WorldWideScience

Sample records for wind solar physics

  1. A Comparison between Physics-based and Polytropic MHD Models for Stellar Coronae and Stellar Winds of Solar Analogs

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, O. [Lowell Center for Space Science and Technology, University of Massachusetts, Lowell, MA 01854 (United States)

    2017-02-01

    The development of the Zeeman–Doppler Imaging (ZDI) technique has provided synoptic observations of surface magnetic fields of low-mass stars. This led the stellar astrophysics community to adopt modeling techniques that have been used in solar physics using solar magnetograms. However, many of these techniques have been neglected by the solar community due to their failure to reproduce solar observations. Nevertheless, some of these techniques are still used to simulate the coronae and winds of solar analogs. Here we present a comparative study between two MHD models for the solar corona and solar wind. The first type of model is a polytropic wind model, and the second is the physics-based AWSOM model. We show that while the AWSOM model consistently reproduces many solar observations, the polytropic model fails to reproduce many of them, and in the cases where it does, its solutions are unphysical. Our recommendation is that polytropic models, which are used to estimate mass-loss rates and other parameters of solar analogs, must first be calibrated with solar observations. Alternatively, these models can be calibrated with models that capture more detailed physics of the solar corona (such as the AWSOM model) and that can reproduce solar observations in a consistent manner. Without such a calibration, the results of the polytropic models cannot be validated, but they can be wrongly used by others.

  2. Use of Solar and Wind as a Physical Hedge against Price Variability within a Generation Portfolio

    Energy Technology Data Exchange (ETDEWEB)

    Jenkin, T.; Diakov, V.; Drury, E.; Bush, B.; Denholm, P.; Milford, J.; Arent, D.; Margolis, R.; Byrne, R.

    2013-08-01

    This study provides a framework to explore the potential use and incremental value of small- to large-scale penetration of solar and wind technologies as a physical hedge against the risk and uncertainty of electricity cost on multi-year to multi-decade timescales. Earlier studies characterizing the impacts of adding renewable energy (RE) to portfolios of electricity generators often used a levelized cost of energy or simplified net cash flow approach. In this study, we expand on previous work by demonstrating the use of an 8760 hourly production cost model (PLEXOS) to analyze the incremental impact of solar and wind penetration under a wide range of penetration scenarios for a region in the Western U.S. We do not attempt to 'optimize' the portfolio in any of these cases. Rather we consider different RE penetration scenarios, that might for example result from the implementation of a Renewable Portfolio Standard (RPS) to explore the dynamics, risk mitigation characteristics and incremental value that RE might add to the system. We also compare the use of RE to alternative mechanisms, such as the use of financial or physical supply contracts to mitigate risk and uncertainty, including consideration of their effectiveness and availability over a variety of timeframes.

  3. Towards more accurate wind and solar power prediction by improving NWP model physics

    Science.gov (United States)

    Steiner, Andrea; Köhler, Carmen; von Schumann, Jonas; Ritter, Bodo

    2014-05-01

    The growing importance and successive expansion of renewable energies raise new challenges for decision makers, economists, transmission system operators, scientists and many more. In this interdisciplinary field, the role of Numerical Weather Prediction (NWP) is to reduce the errors and provide an a priori estimate of remaining uncertainties associated with the large share of weather-dependent power sources. For this purpose it is essential to optimize NWP model forecasts with respect to those prognostic variables which are relevant for wind and solar power plants. An improved weather forecast serves as the basis for a sophisticated power forecasts. Consequently, a well-timed energy trading on the stock market, and electrical grid stability can be maintained. The German Weather Service (DWD) currently is involved with two projects concerning research in the field of renewable energy, namely ORKA*) and EWeLiNE**). Whereas the latter is in collaboration with the Fraunhofer Institute (IWES), the project ORKA is led by energy & meteo systems (emsys). Both cooperate with German transmission system operators. The goal of the projects is to improve wind and photovoltaic (PV) power forecasts by combining optimized NWP and enhanced power forecast models. In this context, the German Weather Service aims to improve its model system, including the ensemble forecasting system, by working on data assimilation, model physics and statistical post processing. This presentation is focused on the identification of critical weather situations and the associated errors in the German regional NWP model COSMO-DE. First steps leading to improved physical parameterization schemes within the NWP-model are presented. Wind mast measurements reaching up to 200 m height above ground are used for the estimation of the (NWP) wind forecast error at heights relevant for wind energy plants. One particular problem is the daily cycle in wind speed. The transition from stable stratification during

  4. Physics-based Tests to Identify the Accuracy of Solar Wind Ion Measurements: A Case Study with the Wind Faraday Cups

    Science.gov (United States)

    Kasper, J. C.; Lazarus, A. J.; Steinberg, J. T.; Ogilvie, K. W.; Szabo, A.

    2006-01-01

    We present techniques for comparing measurements of velocity, temperature, and density with constraints imposed by the plasma physics of magnetized bi-Maxwellian ions. Deviations from these physics-based constraints are interpreted as arising from measurement errors. Two million ion spectra from the Solar Wind Experiment Faraday Cup instruments on the Wind spacecraft are used as a case study. The accuracy of velocity measurements is determined by the fact that differential flow between hydrogen and helium should be aligned with the ambient magnetic field. Modeling the breakdown of field alignment suggests velocity uncertainties are less than 0.16% in magnitude and 3deg in direction. Temperature uncertainty is found by examining the distribution of observed temperature anisotropies in high-beta solar wind intervals where the firehose, mirror, and cyclotron microinstabilities should drive the distribution to isotropy. The presence of a finite anisotropy at high beta suggests overall temperature uncertainties of 8%. Hydrogen and helium number densities are compared with the electron density inferred from observations of the local electron plasma frequency as a function of solar wind speed and year. We find that after accounting for the contribution of minor ions, the results are consistent with a systematic offset between the two instruments of 34%. The temperature and density methods are sensitive to non-Maxwellian features such as heat flux and proton beams and as a result are more suited to slow solar wind where these features are rare. These procedures are of general use in identifying the accuracy of observations from any solar wind ion instrument.

  5. The SOHO project - Coronal and solar wind investigations

    Science.gov (United States)

    Poland, A. I.; Domingo, V.

    1988-01-01

    The Solar and Heliospheric Observatory (SOHO) satellite mission is planned to study the solar interior, to investigate the physical phenomena related to the formation of the solar corona and the solar wind, and to make in situ measurements of the solar wind. The SOHO instruments designed to study the solar atmosphere and the solar wind are described. The experiments include the study of solar UV radiation, a coronal diagnostic spectrometer, an extreme UV imaging telescope, a UV coronagraph spectrometer, a white light and spectrometric coronagraph, and a study of solar wind anisotropies.

  6. Solar wind stagnation near comets

    International Nuclear Information System (INIS)

    Galeev, A.A.; Cravens, T.E.; Gombosi, T.I.

    1983-03-01

    The nature of the solar wind flow near comets is examined analytically. In particular, the typical values for the stagnation pressure and magnetic barrier strength are estimated, taking into account the magnetic field line tension and the charge exchange cooling of the mass loaded solar wind. Knowledge of the strength of the magnetic barrier is required in order to determine the location of the contact discontinuity which separates the contaminated solar wind plasma and the outflowing plasma of the cometary ionosphere. (author)

  7. Solar wind stream interfaces

    International Nuclear Information System (INIS)

    Gosling, J.T.; Asbridge, J.R.; Bame, S.J.; Feldman, W.C.

    1978-01-01

    Measurements aboard Imp 6, 7, and 8 reveal that approximately one third of all high-speed solar wind streams observed at 1 AU contain a sharp boundary (of thickness less than approx.4 x 10 4 km) near their leading edge, called a stream interface, which separates plasma of distinctly different properties and origins. Identified as discontinuities across which the density drops abruptly, the proton temperature increases abruptly, and the speed rises, stream interfaces are remarkably similar in character from one stream to the next. A superposed epoch analysis of plasma data has been performed for 23 discontinuous stream interfaces observed during the interval March 1971 through August 1974. Among the results of this analysis are the following: (1) a stream interface separates what was originally thick (i.e., dense) slow gas from what was originally thin (i.e., rare) fast gas; (2) the interface is the site of a discontinuous shear in the solar wind flow in a frame of reference corotating with the sun; (3) stream interfaces occur at speeds less than 450 km s - 1 and close to or at the maximum of the pressure ridge at the leading edges of high-speed streams; (4) a discontinuous rise by approx.40% in electron temperature occurs at the interface; and (5) discontinuous changes (usually rises) in alpha particle abundance and flow speed relative to the protons occur at the interface. Stream interfaces do not generally recur on successive solar rotations, even though the streams in which they are embedded often do. At distances beyond several astronomical units, stream interfaces should be bounded by forward-reverse shock pairs; three of four reverse shocks observed at 1 AU during 1971--1974 were preceded within approx.1 day by stream interfaces. Our observations suggest that many streams close to the sun are bounded on all sides by large radial velocity shears separating rapidly expanding plasma from more slowly expanding plasma

  8. The sun, the solar wind, and the heliosphere

    CERN Document Server

    Miralles, Mari Paz

    2011-01-01

    This volume presents a concise, up-to-date overview of current research on the observations, theoretical interpretations, and empirical and physical descriptions of the Sun, the Solar Wind, and the Heliosphere, from the solar interior outward to the planets.

  9. Wind in the Solar System

    Science.gov (United States)

    McIntosh, Gordon

    2010-01-01

    As an astronomy instructor I am always looking for commonly experienced Earthly phenomena to help my students and me understand and appreciate similar occurrences elsewhere in the solar system. Recently I wrote short "TPT" articles on frost and precipitation. The present article is on winds in the solar system. A windy day or storm might…

  10. Mirror Instability in the Turbulent Solar Wind

    Czech Academy of Sciences Publication Activity Database

    Hellinger, Petr; Landi, S.; Matteini, L.; Verdini, A.; Franci, L.

    2017-01-01

    Roč. 838, č. 2 (2017), č. článku 158. ISSN 0004-637X Institutional support: RVO:68378289 Keywords : instabilities * solar wind * turbulence * waves Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 5.533, year: 2016 http://iopscience.iop.org/article/10.3847/1538-4357/aa67e0

  11. Early solar physics

    CERN Document Server

    Meadows, A J

    1970-01-01

    Early Solar Physics reviews developments in solar physics, particularly the advent of solar spectroscopy and the discovery of relationships between the various layers of the solar atmosphere and between the different forms of solar activity. Topics covered include solar observations during 1843; chemical analysis of the solar atmosphere; the spectrum of a solar prominence; and the solar eclipse of December 12, 1871. Spectroscopic observations of the sun are also presented. This book is comprised of 30 chapters and begins with an overview of ideas about the sun in the mid-nineteenth century, fo

  12. The Solar Wind as a Turbulence Laboratory

    Directory of Open Access Journals (Sweden)

    Vincenzo Carbone

    2013-05-01

    Full Text Available In this review we will focus on a topic of fundamental importance for both astrophysics and plasma physics, namely the occurrence of large-amplitude low-frequency fluctuations of the fields that describe the plasma state. This subject will be treated within the context of the expanding solar wind and the most meaningful advances in this research field will be reported emphasizing the results obtained in the past decade or so. As a matter of fact, Helios inner heliosphere and Ulysses' high latitude observations, recent multi-spacecrafts measurements in the solar wind (Cluster four satellites and new numerical approaches to the problem, based on the dynamics of complex systems, brought new important insights which helped to better understand how turbulent fluctuations behave in the solar wind. In particular, numerical simulations within the realm of magnetohydrodynamic (MHD turbulence theory unraveled what kind of physical mechanisms are at the basis of turbulence generation and energy transfer across the spectral domain of the fluctuations. In other words, the advances reached in these past years in the investigation of solar wind turbulence now offer a rather complete picture of the phenomenological aspect of the problem to be tentatively presented in a rather organic way.

  13. Intermittency Statistics in the Expanding Solar Wind

    Science.gov (United States)

    Cuesta, M. E.; Parashar, T. N.; Matthaeus, W. H.

    2017-12-01

    The solar wind is observed to be turbulent. One of the open questions in solar wind research is how the turbulence evolves as the solar wind expands to great distances. Some studies have focused on evolution of the outer scale but not much has been done to understand how intermittency evolves in the expanding wind beyond 1 AU (see [1,2]). We use magnetic field data from Voyager I spacecraft from 1 to 10AU to study the evolution of statistics of magnetic discontinuities. We perform various statistical tests on these discontinuities and make connections to the physical processes occurring in the expanding wind.[1] Tsurutani, Bruce T., and Edward J. Smith. "Interplanetary discontinuities: Temporal variations and the radial gradient from 1 to 8.5 AU." Journal of Geophysical Research: Space Physics 84.A6 (1979): 2773-2787.[2] Greco, A., et al. "Evidence for nonlinear development of magnetohydrodynamic scale intermittency in the inner heliosphere." The Astrophysical Journal 749.2 (2012): 105.

  14. Solar wind stream evolution

    International Nuclear Information System (INIS)

    Gosling, J.T.

    1978-01-01

    Highlights of the recent progress in understanding the problem of high speed stream evolution with increasing heliocentric distance are reviewed. Crucial to this understanding are the measurements made in the inner solar system by Helios and the outer solar system by Pioneers 10 and 11. When coupled with observations at 1 AU these measurements allow a testing of current theoretical models of stream evolution. 21 references

  15. Verification of high-speed solar wind stream forecasts using operational solar wind models

    DEFF Research Database (Denmark)

    Reiss, Martin A.; Temmer, Manuela; Veronig, Astrid M.

    2016-01-01

    and the background solar wind conditions. We found that both solar wind models are capable of predicting the large-scale features of the observed solar wind speed (root-mean-square error, RMSE ≈100 km/s) but tend to either overestimate (ESWF) or underestimate (WSA) the number of high-speed solar wind streams (threat...

  16. Characteristics of Solar Wind Density Depletions During Solar Cycles 23 and 24

    Directory of Open Access Journals (Sweden)

    Keunchan Park

    2017-06-01

    Full Text Available Solar wind density depletions are phenomena that solar wind density is rapidly decreased and keep the state. They are generally believed to be caused by the interplanetary (IP shocks. However, there are other cases that are hardly associated with IP shocks. We set up a hypothesis for this phenomenon and analyze this study. We have collected the solar wind parameters such as density, speed and interplanetary magnetic field (IMF data related to the solar wind density depletion events during the period from 1996 to 2013 that are obtained with the advanced composition explorer (ACE and the Wind satellite. We also calculate two pressures (magnetic, dynamic and analyze the relation with density depletion. As a result, we found total 53 events and the most these phenomena’s sources caused by IP shock are interplanetary coronal mass ejection (ICME. We also found that solar wind density depletions are scarcely related with IP shock’s parameters. The solar wind density is correlated with solar wind dynamic pressure within density depletion. However, the solar wind density has an little anti-correlation with IMF strength during all events of solar wind density depletion, regardless of the presence of IP shocks. Additionally, In 47 events of IP shocks, we find 6 events that show a feature of blast wave. The quantities of IP shocks are weaker than blast wave from the Sun, they are declined in a short time after increasing rapidly. We thus argue that IMF strength or dynamic pressure are an important factor in understanding the nature of solar wind density depletion. Since IMF strength and solar wind speed varies with solar cycle, we will also investigate the characteristics of solar wind density depletion events in different phases of solar cycle as an additional clue to their physical nature.

  17. 77 FR 61597 - Avalon Wind, LLC; Avalon Wind 2, LLC; Catalina Solar, LLC; Catalina Solar 2, LLC; Pacific Wind...

    Science.gov (United States)

    2012-10-10

    ... Energy Regulatory Commission Avalon Wind, LLC; Avalon Wind 2, LLC; Catalina Solar, LLC; Catalina Solar 2, LLC; Pacific Wind Lessee, LLC; Pacific Wind 2, LLC; Valentine Solar, LLC; EDF Renewable Development, Inc.; Notice of Petition for Declaratory Order Take notice that on September 27, 2012, Avalon Wind...

  18. Alfvénic fluctuations in "newborn"' polar solar wind

    Directory of Open Access Journals (Sweden)

    B. Bavassano

    2005-06-01

    Full Text Available The 3-D structure of the solar wind is strongly dependent upon the Sun's activity cycle. At low solar activity a bimodal structure is dominant, with a fast and uniform flow at the high latitudes, and slow and variable flows at low latitudes. Around solar maximum, in sharp contrast, variable flows are observed at all latitudes. This last kind of pattern, however, is a relatively short-lived feature, and quite soon after solar maximum the polar wind tends to regain its role. The plasma parameter distributions for these newborn polar flows appear very similar to those typically observed in polar wind at low solar activity. The point addressed here is about polar wind fluctuations. As is well known, the low-solar-activity polar wind is characterized by a strong flow of Alfvénic fluctuations. Does this hold for the new polar flows too? An answer to this question is given here through a comparative statistical analysis on parameters such as total energy, cross helicity, and residual energy, that are of general use to describe the Alfvénic character of fluctuations. Our results indicate that the main features of the Alfvénic fluctuations observed in low-solar-activity polar wind have been quickly recovered in the new polar flows developed shortly after solar maximum. Keywords. Interplanetary physics (MHD waves and turbulence; Sources of the solar wind – Space plasma physics (Turbulence

  19. Turbulence in the solar wind

    CERN Document Server

    Bruno, Roberto

    2016-01-01

    This book provides an overview of solar wind turbulence from both the theoretical and observational perspective. It argues that the interplanetary medium offers the best opportunity to directly study turbulent fluctuations in collisionless plasmas. In fact, during expansion, the solar wind evolves towards a state characterized by large-amplitude fluctuations in all observed parameters, which resembles, at least at large scales, the well-known hydrodynamic turbulence. This text starts with historical references to past observations and experiments on turbulent flows. It then introduces the Navier-Stokes equations for a magnetized plasma whose low-frequency turbulence evolution is described within the framework of the MHD approximation. It also considers the scaling of plasma and magnetic field fluctuations and the study of nonlinear energy cascades within the same framework. It reports observations of turbulence in the ecliptic and at high latitude, treating Alfvénic and compressive fluctuations separately in...

  20. Solar Wind Variation with the Cycle

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... The average solar wind density, velocity and temperature measured at the Earth's orbit show specific decadal variations and trends, which are of the order of the first tens per cent during the last three solar cycles. Statistical, spectral and correlation characteristics of the solar wind are reviewed with the ...

  1. Distributed Wind Cost Reduction: Learning from Solar

    Energy Technology Data Exchange (ETDEWEB)

    Tegen, Suzanne

    2016-02-23

    The distributed wind energy industry can learn several lessons from the solar industry regarding reducing soft costs. Suzanne Tegen presented this overview at the 2016 Distributed Wind Energy Association Business Conference in Washington, D.C., on February 23, 2016.

  2. Astrospheres and Solar-like Stellar Winds

    Directory of Open Access Journals (Sweden)

    Wood Brian E.

    2004-07-01

    Full Text Available Stellar analogs for the solar wind have proven to be frustratingly difficult to detect directly. However, these stellar winds can be studied indirectly by observing the interaction regions carved out by the collisions between these winds and the interstellar medium (ISM. These interaction regions are called "astrospheres", analogous to the "heliosphere" surrounding the Sun. The heliosphere and astrospheres contain a population of hydrogen heated by charge exchange processes that can produce enough H I Ly alpha absorption to be detectable in UV spectra of nearby stars from the Hubble Space Telescope (HST. The amount of astrospheric absorption is a diagnostic for the strength of the stellar wind, so these observations have provided the first measurements of solar-like stellar winds. Results from these stellar wind studies and their implications for our understanding of the solar wind are reviewed here. Of particular interest are results concerning the past history of the solar wind and its impact on planetary atmospheres.

  3. Solar Wind Earth Exchange Project (SWEEP)

    Science.gov (United States)

    2016-10-28

    highly charged ions of the solar wind. The main challenge in predicting the resultant photon flux in the X-ray energy bands is due to the...Newton, an X-ray astronomical observatory. We use OMNI solar wind conditions, heavy ion composition data from ACE, the Hodges neutral hydrogen model...of SWEEP was to compare theoretical models of X-ray emission in the terrestrial magnetosphere caused by the Solar Wind Charge Exchange

  4. Generation of Kappa Distributions in Solar Wind at 1 au

    Science.gov (United States)

    Livadiotis, G.; Desai, M. I.; Wilson, L. B., III

    2018-02-01

    We examine the generation of kappa distributions in the solar wind plasma near 1 au. Several mechanisms are mentioned in the literature, each characterized by a specific relationship between the solar wind plasma features, the interplanetary magnetic field (IMF), and the kappa index—the parameter that governs the kappa distributions. This relationship serves as a signature condition that helps the identification of the mechanism in the plasma. In general, a mechanism that generates kappa distributions involves a single or a series of stochastic or physical processes that induces local correlations among particles. We identify three fundamental solar wind plasma conditions that can generate kappa distributions, noted as (i) Debye shielding, (ii) frozen IMF, and (iii) temperature fluctuations, each one prevailing in different scales of solar wind plasma and magnetic field properties. Moreover, our findings show that the kappa distributions, and thus, their generating mechanisms, vary significantly with solar wind features: (i) the kappa index has different dependence on the solar wind speed for slow and fast modes, i.e., slow wind is characterized by a quasi-constant kappa index, κ ≈ 4.3 ± 0.7, while fast wind exhibits kappa indices that increase with bulk speed; (ii) the dispersion of magnetosonic waves is more effective for lower kappa indices (i.e., further from thermal equilibrium); and (iii) the kappa and polytropic indices are positively correlated, as it was anticipated by the theory.

  5. Solar energy system with wind vane

    Science.gov (United States)

    Grip, Robert E

    2015-11-03

    A solar energy system including a pedestal defining a longitudinal axis, a frame that is supported by the pedestal and that is rotateable relative to the pedestal about the longitudinal axis, the frame including at least one solar device, and a wind vane operatively connected to the frame to urge the frame relative to the pedestal about the longitudinal axis in response to wind acting on the wind vane.

  6. Intermittent structures at ion scales in the turbulent solar wind

    Science.gov (United States)

    Perrone, Denise; Alexandrova, Olga; Lion, Sonny; Roberts, Owen W.; Maksimovic, Milan; Escoubet, Philippe C.; Zouganelis, Yannis

    2017-04-01

    Understanding the physical mechanisms of dissipation, and the related heating, in turbulent collisionless plasmas (such as the solar wind) represents nowadays one of the key issues of plasma physics. Although the complex behavior of the solar wind has been matter of investigation of many years, some of the primary problems still remain a puzzle for the scientific community. Here, we study coherent structures responsible for solar wind intermittency around ion characteristic scales. We find that, in fast solar wind, intermittency is due to current sheets and Alfvén vortex-like structures. In slow solar wind, we observe as well compressive structures like magnetic solitons, holes and shocks. By using high-time resolution magnetic field data of multi-point measurements of Cluster spacecraft, we characterize the observed coherent structures in terms of topology and propagation speed. We show that all structures, both in fast and slow solar wind, are characterized by a strong wave-vector anisotropy in the perpendicular direction with respect to the local magnetic field and typical scales around ion characteristic scales. Moreover, some of them propagate in the plasma rest frame. Moreover, a further analysis on the ion velocity distribution shows a high variability; in particular, close to coherent structures the proton distribution function appears strongly deformed and far from the thermodynamic equilibrium. We discuss possible interpretation of the observed structures and their role in the heating process of the plasma.

  7. The solar wind at solar maximum: comparisons of EISCAT IPS and in situ observations

    Directory of Open Access Journals (Sweden)

    A. R. Breen

    2002-09-01

    Full Text Available The solar maximum solar wind is highly structured in latitude, longitude and in time. Coronal measurements show a very high degree of variability, with large variations that are less apparent within in situ spacecraft measurements. Interplanetary scintillation (IPS observations from EISCAT, covering distances from 20 to 100 solar radii (RS, are an ideal source of information on the inner solar wind and can be used, therefore, to cast light on its evolution with distance from the Sun. Earlier comparisons of in situ and IPS measurements under solar minimum conditions showed good large-scale agreement, particularly in the fast wind. In this study we attempt a quantitative comparison of measurements made over solar maximum by EISCAT (20–100 RS and the Wind and Ulysses spacecraft (at 215 RS and 300–1000 RS, respectively. The intervals studied were August–September 1999, May 2000, September 2000 and May 2001, the last-named being the period of the second Ulysses fast latitude scan. Both ballistic and – when possible – MHD/ballistic hybrid models were used to relate the data sets, and we compare the results obtained from these two mapping methods. The results of this study suggest that solar wind velocities measured in situ were less variable than those estimated from IPS measurements closer to the Sun, with the greatest divergence between IPS velocities and in situ measurements occurring in regions where steep longitudinal velocity gradients were seen in situ. We suggest that the interaction between streams of solar wind with different velocities leads to "smoothing" of solar wind velocities between 30–60 RS and 1 AU, and that this process continues at greater distances from the Sun.Key words. Interplanetary physics (solar wind plasma; sources of the solar wind; instruments and techniques

  8. Solar wind classification from a machine learning perspective

    Science.gov (United States)

    Heidrich-Meisner, V.; Wimmer-Schweingruber, R. F.

    2017-12-01

    It is a very well known fact that the ubiquitous solar wind comes in at least two varieties, the slow solar wind and the coronal hole wind. The simplified view of two solar wind types has been frequently challenged. Existing solar wind categorization schemes rely mainly on different combinations of the solar wind proton speed, the O and C charge state ratios, the Alfvén speed, the expected proton temperature and the specific proton entropy. In available solar wind classification schemes, solar wind from stream interaction regimes is often considered either as coronal hole wind or slow solar wind, although their plasma properties are different compared to "pure" coronal hole or slow solar wind. As shown in Neugebauer et al. (2016), even if only two solar wind types are assumed, available solar wind categorization schemes differ considerably for intermediate solar wind speeds. Thus, the decision boundary between the coronal hole and the slow solar wind is so far not well defined.In this situation, a machine learning approach to solar wind classification can provide an additional perspective.We apply a well-known machine learning method, k-means, to the task of solar wind classification in order to answer the following questions: (1) How many solar wind types can reliably be identified in our data set comprised of ten years of solar wind observations from the Advanced Composition Explorer (ACE)? (2) Which combinations of solar wind parameters are particularly useful for solar wind classification?Potential subtypes of slow solar wind are of particular interest because they can provide hints of respective different source regions or release mechanisms of slow solar wind.

  9. Plasma physics in the solar system

    CERN Document Server

    Wibberenz, G

    1991-01-01

    The lecture series will start with some fundamental principles of cosmic physics. The main topics will deal with the sun, the interplanetary plasma, planetary magnetospheres, and energetic particles in the solar system. This includes the role of the sun in forming the heliosphere; manifestations of solar activity and the solar cycle, from large scale structures of the interplanetary medium to climatic changes; formation of the planetary magnetospheres by interactions between the solar wind and planetary magnetic fields; the diversities of charged particle acceleration, in particular the role of collisionless shocks in the solar system. Some specific space projects exploring the heliosphere will be presented.

  10. Physical interpretation of the angle-dependent magnetic helicity spectrum in the solar wind: The nature of turbulent fluctuations near the proton gyroradius scale

    Energy Technology Data Exchange (ETDEWEB)

    Klein, Kristopher G.; Howes, Gregory G. [Department of Physics and Astronomy, University of Iowa, Iowa City, IA 52242 (United States); TenBarge, Jason M. [IREAP, University of Maryland, College Park, MD 20742 (United States); Podesta, John J., E-mail: kristopher-klein@uiowa.edu [Center for Space Plasma Physics, Space Science Institute, Boulder, CO 80301 (United States)

    2014-04-20

    Motivated by recent observations of distinct parallel and perpendicular signatures in magnetic helicity measurements segregated by wave period and angle between the local magnetic field and the solar wind velocity, this paper undertakes a comparison of three intervals of Ulysses data with synthetic time series generated from a physically motivated turbulence model. From these comparisons, it is hypothesized that the observed signatures result from a perpendicular cascade of Alfvénic fluctuations and a local, non-turbulent population of ion-cyclotron or whistler waves generated by temperature anisotropy instabilities. By constraining the model's free parameters through comparison to in situ data, it is found that, on average, ∼95% of the power near dissipative scales is contained in a perpendicular Alfvénic cascade and that the parallel fluctuations are propagating nearly unidirectionally. The effects of aliasing on magnetic helicity measurements are considered and shown to be significant near the Nyquist frequency.

  11. Acceleration and heating of the solar wind

    Science.gov (United States)

    Barnes, A.

    1978-01-01

    Some of the competing theories of solar wind acceleration and heating are reviewed, and the observations that are required to distinguish among them are discussed. In most cases what is required is measurement of plasma velocity and temperature and magnetic field, as near the sun as possible and certainly inside 20 solar radii; another critical aspect of this question is determining whether a turbulent envelope exists in this inner region, and if so, defining its properties. Plasma and magnetic observations from the proposed Solar Probe mission would thus yield a quantum jump in our understanding of the dynamics of the solar wind.

  12. Electric conductivity of plasma in solar wind

    Science.gov (United States)

    Chertkov, A. D.

    1995-01-01

    One of the most important parameters in MHD description of the solar wind is the electric conductivity of plasma. There exist now two quite different approaches to the evaluation of this parameter. In the first one a value of conductivity taken from the most elaborated current theory of plasma should be used in calculations. The second one deals with the empirical, phenomenological value of conductivity. E.g.: configuration of interplanetary magnetic field, stretched by the expanding corona, depends on the magnitude of electrical conductivity of plasma in the solar wind. Knowing the main empirical features of the field configuration, one may estimate the apparent phenomenological value of resistance. The estimations show that the electrical conductivity should be approximately 10(exp 13) times smaller than that calculated by Spitzer. It must be noted that the empirical value should be treated with caution. Due to the method of its obtaining it may be used only for 'large-scale' description of slow processes like coronal expansion. It cannot be valid for 'quick' processes, changing the state of plasma, like collisions with obstacles, e.g., planets and vehicles. The second approach is well known in large-scale planetary hydrodynamics, stemming from the ideas of phenomenological thermodynamics. It could formulate real problems which should be solved by modern plasma physics, oriented to be adequate for complicated processes in space.

  13. A model for the origin of solar wind stream interfaces

    International Nuclear Information System (INIS)

    Hundhausen, A.J.; Burlaga, L.F.

    1975-01-01

    The basic variations in solar wind properties that have been observed at 'stream interfaces' near 1 AU are explained by a gas dynamic model in which a radially propagating stream, produced by a temperature variation in the solar envelope, steepens nonlinearly while moving through interplanetary space. The region thus identified with the stream interface separates the ambient solar wind from the fresh hot material originally in the stream. However, the interface regions given by the present model are thicker than most stream interfaces observed in the solar wind, a fact suggesting that some additional physical process may be important in determining that thickness. Variations in the density, speed, or Alfven pressure alone appear not to produce streams with such an interface

  14. Wind and solar resource data sets

    DEFF Research Database (Denmark)

    Clifton, Andrew; Hodge, Bri-Mathias; Draxl, Caroline

    2017-01-01

    The range of resource data sets spans from static cartography showing the mean annual wind speed or solar irradiance across a region to high temporal and high spatial resolution products that provide detailed information at a potential wind or solar energy facility. These data sets are used...... to support continental-scale, national, or regional renewable energy development; facilitate prospecting by developers; and enable grid integration studies. This review first provides an introduction to the wind and solar resource data sets, then provides an overview of the common methods used...... for their creation and validation. A brief history of wind and solar resource data sets is then presented, followed by areas for future research. For further resources related to this article, please visit the WIREs website....

  15. Solar and Wind Site Screening Decision Trees

    Science.gov (United States)

    EPA and NREL created a decision tree to guide state and local governments and other stakeholders through a process for screening sites for their suitability for future redevelopment with solar photovoltaic (PV) energy and wind energy.

  16. Electrostatic Solitary Waves in the Solar Wind: Evidence for Instability at Solar Wind Current Sheets

    Science.gov (United States)

    Malaspina, David M.; Newman, David L.; Wilson, Lynn Bruce; Goetz, Keith; Kellogg, Paul J.; Kerstin, Kris

    2013-01-01

    A strong spatial association between bipolar electrostatic solitary waves (ESWs) and magnetic current sheets (CSs) in the solar wind is reported here for the first time. This association requires that the plasma instabilities (e.g., Buneman, electron two stream) which generate ESWs are preferentially localized to solar wind CSs. Distributions of CS properties (including shear angle, thickness, solar wind speed, and vector magnetic field change) are examined for differences between CSs associated with ESWs and randomly chosen CSs. Possible mechanisms for producing ESW-generating instabilities at solar wind CSs are considered, including magnetic reconnection.

  17. Wind loads on solar energy roofs

    NARCIS (Netherlands)

    Geurts, C.P.W.; Bentum, C.A. van

    2007-01-01

    This paper presents an overview of the wind loads on roofs, equipped with solar energy products, so called Active Roofs. Values given in this paper have been based on wind tunnel and full scale measurements, carried out at TNO, and on an interpretation of existing rules and guidelines. The results

  18. Manifestation of solar activity in solar wind particle flux density

    International Nuclear Information System (INIS)

    Kovalenko, V.A.

    1988-01-01

    An analysis has been made of the origin of long-term variations in flux density of solar wind particles (nv) for different velocity regimes. The study revealed a relationship of these variations to the area of the polar coronal holes (CH). It is shown that within the framework of the model under development, the main longterm variations of nv are a result of the latitude redistribution of the solar wind mass flux in the heliosphere and are due to changes in the large-scale geometry of the solar plasma flow in the corona. A study has been made of the variations of nv for high speed solar wind streams. It is found that nv in high speed streams which are formed in CH, decreases from minimum to maximum solar activity. The analysis indicates that this decrease is attributable to the magnetic field strength increase in coronal holes. It has been found that periods of rapid global changes of background magnetic fields on the Sun are accompanied by a reconfiguration of coronal magnetic fields, rapid changes in the length of quiescent filaments, and by an increase in the density of the particle flux of a high speed solar wind. It has been established that these periods precede the formation of CH, corresponding to the increase in solar wind velocity near the Earth and to enhancement of the level of geomagnetic disturbance. (author)

  19. The Solar Wind Environment in Time

    Science.gov (United States)

    Pognan, Quentin; Garraffo, Cecilia; Cohen, Ofer; Drake, Jeremy J.

    2018-03-01

    We use magnetograms of eight solar analogs of ages 30 Myr–3.6 Gyr obtained from Zeeman Doppler Imaging and taken from the literature, together with two solar magnetograms, to drive magnetohydrodynamical wind simulations and construct an evolutionary scenario of the solar wind environment and its angular momentum loss rate. With observed magnetograms of the radial field strength as the only variant in the wind model, we find that a power-law model fitted to the derived angular momentum loss rate against time, t, results in a spin-down relation Ω ∝ t ‑0.51, for angular speed Ω, which is remarkably consistent with the well-established Skumanich law Ω ∝ t ‑0.5. We use the model wind conditions to estimate the magnetospheric standoff distances for an Earth-like test planet situated at 1 au for each of the stellar cases, and to obtain trends of minimum and maximum wind ram pressure and average ram pressure in the solar system through time. The wind ram pressure declines with time as \\overline{{P}ram}}\\propto {t}2/3, amounting to a factor of 50 or so over the present lifetime of the solar system.

  20. Wind and solar energy incentives in Iran

    International Nuclear Information System (INIS)

    Taleghani, G.; Kazemi Karegar, H.

    2006-01-01

    Incentive have yet been viewed as a means of supporting technological developments until a new technology becomes cost competitive wind based electricity is not jet generally competitive with alternate sources of electricity such as fossil fuels. This paper presents the potential for wind and solar in Iran and shows how much electric energy is now produced by renewable power plants compared to steam and gas. The importance of renewable energy effects on Iran environment and economy is also discussed and the issue of the contribution of renewable energy for producing electricity in the future will be shown. Also this paper highlights the ability of Iran to manufacture the components of the wind turbine and solar system locally, and its effect on the price of wind turbine and solar energy

  1. Solar Wind MHD Turbulence: Anomalous Scaling and Intermittency Effects in the Slow and Fast Wind

    Science.gov (United States)

    Salem, C.; Mangeney, A.; Bale, S. D.

    2007-12-01

    Although considerable progress has been made in the understanding of MHD turbulence over the past few decades through the analysis of in-situ solar wind data, two of the primary problems of solar wind MHD turbulence that still remain a puzzle are the nature of the nonlinear energy cascade, and the strong intermittent character of solar wind fluctuations in the inertial range. This intermittency modifies significantly the scaling exponents of actual power-law spectra, which are directly related to the physical nature of the energy cascade taking place in the solar wind. The identification of the most intermittent structures and their relation to dissipation represents then a crucial problem in the framework of turbulence. Anomalous scaling of both solar wind magnetic field and velocity fluctuations in the inertial range, as well as intermittency effects have recently been investigated in detail using Wavelet transforms on simultaneous WIND 3s resolution particle and magnetic field data from the 3DP and the MFi experiments respectively. Specifically, the Haar Wavelet transform is used to compute spectra, structure functions and probability distribution functions (PDFs). This powerful technique allows: (1) for a systematic study of intermittency effects on these spectra, structure functions and PDFs, thus for a clear determination of the actual scaling properties in the inertial range, and (2) for a direct and systematic identification of the most active, singular structures responsible for the intermittency in the solar wind. The analysis of structure functions and PDFs, as well as new results on the nature of the intermittent coherent structures will be presented. The turbulent properties and intermittency effects in different solar wind regimes will be also discussed.

  2. Solar wind charge exchange observed through the lunar exosphere

    Czech Academy of Sciences Publication Activity Database

    Robertson, I. P.; Sembay, S.; Stubbs, T. J.; Kuntz, K. D.; Collier, M. R.; Cravens, T. E.; Snowden, S. L.; Hills, H. K.; Porter, F. S.; Trávníček, Pavel M.; Carter, J. A.; Read, A. M.

    2009-01-01

    Roč. 36, - (2009), L21102/1-L21102/5 ISSN 0094-8276 Institutional research plan: CEZ:AV0Z30420517 Keywords : lunar exosphere * solar wind * X-rays Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 3.204, year: 2009

  3. Proton thermal energetics in the solar wind: Helios reloaded

    Czech Academy of Sciences Publication Activity Database

    Hellinger, Petr; Trávníček, P.; Štverák, Štěpán; Matteini, L.; Velli, M.

    2013-01-01

    Roč. 118, č. 4 (2013), s. 1351-1365 ISSN 2169-9380 Institutional support: RVO:68378289 Keywords : solar wind * proton energetics * turbulent heating Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 3.440, year: 2013 http://onlinelibrary.wiley.com/doi/10.1002/jgra.50107/abstract

  4. Coupling of the solar wind to measures of magnetic activity

    International Nuclear Information System (INIS)

    McPherron, R.L.; Fay, R.A.; Garrity, C.R.; Bargatze, L.F.; Baker, D.N.; Clauer, C.R.; Searls, C.

    1984-01-01

    The technique of linear prediction filtering has been used to generate empirical response functions relating the solar wind electric field to the most frequently used magnetic indices, AL, AU, Dst and ASYM. Two datasets, one from 1967-1968 and one from 1973-1974, provided the information needed to calculate the empirical response functions. These functions have been convolved with solar wind observations obtained during the IMS to predict the indices. These predictions are compared with the observed indices during two, three-day intervals studied extensively by participants in the CDAW-6 workshop. Differences between the observed and predicted indices are discussed in terms of the linear assumption and in terms of physical processes other than direct solar wind-magnetosphere interaction

  5. Future Directions in Solar Physics

    Science.gov (United States)

    Rabin, Douglas

    2010-01-01

    I will discuss scientific opportunities for space-based solar physics instruments in the coming decade and their synergy with major new ground-based telescopes. l will also discuss ( pow small satellites may complement larger solar physics missions.

  6. Solar Illumination Control of the Polar Wind

    Science.gov (United States)

    Maes, L.; Maggiolo, R.; De Keyser, J.; André, M.; Eriksson, A. I.; Haaland, S.; Li, K.; Poedts, S.

    2017-11-01

    Polar wind outflow is an important process through which the ionosphere supplies plasma to the magnetosphere. The main source of energy driving the polar wind is solar illumination of the ionosphere. As a result, many studies have found a relation between polar wind flux densities and solar EUV intensity, but less is known about their relation to the solar zenith angle at the ionospheric origin, certainly at higher altitudes. The low energy of the outflowing particles and spacecraft charging means it is very difficult to measure the polar wind at high altitudes. We take advantage of an alternative method that allows estimations of the polar wind flux densities far in the lobes. We analyze measurements made by the Cluster spacecraft at altitudes from 4 up to 20 RE. We observe a strong dependence on the solar zenith angle in the ion flux density and see that both the ion velocity and density exhibit a solar zenith angle dependence as well. We also find a seasonal variation of the flux density.

  7. Evidence for solar wind modulation of lightning

    Science.gov (United States)

    Scott, C. J.; Harrison, R. G.; Owens, M. J.; Lockwood, M.; Barnard, L.

    2014-05-01

    The response of lightning rates over Europe to arrival of high speed solar wind streams at Earth is investigated using a superposed epoch analysis. Fast solar wind stream arrival is determined from modulation of the solar wind V y component, measured by the Advanced Composition Explorer spacecraft. Lightning rate changes around these event times are determined from the very low frequency arrival time difference (ATD) system of the UK Met Office. Arrival of high speed streams at Earth is found to be preceded by a decrease in total solar irradiance and an increase in sunspot number and Mg II emissions. These are consistent with the high speed stream’s source being co-located with an active region appearing on the Eastern solar limb and rotating at the 27 d period of the Sun. Arrival of the high speed stream at Earth also coincides with a small (˜1%) but rapid decrease in galactic cosmic ray flux, a moderate (˜6%) increase in lower energy solar energetic protons (SEPs), and a substantial, statistically significant increase in lightning rates. These changes persist for around 40 d in all three quantities. The lightning rate increase is corroborated by an increase in the total number of thunder days observed by UK Met stations, again persisting for around 40 d after the arrival of a high speed solar wind stream. This result appears to contradict earlier studies that found an anti-correlation between sunspot number and thunder days over solar cycle timescales. The increase in lightning rates and thunder days that we observe coincides with an increased flux of SEPs which, while not being detected at ground level, nevertheless penetrate the atmosphere to tropospheric altitudes. This effect could be further amplified by an increase in mean lightning stroke intensity that brings more strokes above the detection threshold of the ATD system. In order to remove any potential seasonal bias the analysis was repeated for daily solar wind triggers occurring during the summer

  8. Solar wind modulation of UK lightning

    Science.gov (United States)

    Davis, Chris; Harrison, Giles; Lockwood, Mike; Owens, Mathew; Barnard, Luke

    2013-04-01

    The response of lightning rates in the UK to arrival of high speed solar wind streams at Earth is investigated using a superposed epoch analysis. The fast solar wind streams' arrivals are determined from modulation of the solar wind Vy component, measured by the Advanced Composition Explorer (ACE) spacecraft. Lightning rate changes around these event times are then determined from the very low frequency Arrival Time Difference (ATD) system of the UK Met Office. Arrival of high speed streams at Earth is found to be preceded by a decrease in total solar irradiance and an increase in sunspot number and Mg II emissions. These are consistent with the high speed stream's source being co-located with an active region appearing on the Eastern solar limb and rotating at the 27 day rate of the Sun. Arrival of the high speed stream at Earth also coincides with a rapid decrease in cosmic ray flux and an increase in lightning rates over the UK, persisting for around 40 days. The lightning rate increase is corroborated by an increase in the total number of thunder days observed by UK Met stations, again for around 40 days after the arrival of a high speed solar wind stream. This increase in lightning may be beneficial to medium range forecasting of hazardous weather.

  9. Shock heating of the solar wind plasma

    Science.gov (United States)

    Whang, Y. C.; Liu, Shaoliang; Burlaga, L. F.

    1990-01-01

    The role played by shocks in heating solar-wind plasma is investigated using data on 413 shocks which were identified from the plasma and magnetic-field data collected between 1973 and 1982 by Pioneer and Voyager spacecraft. It is found that the average shock strength increased with the heliocentric distance outside 1 AU, reaching a maximum near 5 AU, after which the shock strength decreased with the distance; the entropy of the solar wind protons also reached a maximum at 5 AU. An MHD simulation model in which shock heating is the only heating mechanism available was used to calculate the entropy changes for the November 1977 event. The calculated entropy agreed well with the value calculated from observational data, suggesting that shocks are chiefly responsible for heating solar wind plasma between 1 and 15 AU.

  10. Introducing log-kappa distributions for solar wind analysis

    Science.gov (United States)

    Leitner, Martin; Vörös, Zolan Z.; Leubner, Manfred P.

    2010-05-01

    The one-point probability density functions (PDFs) obtained from the Wind spacecraft observations of the magnitude of total magnetic field (B) and the solar wind quasi-invariant (QI) are investigated at 1 AU during the years 1995 and 1998. It is known from previous studies that the distributions follow in a rather good approximation a lognormal distribution. This indicates that the underlying random multiplicative processes are skewed, the PDFs are nonsymmetric. The concept of kappa distributions generating PDF tails closer to the observed values is introduced. The skewness, characteristic for the multiplicative processes in the solar wind, is treated on the basis of log-kappa distributions, introduced here for the first time. Normal and lognormal distributions are related in a similar way to each other as the kappa and log-kappa distributions, although the statistics is based on extensive physics in the former and nonextensive physics in the latter cases. We show hat log-kappa PDFs describe the observed distributions in the solar wind more accurately than the lognormal PDFs. In particular, the tails of PDFs corresponding to extreme values of the considered parameters B and QI are better modeled in terms of the nonextensive approach. It indicates that, for the theoretical explanation of the complexity of multisource fluctuations present in 1 year solar wind magnetic and plasma data, both the extensive and the nonextensive physical escription is needed. The variation of the values of kappa obtained from the log-kappa fits can serve as a quantitative measure describing the changing balance between these two distinct physical processes during the solar cycle.

  11. Reassessing Solar Wind Stability using Nyquist's Method

    Science.gov (United States)

    Klein, Kristopher; Kasper, Justin; Alterman, Benjamin; Stevens, Michael; Korreck, Kelly

    2017-10-01

    In nearly-collisionless plasmas, such as the solar wind, non-local thermodynamic equilibrium structures, including temperature anisotropies, beam populations with relative drifts, and agyrotropic features, are frequently observed to persist. These features can act as sources of free energy which may drive instabilities that move the plasma closer to LTE. Analysis techniques applied to solar wind observations for the presence of such instabilities typically consider only a single source of free energy, such the temperature anisotropy of the proton population. We have developed an efficient algorithm for general determination of linear stability considering all sources of free energy using Nyquist's Method. By applying this method to the dispersion relation associated with a particular solar wind observation, we rapidly determine if the plasma is linearly unstable, and if so, how many normal modes are driven. Our technique is verified against well-characterized theoretical and observational cases from the literature, and applied to in situ observations from the Wind spacecraft to determine how additional sources of free energy affect the plasma's stability and may govern the solar wind's evolution.

  12. Wind and Solar Curtailment: International Experience and Practices

    DEFF Research Database (Denmark)

    Lew, Debra; Bird, Lori; Milligan, Michael

    2013-01-01

    High penetrations of wind and solar generation on power systems are resulting in increasing curtailment. Wind and solar integration studies predict increased curtailment as penetration levels grow. This paper examines experiences with curtailment on bulk power systems internationally. It discusse...

  13. Kinetic Properties of Solar Wind Silicon and Iron Ions

    Science.gov (United States)

    Janitzek, N. P.; Berger, L.; Drews, C.; Wimmer-Schweingruber, R. F.

    2017-12-01

    Heavy ions with atomic numbers Z>2 account for less than one percent of the solar wind ions. However, serving as test particles with differing mass and charge, they provide a unique experimental approach to major questions of solar and fundamental plasma physics such as coronal heating, the origin and acceleration of the solar wind and wave-particle interaction in magnetized plasma. Yet the low relative abundances of the heavy ions pose substantial challenges to the instrumentation measuring these species with reliable statistics and sufficient time resolution. As a consequence the numbers of independent measurements and studies are small. The Charge Time-Of-Flight (CTOF) mass spectrometer as part of the Charge, ELement and Isotope Analysis System (CELIAS) onboard the SOlar and Heliospheric Observatory (SOHO) is a linear time-of-flight mass spectrometer which was operated at Lagrangian point L1 in 1996 for a few months only, before it suffered an instrument failure. Despite its short operation time, the CTOF sensor measured solar wind heavy ions with excellent charge state separation, an unprecedented cadence of 5 minutes and very high counting statistics, exceeding similar state-of-the-art instruments by a factor of ten. In contrast to earlier CTOF studies which were based on reduced onboard post-processed data, in our current studies we use raw Pulse Height Analysis (PHA) data providing a significantly increased mass, mass-per-charge and velocity resolution. Focussing on silicon and iron ion measurements, we present an overview of our findings on (1) short time behavior of heavy ion 1D radial velocity distribution functions, (2) differential streaming between heavy ions and solar wind bulk protons, (3) kinetic temperatures of heavy ions. Finally, we compare the CTOF results with measurements of the Solar Wind Ion Composition Spectrometer (SWICS) instrument onboard the Advanced Composition Explorer (ACE).

  14. Solar wind plasma interaction with solar probe plus spacecraft

    Directory of Open Access Journals (Sweden)

    S. Guillemant

    2012-07-01

    Full Text Available 3-D PIC (Particle In Cell simulations of spacecraft-plasma interactions in the solar wind context of the Solar Probe Plus mission are presented. The SPIS software is used to simulate a simplified probe in the near-Sun environment (at a distance of 0.044 AU or 9.5 RS from the Sun surface. We begin this study with a cross comparison of SPIS with another PIC code, aiming at providing the static potential structure surrounding a spacecraft in a high photoelectron environment. This paper presents then a sensitivity study using generic SPIS capabilities, investigating the role of some physical phenomena and numerical models. It confirms that in the near- sun environment, the Solar Probe Plus spacecraft would rather be negatively charged, despite the high yield of photoemission. This negative potential is explained through the dense sheath of photoelectrons and secondary electrons both emitted with low energies (2–3 eV. Due to this low energy of emission, these particles are not ejected at an infinite distance of the spacecraft and would rather surround it. As involved densities of photoelectrons can reach 106 cm−3 (compared to ambient ions and electrons densities of about 7 × 103 cm−3, those populations affect the surrounding plasma potential generating potential barriers for low energy electrons, leading to high recollection. This charging could interfere with the low energy (up to a few tens of eV plasma sensors and particle detectors, by biasing the particle distribution functions measured by the instruments. Moreover, if the spacecraft charges to large negative potentials, the problem will be more severe as low energy electrons will not be seen at all. The importance of the modelling requirements in terms of precise prediction of spacecraft potential is also discussed.

  15. Energy Primer: Solar, Water, Wind, and Biofuels.

    Science.gov (United States)

    Portola Inst., Inc., Menlo Park, CA.

