WorldWideScience

Sample records for wind solar-photovoltaic geothermal

  1. Power fluctuations suppression of stand-alone hybrid generation combining solar photovoltaic/wind turbine and fuel cell systems

    International Nuclear Information System (INIS)

    Ahmed, Nabil A.; Miyatake, Masafumi; Al-Othman, A.K.

    2008-01-01

    In this paper a hybrid energy system combining variable speed wind turbine, solar photovoltaic and fuel cell generation systems is presented to supply continuous power to residential power applications as stand-alone loads. The wind and photovoltaic systems are used as main energy sources while the fuel cell is used as secondary or back-up energy source. Three individual dc-dc boost converters are used to control the power flow to the load. A simple and cost effective control with dc-dc converters is used for maximum power point tracking and hence maximum power extracting from the wind turbine and the solar photovoltaic systems. The hybrid system is sized to power a typical 2 kW/150 V dc load as telecommunication power plants or ac residential power applications in isolated islands continuously throughout the year. The results show that even when the sun and wind are not available; the system is reliable and available and it can supply high-quality power to the load. The simulation results which proved the accuracy of the proposed controllers are given to demonstrate the availability of the proposed system in this paper. Also, a complete description of the management and control system is presented

  2. Costs and profitability of renewable energies in metropolitan France - ground-based wind energy, biomass, solar photovoltaic. Analysis

    International Nuclear Information System (INIS)

    2014-04-01

    After a general presentation of the framework of support to renewable energies and co-generation (purchasing obligation, tendering, support funding), of the missions of the CRE (Commission for Energy Regulation) within the frame of the purchasing obligation, and of the methodology adopted for this analysis, this document reports an analysis of production costs for three different renewable energy sectors: ground-based wind energy, biomass energy, and solar photovoltaic energy. For each of them, the report recalls the context (conditions of purchasing obligation, winning bid installations, installed fleet in France at the end of 2012), indicates the installations taken into consideration in this study, analyses the installation costs and funding (investment costs, exploitation and maintenance costs, project funding, production costs), and assesses the profitability in terms of capital and for stakeholders

  3. A novel off-grid hybrid power system comprised of solar photovoltaic, wind, and hydro energy sources

    International Nuclear Information System (INIS)

    Bhandari, Binayak; Lee, Kyung-Tae; Lee, Caroline Sunyong; Song, Chul-Ki; Maskey, Ramesh K.; Ahn, Sung-Hoon

    2014-01-01

    Highlights: • We propose two hybridization methods for small off-grid power systems consisting solar (PV), wind, and micro-hydro sources. • One of the methods was implemented in a mini-grid connecting Thingan and Kolkhop villages in Makawanpur District, Nepal. • The results can be applied to help achieve Millennium Development Goal 7: Ensuring environmental sustainability. • This is the first implementation anywhere comprising of three renewable energy power, in a single off-grid power system. • This research may be applied as a practical guide for implementing similar systems in various locations. - Abstract: Several factors must be considered before adopting a full-phase power generation system based on renewable energy sources. Long-term necessary data (for one year if possible) should be collected before making any decisions concerning implementation of such a systems. To accurately assess the potential of available resources, we measured solar irradiation, wind speed, and ambient temperature at two high-altitude locations in Nepal: the Lama Hotel in Rasuwa District and Thingan in Makawanpur District. Here, we propose two practical, economical hybridization methods for small off-grid systems consisting entirely of renewable energy sources—specifically solar photovoltaic (PV), wind, and micro-hydro sources. One of the methods was tested experimentally, and the results can be applied to help achieve Millennium Development Goal 7: Ensuring environmental sustainability. Hydro, wind, and solar photovoltaic energy are the top renewable energy sources in terms of globally installed capacity. However, no reports have been published about off-grid hybrid systems comprised of all three sources, making this implementation the first of its kind anywhere. This research may be applied as a practical guide for implementing similar systems in various locations. Of the four off-grid PV systems installed by the authors for village electrification in Nepal, one was

  4. Evolutionary analysis of technological innovations: the example of solar photovoltaic and wind energy

    International Nuclear Information System (INIS)

    Taillant, Pierre

    2005-01-01

    The objective of this research thesis is to study the building up and the development of technologies for renewable energies considered as environmental radical innovations. In a first part, the author discusses the systemic aspects of innovation and the environmental challenges associated with energy technologies. He examines the main evolutions of energy systems over a long period. In a second part, he addresses innovation incentives in the case of environmental technologies and within the frame of the neo-classical economic theory. The next parts aim at presenting the theoretical framework of the evolutionary analysis of innovation and technical change, and at applying it to the case of technological innovations for renewable energies (photovoltaic and wind energy). World PV market trends are discussed and the technological competition context of this sector is analysed. The evolution of the solar PV technological system in Germany is discussed, as well as the specific case of development of the wind energy technological system in Denmark

  5. Solar Photovoltaic Energy.

    Science.gov (United States)

    Ehrenreich, Henry; Martin, John H.

    1979-01-01

    The goals of solar photovoltaic technology in contributing to America's future energy needs are presented in this study conducted by the American Physical Society. Although the time needed for photovoltaics to become popular is several decades away, according to the author, short-range applications are given. (Author/SA)

  6. Comparing the International Knowledge Flow of China’s Wind and Solar Photovoltaic (PV Industries: Patent Analysis and Implications for Sustainable Development

    Directory of Open Access Journals (Sweden)

    Yuan Zhou

    2018-06-01

    Full Text Available Climate-relevant technologies, like wind and solar energy, are crucial for mitigating climate change and for achieving sustainable development. Recent literature argues that Chinese solar firms play more active roles in international knowledge flows, which may better explain their success in international markets when compared to those of Chinese wind firms; however, empirical evidence remains sparse. This study aims to explore to what extent and how do the international knowledge flows differ between China’s wind and solar photovoltaic (PV industries? From a network perspective, this paper develops a three-dimensional framework to compare the knowledge flows in both explicit and tacit dimensions: (i inter-country explicit knowledge clusters (by topological clustering of patent citation network; (ii inter-firm explicit knowledge flow (patent citation network of key firms; and, (iii inter-firm tacit knowledge flow (by desktop research and interviews. The results show that China’s PV industry has stronger international knowledge linkages in terms of knowledge clustering and explicit knowledge flow, but the wind power industry has a stronger tacit knowledge flow. Further, this study argues that the differences of global knowledge links between China’s wind and solar PV industries may be caused by technology characteristics, market orientation, and policy implementation. This suggests that these industries both have strong connections to global knowledge networks, but they may involve disparate catch-up pathways that concern follower-modes and leader-modes. These findings are important to help us understand how China can follow sustainable development pathways in the light of climate change.

  7. Byproduct metal requirements for U.S. wind and solar photovoltaic electricity generation up to the year 2040 under various Clean Power Plan scenarios

    Science.gov (United States)

    Nassar, Nedal T.; Wilburn, David R.; Goonan, Thomas G.

    2016-01-01

    The United States has and will likely continue to obtain an increasing share of its electricity from solar photovoltaics (PV) and wind power, especially under the Clean Power Plan (CPP). The need for additional solar PV modules and wind turbines will, among other things, result in greater demand for a number of minor metals that are produced mainly or only as byproducts. In this analysis, the quantities of 11 byproduct metals (Ag, Cd, Te, In, Ga, Se, Ge, Nd, Pr, Dy, and Tb) required for wind turbines with rare-earth permanent magnets and four solar PV technologies are assessed through the year 2040. Three key uncertainties (electricity generation capacities, technology market shares, and material intensities) are varied to develop 42 scenarios for each byproduct metal. The results indicate that byproduct metal requirements vary significantly across technologies, scenarios, and over time. In certain scenarios, the requirements are projected to become a significant portion of current primary production. This is especially the case for Te, Ge, Dy, In, and Tb under the more aggressive scenarios of increasing market share and conservative material intensities. Te and Dy are, perhaps, of most concern given their substitution limitations. In certain years, the differences in byproduct metal requirements between the technology market share and material intensity scenarios are greater than those between the various CPP and No CPP scenarios. Cumulatively across years 2016–2040, the various CPP scenarios are estimated to require 15–43% more byproduct metals than the No CPP scenario depending on the specific byproduct metal and scenario. Increasing primary production via enhanced recovery rates of the byproduct metals during the beneficiation and enrichment operations, improving end-of-life recycling rates, and developing substitutes are important strategies that may help meet the increased demand for these byproduct metals.

  8. Kepler-Chevreux: 100 billions invested in solar photovoltaic and wind energy produce more energy than with oil

    International Nuclear Information System (INIS)

    Danielo, Olivier

    2014-01-01

    This article discusses the calculation of a new index created by Kepler-Chevreux experts: the energy return on invested capital, EROCI. This index reveals the benefit of solar-energy and wind-energy based electro-mobility compared to the oil-based thermo-mobility. This index only takes economic issues into account, but not the benefits in terms of public health, environment, climate or geopolitics. It also outlines that whenever oil prices increase or decrease, the oil sector has reached a dead end, and that photovoltaic and wind energy present a growing interest among not only ecologists but also finance experts

  9. A hybrid solar photovoltaic-wind turbine-Rankine cycle for electricity generation in Turkish Republic of Northern Cyprus

    Directory of Open Access Journals (Sweden)

    Samuel Asumadu-Sarkodie

    2016-12-01

    Full Text Available This paper presents an energy demand model by designing a hybrid solar-wind-thermal power generation system of the Turkish Republic of Northern Cyprus, a promising substitute for the expensive battery banks. The study models the future energy demand of Turkish Republic of Northern Cyprus based on the IPCC emissions scenario A1B and A2 by designing a new hybrid solar-wind-thermal power system that satisfies the current and future requirements of firm capacity during peak periods. The study suggests an improvement in a hybrid solar-wind-thermal power system performance by predicting reliable outputs that can integrate renewable energy technologies to conventional power generation. The energy consumption prediction model emphasizes the energy requirement that has a growing demand from 300 to 400 GWh in scenario A1B and 150–450 GWh in scenario A2 from 2010 to 2050. The proposed design can meet 400 GWh of electricity demand in TRNC based on IPCC scenario A1B and 450 GWh of electricity demand in TRNC based on IPCC scenario A2. The percentage contribution of solar, wind and thermal energy for 2010, 2020, 2030, 2040 and 2050 are presented along with CO2 emissions and water consumption for each of the years.

  10. Solar Photovoltaic Technology Basics | NREL

    Science.gov (United States)

    Photovoltaic Technology Basics Solar Photovoltaic Technology Basics Solar cells, also called found in sand) created an electric charge when exposed to sunlight. Soon solar cells were being used to power space satellites and smaller items like calculators and watches. Photo of a large silicon solar

  11. Solar photovoltaic: a better tomorrow

    International Nuclear Information System (INIS)

    Signoret, Stephane

    2016-01-01

    This article comments statements and works performed by a professional body (Enerplan) and a think tank (FTS, France Territoire Solaire) which describe a glorious future for solar photovoltaic energy even though the present situation is rather dull. They foresee ground-based solar plants of more than 1 MW, and assess the potential production for very large, medium and small sized roofs, for domestic installations

  12. Solution for Improve the Efficiency of Solar Photovoltaic Installation

    OpenAIRE

    Petru Chioncel; Cristian Paul Chioncel; Nicoleta Gillich

    2013-01-01

    This paper present a solution for improving efficiency of solar photovoltaic installation, realized with fixed solar photovoltaic modules, placed in solar parks or individual installations. The proposed solution to increase the radiation on the solar photovoltaic panels is to use some thin plates covered with a reflective blanket, mounted in front of the solar photovoltaic modules, with the possibility of their adjustment.

  13. Voltage Quality Improvement Using Solar Photovoltaic Systems

    Directory of Open Access Journals (Sweden)

    Denisa Galzina

    2015-06-01

    This paper briefly shows the methods of power quality improvement, and then the results of on-site power quality measurements in the grid before and after the connection of the solar photovoltaic system.

  14. Development of a controller based on Fuzzy theory to better use the energy of a hybrid system power generation solar-photovoltaic and wind; Desenvolvimento de um controlador baseado na teoria Fuzzy para melhor aproveitamento da energia de um sistema hibrido de geracao de energia solar-fotovoltaico e eolico

    Energy Technology Data Exchange (ETDEWEB)

    Caneppele, Fernando de Lima [Universidade Estadual Paulista (UNESP), Itapeva, SP (Brazil). Campus Experimental], E-mail: fernando@itapeva.unesp.br; Seraphim, Odivaldo Jose [Universidade Estadual Paulista (FCA/UNESP), Botucatu, SP (Brazil). Fac. de Ciencias Agronomicas. Dept. de Engenharia Rural; Gabriel Filho, Luis Roberto de Almeida [Universidade Estadual Paulista (UNESP), Tupa, SP (Brazil). Campus Experimental

    2010-07-01

    The work developed a methodology fuzzy and simulated its use in control of a hybrid system of electric power generation, using solar-photovoltaic and wind energy. Using this control system, we get the point of maximum energy generation and transfer all the energy generated from alternative sources, solar-photovoltaic and wind energy to charge and / or batteries. The model uses three input variables, which are: wind (wind speed), sun (solar radiation) and batteries (charge the battery bank). With these variables, the fuzzy system will play, according to the rules to be described, what is the source of power supply system, which will have priority and how the batteries are loaded. For the simulations regarding the use of fuzzy theory to control, we used the scientific computing environment MATLAB. In this environment have been analyzed and simulated all mathematical modeling, rules and other variables described in the fuzzy system. This model can be applied to implement a control system of hybrid power generation, providing the best use of renewable energy, solar and wind, so that we can extract the maximum possible energy of these alternative sources without compromising the environment. (author)

  15. Performance investigation of a wind turbine–solar photovoltaic panels–fuel cell hybrid system installed at İncek region – Ankara, Turkey

    International Nuclear Information System (INIS)

    Devrim, Yılser; Bilir, Levent

    2016-01-01

    Highlights: • A hybrid system with a wind turbine, photovoltaic panels and a fuel cell was studied. • 3 kW wind turbine, 17.97 m 2 photovoltaics, 1.2 kW fuel cell and 4.7 kW electrolyzer was used. • The system can meet the entire demand of a residential house in Ankara, Turkey. • Only exception is in November, when the energy lack can be compensated from the grid. - Abstract: Renewable energy use in the world increases year by year. However, in many cases it is not possible to cover the electrical energy need of even a single house using only one renewable energy resource due to its intermittent nature. At this point, hybrid systems are applied to overcome this problem. This study focuses on the combination of photovoltaic solar panels, a small scale wind turbine, an electrolyzer and a proton exchange membrane fuel cell hybrid system for electrical power generation for an average house of 150 m 2 located at İncek region of Ankara, Turkey. Solar and wind energies were used as primary sources and a proton exchange membrane fuel cell is used as the backup power. The hybrid system was modeled and the results indicate that the use of the selected wind turbine with a 3 kW capacity along with photovoltaic panels with 17.97 m 2 area is sufficient to provide the required 5 h operation of the electrolyzer, which in turn provides the necessary hydrogen and oxygen to the fuel cell. Since the daily energy needed by the investigated house was taken as 5 kW h, the fuel cell with a net power output of 1 kW supplies all electrical demand with its 5 h operation. The outcomes show that the hybrid system is capable to provide all electrical need of the house all year round, except November. The electrical energy production of the proposed system is considerably higher than the demand in many months and this surplus electricity can be used in order to support the cooling and heating system of the considered house.

  16. Solution for Improve the Efficiency of Solar Photovoltaic Installation

    Directory of Open Access Journals (Sweden)

    Petru Chioncel

    2013-01-01

    Full Text Available This paper present a solution for improving efficiency of solar photovoltaic installation, realized with fixed solar photovoltaic modules, placed in solar parks or individual installations. The proposed solution to increase the radiation on the solar photovoltaic panels is to use some thin plates covered with a reflective blanket, mounted in front of the solar photovoltaic modules, with the possibility of their adjustment.

  17. A Multiobjective Robust Scheduling Optimization Mode for Multienergy Hybrid System Integrated by Wind Power, Solar Photovoltaic Power, and Pumped Storage Power

    Directory of Open Access Journals (Sweden)

    Lihui Zhang

    2017-01-01

    Full Text Available Wind power plant (WPP, photovoltaic generators (PV, cell-gas turbine (CGT, and pumped storage power station (PHSP are integrated into multienergy hybrid system (MEHS. Firstly, this paper presents MEHS structure and constructs a scheduling model with the objective functions of maximum economic benefit and minimum power output fluctuation. Secondly, in order to relieve the uncertainty influence of WPP and PV on system, robust stochastic theory is introduced to describe uncertainty and propose a multiobjective stochastic scheduling optimization mode by transforming constraint conditions with uncertain variables. Finally, a 9.6 MW WPP, a 6.5 MW PV, three CGT units, and an upper reservoir with 10 MW·h equivalent capacity are chosen as simulation system. The results show MEHS system can achieve the best operation result by using the multienergy hybrid generation characteristic. PHSP could shave peak and fill valley of load curve by optimizing pumping storage and inflowing generating behaviors based on the load supply and demand status and the available power of WPP and PV. Robust coefficients can relieve the uncertainty of WPP and PV and provide flexible scheduling decision tools for decision-makers with different risk attitudes by setting different robust coefficients, which could maximize economic benefits and minimize operation risks at the same time.

  18. Fuel Cell / electrolyser, Solar Photovoltaic Powered

    Directory of Open Access Journals (Sweden)

    Chioncel Cristian Paul

    2012-01-01

    Full Text Available The paper presents experimental obtained results in the operation ofelectrolyzer powered by solar photovoltaic modules, for the waterelectrolysis and with the obtained hydrogen and oxygen proceeds tothe operation in fuel cell mode, type PEM. The main operatingparameters and conditions to optimize the energy conversion on thesolar-hydrogen-electricity cycle are highlighted, so that those arecomparable or superior to conventional cycles.

  19. Terawatt solar photovoltaics roadblocks and opportunities

    CERN Document Server

    Tao, Meng

    2014-01-01

    Solar energy will undoubtedly become a main source of energy in our life by the end of this century, but how big of a role will photovoltaics play in this new energy infrastructure Besides cost and efficiency, there are other barriers for current solar cell technologies to become a noticeable source of energy in the future. Availability of raw materials, energy input, storage of solar electricity, and recycling of dead modules can all prevent or hinder a tangible impact by solar photovoltaics. This book is intended for readers with minimal technical background and aims to explore not only the fundamentals but also major issues in large-scale deployment of solar photovoltaics. Thought-provoking ideas to overcoming some of the barriers are discussed.

  20. Solar photovoltaic power for water desalination

    Energy Technology Data Exchange (ETDEWEB)

    Wood, J. R.; Crutcher, J. L.; Norbedo, A. J.; Cummings, A. B.

    1980-07-01

    There is a considerable global need for systems which can meet the drinking water requirements of small communities (7000 people or less) from brackish water or from seawater. Solar photovoltaic panels are an ideal source of power for the purpose, primarily because they produce electricity, which can be used to power a membrane type desalting unit, i.e., either a reverse osmosis plant or an electrodialysis unit. In addition, electricity is most convenient for feedwater pumping. This paper addresses considerations which arise in the design and construction of a complete solar powered water desalination system which requires no supply of fuel nor any form of backup power (grid connection or engine generator).

  1. Combination solar photovoltaic heat engine energy converter

    Science.gov (United States)

    Chubb, Donald L.

    1987-01-01

    A combination solar photovoltaic heat engine converter is proposed. Such a system is suitable for either terrestrial or space power applications. The combination system has a higher efficiency than either the photovoltaic array or the heat engine alone can attain. Advantages in concentrator and radiator area and receiver mass of the photovoltaic heat engine system over a heat-engine-only system are estimated. A mass and area comparison between the proposed space station organic Rankine power system and a combination PV-heat engine system is made. The critical problem for the proposed converter is the necessity for high temperature photovoltaic array operation. Estimates of the required photovoltaic temperature are presented.

  2. Solar photovoltaic reflective trough collection structure

    Science.gov (United States)

    Anderson, Benjamin J.; Sweatt, William C.; Okandan, Murat; Nielson, Gregory N.

    2015-11-19

    A photovoltaic (PV) solar concentration structure having at least two troughs encapsulated in a rectangular parallelepiped optical plastic structure, with the troughs filled with an optical plastic material, the troughs each having a reflective internal surface and approximately parabolic geometry, and the troughs each including photovoltaic cells situated so that light impinging on the optical plastic material will be concentrated onto the photovoltaic cells. Multiple structures can be connected to provide a solar photovoltaic collection system that provides portable, efficient, low-cost electrical power.

  3. The Impact on Wind Power Integration from Geothermal Absorption

    DEFF Research Database (Denmark)

    Østergaard, Poul Alberg

    2012-01-01

    and lowtemperature geothermal resources. The analyses have also demonstrated that the municipality will still rely heavily on surrounding areas for electric load balancing assistance. With a departure in a previously elaborated 100% renewable energy scenario, this paper investigates how absorption heat pumps (AHP......Aalborg Municipality, Denmark is investigating ways of switching to 100 % renewable energy supply over the next 40 years. Analyses so far have demonstrated a potential for such a transition through energy savings, district heating (DH) and the use of locally available biomass, wind power......) and compression heat pumps (HP) for the supply of DH impact the integration of wind power. Hourly scenarioanalyses made using the EnergyPLAN model reveal a boiler production and electricity excess which is higher with AHPs than with HPs whereas condensing mode power generation is increased by the application...

  4. Solar photovoltaic markets, economics, technology, and potential

    Energy Technology Data Exchange (ETDEWEB)

    Blais, J.M.J.; Molinski, T.S. [Manitoba Hydro, Winnipeg, MB (Canada)]|[Emerging Energy Systems, Islamabad (Pakistan)

    2008-07-01

    Solar Photovoltaics (PV) are solid state semiconductor electronic devices that transform infrared, visible, or ultraviolet light energy from the sun directly into electrical energy. Selenium was used to create the first solar cell in 1883. In 1954, Bell Laboratories developed the modern day silicon solar cell, whereby impurities were added to silicon through a process called doping. Silicon doped with boron results in a positive electrical charge, while silicon doped with phosphorous results in a negative electrical charge. The atom collision from photons in sunlight provides the necessary energy to free a trapped electron in the doped silicon, which then may flow through a wire creating an electric current. Many different materials besides silicon are used to create solar cells, such as plastics, organic compounds, and theoretically even special paints, while other doping agents besides boron and phosphorous are also used, such as arsenic and gallium. This paper provided an introduction to solar PV and world solar PV growth and markets. A review of solar PV economics was also included. In 2008, the total installed costs of solar photovoltaic cells were in the range of 7 to 10 Canadian dollars. In addition, the advantages and disadvantages of solar PV were presented. Solar technologies under research and development were also discussed and assessed. It was concluded that although solar PV was one of the most expensive forms of renewable generation, there is great potential for solar PV to gain broader based application as costs continue to drop. 11 refs., 1 tab., 1 fig.

  5. New Markets for Solar Photovoltaic Power Systems

    Science.gov (United States)

    Thomas, Chacko; Jennings, Philip; Singh, Dilawar

    2007-10-01

    Over the past five years solar photovoltaic (PV) power supply systems have matured and are now being deployed on a much larger scale. The traditional small-scale remote area power supply systems are still important and village electrification is also a large and growing market but large scale, grid-connected systems and building integrated systems are now being deployed in many countries. This growth has been aided by imaginative government policies in several countries and the overall result is a growth rate of over 40% per annum in the sales of PV systems. Optimistic forecasts are being made about the future of PV power as a major source of sustainable energy. Plans are now being formulated by the IEA for very large-scale PV installations of more than 100 MW peak output. The Australian Government has announced a subsidy for a large solar photovoltaic power station of 154 MW in Victoria, based on the concentrator technology developed in Australia. In Western Australia a proposal has been submitted to the State Government for a 2 MW photovoltaic power system to provide fringe of grid support at Perenjori. This paper outlines the technologies, designs, management and policies that underpin these exciting developments in solar PV power.

  6. Siting Solar Photovoltaics at Airports: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Kandt, A.; Romero, R.

    2014-06-01

    Airports present a significant opportunity for hosting solar technologies due to their open land; based on a 2010 Federal Aviation Administration study, the US Department of Agriculture, and the US Fish and Wildlife Service, there's potential for 116,704 MW of solar photovoltaics (PV) on idle lands at US airports. PV has a low profile and likely low to no impact on flight operations. This paper outlines guidance for implementing solar technologies at airports and airfields, focusing largely on the Federal Aviation Administration's policies. The paper also details best practices for siting solar at airports, provides information on the Solar Glare Hazard Analysis Tool, and highlights a case study example where solar has been installed at an airport.

  7. Semiconductor materials for solar photovoltaic cells

    CERN Document Server

    Wong-Ng, Winnie; Bhattacharya, Raghu

    2016-01-01

    This book reviews the current status of semiconductor materials for conversion of sunlight to electricity, and highlights advances in both basic science and manufacturing.  Photovoltaic (PV) solar electric technology will be a significant contributor to world energy supplies when reliable, efficient PV power products are manufactured in large volumes at low cost.  Expert chapters cover the full range of semiconductor materials for solar-to-electricity conversion, from crystalline silicon and amorphous silicon to cadmium telluride, copper indium gallium sulfide selenides, dye sensitized solar cells, organic solar cells, and environmentally friendly copper zinc tin sulfide selenides. The latest methods for synthesis and characterization of solar cell materials are described, together with techniques for measuring solar cell efficiency. Semiconductor Materials for Solar Photovoltaic Cells presents the current state of the art as well as key details about future strategies to increase the efficiency and reduce ...

  8. Solar photovoltaics in Sri Lanka: a short history

    International Nuclear Information System (INIS)

    Gunaratne, L.

    1994-01-01

    With a significant unelectrified rural population, Sri Lanka has followed the evolution of solar photovoltaic (PV) technology in the West very closely since the 1970s as terrestrial applications for photovoltaics were developed. It was not until 1980 that the Sri Lankan government embarked on the promotion of solar photovoltaics for rural domestic use when the Ceylon Electricity Board formed the Energy Unit. In addition, Australian and Sri Lankan government-funded pilot projects have given the local promoters further valuable insight into how and how not to promote solar photovoltaics. The establishment of community-based solar photovoltaic programmes by non-governmental organizations has developed a novel approach to bridge the gap between this state-of-the-art technology and the remotely located end-users. (author)

  9. Effects of solar photovoltaic technology on the environment in China.

    Science.gov (United States)

    Qi, Liqiang; Zhang, Yajuan

    2017-10-01

    Among the various types of renewable energy, solar photovoltaic has elicited the most attention because of its low pollution, abundant reserve, and endless supply. Solar photovoltaic technology generates both positive and negative effects on the environment. The environmental loss of 0.00666 yuan/kWh from solar photovoltaic technology is lower than that from coal-fired power generation (0.05216 yuan/kWh). The negative effects of solar photovoltaic system production include wastewater and waste gas pollutions, the representatives of which contain fluorine, chromium with wastewater and hydrogen fluoride, and silicon tetrachloride gas. Solar panels are also a source of light pollution. Improper disposal of solar cells that have reached the end of their service life harms the environment through the stench they produce and the damage they cause to the soil. So, the positive and negative effects of green energy photovoltaic power generation technology on the environment should be considered.

  10. Solar Photovoltaic Plant for the 'Eftimie Murgu' University of Resita

    Directory of Open Access Journals (Sweden)

    Cristian Paul Chioncel

    2010-01-01

    Full Text Available The paper presents an application of a solar photovoltaic plant for the 'Eftimie Murgu' University, with an estimation of the yearly medium energy production. The substantiation of the plant designed is based on the many years measurements obtained in the laboratory for monitoring the solar photovoltaic energy of the university and the favorable conditions of promoting the energy production from renewable sources, assured in the new legislation.

  11. Producer responsibility and recycling solar photovoltaic modules

    International Nuclear Information System (INIS)

    McDonald, N.C.; Pearce, J.M.

    2010-01-01

    Rapid expansion of the solar photovoltaic (PV) industry is quickly causing solar to play a growing importance in the energy mix of the world. Over the full life cycle, although to a smaller degree than traditional energy sources, PV also creates solid waste. This paper examines the potential need for PV recycling policies by analyzing existing recycling protocols for the five major types of commercialized PV materials. The amount of recoverable semiconductor material and glass in a 1 m 2 area solar module for the five types of cells is quantified both physically and the profit potential of recycling is determined. The cost of landfill disposal of the whole solar module, including the glass and semiconductor was also determined for each type of solar module. It was found that the economic motivation to recycle most PV modules is unfavorable without appropriate policies. Results are discussed on the need to regulate for appropriate energy and environmental policy in the PV manufacturing industry particularly for PV containing hazardous materials. The results demonstrate the need to encourage producer responsibility not only in the PV manufacturing sector but also in the entire energy industry.

  12. Investigation of solar photovoltaic module power output by various models

    International Nuclear Information System (INIS)

    Jakhrani, A.Q.; Othman, A.K.; Rigit, A.R.H.; Baini, R.

    2012-01-01

    This paper aims to investigate the power output of a solar photovoltaic module by various models and to formulate a suitable model for predicting the performance of solar photovoltaic modules. The model was used to correct the configurations of solar photovoltaic systems for sustainable power supply. Different types of models namely the efficiency, power, fill factor and current-voltage characteristic curve models have been reviewed. It was found that the examined models predicted a 40% yield of the rated power in cloudy weather conditions and up to 80% in clear skies. The models performed well in terms of electrical efficiency in cloudy days if the influence of low irradiance were incorporated. Both analytical and numerical methods were employed in the formulation of improved model which gave +- 2% error when compared with the rated power output of solar photovoltaic module. The proposed model is more practical in terms of number of variables used and acceptable performance in humid atmospheres. Therefore, it could be useful for the estimation of power output of the solar photovoltaic systems in Sarawak region. (author)

  13. Solar photovoltaic water pumping for remote locations

    International Nuclear Information System (INIS)

    Meah, Kala; Fletcher, Steven; Ula, Sadrul

    2008-01-01

    Many parts of the world as well as the western US are rural in nature and consequently do not have electrical distribution lines in many parts of villages, farms, and ranches. Distribution line extension costs can run from USD 10,000 to USD 16,000/km, thereby making availability of electricity to small water pumping projects economically unattractive. But, ground water and sunlight are available, which make solar photovoltaic (SPV) powered water pumping more cost effective in these areas' small scale applications. Many western states including Wyoming are passing through the sixth year of drought with the consequent shortages of water for many applications. The Wyoming State Climatologist is predicting a possible 5-10 years of drought. Drought impacts the surface water right away, while it takes much longer to impact the underground aquifers. To mitigate the effect on the livestock and wildlife, Wyoming Governor Dave Freudenthal initiated a solar water pumping initiative in cooperation with the University of Wyoming, County Conservation Districts, Rural Electric Cooperatives, and ranching organizations. Solar water pumping has several advantages over traditional systems; for example, diesel or propane engines require not only expensive fuels, they also create noise and air pollution in many remote pristine areas. Solar systems are environment friendly, low maintenance, and have no fuel cost. In this paper the design, installation, site selection, and performance monitoring of the solar system for small-scale remote water pumping will be presented. This paper also presents technical, environmental, and economic benefits of the SPV water pumping system compared to stand alone generator and electric utility. (author)

  14. Fault Analysis in Solar Photovoltaic Arrays

    Science.gov (United States)

    Zhao, Ye

    Fault analysis in solar photovoltaic (PV) arrays is a fundamental task to increase reliability, efficiency and safety in PV systems. Conventional fault protection methods usually add fuses or circuit breakers in series with PV components. But these protection devices are only able to clear faults and isolate faulty circuits if they carry a large fault current. However, this research shows that faults in PV arrays may not be cleared by fuses under some fault scenarios, due to the current-limiting nature and non-linear output characteristics of PV arrays. First, this thesis introduces new simulation and analytic models that are suitable for fault analysis in PV arrays. Based on the simulation environment, this thesis studies a variety of typical faults in PV arrays, such as ground faults, line-line faults, and mismatch faults. The effect of a maximum power point tracker on fault current is discussed and shown to, at times, prevent the fault current protection devices to trip. A small-scale experimental PV benchmark system has been developed in Northeastern University to further validate the simulation conclusions. Additionally, this thesis examines two types of unique faults found in a PV array that have not been studied in the literature. One is a fault that occurs under low irradiance condition. The other is a fault evolution in a PV array during night-to-day transition. Our simulation and experimental results show that overcurrent protection devices are unable to clear the fault under "low irradiance" and "night-to-day transition". However, the overcurrent protection devices may work properly when the same PV fault occurs in daylight. As a result, a fault under "low irradiance" and "night-to-day transition" might be hidden in the PV array and become a potential hazard for system efficiency and reliability.

  15. Solar photovoltaics development. Status and perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Fenhann, J.

    1998-09-01

    This is the final report on the status and long-term perspectives for the development of solar photovoltaics, contributing to the Macro Task E1 on production cost for fusion and alternative technologies, part of the programme for Socio-Economic Research on Fusion. After a short introduction about the most promising PV technologies the report concentrates on the present market trends showing that the PV sales has been growing 16% over the last 9 years, 28% over the last 3 years and expanded by 43% last year to a global total of 126.7 MWp 1n 1997. The annual shipment is largest in U.S. with 53 MWp followed by Japan and EU. Until now off-grid installation have dominated the solar PV market, since they are already economically competitive. However, often the financial mechanisms and necessary organisational set-up are missing. At the moment many big PV manufacturers are working to get good successful reference cases in developing countries. But now the on-grid installations in developed countries are beginning to increase. The main growth area in on-grid domestic installations, where there are big programs running in Japan (5000 MWp installed in 2010), U.S. (3000 MWp in 2010) and the Netherlands (1450 MWp in 2020). Looking at the perspectives a continuation of the high growth in solar PV production will continue supported by the United Nations Framework Convention on Climate Change and the Kyoto Protocol. The PV industry has already announced increases in production capacity large enough for a continuation of last year high growth. The report shows status and perspectives for production costs for solar PV until 2050. (au) 13 refs.

  16. Voltage variation due to solar photovoltaic in distribution network

    International Nuclear Information System (INIS)

    Azad, H I; Ramachandaramurthy, V K; Maleki, Hesamaldin

    2013-01-01

    Grid integration of solar photovoltaic (PV) plant offers reduction in greenhouse emissions and independence from fossil fuels for power generation. The integration of such forms of power generation also brings with it a variety of policy and technical issues. One of the technical issues is the variation in grid voltages in the presence of solar photovoltaic (PV) plant, resulting in degradation of power quality. In this paper, the application of a dq current controller to limit the voltage variation at the point of common coupling (PCC) due to a 2 MW solar photovoltaic (PV) plant will be discussed. The controller's goal is to ensure that the voltage variation meets the momentary voltage change limits specified in TNB's Technical Guidebook for the connection of distributed generation. The proposed dq current controller is shown to be able to limit the voltage variation.

  17. 75 FR 61509 - Notice of Issuance of Final Determination Concerning Solar Photovoltaic Panel Systems

    Science.gov (United States)

    2010-10-05

    ... Determination Concerning Solar Photovoltaic Panel Systems AGENCY: U.S. Customs and Border Protection, Department... Procurement; Title III, Trade Agreements Act of 1979; Country of Origin of solar photovoltaic panel system... solar photovoltaic (``PV'') panel systems contain both U.S. and foreign-origin raw materials and...

  18. Realistic generation cost of solar photovoltaic electricity

    International Nuclear Information System (INIS)

    Singh, Parm Pal; Singh, Sukhmeet

    2010-01-01

    Solar photovoltaic (SPV) power plants have long working life with zero fuel cost and negligible maintenance cost but requires huge initial investment. The generation cost of the solar electricity is mainly the cost of financing the initial investment. Therefore, the generation cost of solar electricity in different years depends on the method of returning the loan. Currently levelized cost based on equated payment loan is being used. The static levelized generation cost of solar electricity is compared with the current value of variable generation cost of grid electricity. This improper cost comparison is inhibiting the growth of SPV electricity by creating wrong perception that solar electricity is very expensive. In this paper a new method of loan repayment has been developed resulting in generation cost of SPV electricity that increases with time like that of grid electricity. A generalized capital recovery factor has been developed for graduated payment loan in which capital and interest payment in each installment are calculated by treating each loan installment as an independent loan for the relevant years. Generalized results have been calculated which can be used to determine the cost of SPV electricity for a given system at different places. Results show that for SPV system with specific initial investment of 5.00 cents /kWh/year, loan period of 30 years and loan interest rate of 4% the levelized generation cost of SPV electricity with equated payment loan turns out to be 28.92 cents /kWh, while the corresponding generation cost with graduated payment loan with escalation in annual installment of 8% varies from 9.51 cents /kWh in base year to 88.63 cents /kWh in 30th year. So, in this case, the realistic current generation cost of SPV electricity is 9.51 cents /kWh and not 28.92 cents /kWh. Further, with graduated payment loan, extension in loan period results in sharp decline in cost of SPV electricity in base year. Hence, a policy change is required

  19. Solar photovoltaic power generation system and understanding of green energy

    International Nuclear Information System (INIS)

    Yoo, Chun Sik

    2004-03-01

    This book introduces sunlight generation system and green energy, which includes new and renewable energy such as photovoltaic power generation, solar thermal, wind power, bio energy, waste energy, geothermal energy, ocean energy and fuel cell photovoltaic industry like summary, technology trend, market trend, development strategy of the industry in Korea, and other countries, design of photovoltaic power generation system supporting policy and related business of new and renewable energy.

  20. Performance of solar photovoltaic array fed water pumping system ...

    African Journals Online (AJOL)

    This paper discusses the design and performance analysis of a solar photovoltaic (SPV) array fed water pumping system utilizing a special class of highly rugged machine with simple drive system called switched reluctance motor (SRM) drive. The proposed method of water pumping system also provides the cost effective ...

  1. Comparative Life-Cycle Cost Analysis Of Solar Photovoltaic Power ...

    African Journals Online (AJOL)

    Comparative Life-Cycle Cost Analysis Of Solar Photovoltaic Power System And Diesel Generator System For Remote Residential Application In Nigeria. ... like capital cost, and diesel fuel costs are varied. The results show the photovoltaic system to be more cost-effective at low-power ranges of electrical energy supply.

  2. You're a What? Solar Photovoltaic Installer

    Science.gov (United States)

    Torpey, Elka Maria

    2009-01-01

    This article talks about solar photovoltaic (PV) installer and features Rebekah Hren, a solar PV installer who puts solar panels on roofs and in other sunny places to turn the sun's power into electricity. Hren enjoys promoting renewable energy, in part because it's an emerging field. In solar PV systems, solar cells--devices that convert sunlight…

  3. Diversity in solar photovoltaic energy: Implications for innovation and policy

    NARCIS (Netherlands)

    Subtil Lacerda, J.; van den Bergh, J.C.J.M.

    2016-01-01

    We undertake a qualitative empirical study of the solar photovoltaic (PV) industry in order to investigate the role of diversity in stimulating innovation and diffusion. Based on evolutionary-economic concepts, we identify the main dimensions and components of diversity in the solar PV industry.

  4. Combined solar photovoltaic and hydroelectric pumped storage power plant

    International Nuclear Information System (INIS)

    Gzraryan, R.V.

    2009-01-01

    Combined model of solar photovoltaic and pumped storage stations aimed at power supply for 40 rural houses are considered. The electric circuits of station and their acting regularities are developed and submitted. The both generation curve of photovoltaic station and load curve of electrical customer are considered. The power of hydraulic unit, pumping unit and photovoltaic station are calculated

  5. A 100% renewable electricity generation system for New Zealand utilising hydro, wind, geothermal and biomass resources

    International Nuclear Information System (INIS)

    Mason, I.G.; Page, S.C.; Williamson, A.G.

    2010-01-01

    The New Zealand electricity generation system is dominated by hydro generation at approximately 60% of installed capacity between 2005 and 2007, augmented with approximately 32% fossil-fuelled generation, plus minor contributions from geothermal, wind and biomass resources. In order to explore the potential for a 100% renewable electricity generation system with substantially increased levels of wind penetration, fossil-fuelled electricity production was removed from an historic 3-year data set, and replaced by modelled electricity production from wind, geothermal and additional peaking options. Generation mixes comprising 53-60% hydro, 22-25% wind, 12-14% geothermal, 1% biomass and 0-12% additional peaking generation were found to be feasible on an energy and power basis, whilst maintaining net hydro storage. Wind capacity credits ranged from 47% to 105% depending upon the incorporation of demand management, and the manner of operation of the hydro system. Wind spillage was minimised, however, a degree of residual spillage was considered to be an inevitable part of incorporating non-dispatchable generation into a stand-alone grid system. Load shifting was shown to have considerable advantages over installation of new peaking plant. Application of the approach applied in this research to countries with different energy resource mixes is discussed, and options for further research are outlined.

  6. Indirect solar wind geothermal: Alternative energy sources 4, volume 4

    Science.gov (United States)

    Veziroglu, T. N.

    The utilities are obliged to provide electricity in a reliable and cost effective manner. Some unique problems posed by large scale wind turbines as an electricity source have to be considered. A value model is presented which is based upon the fuel displacement capability and the capacity displacement capability of wind turbines. The amount of fossil fuels which is saved by wind turbines depends on the forecasted wind power output, the actual power output fluctuations of the wind turbines and on system operation. The highly controversial capacity credit of wind turbines is discussed under the aspect of system reliability. It is shown that calculations of the capacity credit should be based upon detailed investigations with regard to the time dependence of the hourly wind power output.

  7. Effects of Solar Photovoltaic Panels on Roof Heat Transfer

    Science.gov (United States)

    Dominguez, A.; Klessl, J.; Samady, M.; Luvall, J. C.

    2010-01-01

    Building Heating, Ventilation and Air Conditioning (HVAC) is a major contributor to urban energy use. In single story buildings with large surface area such as warehouses most of the heat enters through the roof. A rooftop modification that has not been examined experimentally is solar photovoltaic (PV) arrays. In California alone, several GW in residential and commercial rooftop PV are approved or in the planning stages. With the PV solar conversion efficiency ranging from 5-20% and a typical installed PV solar reflectance of 16-27%, 53-79% of the solar energy heats the panel. Most of this heat is then either transferred to the atmosphere or the building underneath. Consequently solar PV has indirect effects on roof heat transfer. The effect of rooftop PV systems on the building roof and indoor energy balance as well as their economic impacts on building HVAC costs have not been investigated. Roof calculator models currently do not account for rooftop modifications such as PV arrays. In this study, we report extensive measurements of a building containing a flush mount and a tilted solar PV array as well as exposed reference roof. Exterior air and surface temperature, wind speed, and solar radiation were measured and thermal infrared (TIR) images of the interior ceiling were taken. We found that in daytime the ceiling surface temperature under the PV arrays was significantly cooler than under the exposed roof. The maximum difference of 2.5 C was observed at around 1800h, close to typical time of peak energy demand. Conversely at night, the ceiling temperature under the PV arrays was warmer, especially for the array mounted flat onto the roof. A one dimensional conductive heat flux model was used to calculate the temperature profile through the roof. The heat flux into the bottom layer was used as an estimate of the heat flux into the building. The mean daytime heat flux (1200-2000 PST) under the exposed roof in the model was 14.0 Watts per square meter larger than

  8. Application of Solar Photovoltaic Water Pumping System in Hainan Agriculture

    Institute of Scientific and Technical Information of China (English)

    Xiangchun; YU; Qingqing; LIN; Xuedong; ZHOU; Zhibin; YANG

    2013-01-01

    With radical socio-economic development and strengthening of regulation of agricultural industrial structure in Hainan Province,fresh water resource becomes increasingly insufficient.Existing water-saving facilities and measures are unable to promote sustainable and stable development of local economy.This needs modern irrigation method.Solar photovoltaic water pumping system is necessary and feasible in Hainan agriculture,and will have directive significance for Hainan Province developing photovoltaic agriculture.

  9. Application of Solar Photovoltaic Water Pumping System in Hainan Agriculture

    OpenAIRE

    Yu, Xiangchun; Lin, Qingqing; Zhou, Xuedong; Yang, Zhibin

    2013-01-01

    With radical socio-economic development and strengthening of regulation of agricultural industrial structure in Hainan Province, fresh water resource becomes increasingly insufficient. Existing water-saving facilities and measures are unable to promote sustainable and stable development of local economy. This needs modern irrigation method. Solar photovoltaic water pumping system is necessary and feasible in Hainan agriculture, and will have directive significance for Hainan Province developi...

  10. Going 'green': trade specialisation dynamics in the solar photovoltaic sector

    International Nuclear Information System (INIS)

    Algieri, Bernardina; Aquino, Antonio; Succurro, Marianna

    2011-01-01

    The present study aims at providing a comprehensive analysis of trade flows and the domestic value creation of the major solar photovoltaic industry at the world level. Solar technologies convert light and heat from the sun into useful energy. The use of the sun's energy can not only reduce the consumption of conventional fuels, thus reducing the emission of detrimental greenhouse gases, but it can also enable a gain in enhanced fuel and energy security along with lessening costs. In addition, green technologies and industries can promote economic growth and international competitiveness, and can offer new business and employment opportunities. It becomes, therefore, extremely important to deeply explore the dynamics of the solar photovoltaic sector. Specifically, the present work analyses the main global trends of this sector and sketches the key players on the world market, including producers, installers, and top traders. Based on an analysis of trade flows at the 6-digit level, the international specialisation patterns are investigated, and the role of various market and trade drivers, including subsidies in the uptake of solar technologies, is identified and examined. - Highlights: → Trade specialisation in solar photovoltaics is examined using an index analysis. → Trade of the US, UK and Germany has an intra-industry nature. → Trade of Italy, Greece and Japan is more inter-industry oriented. → There is a long-run relationship between PV exports, foreign income and prices.

  11. Geothermal Power Growth 1995–2013—A Comparison with Other Renewables

    Directory of Open Access Journals (Sweden)

    Ladislaus Rybach

    2014-07-01

    Full Text Available Based on global statistical data the current status of deep geothermal resource utilization for electricity generation is presented. Particular attention is paid to growth rates. The rates are compared with those of other renewable energies (biomass, hydro, solar photovoltaic (PV, wind. Whereas wind and solar PV exhibit annual growth rates of 25%–30% since 2004, geothermal growth is only about 5% per year. Geothermal electricity production (in TW∙h/yr was higher until 2011 than from solar PV, but is now clearly falling behind. So far the global geothermal electricity generation is provided nearly entirely by hydrothermal resources, which exist only under specific geologic conditions. Further development (=increasing production capacity based on this resource type alone will therefore hardly accelerate to two-digit (>10% per year growth rates. Faster growth can only be achieved by using the ubiquitous petrothermal resources, provided that the key problem will be solved: establishing a universally applicable technology. This would enable to create, at any requested site, feasible and efficient deep heat exchangers for enhanced geothermal systems (EGS power plants—irrespective of the local subsurface conditions. Goals and challenges of this technology are addressed.

  12. Future wind deployment scenarios for South Africa

    CSIR Research Space (South Africa)

    Wright, Jarrad G

    2017-11-01

    Full Text Available understood wind (and solar) resource in South Africa combined with large geographical land-area and technology cost reductions globally and domestically for wind and solar photovoltaics (PV) has made these technologies more than competitive with alternatives...

  13. A renewable energy scenario for Aalborg Municipality based on low-temperature geothermal heat, wind power and biomass

    DEFF Research Database (Denmark)

    Østergaard, Poul Alberg; Mathiesen, Brian Vad; Möller, Bernd

    2010-01-01

    Aalborg Municipality, Denmark, wishes to investigate the possibilities of becoming independent of fossil fuels. This article describes a scenario for supplying Aalborg Municipality’s energy needs through a combination of low-temperature geothermal heat, wind power and biomass. Of particular focus...... in the scenario is how low-temperature geothermal heat may be utilised in district heating (DH) systems. The analyses show that it is possible to cover Aalborg Municipality’s energy needs through the use of locally available sources in combination with significant electricity savings, heat savings, reductions...... in industrial fuel use and savings and fuel-substitutions in the transport sector. With biomass resources being finite, the two marginal energy resources in Aalborg are geothermal heat and wind power. If geothermal heat is utilised more, wind power may be limited and vice versa. The system still relies...

  14. Integration of Solar Photovoltaics and Electric Vehicles in Residential Grids

    DEFF Research Database (Denmark)

    Pillai, Jayakrishnan Radhakrishna; Huang, Shaojun; Bak-Jensen, Birgitte

    2013-01-01

    In the last few years, there is an increased penetration of solar photovoltaic (SPV) units in low voltage (LV) distribution grids. Also electric vehicles (EVs) are introduced to these LV networks. This has caused the distribution networks to be more active and complex as these local generation...... and load units are characterised by unpredictable and diverse operating characteristics. This paper analyses the combined effect of SPVs and EVs in LV Danish residential grids. The EVs charging needs based on typical driving patterns of passenger cars and SPV power profiles during winter/summer days...

  15. The Market Value and Cost of Solar Photovoltaic Electricity Production

    OpenAIRE

    Borenstein, Severin

    2008-01-01

    The high cost of power from solar photovoltaic (PV) panels has been a major deterrent to the technology’s market penetration. Proponents have argued, however, that typical analyses overlook many of the benefits of solar PV. Some of those benefits are in the realm of environmental and security externalities, but others occur within the electricity markets. In this paper, I attempt to do a more complete market valuation of solar PV. I incorporate the fact that power from solar PV panels is gene...

  16. The Redox Flow System for solar photovoltaic energy storage

    Science.gov (United States)

    Odonnell, P.; Gahn, R. F.; Pfeiffer, W.

    1976-01-01

    The interfacing of a Solar Photovoltaic System and a Redox Flow System for storage was workable. The Redox Flow System, which utilizes the oxidation-reduction capability of two redox couples, in this case iron and titanium, for its storage capacity, gave a relatively constant output regardless of solar activity so that a load could be run continually day and night utilizing the sun's energy. One portion of the system was connected to a bank of solar cells to electrochemically charge the solutions, while a separate part of the system was used to electrochemically discharge the stored energy.

  17. Performance characteristics of solar-photovoltaic flywheel-storage systems

    Science.gov (United States)

    Jarvinen, P. O.; Brench, B. L.; Rasmussen, N. E.

    A solar photovoltaic energy flywheel storage and conversion system for residential applications was tested. Performance and efficiency measurements were conducted on the system, which utilizes low loss magnetic bearings, maximum power point tracking of the photovoltaic array, integrated permanent magnet motor generator, and output power conditioning sections of either the stand alone cycloconverter or utility interactive inverter type. The overall in/out electrical storage efficiency of the flywheel system was measured along with the power transfer efficiencies of the individual components and the system spin down tare losses. The system compares favorably with systems which use batteries and inverters.

  18. Production of solar photovoltaic cells on the Moon

    Science.gov (United States)

    Criswell, David R.; Ignatiev, Alex

    1991-01-01

    Solar energy is directly available on the sunward lunar surface. Most, if not all, the materials are available on the Moon to make silicon based solar photovoltaic cells. A few additional types are possible. There is a small but growing literature on production of lunar derived solar cells. This literature is reviewed. Topics explored include trade-offs of local production versus import of key materials, processing options, the scale and nature of production equipment, implications of storage requirements, and the end-uses of the energy. Directions for future research and demonstrations are indicated.

  19. Competing in the Global Solar Photovoltaic Industry: The Case of Taiwan

    Directory of Open Access Journals (Sweden)

    Yu-Shan Su

    2013-01-01

    Full Text Available The top five solar cell supply countries in the world in sequential order are China, Taiwan, the United States of America, Japan, and Germany. The capacity of Taiwanese solar cell production is ranked top two in the globe. The competitive advantage of the Taiwanese electronics firms has facilitated the rapid developments to its solar photovoltaic industry. The Taiwanese solar photovoltaic industry possesses a large size and a complete value chain of upstream, midstream, and downstream sectors. In this study, I analyzed the trends and developments of the solar photovoltaic industry in Taiwan and in the globe. And I also investigated the positioning and competitive advantage of Taiwanese firms in the value chain of the global solar photovoltaic industry. I found that Taiwanese firms continue to have an important and indispensable role in the global solar photovoltaic industry by either differentiation or cost advantage.

  20. Wind versus Biofuels for Addressing Climate, Health, and Energy

    International Nuclear Information System (INIS)

    Jacobson, Mark Z.

    2007-01-01

    The favored approach today for addressing global warming is to promote a variety of options: biofuels, wind, solar thermal, solar photovoltaic, geothermal, hydroelectric, and nuclear energy and to improve efficiency. However, by far, most emphasis has been on biofuels. It is shown here, though, that current-technology biofuels cannot address global warming and may slightly increase death and illness due to ozone-related air pollution. Future biofuels may theoretically slow global warming, but only temporarily and with the cost of increased air pollution mortality. In both cases, the land required renders biofuels an impractical solution. Recent measurements and statistical analyses of U.S. and world wind power carried out at Stanford University suggest that wind combined with other options can substantially address global warming, air pollution mortality, and energy needs simultaneously.

  1. SOLAR PHOTOVOLTAIC OUTPUT POWER FORECASTING USING BACK PROPAGATION NEURAL NETWORK

    Directory of Open Access Journals (Sweden)

    B. Jency Paulin

    2016-01-01

    Full Text Available Solar Energy is an important renewable and unlimited source of energy. Solar photovoltaic power forecasting, is an estimation of the expected power production, that help the grid operators to better manage the electric balance between power demand and supply. Neural network is a computational model that can predict new outcomes from past trends. The artificial neural network is used for photovoltaic plant energy forecasting. The output power for solar photovoltaic cell is predicted on hourly basis. In historical dataset collection process, two dataset was collected and used for analysis. The dataset was provided with three independent attributes and one dependent attributes. The implementation of Artificial Neural Network structure is done by Multilayer Perceptron (MLP and training procedure for neural network is done by error Back Propagation (BP. In order to train and test the neural network, the datasets are divided in the ratio 70:30. The accuracy of prediction can be done by using various error measurement criteria and the performance of neural network is to be noted.

  2. Solar Photovoltaic DC Systems: Basics and Safety: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    McNutt, Peter F [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sekulic, William R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Dreifuerst, Gary [Lawrence Livermore National Laboratory - retired

    2018-04-02

    Solar Photovoltaic (PV) systems are common and growing with 42.4 GW installed capacity in U.S. (almost 15 GW added in 2016). This paper will help electrical workers, and emergency responders understand the basic operating principles and hazards of PV DC arrays. We briefly discuss the following aspects of solar photovoltaic (PV) DC systems: the effects of solar radiation and temperature on output power; PV module testing standards; common system configurations; a simple PV array sizing example; NEC guidelines and other safety features; DC array commissioning, periodic maintenance and testing; arc-flash hazard potential; how electrical workers and emergency responders can and do work safely around PV arrays; do moonlight and artificial lighting pose a real danger; typical safe operating procedures; and other potential DC-system hazards to be aware of. We also present some statistics on PV DC array electrical incidents and injuries. Safe PV array operation is possible with a good understanding of PV DC arrays basics and having good safe operating procedures in place.

  3. Solar photovoltaic (PV) energy; latest developments in the building integrated and hybrid PV systems

    International Nuclear Information System (INIS)

    Zahedi, A.

    2006-01-01

    Environmental concerns are growing and interest in environmental issues is increasing and the idea of generating electricity with less pollution is becoming more and more attractive. Unlike conventional generation systems, fuel of the solar photovoltaic energy is available at no cost. And solar photovoltaic energy systems generate electricity pollution-free and can easily be installed on the roof of residential as well as on the wall of commercial buildings as grid-connected PV application. In addition to grid-connected rooftop PV systems, solar photovoltaic energy offers a solution for supplying electricity to remote located communities and facilities, those not accessible by electricity companies. The interest in solar photovoltaic energy is growing worldwide. Today, more than 3500MW of photovoltaic systems have been installed all over the world. Since 1970, the PV price has continuously dropped [8]. This price drop has encouraged worldwide application of small-scale residential PV systems. These recent developments have led researchers concerned with the environment to undertake extensive research projects for harnessing renewable energy sources including solar energy. The usage of solar photovoltaic as a source of energy is considered more seriously making future of this technology looks promising. The objective of this contribution is to present the latest developments in the area of solar photovoltaic energy systems. A further objective of this contribution is to discuss the long-term prospect of the solar photovoltaic energy as a sustainable energy supply. [Author

  4. Wind power integration in Aalborg Municipality using compression heat pumps and geothermal absorption heat pumps

    DEFF Research Database (Denmark)

    Østergaard, Poul Alberg

    2013-01-01

    -temperature geothermal resources. The analyses have also demonstrated that the municipality will still rely heavily on surrounding areas for electric load balancing assistance. With a departure in a previously elaborated 100% renewable energy scenario, this article investigates how absorption heat pumps (AHP......Aalborg Municipality, Denmark is investigating ways of switching to 100% renewable energy supply over the next 40 years. Analyses so far have demonstrated a potential for such a transition through energy savings, district heating (DH) and the use of locally available biomass, wind power and low......) and compression heat pumps (HP) for the supply of DH impact the integration of wind power. Hourly scenario-analyses made using the EnergyPLAN model reveal a boiler production and electricity excess which is higher with AHPs than with HPs whereas condensing mode power generation is increased by the application...

  5. The value of price transparency in residential solar photovoltaic markets

    Energy Technology Data Exchange (ETDEWEB)

    O’Shaughnessy, Eric; Margolis, Robert

    2018-06-01

    Installed prices for residential solar photovoltaic (PV) systems have declined significantly in recent years. However price dispersion and limited customer access to PV quotes prevents some prospective customers from obtaining low price offers. This study shows that improved customer access to prices - also known as price transparency - is a potential policy lever for further PV price reductions. We use customer search and strategic pricing theory to show that PV installation companies face incentives to offer lower prices in markets with more price transparency. We test this theoretical framework using a unique residential PV quote dataset. Our results show that installers offer lower prices to customers that are expected to receive more quotes. Our study provides a rationale for policies to improve price transparency in residential PV markets.

  6. Solar photovoltaic projects in the mainstream power market

    CERN Document Server

    Wolfe, Philip

    2012-01-01

    Develop large-scale solar photovoltaic projects with this book, to feed power into a grid. Contains case studies of the Waldpolenz Energy Park, Germany, Lopburi Solar Plant in Thailand and what will be the world's largest PV plant, the Topaz Solar Farm in California. Also included are interviews from leading figures in the PV industry.Contents cover:planning and structuring projectssiting, planning and connection issuesbuilding and operating projectstechnology basicseconomies of PVhistory and business of PVfinancing and regulationtechnical aspects of system design.Supported by figures and photographs, this is for anyone wanting to master the commercial, professional, financial, engineering or political aspects of developing mega-watt solar PV projects in a mainstream power market.

  7. Distributed Solar Photovoltaic Power Production - Technology and Benefits

    Energy Technology Data Exchange (ETDEWEB)

    Matos, Al [PSE& G; Stuby, Rick [Petra Solar

    2011-11-02

    As part of its nationally recognized Solar 4 All program, PSE&G has partnered with Petra Solar to deploy the world’s first and largest pole attached solar project. The project, based on Petra Solar’s distributed Smart Solar solution, will create a 40 megawatt solar “virtual power plant.” In deployment as 200,000 individual grid-connected solar power producers on utility poles in PSE&G territory, Petra Solar SunWave® solutions leverage Smart Grid communications and high-tech panel-level inverters to implement a robust system with many technical benefits over traditional solar photovoltaic solutions. The program overview, deployment model, smart grid communications and enabling inverter technology and safety features will be presented, as well the future challenges of, and solutions for, solar power intermittency as photovoltaic penetration on the electric grid increases.

  8. Energy analysis of solar photovoltaic module production in India

    International Nuclear Information System (INIS)

    Prakash, R.; Bansal, N.K.

    1995-01-01

    The objective of this article is to evaluate the energy consumption in solar photovoltaic (SPV) module production in India and examine its implications for large-scale introduction of SPV plants in the country. Data on energy used in SPV production were collected from existing manufacturing facilities in the country. The energy payback period turns out to be approximately 4 years. This is comparable to energy payback periods of similar modules produced internationally. However, if an ambitious program of introducing SPV power production is undertaken to contribute substantially to the power scenario in the country, an annual growth rate beyond 21% will render the program an energy sink rather than an energy source, as borne out by dynamic energy analysis. Policy implications are also discussed in light of this analysis

  9. Solar and Wind Site Screening Decision Trees

    Science.gov (United States)

    EPA and NREL created a decision tree to guide state and local governments and other stakeholders through a process for screening sites for their suitability for future redevelopment with solar photovoltaic (PV) energy and wind energy.

