyk, Małgorzata; Kurpas, Donata

    2015-05-29

    Health-related quality of life (HRQoL) can serve as a multidimensional means of evaluating the relationship between the presence of wind turbines in residential areas and their consequence for health. The purpose of this study was to determine whether a relationship exists between the presence of wind farms at different stages of development and the HRQoL of people living in their vicinity in Poland. The instruments employed in this study were the SF-36v2, a questionnaire measuring self-reported health problems, and a sociodemographic questionnaire. The study involved 1277 people who lived within 2 km from a wind turbine. The highest overall QoL scores were obtained by respondents living the closest to wind turbines. The mental health, role emotional, and social functioning scores were significantly higher among respondents living near wind farms and wind-farm construction sites than among those living close to locations where wind farms were planned but where construction had not yet begun. Positive correlations were found between physical and mental component scores and reactions to the news of plans to construct a wind farm. Significant differences in physical and mental component scores were observed between residents who reacted calmly and those who responded with apprehension. Residents who expected the improvement of their financial standing as a result of the wind farm assessed their general health higher than those who did not expect to receive any economic benefits. The lowest QoL scores corresponded to frequent headaches, stomach aches, and back pain over the previous three months, as well as recurrent problems with falling asleep, anxiety, and a lack of acceptance of the project. The lowest overall QoL and general health scores were noted among residents of places where wind-farm developments were either at the stage of planning or under construction. In order to find ways of reducing environmental stress and its adverse effects on health, it is

  9. Development and testing of a system for partially automated evaluation of holographic interferograms in the experimental stress analysis of reactor components

    International Nuclear Information System (INIS)

    Jueptner, W.; Kreitlow, H.; Kreis, T.; Steinlein, P.; Hock, F.; Garbe, B.

    1984-12-01

    Initially the deformation fields at the side surfaces of tensile test specimens with varying internal cracks have been calculated by the method of finite elements. From these now already known surface-deformations the stresses in the interior were calculated. By a variation of the parameters it was proven, that exact deformations at the input yield the exact stress distributions at the output. A systematic error in the deformations in one direction gave a proportional error in the determined stresses. Statistical errors in the deformations propagated less than proportional, thus an error of +10% in the deformation yields an error of 2% in the determined stress. For that reason an accuracy of 5% is demanded for the deformation measurements. The determination of the stresses is non-critical, as long as the error in the deformation measurement remains less than 5%. The second substantial result: A method has been found, that with the used test specimen allows to infer from the measured surface deformations on the length of the crack by iteration. This result exceeds the original aims. To prove, that the surface-deformations can be determined sufficiently exact at adequate many points, an automated recording and evaluation of interference patterns was done by an image processing system according to the method with phase-shifted reference-wave by Jueptner. With this system deformations in a field of 1024x512 points are recorded and evaluated with an accuracy better than 5% in less than 30 minutes. (orig./HP) [de

  10. A Critical Review of Future Materials for Wind Turbine Blades

    DEFF Research Database (Denmark)

    Raghavalu Thirumalai, Durai Prabhakaran

    2014-01-01

    Wind turbine industry is continuously evaluating materials systems to replace the current thermoset composite technologies. Since turbine blades are the key component in the wind turbines and the size of the blade is increasing in todays wind design, the materials selection has become crucial...

  11. Future Materials for Wind Turbine Blades - A Critical Review

    DEFF Research Database (Denmark)

    Raghavalu Thirumalai, Durai Prabhakaran

    2012-01-01

    Wind turbine industry is continuously evaluating material systems to replace the current thermoset composite technologies. Since turbine blades are the key component in the wind turbines and the size of the blade is increasing in today’s wind design, the material selection has become crucial...

  12. Fourier Simulation of a Non-Isotropic Wind Field Model

    DEFF Research Database (Denmark)

    Mann, J.; Krenk, S.

    Realistic modelling of three dimensional wind fields has become important in calculation of dynamic loads on same spatially extended structures, such as large bridges, towers and wind turbines. For some structures the along wind component of the of the turbulent flow is important while for others...

  13. Wind speed errors for LIDARs and SODARs in complex terrain

    International Nuclear Information System (INIS)

    Bradley, S

    2008-01-01

    All commercial LIDARs and SODARs are monostatic and hence sample distributed volumes to construct wind vector components. We use an analytic potential flow model to estimate errors arising for a range of LIDAR and SODAR configurations on hills and escarpments. Wind speed errors peak at a height relevant to wind turbines and can be typically 20%

  14. Wind speed errors for LIDARs and SODARs in complex terrain

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, S [Physics Department, The University of Auckland, Private Bag 92019, Auckland (New Zealand) and School of Computing, Science and Engineering, University of Salford, M5 4WT (United Kingdom)], E-mail: s.bradley@auckland.ac.nz

    2008-05-01

    All commercial LIDARs and SODARs are monostatic and hence sample distributed volumes to construct wind vector components. We use an analytic potential flow model to estimate errors arising for a range of LIDAR and SODAR configurations on hills and escarpments. Wind speed errors peak at a height relevant to wind turbines and can be typically 20%.

  15. An Optimal Control Scheme to Minimize Loads in Wind Farms

    DEFF Research Database (Denmark)

    Soleimanzadeh, Maryam; Wisniewski, Rafal

    2012-01-01

    This work presents a control algorithm for wind farms that optimizes the power production of the farm and helps to increase the lifetime of wind turbines components. The control algorithm is a centralized approach, and it determines the power reference signals for individual wind turbines...