    This is a comprehensive, fairly technical book about renewable forms of energy--solar, water, wind, and biofuels. The biofuels section covers biomass energy, agriculture, aquaculture, alcohol, methane, and wood. The focus is on small-scale systems which can be applied to the needs of the individual, small group, or community. More than one-fourth…

  16. Classification of Solar Wind With Machine Learning

    Science.gov (United States)

    Camporeale, Enrico; Carè, Algo; Borovsky, Joseph E.

    2017-11-01

    We present a four-category classification algorithm for the solar wind, based on Gaussian Process. The four categories are the ones previously adopted in Xu and Borovsky (2015): ejecta, coronal hole origin plasma, streamer belt origin plasma, and sector reversal origin plasma. The algorithm is trained and tested on a labeled portion of the OMNI data set. It uses seven inputs: the solar wind speed Vsw, the temperature standard deviation σT, the sunspot number R, the F10.7 index, the Alfven speed vA, the proton specific entropy Sp, and the proton temperature Tp compared to a velocity-dependent expected temperature. The output of the Gaussian Process classifier is a four-element vector containing the probabilities that an event (one reading from the hourly averaged OMNI database) belongs to each category. The probabilistic nature of the prediction allows for a more informative and flexible interpretation of the results, for instance, being able to classify events as "undecided." The new method has a median accuracy larger than 90% for all categories, even using a small set of data for training. The Receiver Operating Characteristic curve and the reliability diagram also demonstrate the excellent quality of this new method. Finally, we use the algorithm to classify a large portion of the OMNI data set, and we present for the first time transition probabilities between different solar wind categories. Such probabilities represent the "climatological" statistics that determine the solar wind baseline.

  17. Mirror Instability in the Turbulent Solar Wind

    Czech Academy of Sciences Publication Activity Database

    Hellinger, Petr; Landi, S.; Matteini, L.; Verdini, A.; Franci, L.

    2017-01-01

    Roč. 838, č. 2 (2017), 158/1-158/7 ISSN 0004-637X Institutional support: RVO:67985815 Keywords : instabilities * solar wind * waves Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics OBOR OECD: Astronomy (including astrophysics,space science) Impact factor: 5.533, year: 2016

  18. Wind and solar resource data sets: Wind and solar resource data sets

    Energy Technology Data Exchange (ETDEWEB)

    Clifton, Andrew [National Renewable Energy Laboratory, Golden CO USA; Hodge, Bri-Mathias [National Renewable Energy Laboratory, Golden CO USA; Power Systems Engineering Center, National Renewable Energy Laboratory, Golden CO USA; Draxl, Caroline [National Renewable Energy Laboratory, Golden CO USA; National Wind Technology Center, National Renewable Energy Laboratory, Golden CO USA; Badger, Jake [Department of Wind Energy, Danish Technical University, Copenhagen Denmark; Habte, Aron [National Renewable Energy Laboratory, Golden CO USA; Power Systems Engineering Center, National Renewable Energy Laboratory, Golden CO USA

    2017-12-05

    The range of resource data sets spans from static cartography showing the mean annual wind speed or solar irradiance across a region to high temporal and high spatial resolution products that provide detailed information at a potential wind or solar energy facility. These data sets are used to support continental-scale, national, or regional renewable energy development; facilitate prospecting by developers; and enable grid integration studies. This review first provides an introduction to the wind and solar resource data sets, then provides an overview of the common methods used for their creation and validation. A brief history of wind and solar resource data sets is then presented, followed by areas for future research.

  19. Electric solar wind sail mass budget model

    Directory of Open Access Journals (Sweden)

    P. Janhunen

    2013-02-01

    Full Text Available The electric solar wind sail (E-sail is a new type of propellantless propulsion system for Solar System transportation, which uses the natural solar wind to produce spacecraft propulsion. The E-sail consists of thin centrifugally stretched tethers that are kept charged by an onboard electron gun and, as such, experience Coulomb drag through the high-speed solar wind plasma stream. This paper discusses a mass breakdown and a performance model for an E-sail spacecraft that hosts a mission-specific payload of prescribed mass. In particular, the model is able to estimate the total spacecraft mass and its propulsive acceleration as a function of various design parameters such as the number of tethers and their length. A number of subsystem masses are calculated assuming existing or near-term E-sail technology. In light of the obtained performance estimates, an E-sail represents a promising propulsion system for a variety of transportation needs in the Solar System.

  20. Global aspects of stream evolution in the solar wind

    International Nuclear Information System (INIS)

    Gosling, J.T.

    1984-01-01

    A spatially variable coronal expansion, when coupled with solar rotation, leads to the formation of high speed solar wind streams which evolve considerably with increasing heliocentric distance. Initially the streams steepen for simple kinematic reasons, but this steepening is resisted by pressure forces, leading eventually to the formation of forward-reverse shock pairs in the distant heliosphere. The basic physical processes responsible for stream steepening an evolution are explored and model calculations are compared with actual spacecraft observations of the process. The solar wind stream evolution problem is relatively well understood both observationally and theoretically. Tools developed in achieving this understanding should be applicable to other astrophysical systems where a spatially or temporally variable outflow is associated with a rotating object. 27 references, 13 figures

  1. Proton fire hose instabilities in the expanding solar wind

    Czech Academy of Sciences Publication Activity Database

    Hellinger, Petr

    2017-01-01

    Roč. 83, č. 1 (2017), č. článku 705830105. ISSN 0022-3778 Institutional support: RVO:68378289 Keywords : astrophysicals plasmas * plasma expansion * plasma simulation Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 1.160, year: 2016 https://www.cambridge.org/core/journals/journal-of-plasma-physics/article/proton-fire-hose-instabilities-in-the-expanding-solar-wind/6BA70378B25728533588A1A68073AC2F

  2. Kinetic instabilities in the solar wind driven by temperature anisotropies

    Science.gov (United States)

    Yoon, Peter H.

    2017-12-01

    The present paper comprises a review of kinetic instabilities that may be operative in the solar wind, and how they influence the dynamics thereof. The review is limited to collective plasma instabilities driven by the temperature anisotropies. To limit the scope even further, the discussion is restricted to the temperature anisotropy-driven instabilities within the model of bi-Maxwellian plasma velocity distribution function. The effects of multiple particle species or the influence of field-aligned drift will not be included. The field-aligned drift or beam is particularly prominent for the solar wind electrons, and thus ignoring its effect leaves out a vast portion of important physics. Nevertheless, for the sake of limiting the scope, this effect will not be discussed. The exposition is within the context of linear and quasilinear Vlasov kinetic theories. The discussion does not cover either computer simulations or data analyses of observations, in any systematic manner, although references will be made to published works pertaining to these methods. The scientific rationale for the present analysis is that the anisotropic temperatures associated with charged particles are pervasively detected in the solar wind, and it is one of the key contemporary scientific research topics to correctly characterize how such anisotropies are generated, maintained, and regulated in the solar wind. The present article aims to provide an up-to-date theoretical development on this research topic, largely based on the author's own work.

  3. Origins of the Ambient Solar Wind: Implications for Space Weather

    Science.gov (United States)

    Cranmer, Steven R.; Gibson, Sarah E.; Riley, Pete

    2017-11-01

    The Sun's outer atmosphere is heated to temperatures of millions of degrees, and solar plasma flows out into interplanetary space at supersonic speeds. This paper reviews our current understanding of these interrelated problems: coronal heating and the acceleration of the ambient solar wind. We also discuss where the community stands in its ability to forecast how variations in the solar wind (i.e., fast and slow wind streams) impact the Earth. Although the last few decades have seen significant progress in observations and modeling, we still do not have a complete understanding of the relevant physical processes, nor do we have a quantitatively precise census of which coronal structures contribute to specific types of solar wind. Fast streams are known to be connected to the central regions of large coronal holes. Slow streams, however, appear to come from a wide range of sources, including streamers, pseudostreamers, coronal loops, active regions, and coronal hole boundaries. Complicating our understanding even more is the fact that processes such as turbulence, stream-stream interactions, and Coulomb collisions can make it difficult to unambiguously map a parcel measured at 1 AU back down to its coronal source. We also review recent progress—in theoretical modeling, observational data analysis, and forecasting techniques that sit at the interface between data and theory—that gives us hope that the above problems are indeed solvable.

  4. Solar Wind Associated with Near Equatorial Coronal Hole M ...

    Indian Academy of Sciences (India)

    2015-05-25

    May 25, 2015 ... Probably, during the early his- tory of solar system formation, strong solar wind might have played a dominant role. 355 .... (Atmospheric Imaging Assembly), we have considered near equatorial coronal hole data with 1 hour time ... thermal or kinetic energy of the solar wind? (iii) at what height in the solar ...

  5. Wind and IMP 8 Solar Wind, Magnetosheath and Shock Data

    Science.gov (United States)

    2004-01-01

    The purpose of this project was to provide the community access to magnetosheath data near Earth. We provided 27 years of IMP 8 magnetosheath proton velocities, densities, and temperatures with our best (usually 1-min.) time resolution. IMP 8 crosses the magnetosheath twice each 125 day orbit, and we provided magnetosheath data for the roughly 27 years of data for which magnetometer data are also available (which are needed to reliably pick boundaries). We provided this 27 years of IMP 8 magnetosheath data to the NSSDC; this data is now integrated with the IMP 8 solar wind data with flags indicating whether each data point is in the solar wind, magnetosheath, or at the boundary between the two regions. The plasma speed, density, and temperature are provided for each magnetosheath point. These data are also available on the MIT web site ftp://space .mit.edu/pub/plasma/imp/www/imp.html. We provide ASCII time-ordered rows of data giving the observation time, the spacecraft position in GSE, the velocity is GSE, the density and temperature for protons. We also have analyzed and archived on our web site the Wind magnetosheath plasma parameters. These consist of ascii files of the proton and alpha densities, speeds, and thermal speeds. These data are available at ftp://space.mit.edu/pub/plasma/wind/sheath These are the two products promised in the work statement and they have been completed in full.

  6. Assessing the Structural, Driver and Economic Impacts of Traffic Pole Mounted Wind Power Generator and Solar Panel Hybrid System

    Science.gov (United States)

    2012-06-01

    This project evaluates the physical and economic feasibility of using existing traffic infrastructure to mount wind power : generators. Some possible places to mount a light weight wind generator and solar panel hybrid system are: i) Traffic : signal...

  7. Solar and wind exergy potentials for Mars

    International Nuclear Information System (INIS)

    Delgado-Bonal, Alfonso; Martín-Torres, F. Javier; Vázquez-Martín, Sandra; Zorzano, María-Paz

    2016-01-01

    The energy requirements of the planetary exploration spacecrafts constrain the lifetime of the missions, their mobility and capabilities, and the number of instruments onboard. They are limiting factors in planetary exploration. Several missions to the surface of Mars have proven the feasibility and success of solar panels as energy source. The analysis of the exergy efficiency of the solar radiation has been carried out successfully on Earth, however, to date, there is not an extensive research regarding the thermodynamic exergy efficiency of in-situ renewable energy sources on Mars. In this paper, we analyse the obtainable energy (exergy) from solar radiation under Martian conditions. For this analysis we have used the surface environmental variables on Mars measured in-situ by the Rover Environmental Monitoring Station onboard the Curiosity rover and from satellite by the Thermal Emission Spectrometer instrument onboard the Mars Global Surveyor satellite mission. We evaluate the exergy efficiency from solar radiation on a global spatial scale using orbital data for a Martian year; and in a one single location in Mars (the Gale crater) but with an appreciable temporal resolution (1 h). Also, we analyse the wind energy as an alternative source of energy for Mars exploration and compare the results with those obtained on Earth. We study the viability of solar and wind energy station for the future exploration of Mars, showing that a small square solar cell of 0.30 m length could maintain a meteorological station on Mars. We conclude that the low density of the atmosphere of Mars is responsible of the low thermal exergy efficiency of solar panels. It also makes the use of wind energy uneffective. Finally, we provide insights for the development of new solar cells on Mars. - Highlights: • We analyse the exergy of solar radiation under Martian environment • Real data from in-situ instruments is used to determine the maximum efficiency of radiation • Wind

  8. A New Approach to Study Stochastic Heating in the Solar Wind with Implications for Parker Solar Probe and Solar Orbiter

    Science.gov (United States)

    Vech, D.; Klein, K. G.; Kasper, J. C.

    2017-12-01

    The solar wind undergoes significant heating as it propagates away from the Sun, however the exact mechanisms heating the plasma are not yet fully understood. Identifying the physical mechanisms responsible for this heating is fundamentally important to describe the solar corona and solar wind. Parker Solar Probe and Solar Orbiter will provide a wealth of data from an unexplored region to quantify the heating contribution of proposed mechanisms including stochastic heating as a function of the heliocentric distance. As a preparation for these upcoming missions we study stochastic heating at 1 AU. Stochastic heating occurs when the motion of ions becomes chaotic as the amplitude of electromagnetic field fluctuations at scales comparable to the ion gyroscale exceed a critical value. Under these conditions, the magnetic moment of ions is not conserved, allowing for diffusion across magnetic fields, consequently leading to perpendicular heating of the ions. We analyze over a decade of Wind observations using previously proposed techniques and show that the nature of stochastic heating in various subsets of the solar wind is in qualitatively good agreement with predictions, focusing on the critical amplitude of magnetic fluctuations where stochastic heating starts operating. In the second part of this study, we repeat the analysis using a new approach and we demonstrate that our technique yields results, which are in excellent agreement with predictions and rely on fewer assumptions than previous methods. Our technique allows us to study in detail how the turbulent energy is partitioned between ions and electrons. This novel analysis will be useful for studying data from Parker Solar Probe and Solar Orbiter to determine what mechanisms heat the solar wind.

  9. Skylab 2 Solar Physics Experiment

    Science.gov (United States)

    1973-01-01

    Skylab 2 Solar Physics Experiment. This black and white view of a solar flare was taken from the skylab remote solar experiment module mounted on top of the vehicle and worked automatically without any interaction from the crew. Solar flares or sunspots are eruptions on the sun's surface and appear to occur in cycles. When these cycles occur, there is worldwide electromagnetic interference affecting radio and television transmission.

  10. Electron characteristics in the high speed solar wind

    International Nuclear Information System (INIS)

    Feldman, W.C.

    1978-01-01

    Experimental work done since 1976 on the physics of electrons in the high speed solar wind is reviewed. The main new results are most electron parameters are uniform in the high speed solar wind indicating that it is a well defined, structure-free state of the coronal expansion. The higher energy unbound part of electron velocity distributions (the halo) is consistent with nearly collisionless propagation to 1AU from some heliocentric distance in the range between about 10 and 30 solar radii. The low energy bound electron (core) component appears to be strongly coupled to the protons as well as to one another through Coulomb and wave electron collisions. The first measured radial profile of the core-electron temperature in the high speed solar wind is best characterized in terms of two separate power laws applicable in the distance ranges between 0.47 and 0.62 AU and between 0.62 and 1.0 AU respectively. The best estimate for the power law indices in the inner and outer regions are α 1 = -1.14 +-0.24 and α 0 = +0.28 +-0.13, respectively. A relations of the form Q = γN/sub c/kT/sub c/U/(1 + βγ/sub sigma11 γcp) with = 10.7 and β = 4.2 may be useful in closing the Vlasov moment equations describing general solar wind flows in interplanetary space. The quantity Q is the total heat flux, N/sub c/ and T/sub c/ are the core-electron density and temperature respectively, k is Boltzmann's constant, U is the proton bulk speed in the solar corotating reference frame, /sub tsigma/ is the bounce period of a typical core electron and /+ sub tcp/ is the average core electron-proton Coulomb deflection time. 16 refs

  11. Solar wind velocity and geomagnetic moment variations

    International Nuclear Information System (INIS)

    Kalinin, Yu.D.; Rozanova, T.S.

    1982-01-01

    The mean year values of the solar wind velocity have been calculated from the mean-year values of a geomagnetic activity index am according to the Svalgard equation of regression for the pe-- riod from 1930 to 1960. For the same years the values of the geomagnetic moment M and separately of its ''inner'' (causes of which'' are inside the Earth) and ''external'' (causes of which are outside the Earth) parts have been calculated from the mean year data of 12 magnetic observatories. The proof of the presence of the 11-year variation in the moment M has been obtained. It is concluded that the 11-year variations in M result from the variations of the solar wind velocity

  12. Astroparticle physics with solar neutrinos.

    Science.gov (United States)

    Nakahata, Masayuki

    2011-01-01

    Solar neutrino experiments observed fluxes smaller than the expectations from the standard solar model. This discrepancy is known as the "solar neutrino problem". Flux measurements by Super-Kamiokande and SNO have demonstrated that the solar neutrino problem is due to neutrino oscillations. Combining the results of all solar neutrino experiments, parameters for solar neutrino oscillations are obtained. Correcting for the effect of neutrino oscillations, the observed neutrino fluxes are consistent with the prediction from the standard solar model. In this article, results of solar neutrino experiments are reviewed with detailed descriptions of what Kamiokande and Super-Kamiokande have contributed to the history of astroparticle physics with solar neutrino measurements. (Communicated by Toshimitsu Yamazaki, M.J.A.).

  13. Astroparticle physics with solar neutrinos

    Science.gov (United States)

    NAKAHATA, Masayuki

    2011-01-01

    Solar neutrino experiments observed fluxes smaller than the expectations from the standard solar model. This discrepancy is known as the “solar neutrino problem”. Flux measurements by Super-Kamiokande and SNO have demonstrated that the solar neutrino problem is due to neutrino oscillations. Combining the results of all solar neutrino experiments, parameters for solar neutrino oscillations are obtained. Correcting for the effect of neutrino oscillations, the observed neutrino fluxes are consistent with the prediction from the standard solar model. In this article, results of solar neutrino experiments are reviewed with detailed descriptions of what Kamiokande and Super-Kamiokande have contributed to the history of astroparticle physics with solar neutrino measurements. PMID:21558758

  14. AUTOMATIC DETECTION ALGORITHM OF DYNAMIC PRESSURE PULSES IN THE SOLAR WIND

    International Nuclear Information System (INIS)

    Zuo, Pingbing; Feng, Xueshang; Wang, Yi; Xie, Yanqiong; Li, Huijun; Xu, Xiaojun

    2015-01-01

    Dynamic pressure pulses (DPPs) in the solar wind are a significant phenomenon closely related to the solar-terrestrial connection and physical processes of solar wind dynamics. In order to automatically identify DPPs from solar wind measurements, we develop a procedure with a three-step detection algorithm that is able to rapidly select DPPs from the plasma data stream and simultaneously define the transition region where large dynamic pressure variations occur and demarcate the upstream and downstream region by selecting the relatively quiet status before and after the abrupt change in dynamic pressure. To demonstrate the usefulness, efficiency, and accuracy of this procedure, we have applied it to the Wind observations from 1996 to 2008 by successfully obtaining the DPPs. The procedure can also be applied to other solar wind spacecraft observation data sets with different time resolutions

  15. Plasma fluctuations in the solar wind

    International Nuclear Information System (INIS)

    Neugebauer, M.; Wu, C.S.; Huba, J.D.

    1978-01-01

    Ogo 5 plasma and magnetic field data are used to compute power spectra of solar wind fluctuations over the frequency interval 10 -3 10 -1 Hz. We confirm the validity of the assumption made in earlier papers that the power spectra calculated from total flux measurements are approximately equal to the power spectra of density fluctuations times the square of the average solar wind speed. The relative density power spectrum P/sub n//n 2 0 is usually of the same order of magnitude as the power spectrum of speed fluctuations relative to the Alfven speed, P/sub v//v 2 /sub A/. All cases studied show evidence of the presence of Alfven waves in this frequency range. In some data sets the density and field fluctuations are consistent with magnetosonic waves. In other sets the ratio of the power in field magnitude fluctuations to that in density fluctuations is inconsistent with magnetosonic waves; for these cases we postulate static inhomogeneities with a balance between electron thermal and magnetic pressures. Finally, we suggest that the power enhancements near 1 Hz reported in earlier papers may be caused by a resonant proton cyclotron instability driven by the proton thermal anisotropy in the solar wind

  16. The Solar Wind and The Sun in the Past

    Science.gov (United States)

    Wood, Brian E.

    Exposure to the solar wind can have significant long term consequences for planetary atmospheres, especially for planets such as Mars that are not protected by global magnetospheres. Estimating the effects of solar wind exposure requires knowledge of the history of the solar wind. Much of what we know about the Sun's past behavior is based on inferences from observations of young solar-like stars. Stellar analogs of the weak solar wind cannot be detected directly, but the interaction regions between these winds and the interstellar medium have been detected and used to estimate wind properties. I here review these observations, with emphasis on what they suggest about the history of the solar wind.

  17. Does the magnetic expansion factor (fs) play a role in solar wind acceleration?

    Science.gov (United States)

    Wallace, Samantha; Arge, Charles N.; Pihlstrom, Ylva

    2017-08-01

    For the past 25 years, magnetic expansion factor (fs) has been a key parameter used in the calculation of terminal solar wind speed (vsw) in both the Wang-Sheeley-Arge (WSA) model and its predecessor the Wang-Sheeley (WS) model. Since the discovery of an inverse relationship between fs and vsw, the physical role that magnetic expansion factor plays in the acceleration of the solar wind has been explored and debated. In this study, we investigate whether magnetic expansion factor plays a causal role in determining the terminal speed of the solar wind or merely serves as proxy. To do so, we explore how fs, as determined by WSA, relates to vsw for two different scenarios: 1) extended periods where the fast solar wind emerges from the centers of large coronal holes, and 2) periods where the solar wind emerges from pseudostreamers. For these same scenarios, we will also consider an alternative empirical relationship between solar wind speed and the minimum angular distance at the photosphere of a solar wind source to the nearest coronal hole boundary (i.e., DCHB, θb). We then compare these two different prediction techniques directly with heliospheric observations (i.e., ACE, STEREO-A & B, Ulysses) of solar wind speed to determine whether one clearly out performs the other.

  18. Solar Wind Associated with Near Equatorial Coronal Hole M ...

    Indian Academy of Sciences (India)

    2015-05-25

    May 25, 2015 ... pute coronal hole radiative energy near the earth and it is found to be of similar order as that of ... hole and energy due to solar wind, it is conjectured that solar wind might have originated around the ..... velocity Vsw (assuming wind velocity is constant throughout from the source to the place of observation) ...

  19. Western Wind and Solar Integration Study: Hydropower Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Acker, T.; Pete, C.

    2012-03-01

    The U.S. Department of Energy's (DOE) study of 20% Wind Energy by 2030 was conducted to consider the benefits, challenges, and costs associated with sourcing 20% of U.S. energy consumption from wind power by 2030. This study found that with proactive measures, no insurmountable barriers were identified to meet the 20% goal. Following this study, DOE and the National Renewable Energy Laboratory (NREL) conducted two more studies: the Eastern Wind Integration and Transmission Study (EWITS) covering the eastern portion of the U.S., and the Western Wind and Solar Integration Study (WWSIS) covering the western portion of the United States. The WWSIS was conducted by NREL and research partner General Electric (GE) in order to provide insight into the costs, technical or physical barriers, and operational impacts caused by the variability and uncertainty of wind, photovoltaic, and concentrated solar power when employed to serve up to 35% of the load energy in the WestConnect region (Arizona, Colorado, Nevada, New Mexico, and Wyoming). WestConnect is composed of several utility companies working collaboratively to assess stakeholder and market needs to and develop cost-effective improvements to the western wholesale electricity market. Participants include the Arizona Public Service, El Paso Electric Company, NV Energy, Public Service of New Mexico, Salt River Project, Tri-State Generation and Transmission Cooperative, Tucson Electric Power, Xcel Energy and the Western Area Power Administration.

  20. Association Between the Solar Wind Speed, Interplanetary Magnetic ...

    Indian Academy of Sciences (India)

    Meena Pokharia

    2017-11-27

    Nov 27, 2017 ... Abstract. The purpose of the present study is to investigate the association of the cosmic ray intensity (CRI) and interplanetary magnetic field (IMF) with high speed solar wind streams (HSSWS) and slow speed solar wind streams (SSSWS) for solar cycle −23 and 24. We have found very interesting and ...

  1. Association Between the Solar Wind Speed, Interplanetary Magnetic ...

    Indian Academy of Sciences (India)

    The purpose of the present study is to investigate the association of the cosmic ray intensity (CRI) and interplanetary magnetic field (IMF) with high speed solar wind streams (HSSWS) and slow speed solar wind streams (SSSWS) for solar cycle −23 and 24. We have found very interesting and adequate results where CRI ...

  2. Cometary X-rays. Solar wind charge exchange in cometary atmospheres

    Science.gov (United States)

    Bodewits, Dennis

    2007-06-01

    The interaction of the solar wind with the planets and the interstellar medium is of key importance for the evolution of our solar system. The interaction with Earth's atmosphere is best known for the northern light. In case of Mars, the interaction with the solar wind might have lead to the erosion of its atmosphere. Solar wind-atmosphere interactions can be studied particularly well in cometary atmospheres, because in that case the solar wind flow is not attenuated by a planetary magnetic field and interacts directly with its atmosphere, the coma. The size of the cometary atmosphere (in the order of 10(4-10^5) km) allows remote tracking of the ions as they penetrate into the comet's atmosphere, offering a unique window on the cometary atmosphere, the solar wind and the interaction of these two plasmas. When solar wind ions fly through an atmosphere they are neutralized via charge exchange reactions with the neutral gaseous species. These reactions depend strongly on target species and collision velocity. The resulting X-ray and Far-UV emission can therefore be regarded as a fingerprint of the underlying reaction, with many diagnostic qualities. My thesis studies have focussed on all aspects relevant for X-ray emission from comets: experimental studies of state-to-state charge exchange cross sections, observations of X-ray emission from comets with Chandra, XMM, and Swift, and theoretical modelling of the interaction of solar wind ions with cometary gasses and the resulting X-ray emission spectrum. Together, this has greatly improved our understanding of the interaction of the solar wind with solar system objects and in more general, of physical processes in wind-environment collisions. The thorough understanding of cometary charge exchange emission has opened the door to the direct observation of more complex solar wind interactions such as those with Mars and Venus.

  3. Solar wind rare gas analysis: Trapped solar wind helium and neon in Surveyor 3 material

    Science.gov (United States)

    Buehler, F.; Eberhardt, P.; Geiss, J.; Schwarzmueller, J.

    1972-01-01

    The He-4 and Ne-20 contents in sections of the Surveyor 3 support strut samples were determined by optical and scanning electron microscopy and are compared to the results of the Apollo solar wind composition (SWC) experiments. The He-4/Ne-20 ratio in the samples from the sunlit side of the strut was approximately 300; the ratios determined in Apollo 12 lunar fines and SWC foil were below 100. The He-4/He-3 ratios were also determined, and the ratio obtained from Surveyor 3 material is higher than those found with Apollo 11 and 12 SWC experiments. The effects of spallation by cosmic rays or solar protons, stripping by cosmic ray or energetic solar alpha particles, recycling of solar wind He and radiogenic Ne, He from terrestrial atmosphere, mass discrimination near the moon, mass dependence of trapping probability, diffusion, and contamination by lunar dust are considered.

  4. On the Origins of the Intercorrelations Between Solar Wind Variables

    Science.gov (United States)

    Borovsky, Joseph E.

    2018-01-01

    It is well known that the time variations of the diverse solar wind variables at 1 AU (e.g., solar wind speed, density, proton temperature, electron temperature, magnetic field strength, specific entropy, heavy-ion charge-state densities, and electron strahl intensity) are highly intercorrelated with each other. In correlation studies of the driving of the Earth's magnetosphere-ionosphere-thermosphere system by the solar wind, these solar wind intercorrelations make determining cause and effect very difficult. In this report analyses of solar wind spacecraft measurements and compressible-fluid computer simulations are used to study the origins of the solar wind intercorrelations. Two causes are found: (1) synchronized changes in the values of the solar wind variables as the plasma types of the solar wind are switched by solar rotation and (2) dynamic interactions (compressions and rarefactions) in the solar wind between the Sun and the Earth. These findings provide an incremental increase in the understanding of how the Sun-Earth system operates.

  5. Turbulent Transport in a Three-dimensional Solar Wind

    Energy Technology Data Exchange (ETDEWEB)

    Shiota, D. [Institute for Space-Earth Environmental Research, Nagoya University, Nagoya, Aichi 464-8601 (Japan); Zank, G. P.; Adhikari, L.; Hunana, P. [Center for Space Plasma and Aeronomic Research (CSPAR), Department of Space Science, University of Alabama in Huntsville, Huntsville, AL 35805 (United States); Telloni, D. [INAF—Astrophysical Observatory of Torino, Via Osservatorio 20, I-10025 Pino Torinese (Italy); Bruno, R., E-mail: shiota@isee.nagoya-u.ac.jp [INAF-IAPS Istituto di Astrofisica e Planetologia Spaziali, Via del Fosso del Cavaliere 100, I-00133 Roma (Italy)

    2017-03-01

    Turbulence in the solar wind can play essential roles in the heating of coronal and solar wind plasma and the acceleration of the solar wind and energetic particles. Turbulence sources are not well understood and thought to be partly enhanced by interaction with the large-scale inhomogeneity of the solar wind and the interplanetary magnetic field and/or transported from the solar corona. To investigate the interaction with background inhomogeneity and the turbulence sources, we have developed a new 3D MHD model that includes the transport and dissipation of turbulence using the theoretical model of Zank et al. We solve for the temporal and spatial evolution of three moments or variables, the energy in the forward and backward fluctuating modes and the residual energy and their three corresponding correlation lengths. The transport model is coupled to our 3D model of the inhomogeneous solar wind. We present results of the coupled solar wind-turbulence model assuming a simple tilted dipole magnetic configuration that mimics solar minimum conditions, together with several comparative intermediate cases. By considering eight possible solar wind and turbulence source configurations, we show that the large-scale solar wind and IMF inhomogeneity and the strength of the turbulence sources significantly affect the distribution of turbulence in the heliosphere within 6 au. We compare the predicted turbulence distribution results from a complete solar minimum model with in situ measurements made by the Helios and Ulysses spacecraft, finding that the synthetic profiles of the turbulence intensities show reasonable agreement with observations.

  6. Eigenmode Structure in Solar Wind Langmuir Waves

    Science.gov (United States)

    Malaspina, D. M.; Ergun, R.; Bougeret, J.; Kaiser, M. L.; Bale, S.; Cairns, I. H.; Cattell, C. A.; Kellogg, P. J.; Newman, D. L.

    2007-12-01

    Bursty Langmuir waves associated with space plasma phenomena including type II and type III solar radio bursts, auroral field-aligned electrons, and radiation from shocks often exhibit localized beat-type waveforms. A consensus view on the modulation mechanism remains elusive. Current theories include multi-wave interactions, turbulence, or non-linear growth such as kinetic localization. Most of these theories start with the assumption that the density of the background plasma is near-uniform, in spite of numerous observations to the contrary. An alternative approach is to start with the assumption that density perturbations pre-exist. We construct an analytical electric field solution, describing Langmuir waves as a combination of trapped eigenmodes within a parabolic density well. This hypothesis is supported by discreet frequency structure in auroral Langmuir wave observations observed to be associated with density fluctuations, and by the high degree of localization observed in solar wind borne Langmuir waves. This simple, one-dimensional model can reproduce waveform and frequency structure of localized Langmuir waves observed by STEREO/SWAVES. The waveforms can be reasonably reproduced using linear combinations of only a few low-mode eigenmode solutions. The eigenmode solutions are sensitive to plasma environmental parameters such as the electron temperature and solar wind velocity. The trapped-eigenmode solutions can form a theoretical basis to explore the non-linear behavior of Langmuir waves which may allow for efficient conversion and escape of electromagnetic emissions and second harmonic production.

  7. Interaction of the solar wind with comets: a Rosetta perspective.

    Science.gov (United States)

    Glassmeier, Karl-Heinz

    2017-07-13

    The Rosetta mission provides an unprecedented possibility to study the interaction of comets with the solar wind. As the spacecraft accompanies comet 67P/Churyumov-Gerasimenko from its very low-activity stage through its perihelion phase, the physics of mass loading is witnessed for various activity levels of the nucleus. While observations at other comets provided snapshots of the interaction region and its various plasma boundaries, Rosetta observations allow a detailed study of the temporal evolution of the innermost cometary magnetosphere. Owing to the short passage time of the solar wind through the interaction region, plasma instabilities such as ring--beam and non-gyrotropic instabilities are of less importance during the early life of the magnetosphere. Large-amplitude ultra-low-frequency (ULF) waves, the 'singing' of the comet, is probably due to a modified ion Weibel instability. This instability drives a cross-field current of implanted cometary ions unstable. The initial pick-up of these ions causes a major deflection of the solar wind protons. Proton deflection, cross-field current and the instability induce a threefold structure of the innermost interaction region with the characteristic Mach cone and Whistler wings as stationary interaction signatures as well as the ULF waves representing the dynamic aspect of the interaction.This article is part of the themed issue 'Cometary science after Rosetta'. © 2017 The Authors.

  8. Interaction of the solar wind with comets: a Rosetta perspective

    Science.gov (United States)

    Glassmeier, Karl-Heinz

    2017-05-01

    The Rosetta mission provides an unprecedented possibility to study the interaction of comets with the solar wind. As the spacecraft accompanies comet 67P/Churyumov-Gerasimenko from its very low-activity stage through its perihelion phase, the physics of mass loading is witnessed for various activity levels of the nucleus. While observations at other comets provided snapshots of the interaction region and its various plasma boundaries, Rosetta observations allow a detailed study of the temporal evolution of the innermost cometary magnetosphere. Owing to the short passage time of the solar wind through the interaction region, plasma instabilities such as ring-beam and non-gyrotropic instabilities are of less importance during the early life of the magnetosphere. Large-amplitude ultra-low-frequency (ULF) waves, the `singing' of the comet, is probably due to a modified ion Weibel instability. This instability drives a cross-field current of implanted cometary ions unstable. The initial pick-up of these ions causes a major deflection of the solar wind protons. Proton deflection, cross-field current and the instability induce a threefold structure of the innermost interaction region with the characteristic Mach cone and Whistler wings as stationary interaction signatures as well as the ULF waves representing the dynamic aspect of the interaction. This article is part of the themed issue 'Cometary science after Rosetta'.

  9. Solar Wind Disturbances Related to Geomagnetic Storms

    Science.gov (United States)

    Tan, A.; Lyatsky, W. B.

    2001-12-01

    We used the superposed epoch method to reconstruct a typical behavior of solar wind parameters before and during strong isolated geomagnetic storms. For this analysis we used 130 such geomagnetic storms during the period of 1966-2000. The results obtained show that a typical disturbance in the solar wind responsible for geomagnetic storm generation is associated with the propagation of high-speed plasma flow compressing ambient solar wind plasma and interplanetary magnetic field (IMF) ahead of this high-speed flow. This gives rise to enhanced magnetic field, plasma density, plasma turbulence and temperature, which start to increase several hours before geomagnetic storm onset. However, the IMF Bz (responsible for geomagnetic storm onset) starts to increase significantly later (approximately 6-7 hours after maximal variations in plasma density and IMF By). The time delay between peaks in IMF Bz and plasma density (and IMF By) may be a result of draping of high-speed plasma streams with ambient magnetic field in the (z-y) plane as discussed by some authors. This leads to an increase first in plasma density and IMF By ahead of a high-speed flow, which is followed by an increase in IMF Bz. This simple model allows us to predict that the probability for geomagnetic storm generation should depend on which edge of a high-speed flow encounters the Earth's magnetosphere. The probability for geomagnetic storm generation is expected to be maximal when the flow encounters the magnetosphere by its north-west edge for negative IMF By and south-west edge for positive IMF By.

  10. Role and Nature of Intermittency in Solar Wind Alfvénic Turbulence: Wind Observations.

    Science.gov (United States)

    Salem, C. S.; Mangeney, A.; Bale, S. D.

    2006-12-01

    In the Alfvénic regime, i.e. for frequencies below the local proton cyclotron frequency, solar wind MHD turbulence exhibits what appears like an inertial domain, with power-law spectra and scale-invariance, suggesting as in fluid turbulence, a nonlinear energy cascade from the large "energy containing" scales towards much smaller scales, where dissipation via kinetic effects is presumed to act. However, the intermittent character of the solar wind fluctuations in the inertial range is much more important than in ordinary fluids. Indeed, the fluctuations consist of a mixture of random fluctuations and small-scale "singular" or coherent structures. This intermittency modifies significantly the scaling exponents of actual power-law spectra, which are directly related to the physical nature of the energy cascade taking place in the solar wind. The identification of the most intermittent structures and their relation to dissipation represents then a crucial problem in the framework of turbulence. We will discuss here recent results on scaling laws and intermittency based on the use of Wavelet transforms on simultaneous WIND 3s resolution particle and magnetic field data from the 3DP and the MFi experiments respectively. More specifically, the Haar Wavelet transform is used to compute spectra, structure functions and probability distribution functions (PDFs). We show that this powerful technique allows: (1) for a systematic elimination of intermittency effects on spectra and structure functions and thus for a clear determination of the actual scaling properties in the inertial range, and (2) for a direct and systematic identification of the most active, singular structures responsible for the intermittency in the solar wind. The analysis of structure functions and PDFs will be reviewed and new results on the nature of the intermittent coherent structures will be presented.

  11. Scale-Invariance and Intermittency in the Solar Wind Alfvénic Turbulence: Wind Observations

    Science.gov (United States)

    Salem, C. S.; Mangeney, A.; Bale, S. D.; Veltri, P.

    2004-12-01

    In the "Alfvénic" regime, i.e. for frequencies below the local proton cyclotron frequency, solar wind MHD turbulence exhibits what appears like an inertial domain, with power-law spectra and scale-invariance, suggesting as in fluid turbulence, a nonlinear energy cascade from the large "energy containing" scales towards the small scales where dissipation by kinetic effects is presumed to act. However, the intermittent character of solar wind fluctuations is much more important than in ordinary fluids. Indeed, the fluctuations consist of a mixture of random fluctuations and small-scale "singular" or coherent structures. This intermittency modifies significantly the scaling exponents of actual power-law spectra, which are directly related to the physical nature of the energy cascade taking place in the solar wind. The identification of the most intermittent structures and their relation to dissipation represents then a crucial problem in the framework of turbulence. We present here a new approach to study the scaling laws and intermittency based on the use of Wavelet transforms on simultaneous WIND 3s resolution particle and magnetic field data from the 3DP and the MFi experiments respectively. Using the Haar wavelet transform, spectra and structure functions are calculated. We show that this powerful technique allows: (1) for a systematic elimination of intermittency effects on spectra and structure functions and thus for a clear determination of the actual scaling properties in the inertial range, and (2) for a direct and systematic identification of the most active, singular structures responsible for the intermittency in the solar wind. We finally discuss the various effects which may be important for the formation of these structures in the absence of collisions.

  12. Simulation experiments and solar wind sputtering

    International Nuclear Information System (INIS)

    Griffith, J.E.; Papanastassiou, D.A.; Russell, W.A.; Tombrello, T.A.; Weller, R.A.

    1978-01-01

    In order to isolate the role played by solar wind sputtering from other lunar surface phenomena a number of simulation experiments were performed, including isotope abundance measurements of Ca sputtered from terrestrial fluorite and plagioclase by 50-keV and 130-keV 14 N beams, measurement of the energy distribution of U atoms sputtered with 80-keV 40 Ar, and measurement of the fraction of sputtered U atoms which stick on the surfaces used to collect these atoms. 10 references

  13. Genesis Solar Wind Samples: Update of Availability

    Science.gov (United States)

    Gonzalez, C. P.; Allums, K. K.; Allton, J. H.

    2015-01-01

    The Genesis mission collected solar wind atoms for 28 months with a variety of collectors. The array wafer collector availability is displayed in the online catalog. The purpose of this report is to update the community on availability of array wafer samples and to preview other collectors which are in the process of being added to the online catalog. A total of fifteen pure materials were selected based on engineering and science requirements. Most of the materials were semiconductor wafers which were mounted on the arrays.

  14. Genesis Solar Wind Science Canister Components Curated as Potential Solar Wind Collectors and Reference Contamination Sources

    Science.gov (United States)

    Allton, J. H.; Gonzalez, C. P.; Allums, K. K.

    2016-01-01

    The Genesis mission collected solar wind for 27 months at Earth-Sun L1 on both passive and active collectors carried inside of a Science Canister, which was cleaned and assembled in an ISO Class 4 cleanroom prior to launch. The primary passive collectors, 271 individual hexagons and 30 half-hexagons of semiconductor materials, are described in. Since the hard landing reduced the 301 passive collectors to many thousand smaller fragments, characterization and posting in the online catalog remains a work in progress, with about 19% of the total area characterized to date. Other passive collectors, surfaces of opportunity, have been added to the online catalog. For species needing to be concentrated for precise measurement (e.g. oxygen and nitrogen isotopes) an energy-independent parabolic ion mirror focused ions onto a 6.2 cm diameter target. The target materials, as recovered after landing, are described in. The online catalog of these solar wind collectors, a work in progress, can be found at: http://curator.jsc.nasa.gov/gencatalog/index.cfm This paper describes the next step, the cataloging of pieces of the Science Canister, which were surfaces exposed to the solar wind or component materials adjacent to solar wind collectors which may have contributed contamination.

  15. Statistical Properties of Geomagnetic Activity Indices and Solar Wind Parameters

    Directory of Open Access Journals (Sweden)

    Jung-Hee Kim

    2014-06-01

    Full Text Available As the prediction of geomagnetic storms is becoming an important and practical problem, conditions in the Earth’s magnetosphere have been studied rigorously in terms of those in the interplanetary space. Another approach to space weather forecast is to deal with it as a probabilistic geomagnetic storm forecasting problem. In this study, we carry out detailed statistical analysis of solar wind parameters and geomagnetic indices examining the dependence of the distribution on the solar cycle and annual variations. Our main findings are as follows: (1 The distribution of parameters obtained via the superimposed epoch method follows the Gaussian distribution. (2 When solar activity is at its maximum the mean value of the distribution is shifted to the direction indicating the intense environment. Furthermore, the width of the distribution becomes wider at its maximum than at its minimum so that more extreme case can be expected. (3 The distribution of some certain heliospheric parameters is less sensitive to the phase of the solar cycle and annual variations. (4 The distribution of the eastward component of the interplanetary electric field BV and the solar wind driving function BV2, however, appears to be all dependent on the solar maximum/minimum, the descending/ascending phases of the solar cycle and the equinoxes/solstices. (5 The distribution of the AE index and the Dst index shares statistical features closely with BV and BV2 compared with other heliospheric parameters. In this sense, BV and BV2 are more robust proxies of the geomagnetic storm. We conclude by pointing out that our results allow us to step forward in providing the occurrence probability of geomagnetic storms for space weather and physical modeling.

  16. Preface: Advances in solar physics

    Science.gov (United States)

    Georgoulis, Manolis K.; Nakariakov, Valery M.

    2015-12-01

    The idea for this special issue of Advances in Space Research (ASR) was formulated during the 14th European Solar Physics Meeting (ESPM-14) that took place in Dublin, Ireland in September 2014. Since ASR does not publish conference proceedings, it was decided to extend a general call to the international solar-physics community for manuscripts pertinent to the following thematic areas: New and upcoming heliospheric observational and data assimilation facilities.

  17. WSA-Enlil Solar Wind Prediction

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — WSA-Enlil is a large-scale, physics-based prediction model of the heliosphere, used by the Space Weather Forecast Office to provide 1-4 day advance warning of solar...

  18. Oblique proton fire hose instability in the expanding solar wind: Hybrid simulations

    Czech Academy of Sciences Publication Activity Database

    Hellinger, Petr; Trávníček, Pavel M.

    2008-01-01

    Roč. 113, A10 (2008), A10109/1-A10109/9 ISSN 0148-0227 R&D Projects: GA AV ČR IAA300420702; GA AV ČR IAA300420602 Institutional research plan: CEZ:AV0Z30420517; CEZ:AV0Z10030501 Keywords : kinetic instability * fire hose * solar wind * fire hose instabilities * linear analysis * nonlinear evolution * solar wind Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 3.147, year: 2008

  19. Delta-WIND Solar Panel Repair and Move at Cape Canaveral Air Station, Hangar AO

    Science.gov (United States)

    1994-01-01

    This NASA Kennedy Space Center video release presents footage of workcrews moving the WIND solar panel in order to make repairs in Hangar AO prior to launch at Cape Canaveral Air Station, Sep. 13, 1994. WIND was launched on November 1, 1994 and is the first of two NASA spacecraft in the Global Geospace Science initiative and part of the International Solar Terrestrial Physics (ISTP) Project.

  20. Solar wind structure out of the ecliptic plane over solar cycles

    Science.gov (United States)

    Sokol, J. M.; Bzowski, M.; Tokumaru, M.

    2017-12-01

    Sun constantly emits a stream of plasma known as solar wind. Ground-based observations of the solar wind speed through the interplanetary scintillations (IPS) of radio flux from distant point sources and in-situ measurements by Ulysses mission revealed that the solar wind flow has different characteristics depending on the latitude. This latitudinal structure evolves with the cycle of solar activity. The knowledge on the evolution of solar wind structure is important for understanding the interaction between the interstellar medium surrounding the Sun and the solar wind, which is responsible for creation of the heliosphere. The solar wind structure must be taken into account in interpretation of most of the observations of heliospheric energetic neutral atoms, interstellar neutral atoms, pickup ions, and heliospheric backscatter glow. The information on the solar wind structure is not any longer available from direct measurements after the termination of Ulysses mission and the only source of the solar wind out of the ecliptic plane is the IPS observations. However, the solar wind structure obtained from this method contains inevitable gaps in the time- and heliolatitude coverage. Sokół et al 2015 used the solar wind speed data out of the ecliptic plane retrieved from the IPS observations performed by Institute for Space-Earth Environmental Research (Nagoya University, Japan) and developed a methodology to construct a model of evolution of solar wind speed and density from 1985 to 2013 that fills the data gaps. In this paper we will present a refined model of the solar wind speed and density structure as a function of heliographic latitude updated by the most recent data from IPS observations. And we will discuss methods of extrapolation of the solar wind structure out of the ecliptic plane for the past solar cycles, when the data were not available, as well as forecasting for few years upward.

  1. Signatures of Slow Solar Wind Streams from Active Regions in the Inner Corona

    Science.gov (United States)

    Slemzin, V.; Harra, L.; Urnov, A.; Kuzin, S.; Goryaev, F.; Berghmans, D.

    2013-08-01

    The identification of solar-wind sources is an important question in solar physics. The existing solar-wind models ( e.g., the Wang-Sheeley-Arge model) provide the approximate locations of the solar wind sources based on magnetic field extrapolations. It has been suggested recently that plasma outflows observed at the edges of active regions may be a source of the slow solar wind. To explore this we analyze an isolated active region (AR) adjacent to small coronal hole (CH) in July/August 2009. On 1 August, Hinode/EUV Imaging Spectrometer observations showed two compact outflow regions in the corona. Coronal rays were observed above the active-region coronal hole (ARCH) region on the eastern limb on 31 July by STEREO-A/EUVI and at the western limb on 7 August by CORONAS- Photon/TESIS telescopes. In both cases the coronal rays were co-aligned with open magnetic-field lines given by the potential field source surface model, which expanded into the streamer. The solar-wind parameters measured by STEREO-B, ACE, Wind, and STEREO-A confirmed the identification of the ARCH as a source region of the slow solar wind. The results of the study support the suggestion that coronal rays can represent signatures of outflows from ARs propagating in the inner corona along open field lines into the heliosphere.

  2. Bidirectional solar wind electron heat flux events

    International Nuclear Information System (INIS)

    Gosling, J.T.; Baker, D.N.; Bame, S.J.; Feldman, W.C.; Zwickl, R.D.; Smith, E.J.

    1987-01-01

    Normally the approx. >80-eV electrons which carry the solar wind electron heat flux are collimated along the interplanetary magnetic field (IMF) in the direction pointing outward away from the sun. Occasionally, however, collimated fluxes of approx. >80-eV electrons are observed traveling both parallel and antiparallel to the IMF. Here we present the results of a survey of such bidirectional electron heat flux events as observed with the plasma and magnetic field experiments aboard ISEE 3 at times when the spacecraft was not magnetically connected to the earth's bow shock. The onset of a bidirectional electron heat flux at ISEE 3 usually signals spacecraft entry into a distinct solar wind plasma and field entity, most often characterized by anomalously low proton and electron temperatures, a strong, smoothly varying magnetic field, a low plasma beta, and a high total pressure. Significant field rotations often occur at the beginning and/or end of bidirectional heat flux events, and, at times, the large field rotations characteristic of ''magnetic clouds'' are present. Approximately half of all bidirectional heat flux events are associated with and follow interplanetary shocks, while the other events have no obvious shock associations

  3. Solar wind heating by an embedded quasi-isothermal pick-up ion fluid

    Directory of Open Access Journals (Sweden)

    H. J. Fahr

    fed into the thermal proton energy. In a first-order evaluation of this expression we can estimate that under stationary flow conditions about 10% of the initial injection energy is eventually transfered to solar wind protons, independent of the actual injection rate. 

    Key words. Interplanetary physics (energetic particles; interstellar gas; solar wind plasma

  4. Solar wind heating by an embedded quasi-isothermal pick-up ion fluid

    Directory of Open Access Journals (Sweden)

    H. J. Fahr

    2002-10-01

    fed into the thermal proton energy. In a first-order evaluation of this expression we can estimate that under stationary flow conditions about 10% of the initial injection energy is eventually transfered to solar wind protons, independent of the actual injection rate. Key words. Interplanetary physics (energetic particles; interstellar gas; solar wind plasma

  5. The solar wind in the third dimension

    International Nuclear Information System (INIS)

    Neugebauer, M.

    1996-01-01

    For many years, solar-wind physicists have been using plasma and field data acquired near the ecliptic plane together with data on the scintillation of radio sources and remote sensing of structures in the solar corona to estimate the properties of the high-latitude solar wind. Because of the highly successful Ulysses mission, the moment of truth is now here. This paper summarizes the principal agreements and differences between the Ulysses observations and expectations. The speed of the high-latitude solar wind was even greater than anticipated. The strength of the radial component of the interplanetary magnetic field was found to be independent of latitude. The tilt of the heliospheric current sheet caused reverse corotating shocks to be observed to higher latitudes than forward corotating shocks. The energetic particles accelerated in these shocks were detected well poleward of the latitudes at which Ulysses observed the interaction regions themselves. As anticipated, there was a strong flux of outward propagating Alfven waves throughout the polar flow. Those waves were probably largely responsible for the smaller-than-anticipated increase of galactic cosmic rays with increasing latitude. As expected, the charge state or ionization temperature of heavy ions was lower in the polar flow than in low-latitude interstream flows. What was not anticipated was the correlation of elemental abundances with ionization temperatures; the Ulysses data revealed a connection between the first ionization time in the upper chromosphere and the final ionization state in the corona. As expected, transient events were detected to ∼60 deg. latitude, but the properties of those high latitude transient flows held some surprises. At high latitudes, the speeds of the transient interplanetary plasma clouds were approximately the same as the speed of the ambient plasma and the expansion of the clouds drove forward and reverse shock pairs that had never been seen at low latitudes. At high

  6. Proton thermal energetics in the solar wind: Helios reloaded

    Czech Academy of Sciences Publication Activity Database

    Hellinger, Petr; Trávníček, Pavel M.; Štverák, Štěpán; Matteini, L.; Velli, M.