  10. Competing in the Global Solar Photovoltaic Industry: The Case of Taiwan

    OpenAIRE

    Yu-Shan Su

    2013-01-01

    The top five solar cell supply countries in the world in sequential order are China, Taiwan, the United States of America, Japan, and Germany. The capacity of Taiwanese solar cell production is ranked top two in the globe. The competitive advantage of the Taiwanese electronics firms has facilitated the rapid developments to its solar photovoltaic industry. The Taiwanese solar photovoltaic industry possesses a large size and a complete value chain of upstream, midstream, and downstream sectors...

  11. Status of geothermal energy amongst the world's energy sources

    International Nuclear Information System (INIS)

    Fridleifsson, I.B.

    2003-01-01

    The world primary energy consumption is about 400 EJ/year, mostly provided by fossil fuels (80%), The renewables collectively provide 14% of the primary energy, in the form of traditional biomass (10%), large (>10 MW) hydropower stations (2%), and the ''new renewables''(2%). Nuclear energy provides 6%. The World Energy Council expects the world primary energy consumption to have grown by 50-275% in 2050, depending on different scenarios. The renewable energy sources are expected to provide 20-40% of the primary energy in 2050 and 30-80% in 2100. The technical potential of the renewables is estimated at 7600 EJ/year, and thus certainly sufficiently large to meet future world energy requirements. Of the total electricity production from renewables of 2826 TWh in 1998, 92% came from hydropower, 5.5% from biomass, 1.6% from geothermal and 0.6% from wind. Solar electricity contributed 0.05% and tidal 0.02%. The electricity cost is 2-10 UScents/kWh for geothermal and hydro, 5-13 UScents/kWh for wind, 5-15 UScents/kWh for biomass, 25-125 UScents/kWh for solar photovoltaic and 12-18 UScents/kWh for solar thermal electricity. Biomass constitutes 93% of the total direct heat production from renewables, geothermal 5%, and solar heating 2%. Heat production from renewables is commercially competitive with conventional energy sources. Direct heat from biomass costs 1-5 UScents/kWh, geothermal 0.5-5 UScents/kWh, and solar heating 3-20 UScents/kWh. (author)

  12. Innovative approach for achieving of sustainable urban water supply system by using of solar photovoltaic energy

    Directory of Open Access Journals (Sweden)

    Jure Margeta

    2017-01-01

    Full Text Available Paper describes and analyses new and innovative concept for possible integration of solar photovoltaic (PV energy in urban water supply system (UWSS. Proposed system consists of PV generator and invertor, pump station and water reservoir. System is sized in such a manner that every his part is sized separately and after this integrated into a whole. This integration is desirable for several reasons, where the most important is the achievement of the objectives of sustainable living in urban areas i.e. achieving of sustainable urban water supply system. The biggest technological challenge associated with the use of solar, wind and other intermittent renewable energy sources RES is the realization of economically and environmentally friendly electric energy storage (EES. The paper elaborates the use of water reservoires in UWSS as EES. The proposed solution is still more expensive than the traditional and is economically acceptable today in the cases of isolated urban water system and special situations. Wider application will depend on the future trends of energy prices, construction costs of PV generators and needs for CO2 reduction by urban water infrastructure.

  13. Modeling of a solar photovoltaic water pumping system under the influence of panel cooling

    Directory of Open Access Journals (Sweden)

    Chinathambi Gopal

    2017-01-01

    Full Text Available In this paper, the performance of a solar photovoltaic water pumping system was improved by maintaining the cell temperature in the range between 30°C and 40°C. Experiments have been conducted on a laboratory experimental set-up installed with 6.4 m2 solar panel (by providing air cooling either on the top surface or over the beneath surface of the panel to operate a centrifugal pump with a rated capacity of 0.5 HP. The performance characteristics of the photovoltaic panel (such as, cell temperature, photovoltaic panel output, and photovoltaic efficiency, pump performance characteristics (such as pump efficiency and discharge, and system performance characteristics are observed with reference to solar irradiation, ambient temperature and wind velocity. A thermal model has been developed to predict the variations of photovoltaic cell temperature based on the measured glass and tedlar temperatures. The influences of cell temperature and solar irradiation on the performance of the system are described. The results concluded that cooling of photovoltaic panel on beneath surface has maintained the cell temperature in the range between 30°C and 40°C and improved the overall efficiency by about 1.8% when compared to the system without panel cooling.

  14. Modelling of auctioning mechanism for solar photovoltaic capacity

    Science.gov (United States)

    Poullikkas, Andreas

    2016-10-01

    In this work, a modified optimisation model for the integration of renewable energy sources for power-generation (RES-E) technologies in power-generation systems on a unit commitment basis is developed. The purpose of the modified optimisation procedure is to account for RES-E capacity auctions for different solar photovoltaic (PV) capacity electricity prices. The optimisation model developed uses a genetic algorithm (GA) technique for the calculation of the required RES-E levy (or green tax) in the electricity bills. Also, the procedure enables the estimation of the level of the adequate (or eligible) feed-in-tariff to be offered to future RES-E systems, which do not participate in the capacity auctioning procedure. In order to demonstrate the applicability of the optimisation procedure developed the case of PV capacity auctioning for commercial systems is examined. The results indicated that the required green tax, in order to promote the use of RES-E technologies, which is charged to the electricity customers through their electricity bills, is reduced with the reduction in the final auctioning price. This has a significant effect related to the reduction of electricity bills.

  15. Synchrotron X-ray imaging applied to solar photovoltaic silicon

    International Nuclear Information System (INIS)

    Lafford, T A; Villanova, J; Plassat, N; Dubois, S; Camel, D

    2013-01-01

    Photovoltaic (PV) cell performance is dictated by the material of the cell, its quality and purity, the type, quantity, size and distribution of defects, as well as surface treatments, deposited layers and contacts. A synchrotron offers unique opportunities for a variety of complementary X-ray techniques, given the brilliance, spectrum, energy tunability and potential for (sub-) micron-sized beams. Material properties are revealed within in the bulk and at surfaces and interfaces. X-ray Diffraction Imaging (X-ray Topography), Rocking Curve Imaging and Section Topography reveal defects such as dislocations, inclusions, misorientations and strain in the bulk and at surfaces. Simultaneous measurement of micro-X-Ray Fluorescence (μ-XRF) and micro-X-ray Beam Induced Current (μ-XBIC) gives direct correlation between impurities and PV performance. Together with techniques such as microscopy and Light Beam Induced Current (LBIC) measurements, the correlation between structural properties and photovoltaic performance can be deduced, as well as the relative influence of parameters such as defect type, size, spatial distribution and density (e.g [1]). Measurements may be applied at different stages of solar cell processing in order to follow the evolution of the material and its properties through the manufacturing process. Various grades of silicon are under study, including electronic and metallurgical grades in mono-crystalline, multi-crystalline and mono-like forms. This paper aims to introduce synchrotron imaging to non-specialists, giving example results on selected solar photovoltaic silicon samples.

  16. Performance evaluation of solar photovoltaic panel driven refrigeration system

    Science.gov (United States)

    Rajoria, C. S.; Singh, Dharmendra; Gupta, Pankaj Kumar

    2018-03-01

    The solar photovoltaic (PV) panel driven refrigeration system employs solar PV panel and play a vital role when combined with storage batteries. The variation in performance of solar PV panel driven refrigeration system has been experimentally investigated in this paper. The change in battery voltage is analyzed with respect to panel size. Different series and parallel combinations have been applied on four solar PV panels of 35W each to get 24V. With the above combination a current in the range of 3-5 ampere has been obtained depending upon the solar intensity. A refrigerator of 110 W and 50 liters is used in the present investigation which requires 0.80 ampere AC at 230 V. The required current and voltage has been obtained from an inverter which draws about 7 ampere DC from the battery bank at 24V. The compressor of the refrigerator consumed 110W which required a PV panel size of 176 W approximately. It is important to note that the compressor consumed about 300W for first 50 milliseconds, 130 W for next five seconds and gradually comes to 110 W in 65 seconds. Thus panel size should be such that it may compensate for the initial load requirement.

  17. Public acceptance of residential solar photovoltaic technology in Malaysia

    Directory of Open Access Journals (Sweden)

    Salman Ahmad

    2017-11-01

    Full Text Available Purpose – Gaining independence from fossil fuels and combating climate change are the main factors to increase the generation of electricity from renewable fuels. Amongst the renewable technologies, solar photovoltaic (PV is believed to have the largest potential. However, the number of people adopting solar PV technologies is still relatively low. Therefore, the purpose of this paper is to examine the household consumers’ acceptance of solar PV technology being installed on their premises. Design/methodology/approach – To examine the solar PV technology acceptance, this study uses technology acceptance model (TAM as a reference framework. A survey was conducted to gather data and to validate the research model. Out of 780 questionnaires distributed across Malaysia, 663 were returned and validated. Findings – The analysis revealed that perceived ease of use, perceived usefulness and attitude to use significantly influenced behavioural intention to use solar PV technology. Research limitations/implications – This study contributes by extending the understanding of public inclination towards the adoption of solar PV technology. Also, this study contributes in identifying the areas which need to be examined further. However, collecting data from urban peninsular Malaysian respondents only limits the generalization of the results. Practical implications – On the policy front, this study reveals that governmental support is needed to trigger PV acceptance. Originality/value – This paper uses TAM to analyse the uptake of solar PV technology in Malaysian context.

  18. Assessment of high penetration of solar photovoltaics in Wisconsin

    International Nuclear Information System (INIS)

    Myers, Kevin S.; Klein, Sanford A.; Reindl, Douglas T.

    2010-01-01

    This paper provides an assessment of the large-scale implementation of distributed solar photovoltaics in Wisconsin with regard to its interaction with the utility grid, economics of varying levels of high penetration, and displaced emissions. These assessment factors are quantified using simulations with measured hourly solar radiation and weather data from the National Solar Radiation Database as primary inputs. Hourly utility load data for each electric utility in Wisconsin for a complete year were used in combination with the simulated PV output to quantify the impacts of high penetration of distributed PV on the aggregate Wisconsin electric utility load. As the penetration rate of distributed PV systems increases, both economic and environmental benefits experience diminishing returns. At penetration rates exceeding 15-20% of the aggregate utility load peak, less of the PV-energy is utilized and the contribution of the aggregate electricity generated from PV approaches a practical limit. The limit is not affected by costs, but rather by the time-distribution of available solar radiation and mismatch with the coincidence of aggregate utility electrical loads. The unsubsidized levelized cost of electricity from PV is more than four times greater than the current market price for electricity, based on time-of-use rates, in Wisconsin. At the present time, the investment in solar PV as a cost-effective means to reduce emissions from traditional electricity generation sources is not justified. (author)

  19. A sunny future: expert elicitation of China's solar photovoltaic technologies

    Science.gov (United States)

    Lam, Long T.; Branstetter, Lee; Azevedo, Inês L.

    2018-03-01

    China has emerged as the global manufacturing center for solar photovoltaic (PV) products. Chinese firms have entered all stages of the supply chain, producing most of the installed solar modules around the world. Meanwhile, production costs are at record lows. The decisions that Chinese solar producers make today will influence the path for the solar industry and its role towards de-carbonization of global energy systems in the years to come. However, to date, there have been no assessments of the future costs and efficiency of solar PV systems produced by the Chinese PV industry. We perform an expert elicitation to assess the technological and non-technological factors that led to the success of China’s silicon PV industry as well as likely future costs and performance. Experts evaluated key metrics such as efficiency, costs, and commercial viability of 17 silicon and non-silicon solar PV technologies by 2030. Silicon-based technologies will continue to be the mainstream product for large-scale electricity generation application in the near future, with module efficiency reaching as high as 23% and production cost as low as 0.24/W. The levelized cost of electricity for solar will be around 34/MWh, allowing solar PV to be competitive with traditional energy resources like coal. The industry’s future developments may be affected by overinvestment, overcapacity, and singular short-term focus.

  20. Profitability of Residential Battery Energy Storage Combined with Solar Photovoltaics

    Directory of Open Access Journals (Sweden)

    Christoph Goebel

    2017-07-01

    Full Text Available Lithium-ion (Li-Ion batteries are increasingly being considered as bulk energy storage in grid applications. One such application is residential energy storage combined with solar photovoltaic (PV panels to enable higher self-consumption rates, which has become financially more attractive recently due to decreasing feed-in subsidies. Although residential energy storage solutions are commercially mature, it remains unclear which system configurations and circumstances, including aggregator-based applications such as the provision of ancillary services, lead to profitable consumer investments. Therefore, we conduct an extensive simulation study that is able to jointly capture these aspects. Our results show that, at current battery module prices, even optimal system configurations still do not lead to profitable investments into Li-Ion batteries if they are merely used as a buffer for solar energy. The first settings in which they will become profitable, as prices are further declining, will be larger households at locations with higher average levels of solar irradiance. If the batteries can be remote-controlled by an aggregator to provide overnight negative reserve, their profitability increases significantly.

  1. Maximum power point tracking of partially shaded solar photovoltaic arrays

    Energy Technology Data Exchange (ETDEWEB)

    Roy Chowdhury, Shubhajit; Saha, Hiranmay [IC Design and Fabrication Centre, Department of Electronics and Telecommunication Engineering, Jadavpur University (India)

    2010-09-15

    The paper presents the simulation and hardware implementation of maximum power point (MPP) tracking of a partially shaded solar photovoltaic (PV) array using a variant of Particle Swarm Optimization known as Adaptive Perceptive Particle Swarm Optimization (APPSO). Under partially shaded conditions, the photovoltaic (PV) array characteristics get more complex with multiple maxima in the power-voltage characteristic. The paper presents an algorithmic technique to accurately track the maximum power point (MPP) of a PV array using an APPSO. The APPSO algorithm has also been validated in the current work. The proposed technique uses only one pair of sensors to control multiple PV arrays. This result in lower cost and higher accuracy of 97.7% compared to earlier obtained accuracy of 96.41% using Particle Swarm Optimization. The proposed tracking technique has been mapped onto a MSP430FG4618 microcontroller for tracking and control purposes. The whole system based on the proposed has been realized on a standard two stage power electronic system configuration. (author)

  2. Technical Appraisal Of Solar Photovoltaic Pumping In Nigeria

    International Nuclear Information System (INIS)

    Okonta, A.D; Akinwumi, I.O; Siyanbola, W.O.

    2004-01-01

    Water is essential for life and its portability ensures good health for users. In rural communities of developing countries, solar photovoltaic water pumping (PVP) is becoming a reliable and cost-effective alternative to conventional method off providing potable water from boreholes and deep wells. This paper has reported the outcome of a technical appraisal carried out in Nigeria. It involved an inventorization exercise, administration of questionnaires, physical inspection of some system sites and personal interaction with contractors, government officials and beneficiaries of such system. the data were analysed using graphical displays, the Statistical Package for Social Sciences (SPSS 10.0) and student t-test statistic. During the fifteen years period (1988 to 2003) covered by the study, it was found that a total of about 600 PVP systems wee installed in Nigeria; 96.2 percent by the government and its agencies and 3.8 percent by the Government Organizations. The mean number of modules per systems was found to be 24, the mean array power is 1564 Wp and the mean borehole depth is 51.3m. The average number of people a system is designed for is 1750. the factor found to be responsible for poor system performance include the usage of low quality component parts, poor system design, low borehole yield and poor construction/installation work. It is recommended that for the sustainable development and dissemination of this technology, pilot projects must be installed in different geographical locations of county. These must be intensively monitored in terms of system and component performance efficiencies and data bank be established to provide information of further research and development

  3. Securitization of residential solar photovoltaic assets: Costs, risks and uncertainty

    International Nuclear Information System (INIS)

    Alafita, T.; Pearce, J.M.

    2014-01-01

    Limited access to low-cost financing is an impediment to high-velocity technological diffusion and high grid penetration of solar photovoltaic (PV) technology. Securitization of solar assets provides a potential solution to this problem. This paper assesses the viability of solar asset-backed securities (ABS) as a lower cost financing mechanism and identifies policies that could facilitate implementation of securitization. First, traditional solar financing is examined to provide a baseline for cost comparisons. Next, the securitization process is modeled. The model enables identification of several junctures at which risk and uncertainty influence costs. Next, parameter values are assigned and used to generate cost estimates. Results show that, under reasonable assumptions, securitization of solar power purchase agreements (PPA) can significantly reduce project financing costs, suggesting that securitization is a viable mechanism for improving the financing of PV projects. The clear impediment to the successful launch of a solar ABS is measuring and understanding the riskiness of underlying assets. This study identifies three classes of policy intervention that lower the cost of ABS by reducing risk or by improving the measurement of risk: (i) standardization of contracts and the contracting process, (ii) improved access to contract and equipment performance data, and (iii) geographic diversification. - Highlights: • Limited access to low-cost financing is hampering penetration of solar PV. • Solar asset-backed securities (ABS) provide a low cost financing mechanism. • Results for securitization of solar leases and power purchase agreements (PPA). • Securitization can significantly reduce project financing costs. • Identifies policy intervention that lower cost of ABS by reducing risk

  4. Implementation Plan for the Hawaii Geothermal Project Environmental Impact Statement (DOE Review Draft:)

    Energy Technology Data Exchange (ETDEWEB)

    None

    1992-09-18

    The US Department of Energy (DOE) is preparing an Environmental Impact Statement (EIS) that identifies and evaluates the environmental impacts associated with the proposed Hawaii Geothermal Project (HGP), as defined by the State of Hawaii in its 1990 proposal to Congress (DBED 1990). The location of the proposed project is shown in Figure 1.1. The EIS is being prepared pursuant to the requirements of the National Environmental Policy Act of 1969 (NEPA), as implemented by the President's Council on Environmental Quality (CEQ) regulations (40 CFR Parts 1500-1508) and the DOE NEPA Implementing Procedures (10 CFR 1021), effective May 26, 1992. The State's proposal for the four-phase HGP consists of (1) exploration and testing of the geothermal resource beneath the slopes of the active Kilauea volcano on the Island of Hawaii (Big Island), (2) demonstration of deep-water power cable technology in the Alenuihaha Channel between the Big Island and Mau, (3) verification and characterization of the geothermal resource on the Big Island, and (4) construction and operation of commercial geothermal power production facilities on the Big Island, with overland and submarine transmission of electricity from the Big Island to Oahu and possibly other islands. DOE prepared appropriate NEPA documentation for separate federal actions related to Phase 1 and 2 research projects, which have been completed. This EIS will consider Phases 3 and 4, as well as reasonable alternatives to the HGP. Such alternatives include biomass coal, solar photovoltaic, wind energy, and construction and operation of commercial geothermal power production facilities on the Island of Hawaii (for exclusive use on the Big Island). In addition, the EIs will consider the reasonable alternatives among submarine cable technologies, geothermal extraction, production, and power generating technologies; pollution control technologies; overland and submarine power transmission routes; sites reasonably suited to

  5. Financing and regulation for the new and renewable energy sources: the geothermal case

    International Nuclear Information System (INIS)

    Coviello, M.

    1998-01-01

    The development and rational utilization of energy sources promotes economic growth and alleviates the environmental worries. Within the first frame, the use of new and renewable energy sources - wind, solar, photovoltaic, biomass, small hydroelectrical and geothermal - progressively reaches the highest priority in the context of the energy reforms that have been undertaken in the countries of the region. Among renewable energies, besides those of the hydraulic origin, geothermal is the one with the highest grade of safety as was demonstrated by its technical and economical reliability. If the estimation that the geothermal electricity potential of the Latin American region will reach more than 6000 MWe is correct, this is only indicative of its nature. The enormous financial resources of the Andean geothermal systems have to this date been ignored, while in Central America there exits a large number of financial resources still untouched. The rationale and the problems connected with this that remain - in all of Latin America, with the exception of Mexico - are of different natures. Most importantly, in first place, the economical difficulties; in effect, the fault of the ad-hoc economic initiatives have very much obstructed the sustained geothermal development and support. Other relevant obstacles for the use of this type of resource have been the lacking of specific and reliable legal aspects. Last but not least, the financial obstacles of the projects, under private or mixed schemes, should be emphasized. Because of the crucial role that these problems are asked to play in the implementation and development of geothermal projects in Latin America, it has been decided to prepare this document which is a part of the global view about the subject (making comparisons with experiences of other countries), and tries to identify possible solutions for the future

  6. Workforce challenges and opportunities in the solar photovoltaic industry in Toronto

    International Nuclear Information System (INIS)

    Saneinejad, Sheyda

    2011-01-01

    In December 2009, the city of Toronto adopted principles and targets for the city's sustainable energy future. The city plans to install 2 MW of solar photovoltaic panels in its facilities. The aim of this study is to assess the impact of such a project, as well as further expansion of solar photovoltaic energy generation, from the economic development perspective. A literature review, online surveys and interviews with solar industries were carried out and a job estimation model was developed. Results showed that the 2 MW installation would create 53 person years of employment locally while expansion of the technology throughout the city could generate 100,000 local jobs. However this research also pointed out a lack of suitably qualified and experienced personnel Canada-wide. This study demonstrated that the solar photovoltaic industry has the potential to provide significant economic benefits in Toronto but that certification programs must be put in place to address the lack of qualified personnel.

  7. Office of Legacy Management Decision Tree for Solar Photovoltaic Projects - 13317

    International Nuclear Information System (INIS)

    Elmer, John; Butherus, Michael; Barr, Deborah L.

    2013-01-01

    To support consideration of renewable energy power development as a land reuse option, the DOE Office of Legacy Management (LM) and the National Renewable Energy Laboratory (NREL) established a partnership to conduct an assessment of wind and solar renewable energy resources on LM lands. From a solar capacity perspective, the larger sites in the western United States present opportunities for constructing solar photovoltaic (PV) projects. A detailed analysis and preliminary plan was developed for three large sites in New Mexico, assessing the costs, the conceptual layout of a PV system, and the electric utility interconnection process. As a result of the study, a 1,214-hectare (3,000-acre) site near Grants, New Mexico, was chosen for further study. The state incentives, utility connection process, and transmission line capacity were key factors in assessing the feasibility of the project. LM's Durango, Colorado, Disposal Site was also chosen for consideration because the uranium mill tailings disposal cell is on a hillside facing south, transmission lines cross the property, and the community was very supportive of the project. LM worked with the regulators to demonstrate that the disposal cell's long-term performance would not be impacted by the installation of a PV solar system. A number of LM-unique issues were resolved in making the site available for a private party to lease a portion of the site for a solar PV project. A lease was awarded in September 2012. Using a solar decision tree that was developed and launched by the EPA and NREL, LM has modified and expanded the decision tree structure to address the unique aspects and challenges faced by LM on its multiple sites. The LM solar decision tree covers factors such as land ownership, usable acreage, financial viability of the project, stakeholder involvement, and transmission line capacity. As additional sites are transferred to LM in the future, the decision tree will assist in determining whether a solar

  8. System tradeoffs in siting a solar photovoltaic material recovery infrastructure.

    Science.gov (United States)

    Goe, Michele; Gaustad, Gabrielle; Tomaszewski, Brian

    2015-09-01

    , imposes a minimum collection rate, and implements higher tip fees would encourage exhaustive material recovery for solar photovoltaic modules at end-of-life, beyond New York State. These results have important implications for policy makers and waste managers especially in locations where there is rapid adoption of renewable energy technologies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Holographic spectrum-splitting optical systems for solar photovoltaics

    Science.gov (United States)

    Zhang, Deming

    Solar energy is the most abundant source of renewable energy available. The relatively high cost prevents solar photovoltaic (PV) from replacing fossil fuel on a larger scale. In solar PV power generation the cost is reduced with more efficient PV technologies. In this dissertation, methods to improve PV conversion efficiency with holographic optical components are discussed. The tandem multiple-junction approach has achieved very high conversion efficiency. However it is impossible to manufacture tandem PV cells at a low cost due to stringent fabrication standards and limited material types that satisfy lattice compatibility. Current produced by the tandem multi-junction PV cell is limited by the lowest junction due to series connection. Spectrum-splitting is a lateral multi-junction concept that is free of lattice and current matching constraints. Each PV cell can be optimized towards full absorption of a spectral band with tailored light-trapping schemes. Holographic optical components are designed to achieve spectrum-splitting PV energy conversion. The incident solar spectrum is separated onto multiple PV cells that are matched to the corresponding spectral band. Holographic spectrum-splitting can take advantage of existing and future low-cost technologies that produces high efficiency thin-film solar cells. Spectrum-splitting optical systems are designed and analyzed with both transmission and reflection holographic optical components. Prototype holograms are fabricated and high optical efficiency is achieved. Light-trapping in PV cells increases the effective optical path-length in the semiconductor material leading to improved absorption and conversion efficiency. It has been shown that the effective optical path length can be increased by a factor of 4n2 using diffusive surfaces. Ultra-light-trapping can be achieved with optical filters that limit the escape angle of the diffused light. Holographic reflection gratings have been shown to act as angle

  10. Towards a local learning (innovation) model of solar photovoltaic deployment

    International Nuclear Information System (INIS)

    Shum, Kwok L.; Watanabe, Chihiro

    2008-01-01

    It is by now familiar that in the deployment of solar photovoltaic (PV) systems, the cost dynamics of major system component like solar cell/module is subjected to experience curve effects driven by production learning and research and development at the supplier side. What is less clear, however, is the economics of system integration or system deployment that takes place locally close to the user, involving other market players, in the downstream solar PV value chain. Experts have agreed that suppliers of solar PV system must customize their flexible characteristics to address local unique users' and applications requirements and compete on price/performance basis. A lack of understanding of the drivers of the economics of system customization therefore is a deficiency in our understanding of the overall economics of this renewable energy technology option. We studied the non-module BOS cost for grid-connected small PV system using the experience curve framework. Preliminary analysis of PV statistics of the US from IEA seems to suggest that learning in one application type is taking place with respect to the cumulative installation among all types of grid-connected small PV projects. The effectiveness of this learning is also improving over time. A novel aspect is the interpretation of such experience curve effect or learning pattern. We draw upon the notion of product platform in the industrial management literature and consider different types of local small-scale grid-tied PV customization projects as adapting a standard platform to different idiosyncratic and local application requirements. Economics of system customization, which is user-oriented, involves then a refined notion of inter-projects learning, rather than volume-driven learning by doing. We formalized such inter-projects learning as a dynamic economy of scope, which can potentially be leveraged to manage the local and downstream aspect of PV deployment. This dynamic economy may serve as a focus

  11. Utility-Scale Solar Photovoltaic Power Plants : A Project Developer’s Guide

    OpenAIRE

    International Finance Corporation

    2015-01-01

    With an installed capacity greater than 137 gigawatts (GWs) worldwide and annual additions of about 40 GWs in recent years, solar photovoltaic (PV) technology has become an increasingly important energy supply option. A substantial decline in the cost of solar PV power plants (80 percent reduction since 2008) has improved solar PV’s competitiveness, reducing the needs for subsidies and ena...

  12. Comment on Kirk's “Analysis of quantum coherent solar photovoltaic cells”

    International Nuclear Information System (INIS)

    Chapin, K.R.; Cohen, D.; Das, S.; Dorfman, K.; Jha, P.K.; Kim, M.; Svidzinsky, A.; Vetter, P.; Voronine, D.V.

    2013-01-01

    We present our scientific and philosophical analysis of the comments made in the recent paper of A.P. Kirk, “An Analysis of Quantum Coherent Solar Photovoltaic Cells” Physica B 407 (2012) 544. We highlight the key role of quantum coherence in the enhancement of the photocell power without violating the laws of thermodynamics

  13. Solar Photovoltaic (PV) Distributed Generation Systems - Control and Protection

    Science.gov (United States)

    Yi, Zhehan

    This dissertation proposes a comprehensive control, power management, and fault detection strategy for solar photovoltaic (PV) distribution generations. Battery storages are typically employed in PV systems to mitigate the power fluctuation caused by unstable solar irradiance. With AC and DC loads, a PV-battery system can be treated as a hybrid microgrid which contains both DC and AC power resources and buses. In this thesis, a control power and management system (CAPMS) for PV-battery hybrid microgrid is proposed, which provides 1) the DC and AC bus voltage and AC frequency regulating scheme and controllers designed to track set points; 2) a power flow management strategy in the hybrid microgrid to achieve system generation and demand balance in both grid-connected and islanded modes; 3) smooth transition control during grid reconnection by frequency and phase synchronization control between the main grid and microgrid. Due to the increasing demands for PV power, scales of PV systems are getting larger and fault detection in PV arrays becomes challenging. High-impedance faults, low-mismatch faults, and faults occurred in low irradiance conditions tend to be hidden due to low fault currents, particularly, when a PV maximum power point tracking (MPPT) algorithm is in-service. If remain undetected, these faults can considerably lower the output energy of solar systems, damage the panels, and potentially cause fire hazards. In this dissertation, fault detection challenges in PV arrays are analyzed in depth, considering the crossing relations among the characteristics of PV, interactions with MPPT algorithms, and the nature of solar irradiance. Two fault detection schemes are then designed as attempts to address these technical issues, which detect faults inside PV arrays accurately even under challenging circumstances, e.g., faults in low irradiance conditions or high-impedance faults. Taking advantage of multi-resolution signal decomposition (MSD), a powerful signal

  14. General Committee for solar photovoltaic energy: results and proposals. General committee for solar photovoltaic energy Solar photovoltaic: which realities by 2020? Summarized synthesis + Extended synthesis + Analyses and proposals + Press conference October 27, 2011

    International Nuclear Information System (INIS)

    2011-10-01

    Published by a French professional body which gathers several actors of the solar photovoltaic sector, this document proposes a rather detailed overview of the sector and of its perspectives. It notably outlines that this energy production mode is clean, competitive, creating jobs, and is to become mandatory, that it represents a strategic opportunity to boost the French economy, and that France already possesses actual assets with research and development laboratories, an existing industrial fabric, energy majors, and a committed building sector. It also states some proposals for a stronger development. Theses proposals address power objectives, introduction of adapted purchase tariffs, a support to French and European offers, and so on

  15. Numerical investigation of dust pollution on a solar photovoltaic (PV) system mounted on an isolated building

    International Nuclear Information System (INIS)

    Lu, Hao; Lu, Lin; Wang, Yuanhao

    2016-01-01

    Highlights: • Effects of dust pollution on PV panels mounted on building roofs were investigated by CFD. • The dust deposition rates first increased and then decreased with the increase of dust size. • The gravity has different influences on dust deposition rates of large and small dusts. • The influence of released dust number on dust deposition rate is less than 8%. • A simple model was developed to estimate the PV efficiency reduction ratio by dust pollution. - Abstract: Dust deposition on a solar photovoltaic (PV) system mounted on the windward roof of an isolated building was investigated by CFD simulation. The SST k-ω turbulence model with UDF inlet profiles and the discrete particle model (DPM) were adopted to simulate the wind flow fields and the dust deposition behavior, respectively. The CFD wind flow velocity profiles around the building were in good agreement with experimental results reported in the literature. The effects of various dust particle sizes, differing quantities of released dust particles, and the force of gravity on the rates of dust deposition upon the PV panels were investigated in detail. It was found that the dust deposition rate first rose and then declined with the increase of dust particle size. The maximum deposition rate was about 0.28% for 10 μm dust, and the minimum deposition rate was about 0.13% for 50 μm dust. Gravity also had a significant effect on the rate of dust deposition for large-particle dust (d_p > 5 μm), and the rate could reach 75% for 50 μm dust. However, the effect of gravity on dust deposition was less than 5% for small-particle dust (d_p < 5 μm). The effect of releasing differing quantities of dust particles on the dust deposition rate was less than 8%. Moreover, the mechanisms by which dust was deposited on the PV roof were analyzed and discussed. Finally, a simple empirical model was developed to estimate the PV efficiency reduction ratios in relation to exposure time, as based on this

  16. Solar Photovoltaic Electricity Applications in France. National Survey Report 2008

    International Nuclear Information System (INIS)

    Durand, Yvonnick; Jacquin, Philippe

    2009-01-01

    According to a report by the French Renewable Energy Syndicate (SER), France had an installed photovoltaic fleet of 180 MW in late 2008, a substantial increase from 2007 (75 MW). This growth is largely due to the government's market-supporting policy that implemented a tax and tariff policy which encourages individuals to invest in so-called 'building integrated' systems; the goal of this policy is to bring together innovation in the building industry and the development of renewable energy among the French energy mix. The key event for the future of renewable energy and the photovoltaic sector in France was the 'Grenelle of the Environment'. This government initiative, launched in late 2007, became the subject of public debate and afterwards led to a bill which set the conditions under which France wishes to grow solar power's share of its energy mix. Working committees that bring together representatives from government authorities and industrial and public renewable energy stakeholders have proposed benchmarks. A few proposals with particular significance for photovoltaic power have been adopted by the government: - objectives for PV cumulative installed capacity in France of 1 100 MW in 2012 and 5 400 MW in 2020; - confirmation until 2012 of the current feed-in tariffs and the creation of an additional one targeting installations on large buildings such as commercial and industrial sheds. This tariff shall be set approximately at 0,45 EUR per kWh; - a call for tenders for the construction by 2011 of at least one solar photovoltaic power plant in each French region, for a total installed capacity of 300 MW. The nationally initiated actions for growing the market are heavily relayed by public assistance to regional councils, general councils, communities of communes and communes themselves, in accordance with their own particular specifications. The incentive to purchase electricity produced by built-in installations has caused a

  17. Office of Legacy Management Decision Tree for Solar Photovoltaic Projects - 13317

    Energy Technology Data Exchange (ETDEWEB)

    Elmer, John; Butherus, Michael [S.M. Stoller Corporation (United States); Barr, Deborah L. [U.S. Department of Energy Office of Legacy Management (United States)

    2013-07-01

    To support consideration of renewable energy power development as a land reuse option, the DOE Office of Legacy Management (LM) and the National Renewable Energy Laboratory (NREL) established a partnership to conduct an assessment of wind and solar renewable energy resources on LM lands. From a solar capacity perspective, the larger sites in the western United States present opportunities for constructing solar photovoltaic (PV) projects. A detailed analysis and preliminary plan was developed for three large sites in New Mexico, assessing the costs, the conceptual layout of a PV system, and the electric utility interconnection process. As a result of the study, a 1,214-hectare (3,000-acre) site near Grants, New Mexico, was chosen for further study. The state incentives, utility connection process, and transmission line capacity were key factors in assessing the feasibility of the project. LM's Durango, Colorado, Disposal Site was also chosen for consideration because the uranium mill tailings disposal cell is on a hillside facing south, transmission lines cross the property, and the community was very supportive of the project. LM worked with the regulators to demonstrate that the disposal cell's long-term performance would not be impacted by the installation of a PV solar system. A number of LM-unique issues were resolved in making the site available for a private party to lease a portion of the site for a solar PV project. A lease was awarded in September 2012. Using a solar decision tree that was developed and launched by the EPA and NREL, LM has modified and expanded the decision tree structure to address the unique aspects and challenges faced by LM on its multiple sites. The LM solar decision tree covers factors such as land ownership, usable acreage, financial viability of the project, stakeholder involvement, and transmission line capacity. As additional sites are transferred to LM in the future, the decision tree will assist in determining

  18. Multiple Solutions for Reconfiguration to Address Partial Shading Losses in Solar Photovoltaic Arrays

    Science.gov (United States)

    Sharma, Nikesh; Pareek, Smita; Chaturvedi, Nitin; Dahiya, Ratna

    2018-03-01

    Solar photovoltaic (SPV) systems are steadily rising and considered as the best alternatives to meet the rising demand of energy. In developing countries like India, SPV’s contribution being a clean energy is the most favourable. However, experiences have shown that produced power of these systems is usually affected due to day, night, seasonal variations, insolation, partial shading conditions etc. Among these parameters, partial shading causes a huge reduction in output power of PV systems. This results in lack of confidence for this technology among users. Thus, it is important and a major challenge in PV systems to minimize the effect of partial shading on their energy production. The work in this paper aims to propose solutions for reconfiguration of solar photovoltaic arrays in order to reduce partial shading losses and thus to enhance power generation.

  19. Lightning Surge Analysis on a Large Scale Grid-Connected Solar Photovoltaic System

    OpenAIRE

    Nur Hazirah Zaini; Mohd Zainal Abidin Ab. Kadir; Mohd Amran Mohd Radzi; Mahdi Izadi; Norhafiz Azis; Nor Izzati Ahmad; Mohd Solehin Mohd Nasir

    2017-01-01

    Solar photovoltaic (PV) farms currently play a vital role in the generation of electrical power in different countries, such as Malaysia, which is moving toward the use of renewable energy. Malaysia is one of the countries with abundant sunlight and thus can use solar PV farms as alternative sources for electricity generation. However, lightning strikes frequently occur in the country. Being installed in open and flat areas, solar PV farms, especially their electronic components, are at great...

  20. Testing, Performance and Reliability Evaluation of Charge Controllers for Solar Photovoltaic Home Lighting System in India

    OpenAIRE

    Adarsh Kumar; ChandraShekhar Sharma; Dr. Rajesh Kumar; Avinashkumar haldkar

    2016-01-01

    :Charge controller is the most important part of a Solar Photovoltaic Home LightingSystem (SPVHLS) which controls the charging ofbattery from photovoltaic (PV) module and discharging of battery through load. This paper analyzes testresults of fourteen charge controllers (CC) available in Indiaaccording to the Ministry of New and RenewableEnergy (MNRE) specification. The different parameters of charge controllers to be tested arebattery high voltage disconnect (HVD), lo...

  1. A Hierarchical Approach Using Machine Learning Methods in Solar Photovoltaic Energy Production Forecasting

    OpenAIRE

    Zhaoxuan Li; SM Mahbobur Rahman; Rolando Vega; Bing Dong

    2016-01-01

    We evaluate and compare two common methods, artificial neural networks (ANN) and support vector regression (SVR), for predicting energy productions from a solar photovoltaic (PV) system in Florida 15 min, 1 h and 24 h ahead of time. A hierarchical approach is proposed based on the machine learning algorithms tested. The production data used in this work corresponds to 15 min averaged power measurements collected from 2014. The accuracy of the model is determined using computing error statisti...

  2. Feasibility study of a solar photovoltaic water pumping system for rural Ethiopia

    Directory of Open Access Journals (Sweden)

    Misrak Girma

    2015-06-01

    Full Text Available Solar Photovoltaic (SPV water pumping system is one of the best technologies that utilize the solar energy to pump water from deep well underground water sources and to provide clean drinking water worldwide. The availability of abundant solar radiation and enough underground water sources in Ethiopia can be combined together to make clean drinking water available to rural communities. The software PVsyst 5.56 was used to study the feasibility of solar photovoltaic water pumping system in the selected sites. The designed system is capable of providing a daily average of 10.5, 7 and 6.5 m3/day for 700, 467 and 433 people in Siadberand Wayu, Wolmera and Enderta sites respectively, with average daily water consumption of 15 liters per day per person and the costs of water without any subsidy, are approximately 0.1, 0.14 and 0.16 $/m3for each site respectively. If diesel generator is used instead of solar photovoltaic water pumping system, to provide the same average daily water for the selected community, the costs of water without any subsidy are approximately 0.2, 0.23 and 0.27 $/m3 for each site respectively. A life cycle cost analysis method was also carried out for economic comparison between solar PV and the diesel pumping system. The results of this study are encouraging the use of the PV system for drinking water supply in the remote areas of the country.

  3. Revisiting the 'Buy versus Build' decision for publicly owned utilities in California considering wind and geothermal resources; TOPICAL

    International Nuclear Information System (INIS)

    Bolinger, Mark; Wiser, Ryan; Golove, William

    2001-01-01

    owned utility's decision to buy or build new renewable energy capacity-specifically wind or geothermal power-in California. To examine the economic aspects of this decision, we modified and updated a 20-year financial cash-flow model to assess the levelized cost of electricity under four supply options: (1) public utility ownership of new geothermal capacity, (2) public utility ownership of new wind capacity, (3) a PPA for new geothermal capacity, and (4) a PPA for new wind capacity

  4. Citywide Impacts of Cool Roof and Rooftop Solar Photovoltaic Deployment on Near-Surface Air Temperature and Cooling Energy Demand

    Science.gov (United States)

    Salamanca, F.; Georgescu, M.; Mahalov, A.; Moustaoui, M.; Martilli, A.

    2016-10-01

    Assessment of mitigation strategies that combat global warming, urban heat islands (UHIs), and urban energy demand can be crucial for urban planners and energy providers, especially for hot, semi-arid urban environments where summertime cooling demands are excessive. Within this context, summertime regional impacts of cool roof and rooftop solar photovoltaic deployment on near-surface air temperature and cooling energy demand are examined for the two major USA cities of Arizona: Phoenix and Tucson. A detailed physics-based parametrization of solar photovoltaic panels is developed and implemented in a multilayer building energy model that is fully coupled to the Weather Research and Forecasting mesoscale numerical model. We conduct a suite of sensitivity experiments (with different coverage rates of cool roof and rooftop solar photovoltaic deployment) for a 10-day clear-sky extreme heat period over the Phoenix and Tucson metropolitan areas at high spatial resolution (1-km horizontal grid spacing). Results show that deployment of cool roofs and rooftop solar photovoltaic panels reduce near-surface air temperature across the diurnal cycle and decrease daily citywide cooling energy demand. During the day, cool roofs are more effective at cooling than rooftop solar photovoltaic systems, but during the night, solar panels are more efficient at reducing the UHI effect. For the maximum coverage rate deployment, cool roofs reduced daily citywide cooling energy demand by 13-14 %, while rooftop solar photovoltaic panels by 8-11 % (without considering the additional savings derived from their electricity production). The results presented here demonstrate that deployment of both roofing technologies have multiple benefits for the urban environment, while solar photovoltaic panels add additional value because they reduce the dependence on fossil fuel consumption for electricity generation.

  5. The Possibility of Functioning at Maximum Power for Solar Photovoltaic - Electric Battery Systems

    Directory of Open Access Journals (Sweden)

    Chioncel Cristian Paul

    2013-01-01

    Full Text Available The paper presents the functioning of a solar photovoltaic module(PVM that debits direct to on electric battery (EB. By a good adaptingof PVM to EB, so that the no load voltage of the two components (PVMand EB are well suited, during a day the energy value can be reachednear to the maximum possible value, when the PVM functions in themaximum power point (MPP. The proposed solution is much moreeconomic than the classical: PVM + DC – DC + EB because the directcurrent - direct current power converter, is not necessary (DC - DC.

  6. High temperature solid oxide regenerative fuel cell for solar photovoltaic energy storage

    Science.gov (United States)

    Bents, David J.

    A hydrogen-oxygen regenerative fuel cell energy storage system based on high temperature solid oxide fuel cell technology is discussed which has application to darkside energy storage for solar photovoltaics. The forward and reverse operating cycles are described, and heat flow, mass, and energy balance data are presented to characterize the system's performance and the variation of performance with changing reactant storage pressure. The present system weighs less than nickel hydrogen battery systems after 0.7 darkside operation, and it maintains a specific weight advantage over radioisotope generators for discharge periods up to 72 hours.

  7. Performance characteristics of a combination solar photovoltaic heat engine energy converter

    Science.gov (United States)

    Chubb, Donald L.

    1987-01-01

    A combination solar photovoltaic heat engine converter is proposed. Such a system is suitable for either terrestrial or space power applications. The combination system has a higher efficiency than either the photovoltaic array or the heat engine alone can attain. Advantages in concentrator and radiator area and receiver mass of the photovoltaic heat engine system over a heat-engine-only system are estimated. A mass and area comparison between the proposed space station organic Rankine power system and a combination PV-heat engine system is made. The critical problem for the proposed converter is the necessity for high temperature photovoltaic array operation. Estimates of the required photovoltaic temperature are presented.

  8. Didactic trainer. Solar photovoltaic panels analysis; Analisis de paneles solares fotovoltaicos

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, J.; Ruiz, J.; Gorjon, J.; Quiles, J. A.; Cavaller, N.; Bodega, J.; Alonso-Abella, M.; Chenlo, F.

    2009-07-01

    The Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT) and the Instituto de Ensenanza Secundaria Virgen de la Paloma (IES VP), through their respective Metrology and Electricity-Electronics departments, have established a first agreement of co-operation with the aim of introducing and enhancing the solar photovoltaic energy within the professional teachings field. This agreements is a result of the compromise of designing entirely in the Electricity-electronics department of IES VP a didactic trainer prototype which enables to analyze cells and photovoltaic panels, all under the supervision and logistic-technical support of CIEMAT Photovoltaic Laboratory. (Author)

  9. Feasibility Study of Economics and Performance of Solar Photovoltaics in Nitro, West Virginia

    Energy Technology Data Exchange (ETDEWEB)

    Lisell, L.; Mosey, G.

    2010-08-01

    The study described in this report assessed brownfield sites designated by the City of Nitro, West Virginia for solar photovoltaic (PV) installations. The study analyzed three different types of PV systems for eight sites. The report estimates the cost, performance, and site impacts of thin film technology and crystalline silicon panels (both fixed-axis tracking and single-axis tracking systems). Potential job creation and electrical rate increases were also considered, and the report recommends financing options that could assist in the implementation of a system.

  10. Solar photovoltaic systems and their use as grid-connected generators in the United Kingdom

    Energy Technology Data Exchange (ETDEWEB)

    Munro, D K; Hacker, R J; Thornycroft, J M [Halcrow Gilbert Associates Ltd., Swindon (United Kingdom)

    1995-10-01

    There is an increasing interest in the use of building-integrated solar photovoltaic generators as grid-connected generators. This paper discusses the experience with this technology in Europe. Typical systems and their integration into domestic and non-domestic buildings are described. Information is provided on the energy output that can be expected from the systems and the economics of their use. The paper provides an overview of the requirements for photovoltaic systems as grid-connected generation plant in the United Kingdom. (Author)

  11. High temperature solid oxide regenerative fuel cell for solar photovoltaic energy storage

    Science.gov (United States)

    Bents, David J.

    1987-01-01

    A hydrogen-oxygen regenerative fuel cell energy storage system based on high temperature solid oxide fuel cell technology is discussed which has application to darkside energy storage for solar photovoltaics. The forward and reverse operating cycles are described, and heat flow, mass, and energy balance data are presented to characterize the system's performance and the variation of performance with changing reactant storage pressure. The present system weighs less than nickel hydrogen battery systems after 0.7 darkside operation, and it maintains a specific weight advantage over radioisotope generators for discharge periods up to 72 hours.

  12. Solar photovoltaic system design optimization by shading analysis to maximize energy generation from limited urban area

    International Nuclear Information System (INIS)

    Rachchh, Ravi; Kumar, Manoj; Tripathi, Brijesh

    2016-01-01

    Highlights: • Scheme to maximize total number of solar panels in a given area. • Enhanced energy output from a fixed area without compromising the efficiency. • Capacity and generated energy are enhanced by more than 25%. - Abstract: In the urban areas the demand of solar power is increasing due to better awareness about the emission of green house gases from conventional thermal power plants and significant decrease in the installation cost of residential solar power plants. But the land cost and the under utilization of available space is hindering its further growth. Under these circumstances, solar photovoltaic system installation needs to accommodate the maximum number of solar panels in either roof-top or land-mounted category. In this article a new approach is suggested to maximize the total number of solar panels in a given area with enhanced energy output without compromising the overall efficiency of the system. The number of solar panels can be maximized in a solar photovoltaic energy generation system by optimizing installation parameters such as tilt angle, pitch, gain factor, altitude angle and shading to improve the energy yield. In this paper mathematical analysis is done to show that the capacity and generated energy can be enhanced by more than 25% for a given land area by optimization various parameters.

  13. Solar photovoltaic applications seminar: design, installation and operation of small, stand-alone photovoltaic power systems

    Energy Technology Data Exchange (ETDEWEB)

    1980-07-01

    This seminar material was developed primarily to provide solar photovoltaic (PV) applied engineering technology to the Federal community. An introduction to photoconductivity, semiconductors, and solar photovoltaic cells is included along with a demonstration of specific applications and application identification. The seminar details general systems design and incorporates most known information from industry, academia, and Government concerning small solar cell power system design engineering, presented in a practical and applied manner. Solar PV power system applications involve classical direct electrical energy conversion and electric power system analysis and synthesis. Presentations and examples involve a variety of disciplines including structural analysis, electric power and load analysis, reliability, sizing and optimization; and, installation, operation and maintenance. Four specific system designs are demonstrated: water pumping, domestic uses, navigational and aircraft aids, and telecommunications. All of the applications discussed are for small power requirement (under 2 kilowatts), stand-alone systems to be used in remote locations. Also presented are practical lessons gained from currently installed and operating systems, problems at sites and their resolution, a logical progression through each major phase of system acquisition, as well as thorough design reviews for each application.

  14. Modeling of four-terminal solar photovoltaic systems for field application

    Science.gov (United States)

    Vahanka, Harikrushna; Purohit, Zeel; Tripathi, Brijesh

    2018-05-01

    In this article a theoretical framework for mechanically stacked four-terminal solar photovoltaic (FTSPV) system has been proposed. In a mechanical stack arrangement, a semitransparent CdTe panel has been used as a top sub-module, whereas a μc-Si solar panel has been used as bottom sub-module. Theoretical modeling has been done to analyze the physical processes in the system and to estimate reliable prediction of the performance. To incorporate the effect of material, the band gap and the absorption coefficient data for CdTe and μc-Si panels have been considered. The electrical performance of the top and bottom panels operated in a mechanical stack has been obtained experimentally for various inter-panel separations in the range of 0-3 cm. Maximum output power density has been obtained for a separation of 0.75 cm. The mean value of output power density from CdTe (top panel) has been calculated as 32.3 Wm-2 and the mean value of output power density from μc-Si, the bottom panel of four-terminal photovoltaic system has been calculated as ˜3.5 Wm-2. Results reported in this study reveal the potential of mechanically stacked four-terminal tandem solar photovoltaic system towards an energy-efficient configuration.

  15. Analysis of off-grid hybrid wind turbine/solar PV water pumping systems

    Science.gov (United States)

    While many remote water pumping systems exist (e.g. mechanical windmills, solar photovoltaic , wind-electric, diesel powered), very few combine both the wind and solar energy resources to possibly improve the reliability and the performance of the system. In this paper, off-grid wind turbine (WT) a...

  16. INTERGRATION OF LiDAR DATA WITH AERIAL IMAGERY FOR ESTIMATING ROOFTOP SOLAR PHOTOVOLTAIC POTENTIALS IN CITY OF CAPE TOWN

    Directory of Open Access Journals (Sweden)

    A. K. Adeleke

    2016-06-01

    Full Text Available Apart from the drive to reduce carbon dioxide emissions by carbon-intensive economies like South Africa, the recent spate of electricity load shedding across most part of the country, including Cape Town has left electricity consumers scampering for alternatives, so as to rely less on the national grid. Solar energy, which is adequately available in most part of Africa and regarded as a clean and renewable source of energy, makes it possible to generate electricity by using photovoltaics technology. However, before time and financial resources are invested into rooftop solar photovoltaic systems in urban areas, it is important to evaluate the potential of the building rooftop, intended to be used in harvesting the solar energy. This paper presents methodologies making use of LiDAR data and other ancillary data, such as high-resolution aerial imagery, to automatically extract building rooftops in City of Cape Town and evaluate their potentials for solar photovoltaics systems. Two main processes were involved: (1 automatic extraction of building roofs using the integration of LiDAR data and aerial imagery in order to derive its’ outline and areal coverage; and (2 estimating the global solar radiation incidence on each roof surface using an elevation model derived from the LiDAR data, in order to evaluate its solar photovoltaic potential. This resulted in a geodatabase, which can be queried to retrieve salient information about the viability of a particular building roof for solar photovoltaic installation.

  17. Solar Photovoltaic

    OpenAIRE

    Wang, Chen; Lu, Yuefeng

    2016-01-01

    In the 21st century, human demand for new energy sources is urgent, because the traditional fossil energy is unable to meet human needs, and the fossil resource will make pollution, in this situation, solar energy gradually into the vision of scientists. As science advances, humans can already extensive use of solar energy to generate electricity. Solar energy is an inexhaustible and clean energy. In the global energy crisis, environmental pollution is the growing problem of today. The us...

  18. Calculating solar photovoltaic potential on residential rooftops in Kailua Kona, Hawaii

    Science.gov (United States)

    Carl, Caroline

    As carbon based fossil fuels become increasingly scarce, renewable energy sources are coming to the forefront of policy discussions around the globe. As a result, the State of Hawaii has implemented aggressive goals to achieve energy independence by 2030. Renewable electricity generation using solar photovoltaic technologies plays an important role in these efforts. This study utilizes geographic information systems (GIS) and Light Detection and Ranging (LiDAR) data with statistical analysis to identify how much solar photovoltaic potential exists for residential rooftops in the town of Kailua Kona on Hawaii Island. This study helps to quantify the magnitude of possible solar photovoltaic (PV) potential for Solar World SW260 monocrystalline panels on residential rooftops within the study area. Three main areas were addressed in the execution of this research: (1) modeling solar radiation, (2) estimating available rooftop area, and (3) calculating PV potential from incoming solar radiation. High resolution LiDAR data and Esri's solar modeling tools and were utilized to calculate incoming solar radiation on a sample set of digitized rooftops. Photovoltaic potential for the sample set was then calculated with the equations developed by Suri et al. (2005). Sample set rooftops were analyzed using a statistical model to identify the correlation between rooftop area and lot size. Least squares multiple linear regression analysis was performed to identify the influence of slope, elevation, rooftop area, and lot size on the modeled PV potential values. The equations built from these statistical analyses of the sample set were applied to the entire study region to calculate total rooftop area and PV potential. The total study area statistical analysis findings estimate photovoltaic electric energy generation potential for rooftops is approximately 190,000,000 kWh annually. This is approximately 17 percent of the total electricity the utility provided to the entire island in

  19. Financing options and economic impact: distributed generation using solar photovoltaic systems in Normal, Illinois

    Directory of Open Access Journals (Sweden)

    Jin H. Jo

    2016-04-01

    Full Text Available Due to increasing price volatility in fossil-fuel-produced energy, the demand for clean, renewable, and abundant energy is more prevalent than in past years. Solar photovoltaic (PV systems have been well documented for their ability to produce electrical energy while at the same time offering support to mitigate the negative externalities associated with fossil fuel combustion. Prices for PV systems have decreased over the past few years, however residential and commercial owners may still opt out of purchasing a system due to the overall price required for a PV system installation. Therefore, determining optimal financing options for residential and small-scale purchasers is a necessity. We report on payment methods currently used for distributed community solar projects throughout the US and suggest appropriate options for purchasers in Normal, Illinois given their economic status. We also examine the jobs and total economic impact of a PV system implementation in the case study area.

  20. Feasibility Study of Solar Photovoltaics on Landfills in Puerto Rico (Second Study)

    Energy Technology Data Exchange (ETDEWEB)

    Salasovich, J.; Mosey, G.

    2011-08-01

    This report presents the results of an assessment of the technical and economic feasibility of deploying a solar photovoltaics (PV) system on landfill sites in Puerto Rico. The purpose of this report is to assess the landfills with the highest potential for possible solar PV installation and estimate cost, performance, and site impacts of three different PV options: crystalline silicon (fixed tilt), crystalline silicon (single-axis tracking), and thin film (fixed tilt). The report outlines financing options that could assist in the implementation of a system. According to the site production calculations, the most cost-effective system in terms of return on investment is the thin-film fixed-tilt technology. The report recommends financing options that could assist in the implementation of such a system. The landfills and sites considered in this report were all determined feasible areas in which to implement solar PV systems.

  1. Nationwide Analysis of U.S. Commercial Building Solar Photovoltaic (PV) Breakeven Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Davidson, Carolyn [National Renewable Energy Lab. (NREL), Golden, CO (United States); Gagnon, Pieter [National Renewable Energy Lab. (NREL), Golden, CO (United States); Denholm, Paul [National Renewable Energy Lab. (NREL), Golden, CO (United States); Margolis, Robert [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-10-01

    The commercial sector offers strong potential for solar photovoltaics (PV) owing to abundant available roof space suitable for PV and the opportunity to offset the sector's substantial retail electricity purchases. This report evaluated the breakeven price of PV for 15 different building types and various financing options by calculating electricity savings based on detailed rate structures for most U.S. utility territories (representing approximately two thirds of U.S. commercial customers). We find that at current capital costs, an estimated 1/3 of U.S. commercial customers break even in the cash scenario and approximately 2/3 break even in the loan scenario. Variation in retail rates is a stronger driver of breakeven prices than is variation in building load or solar generation profiles. At the building level, variation in the average breakeven price is largely driven by the ability for a PV system to reduce demand charges.

  2. Solar photovoltaic: 25 per cent of world low carbon electricity by 2050. Situation and analyses

    International Nuclear Information System (INIS)

    Ott, Nicolas; Cohen, Marion; Grandjean, Alain; Guerin, Andre-Jean; Ballif, Ch.; Barbaro, X.; Brewster, M.; Burtin, A.; Chaperon, A.; Cuomo, A.; Danielo, O.; Broglie, G. de; Deblois, L.; Deprest, I.; Dupre La Tour, S.; Gauly, N.; Lascaud, S.; Lemaignan, B.; Lincot, D.; Malbranche, P.; Marchal, D.; Mine, A.; Paquier, O.; Philibert, C.; Prieto, Pedro A.; Roesch, A.; Roudil, JP.; Scotto, E.; Sharma, R.; Sidat, P.; Tarascon, J.M.; Vermot Desroches, G.

    2015-11-01

    The objective of this study has been to assess to which extent solar photovoltaic energy will represent a significant part of world electric power consumption by 2050, while notably taking the economic dimension, resource availability and problems related to intermittency management into account. After a recall of the relative correlation between solar radiation and human settlement, of the involved fundamental physical concepts, and of the different technologies and applications of photovoltaic energy production, the authors propose an overview of the present situation and perspectives for the development of photovoltaic energy production (evolution and emergence of a competitive industry in several countries, recent and future evolutions of photovoltaic cell costs, needs of investments in massive electric power production). Then, they address the intermittency issue: integration into networks, consumption steering, perspective of a revolution in storage. They examine whether industrials are ready to face potential future revolutions

  3. Ground water lifting in the remote and arid areas of Egypt using solar photovoltaic pumps

    International Nuclear Information System (INIS)

    Younes, M.A.

    2006-01-01

    An experimental study has been carried out at Mechanical and Electrical Research Institute, Qenater (300 N, 310 E), Egypt on a 2000 WP solar photovoltaic (PV) water pump. The main objective is to investigate the feasibility of utilizing solar energy in ground water lifting. A solar PV pumping system has been constructed as a prototype for a large-scale photovoltaic project in south of Egypt. Solar potential at the remote and arid areas of Egypt is discussed. Installation and operation factors as a function of environmental conditions are presented. Performance of the water pump has been evaluated. The water discharge and system efficiency has been estimated and presented. The changes in water discharge and system efficiency with change in solar radiation has been measured and presented. Preliminary results show that there is a huge potential and real-ability for solar PV submersible water pumping in the remote and arid areas of Egypt

  4. Quantifying avoided fuel use and emissions from solar photovoltaic generation in the Western United States.

    Science.gov (United States)

    Denholm, Paul; Margolis, Robert M; Milford, James M

    2009-01-01

    The electric power system in the Western United States was simulated to evaluate the potential of solar photovoltaics (PV) in reducing fossil-fuel use and associated emissions. The simulations used a utility production cost model to evaluate a series of PV penetrations where up to 10% of the region's electricity is derived from PV. The analysis focused on California, which uses gas for a large fraction of its generation and Colorado, which derives most of its electricity from coal. PV displaces gas and electricity imports almost exclusively in California, with a displacement rate of about 6000-9000 kJ per kWh of PV energy generated. In Colorado, PV offsets mostly gas at low penetration, with increasing coal displacement during nonsummer months and at higher penetration. Associated reductions in CO2, NOx, and SO2 emissions are also calculated.

  5. Procurement Specifications Templates for On-Site Solar Photovoltaic: For Use in Developing Federal Solicitations

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, G. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-01-16

    With the increasing adaption of on-site renewable energy systems designed to feed site loads, there is a critical need to develop tools that allow the federal sector to become a mature and sophisticated consumer. This document is intended to reduce project development and operational risks while increasing the speed at which projects are completed; two necessary components to reach the scale required to meet mandates and achieve cost savings for taxpayers. This guide is intended to act as a living document where lessons learned from the increasing number of projects can be incorporated and provide guidance for efforts. While additional guides will be developed to cover other renewable technologies, this guide covers on-site solar photovoltaic systems with an emphasis on third-party designed, financed, owned, and operated systems.