  16. Wind Power Meteorology

    DEFF Research Database (Denmark)

    Lundtang Petersen, Erik; Mortensen, Niels Gylling; Landberg, Lars

    Wind power meteorology has evolved as an applied science, firmly founded on boundary-layer meteorology, but with strong links to climatology and geography. It concerns itself with three main areas: siting of wind turbines, regional wind resource assessment, and short-term prediction of the wind...... resource. The history, status and perspectives of wind power meteorology are presented, with emphasis on physical considerations and on its practical application. Following a global view of the wind resource, the elements of boundary layer meteorology which are most important for wind energy are reviewed......: wind profiles and shear, turbulence and gust, and extreme winds. The data used in wind power meteorology stem mainly from three sources: onsite wind measurements, the synoptic networks, and the re-analysis projects. Wind climate analysis, wind resource estimation and siting further require a detailed...

  17. Forces and Moments on Flat Plates of Small Aspect Ratio with Application to PV Wind Loads and Small Wind Turbine Blades

    Directory of Open Access Journals (Sweden)

    Xavier Ortiz

    2015-03-01

    Full Text Available To improve knowledge of the wind loads on photovoltaic structures mounted on flat roofs at the high angles required in high latitudes, and to study starting flow on low aspect ratio wind turbine blades, a series of wind tunnel tests were undertaken. Thin flat plates of aspect ratios between 0.4 and 9.0 were mounted on a sensitive three-component instantaneous force and moment sensor. The Reynolds numbers varied from 6 × 104 to 2 × 105. Measurements were made for angles of attack between 0° and 90° both in the free stream and in wall proximity with increased turbulence and mean shear. The ratio of drag to lift closely follows the inverse tangent of the angle of incidence for virtually all measurements. This implies that the forces of interest are due largely to the instantaneous pressure distribution around the plate and are not significantly influenced by shear stresses. The instantaneous forces appear most complex for the smaller aspect ratios but the intensity of the normal force fluctuations is between 10% and 20% in the free-steam but can exceed 30% near the wall. As the wind tunnel floor is approached, the lift and drag reduce with increasing aspect ratio, and there is a reduction in the high frequency components of the forces. It is shown that the centre of pressure is closer to the centre of the plates than the quarter-chord position for nearly all cases.

  18. Wind energy. Market prospects to 2006

    International Nuclear Information System (INIS)

    Huckle, R.

    2002-01-01

    Renewable energy is becoming an increasingly significant source in the energy portfolio of most countries. Several sources of renewable energy are now being pursued commercially and wind energy is the most advanced in terms of installed electricity generation capacity. Of all types of renewable energy wind energy is the one with which there is the greatest experience - wind wheels and windmills have been used in various forms for hundreds of years. Chapter 1 is an introduction to the market study. Chapter 2 begins with a review of the wind energy industry. Topics included here are the case for wind energy (sustainability, security, non-polluting etc), market structure (the relationship between developers, operators, manufacturers, consortia etc) and environmental issues. This is followed by a discussion of the wind energy market for major countries in terms of installed wind power capacity. Within each country market there is an account of government policy, major wind energy programmes, major projects with information on developers and wind turbine manufacturers. A market analysis is given which includes an economic review, wind energy targets (where they exist) and forecasts to 2006. Chapter 3 is a review of wind turbine applications covering electricity generation for public supply networks, stand alone/community applications, water pumping and water desalination. Chapter 4 provides the basic principles of wind turbine operation and associated technologies. A brief account is given of the development of wind turbines and the main components such as the tower, rotor blades, gearbox, generator and electrical controls. Electricity generation and control are outlined and the challenge of electricity storage is also discussed. Meteorological factors (wind speed etc) and the move towards off-shore wind farms are also covered. Chapter 5 contains profiles of leading wind project developers and wind turbine manufacturers. A selection of existing and proposed wind farms

  19. Pore pressure buildup and soil stress relaxation in monopile foundations of offshore wind converters; Porenwasserdruckaufbau und Bodenentfestigung um Pfahlgruendungen von Offshore-Windenergieanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Cuellar, Pablo; Baessler, Matthias; Georgi, Steven; Ruecker, Werner [BAM Bundesanstalt fuer Materialforschung und -pruefung, Berlin (Germany). Fachbereich 7.2 Ingenieurbau

    2012-09-15

    For the installation of wind turbines in the offshore environment and their foundation in the seabed it is customary to employ large-diameter steel piles, either in monopile or multi-pile configurations (jacket, tripod, etc..). The effects of cyclic lateral loading on the offshore piles and particularly the possibility of a progressive accumulation of residual pore water pressure within the saturated embedding soil are discussed in this article. Here it is shown that this can lead to significant changes of their behaviour under external loading, which can potentially compromise the foundation's stability or serviceability. Furthermore, some of the singular effects arising during a realistic storm of moderate magnitude as well as their potential for transient damages to the foundation's stiffness are addressed in the paper. For the investigation of these phenomena the authors have employed a coupled bi-phasic analytical model of the offshore foundation. The constitutive model employed for the seabed, in the frame of the theory of Generalized Plasticity, can reproduce some complex features of cyclic soil behaviour such as the tendency for a progressive densification under cyclic loading, which is responsible for the soil liquefaction phenomena in undrained conditions. Finally, some implications and specific recommendations for the design of offshore monopiles in the frame of the limit states are provided. (orig.)

  20. Wind Energy Basics | NREL

    Science.gov (United States)

    Wind Energy Basics Wind Energy Basics We have been harnessing the wind's energy for hundreds of grinding grain. Today, the windmill's modern equivalent-a wind turbine can use the wind's energy to most energy. At 100 feet (30 meters) or more aboveground, they can take advantage of the faster and