    2013-01-01

    Roč. 118, č. 4 (2013), s. 3151-3165 ISSN 2169-9380 R&D Projects: GA ČR GAP209/12/2041; GA ČR GAP209/12/2023 EU Projects: European Commission(XE) 263340 - SWIFF Grant - others:EU(XE) SHOCK Project No. 284515 Institutional support: RVO:67985815 ; RVO:68378289 Keywords : solar wind * proton energetics * turbulent heating Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics; BL - Plasma and Gas Discharge Physics (UFA-U) Impact factor: 3.440, year: 2013

  7. Electrostatic lofting variability of lunar dust under solar wind and solar uv irradiance

    Science.gov (United States)

    Cihan Örger, Necmi; Rodrigo Cordova Alarcon, Jose; Cho, Mengu; Toyoda, Kazuhiro

    2016-07-01

    It has been considered that lunar horizon glow is produced by forward scattering of the sunlight above the terminator region by the electrically charged dust grains. Previous lunar missions showed that lunar horizon glow is highly varying phenomenon; therefore, it is required to understand how this physical mechanism fundamentally occurs in order to be able to observe it. Therefore, terminator region and the dayside of the moon are the focus areas of this study in order to explain forward scattering of the sunlight towards night side region in the future steps of this work. In this paper, the results of lunar dust height calculations are presented as a function of solar zenith angle and solar wind properties. First, equilibrium surface potential, Debye length and surface electric field have been calculated to be used in the dust model to predict the lofting of lunar dust under various solar wind conditions. Dependence of the dust lofting on different parameters such as electron temperature or plasma density can be explained from the initial results. In addition, these results showed that zero potential occurs between subsolar point and terminator region as it is expected, where the maximum height of dust particles are minimum, and its position changes according to the solar wind properties and photoemission electron temperature. Relative to this work, a CubeSat mission is currently being developed in Kyushu Institute of Technology to observe lunar horizon glow.

  8. Solar and Wind Technologies for Hydrogen Production Report to Congress

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2005-12-01

    DOE's Solar and Wind Technologies for Hydrogen Production Report to Congress summarizes the technology roadmaps for solar- and wind-based hydrogen production. Published in December 2005, it fulfills the requirement under section 812 of the Energy Policy Act of 2005.

  9. Chaos in the solar wind flow near Earth

    Indian Academy of Sciences (India)

    We have done a time series analysis of daily average data of solar wind velocity, density and temperature at 1 AU measured by ACE spacecraft for a period of nine years. We have used the raw data without filtering to give a faithful representation of the nonlinear behaviour of the solar wind flow which is a novel one.

  10. Chaos in the solar wind flow near Earth

    Indian Academy of Sciences (India)

    Abstract. We have done a time series analysis of daily average data of solar wind velocity, density and temperature at 1 AU measured by ACE spacecraft for a period of nine years. We have used the raw data without filtering to give a faithful representation of the nonlinear behaviour of the solar wind flow which is a novel one ...

  11. Remote Sensing of the Heliospheric Solar Wind using Radio ...

    Indian Academy of Sciences (India)

    tribpo

    Abstract. The ground-based radio astronomy method of interplanetary scintillations (IPS) and spacecraft observations have shown, in the past. 25 years, that while coronal holes give rise to stable, recurring high speed solar wind streams during the minimum of the solar activity cycle, the slow speed wind seen more during ...

  12. Remote Sensing of the Heliospheric Solar Wind using Radio ...

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... The ground-based radio astronomy method of interplanetary scintillations (IPS) and spacecraft observations have shown, in the past 25 years, that while coronal holes give rise to stable, recurring high speed solar wind streams during the minimum of the solar activity cycle, the slow speed wind seen more ...

  13. Source Surface Models and Their Impact on Solar Wind Research

    Science.gov (United States)

    Sokolov, I. V.; Roussev, I. I.; Gombosi, T. I.; Liu, Y.

    2005-05-01

    To perform realistic modeling of the important processes in the solar corona, such as coronal mass ejections, flares, as well as the acceleration of solar particles, one needs to incorporate into the physical models any complicated pattern of the coronal magnetic field. The coronal magnetic field topology is determined by the helmet streamers (with closed field lines), the coronal holes (with open field lines) as well as the fine, but crucially important, details of the small-scale active regions. The standard practice to recover the global 3-D structure of the solar magnetic field from observations is to use the source surface model, in which the field is assumed to be potential, i.e., current-free. This approach ignores any volumetric current there may be present in the corona, and also neglects the existence of the equatorial current sheet, which starts from a height of 3-5 Rs above the solar surface. The fully potential solar magnetic field would have only closed field lines, not allowing for the solar wind to exist. In our Solar Corona model, incorparated into the Space Weather Modelling Framework, the solar magnetic field is split into two constituitive parts: one potential part which is recovered from the magnetic field data (e.g., from WSO, MWO, or MDI data) using the source surface method; and, one other non-potential part. For the potential field, we keep only the spherical harmonics decreasing with distance from the Sun or, equivalently, we use a very large value of the source surface radius. For the non-potential field, we solve the time-dependent induction equation with zero boundary condition at the solar surface. The full set of conservation laws for the MHD system is solved numerically using the BATS-R-US code. To power the solar wind in our model, we use a phenomenological turbulence model described in an earlier paper. The resulting steady-state MHD solution includes the well-resolved current sheet and helmet streamers. The modeled structure of

  14. The variable nature of the solar wind

    Science.gov (United States)

    Jackson, B. V.; Yu, H. S.; Buffington, A.; Hick, P. P.

    2017-12-01

    When analyzing LASCO C2 and STEREO SECCHI COR2 coronagraph images, and using UCSD-developed two-dimensional (2D) correlation-tracking techniques, we found that the observed outflow is not a static well-ordered motion, but instead has highly variable speed structures. This outward motion of structures is also observed over the entire high-resolution STEREO HI-1 field of view, whether or not a CME is present. We have recently exploited the correlation-tracking techniques to measure the optical flow on HI-1A images. The analysis yields a wealth of information about the outward motion of large- and fine-scale structures in the heliosphere. These include the 2D speed of features, the level of the correlation, the brightness of the feature measured, and the structure non-radial 2D motion. Here we present the analysis of a well-observed fast-moving CME and the speed of different structures within it. The preliminary results of the heliospheric velocity determination using HI-1A images show the nature of the solar wind within the CME that is organized into a fast and patchy high-speed front followed by a slower internal region. From this we conclude that the Parker Solar Probe and ESA Solar Orbiter will measure this highly-variable structure in situ within CMEs, and we speculate that these structures will also show abundance and magnetic field differences related to this high variability.

  15. The Western Wind and Solar Integration Study Phase 2

    Energy Technology Data Exchange (ETDEWEB)

    Lew, Debra [National Renewable Energy Lab. (NREL), Golden, CO (United States); Brinkman, Greg [National Renewable Energy Lab. (NREL), Golden, CO (United States); Ibanez, E. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Florita, A. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Heaney, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hodge, B. -M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hummon, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Stark, G. [National Renewable Energy Lab. (NREL), Golden, CO (United States); King, J. [RePPAE; Lefton, S. A. [Intertek-APTECH, Houston, TX (United States); Kumar, N. [Intertek-APTECH, Houston, TX (United States); Agan, D. [Intertek-APTECH, Houston, TX (United States); Jordan, G. [GE Energy, Fairfield, CT (United States); Venkataraman, S. [GE Energy, Fairfield, CT (United States)

    2013-09-01

    The electric grid is a highly complex, interconnected machine, and changing one part of the grid can have consequences elsewhere. Adding wind and solar affects the operation of the other power plants and adding high penetrations can induce cycling of fossil-fueled generators. Cycling leads to wear-and-tear costs and changes in emissions. Phase 2 of the Western Wind and Solar Integration Study (WWSIS-2) evaluated these costs and emissions and simulated grid operations for a year to investigate the detailed impact of wind and solar on the fossil-fueled fleet. This built on Phase 1, one of the largest wind and solar integration studies ever conducted, which examined operational impacts of high wind and solar penetrations in the West(GE Energy 2010).

  16. The Western Wind and Solar Integration Study Phase 2

    Energy Technology Data Exchange (ETDEWEB)

    Lew, D.; Brinkman, G.; Ibanez, E.; Hodge, B. M.; Hummon, M.; Florita, A.; Heaney, M.

    2013-09-01

    The electric grid is a highly complex, interconnected machine, and changing one part of the grid can have consequences elsewhere. Adding wind and solar affects the operation of the other power plants and adding high penetrations can induce cycling of fossil-fueled generators. Cycling leads to wear-and-tear costs and changes in emissions. Phase 2 of the Western Wind and Solar Integration Study (WWSIS-2) evaluated these costs and emissions and simulated grid operations for a year to investigate the detailed impact of wind and solar on the fossil-fueled fleet. This built on Phase 1, one of the largest wind and solar integration studies ever conducted, which examined operational impacts of high wind and solar penetrations in the West.

  17. Solar neutrinos and neutrino physics

    Energy Technology Data Exchange (ETDEWEB)

    Maltoni, Michele [Universidad Autonoma de Madrid, Instituto de Fisica Teorica UAM/CSIC, Madrid (Spain); Smirnov, Alexei Yu. [Max-Planck Institute for Nuclear Physics, Heidelberg (Germany); ICTP, Trieste (Italy)

    2016-04-15

    Solar neutrino studies triggered and largely motivated the major developments in neutrino physics in the last 50 years. The theory of neutrino propagation in different media with matter and fields has been elaborated. It includes oscillations in vacuum and matter, resonance flavor conversion and resonance oscillations, spin and spin-flavor precession, etc. LMA MSW has been established as the true solution of the solar neutrino problem. Parameters θ{sub 12} and Δm{sup 2}{sub 21} have been measured; θ{sub 13} extracted from the solar data is in agreement with results from reactor experiments. Solar neutrino studies provide a sensitive way to test theory of neutrino oscillations and conversion. Characterized by long baseline, huge fluxes and low energies they are a powerful set-up to search for new physics beyond the standard 3ν paradigm: new neutrino states, sterile neutrinos, non-standard neutrino interactions, effects of violation of fundamental symmetries, new dynamics of neutrino propagation, probes of space and time. These searches allow us to get stringent, and in some cases unique bounds on new physics. We summarize the results on physics of propagation, neutrino properties and physics beyond the standard model obtained from studies of solar neutrinos. (orig.)

  18. Sputtering of Lunar Regolith Simulant by Protons and Multicharged Heavy Ions at Solar Wind Energies

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Fred W [ORNL; Harris, Peter R [ORNL; Taylor, C. N. [Purdue University; Meyer III, Harry M [ORNL; Barghouty, N. [NASA Marshall Space Flight Center, Huntsville, AL; Adams Jr., J. [NASA Marshall Space Flight Center, Huntsville, AL

    2011-01-01

    We report preliminary results on sputtering of a lunar regolith simulant at room temperature by singly and multiply charged solar wind ions using quadrupole and time-of-flight (TOF) mass spectrometry approaches. Sputtering of the lunar regolith by solar-wind heavy ions may be an important particle source that contributes to the composition of the lunar exosphere, and is a possible mechanism for lunar surface ageing and compositional modification. The measurements were performed in order to assess the relative sputtering efficiency of protons, which are the dominant constituent of the solar wind, and less abundant heavier multicharged solar wind constituents, which have higher physical sputtering yields than same-velocity protons, and whose sputtering yields may be further enhanced due to potential sputtering. Two different target preparation approaches using JSC-1A AGGL lunar regolith simulant are described and compared using SEM and XPS surface analysis.

  19. Beam tracking strategies for studies of kinetic scales in the solar wind with THOR-CSW

    Science.gov (United States)

    De Keyser, Johan; Lavraud, Benoit; Neefs, Eddy; Berkenbosch, Sophie; Anciaux, Michel; Maggiolo, Romain

    2016-04-01

    Modern plasma spectrometers for monitoring the solar wind attempt to intelligently track the energy and direction of the solar wind beam in order to obtain solar wind velocity distributions more efficiently. Such beam tracking strategies offer some benefits, but also have their limitations and drawbacks. Benefits include an improved resolution and/or a faster velocity distribution function acquisition time. Limitations are due to instrument characteristics that tend to be optimized for a particular range of particle energies and arrival directions. A drawback is the risk to miss an important part of the velocity distribution or to lose track of the beam altogether. A comparison is presented of different beam tracking strategies under consideration for the THOR-CSW instrument in order to highlight a number of design decisions and their impact on the acquired velocity distributions. The gain offered by beam tracking in terms of increased time resolution turns out to be essential for studies of solar wind physics at kinetic scales.

  20. Statistical study of the substorm onset: its dependence on solar wind parameters and solar illumination

    Directory of Open Access Journals (Sweden)

    H. Wang

    2005-09-01

    Full Text Available Based on 1829 well-defined substorm onsets in the Northern Hemisphere, observed during a 2-year period by the FUV Imager on board the IMAGE spacecraft, a statistical study is performed. From the combination of solar wind parameter observations by ACE and magnetic field observations by the low altitude satellite CHAMP, the location of auroral breakups in response to solar illumination and solar coupling parameters are studied. Furthermore, the correspondence of the onset location with prominent large-scale field-aligned currents and electrojets are investigated. Solar illumination and the related ionospheric conductivity have significant effects on the most probable substorm onset latitude and local time. In sunlight, substorm onsets tend to occur 1h earlier in local time and 1.5° more poleward than in darkness. The solar wind input, represented by the merging electric field, integrated over 1h prior to the substorm, correlates well with the latitude of the breakup. Most poleward latitudes of the onsets are found to range around 73° magnetic latitude during very quiet times. Field-aligned and Hall currents observed concurrently with the onset are consistent with the signature of a westward travelling surge evolving out of the Harang discontinuity. The observations suggest that the ionospheric conductivity has an influence on the location of the precipitating energetic electron which causes the auroral break-up signature. Keywords. Ionosphere (Auroral ionosphere – Magnetospheric Physics (Current systems; Magnetosphereionosphere interactions

  1. Slow Solar Wind: Observable Characteristics for Constraining Modelling

    Science.gov (United States)

    Ofman, L.; Abbo, L.; Antiochos, S. K.; Hansteen, V. H.; Harra, L.; Ko, Y. K.; Lapenta, G.; Li, B.; Riley, P.; Strachan, L.; von Steiger, R.; Wang, Y. M.

    2015-12-01

    The Slow Solar Wind (SSW) origin is an open issue in the post SOHO era and forms a major objective for planned future missions such as the Solar Orbiter and Solar Probe Plus.Results from spacecraft data, combined with theoretical modeling, have helped to investigate many aspects of the SSW. Fundamental physical properties of the coronal plasma have been derived from spectroscopic and imaging remote-sensing data and in-situ data, and these results have provided crucial insights for a deeper understanding of the origin and acceleration of the SSW.Advances models of the SSW in coronal streamers and other structures have been developed using 3D MHD and multi-fluid equations.Nevertheless, there are still debated questions such as:What are the source regions of SSW? What are their contributions to the SSW?Which is the role of the magnetic topology in corona for the origin, acceleration and energy deposition of SSW?Which are the possible acceleration and heating mechanisms for the SSW?The aim of this study is to present the insights on the SSW origin and formationarisen during the discussions at the International Space Science Institute (ISSI) by the Team entitled ''Slowsolar wind sources and acceleration mechanisms in the corona'' held in Bern (Switzerland) in March2014--2015. The attached figure will be presented to summarize the different hypotheses of the SSW formation.

  2. Polar solar wind and interstellar wind properties from interplanetary Lyman-alpha radiation measurements

    Science.gov (United States)

    Witt, N.; Blum, P. W.; Ajello, J. M.

    1981-01-01

    The analysis of Mariner 10 observations of Lyman-alpha resonance radiation shows an increase of interplanetary neutral hydrogen densities above the solar poles. This increase is caused by a latitudinal variation of the solar wind velocity and/or flux. Using both the Mariner 10 results and other solar wind observations, the values of the solar wind flux and velocity with latitude are determined for several cases of interest. The latitudinal variation of interplanetary hydrogen gas, arising from the solar wind latitudinal variation, is shown to be most pronounced in the inner solar system. From this result it is shown that spacecraft Lyman-alpha observations are more sensitive to the latitudinal anisotropy for a spacecraft location in the inner solar system near the downwind axis.

  3. ESMN / European Solar Physics Research Area

    NARCIS (Netherlands)

    Rutten, R.J.

    1999-01-01

    I briefly present the European Solar Magnetometry Network as a contemporary example of solar physics collaboration across European borders,and I place it in larger-scale context by discussing the past and future of Europe-wide solar physics organization.Solar physics from space is inherently

  4. Innovations in Wind and Solar PV Financing

    Energy Technology Data Exchange (ETDEWEB)

    Cory, K.; Coughlin, J.; Jenkin, T.; Pater, J.; Swezey, B.

    2008-02-01

    There is growing national interest in renewable energy development based on the economic, environmental, and security benefits that these resources provide. Historically, greater development of our domestic renewable energy resources has faced a number of hurdles, primarily related to cost, regulation, and financing. With the recent sustained increase in the costs and associated volatility of fossil fuels, the economics of renewable energy technologies have become increasingly attractive to investors, both large and small. As a result, new entrants are investing in renewable energy and new business models are emerging. This study surveys some of the current issues related to wind and solar photovoltaic (PV) energy project financing in the electric power industry, and identifies both barriers to and opportunities for increased investment.

  5. Dst Prediction Based on Solar Wind Parameters

    Directory of Open Access Journals (Sweden)

    Yoon-Kyung Park

    2009-12-01

    Full Text Available We reevaluate the Burton equation (Burton et al. 1975 of predicting Dst index using high quality hourly solar wind data supplied by the ACE satellite for the period from 1998 to 2006. Sixty magnetic storms with monotonously decreasing main phase are selected. In order to determine the injection term (Q and the decay time (tau of the equation, we examine the relationships between Dst* and VB_s, Delta Dst* and VB_s, and Delta Dst* and Dst* during the magnetic storms. For this analysis, we take into account one hour of the propagation time from the ACE satellite to the magnetopause, and a half hour of the response time of the magnetosphere/ring current to the solar wind forcing. The injection term is found to be Q({nT}/h=-3.56VB_s for VB_s>0.5mV/m and Q({nT}/h=0 for VB_s leq0.5mV/m. The tau (hour is estimated as 0.060 Dst* + 16.65 for Dst*>-175nT and 6.15 hours for Dst* leq -175nT. Based on these empirical relationships, we predict the 60 magnetic storms and find that the correlation coefficient between the observed and predicted Dst* is 0.88. To evaluate the performance of our prediction scheme, the 60 magnetic storms are predicted again using the models by Burton et al. (1975 and O'Brien & McPherron (2000a. The correlation coefficients thus obtained are 0.85, the same value for both of the two models. In this respect, our model is slightly improved over the other two models as far as the correlation coefficients is concerned. Particularly our model does a better job than the other two models in predicting intense magnetic storms (Dst* lesssim -200nT.

  6. Electrifying Greece with solar and wind energy

    Directory of Open Access Journals (Sweden)

    Mentis Dimitris

    2014-01-01

    Full Text Available Ensuring energy security, reducing GHG emissions and boosting the competitiveness of a country’s economy by attracting investments and technical knowhow are of paramount importance considering the targets of “20-20-20” set by the European community. Being the cradle of civilization, Greece appears today as a country caught in a prolonged hard economic and social crisis, the way out of which its citizens are looking forward as well as the entire European Union. Establishment of the leading renewable energy sources like solar and wind in Greece will not only increase the independence of its own electrification but will also provide with a foundation for developing the market of international trade of “green” energy. This paper initially highlights the current status of photovoltaics and wind turbines in Greece. Furthermore, this study evaluates whether a higher penetration of the above mentioned green energy sources would have positive impact in the economy of the country or not and in what extent they could decline the CO2 emissions until 2020, comparing to the corresponding levels in 2010.

  7. Simulating the Reiner Gamma Lunar Swirl: Solar Wind Standoff Works!

    Science.gov (United States)

    Deca, Jan; Divin, Andrey; Lue, Charles; Ahmadi, Tara; Horányi, Mihály

    2017-04-01

    Discovered by early astronomers during the Renaissance, the Reiner Gamma formation is a prominent lunar surface feature. Observations have shown that the tadpole-shaped albedo marking, or swirl, is co-located with one of the strongest crustal magnetic anomalies on the Moon. The region therefore presents an ideal test case to constrain the kinetic solar wind interaction with lunar magnetic anomalies and its possible consequences for lunar swirl formation. All known swirls have been associated with magnetic anomalies, but the opposite does not hold. The evolutionary scenario of the lunar albedo markings has been under debate since the Apollo era. By coupling fully kinetic simulations with a surface vector mapping model based on Kaguya and Lunar Prospector magnetic field measurements, we show that solar wind standoff is the dominant process to have formed the lunar swirls. It is an ion-electron kinetic interaction mechanism that locally prevents weathering by solar wind ions and the subsequent formation of nanophase iron. The correlation between the surface weathering process and the surface reflectance is optimal when evaluating the proton energy flux, rather than the proton density or number flux. This is an important result to characterise the primary process for surface darkening. In addition, the simulated proton reflection rate is for the first time directly compared with in-orbit flux measurements from the SARA:SWIM ion sensor onboard the Chandrayaan-1 spacecraft. The agreement is found excellent. Understanding the relation between the lunar surface albedo features and the co-located magnetic anomaly is essential for our interpretation of the Moon's geological history, space weathering, and to evaluate future lunar exploration opportunities. This work was supported in part by NASA's Solar System Exploration Research Virtual Institute (SSERVI): Institute for Modeling Plasmas, Atmosphere, and Cosmic Dust (IMPACT). The work by C.L. was supported by NASA grant NNX

  8. CONDITIONED ANALYSIS OF HIGH-LATITUDE SOLAR WIND INTERMITTENCY

    International Nuclear Information System (INIS)

    D'Amicis, R.; Consolini, G.; Bavassano, B.; Bruno, R.

    2012-01-01

    The solar wind is a turbulent medium displaying intermittency. Its intermittent features have been widely documented and studied, showing how the intermittent character is different in fast and slow wind. In this paper, a statistical conditioned analysis of the solar wind intermittency for a period of high-latitude fast solar wind is presented. In particular, the intermittent features are investigated as a function of the Alfvénic degree of fluctuations at a given scale. The results show that the main contribution to solar wind intermittency is due to non-Alfvénic structures, while Alfvénic increments are found to be characterized by a smaller level of intermittency than the previous ones. Furthermore, the lifetime statistics of Alfvénic periods are discussed in terms of a multiscale texture of randomly oriented flux tubes.

  9. Coupled Solar Wind-Magnetosphere-Ionosphere-Thermosphere System by QFT

    Science.gov (United States)

    Chen, Shao-Guang

    NM may be applied to the high-speed and the microscopic conditions. Because of the result of a test of GR with use of a hydrogen-maser frequency standard in a spacecraft launched nearly vertically upward to 10000 km (R. F. C. Vessot et.al., Phys. Rev. Lett. 45, 2081 (1980)), the isotropy of one-way velocity of light had been validated at the 1*10 (-10) level (D2.4-0030-12, H0.1-0009-12, H0.2-0008-12). Again from the Lorentz transformation (H01-0006-08) and the uncertainty principle (H05-0036-10) deduced from the metrical results of Doppler effects, SR and QM, thereby QFT and GR, all become the inferential theorems from generalized NM. Eq.(1) is as a bridge to join the modern physics and classical physics. In my paper ‘Basal electric and magnetic fields of celestial bodies come from positive-negative charge separation caused by gravitation of quasi-Casimir pressure in weak interaction’ (D31-0054-10): According to QFT the gravitation is the statistic average pressure collided by net virtual neutrinos nuν _{0} flux, the net nuν _{0} flux can press a part freedom electrons in plasma of ionosphere into the surface of celestial bodies, the static electric force of redundant positive ions prevents electrons further falling and till reach the equilibrium of stable spatial charge distribution, which is just the cause of the geomagnetic field and the geo-electric field. In the solar surface plasma add the negative charge from ionosphere electrons again rotate, thereby come into being the solar basal magnetic field. The solar surface plasma with additional electrons get the dynamic balance between the upwards force of stable positive charge distribution in the solar upside gas and the downwards force of the vacuum net nuν _{0} flux pressure (solar gravity). When the Jupiter enter into the connecting line of Sun and the center of Galaxy, the pressure (solar gravity) observed from earth will weaken because of the Jupiter stop (shield) the most net nuν _{0} flux which

  10. Solar Neutrino Physics

    International Nuclear Information System (INIS)

    Bowles, T.J.; Brice, S.J.; Esch, E.-I.; Fowler, M.M.; Goldschmidt, A.; Hime, A.; McGirt, F.; Miller, G.G.; Thornewell, P.M.; Wilhelmy, J.B.; Wouters, J.M.

    1999-01-01

    With its heavy water target, the Sudbury Neutrino Observatory (SNO) offers the unique opportunity to measure both the 8B flux of electron neutrinos from the Sun and, independently, the flux of all active neutrino species reaching the Earth. A model-independent test of the hypothesis that neutrino oscillations are responsible for the observed solar neutrino deficit can be made by comparing the charged-current (CC) and neutral-current (NC) rates. This LDRD proposal supported the research and development necessary for an assessment of backgrounds and performance of the SNO detector and the ability to extract the NC/CC-Ratio. Particular emphasis is put upon the criteria for deployment and signal extraction from a discrete NC detector array based upon ultra-low background 3He proportional counters

  11. Solar Neutrino Physics

    Energy Technology Data Exchange (ETDEWEB)

    Bowles, T.J.; Brice, S.J.; Esch, E.-I.; Fowler, M.M.; Goldschmidt, A.; Hime, A.; McGirt, F.; Miller, G.G.; Thornewell, P.M.; Wilhelmy, J.B.; Wouters, J.M.

    1999-07-15

    With its heavy water target, the Sudbury Neutrino Observatory (SNO) offers the unique opportunity to measure both the 8B flux of electron neutrinos from the Sun and, independently, the flux of all active neutrino species reaching the Earth. A model-independent test of the hypothesis that neutrino oscillations are responsible for the observed solar neutrino deficit can be made by comparing the charged-current (CC) and neutral-current (NC) rates. This LDRD proposal supported the research and development necessary for an assessment of backgrounds and performance of the SNO detector and the ability to extract the NC/CC-Ratio. Particular emphasis is put upon the criteria for deployment and signal extraction from a discrete NC detector array based upon ultra-low background 3He proportional counters.

  12. Charge States of Krypton and Xenon in the Solar Wind

    Science.gov (United States)

    Bochsler, Peter; Fludra, Andrzej; Giunta, Alessandra

    2017-09-01

    We calculate charge state distributions of Kr and Xe in a model for two different types of solar wind using the effective ionization and recombination rates provided from the OPEN_ADAS data base. The charge states of heavy elements in the solar wind are essential for estimating the efficiency of Coulomb drag in the inner corona. We find that xenon ions experience particularly low Coulomb drag from protons in the inner corona, comparable to the notoriously weak drag of protons on helium ions. It has been found long ago that helium in the solar wind can be strongly depleted near interplanetary current sheets, whereas coronal mass ejecta are sometimes strongly enriched in helium. We argue that if the extraordinary variability of the helium abundance in the solar wind is due to inefficient Coulomb drag, the xenon abundance must vary strongly. In fact, a secular decrease of the solar wind xenon abundance relative to the other heavier noble gases (Ne, Ar, Kr) has been postulated based on a comparison of noble gases in recently irradiated and ancient samples of ilmenite in the lunar regolith. We conclude that decreasing solar activity and decreasing frequency of coronal mass ejections over the solar lifetime might be responsible for a secularly decreasing abundance of xenon in the solar wind.

  13. Spectroscopic Measurements of the Ion Velocity Distribution at the Base of the Fast Solar Wind

    Science.gov (United States)

    Jeffrey, Natasha L. S.; Hahn, Michael; Savin, Daniel W.; Fletcher, Lyndsay

    2018-03-01

    In situ measurements of the fast solar wind reveal non-thermal distributions of electrons, protons, and minor ions extending from 0.3 au to the heliopause. The physical mechanisms responsible for these non-thermal properties and the location where these properties originate remain open questions. Here, we present spectroscopic evidence, from extreme ultraviolet spectroscopy, that the velocity distribution functions (VDFs) of minor ions are already non-Gaussian at the base of the fast solar wind in a coronal hole, at altitudes of thermal equilibrium, (b) fluid motions such as non-Gaussian turbulent fluctuations or non-uniform wave motions, or (c) some combination of both. These observations provide important empirical constraints for the source region of the fast solar wind and for the theoretical models of the different acceleration, heating, and energy deposition processes therein. To the best of our knowledge, this is the first time that the ion VDF in the fast solar wind has been probed so close to its source region. The findings are also a timely precursor to the upcoming 2018 launch of the Parker Solar Probe, which will provide the closest in situ measurements of the solar wind at approximately 0.04 au (8.5 solar radii).

  14. Transient flows of the solar wind associated with small-scale solar activity in solar minimum

    Science.gov (United States)

    Slemzin, Vladimir; Veselovsky, Igor; Kuzin, Sergey; Gburek, Szymon; Ulyanov, Artyom; Kirichenko, Alexey; Shugay, Yulia; Goryaev, Farid

    The data obtained by the modern high sensitive EUV-XUV telescopes and photometers such as CORONAS-Photon/TESIS and SPHINX, STEREO/EUVI, PROBA2/SWAP, SDO/AIA provide good possibilities for studying small-scale solar activity (SSA), which is supposed to play an important role in heating of the corona and producing transient flows of the solar wind. During the recent unusually weak solar minimum, a large number of SSA events, such as week solar flares, small CMEs and CME-like flows were observed and recorded in the databases of flares (STEREO, SWAP, SPHINX) and CMEs (LASCO, CACTUS). On the other hand, the solar wind data obtained in this period by ACE, Wind, STEREO contain signatures of transient ICME-like structures which have shorter duration (<10h), weaker magnetic field strength (<10 nT) and lower proton temperature than usual ICMEs. To verify the assumption that ICME-like transients may be associated with the SSA events we investigated the number of weak flares of C-class and lower detected by SPHINX in 2009 and STEREO/EUVI in 2010. The flares were classified on temperature and emission measure using the diagnostic means of SPHINX and Hinode/EIS and were confronted with the parameters of the solar wind (velocity, density, ion composition and temperature, magnetic field, pitch angle distribution of the suprathermal electrons). The outflows of plasma associated with the flares were identified by their coronal signatures - CMEs (only in few cases) and dimmings. It was found that the mean parameters of the solar wind projected to the source surface for the times of the studied flares were typical for the ICME-like transients. The results support the suggestion that weak flares can be indicators of sources of transient plasma flows contributing to the slow solar wind at solar minimum, although these flows may be too weak to be considered as separate CMEs and ICMEs. The research leading to these results has received funding from the European Union’s Seventh Programme

  15. Different magnetospheric modes: solar wind driving and coupling efficiency

    Directory of Open Access Journals (Sweden)

    N. Partamies

    2009-11-01

    Full Text Available This study describes a systematic statistical comparison of isolated non-storm substorms, steady magnetospheric convection (SMC intervals and sawtooth events. The number of events is approximately the same in each group and the data are taken from about the same years to avoid biasing by different solar cycle phase. The very same superposed epoch analysis is performed for each event group to show the characteristics of ground-based indices (AL, PCN, PC potential, particle injection at the geostationary orbit and the solar wind and IMF parameters. We show that the monthly occurrence of sawtooth events and isolated non-stormtime substorms closely follows maxima of the geomagnetic activity at (or close to the equinoxes. The most strongly solar wind driven event type, sawtooth events, is the least efficient in coupling the solar wind energy to the auroral ionosphere, while SMC periods are associated with the highest coupling ratio (AL/EY. Furthermore, solar wind speed seems to play a key role in determining the type of activity in the magnetosphere. Slow solar wind is capable of maintaining steady convection. During fast solar wind streams the magnetosphere responds with loading–unloading cycles, represented by substorms during moderately active conditions and sawtooth events (or other storm-time activations during geomagnetically active conditions.

  16. Solar Wind Interaction and Impact on the Venus Atmosphere

    Science.gov (United States)

    Futaana, Yoshifumi; Stenberg Wieser, Gabriella; Barabash, Stas; Luhmann, Janet G.

    2017-11-01

    , describing the plasma interaction on scales ranging from ion gyro radius to the entire induced magnetosphere. In this review article, we review what has been found from space physics measurements around Venus (from the solar wind down to the ionopause), with a particular emphasis on updated results since the Venus Express mission. We conclude the article by a short discussion on the remaining open scientific questions and the future of this field.

  17. The global structure of the solar wind in June 1991

    Science.gov (United States)

    Usmanov, A. V.

    1993-12-01

    A numerical simulation of the global solar wind structure for Carrington rotation 1843 (31 May 28 June, 1991) is performed based on a fully three-dimensional, steady-state MHD model of the solar wind (Usmanov, 1993b). A self-consistent solution for 3-D MHD equations is constructed for the spherical shell extending from the solar photosphere up to 10 AU. Solar magnetic field observations are used to prescribe boundary conditions. The computed distribution of the magnetic field is compared with coronal hole observations and with the IMF measurements made by IMP-8 spacecraft at the Earth's orbit.

  18. Solar cell device physics

    CERN Document Server

    Fonash, Stephen J

    2010-01-01

    The new edition of Dr. Stephen Fonash's definitive text points the way toward greater efficiency and cheaper production by adding coverage of cutting-edge topics in plasmonics, multi-exiton generation processes, nanostructures and nanomaterials such as quantum dots. The book's new structure improves readability by shifting many detailed equations to appendices, and balances the first edition's semiconductor coverage with an emphasis on thin-films. Further, it now demonstrates physical principles with simulations in the well-known AMPS computer code developed by the author.

  19. Planetary atmospheric physics and solar physics research

    Science.gov (United States)

    1973-01-01

    An overview is presented on current and planned research activities in the major areas of solar physics, planetary atmospheres, and space astronomy. The approach to these unsolved problems involves experimental techniques, theoretical analysis, and the use of computers to analyze the data from space experiments. The point is made that the research program is characterized by each activity interacting with the other activities in the laboratory.

  20. Interaction of suprathermal solar wind electron fluxes with sheared whistler waves: fan instability

    Directory of Open Access Journals (Sweden)

    C. Krafft

    Full Text Available Several in situ measurements performed in the solar wind evidenced that solar type III radio bursts were some-times associated with locally excited Langmuir waves, high-energy electron fluxes and low-frequency electrostatic and electromagnetic waves; moreover, in some cases, the simultaneous identification of energetic electron fluxes, Langmuir and whistler waves was performed. This paper shows how whistlers can be excited in the disturbed solar wind through the so-called "fan instability" by interacting with energetic electrons at the anomalous Doppler resonance. This instability process, which is driven by the anisotropy in the energetic electron velocity distribution along the ambient magnetic field, does not require any positive slope in the suprathermal electron tail and thus can account for physical situations where plateaued reduced electron velocity distributions were observed in solar wind plasmas in association with Langmuir and whistler waves. Owing to linear calculations of growth rates, we show that for disturbed solar wind conditions (that is, when suprathermal particle fluxes propagate along the ambient magnetic field, the fan instability can excite VLF waves (whistlers and lower hybrid waves with characteristics close to those observed in space experiments.

    Key words. Space plasma physics (waves and instabilities – Radio Science (waves in plasma – Solar physics, astrophysics and astronomy (radio emissions

  1. Interaction of suprathermal solar wind electron fluxes with sheared whistler waves: fan instability

    Directory of Open Access Journals (Sweden)

    C. Krafft

    2003-07-01

    Full Text Available Several in situ measurements performed in the solar wind evidenced that solar type III radio bursts were some-times associated with locally excited Langmuir waves, high-energy electron fluxes and low-frequency electrostatic and electromagnetic waves; moreover, in some cases, the simultaneous identification of energetic electron fluxes, Langmuir and whistler waves was performed. This paper shows how whistlers can be excited in the disturbed solar wind through the so-called "fan instability" by interacting with energetic electrons at the anomalous Doppler resonance. This instability process, which is driven by the anisotropy in the energetic electron velocity distribution along the ambient magnetic field, does not require any positive slope in the suprathermal electron tail and thus can account for physical situations where plateaued reduced electron velocity distributions were observed in solar wind plasmas in association with Langmuir and whistler waves. Owing to linear calculations of growth rates, we show that for disturbed solar wind conditions (that is, when suprathermal particle fluxes propagate along the ambient magnetic field, the fan instability can excite VLF waves (whistlers and lower hybrid waves with characteristics close to those observed in space experiments.Key words. Space plasma physics (waves and instabilities – Radio Science (waves in plasma – Solar physics, astrophysics and astronomy (radio emissions

  2. Corotating pressure waves without streams in the solar wind

    International Nuclear Information System (INIS)

    Burlaga, L.F.

    1983-01-01

    Voyager 1 and 2 magnetic field and plasma data are presented which demonstrate the existence of large scale, corotating, non-linear pressure waves between 2 AU and 4 AU that are not accompanied by fast streams. The pressure waves are presumed to be generated by corotating streams near the Sun. For two of the three pressure waves that are discussed, the absence of a stream is probably a real, physical effect, viz., a consequence of deceleration of the stream by the associated compression wave. For the third pressure wave, the apparent absence of a stream may be a geometrical effect it is likely that the stream was at latitudes just above those of the spacecraft, while the associated shocks and compression wave extended over a broader range of latitudes so that they could be observed by the spacecraft. It is suggested that the development of large-scale non-linear pressure waves at the expense of the kinetic energy of streams produces a qualitative change in the solar wind in the outer heliosphere. Within a few AU the quasi-stationary solar wind structure is determined by corotating streams whose structure is determined by the boundary conditions near the Sun

  3. Model for vortex turbulence with discontinuities in the solar wind

    Directory of Open Access Journals (Sweden)

    O. P. Verkhoglyadova

    2003-01-01

    Full Text Available A model of vortex with embedded discontinuities in plasma flow is developed in the framework of ideal MHD in a low b plasma. Vortex structures are considered as a result of 2-D evolution of nonlinear shear Alfvén waves in the heliosphere. Physical properties of the solutions and vector fields are analyzed and the observational aspects of the model are discussed. The ratio of normal components to the discontinuity Br /Vr can be close to -2. The alignment between velocity and magnetic field vectors takes place. Spacecraft crossing such vortices will typically observe a pair of discontinuities, but with dissimilar properties. Occurrence rate for different discontinuity types is estimated and agrees with observations in high-speed solar wind stream. Discontinuity crossing provides a backward rotation of magnetic field vector and can be observed as part of a backward arc. The Ulysses magnetometer data obtained in the fast solar wind are compared with the results of theoretical modelling.

  4. Turbulence and other processes for the scale-free texture of the fast solar wind

    Science.gov (United States)

    Hnat, B.; Chapman, S. C.; Gogoberidze, G.; Wicks, R. T.

    2012-04-01

    The higher-order statistics of magnetic field magnitude fluctuations in the fast quiet solar wind are quantified systematically, scale by scale. We find a single global non-Gaussian scale-free behavior from minutes to over 5 hours. This spans the signature of an inertial range of magnetohydrodynamic turbulence and a ˜1/f range in magnetic field components. This global scaling in field magnitude fluctuations is an intrinsic component of the underlying texture of the solar wind which co-exists with the signature of MHD turbulence but extends to lower frequencies. Importantly, scaling and non- Gaussian statistics of fluctuations are not unique to turbulence and can imply other physical mechanisms- our results thus place a strong constraint on theories of the dynamics of the solar corona and solar wind. Intriguingly, the magnetic field and velocity components also show scale-dependent dynamic alignment outside of the inertial range of MHD turbulence.

  5. Western Wind and Solar Integration Study: Phase 2 (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Lew, D.; Brinkman, G.; Ibanez, E.; Lefton, S.; Kumar, N.; Venkataraman, S.; Jordan, G.

    2013-09-01

    This presentation summarizes the scope and results of the Western Wind and Solar Integration Study Phase 2, which examined operational impacts of high penetrations of variable renewable generation in the West.

  6. Small Footprint Solar/Wind-powered CASTNET System Dataset

    Data.gov (United States)

    U.S. Environmental Protection Agency — In this Research Effort “Small Footprint Solar/Wind-Powered CASTNET System” there are two data sets. One data set contains atmospheric concentration measurements, at...

  7. SAKIGAKE SOLAR WIND EXPERIMENT DATA V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The original dataset was called MST5SOW. It was personally delivered by Dr. Oyama. The sample hardcopy listed the column headings with units for the solar wind...

  8. Saturn radio emission and the solar wind - Voyager-2 studies

    International Nuclear Information System (INIS)

    Desch, M.D.; Rucker, H.O.; Observatorium Lustbuhel, Graz, Austria)

    1985-01-01

    Voyager 2 data from the Plasma Science experiment, the Magnetometer experiment and the Planetary Radio Astronomy experiment were used to analyze the relationship between parameters of the solar wind/interplanetary medium and the nonthermal Saturn radiation. Solar wind and interplanetary magnetic field properties were combined to form quantities known to be important in controlling terrestrial magnetospheric processes. The Voyager 2 data set used in this investigation consists of 237 days of Saturn preencounter measurements. However, due to the immersion of Saturn and the Voyager 2 spacecraft into the extended Jupiter magnetic tail, substantial periods of the time series were lacking solar wind data. To cope with this problem a superposed epoch method (CHREE analysis) was used. The results indicate the superiority of the quantities containing the solar wind density in stimulating the radio emission of Saturn - a result found earlier using Voyager 1 data - and the minor importance of quantities incorporating the interplanetary magnetic field. 10 references

  9. Heating of the interstellar medium by the solar wind

    Science.gov (United States)

    Kunc, J. A.; Wu, F. M.; Judge, D. L.

    1983-01-01

    The heating of inflowing interstellar gas by the solar wind is calculated. The experimental differential cross sections have been used for calculating electron-H(He) and proton-H(He) elastic scattering rate coefficients. The solar wind is assumed to be a two-component (protons and electrons), steady, spherically symmetric stream moving radially outward, with the inflowing gas following Keplerian trajectories. The spatial distributions of effective temperature increase within interplanetary space have been obtained.

  10. Analysis of ISEE-3/ICE solar wind data

    Science.gov (United States)

    Coplan, Michael A.

    1989-01-01

    Under the grant that ended November 11, 1988 work was accomplished in a number of areas, as follows: (1) Analysis of solar wind data; (2) Analysis of Giacobini/Zinner encounter data; (3) Investigation of solar wind and magnetospheric electron velocity distributions; and (4) Experimental investigation of the electronic structure of clusters. Reprints and preprints of publications resulting from this work are included in the appendices.

  11. The Character of the Solar Wind, Surface Interactions, and Water

    Science.gov (United States)

    Farrell, William M.

    2011-01-01

    We discuss the key characteristics of the proton-rich solar wind and describe how it may interact with the lunar surface. We suggest that solar wind can be both a source and loss of water/OH related volatiles, and review models showing both possibilities. Energy from the Sun in the form of radiation and solar wind plasma are in constant interaction with the lunar surface. As such, there is a solar-lunar energy connection, where solar energy and matter are continually bombarding the lunar surface, acting at the largest scale to erode the surface at 0.2 Angstroms per year via ion sputtering [1]. Figure 1 illustrates this dynamically Sun-Moon system.

  12. Potential for Development of Solar and Wind Resource in Bhutan

    Energy Technology Data Exchange (ETDEWEB)

    Gilman, P.; Cowlin, S.; Heimiller, D.

    2009-09-01

    With support from the U.S. Agency for International Development (USAID), the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) produced maps and data of the wind and solar resources in Bhutan. The solar resource data show that Bhutan has an adequate resource for flat-plate collectors, with annual average values of global horizontal solar radiation ranging from 4.0 to 5.5 kWh/m2-day (4.0 to 5.5 peak sun hours per day). The information provided in this report may be of use to energy planners in Bhutan involved in developing energy policy or planning wind and solar projects, and to energy analysts around the world interested in gaining an understanding of Bhutan's wind and solar energy potential.

  13. A consistent thermodynamics of the MHD wave-heated two-fluid solar wind

    Directory of Open Access Journals (Sweden)

    I. V. Chashei

    2003-07-01

    Full Text Available We start our considerations from two more recent findings in heliospheric physics: One is the fact that the primary solar wind protons do not cool off adiabatically with distance, but appear to be heated. The other one is that secondary protons, embedded in the solar wind as pick-up ions, behave quasi-isothermal at their motion to the outer heliosphere. These two phenomena must be physically closely connected with each other. To demonstrate this we solve a coupled set of enthalpy flow conservation equations for the two-fluid solar wind system consisting of primary and secondary protons. The coupling of these equations comes by the heat sources that are relevant, namely the dissipation of MHD turbulence power to the respective protons at the relevant dissipation scales. Hereby we consider both the dissipation of convected turbulences and the dissipation of turbulences locally driven by the injection of new pick-up ions into an unstable mode of the ion distribution function. Conversion of free kinetic energy of freshly injected secondary ions into turbulence power is finally followed by partial reabsorption of this energy both by primary and secondary ions. We show solutions of simultaneous integrations of the coupled set of differential thermodynamic two-fluid equations and can draw interesting conclusions from the solutions obtained. We can show that the secondary proton temperature with increasing radial distance asymptotically attains a constant value with a magnitude essentially determined by the actual solar wind velocity. Furthermore, we study the primary proton temperature within this two-fluid context and find a polytropic behaviour with radially and latitudinally variable polytropic indices determined by the local heat sources due to dissipated turbulent wave energy. Considering latitudinally variable solar wind conditions, as published by McComas et al. (2000, we also predict latitudinal variations of primary proton temperatures at

  14. A consistent thermodynamics of the MHD wave-heated two-fluid solar wind

    Directory of Open Access Journals (Sweden)

    I. V. Chashei

    Full Text Available We start our considerations from two more recent findings in heliospheric physics: One is the fact that the primary solar wind protons do not cool off adiabatically with distance, but appear to be heated. The other one is that secondary protons, embedded in the solar wind as pick-up ions, behave quasi-isothermal at their motion to the outer heliosphere. These two phenomena must be physically closely connected with each other. To demonstrate this we solve a coupled set of enthalpy flow conservation equations for the two-fluid solar wind system consisting of primary and secondary protons. The coupling of these equations comes by the heat sources that are relevant, namely the dissipation of MHD turbulence power to the respective protons at the relevant dissipation scales. Hereby we consider both the dissipation of convected turbulences and the dissipation of turbulences locally driven by the injection of new pick-up ions into an unstable mode of the ion distribution function. Conversion of free kinetic energy of freshly injected secondary ions into turbulence power is finally followed by partial reabsorption of this energy both by primary and secondary ions. We show solutions of simultaneous integrations of the coupled set of differential thermodynamic two-fluid equations and can draw interesting conclusions from the solutions obtained. We can show that the secondary proton temperature with increasing radial distance asymptotically attains a constant value with a magnitude essentially determined by the actual solar wind velocity. Furthermore, we study the primary proton temperature within this two-fluid context and find a polytropic behaviour with radially and latitudinally variable polytropic indices determined by the local heat sources due to dissipated turbulent wave energy. Considering latitudinally variable solar wind conditions, as published by McComas et al. (2000, we also predict latitudinal variations of primary proton temperatures at

  15. Solar Wind Associated with Near Equatorial Coronal Hole

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... Present study probes temporal changes in the area and radiative flux of near equatorial coronal hole associated with solar wind parameters such as wind speed, density, magnetic field and temperature. Using high temporal resolution data from SDO/AIA for the two wave-lengths 193 Å and 211 Å, area and ...

  16. Variability of Electrostatically Charged Lunar Dust Lofting Due to Solar Wind and Solar Irradiance

    Science.gov (United States)

    Orger, N. C.; Cordova Alarcon, J. R.; Toyoda, K.; Cho, M.

    2016-12-01

    Lunar horizon glow has been considered as a production of electrically charged dust grains, which causes forward scattering of sunlight above the terminator region; however, previous lunar missions showed that lunar horizon glow is highly varying phenomenon. For this reason, it is required to understand how this physical phenomenon occurs in order to increase the chance for future observations. Since it is related to terminator region and forward scattering of sunlight, the focus areas of this study have been selected as the regions from subsolar point to terminator on the lunar surface. In this work, the lunar dust height calculations are presented as a function solar zenith angle and solar wind properties. First, equilibrium surface potential, Debye length and surface electric field have been calculated to be used in the dust model. These results are used to predict the dust lofting under various solar wind conditions in order to investigate dependence on different parameters such as electron temperature or plasma density. In addition, these results showed that there is a location where the heights of lofted dust grains are minimum between subsolar point and terminator region as it is expected, and its position changes according to the solar wind properties and photoemission electron current. In the near future, laboratory experiments will be performed in order to improve the dust model by focusing on the electrostatic interaction between charged dust grains in plasma by utilizing the surface charge and electric field results, and the simulation environment will be improved. Relative to this work, a CubeSat mission is currently being planned in Kyushu Institute of Technology to observe lunar horizon glow.

  17. Solar wind ion trends and signatures: STEREO PLASTIC observations approaching solar minimum

    Directory of Open Access Journals (Sweden)

    A. B. Galvin

    2009-10-01

    Full Text Available STEREO has now completed the first two years of its mission, moving from close proximity to Earth in 2006/2007 to more than 50 degrees longitudinal separation from Earth in 2009. During this time, several large-scale structures have been observed in situ. Given the prevailing solar minimum conditions, these structures have been predominantly coronal hole-associated solar wind, slow solar wind, their interfaces, and the occasional transient event. In this paper, we extend earlier solar wind composition studies into the current solar minimum using high-resolution (1-h sampling times for the charge state analysis. We examine 2-year trends for iron charge states and solar wind proton speeds, and present a case study of Carrington Rotation 2064 (December 2007 which includes minor ion (He, Fe, O kinetic and Fe composition parameters in comparison with proton and magnetic field signatures at large-scale structures observed during this interval.