  6. Effects of nanometric hydrophobic layer on performances of solar photovoltaic collectors

    Directory of Open Access Journals (Sweden)

    Andrei BUTUZA

    2014-11-01

    Full Text Available The study refers to the experimental investigation of solar photovoltaic collectors' behaviour when the glazed surface is treated with a nanometric layer of hydrophobic solution. The experiment was carried out on two photovoltaic collectors, of which one was considered as reference and the other one was coated with a commercial hydrophobic solution. It was studied the evolution of the following electrical parameters: current, voltage, power, efficiency and daily energy production. The voltage was almost unaffected, but for all the others parameters, important drop were recorded. The preliminary conclusion of the study is that the use of hydrophobic solutions, for the treatment of glazed surfaces of solar collectors is not recommended. This hypothesis needs supplementary investigations and measurements in the context of reduced available information concerning the optical properties of hydrophobic solutions.

  7. A Hierarchical Approach Using Machine Learning Methods in Solar Photovoltaic Energy Production Forecasting

    Directory of Open Access Journals (Sweden)

    Zhaoxuan Li

    2016-01-01

    Full Text Available We evaluate and compare two common methods, artificial neural networks (ANN and support vector regression (SVR, for predicting energy productions from a solar photovoltaic (PV system in Florida 15 min, 1 h and 24 h ahead of time. A hierarchical approach is proposed based on the machine learning algorithms tested. The production data used in this work corresponds to 15 min averaged power measurements collected from 2014. The accuracy of the model is determined using computing error statistics such as mean bias error (MBE, mean absolute error (MAE, root mean square error (RMSE, relative MBE (rMBE, mean percentage error (MPE and relative RMSE (rRMSE. This work provides findings on how forecasts from individual inverters will improve the total solar power generation forecast of the PV system.

  8. Deconstructing Solar Photovoltaic Pricing: The Role of Market Structure, Technology, and Policy

    Energy Technology Data Exchange (ETDEWEB)

    Gillingham, Kenneth [Yale Univ., New Haven, CT (United States); Deng, Hao [Yale Univ., New Haven, CT (United States); Wiser, Ryan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Darghouth, Naim [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Nemet, Gregory [Univ. of Wisconsin, Madison, WI (United States); Barbose, Galen [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Rai, Varun [Univ. of Texas, Austin, TX (United States); Dong, C. G. [Univ. of Texas, Austin, TX (United States)

    2014-12-15

    Solar photovoltaic (PV) system prices in the United States display considerable heterogeneity both across geographic locations and within a given location. Such heterogeneity may arise due to state and federal policies, differences in market structure, and other factors that influence demand and costs. This paper examines the relative importance of such factors on equilibrium solar PV system prices in the United States using a detailed dataset of roughly 100,000 recent residential and small commercial installations. As expected, we find that PV system prices differ based on characteristics of the systems. More interestingly, we find evidence suggesting that search costs and imperfect competition affect solar PV pricing. Installer density substantially lowers prices, while regions with relatively generous financial incentives for solar PV are associated with higher prices.

  9. Determination of the Optimal Tilt Angle for Solar Photovoltaic Panel in Ilorin, Nigeria

    Directory of Open Access Journals (Sweden)

    K.R. Ajao

    2013-06-01

    Full Text Available The optimal tilt angle of solar photovoltaic panel in Ilorin, Nigeria was determined. The solar panel was first mounted at 0o to the horizontal and after ten minutes, the voltage and current generated with the corresponding atmospheric temperature were recorded. The same procedure was repeated for 2o to 30o at a succession of 2o at ten minutes time interval over the entire measurement period. The result obtained shows that the average optimal tilt angle at which a solar panel will be mounted for maximum power performance at fixed position in Ilorin is 22o. This optimum angle of tilt of the solar panel and the orientation are dependent on the month of the year and the location of the site of study.

  10. Hosting Capacity of Solar Photovoltaics in Distribution Grids under Different Pricing Schemes

    DEFF Research Database (Denmark)

    Carollo, Riccardo; Chaudhary, Sanjay Kumar; Pillai, Jayakrishnan Radhakrishna

    2015-01-01

    Most of the solar photovoltaic (SPV) installations are connected to distribution networks. The majority of these systems are represented by single-phase rooftop SPVs connected to residential low voltage (LV) grids. The large SPV shares lead to grid integration issues such as voltage rise....... The results show that with the present TOU tariffs the EV integration in LV networks does not ease the grid bottlenecks for large PV penetration. Under the Net metering and DLMP the EV integration in LV grids tend to increase the PV hosting capacity......., overloading of the network components, voltage phase unbalance etc. A rapid expansion of Electric Vehicles (EVs) technology is estimated, whose connection is also expected to take place in the LV networks. EVs might represent a possible solution to the SPV integration issues as they can be used as fast...

  11. Local Adaptive Control of Solar Photovoltaics and Electric Water Heaters for Real-time Grid Support

    DEFF Research Database (Denmark)

    Bhattarai, Bishnu Prasad; Mendaza, Iker Diaz de Cerio; Bak-Jensen, Birgitte

    2016-01-01

    Overvoltage (OV) in a low voltage distribution network is one of the foremost issues observed even under moderate penetration of rooftop solar photovoltaics (PVs). Similarly, grid under-voltage (UV) is foreseen as a potential issue resulting from increased integration of large flexible loads......, such as electric vehicles, electric water heaters (EWHs) etc. An adaptive control using only local measurements for the EWHs and PVs is proposed in this study to alleviate OV as well as UV issues. The adaptive control is designed such that it monitors the voltage at the point of connection and adjusts active...... and reactive power injection/consumptions of the EWHs and PVs following the voltage violations. To effectively support the network in real-time, the controller allows EWHs to operate prior to PVs in OV and after the PVs in UV violations. The effectiveness of the proposed control strategy is demonstrated...

  12. The performance of a combined solar photovoltaic (PV) and thermoelectric generator (TEG) system

    DEFF Research Database (Denmark)

    Bjørk, Rasmus; Nielsen, Kaspar Kirstein

    2015-01-01

    The performance of a combined solar photovoltaic (PV) and thermoelectric generator (TEG) system is examined using an analytical model for four different types of commercial PVs and a commercial bismuth telluride TEG. The TEG is applied directly on the back of the PV, so that the two devices have...... the same temperature. The PVs considered are crystalline Si (c-Si), amorphous Si (a-Si), copper indium gallium (di) selenide (CIGS) and cadmium telluride (CdTe) cells. The degradation of PV performance with temperature is shown to dominate the increase in power produced by the TEG, due to the low...... efficiency of the TEG. For c-Si, CIGS and CdTe PV cells the combined system produces a lower power and has a lower efficiency than the PV alone, whereas for an a-Si cell the total system performance may be slightly increased by the TEG....

  13. Optimal feed-in tariff for solar photovoltaic power generation in China: A real options analysis

    International Nuclear Information System (INIS)

    Zhang, M.M.; Zhou, D.Q.; Zhou, P.; Liu, G.Q.

    2016-01-01

    The feed-in tariff policy is widely used to promote the development of renewable energy. China also adopts feed-in tariff policy to attract greater investment in solar photovoltaic power generation. This study employs real options method to assess the optimal levels of feed-in tariffs in 30 provinces of China. The uncertainties in CO_2 price and investment cost are considered. A method that integrates the backward dynamic programming algorithm and Least-Squares Monte Carlo method is used to solve the model. The results demonstrate that the feed-in tariffs of 30 provinces range from 0.68 RMB/kWh to 1.71 RMB/kWh, and the average level is 1.01 RMB/kWh. On this basis, we find that the levels of sub-regional feed-in tariff announced in 2013 are no longer appropriate and should be adjusted as soon as possible. We have also identified the implications of technological progress and carbon emission trading schemes, as well as the importance of strengthening electricity transmission. It has been suggested that the Chinese government takes diverse measures, including increasing research and development investment, establishing and improving a nationwide carbon emission trading scheme and accelerating the construction of electricity-transmission infrastructure, to reduce the required feed-in tariff and promote the development of solar photovoltaic power generation. - Highlights: • We estimate the optimal levels of feed-in tariffs for 30 provinces in China by using real options method. • The uncertainties in CO_2 price and investment cost are considered. • The feed-in tariffs of 30 provinces range from 0.68 RMB/kWh to 1.71 RMB/kWh, and the average level is 1.01 RMB/kWh.

  14. Spatial lifecycles of cleantech industries – The global development history of solar photovoltaics

    International Nuclear Information System (INIS)

    Binz, Christian; Tang, Tian; Huenteler, Joern

    2017-01-01

    New industries develop in increasingly globalized networks, whose dynamics are not well understood by academia and policy making. Solar photovoltaics (PV) are a case in point for an industry that experienced several shifts in its spatial organization over a short period of time. A lively debate has recently emerged on whether the spatial dynamics in new cleantech sectors are in line with existing industry lifecycle models or whether globalization created new lifecycle patterns that are not fully explained in the literature. This paper addresses this question based on an extensive analysis of quantitative data in the solar PV sector. Comprehensive global databases containing 86,000 patents as well as manufacturing and sales records are used to analyze geographic shifts in the PV sector’s innovation, manufacturing and market deployment activities between 1990 and 2012. The analysis reveals spatial lifecycle patterns with lower-than-expected first mover advantages in manufacturing and market activities and an earlier entry of firms from emerging economies in manufacturing and knowledge creation. We discuss implications of these findings for the competitive positions of companies in developed and emerging economies, derive new stylized hypotheses for industry lifecycle theories, and sketch policy approaches that are reflexive of global interdependencies in emerging cleantech industries. - Highlights: • The global spatial lifecycle of the solar photovoltaic (PV) industry is analyzed. • Our data partly contradicts existing industry lifecycle theories. • Latecomers in China started manufacturing and deployment earlier than expected. • Pioneers in the US and EU retained significant first-mover advantages in patenting. • Industry lifecycle theory needs updates in the production and market dimensions.

  15. Smoothing out the volatility of South Africa's wind and solar photovoltaic energy resources

    CSIR Research Space (South Africa)

    Mushwana, C

    2015-01-01

    Full Text Available and technology in the national economy to be recognised by Parliament. This was realised to some extent decades later with the Department of Arts, Culture, Science and Technology and then, in 2002, the Department of Science and Technology. In 1950... successor in May 1980, was characterised by change on a national and organisational level. The South African economy was in recession and the national research laboratories were under pressure to pursue research that would be able to address immediate...

  16. System Dynamics of Polysilicon for Solar Photovoltaics: A Framework for Investigating the Energy Security of Renewable Energy Supply Chains

    Directory of Open Access Journals (Sweden)

    Debra Sandor

    2018-01-01

    Full Text Available Renewable energy, produced with widely available low-cost energy resources, is often included as a component of national strategies to address energy security and sustainability. Market and political forces cannot disrupt the sun or wind, unlike oil and gas supplies. However, the cost of renewable energy is highly dependent on technologies manufactured through global supply chains in leading manufacturing countries. The countries that contribute to the global supply chains may take actions that, directly or indirectly, influence global access to materials and components. For example, high-purity polysilicon, a key material in solar photovoltaics, has experienced significant price fluctuations, affecting the manufacturing capacity and cost of both polysilicon and solar panels. This study developed and validated an initial system dynamics framework to gain insights into global trade in polysilicon. The model represents an initial framework for exploration. Three regions were modeled—China, the United States, and the rest of the world—for a range of trade scenarios to understand the impacts of import duties and non-price drivers on the relative volumes of imports and domestic supply. The model was validated with the historical case of China imposing an import duty on polysilicon from the United States, the European Union, and South Korea, which altered the regional flows of polysilicon—in terms of imports, exports, and domestic production—to varying degrees. As expected, the model tracked how regional demand shares and influx volumes decrease as a duty on a region increases. Using 2016 as a reference point, in the scenarios examined for U.S. exports to China, each 10% increase in the import duty results in a 40% decrease in import volume. The model also indicates that, under the scenarios investigated, once a duty has been imposed on a region, the demand share from that region declines and does not achieve pre-duty levels, even as global

  17. Estimates of the price of hydrogen as a medium for wind and solar sources

    International Nuclear Information System (INIS)

    Bockris, John O'M.; Veziroglu, T. Nejat

    2007-01-01

    The rejection of hydrogen as a solution to global warming by becoming the medium of wind and solar was made when gasoline was priced at $1/gallon. From wind, H 2 would now cost (by electrolysis of water and steam) less than $3 for an amount equivalent in energy to that in a gallon of gasoline ('equivalent'). From solar photovoltaics (pv), H 2 would be sinking in price between $8 toward $5 equivalent as the efficiency of solar pv increases toward 20%. Solar thermal's present prices offer about one-half the solar pv prices. Prediction of the maximum of the delivery rate of world oil is [Laherre's Oil Production Forecast, 1950-2150. Reprinted with permission from correspondence with William Horvath, U.S. Department of Energy, March 29, 2001] 2010. Future energy sources will develop inexhaustible energies from wind, solar, geothermal, tidal, and wave sources. The common media will be hydrogen and electricity. These sources yield energy at around one-half the cost of nuclear fission. Growing corn to make alcohol involves a net loss of energy and need for a heating mechanism. It may increase the Greenhouse. (author)

  18. Developing a hybrid solar/wind powered irrigation system for crops in the Great Plains

    Science.gov (United States)

    Some small scale irrigation systems (powered by wind or solar do not require subsidies, but this paper discusses ways to achieve an economical renewable energy powered center pivot irrigation system for crops in the Great Plains. By adding a solar-photovoltaic (PV) array together with a wind...

  19. Effect of wind speed on performance of a solar-pv array

    Science.gov (United States)

    Thousands of solar photovoltaic (PV) arrays have been installed over the past few years, but the effect of wind speed on the predicted performance of PV arrays is not usually considered by installers. An increase in wind speed will cool the PV array, and the electrical power of the PV modules will ...

  20. Intelligent Maximum Power Point Tracking Using Fuzzy Logic for Solar Photovoltaic Systems Under Non-Uniform Irradiation Conditions

    OpenAIRE

    P. Selvam; S. Senthil Kumar

    2016-01-01

    Maximum Power Point Tracking (MPPT) has played a vital role to enhance the efficiency of solar photovoltaic (PV) power generation under varying atmospheric temperature and solar irradiation. However, it is hard to track the maximum power point using conventional linear controllers due to the natural inheritance of nonlinear I-V and P-V characteristics of solar PV systems. Fuzzy Logic Controller (FLC) is suitable for nonlinear system control applications and eliminating oscillations, circuit c...

  1. Better or worse? The role of solar photovoltaic (PV) systems in sustainable development. Case studies of remote atoll communities in Kiribati

    Energy Technology Data Exchange (ETDEWEB)

    Mala, Kirti; Schlaepfer, August; Pryor, Trevor [School of Electrical, Energy and Process Engineering, Murdoch University, Murdoch 6150 (Australia)

    2009-02-15

    The Republic of Kiribati, formerly known as the Gilbert Islands, is a Micronesian (One of the three groups of islands in the Pacific. The eight territories that make up Micronesia are Commonwealth of the Northern Mariana Islands, Federated States of Micronesia, Republic of Kiribati, Republic of the Marshall Islands, Republic of Nauru, Republic of Palau, Territory of Guam and Territory of Wake Island. The other two groups of islands in the Pacific are Melanesia and Polynesia) country in the Pacific. The energy sources utilised in Kiribati include petroleum products, biomass, solar energy and wind power. Solar energy was introduced in Kiribati in the early 1980s (Wade H. Survey of RESCO projects - prepared for OPRET, Fiji Department of Energy, 2003; p. 36). Currently, it makes a very insignificant (less than 1%) contribution to the total annual primary energy supply (South Pacific Regional Environment Programme (SPREP). Pacific Islands Renewable Energy Project (PIREP) - Pacific Regional Energy Assessment (PREA) 2004. Kiribati national report, Vol. 5, 2005). Solar energy in Kiribati is used mostly in the form of solar photovoltaic (PV) technologies for the provision of lighting and electricity. This study examines the role of PV technologies in the sustainable development process in Kiribati, with particular reference to remote atoll communities. Initial results from on-site surveys carried out are reported in this paper. These surveys have sought to identify the reasons why people use or do not use PV systems. (author)

  2. Envisaging feed-in tariffs for solar photovoltaic electricity: European lessons for Canada

    International Nuclear Information System (INIS)

    Rowlands, I.H.

    2005-01-01

    While it is widely agreed that support schemes need to be put in place to promote the use of renewable electricity, there is less consensus as to what are the best kinds of strategies to use. What is attracting increasing attention in Canada is a system of renewable portfolio standards. In this, all power suppliers are under an obligation to ensure that a certain percentage of the electricity they generate is from renewable resources. They can either generate that electricity themselves or purchase 'green certificates' from those who have used renewables to generate electricity. Recent experience from Europe, however, suggests that a whole-hearted commitment to this single strategy could be premature and potentially damaging for the development of all kinds of renewable electricity in Canada, solar photovoltaics included. On the other side of the Atlantic Ocean, the use of so-called 'feed-in tariffs' (that is, an obligation for utilities to purchase, at a set price, the electricity generated by any renewable energy resource) is widely credited with accelerating the development of renewable electricity in many countries. The purpose of this article is to reflect upon this European experience with feed-in tariffs, to stimulate discussions regarding what promise they might hold for the development of solar photovoltaic electricity in Canada. The article is divided into three main sections. In the first section, policies to promote renewable electricity, presently in place in different parts of Canada, are reviewed. Attention is then focused, more specifically, in the second section of this article, upon 'feed-in tariffs'. After defining and describing this alternative system, experiences in the countries of the European Union are reviewed. The main strengths and weaknesses of feed-in tariffs - in the European experience - are also examined. The focus then moves back to Canada in the third section of the article. In this, a system of feed-in tariffs is proposed for the

  3. Geothermal energy

    International Nuclear Information System (INIS)

    Rummel, F.; Kappelmeyer, O.; Herde, O.A.

    1992-01-01

    Objective of this brochure is to present the subject Geothermics and the possible use of geothermal energy to the public. The following aspects will be refered to: -present energy situation -geothermal potential -use of geothermal energy -environemental aspects -economics. In addition, it presents an up-dated overview of geothermal projects funded by the German government, and a list of institutions and companies active in geothermal research and developments. (orig./HP) [de

  4. Evaluating the limits of solar photovoltaics (PV) in traditional electric power systems

    International Nuclear Information System (INIS)

    Denholm, Paul; Margolis, Robert M.

    2007-01-01

    In this work, we examine some of the limits to large-scale deployment of solar photovoltaics (PV) in traditional electric power systems. Specifically, we evaluate the ability of PV to provide a large fraction (up to 50%) of a utility system's energy by comparing hourly output of a simulated large PV system to the amount of electricity actually usable. The simulations use hourly recorded solar insolation and load data for Texas in the year 2000 and consider the constraints of traditional electricity generation plants to reduce output and accommodate intermittent PV generation. We find that under high penetration levels and existing grid-operation procedures and rules, the system will have excess PV generation during certain periods of the year. Several metrics are developed to examine this excess PV generation and resulting costs as a function of PV penetration at different levels of system flexibility. The limited flexibility of base load generators produces increasingly large amounts of unusable PV generation when PV provides perhaps 10-20% of a system's energy. Measures to increase PV penetration beyond this range will be discussed and quantified in a follow-up analysis

  5. Residential solar photovoltaic market stimulation: Japanese and Australian lessons for Canada

    International Nuclear Information System (INIS)

    Parker, Paul

    2008-01-01

    Canada is a leading electricity consumer, yet lags behind other industrial countries (14th out of 20 reporting IEA countries) in the installation of solar photovoltaic systems. The factors (environmental benefits, health benefits, network benefits, need for new production capacity, etc.) promoting solar or other renewable sources of electricity in other countries are also present in Canada, but effective policy mechanisms to stimulate Canada's photovoltaic industry are only starting to appear. Discussions of policy options focused initially on renewable portfolio standards and then on feed-in tariffs. This paper reviews the Japanese and Australian experience with capital incentives to stimulate the residential market for photovoltaics. It demonstrates the ability of a market-sensitive program to stimulate industrial growth, achieve unit cost reductions and shift the market to include a large grid-tied share. Residential respondents to surveys report high costs as their primary barrier to installing photovoltaic systems and state a strong preference for capital incentives to reduce their investment costs. The Canadian government needs a market stimulation policy if it is to join those countries where a decentralized photovoltaic generation system strengthens the electricity supply system. A balanced solar energy market stimulation program is proposed that combines a feed-in tariff with a declining capital incentive. (author)

  6. Design and testing of a solar photovoltaic operated multi-seeds oil press

    Energy Technology Data Exchange (ETDEWEB)

    Mpagalile, J.J. [Department of Food Science and Technology, Sokoine University of Agriculture, P.O. Box 3006, Morogoro (Tanzania); Hanna, M.A.; Weber, R. [Industrial Agricultural Products Center, University of Nebraska, 209 L.W. Chase Hall, Lincoln, NE 68583-0730 (United States)

    2006-10-15

    Oil expression tests were conducted to evaluate the performance of a novel oil expeller designed and fabricated to operate on a 200W solar photovoltaic (PV) power system as a sole power source. The oil press was designed to press oilseeds meal with intermediate moisture content of 12+/-1% (w.b.) and 0.5-2mm particle sizes. Freshly grated coconuts and ground peanuts were used to determine the oil expression efficiency of the press. The oilseed samples were pressed for 12min with a maximum pressure of 3.0MPa being reached at 6min of pressing for peanuts and 8min of pressing for coconuts. The pressure was then held for the rest of the pressing time. The press attained an average oil expression efficiency of 73% for coconuts and 70% for peanuts. The force-vs.-deformation studies indicated that peanut press meal was compacted at a higher rate as compared to coconuts. The observation on the energy consumption indicated that there was a significant increase (P<0.05) in the specific energy requirement for both coconuts and peanuts after 6min of pressing, which resulted from the solidification of the press cake. An average specific energy of 36.55 and 20.35Wh/kg was recorded for peanuts and coconuts, respectively, after 12min of pressing. (author)

  7. A Standalone Solar Photovoltaic Power Generation using Cuk Converter and Single Phase Inverter

    Science.gov (United States)

    Verma, A. K.; Singh, B.; Kaushika, S. C.

    2013-03-01

    In this paper, a standalone solar photovoltaic (SPV) power generating system is designed and modeled using a Cuk dc-dc converter and a single phase voltage source inverter (VSI). In this system, a dc-dc boost converter boosts a low voltage of a PV array to charge a battery at 24 V using a maximum power point tracking control algorithm. To step up a 24 V battery voltage to 360 V dc, a high frequency transformer based isolated dc-dc Cuk converter is used to reduce size, weight and losses. The dc voltage of 360 V is fed to a single phase VSI with unipolar switching to achieve a 230 Vrms, 50 Hz ac. The main objectives of this investigation are on efficiency improvement, reduction in cost, weight and size of the system and to provide an uninterruptible power to remotely located consumers. The complete SPV system is designed and it is modeled in MATLAB/Simulink. The simulated results are presented to demonstrate its satisfactory performance for validating the proposed design and control algorithm.

  8. Lighting rural and peri-urban homes of the Gambia using solar photovoltaics (PV)

    Energy Technology Data Exchange (ETDEWEB)

    Sanneh, E.S.; Hu, A.H. [National Taipei Univ. of Technology, Taiwan (China). Inst. of Environmental Engineering Technology

    2009-07-01

    The main fuel supplies of Gambia are fuel woods, petroleum products, and liquefied petroleum gas (LPG). This study considered the use of solar photovoltaic (PV) as a principal source of power for rural and peri-urban communities in Gambia. The country currently has high rates of poverty and malnutrition, and it is expected that the provision of electricity to communities will encourage economic growth. Gambia is also heavily dependent on foreign imports of oil. To date, PV systems have been used for water pumping, refrigeration, and telecommunications projects. The study showed that better access to sustainable energy services is needed at the micro-level to stimulate businesses and income-generating activities, as well as at the macro level to foster economic growth. Financing methods for developing solar energy in Gambia include credit financing; PV market transformative initiatives; revolving loan funds; and government-granted renewable energy concessions for institutionally-owned and maintained systems. A pilot program has been established to investigate the acceptability of PV lighting systems for rural populations. 46 refs., 2 tabs., 7 figs.

  9. A Non-Modeling Exploration of Residential Solar Photovoltaic (PV) Adoption and Non-Adoption

    Energy Technology Data Exchange (ETDEWEB)

    Moezzi, Mithra [Portland State Univ., Portland, OR (United States); Ingle, Aaron [Portland State Univ., Portland, OR (United States); Lutzenhiser, Loren [Portland State Univ., Portland, OR (United States); Sigrin, Benjamin O. [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-01

    Although U.S. deployment of residential rooftop solar photovoltaic (PV) systems has accelerated in recent years, PV is still installed on less than 1 percent of single-family homes. Most research on household PV adoption focuses on scaling initial markets and modeling predicted growth rather than considering more broadly why adoption occurs. Among the studies that have investigated the characteristics of PV adoption, most collected data from adopters, sometimes with additional non-adopter data, and rarely from people who considered but did not adopt PV. Yet the vast majority of Americans are non-adopters, and they are a diverse group - understanding their ways of evaluating PV adoption is important. Similarly, PV is a unique consumer product, which makes it difficult to apply findings from studies of other technologies to PV. In addition, little research addresses the experience of households after they install PV. This report helps fill some of these gaps in the existing literature. The results inform a more detailed understanding of residential PV adoption, while helping ensure that adoption is sufficiently beneficial to adopters and even non-adopters.

  10. Lightning Surge Analysis on a Large Scale Grid-Connected Solar Photovoltaic System

    Directory of Open Access Journals (Sweden)

    Nur Hazirah Zaini

    2017-12-01

    Full Text Available Solar photovoltaic (PV farms currently play a vital role in the generation of electrical power in different countries, such as Malaysia, which is moving toward the use of renewable energy. Malaysia is one of the countries with abundant sunlight and thus can use solar PV farms as alternative sources for electricity generation. However, lightning strikes frequently occur in the country. Being installed in open and flat areas, solar PV farms, especially their electronic components, are at great risk of damage caused by lightning. In this paper, the effects of lightning currents with different peak currents and waveshapes on grid-connected solar PV farms were determined to approximate the level of transient effect that can damage solar PV modules, inverters and transformers. Depending on the location of the solar PV farm, engineer can obtain information on the peak current and median current of the site from the lightning location system (LLS and utilise the results obtained in this study to appropriately assign an SPD to protect the solar panel, inverter and the main panel that connected to the grid. Therefore, the simulation results serve as the basis for controlling the effects of lightning strikes on electrical equipment and power grids where it provides proper justification on the ‘where to be installed’ and ‘what is the rating’ of the SPD. This judgment and decision will surely reduce the expensive cost of repair and replacement of electrical equipment damages due to the lightning.

  11. Designing of new structure PID controller of boost converter for solar photovoltaic stability

    Science.gov (United States)

    Shabrina, Hanifati Nur; Setiawan, Eko Adhi; Sabirin, Chip Rinaldi

    2017-03-01

    Nowadays, the utilization of renewable energy as the source on distributed generation system is increasing. It aims to reduce reliance and power losses from utility grid and improve power stability in near loads. One example of renewable energy technology that have been highly proven on the market is solar photovoltaic (PV). This technology converts photon from sunlight into electricity. However, the fluctuation of solar radiation that often occurs become the main problem for this system. Due to this condition, the power conversion is needed to convert the change frequently in photovoltaic panel into a stable voltage to the system. Developing control of boost converter has important role to keep ability of system stabilization. A conventional PID (Proportional, Integral, Derivative) control is mostly used to achieve this goal. In this research, a design of new structure PID controller of boost converter is offered to better optimize system stability comparing to the conventional PID. Parameters obtained from this PID structure have been successfully yield a stable boost converter output at 200 V with 10% overshoot, 1.5 seconds of settling time, and 1.5% of steady-state error.

  12. The Geography of Solar Photovoltaics (PV and a New Low Carbon Urban Transition Theory

    Directory of Open Access Journals (Sweden)

    Peter Newton

    2013-06-01

    Full Text Available This paper examines the early phases of a 21st century energy transition that involves distributed generation technologies employing low or zero carbon emission power sources and their take-up within Australia, with particular reference to the major cities and solar photovoltaics (PV. This transition is occurring in a nation with significant path dependency to overcome in relation to fossil fuel use. Tracking the diffusion of solar PV technology within Australia over the past decade provides a basis for assessing those factors underpinning its exponential growth and its associated geography of diffusion. Positive evidence that there are pathways for cities to decarbonise is apparent but there appear to be different pathways for different city forms with lower density suburban areas showing the biggest take-up of household-based energy technologies. This suggests a model for the low carbon urban transition involving combinations of simple technological changes and harder structural changes, depending upon which parts of the urban fabric are in focus. This is being called a New Low Carbon Urban Transition Theory.

  13. Characteristics of Low-Priced Solar Photovoltaic Systems in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Nemet, Gregory F. [Univ. of Wisconsin, Madison, WI (United States); O' Shaughnessy, Eric [National Renewable Energy Lab. (NREL), Golden, CO (United States); Wiser, Ryan H. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Darghouth, Naim [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Barbose, Galen [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Gillingham, Ken [Yale Univ., New Haven, CT (United States); Rai, Varun [Univ. of Texas, Austin, TX (United States)

    2016-01-01

    Despite impressive recent cost reductions, there is wide dispersion in the prices of installed solar photovoltaic (PV) systems. We identify the most important factors that make a system likely to be low priced (LP). Our sample consists of detailed characteristics for 42,611 small-scale (< 15 kW) PV systems installed in 15 U.S. states during 2013. Using four definitions of LP systems, we compare LP and non-LP systems and find statistically significant differences in nearly all factors explored, including competition, installer scale, markets, demographics, ownership, policy, and system components. Logit and probit model results robustly indicate that LP systems are associated with markets with few active installers; experienced installers; customer ownership; large systems; retrofits; and thin-film, low-efficiency, and Chinese modules. We also find significant differences across states, with LP systems much more likely to occur in some than in others. Our focus on the left tail of the price distribution provides implications for policy that are distinct from recent studies of mean prices. While those studies find that PV subsidies increase mean prices, we find that subsidies also generate LP systems. PV subsidies appear to simultaneously shift and broaden the price distribution. Much of this broadening occurs in a particular location, northern California, which is worthy of further investigation with new data.

  14. Investigation of existing financial incentive policies for solar photovoltaic systems in U.S. regions

    Directory of Open Access Journals (Sweden)

    Jian Zhang

    2017-12-01

    Full Text Available This paper analyzes some of the existing incentives for solar photovoltaic (PV energy generation in the U.S. Four types of buildings (e.g., hospitals, large offices, large hotels, and secondary schools located in five different U.S. states, each having their own incentives, are selected and analyzed for the PV incentive policies. The payback period of the PV system is chosen as an indicator to analyze and critique the effectiveness of each incentive by comparing the payback periods before and after taking the incentive into consideration. Then a parametric analysis is conducted to determine the influence of the variation in key parameters, such as PV system capacity, capital cost of PV, sell back ratio and the performance-based incentive rate, on the performance of the PV system. The results show how the existing incentives can be effectively used to promote the PV systems in the U.S. and how variations of the parameters can impact the payback period of the PV systems. Through the evaluation of the existing incentive policies and the parametric study, this paper demonstrates that the type and level of incentives should be carefully determined in policy-making processes to effectively promote the PV systems.

  15. The Effectiveness of Warranties in the Solar Photovoltaic and Automobile Industries

    Science.gov (United States)

    Formica, Tyler J.

    A warranty is an agreement outlined by a manufacturer to a customer that defines performance requirements for a product or service. Although long warranty periods are a useful marketing tool, in 2011 the warranty claims expense was 2.6% of total sales for computer original equipment manufacturers (OEMs) and is over 2% of total sales in many other industries today. Solar PV systems offer inverters with 5-15 year warranties and PV modules with 25-year performance warranties. This is problematic for the return on investment (ROI) of solar PV systems when the modules are still productive and covered under warranty but inverter failures occur due to degradation of electronic components after their warranty has expired. Out-of-warranty inverter failures during the lifetime of solar panels decrease the ROI of solar PV systems significantly and can cause the annual ROI to actually be negative 15-25 years into the lifetime of the system. This thesis analyzes the factors that contribute to designing an optimal warranty period and the relationship between reliability and warranty periods using General Motors (GM) and the solar PV industry as case studies. A return on investment of a solar photovoltaic system is also conducted and the effect of reliability, changing tax credit structures, and failure areas of solar PV systems are analyzed.

  16. Electromagnetic Fields Associated with Commercial Solar Photovoltaic Electric Power Generating Facilities.

    Science.gov (United States)

    Tell, R A; Hooper, H C; Sias, G G; Mezei, G; Hung, P; Kavet, R

    2015-01-01

    The southwest region of the United States is expected to experience an expansion of commercial solar photovoltaic generation facilities over the next 25 years. A solar facility converts direct current generated by the solar panels to three-phase 60-Hz power that is fed to the grid. This conversion involves sequential processing of the direct current through an inverter that produces low-voltage three-phase power, which is stepped up to distribution voltage (∼12 kV) through a transformer. This study characterized magnetic and electric fields between the frequencies of 0 Hz and 3 GHz at two facilities operated by the Southern California Edison Company in Porterville, CA and San Bernardino, CA. Static magnetic fields were very small compared to exposure limits established by IEEE and ICNIRP. The highest 60-Hz magnetic fields were measured adjacent to transformers and inverters, and radiofrequency fields from 5-100 kHz were associated with the inverters. The fields measured complied in every case with IEEE controlled and ICNIRP occupational exposure limits. In all cases, electric fields were negligible compared to IEEE and ICNIRP limits across the spectrum measured and when compared to the FCC limits (≥0.3 MHz).

  17. Feasibility Study of Economics and Performance of Solar Photovoltaics at Johnson County Landfill

    Energy Technology Data Exchange (ETDEWEB)

    Salasovich, J.; Mosey, G.

    2012-01-01

    The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the Johnson County Landfill in Shawnee, Kansas, for a feasibility study of renewable energy production. Citizens of Shawnee, city planners, and site managers are interested in redevelopment uses for landfills in Kansas that are particularly well suited for grid-tied solar photovoltaic (PV) installation. This report assesses the Johnson County Landfill for possible grid-tied PV installations and estimates the cost, performance, and site impacts of three different PV options: crystalline silicon (fixed tilt), crystalline silicon (single-axis tracking), and thin film (fixed tilt). Each option represents a standalone system that can be sized to use an entire available site area. In addition, the report outlines financing options that could assist in the implementation of a system. The feasibility of PV systems installed on landfills is highly impacted by the available area for an array, solar resource, operating status, landfill cap status, distance to transmission lines, and distance to major roads. The report findings are applicable to other landfills in the surrounding area.

  18. Distributed solar photovoltaic array location and extent dataset for remote sensing object identification

    Science.gov (United States)

    Bradbury, Kyle; Saboo, Raghav; L. Johnson, Timothy; Malof, Jordan M.; Devarajan, Arjun; Zhang, Wuming; M. Collins, Leslie; G. Newell, Richard

    2016-12-01

    Earth-observing remote sensing data, including aerial photography and satellite imagery, offer a snapshot of the world from which we can learn about the state of natural resources and the built environment. The components of energy systems that are visible from above can be automatically assessed with these remote sensing data when processed with machine learning methods. Here, we focus on the information gap in distributed solar photovoltaic (PV) arrays, of which there is limited public data on solar PV deployments at small geographic scales. We created a dataset of solar PV arrays to initiate and develop the process of automatically identifying solar PV locations using remote sensing imagery. This dataset contains the geospatial coordinates and border vertices for over 19,000 solar panels across 601 high-resolution images from four cities in California. Dataset applications include training object detection and other machine learning algorithms that use remote sensing imagery, developing specific algorithms for predictive detection of distributed PV systems, estimating installed PV capacity, and analysis of the socioeconomic correlates of PV deployment.

  19. Revised feed-in tariff for solar photovoltaic in the United Kingdom: A cloudy future ahead?

    International Nuclear Information System (INIS)

    Muhammad-Sukki, Firdaus; Ramirez-Iniguez, Roberto; Munir, Abu Bakar; Mohd Yasin, Siti Hajar; Abu-Bakar, Siti Hawa; McMeekin, Scott G.; Stewart, Brian G.

    2013-01-01

    The United Kingdom (UK) started implementing a national Feed-In Tariff (FiT) mechanism on the 1 April 2010, which included specific payment tariffs for solar photovoltaic (PV) installations. However, a revised FiT rate has been put in place starting from 1 April 2012, applicable to any installations with an eligibility date of on or after 3 March 2012. This paper presents, first, an overview of solar PV installation in the UK. This followed by a general concept of the FiT in the UK before analyzing the financial impact of the new FiT rate on the consumers. Similar financial analysis is conducted with selected countries in Europe. The financial analysis investigates the total profit, the average rate of return and the payback period. It is found that the new FiT rate generates very low profit, minimum rate of return and a longer payback period, suggesting a downward trend of solar PV uptake in the future. - Highlight: ► Overview of solar PV installation in the UK until present time is discussed. ► Financial analysis is presented using previous, new and degression FiT tariff. ► Comparative analysis with other European countries is evaluated. ► The new FiT rate in the UK generates very low return than other countries. ► This could suggest a downward trend of UK's solar PV uptake in the future

  20. Values and potentials of grid-connected solar photovoltaic applications in Malaysia

    International Nuclear Information System (INIS)

    Ahmad Hadri Haris; Iszuan Shah Syed Ismail

    2006-01-01

    Since early 1998, TNB Research Sdn Bhd has been conducting a pilot project to evaluate the performance and economics of grid-connected solar photovoltaic (PV) applications in Malaysia. The project is co-funded by Tenaga Nasional Berhad (TNB) and Malaysia Electricity Supply Industry Trust Account (MESITA). Currently, research project is being concluded with many valuable findings that would be able to provide the direction for the next solar PV development in Malaysia. In total, six pilot grid-connected solar PV systems were installed, where five are located within Klang Valley area and one in Port Dickson. The systems installation and commissioning were staggered between August 1998 to November 2001. A variety of building type was also selected for the system installation. In addition, various PV systems technologies and configurations were applied with average PV power capacity of 3 kW. These variances provide a good opportunity to assess the actual performances and economics of the solar PV applications under the Malaysian environment. This paper would discuss some of the findings, but with a focus on the values and potentials of the grid-connected solar PV applications in Malaysia

  1. Should solar photovoltaics be deployed sooner because of long operating life at low, predictable cost?

    International Nuclear Information System (INIS)

    Zweibel, Ken

    2010-01-01

    Governments subsidize the deployment of solar photovoltaics (PV) because PV is deployed for societal purposes. About seven thousand megawatts were deployed in 2009 and over 10,000 are expected in 2010. Yet this is too slow to strongly affect energy and environmental challenges. Faster societal deployment is slowed because PV is perceived to be too costly. Classic economic evaluations would put PV electricity in the range of 15-50 c/kWh, depending on local sunlight and system size. But PV has an unusual, overlooked value: systems can last for a very long time with almost no operating costs, much like, e.g., the Hoover Dam. This long life is rarely taken into account. The private sector cannot use it because far-future cash flow does not add to asset value. But we should not be evaluating PV by business metrics. Governments already make up the difference in return on investment needed to deploy PV. PV deployment is government infrastructure development or direct purchases. Thus the question is: Does the usually unevaluated aspect of long life at predictably low operating costs further motivate governments to deploy more PV, sooner?

  2. A comparison of solar photovoltaics and molten carbonate fuel cells as commercial power plants

    International Nuclear Information System (INIS)

    Wee, Jung-Ho; Roh, Jae Hyung; Kim, Jeongin

    2011-01-01

    In line with the worldwide trend, Korea has recognized the importance of renewable energy and extensively supported its exploitation. As of August 2009, the largest incentives for renewable energy are offered to solar photovoltaic (PV) systems, which have vastly increased the installations of this system. On the basis of total paid incentives, the second largest beneficiary is the fuel cell (FC) system. This support has contributed to the successful commercialization of the molten carbonate FC (MCFC) as a distributed generation system (DG). Considering the status of energy systems in Korea, solar PV and MCFC systems are likely to be further developed in the country. The present paper analyzes the exploitation of these two energy systems by conducting a feasibility study and a technology assessment in the Korea environment based on many assumptions, conditions and data involved. The feasibility study demonstrates the positive economic gains of the solar PV and MCFC power plants. The unit electricity generation cost of solar PV is twice that of an MCFC system. In addition, the study reveals the slightly greater profitability of the MCFC. Exact estimation of their future economies is impossible because of uncertainties in many future conditions and environments. Nevertheless, the development of solar cells with higher efficiency is undoubtedly the most critical factor in increasing future profits. On the other hand, reductions in the operation and maintenance (O and M) costs and the natural gas (NG) price are the most important issues in raising the viability of the MCFC system. (author)

  3. Energy Payback Time of a Solar Photovoltaic Powered Waste Plastic Recyclebot System

    Directory of Open Access Journals (Sweden)

    Shan Zhong

    2017-06-01

    Full Text Available The growth of both plastic consumption and prosumer 3-D printing are driving an interest in producing 3-D printer filaments from waste plastic. This study quantifies the embodied energy of a vertical DC solar photovoltaic (PV powered recyclebot based on life cycle energy analysis and compares it to horizontal AC recyclebots, conventional recycling, and the production of a virgin 3-D printer filament. The energy payback time (EPBT is calculated using the embodied energy of the materials making up the recyclebot itself and is found to be about five days for the extrusion of a poly lactic acid (PLA filament or 2.5 days for the extrusion of an acrylonitrile butadiene styrene (ABS filament. A mono-crystalline silicon solar PV system is about 2.6 years alone. However, this can be reduced by over 96% if the solar PV system powers the recyclebot to produce a PLA filament from waste plastic (EPBT is only 0.10 year or about a month. Likewise, if an ABS filament is produced from a recyclebot powered by the solar PV system, the energy saved is 90.6–99.9 MJ/kg and 26.33–29.43 kg of the ABS filament needs to be produced in about half a month for the system to pay for itself. The results clearly show that the solar PV system powered recyclebot is already an excellent way to save energy for sustainable development.

  4. The solar photovoltaic feed-in tariff scheme in New South Wales, Australia

    International Nuclear Information System (INIS)

    Martin, Nigel; Rice, John

    2013-01-01

    Solar Photovoltaic (PV) electricity systems are part of Australia's energy supply matrix. In the case of New South Wales (NSW), the state government has had to deal with a complex policy problem. In order to play its role in the federal Small-scale Renewable Energy Scheme, the NSW government initiated the 7 year Solar Bonus Scheme in 2010. However, in attempting to maximise community investment in small-scale solar PV systems, it relied on faulty financial modelling that applied a generous Feed-in Tariff (FiT) and underestimated the level of investor participation and installed capacity. Consequently, the scheme has resulted in very high public costs that will require policy changes that bring investors and energy retailers into conflict, and unpopular electricity retail price adjustments. This paper uses a structured case and stakeholder analysis to critically analyse the FiT policy, while also highlighting important lessons for policymakers engaging in FiT design. - highlights: • Describes the design of a feed-in tariff policy for solar PV electricity exports. • Exposes a A$1 billion payment overrun and weaknesses in policy controls. • Identifies policy design flaws and opportunities to improve future tariff designs. • Discusses the importance of developing nationally integrated feed-in tariff policies

  5. Spectral analysis to detection of short circuit fault of solar photovoltaic modules in strings

    International Nuclear Information System (INIS)

    Sevilla-Camacho, P.Y.; Robles-Ocampo, J.B.; Zuñiga-Reyes, Marco A.

    2017-01-01

    This research work presents a method to detect the number of short circuit faulted solar photovoltaic modules in strings of a photovoltaic system by taking into account speed, safety, and non-use of sensors and specialized and expensive equipment. The method consists on apply the spectral analysis and statistical techniques to the alternating current output voltage of a string and detect the number of failed modules through the changes in the amplitude of the component frequency of 12 kHz. For that, the analyzed string is disconnected of the array; and a small pulsed voltage signal of frequency of 12 kHz introduces him under dark condition and controlled temperature. Previous to the analysis, the signal is analogic filtered in order to reduce the direct current signal component. The spectral analysis technique used is the Fast Fourier Transform. The obtained experimental results were validated through simulation of the alternating current equivalent circuit of a solar cell. In all experimental and simulated test, the method allowed to identify correctly the number of photovoltaic modules with short circuit in the analyzed string. (author)

  6. U.S. Solar Photovoltaic System Cost Benchmark: Q1 2017

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Ran [National Renewable Energy Lab. (NREL), Golden, CO (United States); Feldman, David [National Renewable Energy Lab. (NREL), Golden, CO (United States); Margolis, Robert [National Renewable Energy Lab. (NREL), Golden, CO (United States); Woodhouse, Mike [National Renewable Energy Lab. (NREL), Golden, CO (United States); Ardani, Kristen [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-09-01

    This report benchmarks U.S. solar photovoltaic (PV) system installed costs as of the first quarter of 2017 (Q1 2017). We use a bottom-up methodology, accounting for all system and projectdevelopment costs incurred during the installation to model the costs for residential, commercial, and utility-scale systems. In general, we attempt to model the typical installation techniques and business operations from an installed-cost perspective. Costs are represented from the perspective of the developer/installer; thus, all hardware costs represent the price at which components are purchased by the developer/installer, not accounting for preexisting supply agreements or other contracts. Importantly, the benchmark also represents the sales price paid to the installer; therefore, it includes profit in the cost of the hardware, 1 along with the profit the installer/developer receives, as a separate cost category. However, it does not include any additional net profit, such as a developer fee or price gross-up, which is common in the marketplace. We adopt this approach owing to the wide variation in developer profits in all three sectors, where project pricing is highly dependent on region and project specifics such as local retail electricity rate structures, local rebate and incentive structures, competitive environment, and overall project or deal structures. Finally, our benchmarks are national averages weighted by state installed capacities.

  7. Comparison of Interleaved Boost Converter Configurations for Solar Photovoltaic System Interface

    Directory of Open Access Journals (Sweden)

    R Ramaprabha

    2013-12-01

    Full Text Available Solar photovoltaic (SPV panels that convert light energy into electrical energy through the photovoltaic effect have nonlinear internal resistance. Hence, with the variation in the intensity of light falling on the panel, the internal resistance varies. For effective utilization of the SPV panel, it is necessary to extract the maximum power from it. For maximum power extraction from SPV panels, DC-DC converter interface is used. The problem in using high frequency converter interface is the resultant high frequency ripple interaction with the SPV system. In this work, an interleaved boost converter (IBC is considered to reduce the ripple. Our finding is that IBC fed by a SPV panel reduces this ripple to a greater extent. IBC also has a faster transient response as compared to conventional boost converters with reduced ripple contents. The main aim of this paper is to present a comparative analysis of the performance of IBC with inductors that are coupled in different ways. The results of the simulation were extrapolated with the help of MATLAB software and verified through experimentation.

  8. 78 FR 2423 - Draft Environmental Impact Statement (DEIS) for the Proposed Shu'luuk Wind Project on the Campo...

    Science.gov (United States)

    2013-01-11

    ... to 80 2-MW wind turbines (totaling 160 MW from wind) in combination with up to 40 1-MW solar photovoltaic (PV) panels (totaling 40 MW from solar). Each turbine would generate 2 MW, have a hub height up to... solar energy generation. The approval of the lease would allow Invenergy, LLC to develop and operate a...

  9. Geothermal Energy

    International Nuclear Information System (INIS)

    Haluska, Oscar P.; Tangir, Daniel; Perri, Matias S.

    2002-01-01

    A general overview of geothermal energy is given that includes a short description of the active and stable areas in the world. The possibilities of geothermal development in Argentina are analyzed taking into account the geothermal fields of the country. The environmental benefits of geothermal energy are outlined

  10. Dissemination of solar photovoltaics: a study on the government programme to promote solar lantern in India

    Energy Technology Data Exchange (ETDEWEB)

    Velayudhan, S.K. [Administrative Staff College of India, Hyderabad (India)

    2003-11-01

    The study examines the reasons for the limited dissemination of solar lanterns in India. It uses ''diffusion of innovation'' framework to examine the dissemination process. The impact of the characteristics of solar lantern on dissemination and also the communication within the community about the product are examined. To understand the influence of the characteristics of solar lantern on dissemination and the information source used by adopters, a survey of 188 users across 15 locations is carried out. The study shows that the benefits promoted by the government programme for disseminating solar lantern are not the reasons for purchase in most cases. The results suggest that the emphasis on subsidy by the support programme shifts the focus to the cost of the solar lantern than its benefits. Contrary to expectation there is no significant difference in the profile of early and late adopters. The subsidy for solar lanterns and the targets set for government officials are the possible influence on the observed profile for adopter categories. The early majority who can afford the solar lantern and take up the innovation on its merits are expected to disseminate the innovation. The programme on the contrary not only fails to identify and promote to the early adopters, but focus on the disadvantaged groups. There are therefore no champions for the innovation and an absence of word-of-mouth communication. The information source is restricted to government agencies, while the potential user looks for evaluative information on the product from existing users. The application of ''diffusion of innovation'' framework to understand the dissemination process of solar lantern suggests reworking the support programmes designed to promote solar lanterns. The lessons can be extended to programmes designed for dissemination of other solar photovoltaic products. (author)

  11. Identifying Potential Area and Financial Prospects of Rooftop Solar Photovoltaics (PV

    Directory of Open Access Journals (Sweden)

    Sarawut Ninsawat

    2016-10-01

    Full Text Available In an urban area, the roof is the only available surface that can be utilized for installing solar photovoltaics (PV, and the active surface area depends on the type of roof. Shadows on a solar panel can be caused by nearby tall buildings, construction materials such as water tanks, or the roof configuration itself. The azimuth angle of the sun varies, based on the season and the time of day. Therefore, the simulation of shadow for one or two days or using the rule of thumb may not be sufficient to evaluate shadow effects on solar panels throughout the year. In this paper, a methodology for estimating the solar potential of solar PV on rooftops is presented, which is particularly applicable to urban areas. The objective of this method is to assess how roof type and shadow play a role in potentiality and financial benefit. The method starts with roof type extraction from high-resolution satellite imagery, using Object Base Image Analysis (OBIA, the generation of a 3D structure from height data and roof type, the simulation of shadow throughout the year, and the identification of potential and financial prospects. Based on the results obtained, the system seems to be adequate for calculating the financial benefits of solar PV to a very fine scale. The payback period varied from 7–13 years depending on the roof type, direction, and shadow impact. Based on the potentiality, a homeowner can make a profit of up to 200%. This method could help homeowners to identify potential roof area and economic interest.

  12. Reduction of solar photovoltaic resources due to air pollution in China.

    Science.gov (United States)

    Li, Xiaoyuan; Wagner, Fabian; Peng, Wei; Yang, Junnan; Mauzerall, Denise L

    2017-11-07

    Solar photovoltaic (PV) electricity generation is expanding rapidly in China, with total capacity projected to be 400 GW by 2030. However, severe aerosol pollution over China reduces solar radiation reaching the surface. We estimate the aerosol impact on solar PV electricity generation at the provincial and regional grid levels in China. Our approach is to examine the 12-year (2003-2014) average reduction in point-of-array irradiance (POAI) caused by aerosols in the atmosphere. We apply satellite-derived surface irradiance data from the NASA Clouds and the Earth's Radiant Energy System (CERES) with a PV performance model (PVLIB-Python) to calculate the impact of aerosols and clouds on POAI. Our findings reveal that aerosols over northern and eastern China, the most polluted regions, reduce annual average POAI by up to 1.5 kWh/m 2 per day relative to pollution-free conditions, a decrease of up to 35%. Annual average reductions of POAI over both northern and eastern China are about 20-25%. We also evaluate the seasonal variability of the impact and find that aerosols in this region are as important as clouds in winter. Furthermore, we find that aerosols decrease electricity output of tracking PV systems more than those with fixed arrays: over eastern China, POAI is reduced by 21% for fixed systems at optimal angle and 34% for two-axis tracking systems. We conclude that PV system performance in northern and eastern China will benefit from improvements in air quality and will facilitate that improvement by providing emission-free electricity. Published under the PNAS license.

  13. Dissemination of solar photovoltaics: a study on the government programme to promote solar lantern in India

    International Nuclear Information System (INIS)

    Velayudhan, S.K.

    2003-01-01

    The study examines the reasons for the limited dissemination of solar lanterns in India. It uses 'diffusion of innovation' framework to examine the dissemination process. The impact of the characteristics of solar lantern on dissemination and also the communication within the community about the product are examined. To understand the influence of the characteristics of solar lantern on dissemination and the information source used by adopters, a survey of 188 users across 15 locations is carried out. The study shows that the benefits promoted by the government programme for disseminating solar lantern are not the reasons for purchase in most cases. The results suggest that the emphasis on subsidy by the support programme shifts the focus to the cost of the solar lantern than its benefits. Contrary to expectation there is no significant difference in the profile of early and late adopters. The subsidy for solar lanterns and the targets set for government officials are the possible influence on the observed profile for adopter categories. The early majority who can afford the solar lantern and take up the innovation on its merits are expected to disseminate the innovation. The programme on the contrary not only fails to identify and promote to the early adopters, but focus on the disadvantaged groups. There are therefore no champions for the innovation and an absence of word-of-mouth communication. The information source is restricted to government agencies, while the potential user looks for evaluative information on the product from existing users. The application of 'diffusion of innovation' framework to understand the dissemination process of solar lantern suggests reworking the support programmes designed to promote solar lanterns. The lessons can be extended to programmes designed for dissemination of other solar photovoltaic products

  14. Economic performance and policies for grid-connected residential solar photovoltaic systems in Brazil

    International Nuclear Information System (INIS)

    Mitscher, Martin; Rüther, Ricardo

    2012-01-01

    We analyze the economic competitiveness of grid-connected, distributed solar photovoltaic generation through small-scale rooftop installations in five Brazilian state-capitals. The locations represent a comprehensive set of the two essential parameters for the economic viability of PV—solar irradiation and local electricity tariffs. Levelized electricity costs (LEC) for PV generation and net present values (NPV) for a specific PV system are presented. The analysis comprises three different interest rate scenarios reflecting different conditions for capital acquisition to finance the generators; subsidized, mature market and country-specific risk-adjusted interest. In the NPV analysis, revenue flow is modeled by the sale of PV electricity at current residential tariffs assuming net metering. Using subsidized interest rates, the analysis shows that solar PV electricity is already competitive in Brazil, while in the country-specific risk-adjusted rate, the declining, but still high capital costs of PV make it economically unfeasible. At a mature market interest rate, PV competitiveness is largely dependent on the residential tariff. Economic competitiveness in this scenario is given for locations with high residential tariffs. We demonstrate the high potential of distributed generation with photovoltaic installations in Brazil, and show that under certain conditions, grid-connected PV can be economically competitive in a developing country. - Highlights: ► Debt financed grid-connected PV on Brazilian rooftops can be economically feasible since 2011. ► The cost of capital in Brazil is the decisive parameter in PV competitiveness with conventional generation sources. ► Low-cost, long-term financing is an essential requirement for PV to become an economically justifiable generation alternative. ► The Brazilian market holds huge potential for distributed, residential rooftop PV systems of small size.

  15. Comparing energy payback and simple payback period for solar photovoltaic systems

    Directory of Open Access Journals (Sweden)

    Kessler Will

    2017-01-01

    Full Text Available Installing a solar photovoltaic (PV array is both an environmental and a financial decision. The financial arguments often take priority over the environmental because installing solar is capital-intensive. The Simple Payback period (SPB is often assessed prior to the adoption of solar PV at a residence or a business. Although it better describes the value of solar PV electricity in terms of sustainability, the Energy Payback period (EPB is seldom used to gauge the merits of an installation. Using published estimates of embodied energies, EPB was calculated for four solar PV plants utilizing crystalline-Si technology: three being actual commercial installations located in the northeastern U.S., and a fourth installation based on a simulated 20-kilowatt roof-mounted system, in Wrocław, Poland. Simple Payback was calculated based on initial capital cost, and on the availability of avoided electricity costs based on net-metering tariffs, which at present in the U.S. are 1:1 credit ratio, and in Poland is 1:0.7 credit ratio. For all projects, the EPB time was estimated at between 1.9 and 2.6 years. In contrast, the SPB for installed systems in the northeastern U.S. ranged from 13.3 to 14.6 years, and was estimated at 13.5 years for the example system in Lower Silesia, Poland. The comparison between SPB and EPB shows a disparity between motivational time frames, in which the wait for financial return is considerably longer than the wait for net energy harvest and the start of sustainable power production.

  16. Comparing energy payback and simple payback period for solar photovoltaic systems

    Science.gov (United States)

    Kessler, Will

    2017-11-01

    Installing a solar photovoltaic (PV) array is both an environmental and a financial decision. The financial arguments often take priority over the environmental because installing solar is capital-intensive. The Simple Payback period (SPB) is often assessed prior to the adoption of solar PV at a residence or a business. Although it better describes the value of solar PV electricity in terms of sustainability, the Energy Payback period (EPB) is seldom used to gauge the merits of an installation. Using published estimates of embodied energies, EPB was calculated for four solar PV plants utilizing crystalline-Si technology: three being actual commercial installations located in the northeastern U.S., and a fourth installation based on a simulated 20-kilowatt roof-mounted system, in Wrocław, Poland. Simple Payback was calculated based on initial capital cost, and on the availability of avoided electricity costs based on net-metering tariffs, which at present in the U.S. are 1:1 credit ratio, and in Poland is 1:0.7 credit ratio. For all projects, the EPB time was estimated at between 1.9 and 2.6 years. In contrast, the SPB for installed systems in the northeastern U.S. ranged from 13.3 to 14.6 years, and was estimated at 13.5 years for the example system in Lower Silesia, Poland. The comparison between SPB and EPB shows a disparity between motivational time frames, in which the wait for financial return is considerably longer than the wait for net energy harvest and the start of sustainable power production.

  17. The solar photovoltaics wedge: pathways for growth and potential carbon mitigation in the US

    Energy Technology Data Exchange (ETDEWEB)

    Drury, Easan; Denholm, Paul [National Renewable Energy Laboratory, 1617 Cole Boulevard, Golden, CO 80401 (United States); Margolis, Robert M, E-mail: easan.drury@nrel.go [National Renewable Energy Laboratory, 901 D Street SW, Suite 930, Washington, DC 20024 (United States)

    2009-09-15

    The challenge of stabilizing global carbon emissions over the next 50 years has been framed in the context of finding seven 1.0 Gton C/year carbon reduction wedges. Solar photovoltaics (PV) could provide at least one carbon wedge, but will require significant growth in PV manufacturing capacity. The actual amount of installed PV capacity required to reach wedge-level carbon reductions will vary greatly depending on the mix of avoided fuels and the additional emissions from manufacturing PV capacity. In this work, we find that the US could reduce its carbon emissions by 0.25 Gton C/year, equal to the fraction of a global carbon wedge proportional to its current domestic electricity use, by installing 792-811 GW of PV capacity. We evaluate a series of PV growth scenarios and find that wedge-level reductions could be met by increasing PV manufacturing capacity and annual installations by 0.95 GW/year/year each year from 2009 to 2050 or by increasing up to 4 GW/year/year for a period of 4-17 years for early and late growth scenarios. This challenge of increasing PV manufacturing capacity and market demand is significant but not out of line with the recent rapid growth in both the global and US PV industry. We find that the rapid growth in PV manufacturing capacity leads to a short term increase in carbon emissions from the US electric sector. However, this increase is small, contributing less than an additional 0.3% to electric sector emissions for less than 4.5 years, alleviating recent concern regarding carbon emissions from rapid PV growth scenarios.

  18. Technical and Economic Assessment of Solar Photovoltaic for Groundwater Extraction on the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Mackley, Rob D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Anderson, David M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Thomle, Jonathan N. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Strickland, Christopher E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-09-01

    The overall goal of environmental remediation is to protect human health and the environment. Implementing renewable energy sources such as solar photovoltaic (PV) in groundwater extraction and pump-and-treat (P&T) systems may help minimize the environmental footprint of remediation efforts. The first step in considering solar PV for powering Hanford groundwater extraction is assessing the technical and economic feasibility and identifying potential target locations where implementation would be most successful. Accordingly, a techno-economic assessment of solar PV for Hanford groundwater extraction was completed in FY15. Multiple solar PV alternatives ranging in size from 1.2 to 22.4 kWp DC were evaluated and compared against traditional grid-powered systems. Results indicate that the degree to which solar PV alternatives are feasible is primarily a function of the distance of avoided power cable costs and the inclusion of an energy storage component. Standalone solar PV systems provide an energy source at the well and avoid the costs and logistics associated with running long lengths of expensive power cable to the well-head. When solar PV systems include a battery storage component, groundwater can be pumped continuously day and night in a year-round schedule. However, due to the high cost premium of the energy storage component, a fully solar-powered solution could not provide an economic direct replacement for line-powered pumping systems. As a result, the most ideal target locations for successful implementation of solar PV on the Hanford Site are remote or distant extraction wells where the primary remedial objective is contaminant mass removal (as opposed to hydraulic containment) and three-season (March through October) intermittent pumping is acceptable (e.g. remediation of hexavalent chromium in 200-UP-1).