  18. A survey of solar wind conditions at 5 AU: a tool for interpreting solar wind-magnetosphere interactions at Jupiter

    Energy Technology Data Exchange (ETDEWEB)

    Ebert, Robert W. [Space Science and Engineering Division, Southwest Research Institute, San Antonio, TX (United States); Bagenal, Fran [Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO (United States); McComas, David J. [Space Science and Engineering Division, Southwest Research Institute, San Antonio, TX (United States); Department of Physics and Astronomy, University of Texas at San Antonio, San Antonio, TX (United States); Fowler, Christopher M., E-mail: rebert@swri.edu [Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO (United States)

    2014-09-19

    We examine Ulysses solar wind and interplanetary magnetic field (IMF) observations at 5 AU for two ~13 month intervals during the rising and declining phases of solar cycle 23 and the predicted response of the Jovian magnetosphere during these times. The declining phase solar wind, composed primarily of corotating interaction regions and high-speed streams, was, on average, faster, hotter, less dense, and more Alfvénic relative to the rising phase solar wind, composed mainly of slow wind and interplanetary coronal mass ejections. Interestingly, none of solar wind and IMF distributions reported here were bimodal, a feature used to explain the bimodal distribution of bow shock and magnetopause standoff distances observed at Jupiter. Instead, many of these distributions had extended, non-Gaussian tails that resulted in large standard deviations and much larger mean over median values. The distribution of predicted Jupiter bow shock and magnetopause standoff distances during these intervals were also not bimodal, the mean/median values being larger during the declining phase by ~1–4%. These results provide data-derived solar wind and IMF boundary conditions at 5 AU for models aimed at studying solar wind-magnetosphere interactions at Jupiter and can support the science investigations of upcoming Jupiter system missions. Here, we provide expectations for Juno, which is scheduled to arrive at Jupiter in July 2016. Accounting for the long-term decline in solar wind dynamic pressure reported by McComas et al. (2013a), Jupiter's bow shock and magnetopause is expected to be at least 8–12% further from Jupiter, if these trends continue.

  19. A survey of solar wind conditions at 5 AU: A tool for interpreting solar wind-magnetosphere interactions at Jupiter

    Directory of Open Access Journals (Sweden)

    Robert Wilkes Ebert

    2014-09-01

    Full Text Available We examine Ulysses solar wind and interplanetary magnetic field (IMF observations at 5 AU for two ~13 month intervals during the rising and declining phases of solar cycle 23 and the predicted response of the Jovian magnetosphere during these times. The declining phase solar wind, composed primarily of corotating interaction regions and high-speed streams, was, on average, faster, hotter, less dense, and more Alfvénic relative to the rising phase solar wind, composed mainly of slow wind and interplanetary coronal mass ejections. Interestingly, none of solar wind and IMF distributions reported here were bimodal, a feature used to explain the bimodal distribution of bow shock and magnetopause standoff distances observed at Jupiter. Instead, many of these distributions had extended, non-Gaussian tails that resulted in large standard deviations and much larger mean over median values. The distribution of predicted Jupiter bow shock and magnetopause standoff distances during these intervals were also not bimodal, the mean/median values being larger during the declining phase by ~1 – 4%. These results provide data-derived solar wind and IMF boundary conditions at 5 AU for models aimed at studying solar wind-magnetosphere interactions at Jupiter and can support the science investigations of upcoming Jupiter system missions. Here, we provide expectations for Juno, which is scheduled to arrive at Jupiter in July 2016. Accounting for the long-term decline in solar wind dynamic pressure reported by McComas et al. (2013, Jupiter’s bow shock and magnetopause is expected to be at least 8 – 12% further from Jupiter, if these trends continue.

  20. Association Between the Solar Wind Speed, Interplanetary Magnetic ...

    Indian Academy of Sciences (India)

    Meena Pokharia

    2017-11-27

    Nov 27, 2017 ... HSSWS. SSSWS. Figure 1. Annual distribution of solar wind streams for solar cycle −24. data center (http://omniweb.gsfc.nasa.gov/cgi/nx1.cgi). A comparison of HSSWS and SSSWS with CRI has been done. The correlation of CRI with IMF and V.B is also discussed in this study. 3. Results and discussion.

  1. Geo-effectiveness of Solar Wind Extremes Hari Om Vats

    Indian Academy of Sciences (India)

    streams—interplanetary magnetic field—space weather. 1. Introduction. Solar wind is a continuous flow of hot plasma from the solar corona. This flow is supersonic and is caused due to very high coronal temperature which helps plasma overcome the gravitational attraction of the Sun. The flow is largely radial in nature.

  2. Tomography of the Solar Wind using Interplanetary Scintillation ...

    Indian Academy of Sciences (India)

    tribpo

    Tomography—solar wind—interplanetary scintillation. Extended abstract. Interplanetary ... properties of solar wind (SW) along the line of sight (los) to a distant compact radio source. Mapping a los back to ... power spectra of intensity fluctuations, the primary IPS observable, constructed using the distribution of properties of ...

  3. The Solar Wind Source Cycle: Relationship to Dynamo Behavior

    Science.gov (United States)

    Luhmann, J. G.; Li, Y.; Lee, C. O.; Jian, L. K.; Petrie, G. J. D.; Arge, C. N.

    2017-12-01

    Solar cycle trends of interest include the evolving properties of the solar wind, the heliospheric medium through which the Sun's plasmas and fields interact with Earth and the planets -including the evolution of CME/ICMEs enroute. Solar wind sources include the coronal holes-the open field regions that constantly evolve with solar magnetic fields as the cycle progresses, and the streamers between them. The recent cycle has been notably important in demonstrating that not all solar cycles are alike when it comes to contributions from these sources, including in the case of ecliptic solar wind. In particular, it has modified our appreciation of the low latitude coronal hole and streamer sources because of their relative prevalence. One way to understand the basic relationship between these source differences and what is happening inside the Sun and on its surface is to use observation-based models like the PFSS model to evaluate the evolution of the coronal field geometry. Although the accuracy of these models is compromised around solar maximum by lack of global surface field information and the sometimes non-potential evolution of the field related to more frequent and widespread emergence of active regions, they still approximate the character of the coronal field state. We use these models to compare the inferred recent cycle coronal holes and streamer belt sources of solar wind with past cycle counterparts. The results illustrate how (still) hemispherically asymmetric weak polar fields maintain a complex mix of low-to-mid latitude solar wind sources throughout the latest cycle, with a related marked asymmetry in the hemispheric distribution of the ecliptic wind sources. This is likely to be repeated until the polar field strength significantly increases relative to the fields at low latitudes, and the latter symmetrize.

  4. Solar Wind Turbulence at Sub-Ion and Electron Scales

    Science.gov (United States)

    Alexandrova, O.; Lacombe, C.; Matteini, L.; Zaslavsky, A.; Orel, I.

    2017-12-01

    . These observations may suggest that the dissipation at electron scales happens within the coherent structures. The exact physical mechanism is not clear. Future observations in the solar wind with MMS and possibly with THOR will bring us new pieces of the puzzle.

  5. Electric potential of the moon in the solar wind.

    Science.gov (United States)

    Freeman, J. W., Jr.; Fenner, M. A.; Hills, H. K.

    1973-01-01

    Acceleration and detection of the lunar thermal ionosphere in the presence of the lunar electric field yields a value of at least +10 V for the lunar electric potential for solar zenith angles between approximately 20 and 45 deg and in the magnetosheath or solar wind. An enhanced positive ion flux is observed with the Apollo Lunar Surface Experiments Package Suprathermal Ion Detector Experiment when a preacceleration voltage attains certain values. This enhancement is greater when the moon is in the solar wind as opposed to the magnetosheath.

  6. Scale-free texture of the fast solar wind

    Science.gov (United States)

    Hnat, B.; Chapman, S. C.; Gogoberidze, G.; Wicks, R. T.

    2011-12-01

    The higher-order statistics of magnetic field magnitude fluctuations in the fast quiet solar wind are quantified systematically, scale by scale. We find a single global non-Gaussian scale-free behavior from minutes to over 5 h. This spans the signature of an inertial range of magnetohydrodynamic turbulence and a ˜1/f range in magnetic field components. This global scaling in field magnitude fluctuations is an intrinsic component of the underlying texture of the solar wind and puts a strong constraint on any theory of solar corona and the heliosphere. Intriguingly, the magnetic field and velocity components show scale-dependent dynamic alignment outside of the inertial range.

  7. The magnetosphere under weak solar wind forcing

    Directory of Open Access Journals (Sweden)

    C. J. Farrugia

    2007-02-01

    Full Text Available The Earth's magnetosphere was very strongly disturbed during the passage of the strong shock and the following interacting ejecta on 21–25 October 2001. These disturbances included two intense storms (Dst*≈−250 and −180 nT, respectively. The cessation of this activity at the start of 24 October ushered in a peculiar state of the magnetosphere which lasted for about 28 h and which we discuss in this paper. The interplanetary field was dominated by the sunward component [B=(4.29±0.77, −0.30±0.71, 0.49±0.45 nT]. We analyze global indicators of geomagnetic disturbances, polar cap precipitation, ground magnetometer records, and ionospheric convection as obtained from SuperDARN radars. The state of the magnetosphere is characterized by the following features: (i generally weak and patchy (in time low-latitude dayside reconnection or reconnection poleward of the cusps; (ii absence of substorms; (iii a monotonic recovery from the previous storm activity (Dst corrected for magnetopause currents decreasing from ~−65 to ~−35 nT, giving an unforced decreased of ~1.1 nT/h; (iv the probable absence of viscous-type interaction originating from the Kelvin-Helmholtz (KH instability; (v a cross-polar cap potential of just 20–30 kV; (vi a persistent, polar cap region containing (vii very weak, and sometimes absent, electron precipitation and no systematic inter-hemisphere asymmetry. Whereas we therefore infer the presence of a moderate amount of open flux, the convection is generally weak and patchy, which we ascribe to the lack of solar wind driver. This magnetospheric state approaches that predicted by Cowley and Lockwood (1992 but has never yet been observed.

  8. The variable nature of the comet-solar wind interaction

    International Nuclear Information System (INIS)

    Flammer, K.R.

    1988-01-01

    The different modes of interaction of the solar wind with a Halley-type comet as it approaches the sun are discussed. At large heliocentric distances the solar wind penetrates unimpeded onto the surface of the comet nucleus. This causes electrostatic charging and expulsion of fine dust from the comet surface; a process which is modulated by the local solar wind flux. The observed irregular brightness variation of comet Halley between 11 and 8 AU (inbound) are explained in terms of this mechanism. As the comet moves closer to the sun (within 4 AU), mass loading of the solar wind by the heavy cometary ions causes the flow to slow down, thereby enhancing the convected interplanetary magnetic field significantly. This magnetic field enhancement is the earliest and most sensitive signature associated with the solar wind mass loading. Still farther in (≤ 3 AU), as the mass loading approaches a critical value, a weak collisionless standing shock forms, which recedes upstream of the nucleus as the comet approaches the sun. The cometary atmosphere becomes dense enough so that a well-defined ionopause forms which separates the cometary ionospheric plasma from the contaminated solar wind plasma only when the comet is within ∼ 2.2 AU from the sun. The stability of the ionopause is examined under the framework of linear magnetohydrodynamic taking into account the effects of ion-neutral drag, sources, curvature and compressibility. Both Kelvin-Helmholtz and Rayleigh Taylor modes are excited. The growth rates of these modes are determined from various shears and density jumps at the ionopause and under different solar wind conditions. A quasi-linear theory is then used to examine the evolution of the unstable modes to finite amplitudes

  9. The electron temperature and anisotropy in the solar wind. Comparison of the core and halo populations

    Czech Academy of Sciences Publication Activity Database

    Pierrard, V.; Lazar, M.; Poedts, S.; Štverák, Štěpán; Maksimovic, M.; Trávníček, Pavel M.

    2016-01-01

    Roč. 291, č. 7 (2016), s. 2165-2179 ISSN 0038-0938 Institutional support: RVO:68378289 Keywords : solar wind * electron velocity distributions * temperature anisotropy Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.682, year: 2016 http://link.springer.com/article/10.1007/s11207-016-0961-7

  10. Protons and alpha particles in the expanding solar wind: Hybrid simulations

    Czech Academy of Sciences Publication Activity Database

    Hellinger, Petr; Trávníček, Pavel M.

    2013-01-01

    Roč. 118, č. 9 (2013), s. 5421-5430 ISSN 2169-9380 Institutional support: RVO:68378289 Keywords : solar wind * ion energetics Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 3.440, year: 2013 http://onlinelibrary.wiley.com/doi/10.1002/jgra.50540/abstract

  11. Sixty-Year Career in Solar Physics

    Science.gov (United States)

    Fang, C.

    2018-05-01

    This memoir reviews my academic career in solar physics for 60 years, including my research on non-LTE modeling, white-light flares, and small-scale solar activities. Through this narrative, the reader can catch a glimpse of the development of solar physics research in mainland China from scratch. In the end, some prospects for future development are given.

  12. Solar-wind predictions for the Parker Solar Probe orbit. Near-Sun extrapolations derived from an empirical solar-wind model based on Helios and OMNI observations

    Science.gov (United States)

    Venzmer, M. S.; Bothmer, V.

    2018-03-01

    Context. The Parker Solar Probe (PSP; formerly Solar Probe Plus) mission will be humanitys first in situ exploration of the solar corona with closest perihelia at 9.86 solar radii (R⊙) distance to the Sun. It will help answer hitherto unresolved questions on the heating of the solar corona and the source and acceleration of the solar wind and solar energetic particles. The scope of this study is to model the solar-wind environment for PSPs unprecedented distances in its prime mission phase during the years 2018 to 2025. The study is performed within the Coronagraphic German And US SolarProbePlus Survey (CGAUSS) which is the German contribution to the PSP mission as part of the Wide-field Imager for Solar PRobe. Aim. We present an empirical solar-wind model for the inner heliosphere which is derived from OMNI and Helios data. The German-US space probes Helios 1 and Helios 2 flew in the 1970s and observed solar wind in the ecliptic within heliocentric distances of 0.29 au to 0.98 au. The OMNI database consists of multi-spacecraft intercalibrated in situ data obtained near 1 au over more than five solar cycles. The international sunspot number (SSN) and its predictions are used to derive dependencies of the major solar-wind parameters on solar activity and to forecast their properties for the PSP mission. Methods: The frequency distributions for the solar-wind key parameters, magnetic field strength, proton velocity, density, and temperature, are represented by lognormal functions. In addition, we consider the velocity distributions bi-componental shape, consisting of a slower and a faster part. Functional relations to solar activity are compiled with use of the OMNI data by correlating and fitting the frequency distributions with the SSN. Further, based on the combined data set from both Helios probes, the parameters frequency distributions are fitted with respect to solar distance to obtain power law dependencies. Thus an empirical solar-wind model for the inner

  13. Three Dimensional Explicit Model for Cometary Tail Ions Interactions with Solar Wind

    Science.gov (United States)

    Al Bermani, M. J. F.; Alhamed, S. A.; Khalaf, S. Z.; Ali, H. Sh.; Selman, A. A.

    2009-06-01

    The different interactions between cometary tail and solar wind ions are studied in the present paper based on three-dimensional Lax explicit method. The model used in this research is based on the continuity equations describing the cometary tail-solar wind interactions. Three dimensional system was considered in this paper. Simulation of the physical system was achieved using computer code written using Matlab 7.0. The parameters studied here assumed Halley comet type and include the particle density rho, the particles velocity v, the magnetic field strength B, dynamic pressure p and internal energy E. The results of the present research showed that the interaction near the cometary nucleus is mainly affected by the new ions added to the plasma of the solar wind, which increases the average molecular weight and result in many unique characteristics of the cometary tail. These characteristics were explained in the presence of the IMF.

  14. Role of Concentrating Solar Power in Integrating Solar and Wind Energy: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Denholm, P.; Mehos, M.

    2015-06-03

    As wind and solar photovoltaics (PV) increase in penetration it is increasingly important to examine enabling technologies that can help integrate these resources at large scale. Concentrating solar power (CSP) when deployed with thermal energy storage (TES) can provide multiple services that can help integrate variable generation (VG) resources such as wind and PV. CSP with TES can provide firm, highly flexible capacity, reducing minimum generation constraints which limit penetration and results in curtailment. By acting as an enabling technology, CSP can complement PV and wind, substantially increasing their penetration in locations with adequate solar resource.

  15. Solar wind and its interaction with the Earth magnetosphere

    International Nuclear Information System (INIS)

    Grib, S.A.

    1978-01-01

    A critical review is given regarding the research of the stationary and non-stationary interaction of the solar wind with the Earth magnetosphere. Highlighted is the significance of the interplanetary magnetic field in the non-stationary movement of the solar wind flux. The problem of the solar wind shock waves interaction with the ''bow wave-Earth's magnetosphere'' system is being solved. Considered are the secondary phenomena, as a result of which the depression-type wave occurs, that lowers the pressure on the Earth's maanetosphere. The law, governing the movement of the magnetosphere subsolar point during the abrupt start of a geomagnetic storm has been discovered. Stationary circumvention of the magnetosphere by the solar wind flux is well described by the gas dynamic theory of the hypersonic flux. Non-stationary interaction of the solar wind shock waves with the magnetosphere is magnetohydrodynamic. It is pointed out, that the problems under consideration are important for the forecasting of strong geomagnetic perturbations on the basis of cosmic observations

  16. Dynamics of the Solar Wind Electromagnetic Energy Transmission Into Magnetosphere during Large Geomagnetic Storms

    Science.gov (United States)

    Kuznetsova, Tamara; Laptukhov, Alexej; Petrov, Valery

    Causes of the geomagnetic activity (GA) in the report are divided into temporal changes of the solar wind parameters and the changes of the geomagnetic moment orientation relative directions of the solar wind electric and magnetic fields. Based on our previous study we concluded that a reconnection based on determining role of mutual orientation of the solar wind electric field and geomagnetic moment taking into account effects of the Earth's orbital and daily motions is the most effective compared with existing mechanisms. At present a reconnection as paradigma that has applications in broad fields of physics needs analysis of experimental facts to be developed. In terms of reconnection it is important not only mutual orientation of vectors describing physics of interaction region but and reconnection rate which depends from rate of energy flux to those regions where the reconnection is permitted. Applied to magnetosphere these regions first of all are dayside magnetopause and polar caps. Influence of rate of the energy flux to the lobe magnetopause (based on calculations of the Poyting electromagnetic flux component controlling the reconnection rate along the solar wind velocity Pv) on planetary GA (Dst, Kp indices) is investigated at different phases of geomagnetic storms. We study also the rate of energy flux to the polar caps during storms (based on calculations of the Poyting flux vector component along the geomagnetic moment Pm) and its influence on magnetic activity in the polar ionosphere: at the auroral zone (AU,AL indices). Results allow to evaluate contributions of high and low latitude sources of electromagnetic energy to the storm development and also to clear mechanism of the electromagnetic energy transmission from the solar wind to the magnetosphere. We evaluate too power of the solar wind electromagnetic energy during well-known large storms and compare result with power of the energy sources of other geophysical processes (atmosphere, ocean

  17. LONG-TERM TRENDS IN THE SOLAR WIND PROTON MEASUREMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, Heather A.; McComas, David J. [Southwest Research Institute, San Antonio, TX (United States); DeForest, Craig E. [Southwest Research Institute, Boulder, CO (United States)

    2016-11-20

    We examine the long-term time evolution (1965–2015) of the relationships between solar wind proton temperature ( T {sub p}) and speed ( V {sub p}) and between the proton density ( n {sub p}) and speed using OMNI solar wind observations taken near Earth. We find a long-term decrease in the proton temperature–speed ( T {sub p}– V {sub p}) slope that lasted from 1972 to 2010, but has been trending upward since 2010. Since the solar wind proton density–speed ( n {sub p}– V {sub p}) relationship is not linear like the T {sub p}– V {sub p} relationship, we perform power-law fits for n {sub p}– V {sub p}. The exponent (steepness in the n {sub p}– V {sub p} relationship) is correlated with the solar cycle. This exponent has a stronger correlation with current sheet tilt angle than with sunspot number because the sunspot number maxima vary considerably from cycle to cycle and the tilt angle maxima do not. To understand this finding, we examined the average n {sub p} for different speed ranges, and found that for the slow wind n {sub p} is highly correlated with the sunspot number, with a lag of approximately four years. The fast wind n {sub p} variation was less, but in phase with the cycle. This phase difference may contribute to the n {sub p}– V {sub p} exponent correlation with the solar cycle. These long-term trends are important since empirical formulas based on fits to T {sub p} and V {sub p} data are commonly used to identify interplanetary coronal mass ejections, but these formulas do not include any time dependence. Changes in the solar wind density over a solar cycle will create corresponding changes in the near-Earth space environment and the overall extent of the heliosphere.

  18. Solar sphere viewed through the Skylab solar physics experiment

    Science.gov (United States)

    1973-01-01

    The solar sphere viewed through the Skylab solar physics experiment (S082) Extreme Ultraviolet Spectroheliographis seen in this photographic reproduction taken from a color television transmission made by a TV camera aboard the Skylab space station in Earth orbit. The solar chromosphere and lower corona are much hotter than the surface of the Sun characterized by the white light emissions. This image was recorded during the huge solar prominence which occurred on August 21, 1973.

  19. Weakest solar wind of the space age and the current 'MINI' solar maximum

    International Nuclear Information System (INIS)

    McComas, D. J.; Angold, N.; Elliott, H. A.; Livadiotis, G.; Schwadron, N. A.; Smith, C. W.; Skoug, R. M.

    2013-01-01

    The last solar minimum, which extended into 2009, was especially deep and prolonged. Since then, sunspot activity has gone through a very small peak while the heliospheric current sheet achieved large tilt angles similar to prior solar maxima. The solar wind fluid properties and interplanetary magnetic field (IMF) have declined through the prolonged solar minimum and continued to be low through the current mini solar maximum. Compared to values typically observed from the mid-1970s through the mid-1990s, the following proton parameters are lower on average from 2009 through day 79 of 2013: solar wind speed and beta (∼11%), temperature (∼40%), thermal pressure (∼55%), mass flux (∼34%), momentum flux or dynamic pressure (∼41%), energy flux (∼48%), IMF magnitude (∼31%), and radial component of the IMF (∼38%). These results have important implications for the solar wind's interaction with planetary magnetospheres and the heliosphere's interaction with the local interstellar medium, with the proton dynamic pressure remaining near the lowest values observed in the space age: ∼1.4 nPa, compared to ∼2.4 nPa typically observed from the mid-1970s through the mid-1990s. The combination of lower magnetic flux emergence from the Sun (carried out in the solar wind as the IMF) and associated low power in the solar wind points to the causal relationship between them. Our results indicate that the low solar wind output is driven by an internal trend in the Sun that is longer than the ∼11 yr solar cycle, and they suggest that this current weak solar maximum is driven by the same trend.

  20. A multi-timescale view on the slow solar wind with MTOF

    Science.gov (United States)

    Heidrich-Meisner, Verena; Wimmer-Schweingruber, Robert F.; Wurz, Peter; Bochsler, Peter; Ipavich, Fred M.; Paquette, John A.; Klecker, Bernard

    2013-04-01

    leads to an extensive picture of individual streams from MTOF, which can be combined with observations from other spacecraft in the future. In particular, identifying and understanding short-term variations of the slow solar wind has the potential to help distinguishing between different possible source regions and mechanisms. Further, with the long term goal of identifying possible different source mechanisms or regions, we analyze and compare the properties of individual streams on short time scales to focus on significant deviations from the average properties of slow solar wind. References [Antiochos2011] SK Antiochos, Z. Mikic, VS Titov, R. Lionello, and JA Linker. A model for the sources of the slow solar wind. The Astrophysical Journal, 731(2):112, 2011. [Hovestadt1995] D. Hovestadt, M. Hilchenbach, A. Bürgi, B. Klecker, P. Laeverenz, M. Scholer, H. Grünwaldt, WI Axford, S. Livi, E. Marsch, et al. Celias-charge, element and isotope analysis system for soho. Solar Physics, 162(1):441-481, 1995. [Pagel2004] AC Pagel, NU Crooker, TH Zurbuchen, and JT Gosling. Correlation of solar wind entropy and oxygen ion charge state ratio. Journal of geophysical research, 109(A1):A01113, 2004. [Sakao2007] T. Sakao, R. Kano, N. Narukage, J. Kotoku, T. Bando, E.E. DeLuca, L.L. Lundquist, S. Tsuneta, L.K. Harra, Y. Katsukawa, et al. Continuous plasma outflows from the edge of a solar active region as a possible source of solar wind. Science, 318(5856):1585-1588, 2007. [Schwadron2005] NA Schwadron, DJ McComas, HA Elliott, G. Gloeckler, J. Geiss, and R. Von Steiger. Solar wind from the coronal hole boundaries. Journal of geophysical research, 110(A4):A04104, 2005. [Tu2005] C.Y. Tu, C. Zhou, E. Marsch, L.D. Xia, L. Zhao, J.X. Wang, and K. Wilhelm. Solar wind origin in coronal funnels. Science, 308(5721):519-523, 2005. [vonSteiger2000] R. Von Steiger, N. Schwadron, LA Fisk, J. Geiss, G. Gloeckler, S. Hefti, B. Wilken, RF Wimmer-Schweingruber, and TH Zurbuchen. Composition of quasi

  1. On ion-cyclotron-resonance heating of the corona and solar wind

    Directory of Open Access Journals (Sweden)

    E. Marsch

    2003-01-01

    Full Text Available This paper concisely summarizes and critically reviews recent work by the authors on models of the heating of the solar corona by resonance of ions with high-frequency waves (up to the proton cyclotron frequency. The quasi-linear theory of pitch angle diffusion is presented in connection with relevant solar wind proton observations. Hybrid fluid-kinetic model equations, which include wave-particle interactions and collisions, are derived. Numerical solutions are discussed, representative of the inner corona and near-Sun solar wind. A semi-kinetic model for reduced velocity distributions is presented, yielding kinetic results for heavy ions in the solar corona. It is concluded that a self-consistent treatment of particle distributions and wave spectra is required, in order to adequately describe coronal physics and to obtain agreement with observations.

  2. XMM-Newton Observations of Solar Wind Charge Exchange Emission

    Science.gov (United States)

    Snowden, S. L.; Collier, M. R.; Kuntz, K. D.

    2004-01-01

    We present an XMM-Newton spectrum of diffuse X-ray emission from within the solar system. The spectrum is dominated by O VII and O VIII lines at 0.57 keV and 0.65 keV, O VIII (and possibly Fe XVII) lines at approximately 0.8 keV, Ne IX lines at approximately 0.92 keV, and Mg XI lines at approximately 1.35 keV. This spectrum is consistent with what is expected from charge exchange emission between the highly ionized solar wind and either interstellar neutrals in the heliosphere or material from Earth's exosphere. The emission is clearly seen as a low-energy ( E less than 1.5 keV) spectral enhancement in one of a series of observations of the Hubble Deep Field North. The X-ray enhancement is concurrent with an enhancement in the solar wind measured by the ACE satellite. The solar wind enhancement reaches a flux level an order of magnitude more intense than typical fluxes at 1 AU, and has ion ratios with significantly enhanced higher ionization states. Whereas observations of the solar wind plasma made at a single point reflect only local conditions which may only be representative of solar wind properties with spatial scales ranging from less than half of an Earth radii (approximately 10 s) to 100 Earth radii, X-ray observations of solar wind charge exchange are remote sensing measurements which may provide observations which are significantly more global in character. Besides being of interest in its own right for studies of the solar system, this emission can have significant consequences for observations of more cosmological objects. It can provide emission lines at zero redshift which are of particular interest (e.g., O VII and O VIII) in studies of diffuse thermal emission, and which can therefore act as contamination in objects which cover the entire detector field of view. We propose the use of solar wind monitoring data, such as from the ACE and Wind spacecraft, as a diagnostic to screen for such possibilities.

  3. Intermittency and local heating in the solar wind.

    Science.gov (United States)

    Osman, K T; Matthaeus, W H; Wan, M; Rappazzo, A F

    2012-06-29

    Evidence for nonuniform heating in the solar wind plasma near current sheets dynamically generated by magnetohydrodynamic (MHD) turbulence is obtained using measurements from the ACE spacecraft. These coherent structures only constitute 19% of the data, but contribute 50% of the total plasma internal energy. Intermittent heating manifests as elevations in proton temperature near current sheets, resulting in regional heating and temperature enhancements extending over several hours. The number density of non-Gaussian structures is found to be proportional to the mean proton temperature and solar wind speed. These results suggest magnetofluid turbulence drives intermittent dissipation through a hierarchy of coherent structures, which collectively could be a significant source of coronal and solar wind heating.

  4. Ulysses solar wind plasma observations at high southerly latitudes.

    Science.gov (United States)

    Phillips, J L; Bame, S J; Feldman, W C; Gosling, J T; Hammond, C M; McComas, D J; Goldstein, B E; Neugebauer, M; Scime, E E; Suess, S T

    1995-05-19

    Solar wind plasma observations made by the Ulysses spacecraft through -80.2 degrees solar latitude and continuing equatorward to -40.1 degrees are summarized. Recurrent high-speed streams and corotating interaction regions dominated at middle latitudes. The speed of the solar wind was typically 700 to 800 kilometers per second poleward of -35 degrees . Corotating reverse shocks persisted farther south than did forward shocks because of the tilt of the heliomagnetic streamer belt. Sporadic coronal mass ejections were seen as far south as -60.5 degrees . Proton temperature was higher and the electron strahl was broader at higher latitudes. The high-latitude wind contained compressional, pressure-balanced, and Alfvénic structures.

  5. THE NEW HORIZONS SOLAR WIND AROUND PLUTO (SWAP) OBSERVATIONS OF THE SOLAR WIND FROM 11–33 au

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, H. A.; McComas, D. J.; Valek, P.; Weidner, S.; Livadiotis, G. [Southwest Research Institute, 6220 Culebra Road, San Antonio, TX 78238 (United States); Nicolaou, G., E-mail: helliott@swri.edu [Swedish Institute of Space Physics, Box 812, SE-98128, Kiruna (Sweden)

    2016-04-15

    The Solar Wind Around Pluto (SWAP) instrument on National Aeronautics and Space Administration's New Horizons Pluto mission has collected solar wind observations en route from Earth to Pluto, and these observations continue beyond Pluto. Few missions have explored the solar wind in the outer heliosphere making this dataset a critical addition to the field. We created a forward model of SWAP count rates, which includes a comprehensive instrument response function based on laboratory and flight calibrations. By fitting the count rates with this model, the proton density (n), speed (V), and temperature (T) parameters are determined. Comparisons between SWAP parameters and both propagated 1 au observations and prior Voyager 2 observations indicate consistency in both the range and mean wind values. These comparisons as well as our additional findings confirm that small and midsized solar wind structures are worn down with increasing distance due to dynamic interaction of parcels of wind with different speed. For instance, the T–V relationship steepens, as the range in V is limited more than the range in T with distance. At times the T–V correlation clearly breaks down beyond 20 au, which may indicate wind currently expanding and cooling may have an elevated T reflecting prior heating and compression in the inner heliosphere. The power of wind parameters at shorter periodicities decreases with distance as the longer periodicities strengthen. The solar rotation periodicity is present in temperature beyond 20 au indicating the observed parcel temperature may reflect not only current heating or cooling, but also heating occurring closer to the Sun.

  6. Magnetic fields in the solar system planets, moons and solar wind interactions

    CERN Document Server

    Wicht, Johannes; Gilder, Stuart; Holschneider, Matthias

    2018-01-01

    This book addresses and reviews many of the still little understood questions related to the processes underlying planetary magnetic fields and their interaction with the solar wind. With focus on research carried out within the German Priority Program ”PlanetMag”, it also provides an overview of the most recent research in the field. Magnetic fields play an important role in making a planet habitable by protecting the environment from the solar wind. Without the geomagnetic field, for example, life on Earth as we know it would not be possible. And results from recent space missions to Mars and Venus strongly indicate that planetary magnetic fields play a vital role in preventing atmospheric erosion by the solar wind. However, very little is known about the underlying interaction between the solar wind and a planet’s magnetic field. The book takes a synergistic interdisciplinary approach that combines newly developed tools for data acquisition and analysis, computer simulations of planetary interiors an...

  7. Astroparticle physics with solar neutrinos

    OpenAIRE

    NAKAHATA, Masayuki

    2011-01-01

    Solar neutrino experiments observed fluxes smaller than the expectations from the standard solar model. This discrepancy is known as the “solar neutrino problem”. Flux measurements by Super-Kamiokande and SNO have demonstrated that the solar neutrino problem is due to neutrino oscillations. Combining the results of all solar neutrino experiments, parameters for solar neutrino oscillations are obtained. Correcting for the effect of neutrino oscillations, the observed neutrino fluxes are consis...

  8. Agua Caliente Wind/Solar Project at Whitewater Ranch

    Energy Technology Data Exchange (ETDEWEB)

    Hooks, Todd [Agua Caliente Band of Cahuilla Indians, Palm Springs, CA (United States); Stewart, Royce [Red Mountain Energy Partners, Sante Fe, NM (United States)

    2014-12-16

    Agua Caliente Band of Cahuilla Indians (ACBCI) was awarded a grant by the Department of Energy (DOE) to study the feasibility of a wind and/or solar renewable energy project at the Whitewater Ranch (WWR) property of ACBCI. Red Mountain Energy Partners (RMEP) was engaged to conduct the study. The ACBCI tribal lands in the Coachella Valley have very rich renewable energy resources. The tribe has undertaken several studies to more fully understand the options available to them if they were to move forward with one or more renewable energy projects. With respect to the resources, the WWR property clearly has excellent wind and solar resources. The DOE National Renewable Energy Laboratory (NREL) has continued to upgrade and refine their library of resource maps. The newer, more precise maps quantify the resources as among the best in the world. The wind and solar technology available for deployment is also being improved. Both are reducing their costs to the point of being at or below the costs of fossil fuels. Technologies for energy storage and microgrids are also improving quickly and present additional ways to increase the wind and/or solar energy retained for later use with the network management flexibility to provide power to the appropriate locations when needed. As a result, renewable resources continue to gain more market share. The transitioning to renewables as the major resources for power will take some time as the conversion is complex and can have negative impacts if not managed well. While the economics for wind and solar systems continue to improve, the robustness of the WWR site was validated by the repeated queries of developers to place wind and/or solar there. The robust resources and improving technologies portends toward WWR land as a renewable energy site. The business case, however, is not so clear, especially when the potential investment portfolio for ACBCI has several very beneficial and profitable alternatives.

  9. ANALYSING SOLAR-WIND HYBRID POWER GENERATING SYSTEM

    Directory of Open Access Journals (Sweden)

    Mustafa ENGİN

    2005-02-01

    Full Text Available In this paper, a solar-wind hybrid power generating, system that will be used for security lighting was designed. Hybrid system was installed and solar cells, wind turbine, battery bank, charge regulators and inverter performance values were measured through the whole year. Using measured values of overall system efficiency, reliability, demanded energy cost per kWh were calculated, and percentage of generated energy according to resources were defined. We also include in the paper a discussion of new strategies to improve hybrid power generating system performance and demanded energy cost per kWh.

  10. Solar wind velocity and daily variation of cosmic rays

    International Nuclear Information System (INIS)

    Ahluwalia, H.S.; Riker, J.F.

    1985-01-01

    Recently parameters applicable to the solar wind and the interplanetary magnetic field (IMF) have become much better defined. Superior quality of data bases that are now available, particularly for the post-1971 period, make it possible to believe the long-term trends in the data. These data are correlated with the secular changes observed in the diurnal variation parameters obtained from neutron monitor data at Deep River and underground muon telescope data at Embudo (30 MEW) and Socorro (82 MWE). The annual mean amplitudes appear to have large values during the epochs of high speed solar wind streams. Results are discussed

  11. Flank solar wind interaction. Annual report, June 1991-July 1992

    International Nuclear Information System (INIS)

    Moses, S.L.; Greenstadt, E.W.

    1992-08-01

    This report summarizes the results of the first 12 months of our program to study the interaction of the Earth's magnetosphere with the solar wind on the far flanks of the bow shock. This study employs data from the ISEE-3 spacecraft during its traversals of the Earth's magnetotail and correlative data from spacecraft monitoring the solar wind upstream. Our main effort to date has involved assembling data sets and developing new plotting programs. Two talks were given at the Spring Meeting of the American Geophysical Union describing our initial results from analyzing data from the far flank foreshock and magnetosheath. The following sections summarize our results

  12. Mass spectrometer for investigation of solar wind composition

    International Nuclear Information System (INIS)

    Kogan, V.T.; Kornienko, A.P.; Koshevenko, B.V.; Pavlov, A.K.; Chichagov, Yu.V.

    1989-01-01

    Mass-spectrometer designed for analysis of charged particles in solar wind is developed. Analysis of charged particle flux composition is realized in velocity space due to their selection. Properties of mass-spectrometer built using the scheme where analysis of ion composition after their passage through plane magnet with parallel boundaries is realized by means of electrostatic capacitor are considered. The suggested device differs from analog by fundamentally new possibility to carry out analysis of ion composition regardless of their energy within the selected range (solar wind). This property eliminates the necessity to carry out time successive energy analysis increases essentially mass-spectrometer sensitivity and enables to study fast processes

  13. Harmonic analysis and suppression in hybrid wind & PV solar system

    Science.gov (United States)

    Gupta, Tripti; Namekar, Swapnil

    2018-04-01

    The growing demand of electricity has led to produce power through non-conventional source of energy such as solar energy, wind energy, hydro power, energy through biogas and biomass etc. Hybrid system is taken to complement the shortcoming of either sources of energy. The proposed system is grid connected hybrid wind and solar system. A 2.1 MW Doubly fed Induction Generator (DFIG) has been taken for analysis of wind farm whose rotor part is connected to two back-to-back converters. A 250 KW Photovoltaic (PV) array taken to analyze solar farm where inverter is required to convert power from DC to AC since electricity generated through solar PV is in the form of DC. Stability and reliability of the system is very important when the system is grid connected. Harmonics is the major Power quality issue which degrades the quality of power at load side. Harmonics in hybrid system arise through the use of power conversion unit. The other causes of harmonics are fluctuation in wind speed and solar irradiance. The power delivered to grid must be free from harmonics and within the limits specified by Indian grid codes. In proposed work, harmonic analysis of the hybrid system is performed in Electrical Transient Analysis program (ETAP) and single tuned harmonic filter is designed to maintain the utility grid harmonics within limits.

  14. Coronal Magnetic Field Topology and Source of Fast Solar Wind

    Science.gov (United States)

    Guhathakurta, M.; Sittler, E.; Fisher, R.; McComas, D.; Thompson, B.

    1999-01-01

    We have developed a steady state, 2D semi-empirical MHD model of the solar corona and the solar wind with many surprising results. This model for the first time shows, that the boundary between the fast and the slow solar wind as observed by Ulysses beyond 1 AU, is established in the low corona. The fastest wind observed by Ulysses (680-780 km/s) originates from the polar coronal holes at 70 -90 deg. latitude at the Sun. Rapidly diverging magnetic field geometry accounts for the fast wind reaching down to a latitude of +/- 30 deg. at the orbit of Earth. The gradual increase in the fast wind observed by Ulysses, with latitude, can be explained by an increasing field strength towards the poles, which causes Alfven wave energy flux to increase towards the poles. Empirically, there is a direct relationship between this gradual increase in wind speed and the expansion factor, f, computed at r greater than 20%. This relationship is inverse if f is computed very close to the Sun.

  15. The electric potential of the moon in the solar wind

    Science.gov (United States)

    Freeman, J. W., Jr.; Fenner, M. A.; Hills, H. K.

    1973-01-01

    Acceleration and detection of the lunar thermal ionosphere in the presence of the lunar electric field yields a value of approximately +10 V for the lunar electric potential for solar zenith angles between 20 and 45 deg and in the magnetosheath or solar wind. The ion number density of the thermal ionosphere observed is compatible with a surface neutral number density of about 100,000 atoms/cu cm.

  16. Knowledge of coronal heating and solar-wind acceleration obtained from observations of the solar wind near 1 AU

    Science.gov (United States)

    Neugebauer, M.

    1992-01-01

    Clues to the nature of the mechanisms responsible for heating the corona and accelerating the solar wind can be obtained by contrasting the properties of the quasi-stationary and transient states of the solar wind. Substantial differences exist in the proton temperatures and anisotropies, the entropy, the field strength, the Alfvenicity of fluctuations in the field, the distribution of MHD discontinuities, and the helium abundance of the two types of flow. Those differences are displayed as a function of the solar wind speed. Several signals of wave acceleration can be found in the data for quasi-stationary flows. The relatively smooth velocity dependences of proton temperature, helium abundance, and frequency of occurrence of rotational discontinuities suggest that the acceleration mechanisms for flow from coronal holes, coronal streamers, and the quasi-stationary low-speed flows between them may be basically the same, differing only in degree.

  17. Strategy for the Explorer program for solar and space physics

    International Nuclear Information System (INIS)

    1984-01-01

    Contents include: executive summary; the Explorer program - background and current status; strategy - level of activity; solar-terrestrial research (solar physics, space plasma physics, and upper atmospheric physics)

  18. GPP Webinar: Market Outlook and Innovations in Wind and Solar Power

    Science.gov (United States)

    Green Power Partnership webinar reviewing the state of the renewable energy industry as a whole, with a focus on wind and solar power and exploring recent marketplace innovations in wind and solar power and renewable energy purchases.

  19. Solar Coronal Plumes and the Fast Solar Wind

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... Before the spectroscopic peculiarities in IPRs and plumes in Polar Coronal Holes (PCHs) can be further investigated with the instrument Solar Ultraviolet Measurements of Emitted Radiation (SUMER) aboard the Solar and Heliospheric Observatory (SOHO), it is mandatory to summarize the results of the ...

  20. Modelling the solar wind interaction with Mercury by a quasi-neutral hybrid model

    Directory of Open Access Journals (Sweden)

    E. Kallio

    2003-11-01

    Full Text Available Quasi-neutral hybrid model is a self-consistent modelling approach that includes positively charged particles and an electron fluid. The approach has received an increasing interest in space plasma physics research because it makes it possible to study several plasma physical processes that are difficult or impossible to model by self-consistent fluid models, such as the effects associated with the ions’ finite gyroradius, the velocity difference between different ion species, or the non-Maxwellian velocity distribution function. By now quasi-neutral hybrid models have been used to study the solar wind interaction with the non-magnetised Solar System bodies of Mars, Venus, Titan and comets. Localized, two-dimensional hybrid model runs have also been made to study terrestrial dayside magnetosheath. However, the Hermean plasma environment has not yet been analysed by a global quasi-neutral hybrid model. In this paper we present a new quasi-neutral hybrid model developed to study various processes associated with the Mercury-solar wind interaction. Emphasis is placed on addressing advantages and disadvantages of the approach to study different plasma physical processes near the planet. The basic assumptions of the approach and the algorithms used in the new model are thoroughly presented. Finally, some of the first three-dimensional hybrid model runs made for Mercury are presented. The resulting macroscopic plasma parameters and the morphology of the magnetic field demonstrate the applicability of the new approach to study the Mercury-solar wind interaction globally. In addition, the real advantage of the kinetic hybrid model approach is to study the property of individual ions, and the study clearly demonstrates the large potential of the approach to address these more detailed issues by a quasi-neutral hybrid model in the future.Key words. Magnetospheric physics (planetary magnetospheres; solar wind-magnetosphere interactions – Space plasma

  1. Power generation from wind turbines in a solar chimney

    Energy Technology Data Exchange (ETDEWEB)

    Foote, Tudor [Graduate Student, Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, Jolley Hall, Campus Box 1185, One Brookings Drive, St. Louis, Missouri, 63130 (United States); Agarwal, Ramesh K. [William Palm Professor, Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, Jolley Hall, Campus Box 1185, One Brookings Drive, St. Louis, Missouri, 63130 (United States)

    2013-07-01

    Recent studies have shown that shrouded wind turbines can generate greater power compared to bare turbines. A solar chimney generates an upward draft of wind inside a tower and a shroud around the wind turbine. There are numerous empty silos on farms in the U.S. that can be converted to solar chimneys with minor modifications at modest cost. The objective of this study is to determine the potential of these silos/chimneys for generating wind power. The study is conducted through analytical/computational approach by employing the commercial Computational Fluid Dynamics (CFD) software. Computations are performed for five different geometric configurations consisting of a turbine, a cylindrical silo, and/or a venturi and/or a diffuser using the dimensions of typical silos and assuming Class 3 wind velocity. The incompressible Navier-Stokes equations with the Boussinesq approximation and a two equation realizable {kappa}-{epsilon} model are employed in the calculations, and the turbine is modeled as an actuator disk. The power coefficient (Cp) and generated power are calculated for the five cases. Consistent with recent literature, it was found that the silos with diffusers increase the Cp beyond Betz’s limit significantly and thus the generated power. It should be noted that Cp is calculated by normalizing it by the turbine area swept by the wind. This study shows the potential of using abandoned silos in the mid-west and other parts of the country for localized wind power generation.

  2. The Physics of Wind-Fed Accretion

    International Nuclear Information System (INIS)

    Mauche, Christopher W.; Liedahl, Duane A.; Akiyama, Shizuka; Plewa, Tomasz

    2008-01-01

    We provide a brief review of the physical processes behind the radiative driving of the winds of OB stars and the Bondi-Hoyle-Lyttleton capture and accretion of a fraction of the stellar wind by a compact object, typically a neutron star, in detached high-mass X-ray binaries (HMXBs). In addition, we describe a program to develop global models of the radiatively-driven photoionized winds and accretion flows of HMXBs, with particular attention to the prototypical system Vela X-l. The models combine XSTAR photoionization calculations, HULLAC emission models appropriate to X-ray photoionized plasmas, improved models of the radiative driving of photoionized winds, FLASH time-dependent adaptive-mesh hydrodynamics calculations, and Monte Carlo radiation transport. We present two- and three-dimensional maps of the density, temperature, velocity, ionization parameter, and emissivity distributions of representative X-ray emission lines, as well as synthetic global Monte Carlo X-ray spectra. Such models help to better constrain the properties of the winds of HMXBs, which bear on such fundamental questions as the long-term evolution of these binaries and the chemical enrichment of the interstellar medium.

  3. Distribution Strategies for Solar and Wind Renewables in NW Europe

    Science.gov (United States)

    Smedley, Andrew; Webb, Ann

    2017-04-01

    Whilst the UNFCCC Paris Agreement Climate change was ratified in November, 2016 saw the highest global temperature anomaly on record at 1.2°C above pre-industrial levels. As such there is urgent need to reduce CO2 emissions by a move away from fossil fuels and towards renewable electricity energy technologies. As the principal renewable technologies of solar PV and wind turbines contribute an increasing fraction to the electricity grid, questions of cumulative intermittency and the large-scale geographic distribution of each technology need to be addressed. In this study our initial emphasis is on a calculation of a relatively high spatial resolution (0.1° × 0.1°) daily gridded dataset of solar irradiance data, over a 10 year period (2006-2015). This is achieved by coupling established sources of satellite data (MODIS SSF level2 instantaneous footprint data) to a well-validated radiative transfer model, here LibRadTran. We utilise both a morning and afternoon field for two cloud layers (optical depth and cloud fraction) interpolated to hourly grids, together with aerosol optical depth, topographic height and solar zenith angle. These input parameters are passed to a 5-D LUT of LibRadTran results to construct hourly estimates of the solar irradiance field, which is then integrated to a daily total. For the daily wind resource we rely on the 6 hourly height-adjusted ECMWF ERA-Interim reanalysis wind fields, but separated into onshore, offshore and deep water components. From these datasets of the solar and wind resources we construct 22 different distribution strategies for solar PV and wind turbines based on the long-term availability of each resource. Combining these distributions with the original daily gridded datasets enables each distribution strategy to be then assessed in terms of the day-to-day variability, the installed capacity required to maintain a baseline supply, and the relative proportions of each technology. Notably for the NW European area

  4. Sputtering of lunar regolith simulant by protons and singly and multicharged Ar ions at solar wind energies

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, F.W., E-mail: meyerfw@ornl.gov [Physics Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831 (United States); Harris, P.R.; Taylor, C.N. [Physics Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831 (United States); Meyer III, H.M. [MST Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831 (United States); Barghouty, A.F.; Adams, J.H. [NASA-Marshall Space Flight Center, Huntsville, AL 35812 (United States)

    2011-06-01

    We report preliminary results on sputtering of a lunar regolith simulant at room temperature by singly and multiply charged solar wind ions using quadrupole and time-of-flight (TOF) mass spectrometry approaches. Sputtering of the lunar regolith by solar-wind heavy ions may be an important particle source that contributes to the composition of the lunar exosphere, and is a possible mechanism for lunar surface ageing and compositional modification. The measurements were performed in order to assess the relative sputtering efficiency of protons, which are the dominant constituent of the solar wind, and less abundant heavier multicharged solar wind constituents, which have higher physical sputtering yields than same-velocity protons, and whose sputtering yields may be further enhanced due to potential sputtering. Two different target preparation approaches using JSC-1A AGGL lunar regolith simulant are described and compared using SEM and XPS surface analysis.

  5. Solar wind flows associated with hot heavy ions

    International Nuclear Information System (INIS)

    Fenimore, E.E.

    1980-05-01

    Solar wind heavy ion spectra measured with the Vela instrumentation have been studied with the goal of determining the solar origins of various solar wind structures which contain anomalously high ionization states. Since the ionization states freeze-in close to the sun they are good indicators of the plasma conditions in the low and intermediate corona. Heavy ion spectra from three different periods throughout the solar cycle have been analyzed. These data are consistent with freezing-in temperatures ranging from approx. 1.5 x 10 6 K to higher than 9 x 10 6 . The spectra indicating hot coronal conditions occur in roughly 1/7 of all measurements and almost exclusively in postshock flows (PSFs), nonshock related helium abundance enhancements (HAEs), or noncompressive density enhancements (NCDEs). The PSFs and HAEs are both probably interplanetary manifestations of solar flares. The observation of several flare-related HAEs which were not preceded by an interplanetary shock suggests that the flare-heated plasma can evolve into the solar wind without producing a noticeable shock at 1 AU. The NCDEs with hot heavy ions differ from the PSF-HAEs in several ways implying that they evolve from events or places with lower temperatures and less energy than those associated with the flares, but with higher temperatures and densities than the quiet corona. Active regions, coronal mass ejections, and equatorial streamers are possible sources for the NCDEs with spectra indicating hot coronal conditions. These events owe their enhanced densities to coronal processes as opposed to interplanetary dynamical processes. Models of the solar wind expansion demonstrate how some NCDEs can have extreme, nonequilibrium ionization distributions

  6. Air emissions due to wind and solar power.

    Science.gov (United States)

    Katzenstein, Warren; Apt, Jay

    2009-01-15

    Renewables portfolio standards (RPS) encourage large-scale deployment of wind and solar electric power. Their power output varies rapidly, even when several sites are added together. In many locations, natural gas generators are the lowest cost resource available to compensate for this variability, and must ramp up and down quickly to keep the grid stable, affecting their emissions of NOx and CO2. We model a wind or solar photovoltaic plus gas system using measured 1-min time-resolved emissions and heat rate data from two types of natural gas generators, and power data from four wind plants and one solar plant. Over a wide range of renewable penetration, we find CO2 emissions achieve approximately 80% of the emissions reductions expected if the power fluctuations caused no additional emissions. Using steam injection, gas generators achieve only 30-50% of expected NOx emissions reductions, and with dry control NOx emissions increase substantially. We quantify the interaction between state RPSs and NOx constraints, finding that states with substantial RPSs could see significant upward pressure on NOx permit prices, if the gas turbines we modeled are representative of the plants used to mitigate wind and solar power variability.

  7. Simulation of transcontinental wind and solar PV generation time series

    DEFF Research Database (Denmark)

    Nuño Martinez, Edgar; Maule, Petr; Hahmann, Andrea N.

    2018-01-01

    The deployment of Renewable Energy Sources (RES) is driving modern power systems towards a fundamental green transition. In this regard, there is a need to develop models to accurately capture the variability of wind and solar photovoltaic (PV) power, at different geographical and temporal scales...

  8. Electron energetics in the expanding solar wind via Helios observations

    Czech Academy of Sciences Publication Activity Database

    Štverák, Štěpán; Trávníček, Pavel M.; Hellinger, Petr

    2015-01-01

    Roč. 120, č. 10 (2015), s. 8177-8193 ISSN 2169-9380 Institutional support: RVO:68378289 Keywords : solar wind plasma * plasma energization * transport processes Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 3.318, year: 2015 http://onlinelibrary.wiley.com/doi/10.1002/2015JA021368/abstract

  9. Electron energetics in the expanding solar wind via Helios observations

    Czech Academy of Sciences Publication Activity Database

    Štverák, Štěpán; Trávníček, Pavel M.; Hellinger, Petr

    2015-01-01

    Roč. 120, č. 10 (2015), s. 8177-8193 ISSN 2169-9380 R&D Projects: GA ČR GAP209/12/2041; GA ČR GA15-17490S Institutional support: RVO:67985815 Keywords : solar wind * electrons energetics * transport processes Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 3.318, year: 2015

  10. Solar wind reconstruction from magnetosheath data using an adjoint approach

    Directory of Open Access Journals (Sweden)

    C. Nabert

    2015-12-01

    Full Text Available We present a new method to reconstruct solar wind conditions from spacecraft data taken during magnetosheath passages, which can be used to support, e.g., magnetospheric models. The unknown parameters of the solar wind are used as boundary conditions of an MHD (magnetohydrodynamics magnetosheath model. The boundary conditions are varied until the spacecraft data matches the model predictions. The matching process is performed using a gradient-based minimization of the misfit between data and model. To achieve this time-consuming procedure, we introduce the adjoint of the magnetosheath model, which allows efficient calculation of the gradients. An automatic differentiation tool is used to generate the adjoint source code of the model. The reconstruction method is applied to THEMIS (Time History of Events and Macroscale Interactions during Substorms data to calculate the solar wind conditions during spacecraft magnetosheath transitions. The results are compared to actual solar wind data. This allows validation of our reconstruction method and indicates the limitations of the MHD magnetosheath model used.

  11. Wind and solar energy curtailment: A review of international experience

    DEFF Research Database (Denmark)

    Bird, Lori; Lew, Debra; Milligan, Michael

    2016-01-01

    Greater penetrations of variable renewable generation on some electric grids have resulted in increased levels of curtailment in recent years. Studies of renewable energy grid integration have found that curtailment levels may grow as the penetration of wind and solar energy generation increases....

  12. Solar Wind Monitor--A School Geophysics Project

    Science.gov (United States)

    Robinson, Ian

    2018-01-01

    Described is an established geophysics project to construct a solar wind monitor based on a nT resolution fluxgate magnetometer. Low-cost and appropriate from school to university level it incorporates elements of astrophysics, geophysics, electronics, programming, computer networking and signal processing. The system monitors the earth's field in…

  13. Signatures of kinetic instabilities in the solar wind

    Czech Academy of Sciences Publication Activity Database

    Matteini, L.; Hellinger, Petr; Goldstein, B. E.; Landi, S.; Velli, M.; Neugebauer, M.

    2013-01-01

    Roč. 118, č. 6 (2013), s. 2771-2782 ISSN 2169-9380 R&D Projects: GA ČR GAP209/12/2023 Grant - others:EU(XE) SHOCK Project No. 284515 Institutional support: RVO:67985815 Keywords : solar wind ions * numerical simulations * kinetic instabities Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 3.440, year: 2013

  14. A large ion beam device for laboratory solar wind studies

    Science.gov (United States)

    Ulibarri, Zach; Han, Jia; Horányi, Mihály; Munsat, Tobin; Wang, Xu; Whittall-Scherfee, Guy; Yeo, Li Hsia

    2017-11-01

    The Colorado Solar Wind Experiment is a new device constructed at the Institute for Modeling Plasma, Atmospheres, and Cosmic Dust at the University of Colorado. A large cross-sectional Kaufman ion source is used to create steady state plasma flow to model the solar wind in an experimental vacuum chamber. The plasma beam has a diameter of 12 cm at the source, ion energies of up to 1 keV, and ion flows of up to 0.1 mA/cm2. Chamber pressure can be reduced to 4 × 10-5 Torr under operating conditions to suppress ion-neutral collisions and create a monoenergetic ion beam. The beam profile has been characterized by a Langmuir probe and an ion energy analyzer mounted on a two-dimensional translation stage. The beam profile meets the requirements for planned experiments that will study solar wind interaction with lunar magnetic anomalies, the charging and dynamics of dust in the solar wind, plasma wakes and refilling, and the wakes of topographic features such as craters or boulders. This article describes the technical details of the device, initial operation and beam characterization, and the planned experiments.

  15. Depletion of solar wind plasma near a planetary boundary

    International Nuclear Information System (INIS)

    Zwan, B.J.; Wolf, R.A.

    1976-01-01

    A mathematical model is presented that describes the squeezing of solar wind plasma out along interplanetary magnetic field lines in the region between the bow shock and the effective planetary boundary (in the case of the earth, the magnetopause). In the absence of local magnetic merging the squeezing process should create a 'depletion layer,' a region of very low plasma density just outside the magnetopause. Numerical solutions are obtained for the dimensionless magnetohydrodynamic equations describing this depletion process for the case where the solar wind magnetic field is perpendicular to the solar wind flow direction. For the case of the earth with a magnetopause standoff distance of 10 R/subE/, the theory predicts that the density should be reduced by a factor > or =2 in a layer about 700--1300 km thick if M/subA/, the Alfven Mach number in the solar wind, is equal to 8. The layer thickness should vary as M/subA/ -2 and should be approximately uniform for a large area of the magnetopause around the subsolar point. Computed layer thicknesses are somewhat smaller than those derived from Lees' axisymmetric model. Depletion layers should develop fully only where magnetic merging is locally unimportant. Scaling of the model calculations to Venus and Mars suggest layer thicknesses about 1/10 and 1/15 those of the earth, respectively, neglecting diffusion and ionospheric effects

  16. The behavior of solar wind parameters and geomagnetic activity ...

    African Journals Online (AJOL)

    The main objective of the current work is to investigate the behavior of space weather parameter as well as geomagnetic activity indices to observe the Geomagnetically Induced Current (GIC). Subsequently, solar wind parameter and geomagnetic activity indices provided an evidence that GIC formed during quiet days.

  17. Review Space Weather and Solar Wind Studies with OWFA

    Indian Academy of Sciences (India)

    DOI 10.1007/s12036-017-9435-z. Review. Space Weather and Solar Wind Studies with OWFA. P. K. MANOHARAN1,∗, C. R. SUBRAHMANYA2 and J. N. CHENGALUR3. 1Radio Astronomy Centre, NCRA-TIFR, P.O. Box 8, Ooty 643 001, India. 2Raman Research Institute, C. V. Raman Avenue, Sadashivnagar, Bengaluru ...

  18. An intense geomagnetic storm associated with slow solar wind ...

    African Journals Online (AJOL)

    The storm is summarized using the low-latitude magnetic index, Dst and is interpreted using available interplanetary data: proton number density, solar wind flow speed, plasma temperature, interplanetary magnetic field southward component Bz, plasma beta and dawn-dusk electric field. Our results show the magnetic ...

  19. A Review of Hybrid Solar PV and Wind Energy System

    Directory of Open Access Journals (Sweden)

    Rashid Al Badwawi

    2015-07-01

    Full Text Available Due to the fact that solar and wind power is intermittent and unpredictable in nature, higher penetration of their types in existing power system could cause and create high technical challenges especially to weak grids or stand-alone systems without proper and enough storage capacity. By integrating the two renewable resources into an optimum combination, the impact of the variable nature of solar and wind resources can be partially resolved and the overall system becomes more reliable and economical to run. This paper provides a review of challenges and opportunities / solutions of hybrid solar PV and wind energy integration systems. Voltage and frequency fluctuation, and harmonics are major power quality issues for both grid-connected and stand-alone systems with bigger impact in case of weak grid. This can be resolved to a large extent by having proper design, advanced fast response control facilities, and good optimization of the hybrid systems. The paper gives a review of the main research work reported in the literature with regard to optimal sizing design, power electronics topologies and control. The paper presents a review of the state of the art of both grid-connected and stand-alone hybrid solar and wind systems.

  20. Remote Sensing of the Heliospheric Solar Wind using Radio ...

    Indian Academy of Sciences (India)

    tribpo

    Astr. (2000) 21, 439–444. Remote Sensing of the Heliospheric Solar Wind using Radio. Astronomy Methods and Numerical Simulations. S. Ananthakrishnan, National Center for Radio Astrophysics, Tata Institute of. Fundamental Research, Pune, India. Abstract. The ground-based radio astronomy method of interplanetary.

  1. The Dissipation of Solar Wind Turbulent Fluctuations at Electron Scales

    NARCIS (Netherlands)

    E. Camporeale (Enrico); D. Burgess

    2011-01-01

    textabstractWe present two-dimensional fully kinetic particle-in-cell simulations of decaying electromagnetic fluctuations. The computational box is such that wavelengths ranging from electron to ion gyroradii are resolved. The parameters used are realistic for the solar wind, and the

  2. Review Space Weather and Solar Wind Studies with OWFA

    Indian Academy of Sciences (India)

    Review. Space Weather and Solar Wind Studies with OWFA. P. K. MANOHARAN1,∗, C. R. SUBRAHMANYA2 and J. N. CHENGALUR3. 1Radio Astronomy Centre, NCRA-TIFR, P.O. Box 8, Ooty 643 001, India. 2Raman Research Institute, C. V. Raman Avenue, Sadashivnagar, Bengaluru 560 080, India. 3NCRA-TIFR, Pune ...

  3. Livestock water pumping with wind and solar power

    Science.gov (United States)

    Recent developments in pumping technologies have allowed for efficient use of renewable energies like wind and solar to power new pumps for remote water pumping. A helical type, positive displacement pump was developed a few years ago and recently modified to accept input from a variable power sourc...

  4. THREE-DIMENSIONAL EVOLUTION OF SOLAR WIND DURING SOLAR CYCLES 22–24

    International Nuclear Information System (INIS)

    Manoharan, P. K.

    2012-01-01

    This paper presents an analysis of three-dimensional evolution of solar wind density turbulence and speed at various levels of solar activity between solar cycles 22 and 24. The solar wind data used in this study have been obtained from the interplanetary scintillation (IPS) measurements made at the Ooty Radio Telescope, operating at 327 MHz. Results show that (1) on average, there was a downward trend in density turbulence from the maximum of cycle 22 to the deep minimum phase of cycle 23; (2) the scattering diameter of the corona around the Sun shrunk steadily toward the Sun, starting from 2003 to the smallest size at the deepest minimum, and it corresponded to a reduction of ∼50% in the density turbulence between the maximum and minimum phases of cycle 23; (3) the latitudinal distribution of the solar wind speed was significantly different between the minima of cycles 22 and 23. At the minimum phase of solar cycle 22, when the underlying solar magnetic field was simple and nearly dipole in nature, the high-speed streams were observed from the poles to ∼30° latitudes in both hemispheres. In contrast, in the long-decay phase of cycle 23, the sources of the high-speed wind at both poles, in accordance with the weak polar fields, occupied narrow latitude belts from poles to ∼60° latitudes. Moreover, in agreement with the large amplitude of the heliospheric current sheet, the low-speed wind prevailed in the low- and mid-latitude regions of the heliosphere. (4) At the transition phase between cycles 23 and 24, the high levels of density and density turbulence were observed close to the heliospheric equator and the low-speed solar wind extended from the equatorial-to-mid-latitude regions. The above results in comparison with Ulysses and other in situ measurements suggest that the source of the solar wind has changed globally, with the important implication that the supply of mass and energy from the Sun to the interplanetary space has been significantly reduced

  5. Study on Pyroelectric Harvesters Integrating Solar Radiation with Wind Power

    Directory of Open Access Journals (Sweden)

    Chun-Ching Hsiao

    2015-07-01

    Full Text Available Pyroelectric harvesters use temperature fluctuations to generate electrical outputs. Solar radiation and waste heat are rich energy sources that can be harvested. Pyroelectric energy converters offer a novel and direct energy-conversion technology by transforming time-dependent temperatures directly into electricity. Moreover, the great challenge for pyroelectric energy harvesting lies in finding promising temperature variations or an alternating thermal loading in real situations. Hence, in this article, a novel pyroelectric harvester integrating solar radiation with wind power by the pyroelectric effect is proposed. Solar radiation is a thermal source, and wind is a dynamic potential. A disk generator is used for harvesting wind power. A mechanism is considered to convert the rotary energy of the disk generator to drive a shutter for generating temperature variations in pyroelectric cells using a planetary gear system. The optimal period of the pyroelectric cells is 35 s to harvest the stored energy, about 70 μJ, while the rotary velocity of the disk generator is about 31 RPM and the wind speed is about 1 m/s. In this state, the stored energy acquired from the pyroelectric harvester is about 75% more than that from the disk generator. Although the generated energy of the proposed pyroelectric harvester is less than that of the disk generator, the pyroelectric harvester plays a complementary role when the disk generator is inactive in situations of low wind speed.

  6. Solar origins of solar wind properties during the cycle 23 solar minimum and rising phase of cycle 24

    Science.gov (United States)

    Luhmann, Janet G.; Petrie, Gordon; Riley, Pete

    2012-01-01

    The solar wind was originally envisioned using a simple dipolar corona/polar coronal hole sources picture, but modern observations and models, together with the recent unusual solar cycle minimum, have demonstrated the limitations of this picture. The solar surface fields in both polar and low-to-mid-latitude active region zones routinely produce coronal magnetic fields and related solar wind sources much more complex than a dipole. This makes low-to-mid latitude coronal holes and their associated streamer boundaries major contributors to what is observed in the ecliptic and affects the Earth. In this paper we use magnetogram-based coronal field models to describe the conditions that prevailed in the corona from the decline of cycle 23 into the rising phase of cycle 24. The results emphasize the need for adopting new views of what is ‘typical’ solar wind, even when the Sun is relatively inactive. PMID:25685422

  7. Large Scale Wind and Solar Integration in Germany

    Energy Technology Data Exchange (ETDEWEB)

    Ernst, Bernhard; Schreirer, Uwe; Berster, Frank; Pease, John; Scholz, Cristian; Erbring, Hans-Peter; Schlunke, Stephan; Makarov, Yuri V.

    2010-02-28

    This report provides key information concerning the German experience with integrating of 25 gigawatts of wind and 7 gigawatts of solar power capacity and mitigating its impacts on the electric power system. The report has been prepared based on information provided by the Amprion GmbH and 50Hertz Transmission GmbH managers and engineers to the Bonneville Power Administration (BPA) and Pacific Northwest National Laboratory representatives during their visit to Germany in October 2009. The trip and this report have been sponsored by the BPA Technology Innovation office. Learning from the German experience could help the Bonneville Power Administration engineers to compare and evaluate potential new solutions for managing higher penetrations of wind energy resources in their control area. A broader dissemination of this experience will benefit wind and solar resource integration efforts in the United States.

  8. HEMISPHERIC ASYMMETRIES IN THE POLAR SOLAR WIND OBSERVED BY ULYSSES NEAR THE MINIMA OF SOLAR CYCLES 22 AND 23

    International Nuclear Information System (INIS)

    Ebert, R. W.; Dayeh, M. A.; Desai, M. I.; McComas, D. J.; Pogorelov, N. V.

    2013-01-01

    We examined solar wind plasma and interplanetary magnetic field (IMF) observations from Ulysses' first and third orbits to study hemispheric differences in the properties of the solar wind and IMF originating from the Sun's large polar coronal holes (PCHs) during the declining and minimum phase of solar cycles 22 and 23. We identified hemispheric asymmetries in several parameters, most notably ∼15%-30% south-to-north differences in averages for the solar wind density, mass flux, dynamic pressure, and energy flux and the radial and total IMF magnitudes. These differences were driven by relatively larger, more variable solar wind density and radial IMF between ∼36°S-60°S during the declining phase of solar cycles 22 and 23. These observations indicate either a hemispheric asymmetry in the PCH output during the declining and minimum phase of solar cycles 22 and 23 with the southern hemisphere being more active than its northern counterpart, or a solar cycle effect where the PCH output in both hemispheres is enhanced during periods of higher solar activity. We also report a strong linear correlation between these solar wind and IMF parameters, including the periods of enhanced PCH output, that highlight the connection between the solar wind mass and energy output and the Sun's magnetic field. That these enhancements were not matched by similar sized variations in solar wind speed points to the mass and energy responsible for these increases being added to the solar wind while its flow was subsonic.

  9. High-speed solar wind flow parameters at 1 AU

    International Nuclear Information System (INIS)

    Feldman, W.C.; Asbridge, J.R.; Bame, S.J.; Gosling, J.T.

    1976-01-01

    To develop a set of constraints for theories of solar wind high-speed streams, a detailed study was made of the fastest streams observed at 1 AU during the time period spanning March 1971 through July 1974. Streams were accepted for study only if (1) the maximum speed exceeded 650 km s -1 ; (2) effects of stream-stream dynamical interaction on the flow parameters could be safely separated from the intrinsic characteristics of the high-speed regions; (3) the full width at half maximum (FWHM) of the stream when mapped back to 20 solar radii by using a constant speed approximation was greater than 45degree in Carrington longitude; and (4) there were no obvious solar-activity-induced contaminating effects. Nineteen streams during this time interval satisfied these criteria. Average parameters at 1 AU for those portions of these streams above V=650 km s -1 are given.Not only is it not presently known why electrons are significantly cooler than the protons within high-speed regions, but also observed particle fluxes and convected energy fluxes for speed greater than 650 km s -1 are substantially larger than those values predicted by any of the existing theories of solar wind high-speed streams. More work is therefore needed in refining present solar wind models to see whether suitable modifications and/or combinations of existing theories based on reasonable coronal conditions can accommodate the above high-speed flow parameters

  10. Different Responses of Solar Wind and Geomagnetism to Solar Activity during Quiet and Active Periods

    Science.gov (United States)

    Kim, Roksoon; Park, J.-Y.; Baek, J.-H.; Kim, B.-G.

    2017-08-01

    It is well known that there are good relations of coronal hole (CH) parameters such as the size, location, and magnetic field strength to the solar wind conditions and the geomagnetic storms. Especially in the minimum phase of solar cycle, CHs in mid- or low-latitude are one of major drivers for geomagnetic storms, since they form corotating interaction regions (CIRs). By adopting the method of Vrsnak et al. (2007), the Space Weather Research Center (SWRC) in Korea Astronomy and Space Science Institute (KASI) has done daily forecast of solar wind speed and Dst index from 2010. Through years of experience, we realize that the geomagnetic storms caused by CHs have different characteristics from those by CMEs. Thus, we statistically analyze the characteristics and causality of the geomagnetic storms by the CHs rather than the CMEs with dataset obtained during the solar activity was very low. For this, we examine the CH properties, solar wind parameters as well as geomagnetic storm indices. As the first result, we show the different trends of the solar wind parameters and geomagnetic indices depending on the degree of solar activity represented by CH (quiet) or sunspot number (SSN) in the active region (active) and then we evaluate our forecasts using CH information and suggest several ideas to improve forecasting capability.

  11. Sustainable business models for wind and solar energy in Romania

    Directory of Open Access Journals (Sweden)

    Nichifor Maria Alexandra

    2015-06-01

    Full Text Available Renewable energy has become a crucial element for the business environment as the need for new energy resources and the degree of climate change are increasing. As developed economies strive towards greater progress, sustainable business models are of the essence in order to maintain a balance between the triple bottom line: people, planet and profit. In recent years, European Union countries have installed important capacities of renewable energy, especially wind and solar energy to achieve this purpose. The objective of this article is to make a comparative study between the current sustainable business models implemented in companies that are active in the wind and solar energy sector in Romania. Both sectors underwent tremendous changes in the last two years due to changing support schemes which have had a significant influence on the mechanism of the renewable energy market, as well as on its development. Using the classical Delphi method, based on questionnaires and interviews with experts in the fields of wind and solar energy, this paper offers an overview of the sustainable business models of wind and solar energy companies, both sectors opting for the alternative of selling electricity to trading companies as a main source of revenue until 2013 and as the main future trend until 2020. Furthermore, the participating wind energy companies noted a pessimistic outlook of future investments due to legal instability that made them to reduce their projects in comparison to PV investments, which are expected to continue. The subject of the article is of interest to scientific literature because sustainable business models in wind and photovoltaic energy have been scarcely researched in previous articles and are essential in understanding the activity of the companies in these two fields of renewable energy.

  12. Proton thermal energetics in the solar wind: Helios reloaded

    Science.gov (United States)

    Hellinger, Petr; TráVníček, Pavel M.; Štverák, Štěpán; Matteini, Lorenzo; Velli, Marco

    2013-04-01

    The proton thermal energetics in the slow solar wind between 0.3 and 1 AU is reinvestigated using the Helios 1 and 2 data, complementing a similar analysis for the fast solar wind [Hellinger et al., 2011]. The results for slow and fast solar winds are compared and discussed in the context of previous results. Protons need to be heated in the perpendicular direction with respect to the ambient magnetic field from 0.3 to 1 AU. In the parallel direction, protons need to be cooled at 0.3 AU, with a cooling rate comparable to the corresponding perpendicular heating rate; between 0.3 and 1 AU, the required cooling rate decreases until a transition to heating occurs: by 1 AU the protons require parallel heating, with a heating rate comparable to that required to sustain the perpendicular temperature. The heating/cooling rates (per unit volume) in the fast and slow solar winds are proportional to the ratio between the proton kinetic energy and the expansion time. On average, the protons need to be heated and the necessary heating rates are comparable to the energy cascade rate of the magnetohydrodynamic turbulence estimated from the stationary Kolmogorov-Yaglom law at 1 AU; however, in the expanding solar wind, the stationarity assumption for this law is questionable. The turbulent energy cascade may explain the average proton energetics (although the stationarity assumption needs to be justified) but the parallel cooling is likely related to microinstabilities connected with the structure of the proton velocity distribution function. This is supported by linear analysis based on observed data and by results of numerical simulations.

  13. Solar-wind interactions: nature and composition of lunar atmosphere

    International Nuclear Information System (INIS)

    Mukherjee, N.R.

    1975-01-01

    The solar wind interacts directly with the lunar surface material resulting in an essentially complete absorption of the corpuscles producing no upstream bowshock but a cavity downstream from the Moon. The main source of most neutral species of the atmosphere, except probably 40 Ar, is the solar-wind interaction products. The other sources which appear to be minor contributors to the atmosphere are the interaction products of cosmic from the Moon. The main source of most neutral species of the atmosphere, except probably 40 Ar, is the solar-wind in solar-wind protons contribute to the atmosphere as hydrogen molecules rather than atoms. Only on the basis of the solar-wind protons, alpha particles and ions of oxygen and carbon, the atmospheric species concentration (cm -3 ) near the lunar surface at 300K are as follows: H 2 3.3 to 9.9 x 10 3 , He2.4 to 4.7 x 10 3 ; He3.7; OH 0.25; H 2 O 0.24; and O 2 , O, CO, CO 2 and CH 4 in concentrations smaller than H 2 . Whatever the source, the OH and H 2 O concentrations in the atmosphere are about the same. The calculated concentrations are in good agreement with the observations by the Apollo 17 lunar surface mass spectrometer and the Apollo 17 orbital UV spectrometer. At the time of sample collection from the Moon, the hydrogen content in the trapped gas layer of the lunar surface material was partly as hydrogen atoms and partly as hydrogen molecules, but at the time of sample analysis, hydrogen was mostly in molecular form. The H 2 O content at the time of sample analysis was only a few parts per million by weight

  14. Solar wind stream interaction regions throughout the heliosphere

    Science.gov (United States)

    Richardson, Ian G.

    2018-01-01

    This paper focuses on the interactions between the fast solar wind from coronal holes and the intervening slower solar wind, leading to the creation of stream interaction regions that corotate with the Sun and may persist for many solar rotations. Stream interaction regions have been observed near 1 AU, in the inner heliosphere (at ˜ 0.3-1 AU) by the Helios spacecraft, in the outer and distant heliosphere by the Pioneer 10 and 11 and Voyager 1 and 2 spacecraft, and out of the ecliptic by Ulysses, and these observations are reviewed. Stream interaction regions accelerate energetic particles, modulate the intensity of Galactic cosmic rays and generate enhanced geomagnetic activity. The remote detection of interaction regions using interplanetary scintillation and white-light imaging, and MHD modeling of interaction regions will also be discussed.

  15. The statistical dependence of auroral absorption on geomagnetic and solar wind parameters

    Directory of Open Access Journals (Sweden)

    A. J. Kavanagh

    2004-03-01

    Full Text Available Data from the Imaging Riometer for Ionospheric Studies (IRIS at Kilpisjärvi, Finland, have been compiled to form statistics of auroral absorption based on seven years of observations. In a previous study a linear relationship between the logarithm of the absorption and the Kp index provided a link between the observations of precipitation with the level of geomagnetic activity. A better fit to the absorption data is found in the form of a quadratic in Kp for eight magnetic local time sectors. Past statistical investigations of absorption have hinted at the possibility of using the solar wind velocity as a proxy for the auroral absorption, although the lack of available satellite data made such an investigation difficult. Here we employ data from the solar wind monitors, WIND and ACE, and derive a linear relationship between the solar wind velocity and the cosmic noise absorption at IRIS for the same eight magnetic local time sectors. As far as the authors are aware this is the first time that in situ measurements of the solar wind velocity have been used to create a direct link with absorption on a statistical basis. The results are promising although, it is clear that some other factor is necessary in providing reliable absorption predictions. Due to the substorm related nature of auroral absorption, this is likely formed by the recent time history of the geomagnetic activity, or by some other indicator of the energy stored within the magnetotail. For example, a dependence on the southward IMF (interplanetary magnetic field is demonstrated with absorption increasing with successive decreases in Bz; a northward IMF appears to have little effect and neither does the eastward component, By.

    Key words. Magnetospheric physics (energetic particles, precipitating; solar wind-magnetosphere interactions – Ionosphere (modeling and forecasting

  16. The role of turbulence in coronal heating and solar wind expansion.

    Science.gov (United States)

    Cranmer, Steven R; Asgari-Targhi, Mahboubeh; Miralles, Mari Paz; Raymond, John C; Strachan, Leonard; Tian, Hui; Woolsey, Lauren N

    2015-05-13

    Plasma in the Sun's hot corona expands into the heliosphere as a supersonic and highly magnetized solar wind. This paper provides an overview of our current understanding of how the corona is heated and how the solar wind is accelerated. Recent models of magnetohydrodynamic turbulence have progressed to the point of successfully predicting many observed properties of this complex, multi-scale system. However, it is not clear whether the heating in open-field regions comes mainly from the dissipation of turbulent fluctuations that are launched from the solar surface, or whether the chaotic 'magnetic carpet' in the low corona energizes the system via magnetic reconnection. To help pin down the physics, we also review some key observational results from ultraviolet spectroscopy of the collisionless outer corona. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  17. INJECTION OF PLASMA INTO THE NASCENT SOLAR WIND VIA RECONNECTION DRIVEN BY SUPERGRANULAR ADVECTION

    International Nuclear Information System (INIS)

    Yang Liping; He Jiansen; Tu Chuanyi; Chen Wenlei; Zhang Lei; Wang Linghua; Yan Limei; Peter, Hardi; Marsch, Eckart; Feng, Xueshang

    2013-01-01

    To understand the origin of the solar wind is one of the key research topics in modern solar and heliospheric physics. Previous solar wind models assumed that plasma flows outward along a steady magnetic flux tube that reaches continuously from the photosphere through the chromosphere into the corona. Inspired by more recent comprehensive observations, Tu et al. suggested a new scenario for the origin of the solar wind, in which it flows out in a magnetically open coronal funnel and mass is provided to the funnel by small-scale side loops. Thus mass is supplied by means of magnetic reconnection that is driven by supergranular convection. To validate this scenario and simulate the processes involved, a 2.5 dimensional (2.5D) numerical MHD model is established in the present paper. In our simulation a closed loop moves toward an open funnel, which has opposite polarity and is located at the edge of a supergranulation cell, and magnetic reconnection is triggered and continues while gradually opening up one half of the closed loop. Its other half connects with the root of the open funnel and forms a new closed loop which is submerged by a reconnection plasma stream flowing downward. Thus we find that the outflowing plasma in the newly reconnected funnel originates not only from the upward reconnection flow but also from the high-pressure leg of the originally closed loop. This implies an efficient supply of mass from the dense loop to the dilute funnel. The mass flux of the outflow released from the funnel considered in our study is calculated to be appropriate for providing the mass flux at the coronal base of the solar wind, though additional heating and acceleration mechanisms are necessary to keep the velocity at the higher location. Our numerical model demonstrates that in the funnel the mass for the solar wind may be supplied from adjacent closed loops via magnetic reconnection as well as directly from the footpoints of open funnels.

  18. Geo-effectiveness of Solar Wind Extremes

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... However, the high speed streams below the threshold with -ve IMF are 1.1 times more effective in enhancing geomagnetic activity than those with +ve IMF. The violent solar activity period (October–November 2003) of cycle 23 presents a very special case during which many severe and strong effects were ...

  19. Ionospheric cusp flows pulsed by solar wind Alfvén waves

    Directory of Open Access Journals (Sweden)

    P. Prikryl

    2002-02-01

    observed delay of the reconnection onset. The compressional fluctuations in solar wind and those generated in the magnetosheath through the interaction between the solar wind Alfvén waves and the bow shock were the source of magnetopause surface waves inducing reconnection.Key words. Interplanetary physics (MHD waves and turbulence – Magnetospheric physics (magnetosphere-ionosphere interactions; solar wind-magnetosphere interactions

  20. Hybrid Simulations of the Interaction Between Solar Wind Flow and the Hermean Magnetosphere

    Science.gov (United States)

    Travnicek, P.; Hellinger, P.; Schriver, D.; Ashour-Abdalla, M.

    2003-12-01

    We examine the magnetosphere of Mercury using global three dimensional hybrid plasma simulations. Hybrid simulations treat ions as particles and electrons as a fluid. Having ions as particles allows ion kinetic behavior and waves to be included in the physical treatment of the plasma as compared to magnetohydrodynamic (MHD) modeling that treats the plasma as a single magnetized fluid and does not include such kinetic effects. Kinetic effects are essential for understanding magnetospheric physics. Hybrid simulations scale to the ion inertial length and thus on a global scale are somewhat limited in spatial extent compared to an MHD simulation. We note effects caused by the scalling of the numerical model of the magnetized obstacle interacting with the solar wind flow with the full scale simulation. Hermean magnetosphere is estimated to be only a few times the planetary radius, it can fit within a hybrid simulation system. The overal structure of the interaction between a magnetized obstacle in the solar wind flow is determined by few basic parameters (namely the solar wind density, background magnetic field, and the speed of solar wind, and also the strength of the magnetic dipole of the obstacle and its radius). The structure of the interaction of the solar wind flow with Mercury is to a large extend unique when compared to other planets. For example, the magnetic moment of the Mercury is over 1000 times smaller than that of the Earth and also the solar wind is stronger nearby Mercury than at Earth's vicinity. The typical magnetosperic scales are comparable to the ion gyroradii and hence kinetic effects are important for the overall structure of the interaction between the Hermean magnetospere and the solar wind. In this paper we shall focus on the study of the overal structure of the bow shock and magnetosheath of Mercury. We shall examine the formation of the magnetospheric tail. We shall study particle distribution functions in different locations of the

  1. Ionospheric cusp flows pulsed by solar wind Alfvén waves

    Directory of Open Access Journals (Sweden)

    P. Prikryl

    observed delay of the reconnection onset. The compressional fluctuations in solar wind and those generated in the magnetosheath through the interaction between the solar wind Alfvén waves and the bow shock were the source of magnetopause surface waves inducing reconnection.

    Key words. Interplanetary physics (MHD waves and turbulence – Magnetospheric physics (magnetosphere-ionosphere interactions; solar wind-magnetosphere interactions

  2. Predicting Atmospheric Ionization and Excitation by Precipitating SEP and Solar Wind Protons Measured By MAVEN

    Science.gov (United States)

    Jolitz, Rebecca; Dong, Chuanfei; Lee, Christina; Lillis, Rob; Brain, David; Curry, Shannon; Halekas, Jasper; Bougher, Stephen W.; Jakosky, Bruce

    2017-10-01

    Precipitating energetic particles ionize and excite planetary atmospheres, increasing electron content and producing aurora. At Mars, the solar wind and solar energetic particles (SEPs) can precipitate directly into the atmosphere because solar wind protons can charge exchange to become neutral and pass the magnetosheath, and SEPs are sufficiently energetic to cross the magnetosheath unchanged. We will compare ionization and Lyman alpha emission rates for solar wind and SEP protons during nominal solar activity and a CME shock front impact event on May 16 2016. We will use the Atmospheric Scattering of Protons and Energetic Neutrals (ASPEN) model to compare excitation and ionization rates by SEPs and solar wind protons currently measured by the SWIA (Solar Wind Ion Analyzer) and SEP instruments aboard the MAVEN spacecraft. Results will help quantify how SEP and solar wind protons influence atmospheric energy deposition during solar minimum.

  3. Power Spectra, Power Law Exponents, and Anisotropy of Solar Wind Turbulence at Small Scales

    Science.gov (United States)

    Podesta, J. J.; Roberts, D. A.; Goldstein, M. L.

    2006-01-01

    The Wind spacecraft provides simultaneous solar wind velocity and magnetic field measurements with 3- second time resolution, roughly an order of magnitude faster than previous measurements, enabling the small scale features of solar wind turbulence to be studied in unprecedented detail. Almost the entire inertial range can now be explored (the inertial range extends from approximately 1 to 10(exp 3) seconds in the spacecraft frame) although the dissipation range of the velocity fluctuations is still out of reach. Improved measurements of solar wind turbulence spectra at 1 AU in the ecliptic plane are presented including spectra of the energy and cross-helicity, the magnetic and kinetic energies, the Alfven ratio, the normalized cross-helicity, and the Elsasser ratio. Some recent observations and theoretical challenges are discussed including the observation that the velocity and magnetic field spectra often show different power law exponents with values close to 3/2 and 5/3, respectively; the energy (kinetic plus magnetic) and cross-helicity often have approximately equal power law exponents with values intermediate between 3/2 and 5/3; and the Alfven ratio, the ratio of the kinetic to magnetic energy spectra, is often a slowly increasing function of frequency increasing from around 0.4 to 1 for frequencies in the inertial range. Differences between high- and low-speed wind are also discussed. Comparisons with phenomenological turbulence theories show that important aspects of the physics are yet unexplained.

  4. The influence of solar active region evolution on solar wind streams, coronal hole boundaries and geomagnetic storms

    International Nuclear Information System (INIS)

    Gold, R.E.; Dodson-Prince, H.W.; Hedeman, E.R.; Roelof, E.C.

    1982-01-01

    We have studied solar and interplanetary data by identification of the heliographic longitudes of the coronal source regions of high speed solar wind streams and by mapping the velocities measured near earth back to the sun using the approximation of constant radial velocity. Interplay of active regions and solar wind were studied

  5. Solar Panel Buffeted by Wind at Phoenix Site

    Science.gov (United States)

    2008-01-01

    Winds were strong enough to cause about a half a centimeter (.19 inch) of motion of a solar panel on NASA's Phoenix Mars lander when the lander's Surface Stereo Imager took this picture on Aug. 31, 2008, during the 96th Martian day since landing. The lander's telltale wind gauge has been indicating wind speeds of about 4 meters per second (9 miles per hour) during late mornings at the site. These conditions were anticipated and the wind is not expected to do any harm to the lander. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  6. The solar wind in time: a change in the behaviour of older winds?

    Science.gov (United States)

    O'Fionnagáin, D.; Vidotto, A. A.

    2018-02-01

    In the present paper, we model the wind of solar analogues at different ages to investigate the evolution of the solar wind. Recently, it has been suggested that winds of solar type stars might undergo a change in properties at old ages, whereby stars older than the Sun would be less efficient in carrying away angular momentum than what was traditionally believed. Adding to this, recent observations suggest that old solar-type stars show a break in coronal properties, with a steeper decay in X-ray luminosities and temperatures at older ages. We use these X-ray observations to constrain the thermal acceleration of winds of solar analogues. Our sample is based on the stars from the `Sun in time' project with ages between 120-7000 Myr. The break in X-ray properties leads to a break in wind mass-loss rates (\\dot{M}) at roughly 2 Gyr, with \\dot{M} (t 2 Gyr) ∝ t-3.9. This steep decay in \\dot{M} at older ages could be the reason why older stars are less efficient at carrying away angular momentum, which would explain the anomalously rapid rotation observed in older stars. We also show that none of the stars in our sample would have winds dense enough to produce thermal emission above 1-2 GHz, explaining why their radio emissions have not yet been detected. Combining our models with dynamo evolution models for the magnetic field of the Earth we find that, at early ages (≈100 Myr) our Earth had a magnetosphere that was 3 or more times smaller than its current size.

  7. SCALING OF THE ELECTRON DISSIPATION RANGE OF SOLAR WIND TURBULENCE

    International Nuclear Information System (INIS)

    Sahraoui, F.; Belmont, G.; Rétino, A.; Robert, P.; De Patoul, J.; Huang, S. Y.; Goldstein, M. L.

    2013-01-01

    Electron scale solar wind (SW) turbulence has attracted great interest in recent years. Considerable evidence exists that the turbulence is not fully dissipated near the proton scale, but continues cascading down to electron scales. However, the scaling of the magnetic energy spectra as well as the nature of the plasma modes involved at those small scales are still not fully determined. Here we survey 10 yr of the Cluster STAFF search-coil magnetometer waveforms measured in the SW and perform a statistical study of the magnetic energy spectra in the frequency range [1, 180] Hz. We found that 75% of the analyzed spectra exhibit breakpoints near the electron gyroscale ρ e , followed by steeper power-law-like spectra. We show that the scaling below the electron breakpoint cannot be determined unambiguously due to instrumental limitations that we discuss in detail. We compare our results to those reported in other studies and discuss their implications for the physical mechanisms involved and for theoretical modeling of energy dissipation in the SW

  8. Polar ionospheric responses to solar wind IMF changes

    Directory of Open Access Journals (Sweden)

    Y. Zhang

    2000-06-01

    Full Text Available Auroral and airglow emissions over Eureka (89° CGM during the 1997-98 winter show striking variations in relation to solar wind IMF changes. The period January 19 to 22, 1998, was chosen for detailed study, as the IMF was particularly strong and variable. During most of the period, Bz was northward and polar arcs were observed. Several overpasses by DMSP satellites during the four day period provided a clear picture of the particle precipitation producing the polar arcs. The spectral character of these events indicated excitation by electrons of average energy 300 to 500 eV. Only occasionally were electrons of average energy up to ~1 keV observed and these appeared transitory from the ground optical data. It is noted that polar arcs appear after sudden changes in IMF By, suggesting IMF control over arc initiation. When By is positive there is arc motion from dawn to dusk, while By is negative the motion is consistently dusk to dawn. F-region (anti-sunward convections were monitored through the period from 630.0 nm emissions. The convection speed was low (100-150 m/s when Bz was northward but increased to 500 m/s after Bz turned southward on January 20.Key words: Atmospheric composition and structure (airglow and aurora - Ionosphere (particle precipitation - Magnetospheric Physics (polar cap phenomena

  9. Global Magnetospheric Simulations: coupling with ionospheric and solar wind models

    Science.gov (United States)

    Lapenta, Giovanni; Olshevskyi, Vyacheslav; Amaya, Jorge; Deca, Jan; Markidis, Stefano; Vapirev, Alexander

    2013-04-01

    We present results on the global fully kinetic model of the magnetosphere of the Earth. The simulations are based on the iPic3D code [1] that treats kinetically all plasma species solving implicitly the equations of motion for electrons and ions, coupled with the Maxwell equations. We present results of our simulations and discuss the coupling at the inner boundary near the Earth with models of the ionosphere and at the outer boundary with models of the arriving solar wind. The results are part of the activities of the Swiff FP7 project: www.swiff.eu [1] Stefano Markidis, Giovanni Lapenta, Rizwan-uddin, Multi-scale simulations of plasma with iPIC3D, Mathematics and Computers in Simulation, Volume 80, Issue 7, March 2010, Pages 1509-1519, ISSN 0378-4754, 10.1016/j.matcom.2009.08.038 [2] Giovanni Lapenta, Particle simulations of space weather, Journal of Computational Physics, Volume 231, Issue 3, 1 February 2012, Pages 795-821, ISSN 0021-9991, 10.1016/j.jcp.2011.03.035.

  10. Numerical simulation of the kinetic effects in the solar wind

    Science.gov (United States)

    Sokolov, I.; Toth, G.; Gombosi, T. I.

    2017-12-01

    Global numerical simulations of the solar wind are usually based on the ideal or resistive MagnetoHydroDynamics (MHD) equations. Within a framework of MHD the electric field is assumed to vanish in the co-moving frame of reference (ideal MHD) or to obey a simple and non-physical scalar Ohm's law (resistive MHD). The Maxwellian distribution functions are assumed, the electron and ion temperatures may be different. Non-disversive MHD waves can be present in this numerical model. The averaged equations for MHD turbulence may be included as well as the energy and momentum exchange between the turbulent and regular motion. With the use of explicit numerical scheme, the time step is controlled by the MHD wave propagtion time across the numerical cell (the CFL condition) More refined approach includes the Hall effect vie the generalized Ohm's law. The Lorentz force acting on light electrons is assumed to vanish, which gives the expression for local electric field in terms of the total electric current, the ion current as well as the electron pressure gradient and magnetic field. The waves (whistlers, ion-cyclotron waves etc) aquire dispersion and the short-wavelength perturbations propagate with elevated speed thus strengthening the CFL condition. If the grid size is sufficiently small to resolve ion skindepth scale, then the timestep is much shorter than the ion gyration period. The next natural step is to use hybrid code to resolve the ion kinetic effects. The hybrid numerical scheme employs the same generalized Ohm's law as Hall MHD and suffers from the same constraint on the time step while solving evolution of the electromagnetic field. The important distiction, however, is that by sloving particle motion for ions we can achieve more detailed description of the kinetic effect without significant degrade in the computational efficiency, because the time-step is sufficient to resolve the particle gyration. We present the fisrt numerical results from coupled BATS

  11. Intermittent heating of the corona as an alternative to generate fast solar wind flows

    International Nuclear Information System (INIS)

    Grappin, R.; Mangeney, A.; Schwartz, S.J.; Feldman, W.C.

    1999-01-01

    We discuss a new alternative to the generation of fast streams which does not require momentum addition beyond the critical point. We consider the consequences on the solar wind of temporally intermittent heat depositions at the base of the wind. With the help of 1d hydrodynamic simulations we show that the instantaneous wind velocity profile fluctuates around an average profile well above the one corresponding to the Parker solution with a coronal temperature equal to the average coronal temperature imposed at the bottom of the numerical domain. The origin of this result lies in a previously overlooked phenomenon, the overexpansion of hot plasma regions in the subsonic wind. copyright 1999 American Institute of Physics

  12. Simulation and optimum design of hybrid solar-wind and solar-wind-diesel power generation systems

    Science.gov (United States)

    Zhou, Wei

    Solar and wind energy systems are considered as promising power generating sources due to its availability and topological advantages in local power generations. However, a drawback, common to solar and wind options, is their unpredictable nature and dependence on weather changes, both of these energy systems would have to be oversized to make them completely reliable. Fortunately, the problems caused by variable nature of these resources can be partially overcome by integrating these two resources in a proper combination to form a hybrid system. However, with the increased complexity in comparison with single energy systems, optimum design of hybrid system becomes more complicated. In order to efficiently and economically utilize the renewable energy resources, one optimal sizing method is necessary. This thesis developed an optimal sizing method to find the global optimum configuration of stand-alone hybrid (both solar-wind and solar-wind-diesel) power generation systems. By using Genetic Algorithm (GA), the optimal sizing method was developed to calculate the system optimum configuration which offers to guarantee the lowest investment with full use of the PV array, wind turbine and battery bank. For the hybrid solar-wind system, the optimal sizing method is developed based on the Loss of Power Supply Probability (LPSP) and the Annualized Cost of System (ACS) concepts. The optimization procedure aims to find the configuration that yields the best compromise between the two considered objectives: LPSP and ACS. The decision variables, which need to be optimized in the optimization process, are the PV module capacity, wind turbine capacity, battery capacity, PV module slope angle and wind turbine installation height. For the hybrid solar-wind-diesel system, minimization of the system cost is achieved not only by selecting an appropriate system configuration, but also by finding a suitable control strategy (starting and stopping point) of the diesel generator. The

  13. The "FIP Effect" and the Origins of Solar Energetic Particles and of the Solar Wind

    Science.gov (United States)

    Reames, Donald V.

    2018-03-01

    We find that the element abundances in solar energetic particles (SEPs) and in the slow solar wind (SSW), relative to those in the photosphere, show different patterns as a function of the first ionization potential (FIP) of the elements. Generally, the SEP and SSW abundances reflect abundance samples of the solar corona, where low-FIP elements, ionized in the chromosphere, are more efficiently conveyed upward to the corona than high-FIP elements that are initially neutral atoms. Abundances of the elements, especially C, P, and S, show a crossover from low to high FIP at {≈} 10 eV in the SEPs but {≈} 14 eV for the solar wind. Naively, this seems to suggest cooler plasma from sunspots beneath active regions. More likely, if the ponderomotive force of Alfvén waves preferentially conveys low-FIP ions into the corona, the source plasma that eventually will be shock-accelerated as SEPs originates in magnetic structures where Alfvén waves resonate with the loop length on closed magnetic field lines. This concentrates FIP fractionation near the top of the chromosphere. Meanwhile, the source of the SSW may lie near the base of diverging open-field lines surrounding, but outside of, active regions, where such resonance does not exist, allowing fractionation throughout the chromosphere. We also find that energetic particles accelerated from the solar wind itself by shock waves at corotating interaction regions, generally beyond 1 AU, confirm the FIP pattern of the solar wind.

  14. Observation of He+ ions in the solar wind

    International Nuclear Information System (INIS)

    Pissarenko, N.F.; Dubinin, E.M.; Zakharov, A.V.; Budnik, E.Yu.; Lundin, R.

    1984-02-01

    This paper describes results obtained from the PROGNOZ-8 ion composition experiment which indicates the He+ ions may be more abundant in the solar wind than previous measurements have indicated. The experiment has a sufficiently high mass resolution to accurately discriminate between H+, He++, He+ and O+ ions over the energy range 0.35-5.2 keV/e. Furthermore, the fact that the experiment is continuously monitoring in the solar direction means that fairly good statistics can be aquired as well. In a few cases, He+/He++ ratios up to ca 0.05 have been found, but in most cases when He+ was observed, it was generally of the order 0.3-3 percent of the He++ content. We compared our results with previous measurements of He+ ions in the solar wind and discuss also other constituents with M/q equel with 4 as alternative candidates. Finally, a possible explanation for the high He+ abundance in the disturbed solar wind is given.(authors)

  15. On the relation between ionospheric winter anomalies and solar wind

    International Nuclear Information System (INIS)

    Rumi, G.C.

    2001-01-01

    There are two different winter anomalies. A small one that appears in connection with ionization at relatively low latitudes in the bottom of the D-region of the ionosphere. There, the electron densities in the winter happen to be less than should be expected. On the other hand, the classic winter anomaly is present when in the winter the upper D-region, again at relatively low latitudes, has more ionization than should be expected. Both these effects are due to the slant compression of the geomagnetic field produced by the solar wind in the wind in the winter season (which is, of course, the summer season when reference is made to events in the other hemisphere). It is shown that the small winter anomaly is a consequence of a hemispheric imbalance in the flux of galactic cosmic rays determined by the obliquely distorted geomagnetic field. It is shown that the standard winter anomaly can be ascribed to the influx of a super solar wind, which penetrates into the Earth's polar atmosphere down to E-region, heights and, duly concentrated through a funneling action at the winter pole of the distorted geomagnetic field, slows down the winter polar vortex. An equatorward motion of the polar air with its content of nitric oxide brings about the excess of ionization in the upper D-region at lower latitudes. The experimentally observed rhythmic recurrence of the upper winter anomaly is correlated to a possible rhythmic recurrence of the super solar wind. The actual detection of the upper winter anomaly could yield some information on the velocity of the basic solar wind. A by-product of the present analysis, the determination of Γ, the coefficient of collisional detachment of the electrons from the O 2 - ions, is presented in the Appendix

  16. A Generalized Equatorial Model for the Accelerating Solar Wind

    Science.gov (United States)

    Tasnim, S.; Cairns, Iver H.; Wheatland, M. S.

    2018-02-01

    A new theoretical model for the solar wind is developed that includes the wind's acceleration, conservation of angular momentum, deviations from corotation, and nonradial velocity and magnetic field components from an inner boundary (corresponding to the onset of the solar wind) to beyond 1 AU. The model uses a solution of the time-steady isothermal equation of motion to describe the acceleration and analytically predicts the Alfvénic critical radius. We fit the model to near-Earth observations of the Wind spacecraft during the solar rotation period of 1-27 August 2010. The resulting data-driven model demonstrates the existence of noncorotating, nonradial flows and fields from the inner boundary (r = rs) outward and predicts the magnetic field B = (Br,Bϕ), velocity v = (vr,vϕ), and density n(r,ϕ,t), which vary with heliocentric distance r, heliolatitude ϕ, and time t in a Sun-centered standard inertial plane. The description applies formally only in the equatorial plane. In a frame corotating with the Sun, the transformed velocity v' and a field B' are not parallel, resulting in an electric field with a component Ez' along the z axis. The resulting E'×B'=E'×B drift lies in the equatorial plane, while the ∇B and curvature drifts are out of the plane. Together these may lead to enhanced scattering/heating of sufficiently energetic particles. The model predicts that deviations δvϕ from corotation at the inner boundary are common, with δvϕ(rs,ϕs,ts) comparable to the transverse velocities due to granulation and supergranulation motions. Abrupt changes in δvϕ(rs,ϕs,ts) are interpreted in terms of converging and diverging flows at the cell boundaries and centers, respectively. Large-scale variations in the predicted angular momentum demonstrate that the solar wind can drive vorticity and turbulence from near the Sun to 1 AU and beyond.