  19. The Effectiveness of New Solar Photovoltaic System with Supercapacitor for Rural Areas

    Directory of Open Access Journals (Sweden)

    Muhammad Izuan Fahmi Romli

    2016-11-01

    Full Text Available Countries like Malaysia have more that 70% of its population living in rural areas. Majority of these rural areas lie in regions where most villages do not have grid connected electricity. Renewable energy using photovoltaic (PV panels offers an alternative and cost efficient solution that exploits the yearlong abundance of sunlight available in countries like Malaysia. The main problem with PV systems is the high maintenance costs in replacing batteries every few years which makes PV systems unattractive for rural areas. A full scale PV system, developed in Semenyih Malaysia, aims to increase battery lifetime and reduce maintenance costs by incorporating supercapacitors. The system was developed in a life-sized cabin to mimic a rural home. A programmable load is used to test the system with the load profile of a typical rural household usage. Experimental and simulation results show that the supercapacitor bank is able to reduce the stress on the battery by absorbing peak current surges. Results also show that the system is able to maintain a high battery state of charge during the entire day. Article History: Received June 17th 2016; Received in revised form August 16th 2016; Accepted Sept 10th 2016; Available online How to Cite This Article: Fahmi, M.I., Rajkumar, R.,  Wong, Y.W., Chong, L.W., Arelhi, R., and Isa, D. (2016 The Effectiveness of New Solar Photovoltaic System with Supercapacitor for Rural Areas. Int. Journal of Renewable Energy Development, 5(3, 249-257. http://dx.doi.org/10.14710/ijred.5.3.249-257

  20. Research Progress of utilization in Solar Photovoltaic and Photothermal%太阳能光伏光热利用的研究进展

    Institute of Scientific and Technical Information of China (English)

    张鹏; 陈林

    2015-01-01

    Solar is the new renewable energy that we have been trying to develop, the mature solar photovoltaic technology that related to solar energy are mainly photovoltaic power generation and solar water heaters, etc. This paper explained research progress of the utilization of solar photovoltaic solar thermal through the analysis of utilization of solar photovoltaic solar thermal.%太阳能是我们一直在尽力开发的、全新的可再生能源,目前发展比较成熟的、与太阳能有关的主要有太阳能光伏发电技术、太阳能热水器等,通过分析太阳能光伏光热的利用情况,说明太阳能光伏光热利用的研究进展。

  1. Evaluating the limits of solar photovoltaics (PV) in electric power systems utilizing energy storage and other enabling technologies

    International Nuclear Information System (INIS)

    Denholm, Paul; Margolis, Robert M.

    2007-01-01

    In this work, we evaluate technologies that will enable solar photovoltaics (PV) to overcome the limits of traditional electric power systems. We performed simulations of a large utility system using hourly solar insolation and load data and attempted to provide up to 50% of this system's energy from PV. We considered several methods to avoid the limits of unusable PV that result at high penetration due to the use of inflexible baseload generators. The enabling technologies considered in this work are increased system flexibility, load shifting via demand responsive appliances, and energy storage

  2. Linkages from DOE's Solar Photovoltaic R&D to Commercial Renewable Power from Solar Energy

    Energy Technology Data Exchange (ETDEWEB)

    Ruegg, Rosalie [TIA Consulting Inc., Emerald Isle, NC (United States); Thomas, Patrick [1790 Analytics LLC., Haddonfield, NJ (United States)

    2011-04-01

    DOE's Solar Photovoltaic R&D Subprogram promotes the development of cost-effective systems for directly converting solar energy into electricity for residential, commercial, and industrial applications. This study was commissioned to assess the extent to which the knowledge outputs of R&D funded by the DOE Solar PV subprogram are linked to downstream developments in commercial renewable power. A second purpose was to identify spillovers of the resulting knowledge to other areas of application. A third purpose was to lend support to a parallel benefit-cost study by contributing evidence of attribution of benefits to DOE.

  3. Solar photovoltaic. Competitiveness and economic evaluation. Comparative and models; Energia solar fotovoltaica. Competitividad y evaluacion economica. comparativa y modelos

    Energy Technology Data Exchange (ETDEWEB)

    Collado Fernandez, E.; Colmenar Santos, A.; Peire Arroba, J.; Carpio Ibanez, J.; Castro Gil, M. A.

    2010-07-01

    Limits have been evaluated in the medium and long term economic competitiveness of solar photovoltaic energy in general and Spain in particular, considering the level of evolution that must have this form of energy production, until it become cevitamin with the other traditional energy sources and other emerging growth. to conduct the study, has developed a scenario-based methodology photovoltaic, which has taken account of the Spanish state regulation because it is vital operation on the road to real competitiveness relative to other types of energy. (Author) 10 refs.

  4. Federal Geothermal Research Program Update Fiscal Year 1999

    Energy Technology Data Exchange (ETDEWEB)

    2004-02-01

    The Department of Energy (DOE) and its predecessors have conducted research and development (R&D) in geothermal energy since 1971. To develop the technology needed to harness the Nation's vast geothermal resources, DOE's Office of Geothermal and Wind Technologies oversees a network of national laboratories, industrial contractors, universities, and their subcontractors. The following mission and goal statements guide the overall activities of the Office of Geothermal and Wind Technologies. This Federal Geothermal Program Research Update reviews the specific objectives, status, and accomplishments of DOE's Geothermal Program for Federal Fiscal Year (FY) 1999. The information contained in this Research Update illustrates how the mission and goals of the Office of Geothermal and Wind Technologies are reflected in each R&D activity. The Geothermal Program, from its guiding principles to the most detailed research activities, is focused on expanding the use of geothermal energy.

  5. Real-time prediction models for output power and efficiency of grid-connected solar photovoltaic systems

    International Nuclear Information System (INIS)

    Su, Yan; Chan, Lai-Cheong; Shu, Lianjie; Tsui, Kwok-Leung

    2012-01-01

    Highlights: ► We develop online prediction models for solar photovoltaic system performance. ► The proposed prediction models are simple but with reasonable accuracy. ► The maximum monthly average minutely efficiency varies 10.81–12.63%. ► The average efficiency tends to be slightly higher in winter months. - Abstract: This paper develops new real time prediction models for output power and energy efficiency of solar photovoltaic (PV) systems. These models were validated using measured data of a grid-connected solar PV system in Macau. Both time frames based on yearly average and monthly average are considered. It is shown that the prediction model for the yearly/monthly average of the minutely output power fits the measured data very well with high value of R 2 . The online prediction model for system efficiency is based on the ratio of the predicted output power to the predicted solar irradiance. This ratio model is shown to be able to fit the intermediate phase (9 am to 4 pm) very well but not accurate for the growth and decay phases where the system efficiency is near zero. However, it can still serve as a useful purpose for practitioners as most PV systems work in the most efficient manner over this period. It is shown that the maximum monthly average minutely efficiency varies over a small range of 10.81% to 12.63% in different months with slightly higher efficiency in winter months.

  6. Cost-Reduction Roadmap for Residential Solar Photovoltaics (PV), 2017-2030

    Energy Technology Data Exchange (ETDEWEB)

    Cook, Jeffrey J. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Ardani, Kristen B. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Margolis, Robert M. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Fu, Ran [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-01-03

    The installed cost of solar photovoltaics (PV) has fallen rapidly in recent years and is expected to continue declining in the future. In this report, we focus on the potential for continued PV cost reductions in the residential market. From 2010 to 2017, the levelized cost of energy (LCOE) for residential PV declined from 52 cents per kilowatt-hour (cents/kWh) to 16 cents/kWh (Fu et al. 2017). The U.S. Department of Energy's (DOE's) Solar Energy Technologies Office (SETO) recently set new LCOE targets for 2030, including a target of 5 cents/kWh for residential PV. We present a roadmap for achieving the SETO 2030 residential PV target. Because the 2030 target likely will not be achieved under business-as-usual trends (NREL 2017), we examine two key market segments that demonstrate significant opportunities for cost savings and market growth: installing PV at the time of roof replacement and installing PV as part of the new home construction process. Within both market segments, we identify four key cost-reduction opportunities: market maturation, business model integration, product innovation, and economies of scale. To assess the potential impact of these cost reductions, we compare modeled residential PV system prices in 2030 to the National Renewable Energy Laboratory's (NREL's) quarter one 2017 (Q1 2017) residential PV system price benchmark (Fu et al. 2017). We use a bottom-up accounting framework to model all component and project-development costs incurred when installing a PV system. The result is a granular accounting for 11 direct and indirect costs associated with installing a residential PV system in 2030. All four modeled pathways demonstrate significant installed-system price savings over the Q1 2017 benchmark, with the visionary pathways yielding the greatest price benefits. The largest modeled cost savings are in the supply chain, sales and marketing, overhead, and installation labor cost categories. When we translate these

  7. Potential air quality benefits from increased solar photovoltaic electricity generation in the Eastern United States

    Energy Technology Data Exchange (ETDEWEB)

    Abel, David; Holloway, Tracey; Harkey, Monica; Rrushaj, Arber; Brinkman, Greg; Duran, Phillip; Janssen, Mark; Denholm, Paul

    2018-02-01

    We evaluate how fine particulate matter (PM2.5) and precursor emissions could be reduced if 17% of electricity generation was replaced with solar photovoltaics (PV) in the Eastern United States. Electricity generation is simulated using GridView, then used to scale electricity-sector emissions of sulfur dioxide (SO2) and nitrogen oxides (NOX) from an existing gridded inventory of air emissions. This approach offers a novel method to leverage advanced electricity simulations with state-of-the-art emissions inventories, without necessitating recalculation of emissions for each facility. The baseline and perturbed emissions are input to the Community Multiscale Air Quality Model (CMAQ version 4.7.1) for a full accounting of time- and space-varying air quality changes associated with the 17% PV scenario. These results offer a high-value opportunity to evaluate the reduced-form AVoided Emissions and geneRation Tool (AVERT), while using AVERT to test the sensitivity of results to changing base-years and levels of solar integration. We find that average NOX and SO2 emissions across the region decrease 20% and 15%, respectively. PM2.5 concentrations decreased on average 4.7% across the Eastern U.S., with nitrate (NO3-) PM2.5 decreasing 3.7% and sulfate (SO42-) PM2.5 decreasing 9.1%. In the five largest cities in the region, we find that the most polluted days show the most significant PM2.5 decrease under the 17% PV generation scenario, and that the greatest benefits are accrued to cities in or near the Ohio River Valley. We find summer health benefits from reduced PM2.5 exposure estimated as 1424 avoided premature deaths (95% Confidence Interval (CI): 284 deaths, 2 732 deaths) or a health savings of $13.1 billion (95% CI: $0.6 billion, $43.9 billion) These results highlight the potential for renewable energy as a tool for air quality managers to support current and future health-based air quality regulations.

  8. Potential air quality benefits from increased solar photovoltaic electricity generation in the Eastern United States

    Science.gov (United States)

    Abel, David; Holloway, Tracey; Harkey, Monica; Rrushaj, Arber; Brinkman, Greg; Duran, Phillip; Janssen, Mark; Denholm, Paul

    2018-02-01

    We evaluate how fine particulate matter (PM2.5) and precursor emissions could be reduced if 17% of electricity generation was replaced with solar photovoltaics (PV) in the Eastern United States. Electricity generation is simulated using GridView, then used to scale electricity-sector emissions of sulfur dioxide (SO2) and nitrogen oxides (NOX) from an existing gridded inventory of air emissions. This approach offers a novel method to leverage advanced electricity simulations with state-of-the-art emissions inventories, without necessitating recalculation of emissions for each facility. The baseline and perturbed emissions are input to the Community Multiscale Air Quality Model (CMAQ version 4.7.1) for a full accounting of time- and space-varying air quality changes associated with the 17% PV scenario. These results offer a high-value opportunity to evaluate the reduced-form AVoided Emissions and geneRation Tool (AVERT), while using AVERT to test the sensitivity of results to changing base-years and levels of solar integration. We find that average NOX and SO2 emissions across the region decrease 20% and 15%, respectively. PM2.5 concentrations decreased on average 4.7% across the Eastern U.S., with nitrate (NO3-) PM2.5 decreasing 3.7% and sulfate (SO42-) PM2.5 decreasing 9.1%. In the five largest cities in the region, we find that the most polluted days show the most significant PM2.5 decrease under the 17% PV generation scenario, and that the greatest benefits are accrued to cities in or near the Ohio River Valley. We find summer health benefits from reduced PM2.5 exposure estimated as 1424 avoided premature deaths (95% Confidence Interval (CI): 284 deaths, 2 732 deaths) or a health savings of 13.1 billion (95% CI: 0.6 billion, 43.9 billion) These results highlight the potential for renewable energy as a tool for air quality managers to support current and future health-based air quality regulations.

  9. Performance evaluation and validation of 5 MWp grid connected solar photovoltaic plant in South India

    International Nuclear Information System (INIS)

    Sundaram, Sivasankari; Babu, Jakka Sarat Chandra

    2015-01-01

    Highlights: • A real time performance analysis with validation of the system is carried out for 5 MW p plant. • Dependence or interactions of input factors over performance responses are identified. • The topology of the PV system and the inverter technology is suggested for improved realization. • The average PV module, inverter and system efficiency are found to be 6.08%, 88.2% and 5.08%. • Average energy and exergy efficiency of the system is found to be 6.08% and 3.54%. - Abstract: The main objective of this paper is to present the validated annual performance analysis with the monitored results from a 5 MW p grid connected photovoltaic plant located in India at Sivagangai district in Tamilnadu. The total annual energy generated was 8495296.4 kW h which averages around 707941.4 kW h/month. In addition to the above, real time performance of the plant is validated through system software called RETscreen plus which employs regression analysis for validation. The measured annual average energy generated by the 5 MW p system is 24116.61 kW h/day which is appropriately close to the predicted annual average which was found to be 24055.25 kW h/day by RETscreen. The predicted responses are further justified by the value of statistical indicators such as mean bias error, root mean square error and mean percentage error. The annual average daily array yield, corrected reference yield, final yield, module efficiency, inverter efficiency and system efficiency were found to be 5.46 h/day, 5.128 h/day 4.810 h/day, 6.08%, 88.20% and 5.08% respectively. The overall absolute average daily capture loss and system loss of the particular system under study is 0.384 h/day and 0.65 h/day respectively. A comparison is also made between the performance indices of solar photovoltaic system situated at other locations from the literature’s published. Furthermore the effect of input factors over the output of the system is emphasized by regression coefficients obtained

  10. Geothermal energy

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This chapter discusses the role of geothermal energy may have on the energy future of the US. The topics discussed in the chapter include historical aspects of geothermal energy, the geothermal resource, hydrothermal fluids, electricity production, district heating, process heating, geopressured brines, technology and costs, hot dry rock, magma, and environmental and siting issues

  11. Solar Highway Program : from concept to reality : a guidebook for Departments of Transportation to develop solar photovoltaic systems in the highway right-of-way.

    Science.gov (United States)

    2016-11-01

    This guidebook is intended to provide an overview for state Departments of Transportation (DOTs) of the process for developing solar photovoltaic (PV) projects in the highway right-of-way. The goal is to help others navigate the process towards a suc...

  12. Geothermal spas

    International Nuclear Information System (INIS)

    Woodruff, J.L.; Takahashi, P.K.

    1990-01-01

    The spa business, part of the health and fitness industry that has sprung up in recent years, is highly successful world-wide. The most traditional type of spa is the geothermal spa, found in geothermal areas around the world. In Japan, for example, some 2,000 geothermal spas and resorts generate $6 billion annually. Hawaii has an ideal environment for geothermal spas, and several locations in the islands could supply warm mineral water for spa development. Hawaii receives about 6 million visitors annually, a high percentage of whom are familiar with the relaxing and therapeutic value of geothermal spas, virtually guaranteeing the success of this industry in Hawaii. Presently, Hawaii does not have a single geothermal spa. This paper reports that the geothermal spa business is an industry whose time has come, an industry that offers very promising investment opportunities, and one that would improve the economy while expanding the diversity of pleasurable vacation options in Hawaii

  13. Dynamic performance of a novel solar photovoltaic/loop-heat-pipe heat pump system

    International Nuclear Information System (INIS)

    Zhang, Xingxing; Zhao, Xudong; Shen, Jingchun; Xu, Jihuan; Yu, Xiaotong

    2014-01-01

    Highlights: • A transient model was developed to predict dynamic performance of new PV/LHP system. • The model accuracy was validated by experiment giving less than 9% in error. • The new system had basic and advanced performance coefficients of 5.51 and 8.71. • The new system had a COP 1.5–4 times that for conventional heat pump systems. • The new system had higher exergetic efficiency than PV and solar collector systems. - Abstract: Objective of the paper is to present an investigation into the dynamic performance of a novel solar photovoltaic/loop-heat-pipe (PV/LHP) heat pump system for potential use in space heating or hot water generation. The methods used include theoretical computer simulation, experimental verification, analysis and comparison. The fundamental equations governing the transient processes of solar transmission, heat transfer, fluid flow and photovoltaic (PV) power generation were appropriately integrated to address the energy balances occurring in different parts of the system, e.g., glazing cover, PV cells, fin sheet, loop heat pipe, heat pump cycle and water tank. A dedicated computer model was developed to resolve the above grouping equations and consequently predict the system’s dynamic performance. An experimental rig was constructed and operated under the real weather conditions for over one week in Shanghai to evaluate the system living performance, which was undertaken by measurement of various operational parameters, e.g., solar radiation, photovoltaic power generation, temperatures and heat pump compressor consumption. On the basis of the first- (energetic) and second- (exergetic) thermodynamic laws, an overall evaluation approach was proposed and applied to conduct both quantitative and qualitative analysis of the PV/LHP module’s efficiency, which involved use of the basic thermal performance coefficient (COP th ) and the advanced performance coefficient (COP PV/T ) of such a system. Moreover, a simple comparison

  14. Characterization of a solar photovoltaic/loop-heat-pipe heat pump water heating system

    International Nuclear Information System (INIS)

    Zhang, Xingxing; Zhao, Xudong; Xu, Jihuan; Yu, Xiaotong

    2013-01-01

    Highlights: ► Describing concept and operating principle of the PV/LHP heat pump water heating system. ► Developing a numerical model to evaluate the performance of the system. ► Experimental testing of the prototype system. ► Characterizing the system performance using parallel comparison between the modelling and experimental results. ► Investigating the impact of the operating conditions to the system’s performance. -- Abstract: This paper introduced the concept, potential application and benefits relating to a novel solar photovoltaic/loop-heat-pipe (PV/LHP) heat pump system for hot water generation. On this basis, the paper reported the process and results of characterizing the performance of such a system, which was undertaken through dedicated thermo-fluid and energy balance analyses, computer model development and operation, and experimental verification and modification. The fundamental heat transfer, fluid flow and photovoltaic governing equations were applied to characterize the energy conversion and transfer processes occurring in each part and whole system layout; while the energy balance approach was utilized to enable inter-connection and resolution of the grouped equations. As a result, a dedicated computer model was developed and used to calculate the operational parameters, optimise the geometrical configurations and sizes, and recommend the appropriate operational condition relating to the system. Further, an experimental rig was constructed and utilized to acquire the relevant measurement data that thus enabled the parallel comparison between the simulation and experiment. It is concluded that the testing and modelling results are in good agreement, indicating that the model has the reasonable accuracy in predicting the system’s performance. Under the given experimental conditions, the electrical, thermal and overall efficiency of the PV/LHP module were around 10%, 40% and 50% respectively; whilst the system’s overall performance

  15. Harnessing the sun. The economics of solar photovoltaic electricity in East Africa

    International Nuclear Information System (INIS)

    Ondraczek, Janosch

    2014-01-01

    could not do in my own work. The focus of this thesis is on solar energy technologies, as these have progressed most rapidly in recent years and as the (physical) potential to use the sun's energy is especially large in (East) Africa (Mandelli et al., 2014). Furthermore, solar energy technologies (particularly solar photovoltaics, or solar PV) have already been adopted on a larger scale in many developing countries in Africa and elsewhere (as well as developed countries, where they are being used to an even larger scale). For my research, this means that there were at least some data, history of market development, technology policies and evidence from previous research to work with. The overall contribution of my work is two-fold: First, I address specific research questions of relevance to both researchers and policymakers; and second, I do this in the context of a continent that is in many ways under-researched. According to Das et al. (2013) only around 3% of peer-reviewed papers in leading economics journals deal with sub-Saharan Africa, despite the fact that it accounts for some 12% of the global population (World Bank, 2010). In this context, the potential and future role of solar energy technologies for African development is one important aspect that is not yet fully understood. Helping to address this knowledge gap and advancing the knowledge frontier consequently seems of great relevance for informed policy decisions on both sustainable development and climate change mitigation.

  16. Harnessing the sun. The economics of solar photovoltaic electricity in East Africa

    Energy Technology Data Exchange (ETDEWEB)

    Ondraczek, Janosch

    2014-08-29

    could not do in my own work. The focus of this thesis is on solar energy technologies, as these have progressed most rapidly in recent years and as the (physical) potential to use the sun's energy is especially large in (East) Africa (Mandelli et al., 2014). Furthermore, solar energy technologies (particularly solar photovoltaics, or solar PV) have already been adopted on a larger scale in many developing countries in Africa and elsewhere (as well as developed countries, where they are being used to an even larger scale). For my research, this means that there were at least some data, history of market development, technology policies and evidence from previous research to work with. The overall contribution of my work is two-fold: First, I address specific research questions of relevance to both researchers and policymakers; and second, I do this in the context of a continent that is in many ways under-researched. According to Das et al. (2013) only around 3% of peer-reviewed papers in leading economics journals deal with sub-Saharan Africa, despite the fact that it accounts for some 12% of the global population (World Bank, 2010). In this context, the potential and future role of solar energy technologies for African development is one important aspect that is not yet fully understood. Helping to address this knowledge gap and advancing the knowledge frontier consequently seems of great relevance for informed policy decisions on both sustainable development and climate change mitigation.

  17. A review of installed solar photovoltaic and thermal collector capacities in relation to solar potential for the EU-15

    International Nuclear Information System (INIS)

    Celik, Ali Naci; Muneer, Tariq; Clarke, Peter

    2009-01-01

    This article analyses the energy statistics of 15 European Union countries (EU-15), giving special emphasis to the installed solar photovoltaic and thermal collector capacity. The installed capacities per capita are analysed in relation to the solar radiation income of respective countries with the view to explore the relationship between the solar income and its utilisation as of the year 2006. In terms of the installed solar thermal collector capacity, Austria leads the statistics amongst the countries studied with 223W th collector capacity per capita, followed by Greece with 207W th . Except for Greece, it is observed that the countries with high solar radiation income are lacking to realise their solar potential. Regarding the installed photovoltaic power per capita, Luxembourg leads the pack by a wide margin with 47W p capacity, followed by Germany with 30W p . Fiscal instruments to invigorate the deployment of solar energy have also been identified in this work. (author)

  18. Geothermal energy

    International Nuclear Information System (INIS)

    Laplaige, Ph.; Lemale, J.

    2008-01-01

    Geothermal energy is a renewable energy source which consists in exploiting the heat coming from the Earth. It covers a wide range of techniques and applications which are presented in this article: 1 - the Earth, source of heat: structure of the Earth, geodynamic model and plate tectonics, origin of heat, geothermal gradient and terrestrial heat flux; 2 - geothermal fields and resources; 3 - implementation of geothermal resources: exploration, main characteristic parameters, resource exploitation; 4 - uses of geothermal resources: power generation, thermal uses, space heating and air conditioning heat pumps, district heating, addition of heat pumps; 5 - economical aspects: power generation, heat generation for district heating; 6 - environmental aspects: conditions of implementation, impacts as substitute to fossil fuels; 7 - geothermal energy in France: resources, organisation; 8 - conclusion. (J.S.)

  19. Geothermal energy

    OpenAIRE

    Manzella A.

    2017-01-01

    Geothermal technologies use renewable energy resources to generate electricity and direct use of heat while producing very low levels of greenhouse-gas (GHG) emissions. Geothermal energy is the thermal energy stored in the underground, including any contained fluid, which is available for extraction and conversion into energy products. Electricity generation, which nowadays produces 73.7 TWh (12.7 GW of capacity) worldwide, usually requires geothermal resources temperatures of over 100 °C. Fo...

  20. Geothermal energy

    International Nuclear Information System (INIS)

    Le Du, H.; Bouchot, V.; Lopez, S.; Bialkowski, A.; Colnot, A.; Rigollet, C.; Sanjuan, B.; Millot, R.; Brach, M.; Asmundsson, R.; Giroud, N.

    2010-01-01

    Geothermal energy has shown a revival for several years and should strongly develop in a near future. Its potentiality is virtually unexhaustible. Its uses are multiple and various: individual and collective space heating, heat networks, power generation, heat storage, heat exchanges etc.. Re-launched by the demand of renewable energy sources, geothermal energy has become credible thanks to the scientific works published recently which have demonstrated its economical and technical relevance. Its image to the public is changing as well. However, lot of work remains to do to make geothermal energy a real industry in France. Several brakes have to be removed rapidly which concern the noise pollution of geothermal facilities, the risk of bad results of drillings, the electricity costs etc. This dossier gives an overview of today's main research paths in the domain of geothermal energy: 1 - geothermal energy in France: historical development, surface and deep resources, ambitions of the French national energy plan (pluri-annual investment plan for heat generation, incentives, regional 'climate-air-energy' schemes), specific regulations; 2 - geothermal energy at the city scale - sedimentary basins: Ile-de-France 40 years of Dogger reservoir exploitation, potentialities of clastic reservoirs - the Chaunoy sandstones example; 3 - geothermal power generation: conventional reservoirs - the Bouillante model (Guadeloupe, French Indies); the Soultz-sous-Forets pilot plant (Bas-Rhin, France); the supercritical reservoirs - the Krafla geothermal area (Iceland). (J.S.)

  1. Geothermal energy

    International Nuclear Information System (INIS)

    Kappelmeyer, O.

    1991-01-01

    Geothermal energy is the natural heat of the earth. It represents an inexhaustible source of energy. In many countries, which are mostly located within the geothermal belts of the world, geothermal energy is being used since many decades for electricity generation and direct heating applications comprising municipal, industrial and agricultural heating. Outside the geothermal anomalous volcanic regions, hot ground water from deep rock formations at temperatures above 70 o C is used for process heat and space heating. Low prices for gas and oil hinder the development of geothermal plants in areas outside positive geothermal anomalies; the cost of drilling to reach depths, where temperatures are above 50 o C to 70 o C, is high. The necessary total investment per MW th installed capacity is in the order of 5 Mio- DM/MW th (3 Mio $/MW th ). Experience shows, that an economic break even with oil is reached at an oil price of 30$ per barrel or if an adequate bonus for the clean, environmentally compatible production of geothermal heat is granted. Worldwide the installed electric capacity of geothermal power plants is approximately 6 000 MW e . About 15 000 MW th of thermal capacity is being extracted for process heat and space heat. The importance of the terrestrial heat as an energy resource would be substantially increased, if the heat, stored in the hot crystalline basement could be extracted at economical production costs. Geothermal energy is a competitive energy source in areas with high geothermal gradients (relative low cost for drilling) and would be competitive in areas with normal geothermal gradients, if a fair compensation for environmental implications from fossil and nuclear power production would be granted. (author) 2 figs., 1 tab., 6 refs

  2. Geothermal energy

    International Nuclear Information System (INIS)

    Vuataz, F.-D.

    2005-01-01

    This article gives a general overview of the past and present development of geothermal energy worldwide and a more detailed one in Switzerland. Worldwide installed electrical power using geothermal energy sources amounts to 8900 MW el . Worldwide utilization of geothermal energy for thermal applications amounts to 28,000 MW th . The main application (56.5%) is ground-coupled heat pumps, others are thermal spas and swimming pools (17.7%), space heating (14.9%), heating of greenhouses (4.8%), fish farming (2.2%), industrial uses (1,8%), cooling and melting of snow (1.2%), drying of agricultural products (0.6 %). Switzerland has become an important user of geothermal energy only in the past 25 years. Earlier, only the exploitation of geothermal springs (deep aquifers) in Swiss thermal baths had a long tradition, since the time of the Romans. Today, the main use of geothermal energy is as a heat source for heat pumps utilizing vertical borehole heat exchangers of 50 to 350 meters length. 35,000 installations of this type with heating powers ranging from a few kW to 1000 kW already exist, representing the highest density of such installations worldwide. Other developments are geostructures and energy piles, the use of groundwater for heating and cooling, geothermal district heating, the utilization of draining water from tunnels and the project 'Deep Heat Mining' allowing the combined production of heat and electric power

  3. Solar Photovoltaic Energy Policy in Europe: Losing Sight of What is Right. Current Developments and Lessons Learned for Policy-makers and Industry

    International Nuclear Information System (INIS)

    Cherrelle, Eid

    2012-01-01

    Europe has set ambitious but drastic targets in order to fight climate change. The 20-20-20 objectives demonstrate this. By 2020, emissions are to be reduced by 20%, the share of renewable energy sources (RES) in energy consumption is targeted to rise to 20%, and energy efficiency is planned to increase by 20% in comparison to the 1990 levels in Europe. In order for Europe to reach these objectives, national targets for each Member State have been set. While not yet officially binding, the 2050 road-map of the Commission is focused on achieving even stronger reductions, namely a reduction of 80% in emissions compared to 1990 levels. The 2020 objectives account for less than half of these 2050 objectives. Consequently, Member States are currently under pressure to formulate efforts seriously to comply with their national and European targets as part of the objective of sustainability. European countries have increased capacity of renewables: hydroelectric power, wind power, biomass and solar energy are increasingly produced. As part of the planned renewable electricity capacities for 2020, solar photovoltaic panels (PVs) are the third largest installed RES source, after hydroelectric capacity and wind capacity. PV is an interesting renewable source for several reasons. First, PV uses an energy source which is available daily: the sun. Secondly, PV has shown positive cost and efficiency improvements over time, which makes it increasingly interesting from a business perspective. It is assumed that PV will provide electricity at competitive prices soon in some countries. Thirdly, PV is one of the few domestically usable applications for electricity generation. This might shift the position of consumers to being co-producers or so-called 'prosumers'. These are a few of the reasons that explain the interest in analyzing efforts linked to PV. From an industrial point of view, PV panels are produced in-and outside Europe. Looking from a European perspective, it is

  4. Geothermal energy

    International Nuclear Information System (INIS)

    Lemale, J.

    2009-01-01

    The geothermal energy, listed among the new and renewable energy sources, is characterized by a huge variety of techniques and applications. This book deals with the access to underground geothermal resources and with their energy valorization as well. After a presentation of the main geological, hydrogeological and thermal exploitation aspects of this resource, the book presents the different geothermal-related industries in detail, in particular the district heating systems, the aquifer-based heat pumps, the utilizations in the agriculture, fishery and balneology sectors, and the power generation. (J.S.)

  5. Qualification test results for DOE solar photovoltaic flat panel procurement - PRDA 38

    Science.gov (United States)

    Griffith, J. S.

    1980-01-01

    Twelve types of prototypes modules for the DOE Photovoltaic Flat Panel Procurement (PRDA 38) were subjected to qualification tests at the Jet Propulsion Laboratory according to a new specification. Environmental exposures were carried out separately and included temperature cycling, humidity, wind simulation, and hail. The most serious problems discovered were reduced insulation resistance to ground and ground continuity of the metal frames, electrical degradation, erratic power readings, and delamination. The electrical and physical characteristics of the newly received modules are also given.

  6. Experimentally Investigating the Effect of Temperature Differences in the Particle Deposition Process on Solar Photovoltaic (PV Modules

    Directory of Open Access Journals (Sweden)

    Yu Jiang

    2016-10-01

    Full Text Available This paper reports an experimental investigation of the dust particle deposition process on solar photovoltaic (PV modules with different surface temperatures by a heating plate to illustrate the effect of the temperature difference (thermophoresis between the module surface and the surrounding air on the dust accumulation process under different operating temperatures. In general, if the temperature of PV modules is increased, the energy conversion efficiency of the modules is decreased. However, in this study, it is firstly found that higher PV module surface temperature differences result in a higher energy output compared with those modules with lower temperature differences because of a reduced accumulation of dust particles. The measured deposition densities of dust particles were found to range from 0.54 g/m2 to 0.85 g/m2 under the range of experimental conditions and the output power ratios were found to increase from 0.861 to 0.965 with the increase in the temperature difference from 0 to 50 °C. The PV module with a higher temperature difference experiences a lower dust density because of the effect of the thermophoresis force arising from the temperature gradient between the module surface and its surrounding air. In addition, dust particles have a significant impact on the short circuit current, as well as the output power. However, the influence of particles on open circuit voltage can be negligible.

  7. Socio-technical assessment of solar photovoltaic systems implemented for rural electrification in selected villages of Sundarbans region of India

    Directory of Open Access Journals (Sweden)

    Rashmi Murali

    2015-10-01

    Full Text Available The power situation in rural India continues to remain poor with around one-third of the rural population without access to any form of electricity. The consequence of which is kerosene being used as a major source of lighting for un-electrified households as well as households with intermittent access to electricity in rural areas. While grid based electrification has been the most common approach, decentralized renewable energy options especially, solar PV systems have also been adopted as a cost effective mode of electrification. This paper presents the results of socio-technical assessment of solar photovoltaic interventions namely, solar home systems, solar mini-grid and solar AC pico-grids, which have been used to electrify selected villages in Sundarbans region of India. The study is focused on technical, financial, and institutional aspects along with the social impact assessment of PV based electrification in the Sundarbans region. The results of the study elucidate that, in general, the impacts of the solar PV solutions used for electrification have been largely positive, especially benefits of reduced kerosene consumption, ease in studying and cooking and reduced health effects. The study also finds that technology is not the only factor on which the viability of a program depends, but institutional and financial aspects also play a significant role. The need of the hour is to develop a strong institutional framework and enabling policies for achieving higher success rates in PV programs.

  8. Techno-economic feasibility analysis of hydrogen fuel cell and solar photovoltaic hybrid renewable energy system for academic research building

    International Nuclear Information System (INIS)

    Singh, Anand; Baredar, Prashant; Gupta, Bhupendra

    2017-01-01

    Highlights: • A HFC and SPV HRES for stand-alone applications is proposed. • The FC program computes the optimum cost of HRES components. • HOMER pro software to calculate the optimum performance of HRES. - Abstract: A hydrogen fuel cell (HFC) and solar photovoltaic (SPV) hybrid renewable energy system (HRES) for stand-alone applications is proposed. This system arrangement of a hydrogen tank, battery, and an electrolyzer are used as like the energy storage. The economic viability of using HRES power to supply the electrical load demand of academic research building located at 23°12′N latitude and 77°24′E longitudes, India is examined. The fuzzy logic program computes the optimum value of capital and replacement cost of the components, which is then utilized in HOMER pro software to calculate the optimum performance of HRES. The results shows the HFC and battery bank are the most significant modules of the HRES to meet load demand at late night and early morning hours. The AC primary load consuming 20712.63 kWh/year out of total power generation of HRES which is 24570.72 kWh/year. The excess of electricity produced by HRES is 791.7709 kWh/year with the optimized cost of energy, unmet electrical load and capacity shortage of 0%.

  9. Financial return for government support of large-scale thin-film solar photovoltaic manufacturing in Canada

    International Nuclear Information System (INIS)

    Branker, K.; Pearce, J.M.

    2010-01-01

    As the Ontario government has recognized that solar photovoltaic (PV) energy conversion is a solution to satisfying energy demands while reducing the adverse anthropogenic impacts on the global environment that compromise social welfare, it has begun to generate policy to support financial incentives for PV. This paper provides a financial analysis for investment in a 1 GW per year turnkey amorphous silicon PV manufacturing plant. The financial benefits for both the provincial and federal governments were quantified for: (i) full construction subsidy, (ii) construction subsidy and sale, (iii) partially subsidize construction, (iv) a publicly owned plant, (v) loan guarantee for construction, and (vi) an income tax holiday. Revenues for the governments are derived from: taxation (personal, corporate, and sales), sales of panels in Ontario, and saved health, environmental and economic costs associated with offsetting coal-fired electricity. Both governments enjoyed positive cash flows from these investments in less than 12 years and in many of the scenarios both governments earned well over 8% on investments from 100 s of millions to $2.4 billion. The results showed that it is in the financial best interest of both the Ontario and Canadian federal governments to implement aggressive fiscal policy to support large-scale PV manufacturing.

  10. Implementation of a large-scale solar photovoltaic system at a higher education institution in Illinois, USA

    Directory of Open Access Journals (Sweden)

    Jin H. Jo

    2017-01-01

    Full Text Available Solar energy has several environmental, economic, and educational benefits for college campuses, but it is difficult for state schools to find funding for these projects. This study shows that a solar photovoltaic (PV system on Illinois State University’s (ISU campus is technically and financially feasible. While there have been several solar feasibility studies of higher education institutions in USA, there has been a lack of in depth financial analysis. We conducted solar site assessments on five potential locations on campus, used a solar energy performance model to analyze the technical feasibility of each location, and performed a financial assessment using a professional PV financial modeling tool to compare different financing options. Our results show that three sites on campus can be used to develop a combined solar PV system of one megawatt. Both direct and third-party ownership models are financially feasible for this combined system. Our findings can be replicable as a case study for future solar PV system development on college campuses.

  11. Regional Analysis of Aids and Prices for Small-scale Grid-connected Solar Photovoltaic Systems in Spain

    International Nuclear Information System (INIS)

    Varela, M.; Ramirez, L.; Mora, L.; Sidrach de Cardona, M.

    2002-01-01

    Electricity production from small solar photovoltaic systems in Spain obtains a premium pnce of 0,36 ε/kWh over the electricity market price or a fix price of 0,40 ε/kWh. The development of these small systems in Spain clearly demonstrates that the established prime is not sufficient in the majority of locations. On the other hand, the prime revision set up by the RD 2818/98, considering the profitability of the renewable installations, demand a regional analysis of small PV systems profitability necessary in Spain. The accomplished results permit to conclude that the amount of the current prime is by itself insufficient to make profitable the small grid-connected PV systems in anywhere of the national geography. To guarantee the profitability of these systems it should be necessary to place the fix price at around 0,93 ε/kWh. However, if the duplication of the current price obtained by these installations was considered, this could ensure the profitability of these small systems in at least the 77% of the land. (Author) 12 refs

  12. Design and development of high performance solar photovoltaic inverter with advanced modulation techniques to improve power quality

    Science.gov (United States)

    Alexander Stonier, Albert

    2017-02-01

    In addition to the focus towards growing demand on electrical energy due to the increase in population, industries, consumer loads, etc., the need for improving the quality of electrical power also needs to be considered. The design and development of solar photovoltaic (PV) inverter with reduced harmonic distortions is proposed. Unlike the conventional solar PV inverters, the proposed inverter provides the advantages of reduced harmonic distortions thereby intend towards the improvement in power quality. This inverter comprises of multiple stages which provides the required 230VRMS, 50 Hz in spite of variations in solar PV due to temperature and irradiance. The reduction of harmonics is governed by applying proper switching sequences required for the inverter switches. The detailed analysis is carried out by employing different switching techniques and observing its performance. With a separate mathematical model for a solar PV, simulations are performed in MATLAB software. To show the advantage of the system proposed, a 3 kWp photovoltaic plant coupled with multilevel inverter is demonstrated in hardware. The novelty resides in the design of a single chip controller which can provide the switching sequence based on the requirement and application. As per the results obtained, the solar-fed multistage inverter improves the quality of power which makes this inverter suitable for both stand-alone and grid-connected systems.

  13. Wavelength-Selective Solar Photovoltaic Systems: Powering Greenhouses for Plant Growth at the Food-Energy-Water Nexus

    Science.gov (United States)

    Loik, Michael E.; Carter, Sue A.; Alers, Glenn; Wade, Catherine E.; Shugar, David; Corrado, Carley; Jokerst, Devin; Kitayama, Carol

    2017-10-01

    Global renewable electricity generation capacity has rapidly increased in the past decade. Increasing the sustainability of electricity generation and the market share of solar photovoltaics (PV) will require continued cost reductions or higher efficiencies. Wavelength-Selective Photovoltaic Systems (WSPVs) combine luminescent solar cell technology with conventional silicon-based PV, thereby increasing efficiency and lowering the cost of electricity generation. WSPVs absorb some of the blue and green wavelengths of the solar spectrum but transmit the remaining wavelengths that can be utilized by photosynthesis for plants growing below. WSPVs are ideal for integrating electricity generation with glasshouse production, but it is not clear how they may affect plant development and physiological processes. The effects of tomato photosynthesis under WSPVs showed a small decrease in water use, whereas there were minimal effects on the number and fresh weight of fruit for a number of commercial species. Although more research is required on the impacts of WSPVs, they are a promising technology for greater integration of distributed electricity generation with food production operations, for reducing water loss in crops grown in controlled environments, as building-integrated solar facilities, or as alternatives to high-impact PV for energy generation over agricultural or natural ecosystems.

  14. Analysis of the policy effects of downstream Feed-In Tariff on China’s solar photovoltaic industry

    International Nuclear Information System (INIS)

    Wang, Hongwei; Zheng, Shilin; Zhang, Yanhua; Zhang, Kai

    2016-01-01

    The Chinese government initiated the Feed-In Tariff (“FIT”) policy for downstream power generation in August 2013. The effectiveness of the downstream FIT policy has attracted the attention of academia and government. Using the quarterly data of listed solar PV companies between 2009 and 2015, this paper provides an empirical analysis regarding the effects of the downstream FIT policy. We find that (1) the FIT policy has significantly enhanced the inventory turnover of listed PV firms and improved their profitability; (2) the FIT policy has significant effects on the inventory turnover of midstream companies and mixed industry-chain companies mainly engaged in downstream operations; (3) FIT policy is more favorable towards increasing the inventory turnover of private enterprises. Our results indicate that the FIT policy can have substantial effects on the sustainable development of China's solar photovoltaic industry. - Highlights: •The article focuses on the analysis of the effect of downstream FIT policy. •We test how FIT policy affects overcapacity and profitability of solar PV companies. •We find FIT policy significantly solved the overcapacity of China’s solar PV industry. •We find FIT policy improved profitability of listed solar PV companies. •FIT policy can’t be played alone and should be combined with taxation and R&D policy.

  15. Geothermal energy

    Directory of Open Access Journals (Sweden)

    Manzella A.

    2017-01-01

    Full Text Available Geothermal technologies use renewable energy resources to generate electricity and direct use of heat while producing very low levels of greenhouse-gas (GHG emissions. Geothermal energy is the thermal energy stored in the underground, including any contained fluid, which is available for extraction and conversion into energy products. Electricity generation, which nowadays produces 73.7 TWh (12.7 GW of capacity worldwide, usually requires geothermal resources temperatures of over 100 °C. For heating, geothermal resources spanning a wider range of temperatures can be used in applications such as space and district heating (and cooling, with proper technology, spa and swimming pool heating, greenhouse and soil heating, aquaculture pond heating, industrial process heating and snow melting. Produced geothermal heat in the world accounts to 164.6 TWh, with a capacity of 70.9 GW. Geothermal technology, which has focused for decades on extracting naturally heated steam or hot water from natural hydrothermal reservoirs, is developing to more advanced techniques to exploit the heat also where underground fluids are scarce and to use the Earth as a potential energy battery, by storing heat. The success of the research will enable energy recovery and utilization from a much larger fraction of the accessible thermal energy in the Earth’s crust.

  16. Geothermal energy

    Science.gov (United States)

    Manzella, A.

    2017-07-01

    Geothermal technologies use renewable energy resources to generate electricity and direct use of heat while producing very low levels of greenhouse-gas (GHG) emissions. Geothermal energy is the thermal energy stored in the underground, including any contained fluid, which is available for extraction and conversion into energy products. Electricity generation, which nowadays produces 73.7 TWh (12.7 GW of capacity) worldwide, usually requires geothermal resources temperatures of over 100 °C. For heating, geothermal resources spanning a wider range of temperatures can be used in applications such as space and district heating (and cooling, with proper technology), spa and swimming pool heating, greenhouse and soil heating, aquaculture pond heating, industrial process heating and snow melting. Produced geothermal heat in the world accounts to 164.6 TWh, with a capacity of 70.9 GW. Geothermal technology, which has focused for decades on extracting naturally heated steam or hot water from natural hydrothermal reservoirs, is developing to more advanced techniques to exploit the heat also where underground fluids are scarce and to use the Earth as a potential energy battery, by storing heat. The success of the research will enable energy recovery and utilization from a much larger fraction of the accessible thermal energy in the Earth's crust.

  17. Geothermal studies in China

    International Nuclear Information System (INIS)

    Wang Ji-Yang; Chen Mo-Xiang; Wang Ji-An; Deng Xiao; Wang Jun; Shen Hsien-Chieh; Hsiung Liang-Ping; Yan Shu-Zhen; Fan Zhi-Cheng; Liu Xiu-Wen

    1981-01-01

    Geothermal studies have been conducted in China continuosly since the end of the 1950's with renewed activity since 1970. Three areas of research are defined: (1) fundamental theoretical research of geothermics, including subsurface temperatures, terrestrial heat flow and geothermal modeling; (2) exploration for geothermal resources and exploitation of geothermal energy; (3) geothermal studies in mines. (orig./ME)

  18. Variability of Power from Large-Scale Solar Photovoltaic Scenarios in the State of Gujarat: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Parsons, B.; Hummon, M.; Cochran, J.; Stoltenberg, B.; Batra, P.; Mehta, B.; Patel, D.

    2014-04-01

    India has ambitious goals for high utilization of variable renewable power from wind and solar, and deployment has been proceeding at a rapid pace. The western state of Gujarat currently has the largest amount of solar generation of any Indian state, with over 855 Megawatts direct current (MWDC). Combined with over 3,240 MW of wind, variable generation renewables comprise nearly 18% of the electric-generating capacity in the state. A new historic 10-kilometer (km) gridded solar radiation data set capturing hourly insolation values for 2002-2011 is available for India. We apply an established method for downscaling hourly irradiance data to one-minute irradiance data at potential PV power production locations for one year, 2006. The objective of this report is to characterize the intra-hour variability of existing and planned photovoltaic solar power generation in the state of Gujarat (a total of 1.9 gigawatts direct current (GWDC)), and of five possible expansion scenarios of solar generation that reflect a range of geographic diversity (each scenario totals 500-1,000 MW of additional solar capacity). The report statistically analyzes one year's worth of power variability data, applied to both the baseline and expansion scenarios, to evaluate diurnal and seasonal power fluctuations, different timescales of variability (e.g., from one to 15 minutes), the magnitude of variability (both total megawatts and relative to installed solar capacity), and the extent to which the variability can be anticipated in advance. The paper also examines how Gujarat Energy Transmission Corporation (GETCO) and the Gujarat State Load Dispatch Centre (SLDC) could make use of the solar variability profiles in grid operations and planning.

  19. Geothermal handbook

    Science.gov (United States)

    1976-01-01

    The Bureau of Land Management offered over 400,000 hectares (one million acres) for geothermal exploration and development in 1975, and figure is expected to double this year. The Energy Research and Development Administration hopes for 10-15,000 megawatts of geothermal energy by 1985, which would require, leasing over 16.3 million hectares (37 million acres) of land, at least half of which is federal land. Since there is an 8 to 8-1/2 year time laf between initial exploration and full field development, there would have to be a ten-fold increase in the amount of federal land leased within the next three years. Seventy percent of geothermal potential, 22.3 million hectares (55 million acres), is on federal lands in the west. The implication for the Service are enormous and the problems immediate. Geothermal resource are so widespread they are found to some extent in most biomes and ecosystems in the western United States. In most cases exploitation and production of geothermal resources can be made compatible with fish and wildlife management without damage, if probable impacts are clearly understood and provided for before damage has unwittingly been allowed to occur. Planning for site suitability and concern with specific operating techniques are crucial factors. There will be opportunities for enhancement: during exploration and testing many shallow groundwater bodies may be penetrated which might be developed for wildlife use. Construction equipment and materials needed for enhancement projects will be available in areas heretofore considered remote projects will be available in areas heretofore considered remote by land managers. A comprehensive knowledge of geothermal development is necessary to avoid dangers and seize opportunities. This handbook is intended to serve as a working tool in the field. It anticipated where geothermal resource development will occur in the western United States in the near future. A set of environmental assessment procedures are

  20. Geothermal energy

    Directory of Open Access Journals (Sweden)

    Manzella A.

    2015-01-01

    Full Text Available Geothermal technologies use renewable energy resources to generate electricity and direct use of heat while producing very low levels of greenhouse-gas (GHG emissions. Geothermal energy is stored in rocks and in fluids circulating in the underground. Electricity generation usually requires geothermal resources temperatures of over 100°C. For heating, geothermal resources spanning a wider range of temperatures can be used in applications such as space and district heating (and cooling, with proper technology, spa and swimming pool heating, greenhouse and soil heating, aquaculture pond heating, industrial process heating and snow melting. Geothermal technology, which has focused so far on extracting naturally heated steam or hot water from natural hydrothermal reservoirs, is developing to more advanced techniques to exploit the heat also where underground fluids are scarce and to use the Earth as a potential energy battery, by storing heat. The success of the research will enable energy recovery and utilization from a much larger fraction of the accessible thermal energy in the Earth’s crust.

  1. Geothermal Technologies Program Geoscience and Supporting Technologies 2001 University Research Summaries

    International Nuclear Information System (INIS)

    Creed, R.J.; Laney, P.T.

    2002-01-01

    The U.S. Department of Energy Office of Wind and Geothermal Technologies (DOE) is funding advanced geothermal research through University Geothermal Research solicitations. These solicitations are intended to generate research proposals in the areas of fracture permeability location and characterization, reservoir management and geochemistry. The work funded through these solicitations should stimulate the development of new geothermal electrical generating capacity through increasing scientific knowledge of high-temperature geothermal systems. In order to meet this objective researchers are encouraged to collaborate with the geothermal industry. These objectives and strategies are consistent with DOE Geothermal Energy Program strategic objectives

  2. Geothermal Technologies Program Geoscience and Supporting Technologies 2001 University Research Summaries

    Energy Technology Data Exchange (ETDEWEB)

    Creed, R.J.; Laney, P.T.

    2002-05-14

    The U.S. Department of Energy Office of Wind and Geothermal Technologies (DOE) is funding advanced geothermal research through University Geothermal Research solicitations. These solicitations are intended to generate research proposals in the areas of fracture permeability location and characterization, reservoir management and geochemistry. The work funded through these solicitations should stimulate the development of new geothermal electrical generating capacity through increasing scientific knowledge of high-temperature geothermal systems. In order to meet this objective researchers are encouraged to collaborate with the geothermal industry. These objectives and strategies are consistent with DOE Geothermal Energy Program strategic objectives.

  3. Geothermal Technologies Program Geoscience and Supporting Technologies 2001 University Research Summaries

    Energy Technology Data Exchange (ETDEWEB)

    Creed, Robert John; Laney, Patrick Thomas

    2002-06-01

    The U.S. Department of Energy Office of Wind and Geothermal Technologies (DOE) is funding advanced geothermal research through University Geothermal Research solicitations. These solicitations are intended to generate research proposals in the areas of fracture permeability location and characterization, reservoir management and geochemistry. The work funded through these solicitations should stimulate the development of new geothermal electrical generating capacity through increasing scientific knowledge of high-temperature geothermal systems. In order to meet this objective researchers are encouraged to collaborate with the geothermal industry. These objectives and strategies are consistent with DOE Geothermal Energy Program strategic objectives.

  4. Climate, air quality and human health benefits of various solar photovoltaic deployment scenarios in China in 2030

    Science.gov (United States)

    Yang, Junnan; Li, Xiaoyuan; Peng, Wei; Wagner, Fabian; Mauzerall, Denise L.

    2018-06-01

    Solar photovoltaic (PV) electricity generation can greatly reduce both air pollutant and greenhouse gas emissions compared to fossil fuel electricity generation. The Chinese government plans to greatly scale up solar PV installation between now and 2030. However, different PV development pathways will influence the range of air quality and climate benefits. Benefits depend on how much electricity generated from PV is integrated into power grids and the type of power plant displaced. Using a coal-intensive power sector projection as the base case, we estimate the climate, air quality, and related human health benefits of various 2030 PV deployment scenarios. We use the 2030 government goal of 400 GW installed capacity but vary the location of PV installation and the extent of inter-provincial PV electricity transmission. We find that deploying distributed PV in the east with inter-provincial transmission maximizes potential CO2 reductions and air quality-related health benefits (4.2% and 1.2% decrease in national total CO2 emissions and air pollution-related premature deaths compared to the base case, respectively). Deployment in the east with inter-provincial transmission results in the largest benefits because it maximizes displacement of the dirtiest coal-fired power plants and minimizes PV curtailment, which is more likely to occur without inter-provincial transmission. We further find that the maximum co-benefits achieved with deploying PV in the east and enabling inter-provincial transmission are robust under various maximum PV penetration levels in both provincial and regional grids. We find large potential benefits of policies that encourage distributed PV deployment and facilitate inter-provincial PV electricity transmission in China.

  5. Development and evaluation of a ceiling ventilation system enhanced by solar photovoltaic thermal collectors and phase change materials

    International Nuclear Information System (INIS)

    Lin, Wenye; Ma, Zhenjun; Sohel, M. Imroz; Cooper, Paul

    2014-01-01

    Highlights: • A novel ceiling ventilation system enhanced by PVT and PCMs was proposed. • PCM was used to increase the local thermal mass and to serve as a storage unit. • The proposed system can enhance indoor thermal comfort in winter and summer. - Abstract: This paper presents the development and performance evaluation of a novel ceiling ventilation system integrated with solar photovoltaic thermal (PVT) collectors and phase change materials (PCMs). The PVT collectors are used to generate electricity and provide low grade heating and cooling energy for buildings by using winter daytime solar radiation and summer night-time sky radiative cooling, respectively. The PCM is integrated into the building ceiling as a part of the ceiling insulation and at the same time, as a centralized thermal energy storage to temporally store low grade energy collected from the PVT collectors. The performance of the proposed system was numerically evaluated based on a Solar Decathlon house using TRNSYS. The results showed that, in winter conditions, the proposed PVT–PCM integrated ventilation system can significantly improve the indoor thermal comfort of passive buildings without using air-conditioning systems with a maximum air temperature rise of 23.1 °C from the PVT collectors. Compared with the system using PCM but without using PVT collectors, the coefficient of thermal comfort enhancement in the kitchen, dining room and living room of the case building studied using the proposed system improved from almost zero to 0.9823 while the coefficient of thermal comfort enhancement in the study room improved from 0.0060 to 0.9921. In summer conditions, the proposed system can also enhance indoor thermal comfort through night-time sky radiative cooling

  6. Technical and economic analysis of a 1mw grid-connected solar photovoltaic power system at KNUST-Kumasi

    International Nuclear Information System (INIS)

    Nyarko Kumi, Ebenezer

    2012-09-01

    Grid-connected solar PV systems, though the fastest growing renewable energy technology in the world, have not been fully exploited in Africa; one of the reasons being the very high initial investment. Prices of solar PV systems have however been on a decline for the past few years due to technological innovations which have led to improvements in cell efficiencies and the economies of scale resulting from increase in production. The main purpose of this thesis is to present a technical and economic analysis of a 1MW grid-connected solar photovoltaic power system for the Kwame Nkrumah University of Science and Technology (KNUST), Kumasi using rooftops of buildings on the campus. A solar resource assessment done to know the amount of solar radiation available at KNUST showed that KNUST receives about 4.30kWh/m 2 /day. A roof assessment which considered parameters such as the surface orientation and pitch of roofs, roof area and the possibility of shading of the roof, also revealed there is about 43,697m 2 of roof space available for grid-connected solar PV installations. In technical analysis of the 1MWp solar PV system, the three (3) commonest solar PV module technologies were selected and their performance simulated using PVsyst software. Amorphous silicon modules were found to perform better than monocrystalline and polycrystalline modules over the one (1) year simulation period. The financial analysis carried out using RETScreen revealed that at a solar PV market price of US$4.45/Wp and a tariff of US$0.11/kWh (tariff paid for Asogli Power Plant which happens to be the most expensive generation source in the country), the project is not viable unless feed-in tariffs greater than US$0.43/kWh are paid. (au)

  7. Lighting up the villages: Livelihood impacts of decentralized stand-alone solar photovoltaic electrification in rural northern Ghana

    Directory of Open Access Journals (Sweden)

    Naah John-Baptist Saabado Ngmaadaba

    2015-01-01

    Full Text Available The dynamics of solar photovoltaic (PV technology dissemination and utilization has taken center stage in recent years on a global scale, aiming to partly address prevailing rampant energy poverty situations particularly in developing countries. This paper evaluates a flagship electrification project called Ghana Energy Development and Access Project (GEDAP. We purposively sampled 250 solar users in 65 villages across 6 districts in the Upper West region which has the country’s lowest level of electricity access and possibly the highest proportion of abject poverty among its inhabitants compared to the rest of the country. Based on the survey, it can be said that the overall impact assessment of the GEDAP-sponsored off-grid solar PV systems on the quality of life of the local beneficiaries was found to be positively marginal. Among all livelihood assets considered, social capital was markedly enhanced by the provision of modern energy services via isolated solar PV systems. Bottlenecks were identified, including limited system wattage capacity, slight dysfunction of some balance of components, higher interest rates, low technical know-how and inadequate monitoring, all of which are negatively affecting the sustainability of the project. Our findings also indicate that satisfaction derived from solar PV electricity supply among local solar customers differed for varied reasons as follows: moderately satisfied (43%, satisfied (52%, and dissatisfied (5%. For a decisive enhancement of rural livelihoods, we strongly recommend up-scaling system wattage capacity and coverage to build up new or improve upon existing livelihood assets through diversification of the income sources of the local inhabitants.

  8. An evaluation of the installation of solar photovoltaic in residential houses in Malaysia: Past, present, and future

    International Nuclear Information System (INIS)

    Muhammad-Sukki, Firdaus; Ramirez-Iniguez, Roberto; Abu-Bakar, Siti Hawa; McMeekin, Scott G.; Stewart, Brian G.

    2011-01-01

    This paper examines solar energy development in Malaysia, particularly in relation to the installation of solar Photovoltaic (PV) in residential houses. It analyzes the past activities related to solar energy in Malaysia, in terms of research and developments (R and Ds), the implementations used as well as the national policies for the past 20 years which have pushed the installation of PV in the country. The Feed-In Tariff (FiT) scheme is discussed, showing comparative cost-benefit analysis between the PV installation in houses in the United Kingdom (UK) and Malaysia, and with other investment schemes available in Malaysia. To investigate the awareness of renewable energy policies and incentives, a preliminary survey of the public opinion in Malaysia has been carried out, and an evaluation of public willingness to invest in the FiT scheme by installing the PV on their houses is presented. The cost-benefit analysis shows that the proposed FiT programme is capable of generating good return on investment as compared to the one in the UK, but the return is lower than other investment tools. The survey suggests that most Malaysians are unaware of the government’s incentives and policies towards renewable energies, and are not willing to invest in the FiT scheme. - Highlights: ► Past activities related to solar energy is evaluated and FIT scheme is discussed. ► Financial analysis is presented; public perspective is evaluated. ► The FIT scheme generates higher return for PV installation in Malaysia than in the UK. ► The scheme, however, produces lower return than most investment schemes. ► Malaysians’ awareness levels are low and are not willing to invest in the FIT scheme.

  9. Detailed performance analysis of realistic solar photovoltaic systems at extensive climatic conditions

    International Nuclear Information System (INIS)

    Gupta, Ankit; Chauhan, Yogesh K.

    2016-01-01

    In recent years, solar energy has been considered as one of the principle renewable energy source for electric power generation. In this paper, single diode photovoltaic (PV) system and double/bypass diode based PV system are designed in MATLAB/Simulink environment based on their mathematical modeling and are validated with a commercially available solar panel. The novelty of the paper is to include the effect of climatic conditions i.e. variable irradiation level, wind speed, temperature, humidity level and dust accumulation in the modeling of both the PV systems to represent a realistic PV system. The comprehensive investigations are made on both the modeled PV systems. The obtained results show the satisfactory performance for realistic models of the PV system. Furthermore, an in depth comparative analysis is carried out for both PV systems. - Highlights: • Modeling of Single diode and Double diode PV systems in MATLAB/Simulink software. • Validation of designed PV systems with a commercially available PV panel. • Acquisition and employment of key climatic factors in modeling of the PV systems. • Evaluation of main model parameters of both the PV systems. • Detailed comparative assessment of both the modeled PV system parameters.

  10. Reliability Assessment Considering the Coordination of Wind Power, Solar Energy and Energy Storage

    Institute of Scientific and Technical Information of China (English)

    WANG Haiying; BAI Xiaomin; XU Jing

    2012-01-01

    Large-scale integration of wind power and solar photovoltaic (PV) power in an electric grid can result in a high operating risk due to their randomness and intermi- ttency. Energy storage (ES) can be used to coordinate with them to reduce this risk by improving supply continuity. It is therefore important to evaluate the reliability benefits of systems consist of wind power, solar photovoltaic power and energy storage. The objective of this paper is to evaluate how the parameters such as the capacity and characteristics of ES and the configuration of a hybrid generation system (HGS) affect the system adequacy based on the sequential Monte Carlo approach.

  11. Japanese geothermics

    International Nuclear Information System (INIS)

    Laplaige, P.

    1995-01-01

    At the end of the seventies, the NEDO (New Energy and Industrial Technology Development Organisation) and the Central Research Institute of Electric Power Industry have started two independent projects of deep geothermics research in Honshu island (Japan). The two sites are 50 km apart of each other and the boreholes have been drilled up to 2300 and 1100 m of depth, respectively, in hot-dry moderately fractured volcanic rocks. These sites are characterized by high geothermal gradients with a rock temperature reaching 250 C at the bottom of the wells. Hydraulic circulation tests are still in progress to evaluate the profitability of these sites. (J.S.). 1 fig., 1 photo

  12. Numerical investigation of the thermal and electrical performances for combined solar photovoltaic/thermal (PV/T) modules based on internally extruded fin flow channel

    Science.gov (United States)

    Deng, Y. C.; Li, Q. P.; Wang, G. J.

    2017-11-01

    A solar photovoltaic/thermal (PV/T) module based on internally extruded fin flow channel was investigated numerically in this paper. First of all, the structures of the thin plate heat exchanger and the PV/T module were presented. Then, a numerical model of the PV/T module considering solar irradiation, fluid flow and heat transfer was developed to analyze the performance of the module. Finally, the steady electrical and thermal efficiencies of the PV/T module at different inlet water temperatures and mass flow rates were achieved. These numerical results supply theory basis for practical application of the PV/T module.

  13. Deep geothermics

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    The hot-dry-rocks located at 3-4 km of depth correspond to low permeable rocks carrying a large amount of heat. The extraction of this heat usually requires artificial hydraulic fracturing of the rock to increase its permeability before water injection. Hot-dry-rocks geothermics or deep geothermics is not today a commercial channel but only a scientific and technological research field. The Soultz-sous-Forets site (Northern Alsace, France) is characterized by a 6 degrees per meter geothermal gradient and is used as a natural laboratory for deep geothermal and geological studies in the framework of a European research program. Two boreholes have been drilled up to 3600 m of depth in the highly-fractured granite massif beneath the site. The aim is to create a deep heat exchanger using only the natural fracturing for water transfer. A consortium of german, french and italian industrial companies (Pfalzwerke, Badenwerk, EdF and Enel) has been created for a more active participation to the pilot phase. (J.S.). 1 fig., 2 photos

  14. 太阳能光伏提水系统在海南农业中的应用%Application of Solar Photovoltaic Water Pumping System in Agriculture in Hainan

    Institute of Scientific and Technical Information of China (English)

    杨志斌; 林青青; 黎勇; 陈建梅; 周学东; 于向春

    2013-01-01

    The present situation of Hainan agricultural irrigation is analyzed. Basic principle, necessity and feasibility of application about solar photovoltaic water pumping system are introduced. It is very important to develop solar photovoltaic agriculture of Hainan.%分析海南农业灌溉的现状,阐述太阳能光伏提水系统基本原理及其在海南农业应用的必要性和可行性,对海南发展光伏农业具有重要的指导意义.

  15. Demonstration of Essential Reliability Services by a 300-MW Solar Photovoltaic Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Loutan, Clyde; Klauer, Peter; Chowdhury, Sirajul; Hall, Stephen; Morjaria, Mahesh; Chadliev, Vladimir; Milam, Nick; Milan, Christopher; Gevorgian, Vahan

    2017-03-24

    The California Independent System Operator (CAISO), First Solar, and the National Renewable Energy Laboratory (NREL) conducted a demonstration project on a large utility-scale photovoltaic (PV) power plant in California to test its ability to provide essential ancillary services to the electric grid. With increasing shares of solar- and wind-generated energy on the electric grid, traditional generation resources equipped with automatic governor control (AGC) and automatic voltage regulation controls -- specifically, fossil thermal -- are being displaced. The deployment of utility-scale, grid-friendly PV power plants that incorporate advanced capabilities to support grid stability and reliability is essential for the large-scale integration of PV generation into the electric power grid, among other technical requirements. A typical PV power plant consists of multiple power electronic inverters and can contribute to grid stability and reliability through sophisticated 'grid-friendly' controls. In this way, PV power plants can be used to mitigate the impact of variability on the grid, a role typically reserved for conventional generators. In August 2016, testing was completed on First Solar's 300-MW PV power plant, and a large amount of test data was produced and analyzed that demonstrates the ability of PV power plants to use grid-friendly controls to provide essential reliability services. These data showed how the development of advanced power controls can enable PV to become a provider of a wide range of grid services, including spinning reserves, load following, voltage support, ramping, frequency response, variability smoothing, and frequency regulation to power quality. Specifically, the tests conducted included various forms of active power control such as AGC and frequency regulation; droop response; and reactive power, voltage, and power factor controls. This project demonstrated that advanced power electronics and solar generation can be

  16. Geothermal tomorrow 2008

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2009-01-18

    Contributors from the Geothermal Technologies Program and the geothermal community highlight the current status and activities of the Program and the development of the global resource of geothermal energy.

  17. Cascade Utilization of Energy in Solar Photovoltaic Hot Water System%太阳能光伏热水系统的能量梯级利用

    Institute of Scientific and Technical Information of China (English)

    关欣; 王艳迪; 向勇涛; 郭志波

    2012-01-01

    为了实现太阳能光伏发电系统中用于冷却太阳能电池的低品位热能利用,本文提出了太阳能光伏热水系统。通过对单体光伏光热系统(PV/T)的实验研究表明,在单体PV/T放置角度为30°,流量为200 L/h时,集热效率可达到最大值65.6%,系统的平均发电效率为14.3%,瞬时综合效率最大为83%,达到了能量的梯级利用。%To realize the use of low-grade thermal energy after cooling solar cells in solar photovoltaic systems,this paper puts forward a solar photovoltaic hot water system(PV/T).The experiment of the PV/T system shows,at the condition that inclination is 30°,and flow rate is 200 L/h,the maximum heat-collecting efficiency can be achieved at 65.6%and the average power generation efficiency is 14.3%, the maximum instantaneous overall efficiency is 83%,which realize the cascade utilization of energy.

  18. Water pumping system using solar photovoltaic induction motor; Sistema de bombeamento de agua com energia solar fotovoltaica utilizando motor de inducao trifasico

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, Eduardo Henrique Pereira de; Bezerra, Luiz Daniel Santos; Antunes, Fernando Luiz Marcelo [Universidade Federal do Ceara (DEE/PPGEE/UFC), Fortaleza, CE (Brazil). Dept. de Engenharia Eletrica. Programa de Pos -Graduacao em Engenharia Eletrica; Borges Neto, Manuel Rangel [Centro Federal de Educacao Tecnologica de Petrolina (CEFET), PE (Brazil)

    2008-07-01

    One of the main difficulties to people who live in remote areas or isolated community and not grid connected, certainly is to access potable drink water. In the world, more than 6000 children dies everyday by some kind of illnesses associated to non-potable drink water. At state of Ceara, during the dry weather periods, remain water reservoir becomes practically a mud puddle, as a result, people and animals are forced to drink this inappropriate water. To minimize this consequences in this periods some water is distributed by tankers but, sometimes, even this water is not enough potable. Underground water is an alternative to mitigate this problem. The most common technique is the use of direct current (DC) pumps set supplied by solar photovoltaic systems. However, this kind of pump-set is relatively expensive and too hard to maintain. This paper brings an alternative lower expensive and sustainable to water pumping system, it uses a three phase induction machine coupled to an underwater centrifugal pump supplied by solar photovoltaic energy system. (author)

  19. Climate, Air Quality, and Human Health Benefits of Various Solar Photovoltaic Development Scenarios in China in 2030

    Science.gov (United States)

    Yang, J.; Mauzerall, D. L.; Wagner, F.; Li, X.

    2016-12-01

    Solar photovoltaic (PV) technology can greatly reduce both air pollution and GHG emissions from the power sector. The Chinese government has plans to scale up solar PV installation between now and 2030. However, there is little analysis of how deployment strategies will influence the range of benefits. Here we conduct the first integrated assessment study that quantifies the climate, air quality, and related human health benefits of various solar PV development strategies in 2030 China. Our results indicate that both the location of PV deployment, which coal power plants are replaced, and the extent of inter-provincial transmission greatly influence the co-benefits. We compare CO2 and PM2.5 reductions from two PV installation scenarios both with the 2030 government target of 400 GW national installed capacity. First, we assume all solar PV is utilized within the province in which it is generated and that it can not exceed 30% of total provincial electricity generation. We find that deploying more solar PV in locations near load centers via distributed PV systems has larger benefits and could lead to approximately 20,500 (between 8000 - 32,400, high and low bounds) annual avoided premature deaths, 15% more than building utility-scale solar PV plants in the sunny, yet sparsely populated northwest. The difference occurs because in the northwest a lower population and cleaner air leads to smaller reductions in air pollution related premature mortalities. Also greater potential for PV curtailment exists in the west. In terms of CO2 reduction, deploying PV near load centers leads to 12% greater reductions in CO2 emissions from the power sector - approximately 5% of China's total CO2 emission in 2030. Second, we enable inter-provincial transmission of PV electricity within each of China's six regional grids which allows greater use of abundant sunlight in the northwest. Our results for 2030 show that by expanding to the regional grid, curtailment rates in the northwest

  20. Performance of U.S. hybrid distributed energy systems: Solar photovoltaic, battery and combined heat and power

    International Nuclear Information System (INIS)

    Shah, Kunal K.; Mundada, Aishwarya S.; Pearce, J.M.

    2015-01-01

    Highlights: • Simulated PV + battery + CHP hybrid systems deployed in three U.S. regions. • Used hybrid optimization model for electric renewable pro microgrid analysis. • Limited size of each sub-module to singe family house size. • Results show that the electricity generated meets residential load demand. • Hybrid systems are technically viable in hot, moderate and cold climates in U.S. - Abstract: Until recently, the relatively high levelized cost of electricity from solar photovoltaic (PV) technology limited deployment; however, recent cost reductions, combined with various financial incentives and innovative financing techniques, have made PV fully competitive with conventional sources in many American regions. In addition, the costs of electrical storage have also declined enough to make PV + battery systems potentially economically viable for a mass-scale off-grid low-emission transition. However, many regions in the U.S. (e.g. Northern areas) cannot have off-grid PV systems without prohibitively large battery systems. Small-scale combined heat and power (CHP) systems provide a potential solution for off-grid power backup of residential-scale PV + battery arrays, while also minimizing emissions from conventional sources. Thus, an opportunity is now available to maximize the use of solar energy and gain the improved efficiencies possible with CHPs to deploy PV + battery + CHP systems throughout the U.S. The aim of this study is to determine the technical viability of such systems by simulating PV + battery + CHP hybrid systems deployed in three representative regions in the U.S., using the Hybrid Optimization Model for Electric Renewable (HOMER) Pro Microgrid Analysis tool. The results show that the electricity generated by each component of the hybrid system can be coupled to fulfill the residential load demand. A sensitivity analysis of these hybrid off grid systems is carried out as a function capacity factor of both the PV and CHP units. The

  1. Potential Effect and Analysis of High Residential Solar Photovoltaic (PV Systems Penetration to an Electric Distribution Utility (DU

    Directory of Open Access Journals (Sweden)

    Jeffrey Tamba Dellosa

    2016-11-01

    This Article: Dellosa, J. (2016 Potential Effect and Analysis of High Residential Solar Photovoltaic (PV Systems Penetration to an Electric Distribution Utility (DU. Int. Journal of Renewable Energy Development, 5(3, 179-185. http://dx.doi.org/10.14710/ijred.5.3.179-185

  2. Public policies for the development of solar photovoltaic energy and the impacts on dynamics of technology systems and markets

    International Nuclear Information System (INIS)

    Yu, Hyun Jin Julie

    2016-01-01

    Over the past decades, climate change has been a subject of serious international negotiations. Solar photovoltaic (PV) energy has caught the eyes of many governments as one of the front-runner technologies for the low carbon energy transition in the global community. Solar PV systems have experienced strong market growth over the last decade supported by favorable political reactions in the energy transition context. However, despite these favorable conditions, paradoxically, the global PV market recently went through a chaotic time encountering the overproduction issue, the industry crisis and the long-lasting trade disputes. Furthermore, as the level of PV penetration increases, many problematics started to appear with negative systemic impacts on the electricity sector. This thesis started from these problematics to understand the PV policy mechanisms and the context change. In order to define those issues, a systemic approach is taken to provide an accurate comprehension of the overall mechanisms of PV public policies. The concrete systemic vision of PV policy mechanisms is constructed based on theoretical and historical analysis by defining key variables and the context (Part I). A retrospective analysis using the proposed mapping tools is conducted to understand critical limits and challenges of PV development and to identify risks factors in the sector (Part II). This thesis also demonstrates how the nature of policy context changes in combined with the dynamic features of the PV sector. This helps anticipate possible risks of PV development in the future. The thesis highlights the nationwide PV policy dynamics was broken with the arrival of China in the PV sector. Taken the defined critical limits and challenges into account, this thesis eventually proposes strategic orientations of PV development at the two dimensions from both national and international perspectives (Part III). At the national level, this thesis discusses on PV self-consumption as the

  3. Techno-Economic analysis of solar photovoltaic power plant for small scale fish processing in Kota Langsa - a case study

    Science.gov (United States)

    Widodo, S. B.; Hamdani; Rizal, T. A.; Pambudi, N. A.

    2018-02-01

    In Langsa, fisheries are the sector leaders by fulfilling a capacity of about 6,050 tons per year and on the other hand, fish-aquaculture reaches 1,200 tons per year on average. The fish processing is conducted through catches and aquaculture. The facilities on which this processing takes place are divided into an ice factory unit, a gutting and cutting unit, a drying unit and a curing unit. However, the energy and electricity costs during the production process has become major constraint because of the increase in the fishermen’s production and income. In this study, the potential and cost-effectiveness of photovoltaic solar power plant to meet the energy demands of fish processing units have been analysed. The energy requirements of fish processing units have reached an estimate of 130 kW, while the proposed design of solar photovoltaic electricity generation is of 200 kW in an area of 0,75 hectares. In this analysis, given the closeness between the location of the processing units and the fish supply auctions, the assumption is made that the photovoltaic plants (OTR) were installed on the roof of the building as compared to the solar power plants (OTL) installed on the outside of the location. The results shows that the levelized cost of OTR instalation is IDR 1.115 per kWh, considering 25 years of plant life-span at 10% of discount rate, with a simple payback period of 13.2 years. OTL levelized energy, on the other hand, is at IDR 997.5 per kWh with a simple payback period of 9.6 years. Blood is an essential component of living creatures in the vascular space. For possible disease identification, it can be tested through a blood test, one of which can be seen from the form of red blood cells. The normal and abnormal morphology of the red blood cells of a patient is very helpful to doctors in detecting a disease. With the advancement of digital image processing technology can be used to identify normal and abnormal blood cells of a patient. This research used

  4. Geothermal probabilistic cost study

    Energy Technology Data Exchange (ETDEWEB)

    Orren, L.H.; Ziman, G.M.; Jones, S.C.; Lee, T.K.; Noll, R.; Wilde, L.; Sadanand, V.

    1981-08-01

    A tool is presented to quantify the risks of geothermal projects, the Geothermal Probabilistic Cost Model (GPCM). The GPCM model is used to evaluate a geothermal reservoir for a binary-cycle electric plant at Heber, California. Three institutional aspects of the geothermal risk which can shift the risk among different agents are analyzed. The leasing of geothermal land, contracting between the producer and the user of the geothermal heat, and insurance against faulty performance are examined. (MHR)

  5. Geothermal energy

    Energy Technology Data Exchange (ETDEWEB)

    Gasparovic, N

    1962-07-01

    Live steam, transformed steam, and steam produced by expansion flashing are outlined with respect to their use in the production of electricity. The capacity, pressure, and temperature of a steam must be determined empirically by exploratory drilling. These factors are dependent on time and on the extent of nearby drilling-activity. Particulars of geothermal-steam power-plants such as steam dryness, hot-water flashing, condensation, gas extraction, and corrosion are discussed in detail. All available data (as per 1962) concerning the costs of operation and construction of geothermal power plants are tabulated. For space-heating purposes, two basic systems are utilized. When little corrosion or precipitation is expected, an open system is used, otherwise, closed systems are necessary. The space-heating system of Reykjavik, Iceland is cited as an example. A brief description of industrial applications of geothermal energy, such as the extraction of NaCl, D/sub 2/O, or boric acid, is provided. Thirty-two references are given.

  6. The solar photovoltaic

    International Nuclear Information System (INIS)

    2016-02-01

    This publication first outlines challenges and stakes related to the development of renewable energies, and more particularly of photovoltaic solar energy in France and in the World. Principles and applications (connected and autonomous systems) are briefly presented. Some key data regarding installed capacity and its evolution in France and in other countries are briefly commented. The knowledge status of this technology is discussed in terms of strengths (environmental and energetic benefits, modularity, fast decreasing costs, integration into building envelope, local investment and consumer commitment, an added value and job generating sector), and weaknesses (fluctuating production and impact on the supply-demand balance, local impact on the distribution grid, land use, cautions, a sector with some environmental impact, evolutions of the support arrangement in France). Actions undertaken by the ADEME in different areas (support to research and innovation, installation quality, promotion of technologies with less environmental impacts) are reviewed

  7. Solar Photovoltaic Cells.

    Science.gov (United States)

    Mickey, Charles D.

    1981-01-01

    Reviews information on solar radiation as an energy source. Discusses these topics: the key photovoltaic material; the bank theory of solids; conductors, semiconductors, and insulators; impurity semiconductors; solid-state photovoltaic cell operation; limitations on solar cell efficiency; silicon solar cells; cadmium sulfide/copper (I) sulfide…

  8. Assessing the lifecycle greenhouse gas emissions from solar PV and wind energy

    DEFF Research Database (Denmark)

    Nugent, Daniel; Sovacool, Benjamin

    2014-01-01

    This paper critically screens 153 lifecycle studies covering a broad range of wind and solar photovoltaic (PV) electricity generation technologies to identify 41 of the most relevant, recent, rigorous, original, and complete assessments so that the dynamics of their greenhouse gas (GHG) emissions...... profiles can be determined. When viewed in a holistic manner, including initial materials extraction, manufacturing, use and disposal/decommissioning, these 41 studies show that both wind and solar systems are directly tied to and responsible for GHG emissions. They are thus not actually emissions free......, this article uncovers best practices in wind and solar design and deployment that can better inform climate change mitigation efforts in the electricity sector...

  9. Geothermal in transition

    International Nuclear Information System (INIS)

    Anderson, J.L.

    1991-01-01

    This article examines the current market for geothermal projects in the US and overseas. The topics of the article include future capacity needs, upgrading the Coso Geothermal project, the productivity of the Geysers area of Northern California, the future of geothermal, and new projects at Soda Lake, Carson Basin, Unalaska Island, and the Puna Geothermal Venture in Hilo, Hawaii

  10. Geothermal Modesty

    International Nuclear Information System (INIS)

    Anon.

    2004-01-01

    This publication of the Areva Group, a world nuclear industry leader, provides information on the energy in many domains. This issue deals with the uses for radioactivity, the future of the green electricity, the energy policy of Rhone-alps region, the end of the nuclear in Belgium, the nuclear propulsion to explore the solar system, the involvement of the Unites States in the hydrogen development, the gas exportation of China. A special part is devoted to the possibility of the geothermal energy. (A.L.B.)

  11. Quantitative Effectiveness Analysis of Solar Photovoltaic Policies, Introduction of Socio-Feed-in Tariff Mechanism (SocioFIT) and its Implementation in Turkey

    Science.gov (United States)

    Mustafaoglu, Mustafa Sinan

    Some of the main energy issues in developing countries are high dependence on non-renewable energy sources, low energy efficiency levels and as a result of this high amount of CO2 emissions. Besides, a common problem of many countries including developing countries is economic inequality problem. In the study, solar photovoltaic policies of Germany, Japan and the USA is analyzed through a quantitative analysis and a new renewable energy support mechanism called Socio Feed-in Tariff Mechanism (SocioFIT) is formed based on the analysis results to address the mentioned issues of developing countries as well as economic inequality problem by using energy savings as a funding source for renewable energy systems. The applicability of the mechanism is solidified by the calculations in case of an implementation of the mechanism in Turkey.

  12. International Collaboration: the Virtuous Cycle of Low Carbon Innovation and Diffusion. An Analysis of Solar Photovoltaic, Concentrating Solar Power and Carbon Capture and Storage

    International Nuclear Information System (INIS)

    Dominique, Katheen

    2010-01-01

    International collaboration can be leveraged to accelerate the innovation and diffusion of low carbon technologies required to realize the shift to a low carbon trajectory. A collaborative approach to innovation has the potential to capture several benefits, including: pooling risks and achieving scale; knowledge sharing that accommodates competition and cooperation; the creation of a global market; facilitation of policy learning and exchange; and the alignment of technology, finance and policy. International Collaboration: the Virtuous Cycle of Low Carbon Innovation and Diffusion An Analysis of Solar Photovoltaic, Concentrating Solar Power and Carbon Capture and Storage A range of obstacles to the diffusion of low carbon technologies provides ample opportunity for international collaboration in global market creation and capacity building, expanding beyond conventional modes of technology transfer. Current collaborative efforts for carbon capture and storage, solar photovoltaic and concentrating solar power technologies are active in all stages of innovation and diffusion and involve a wide range of actors. Yet, current efforts are not sufficient to achieve the necessary level of emission mitigation at the pace required to avoid catastrophic levels of atmospheric destabilization. This analysis sets forth recommendation to scale up current endeavors and create new ones. The analysis begins by describing the fundamental characteristics of innovation and diffusion processes that create opportunities for international collaboration. It then illustrates a broad array of on-going collaborative activities, depicting how these efforts contribute to innovation and diffusion. Finally, highlighting the gap between the current level of collaborative activities and technology targets deemed critical for emission mitigation, the report sets forth several recommendations to build on current efforts and construct new endeavors

  13. Applying Buck Converter in Jiuquan Solar Photovoltaic Power Generation%Buck变换器在酒泉太阳能光伏发电中的应用

    Institute of Scientific and Technical Information of China (English)

    秦天像

    2011-01-01

    Solar photovoltaic effect, the output voltage is energy, as a new, easily subject not stable. The research presented to seasonal variation, diurnal alternating in this paper shows Buck converter, the perturbation method, and the MPPT control strategy can be applied to the Jiuquan solar photovoltaic power generation, which can make the output of an equivalent impedance circuit with PV battery output impedance, the photovoltaic array in any condition to obtain the maximum power output, the advantages of tracking maximum power. Simulation results show that MPPT the feasibility of the control strategy, the proposed method can effectively improve the stability of the output voltage.%太阳能光伏发电作为一种新能源,易受季节变化、昼夜交替的影响,因此其输出电压很不稳定.鉴于此,本文采用Buck变换器,采用扰动观察法的MPPT控制策略,可应用到酒泉的太阳能光伏发电中,可使得输出电路的等效阻抗跟随光伏电池的输出阻抗,使光伏阵列在任何条件下获得最大功率输出,跟踪最大功率的优点.仿真表明,MPPT(最大功率跟踪)控制策略的可行性,该方法有效地提高了输出电压的稳定性.

  14. Solar photovoltaic power generation experiment application platform design%太阳能光伏发电实验应用平台的设计

    Institute of Scientific and Technical Information of China (English)

    王臻; 廖骏杰

    2014-01-01

    随着社会的发展,太阳能越来越被人们重视,太阳能教学也逐渐的推广,传统的太阳能实验箱体已不能完成满足市场的需求,而太阳能实验平台更具优势,且教学更多是关注太阳能的实际应用。本研究产品以实验实训为主,突出工业级太阳能光伏发电系统采用模块化设计,各个模块都能独立成为一套教学系统,通过搭积木的方式,浅显易懂,让学生了解太阳能光伏应用整个环节的原理及操作方法。%With the development of society, solar energy has aroused increasing concern among the public. Meanwhile, teaching on solar energy has spread. On the one hand, the traditional solar experiment has not fully met the market demand, while the solar energy experiment platform has more advantages. At the same time, teaching itself pays much more attention to the practical application of solar energy. This research product can be used for the experiment and practice, emphasizing modular design with industrial solar photovoltaic power generation system, each module can be independently into a set of teaching system. Through the approach of building blocks, it is easy to be understood. In this way, students can understand the principles and operation methods of solar photovoltaic applications.

  15. The Design and Application of Solar Photovoltaic Generation%太阳能光伏发电的设计应用

    Institute of Scientific and Technical Information of China (English)

    陈秋宇

    2013-01-01

    Traditional energies have causes increasingly serious international energy crises and environment pollution. Photo-voltaic Solar as a new energy has drawn many countries’attention. How to properly apply solar photovoltaic generation to con-struction industry has great significance for the development of photovoltaic industry. Based on the promotion of the energy at home and abroad, relevant national and industrial standard and technological literature, as well as the situation of Guangxi Gallery, the paper analyzes the technological features of solar photovoltaic generation, introduces how to generate power by the energy and sums up the advantages and disadvantages of it and its development tendency.%  传统能源的使用导致国际能源危机及环境污染的问题日渐严重,光伏太阳能作为一种新型能源,备受许多国家和地区关注。如何在建筑产业合理利用太阳能光伏发电,对光伏产业的发展具有重要的意义。文章结合多年来国内外太阳能光伏发电的应用推广情况,参考相关国家、行业标准及技术文献,结合广西美术馆项目的实际情况,分析光伏发电的技术特点,对如何进行太阳能光伏发电的设计进行介绍,并总结了目前光伏太阳能发电的优缺点及未来发展趋势。

  16. Simulation of transcontinental wind and solar PV generation time series

    DEFF Research Database (Denmark)

    Nuño Martinez, Edgar; Maule, Petr; Hahmann, Andrea N.

    2018-01-01

    to the technical characteristics of individual installations spread across large regions. The proposed methodology is validated using actual power data in Europe and can be applied to represent intermittent generation in network development plans, reliability and market studies, as well as operational guidelines.......The deployment of Renewable Energy Sources (RES) is driving modern power systems towards a fundamental green transition. In this regard, there is a need to develop models to accurately capture the variability of wind and solar photovoltaic (PV) power, at different geographical and temporal scales...

  17. Guidebook to Geothermal Finance

    Energy Technology Data Exchange (ETDEWEB)

    Salmon, J. P.; Meurice, J.; Wobus, N.; Stern, F.; Duaime, M.

    2011-03-01

    This guidebook is intended to facilitate further investment in conventional geothermal projects in the United States. It includes a brief primer on geothermal technology and the most relevant policies related to geothermal project development. The trends in geothermal project finance are the focus of this tool, relying heavily on interviews with leaders in the field of geothermal project finance. Using the information provided, developers and investors may innovate in new ways, developing partnerships that match investors' risk tolerance with the capital requirements of geothermal projects in this dynamic and evolving marketplace.

  18. Integrating life cycle assessment and emergy synthesis for the evaluation of a dry steam geothermal power plant in Italy

    International Nuclear Information System (INIS)

    Buonocore, Elvira; Vanoli, Laura; Carotenuto, Alberto; Ulgiati, Sergio

    2015-01-01

    Greenhouse gas emissions, climate change and the rising energy demand are currently seen as most crucial environmental concerns. With the exploration of renewable energy sources to meet the challenges of energy security and climate change, geothermal energy is expected to play an important role. In this study a LCA (Life Cycle Assessment) and an EMA (Emergy Assessment) of a 20 MW dry steam geothermal power plant located in the Tuscany Region (Italy) are performed and discussed. The plant is able to produce electricity by utilizing locally available renewable resources together with a moderate support by non-renewable resources. This makes the geothermal source eligible to produce renewable electricity. However, the direct utilization of the geothermal fluid generates the release into the atmosphere of carbon dioxide, hydrogen sulfide, mercury, arsenic and other chemicals that highly contribute to climate change, acidification potential, eutrophication potential, human toxicity and photochemical oxidation. The study aims to understand to what extent the geothermal power plant is environmentally sound, in spite of claims by local populations, and if there are steps and/or components that require further attention. The application of the Emergy Synthesis method provides a complementary perspective to LCA, by highlighting the direct and indirect contribution in terms of natural capital and ecosystem services to the power plant construction and operation. The environmental impacts of the geothermal power plant are also compared to those of renewable and fossil-based power plants. The release of CO 2 -eq calculated for the investigated geothermal plant (248 g kWh −1 ) is lower than fossil fuel based power plants but still higher than renewable technologies like solar photovoltaic and hydropower plant. Moreover, the SO 2- eq release associated to the geothermal power plant (3.37 g kWh −1 ) is comparable with fossil fuel based power plants. Results suggest the

  19. Wind/PV Generation for Frequency Regulation and Oscillation Damping in the Eastern Interconnection

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yong [Univ. of Tennessee, Knoxville, TN (United States); Gracia, Jose R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hadley, Stanton W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Liu, Yilu [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2013-12-01

    This report presents the control of renewable energy sources, including the variable-speed wind generators and solar photovoltaic (PV) generators, for frequency regulation and inter-area oscillation damping in the U.S. Eastern Interconnection (EI). In this report, based on the user-defined wind/PV generator electrical control model and the 16,000-bus Eastern Interconnection dynamic model, the additional controllers for frequency regulation and inter-area oscillation damping are developed and incorporated and the potential contributions of renewable energy sources to the EI system frequency regulation and inter-area oscillation damping are evaluated.

  20. Geothermal Technologies Program: Alaska

    Energy Technology Data Exchange (ETDEWEB)

    2005-02-01

    This fact sheets provides a summary of geothermal potential, issues, and current development in Alaska. This fact sheet was developed as part of DOE's GeoPowering the West initiative, part of the Geothermal Technologies Program.

  1. South Dakota geothermal handbook

    Energy Technology Data Exchange (ETDEWEB)

    1980-06-01

    The sources of geothermal fluids in South Dakota are described and some of the problems that exist in utilization and materials selection are described. Methods of heat extraction and the environmental concerns that accompany geothermal fluid development are briefly described. Governmental rules, regulations and legislation are explained. The time and steps necessary to bring about the development of the geothermal resource are explained in detail. Some of the federal incentives that encourage the use of geothermal energy are summarized. (MHR)

  2. A guide to geothermal energy and the environment

    Energy Technology Data Exchange (ETDEWEB)

    Kagel, Alyssa; Bates, Diana; Gawell, Karl

    2005-04-22

    Geothermal energy, defined as heat from the Earth, is a statute-recognized renewable resource. The first U.S. geothermal power plant, opened at The Geysers in California in 1960, continues to operate successfully. The United States, as the world's largest producer of geothermal electricity, generates an average of 15 billion kilowatt hours of power per year, comparable to burning close to 25 million barrels of oil or 6 million short tons of coal per year. Geothermal has a higher capacity factor (a measure of the amount of real time during which a facility is used) than many other power sources. Unlike wind and solar resources, which are more dependent upon weather fluctuations and climate changes, geothermal resources are available 24 hours a day, 7 days a week. While the carrier medium for geothermal electricity (water) must be properly managed, the source of geothermal energy, the Earth's heat, will be available indefinitely. A geothermal resource assessment shows that nine western states together have the potential to provide over 20 percent of national electricity needs. Although geothermal power plants, concentrated in the West, provide the third largest domestic source of renewable electricity after hydropower and biomass, they currently produce less than one percent of total U.S. electricity.

  3. Geothermal fields of China

    Science.gov (United States)

    Kearey, P.; HongBing, Wei

    1993-08-01

    There are over 2500 known occurrences of geothermal phenomena in China. These lie mainly in four major geothermal zones: Xizang (Tibet)-Yunnan, Taiwan, East Coast and North-South. Hot water has also been found in boreholes in major Mesozoic-Cenozoic sedimentary basins. This paper presents a summary of present knowledge of these geothermal zones. The geological settings of geothermal occurrences are associated mainly with magmatic activity, fault uplift and depressional basins and these are described by examples of each type. Increased multipurpose utilisation of geothermal resources is planned and examples are given of current usages.

  4. World geothermal congress

    International Nuclear Information System (INIS)

    Povarov, O.A.; Tomarov, G.V.

    2001-01-01

    The World geothermal congress took place in the period from 28 May up to 10 June 2000 in Japan. About 2000 men from 43 countries, including specialists in the area of developing geothermal fields, creating and operating geothermal electrical and thermal plants and various systems for the earth heat application, participated in the work of the Congress. It was noted at the Congress, that development of the geothermal power engineering in the world is characterized by the large-scale application of geothermal resources for the electrical energy generation [ru

  5. Hawaii geothermal project

    Science.gov (United States)

    Kamins, R. M.

    1974-01-01

    Hawaii's Geothermal Project is investigating the occurrence of geothermal resources in the archipelago, initially on the Island of Hawaii. The state's interest in geothermal development is keen, since it is almost totally dependent on imported oil for energy. Geothermal development in Hawaii may require greater participation by the public sector than has been true in California. The initial exploration has been financed by the national, state, and county governments. Maximization of net benefits may call for multiple use of geothermal resources; the extraction of by-products and the application of treated effluents to agricultural and aquacultural uses.

  6. Geothermal for kids

    International Nuclear Information System (INIS)

    Nemzer, M.; Condy, M.

    1990-01-01

    This paper reports that educating children about geothermal energy is crucial to the future growth of the geothermal industry. The Geothermal Education Office (GEO) was founded in 1989 to provide materials and support to teachers and the geothermal community in educating grades K-12 about geothermal energy. GEO's goals are to: provide easy access to or referral to appropriate sources of geothermal information; foster teacher interest; create posters, booklets, lesson plans and other educational materials; monitor and review textbooks, encyclopedias and other educational materials distributed by educational groups to ensure inclusion of appropriate, accurate information and to encourage fair treatment of alternative energy resources; contribute articles to industry, science and educational publications; and foster communication and cooperation among GEO, the geothermal industry, government agencies, and educational and environmental groups

  7. Geothermal energy in Jordan

    International Nuclear Information System (INIS)

    Al-Dabbas, Moh'd A. F.

    1993-11-01

    The potential of geothermal energy utilization in Jordan was discussed. The report gave a summary of the location of geothermal anomalies in Jordan, and of ongoing projects that utilize geothermal energy for greenhouse heating, fish farming, refrigeration by absorption, and water desalination of deep aquifers. The problems facing the utilization of geothermal energy in Jordan were identified to be financial (i.e. insufficient allocation of local funding, and difficulty in getting foreign financing), and inadequate expertise in the field of geothermal energy applications. The report gave a historical account of geothermal energy utilization activities in Jordan, including cooperation activities with international organizations and foreign countries. A total of 19 reports already prepared in the areas of geochemical and hydrological studies were identified. The report concluded that the utilization of geothermal energy offers some interesting economic possibilities. (A.M.H.). 4 refs. 1 map

  8. A projection of energy consumption and carbon dioxide emissions in the electricity sector for Saudi Arabia: The case for carbon capture and storage and solar photovoltaics

    International Nuclear Information System (INIS)

    Mansouri, Noura Y.; Crookes, Roy J.; Korakianitis, Theodosios

    2013-01-01

    The paper examined the case study of the Saudi electricity sector and provided projections for energy use and respective carbon dioxide (CO 2 ) emissions for the period 2010–2025 with and without cleaner energy technologies. Based on two sets of 20 life cycle assessment studies for carbon capture and storage and solar photovoltaic technologies, CO 2 emission reduction rates were used for projecting future CO 2 emissions. Results showed enormous savings in CO 2 emissions, for the most likely case, year 2025 reported savings that range from 136 up to 235 MtCO 2 . Including low growth and high growth cases, these savings could range from 115 up to 468 MtCO 2 presenting such an unrivalled opportunity for Saudi Arabia. These projections were developed as a way of translating the inherent advantages that cleaner energy technologies could provide for CO 2 emissions savings. It is hoped that the results of this paper would inform energy policymaking in Saudi Arabia. - Highlights: • Electricity use in Saudi Arabia is predicted in the period 2010–2025. • Use of photovoltaic plants and carbon capture and storage are considered. • Life cycle assessment of the options is conducted. • Carbon emissions with and without the renewable energy are estimated. • The projections showcase the CO 2 emissions savings

  9. The Role of Policies in Supporting the Diffusion of Solar Photovoltaic Systems: Experiences with Ontario, Canada’s Renewable Energy Standard Offer Program

    Directory of Open Access Journals (Sweden)

    Chris Adachi

    2009-12-01

    Full Text Available Traditionally, high initial capital costs and lengthy payback periods have been identified as the most significant barriers that limit the diffusion of solar photovoltaic (PV systems. In November, 2006, the Ontario Power Authority (OPA introduced the Renewable Energy Standard Offer Program (RESOP, offering owners of solar PV systems with a generation capacity under 10 MW a 20 year contract to sell electricity back to the grid at a guaranteed rate of CAD $0.42/kWh. While it is the intent of incentive programs such as the RESOP to begin to lower financial barriers in order to increase the uptake of solar PV systems, there is no guarantee that the level of participation will in fact rise. The "on-the-ground" manner in which consumers interact with such an incentive program ultimately determines its effectiveness. This paper analyzes the relationship between the RESOP and solar PV system consumers. Experiences of current RESOP participants are presented, wherein the factors that are either hindering or promoting utilization of the RESOP and the adoption of solar PV systems are identified.

  10. Correlation Feature Selection and Mutual Information Theory Based Quantitative Research on Meteorological Impact Factors of Module Temperature for Solar Photovoltaic Systems

    Directory of Open Access Journals (Sweden)

    Yujing Sun

    2016-12-01

    Full Text Available The module temperature is the most important parameter influencing the output power of solar photovoltaic (PV systems, aside from solar irradiance. In this paper, we focus on the interdisciplinary research that combines the correlation analysis, mutual information (MI and heat transfer theory, which aims to figure out the correlative relations between different meteorological impact factors (MIFs and PV module temperature from both quality and quantitative aspects. The identification and confirmation of primary MIFs of PV module temperature are investigated as the first step of this research from the perspective of physical meaning and mathematical analysis about electrical performance and thermal characteristic of PV modules based on PV effect and heat transfer theory. Furthermore, the quantitative description of the MIFs influence on PV module temperature is mathematically formulated as several indexes using correlation-based feature selection (CFS and MI theory to explore the specific impact degrees under four different typical weather statuses named general weather classes (GWCs. Case studies for the proposed methods were conducted using actual measurement data of a 500 kW grid-connected solar PV plant in China. The results not only verified the knowledge about the main MIFs of PV module temperatures, more importantly, but also provide the specific ratio of quantitative impact degrees of these three MIFs respectively through CFS and MI based measures under four different GWCs.

  11. Optimization of 10 kW solar photovoltaic – diesel generator hybrid energy system for different load factors at Jaisalmer location of Rajasthan, India

    Science.gov (United States)

    Saraswat, S. K.; Rao, K. V. S.

    2018-03-01

    Jaisalmer town in Rajasthan, India is having annual average solar insolation of 5.80 kWh/m2/day and 270 – 300 clear sky days in a year. A 10 kW off-grid hybrid energy system (HES) consisting of solar photovoltaic panels – diesel generator – bidirectional converter and batteries with zero percentage loss of load for Jaisalmer is designed using HOMER (version 3.4.3) software. Different system load factors of 0.33, 0.50, 0.67, 0.83 and 1 corresponding to fraction of running hours per day of the system are considered. The system is analyzed for all three aspects, namely, electrical, economic and emission point of view. Least levelized cost of electricity (LCOE) of Rs. 8.43/kWh is obtained at a load factor value of 0.5. If diesel generator alone (without Solar PV) is used to fulfil the demand for a load factor of 0.5the value of LCOE is obtained Rs.19.23/kWh. Comparison of results obtained for HES and diesel generator are made for load factor of 0.5 and 1.

  12. Solar and wind energy utilization at Sarawak Southern national parks

    International Nuclear Information System (INIS)

    Abdul Rahman, N.; Kolot, A.

    2006-01-01

    The intentions of renewable energy utilization in Sarawak national parks were to reduce the environmental impacts to the protected surrounding and to overcome fuel transportation problem, as most national parks in Sarawak are not viable for the state electricity grid connection. The study was conducted at three national parks in southern Sarawak; viz. Samusan, Tanjung Datu and Pulau Talang-Talang Besar National Park. The study focused on the effectiveness of the system implementation, energy load and associated problems. Both Samusan and Tanjung Datu National systems are hybrids, which consist of solar photovoltaic panels, wind turbine and diesel generators, whereas, Pulau Talang-Talang Besar National Park is a stand alone system of solar photovoltaic panels only. In addition, the inefficient energy usage was observed at Samusan National Park. The study have identified that lack of local expertise, spare parts availability, transportation and inefficient energy management as the major problems associated to the solar and wind energy system in all national parks studied. Albeit the problems mentioned, the study discovered that the systems were acceptably reliable and satisfactorily supply fraction of the energy requirements to the national parks communities

  13. Solar wind power electric plant on Vis (Croatia)

    International Nuclear Information System (INIS)

    1998-01-01

    A project of a solar photovoltaic electric power plant presented by the Republic of Croatia at the meeting of the E.P.I.A. Mission for photovoltaic technology of the Mediterranean countries, aroused a great interest of the representatives of the invited countries. However, the interest within Croatia in the project has disappeared although E.P.I.A. offered a financing of two thirds of costs. There are attempts to construct 1800 kw wind-driven generators at the same location not taking into consideration a possibility of building a hybrid solar-wind-power electric plant. The chance that the solar part is completely of domestic origin is not accepted but the preference is given to the building of imported wind-driven generators. (orig.)

  14. Geothermal energy worldwide

    International Nuclear Information System (INIS)

    Barbier, Enriko

    1997-01-01

    Geothermal energy, as a natural steam and hot water, has been exploited for decades in order to generate electricity as well as district heating and industrial processes. The present geothermal electrical installed capacity in the world is about 10.000 MWe and the thermal capacity in non-electrical uses is about 8.200 MWt. Electricity is produced with an efficiency of 10-17%, and the cost of the kWh is competitive with conventional energy sources. In the developing countries, where a total installed electrical power is still low, geothermal energy can play a significant role: in El Salvador, for example, 25% of electricity comes from geothermal spring, 20% in the Philippines and 8% in Kenya. Present technology makes it possible to control the environmental impact of geothermal exploitation. Geothermal energy could also be extracted from deep geopressured reservoirs in large sedimentary basins, hot dry rock systems and magma bodies. (author)

  15. GEOTHERMAL GREENHOUSING IN TURKEY

    Directory of Open Access Journals (Sweden)

    Sedat Karaman

    2016-07-01

    Full Text Available Use of renewable energy resources should be brought forward to reduce heating costs of greenhouses and to minimize the use of ever-depleting fossil fuels. Geothermal energy not only provides the heat required throughout plant growth, but also allow a year-long production. Geothermal resources with several other benefits therefore play significant role in agricultural activities. With regard to geothermal potential and implementation, Turkey has the 7th place in the world and the 1st place in Europe. Majority of country geothermal resources is used in greenhouse heating. The size of geothermal greenhouses increased 5 folds during the last decade and reached to 2500 decare. In this study, current status of geothermal greenhousing of Turkey was presented; problems and possible solutions were discussed.

  16. Coordination of geothermal research

    Energy Technology Data Exchange (ETDEWEB)

    Jessop, A.M.; Drury, M.J.

    1983-01-01

    Visits were made in 1983 to various investigators and institutions in Canada to examine developments in geothermal research. Proposals for drilling geothermal wells to provide hot water for heating at a college in Prince Edward Island were made. In Alberta, the first phase of a program examining the feasibility of mapping sedimentary geothermal reservoirs was discussed. Some sites for possible geothermal demonstration projects were identified. In British Columbia, discussions were held between BC Hydro and Energy, Mines and Resources Canada on the drilling of a research hole into the peak of a temperature anomaly in the Meager Creek Valley. The British Columbia government has offered blocks of land in the Mount Cayley volcanic complex for lease to develop geothermal resources. A list of papers of interest to the Canadian geothermal energy program is appended.

  17. The geothermal power organization

    Energy Technology Data Exchange (ETDEWEB)

    Scholl, K.L. [National Renewable Energy Lab., Golden, CO (United States)

    1997-12-31

    The Geothermal Power Organization is an industry-led advisory group organized to advance the state-of-the-art in geothermal energy conversion technologies. Its goal is to generate electricity from geothermal fluids in the most cost-effective, safe, and environmentally benign manner possible. The group achieves this goal by determining the Member`s interest in potential solutions to technological problems, advising the research and development community of the needs of the geothermal energy conversion industry, and communicating research and development results among its Members. With the creation and adoption of a new charter, the Geothermal Power Organization will now assist the industry in pursuing cost-shared research and development projects with the DOE`s Office of Geothermal Technologies.

  18. Geothermal Today - 1999

    Energy Technology Data Exchange (ETDEWEB)

    None

    2000-05-01

    U.S. Department of Energy 1999 Geothermal Energy Program Highlights The Hot Facts Getting into Hot Water Turning Waste water into Clean Energy Producing Even Cleaner Power Drilling Faster and Cheaper Program in Review 1999: The Year in Review JanuaryCal Energy announced sale of Coso geothermal power plants at China Lake, California, to Caithness Energy, for $277 million. U.S. Export-Import Bank completed a $50 million refinancing of the Leyte Geothermal Optimization Project in the Philippines. F

  19. Success in geothermal development

    International Nuclear Information System (INIS)

    Stefansson, V.

    1992-01-01

    Success in geothermal development can be defined as the ability to produce geothermal energy at compatible energy prices to other energy sources. Drilling comprises usually the largest cost in geothermal development, and the results of drilling is largely influencing the final price of geothermal energy. For 20 geothermal fields with operating power plants, the ratio between installed capacity and the total number of well in the field is 1.9 MWe/well. The drilling history in 30 geothermal fields are analyzed by plotting the average cumulative well outputs as function of the number of wells drilled in the field. The range of the average well output is 1-10 MWe/well with the mean value 4.2 MWe/well for the 30 geothermal fields studied. A leaning curve is defined as the number of wells drilled in each field before the average output per well reaches a fairly constant value, which is characteristic for the geothermal reservoir. The range for this learning time is 4-36 wells and the average is 13 wells. In general, the average well output in a given field is fairly constant after some 10-20 wells has been drilled in the field. The asymptotic average well output is considered to be a reservoir parameter when it is normalized to the average drilling depth. In average, this reservoir parameter can be expressed as 3.3 MWe per drilled km for the 30 geothermal fields studied. The lifetime of the resource or the depletion time of the geothermal reservoir should also be considered as a parameter influencing the success of geothermal development. Stepwise development, where the reservoir response to the utilization for the first step is used to determine the timing of the installment of the next step, is considered to be an appropriate method to minimize the risk for over investment in a geothermal field

  20. Geothermal Power Technologies

    DEFF Research Database (Denmark)

    Montagud, Maria E. Mondejar; Chamorro, C.R.

    2017-01-01

    Although geothermal energy has been widely deployed for direct use in locations with especial geologic manifestations, its potential for power generation has been traditionally underestimated. Recent technology developments in drilling techniques and power conversion technologies from low......-temperature heat resources are bringing geothermal energy to the spotlight as a renewable baseload energy option for a sustainable energy mix. Although the environmental impact and economic viability of geothermal exploitation must be carefully evaluated for each case, the use of deep low-temperature geothermal...... reservoirs could soon become an important contributor to the energy generation around the world....

  1. Geothermal reservoir engineering

    CERN Document Server

    Grant, Malcolm Alister

    2011-01-01

    As nations alike struggle to diversify and secure their power portfolios, geothermal energy, the essentially limitless heat emanating from the earth itself, is being harnessed at an unprecedented rate.  For the last 25 years, engineers around the world tasked with taming this raw power have used Geothermal Reservoir Engineering as both a training manual and a professional reference.  This long-awaited second edition of Geothermal Reservoir Engineering is a practical guide to the issues and tasks geothermal engineers encounter in the course of their daily jobs. The bo

  2. Geothermal Energy Program overview

    International Nuclear Information System (INIS)

    1991-12-01

    The mission of the Geothermal Energy Program is to develop the science and technology necessary for tapping our nation's tremendous heat energy sources contained with the Earth. Geothermal energy is a domestic energy source that can produce clean, reliable, cost- effective heat and electricity for our nation's energy needs. Geothermal energy -- the heat of the Earth -- is one of our nation's most abundant energy resources. In fact, geothermal energy represents nearly 40% of the total US energy resource base and already provides an important contribution to our nation's energy needs. Geothermal energy systems can provide clean, reliable, cost-effective energy for our nation's industries, businesses, and homes in the form of heat and electricity. The US Department of Energy's (DOE) Geothermal Energy Program sponsors research aimed at developing the science and technology necessary for utilizing this resource more fully. Geothermal energy originates from the Earth's interior. The hottest fluids and rocks at accessible depths are associated with recent volcanic activity in the western states. In some places, heat comes to the surface as natural hot water or steam, which have been used since prehistoric times for cooking and bathing. Today, wells convey the heat from deep in the Earth to electric generators, factories, farms, and homes. The competitiveness of power generation with lower quality hydrothermal fluids, geopressured brines, hot dry rock, and magma ( the four types of geothermal energy) still depends on the technical advancements sought by DOE's Geothermal Energy Program

  3. Innovations in Wind and Solar PV Financing

    Energy Technology Data Exchange (ETDEWEB)

    Cory, K.; Coughlin, J.; Jenkin, T.; Pater, J.; Swezey, B.

    2008-02-01

    There is growing national interest in renewable energy development based on the economic, environmental, and security benefits that these resources provide. Historically, greater development of our domestic renewable energy resources has faced a number of hurdles, primarily related to cost, regulation, and financing. With the recent sustained increase in the costs and associated volatility of fossil fuels, the economics of renewable energy technologies have become increasingly attractive to investors, both large and small. As a result, new entrants are investing in renewable energy and new business models are emerging. This study surveys some of the current issues related to wind and solar photovoltaic (PV) energy project financing in the electric power industry, and identifies both barriers to and opportunities for increased investment.

  4. Analysis of urban land use in the megacity of Dhaka, Bangladesh: Roof-top detection in the context of assessing solar photovoltaic potential

    Science.gov (United States)

    Jaegermeyr, J.; Kabir, H.; Endlicher, W.

    2009-12-01

    The megacity of Dhaka, Bangladesh is considered to be one of the world’s fastest growing urban centers. With nearly 14 million people Dhaka currently faces tremendous power crisis. The available power supply of Dhaka Megacity is currently 1000-1200 MW against the maximum demand of nearly 2000 MW. The objective of this study is to classify land cover of Dhaka to locate roof-top areas which are adequate for solar photovoltaic applications. Usually this task is performed with additional building-heights data. With lack of that, we present an object-based classification approach which is based on high resolution Quickbird data only. Extensive formal buildings in Dhaka mostly have flat roof-tops made from concrete which are well suited for PV applications. The classification is focused to detect these ‘Bright Roof-Tops’ to assess a lower limit for potential PV areas. With that conservative approach bright roof-top areas of 10.554 km2 out of the city’s 134.282 km2 could be found. The overall classification accuracy is 0.918, the producer’s accuracy of ‘Bright Roof-Tops’ is 0.833. Preliminary result of the PhD work of Humayun Kabir indicates that the application of only 75 Wp stand-alone solar modules on these available bright roof-tops can generate nearly 1,000 MW of electricity. The application of solar modules with high capacity (i.e., >200 Wp) preferably through grid-connected PV systems can substantially meet-up the city’s power demand, although several techno-economic and socio-political factors are certainly involved.

  5. Study on the Cost of Solar Photovoltaic Power Generation Using Double-factors Learning Curve Model%太阳能光伏发电成本的双因素学习曲线模型研究

    Institute of Scientific and Technical Information of China (English)

    曾鸣; 鹿伟; 段金辉; 李娜

    2012-01-01

    随着太阳能这一新能源的开发,在低碳经济时代,降低光伏发电成本以提高其可利用性显得尤为重要.在Wright基本学习曲线模型的基础上,建立太阳能光伏发电的双因素学习曲线模型,研究了太阳能光伏组件累积生产量和累积研发量对太阳能光伏发电成本的影响.采用2001年至2010年10a的数据,运用最小二乘法,检验参数的显著性,进而确定模型的可行性.并利用此双因素学习曲线模型对我国未来10a的太阳能光伏发电成本做了预测,得出在累积生产量和累积研发量发展情况不同的情形下,光伏发电成本的降低程度不同.表明应大力开发太阳能光伏发电产业,平衡累积生产量和累积研发量,使太阳能光伏发电的成本降低.同时对如何降低光伏发电成本提出了建议,为政策制定者提供一定的参考.%Along with the development of solar energy, it is particularly important to reduce the cost of solar photovoltaic power generation to improve its availability for low carbon economic. The double- factors learning curve model of solar photovoltaic power generation is built based on the Wright's basic learning curve model, and the influence of the accumulated production amount and the accumulated research and development amount of solar photovoltaic modules on the cost of solar photovoltaic power generation is studied. The ten- year data between 2001 and 2010 are used to test the significance of the parameters and to confirm the feasibility of the model by using of the least square method. In the end, the cost of solar photovoltaic power generation in future ten years is predicted, and the conclusion is that the cost of solar photovoltaic power generation reduces in different degree under different development situation. At the same time, proposals for reducing the cost are given, which provides certain reference for policy makers.

  6. Geothermal Today: 2003 Geothermal Technologies Program Highlights (Revised)

    Energy Technology Data Exchange (ETDEWEB)

    2004-05-01

    This outreach publication highlights milestones and accomplishments of the DOE Geothermal Technologies Program for 2003. Included in this publication are discussions of geothermal fundamentals, enhanced geothermal systems, direct-use applications, geothermal potential in Idaho, coating technology, energy conversion R&D, and the GeoPowering the West initiative.

  7. 初探太阳能光伏系统与建筑墙体间相互影响%Study of solar photovoltaic systems and building wall interaction

    Institute of Scientific and Technical Information of China (English)

    韩漪

    2014-01-01

    在经济全球化的发展趋势下,建筑能源消耗保持逐年上涨的趋势,建筑能耗问题成为目前最广泛的社会问题。太阳能光伏系统完美结合了太阳能发电技术与建筑技术,在建筑领域中得到全面的应用。太阳能光伏系统与建筑墙体间具有相辅相成的关系,但是在相互影响与共同促进的过程中,需要采取各种技术解决引发的各种问题。本文主要围绕太阳能光伏系统与建筑墙体间相互影响,展开全面的阐述。%In the development trend of economic globalization,the energy consumption of buildings to keep rising trend year by year,building energy consumption problem is becoming a social problem is currently the most widely.Solar photovoltaic system perfect combination of solar power generation technology and construction technology,the application of full in the construction field.A complementary relationship of solar photovoltaic systems and building a wall,but in the mutual influence and mutual promotion in the process,need to take various techniques to solve various problems caused by.This paper mainly focuses on solar photovoltaic system and building wall interactions,a comprehensive exposition.

  8. Geothermal Financing Workbook

    Energy Technology Data Exchange (ETDEWEB)

    Battocletti, E.C.

    1998-02-01

    This report was prepared to help small firm search for financing for geothermal energy projects. There are various financial and economics formulas. Costs of some small overseas geothermal power projects are shown. There is much discussion of possible sources of financing, especially for overseas projects. (DJE-2005)

  9. Geothermal energy for greenhouses

    Science.gov (United States)

    Jacky Friedman

    2009-01-01

    Geothermal energy is heat (thermal) derived from the earth (geo). The heat flows along a geothermal gradient from the center of the earth to the surface. Most of the heat arrives at the surface of the earth at temperatures too low for much use. However, plate tectonics ensure that some of the heat is concentrated at temperatures and depths favorable for its commercial...

  10. Prospects of geothermal energy

    International Nuclear Information System (INIS)

    Manzella, A.; Bianchi, A.

    2008-01-01

    Geothermal energy has great potential as a renewable energy with low environmental impact, the use of heat pumps is becoming established in Italy but the national contributions are still modest when compared to other nations. Mature technologies could double the installed geothermal power in Italy at 2020. [it

  11. Solar Access to Public Capital (SAPC) Working Group: Best Practices in Commercial and Industrial (C&I) Solar Photovoltaic System Installation; Period of Performance: November 28, 2014-September 1, 2015

    Energy Technology Data Exchange (ETDEWEB)

    Doyle, Chris [Inst. of Building Technology and Safety (IBTS), Ashbum, VA (United States); Loomans, Len [Acuity Power, Wellesley Hills, MA (United States); Truitt, Andrew [Acuity Power, Wellesley Hills, MA (United States); Lockhart, Robert [Acuity Power, Wellesley Hills, MA (United States); Golden, Matt [Efficiency.org, San Francisco, CA (United States); Dabbagh, Kareem [Aurora Solar, Scotts Valley, CA (United States); Lawrence, Richard [North American Board of Certified Energy Practicioners (NABCEP), Clifton Park, NY (United States)

    2015-12-29

    This Best Practices in Commercial and Industrial Solar Photovoltaic System Installation Guide is the second of a series of guides designed to standardize and improve solar asset transparency for investors and rating agencies, provide an industry framework for quality management, and reduce transaction costs in the solar asset securitization process. The Best Practices in C&I PV System Installation Guide is intended to outline the minimum requirements for commercial and industrial solar project developments. Adherence to the guide is voluntary. Providers that adhere to the guide are responsible for self-certifying that they have fulfilled the guide requirements. Investors and rating agencies should verify compliance.

  12. Renewability of geothermal resources

    Energy Technology Data Exchange (ETDEWEB)

    O' Sullivan, Michael; Yeh, Angus [Department of Engineering Science, University of Auckland, Auckland (New Zealand); Mannington, Warren [Contact Energy Limited, Taupo (New Zealand)

    2010-12-15

    In almost all geothermal projects worldwide, the rate of extraction of heat energy exceeds the pre-exploitation rate of heat flow from depth. For example, current production of geothermal heat from the Wairakei-Tauhara system exceeds the natural recharge of heat by a factor of 4.75. Thus, the current rate of heat extraction from Wairakei-Tauhara is not sustainable on a continuous basis, and the same statement applies to most other geothermal projects. Nevertheless, geothermal energy resources are renewable in the long-term because they would fully recover to their pre-exploitation state after an extended shut-down period. The present paper considers the general issue of the renewability of geothermal resources and uses computer modeling to investigate the renewability of the Wairakei-Tauhara system. In particular, modeling is used to simulate the recovery of Wairakei-Tauhara after it is shut down in 2053 after a hundred years of production. (author)

  13. Economic Valuation of a Geothermal Production Tax Credit

    Energy Technology Data Exchange (ETDEWEB)

    Owens, B.

    2002-04-01

    The United States (U.S.) geothermal industry has a 45-year history. Early developments were centered on a geothermal resource in northern California known as The Geysers. Today, most of the geothermal power currently produced in the U.S. is generated in California and Nevada. The majority of geothermal capacity came on line during the 1980s when stable market conditions created by the Public Utility Regulatory Policies Act (PURPA) in 1978 and tax incentives worked together to create a wave of geothermal development that lasted until the early 1990s. However, by the mid-1990s, the market for new geothermal power plants began to disappear because the high power prices paid under many PURPA contracts switched to a lower price based on an avoided cost calculation that reflected the low fossil fuel-prices of the early 1990s. Today, market and non-market forces appear to be aligning once again to create an environment in which geothermal energy has the potential to play an important role in meeting the nation's energy needs. One potentially attractive incentive for the geothermal industry is the Production Tax Credit (PTC). The current PTC, which was enacted as part of the Energy Policy Act of 1992 (EPAct) (P.L. 102-486), provides an inflation-adjusted 1.5 cent per kilowatt-hour (kWh) federal tax credit for electricity produced from wind and closed-loop biomass resources. Proposed expansions would make the credit available to geothermal and solar energy projects. This report focuses on the project-level financial impacts of the proposed PTC expansion to geothermal power plants.

  14. Geothermal country update of Japan

    International Nuclear Information System (INIS)

    Higo, M.