  17. Generalized similarity in magnetohydrodynamic turbulence as seen in the solar corona and solar wind

    Science.gov (United States)

    Chapman, S. C.; Leonardis, E.; Nicol, R. M.; Foullon, C.

    2010-12-01

    A key property of turbulence is that it can be characterized and quantified in a robust and reproducible way in terms of the ensemble averaged statistical properties of fluctuations. Importantly, fluctuations associated with a turbulent field show similarity or scaling in their statistics and we test for this in observations of magnetohydrodynamic turbulence in the solar corona and solar wind with both power spectra and Generalized Structure Functions. Realizations of turbulence that are finite sized are known to exhibit a generalized or extended self-similarity (ESS). ESS was recently demonstrated in magnetic field timeseries of Ulysses single point in-situ observations of fluctuations of quiet solar wind for which a single robust scaling function was found [1-2]. Flows in solar coronal prominences can be highly variable, with dynamics suggestive of turbulence. The Hinode SOT instrument provides observations (images) at simultaneous high spatial and temporal resolution which span several decades in both spatial and temporal scales. We focus on specific Calcium II H-line observations of solar quiescent prominences with dynamic, highly variable small-scale flows. We analyze these images from the perspective of a finite sized turbulent flow. We discuss this evidence of ESS in the SOT images and in Ulysses solar wind observations- is there a single universal scaling of the largest eddies in the finite range magnetohydrodynamic turbulent flow? [1] S. C. Chapman, R. M. Nicol, Generalized Similarity in Finite Range Solar Wind Magnetohydrodynamic Turbulence, Phys. Rev. Lett., 103, 241101 (2009) [2] S. C. Chapman, R. M. Nicol, E. Leonardis, K. Kiyani, V. Carbone, Observation of universality in the generalized similarity of evolving solar wind turbulence as seen by ULYSSES, Ap. J. Letters, 695, L185, (2009)

  18. Solar and wind potentialities in Mauritania. Presentation of pumping

    International Nuclear Information System (INIS)

    Adell, A.; Fagel, L.

    1996-01-01

    The programs of rural hydraulics based upon the use of renewable energies, either solar or wind, have gained in importance in Africa during the last decade; particularly in Mauritania, a Sahelian country, which is extending widely beyond the western edge of Sahara. This country has been hardly affected by the prolonged droughts which have recently struck this region. Water is a major problem here. Important projects appeared concerning the pumping of water with the help of solar photovoltaic systems and wind mechanical pumps; other processes are being studied: pumping with aero-generators, sea water desalinating... Today Mauritania is at the top of countries of the subregion concerning the number of installations of wind mechanical pumps. The meteorological conditions are in fact favourable to such realizations. A technical and economic comparative study of the results of functioning obtained on the field with a photovoltaic pumping installation and a wind pumping installation, is presented: better technical performances and greater reliability for the photovoltaic pump, lower cost and technological mastery for the wind pump. (author). 9 refs., 8 figs

  19. Protons and alpha particles in the expanding solar wind: Hybrid simulations

    Czech Academy of Sciences Publication Activity Database

    Hellinger, Petr; Trávníček, Pavel M.

    2013-01-01

    Roč. 118, č. 9 (2013), s. 5421-5429 ISSN 2169-9380 R&D Projects: GA ČR GAP209/12/2023 Grant - others:EU(XE) SHOCK Project No. 284515 Institutional support: RVO:67985815 ; RVO:68378289 Keywords : solar wind * proton energetics * turbulent heating Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics; BL - Plasma and Gas Discharge Physics (UFA-U) Impact factor: 3.440, year: 2013

  20. Whistler mode waves and the electron heat flux in the solar wind: Cluster observations

    Czech Academy of Sciences Publication Activity Database

    Lacombe, C.; Alexandrova, O.; Matteini, L.; Santolík, Ondřej; Cornilleau-Wehrlin, N.; Mangeney, A.; De Conchy, Y.; Maksimovic, M.

    2014-01-01

    Roč. 796, č. 1 (2014), s. 1-11 ISSN 0004-637X R&D Projects: GA ČR GAP205/10/2279; GA MŠk LH12231 Institutional support: RVO:68378289 Keywords : solar wind * turbulence * waves Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 5.993, year: 2014 http://iopscience.iop.org/0004-637X/796/1/5/article

  1. Structure of Mercury's magnetosphere for different pressure of the solar wind: Three dimensional hybrid simulations

    Czech Academy of Sciences Publication Activity Database

    Trávníček, Pavel; Hellinger, Petr; Schriver, D.

    2007-01-01

    Roč. 34, č. 5 (2007), L05104/1-L05104/5 ISSN 0094-8276 R&D Projects: GA ČR GA205/05/1011 Institutional research plan: CEZ:AV0Z30420517 Keywords : Global simulations * Mercury's magnetosphere * solar wind * hybrid simulations * ion drift driven rings Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.744, year: 2007

  2. Implementation Strategy for a Global Solar and Wind Atlas

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-01-15

    In July 2009, Major Economies Forum leaders met to prepare for the COP 15 Copenhagen Conference that took place later that year. At this occasion the Major Economies Forum Global Partnership f or low carbon and climate-friendly technology was founded and Technology Action Plans (TAPs) for ten key low-carbon technologies were drafted. At that juncture Denmark, Germany and Spain took on the responsibility for drafting TAPs for Solar and Wind Energy Technologies. The TAPs were then consolidated and presented at COP 15 that would later take place in December in Copenhagen. Since then, countries that led the development of the Action Plans have started their implementation. During a first Clean Energy Ministerial (CEM) in July 2010 in Washington on the invitation of Steven Chu, US Secretary of Energy, several initiatives were launched. Denmark, Germany and Spain took the lead in the implementation of the TAPs for Solar and Wind Technologies and initiated the Multilateral Working Group on Solar and Wind Energy Technologies (MWGSW). Several countries joined the working group in Washington and afterwards. In two international workshops in Bonn (June 2010) and Madrid (November 2010) and in meetings during the first CEM in Washington (July 2010) and the second CEM in Abu Dhabi (April 2011) the Multilateral Working Group made substantial progress in the two initial fields of action: (1) the Development of a Global Solar and Wind Atlas; and (2) the Development of a Long-term Strategy on Joint Capacity Building. Discussion papers on the respective topics were elaborated involving the Working Group's member countries as well as various international institutions. This led to concrete proposals for several pilot activities in both fields of action. After further specifying key elements of the suggested projects in two expert workshops in spring 2011, the Multilateral Working Group convened for a third international workshop in Copenhagen, Denmark, to discuss the project

  3. Dependence of thermospheric zonal winds on solar flux, geomagnetic activity, and hemisphere as measured by CHAMP

    Science.gov (United States)

    Zhang, Xiaofang; Liu, Libo; Liu, Songtao

    2017-08-01

    The thermospheric zonal winds measured by the CHAllenging Minisatellite Payload (CHAMP) satellite are used to statistically determine the climatology under quiet and active geomagnetic conditions. By collectively analyzing the bin-averaged wind trend with F10.7 and the solar-induced difference in wind structures, the solar flux dependence of global thermosphere zonal wind is determined. The increase of solar flux enhances the eastward winds at low latitudes from dusk to midnight. The increased ion drag reduces the nighttime eastward wind in the subauroral latitudes, and the daytime westward winds from 06 to 08 MLT at all latitudes decrease with increasing solar flux. Zonal winds show coupled seasonal/extreme ultraviolet (EUV) dependency. The equatorial zonal winds from 18 to 04 magnetic local time (MLT) indicate weaker eastward winds during the June solstice at high solar flux levels. Quiet time eastward winds at subauroral latitudes from 16 to 20 MLT are further decreased in the winter hemisphere. Influenced by asymmetries in solar illumination and the magnetic field, zonal winds show hemispheric asymmetries. Quiet daytime winds are additionally influenced by solar illumination effects, and the westward winds at the middle and subauroral latitudes are always stronger in the summer. The nighttime eastward winds are higher in the winter hemisphere during the solstices, as in the Southern Hemisphere during equinoxes, with the winter-summer asymmetry lessened or receding at the solar maxima. Storm-induced subauroral westward disturbance winds are higher in the summer hemisphere and in the Northern Hemisphere during equinoxes. At a high level of solar flux, the westward disturbance winds are comparable in the two hemispheres during December solstice. Geomagnetic disturbance wind observations from CHAMP agree well with the empirical geomagnetic disturbance wind model, except for stronger subauroral westward jets. Westward winds during the afternoon may be enhanced in

  4. Periodic Density Structures and the Origin of the Slow Solar Wind

    Science.gov (United States)

    Viall-Kepko, Nicholeen M.; Vourlidas, Angelos

    2015-01-01

    The source of the slow solar wind has challenged scientists for years. Periodic density structures (PDSs), observed regularly in the solar wind at 1 AU (Astronomical Unit), can be used to address this challenge. These structures have length scales of hundreds to several thousands of megameters and frequencies of tens to hundreds of minutes. Two lines of evidence indicate that PDSs are formed in the solar corona as part of the slow solar wind release and/or acceleration processes. The first is corresponding changes in compositional data in situ, and the second is PDSs observed in the inner Heliospheric Imaging data on board the Solar Terrestrial Relations Observatory (STEREO)/Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI) suite. The periodic nature of these density structures is both a useful identifier as well as an important physical constraint on their origin. In this paper, we present the results of tracking periodic structures identified in the inner Heliospheric Imager in SECCHI back in time through the corresponding outer coronagraph (COR2) images. We demonstrate that the PDSs are formed around or below 2.5 solar radii-the inner edge of the COR2 field of view. We compute the occurrence rates of PDSs in 10 days of COR2 images both as a function of their periodicity and location in the solar corona, and we find that this set of PDSs occurs preferentially with a periodicity of approximately 90 minutes and occurs near streamers. Lastly, we show that their acceleration and expansion through COR2 is self-similar, thus their frequency is constant at distances beyond 2.5 solar radii.

  5. High-latitude Conic Current Sheets in the Solar Wind

    Energy Technology Data Exchange (ETDEWEB)

    Khabarova, Olga V.; Obridko, Vladimir N.; Kharshiladze, Alexander F. [Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of the Russian Academy of Sciences (IZMIRAN), Moscow (Russian Federation); Malova, Helmi V. [Scobeltsyn Nuclear Physics Institute of Lomonosov Moscow State University, Moscow (Russian Federation); Kislov, Roman A.; Zelenyi, Lev M. [Space Research Centre of the Polish Academy of Sciences (CBK PAN), Warsaw (Poland); Tokumaru, Munetoshi; Fujiki, Ken’ichi [Institute for Space-Earth Environmental Research, Nagoya University (Japan); Sokół, Justyna M.; Grzedzielski, Stan [Space Research Centre of the Polish Academy of Sciences (CBK), Warsaw (Poland)

    2017-02-10

    We provide observational evidence for the existence of large-scale cylindrical (or conic-like) current sheets (CCSs) at high heliolatitudes. Long-lived CCSs were detected by Ulysses during its passages over the South Solar Pole in 1994 and 2007. The characteristic scale of these tornado-like structures is several times less than a typical width of coronal holes within which the CCSs are observed. CCS crossings are characterized by a dramatic decrease in the solar wind speed and plasma beta typical for predicted profiles of CCSs. Ulysses crossed the same CCS at different heliolatitudes at 2–3 au several times in 1994, as the CCS was declined from the rotation axis and corotated with the Sun. In 2007, a CCS was detected directly over the South Pole, and its structure was strongly highlighted by the interaction with comet McNaught. Restorations of solar coronal magnetic field lines reveal the occurrence of conic-like magnetic separators over the solar poles in both 1994 and 2007. Such separators exist only during solar minima. Interplanetary scintillation data analysis confirms the presence of long-lived low-speed regions surrounded by the typical polar high-speed solar wind in solar minima. Energetic particle flux enhancements up to several MeV/ nuc are observed at edges of the CCSs. We built simple MHD models of a CCS to illustrate its key features. The CCSs may be formed as a result of nonaxiality of the solar rotation axis and magnetic axis, as predicted by the Fisk–Parker hybrid heliospheric magnetic field model in the modification of Burger and coworkers.

  6. The genesis solar-wind sample return mission

    Energy Technology Data Exchange (ETDEWEB)

    Wiens, Roger C [Los Alamos National Laboratory

    2009-01-01

    The compositions of the Earth's crust and mantle, and those of the Moon and Mars, are relatively well known both isotopically and elementally. The same is true of our knowledge of the asteroid belt composition, based on meteorite analyses. Remote measurements of Venus, the Jovian atmosphere, and the outer planet moons, have provided some estimates of their compositions. The Sun constitutes a large majority, > 99%, of all the matter in the solar system. The elemental composition of the photosphere, the visible 'surface' of the Sun, is constrained by absorption lines produced by particles above the surface. Abundances for many elements are reported to the {+-}10 or 20% accuracy level. However, the abundances of other important elements, such as neon, cannot be determined in this way due to a relative lack of atomic states at low excitation energies. Additionally and most importantly, the isotopic composition of the Sun cannot be determined astronomically except for a few species which form molecules above sunspots, and estimates derived from these sources lack the accuracy desired for comparison with meteoritic and planetary surface samples measured on the Earth. The solar wind spreads a sample of solar particles throughout the heliosphere, though the sample is very rarified: collecting a nanogram of oxygen, the third most abundant element, in a square centimeter cross section at the Earth's distance from the Sun takes five years. Nevertheless, foil collectors exposed to the solar wind for periods of hours on the surface of the Moon during the Apollo missions were used to determine the helium and neon solar-wind compositions sufficiently to show that the Earth's atmospheric neon was significantly evolved relative to the Sun. Spacecraft instruments developed subsequently have provided many insights into the composition of the solar wind, mostly in terms of elemental composition. These instruments have the advantage of observing a number of

  7. The genesis solar-wind sample return mission

    International Nuclear Information System (INIS)

    Wiens, Roger C.

    2009-01-01

    The compositions of the Earth's crust and mantle, and those of the Moon and Mars, are relatively well known both isotopically and elementally. The same is true of our knowledge of the asteroid belt composition, based on meteorite analyses. Remote measurements of Venus, the Jovian atmosphere, and the outer planet moons, have provided some estimates of their compositions. The Sun constitutes a large majority, > 99%, of all the matter in the solar system. The elemental composition of the photosphere, the visible 'surface' of the Sun, is constrained by absorption lines produced by particles above the surface. Abundances for many elements are reported to the ±10 or 20% accuracy level. However, the abundances of other important elements, such as neon, cannot be determined in this way due to a relative lack of atomic states at low excitation energies. Additionally and most importantly, the isotopic composition of the Sun cannot be determined astronomically except for a few species which form molecules above sunspots, and estimates derived from these sources lack the accuracy desired for comparison with meteoritic and planetary surface samples measured on the Earth. The solar wind spreads a sample of solar particles throughout the heliosphere, though the sample is very rarified: collecting a nanogram of oxygen, the third most abundant element, in a square centimeter cross section at the Earth's distance from the Sun takes five years. Nevertheless, foil collectors exposed to the solar wind for periods of hours on the surface of the Moon during the Apollo missions were used to determine the helium and neon solar-wind compositions sufficiently to show that the Earth's atmospheric neon was significantly evolved relative to the Sun. Spacecraft instruments developed subsequently have provided many insights into the composition of the solar wind, mostly in terms of elemental composition. These instruments have the advantage of observing a number of parameters simultaneously

  8. A STATISTICAL SURVEY OF DYNAMIC PRESSURE PULSES IN THE SOLAR WIND BASED ON WIND OBSERVATIONS

    International Nuclear Information System (INIS)

    Zuo, Pingbing; Feng, Xueshang; Wang, Yi; Xie, Yanqiong; Xu, Xiaojun

    2015-01-01

    Solar wind dynamic pressure pulse (DPP) structures, across which the dynamic pressure changes abruptly over timescales from a few seconds to several minutes, are often observed in the near-Earth space environment. The space weather effects of DPPs on the magnetosphere–ionosphere coupling system have been widely investigated in the last two decades. In this study, we perform a statistical survey on the properties of DPPs near 1 AU based on nearly 20 years of observations from the WIND spacecraft. It is found that only a tiny fraction of DPPs (around 4.2%) can be regarded as interplanetary shocks. For most DPPs, the total pressure (the sum of the thermal pressure and magnetic pressure) remains in equilibrium, but there also exists a small fraction of DPPs that are not pressure-balanced. The overwhelming majority of DPPs are associated with solar wind disturbances, including coronal mass ejection-related flows, corotating interaction regions, as well as complex ejecta. The annual variations of the averaged occurrence rate of DPPs are roughly in phase with the solar activity during solar cycle 23, and during the rising phase of solar cycle 24

  9. Physical Limits of Solar Energy Conversion in the Earth System.

    Science.gov (United States)

    Kleidon, Axel; Miller, Lee; Gans, Fabian

    2016-01-01

    Solar energy provides by far the greatest potential for energy generation among all forms of renewable energy. Yet, just as for any form of energy conversion, it is subject to physical limits. Here we review the physical limits that determine how much energy can potentially be generated out of sunlight using a combination of thermodynamics and observed climatic variables. We first explain how the first and second law of thermodynamics constrain energy conversions and thereby the generation of renewable energy, and how this applies to the conversions of solar radiation within the Earth system. These limits are applied to the conversion of direct and diffuse solar radiation - which relates to concentrated solar power (CSP) and photovoltaic (PV) technologies as well as biomass production or any other photochemical conversion - as well as solar radiative heating, which generates atmospheric motion and thus relates to wind power technologies. When these conversion limits are applied to observed data sets of solar radiation at the land surface, it is estimated that direct concentrated solar power has a potential on land of up to 11.6 PW (1 PW=10(15) W), whereas photovoltaic power has a potential of up to 16.3 PW. Both biomass and wind power operate at much lower efficiencies, so their potentials of about 0.3 and 0.1 PW are much lower. These estimates are considerably lower than the incoming flux of solar radiation of 175 PW. When compared to a 2012 primary energy demand of 17 TW, the most direct uses of solar radiation, e.g., by CSP or PV, have thus by far the greatest potential to yield renewable energy requiring the least space to satisfy the human energy demand. Further conversions into solar-based fuels would be reduced by further losses which would lower these potentials. The substantially greater potential of solar-based renewable energy compared to other forms of renewable energy simply reflects much fewer and lower unavoidable conversion losses when solar

  10. Interplanetary Type III Bursts and Electron Density Fluctuations in the Solar Wind

    Czech Academy of Sciences Publication Activity Database

    Krupař, Vratislav; Maksimovic, M.; Kontar, E. P.; Zaslavsky, A.; Santolík, Ondřej; Souček, Jan; Krupařová, Oksana; Eastwood, J. P.; Szabo, A.

    Roč. 857, č. 2, č. článku 82. ISSN 0004-637X R&D Projects: GA ČR(CZ) GJ17-06818Y; GA ČR GA17-08772S; GA ČR(CZ) GA17-06065S Institutional support: RVO:68378289 Keywords : scattering * Sun: radio radiation * solar wind * RADIO-BURSTS * ULYSSES OBSERVATIONS * ANGULAR SCATTERING * STATISTICAL-SURVEY * EMISSION * WAVELENGTHS * FREQUENCY * WAVES * SUN * PROPAGATION Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) http://iopscience.iop.org/article/10.3847/1538-4357/aab60f/meta#references

  11. On the penetration of solar wind inhomogeneities into the magnetosphere

    International Nuclear Information System (INIS)

    Maksimov, V.P.; Senatorov, V.N.

    1980-01-01

    Laboratory experiments were used as a basis to study the process of interaction between solar wind inhomogeneities and the Earth's magnetosphere. The given inhomogeneity represents a lump of plasma characterized by an increased concentration of particles (nsub(e) approximately 20-30 cm -3 ), a discrete form (characteristic dimensions of the lump are inferior to the magnetosphere diameter) and the velocity v approximately 350 km/s. It is shown that there is the possibility of penetration of solar wind inhomogeneities inside the Earth's magnetosphere because of the appearance in the inhomogeneity of an electric field of transverse polarization. The said process is a possible mechanism of the formation of the magnetopshere entrance layer

  12. MHD effects of the solar wind flow around planets

    Directory of Open Access Journals (Sweden)

    H. K. Biernat

    2000-01-01

    Full Text Available The study of the interaction of the solar wind with magnetized and unmagnetized planets forms a central topic of space research. Focussing on planetary magnetosheaths, we review some major developments in this field. Magnetosheath structures depend crucially on the orientation of the interplanetary magnetic field, the solar wind Alfvén Mach number, the shape of the obstacle (axisymmetric/non-axisymmetric, etc., the boundary conditions at the magnetopause (low/high magnetic shear, and the degree of thermal anisotropy of the plasma. We illustrate the cases of Earth, Jupiter and Venus. The terrestrial magnetosphere is axisymmetric and has been probed in-situ by many spacecraft. Jupiter's magnetosphere is highly non-axisymmetric. Furthermore, we study magnetohydrodynamic effects in the Venus magnetosheath.

  13. Save with Solar and Wind, Summer 2002 (Newsletter)

    Energy Technology Data Exchange (ETDEWEB)

    2002-07-01

    This newsletter is published by the Department of Energy's Federal Energy Management Program. It is intended for facility managers, contracting officials, energy specialists, and others involved in helping Federal agencies increase their use of cost-effective solar and wind energy systems at their facilities. Renewable energy systems ultimately save agencies money by reducing utility costs; they also help to lower the emissions associated with the use of fossil fuels. This issue describes a new strategy to achieve the Federal goal for renewable energy, as well as some new solar and wind systems installed at facilities of the Department of Defense, the U.S. Geological Survey, the U.S. Postal Service, the National Park Service, and other agencies.

  14. Scaling laws and intermittent structures in solar wind MHD turbulence

    Science.gov (United States)

    Veltri, Pierluigi; Mangeney, André

    1999-06-01

    Thirteen months of velocity and magnetic field data from ISEE space experiment have been used to calculate spectra and structure functions using Haar wavelets technique in the range from 1 minute to about 1 day. Using conditioned structure function definition we have been able to eliminate the intermittency effects in the spectra and thus to evidentiate which kind of phenomenology of nonlinear cascade between Kolmogorov and Kraichnan is taking place in Solar Wind turbulence. By the same technique the most intermittent structures in solar wind turbulence can also be identified and they turn out to be either shock waves or one dimensional current sheets, at variance with ordinary fluid intermittency, where the most intermittent structures are two dimensional vortices.

  15. Velocity fluctuations in polar solar wind: a comparison between different solar cycles

    Directory of Open Access Journals (Sweden)

    B. Bavassano

    2009-02-01

    Full Text Available The polar solar wind is a fast, tenuous and steady flow that, with the exception of a relatively short phase around the Sun's activity maximum, fills the high-latitude heliosphere. The polar wind properties have been extensively investigated by Ulysses, the first spacecraft able to perform in-situ measurements in the high-latitude heliosphere. The out-of-ecliptic phases of Ulysses cover about seventeen years. This makes possible to study heliospheric properties at high latitudes in different solar cycles. In the present investigation we focus on hourly- to daily-scale fluctuations of the polar wind velocity. Though the polar wind is a quite uniform flow, fluctuations in its velocity do not appear negligible. A simple way to characterize wind velocity variations is that of performing a multi-scale statistical analysis of the wind velocity differences. Our analysis is based on the computation of velocity differences at different time lags and the evaluation of statistical quantities (mean, standard deviation, skewness, and kurtosis for the different ensembles. The results clearly show that, though differences exist in the three-dimensional structure of the heliosphere between the investigated solar cycles, the velocity fluctuations in the core of polar coronal holes exhibit essentially unchanged statistical properties.

  16. Velocity fluctuations in polar solar wind: a comparison between different solar cycles

    Directory of Open Access Journals (Sweden)

    B. Bavassano

    2009-02-01

    Full Text Available The polar solar wind is a fast, tenuous and steady flow that, with the exception of a relatively short phase around the Sun's activity maximum, fills the high-latitude heliosphere. The polar wind properties have been extensively investigated by Ulysses, the first spacecraft able to perform in-situ measurements in the high-latitude heliosphere. The out-of-ecliptic phases of Ulysses cover about seventeen years. This makes possible to study heliospheric properties at high latitudes in different solar cycles. In the present investigation we focus on hourly- to daily-scale fluctuations of the polar wind velocity. Though the polar wind is a quite uniform flow, fluctuations in its velocity do not appear negligible. A simple way to characterize wind velocity variations is that of performing a multi-scale statistical analysis of the wind velocity differences. Our analysis is based on the computation of velocity differences at different time lags and the evaluation of statistical quantities (mean, standard deviation, skewness, and kurtosis for the different ensembles. The results clearly show that, though differences exist in the three-dimensional structure of the heliosphere between the investigated solar cycles, the velocity fluctuations in the core of polar coronal holes exhibit essentially unchanged statistical properties.

  17. A desalination plant with solar and wind energy

    International Nuclear Information System (INIS)

    Chen, H; Ye, Z; Gao, W

    2013-01-01

    The shortage of freshwater resources has become a worldwide problem. China has a water shortage, although the total amount of water resources is the sixth in the world, the per capita water capacity is the 121th (a quarter of the world's per capita water capacity), and the United Nations considers China one of the poorest 13 countries in the world in terms of water. In order to increase the supply of fresh water, a realistic way is to make full use of China's long and narrow coastline for seawater desalination. This paper discusses a sea water desalination device, the device adopts distillation, uses the greenhouse effect principle and wind power heating principle, and the two-type start is used to solve the problem of vertical axis wind turbine self-starting. Thrust bearings are used to ensure the stability of the device, and to ensure absorbtion of wind energy and solar energy, and to collect evaporation of water to achieve desalination. The device can absorb solar and wind energy instead of input energy, so it can be used in ship, island and many kinds of environment. Due to the comprehensive utilization of wind power and solar power, the efficiency of the device is more than other passive sea water desalting plants, the initial investment and maintenance cost is lower than active sea water desalting plant. The main part of the device cannot only be used in offshore work, but can also be used in deep sea floating work, so the device can utilise deep sea energy. In order to prove the practicability of the device, the author has carried out theory of water production calculations. According to the principle of conservation of energy, the device ais bsorbing solar and wind power, except loose lost part which is used for water temperature rise and phase transition. Assume the inflow water temperature is 20 °C, outflow water temperature is 70 °C, the energy utilization is 60%, we can know that the water production quantity is 8 kg/ m 2 per hour. Comparing

  18. A desalination plant with solar and wind energy

    Science.gov (United States)

    Chen, H.; Ye, Z.; Gao, W.

    2013-12-01

    The shortage of freshwater resources has become a worldwide problem. China has a water shortage, although the total amount of water resources is the sixth in the world, the per capita water capacity is the 121th (a quarter of the world's per capita water capacity), and the United Nations considers China one of the poorest 13 countries in the world in terms of water. In order to increase the supply of fresh water, a realistic way is to make full use of China's long and narrow coastline for seawater desalination. This paper discusses a sea water desalination device, the device adopts distillation, uses the greenhouse effect principle and wind power heating principle, and the two-type start is used to solve the problem of vertical axis wind turbine self-starting. Thrust bearings are used to ensure the stability of the device, and to ensure absorbtion of wind energy and solar energy, and to collect evaporation of water to achieve desalination. The device can absorb solar and wind energy instead of input energy, so it can be used in ship, island and many kinds of environment. Due to the comprehensive utilization of wind power and solar power, the efficiency of the device is more than other passive sea water desalting plants, the initial investment and maintenance cost is lower than active sea water desalting plant. The main part of the device cannot only be used in offshore work, but can also be used in deep sea floating work, so the device can utilise deep sea energy. In order to prove the practicability of the device, the author has carried out theory of water production calculations. According to the principle of conservation of energy, the device ais bsorbing solar and wind power, except loose lost part which is used for water temperature rise and phase transition. Assume the inflow water temperature is 20 °C, outflow water temperature is 70 °C, the energy utilization is 60%, we can know that the water production quantity is 8 kg/ m2 per hour. Comparing with the

  19. Electron temperature anisotropy constraints in the solar wind

    Czech Academy of Sciences Publication Activity Database

    Štverák, Štěpán; Trávníček, Pavel M.; Maksimovic, M.; Marsch, E.; Fazakerley, A.; Scime, E. E.

    2008-01-01

    Roč. 113, A3 /2008/ (2008), A03103/1-A03103/10 ISSN 0148-0227 R&D Projects: GA AV ČR IAA300420602 Grant - others:EU(XE) ESA-PECS project No. 98024 Institutional research plan: CEZ:AV0Z10030501; CEZ:AV0Z30420517 Keywords : solar wind electrons * temperature anisotropy * radial Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 3.147, year: 2008

  20. On the kinetic temperature of He/++/ in the solar wind.

    Science.gov (United States)

    Barnes, A.; Hung, R. J.

    1973-01-01

    Observations of solar-wind He(++) can be useful for studying dynamical processes in the interplanetary medium. Several processes which may influence the kinetic temperature are considered, and an attempt is made to inquire whether they can account for the observed fact that the kinetic temperature exceeds the proton temperature. Resonant heating is discussed qualitatively, and equations of resonant heating are developed. The proton and He(++) heating rates are determined for the least damped magnetoacoustic wave under various conditions.

  1. Low-Frequency Electromagnetic Thermal Fluctuations in the Solar Wind

    Science.gov (United States)

    Gaelzer, R.; Yoon, P. H.; Ziebell, L. F.; Pavan, J.

    2012-12-01

    It is well known that the solar wind proton temperature anisotropy is constrained in the temperature ratio vs. beta parameter space by the mirror/proton-cyclotron and parallel/oblique firehose instability threshold conditions (Hellinger et al., 2006). However, the actual solar wind is found in the parameter regime stable to these instabilities (Bale et al., 2009). Since no waves can be generated in the purely collisionless and stable plasma, the source of the low-frequency electromagnetic fluctuations in the solar wind must be owing to spontaneous thermal effects. The problem of the spontaneously emitted electromagnetic waves from magnetized plasmas is generally poorly understood (Araneda et al., 2011). In the present paper, we formulate the theory of spontaneous thermal emission of electromagnetic radiation in the vicinity of the low-frequency modes of Alfvén, ion-cyclotron, and whistler modes. We carry out a statistical analysis by varying the temperature anisotropy and parallel beta and compare the theoretical fluctuation intensity against the observation such as that reported by Bale et al. (2009). Hellinger et al., GRL, 33, L09101 (2006). Bale et al., PRL, 103, 211101 (2009). Araneda et al., Space Sci. Rev., DOI:10.1007/s11214-011-9773-0 (2011).

  2. Tests of Objective Categorizations of Solar Wind States

    Science.gov (United States)

    Roberts, D. A.

    2017-12-01

    The proper "states" of the solar wind have been debated for years. "Slow" and "fast" states were identified early on, and "transient" has been added more recently. The slow/fast distinction has been questioned since it does not organize, e.g., the charge states of minor ions or (in general) the Alfenicity of the flow. Transients have been variously characterized, and lists compiled by different groups differ. Attempts to automate the identifications give some insight, but are not fully reliable. Here we continue our study of "objective" means of sorting the solar wind states, primarily using the "k-means" technique to sort the solar wind by Euclidean proximity in a state space determined by a chosen set of variables. This method largely removes the subjective element, but we still require comparison to other categorizations to understand the nature of the "clusters" that result. The identified states are shown to agree with some of the previously identified states (e.g., ICMEs, coronal holes, Heliospheric current sheet regions), but with significant differences. We will explore whether the new identifications are "better" and whether other machine learning methods might give more robust results.

  3. Solar Wind drivers affecting GIC magnitude in New Zealand.

    Science.gov (United States)

    Mac Manus, D. H.; Rodger, C. J.; Dalzell, M.; Petersen, T.; Clilverd, M. A.

    2017-12-01

    Interplanetary shocks arriving at the Earth drive magnetosphere and ionosphere current systems. Ground based magnetometers detect the time derivation of the horizontal magnetic field (dBH/dt) which can indicate the strength of these ionospheric currents. The strong dBH/dt spikes have been observed to cause large Geomagnetically Induced Currents (GIC) in New Zealand. Such could, potentially lead to large scale damage to technological infrastructure such as power network transformers; one transformer was written off in New Zealand after a sudden commencement on 6 November 2001. The strength of the incoming interplanetary shocks are monitored by satellite measurements undertaken at the L1 point. Such measurements could give power network operators a 20-60 minute warning before potentially damaging GIC occurs. In this presentation we examine solar wind measurements from the Advanced Composition Explorer (ACE), Wind, and the Solar and Heliospheric Observatory (SOHO). We contrast those solar wind observations with GIC measured in New Zealand's South Island from 2001 to 2016. We are searching for a consistent relationship between the incoming interplanetary shock and the GIC magnitude. Such a relationship would allow Transpower New Zealand Limited a small time window to implement mitigation plans in order to restrict any GIC-caused damage.

  4. Kinetic instabilities in the solar wind: A short review

    Energy Technology Data Exchange (ETDEWEB)

    Matteini, Lorenzo, E-mail: l.matteini@imperial.ac.uk [Imperial College London, London SW7 2AZ (United Kingdom)

    2016-03-25

    We know from in situ measurements that solar wind plasma is far from thermal equilibrium. Distribution functions of its main constituents -electrons, protons, and alpha particles-show several departures from Maxwellian, including temperature anisotropy, relative drifts and secondary populations streaming along the local magnetic field. We present a short review of recent solar wind observations of these non-thermal features and associated signatures of wave-particle interactions. Several kinetic instabilities are expected to be at work in the solar wind during its expansion, playing a role in the continuous shaping of particle distributions with distance, and regulating the macroscopic behavior of the plasma. Over the past years, modeling of these processes by means of numerical simulations has been successful in reproducing and explaining the observations; these include the evolution of the plasma due to radial expansion and the response of individual species to different kinetic instabilities. Finally, the impact of local inhomogeneities, like current sheets and turbulence, on the development of kinetic instabilities is also discussed.

  5. Solar wind heavy ions from energetic coronal events

    International Nuclear Information System (INIS)

    Bame, S.J.

    1978-01-01

    Ions heavier than those of He can be resolved in the solar wind with electrostatic E/q analyzers when the local thermal temperatures are low. Ordinarily this condition prevails in the low speed solar wind found between high speed streams, i.e. the interstream, IS, solar wind. Various ions of O, Si and Fe are resolved in IS heavy ion spectra. Relative ion peak intensities indicate that the O ionization state is established in the IS coronal source regions at approx. 2.1 x 10 6 K while the state of Fe is frozen in at approx. 1.5 x 10 6 K farther out. Occasionally, anomalous spectra are observed in which the usually third most prominent ion peak, O 8+ , is depressed as are the Fe peaks ranging from Fe 12+ to Fe 7+ . A prominent peak in the usual Si 8+ position of IS spectra is self-consistently shown to be Fe 16+ . These features demonstrate that the ionization states were frozen in at higher than usual coronal temperatures. The source regions of these hot heavy ion spectra are identified as energetic coronal events including flares and nonflare coronal mass ejections. 24 references

  6. Small-scale Magnetic Flux Ropes in the Solar Wind

    Science.gov (United States)

    Hu, Q.; Zheng, J.

    2017-12-01

    We have quantitatively examined one type of fundamental space plasma structures in the solar wind, the magnetic flux ropes, especially those of relatively small scales. They usually are of durations ranging from a few minutes to a few hours. The main objectives are to reveal the existence in terms of their occurrence and distributions in the solar wind, to quantitatively examine their configurations and properties, and to relate to other relevant processes. The goal is to understand their origin as transient and/or coherent structures in association with other transients, such as current sheets and shocks. The technical approach is a combination of time-series analysis methods with the Grad-Shafranov reconstruction technique. This modeling method is capable of characterizing two and a half dimensional cross section of space plasma structures, based on in-situ spacecraft measurements along a single path across. We present the automated detection and construction of an online magnetic flux rope database, and preliminary statistical analysis result of the properties of these structures in the solar wind.

  7. Construction of Solar-Wind-Like Magnetic Fields

    Science.gov (United States)

    Roberts, Dana Aaron

    2012-01-01

    Fluctuations in the solar wind fields tend to not only have velocities and magnetic fields correlated in the sense consistent with Alfven waves traveling from the Sun, but they also have the magnitude of the magnetic field remarkably constant despite their being broadband. This paper provides, for the first time, a method for constructing fields with nearly constant magnetic field, zero divergence, and with any specified power spectrum for the fluctuations of the components of the field. Every wave vector, k, is associated with two polarizations the relative phases of these can be chosen to minimize the variance of the field magnitude while retaining the\\random character of the fields. The method is applied to a case with one spatial coordinate that demonstrates good agreement with observed time series and power spectra of the magnetic field in the solar wind, as well as with the distribution of the angles of rapid changes (discontinuities), thus showing a deep connection between two seemingly unrelated issues. It is suggested that using this construction will lead to more realistic simulations of solar wind turbulence and of the propagation of energetic particles.

  8. The solar wind plasma density control of night-time auroral particle precipitation

    Directory of Open Access Journals (Sweden)

    V. G. Vorobjev

    2004-03-01

    Full Text Available DMSP F6 and F7 spacecraft observations of the average electron and ion energy, and energy fluxes in different night-time precipitation regions for the whole of 1986 were used to examine the precipitation features associated with solar wind density changes. It was found that during magnetic quietness |AL|<100nT, the enhancement of average ion fluxes was observed at least two times, along with the solar wind plasma density increase from 2 to 24cm–3. More pronounced was the ion flux enhancement that occurred in the b2i–b4s and b4s–b5 regions, which are approximately corresponding to the statistical auroral oval and map to the magnetospheric plasma sheet tailward of the isotropy boundary. The average ion energy decrease of about 2–4kev was registered simultaneously with this ion flux enhancement. The results verify the occurrence of effective penetration of the solar wind plasma into the magnetospheric tail plasma sheet. Key words. Ionosphere (auroral ionosphere, particle precipitation – Magnetospheric physics (solar windmagnetosphere interaction

  9. Is tropospheric weather influenced by solar wind through atmospheric vertical coupling downward control?

    Science.gov (United States)

    Prikryl, Paul; Tsukijihara, Takumi; Iwao, Koki; Muldrew, Donald B.; Bruntz, Robert; Rušin, Vojto; Rybanský, Milan; Turňa, Maroš; Šťastný, Pavel; Pastirčák, Vladimír

    2017-04-01

    More than four decades have passed since a link between solar wind magnetic sector boundary structure and mid-latitude upper tropospheric vorticity was discovered (Wilcox et al., Science, 180, 185-186, 1973). The link has been later confirmed and various physical mechanisms proposed but apart from controversy, little attention has been drawn to these results. To further emphasize their importance we investigate the occurrence of mid-latitude severe weather in the context of solar wind coupling to the magnetosphere-ionosphere-atmosphere (MIA) system. It is observed that significant snowstorms, windstorms and heavy rain, particularly if caused by low pressure systems in winter, tend to follow arrivals of high-speed solar wind. Previously published statistical evidence that explosive extratropical cyclones in the northern hemisphere tend to occur after arrivals of high-speed solar wind streams from coronal holes (Prikryl et al., Ann. Geophys., 27, 1-30, 2009; Prikryl et al., J. Atmos. Sol.-Terr. Phys., 149, 219-231, 2016) is corroborated for the southern hemisphere. A physical mechanism to explain these observations is proposed. The leading edge of high-speed solar wind streams is a locus of large-amplitude magneto-hydrodynamic waves that modulate Joule heating and/or Lorentz forcing of the high-latitude lower thermosphere generating medium-scale atmospheric gravity waves that propagate upward and downward through the atmosphere. Simulations of gravity wave propagation in a model atmosphere using the Transfer Function Model (Mayr et al., Space Sci. Rev., 54, 297-375, 1990) show that propagating waves originating in the thermosphere can excite a spectrum of gravity waves in the lower atmosphere. In spite of significantly reduced amplitudes but subject to amplification upon reflection in the upper troposphere, these gravity waves can provide a lift of unstable air to release instabilities in the troposphere thus initiating convection to form cloud/precipitation bands

  10. Solar wind modulation of the Martian ionosphere observed by Mars Global Surveyor

    Directory of Open Access Journals (Sweden)

    J.-S. Wang

    2004-06-01

    Full Text Available Electron density profiles in the Martian ionosphere observed by the radio occultation experiment on board Mars Global Surveyor have been analyzed to determine if the densities are influenced by the solar wind. Evidence is presented that the altitude of the maximum ionospheric electron density shows a positive correlation to the energetic proton flux in the solar wind. The solar wind modulation of the Martian ionosphere can be attributed to heating of the neutral atmosphere by the solar wind energetic proton precipitation. The modulation is observed to be most prominent at high solar zenith angles. It is argued that this is consistent with the proposed modulation mechanism.

  11. Parametric Study of Preferential Ion Heating Due to Intermittent Magnetic Fields in the Solar Wind

    Science.gov (United States)

    Carbajal Gomez, L.; Chapman, S. C.; Dendy, R. O.; Watkins, N. W.

    2014-12-01

    In situ observations and remote measurements of the solar wind show strong preferential heating of ions along the ambient magnetic field. Understanding the mechanism for this heating process is an open problem. The observed broad-band spectrum of Alfven waves permeating the fast solar wind provide a candidate mechanism for this preferential heating through wave-particle interactions on ion kinetic scales. Previous analytical and numerical studies have considered a single pump wave [1, 2] or a turbulent, broad-band spectra of Alfven waves [3, 4, 5] to drive the ion heating. The latter studies investigated the effects on ion heating due to different initial 1/fγpower spectral exponents and number of modes and the signals were random phase. However, the observed solar wind fluctuations are intermittent so that the phases of the modes comprising the power spectrum are not random. Non-Gaussian fluctuations are seen both on scales identified with the inertial range of Alfvenic turbulence [6], and on longer scales typified by '1/f' spectra [7]. We present results of the first parametric numerical simulations on the effects of different levels of intermittency of the broad-band spectra of Alfven waves on the preferential heating of ions in the solar wind. We performed hybrid simulations for the local heating of the solar wind, which resolves the full kinetic physics of the ions and treats the electrons as a charge-neutralizing fluid. Our simulations evolve the full vector velocities and electromagnetic fields in one configuration space coordinate and in time.We compare the efficiency of different levels of intermittency of the initial turbulent fields and their effect on the efficiency of the wave-particle interactions which are a mechanism for driving preferential ion heating in the solar wind. [1] J. A. Araneda, E. Marsh, A. F. Viñas, J. Geophys. Res. 112, A04104 (2007). [2] J. A. Araneda, E. Marsh, A. F. Viñas, Phys. Rev. Lett. 100, 125003 (2008) [3] Y. G. Maneva, A

  12. Protons and alpha particles in the solar wind

    Science.gov (United States)

    Hellinger, Petr; Travnicek, Pavel M.; Passot, Thierry; Sulem, Pierre-Louis; Matteini, Lorenzo; Landi, Simone

    2014-05-01

    We investigate energetic consequences of ion kinetic instabilitities in the solar wind connected with beam and core protons and alpha particles drifting with respect to each other. We compare theoretical predictions, simulations and observation results. For theoretical prediction we assume drifting bi-Maxwellian ion populations and we calculate theoretical quasilinear heating rates (Hellinger et al., 2013b). The nonlinear evolution of beam-core protons, and alpha particles in the expanding solar wind we investigate using hybrid expanding box system (Hellinger and Travnicek, 2013). The expansion leads to many different kinetic instabilities. In the simulation the beam protons and alpha particles are decelerated with respect to the core protons and all the populations are cooled in the parallel direction and heated in the perpendicular one in agreement with theoretical expectations. On the macroscopic level the kinetic instabilities cause large departures of the system evolution from the double adiabatic prediction and lead to a perpendicular heating and parallel cooling rates. The simulated heating rates are comparable to the heating rates estimated from the Helios observations (Hellinger et al., 2013a); furthermore, the differential velocity between core and beam protons observed by Ulysses exhibits apparent bounds which are compatible with the theoretical constaints imposed by the linear theory for the magnetosonic instability driven by beam-core differential velocity (Matteini et al., 2013). References Hellinger, P., P. M. Travnicek, S. Stverak, L. Matteini, and M. Velli (2013a), Proton thermal energetics in the solar wind: Helios reloaded, J. Geophys. Res., 118, 1351-1365, doi:10.1002/jgra.50107. Hellinger, P., T. Passot, P.-L. Sulem, and P. M. Travnicek (2013b), Quasi-linear heating and acceleration in bi-Maxwellian plasmas, Phys. Plasmas, 20, 122306. Hellinger, P., and P. M. Travnicek (2013), Protons and alpha particles in the expanding solar wind: Hybrid

  13. Intermittency in the solar wind turbulence through probability distribution functions of fluctuations

    Science.gov (United States)

    Sorriso-Valvo, Luca; Carbone, Vincenzo; Veltri, Pierluigi; Consolini, Giuseppe; Bruno, Roberto

    Intermittency in fluid turbulence can be emphasized through the analysis of Probability Distribution Functions (PDF) for velocity fluctuations, which display a strong non-gaussian behavior at small scales. Castaing et al. (1990) have introduced the idea that this behavior can be represented, in the framework of a multiplicative cascade model, by a convolution of gaussians whose variances is distributed according to a log-normal distribution. In this letter we have tried to test this conjecture on the MHD solar wind turbulence by performing a fit of the PDF of the bulk speed and magnetic field intensity fluctuations calculated in the solar wind, with the model. This fit allows us to calculate a parameter λ² depending on the scale, which represents the width of the log-normal distribution of the variances of the gaussians. The physical implications of the obtained values of the parameter as well as of its scaling law are finally discussed.

  14. Cometary X-rays : solar wind charge exchange in cometary atmospheres

    NARCIS (Netherlands)

    Bodewits, Dennis

    2007-01-01

    The interaction of the solar wind with the planets and the interstellar medium is of key importance for the evolution of our solar system. The interaction with Earth's atmosphere is best known for the northern light. In case of Mars, the interaction with the solar wind might have lead to the erosion

  15. Anomalous scaling and the role of intermittency in solar wind MHD turbulence: new insights

    Science.gov (United States)

    Salem, C.; Mangeney, A.; Bale, S. D.; Veltri, P.; Bruno, R.

    2007-08-01

    In the Alfvénic regime, i.e. for frequencies below the local proton cyclotron frequency, solar wind MHD turbulence exhibits what appears like an inertial domain, with power-law spectra and scale-invariance, suggesting as in fluid turbulence, a nonlinear energy cascade from the large ``energy containing'' scales towards much smaller scales, where dissipation via kinetic effects is presumed to act. However, the intermittent character of the solar wind fluctuations in the inertial range is much more important than in ordinary fluids. Indeed, the fluctuations consist of a mixture of random fluctuations and small-scale ``singular'' or coherent structures. This intermittency modifies significantly the scaling exponents of actual power-law spectra, which are directly related to the physical nature of the energy cascade taking place in the solar wind. The identification of the most intermittent structures and their relation to dissipation represents then a crucial problem in the framework of turbulence. We will discuss here recent results on scaling laws and intermittency based on the use of Wavelet transforms on simultaneous WIND 3s resolution particle and magnetic field data from the 3DP and the MFi experiments respectively. More specifically, the Haar Wavelet transform is used to compute spectra, structure functions and probability distribution functions (PDFs). We show that this powerful technique allows: (1) for a systematic study of intermittency effects on these spectra, structure functions and PDFs, thus for a clear determination of the actual scaling properties in the inertial range, and (2) for a direct and systematic identification of the most active, singular structures responsible for the intermittency in the solar wind. The analysis of structure functions and PDFs and new results on the nature of the intermittent coherent structures will be presented.

  16. Polar ionospheric responses to solar wind IMF changes

    Directory of Open Access Journals (Sweden)

    Y. Zhang

    Full Text Available Auroral and airglow emissions over Eureka (89° CGM during the 1997-98 winter show striking variations in relation to solar wind IMF changes. The period January 19 to 22, 1998, was chosen for detailed study, as the IMF was particularly strong and variable. During most of the period, Bz was northward and polar arcs were observed. Several overpasses by DMSP satellites during the four day period provided a clear picture of the particle precipitation producing the polar arcs. The spectral character of these events indicated excitation by electrons of average energy 300 to 500 eV. Only occasionally were electrons of average energy up to ~1 keV observed and these appeared transitory from the ground optical data. It is noted that polar arcs appear after sudden changes in IMF By, suggesting IMF control over arc initiation. When By is positive there is arc motion from dawn to dusk, while By is negative the motion is consistently dusk to dawn. F-region (anti-sunward convections were monitored through the period from 630.0 nm emissions. The convection speed was low (100-150 m/s when Bz was northward but increased to 500 m/s after Bz turned southward on January 20.

    Key words: Atmospheric composition and structure (airglow and aurora - Ionosphere (particle precipitation - Magnetospheric Physics (polar cap phenomena

  17. Plasma depletion layer: its dependence on solar wind conditions and the Earth dipole tilt

    Directory of Open Access Journals (Sweden)

    Y. L. Wang

    2004-12-01

    Full Text Available The plasma depletion layer (PDL is a layer on the sunward side of the magnetopause with lower plasma density and higher magnetic field compared to their corresponding upstream magnetosheath values. It is believed that the PDL is controlled jointly by conditions in the solar wind plasma and the (IMF. In this study, we extend our former model PDL studies by systematically investigating the dependence of the PDL and the slow mode front on solar wind conditions using global MHD simulations. We first point out the difficulties for the depletion factor method and the plasma β method for defining the outer boundary of the plasma depletion layer. We propose to use the N/B ratio to define the PDL outer boundary, which can give the best description of flux tube depletion. We find a strong dependence of the magnetosheath environment on the solar wind magnetosonic Mach number. A difference between the stagnation point and the magnetopause derived from the open-closed magnetic field boundary is found. We also find a strong and complex dependence of the PDL and the slow mode front on the IMF Bz. A density structure right inside the subsolar magnetopause for higher IMF Bz;might be responsible for some of this dependence. Both the IMF tilt and clock angles are found to have little influence on the magnetosheath and the PDL structures. However, the IMF geometry has a much stronger influence on the slow mode fronts in the magnetosheath. Finally, the Earth dipole tilt is found to play a minor role for the magnetosheath geometry and the PDL along the Sun-Earth line. A complex slow mode front geometry is found for cases with different Earth dipole tilts. Comparisons between our results with those from some former studies are conducted, and consistencies and inconsistencies are found. Key words. Magnetospheric physics (magnetosheath, solar wind-magnetosphere interactions – Space plasma physics (numerical simulation studies

  18. Estimation of wind and solar resources in Mali

    Energy Technology Data Exchange (ETDEWEB)

    Badger, J.; Kamissoko, F.; Olander Rasmussen, M.; Larsen, Soeren; Guidon, N.; Boye Hansen, L.; Dewilde, L.; Alhousseini, M.; Noergaard, P.; Nygaard, I.