    1990-01-01

    This paper reports on the status of geothermal energy in Japan. Topics covered include: present and planned production of electricity, present utilization of geothermal energy for direct heat, information about geothermal localities, and wells drilled for electrical utilization of geothermal resources to January 1, 1990

  15. Geothermal energy: a brief assessment

    Energy Technology Data Exchange (ETDEWEB)

    Lunis, B.C.; Blackett, R.; Foley, D. (eds.)

    1982-07-01

    This document includes discussions about geothermal energy, its applications, and how it is found and developed. It identifies known geothermal resources located in Western's power marketing area, and covers the use of geothermal energy for both electric power generation and direct applications. Economic, institutional, environmental, and other factors are discussed, and the benefits of the geothermal energy resource are described.

  16. Optimal Management of Geothermal Heat Extraction

    Science.gov (United States)

    Patel, I. H.; Bielicki, J. M.; Buscheck, T. A.

    2015-12-01

    Geothermal energy technologies use the constant heat flux from the subsurface in order to produce heat or electricity for societal use. As such, a geothermal energy system is not inherently variable, like systems based on wind and solar resources, and an operator can conceivably control the rate at which heat is extracted and used directly, or converted into a commodity that is used. Although geothermal heat is a renewable resource, this heat can be depleted over time if the rate of heat extraction exceeds the natural rate of renewal (Rybach, 2003). For heat extraction used for commodities that are sold on the market, sustainability entails balancing the rate at which the reservoir renews with the rate at which heat is extracted and converted into profit, on a net present value basis. We present a model that couples natural resource economic approaches for managing renewable resources with simulations of geothermal reservoir performance in order to develop an optimal heat mining strategy that balances economic gain with the performance and renewability of the reservoir. Similar optimal control approaches have been extensively studied for renewable natural resource management of fisheries and forests (Bonfil, 2005; Gordon, 1954; Weitzman, 2003). Those models determine an optimal path of extraction of fish or timber, by balancing the regeneration of stocks of fish or timber that are not harvested with the profit from the sale of the fish or timber that is harvested. Our model balances the regeneration of reservoir temperature with the net proceeds from extracting heat and converting it to electricity that is sold to consumers. We used the Non-isothermal Unconfined-confined Flow and Transport (NUFT) model (Hao, Sun, & Nitao, 2011) to simulate the performance of a sedimentary geothermal reservoir under a variety of geologic and operational situations. The results of NUFT are incorporated into the natural resource economics model to determine production strategies that

  17. Advanced Geothermal Turbodrill

    Energy Technology Data Exchange (ETDEWEB)

    W. C. Maurer

    2000-05-01

    Approximately 50% of the cost of a new geothermal power plant is in the wells that must be drilled. Compared to the majority of oil and gas wells, geothermal wells are more difficult and costly to drill for several reasons. First, most U.S. geothermal resources consist of hot, hard crystalline rock formations which drill much slower than the relatively soft sedimentary formations associated with most oil and gas production. Second, high downhole temperatures can greatly shorten equipment life or preclude the use of some technologies altogether. Third, producing viable levels of electricity from geothermal fields requires the use of large diameter bores and a high degree of fluid communication, both of which increase drilling and completion costs. Optimizing fluid communication often requires creation of a directional well to intersect the best and largest number of fracture capable of producing hot geothermal fluids. Moineau motor stators made with elastomers cannot operate at geothermal temperatures, so they are limited to the upper portion of the hole. To overcome these limitations, Maurer Engineering Inc. (MEI) has developed a turbodrill that does not use elastomers and therefore can operate at geothermal temperatures. This new turbodrill uses a special gear assembly to reduce the output speed, thus allowing a larger range of bit types, especially tri-cone roller bits, which are the bits of choice for drilling hard crystalline formations. The Advanced Geothermal Turbodrill (AGT) represents a significant improvement for drilling geothermal wells and has the potential to significantly reduce drilling costs while increasing production, thereby making geothermal energy less expensive and better able to compete with fossil fuels. The final field test of the AGT will prepare the tool for successful commercialization.

  18. RE-SUPPLY: Securing the supply chains of wind power and solar PV Securing the supply chain for renewable energy. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Lehner, Franz; Vuille, Francois; Ziem, Sabine [E4tech UK Ltd, London (United Kingdom); Rastogi, Ankur; Sengupta, Subhabrata [Avalon Consulting, Mumbai (India)

    2012-11-15

    The RE-SUPPLY project aimed to provide insight into the elements of the supply chains which are presently or can in the future evolve as critical constraints in further large-scale deployment of on- and offshore wind and solar photovoltaic energy. The objectives of the study were twofold: Risk assessment: identify potential bottlenecks in the supply chains of wind and PV and assess their criticality and timeline for occurrence; and, Risk management: identify suitable mitigation strategies and recommend specific actions at policy and industry level.

  19. The significance of "geothermal microzonation" for the correct planning of low-grade source geothermal systems

    Science.gov (United States)

    Viccaro, Marco; Pezzino, Antonino; Belfiore, Giuseppe Maria; Campisano, Carlo

    2016-04-01

    Despite the environmental-friendly energy systems are solar thermal technologies, photovoltaic and wind power, other advantageous technologies exist, although they have not found wide development in countries such as Italy. Given the almost absent environmental impact and the rather favorable cost/benefit ratio, low-enthalpy geothermal systems are, however, likely to be of strategic importance also in Italy during the next years. The importance of geology for a sustainable exploitation of the ground through geothermal systems from low-grade sources is becoming paramount. Specifically, understanding of the lithological characteristics of the subsurface along with structures and textures of rocks is essential for a correct planning of the probe/geo-exchanger field and their associated ground source heat pumps. The complex geology of Eastern Sicily (Southern Italy), which includes volcanic, sedimentary and metamorphic units over limited extension, poses the question of how thermal conductivity of rocks is variable at the scale of restricted areas (even within the same municipality). This is the innovative concept of geothermal microzonation, i.e., how variable is the geothermal potential as a function of geology at the microscale. Some pilot areas have been therefore chosen to test how the geological features of the subsurface can influence the low-enthalpy geothermal potential of an area. Our geologically based evaluation and micro-zonation of the low-grade source geothermal potential of the selected areas have been verified to be fundamental for optimization of all the main components of a low-enthalpy geothermal system. Saving realization costs and limiting the energy consumption through correct sizing of the system are main ambitions to have sustainable development of this technology with intensive utilization of the subsurface. The variegated territory of countries such as Italy implies that these goals can be only reached if, primarily, the geological features

  20. Renewable energies in France: main results in 2008

    International Nuclear Information System (INIS)

    2008-01-01

    This article comments the evolution of renewable energy production in France in 2008: hydro energy, wind energy, solar photovoltaic energy, renewable thermal energy (like biogas, solar thermal energy, geothermal energy, heat pumps, urban waste, and wood) and agro-fuels. It also comments the consumption of thermal renewable energies and agro-fuels by different sectors (housing and office buildings, industry, and transports)

  1. Energy production from renewable energy sources

    International Nuclear Information System (INIS)

    2001-04-01

    This table summarizes the electricity and heat produced in France and in overseas departments from renewable energy sources for 1998 (revised), 1999 (temporary) and 2000 (estimated): hydraulic, wind, solar photovoltaic and thermal, geothermal, solid municipal wastes, wood and wood wastes, biogas, ethanol and ester bio-fuels. (J.S.)

  2. Global geothermal energy scenario

    International Nuclear Information System (INIS)

    Singh, S.K.; Singh, A.; Pandey, G.N.

    1993-01-01

    To resolve the energy crisis efforts have been made in exploring and utilizing nonconventional energy resources since last few decades. Geothermal energy is one such energy resource. Fossil fuels are the earth's energy capital like money deposited in bank years ago. The energy to build this energy came mainly from the sun. Steam geysers and hot water springs are other manifestations of geothermal energy. Most of the 17 countries that today harness geothermal energy have simply tapped such resources where they occur. (author). 8 refs., 4 tabs., 1 fig

  3. Geothermal survey handbook

    Energy Technology Data Exchange (ETDEWEB)

    1974-01-01

    The objective of this handbook is to publicize widely the nature of geothermal surveys. It covers geothermal survey planning and measurement as well as measurement of thermal conductivity. Methods for the detection of eruptive areas, the measurement of radiative heat using snowfall, the measurement of surface temperature using infrared radiation and the measurement of thermal flow are described. The book also contains information on physical detection of geothermal reservoirs, the measurement of spring wells, thermographic measurement of surface heat, irregular layer surveying, air thermographics and aerial photography. Isotope measurement techniques are included.

  4. Worldwide installed geothermal power

    International Nuclear Information System (INIS)

    Laplaige, P.

    1995-01-01

    Worldwide electric energy production data are easy to compile, according to the informations given by individual countries. On the contrary, thermal applications of geothermics are difficult to quantify due to the variety of applications and the number of countries concerned. Exhaustive informations sometimes cannot be obtained from huge countries (China, Russia..) because of data centralization problems or not exploitable data transmission. Therefore, installed power data for geothermal heat production are given for 26 countries over the 57 that have answered the International Geothermal Association questionnaire. (J.S.). 1 fig., 2 tabs., 1 photo

  5. Geothermal electricity generation

    International Nuclear Information System (INIS)

    Eliasson, E.T.

    1991-01-01

    Geothermal conversion, as discussed here, is the conversion of the heat bound within the topmost three kilometres of the upper crust of the earth into useful energy, principally electricity. The characteristics of a geothermal reservoir and its individual technical features are highly site-specific. Applications therefore must be designed to match the specific geothermal reservoir. An estimate of the electric energy potential world-wide made by the Electric Power Research Institute (United States) in 1978 and based on sustaining a continuous 30-year operation is given in the box at the right for comparison purposes only. 8 refs, 5 figs

  6. Navy Geothermal Plan

    Energy Technology Data Exchange (ETDEWEB)

    1984-12-01

    Domestic geothermal resources with the potential for decreasing fossil fuel use and energy cost exist at a significant number of Navy facilities. The Geothermal Plan is part of the Navy Energy R and D Program that will evaluate Navy sites and provide a technical, economic, and environmental base for subsequent resource use. One purpose of the program will be to provide for the transition of R and D funded exploratory efforts into the resource development phase. Individual Navy geothermal site projects are described as well as the organizational structure and Navy decision network. 2 figs.

  7. 太阳能光伏发电技术对建筑电气设计的影响%The Influence of Solar Photovoltaic Power Generation Technology on Building Electrical Design

    Institute of Scientific and Technical Information of China (English)

    高振福

    2014-01-01

    In building electrical design is the main source of energy resources construction, plays an important role in bui-lding engineering. Due to the present development of social science and technology, solar photovoltaic power generation t-echnology is widely used in building electrical design. This pa-per discusses the use of solar photovoltaic power generation technology in building electrical design.%建筑中的电气设计是建筑工程的电能资源的主要来源,在建筑工程中有着十分重要的作用。由于当前社会科技的发展,太阳能光伏发电技术在建筑电气设计中得到广泛的应用。本文就建筑电气设计中太阳能光伏发电技术的应用进行探讨。

  8. Environmental and Economic Performance of Commercial-scale Solar Photovoltaic Systems: A Field Study of Complex Energy Systems at the Desert Research Institute (DRI)

    Science.gov (United States)

    Liu, X.

    2014-12-01

    Solar photovoltaic (PV) systems are being aggressively deployed at residential, commercial, and utility scales to complement power generation from conventional sources. This is motivated both by the desire to reduce carbon footprints and by policy-driven financial incentives. Although several life cycle analyses (LCA) have investigated environmental impacts and energy payback times of solar PV systems, most results are based on hypothetical systems rather than actual, deployed systems that can provide measured performance data. Over the past five years, Desert Research Institute (DRI) in Nevada has installed eight solar PV systems of scales from 3 to 1000 kW, the sum of which supply approximately 40% of the total power use at DRI's Reno and Las Vegas campuses. The goal of this work is to explore greenhouse gas (GHG) impacts and examine the economic performance of DRI's PV systems by developing and applying a comprehensive LCA and techno-economic (TEA) model. This model is built using data appropriate for each type of panel used in the DRI systems. Power output is modeled using the National Renewable Energy Laboratory (NREL) model PVWatts. The performance of PVWatts is verified by the actual measurements from DRI's PV systems. Several environmental and economic metrics are quantified for the DRI systems, including life cycle GHG emissions and energy return. GHG results are compared with Nevada grid-based electricity. Initial results indicate that DRI's solar-derived electricity offers clear GHG benefits compared to conventional grid electricity. DRI's eight systems have GHG intensity values of 29-56 gCO2e/kWh, as compared to the GHG intensity of 212 gCO2e/kWh of national average grid power. The major source of impacts (82-92% of the total) is the upstream life cycle burden of manufacturing PV panels, which are made of either mono-crystalline or multi-crystalline silicon. Given the same type of PV panel, GHG intensity decreases as the scale of the system increases

  9. Assessing the PACE of California residential solar deployment: Impacts of Property Assessed Clean Energy programs on residential solar photovoltaic deployment in California, 2010-2015

    Energy Technology Data Exchange (ETDEWEB)

    Deason, Jeff; Murphy, Sean

    2018-04-04

    A new study by Berkeley Lab found that residential Property Assessed Clean Energy (R-PACE) programs increased deployment of residential solar photovoltaic (PV) systems in California, raising it by about 7-12% in cities that adopt these programs. R-PACE is a financing mechanism that uses a voluntary property tax assessment, paid off over time, to facilitate energy improvements and, in some jurisdictions, water and resilience measures. While previous studies demonstrated that early, regional R-PACE programs increased solar PV deployment, this new analysis is the first to demonstrate these impacts from the large, statewide R-PACE programs dominating the California market today, which use private capital to fund the upfront costs of the improvements. Berkeley Lab estimated the impacts using econometric techniques on two samples: -Large cities only, allowing annual demographic and economic data as control variables -All California cities, without these annual data Analysis of both samples controls for several factors other than R-PACE that would be expected to drive solar PV deployment. We infer that on average, cities with R-PACE programs were associated with greater solar PV deployment in our study period (2010-2015). In the large cities sample, solar PV deployment in jurisdictions with R-PACE programs was higher by 1.1 watts per owner-occupied household per month, or 12%. Across all cities, solar PV deployment in jurisdictions with R-PACE programs was higher by 0.6 watts per owner-occupied household per month, or 7%. The large cities results are statistically significant at conventional levels; the all-cities results are not. The estimates imply that the majority of solar PV deployment financed by R-PACE programs would likely not have occurred in their absence. Results suggest that R-PACE programs have increased PV deployment in California even in relatively recent years, as R-PACE programs have grown in market share and as alternate approaches for financing solar PV

  10. Geothermal Energy: Current abstracts

    Energy Technology Data Exchange (ETDEWEB)

    Ringe, A.C. (ed.)

    1988-02-01

    This bulletin announces the current worldwide information available on the technologies required for economic recovery of geothermal energy and its use as direct heat or for electric power production. (ACR)

  11. Effective geothermal heat

    International Nuclear Information System (INIS)

    Abelsen, Atle

    2006-01-01

    Scandinavia's currently largest geothermal heating project: the New Ahus hospital, is briefly presented. 300-400 wells on a field outside the hospital are constructed to store energy for both heating and cooling purposes

  12. NGDC Geothermal Data Bases

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Geothermics is the study of heat generated in Earth's interior and its manifestation at the surface. The National Geophysical Data Center (NGDC) has a variety of...

  13. Geothermics in Aquitaine

    International Nuclear Information System (INIS)

    Dane, J.P.

    1995-01-01

    The geothermal exploitation of the Aquitanian Basin (S W France) started 15 years ago and has extended today to 12 different places. Three main aquifers of different depth are exploited in Bordeaux region: the old alluvial deposits of Garonne river (20-30 m), the Middle Eocene aquifer (300-400 m), and the Cenomanian-Turonian aquifer (900-1100 m) which is the deepest and most exploited for geothermal purposes. The drinkable quality of the water and the use of single-well technique are important factors that reduce the operating costs. Geothermics remains competitive with other energy sources due to the long-term stability of geothermal energy costs. (J.S.). 2 figs., 1 tab., 5 photos

  14. Geothermal studies in China

    Science.gov (United States)

    Ji-Yang, Wang; Mo-Xiang, Chen; Ji-An, Wang; Xiao, Deng; Jun, Wang; Hsien-Chieh, Shen; Liang-Ping, Hsiung; Shu-Zhen, Yan; Zhi-Cheng, Fan; Xiu-Wen, Liu; Ge-Shan, Huang; Wen-Ren, Zhang; Hai-Hui, Shao; Rong-Yan, Zhang

    1981-01-01

    Geothermal studies have been conducted in China continuously since the end of the 1950's with renewed activity since 1970. Three areas of research are defined: (1) fundamental theoretical research on geothermics, including subsurface temperatures, terrestrial heat flow and geothermal modeling; (2) exploration for geothermal resources and exploitation of geothermal energy; and (3) geothermal studies in mines. Regional geothermal studies have been conducted recently in North China and more than 2000 values of subsurface temperature have been obtained. Temperatures at a depth of 300 m generally range from 20 to 25°C with geothermal gradients from 20 to 40°C/km. These values are regarded as an average for the region with anomalies related to geological factors. To date, 22 reliable heat flow data from 17 sites have been obtained in North China and the data have been categorized according to fault block tectonics. The average heat flow value at 16 sites in the north is 1.3 HFU, varying from 0.7 to 1.8 HFU. It is apparent that the North China fault block is characterized by a relatively high heat flow with wide variations in magnitude compared to the mean value for similar tectonic units in other parts of the world. It is suggested that although the North China fault block can be traced back to the Archaean, the tectonic activity has been strengthening since the Mesozoic resulting in so-called "reactivation of platform" with large-scale faulting and magmatism. Geothermal resources in China are extensive; more than 2000 hot springs have been found and there are other manifestations including geysers, hydrothermal explosions, hydrothermal steam, fumaroles, high-temperature fountains, boiling springs, pools of boiling mud, etc. In addition, there are many Meso-Cenozoic sedimentary basins with widespread aquifers containing geothermal water resources in abundance. The extensive exploration and exploitation of these geothermal resources began early in the 1970's. Since then

  15. Overcoming the lock-out of renewable energy technologies in Spain: The cases of wind and solar electricity

    Energy Technology Data Exchange (ETDEWEB)

    Rio, Pablo del [Department of Spanish and International Economics, Econometrics and History and Economic Institutions, Facultad de Ciencias Juridicas y Sociales de Toledo, C/Cobertizo de S. Pedro Martir s/n, Universidad de Castilla-La Mancha, Toledo-45071 (Spain); Unruh, Gregory [Alumni Association Chair for Corporate Sustainability, Center for Eco-Intelligent Management, Instituto de Empresa, Serrano, 105 Madrid-28006 (Spain)

    2007-09-15

    This paper applies an evolutionary economics framework to analyse the factors leading to lock-out of renewable energy technologies (RETs). The cases of wind and solar photovoltaics (PV) in Spain are empirically analysed. The paper shows that a wide array of interrelated factors (technoeconomic characteristics of technology components, system-level infrastructure and institutional factors) can create both barriers to the wide diffusion of RETs and can also be drivers that foster an escape from a lock-in situation. Based on this analysis, the paper suggests several policy measures which may help to overcome the lock-out of promising renewable energy technologies. (author)

  16. Renewable Energy Essentials: Geothermal

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    Geothermal energy is energy available as heat contained in or discharged from the earth's crust that can be used for generating electricity and providing direct heat for numerous applications such as: space and district heating; water heating; aquaculture; horticulture; and industrial processes. In addition, the use of energy extracted from the constant temperatures of the earth at shallow depth by means of ground source heat pumps (GSHP) is also generally referred to as geothermal energy.

  17. Geothermal environmental impact

    International Nuclear Information System (INIS)

    Armannsson, H.; Kristmannsdottir, H.

    1992-01-01

    Geothermal utilization can cause surface disturbances, physical effects due to fluid withdrawal noise, thermal effects and emission of chemicals as well as affect the communities concerned socially and economically. The environmental impact can be minimized by multiple use of the energy source and the reinjection of spent fluids. The emission of greenhouse gases to the atmosphere can be substantially reduced by substituting geothermal energy for fossil fuels as an industrial energy source wherever possible

  18. A complementary geothermal application

    International Nuclear Information System (INIS)

    Bedard, R.

    1998-01-01

    A geothermal project for air conditioning and heating at four health centres in Quebec was presented. The four health centres are: le centre Dominique-Tremblay, le centre Cardinal-Villeneuve, le centre Louis-Hebert, et le centre Francois-Charon. The investment made to install the geothermal heating and cooling system, the cost of operating the system, and energy savings resulting from the investment were discussed

  19. Geothermal System Extensions

    Energy Technology Data Exchange (ETDEWEB)

    Gunnerson, Jon [Boise City Corporation, ID (United States); Pardy, James J. [Boise City Corporation, ID (United States)

    2017-09-30

    This material is based upon work supported by the Department of Energy under Award Number DE-EE0000318. The City of Boise operates and maintains the nation’s largest geothermal heating district. Today, 91 buildings are connected, providing space heating to over 5.5 million square feet, domestic water heating, laundry and pool heating, sidewalk snowmelt and other related uses. Approximately 300 million gallons of 177°F geothermal water is pumped annually to buildings and institutions located in downtown Boise. The closed loop system returns all used geothermal water back into the aquifer after heat has been removed via an Injection Well. Water injected back into the aquifer has an average temperature of 115°F. This project expanded the Boise Geothermal Heating District (Geothermal System) to bring geothermal energy to the campus of Boise State University and to the Central Addition Eco-District. In addition, this project also improved the overall system’s reliability and increased the hydraulic capacity.

  20. SIZING AND COSTING OPTIMISATION OF A TYPICAL WIND/PV HYBRID ELECTRICITY GENERATION SYSTEM FOR A TYPICAL RESIDENTIAL BUILDING IN URBAN ARMIDALE NSW, AUSTRALIA

    Directory of Open Access Journals (Sweden)

    Yasser Maklad

    2014-04-01

    Full Text Available This study investigates the wind and solar electricity generation availability and potentiality for residential buildings in Armidale NSW, Australia. The main purpose of this study is to design an appropriate wind-PV hybrid system to cover the electricity consumption of typical residential buildings of various occupancy rates and relevant various average electrical daily consumption. In order to do achieve that, monthly average solar irradiance monthly average wind speed historical data observed at weather station belongs to the Australian bureau of meteorology in Armidale town over a fourteen years period from 1997–2010. Simulation of solar photovoltaic panels and wind turbines were conducted to obtain the optimal hybrid system sizing and best efficient with lowest cost. Correlations between the solar and wind power data were carried out on an hourly, daily, and monthly basis. It is shown that the hybrid system can be applied for the efficient and economic utilization of wind and solar renewable energy sources.

  1. Technology Roadmaps: Solar photovoltaic energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    Solar PV power is a commercially available and reliable technology with a significant potential for long-term growth in nearly all world regions. This roadmap estimates that by 2050, PV will provide around 11% of global electricity production and avoid 2.3 gigatonnes (Gt) of CO2 emissions per year. Achieving this roadmap's vision will require an effective, long-term and balanced policy effort in the next decade to allow for optimal technology progress, cost reduction and ramp-up of industrial manufacturing for mass deployment. Governments will need to provide long-term targets and supporting policies to build confidence for investments in manufacturing capacity and deployment of PV systems. PV will achieve grid parity -- i.e. competitiveness with electricity grid retail prices -- by 2020 in many regions. As grid parity is achieved, the policy framework should evolve towards fostering self-sustained markets, with the progressive phase-out of economic incentives, but maintaining grid access guarantees and sustained R&D support.

  2. Solar photovoltaics for development applications

    Energy Technology Data Exchange (ETDEWEB)

    Shepperd, L.W. [Florida Solar Energy Center, Cape Canaveral, FL (United States); Richards, E.H. [Sandia National Labs., Albuquerque, NM (United States)

    1993-08-01

    This document introduces photovoltaic technology to individuals and groups specializing in development activities. Examples of actual installations illustrate the many services supplied by photovoltaic systems in development applications, including water pumping, lighting, health care, refrigeration, communications, and a variety of productive uses. The various aspects of the technology are explored to help potential users evaluate whether photovoltaics can assist them in achieving their organizational goals. Basic system design, financing techniques, and the importance of infrastructure are included, along with additional sources of information and major US photovoltaic system suppliers.

  3. Technology Roadmaps: Solar photovoltaic energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    Solar PV power is a commercially available and reliable technology with a significant potential for long-term growth in nearly all world regions. This roadmap estimates that by 2050, PV will provide around 11% of global electricity production and avoid 2.3 gigatonnes (Gt) of CO2 emissions per year. Achieving this roadmap's vision will require an effective, long-term and balanced policy effort in the next decade to allow for optimal technology progress, cost reduction and ramp-up of industrial manufacturing for mass deployment. Governments will need to provide long-term targets and supporting policies to build confidence for investments in manufacturing capacity and deployment of PV systems. PV will achieve grid parity -- i.e. competitiveness with electricity grid retail prices -- by 2020 in many regions. As grid parity is achieved, the policy framework should evolve towards fostering self-sustained markets, with the progressive phase-out of economic incentives, but maintaining grid access guarantees and sustained R&D support.

  4. Utilising geothermal energy in Victoria

    International Nuclear Information System (INIS)

    Driscoll, Jim

    2006-01-01

    Geothermal energy is generated from the radioactive decay of naturally occurring isotopes and about 20% is generated from primordial heat associated with the formation of the earth. Geothermal project reduce energy and water cost and reduces greenhouse gas emissions

  5. Accelerating Geothermal Research (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2014-05-01

    Geothermal research at the National Renewable Energy Laboratory (NREL) is advancing geothermal technologies to increase renewable power production. Continuous and not dependent on weather, the geothermal resource has the potential to jump to more than 500 gigawatts in electricity production, which is equivalent to roughly half of the current U.S. capacity. Enhanced geothermal systems have a broad regional distribution in the United States, allowing the potential for development in many locations across the country.

  6. Development of geothermal resources

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    This paper describes the geothermal development promotion survey project. NEDO is taking the lead in investigation and development to reduce risks for private business entities and promote their development. The program is being moved forward by dividing the surveys into three ranks of A, B and C from prospects of geothermal resource availability and the state of data accumulation. The survey A lacks number of data, but covers areas as wide as 100 to 300 km{sup 2}, and studies possible existence of high-temperature geothermal energy. The survey B covers areas of 50 to 70 km{sup 2}, investigates availability of geothermal resources, and assesses environmental impacts. The survey C covers areas of 5 to 10 km{sup 2}, and includes production well drilling and long-term discharge tests, other than those carried out by the surveys A and B. Results derived in each fiscal year are evaluated and judged to establish development plans for the subsequent fiscal year. This paper summarizes development results on 38 areas from among 45 areas surveyed since fiscal 1980. Development promotion surveys were carried out over seven areas in fiscal 1994. Development is in progress not only on utilization of high-temperature steam, but also on binary cycle geothermal power generation utilizing hot waters of 80 to 150{degree}C. Fiscal 1994 has carried out discussions for spread and practical use of the systems (particularly on economic effects), and development of small-to-medium scale binary systems. 2 figs., 1 tab.

  7. S. 2415: Title I may be cited as the Uranium Enrichment Act of 1990; Title II may be cited as the Uranium Security and Tailings Reclamation Act of 1989; and Title III may be cited as The Solar, Wind, Waste, and Geothermal Power Production Incentives Act of 1990, introduced in the Senate, One Hundred First Congress, Second Session, April 4, 1990

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    S. 2415 (which started out as a bill to encourage solar and geothermal power generation) now would amend the Atomic Energy Act of 1954 to redirect uranium enrichment enterprises to further the national interest, respond to competitive market forces, and to ensure the nation's common defense and security. It would establish a United States Enrichment Corporation for the following purposes: to acquire feed materials, enriched uranium, and enrichment facilities; to operate these facilities; to market enriched uranium for governmental purposes and qualified domestic and foreign persons; to conduct research into uranium enrichment; and to operate as a profitable, self-financing, reliable corporation and in a manner consistent with the health and safety of the public. The bill describes powers and duties of the corporation; the organization, finance, and management; decontamination and decommissioning. The second part of the bill would ensure an adequate supply of domestic uranium for defense and power production; provide assistance to the domestic uranium industry; and establish, facilitate, and expedite a comprehensive system for financing reclamation and remedial action at active uranium and thorium processing sites. The third part of the bill would remove the size limitations on power production facilities now part of the Public Utility Regulatory Policies Act of 1978. Solar, wind, waste, or geothermal power facilities would no longer have to be less than 80 MW to qualify as a small power production facility

  8. Geothermal heat pump

    International Nuclear Information System (INIS)

    Bruno, R.; Tinti, F.

    2009-01-01

    In recent years, for several types of buildings and users, the choice of conditioning by heat pump and low enthalpy geothermal reservoir has been increasing in the Italian market. In fact, such systems are efficient in terms of energy and consumption, they can perform, even at the same time, both functions, heating and cooling and they are environmentally friendly, because they do not produce local emissions. This article will introduce the technology and will focus on critical points of a geothermal field design, from actual practice, to future perspectives for the geo exchanger improvement. Finally, the article presents a best practice case in Bologna district, with an economic analysis showing the convenience of a geothermal heat pump. Conclusions of the real benefits of these plants can be drawn: compared to a non-negligible initial cost, the investment has a pay-back period almost always acceptable, usually less than 10 years. [it

  9. Geothermal energy technology

    Energy Technology Data Exchange (ETDEWEB)

    1977-01-01

    Geothermal energy research and development by the Sunshine Project is subdivided into five major categories: exploration and exploitation technology, hot-water power generation technology, volcanic power generation technology, environmental conservation and multi-use technology, and equipment materials research. The programs are being carried out by various National Research Institutes, universities, and private industry. During 1976 and 1977, studies were made of the extent of resources, reservoir structure, ground water movement, and neotectonics at the Onikobe and Hachimantai geothermal fields. Studies to be performed in the near future include the use of new prospecting methods, including artificial magnetotellurics, heat balance calculation, brightspot techniques, and remote sensing, as well as laboratory studies of the physical, mechanical, and chemical properties of rock. Studies are continuing in the areas of ore formation in geothermal environments, hot-dry-rock drilling and fracturing, large scale prospecting technology, high temperature-pressure drilling muds and well cements, and arsenic removal techniques.

  10. Geophysical considerations of geothermics

    Energy Technology Data Exchange (ETDEWEB)

    Hayakawa, M

    1967-01-01

    The development and utilization of geothermal energy is described from the standpoint of geophysics. The internal temperature of the Earth and the history and composition of magmas are described. Methods of exploration such as gravity, magnetic, thermal and electrical surveys are discussed, as are geochemical and infrared photogrammetric techniques. Examples are provided of how these techniques have been used in Italy and at the Matsukawa geothermal field in Japan. Drilling considerations such as muds, casings and cementing materials are discussed. Solutions are proposed for problems of environmental pollution and plant expansion.

  11. Victorian first for geothermal

    International Nuclear Information System (INIS)

    Wallace, Paula

    2014-01-01

    AGL Limited (AGL) will assist Maroondah Sports Club to save hundreds of thousands of dollars on its energy bills over the next decade by commencing work to install Victoria's first GeoAir geothermal cooling and heating system. Utilising the earth's constant temperature, the new GeoAir geothermal system provides a renewable source of energy that will save the club up to $12,000 in the first year and up to $150,000 over the next 10 years

  12. Geothermal and environment

    International Nuclear Information System (INIS)

    1993-01-01

    The production of geothermal-electric energy, presents relatively few contamination problems. The two bigger problems associated to the geothermal production are the disposition of waste fluids and the discharges to the atmosphere of non-condensable gases as CO 2 , H 2 O and NH 3 . For both problems the procedures and production technologies exist, like it is the integral use of brines and gases cleaning systems. Other problems consist on the local impact to forest areas for the effect of the vapor discharge, the contamination for noise, the contamination of aquifer shallow and the contamination related with the construction and termination of wells

  13. Current Situation and Development Prospect of Solar Photovoltaic Power Generation Technology in China%我国光伏发电技术的发展现状与前景

    Institute of Scientific and Technical Information of China (English)

    梁云; 杨小天; 郭亮

    2015-01-01

    太阳能是一种广泛分布的能源,也是人类未来能源需求的重要来源之一.通过太阳能光伏发电技术将太阳能转变成人类可以直接利用的电能,这对缓解未来能源的紧张局面具有重要意义.在我国光伏发电技术的应用主要集中于民用和公用两大领域,并得到了快速的发展,为人们生活带来了诸多便利.光伏发电技术在世界各国发展迅速,其方便和无污染的特点使其具有较好的发展前景.%Solar energy is not only a kind of widely distributed energy, but also one of the important sources of man-kind's future energy needs. Through the solar photovoltaic power generation technology, we can convert the solar energy into the electric energy which can be directly used by human. And it is of great significance to alleviate the tense situation of energy in the future. Photovoltaic technology mainly used in Civil and public areas. In recent years, solar photovoltaic technology has been developing rapidly in our country and it has brought a lot of conven-ience for people. Photovoltaic power generation technology is developing rapidly in the world. Because that it has characteristics of convenience and no pollution so that it has good prospects for development.

  14. 基于物联网的太阳能光伏组件监控系统的研究%Research of Solar Photovoltaic Component Monitoring System Based on Internet of Things

    Institute of Scientific and Technical Information of China (English)

    华驰; 韦康; 王辉; 杨慧

    2012-01-01

    With the relatively weak status of solar photovoltaic components management and maintenance, this paper presents a Solar photovoltaic component monitoring system based on Internet of things which can perform the accurate positioning function of photovoltaic (PV) modules. The system incorporates the technology of collecting and storing the natural energy, intelligent wireless sensor technology, real-time communication technology used in wireless network and technology of Web and data mining and analyzing platform. Practice has proved that this system is effective in data transmission, reliable and steady in performance, and can communicate real time with the monitoring center, thus materializing the parameter collection for voltage, electric current, power and accumulated energy, and real - time monitoring of photovoltaic components.%针对太阳能光伏组件管理维护的相对薄弱现状,提出了一种基于物联网的能够完成光伏组件准确定位功能的太阳能光伏组件监控系统,该系统的设计中融合了自然能量的采集和存储技术、智能无线传感器技术、实时无线网络通信技术及Web和数据挖掘分析平台技术;实践证明,系统数据传输效果好、性能稳定可靠,能实时与监控中心进行通信,实现了电压、电流、功率、累计能量等参数的采集及光伏组件实时监控等.

  15. Geothermal Energy: Delivering on the Global Potential

    Directory of Open Access Journals (Sweden)

    Paul L. Younger

    2015-10-01

    Full Text Available Geothermal energy has been harnessed for recreational uses for millennia, but only for electricity generation for a little over a century. Although geothermal is unique amongst renewables for its baseload and renewable heat provision capabilities, uptake continues to lag far behind that of solar and wind. This is mainly attributable to (i uncertainties over resource availability in poorly-explored reservoirs and (ii the concentration of full-lifetime costs into early-stage capital expenditure (capex. Recent advances in reservoir characterization techniques are beginning to narrow the bounds of exploration uncertainty, both by improving estimates of reservoir geometry and properties, and by providing pre-drilling estimates of temperature at depth. Advances in drilling technologies and management have potential to significantly lower initial capex, while operating expenditure is being further reduced by more effective reservoir management—supported by robust models—and increasingly efficient energy conversion systems (flash, binary and combined-heat-and-power. Advances in characterization and modelling are also improving management of shallow low-enthalpy resources that can only be exploited using heat-pump technology. Taken together with increased public appreciation of the benefits of geothermal, the technology is finally ready to take its place as a mainstream renewable technology, exploited far beyond its traditional confines in the world’s volcanic regions.

  16. 2008 Geothermal Technologies Market Report

    Energy Technology Data Exchange (ETDEWEB)

    Cross, J.; Freeman, J.

    2009-07-01

    This report describes market-wide trends for the geothermal industry throughout 2008 and the beginning of 2009. It begins with an overview of the U.S. DOE's Geothermal Technology Program's (GTP's) involvement with the geothermal industry and recent investment trends for electric generation technologies. The report next describes the current state of geothermal power generation and activity within the United States, costs associated with development, financing trends, an analysis of the levelized cost of energy (LCOE), and a look at the current policy environment. The report also highlights trends regarding direct use of geothermal energy, including geothermal heat pumps (GHPs). The final sections of the report focus on international perspectives, employment and economic benefits from geothermal energy development, and potential incentives in pending national legislation.

  17. Human Resources in Geothermal Development

    Energy Technology Data Exchange (ETDEWEB)

    Fridleifsson, I.B.

    1995-01-01

    Some 80 countries are potentially interested in geothermal energy development, and about 50 have quantifiable geothermal utilization at present. Electricity is produced from geothermal in 21 countries (total 38 TWh/a) and direct application is recorded in 35 countries (34 TWh/a). Geothermal electricity production is equally common in industrialized and developing countries, but plays a more important role in the developing countries. Apart from China, direct use is mainly in the industrialized countries and Central and East Europe. There is a surplus of trained geothermal manpower in many industrialized countries. Most of the developing countries as well as Central and East Europe countries still lack trained manpower. The Philippines (PNOC) have demonstrated how a nation can build up a strong geothermal workforce in an exemplary way. Data from Iceland shows how the geothermal manpower needs of a country gradually change from the exploration and field development to monitoring and operations.

  18. Geothermal industry assessment

    Energy Technology Data Exchange (ETDEWEB)

    1980-07-01

    An assessment of the geothermal industry is presented, focusing on industry structure, corporate activities and strategies, and detailed analysis of the technological, economic, financial, and institutional issues important to government policy formulation. The study is based principally on confidential interviews with executives of 75 companies active in the field. (MHR)

  19. Geothermal Greenhouse Information Package

    Energy Technology Data Exchange (ETDEWEB)

    Rafferty, K. [P.E.; Boyd, T. [ed.

    1997-01-01

    This package of information is intended to provide a foundation of background information for developers of geothermal greenhouses. The material is divided into seven sections covering such issues as crop culture and prices, operating costs for greenhouses, heating system design, vendors and a list of other sources of information.

  20. Geothermal energy. Program summary

    Energy Technology Data Exchange (ETDEWEB)

    1979-06-01

    Brief descriptions of geothermal projects funded through the Department of Energy during FY 1978 are presented. Each summary gives the project title, contractor name, contract number, funding level, dates, location, and name of the principal investigator, together with project highlights, which provide informaion such as objectives, strategies, and a brief project description. (MHR)

  1. Geothermal investigations in Slovenia

    Directory of Open Access Journals (Sweden)

    Danilo Ravnik

    1991-12-01

    Full Text Available The paper presents the methodology and the results of geothermal investigations, based on seventy-two boreholes in the territory of the Republic of Slovenia.The data of fundamental geothermal quantities: formation temperature, thermal conductivity, and radiogenic heat production of rocks as well as surface heat flow density are stored in a computerized data base. Their synthesis is given in the map of formation temperatures at 1000 m depth and in the map of surface heat flow density. In both maps the thermal difference between the Pannonian basin in theeastern and the Dinarides in the western part of Slovenia is clearly expressed.However, in the boundary area between these two tectonic units, for a distance of about 100 km in SW-NE direction, elevated horizontal gradients of formation temperature as well as heat flow density are evident. A small positive thermal anomaly in the Ljubljana depression is conspicuous.The low-temperature geothermal resources in Slovenia such as thermalsprings and thermal water from boreholes, are estimated to have a flow rate of 1120 kg/s, corresponding to the ideal total heat production of 144 MWt. In the geothermally promising areas amounting to 3200 km2 the rate of accessible resource base (ARB down to the depth of 3 km has been assessed to about 8.5 x lO 20» J.

  2. Very low energy geothermics

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    Very low energy geothermics correspond to temperatures below 30 C and has been developed to cover heating and cooling needs of recent individual houses or tertiary industries using heat pumps and low depth aquifers (<100 m). Geothermal heat pumps industry has made great strides in European Northern countries, China, Japan and the United States of America. Geothermal heat pumps are less energy consuming than air heat pumps and require less cooling fluid and maintenance. The Aquapac procedure has been developed in France in 1983 by the AFME (French Energy Control Agency), EdF and the BRGM (Geologic and Mining Research Office) to encourage the use of geothermal heat pump for domestic and sanitary water heating and to make a survey of low-depth aquifers in the whole french territory. The decay of energy costs that started in 1986 has led to a loss of interest for the Aquapac procedure, even in the tertiary industries for which the air-conditioning demand is growing up. (J.S.). 1 tab

  3. Geothermal Grows Up

    Science.gov (United States)

    Johnson, William C.; Kraemer, Steven; Ormond, Paul

    2011-01-01

    Self-declared energy and carbon reduction goals on the part of progressive colleges and universities have driven ground source geothermal space heating and cooling systems into rapid evolution, as part of long-term climate action planning efforts. The period of single-building or single-well solutions is quickly being eclipsed by highly engineered…

  4. Geothermal energy conversion facility

    Energy Technology Data Exchange (ETDEWEB)

    Kutscher, C.F.

    1997-12-31

    With the termination of favorable electricity generation pricing policies, the geothermal industry is exploring ways to improve the efficiency of existing plants and make them more cost-competitive with natural gas. The Geothermal Energy Conversion Facility (GECF) at NREL will allow researchers to study various means for increasing the thermodynamic efficiency of binary cycle geothermal plants. This work has received considerable support from the US geothermal industry and will be done in collaboration with industry members and utilities. The GECF is being constructed on NREL property at the top of South Table Mountain in Golden, Colorado. As shown in Figure 1, it consists of an electrically heated hot water loop that provides heating to a heater/vaporizer in which the working fluid vaporizes at supercritical or subcritical pressures as high as 700 psia. Both an air-cooled and water-cooled condenser will be available for condensing the working fluid. In order to minimize construction costs, available equipment from the similar INEL Heat Cycle Research Facility is being utilized.

  5. Health impacts of geothermal energy

    International Nuclear Information System (INIS)

    Layton, D.W.; Anspaugh, L.R.

    1982-01-01

    Geothermal resources are used to produce electrical energy and to supply heat for non-electric applications like residential heating and crop drying. The utilization of geothermal energy consists of the extraction of hot water or steam from an underground reservoir followed by different methods of surface processing along with the disposal of liquid, gaseous, and even solid wastes. The focus of this paper is on electric power production using geothermal resources greater than 150 0 C because this form of geothermal energy utilization has the most serious health-related consequences. Based on measurements and experience at existing geothermal power plants, atmospheric emissions of non-condensing gases such as hydrogen sulphide and benzene pose the greatest hazards to public health. Surface and ground waters contaminated by discharges of spent geothermal fluids constitute another health hazard. In this paper it is shown that hydrogen sulphide emissions from most geothermal power plants are apt to cause odour annoyances among members of the exposed public -some of whom can detect this gas at concentrations as low as 0.002 ppmv. A risk-assessment model is used to estimate the lifetime risk of incurring leukaemia from atmospheric benzene caused by 2000 MW(e) of geothermal development in California's Imperial Valley. Also assessed is the risk of skin cancer due to the ingestion of river water in New Zealand that is contaminated by waste geothermal fluids containing arsenic. Finally, data on the occurrence of occupational disease in the geothermal industry is briefly summarized. (author)

  6. Solar and wind potentialities in Mauritania. Presentation of pumping

    International Nuclear Information System (INIS)

    Adell, A.; Fagel, L.

    1996-01-01

    The programs of rural hydraulics based upon the use of renewable energies, either solar or wind, have gained in importance in Africa during the last decade; particularly in Mauritania, a Sahelian country, which is extending widely beyond the western edge of Sahara. This country has been hardly affected by the prolonged droughts which have recently struck this region. Water is a major problem here. Important projects appeared concerning the pumping of water with the help of solar photovoltaic systems and wind mechanical pumps; other processes are being studied: pumping with aero-generators, sea water desalinating... Today Mauritania is at the top of countries of the subregion concerning the number of installations of wind mechanical pumps. The meteorological conditions are in fact favourable to such realizations. A technical and economic comparative study of the results of functioning obtained on the field with a photovoltaic pumping installation and a wind pumping installation, is presented: better technical performances and greater reliability for the photovoltaic pump, lower cost and technological mastery for the wind pump. (author). 9 refs., 8 figs

  7. The Distributed Geothermal Market Demand Model (dGeo): Documentation

    Energy Technology Data Exchange (ETDEWEB)

    McCabe, Kevin [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Mooney, Meghan E [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sigrin, Benjamin O [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Gleason, Michael [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Liu, Xiaobing [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-11-06

    The National Renewable Energy Laboratory (NREL) developed the Distributed Geothermal Market Demand Model (dGeo) as a tool to explore the potential role of geothermal distributed energy resources (DERs) in meeting thermal energy demands in the United States. The dGeo model simulates the potential for deployment of geothermal DERs in the residential and commercial sectors of the continental United States for two specific technologies: ground-source heat pumps (GHP) and geothermal direct use (DU) for district heating. To quantify the opportunity space for these technologies, dGeo leverages a highly resolved geospatial database and robust bottom-up, agent-based modeling framework. This design is consistent with others in the family of Distributed Generation Market Demand models (dGen; Sigrin et al. 2016), including the Distributed Solar Market Demand (dSolar) and Distributed Wind Market Demand (dWind) models. dGeo is intended to serve as a long-term scenario-modeling tool. It has the capability to simulate the technical potential, economic potential, market potential, and technology deployment of GHP and DU through the year 2050 under a variety of user-defined input scenarios. Through these capabilities, dGeo can provide substantial analytical value to various stakeholders interested in exploring the effects of various techno-economic, macroeconomic, financial, and policy factors related to the opportunity for GHP and DU in the United States. This report documents the dGeo modeling design, methodology, assumptions, and capabilities.

  8. Geothermal heat can cool, too

    International Nuclear Information System (INIS)

    Wellstein, J.

    2008-01-01

    This article takes a look at how geothermal energy can not only be used to supply heating energy, but also be used to provide cooling too. The article reports on a conference on heating and cooling with geothermal energy that was held in Duebendorf, Switzerland, in March 2008. The influence of climate change on needs for heating and cooling and the need for additional knowledge and data on deeper rock layers is noted. The seasonal use of geothermal systems to provide heating in winter and cooling in summer is discussed. The planning of geothermal probe fields and their simulation is addressed. As an example, the geothermal installations under the recently renewed and extended 'Dolder Grand' luxury hotel in Zurich are quoted. The new SIA 384/6 norm on geothermal probes issued by the Swiss Association of Architects SIA is briefly reviewed.

  9. Geothermal energy utilization in Russia

    Energy Technology Data Exchange (ETDEWEB)

    Svalova, V. [Institute of Environmental Geoscience, RAS, Moscow (Russian Federation)

    2011-07-01

    Geothermal energy use is the way to clean, sustainable energy development for the world. Russia has rich high and low temperature geothermal resources and is making progress using them - mostly with low-temperature geothermal resources and heat pumps This is optimal for many regions of Russia -in the European part, in the Urals and others. Electricity is generated by some geothermal power plants (GeoPP) only in the Kamchatka Peninsula and Kuril Islands There are two possible ways of using geothermal resources, depending on the properties of thermal waters heat/power and mineral extraction. The mineral-extraction direction is basic for geothermal waters, which contain valuable components in industrial quantities The most significant deposits of thermal waters represent the brines containing from 35 up to 400 and more g/l of salts. These are the minerals of many chemical dements. (author)

  10. Geothermal development plan: Maricopa county

    Energy Technology Data Exchange (ETDEWEB)

    White, D.H.

    1981-01-01

    Maricopa county is the area of Arizona receiving top priority since it contains over half of the state's population. The county is located entirely within the Basin and Range physiographic region in which geothermal resources are known to occur. Several approaches were taken to match potential users to geothermal resources. One approach involved matching some of the largest facilities in the county to nearby geothermal resources. Other approaches involved identifying industrial processes whose heat requirements are less than the average assessed geothermal reservoir temperature of 110/sup 0/C (230/sup 0/F). Since many of the industries are located on or near geothermal resources, geothermal energy potentially could be adapted to many industrial processes.

  11. Chemical logging of geothermal wells

    Science.gov (United States)

    Allen, C.A.; McAtee, R.E.

    The presence of geothermal aquifers can be detected while drilling in geothermal formations by maintaining a chemical log of the ratio of the concentrations of calcium to carbonate and bicarbonate ions in the return drilling fluid. A continuous increase in the ratio of the concentrations of calcium to carbonate and bicarbonate ions is indicative of the existence of a warm or hot geothermal aquifer at some increased depth.

  12. Direct application of geothermal energy

    Energy Technology Data Exchange (ETDEWEB)

    Reistad, G.M.

    1980-01-01

    An overall treatment of direct geothermal applications is presented with an emphasis on the above-ground engineering. The types of geothermal resources and their general extent in the US are described. The potential market that may be served with geothermal energy is considered briefly. The evaluation considerations, special design aspects, and application approaches for geothermal energy use in each of the applications are considered. The present applications in the US are summarized and a bibliography of recent studies and applications is provided. (MHR)

  13. Water Desalination using geothermal energy

    KAUST Repository

    Goosen, M.

    2010-08-03

    The paper provides a critical overview of water desalination using geothermal resources. Specific case studies are presented, as well as an assessment of environmental risks and market potential and barriers to growth. The availability and suitability of low and high temperature geothermal energy in comparison to other renewable energy resources for desalination is also discussed. Analysis will show, for example, that the use of geothermal energy for thermal desalination can be justified only in the presence of cheap geothermal reservoirs or in decentralized applications focusing on small-scale water supplies in coastal regions, provided that society is able and willing to pay for desalting. 2010 by the authors; licensee MDPI, Basel, Switzerland.

  14. The geothermal KWh cost

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    Numerous factors can influence the cost of geothermal electricity production: the size and power of production units, the conversion technology used (Rankine cycle or water steam), the resource quality (dry vapor or water-vapor mixing), the resource depth, the drilling activity in the country and the work people costs. In the United States of America the geothermal kWh cost ranges from 2.5 to 8.5 US cents, while in Italy and Nicaragua it ranges from 3 and 10 cents and from 5.7 to 6 cents, respectively. Results of a comparative study of the kWh production cost from different energy sources is also summarized. (J.S.). 1 tab

  15. Best Practices for Siting Solar Photovoltaics on Municipal Solid Waste Landfills. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites

    Energy Technology Data Exchange (ETDEWEB)

    Kiatreungwattana, K.; Mosey, G.; Jones-Johnson, S.; Dufficy, C.; Bourg, J.; Conroy, A.; Keenan, M.; Michaud, W.; Brown, K.

    2013-04-01

    The Environmental Protection Agency and the National Renewable Energy Laboratory developed this best practices document to address common technical challenges for siting solar photovoltaics (PV) on municipal solid waste (MSW) landfills. The purpose of this document is to promote the use of MSW landfills for solar energy systems. Closed landfills and portions of active landfills with closed cells represent thousands of acres of property that may be suitable for siting solar photovoltaics (PV). These closed landfills may be suitable for near-term construction, making these sites strong candidate to take advantage of the 30% Federal Business Energy Investment Tax Credit. It was prepared in response to the increasing interest in siting renewable energy on landfills from solar developers; landfill owners; and federal, state, and local governments. It contains examples of solar PV projects on landfills and technical considerations and best practices that were gathered from examining the implementation of several of these projects.

  16. Federal Interagency Geothermal Activities

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Arlene [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States); Prencipe, Loretta [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States); Todaro, Richard M. [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States); Cuyler, David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Eide, Elizabeth [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States)

    2011-06-01

    This collaborative document describes the roles and responsibilities of key Federal agencies in the development of geothermal technologies including the U.S. Department of Energy (DOE); the U.S. Department of Agriculture (USDA), including the U.S. Forest Service; the U.S. Department of Interior (DOI), including the United States Geological Survey (USGS) and Bureau of Land Management (BLM); the Environmental Protection Agency (EPA); and the Department of Defense (DOD).

  17. Geothermal training at Auckland

    International Nuclear Information System (INIS)

    Hochstein, M.P.

    1990-01-01

    A total of 297 candidates from developing countries have attended the annual Geothermal Diploma Course at the University of Auckland between 1979 and 1989. Additional training in the form of post-graduate studies and short-term specialized courses has been given to 69 candidates from these countries between 1989 and 1989. In this paper performance indicators for the training are discussed, namely: demand, job retention rate, regional intake in relation to demand, and publication record of fellows

  18. NATIONAL GEOTHERMAL DATA SYSTEM (NGDS) GEOTHERMAL DATA DOMAIN: ASSESSMENT OF GEOTHERMAL COMMUNITY DATA NEEDS

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Arlene [United States Department of Energy; Blackwell, David [Southern Methodist University; Chickering, Cathy [Southern Methodist University; Boyd, Toni [Oregon Institute of Technology; Horne, Roland [Stanford University; MacKenzie, Matthew [Uberity Technology Corporation; Moore, Joseph [University of Utah; Nickull, Duane [Uberity Technology Corporation; Richard, Stephen [Arizona Geological survey; Shevenell, Lisa A. [University of Nevada, Reno

    2013-01-01

    To satisfy the critical need for geothermal data to ad- vance geothermal energy as a viable renewable ener- gy contender, the U.S. Department of Energy is in- vesting in the development of the National Geother- mal Data System (NGDS). This paper outlines efforts among geothermal data providers nationwide to sup- ply cutting edge geo-informatics. NGDS geothermal data acquisition, delivery, and methodology are dis- cussed. In particular, this paper addresses the various types of data required to effectively assess geother- mal energy potential and why simple links to existing data are insufficient. To create a platform for ready access by all geothermal stakeholders, the NGDS in- cludes a work plan that addresses data assets and re- sources of interest to users, a survey of data provid- ers, data content models, and how data will be ex- changed and promoted, as well as lessons learned within the geothermal community.

  19. Geothermal Power Generation Plant

    Energy Technology Data Exchange (ETDEWEB)

    Boyd, Tonya [Oregon Inst. of Technology, Klamath Falls, OR (United States). Geo-Heat Center

    2013-12-01

    Oregon Institute of Technology (OIT) drilled a deep geothermal well on campus (to 5,300 feet deep) which produced 196°F resource as part of the 2008 OIT Congressionally Directed Project. OIT will construct a geothermal power plant (estimated at 1.75 MWe gross output). The plant would provide 50 to 75 percent of the electricity demand on campus. Technical support for construction and operations will be provided by OIT’s Geo-Heat Center. The power plant will be housed adjacent to the existing heat exchange building on the south east corner of campus near the existing geothermal production wells used for heating campus. Cooling water will be supplied from the nearby cold water wells to a cooling tower or air cooling may be used, depending upon the type of plant selected. Using the flow obtained from the deep well, not only can energy be generated from the power plant, but the “waste” water will also be used to supplement space heating on campus. A pipeline will be construction from the well to the heat exchanger building, and then a discharge line will be construction around the east and north side of campus for anticipated use of the “waste” water by facilities in an adjacent sustainable energy park. An injection well will need to be drilled to handle the flow, as the campus existing injection wells are limited in capacity.

  20. Geothermal energy. A national proposal for geothermal resources research

    Energy Technology Data Exchange (ETDEWEB)

    Denton, J.C. (ed.)

    1972-01-01

    Discussions are given for each of the following topics: (1) importance to the Nation of geothermal resources, (2) budget recommendations, (3) overview of geothermal resources, (4) resource exploration, (5) resource assessment, (6) resource development and production, (7) utilization technology and economics, (8) environmental effects, (9) institutional considerations, and (10) summary of research needs.

  1. Geotherm: the U.S. geological survey geothermal information system

    Science.gov (United States)

    Bliss, J.D.; Rapport, A.

    1983-01-01

    GEOTHERM is a comprehensive system of public databases and software used to store, locate, and evaluate information on the geology, geochemistry, and hydrology of geothermal systems. Three main databases address the general characteristics of geothermal wells and fields, and the chemical properties of geothermal fluids; the last database is currently the most active. System tasks are divided into four areas: (1) data acquisition and entry, involving data entry via word processors and magnetic tape; (2) quality assurance, including the criteria and standards handbook and front-end data-screening programs; (3) operation, involving database backups and information extraction; and (4) user assistance, preparation of such items as application programs, and a quarterly newsletter. The principal task of GEOTHERM is to provide information and research support for the conduct of national geothermal-resource assessments. The principal users of GEOTHERM are those involved with the Geothermal Research Program of the U.S. Geological Survey. Information in the system is available to the public on request. ?? 1983.

  2. Air emissions due to wind and solar power.

    Science.gov (United States)

    Katzenstein, Warren; Apt, Jay

    2009-01-15

    Renewables portfolio standards (RPS) encourage large-scale deployment of wind and solar electric power. Their power output varies rapidly, even when several sites are added together. In many locations, natural gas generators are the lowest cost resource available to compensate for this variability, and must ramp up and down quickly to keep the grid stable, affecting their emissions of NOx and CO2. We model a wind or solar photovoltaic plus gas system using measured 1-min time-resolved emissions and heat rate data from two types of natural gas generators, and power data from four wind plants and one solar plant. Over a wide range of renewable penetration, we find CO2 emissions achieve approximately 80% of the emissions reductions expected if the power fluctuations caused no additional emissions. Using steam injection, gas generators achieve only 30-50% of expected NOx emissions reductions, and with dry control NOx emissions increase substantially. We quantify the interaction between state RPSs and NOx constraints, finding that states with substantial RPSs could see significant upward pressure on NOx permit prices, if the gas turbines we modeled are representative of the plants used to mitigate wind and solar power variability.

  3. Geothermal Energy: Tapping the Potential

    Science.gov (United States)

    Johnson, Bill

    2008-01-01

    Ground source geothermal energy enables one to tap into the earth's stored renewable energy for heating and cooling facilities. Proper application of ground-source geothermal technology can have a dramatic impact on the efficiency and financial performance of building energy utilization (30%+). At the same time, using this alternative energy…

  4. Geothermal Energy: Prospects and Problems

    Science.gov (United States)

    Ritter, William W.

    1973-01-01

    An examination of geothermal energy as a means of increasing the United States power resources with minimal pollution problems. Developed and planned geothermal-electric power installations around the world, capacities, installation dates, etc., are reviewed. Environmental impact, problems, etc. are discussed. (LK)

  5. The Future of Geothermal Energy

    Energy Technology Data Exchange (ETDEWEB)

    Kubik, Michelle [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2006-01-01

    A comprehensive assessment of enhanced, or engineered, geothermal systems was carried out by an 18-member panel assembled by the Massachusetts Institute of Technology (MIT) to evaluate the potential of geothermal energy becoming a major energy source for the United States.

  6. Geothermal engineering fundamentals and applications

    CERN Document Server

    Watson, Arnold

    2013-01-01

    This book explains the engineering required to bring geothermal resources into use. The book covers specifically engineering aspects that are unique to geothermal engineering, such as measurements in wells and their interpretation, transport of near-boiling water through long pipelines, turbines driven by fluids other than steam, and project economics. The explanations are reinforced by drawing comparisons with other energy industries.

  7. Multipurpose Use of Geothermal Energy

    Energy Technology Data Exchange (ETDEWEB)

    Lienau, Paul J.; Lund, John W. (eds.)

    1974-10-09

    The conference was organized to review the non-electric, multipurpose uses of geothermal energy in Hungary, Iceland, New Zealand, United States and the USSR. The international viewpoint was presented to provide an interchange of information from countries where non-electric use of geothermal energy has reached practical importance.

  8. Geothermal Field Investigations of Turkey

    Science.gov (United States)

    Sayın, N.; Özer, N.

    2017-12-01

    Geothermal energy is a type of energy that are found in the accessible depth of the crust, in the reservoirs by way of the permeable rocks, specially in heated fluid. Geothermal system is made of 3 main components; heat source, reservoir, and fluid bearing heat. Geothermal system mechanism is comprise of fluid transmission. Convection current (heat transmission) is caused by heating and causes the fluid in the system to expand. Heated fluid with low density show tendency to rise in system. Geothermal system occurs with variable geophysics and geochemical properties. Geophysical methods can determine structural properties of shallow and deep reservoirs with temperature, mineralization, gas amount, fluid movement, faulting, and sudden change in lithostratigraphic strata. This study revealed possible reservoir structures and showed examples of geophysics and gas measuring results in Turkey which is wealthy in regard to Geothermal sources.

  9. 2008 Geothermal Technologies Market Report

    Energy Technology Data Exchange (ETDEWEB)

    Jonathan Cross

    2009-07-01

    This report describes market-wide trends for the geothermal industry throughout 2008 and the beginning of 2009. It begins with an overview of the GTP’s involvement with the geothermal industry and recent investment trends for electric generation technologies. The report next describes the current state of geothermal power generation and activity within the United States, costs associated with development, financing trends, an analysis of the levelized cost of energy (LCOE), and a look at the current policy environment. The report also highlights trends regarding direct use of geothermal energy, including GHPs.† The final sections of the report focus on international perspectives, employment and economic benefits from geothermal energy development, and potential incentives in pending national legislation.

  10. Environmental Assessment Lakeview Geothermal Project

    Energy Technology Data Exchange (ETDEWEB)

    Treis, Tania [Southern Oregon Economic Development Department, Medford, OR (United States)

    2012-04-30

    The Town of Lakeview is proposing to construct and operate a geothermal direct use district heating system in Lakeview, Oregon. The proposed project would be in Lake County, Oregon, within the Lakeview Known Geothermal Resources Area (KGRA). The proposed project includes the following elements: Drilling, testing, and completion of a new production well and geothermal water injection well; construction and operation of a geothermal production fluid pipeline from the well pad to various Town buildings (i.e., local schools, hospital, and Lake County Industrial Park) and back to a geothermal water injection well. This EA describes the proposed project, the alternatives considered, and presents the environmental analysis pursuant to the National Environmental Policy Act. The project would not result in adverse effects to the environment with the implementation of environmental protection measures.

  11. Geothermal Small Business Workbook [Geothermal Outreach and Project Financing

    Energy Technology Data Exchange (ETDEWEB)

    Elizabeth Battocletti

    2003-05-01

    Small businesses are the cornerstone of the American economy. Over 22 million small businesses account for approximately 99% of employers, employ about half of the private sector workforce, and are responsible for about two-thirds of net new jobs. Many small businesses fared better than the Fortune 500 in 2001. Non-farm proprietors income rose 2.4% in 2001 while corporate profits declined 7.2%. Yet not all is rosy for small businesses, particularly new ones. One-third close within two years of opening. From 1989 to 1992, almost half closed within four years; only 39.5% were still open after six years. Why do some new businesses thrive and some fail? What helps a new business succeed? Industry knowledge, business and financial planning, and good management. Small geothermal businesses are no different. Low- and medium-temperature geothermal resources exist throughout the western United States, the majority not yet tapped. A recent survey of ten western states identified more than 9,000 thermal wells and springs, over 900 low- to moderate-temperature geothermal resource areas, and hundreds of direct-use sites. Many opportunities exist for geothermal entrepreneurs to develop many of these sites into thriving small businesses. The ''Geothermal Small Business Workbook'' (''Workbook'') was written to give geothermal entrepreneurs, small businesses, and developers the tools they need to understand geothermal applications--both direct use and small-scale power generation--and to write a business and financing plan. The Workbook will: Provide background, market, and regulatory data for direct use and small-scale (< 1 megawatt) power generation geothermal projects; Refer you to several sources of useful information including owners of existing geothermal businesses, trade associations, and other organizations; Break down the complicated and sometimes tedious process of writing a business plan into five easy steps; Lead you

  12. Study of geothermal potential. Nordrhein-Westfalen intends to provide geothermal heat to all citizens; Geothermische Potenzialstudie. In Nordrhein-Westfalen soll Erdwaerme fuer alle Buerger nutzbar werden

    Energy Technology Data Exchange (ETDEWEB)

    Burghardt, U. [Landesinitiative Zukunftsenergien, Duesseldorf (Germany); Holl-Hagemeier, C. [Geologischen Dienst Nordrhein-Westfalen, Krefeld (Germany)

    2001-01-01

    Nordrhein-Westfalen is leading in the field of renewable energy sources. In addition to solar energy, wind power and bioenergy, geothermal energy is now being developed. [German] Nordrhein-Westfalen ist nicht mehr der klassische Stein- und Braunkohlenproduzent, sondern in Deutschland mittlerweile auch fuehrend auf dem Sektor der Zukunftsenergien. Zusammen mit der Wind-, Solar- und Bioenergie gehoert die Geothermie zu den vier Saeulen der von der Landesregierung Nordrhein-Westfalen und der Landesinitiative Zukunftsenergien gefoerderten erneuerbaren Energietechnologien. (orig.)

  13. Status of geothermal energy in Ethiopia

    International Nuclear Information System (INIS)

    Endeshaw, A.; Belaineh, M.

    1990-01-01

    This paper reports that there are several identified geothermal localities in Ethiopia. Ten geothermal localities have been studied with regional assessments, while three localities have had pre-feasibility studies. In one area, the Aluto-Langano geothermal field, the feasibility studies have been completed. However, the geothermal resources have not been utilized yet except in the traditional baths

  14. INTEGRATED EXPLORATION OF GEOTHERMAL RESOURCES

    Directory of Open Access Journals (Sweden)

    A. B. Alkhasov

    2016-01-01

    Full Text Available The aim. The aim is to develop the energy efficient technologies to explore hydro geothermal resources of different energy potential.Methods. Evaluation of the effectiveness of the proposed technologies has been carried out with the use of physical and mathematical, thermodynamic and optimization methods of calculation and the physical and chemical experimental research.Results. We propose the technology of integrated exploration of low-grade geothermal resources with the application of heat and water resource potential on various purposes. We also argue for the possibility of effective exploration of geothermal resources by building a binary geothermal power plant using idle oil and gas wells. We prove the prospect of geothermal steam and gas technologies enabling highly efficient use of thermal water of low energy potential (80 - 100 ° C degrees to generate electricity; the prospects of complex processing of high-temperature geothermal brine of Tarumovsky field. Thermal energy is utilized in a binary geothermal power plant in the supercritical Rankine cycle operating with a low-boiling agent. The low temperature spent brine from the geothermal power plant with is supplied to the chemical plant, where the main chemical components are extracted - lithium carbonate, magnesium burning, calcium carbonate and sodium chloride. Next, the waste water is used for various water management objectives. Electricity generated in the binary geothermal power plant is used for the extraction of chemical components.Conclusions. Implementation of the proposed technologies will facilitate the most efficient development of hydro geothermal resources of the North Caucasus region. Integrated exploration of the Tarumovsky field resources will fully meet Russian demand for lithium carbonate and sodium chloride.

  15. Geothermal energy. Pt.2

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    Geothermal energy has certain features that make it highly recommendable as a source of power production. It is noted by its high load factor; it may be used as a basic or peak source; its versatility and high availability among others. In spite of these advantages, geothermal energy has not attained a significant development up to now. There are several reasons for this to happen, while the main one is that it requires an important initial investment. Assessing if an area is potentially profitable for the obtention of a given type of energy implies performing a complex set of analyses and prospective work, but it is not so significant as that associated with petroleum. The strategy for the exploration of geothermal resources is based on the execution of consecutive stages ranging from a surveillance at a regional scale to a project feasibility study, with growing investments and using more and more complex techniques. Many Latin American countries are located in areas considered as promisory concerning the development of this type of exploitation. Another factor supporting this view is a special demographic feature, showing a very irregular distribution of the population, with extense isolated areas with a minimun number of inhabitants that does not justify the extension of the electric power network. There are plants operating in four countries producing, as a whole, 881 MW. In Argentina the activities are aimed to intensifying the knowledge about the availability of this resource within the local territory and to estimating the feasibility of its usage in areas where exploration is more advanced [es

  16. Geothermal Information Dissemination and Outreach

    Energy Technology Data Exchange (ETDEWEB)

    Clutter, Ted J. [Geothermal Resources Council (United States)

    2005-02-18

    Project Purpose. To enhance technological and topical information transfer in support of industry and government efforts to increase geothermal energy use in the United States (power production, direct use, and geothermal groundsource heat pumps). Project Work. GRC 2003 Annual Meeting. The GRC convened the meeting on Oct. 12-15, 2003, at Morelia's Centro de Convenciones y ExpoCentro in Mexico under the theme, International Collaboration for Geothermal Energy in the Americas. The event was also sponsored by the Comision Federal de Electricidad. ~600 participants from more than 20 countries attended the event. The GRC convened a Development of Geothermal Projects Workshop and Geothermal Exploration Techniques Workshop. GRC Field Trips included Los Azufres and Paricutin Volcano on Oct. 11. The Geothermal Energy Association (Washington, DC) staged its Geothermal Energy Trade Show. The Annual Meeting Opening Session was convened on Oct. 13, and included the governor of Michoacan, the Mexico Assistant Secretary of Energy, CFE Geothermal Division Director, DOE Geothermal Program Manager, and private sector representatives. The 2003 Annual Meeting attracted 160 papers for oral and poster presentations. GRC 2004. Under the theme, Geothermal - The Reliable Renewable, the GRC 2004 Annual Meeting convened on Aug. 29-Sept. 1, 2004, at the Hyatt Grand Champions Resort at Indian Wells, CA. Estimated total attendance (including Trade Show personnel, guests and accompanying persons) was ~700. The event included a workshop, Geothermal Production Well Pump Installation, Operation and Maintenance. Field trips went to Coso/Mammoth and Imperial Valley/Salton Sea geothermal fields. The event Opening Session featured speakers from the U.S. Department of Energy, U.S. Department of the Interior, and the private sector. The Geothermal Energy Association staged its Geothermal Energy Trade Show. The Geothermal Education Office staged its Geothermal Energy Workshop. Several local radio and

  17. Geothermal heat pump performance

    Energy Technology Data Exchange (ETDEWEB)

    Boyd, Tonya L.; Lienau, Paul J.

    1995-01-01

    Geothermal heat pump systems are a promising new energy technology that has shown rapid increase in usage over the past ten years in the United States. These systems offer substantial benefits to customers and utilities in energy (kWh) and demand (kW) savings. The purpose of this study was to determine what existing monitored data was available mainly from electric utilities on heat pump performance, energy savings and demand reduction for residential, school, and commercial building applications. Information was developed on the status of electric utility marketing programs, barriers to market penetration, incentive programs, and benefits.

  18. Geothermal Heat Pump Performance

    Energy Technology Data Exchange (ETDEWEB)

    Boyd, Tonya L.; Lienau, Paul J.

    1995-01-01

    Geothermal heat pump systems are a promising new energy technology that has shown rapid increase in usage over the past ten years in the United States. These systems offer substantial benefits to customers and utilities in energy (kWh) and demand (kW) savings. The purpose of this study was to determine what existing monitored data was available mainly from electric utilities on heat pump performance, energy savings and demand reduction for residential, school, and commercial building applications. Information was developed on the status of electric utility marketing programs, barriers to market penetration, incentive programs, and benefits.

  19. Geothermal heating saves energy

    International Nuclear Information System (INIS)

    Romsaas, Tor

    2003-01-01

    The article reviews briefly a pioneer project for a construction area of 200000 m''2 with residences, business complexes, a hotel and conference centre and a commercial college in Oslo. The energy conservation potential is estimated to be about 60-70 % compared to direct heating with oil, gas or electricity as sources. There will also be substantial reduction in environmentally damaging emissions. The proposed energy central combines geothermal energy sources with heat pump technology, utilises water as energy carrier and uses terrestrial wells for energy storage. A cost approximation is presented

  20. Balancing Europe's wind power output through spatial deployment informed by weather regimes.

    Science.gov (United States)

    Grams, Christian M; Beerli, Remo; Pfenninger, Stefan; Staffell, Iain; Wernli, Heini

    2017-08-01

    As wind and solar power provide a growing share of Europe's electricity1, understanding and accommodating their variability on multiple timescales remains a critical problem. On weekly timescales, variability is related to long-lasting weather conditions, called weather regimes2-5, which can cause lulls with a loss of wind power across neighbouring countries6. Here we show that weather regimes provide a meteorological explanation for multi-day fluctuations in Europe's wind power and can help guide new deployment pathways which minimise this variability. Mean generation during different regimes currently ranges from 22 GW to 44 GW and is expected to triple by 2030 with current planning strategies. However, balancing future wind capacity across regions with contrasting inter-regime behaviour - specifically deploying in the Balkans instead of the North Sea - would almost eliminate these output variations, maintain mean generation, and increase fleet-wide minimum output. Solar photovoltaics could balance low-wind regimes locally, but only by expanding current capacity tenfold. New deployment strategies based on an understanding of continent-scale wind patterns and pan-European collaboration could enable a high share of wind energy whilst minimising the negative impacts of output variability.

  1. 太阳能光伏发电系统在某电子工厂的应用%The Application of Solar Photovoltaic Power Generation System in an Electronic Factory

    Institute of Scientific and Technical Information of China (English)

    张金宝

    2015-01-01

    为了促进光伏发电技术的商业应用,针对电子类工厂的特点,提出了一种屋顶太阳能光伏发电系统方案。从光伏发电系统工作原理、电子类工厂用电负荷、电子类工厂光伏发电容量估算以及光伏发电系统方案等方面做了研究,为推广应用太阳能清洁能源的应用积累经验。%In order to promote the commercial application of photovoltaic technology, this paper proposes a solution of rooftop solar photovoltaic power generation system, according to the characteristics of electronics factories. The paper carry out research from the aspect of photovoltaic power generation system operating principle, electronics factories electricity load, electronics factories photovoltaic power generation capacity estimation and photovoltaic power generation system plan. The research will accumulate experience in promoting application of solar clean energy.

  2. Regional Analysis of Aids and Prices for Small-scale Grid-connected Solar Photovoltaic Systems in Spain; Analisis Regional de Precios y Ayudas para Sistemas fotovoltaicos de Pequena Escala Conectados a Red Electrica en Espana

    Energy Technology Data Exchange (ETDEWEB)

    Varela, M; Ramirez, L; Mora, L; Sidrach de Cardona, M

    2002-07-01

    Electricity production from small solar photovoltaic systems in Spain obtains a premium pnce of 0,36 Euros/kWh over the electricity market price or a fix price of 0.40 Euros/kWh. The development of these small systems, in Spain clearly demonstrates that the established prime is not sufficient in the majority of locations. On the other hand, the prime revision set up by the RD 2818/98. considering the profitability of the renewable installations, demand a regional analysis of small PV systems profitability necessary in Spain. The accomplished results permit to conclude that the amount of the current prime is by itself insufficient to make profitable the small grid-connected PV systems in anywhere of the national geography. To guarantee the profitability of these systems is should be necessary to place the fix price at around 0,93 Euros/k Wh. However, if the duplication of the current price obtained by these installations was considered, this could ensure the profitability of these small systems in at least the 77% of the land. (Author) 12 refs.

  3. Geothermal Technologies Program Blue Ribbon Panel Recommendations

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2011-06-17

    The Geothermal Technologies Program assembled a geothermal Blue Ribbon Panel on March 22-23, 2011 in Albuquerque, New Mexico for a guided discussion on the future of geothermal energy in the United States and the role of the DOE Program. The Geothermal Blue Ribbon Panel Report captures the discussions and recommendations of the experts. An addendum is available here: http://www.eere.energy.gov/geothermal/pdfs/gtp_blue_ribbon_panel_report_addendum10-2011.pdf

  4. Geothermal Energy and its Prospects in Lithuania

    International Nuclear Information System (INIS)

    Radeckas, B.

    1995-01-01

    Data on the geothermal resources in lithuania and on their prospective usage are presented. The analysis covers water horizons of the geothermal anomaly in West Lithuania and their hydrogeology. The energy of the 3 km thick geothermal source was evaluated. Technical and economical possibilities of using geothermal energy in West Lithuania are described. Some aspects of the investment and of the project of a geothermal power plant in Klaipeda are considered. (author). 6 refs., 6 tabs., 2 figs

  5. Outline of geothermal activity in Czechoslovakia

    International Nuclear Information System (INIS)

    Franko, O.; Bodis, D.; Dendek, M.; Remsik, A.

    1990-01-01

    This paper reports that in respect of different geothermal conditions in the Bohemian Massif (unfavorable) and in the West Carpathians (favorable), the development and utilization of geothermal energy are concentrated in Slovakia. THe utilization of geothermal energy for the heating of buildings in spas commenced in 1958. Thermal energy of geothermal waters was used for direct heating through heat exchangers, and in one case by a heat pump. Concentrated continuous development and utilization of geothermal energy started in 1971

  6. Potential of geothermal systems in Picardy

    OpenAIRE

    Dourlat, Estelle

    2017-01-01

    Geothermal systems are not only about electrical plants or urban heating networks, but also concerned with geothermal energy assisted with a heat pump. In the former region of Picardy (North of France), 97% of the territory is suitable for very low temperature geothermal power. The French Agency for the Environment and Energy Management and the Picardy Region decided in 2016 to finance a facilitator to encourage geothermal use. To carry out this aim, it is important to consider the geothermal...

  7. Sustainable Energy Solutions Task 1.0: Networked Monitoring and Control of Small Interconnected Wind Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    edu, Janet. twomey@wichita. [Wichita State Univ., KS (United States)

    2010-04-30

    This report presents accomplishments, results, and future work for one task of five in the Wichita State University Sustainable Energy Solutions Project: To develop a scale model laboratory distribution system for research into questions that arise from networked control and monitoring of low-wind energy systems connected to the AC distribution system. The lab models developed under this task are located in the Electric Power Quality Lab in the Engineering Research Building on the Wichita State University campus. The lab system consists of four parts: 1. A doubly-fed induction generator 2. A wind turbine emulator 3. A solar photovoltaic emulator, with battery energy storage 4. Distribution transformers, lines, and other components, and wireless and wired communications and control These lab elements will be interconnected and will function together to form a complete testbed for distributed resource monitoring and control strategies and smart grid applications testing. Development of the lab system will continue beyond this project.

  8. Boron isotopes in geothermal systems

    International Nuclear Information System (INIS)

    Aggarwal, J.

    1997-01-01

    Boron is a highly mobile element and during water-rock reactions, boron is leached out of rocks with no apparent fractionation. In geothermal systems where the water recharging the systems are meteoric in origin, the B isotope ratio of the geothermal fluid reflects the B isotope ratio of the rocks. Seawater has a distinctive B isotope ratio and where seawater recharges the geothermal system, the B isotope ratio of the geothermal system reflects the mixing of rock derived B and seawater derived B. Any deviations of the actual B isotope ratio of a mixture reflects subtle differences in the water-rock ratios in the cold downwelling limb of the hydrothermal system. This paper will present data from a variety of different geothermal systems, including New Zealand; Iceland; Yellowston, USA; Ibusuki, Japan to show the range in B isotope ratios in active geothermal systems. Some of these systems show well defined mixing trends between seawater and the host rocks, whilst others show the boron isotope ratios of the host rock only. In geothermal systems containing high amounts of CO 2 boron isotope ratios from a volatile B source can also be inferred. (auth)

  9. Policy for geothermal energy development

    Energy Technology Data Exchange (ETDEWEB)

    Kiuchi, S [Public Utilities Bureau, Ministry of International Trade and Industry, Japan

    1973-01-01

    Government actions related to Japanese geothermal energy development in the past include: a mining and industrial research subsidy of 27 million yen granted to Kyushu Electric Power Co. in 1952, a mining and industrial research subsidy of 13 million yen granted to Japan Metals and Chemicals Co. in 1960, a study on steam production technology for geothermal power generation by Japan Metals and Chemicals Co. funded at 3.5 hundred million yen from the Research Development Corporation of Japan, and a study on steam production technology for large scale geothermal power generation by Japan Metals and Chemicals Co. funded at 7.6 hundred million yen by the Research Development Corporation of Japan. The following projects are planned by the Ministry of International Trade and Industry for 1973: a two-year geothermal power promotion including investigations into the utilization of hot water, new methods for geothermal reservoir detection and steam well drilling, and environmental effects, studies on hydrothermal systems, basic investigations for geothermal indicators in 30 areas, and a means to finance the construction of geothermal power plants in Kakkonda (Iwate Prefecture) and Hatchobara (Oita Prefecture).

  10. Geothermal Resource Utilization

    Energy Technology Data Exchange (ETDEWEB)

    Lienau, Paul J.

    1998-01-03

    Man has utilized the natural heat of the earth for centuries. Worldwide direct use of geothermal currently amounts to about 7,000 MWt, as compared to 1,500 MWe, now being used for the generation of electricity. Since the early 1970s, dwindling domestic reservoirs of oil and gas, continued price escalation of oil on the world market and environmental concerns associated with coal and nuclear energy have created a growing interest in the use of geothermal energy in the United States. The Department of Energy goals for hydrothermal resources utilization in the United States, expressed in barrels of oil equivalent, is 50 to 90 million bbl/yr by 1985 and 350 to 900 million bbl/yr by the year 2000. This relatively clean and highly versatile resource is now being used in a multitude of diverse applications (e.g., space heating and cooling, vegetable dehydration, agriculture, aquaculture, light manufacturing), and other applications requiring a reliable and economic source of heat.

  11. Geothermal energy. Pt. 1

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    As most of the alternative power sources, geothermal energy started being considered as a tentative one during the early 1970s. At that time the world's demand for energy was mostly fed by means of petroleum, coal, gas and other primary materials. The low prices of these raw materials at that time and the lack of general consciousness on the environmental contamination problems caused by the combustion processes did not forecast any significant changes for the coming years. However, as from 1973, a constant raise in prices, specially for liquid fuels, started to take place. A few years later, in the early 1980s, a growing interest for nature and for the delicate equilibrium of the ecological and for systems started to awaken. These facts led several countries to re-evaluate their power resources and to reconsider those showing less negative incidence upon the environment. Among such alternatives, geothermal energy introduces certain features that make it highly advisable for developing countries, in addition to the fact that the mean heat reservoirs are located within this group of nations [es

  12. Tracing Geothermal Fluids

    Energy Technology Data Exchange (ETDEWEB)

    Michael C. Adams; Greg Nash

    2004-03-01

    Geothermal water must be injected back into the reservoir after it has been used for power production. Injection is critical in maximizing the power production and lifetime of the reservoir. To use injectate effectively the direction and velocity of the injected water must be known or inferred. This information can be obtained by using chemical tracers to track the subsurface flow paths of the injected fluid. Tracers are chemical compounds that are added to the water as it is injected back into the reservoir. The hot production water is monitored for the presence of this tracer using the most sensitive analytic methods that are economically feasible. The amount and concentration pattern of the tracer revealed by this monitoring can be used to evaluate how effective the injection strategy is. However, the tracers must have properties that suite the environment that they will be used in. This requires careful consideration and testing of the tracer properties. In previous and parallel investigations we have developed tracers that are suitable from tracing liquid water. In this investigation, we developed tracers that can be used for steam and mixed water/steam environments. This work will improve the efficiency of injection management in geothermal fields, lowering the cost of energy production and increasing the power output of these systems.

  13. Geothermal Energy in Ecuador

    International Nuclear Information System (INIS)

    Aguilera, Eduardo; Villalba, Fabio

    1999-11-01

    Energy represents an essential element for economy, and for any sustainable development strategy, assuming it is a basic input for all production activities. It is a fundamental contra int for country's competitivity and also a main component of population's standard of life. The Agenda 21 and the General Agreement on Climatic Changes emphasize that the development and sustainable use of energy should promote economy, but taking care of the environment. Under these basic concepts, for the particular case of energy, the sustain ability of development requires the adoption of a strategy which guarantee an energy supply in terms of quality, opportunity, continuity and afford ability and, in addition, without production of negative environmental impacts. Geothermal energy is a serious energetic option for sustainable development, since presents technical and economic advantages for production of electricity at medium and large scale. Furthermore, geothermal energy allows a wide spectrum of direct applications of heat in profitable projects of high social impact as green houses, drying of seeds and wood products, fish farming, recreation and others. All of them can help the increase of communal production activities in rural areas affected by poverty

  14. Use of environmental radioactive isotopes in geothermal prospecting

    International Nuclear Information System (INIS)

    Balcazar, M.; Lopez M, A.; Huerta, M.; Flores R, J. H.; Pena, P.

    2010-10-01

    Oil resources decrease and environmental impact of burning fossil fuels support the use of alternative energies around the world. By far nuclear energy is the alternative which can supply huge amount of clean energy. Mexico has two nuclear units and has also explored and exploited the use of other complementary renewal energies, as wind and geothermal. Mexico is the third geothermal-energy producer in the world with an installed capacity of 960 MW and is planning the installation of 146 MW for the period 2010-2011, according to information of the Mexican Federal Electricity Board. This paper presents a study case, whose goal is to look for areas where the heat source can be located in geothermal energy fields under prospecting. The method consist in detecting a natural radioactive tracer, which is transported to the earth surface by geo-gases, generated close to the heat source, revealing areas of high permeability properties and open active fractures. Those areas are cross correlated to other resistivity, gravimetric and magnetic geophysical parameters in the geothermal filed to better define the heat source in the field. (Author)

  15. Environmental impact in geothermal fields

    International Nuclear Information System (INIS)

    Birkle, P.; Torres R, V.; Gonzalez P, E.; Guevara G, M.

    1996-01-01

    Generally, water exploitation and deep steam of geothermal fields may be cause of a pollution potential on the surface, specially by the chemical composition of geothermal water which has a high concentration of minerals, salts and heavy metals. The utilization of stable isotopes as deuterium and oxygen 18 as radioactive tracers and water origin indicators allow to know the trajectories and sources of background waters as well as possible moistures between geothermal waters and meteoric waters. Some ions such as chlorides and fluorides present solubilities that allow their register as yet long distances of their source. (Author)

  16. 2012 geothermal energy congress. Proceedings

    International Nuclear Information System (INIS)

    2012-01-01

    Within the Geothermal Energy Congress 2012 from 13th to 16th November 2012, in Karlsruhe (Federal Republic of Germany), the following lectures were held: (1) Comparison of different methods for the design of geothermal probes on the example of the thermal utilization of smouldering fires at heaps (Sylvia Kuerten); (2) Determination of the thermo-physical features of loose rocks (Johannes Stegner); (3) Tools for the planning and operation of district heating grids (Werner Seichter); (4) geo:build - System optimisation of the cooling mode of the ground-source heat and cooling supply (Franziska Bockelmann); (5) Successful and economic conception, planning and optimization of district heating grids (Werner Seichter); (6) Treacer / Heat transfer decoupling in a heterogeneous hydrothermal reservoir characterized by geological faults in the Upper Rhine Graben (I. Ghergut); (7) Determination of the porosity, thermal conductivity and particle size distribution in selected sections of the Meisenheim-1 drilling core (Saar-Nahe basin, Rheinland-Palatinate) under consideration of geothermally relevant formulation of questions (Gillian Inderwies); (8) Innovative technologies of exploration in the Jemez Geothermal project, New Mexico, USA (Michael Albrecht); (9) Geothermal energy, heat pump and TABS - optimization of planning, operational control and control (Franziska Bockelmann); (10) The impact of large-scale geothermal probes (storage probes) on the heat transfer and heat loss (Christopher Steins); (11) Numeric modelling of the permocarbon in the northern Upper Rhine Graben (L. Dohrer); (12) Engineering measurement solutions on quality assurance in the exploitation of geothermal fields (C. Lehr); (13) Evaluation and optimization of official buildings with the near-surface geothermal energy for heating and cooling (Franziska Bockelmann); (14) On-site filtration for a rapid and cost-effective quantification of the particle loading in the thermal water stream (Johannes Birner

  17. Preliminary analysis for implementation of a hybrid solar-wind system with storage of electrical energy generated through electrolytic hydrogen and fuel cells; Analise preliminar para implementacao de um sistema hibrido solar-eolico com armazenamento da energia eletrica gerada atraves de hidrogenio eletrolitico e celula a combustivel

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, Daniel Gabriel; Furlan, Andre Luis; Lopes, Davi Gabriel [Universidade Estadual de Campinas (FEM/UNICAMP), SP (Brazil). Fac. de Engenharia Mecanica], e-mail: danielg@fem.unicamp.br; Silva, Ennio Peres; Apolinario, Fernando Resende [Universidade Estadual de Campinas (IFGW/UNICAMP), SP (Brazil). Inst. de Fisica Gleb Wataghin. Lab. de Hidrogenio; Silva, Maria Eugenia Vieira da; Rocha, Paulo Alexandre Costa [Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil). Dept. de Engenharia Mecanica e de Producao; Codeceira Neto, Alcides [Companhia Hidro Eletrica do Sao Francisco (CHESF), Recife, PE (Brazil)

    2008-07-01

    Due to relevance of the study and applicability of hybrid electric power generation from solar photovoltaic and wind power in Brazil, the present paper aims to introduce briefly the importance of technical and economic comparison of two electrical energy storage technologies (batteries versus H2 + fuel cell) and also to indicate the previous difficulties related to this possible application. In this context, it was intended a partnership between State University of Campinas - UNICAMP, the Federal University of Ceara - UFC and Hydro Electric Company of the Sao Francisco - CHESF in the meaning of makes viable an implementation. (author)

  18. Geothermal Permeability Enhancement - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Joe Beall; Mark Walters

    2009-06-30

    The overall objective is to apply known permeability enhancement techniques to reduce the number of wells needed and demonstrate the applicability of the techniques to other undeveloped or under-developed fields. The Enhanced Geothermal System (EGS) concept presented in this project enhances energy extraction from reduced permeability zones in the super-heated, vapor-dominated Aidlin Field of the The Geysers geothermal reservoir. Numerous geothermal reservoirs worldwide, over a wide temperature range, contain zones of low permeability which limit the development potential and the efficient recovery of heat from these reservoirs. Low permeability results from poorly connected fractures or the lack of fractures. The Enhanced Geothermal System concept presented here expands these technologies by applying and evaluating them in a systematic, integrated program.

  19. Geothermal energy utilization and technology

    CERN Document Server

    Dickson, Mary H; Fanelli, Mario

    2013-01-01

    Geothermal energy refers to the heat contained within the Earth that generates geological phenomena on a planetary scale. Today, this term is often associated with man's efforts to tap into this vast energy source. Geothermal Energy: utilization and technology is a detailed reference text, describing the various methods and technologies used to exploit the earth's heat. Beginning with an overview of geothermal energy and the state of the art, leading international experts in the field cover the main applications of geothermal energy, including: electricity generation space and district heating space cooling greenhouse heating aquaculture industrial applications The final third of the book focuses upon environmental impact and economic, financial and legal considerations, providing a comprehensive review of these topics. Each chapter is written by a different author, but to a set style, beginning with aims and objectives and ending with references, self-assessment questions and answers. Case studies are includ...

  20. Geothermal Technologies Program: Direct Use

    Energy Technology Data Exchange (ETDEWEB)

    2004-08-01

    This general publication describes geothermal direct use systems, and how they have been effectively used throughout the country. It also describes the DOE program R&D efforts in this area, and summarizes several projects using direct use technology.

  1. Water Desalination using geothermal energy

    KAUST Repository

    Goosen, M.; Mahmoudi, H.; Ghaffour, NorEddine

    2010-01-01

    The paper provides a critical overview of water desalination using geothermal resources. Specific case studies are presented, as well as an assessment of environmental risks and market potential and barriers to growth. The availability

  2. Geothermal energy - availability - economy - prospects

    International Nuclear Information System (INIS)

    Kappelmeyer, O.

    1992-01-01

    The heat contained in the earth's crust represents an inexhaustible reservoir of energy on the technical scale, which is available at all times of day and at all seasons. In the volcanically active zones, the earth's heat is used industrially: Worldwide, the electrical power of geothermal powerstations is about 5000 MW; in addition, about 10,000 MW are used for direct thermal applications (heating) in regions with normal geothermal conditions. The geothermal power plants have been expanded at an annual rate of 12.2% since 1970. In many developing countries, the geothermal energy is the most important home source of energy for electricity generation. In Europe, in the Paris Basin, hot groundwater is pumped from a depth of about 2 km and is used for heating blocks of flats. In France as a whole, about 170,000 flats have been supplied with heat and hot water from underground for more than a decade. (orig./DG) [de

  3. Geothermics of the Apenninic subduction

    Directory of Open Access Journals (Sweden)

    G. Zito

    1997-06-01

    Full Text Available The subduction of the Adriatic microplate is analysed from a geothermal point of view. In particular four main geodynamic units are distinguished: foreland, foredeep and slab, accretionary prism, and back-arc basin. Each of them is examined from a geothermal point of view and the related open question are discussed. The most relevant results are the determination of the undisturbed geothermal gradient in the aquifer of the foreland; the discovery of a « hot » accretionary prism; and a new model of instantaneous extension of the back-arc basins. The main conclusion is that geothermal data are consistent with a westward dipping subduction that migrated eastward producing a sequence of several episodes at the surface.

  4. Geothermal energy for American Samoa

    Energy Technology Data Exchange (ETDEWEB)

    1980-03-01

    The geothermal commercialization potential in American Samoa was investigated. With geothermal energy harnessed in American Samoa, a myriad of possibilities would arise. Existing residential and business consumers would benefit from reduced electricity costs. The tuna canneries, demanding about 76% of the island's process heat requirements, may be able to use process heat from a geothermal source. Potential new industries include health spas, aquaculture, wood products, large domestic and transhipment refrigerated warehouses, electric cars, ocean nodule processing, and a hydrogen economy. There are no territorial statutory laws of American Samoa claiming or reserving any special rights (including mineral rights) to the territorial government, or other interests adverse to a land owner, for subsurface content of real property. Technically, an investigation has revealed that American Samoa does possess a geological environment conducive to geothermal energy development. Further studies and test holes are warranted.

  5. Geothermal Program Review IV: proceedings

    Energy Technology Data Exchange (ETDEWEB)

    1985-01-01

    The research and development program of DOE's Geothermal Technology Division is reviewed in separate presentations according to program area. Separate abstracts have been prepared for the individual papers. (ACR)

  6. Issues related to geothermal development

    International Nuclear Information System (INIS)

    Lesperance, G.O.

    1990-01-01

    This paper reports on a number of potential barriers to geothermal development in Hawaii which have been overcome but some remain. Efforts continue to address issues relating to transmission, project economics, the regulatory process, resource verification, and public acceptance

  7. Engineered Geothermal System Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Petty, Susan

    2014-06-19

    In June 2009, AltaRock Energy began field work on a project supported by the U.S. Department of Energy entitled “Use of Multiple Stimulations to Improve Economics of Engineered Geothermal Systems in Shallow High Temperature Intrusives.” The goal of the project was to develop an Engineered Geothermal System (EGS) in the portion of The Geysers geothermal field operated by the Northern California Power Agency (NCPA). The project encountered several problems while deepening Well E-7 which culminated in the suspension of field activities in September 2009. Some of the problems encountered are particular to The Geysers area, while others might be encountered in any geothermal field, and they might be avoided in future operations.

  8. World status of geothermal energy use: past and potential

    International Nuclear Information System (INIS)

    Lund, John

    2000-01-01

    The past and potential development of geothermal energy is reviewed, and the use of geothermal energy for power generation and direct heat utilisation is examined. The energy savings that geothermal energy provides in terms of fuel oil and carbon savings are discussed. Worldwide development of geothermal electric power (1940-2000) and direct heat utilisation (1960 to 2000), regional geothermal use in 2000, the national geothermal contributions of geothermal energy, and the installed geothermal electric generating capacities in 2000 are tabulated

  9. Wind turbine aerodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, D.A. [Waterloo Univ., ON (Canada). Dept. of Mechanical Engineering, Wind Energy Group

    2010-07-01

    The need for clean, renewable electricity in remote communities of Canada and the world was discussed in this presentation. The University of Waterloo Wind Energy Laboratory (WEL) performs research in a large scale indoor environment on wind turbines, blade aerodynamics, and aeroacoustics. A key area of research involves developing turbines for remote off-grid communities where climatic conditions are challenging. This presentation outlined research that is underway on wind energy and off-grid renewable energy systems. Many communities in Canada and remote communities in the rest of the world are not connected to the grid and are dependent on other means to supply electrical energy to their community. Remote communities in northern Canada have no road access and diesel is the dominant source of electrical energy for these communities. All of the community supply of diesel comes from brief winter road access or by air. The presentation discussed existing diesel systems and the solution of developing local renewable energy sources such as wind, hydro, biomass, geothermal, and solar power. Research goals, wind energy activities, experimental equipment, and the results were also presented. Research projects have been developed in wind energy; hydrogen generation/storage/utilization; power electronics/microgrid; and community engagement. figs.

  10. Geothermal energy geopressure subprogram

    Energy Technology Data Exchange (ETDEWEB)

    1981-02-01

    The proposed action will consist of drilling one geopressured-geothermal resource fluid well for intermittent production testing over the first year of the test. During the next two years, long-term testing of 40,000 BPD will be flowed. A number of scenarios may be implemented, but it is felt that the total fluid production will approximate 50 million barrels. The test well will be drilled with a 22 cm (8.75 in.) borehole to a total depth of approximately 5185 m (17,000 ft). Up to four disposal wells will provide disposal of the fluid from the designated 40,000 BPD test rate. The following are included in this assessment: the existing environment; probable environmental impacts-direct and indirect; probable cumulative and long-term environmental impacts; accidents; coordination with federal, state, regional, and local agencies; and alternative actions. (MHR)

  11. Enhanced Geothermal Systems

    Energy Technology Data Exchange (ETDEWEB)

    Jeanloz, R. [The MITRE Corporation, McLean, VA (United States); Stone, H. [The MITRE Corporation, McLean, VA (United States); et al.

    2013-12-31

    DOE, through the Geothermal Technologies Office (GTO) within the Office of Energy Efficiency and Renewable Energy, requested this study, identifying a focus on: i) assessment of technologies and approaches for subsurface imaging and characterization so as to be able to validate EGS opportunities, and ii) assessment of approaches toward creating sites for EGS, including science and engineering to enhance permeability and increase the recovery factor. Two days of briefings provided in-depth discussion of a wide range of themes and challenges in EGS, and represented perspectives from industry, government laboratories and university researchers. JASON also contacted colleagues from universities, government labs and industry in further conversations to learn the state of the field and potential technologies relevant to EGS.

  12. INTEGRATED EXPLORATION OF GEOTHERMAL RESOURCES

    OpenAIRE

    A. B. Alkhasov; D. A. Аlkhasova; R. M. Aliyev; A. Sh. Ramazanov

    2016-01-01

    The aim. The aim is to develop the energy efficient technologies to explore hydro geothermal resources of different energy potential.Methods. Evaluation of the effectiveness of the proposed technologies has been carried out with the use of physical and mathematical, thermodynamic and optimization methods of calculation and the physical and chemical experimental research.Results. We propose the technology of integrated exploration of low-grade geothermal resources with the application of heat ...

  13. Geothermal energy development in Turkey

    International Nuclear Information System (INIS)

    Simsek, S.; Okandan, E.

    1990-01-01

    Geothermal fields in Turkey are related to rather complex zones of collision between the Eurasian and African continents, and penetration of the Arabian plate into the Anatolian continental mass. These processes gave rise to fracturing of the lithosphere and eruption of magmas. Geothermal regional assessment studies have proven several low enthalpy sources and some high enthalpy fields suitable for electricity generation. This paper summarizes developments in exploration-drilling and give examples of direct utilization implemented in recent years

  14. The Oregon Geothermal Planning Conference

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-10-02

    Oregon's geothermal resources represent a large portion of the nation's total geothermal potential. The State's resources are substantial in size, widespread in location, and presently in various stages of discovery and utilization. The exploration for, and development of, geothermal is presently dependent upon a mixture of engineering, economic, environmental, and legal factors. In response to the State's significant geothermal energy potential, and the emerging impediments and incentives for its development, the State of Oregon has begun a planning program intended to accelerate the environmentally prudent utilization of geothermal, while conserving the resource's long-term productivity. The program, which is based upon preliminary work performed by the Oregon Institute of Technology's Geo-Heat Center, will be managed by the Oregon Department of Energy, with the assistance of the Departments of Economic Development, Geology and Mineral Industries, and Water Resources. Funding support for the program is being provided by the US Department of Energy. The first six-month phase of the program, beginning in July 1980, will include the following five primary tasks: (1) coordination of state and local agency projects and information, in order to keep geothermal personnel abreast of the rapidly expanding resource literature, resource discoveries, technological advances, and each agency's projects. (2) Analysis of resource commercialization impediments and recommendations of incentives for accelerating resource utilization. (3) Compilation and dissemination of Oregon geothermal information, in order to create public and potential user awareness, and to publicize technical assistance programs and financial incentives. (4) Resource planning assistance for local governments in order to create local expertise and action; including a statewide workshop for local officials, and the formulation of two specific community resource development

  15. Geothermal energy applications in China

    International Nuclear Information System (INIS)

    Ren, X.; Tang, N.; Zhang, Z.; Wang, J.

    1990-01-01

    This paper updates geothermal energy applications in China. To total energy consumption for electricity is 20.38 MWe, and for direct use is 41,222 TJ/yr, even though the beneficial heat was estimated to be 7,198 TJ/yr. The attached tables are the basic geothermal information mainly the years 1985-1989. Some of the tables are additions to the report or preceeding years

  16. 76 FR 38648 - Availability of the Geothermal Technologies Program Blue Ribbon Panel Report and Request for...

    Science.gov (United States)

    2011-07-01

    ....S. has lagged that of solar and wind energy. The purpose of the Blue Ribbon Panel meeting was to... Geothermal Technologies Program Blue Ribbon Panel Report and Request for Public Comment AGENCY: Office of... Panel (the Panel) on March 22/23, 2011 in Albuquerque, New Mexico for a guided discussion on the future...

  17. Geothermal Money Book [Geothermal Outreach and Project Financing

    Energy Technology Data Exchange (ETDEWEB)

    Elizabeth Battocletti

    2004-02-01

    Small business lending is big business and growing. Loans under $1 million totaled $460 billion in June 2001, up $23 billion from 2000. The number of loans under $100,000 continued to grow at a rapid rate, growing by 10.1%. The dollar value of loans under $100,000 increased 4.4%; those of $100,000-$250,000 by 4.1%; and those between $250,000 and $1 million by 6.4%. But getting a loan can be difficult if a business owner does not know how to find small business-friendly lenders, how to best approach them, and the specific criteria they use to evaluate a loan application. This is where the Geothermal Money Book comes in. Once a business and financing plan and financial proposal are written, the Geothermal Money Book takes the next step, helping small geothermal businesses locate and obtain financing. The Geothermal Money Book will: Explain the specific criteria potential financing sources use to evaluate a proposal for debt financing; Describe the Small Business Administration's (SBA) programs to promote lending to small businesses; List specific small-business friendly lenders for small geothermal businesses, including those which participate in SBA programs; Identify federal and state incentives which are relevant to direct use and small-scale (< 1 megawatt) power generation geothermal projects; and Provide an extensive state directory of financing sources and state financial incentives for the 19 states involved in the GeoPowering the West (GPW). GPW is a U.S. Department of Energy-sponsored activity to dramatically increase the use of geothermal energy in the western United States by promoting environmentally compatible heat and power, along with industrial growth and economic development. The Geothermal Money Book will not: Substitute for financial advice; Overcome the high exploration, development, and financing costs associated with smaller geothermal projects; Remedy the lack of financing for the exploration stage of a geothermal project; or Solve

  18. Geothermal development plan: Maricopa County

    Energy Technology Data Exchange (ETDEWEB)

    White, D.H.; Goldstone, L.A.

    1982-08-01

    The Maricopa County Geothermal Development Plan evaluated the market potential for utilizing geothermal energy. The study identified six potential geothermal resource areas with temperatures less than 100{sup 0}C (212{sup 0}F) and in addition, four suspected intermediate temperature areas (90{sup 0} to 150{sup 0}C, 194{sup 0} to 300{sup 0}F). Geothermal resources are found to occur in and near the Phoenix metropolitan area where average population growth rates of two to three percent per year are expected over the next 40 years. Rapid growth in the manufacturing, trade and service sectors of the regional economy provides opportunities for the direct utilization of geothermal energy. A regional energy use analysis is included containing energy use and price projections. Water supplies are found to be adequate to support this growth, though agricultural water use is expected to diminish. The study also contains a detailed section matching geothermal resources to potential users. Two comparative analyses providing economic details for space heating projects are incorporated.

  19. Geothermal energy abstract sets. Special report No. 14

    Energy Technology Data Exchange (ETDEWEB)

    Stone, C. (comp.)

    1985-01-01

    This bibliography contains annotated citations in the following areas: (1) case histories; (2) drilling; (3) reservoir engineering; (4) injection; (5) geothermal well logging; (6) environmental considerations in geothermal development; (7) geothermal well production; (8) geothermal materials; (9) electric power production; (10) direct utilization of geothermal energy; (11) economics of geothermal energy; and (12) legal, regulatory and institutional aspects. (ACR)

  20. Mountain home known geothermal resource area: an environmental analysis

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, S.G.; Russell, B.F. (eds.)

    1979-09-01

    The Mountain Home KGRA encompasses an area of 3853 hectares (ha) at the foot of the Mount Bennett Hills in Elmore County, Idaho. The site is associated with an arid climate and high winds that generate an acute dust problem. The KGRA lies adjacent to the northwest-southeast trending fault zone that reflects the northern boundary of the western Snake River Plain graben. Data indicate that a careful analysis of the subsidence potential is needed prior to extensive geothermal development. Surface water resources are confined to several small creeks. Lands are utilized for irrigated farmlands and rangeland for livestock. There are no apparent soil limitations to geothermal development. Sage grouse and mule deer are the major species of concern. The potential of locating significant heritage resources other than the Oregon Trail or the bathhouse debris appears to be relatively slight.

  1. 电热协同作用下太阳能热电联供系统输出特性分析%Output Characteristics Analysis of Solar Photovoltaic/Thermal System in Cooperation Between Thermal and Electric

    Institute of Scientific and Technical Information of China (English)

    史志国; 闫素英; 田瑞; 郭嘉; 李彦洁

    2015-01-01

    根据光伏/光热(PV/T)系统的能量平衡和能量转换原理,建立了 PV/T 系统的热电模型,针对 PV/T 系统的热电效率、电池板温度间的耦合问题,通过 MATLAB 迭代求解法,解决了 PV/T系统中热电参数耦合求解问题,得到了 PV/T 系统的效率曲线,分析计算了系统组件长度和工质流速等参数对性能曲线的影响;同时,针对 PV/T 系统与普通光伏组件进行了实验研究,试验测试了两系统的电压、电流、功率、板背温度等特性参数,并与仿真结果进行了对比。%Based on the energy balance and conversion principle,a thermal and electrical model for the solar photovoltaic/thermal (PV/T) system is developed to solve coupled thermal and electrical parameters by using the iteration method of MATLAB.The variation of thermal and electrical efficiency is given and the influence of the PV/T system assembly length and working medium velocity change on the performance curve of the PV/T system is analyzed.Experimental study is conducted to compare the simulated results with the experiment data of general photovoltaic assembly including voltage,current,power and temperature of the back panel.

  2. 太阳能光伏直流蓄冷冰箱系统的实验研究%EXPERIMENTAL INVESTIGATION OF A SOLAR PHOTOVOLTAIC DC REFRIGETOR WITH COLD STORAGE

    Institute of Scientific and Technical Information of China (English)

    刘忠宝; 杨双; 刘挺

    2012-01-01

    The compared experimental tests were carried out to investigate the operation performances of a solar photovoltaic DC refrigerator using a phase change material (PCM), a photovoltaic DC refrigerator without PCM and a household one. The photovoltaic DC refrigerator using PCM has many advantages for on-off frequency of the compressor, service factor and heat insulation time as compressor stopped, so to prolong the service life of the compressor effectively. Furthermore, the system is powered by solar energy completely without consuming any grid electricity for running, and is the "green household electric appliance" on real significance, that especially suitable for remote mountains and nomadic areas of fresh food and medical supplies of vaccine, etc.%将利用相变材料蓄冷的太阳能光伏直流冰箱的运行特性与不带蓄冷的光伏直流冰箱及常规冰箱进行对比实验,带有蓄冷功能的冰箱在压缩机启停次数、运转率及停机保冷时间上较后两者有较大优势,能有效延长压缩机的使用寿命.此外,系统完全由太阳能供电而不消耗电网电能,是真正意义上的“绿色家电”,特别适用于偏远山区以及游牧民族地区的食品保鲜以及疫苗等医疗卫生用品的冷藏.

  3. Geothermal systems: Principles and case histories

    Science.gov (United States)

    Rybach, L.; Muffler, L. J. P.

    The classification of geothermal systems is considered along with the geophysical and geochemical signatures of geothermal systems, aspects of conductive heat transfer and regional heat flow, and geothermal anomalies and their plate tectonic framework. An investigation of convective heat and mass transfer in hydrothermal systems is conducted, taking into account the mathematical modelling of hydrothermal systems, aspects of idealized convective heat and mass transport, plausible models of geothermal reservoirs, and preproduction models of hydrothermal systems. Attention is given to the prospecting for geothermal resources, the application of water geochemistry to geothermal exploration and reservoir engineering, heat extraction from geothermal reservoirs, questions of geothermal resource assessment, and environmental aspects of geothermal energy development. A description is presented of a number of case histories, taking into account the low enthalpy geothermal resource of the Pannonian Basin in Hungary, the Krafla geothermal field in Northeast Iceland, the geothermal system of the Jemez Mountains in New Mexico, and extraction-reinjection at the Ahuachapan geothermal field in El Salvador.

  4. Renewable energies in Franche-Comte 2008 - 2010 - 2012 - 2014

    International Nuclear Information System (INIS)

    2015-12-01

    Illustrated by maps and tables, this publication proposes an overview of the evolution of installed power and production of renewable electric power (by hydroelectric, solar photovoltaic, and wind energy), of renewable electricity and heat (by wood-energy, biogas, and recovery energy), of renewable heat (by solar thermal energy, very low energy geothermal energy and heat pumps, and wood-energy). It also briefly indicates the situation of biogas, agri-fuel and bio-fuel production

  5. FY 2016 Research Highlights

    Energy Technology Data Exchange (ETDEWEB)

    2017-03-23

    This fact sheet summarizes the research highlights for the Clean Energy Manufacturing Analysis Center (CEMAC) for Fiscal Year 2106. Topics covered include additive manufacturing for the wind industry, biomass-based chemicals substitutions, carbon fiber manufacturing facility siting, geothermal power plant turbines, hydrogen refueling stations, hydropower turbines, LEDs and lighting, light-duty automotive lithium-ion cells, magnetocaloric refrigeration, silicon carbide power electronics for variable frequency motor drives, solar photovoltaics, and wide bandgap semiconductor opportunities in power electronics.

  6. 计算机控制太阳能光伏水制氢及储能发电系统的研究%Study on the Solar Photovoltaic Water Hydrogen Production and Energy Storage&Power Generation System Based on the Computer Control

    Institute of Scientific and Technical Information of China (English)

    秦天像; 任小勇; 杨天虎

    2015-01-01

    虽然太阳能、氢能利用技术有很多优势,但太阳能资源间歇性不稳定所带来的可靠性低的缺陷却影响着负载的连续使用. 太阳能光伏水制氢及储能发电系统能通过计算机控制提供稳定可靠的电能,具有很高的推广应用价值. 从太阳能光伏水制氢发电系统、计算机控制电解水制氢系统、储氢技术、氢能利用技术等方面,详细介绍了计算机控制太阳能光伏水制氢及储能发电系统的功能.%Although the solar energy and hydrogen energy utilization technologies have many advantages, the defect of low reliability caused by the intermittent instability of solar energy resources affects the continuous use of the load . The solar photovoltaic water hydrogen production and energy storage&power generation system, which can provide stable and reliable electricity through the computer control, has very high value of application. This paper introduces in detail the functions of the solar photovoltaic water hydrogen production and energy storage&power generation system from aspects of the solar photovoltaic water hydrogen power generation system, computer-based water electrolysis hydrogen production system, hydrogen storage technology, and hydrogen power utilization technology, etc.

  7. DMRC studies geothermal energy options

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-03-01

    The Deep Mining Research Consortium (DMRC) is an industry-led research consortium that includes Vale Inco, Xstrata, Rio Tinto, Goldcorp, Agnico-Eagle, Barrick Gold, CANMET and the City of Sudbury. This article reported on the application of geothermal energy technologies to cool deep mine workings and use the heat from underground to produce energy to heat surface buildings. Researchers at the University of British Columbia's Centre for Environmental Research in Minerals, Metals and Materials have proposed the use of heat pumps and water-to-air heat exchangers at depth to chill mine workings. The heat pumps would act as refrigerators, taking heat from one area and moving it elsewhere. The purpose would be to extract heat from naturally occurring ground water and pass the chilled water through a heat exchanger to cool the air. The heated water would then be pumped to surface and used to heat surface facilities. The technology is well suited for using geothermal energy from decommissioned mines for district heating. The technology has been successfully used in Spring Hill, Nova Scotia, where geothermal energy from a decommissioned coal mine is used to heat an industrial park. A feasibility study is also underway for the city of Yellowknife in the Northwest Territories to produce up to 10 megawatts of heat from the Con Gold Mine, enough energy to heat half of Yellowknife. Geothermal energy can also be used to generate electricity, particularly in the Pacific Rim where underground temperatures are higher and closer to surface. In Sudbury Ontario, the enhanced geothermal systems technology would require two holes drilled to a depth of four kilometers. The ground between the two holes should be fractured to create an underground geothermal circuit. Geothermal energy does not produce any greenhouse gases or chemical wastes. 1 fig.

  8. Wind energy

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This chapter discusses the role wind energy may have in the energy future of the US. The topics discussed in the chapter include historical aspects of wind energy use, the wind energy resource, wind energy technology including intermediate-size and small wind turbines and intermittency of wind power, public attitudes toward wind power, and environmental, siting and land use issues

  9. Geothermal Energy: Evaluation of a Resource

    Science.gov (United States)

    Bockemuehl, H. W.

    1976-01-01

    This article suggests the use of geothermal energy for producing electricity, using as an example the development at Wairakei, New Zealand. Other geothermal areas are identified, and economic and environmental co sts of additional development are explored. (Author/AV)

  10. Imperial County geothermal development annual meeting: summary

    Energy Technology Data Exchange (ETDEWEB)

    1983-01-01

    All phases of current geothermal development in Imperial County are discussed and future plans for development are reviewed. Topics covered include: Heber status update, Heber binary project, direct geothermal use for high-fructose corn sweetener production, update on county planning activities, Brawley and Salton Sea facility status, status of Imperial County projects, status of South Brawley Prospect 1983, Niland geothermal energy program, recent and pending changes in federal procedures/organizations, plant indicators of geothermal fluid on East Mesa, state lands activities in Imperial County, environmental interests in Imperial County, offshore exploration, strategic metals in geothermal fluids rebuilding of East Mesa Power Plant, direct use geothermal potential for Calipatria industrial Park, the Audubon Society case, status report of the Cerro Prieto geothermal field, East Brawley Prospect, and precision gravity survey at Heber and Cerro Prieto geothermal fields. (MHR)

  11. Choosing a Geothermal as an HVAC System.

    Science.gov (United States)

    Lensenbigler, John D.

    2002-01-01

    Describes the process of selecting and installing geothermal water source heat pumps for new residence halls at Johnson Bible College in Knoxville, Tennessee, including choosing the type of geothermal design, contractors, and interior equipment, and cost and payback. (EV)

  12. Agora Energiewende (2017). Future cost of onshore wind. Recent auction results, long-term outlook and implications for upcoming German auctions

    Energy Technology Data Exchange (ETDEWEB)

    Thomassen, Georg; Deutsch, Matthias

    2017-04-15

    The costs for electricity from renewable generation have been falling significantly in recent years, and record low bids at auctions around the world have grasped the attention of the public. Solar photovoltaics and offshore wind auctions, in particular, have attracted a lot of interest. The results for onshore wind, however, are just as impressive. The future cost development of onshore wind is of great relevance, since it is a key pillar of the energy system transformation in many parts of the world. However, the estimated long-term cost reductions vary significantly, as different studies value the cost drivers of wind differently. In Germany, the opaque and complex cost structure of onshore wind is the root of much controversy. International auction results with winning bids of less than half of the typical German pay rate left people questioning the costs of domestic wind power. However this discussion often fails to account adequately for differences in the quality of wind resources. In light of the upcoming, and first, German onshore wind auctions, we aim to contribute to the ongoing discussion by providing the necessary context for international auction results, a general outlook on the future cost of onshore wind, and by illustrating the existing potential and hindrances for cost reductions in the German market.

  13. Agora Energiewende (2017). Future cost of onshore wind. Recent auction results, long-term outlook and implications for upcoming German auctions

    International Nuclear Information System (INIS)

    Thomassen, Georg; Deutsch, Matthias

    2017-01-01

    The costs for electricity from renewable generation have been falling significantly in recent years, and record low bids at auctions around the world have grasped the attention of the public. Solar photovoltaics and offshore wind auctions, in particular, have attracted a lot of interest. The results for onshore wind, however, are just as impressive. The future cost development of onshore wind is of great relevance, since it is a key pillar of the energy system transformation in many parts of the world. However, the estimated long-term cost reductions vary significantly, as different studies value the cost drivers of wind differently. In Germany, the opaque and complex cost structure of onshore wind is the root of much controversy. International auction results with winning bids of less than half of the typical German pay rate left people questioning the costs of domestic wind power. However this discussion often fails to account adequately for differences in the quality of wind resources. In light of the upcoming, and first, German onshore wind auctions, we aim to contribute to the ongoing discussion by providing the necessary context for international auction results, a general outlook on the future cost of onshore wind, and by illustrating the existing potential and hindrances for cost reductions in the German market.

  14. Techno-economic and life-cycle modeling and analysis of various energy storage technologies coupled with a solar photovoltaic array

    Science.gov (United States)

    Peterson, Brian Andrew

    Renewable energies, such as wind and solar, are a growing piece of global energy consumption. The chief motivation to develop renewable energy is two-fold: reducing carbon dioxide emissions and reducing dependence on diminishing fossil fuel supplies. Energy storage is critical to the growth of renewable energy because it allows for renewably-generated electricity to be consumed at times when renewable sources are unavailable, and it also enhances power quality (maintaining voltage and frequency) on an electric grid which becomes increasingly unstable as more renewable energy is added. There are numerous means of storing energy with different advantages, but none has emerged as the clear solution of choice for renewable energy storage. This thesis attempts to explore the current and developing state of energy storage and how it can be efficiently implemented with crystalline silicon solar photovotlaics, which has a minimum expected lifetime of 25 years assumed in this thesis. A method of uniformly comparing vastly different energy storage technologies using empirical data was proposed. Energy storage technologies were compared based on both economic valuation over the system life and cradle-to-gate pollution rates for systems with electrochemical batteries. For stationary, non-space-constrained settings, lead-acid batteries proved to be the most economical. Carbon-enhanced lead-acid batteries were competitive, showing promise as an energy storage technology. Lithium-ion batteries showed the lowest pollution rate of electrochemical batteries examined, but both lithium-ion and lead-acid batteries produce comparable carbon dioxide to coal-derived electricity.

  15. Simulation and Modeling of a Five -Level (NPC Inverter Fed by a Photovoltaic Generator and Integrated in a Hybrid Wind-PV Power System

    Directory of Open Access Journals (Sweden)

    M. Rezki,

    2017-08-01

    Full Text Available A distributed hybrid coordinated wind photovoltaic (PV power system was proposed in this paper. As oil and coal reserves are being depleted whilst at the same time the energy demand is growing, it is important to consider alternative energy generating techniques. Today, the five-level (NPC inverter represents a good alternative for several industrial applications. To take advantage of the five-level inverter topology and the benefits of renewable energy represented by a photovoltaic generator, a new scheme of these controllers is proposed in this work. This paper outlines the design of a hybrid power system consisting of a solar photovoltaic (PV and a wind power system. The system is modeled in Matlab Simulink and tested for various conditions. The model and results are discussed in this paper.

  16. Costs of solar and wind power variability for reducing CO2 emissions.

    Science.gov (United States)

    Lueken, Colleen; Cohen, Gilbert E; Apt, Jay

    2012-09-04

    We compare the power output from a year of electricity generation data from one solar thermal plant, two solar photovoltaic (PV) arrays, and twenty Electric Reliability Council of Texas (ERCOT) wind farms. The analysis shows that solar PV electricity generation is approximately one hundred times more variable at frequencies on the order of 10(-3) Hz than solar thermal electricity generation, and the variability of wind generation lies between that of solar PV and solar thermal. We calculate the cost of variability of the different solar power sources and wind by using the costs of ancillary services and the energy required to compensate for its variability and intermittency, and the cost of variability per unit of displaced CO(2) emissions. We show the costs of variability are highly dependent on both technology type and capacity factor. California emissions data were used to calculate the cost of variability per unit of displaced CO(2) emissions. Variability cost is greatest for solar PV generation at $8-11 per MWh. The cost of variability for solar thermal generation is $5 per MWh, while that of wind generation in ERCOT was found to be on average $4 per MWh. Variability adds ~$15/tonne CO(2) to the cost of abatement for solar thermal power, $25 for wind, and $33-$40 for PV.

  17. Mutnovo geothermal power complex at Kamchatka

    International Nuclear Information System (INIS)

    Britvin, O.V.; Povarov, O.A.; Klochkov, E.F.; Tomarov, G.V.; Koshkin, N.L.; Luzin, V.E.