    2012-11-15

    The wind resource has been estimated for all of Mali at 7.5 km resolution using the KAMM/WAsP numerical wind atlas methodology. Three domains were used to cover entire country and three sets of wind classes used to capture change in large scale forcing over country. The final output includes generalized climate statistics for any location in Mali, giving wind direction and wind speed distribution. The modelled generalized climate statistics can be used directly in the WAsP software. The preliminary results show a wind resource, which is relatively low, but which under certain conditions may be economically feasible, i.e. at favourably exposed sites, giving enhanced winds, and where practical utilization is possible, given consideration to grid connection or replacement or augmentation of diesel-based electricity systems. The solar energy resource for Mali was assessed for the period between July 2008 and June 2011 using a remote sensing based estimate of the down-welling surface shortwave flux. The remote sensing estimates were adjusted on a month-by-month basis to account for seasonal differences between the remote sensing estimates and in situ data. Calibration was found to improve the coefficient of determination as well as decreasing the mean error both for the calibration and validation data. Compared to the results presented in the ''Renewable energy resources in Mali - preliminary mapping''-report that showed a tendency for underestimation compared to data from the NASA PPOWER/SSE database, the presented results show a very good agreement with the in situ data (after calibration) with no significant bias. Unfortunately, the NASA-database only contains data up until 2005, so a similar comparison could not be done for the time period analyzed in this study, although the agreement with the historic NASA data is still useful as reference. (LN)

  19. The influence of solar wind variability on magnetospheric ULF wave power

    International Nuclear Information System (INIS)

    Pokhotelov, D.; Rae, I.J.; Mann, I.R.

    2015-01-01

    Magnetospheric ultra-low frequency (ULF) oscillations in the Pc 4-5 frequency range play an important role in the dynamics of Earth's radiation belts, both by enhancing the radial diffusion through incoherent interactions and through the coherent drift-resonant interactions with trapped radiation belt electrons. The statistical distributions of magnetospheric ULF wave power are known to be strongly dependent on solar wind parameters such as solar wind speed and interplanetary magnetic field (IMF) orientation. Statistical characterisation of ULF wave power in the magnetosphere traditionally relies on average solar wind-IMF conditions over a specific time period. In this brief report, we perform an alternative characterisation of the solar wind influence on magnetospheric ULF wave activity through the characterisation of the solar wind driver by its variability using the standard deviation of solar wind parameters rather than a simple time average. We present a statistical study of nearly one solar cycle (1996-2004) of geosynchronous observations of magnetic ULF wave power and find that there is significant variation in ULF wave powers as a function of the dynamic properties of the solar wind. In particular, we find that the variability in IMF vector, rather than variabilities in other parameters (solar wind density, bulk velocity and ion temperature), plays the strongest role in controlling geosynchronous ULF power. We conclude that, although time-averaged bulk properties of the solar wind are a key factor in driving ULF powers in the magnetosphere, the solar wind variability can be an important contributor as well. This highlights the potential importance of including solar wind variability especially in studies of ULF wave dynamics in order to assess the efficiency of solar wind-magnetosphere coupling.

  20. ON THE NATURE OF THE SOLAR WIND FROM CORONAL PSEUDOSTREAMERS

    International Nuclear Information System (INIS)

    Wang, Y.-M.; Sheeley, N. R. J.R.; Grappin, R.; Robbrecht, E.

    2012-01-01

    Coronal pseudostreamers, which separate like-polarity coronal holes, do not have current sheet extensions, unlike the familiar helmet streamers that separate opposite-polarity holes. Both types of streamers taper into narrow plasma sheets that are maintained by continual interchange reconnection with the adjacent open magnetic field lines. White-light observations show that pseudostreamers do not emit plasma blobs; this important difference from helmet streamers is due to the convergence of like-polarity field lines above the X-point, which prevents the underlying loops from expanding outward and pinching off. The main component of the pseudostreamer wind has the form of steady outflow along the open field lines rooted just inside the boundaries of the adjacent coronal holes. These flux tubes are characterized by very rapid expansion below the X-point, followed by reconvergence at greater heights. Analysis of an idealized pseudostreamer configuration shows that, as the separation between the underlying holes increases, the X-point rises and the expansion factor f ss at the source surface increases. In situ observations of pseudostreamer crossings indicate wind speeds v ranging from ∼350 to ∼550 km s –1 , with O 7+ /O 6+ ratios that are enhanced compared with those in high-speed streams but substantially lower than in the slow solar wind. Hydrodynamic energy-balance models show that the empirical v-f ss relation overestimates the wind speeds from nonmonotonically expanding flux tubes, particularly when the X-point is located at low heights and f ss is small. We conclude that pseudostreamers produce a 'hybrid' type of outflow that is intermediate between classical slow and fast solar wind.

  1. Probabilistic Solar Wind Forecasting Using Large Ensembles of Near-Sun Conditions With a Simple One-Dimensional "Upwind" Scheme.

    Science.gov (United States)

    Owens, Mathew J; Riley, Pete

    2017-11-01

    Long lead-time space-weather forecasting requires accurate prediction of the near-Earth solar wind. The current state of the art uses a coronal model to extrapolate the observed photospheric magnetic field to the upper corona, where it is related to solar wind speed through empirical relations. These near-Sun solar wind and magnetic field conditions provide the inner boundary condition to three-dimensional numerical magnetohydrodynamic (MHD) models of the heliosphere out to 1 AU. This physics-based approach can capture dynamic processes within the solar wind, which affect the resulting conditions in near-Earth space. However, this deterministic approach lacks a quantification of forecast uncertainty. Here we describe a complementary method to exploit the near-Sun solar wind information produced by coronal models and provide a quantitative estimate of forecast uncertainty. By sampling the near-Sun solar wind speed at a range of latitudes about the sub-Earth point, we produce a large ensemble (N = 576) of time series at the base of the Sun-Earth line. Propagating these conditions to Earth by a three-dimensional MHD model would be computationally prohibitive; thus, a computationally efficient one-dimensional "upwind" scheme is used. The variance in the resulting near-Earth solar wind speed ensemble is shown to provide an accurate measure of the forecast uncertainty. Applying this technique over 1996-2016, the upwind ensemble is found to provide a more "actionable" forecast than a single deterministic forecast; potential economic value is increased for all operational scenarios, but particularly when false alarms are important (i.e., where the cost of taking mitigating action is relatively large).

  2. Probabilistic Solar Wind Forecasting Using Large Ensembles of Near-Sun Conditions With a Simple One-Dimensional "Upwind" Scheme

    Science.gov (United States)

    Owens, Mathew J.; Riley, Pete

    2017-11-01

    Long lead-time space-weather forecasting requires accurate prediction of the near-Earth solar wind. The current state of the art uses a coronal model to extrapolate the observed photospheric magnetic field to the upper corona, where it is related to solar wind speed through empirical relations. These near-Sun solar wind and magnetic field conditions provide the inner boundary condition to three-dimensional numerical magnetohydrodynamic (MHD) models of the heliosphere out to 1 AU. This physics-based approach can capture dynamic processes within the solar wind, which affect the resulting conditions in near-Earth space. However, this deterministic approach lacks a quantification of forecast uncertainty. Here we describe a complementary method to exploit the near-Sun solar wind information produced by coronal models and provide a quantitative estimate of forecast uncertainty. By sampling the near-Sun solar wind speed at a range of latitudes about the sub-Earth point, we produce a large ensemble (N = 576) of time series at the base of the Sun-Earth line. Propagating these conditions to Earth by a three-dimensional MHD model would be computationally prohibitive; thus, a computationally efficient one-dimensional "upwind" scheme is used. The variance in the resulting near-Earth solar wind speed ensemble is shown to provide an accurate measure of the forecast uncertainty. Applying this technique over 1996-2016, the upwind ensemble is found to provide a more "actionable" forecast than a single deterministic forecast; potential economic value is increased for all operational scenarios, but particularly when false alarms are important (i.e., where the cost of taking mitigating action is relatively large).

  3. Solar wind proton temperature anisotropy: Linear theory and WIND/SWE observations

    Czech Academy of Sciences Publication Activity Database

    Hellinger, Petr; Trávníček, Pavel; Kasper, J. C.; Lazarus, A. J.

    2006-01-01

    Roč. 33, č. 9 (2006), L09101/1-L09101/4 ISSN 0094-8276 R&D Projects: GA AV ČR(CZ) IAA3042403 Grant - others:ESA(XE) PECS 98024; NASA (US) NAG-10915 Institutional research plan: CEZ:AV0Z30420517 Keywords : proton temperature anisotropy * solar wind * in situ observations Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 2.602, year: 2006

  4. Anisotropic Behaviour of Magnetic Power Spectra in Solar Wind Turbulence.

    Science.gov (United States)

    Banerjee, S.; Saur, J.; Gerick, F.; von Papen, M.

    2017-12-01

    Introduction:High altitude fast solar wind turbulence (SWT) shows different spectral properties as a function of the angle between the flow direction and the scale dependent mean magnetic field (Horbury et al., PRL, 2008). The average magnetic power contained in the near perpendicular direction (80º-90º) was found to be approximately 5 times larger than the average power in the parallel direction (0º- 10º). In addition, the parallel power spectra was found to give a steeper (-2) power law than the perpendicular power spectral density (PSD) which followed a near Kolmogorov slope (-5/3). Similar anisotropic behaviour has also been observed (Chen et al., MNRAS, 2011) for slow solar wind (SSW), but using a different method exploiting multi-spacecraft data of Cluster. Purpose:In the current study, using Ulysses data, we investigate (i) the anisotropic behaviour of near ecliptic slow solar wind using the same methodology (described below) as that of Horbury et al. (2008) and (ii) the dependence of the anisotropic behaviour of SWT as a function of the heliospheric latitude.Method:We apply the wavelet method to calculate the turbulent power spectra of the magnetic field fluctuations parallel and perpendicular to the local mean magnetic field (LMF). According to Horbury et al., LMF for a given scale (or size) is obtained using an envelope of the envelope of that size. Results:(i) SSW intervals always show near -5/3 perpendicular spectra. Unlike the fast solar wind (FSW) intervals, for SSW, we often find intervals where power parallel to the mean field is not observed. For a few intervals with sufficient power in parallel direction, slow wind turbulence also exhibit -2 parallel spectra similar to FSW.(ii) The behaviours of parallel and perpendicular power spectra are found to be independent of the heliospheric latitude. Conclusion:In the current study we do not find significant influence of the heliospheric latitude on the spectral slopes of parallel and perpendicular

  5. Wind Tunnel Tests of Parabolic Trough Solar Collectors: March 2001--August 2003

    Energy Technology Data Exchange (ETDEWEB)

    Hosoya, N.; Peterka, J. A.; Gee, R. C.; Kearney, D.

    2008-05-01

    Conducted extensive wind-tunnel tests on parabolic trough solar collectors to determine practical wind loads applicable to structural design for stress and deformation, and local component design for concentrator reflectors.

  6. Hybrid SolarWind – Diesel Systems for Rural Application in North ...

    African Journals Online (AJOL)

    Bheema

    )-Wind-Diesel hybrid power systems for supplying electricity to off-grid rural communities in the Tigray region of northern Ethiopia. Using wind resource assessment and solar potential-based data from the. National Meteorological Agency of ...

  7. Evolution of the solar wind proton temperature anisotropy from 0.3 to 2.5 AU

    Czech Academy of Sciences Publication Activity Database

    Matteini, L.; Landi, S.; Hellinger, Petr; Pantellini, F.; Maksimovic, M.; Velli, M.; Goldstein, B. E.; Marsch, E.

    2007-01-01

    Roč. 34, č. 20 (2007), L20105/1-L20105/5 ISSN 0094-8276 Grant - others:ASI(IT) I/015/07/0 Institutional research plan: CEZ:AV0Z30420517 Keywords : Proton temperature anisotropy * solar wind * radial evolution * observations Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.744, year: 2007

  8. Radial evolution of nonthermal electron populations in the low-latitude solar wind: Helios, Cluster, and Ulysses Observations

    Czech Academy of Sciences Publication Activity Database

    Štverák, Štěpán; Maksimovic, M.; Trávníček, Pavel M.; Marsch, E.; Fazakerley, A. N.; Scime, E. E.

    2009-01-01

    Roč. 114, - (2009), A05104/1-A05104/15 ISSN 0148-0227 Institutional research plan: CEZ:AV0Z30420517; CEZ:AV0Z10030501 Keywords : solar wind * radial evolution * non- thermal electron properties Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 3.082, year: 2009

  9. Intercalibration and Cross-Correlation of Ace and Wind Solar Wind Data

    Science.gov (United States)

    2003-01-01

    This report covers activities funded from October 1, 1998 through September 30, 2002. Two yearly status reports have been filed on this grant, and they are included as Appendix 1. The purpose of this grant was to compare ACE and Wind solar wind parameters when the two spacecraft were near to one another and then to use the intercalibrated parameters to carry out scientific investigations. In September, 2001 a request for a one-year, no-cost extension until September 30, 2002 was submitted and approved. The statement of work for that extension included adjustment of ACE densities below wind speeds of 350 km/s, a study of shock normal orientations using travel time delays between the two spacecraft, comparison of density jumps at shocks, and a study of temperature anisotropies and double streaming to see if such features evolved between the spacecraft.

  10. HEMISPHERIC ASYMMETRIES IN THE POLAR SOLAR WIND OBSERVED BY ULYSSES NEAR THE MINIMA OF SOLAR CYCLES 22 AND 23

    Energy Technology Data Exchange (ETDEWEB)

    Ebert, R. W.; Dayeh, M. A.; Desai, M. I.; McComas, D. J. [Southwest Research Institute, P.O. Drawer 28510, San Antonio, TX 78228 (United States); Pogorelov, N. V. [Physics Department, University of Alabama in Huntsville, Huntsville, AL 35899 (United States)

    2013-05-10

    We examined solar wind plasma and interplanetary magnetic field (IMF) observations from Ulysses' first and third orbits to study hemispheric differences in the properties of the solar wind and IMF originating from the Sun's large polar coronal holes (PCHs) during the declining and minimum phase of solar cycles 22 and 23. We identified hemispheric asymmetries in several parameters, most notably {approx}15%-30% south-to-north differences in averages for the solar wind density, mass flux, dynamic pressure, and energy flux and the radial and total IMF magnitudes. These differences were driven by relatively larger, more variable solar wind density and radial IMF between {approx}36 Degree-Sign S-60 Degree-Sign S during the declining phase of solar cycles 22 and 23. These observations indicate either a hemispheric asymmetry in the PCH output during the declining and minimum phase of solar cycles 22 and 23 with the southern hemisphere being more active than its northern counterpart, or a solar cycle effect where the PCH output in both hemispheres is enhanced during periods of higher solar activity. We also report a strong linear correlation between these solar wind and IMF parameters, including the periods of enhanced PCH output, that highlight the connection between the solar wind mass and energy output and the Sun's magnetic field. That these enhancements were not matched by similar sized variations in solar wind speed points to the mass and energy responsible for these increases being added to the solar wind while its flow was subsonic.

  11. Solar and wind energy utilization at Sarawak Southern national parks

    International Nuclear Information System (INIS)

    Abdul Rahman, N.; Kolot, A.

    2006-01-01

    The intentions of renewable energy utilization in Sarawak national parks were to reduce the environmental impacts to the protected surrounding and to overcome fuel transportation problem, as most national parks in Sarawak are not viable for the state electricity grid connection. The study was conducted at three national parks in southern Sarawak; viz. Samusan, Tanjung Datu and Pulau Talang-Talang Besar National Park. The study focused on the effectiveness of the system implementation, energy load and associated problems. Both Samusan and Tanjung Datu National systems are hybrids, which consist of solar photovoltaic panels, wind turbine and diesel generators, whereas, Pulau Talang-Talang Besar National Park is a stand alone system of solar photovoltaic panels only. In addition, the inefficient energy usage was observed at Samusan National Park. The study have identified that lack of local expertise, spare parts availability, transportation and inefficient energy management as the major problems associated to the solar and wind energy system in all national parks studied. Albeit the problems mentioned, the study discovered that the systems were acceptably reliable and satisfactorily supply fraction of the energy requirements to the national parks communities

  12. A New Look at Some Solar Wind Turbulence Puzzles

    Science.gov (United States)

    Roberts, Aaron

    2006-01-01

    Some aspects of solar wind turbulence have defied explanation. While it seems likely that the evolution of Alfvenicity and power spectra are largely explained by the shearing of an initial population of solar-generated Alfvenic fluctuations, the evolution of the anisotropies of the turbulence does not fit into the model so far. A two-component model, consisting of slab waves and quasi-two-dimensional fluctuations, offers some ideas, but does not account for the turning of both wave-vector-space power anisotropies and minimum variance directions in the fluctuating vectors as the Parker spiral turns. We will show observations that indicate that the minimum variance evolution is likely not due to traditional turbulence mechanisms, and offer arguments that the idea of two-component turbulence is at best a local approximation that is of little help in explaining the evolution of the fluctuations. Finally, time-permitting, we will discuss some observations that suggest that the low Alfvenicity of many regions of the solar wind in the inner heliosphere is not due to turbulent evolution, but rather to the existence of convected structures, including mini-clouds and other twisted flux tubes, that were formed with low Alfvenicity. There is still a role for turbulence in the above picture, but it is highly modified from the traditional views.

  13. Magnetohydrdodynamic models of coronal transients in the meridional plane. IV. effect of the solar wind

    International Nuclear Information System (INIS)

    Wu, S.T.; Steinolfson, R.S.; Dryer, M.; Tandberg-Hanssen, E.

    1981-01-01

    A two-dimensional, time-dependenct magnetohydrodynamic model in the meridional plane with and without an ambient solar wind in an ambient radial magnetic field has been used to investigate mass motions associated with coronal transients. We show that that solar wind does not significantly affect the general dynamic characteristics of the mass motion. The ambient solar wind, however, increases the velocity of the mass motion and produces a moderate change in the thermodynamic properties of the coronal plasma

  14. Ensemble downscaling in coupled solar wind-magnetosphere modeling for space weather forecasting.

    Science.gov (United States)

    Owens, M J; Horbury, T S; Wicks, R T; McGregor, S L; Savani, N P; Xiong, M

    2014-06-01

    Advanced forecasting of space weather requires simulation of the whole Sun-to-Earth system, which necessitates driving magnetospheric models with the outputs from solar wind models. This presents a fundamental difficulty, as the magnetosphere is sensitive to both large-scale solar wind structures, which can be captured by solar wind models, and small-scale solar wind "noise," which is far below typical solar wind model resolution and results primarily from stochastic processes. Following similar approaches in terrestrial climate modeling, we propose statistical "downscaling" of solar wind model results prior to their use as input to a magnetospheric model. As magnetospheric response can be highly nonlinear, this is preferable to downscaling the results of magnetospheric modeling. To demonstrate the benefit of this approach, we first approximate solar wind model output by smoothing solar wind observations with an 8 h filter, then add small-scale structure back in through the addition of random noise with the observed spectral characteristics. Here we use a very simple parameterization of noise based upon the observed probability distribution functions of solar wind parameters, but more sophisticated methods will be developed in the future. An ensemble of results from the simple downscaling scheme are tested using a model-independent method and shown to add value to the magnetospheric forecast, both improving the best estimate and quantifying the uncertainty. We suggest a number of features desirable in an operational solar wind downscaling scheme. Solar wind models must be downscaled in order to drive magnetospheric models Ensemble downscaling is more effective than deterministic downscaling The magnetosphere responds nonlinearly to small-scale solar wind fluctuations.

  15. Investigating the Correlation Between Wind and Solar Power Forecast Errors in the Western Interconnection: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, J.; Hodge, B. M.; Florita, A.

    2013-05-01

    Wind and solar power generations differ from conventional energy generation because of the variable and uncertain nature of their power output. This variability and uncertainty can have significant impacts on grid operations. Thus, short-term forecasting of wind and solar generation is uniquely helpful for power system operations to balance supply and demand in an electricity system. This paper investigates the correlation between wind and solar power forecasting errors.

  16. Modelling the solar wind interaction with Mercury by a quasi-neutral hybrid model

    Directory of Open Access Journals (Sweden)

    E. Kallio

    Full Text Available Quasi-neutral hybrid model is a self-consistent modelling approach that includes positively charged particles and an electron fluid. The approach has received an increasing interest in space plasma physics research because it makes it possible to study several plasma physical processes that are difficult or impossible to model by self-consistent fluid models, such as the effects associated with the ions’ finite gyroradius, the velocity difference between different ion species, or the non-Maxwellian velocity distribution function. By now quasi-neutral hybrid models have been used to study the solar wind interaction with the non-magnetised Solar System bodies of Mars, Venus, Titan and comets. Localized, two-dimensional hybrid model runs have also been made to study terrestrial dayside magnetosheath. However, the Hermean plasma environment has not yet been analysed by a global quasi-neutral hybrid model.

    In this paper we present a new quasi-neutral hybrid model developed to study various processes associated with the Mercury-solar wind interaction. Emphasis is placed on addressing advantages and disadvantages of the approach to study different plasma physical processes near the planet. The basic assumptions of the approach and the algorithms used in the new model are thoroughly presented. Finally, some of the first three-dimensional hybrid model runs made for Mercury are presented.

    The resulting macroscopic plasma parameters and the morphology of the magnetic field demonstrate the applicability of the new approach to study the Mercury-solar wind interaction globally. In addition, the real advantage of the kinetic hybrid model approach is to study the property of individual ions, and the study clearly demonstrates the large potential of the approach to address these more detailed issues by a quasi-neutral hybrid model in the future.

    Key words. Magnetospheric physics

  17. Solar wind fluctuations at large scale - A comparison between low and high solar activity conditions

    Science.gov (United States)

    Bavassano, B.; Bruno, R.

    1991-02-01

    The influence of the sun's activity cycle on the solar wind fluctuations at time scales from 1 hour to 3 days in the inner heliosphere (0.3 to 1 AU) is investigated. Hourly averages of plasma and magnetic field data by Helios spacecraft are used. Since fluctuations behave quite differently with changing scale, the analysis is performed separately for two different ranges in time scale. Between 1 and 6 hours Alfvenic fluctuations and pressure-balanced structures are extensively observed. At low solar activity and close to 0.3 AU Alfvenic fluctuations are more frequent than pressure-balanced structures. This predominance, however, weakens for rising solar activity and radial distance, to the point that a role-exchange, in terms of occurrence rate, is found at the maximum of the cycle close to 1 AU. On the other hand, in all cases Alfvenic fluctuations have a larger amplitude than pressure-balanced structures. The Alfvenic contribution to the solar wind energy spectrum comes out to be dominant at all solar activity conditions. These findings support the conclusion that the solar cycle evolution of the large-scale velocity pattern is the factor governing the observed variations.

  18. Structure and sources of solar wind in the growing phase of 24th solar cycle

    Science.gov (United States)

    Slemzin, Vladimir; Goryaev, Farid; Shugay, Julia; Rodkin, Denis; Veselovsky, Igor

    2015-04-01

    We present analysis of the solar wind (SW) structure and its association with coronal sources during the minimum and rising phase of 24th solar cycle (2009-2011). The coronal sources prominent in this period - coronal holes, small areas of open magnetic fields near active regions and transient sources associated with small-scale solar activity have been investigated using EUV solar images and soft X-ray fluxes obtained by the CORONAS-Photon/TESIS/Sphinx, PROBA2/SWAP, Hinode/EIS and AIA/SDO instruments as well as the magnetograms obtained by HMI/SDO. It was found that at solar minimum (2009) velocity and magnetic field strength of high speed wind (HSW) and transient SW from small-scale flares did not differ significantly from those of the background slow speed wind (SSW). The major difference between parameters of different SW components was seen in the ion composition represented by the C6/C5, O7/O6, Fe/O ratios and the mean charge of Fe ions. With growing solar activity, the speed of HSW increased due to transformation of its sources - small-size low-latitude coronal holes into equatorial extensions of large polar holes. At that period, the ion composition of transient SW changed from low-temperature to high-temperature values, which was caused by variation of the source conditions and change of the recombination/ionization rates during passage of the plasma flow through the low corona. However, we conclude that criteria of separation of the SW components based on the ion ratios established earlier by Zhao&Fisk (2009) for higher solar activity are not applicable to the extremely weak beginning of 24th cycle. The research leading to these results has received funding from the European Commission's Seventh Framework Programme (FP7/2007-2013) under the grant agreement eHeroes (project n° 284461, www.eheroes.eu).

  19. 78 FR 77447 - California Wind Energy Association, First Solar, Inc. v. California Independent System Operator...

    Science.gov (United States)

    2013-12-23

    ... Energy Association, First Solar, Inc. v. California Independent System Operator Corporation, Southern...), California Wind Energy Association and First Solar, Inc. (collectively, Complainants) filed a formal complaint against the California Independent System Operator Corporation (CAISO) and Southern California...

  20. CORONAL SOURCES, ELEMENTAL FRACTIONATION, AND RELEASE MECHANISMS OF HEAVY ION DROPOUTS IN THE SOLAR WIND

    Energy Technology Data Exchange (ETDEWEB)

    Weberg, Micah J. [PhD Candidate in Space Science, Department of Atmospheric, Oceanic, and Space Sciences, University of Michigan, 2134A Space Research Building, 2455 Hayward Street, Ann Arbor, MI 48109-2143, USA. (United States); Lepri, Susan T. [Associate Professor, Department of Atmospheric, Oceanic, and Space Sciences, University of Michigan, 2429 Space Research Building, 2455 Hayward Street, Ann Arbor, MI 48109-2143, USA. (United States); Zurbuchen, Thomas H., E-mail: mjweberg@umich.edu, E-mail: slepri@umich.edu, E-mail: thomasz@umich.edu [Professor, Space Science and Aerospace Engineering, Associate Dean for Entrepreneurship Senior Counselor of Entrepreneurship Education, Department of Atmospheric, Oceanic, and Space Sciences, University of Michigan, 2431 Space Research Building, 2455 Hayward Street, Ann Arbor, MI 48109-2143, USA. (United States)

    2015-03-10

    The elemental abundances of heavy ions (masses larger than He) in the solar wind provide information about physical processes occurring in the corona. Additionally, the charge state distributions of these heavy ions are sensitive to the temperature profiles of their respective source regions in the corona. Heavy ion dropouts are a relatively new class of solar wind events identified by both elemental and ionic charge state distributions. We have shown that their origins lie in large, closed coronal loops where processes such as gravitational settling dominate and can cause a mass-dependent fractionation pattern. In this study we consider and attempt to answer three fundamental questions concerning heavy ion dropouts: (1) 'where are the source loops located in the large-scale corona?'; (2) 'how does the interplay between coronal processes influence the end elemental abundances?'; and (3) 'what are the most probable release mechanisms'? We begin by analyzing the temporal and spatial variability of heavy ion dropouts and their correlation with heliospheric plasma and magnetic structures. Next we investigate the ordering of the elements inside dropouts with respect to mass, ionic charge state, and first ionization potential. Finally, we discuss these results in the context of the prevailing solar wind theories and the processes they posit that may be responsible for the release of coronal plasma into interplanetary space.

  1. CORONAL SOURCES, ELEMENTAL FRACTIONATION, AND RELEASE MECHANISMS OF HEAVY ION DROPOUTS IN THE SOLAR WIND

    International Nuclear Information System (INIS)

    Weberg, Micah J.; Lepri, Susan T.; Zurbuchen, Thomas H.

    2015-01-01

    The elemental abundances of heavy ions (masses larger than He) in the solar wind provide information about physical processes occurring in the corona. Additionally, the charge state distributions of these heavy ions are sensitive to the temperature profiles of their respective source regions in the corona. Heavy ion dropouts are a relatively new class of solar wind events identified by both elemental and ionic charge state distributions. We have shown that their origins lie in large, closed coronal loops where processes such as gravitational settling dominate and can cause a mass-dependent fractionation pattern. In this study we consider and attempt to answer three fundamental questions concerning heavy ion dropouts: (1) 'where are the source loops located in the large-scale corona?'; (2) 'how does the interplay between coronal processes influence the end elemental abundances?'; and (3) 'what are the most probable release mechanisms'? We begin by analyzing the temporal and spatial variability of heavy ion dropouts and their correlation with heliospheric plasma and magnetic structures. Next we investigate the ordering of the elements inside dropouts with respect to mass, ionic charge state, and first ionization potential. Finally, we discuss these results in the context of the prevailing solar wind theories and the processes they posit that may be responsible for the release of coronal plasma into interplanetary space

  2. AE Geomagnetic Index Predictability for High Speed Solar Wind Streams: A Wavelet Decomposition Technique

    Science.gov (United States)

    Guarnieri, Fernando L.; Tsurutani, Bruce T.; Hajra, Rajkumar; Echer, Ezequiel; Gonzalez, Walter D.; Mannucci, Anthony J.

    2014-01-01

    High speed solar wind streams cause geomagnetic activity at Earth. In this study we have applied a wavelet interactive filtering and reconstruction technique on the solar wind magnetic field components and AE index series to allowed us to investigate the relationship between the two. The IMF Bz component was found as the most significant solar wind parameter responsible by the control of the AE activity. Assuming magnetic reconnection associated to southward directed Bz is the main mechanism transferring energy into the magnetosphere, we adjust parameters to forecast the AE index. The adjusted routine is able to forecast AE, based only on the Bz measured at the L1 Lagrangian point. This gives a prediction approximately 30-70 minutes in advance of the actual geomagnetic activity. The correlation coefficient between the observed AE data and the forecasted series reached values higher than 0.90. In some cases the forecast reproduced particularities observed in the signal very well.The high correlation values observed and the high efficacy of the forecasting can be taken as a confirmation that reconnection is the main physical mechanism responsible for the energy transfer during HILDCAAs. The study also shows that the IMF Bz component low frequencies are most important for AE prediction.

  3. Solar wind control of stratospheric temperatures in Jupiter's auroral regions?

    Science.gov (United States)

    Sinclair, James Andrew; Orton, Glenn; Kasaba, Yasumasa; Sato, Takao M.; Tao, Chihiro; Waite, J. Hunter; Cravens, Thomas; Houston, Stephen; Fletcher, Leigh; Irwin, Patrick; Greathouse, Thomas K.

    2017-10-01

    Auroral emissions are the process through which the interaction of a planet’s atmosphere and its external magnetosphere can be studied. Jupiter exhibits auroral emission at a multitude of wavelengths including the X-ray, ultraviolet and near-infrared. Enhanced emission of CH4 and other stratospheric hydrocarbons is also observed coincident with Jupiter’s shorter-wavelength auroral emission (e.g. Caldwell et al., 1980, Icarus 44, 667-675, Kostiuk et al., 1993, JGR 98, 18823). This indicates that auroral processes modify the thermal structure and composition of the auroral stratosphere. The exact mechanism responsible for this auroral-related heating of the stratosphere has however remained elusive (Sinclair et al., 2017a, Icarus 292, 182-207, Sinclair et al., 2017b, GRL, 44, 5345-5354). We will present an analysis of 7.8-μm images of Jupiter measured by COMICS (Cooled Mid-Infrared Camera and Spectrograph, Kataza et al., 2000, Proc. SPIE(4008), 1144-1152) on the Subaru telescope. These images were acquired on January 11th, 12th, 13th, 14th, February 4, 5th and May 17th, 18th, 19th and 20th in 2017, allowing the daily variability of Jupiter’s auroral-related stratospheric heating to be tracked. Preliminary results suggest lower stratospheric temperatures are directly forced by the solar wind dynamical pressure. The southern auroral hotspot exhibited a significant increase in brightness temperature over a 24-hour period. Over the same time period, a solar wind propagation model (Tao et al. 2005, JGR 110, A11208) predicts a strong increase in the solar wind dynamical pressure at Jupiter.

  4. Line Ratios for Solar Wind Charge Exchange with Comets

    Energy Technology Data Exchange (ETDEWEB)

    Mullen, P. D.; Cumbee, R. S.; Lyons, D.; Shelton, R. L.; Stancil, P. C. [Department of Physics and Astronomy and the Center for Simulational Physics, University of Georgia, Athens, GA 30602 (United States); Gu, L.; Kaastra, J., E-mail: pmullen2@illinois.edu [SRON Netherlands Institute for Space Research, Sorbonnelaan 2, 3584 CA Utrecht (Netherlands)

    2017-07-20

    Charge exchange (CX) has emerged in X-ray emission modeling as a significant process that must be considered in many astrophysical environments—particularly comets. Comets host an interaction between solar wind ions and cometary neutrals to promote solar wind charge exchange (SWCX). X-ray observatories provide astronomers and astrophysicists with data for many X-ray emitting comets that are impossible to accurately model without reliable CX data. Here, we utilize a streamlined set of computer programs that incorporate the multi-channel Landau–Zener theory and a cascade model for X-ray emission to generate cross sections and X-ray line ratios for a variety of bare and non-bare ion single electron capture (SEC) collisions. Namely, we consider collisions between the solar wind constituent bare and H-like ions of C, N, O, Ne, Na, Mg, Al, and Si and the cometary neutrals H{sub 2}O, CO, CO{sub 2}, OH, and O. To exemplify the application of this data, we model the X-ray emission of Comet C/2000 WM1 (linear) using the CX package in SPEX and find excellent agreement with observations made with the XMM-Newton RGS detector. Our analyses show that the X-ray intensity is dominated by SWCX with H, while H{sub 2}O plays a secondary role. This is the first time, to our knowledge, that CX cross sections have been implemented into a X-ray spectral fitting package to determine the H to H{sub 2}O ratio in cometary atmospheres. The CX data sets are incorporated into the modeling packages SPEX and Kronos .

  5. Identifying Wave-Particle Interactions in the Solar Wind using Statistical Correlations

    Science.gov (United States)

    Broiles, T. W.; Jian, L. K.; Gary, S. P.; Lepri, S. T.; Stevens, M. L.

    2017-12-01

    Heavy ions are a trace component of the solar wind, which can resonate with plasma waves, causing heating and acceleration relative to the bulk plasma. While wave-particle interactions are generally accepted as the cause of heavy ion heating and acceleration, observations to constrain the physics are lacking. In this work, we statistically link specific wave modes to heavy ion heating and acceleration. We have computed the Fast Fourier Transform (FFT) of transverse and compressional magnetic waves between 0 and 5.5 Hz using 9 days of ACE and Wind Magnetometer data. The FFTs are averaged over plasma measurement cycles to compute statistical correlations between magnetic wave power at each discrete frequency, and ion kinetic properties measured by ACE/SWICS and Wind/SWE. The results show that lower frequency transverse oscillations ( 0.4 Hz) are positively correlated with enhancements in the heavy ion thermal and drift speeds. Moreover, the correlation results for the He2+ and O6+ were similar on most days. The correlations were often weak, but most days had some frequencies that correlated with statistical significance. This work suggests that the solar wind heavy ions are possibly being heated and accelerated by both transverse and compressional waves at different frequencies.

  6. A Deeper Understanding of Stability in the Solar Wind: Applying Nyquist's Instability Criterion to Wind Faraday Cup Data

    Science.gov (United States)

    Alterman, B. L.; Klein, K. G.; Verscharen, D.; Stevens, M. L.; Kasper, J. C.

    2017-12-01

    Long duration, in situ data sets enable large-scale statistical analysis of free-energy-driven instabilities in the solar wind. The plasma beta and temperature anisotropy plane provides a well-defined parameter space in which a single-fluid plasma's stability can be represented. Because this reduced parameter space can only represent instability thresholds due to the free energy of one ion species - typically the bulk protons - the true impact of instabilities on the solar wind is under estimated. Nyquist's instability criterion allows us to systematically account for other sources of free energy including beams, drifts, and additional temperature anisotropies. Utilizing over 20 years of Wind Faraday cup and magnetic field observations, we have resolved the bulk parameters for three ion populations: the bulk protons, beam protons, and alpha particles. Applying Nyquist's criterion, we calculate the number of linearly growing modes supported by each spectrum and provide a more nuanced consideration of solar wind stability. Using collisional age measurements, we predict the stability of the solar wind close to the sun. Accounting for the free-energy from the three most common ion populations in the solar wind, our approach provides a more complete characterization of solar wind stability.

  7. Solar wind magnetic field bending of Jovian dust trajectories.

    Science.gov (United States)

    Zook, H A; Grün, E; Baguhl, M; Hamilton, D P; Linkert, G; Liou, J; Forsyth, R; Phillips, J L

    1996-11-29

    From September 1991 to October 1992, the cosmic dust detector on the Ulysses spacecraft recorded 11 short bursts, or streams, of dust. These dust grains emanated from the jovian system, and their trajectories were strongly affected by solar wind magnetic field forces. Analyses of the on-board measurements of these fields, and of stream approach directions, show that stream-associated dust grain masses are of the order of 10(-18) gram and dust grain velocities exceed 200 kilometers per second. These masses and velocities are, respectively, about 10(3) times less massive and 5 to 10 times faster than earlier reported.

  8. Solar wind monitor—a school geophysics project

    Science.gov (United States)

    Robinson, Ian

    2018-05-01

    Described is an established geophysics project to construct a solar wind monitor based on a nT resolution fluxgate magnetometer. Low-cost and appropriate from school to university level it incorporates elements of astrophysics, geophysics, electronics, programming, computer networking and signal processing. The system monitors the earth’s field in real-time uploading data and graphs to a website every few minutes. Modular design encourages construction and testing by teams of students as well as expansion and refinement. The system has been tested running unattended for months at a time. Both the hardware design and software is published as open-source [1, 10].

  9. Solar and wind forecasting by NARX neural networks

    Directory of Open Access Journals (Sweden)

    Di Piazza Annalisa

    2016-01-01

    Full Text Available The nonlinear autoregressive network with exogenous input (NARX is used to perform hourly solar irradiation and wind speed forecasting, according to a multi-step ahead approach. Temperature has been considered as the exogenous variable. The NARX topology selection is supported by a combined use of two techniques: (1 a genetic algorithm (GA-based optimization technique and (2 a method that determines the optimal network architecture by pruning (optimal brain surgeon (OBS strategy. The considered variables are observed at hourly scale in a seven year dataset and the forecasting is done for several time horizons in the range from 8 to 24 h ahead.

  10. Correlation of Magnetic Fields with Solar Wind Plasma Parameters at 1AU

    Science.gov (United States)

    Shen, F.

    2017-12-01

    The physical parameters of the solar wind observed in-situ near 1AU have been studied for several decades, and relationships between them, such as the positive correlation between the solar wind plasma temperature T and velocity V, and the negative correlation between density N and velocity V, are well known. However, the magnetic field intensity does not appear to be well correlated with any individual plasma parameter. In this paper, we discuss previously under-reported correlations between B and the combined plasma parameters √NV2 as well as between B and √NT. These two correlations are strong during the periods of corotating interaction regions and high speed streams, moderate during intervals of slow solar wind, and rather poor during the passage of interplanetary coronal mass ejections. The results indicate that the magnetic pressure in the solar wind is well correlated both with the plasma dynamic pressure and the thermal pressure. Then, we employ a 3D MHD model to simulate the formation of the relationships between the magnetic strength B and √NV2 as well as √NT observed at 1AU. The inner boundary condition is derived by empirical models, with the magnetic field and density are optional. Five kinds of boundary conditions at the inner boundary of heliosphere are tested. In the cases that the magnetic field is related to speed at the inner boundary, the correlation coefficients between B and √NV2 as well as between B and √NT are even higher than that in the observational results. At 1AU the simulated radial magnetic field shows little latitude dependence, which matches the observation of Ulysses. Most of the modeled characters in these cases are closer to observation than others. This inner boundary condition may more accurately characterize Sun's magnetic influence on the heliosphere. The new input may be able to improve the simulation of CME propagation in the inner heliosphere and the space weather forecasting.

  11. Dynamical response of the magnetotail to changes of the solar wind direction: an MHD modeling perspective

    Directory of Open Access Journals (Sweden)

    V. A. Sergeev

    2008-08-01

    Full Text Available We performed global MHD simulations to investigate the magnetotail response to the solar wind directional changes (Vz-variations. These changes, although small, cause significant variations of the neutral sheet shape and location even in the near and middle tail regions. They display a complicated temporal response, in which ~60 to 80% of the final shift of the neutral sheet in Z direction occurs within first 10–15 min (less for faster solar wind, whereas a much longer time (exceeding half hour is required to reach a new equilibrium. The asymptotic equilibrium shape of the simulated neutral sheet is consistent with predictions of Tsyganenko-Fairfield (2004 empirical model. To visualize a physical origin of the north-south tail motion we compared the values of the total pressure in the northern and southern tail lobes and found a considerable difference (10–15% for only 6° change of the solar wind direction used in the simulation. That difference builds up during the passage of the solar wind directional discontinuity and is responsible for the vertical shift of the neutral sheet, although some pressure difference remains in the near tail even near the new equilibrium. Surprisingly, at a given tailward distance, the response was found to be first initiated in the tail center (the "leader effect", rather than near the flanks, which can be explained by the wave propagation in the tail, and which may have interesting implications for the substorm triggering studies. The present results have serious implications for the data-based modeling, as they place constraints on the accuracy of tail magnetic configurations to be derived for specific events using data of multi-spacecraft missions, e.g. such as THEMIS.

  12. EMMI-Electric solar wind sail facilitated Manned Mars Initiative

    Science.gov (United States)

    Janhunen, Pekka; Merikallio, Sini; Paton, Mark

    2015-08-01

    The novel propellantless electric solar wind sail concept promises efficient low thrust transportation in the Solar System outside Earth's magnetosphere. Combined with asteroid mining to provide water and synthetic cryogenic rocket fuel in orbits of Earth and Mars, possibilities for affordable continuous manned presence on Mars open up. Orbital fuel and water enable reusable bidirectional Earth-Mars vehicles for continuous manned presence on Mars and allow smaller fuel fraction of spacecraft than what is achievable by traditional means. Water can also be used as radiation shielding of the manned compartment, thus reducing the launch mass further. In addition, the presence of fuel in the orbit of Mars provides the option for an all-propulsive landing, thus potentially eliminating issues of heavy heat shields and augmenting the capability of pinpoint landing. With this E-sail enabled scheme, the recurrent cost of continuous bidirectional traffic between Earth and Mars might ultimately approach the recurrent cost of running the International Space Station, ISS.

  13. Spectral broadening of planetary radar signals by the solar wind

    International Nuclear Information System (INIS)

    Harmon, J.K.; Coles, W.A.

    1983-01-01

    The microturbulence spectrum of the solar wind is estimated using the spectral broadening of planetary radar signals. Observations were made with the two radars (12.6 cm and 70 cm) at Arecibo Observatory during the 1979 and 1981 superior conjunctions of Venus. These observations, which span the solar distance range of 5.4 to 25.5 R/sub sun/, are the first of their type to be reported. The data are consistent with earlier observations where comparisons can be made. The flattening of the high-frequency portion of the spectrum near the Sun reported by Woo and Armstrong is confirmed. In one case clear evidence for an inner scale in the vicinity of 2 km is found. Two transients, 1979 August 15 and 1981 April 24-25, with rather different characteristics were observed

  14. A 15N-poor isotopic composition for the solar system as shown by Genesis solar wind samples.

    Science.gov (United States)

    Marty, B; Chaussidon, M; Wiens, R C; Jurewicz, A J G; Burnett, D S

    2011-06-24

    The Genesis mission sampled solar wind ions to document the elemental and isotopic compositions of the Sun and, by inference, of the protosolar nebula. Nitrogen was a key target element because the extent and origin of its isotopic variations in solar system materials remain unknown. Isotopic analysis of a Genesis Solar Wind Concentrator target material shows that implanted solar wind nitrogen has a (15)N/(14)N ratio of 2.18 ± 0.02 × 10(-3) (that is, ≈40% poorer in (15)N relative to terrestrial atmosphere). The (15)N/(14)N ratio of the protosolar nebula was 2.27 ± 0.03 × 10(-3), which is the lowest (15)N/(14)N ratio known for solar system objects. This result demonstrates the extreme nitrogen isotopic heterogeneity of the nascent solar system and accounts for the (15)N-depleted components observed in solar system reservoirs.

  15. Spectral Analysis of Geomagnetic Activity Indices and Solar Wind Parameters

    Directory of Open Access Journals (Sweden)

    Jung-Hee Kim

    2014-06-01

    Full Text Available Solar variability is widely known to affect the interplanetary space and in turn the Earth’s electromagnetical environment on the basis of common periodicities in the solar and geomagnetic activity indices. The goal of this study is twofold. Firstly, we attempt to associate modes by comparing a temporal behavior of the power of geomagnetic activity parameters since it is barely sufficient searching for common peaks with a similar periodicity in order to causally correlate geomagnetic activity parameters. As a result of the wavelet transform analysis we are able to obtain information on the temporal behavior of the power in the velocity of the solar wind, the number density of protons in the solar wind, the AE index, the Dst index, the interplanetary magnetic field, B and its three components of the GSM coordinate system, BX, BY, BZ. Secondly, we also attempt to search for any signatures of influence on the space environment near the Earth by inner planets orbiting around the Sun. Our main findings are as follows: (1 Parameters we have investigated show periodicities of ~ 27 days, ~ 13.5 days, ~ 9 days. (2 The peaks in the power spectrum of BZ appear to be split due to an unknown agent. (3 For some modes powers are not present all the time and intervals showing high powers do not always coincide. (4 Noticeable peaks do not emerge at those frequencies corresponding to the synodic and/or sidereal periods of Mercury and Venus, which leads us to conclude that the Earth’s space environment is not subject to the shadow of the inner planets as suggested earlier.

  16. Ancillary Services for the European Grid with High Shares of Wind and Solar Power

    DEFF Research Database (Denmark)

    Van Hulle, Frans; Holttinen, Hannele; Kiviluoma, Juha

    2012-01-01

    services that are especially relevant for wind and solar power. These are mainly related to frequency, voltage control and restoration of the system. In addition, based on existing experience and wind integration studies, the paper analyses impacts that high amounts of wind/solar will have on different......With significantly increasing share of variable renewable power generation like wind and solar PV, the need in the power system for ancillary services supporting the network frequency, voltage, etc. changes. Turning this issue around, market opportunities will emerge for wind and solar PV...... technology to deliver such grid services. In the European power system, adequate market mechanisms need to be developed to ensure that there will be an efficient trading of these services. For that purpose a range of (economic) characteristics of wind (and solar) power as providers of grid services need...

  17. Three-dimensional exploration of the solar wind using observations of interplanetary scintillation.

    Science.gov (United States)

    Tokumaru, Munetoshi

    2013-01-01

    The solar wind, a supersonic plasma flow continuously emanating from the Sun, governs the space environment in a vast region extending to the boundary of the heliosphere (∼100 AU). Precise understanding of the solar wind is of importance not only because it will satisfy scientific interest in an enigmatic astrophysical phenomenon, but because it has broad impacts on relevant fields. Interplanetary scintillation (IPS) of compact radio sources at meter to centimeter wavelengths serves as a useful ground-based method for investigating the solar wind. IPS measurements of the solar wind at a frequency of 327 MHz have been carried out regularly since the 1980s using the multi-station system of the Solar-Terrestrial Environment Laboratory (STEL) of Nagoya University. This paper reviews new aspects of the solar wind revealed from our IPS observations.

  18. Determination of solar wind energy input during different form of geomagnetic disturbances.

    Science.gov (United States)

    Dahal, S.; Adhikari, B.; Narayan, C.; Shapkota, N.

    2017-12-01

    A quantitative study on solar wind energy input during different form of geomagnetic disturbances as well as during quite period was performed. To enable a quantitative analysis, we estimate Akasofu parameter which plays an important role to understand the relationships between ionosphere-magnetosphere and solar wind energy input. For comparative purpose, the total energy budget of Non storm HILDCAA event (19th to 24th April 2003), Storm preceding HILDCAA event (14th to 19th May 2005), Geomagnetic sub-storm (12nd to 16th November 2003), Geomagnetic super sub-storm (12nd to 16th November 2003) and a Quiet period (18th to 21st July 2006) were also analyzed. Among these events the highest total energy budget was found during the occurrence of storm preceding HILDCAA. This is due to significant geomagnetic field perturbation as displayed on the value of interplanetary parameters. The principal cause of geomagnetic disturbance is the magnetic reconnection, which establishes an electrodynamic coupling between the solar plasma and the magnetosphere. Although there is distinct perturbation on SYM-H index for all events but the values are different. The highest pick value of SYM-H index ( -300nT) was found for the storm preceding HILDCAA.This results suggest that the effects of HILDCAAs, displayed on the value of the SYM-H index, depends on the amount of the energy injected into the ring current. In a complementary way, fluctuation pattern of Temperature, IMF magnitude, Bx component, By component, and AE index are also studied and the possible physical interpretations for the statistical results obtained during each events were discussed. We shall report the characteristics of Bz component during each events by the implementation of discrete wavelet transform (DWT) and cross correlation analysis. We did cross-correlation between solar wind energy and Bz component of IMF and found a negative correlation between them during the main phase of geomagnetic disturbances. These

  19. MULTI-SHELL MAGNETIC TWISTERS AS A NEW MECHANISM FOR CORONAL HEATING AND SOLAR WIND ACCELERATION

    Energy Technology Data Exchange (ETDEWEB)

    Murawski, K. [Group of Astrophysics, Institute of Physics, UMCS, ul. Radziszewskiego 10, 20-031 Lublin (Poland); Srivastava, A. K.; Dwivedi, B. N. [Department of Physics, Indian Institute of Technology (Banaras Hindu University), Varanasi-221005 (India); Musielak, Z. E. [Department of Physics, University of Texas at Arlington, Arlington, TX 76019 (United States)

    2015-07-20

    We perform numerical simulations of impulsively generated Alfvén waves in an isolated photospheric flux tube and explore the propagation of these waves along such magnetic structure that extends from the photosphere, where these waves are triggered, to the solar corona, and we analyze resulting magnetic shells. Our model of the solar atmosphere is constructed by adopting the temperature distribution based on the semi-empirical model and specifying the curved magnetic field lines that constitute the magnetic flux tube that is rooted in the solar photosphere. The evolution of the solar atmosphere is described by 3D, ideal MHD equations that are numerically solved by the FLASH code. Our numerical simulations reveal, based on the physical properties of the multi-shell magnetic twisters and the amount of energy and momentum associated with them, that these multi-shell magnetic twisters may be responsible for the observed heating of the lower solar corona and for the formation of solar wind. Moreover, it is likely that the existence of these twisters can be verified by high-resolution observations.

  20. Dynamics of zodical dust particles in the region near the sonic surface of the solar wind

    Science.gov (United States)

    Banaszkiewicz, M.; Fahr, H. J.; Mann, I.; Scherer, K.