    2001-01-01

    The data on geothermal resources at Kamchatka and experience in their application are presented. The description of the geothermal power complex objects at the Mutnovo deposit is given. The basic trends and stages of the prospective geothermal power development in this region are indicated. It is specified for unique huge geothermal heat reserves, which by different estimates may provide for the total electrical and thermal capacity, exceeding 2000 MW [ru

  18. Wind energy and Turkey.

    Science.gov (United States)

    Coskun, Aynur Aydin; Türker, Yavuz Özhan

    2012-03-01

    The global energy requirement for sustaining economic activities, meeting social needs and social development is increasing daily. Environmentally friendly, renewable energy resources are an alternative to the primary non-renewable energy resources, which devastate ecosystems in order to meet increasing demand. Among renewable energy sources such as hydropower, biopower, geothermal power and solar power, wind power offers distinct advantages to Turkey. There is an increasing tendency toward wind globally and the European Union adjusted its legal regulations in this regard. As a potential EU Member state, Turkey is going through a similar process. The number of institutional and legal regulations concerning wind power has increased in recent years; technical infrastructure studies were completed, and some important steps were taken in this regard. This study examines the way in which Turkey has developed support for wind power, presents a SWOT analysis of the wind power sector in Turkey and a projection was made for the concrete success expected to be accomplished in the future.

  19. Microbiological monitoring in geothermal plants

    Science.gov (United States)

    Alawi, M.; Lerm, S.; Vetter, A.; Vieth, A.; Seibt, A.; Wolfgramm, M.; Würdemann, H.

    2009-12-01

    In times of increasing relevance of alternative energy resources the utilization of geothermal energy and subsurface energy storage gains importance and arouses increasing interest of scientists. The research project “AquiScreen” investigates the operational reliability of geothermally used groundwater systems under microbial, geochemical, mineralogical and petrological aspects. Microbiological analyses based on fluid and solid phases of geothermal systems are conducted to evaluate the impact of microbial populations on these systems. The presentation focuses on first results obtained from microbiological monitoring of geothermal plants located in two different regions of Germany: the North German Basin and the Molasse Basin in the southern part characterized by different salinities and temperatures. Fluid and filter samples taken during regular plant operation were investigated using genetic fingerprinting based on PCR-amplified 16S rRNA genes to characterize the microbial biocenosis of the geothermal aquifer. Sequencing of dominant bands of the fingerprints and the subsequent comparison to 16S rRNA genes from public databases enables a correlation to metabolic classes and provides information about the biochemical processes in the deep biosphere. The genetic profiles revealed significant differences in microbiological community structures of geothermal aquifers investigated. Phylogenetic analyses indicate broad metabolical diversity adapted to the specific conditions in the aquifers. Additionally a high amount of so far uncultivated microorganisms was detected indicating very specific indigenous biocenosis. However, in all geothermal plants bacteria were detected despite of fluid temperatures from 45° to 120°C. The identified microorganisms are closely related to thermophilic and hyperthermophilic species detectable in hot wells and hot springs, like Thermus scotoductus and Thermodesulfovibrio yellowstonii, respectively. Halophilic species were detected in

  20. Hope for water, wind, and warmth

    Energy Technology Data Exchange (ETDEWEB)

    Heuseler, H

    1974-01-01

    Geothermal energy finds its primary applications in the generation of electricity and the heating of homes and office buildings. The largest operational geothermal power plants are those of the Geysers, USA, and Larderello, Italy. The total output of electricity from geothermal sources in 1974 was 10 GW, a small figure compared to the total production of 600 GW. Promising geothermal areas have been discovered along the western edge of the Americas, in eastern Africa, Japan, the Philippines, and in West Germany. Estimates of future development of geothermal energy indicate that 150 GW should be available by 1985, and 500 GW by the year 2000. Small scale wind power plants are in operation in the USA and in Europe. It is estimated that by the turn of the century, the total output from wind sources could be equal to the annual electricity consumption of the USA. Another energy source with significant potential is that associated with ocean tides and currents. A 240 MW tidal power plant is operational at the Rance estuary in France and a second is under construction in the USSR. A system is also under consideration in Brazil. Theoretically, this resource could provide about 5.0 GW/yr. Several systems for the generation of power using ocean thermal gradients are also under study.

  1. China starts tapping rich geothermal resources

    Science.gov (United States)

    Guang, D.

    1980-09-01

    Attention is given to the electric and power installation running on geothermal energy at Yangbajain, Tibet. Other geothermal projects in Tibet, the Yunnan Province and the North China Plain are also outlined. Applications of geothermal energy are described, including the heating of homes and factories, spinning, weaving, paper-making and the making of wine.

  2. Research status of geothermal resources in China

    Science.gov (United States)

    Zhang, Lincheng; Li, Guang

    2017-08-01

    As the representative of the new green energy, geothermal resources are characterized by large reserve, wide distribution, cleanness and environmental protection, good stability, high utilization factor and other advantages. According to the characteristics of exploitation and utilization, they can be divided into high-temperature, medium-temperature and low-temperature geothermal resources. The abundant and widely distributed geothermal resources in China have a broad prospect for development. The medium and low temperature geothermal resources are broadly distributed in the continental crustal uplift and subsidence areas inside the plate, represented by the geothermal belt on the southeast coast, while the high temperature geothermal resources concentrate on Southern Tibet-Western Sichuan-Western Yunnan Geothermal Belt and Taiwan Geothermal Belt. Currently, the geothermal resources in China are mainly used for bathing, recuperation, heating and power generation. It is a country that directly makes maximum use of geothermal energy in the world. However, China’s geothermal power generation, including installed generating capacity and power generation capacity, are far behind those of Western European countries and the USA. Studies on exploitation and development of geothermal resources are still weak.

  3. Advanced seismic imaging for geothermal development

    Energy Technology Data Exchange (ETDEWEB)

    Louie, John [UNR; Pullammanappallil, Satish [Optim; Honjas, Bill [Optim

    2016-08-01

    J. N. Louie, Pullammanappallil, S., and Honjas, W., 2011, Advanced seismic imaging for geothermal development: Proceedings of the New Zealand Geothermal Workshop 2011, Nov. 21-23, Auckland, paper 32, 7 pp. Preprint available at http://crack.seismo.unr.edu/geothermal/Louie-NZGW11.pdf

  4. Geothermal Energy Development annual report 1979

    Energy Technology Data Exchange (ETDEWEB)

    1980-08-01

    This report is an exerpt from Earth Sciences Division Annual Report 1979 (LBL-10686). Progress in thirty-four research projects is reported including the following area: geothermal exploration technology, geothermal energy conversion technology, reservoir engineering, and geothermal environmental research. Separate entries were prepared for each project. (MHR)

  5. Prospects of geothermal resource exploitation

    International Nuclear Information System (INIS)

    Bourrelier, P.H.; Cornet, F.; Fouillac, C.

    1994-01-01

    The use of geothermal energy to generate electricity has only occurred during the past 50 years by drilling wells in aquifers close to magmas and producing either dry steam or hot water. The world's production of electricity from geothermal energy is over 6000 MWe and is still growing. The direct use of geothermal energy for major urban communities has been developed recently by exploitation of aquifers in sedimentary basins under large towns. Scaling up the extraction of heat implies the exploitation of larger and better located fields requiring an appropriate method of extraction; the objective of present attempts in USA, Japan and Europe is to create heat exchangers by the circulation of water between several deep wells. Two field categories are considered: the extension of classical geothermal fields beyond the aquifer areas, and areas favoured by both a high geothermal gradient, fractures inducing a natural permeability at large scale, and good commercial prospects (such as in the Rhenan Graben). Hot dry rocks concept has gained a large interest. 1 fig., 5 tabs., 11 refs

  6. State policies for geothermal development

    Energy Technology Data Exchange (ETDEWEB)

    Sacarto, D.M.

    1976-01-01

    The most prominent geothermal resources in the USA occur in fifteen Gulf and Western states including Alaska and Hawaii. In each state, authority and guidelines have been established for administration of geothermal leasing and for regulation of development. Important matters addressed by these policies include resource definition, leasing provisions, development regulations, water appropriation, and environmental standards. Some other policies that need attention include taxation, securities regulations, and utility regulations. It is concluded that conditions needed for the geothermal industry to pursue large-scale development are consumer (utility) confidence in the resource; equitable tax treatment; prompt exploration of extensive land areas; long and secure tenure for productive properties; prompt facility siting and development; and competitive access to various consumers. With these conditions, the industry should be competitive with other energy sectors and win its share of investment capital. This publication reviews for the states various technical, economic, and institutional aspects of geothermal development. The report summarizes research results from numerous specialists and outlines present state and Federal policies. The report concludes generally that if public policies are made favorable to their development, geothermal resources offer an important energy resource that could supply all new electric capacity for the fifteen states for the next two decades. This energy--100,000 MW--could be generated at prices competitive with electricity from fossil and nuclear power plants. An extensive bibliography is included. (MCW)

  7. Thermodynamics of geothermal fluids

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, P.S.Z.

    1981-03-01

    A model to predict the thermodynamic properties of geothermal brines, based on a minimum amount of experimental data on a few key systems, is tested. Volumetric properties of aqueous sodium chloride, taken from the literature, are represented by a parametric equation over the range 0 to 300{sup 0}C and 1 bar to 1 kbar. Density measurements at 20 bar needed to complete the volumetric description also are presented. The pressure dependence of activity and thermal properties, derived from the volumetric equation, can be used to complete an equation of state for sodium chloride solutions. A flow calorimeter, used to obtain heat capacity data at high temperatures and pressures, is described. Heat capacity measurements, from 30 to 200{sup 0}C and 1 bar to 200 bar, are used to derive values for the activity coefficient and other thermodynamic properties of sodium sulfate solutions as a function of temperature. Literature data on the solubility of gypsum in mixed electrolyte solutions have been used to evaluate model parameters for calculating gypsum solubility in seawater and natural brines. Predictions of strontium and barium sulfate solubility in seawater also are given.

  8. Electricity from geothermal steam

    Energy Technology Data Exchange (ETDEWEB)

    Wheatcroft, E L.E.

    1959-01-01

    The development of the power station at Wairakei geothermal field is described. Wairakei is located at the center of New Zealand's volcanic belt, which lies within a major graben which is still undergoing some degree of downfaulting. A considerable number of wells, some exceeding 610 m, have been drilled. Steam and hot water are produced from both deep and shallow wells, which produce at gauge pressures of 1.5 MPa and 0.6 MPa, respectively. The turbines are fed by low, intermediate, and high pressure mains. The intermediate pressure turbine bank was installed as a replacement for a heavy water production facility which had originally been planned for the development. Stage 1 includes a 69 MW plant, and stage 2 will bring the capacity to 150 MW. A third stage, which would bring the output up to 250 MW had been proposed. The second stage involves the installation of more high pressure steam turbines, while the third stage would be powered primarily by hot water flashing. Generation is at 11 kV fed to a two-section 500 MVA board. Each section of the board feeds through a 40 MVA transformer to a pair of 220 V transmission lines which splice into the North Island grid. Other transformers feed 400 V auxiliaries and provide local supply.

  9. 2012 Market Report on U.S. Wind Technologies in Distributed Applications

    Energy Technology Data Exchange (ETDEWEB)

    Orrell, Alice C.; Flowers, L. T.; Gagne, M. N.; Pro, B. H.; Rhoads-Weaver, H. E.; Jenkins, J. O.; Sahl, K. M.; Baranowski, R. E.

    2013-08-06

    .S. Department of Agriculture’s Rural Energy for America Program were the main sources of federal funding for distributed wind projects. State and local funding varied across the country, from rebates to loans, tax credits, and other incentives. Reducing utility bills and hedging against potentially rising electricity rates remain drivers of distributed wind installations. In 2012, other drivers included taking advantage of the expiring U.S. Treasury Section 1603 program and a prosperous year for farmers. While 2012 saw a large addition of distributed wind capacity, considerable barriers and challenges remain, such as a weak domestic economy, inconsistent state incentives, and very competitive solar photovoltaic and natural gas prices. The industry remains committed to improving the distributed wind marketplace by advancing the third-party certification process and introducing alternative financing models, such as third-party power purchase agreements and lease-to-own agreements more typical in the solar photovoltaic market. Continued growth is expected in 2013.

  10. Greece, Milos Island Geothermal Project

    International Nuclear Information System (INIS)

    Delliou, E.E.

    1990-01-01

    On Milos island (Aegean Sea) a high enthalpy, water dominated geothermal field of high salinity exists. At 1985, a 2MW geothermoelectric pilot plant was installed on the island. This plant has been provided by Mitsubishi Heavy Industries of Japan under a contract with Public Power Corporation of Greece. Due to high salinity of the geothermal fluid, unforeseen problems (scaling mainly) arisen in both steam and brine cycles. As a consequence, the operation (trial mainly) of the power plant have been interrupted several times for long periods, in order to identify the arisen, each time, problems and find the most appropriate technical solution. The above fact, as well as, some unfortunate coincidences described in this paper, led Milos people to react against geothermal development in their island. The sequence of the events, technical and non-technical, their approach and the relevant conclusions are reported in this presentation

  11. Geothermal resources of the UK

    International Nuclear Information System (INIS)

    Batchelor, A.S.

    1990-01-01

    This paper reports that geothermal energy applications and research are being actively pursued in the United Kingdom despite the relatively normal heat flow regime. The cumulative expenditure on geothermal activity from 1975 to 1989 has been approximately Brit-pounds 46 million of 32% of the Renewable Energy Research Budget to date. The first practical application is a 2 MWt scheme at Southampton as part of a district heating scheme. Commercial operation started in February 1988 and further expansion is planned. The UK's enthusiasm for Hot Dry Rock has dimmed slightly as the entire program is reappraised and the long heralded deep exploration hole has yet to materialize. Future activity looks likely to focus on geothermal opportunities that have multiple uses or applications for the fluids in small scale schemes and Hot Dry Rock research will probably be linked to a pan-European program based in France

  12. Geothermal hydrogen - a vision? Paper

    Energy Technology Data Exchange (ETDEWEB)

    Zittel, W.; Weindorf, W.; Wurster, R.; Bussmann, W.

    2001-07-01

    With the progresses in geothermal electricity production by means of the hot-dry-rock (HDR) method electricity might be produced at cost of between 0.07 - 0.09 ECU/kWh, depending on systems sizes of between 5 - 20 MW{sub e}. The electricity can be used to produce hydrogen from electrolysis and water. This method of electricity production offers high availability with operating hour of between 7,600 - 8,000 hours per year. The 40 GWh electricity production per year from one 5 MW{sub e} geothermal plant are sufficient to produce enough hydrogen for the operation of an average fueling station with about 400 refuelings per day at cost of about 20 - 30 percent higher than today's gasoline (including taxes). In this contribution some details of the analysis are presented as well as a general discussion of geothermal hydrogen production as a future energy vector. (orig.)

  13. Hot Dry Rock; Geothermal Energy

    Energy Technology Data Exchange (ETDEWEB)

    None

    1990-01-01

    The commercial utilization of geothermal energy forms the basis of the largest renewable energy industry in the world. More than 5000 Mw of electrical power are currently in production from approximately 210 plants and 10 000 Mw thermal are used in direct use processes. The majority of these systems are located in the well defined geothermal generally associated with crustal plate boundaries or hot spots. The essential requirements of high subsurface temperature with huge volumes of exploitable fluids, coupled to environmental and market factors, limit the choice of suitable sites significantly. The Hot Dry Rock (HDR) concept at any depth originally offered a dream of unlimited expansion for the geothermal industry by relaxing the location constraints by drilling deep enough to reach adequate temperatures. Now, after 20 years intensive work by international teams and expenditures of more than $250 million, it is vital to review the position of HDR in relation to the established geothermal industry. The HDR resource is merely a body of rock at elevated temperatures with insufficient fluids in place to enable the heat to be extracted without the need for injection wells. All of the major field experiments in HDR have shown that the natural fracture systems form the heat transfer surfaces and that it is these fractures that must be for geothermal systems producing from naturally fractured formations provide a basis for directing the forthcoming but, equally, they require accepting significant location constraints on HDR for the time being. This paper presents a model HDR system designed for commercial operations in the UK and uses production data from hydrothermal systems in Japan and the USA to demonstrate the reservoir performance requirements for viable operations. It is shown that these characteristics are not likely to be achieved in host rocks without stimulation processes. However, the long term goal of artificial geothermal systems developed by systematic

  14. Geothermal resource assessment in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Youngmin; Kim, Hyoung Chan [Korea Institute of Geoscience and Mineral Resources (Korea); Park, Sungho; Kim, Jongchan; Koo, Min-Ho [Kongju National University (Korea)

    2010-10-15

    To estimate available geothermal energy and to construct temperature at depth maps in Korea, various geothermal data have been used. Those include 1560 thermal property data such as thermal conductivity, specific heat and density, 353 heat flow data, 54 surface temperature data, and 180 heat production data. In Korea, subsurface temperature ranges from 23.9 C to 47.9 C at a depth of 1 km, from 34.2 C to 79.7 C at 2 km, from 44.2 C to 110.9 C at 3 km, from 53.8 C to 141.5 C at 4 km, and from 63.1 C to 171.6 C at 5 km. The total available subsurface geothermal energy in Korea is 4.25 x 10{sup 21} J from surface to a depth of 1 km, 1.67 x 10{sup 22} J to 2 km, 3.72 x 10{sup 22} J to 3 km, 6.52 x 10{sup 22} J to 4 km, and 1.01 x 10{sup 23} J to 5 km. In particular, the southeastern part of Korea shows high temperatures at depths and so does high geothermal energy. If only 2% of geothermal resource from surface to a depth of 5 km is developed in Korea, energy from geothermal resources would be equivalent to about 200 times annual consumption of primary energy ({proportional_to}2.33 x 10{sup 8} TOE) in Korea in 2006. (author)

  15. Geothermal Progress Monitor: Report No. 14

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-01

    This issue of the Geothermal Progress Monitor, the 14th since its inception in 1980, highlights the anticipated rapid growth in the use of geothermal heat pumps and documents the continued growth in the use of geothermal energy for power generation, both in this country and abroad. In countries with a relatively large demand for new generation capacity, geothermal, if available, is being called on as a preferable alternative to the use of domestic or imported oil. On the other hand, in this country where current demand for new capacity is less, geothermal energy is commonly being put to use in small power generation units operating on the hot water resource.

  16. Geothermal progress monitor report No. 6

    Energy Technology Data Exchange (ETDEWEB)

    1982-06-01

    Geothermal Progress Monitor Report No. 6 presents a state-by-state summary of the status of geothermal leasing, exploration, and development in major physiographic regions where geothermal resource potential has been identified. Recent state-specific activities are reported at the end of each state status report, while recent activities of a more general nature are summarized briefly in Part II of the report. A list of recent publications of potential interest to the geothermal community and a directory of contributors to the geothermal progress monitoring system are also included.

  17. "Assistance to States on Geothermal Energy"

    Energy Technology Data Exchange (ETDEWEB)

    Linda Sikkema; Jennifer DeCesaro

    2006-07-10

    This final report summarizes work carried out under agreement with the U.S. Department of Energy, related to geothermal energy policy issues. This project has involved a combination of outreach and publications on geothermal energy—Contract Number DE-FG03-01SF22367—with a specific focus on educating state-level policymakers. Education of state policymakers is vitally important because state policy (in the form of incentives or regulation) is a crucial part of the success of geothermal energy. State policymakers wield a significant influence over all of these policies. They are also in need of high quality, non-biased educational resources which this project provided. This project provided outreach to legislatures, in the form of responses to information requests on geothermal energy and publications. The publications addressed: geothermal leasing, geothermal policy, constitutional and statutory authority for the development of geothermal district energy systems, and state regulation of geothermal district energy systems. These publications were distributed to legislative energy committee members, and chairs, legislative staff, legislative libraries, and other related state officials. The effect of this effort has been to provide an extensive resource of information about geothermal energy for state policymakers in a form that is useful to them. This non-partisan information has been used as state policymakers attempt to develop their own policy proposals related to geothermal energy in the states. Coordination with the National Geothermal Collaborative: NCSL worked and coordinated with the National Geothermal Collaborative (NGC) to ensure that state legislatures were represented in all aspects of the NGC's efforts. NCSL participated in NGC steering committee conference calls, attended and participated in NGC business meetings and reviewed publications for the NGC. Additionally, NCSL and WSUEP staff drafted a series of eight issue briefs published by the

  18. Geothermal country report of Hungary

    International Nuclear Information System (INIS)

    Ottlik, P.

    1990-01-01

    There is a slow but steady increase in the number of geothermal wells in Hungary. The rate of increase is 3-5 new wells/year. In the last years technical development and the raising of efficiency came to the front in utilization of geothermal energy. Technical development is supported by the state. This paper reports that the main directions were: developing a pump suitable for Hungarian conditions, working out the model of sandy and karstic aquifers for simulation and prediction, and developing new chemicals and methods for treating thermal water

  19. New Mexico Geothermal Data Base

    International Nuclear Information System (INIS)

    Witcher, J.C.; Whittier, J.; Morgan, R.

    1990-01-01

    This paper reports on the New Mexico Geothermal Data Base (NMGDB) which is a comprehensive public-domain data base of low-temperature geothermal resource information for New Mexico that is designed to assist researchers and developers. A broad range of geoscience, engineering, climatic, economic, and land status information are complied in the dBASE III PLUS data base management system for use on an IBM or IBM-compatible personal computer. A user friendly menu format with on-screen prompts allows easy and convenient use

  20. Submarine geothermal resources

    Science.gov (United States)

    Williams, D.L.

    1976-01-01

    Approximately 20% of the earth's heat loss (or 2 ?? 1012 cal/s) is released through 1% of the earth's surface area and takes the form of hydrothermal discharge from young (Pleistocene or younger) rocks adjacent to active seafloor-spreading centers and submarine volcanic areas. This amount is roughly equivalent to man's present gross energy consumption rate. A sub-seafloor geothermal reservoir, to be exploitable under future economic conditions, will have to be hot, porous, permeable, large, shallow, and near an energy-deficient, populated land mass. Furthermore, the energy must be recoverable using technology achievable at a competitive cost and numerous environmental, legal and institutional problems will have to be overcome. The highest-temperature reservoirs should be found adjacent to the zones of the seafloor extension or volcanism that are subject to high sedimentation rates. The relatively impermeable sediments reduce hydrothermal-discharge flow rates, forcing the heat to be either conducted away or released by high-temperature fluids, both of which lead to reservoir temperatures that can exceed 300??C. There is evidence that the oceanic crust is quite permeable and porous and that it was amenable to deep (3-5 km) penetration by seawater at least some time in the early stages of its evolution. Most of the heat escapes far from land, but there are notable exceptions. For example, in parts of the Gulf of California, thermal gradients in the bottom sediments exceed 1??C/m. In the coastal areas of the Gulf of California, where electricity and fresh water are at a premium, this potential resource lies in shallow water (characteristics of these systems before they can be considered a viable resource. Until several of the most promising areas are carefully defined and drilled, the problem will remain unresolved. ?? 1976.

  1. Mexican geothermal development and the future

    International Nuclear Information System (INIS)

    Serrano, J.M.E.V.

    1998-01-01

    Geothermics in Mexico started in 1954, by drilling the first geothermal well in Pathe, State of Hidalgo, which reached a depth of 237 meters. In 1959 electrical generation from geothermal origin began, with an installed capacity of 3.5 MW. From 1959 to 1994 Mexico increased its installed capacity to 753 MW, by developing three geothermal fields: Cerro Prieto, Los Azufres, and Los Humeros. Currently, 177 wells produce steam at a rate of 36 tons per hour (t/h) each. Comision Federal de Electricidad (CFE, Federal Commission of Electricity) has planned to increase the geothermal-electric installed capacity through construction and installation of several projects. Repowering of operating units and development of new geothermal zones will also allow Mexican geothermal growth

  2. Geothermal Exploration By Using Time Domain IP Method:Balikesir (Gure) And Canakkale (Geyikli) Cases From Turkey

    Science.gov (United States)

    Tezel, O.; Ozcep, F.

    2017-12-01

    Geothermal energy is heat derived from the earth. It is the thermal energy contained in the rock and fluid (that fills the fractures and pores within the rock) in the earth's crust. These resources are always at a temperature higher than 20°C. Geothermal energy requires no fuel, and is therefore virtually emission free and independent of fluctuations in fuel cost. Since a geothermal power plant doesn't rely on transient sources of energy, unlike, for example, wind turbines or solar panels, its capacity factor can be quite large. Induced polarization (IP) results at geothermal regions show prominent, extended low resistivity zones. Environmental-IP methods can assist in the assessment of the acid generating potential of waste rock and tailings from mine operations. Resistivity can be used to map contamination plumes. Resistivity and chargeability values were determined using the IP method on geothermal resources in Balikesir Güre (Turkey). In this study we found low resistance values and high chargeability values at the geothermal resource. Finally drilling and IP results were correlated to verify our findings. After the positive results of obtained data, a similar study was carried out in Geyikli Area (Canakkale) and a geothermal resource with 450C temperature of 5 lt/sec was explored at a depth of 970 m.

  3. Recent Development and Advance of Solar Photovoltaic Materials and Photothermal Conversion Materials%太阳能光电、光热转换材料的研究现状与进展

    Institute of Scientific and Technical Information of China (English)

    王聪; 代蓓蓓; 于佳玉; 王蕾; 孙莹

    2017-01-01

    重点探讨了太阳能光电、光热转换技术领域的材料研究现状与发展,主要包括光伏电池半导体材料和太阳光谱选择性吸收涂层光学材料膜系.太阳电池材料的关键问题还是成本与光电转换效率,钙钛矿太阳电池的研究成为光伏电池新的研究热点.太阳光谱选择性吸收涂层是太阳能光热利用领域的核心材料技术之一.近年来,太阳能的中高温热利用,尤其是聚焦热发电技术,作为与光伏发电平行的另一种主流太阳能发电方式,成为人们日益关注的焦点.另外,还阐述了中高温太阳光谱选择性吸收涂层在国内外的研究成果和最新进展.%The research status and advance of solar photovoltaic materials and photothermal conversion materials, which mean semiconductor solar cell materials and solar spectral selective absorbing coatings, were reviewed. The main problems of solar cell materials are cost and photoelectric conversion efficiency (PCE). The investigation of perovskite solar cell becomes a new research hotspot. On the other hand, solar selective absorbing coating is one of the key material technologies of solar thermal utilization. In recent years, medium-high temperature heat utilization of solar energy, especially the technology for concentrated solar power (CSP) as another mainstream of solar energy generation, is becoming a focusing in parallel with photovoltaic power generation. Thus this paper also talks about the research results and recent development of high temperature solar selective absorbing coatings as an important content.

  4. Wind: new wind markets

    International Nuclear Information System (INIS)

    Cameron, A.

    2005-01-01

    The June 2005 edition of 'Wind Force 12' suggests that wind could generate 12% of global electricity requirements by 2020. But what moves a potential market into an emerging one? Geographical factors include a good wind resource, plenty of open space and the ability to get the generated electricity to end-users. A country's political framework is equally important, with fixed price systems, renewable quota systems and political will all playing a part. Some potential wind markets around the world are thought to have the conditions necessary to become key players in the wind industry. The emerging markets in countries such as Australia, Brazil, Canada, France, Japan and the Philippines are highlighted as examples

  5. 基于太阳能光伏光热组件的双热源热泵机组的实验研究%Experimental Research of Dual-source Heat Pump Unit Based on Solar Photovoltaic and Photothermal Component

    Institute of Scientific and Technical Information of China (English)

    陈剑波; 孙坤; 聂琳杰; 陈雷田

    2015-01-01

    本文基于太阳能光伏光热一体化系统,设计出应用太阳能光伏光热及空气源的双热源热泵机组。使热泵与太阳能光伏光热组件结合组成太阳能热泵系统,利用太阳能光伏光热组件( PV/T)内循环水及空气源的能量制取生活热水,同时降低太阳能光伏光热组件内循环水的温度,从而降低太阳能光伏板的温度。通过实验测得机组在水冷蒸发侧进水温度20℃,热水出水温度50℃的额定工况下,制冷量为2.855 kW,制热量为3.594 kW,COP为3.6。机组在水-水工况及水-风工况下运行的节能性研究结果表明,相对于单一空气源热泵,双热源热泵机组在满足家庭用生活热水需求的前提下,利用热泵技术回收太阳能光伏光热的热量制取生活热水节能性显著。%Based on the solar photovoltaic-thermal integrated system, we designed a dual-source, i. e. , solar photovoltaic-thermal and air source, heat pump unit. The unit becomes solar assisted heat pump system when combined with solar photovoltaic thermal unit, which produces domestic hot water by air source and circulating water in the solar photovoltaic solar-thermal components ( PV/T) and reduces circulating water temperature and solar photovoltaic panel temperature. We drew the conclusion by experiment that when the inflow water temperature is 20 ℃ on the evaporation side and the outflow hot water temperature is 50 ℃ under the rated conditions, the unit capacity is 2. 855 kW for refrigeration and 3. 594 kW for heating, and the COP is 3. 6. When the unit operates in the water-water condition and wa-ter-air condition, the experiment result shows the dual-source heat pump unit has remarkable energy-saving compared with single air source heat pump when the photovoltaic-thermal solar heat is used for domestic hot water.

  6. The low-energy geothermics

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    Low-energy geothermal resources are characterized by temperatures ranging from 30 to 100 C. The principal worldwide applications are: towns and greenhouses heating, spa bathing, agriculture products drying, etc.. Sources depth ranges from 1500 to 2500 m in porous and permeable formations (sandstones, sands, conglomerates, limestones..) carrying aquifers. The worldwide installed power was of about 11500 MWth in 1990, with an annual production of about 36000 GWh (about 1% of worldwide energy consumption). The annual production rate is estimated to 10% and would represent a 30000 and 80000 MWth power in 2000 and 2010, respectively. In France, low-energy geothermal resources are encountered principally in Mesozoic sediments of the Parisian and Aquitanian basins. French geothermics has developed during the last 30 years and principally between 1980 and 1985 after the second petroleum crack. After 1985, the decay of fossil fuel costs and the development of corrosion problems in the geothermal wells have led to the abandonment of the less productive fields and to the study of technical solutions to solve the corrosion problems. (J.S.). 1 fig., 5 photos

  7. Experiments Demonstrate Geothermal Heating Process

    Science.gov (United States)

    Roman, Harry T.

    2012-01-01

    When engineers design heat-pump-based geothermal heating systems for homes and other buildings, they can use coil loops buried around the perimeter of the structure to gather low-grade heat from the earth. As an alternative approach, they can drill well casings and store the summer's heat deep in the earth, then bring it back in the winter to warm…

  8. Geothermal GW cogeneration system GEOCOGEN

    Energy Technology Data Exchange (ETDEWEB)

    Grob, Gustav R

    2010-09-15

    GEOCOGEN is the GW zero pollution, no risk solution to replace nuclear and fossil fuelled power plants. It can be built near the energy consumption centers, is invisible and produces electricity and heat at a fraction of the cost of any other the energy mix options. It is a break through deep well geothermal energy technology lasting forever driving also millions of electric vehicles.

  9. Environmental impacts of open loop geothermal system on groundwater

    Science.gov (United States)

    Kwon, Koo-Sang; Park, Youngyun; Yun, Sang Woong; Lee, Jin-Yong

    2013-04-01

    Application of renewable energies such as sunlight, wind, rain, tides, waves and geothermal heat has gradually increased to reduce emission of CO2 which is supplied from combustion of fossil fuel. The geothermal energy of various renewable energies has benefit to be used to cooling and heating systems and has good energy efficiency compared with other renewable energies. However, open loop system of geothermal heat pump system has possibility that various environmental problems are induced because the system directly uses groundwater to exchange heat. This study was performed to collect data from many documents such as papers and reports and to summarize environmental impacts for application of open loop system. The environmental impacts are classified into change of hydrogeological factors such as water temperature, redox condition, EC, change of microbial species, well contamination and depletion of groundwater. The change of hydrogeological factors can induce new geological processes such as dissolution and precipitation of some minerals. For examples, increase of water temperature can change pH and Eh. These variations can change saturation index of some minerals. Therefore, dissolution and precipitation of some minerals such as quartz and carbonate species and compounds including Fe and Mn can induce a collapse and a clogging of well. The well contamination and depletion of groundwater can reduce available groundwater resources. These environmental impacts will be different in each region because hydrogeological properties and scale, operation period and kind of the system. Therefore, appropriate responses will be considered for each environmental impact. Also, sufficient study will be conducted to reduce the environmental impacts and to improve geothermal energy efficiency during the period that a open loop system is operated. This work was supported by the Energy Efficiency and Resources of the Korea Institute of Energy Technology Evaluation and Planning

  10. Microbiological Monitoring in Geothermal Plants

    Science.gov (United States)

    Alawi, M.; Lerm, S.; Linder, R.; Vetter, A.; Vieth-Hillebrand, A.; Miethling-Graff, R.; Seibt, A.; Wolfgramm, M.; Wuerdemann, H.

    2010-12-01

    In the scope of the research projects “AquiScreen” and “MiProTherm” we investigated geothermally used groundwater systems under microbial, geochemical, mineralogical and petrological aspects. On one side an enhanced process understanding of engineered geothermal systems is mandatory to optimize plant reliability and economy, on the other side this study provides insights into the microbiology of terrestrial thermal systems. Geothermal systems located in the North German Basin and the Molasse Basin were analyzed by sampling of fluids and solid phases. The investigated sites were characterized by different temperatures, salinities and potential microbial substrates. The microbial population was monitored by the use of genetic fingerprinting techniques and PCR-cloning based on PCR-amplified 16S rRNA and dissimilatory sulfite reductase (DSR) genes. DNA-sequences of fingerprints and cloned PCR-products were compared to public databases and correlated with metabolic classes to provide information about the biogeochemical processes. In all investigated geothermal plants, covering a temperature range from 5° to 120°C, microorganisms were found. Phylogenetic gene analyses indicate a broad diversity of microorganisms adapted to the specific conditions in the engineered system. Beside characterized bacteria like Thermus scotoductus, Siderooxidans lithoautotrophicus and the archaeon Methanothermobacter thermoautotrophicus a high number of so far uncultivated microorganisms was detected. As it is known that - in addition to abiotic factors - microbes like sulfate-reducing bacteria (SRB) are involved in the processes of corrosion and scaling in plant components, we identified SRB by specific analyses of DSR genes. The SRB detected are closely related to thermotolerant and thermophilic species of Desulfotomaculum, Thermodesulfovibrio, Desulfohalobium and Thermodesulfobacterium, respectively. Overall, the detection of microbes known to be involved in biocorrosion and the

  11. Proceedings of NEDO International Geothermal Symposium

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-11

    This is a proceedings of the NEDO International Geothermal Symposium held in Sendai in 1997. The worldwide geothermal energy power generation capacity exceeds 7000 MW. Geothermal energy is widely used also for heating, snow melting, greenhouse cultivation as well as electric power generation. Geothermal energy generates far less CO2 causing the global warming than fossil fuels. The geothermal energy is clean and renewable. Considering the environmental issue and energy supply/demand of the world, we have to exert further efforts for the geothermal development. In this conference, discussions were made on each country`s experiences of the geothermal development, and future prediction and strategies for geothermal utilization in the Asia/Pacific region, in particular. Further, in the technical session, conducted were the IEA study and technical presentation/discussion for technical cooperation. The proceedings includes research reports of more than 30, which are clarified into three fields: impacts of the geothermal development on the environment, technical development of the hot dry rock power generation system, and development of technology for collecting deep-seated geothermal resource

  12. National Geothermal Data System (NGDS) Geothermal Data: Community Requirements and Information Engineering

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Arlene [United States Department of Energy; Blackwell, David [Southern Methodist University; Chickering, Cathy [Southern Methodist University; Boyd, Toni [Oregon Institute of Technology; Horne, Roland [Stanford University; MacKenzie, Matthew [Uberity Technology Corporation; Moore, Joseph [University of Utah; Nickull, Duane [Uberity Technology Corporation; Richard, Stephen [Arizona Geological survey; Shevenell, Lisa A. [University of Nevada, Reno

    2013-10-01

    To satisfy the critical need for geothermal data to advance geothermal energy as a viable renewable energy contender, the U.S. Department of Energy is investing in the development of the National Geothermal Data System (NGDS). This paper outlines efforts among geothermal data providers nationwide to supply cutting edge geo-informatics. NGDS geothermal data acquisition, delivery, and methodology are discussed. In particular, this paper addresses the various types of data required to effectively assess geothermal energy potential and why simple links to existing data are insufficient. To create a platform for ready access by all geothermal stakeholders, the NGDS includes a work plan that addresses data assets and resources of interest to users, a survey of data providers, data content models, and how data will be exchanged and promoted, as well as lessons learned within the geothermal community.

  13. IN SITU GEOTHERMAL ENERGY TECHNOLOGY: AN APPROACH FOR BUILDING CLEANER AND GREENER ENVIRONMENT

    Directory of Open Access Journals (Sweden)

    Md. Faruque Hossain

    2016-01-01

    Full Text Available Geothermal energy is abundant everywhere in the world. It certainly would be a great benefit for human being once it is produced by a sophisticated technology. Consequently, it would be the biggest console for earth considering environmental sustainability. Unfortunately, the current status of commercial production of geothermal energy primarily from hydrothermal, geopressured, hot dry rock, and magma are limited to a few countries due to technological difficulties and production cost. This paper describes a simple technology where an in situ geothermal plant assisted by a heat pump would act as a high-temperature production (>150°C to provide excellent capacity of energy generation. The issue related to costs is interestingly cheaper on production, comparing to other technologies, such as solar, hydro, wind, and traditional geothermal technology as described in this article. Therefore, it is suggested that heat pump assisted in situ geothermal energy sources has a great potentiality to be a prime energy source in near future. Since the technology has a number of positive characteristics (simple, safe, and provides continuous baseload, load following, or peaking capacity and benign environmental attributes (zero emissions of CO2, SOx, and NOx, it certainly would be an interesting technology in both developed, and developing countries as an attractive option to produce clean energy to confirm a better environment.

  14. Geothermal energy in Denmark. The Committee for Geothermal Energy of the Danish Energy Agency

    International Nuclear Information System (INIS)

    1998-06-01

    The Danish Energy Agency has prepared a report on the Danish geothermal resources and their contribution to the national energy potential.Environmental and socio-economic consequences of geothermal power systems implementation are reviewed. Organizational models and financing of geothermal-seismic research are discussed, and the Committee of the Energy Agency for Geothermal Energy recommends financing of a pilot plant as well as a prompt elucidation of concession/licensing problems. (EG)

  15. Geothermal training at the International Institute of Geothermal Research in Pisa, Italy

    International Nuclear Information System (INIS)

    Dickson, M.H.; Fanelli, M.

    1990-01-01

    Between 1985 and 1990 the International School of Geothermics of Pisa has held 5 long-term courses, attended by 93 trainees. This paper reports that since 1970, when it began its activity, the Italian geothermal training center has prepared a total of 293 goethermists from 64 countries. Under its present structure the International School of Geothermics organizes short courses and seminars, along with the long-term courses directed mainly at geothermal exploration

  16. Direct utilization of geothermal energy

    International Nuclear Information System (INIS)

    Lund, J. W.

    2010-01-01

    The worldwide application of geothermal energy for direct utilization is reviewed. This paper is based on the world update for direct-use presented at the World Geothermal Congress 2010 in Bali, Indonesia (WGC2010) which also includes material presented at three world geothermal congresses in Italy, Japan and Turkey (WGC95, WGC2000 and WGC2005). This report is based on country update papers prepared for WGC2010 and data from other sources. Final update papers were received from 70 countries of which 66 reported some direct utilization of geothermal energy for WGC2010. Twelve additional countries were added to the list based on other sources of information. The 78 countries having direct utilization of geothermal energy, is a significant increase from the 72 reported in 2005, the 58 reported in 2000, and the 28 reported in 1995. An estimate of the installed thermal power for direct utilization at the end of 2009, reported from WGC2010 is 48,493 MW th , almost a 72 % increased over the 2005 data, growing at a compound rate of 11.4% annually with a capacity factor of 0.28. The thermal energy used is 423,830 TJ/year (117,740 GWh/yr), about a 55% increase over 2005, growing at a compound rate of 9.2% annually. The distribution of thermal energy used by category is approximately 47.2% for ground-source heat pumps, 25.8% for bathing and swimming (including balneology), 14.9% for space heating (of which 85% is for district heating), 5.5% for greenhouses and open ground heating, 2.8% for industrial process heating, 2.7% for aquaculture pond and raceway heating, 0.4% for agricultural drying, 0.5% for snow melting and cooling, and 0.2% for other uses. Energy savings amounted to 250 million barrels (38 million tonnes) of equivalent oil annually, preventing 33 million tonnes of carbon and 107 million tonnes of CO 2 being released to the atmosphere which includes savings in geothermal heat pump cooling (compared to using fuel oil to generate electricity). (author)

  17. Direct Utilization of Geothermal Energy

    Directory of Open Access Journals (Sweden)

    John W. Lund

    2010-08-01

    Full Text Available The worldwide application of geothermal energy for direct utilization is reviewed. This paper is based on the world update for direct-use presented at the World Geothermal Congress 2010 in Bali, Indonesia (WGC2010 [1] which also includes material presented at three world geothermal congresses in Italy, Japan and Turkey (WGC95, WGC2000 and WGC2005. This report is based on country update papers prepared for WGC2010 and data from other sources. Final update papers were received from 70 countries of which 66 reported some direct utilization of geothermal energy for WGC2010. Twelve additional countries were added to the list based on other sources of information. The 78 countries having direct utilization of geothermal energy, is a significant increase from the 72 reported in 2005, the 58 reported in 2000, and the 28 reported in 1995. An estimate of the installed thermal power for direct utilization at the end of 2009, reported from WGC2010 is 48,493 MWt, almost a 72 % increased over the 2005 data, growing at a compound rate of 11.4% annually with a capacity factor of 0.28. The thermal energy used is 423,830 TJ/year (117,740 GWh/yr, about a 55% increase over 2005, growing at a compound rate of 9.2% annually. The distribution of thermal energy used by category is approximately 47.2% for ground-source heat pumps, 25.8% for bathing and swimming (including balneology, 14.9% for space heating (of which 85% is for district heating, 5.5% for greenhouses and open ground heating, 2.8% for industrial process heating, 2.7% for aquaculture pond and raceway heating, 0.4% for agricultural drying, 0.5% for snow melting and cooling, and 0.2% for other uses. Energy savings amounted to 250 million barrels (38 million tonnes of equivalent oil annually, preventing 33 million tonnes of carbon and 107 million tonnes of CO2 being release to the atmosphere which includes savings in geothermal heat pump cooling (compared to using fuel oil to generate electricity.

  18. The National Geothermal Energy Research Program

    Science.gov (United States)

    Green, R. J.

    1974-01-01

    The continuous demand for energy and the concern for shortages of conventional energy resources have spurred the nation to consider alternate energy resources, such as geothermal. Although significant growth in the one natural steam field located in the United States has occurred, a major effort is now needed if geothermal energy, in its several forms, is to contribute to the nation's energy supplies. From the early informal efforts of an Interagency Panel for Geothermal Energy Research, a 5-year Federal program has evolved whose objective is the rapid development of a commercial industry for the utilization of geothermal resources for electric power production and other products. The Federal program seeks to evaluate the realistic potential of geothermal energy, to support the necessary research and technology needed to demonstrate the economic and environmental feasibility of the several types of geothermal resources, and to address the legal and institutional problems concerned in the stimulation and regulation of this new industry.

  19. Non-electrical uses of geothermal energy

    Energy Technology Data Exchange (ETDEWEB)

    Barber E.; Fanelli, M.

    1977-01-01

    A comprehensive review covers the recognition of natural hot fluids in ancient times and their use for therapeutic baths; the first production of electricity from geothermal steam at Larderello, Italy, in 1904; the widespread geographical occurrence of geothermal fluids; exploration techniques; the extraction of geothermal fluids and their uses in spas, agriculture, aquaculture, domestic heating, and industrial applications; geothermal greenhouse heating world-wide; geothermal heating of animal and poultry houses, in culture of alligators and crocodiles (in Atagawa, Japan), and in fish culture; piping arrangements for district heating, and a tabulation of district heating installations world-wide; downhole exchanger systems used in Klamath Falls, Oregon, for domestic heating; industrial heating applications; and methods of disposal of geothermal fluids. Maps, diagrams, graphs, photographs, tables, and 48 references are included.

  20. Geothermal development and policy in the Philippines

    International Nuclear Information System (INIS)

    Datuin, R.; Roxas, F.

    1990-01-01

    The Philippines is the second largest geothermal energy producer in the world although its geothermal energy potential has barely been utilized. Out of an estimated total reserves of 8,000 MW, only about 11 percent or 894 MW are currently on stream for power generation. The electricity production from geothermal steam registered a growth of 8.9 percent from 1988 to 1989, one of the highest among local energy sources. During that same period, geothermal energy rated the highest capacity utilization of 67 percent compared to the average system capacity utilization of 43 percent. This paper describes both the use of geothermal energy and government policies concerning geothermal energy in the Philippines

  1. White butterflies as solar photovoltaic concentrators

    Science.gov (United States)

    Shanks, Katie; Senthilarasu, S.; Ffrench-Constant, Richard H.; Mallick, Tapas K.

    2015-07-01

    Man’s harvesting of photovoltaic energy requires the deployment of extensive arrays of solar panels. To improve both the gathering of thermal and photovoltaic energy from the sun we have examined the concept of biomimicry in white butterflies of the family Pieridae. We tested the hypothesis that the V-shaped posture of basking white butterflies mimics the V-trough concentrator which is designed to increase solar input to photovoltaic cells. These solar concentrators improve harvesting efficiency but are both heavy and bulky, severely limiting their deployment. Here, we show that the attachment of butterfly wings to a solar cell increases its output power by 42.3%, proving that the wings are indeed highly reflective. Importantly, and relative to current concentrators, the wings improve the power to weight ratio of the overall structure 17-fold, vastly expanding their potential application. Moreover, a single mono-layer of scale cells removed from the butterflies’ wings maintained this high reflectivity showing that a single layer of scale cell-like structures can also form a useful coating. As predicted, the wings increased the temperature of the butterflies’ thorax dramatically, showing that the V-shaped basking posture of white butterflies has indeed evolved to increase the temperature of their flight muscles prior to take-off.

  2. Electricity demand savings from distributed solar photovoltaics

    International Nuclear Information System (INIS)

    Glassmire, John; Komor, Paul; Lilienthal, Peter

    2012-01-01

    Due largely to recent dramatic cost reductions, photovoltaics (PVs) are poised to make a significant contribution to electricity supply. In particular, distributed applications of PV on rooftops, brownfields, and other similar applications – hold great technical potential. In order for this potential to be realized, however, PV must be “cost-effective”—that is, it must be sufficiently financially appealing to attract large amounts of investment capital. Electricity costs for most commercial and industrial end-users come in two forms: consumption (kWh) and demand (kW). Although rates vary, for a typical larger commercial or industrial user, demand charges account for about ∼40% of total electricity costs. This paper uses a case study of PV on a large university campus to reveal that even very large PV installations will often provide very small demand reductions. As a result, it will be very difficult for PV to demonstrate cost-effectiveness for large commercial customers, even if PV costs continue to drop. If policymakers would like PV to play a significant role in electricity generation – for economic development, carbon reduction, or other reasons – then rate structures will need significant adjustment, or improved distributed storage technologies will be needed. - Highlights: ► Demand charges typically account for ∼40% of total electricity costs for larger electricity users. ► Distributed photovoltaic (PV) systems provide minimal demand charge reductions. ► As a result, PVs are not a financially viable alternative to centralized electricity. ► Electricity rate structures will need changes for PV to be a major electricity source.

  3. Application and design of solar photovoltaic system

    International Nuclear Information System (INIS)

    Li Tianze; Lu Hengwei; Jiang Chuan; Hou Luan; Zhang Xia

    2011-01-01

    Solar modules, power electronic equipments which include the charge-discharge controller, the inverter, the test instrumentation and the computer monitoring, and the storage battery or the other energy storage and auxiliary generating plant make up of the photovoltaic system which is shown in the thesis. PV system design should follow to meet the load supply requirements, make system low cost, seriously consider the design of software and hardware, and make general software design prior to hardware design in the paper. To take the design of PV system for an example, the paper gives the analysis of the design of system software and system hardware, economic benefit, and basic ideas and steps of the installation and the connection of the system. It elaborates on the information acquisition, the software and hardware design of the system, the evaluation and optimization of the system. Finally, it shows the analysis and prospect of the application of photovoltaic technology in outer space, solar lamps, freeways and communications.

  4. Recent advances in solar photovoltaic technology

    International Nuclear Information System (INIS)

    Yoshihiro Hamakawa

    2000-01-01

    The current state of the art in recent progress of Japanese photovoltaic activities are overviewed. Firstly, a new strategy for the renewable energy promotion so called Fundamental Principle to promote New Energy Developments and Utilization, and its action planning for PV technology up to year of 2010 are introduced. The program structure and some tangible actions such as tax reduction for investment in the renewable energy plants, government financial support of 2/3 subsidy of PV system developments for public facilities namely as PV Field Test Experiments, and a 1/2 subsidy for the private solar house as PV House Monitor Plan are presented. Secondly, some new topics in the field of solar cell production technology in Japan and also statistics of the solar cell module productions for three kinds of silicon basis solar cells are summarized. Progress of the conversion efficiency in various types of solar cells are also surveyed. In the final part of paper possible new roles to contribute to the global environmental issues by the PV system developments are proposed. (Author)

  5. White butterflies as solar photovoltaic concentrators.

    Science.gov (United States)

    Shanks, Katie; Senthilarasu, S; Ffrench-Constant, Richard H; Mallick, Tapas K

    2015-07-31

    Man's harvesting of photovoltaic energy requires the deployment of extensive arrays of solar panels. To improve both the gathering of thermal and photovoltaic energy from the sun we have examined the concept of biomimicry in white butterflies of the family Pieridae. We tested the hypothesis that the V-shaped posture of basking white butterflies mimics the V-trough concentrator which is designed to increase solar input to photovoltaic cells. These solar concentrators improve harvesting efficiency but are both heavy and bulky, severely limiting their deployment. Here, we show that the attachment of butterfly wings to a solar cell increases its output power by 42.3%, proving that the wings are indeed highly reflective. Importantly, and relative to current concentrators, the wings improve the power to weight ratio of the overall structure 17-fold, vastly expanding their potential application. Moreover, a single mono-layer of scale cells removed from the butterflies' wings maintained this high reflectivity showing that a single layer of scale cell-like structures can also form a useful coating. As predicted, the wings increased the temperature of the butterflies' thorax dramatically, showing that the V-shaped basking posture of white butterflies has indeed evolved to increase the temperature of their flight muscles prior to take-off.

  6. Solar Photovoltaic Financing: Residential Sector Deployment

    Energy Technology Data Exchange (ETDEWEB)

    Coughlin, J.; Cory, K.

    2009-03-01

    This report presents the information that homeowners and policy makers need to facilitate PV financing at the residential level. The full range of cash payments, bill savings, and tax incentives is covered, as well as potentially available solar attribute payments. Traditional financing is also compared to innovative solutions, many of which are borrowed from the commercial sector. Together, these mechanisms are critical for making the economic case for a residential PV installation, given its high upfront costs. Unfortunately, these programs are presently limited to select locations around the country. By calling attention to these innovative initiatives, this report aims to help policy makers consider greater adoption of these models to benefit homeowners interested installing a residential PV system.

  7. Field trial of rural solar photovoltaic system

    Science.gov (United States)

    Basu, P.; Mukhopadhyay, K.; Banerjee, T.; Das, S.; Saha, H.

    Experience, costs, and performance of photovoltaic (PV) systems set up in a remote Indian village to power an adult literacy center and an irrigation pump are described. The center was furnished with a 14-module, 200 W array to power a television and three fluorescent lamps. The pumping installation has 20 modules for a 300 W output directly coupled to a 300-W dc pump motor. Data were gathered on the open circuit voltage, short circuit current, specific gravity of the battery fluid, degradation of the cells, nominal operating temperature of the cells, load currents, Amp-hours, water flow rate (pump), and the static head and draw down rate (pump). Monitoring of the array performances in the dusty environment showed that once/week cleaning is necessary. Al-substrates cracked at the center installation and sealant evaporation caused condensation which degraded the light transmissivity and thereby the short-circuit current of the modules. The combination of low-efficiency (5 pct) cells and cheap labor demonstrated economic operation without high-efficiency cells.

  8. Geothermal energy for Hawaii: a prospectus

    Energy Technology Data Exchange (ETDEWEB)

    Yen, W.W.S.; Iacofano, D.S.

    1981-01-01

    An overview of geothermal development is provided for contributors and participants in the process: developers, the financial community, consultants, government officials, and the people of Hawaii. Geothermal energy is described along with the issues, programs, and initiatives examined to date. Hawaii's future options are explored. Included in appendices are: a technical glossary, legislation and regulations, a geothermal directory, and an annotated bibliography. (MHR)

  9. Geothermal energy in Italy and abroad

    International Nuclear Information System (INIS)

    Caputo di Calvisi, C.

    2001-01-01

    Geothermal systems and fields are analysed giving particular evidence to the value of the geothermal source as an important natural source of energy. The paper analyses hydrothermal systems and describes the international experimental studies on the use of geothermal reservoirs in hot rocks with geopressured and magmatic systems. Experts are optimistic as far as the use of this innovative source of energy is possible in the medium-short term [it

  10. Overview of geothermal activities in Tunisia

    International Nuclear Information System (INIS)

    Ben Dhia, H.

    1990-01-01

    For Tunisia, the oil crisis and the decrease in local energy resources gave impetus to geothermal energy for potential assessment, exploration and utilization. Research undertaken showed a country with real potentialities either by its important deep aquifers or by the relatively high values of geothermal gradient and heat flow. This paper reports that it is expected that these efforts of geothermal investigation will continue in the future

  11. Where is Argentina going in geothermal energy

    Energy Technology Data Exchange (ETDEWEB)

    Mange, J

    1977-01-01

    A brief review is given of geothermal exploration and development in Argentina. Methodical efforts to inventory the geothermal resources of the country were begun in 1974. The Commission set itself the task of locating the geothermal anomalies and then selecting particular anomalies for intensive exploration in order to confirm or discard the possibilities of exploiting the resource. The known principal anomalies are listed and the two selected for intensive exploration are indicated. (JSR)

  12. Study deep geothermal energy; Studie dypgeotermisk energi

    Energy Technology Data Exchange (ETDEWEB)

    Havellen, Vidar; Eri, Lars Sigurd; Andersen, Andreas; Tuttle, Kevin J.; Ruden, Dorottya Bartucz; Ruden, Fridtjof; Rigler, Balazs; Pascal, Christophe; Larsen, Bjoern Tore

    2012-07-01

    The study aims to analyze the potential energy with current technology, challenges, issues and opportunities for deep geothermal energy using quantitative analysis. It should especially be made to identify and investigate critical connections between geothermal potential, the size of the heating requirements and technical solutions. Examples of critical relationships may be acceptable cost of technology in relation to heating, local geothermal gradient / drilling depth / temperature levels and profitability. (eb)

  13. 1978 annual report, INEL geothermal environmental program

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, S.G.; Sullivan, J.F.; Stanley, N.E.

    1979-04-01

    The objective of the Raft River Geothermal Environmental Program, in its fifth year, is to characterize the beneficial and detrimental impacts resulting from the development of moderate-temperature geothermal resources in the valley. This report summarizes the monitoring and research efforts conducted as part of this program in 1978. The results of these monitoring programs will be used to determine the mitigation efforts required to reduce long-term impacts resulting from geothermal development.

  14. An Economic Evaluation of Binary Cycle Geothermal Electricity Production

    National Research Council Canada - National Science Library

    Fitzgerald, Crissie

    2003-01-01

    .... Variables such as well flow rate, geothermal gradient and electricity prices were varied to study their influence on the economic payback period for binary cycle geothermal electricity production...

  15. Geothermal well log interpretation midterm report

    Energy Technology Data Exchange (ETDEWEB)

    Sanyal, S.K.; Wells, L.E.; Bickham, R.E.

    1979-02-01

    Reservoir types are defined according to fluid phase and temperature, lithology, geologic province, pore geometry, and salinity and fluid chemistry. Improvements are needed in lithology and porosity definition, fracture detection, and thermal evaluation for more accurate interpretation. Further efforts are directed toward improving diagnostic techniques for relating rock characteristics and log response, developing petrophysical models for geothermal systems, and developing thermal evaluation techniques. The Geothermal Well Log Interpretation study and report has concentrated only on hydrothermal geothermal reservoirs. Other geothermal reservoirs (hot dry rock, geopressured, etc.) are not considered.

  16. Geothermal progress monitor. Progress report No. 1

    Energy Technology Data Exchange (ETDEWEB)

    1979-12-01

    Progress is reported on the following: electrical uses, direct-heat uses, drilling activities, leases, geothermal loan guarantee program, general activities, and legal, institutional, and regulatory activites. (MHR)

  17. Washington: a guide to geothermal energy development

    Energy Technology Data Exchange (ETDEWEB)

    Bloomquist, R.G.; Basescu, N.; Higbee, C.; Justus, D.; Simpson, S.

    1980-06-01

    Washington's geothermal potential is discussed. The following topics are covered: exploration, drilling, utilization, legal and institutional setting, and economic factors of direct use projects. (MHR)

  18. Uncertainty analysis of geothermal energy economics

    Science.gov (United States)

    Sener, Adil Caner

    This dissertation research endeavors to explore geothermal energy economics by assessing and quantifying the uncertainties associated with the nature of geothermal energy and energy investments overall. The study introduces a stochastic geothermal cost model and a valuation approach for different geothermal power plant development scenarios. The Monte Carlo simulation technique is employed to obtain probability distributions of geothermal energy development costs and project net present values. In the study a stochastic cost model with incorporated dependence structure is defined and compared with the model where random variables are modeled as independent inputs. One of the goals of the study is to attempt to shed light on the long-standing modeling problem of dependence modeling between random input variables. The dependence between random input variables will be modeled by employing the method of copulas. The study focuses on four main types of geothermal power generation technologies and introduces a stochastic levelized cost model for each technology. Moreover, we also compare the levelized costs of natural gas combined cycle and coal-fired power plants with geothermal power plants. The input data used in the model relies on the cost data recently reported by government agencies and non-profit organizations, such as the Department of Energy, National Laboratories, California Energy Commission and Geothermal Energy Association. The second part of the study introduces the stochastic discounted cash flow valuation model for the geothermal technologies analyzed in the first phase. In this phase of the study, the Integrated Planning Model (IPM) software was used to forecast the revenue streams of geothermal assets under different price and regulation scenarios. These results are then combined to create a stochastic revenue forecast of the power plants. The uncertainties in gas prices and environmental regulations will be modeled and their potential impacts will be

  19. Geothermal energy, what technologies for what purposes?

    International Nuclear Information System (INIS)

    2008-01-01

    This book, fully illustrated and rich of concrete examples, takes stock of the different technologies implemented today to use the Earth's heat: geothermal heat pumps for domestic, tertiary and collective residential uses, geothermal district heating networks and geothermal power plants for power generation. This overview is completed by a description of the future perspectives offered by this renewable energy source in the World and in France in terms of energy independence and technological innovation: geo-cooling, hybrid systems, absorption heat pumps or stimulated geothermal systems. (J.S.)

  20. High- and middle-energy geothermics

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    High and middle energy geothermal resources correspond to temperature intervals of 220-350 C and 90-180 C, respectively, and are both exploited for electricity production. Exploitation techniques and applications of high and of middle energy geothermics are different. High energy geothermics is encountered in active volcanic and tectonic zones, such as the circum-Pacific fire-belt, the lesser Antilles, the peri-Mediterranean Alpine chain or the African rift zone. The geothermal steam is directly expanded in a turbine protected against gas and minerals corrosion. About 350 high energy plants are distributed in more than 20 different countries and represent 6000 M We. The cost of high energy installed geothermal kWh ranges from 0.20 to 0.50 French Francs. Middle energy geothermics is encountered in sedimentary basins (between 2000 and 4000 m of depth), in localized fractured zones or at lower depth in the high energy geothermal fields. Heat exchangers with organic fluid Rankine cycle technology is used to produce electricity. Unit power of middle energy plants generally ranges from few hundreds of k W to few MW and correspond to a worldwide installed power of about 400 M We. The annual progression of geothermal installed power is estimated to 4 to 8 % in the next years and concerns principally the circum-Pacific countries. In France, geothermal resources are mainly localized in overseas departments. (J.S.). 3 photos