    Besides by the electromagnetic Poynting-Robertson effect zodial dust particle motions are substantially influenced by plasma Poynting-Robertson drag forces induced by the solar wind passing over the dust particles. Calculations show that the associated plasma drag coefficient very much depends on whether or not the solar wind plasma is supersonic.Since this coefficient strongly increases with decreasing solar wind sonic Mach number it is interesting to study zodiacal dust dynamics in the region close to the sonic surface of the solar wind where the change from low Mach number to large Mach number flows occurs.This is likely to occur at different solar distances in region near the ecliptic compared to those at higher latitudes.On the basis of a parametrized 3-dimensional solar wind outflow model we study the zodical dust dynamics for particles at different inclinations and demonstrate inclination-dependent radial migration periods. In addition the plasma drag force in the subsonic solar wind region has components normal to the orbital plane of the particles connected with the solar wind ion temperature anisotropies and inducing inclination drifts of the dust particles. With our calculations we will point out that observational studies of the zodiacal dust cloud close to the corona provide a diagnostic of the solar wind in its acceleration region.

  1. The physics of wind-blown sand and dust.

    Science.gov (United States)

    Kok, Jasper F; Parteli, Eric J R; Michaels, Timothy I; Karam, Diana Bou

    2012-10-01

    The transport of sand and dust by wind is a potent erosional force, creates sand dunes and ripples, and loads the atmosphere with suspended dust aerosols. This paper presents an extensive review of the physics of wind-blown sand and dust on Earth and Mars. Specifically, we review the physics of aeolian saltation, the formation and development of sand dunes and ripples, the physics of dust aerosol emission, the weather phenomena that trigger dust storms, and the lifting of dust by dust devils and other small-scale vortices. We also discuss the physics of wind-blown sand and dune formation on Venus and Titan.

  2. SunPy—Python for solar physics

    Science.gov (United States)

    SunPy Community; Mumford, Stuart J.; Christe, Steven; Pérez-Suárez, David; Ireland, Jack; Shih, Albert Y.; Inglis, Andrew R.; Liedtke, Simon; Hewett, Russell J.; Mayer, Florian; Hughitt, Keith; Freij, Nabil; Meszaros, Tomas; Bennett, Samuel M.; Malocha, Michael; Evans, John; Agrawal, Ankit; Leonard, Andrew J.; Robitaille, Thomas P.; Mampaey, Benjamin; Campos-Rozo, Jose Iván; Kirk, Michael S.

    2015-01-01

    This paper presents SunPy (version 0.5), a community-developed Python package for solar physics. Python, a free, cross-platform, general-purpose, high-level programming language, has seen widespread adoption among the scientific community, resulting in the availability of a large number of software packages, from numerical computation (NumPy, SciPy) and machine learning (scikit-learn) to visualization and plotting (matplotlib). SunPy is a data-analysis environment specializing in providing the software necessary to analyse solar and heliospheric data in Python. SunPy is open-source software (BSD licence) and has an open and transparent development workflow that anyone can contribute to. SunPy provides access to solar data through integration with the Virtual Solar Observatory (VSO), the Heliophysics Event Knowledgebase (HEK), and the HELiophysics Integrated Observatory (HELIO) webservices. It currently supports image data from major solar missions (e.g., SDO, SOHO, STEREO, and IRIS), time-series data from missions such as GOES, SDO/EVE, and PROBA2/LYRA, and radio spectra from e-Callisto and STEREO/SWAVES. We describe SunPy's functionality, provide examples of solar data analysis in SunPy, and show how Python-based solar data-analysis can leverage the many existing tools already available in Python. We discuss the future goals of the project and encourage interested users to become involved in the planning and development of SunPy.

  3. SunPy—Python for solar physics

    International Nuclear Information System (INIS)

    Community, The SunPy; Mumford, Stuart J; Freij, Nabil; Bennett, Samuel M; Christe, Steven; Ireland, Jack; Shih, Albert Y; Inglis, Andrew R; Pérez-Suárez, David; Liedtke, Simon; Hewett, Russell J; Mayer, Florian; Hughitt, Keith; Meszaros, Tomas; Malocha, Michael; Evans, John; Agrawal, Ankit; Leonard, Andrew J; Robitaille, Thomas P; Mampaey, Benjamin

    2015-01-01

    This paper presents SunPy (version 0.5), a community-developed Python package for solar physics. Python, a free, cross-platform, general-purpose, high-level programming language, has seen widespread adoption among the scientific community, resulting in the availability of a large number of software packages, from numerical computation (NumPy, SciPy) and machine learning (scikit-learn) to visualization and plotting (matplotlib). SunPy is a data-analysis environment specializing in providing the software necessary to analyse solar and heliospheric data in Python. SunPy is open-source software (BSD licence) and has an open and transparent development workflow that anyone can contribute to. SunPy provides access to solar data through integration with the Virtual Solar Observatory (VSO), the Heliophysics Event Knowledgebase (HEK), and the HELiophysics Integrated Observatory (HELIO) webservices. It currently supports image data from major solar missions (e.g., SDO, SOHO, STEREO, and IRIS), time-series data from missions such as GOES, SDO/EVE, and PROBA2/LYRA, and radio spectra from e-Callisto and STEREO/SWAVES. We describe SunPy's functionality, provide examples of solar data analysis in SunPy, and show how Python-based solar data-analysis can leverage the many existing tools already available in Python. We discuss the future goals of the project and encourage interested users to become involved in the planning and development of SunPy. (paper)

  4. Heating coronal holes and accelerating the solar wind

    Science.gov (United States)

    Parker, E. N.

    1992-01-01

    The special energy requirements of a coronal hole combined with current knowledge of the limited dissipation of Alfven and fast mode MHD waves in the solar corona suggest a unique source of heat for the coronal hole. The near coronal hole requires approximately 3 - 4 x 10 exp 5 ergs/sq cm s, which can come only from the fluid jets, fast particles, and short period MHD waves from the network activity. The high speed streams of solar wind from coronal holes show that there is substantial heating, of 1 - 2 x 10 exp 5 ergs/sq cm s, beyond the sonic point in the wind, which can come only from the dissipation by thermal conduction of long period (approximately equal or greater than 100 sec) MHD waves from subphotospheric convection. Although the Alfven wave flux from the photosphere is generally taken for granted in the literature, we point out that it is a crucial phenomenon that has yet to be established on either a theoretical or observational scientific basis.

  5. Orbit Limited Theory in the Solar Wind - kappa Distributions

    Science.gov (United States)

    Martinović, M. M.

    2016-06-01

    When a solid object is immersed into ionized gas it gets brought to a certain value of electrostatic potential and surrounded by a space charge region called `plasma sheath'. Through this region, particles are attracted or repelled from the surface of the charge collecting object. For collisionless plasma, this process is described by the so-called orbit limited theory, which explains how the collection of particles is determined by the collector geometry and plasma velocity distribution function (VDF). In this article, we provide explicit orbit-limited currents expressions for generalized Lorentzian (κ) distributions. This work is useful to describe the charging processes of objects in non-collisional plasmas like the solar wind, where the electrons VDF is often observed to exhibit quasi power-law populations of suprathermal particles. It is found that these 'suprathermals' considerably increase the charge collection. Since the surface charging process that determines the value of electrostatic potential is also affected by the plasma VDF, calculation of the collector potential in the solar wind is described along with some quantitative predictions.

  6. Solar wind control of the local time of substorm onset

    Science.gov (United States)

    Grocott, Adrian; Case, Nathan; Laundal, Karl; Laurens, Hannah; Milan, Steve

    2017-04-01

    We use solar wind and interplanetary magnetic field data, along with satellite global auroral imagery, to investigate what controls the magnetic local time (MLT) of substorm onset. We find that substorm onsets occur over a wide range of MLTs (18 - 4 hrs), with a typical MLT (mode) of 23 hrs. In agreement with previous studies, IMF BY , acts to move the onset to an earlier/later local time in the northern hemisphere and a later/earlier local time in the southern hemisphere, depending on the sign of BY , consistent with a twist of the conjugate magnetic field line. This effect explains a small fraction of the observed MLT variation (˜ 1 hr), but cannot account for the tendency of onset to be often displaced to earlier ( 23 hrs) MLTs in both hemispheres. We also inspect the relationship between solar wind V Y and onset MLT, which also has a small, but measurable effect on the local time of substorm onset. This effect acts in the same sense in the northern and southern hemispheres, moving onset to earlier times for positive V Y and later times for negative V Y . We find that a function relating both BY and V Y to onset MLT produces a better fit than a function based on either parameter alone.

  7. The behaviour of minor species in the solar wind

    Science.gov (United States)

    Ryan, J. M.; Axford, W. I.

    1975-01-01

    The flow of minor species in the solar wind is considered on the basis of a model in which all species are heated in an arbitrary manner as they leave the sun and the minor species interact with the background proton-electron plasma through the radial electric field associated with the latter and by means of Coulomb collisions. In order to produce satisfactory results in which the ions all move at more or less the same speed at the orbit of the earth, it is necessary to introduce heating functions such that each species is given energy in proportion to its mass. Coulomb collisions are found to be important as a means of removing energy from the heavier species close to the sun and bringing all species closer to thermal equilibrium at great distances from the sun. Substantial velocity differences can occur between species, especially close to the sun. Furthermore it is not difficult to construct solutions in which the bulk velocity of the helium ions exceeds that of the solar wind, as is often observed.

  8. LANGMUIR WAVE DECAY IN INHOMOGENEOUS SOLAR WIND PLASMAS: SIMULATION RESULTS

    Energy Technology Data Exchange (ETDEWEB)

    Krafft, C. [Laboratoire de Physique des Plasmas, Ecole Polytechnique, F-91128 Palaiseau Cedex (France); Volokitin, A. S. [IZMIRAN, Troitsk, 142190, Moscow (Russian Federation); Krasnoselskikh, V. V., E-mail: catherine.krafft@u-psud.fr [Laboratoire de Physique et Chimie de l’Environnement et de l’Espace, 3A Av. de la Recherche Scientifique, F-45071 Orléans Cedex 2 (France)

    2015-08-20

    Langmuir turbulence excited by electron flows in solar wind plasmas is studied on the basis of numerical simulations. In particular, nonlinear wave decay processes involving ion-sound (IS) waves are considered in order to understand their dependence on external long-wavelength plasma density fluctuations. In the presence of inhomogeneities, it is shown that the decay processes are localized in space and, due to the differences between the group velocities of Langmuir and IS waves, their duration is limited so that a full nonlinear saturation cannot be achieved. The reflection and the scattering of Langmuir wave packets on the ambient and randomly varying density fluctuations lead to crucial effects impacting the development of the IS wave spectrum. Notably, beatings between forward propagating Langmuir waves and reflected ones result in the parametric generation of waves of noticeable amplitudes and in the amplification of IS waves. These processes, repeated at different space locations, form a series of cascades of wave energy transfer, similar to those studied in the frame of weak turbulence theory. The dynamics of such a cascading mechanism and its influence on the acceleration of the most energetic part of the electron beam are studied. Finally, the role of the decay processes in the shaping of the profiles of the Langmuir wave packets is discussed, and the waveforms calculated are compared with those observed recently on board the spacecraft Solar TErrestrial RElations Observatory and WIND.

  9. Kappa-Electrons Downstream of the Solar Wind Termination Shock

    Science.gov (United States)

    Fahr, H. J.

    2017-12-01

    A theoretical description of the solar wind electron distribution function downstream of the termination shock under the influence of the shock-induced injection of overshooting KeV-energetic electrons will be presented. A kinetic phasespace transport equation in the bulk frame of the heliosheath plasma flow is developed for the solar wind electrons, taking into account shock-induced electron injection, convective changes, magnetic cooling processes and whistler wave-induced energy diffusion. Assuming that the local electron distribution under the prevailing Non-LTE conditions can be represented by a local kappa function with a local kappa parameter that varies with the streamline coordinates, we determine the parameters of the resulting, initial kappa distribution for the downstream electrons. From this initial function spectral electron fluxes can be derived and can be compared with those measured by the VOYAGER-1 spacecraft in the range between 40 to 70 KeV. It can then be shown that with kappa values around kappa = 6 one can in fact fit these data very satisfactorily. In addition it is shown that for isentropic electron flows kappa-distributed electrons have to undergo simultaneous changes of both parameters, i.e. kappa and theta, of the electron kappa function. It is also shown then that under the influence of energy sinks and sources the electron flux becomes non-isentropic with electron entropies changing along the streamline.

  10. Reevaluation of the Solar Wind 36Ar/38Ar Ratio

    Science.gov (United States)

    Becker, R. H.; Schlutter, D. J.; Rider, P. E.; Pepin, R. O.

    1996-03-01

    The isotopic composition of solar wind (SW) argon is an important parameter in the modeling of the evolution of the terrestrial planet atmospheres. Anders and Grevesse assumed a 36Ar/38Ar ratio for SW of 5.31, essentially equal to that of air. Considerable evidence has since developed which indicates that this ratio is too low. Benkert et al. have reported their best estimate for the recent SW as 5.48 +/- 0.05, determined from measurements of lunar soil 71501. Based on Ar data obtained from surface oxidation of a metal separate from the Weston meteorite and from an uncontrolled etch of lunar sample 67701, reported by our group previously, we consider even this value to be too low. Since values of 5.75 to 5.85 were reported by Black for initial low temperature (fairly high SW 36Ar/38Ar ratio (in the range of ~5.6 to ~5.7), we decided to analyze Kapoeta for its light solar wind gases using the acid-etching techniques developed in our laboratory based on the CSSE procedure of Benkert et al.

  11. Orbit limited theory in the solar wind - κ distributions

    Directory of Open Access Journals (Sweden)

    Martinović M.M.

    2016-01-01

    Full Text Available When a solid object is immersed into ionized gas it gets brought to a certain value of electrostatic potential and surrounded by a space charge region called ‘plasma sheath’. Through this region, particles are attracted or repelled from the surface of the charge collecting object. For collisionless plasma, this process is described by the so-called orbit limited theory, which explains how the collection of particles is determined by the collector geometry and plasma velocity distribution function (VDF. In this article, we provide explicit expressions for orbit-limited currents for generalized Lorentzian (κ distributions. This work is useful to describe the charging processes of objects in non-collisional plasmas like the solar wind, where the electrons VDF is often observed to exhibit quasi power-law populations of suprathermal particles. It is found that these ‘suprathermals’ considerably increase the charge collection. Since the surface charging process that determines the value of electrostatic potential is also affected by the plasma VDF, calculation of the collector potential in the solar wind is described along with some quantitative predictions. [Projekat Ministarstva nauke Republike Srbije, br. 176002

  12. Validation of Model Forecasts of the Ambient Solar Wind

    Science.gov (United States)

    Macneice, P. J.; Hesse, M.; Kuznetsova, M. M.; Rastaetter, L.; Taktakishvili, A.

    2009-01-01

    Independent and automated validation is a vital step in the progression of models from the research community into operational forecasting use. In this paper we describe a program in development at the CCMC to provide just such a comprehensive validation for models of the ambient solar wind in the inner heliosphere. We have built upon previous efforts published in the community, sharpened their definitions, and completed a baseline study. We also provide first results from this program of the comparative performance of the MHD models available at the CCMC against that of the Wang-Sheeley-Arge (WSA) model. An important goal of this effort is to provide a consistent validation to all available models. Clearly exposing the relative strengths and weaknesses of the different models will enable forecasters to craft more reliable ensemble forecasting strategies. Models of the ambient solar wind are developing rapidly as a result of improvements in data supply, numerical techniques, and computing resources. It is anticipated that in the next five to ten years, the MHD based models will supplant semi-empirical potential based models such as the WSA model, as the best available forecast models. We anticipate that this validation effort will track this evolution and so assist policy makers in gauging the value of past and future investment in modeling support.

  13. Physics and chemistry of the solar system

    National Research Council Canada - National Science Library

    Lewis, John S

    1995-01-01

    ... permission in writing from the publisher. Academic Press, Inc. A Division of Harcourt Brace & Company 525 B Street, Suite 1900, San Diego, California 92101-4495 United Kingdom Edition published by Academic Press Limited 24-28 Oval Road, London NW1 7DX Library of Congress Cataloging-in-Publication Data Lewis, John S. Physics and chemistry of the solar...

  14. An Approach to Comprehensive and Sustainable Solar Wind Model Validation

    Science.gov (United States)

    Rastaetter, L.; MacNeice, P. J.; Mays, M. L.; Boblitt, J. M.; Wiegand, C.

    2017-12-01

    The number of models of the corona and inner heliosphere and of their updates and upgrades grows steadily, as does the number and character of the model inputs. Maintaining up to date validation of these models, in the face of this constant model evolution, is a necessary but very labor intensive activity. In the last year alone, both NASA's LWS program and the CCMC's ongoing support of model forecasting activities at NOAA SWPC have sought model validation reports on the quality of all aspects of the community's coronal and heliospheric models, including both ambient and CME related wind solutions at L1. In this presentation I will give a brief review of the community's previous model validation results of L1 wind representation. I will discuss the semi-automated web based system we are constructing at the CCMC to present comparative visualizations of all interesting aspects of the solutions from competing models.This system is designed to be easily queried to provide the essential comprehensive inputs to repeat andupdate previous validation studies and support extensions to them. I will illustrate this by demonstrating how the system is being used to support the CCMC/LWS Model Assessment Forum teams focused on the ambient and time dependent corona and solar wind, including CME arrival time and IMF Bz.I will also discuss plans to extend the system to include results from the Forum teams addressing SEP model validation.

  15. 77 FR 48138 - Topaz Solar Farms LLC; High Plains Ranch II, LLC; Bethel Wind Energy LLC; Rippey Wind Energy LLC...

    Science.gov (United States)

    2012-08-13

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket Nos. EG12-63-000; EG12-64-000; EG12-65-000; EG12-66-000; EG12- 67-000; EG12-68-000; EG12-69-000] Topaz Solar Farms LLC; High Plains Ranch II, LLC; Bethel Wind Energy LLC; Rippey Wind Energy LLC; Pacific Wind, LLC; Colorado Highlands...

  16. Ion Kinetics in the Solar Wind: Coupling Global Expansion to Local Microphysics

    Czech Academy of Sciences Publication Activity Database

    Matteini, L.; Hellinger, Petr; Landi, S.; Trávníček, Pavel M.; Velli, M.

    2012-01-01

    Roč. 172, 1-4 (2012), s. 373-396 ISSN 0038-6308 R&D Projects: GA AV ČR IAA300420702 Grant - others:ESA(XE) PECS 98068 Institutional research plan: CEZ:AV0Z30420517; CEZ:AV0Z10030501 Keywords : Solar wind * Ion kinetics * Numerical simulations Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 5.519, year: 2012 http://link.springer.com/article/10.1007%2Fs11214-011-9774-z#

  17. The solar wind neon abundance observed with ACE/SWICS and ULYSSES/SWICS

    International Nuclear Information System (INIS)

    Shearer, Paul; Raines, Jim M.; Lepri, Susan T.; Thomas, Jonathan W.; Gilbert, Jason A.; Landi, Enrico; Zurbuchen, Thomas H.; Von Steiger, Rudolf

    2014-01-01

    Using in situ ion spectrometry data from ACE/SWICS, we determine the solar wind Ne/O elemental abundance ratio and examine its dependence on wind speed and evolution with the solar cycle. We find that Ne/O is inversely correlated with wind speed, is nearly constant in the fast wind, and correlates strongly with solar activity in the slow wind. In fast wind streams with speeds above 600 km s –1 , we find Ne/O = 0.10 ± 0.02, in good agreement with the extensive polar observations by Ulysses/SWICS. In slow wind streams with speeds below 400 km s –1 , Ne/O ranges from a low of 0.12 ± 0.02 at solar maximum to a high of 0.17 ± 0.03 at solar minimum. These measurements place new and significant empirical constraints on the fractionation mechanisms governing solar wind composition and have implications for the coronal and photospheric abundances of neon and oxygen. The results are made possible by a new data analysis method that robustly identifies rare elements in the measured ion spectra. The method is also applied to Ulysses/SWICS data, which confirms the ACE observations and extends our view of solar wind neon into the three-dimensional heliosphere.

  18. The solar wind neon abundance observed with ACE/SWICS and ULYSSES/SWICS

    Energy Technology Data Exchange (ETDEWEB)

    Shearer, Paul; Raines, Jim M.; Lepri, Susan T.; Thomas, Jonathan W.; Gilbert, Jason A.; Landi, Enrico; Zurbuchen, Thomas H. [Department of Atmospheric, Oceanic, and Space Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Von Steiger, Rudolf [International Space Science Institute, Hallerstrasse 6, CH-3012 Bern (Switzerland)

    2014-07-01

    Using in situ ion spectrometry data from ACE/SWICS, we determine the solar wind Ne/O elemental abundance ratio and examine its dependence on wind speed and evolution with the solar cycle. We find that Ne/O is inversely correlated with wind speed, is nearly constant in the fast wind, and correlates strongly with solar activity in the slow wind. In fast wind streams with speeds above 600 km s{sup –1}, we find Ne/O = 0.10 ± 0.02, in good agreement with the extensive polar observations by Ulysses/SWICS. In slow wind streams with speeds below 400 km s{sup –1}, Ne/O ranges from a low of 0.12 ± 0.02 at solar maximum to a high of 0.17 ± 0.03 at solar minimum. These measurements place new and significant empirical constraints on the fractionation mechanisms governing solar wind composition and have implications for the coronal and photospheric abundances of neon and oxygen. The results are made possible by a new data analysis method that robustly identifies rare elements in the measured ion spectra. The method is also applied to Ulysses/SWICS data, which confirms the ACE observations and extends our view of solar wind neon into the three-dimensional heliosphere.

  19. Developing a hybrid solar/wind powered irrigation system for crops in the Great Plains

    Science.gov (United States)

    Some small scale irrigation systems (powered by wind or solar do not require subsidies, but this paper discusses ways to achieve an economical renewable energy powered center pivot irrigation system for crops in the Great Plains. By adding a solar-photovoltaic (PV) array together with a wind...

  20. COMPLEX MAPPING OF ENERGY RESOURCES FOR ALLOCATION OF SOLAR AND WIND ENERGY OBJECTS

    Directory of Open Access Journals (Sweden)

    B. A. Novakovskiy

    2016-01-01

    Full Text Available The paper presents developed methodology of solar and wind energy resources complex mapping at the regional level, taking into account the environmental and socio-economic factors affecting the placement of renewable energy facilities. Methodology provides a reasonable search and allocation of areas, the most promising for the placement of wind and solar power plants.

  1. Hybrid SolarWind – Diesel Systems for Rural Application in North ...

    African Journals Online (AJOL)

    Bheema

    Thus, renewable energy sources are options for off-grid electricity supply in the country. The northern part of the country where the study focuses on has high Solar and Wind energy potential. It is expected that hybrid SolarWind energy systems with diesel backup will provide good possibilities due to the complementary.

  2. Information theoretical approach to discovering solar wind drivers of the outer radiation belt

    NARCIS (Netherlands)

    S.P. Wing (Simon); J.R. Johnson (Jay); E. Camporeale (Enrico); G.D. Reeves (Geoffrey)

    2016-01-01

    textabstractThe solar wind-magnetosphere system is nonlinear. The solar wind drivers of geosynchronous electrons with energy range of 1.8–3.5 MeV are investigated using mutual information, conditional mutual information (CMI), and transfer entropy (TE). These information theoretical tools can

  3. The Solar Wind: Our Current Understanding and How We Got Here ...

    Indian Academy of Sciences (India)

    addition (rS is the solar radius). 3. The wave-driven wind. The next major advance was the discovery (Belcher & Davis 1971) of the ubiquitous presence of Alfvén waves in the solar wind. Most of the wave power resides at long periods, of the order of hours. The waves predominantly propagate away from the Sun, especially ...

  4. Solar PV resource for higher penetration through a combined spatial aggregation with wind

    CSIR Research Space (South Africa)

    Bischof-Niemz, ST

    2016-06-01

    Full Text Available between wind and solar PV and how these would be reflected in the power system. The benefits of spatial distribution of renewables are well understood, but the impact of the combined spatial aggregation of wind and solar PV is central to the design...

  5. Synoptic maps of solar wind parameters from in situ spacecraft observations

    Science.gov (United States)

    Gazis, P. R.

    1995-01-01

    Solar wind observations from the Interplanetary Monitoring Platform-8 (IMP-8) and Pioneer Venus Orbiter (PVO) spacecraft from 1982 until 1988 are combined to construct synoptic maps of solar wind parameters near 1 AU. Each map consists of 6 months of hourly averaged solar wind data, binned by heliographic latitude and Carrington longitude and projected back to the Sun. These maps show the structure and time evolution of solar wind streams near 1 AU in the heliographic latitudes of +/- 7.25 deg and provide and explicit picture of several phenomena, such as gradients, changes in the inclination of the heliospheric current sheet, and the relative positions of various structures in the inner heliosphere, that is difficult to obtain from single-spacecraft observations. The stream structure varied significantly during the last solar cycle. Between 1982 and early 1985, solar wind parameters did not depend strongly on heliographic latitude. During the last solar minimum, the solar wind developed significant latitudinal structure, and high-speed streams were excluded from the vicinity of the solar equator. The interplanetary magnetic field was strongly correlated with the coronal field, and the current sheet tended to coincide with the coronal neutral line. The solar wind speed showed the expected correlations with temperature, interplanetary magnetic field, and distance from the current sheet. The solar wind speed was anticorrelated with density, but the regions of highest density occurred east of the heliospheric current sheet and the regions of lowest solar wind speed. This is consistent with compression at the leading edge of high-speed streams.

  6. Magnetosheath waves under very low solar wind dynamic pressure: Wind/Geotail observations

    Directory of Open Access Journals (Sweden)

    C. J. Farrugia

    2005-06-01

    Full Text Available The expanded bow shock on and around "the day the solar wind almost disappeared" (11 May 1999 allowed the Geotail spacecraft to make a practically uninterrupted 54-h-long magnetosheath pass near dusk (16:30-21:11 magnetic local time at a radial distance of 24 to 30 RE (Earth radii. During most of this period, interplanetary parameters varied gradually and in such a way as to give rise to two extreme magnetosheath structures, one dominated by magnetohydrodynamic (MHD effects and the other by gas dynamic effects. We focus attention on unusual features of electromagnetic ion wave activity in the former magnetosheath state, and compare these features with those in the latter. Magnetic fluctuations in the gas dynamic magnetosheath were dominated by compressional mirror mode waves, and left- and right-hand polarized electromagnetic ion cyclotron (EIC waves transverse to the background field. In contrast, the MHD magnetosheath, lasting for over one day, was devoid of mirror oscillations and permeated instead by EIC waves of weak intensity. The weak wave intensity is related to the prevailing low solar wind dynamic pressures. Left-hand polarized EIC waves were replaced by bursts of right-hand polarized waves, which remained for many hours the only ion wave activity present. This activity occurred when the magnetosheath proton temperature anisotropy (= $T_{p, perp}/T_{p, parallel}{-}1$ became negative. This was because the weakened bow shock exposed the magnetosheath directly to the (negative temperature anisotropy of the solar wind. Unlike the normal case studied in the literature, these right-hand waves were not by-products of left-hand polarized waves but derived their energy source directly from the magnetosheath temperature anisotropy. Brief entries into the

  7. Magnetosheath waves under very low solar wind dynamic pressure: Wind/Geotail observations

    Directory of Open Access Journals (Sweden)

    C. J. Farrugia

    2005-06-01

    Full Text Available The expanded bow shock on and around "the day the solar wind almost disappeared" (11 May 1999 allowed the Geotail spacecraft to make a practically uninterrupted 54-h-long magnetosheath pass near dusk (16:30-21:11 magnetic local time at a radial distance of 24 to 30 RE (Earth radii. During most of this period, interplanetary parameters varied gradually and in such a way as to give rise to two extreme magnetosheath structures, one dominated by magnetohydrodynamic (MHD effects and the other by gas dynamic effects. We focus attention on unusual features of electromagnetic ion wave activity in the former magnetosheath state, and compare these features with those in the latter. Magnetic fluctuations in the gas dynamic magnetosheath were dominated by compressional mirror mode waves, and left- and right-hand polarized electromagnetic ion cyclotron (EIC waves transverse to the background field. In contrast, the MHD magnetosheath, lasting for over one day, was devoid of mirror oscillations and permeated instead by EIC waves of weak intensity. The weak wave intensity is related to the prevailing low solar wind dynamic pressures. Left-hand polarized EIC waves were replaced by bursts of right-hand polarized waves, which remained for many hours the only ion wave activity present. This activity occurred when the magnetosheath proton temperature anisotropy (= became negative. This was because the weakened bow shock exposed the magnetosheath directly to the (negative temperature anisotropy of the solar wind. Unlike the normal case studied in the literature, these right-hand waves were not by-products of left-hand polarized waves but derived their energy source directly from the magnetosheath temperature anisotropy. Brief entries into the low latitude boundary layer (LLBL and duskside magnetosphere occurred under such inflated conditions that the magnetospheric magnetic pressure was insufficient to maintain pressure balance. In these crossings, the inner edge of

  8. Dynamics of transitional region of the solar wind turbulence with heliocentric distance

    Science.gov (United States)

    Galinsky, V.; Shevchenko, V. I.

    2010-12-01

    Scale-separation model of wave-particle interaction in divergent solar wind was applied to study the transitional region of solar wind turbulence [1]. We concentrated on area from around the end of the inertial range to the region where proton cyclotron dumping is important. Our goal is to investigate how the transitional region changes due to change of the solar wind plasma parameters (and most important due to the change of local cyclotron frequency) with heliocentric distance. Previously we discovered that shell distribution developed in solar wind due to wave-particle interaction is becoming unstable as solar wind expands [2]. Waves that are generated by this instability modify the transitional region of turbulence. [1] Galinsky, V.L and V. I. Shevchenko, Phys. Rev. Letters, 85, 90, 2000. [2] Shevchenko V.I. et al., Phys. of Plasmas, 11, 4290, 2004.

  9. Contribution of Strong Discontinuities to the Power Spectrum of the Solar Wind

    International Nuclear Information System (INIS)

    Borovsky, Joseph E.

    2010-01-01

    Eight and a half years of magnetic field measurements (2 22 samples) from the ACE spacecraft in the solar wind at 1 A.U. are analyzed. Strong (large-rotation-angle) discontinuities in the solar wind are collected and measured. An artificial time series is created that preserves the timing and amplitudes of the discontinuities. The power spectral density of the discontinuity series is calculated and compared with the power spectral density of the solar-wind magnetic field. The strong discontinuities produce a power-law spectrum in the ''inertial subrange'' with a spectral index near the Kolmogorov -5/3 index. The discontinuity spectrum contains about half of the power of the full solar-wind magnetic field over this ''inertial subrange.'' Warnings are issued about the significant contribution of discontinuities to the spectrum of the solar wind, complicating interpretation of spectral power and spectral indices.

  10. Contribution of strong discontinuities to the power spectrum of the solar wind.

    Science.gov (United States)

    Borovsky, Joseph E

    2010-09-10

    Eight and a half years of magnetic field measurements (2(22) samples) from the ACE spacecraft in the solar wind at 1 A.U. are analyzed. Strong (large-rotation-angle) discontinuities in the solar wind are collected and measured. An artificial time series is created that preserves the timing and amplitudes of the discontinuities. The power spectral density of the discontinuity series is calculated and compared with the power spectral density of the solar-wind magnetic field. The strong discontinuities produce a power-law spectrum in the "inertial subrange" with a spectral index near the Kolmogorov -5/3 index. The discontinuity spectrum contains about half of the power of the full solar-wind magnetic field over this "inertial subrange." Warnings are issued about the significant contribution of discontinuities to the spectrum of the solar wind, complicating interpretation of spectral power and spectral indices.

  11. Embracing Open Software Development in Solar Physics

    Science.gov (United States)

    Hughitt, V. K.; Ireland, J.; Christe, S.; Mueller, D.

    2012-12-01

    We discuss two ongoing software projects in solar physics that have adopted best practices of the open source software community. The first, the Helioviewer Project, is a powerful data visualization tool which includes online and Java interfaces inspired by Google Maps (tm). This effort allows users to find solar features and events of interest, and download the corresponding data. Having found data of interest, the user now has to analyze it. The dominant solar data analysis platform is an open-source library called SolarSoft (SSW). Although SSW itself is open-source, the programming language used is IDL, a proprietary language with licensing costs that are prohibative for many institutions and individuals. SSW is composed of a collection of related scripts written by missions and individuals for solar data processing and analysis, without any consistent data structures or common interfaces. Further, at the time when SSW was initially developed, many of the best software development processes of today (mirrored and distributed version control, unit testing, continuous integration, etc.) were not standard, and have not since been adopted. The challenges inherent in developing SolarSoft led to a second software project known as SunPy. SunPy is an open-source Python-based library which seeks to create a unified solar data analysis environment including a number of core datatypes such as Maps, Lightcurves, and Spectra which have consistent interfaces and behaviors. By taking advantage of the large and sophisticated body of scientific software already available in Python (e.g. SciPy, NumPy, Matplotlib), and by adopting many of the best practices refined in open-source software development, SunPy has been able to develop at a very rapid pace while still ensuring a high level of reliability. The Helioviewer Project and SunPy represent two pioneering technologies in solar physics - simple yet flexible data visualization and a powerful, new data analysis environment. We

  12. Physics and chemistry of the solar system

    CERN Document Server

    Lewis, John S

    2004-01-01

    Physics and Chemistry of the Solar System, 2nd Edition, is a comprehensive survey of the planetary physics and physical chemistry of our own solar system. It covers current research in these areas and the planetary sciences that have benefited from both earth-based and spacecraft-based experimentation. These experiments form the basis of this encyclopedic reference, which skillfully fuses synthesis and explanation. Detailed chapters review each of the major planetary bodies as well as asteroids, comets, and other small orbitals. Astronomers, physicists, and planetary scientists can use this state-of-the-art book for both research and teaching. This Second Edition features extensive new material, including expanded treatment of new meteorite classes, spacecraft findings from Mars Pathfinder through Mars Odyssey 2001, recent reflections on brown dwarfs, and descriptions of planned NASA, ESA, and Japanese planetary missions.* New edition features expanded treatment of new meteorite classes, the latest spacecraft...

  13. Wind Energy and Atmospheric Physics Department annual progress report 1999

    DEFF Research Database (Denmark)

    2000-01-01

    The report describes the work of the Wind Energy and Atmospheric Physics Department at Risø National Laboratory in 1999. The research of the department aims to develop new opportunities in the exploitation of wind energy and to map and alleviateatmospheric aspects of environmental problems...

  14. Solar power. [comparison of costs to wind, nuclear, coal, oil and gas

    Science.gov (United States)

    Walton, A. L.; Hall, Darwin C.

    1990-01-01

    This paper describes categories of solar technologies and identifies those that are economic. It compares the private costs of power from solar, wind, nuclear, coal, oil, and gas generators. In the southern United States, the private costs of building and generating electricity from new solar and wind power plants are less than the private cost of electricity from a new nuclear power plant. Solar power is more valuable than nuclear power since all solar power is available during peak and midpeak periods. Half of the power from nuclear generators is off-peak power and therefore is less valuable. Reliability is important in determining the value of wind and nuclear power. Damage from air pollution, when factored into the cost of power from fossil fuels, alters the cost comparison in favor of solar and wind power. Some policies are more effective at encouraging alternative energy technologies that pollute less and improve national security.

  15. Study of Geomagnetic Field Response to Solar Wind Forcing

    Science.gov (United States)

    Kim, S.; Li, X.; Damas, M. C.; Ngwira, C.

    2017-12-01

    The solar wind is an integral component of space weather that has a huge impact on the near-Earth space conditions, which can in turn adversely impact technological infrastructure. By analyzing solar wind data, we can investigate the response of the Earth's magnetic field to changes in solar wind conditions, such as dynamic pressure, speed, and interplanetary magnetic fields (IMF). When a coronal mass ejection (CME) hits the Earth's magnetosphere, it compresses the dayside magnetosphere, which leads to SSC (Sudden Storm Commencement) seen in Dst or SYM-H index. Dst and SYM-H index are a measure of geomagnetic storm intensity that represents the magnetic field perturbations in the equatorial region originating from ring current. In this study, we focused on SSC intervals with sudden density increase, density, greater than 10 n/cc from 2000 to 2015 using data obtained from the NASA CDAWEB service. A total of 1,049 events were picked for this project. Then using INTERMAGNET service, corresponding horizontal component of magnetic field data were collected from several stations located in equatorial region, mid-latitude region, high-latitude region on the day-side and night-side of Earth. Using MATLAB, we calculated the rate of change of magnetic fields (dB/dt) for each station and each event. We found that in most cases, the sudden increase in proton density is associated with large changes in magnetic fields, dB/dt. The largest magnetic field changes were observed on the day-side than night-side at high latitudes. Interestingly, some exceptions were found such that greater dB/dt was found on night-side than day-side during some events, particularly at high latitudes. We suspect these are driven by magnetospheric substorms, which are manifested by an explosive release of energy in the local midnight sector. The next step will be creating the statistical form to see the correlation between proton density changes and magnetic field changes.

  16. Impact of Solar wind plasma parameters on geomagnetic condition

    Science.gov (United States)

    Rathore, Balveer Singh; Gupta, Dinesh Chandra

    Today’s challenge for space weather research is to quantitatively predict the dynamics of the magnetosphere from measured solar wind and interplanetary magnetic field conditions. A correlative studies between the Geomagnetic Storms (GMSs) and the various interplanetary field/plasma parameters have been performed to search the causes of geomagnetic activity and developing models for prediction of the occurrence of GMSs which are important for space weather predictions. In the present paper we found possible co-relation of geomagnetic storms with solar wind and IMF parameters in three different situations and also drive the linear relation equation for all parameters in three situations. On basis of present statistical study we developed an empirical model. With the help of this model we can predict all categories of geomagnetic storms. This model based on following fact. The total interplanetary magnetic field Btotal can use as alarm of geomagnetic storms, when sudden changes in total magnetic field B total, it is a first alarm on condition for storms arrival. It is observed in the present study that southward Bz-component of IMF is an important factor for geomagnetic storms. And it is the result of the paper that the magnitude of Bz is maximum neither during initial phase (at the instant of IP shock) nor during main phase (at the instant of Dst minimum). So it is seen in this study that there is a time delay between maximum value of southward Bz and Dst minimum and this time delay can be used in the prediction of the intensity of magnetic storm two -three hours before of main phase of geomagnetic storm. A linear relation have been derived between maximum value of southward component of Bz and Dst for prediction is Dst = (-0.06) + (7.65)Bz + t. Some auxiliary condition should be fulfils with this, speed of solar wind should be on average 350 km/s to 750 km/s, plasma beta should be low and most important plasma temperature should be low for intense storms if plasma

  17. Effect of solar wind plasma parameters on space weather

    Science.gov (United States)

    Rathore, Balveer S.; Gupta, Dinesh C.; Kaushik, Subhash C.

    2015-01-01

    Today's challenge for space weather research is to quantitatively predict the dynamics of the magnetosphere from measured solar wind and interplanetary magnetic field (IMF) conditions. Correlative studies between geomagnetic storms (GMSs) and the various interplanetary (IP) field/plasma parameters have been performed to search for the causes of geomagnetic activity and develop models for predicting the occurrence of GMSs, which are important for space weather predictions. We find a possible relation between GMSs and solar wind and IMF parameters in three different situations and also derived the linear relation for all parameters in three situations. On the basis of the present statistical study, we develop an empirical model. With the help of this model, we can predict all categories of GMSs. This model is based on the following fact: the total IMF Btotal can be used to trigger an alarm for GMSs, when sudden changes in total magnetic field Btotal occur. This is the first alarm condition for a storm's arrival. It is observed in the present study that the southward Bz component of the IMF is an important factor for describing GMSs. A result of the paper is that the magnitude of Bz is maximum neither during the initial phase (at the instant of the IP shock) nor during the main phase (at the instant of Disturbance storm time (Dst) minimum). It is seen in this study that there is a time delay between the maximum value of southward Bz and the Dst minimum, and this time delay can be used in the prediction of the intensity of a magnetic storm two-three hours before the main phase of a GMS. A linear relation has been derived between the maximum value of the southward component of Bz and the Dst, which is Dst = (-0.06) + (7.65) Bz +t. Some auxiliary conditions should be fulfilled with this, for example the speed of the solar wind should, on average, be 350 km s-1 to 750 km s-1, plasma β should be low and, most importantly, plasma temperature should be low for intense

  18. Three-fluid, three-dimensional magnetohydrodynamic solar wind model with eddy viscosity and turbulent resistivity

    Energy Technology Data Exchange (ETDEWEB)

    Usmanov, Arcadi V.; Matthaeus, William H. [Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States); Goldstein, Melvyn L., E-mail: arcadi.usmanov@nasa.gov [Code 672, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2014-06-10

    We have developed a three-fluid, three-dimensional magnetohydrodynamic solar wind model that incorporates turbulence transport, eddy viscosity, turbulent resistivity, and turbulent heating. The solar wind plasma is described as a system of co-moving solar wind protons, electrons, and interstellar pickup protons, with separate energy equations for each species. Numerical steady-state solutions of Reynolds-averaged solar wind equations coupled with turbulence transport equations for turbulence energy, cross helicity, and correlation length are obtained by the time relaxation method in the corotating with the Sun frame of reference in the region from 0.3 to 100 AU (but still inside the termination shock). The model equations include the effects of electron heat conduction, Coulomb collisions, photoionization of interstellar hydrogen atoms and their charge exchange with the solar wind protons, turbulence energy generation by pickup protons, and turbulent heating of solar wind protons and electrons. The turbulence transport model is based on the Reynolds decomposition and turbulence phenomenologies that describe the conversion of fluctuation energy into heat due to a turbulent cascade. In addition to using separate energy equations for the solar wind protons and electrons, a significant improvement over our previous work is that the turbulence model now uses an eddy viscosity approximation for the Reynolds stress tensor and the mean turbulent electric field. The approximation allows the turbulence model to account for driving of turbulence by large-scale velocity gradients. Using either a dipole approximation for the solar magnetic field or synoptic solar magnetograms from the Wilcox Solar Observatory for assigning boundary conditions at the coronal base, we apply the model to study the global structure of the solar wind and its three-dimensional properties, including embedded turbulence, heating, and acceleration throughout the heliosphere. The model results are

  19. Techno-Economic Assessment of Concentrating Solar Power and Wind Hybridization in Jordan

    Directory of Open Access Journals (Sweden)

    Osama Ayadi

    2018-03-01

    A strong complementarity between wind and direct normal solar radiation was observed in the selected location in Jordan, which emphasizes the attractiveness of the selected hybrid system. The optimal configuration of the CSP-wind hybrid system was obtained with a solar field of a 2.6 solar multiple and a 5 hours energy storage. The achieved capacity factor was 94%, and the LCOE is lower than those resulted for standalone CSP plants.

  20. Identification and replacement of proton-contaminated real-time ACE solar wind measurements

    Science.gov (United States)

    Machol, Janet L.; Reinard, Alysha A.; Viereck, Rodney A.; Biesecker, Douglas A.

    2013-07-01

    Real-time solar wind speed measurements derived from measurements by the Solar Wind Electron, Proton, and Alpha Monitor (SWEPAM) aboard the Advanced Composition Explorer (ACE) satellite are critical to specifying and forecasting current space weather and its impacts. When solar energetic protons produce high background levels in SWEPAM, the real-time solar wind speed measurements can be corrupted due to errors in the onboard algorithm. We analyzed 14 years of ACE real-time solar wind data for the years 1998 through 2011 to determine how to identify the contaminated measurements and what proxy might be substituted for these corrupt data. We find that good criteria for flagging contaminated data are that (1) the measured solar wind speeds are below 305 km s-1, and (2) the >10 MeV ion fluxes measured by the ACE Solar Isotope Spectrometer (SIS) are above 180 pfu. We also compare several potential proxies for the contaminated solar wind and determine that the best proxy depends on the last valid measured wind speed, vinitial, and the duration of the contamination period. For the first 25 h, the best proxy is simply vinitial. At later times, if vinitial 400 km s-1, the best proxy is a linear function of the Kp geomagnetic index.

  1. The economics of wind and solar variability. How the variability of wind and solar power affects their marginal value, optimal deployment, and integration costs

    Energy Technology Data Exchange (ETDEWEB)

    Hirth, Lion

    2014-11-14

    homogenous and heterogeneous along three dimensions - time, space, and lead-time. Electricity's heterogeneity is rooted in its physics, notably the fact it cannot be stored. (Only) because of heterogeneity, the economics of wind and solar power are affected by their variability. The impact of variability, expressed in terms of marginal value, can be quite significant: for example, at 30% wind market share, electricity from wind power is worth 30-50% less than electricity from a constant source, as this study estimates. This value drop stems mainly from the fact that the capital embodied in thermal plants is utilized less in power systems with high VRE shares. Any welfare analysis of VRE needs to take electricity's heterogeneity into account. The impact of variability on VRE cannot only be expressed in terms of marginal value, but also in terms of costs, or in terms of optimal deployment. The mentioned value drop corresponds to an increase of costs by 30-50%, or a reduction of the optimal share by two thirds. These findings lead to seven policy conclusions: 1. Wind power will play a significant role (compared to today). 2. Wind power will play a limited role (compared to some political ambitions). 3. There are many effective options to integrate wind power into power systems, including transmission investments, flexibilizing thermal generators, and advancing wind turbine design. Electricity storage, in contrast, plays a limited role (however, it can play a larger role for integrating solar). 4. For these integration measures to materialize, it is important to get both prices and policies right. Prices need to reflect marginal costs, entry barriers should be tiered down, and policy must not shield agents from incentives. 5. VRE capacity should be brought to the system at a moderate pace. 6. VRE do not go well together with nuclear power or carbon capture and storage - these technologies are too capital intensive. 7. Large-scale VRE deployment is not only an

  2. The economics of wind and solar variability. How the variability of wind and solar power affects their marginal value, optimal deployment, and integration costs

    International Nuclear Information System (INIS)

    Hirth, Lion

    2014-01-01

    homogenous and heterogeneous along three dimensions - time, space, and lead-time. Electricity's heterogeneity is rooted in its physics, notably the fact it cannot be stored. (Only) because of heterogeneity, the economics of wind and solar power are affected by their variability. The impact of variability, expressed in terms of marginal value, can be quite significant: for example, at 30% wind market share, electricity from wind power is worth 30-50% less than electricity from a constant source, as this study estimates. This value drop stems mainly from the fact that the capital embodied in thermal plants is utilized less in power systems with high VRE shares. Any welfare analysis of VRE needs to take electricity's heterogeneity into account. The impact of variability on VRE cannot only be expressed in terms of marginal value, but also in terms of costs, or in terms of optimal deployment. The mentioned value drop corresponds to an increase of costs by 30-50%, or a reduction of the optimal share by two thirds. These findings lead to seven policy conclusions: 1. Wind power will play a significant role (compared to today). 2. Wind power will play a limited role (compared to some political ambitions). 3. There are many effective options to integrate wind power into power systems, including transmission investments, flexibilizing thermal generators, and advancing wind turbine design. Electricity storage, in contrast, plays a limited role (however, it can play a larger role for integrating solar). 4. For these integration measures to materialize, it is important to get both prices and policies right. Prices need to reflect marginal costs, entry barriers should be tiered down, and policy must not shield agents from incentives. 5. VRE capacity should be brought to the system at a moderate pace. 6. VRE do not go well together with nuclear power or carbon capture and storage - these technologies are too capital intensive. 7. Large-scale VRE deployment is not only an

  3. Annual report 1997. Wind Energy and Atmospheric Physics Department

    Energy Technology Data Exchange (ETDEWEB)

    Madsen, P.H.; Dannemand Andersen, P.; Skrumsager, B. [eds.

    1998-08-01

    The report describes the work of the Wind Energy and Atmospheric Physics Department at Risoe National Laboratory during 1997. The research of the department aims to develop new opportunities in the exploitation of wind energy and to map and alleviate atmospheric aspects of environmental problems. The expertise of the department is utilised in commercial activities such as wind turbine testing and certification, training programmes, courses and consultancy services to industry, authorities and Danish and international organisations on wind energy and atmospheric environmental impact. (au)

  4. Annual progress report 2000. Wind Energy and Atmospheric Physics Dept.

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, S.E.; Skrumsager, B. [eds.

    2001-05-01

    The report describes the work of the Wind Energy and Atmospheric Physics Department at Risoe National Laboratory in 2000. The research of the department aims to develop new opportunities in the exploitation of wind energy and to map and alleviate atmospheric aspects of environmental problems. The expertise of the department is utilised in commercial activities such as wind turbine testing and certification, training programmes, courses and consultancy services to industry, authorities and Danish and international organisations on wind energy and atmospheric environmental impact. A summary of the department's activities in 2000 is shown, including lists of publications, lectures, committees and staff members. (au)

  5. Annual progress report 2000. Wind Energy and Atmospheric Physics Department

    International Nuclear Information System (INIS)

    Larsen, S.E.; Skrumsager, B.

    2001-05-01

    The report describes the work of the Wind Energy and Atmospheric Physics Department at Risoe National Laboratory in 2000. The research of the department aims to develop new opportunities in the exploitation of wind energy and to map and alleviate atmospheric aspects of environmental problems. The expertise of the department is utilised in commercial activities such as wind turbine testing and certification, training programmes, courses and consultancy services to industry, authorities and Danish and international organisations on wind energy and atmospheric environmental impact. A summary of the department's activities in 2000 is shown, including lists of publications, lectures, committees and staff members. (au)

  6. Annual progress report 2000. Wind Energy and Atmospheric Physics Department

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, S.E.; Skrumsager, B. (eds.)

    2001-05-01

    The report describes the work of the Wind Energy and Atmospheric Physics Department at Risoe National Laboratory in 2000. The research of the department aims to develop new opportunities in the exploitation of wind energy and to map and alleviate atmospheric aspects of environmental problems. The expertise of the department is utilised in commercial activities such as wind turbine testing and certification, training programmes, courses and consultancy services to industry, authorities and Danish and international organisations on wind energy and atmospheric environmental impact. A summary of the department's activities in 2000 is shown, including lists of publications, lectures, committees and staff members. (au)

  7. Western Wind and Solar Integration Study Phase 2 (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Lew, D.; Brinkman, G.; Ibanez, E.; Kumar, N.; Lefton, S.; Jordan, G.; Venkataraman, S.; King, J.

    2013-06-01

    This presentation accompanies Phase 2 of the Western Wind and Solar Integration Study, a follow-on to Phase 1, which examined the operational impacts of high penetrations of variable renewable generation on the electric power system in the West and was one of the largest variable generation studies to date. High penetrations of variable generation can induce cycling of fossil-fueled generators. Cycling leads to wear-and-tear costs and changes in emissions. Phase 2 calculated these costs and emissions, and simulated grid operations for a year to investigate the detailed impact of variable generation on the fossil-fueled fleet. The presentation highlights the scope of the study and results.

  8. New Model of a Solar Wind Airplane for Geomatic Operations

    Science.gov (United States)

    Achachi, A.; Benatia, D.

    2015-08-01

    The ability for an aircraft to fly during a much extended period of time has become a key issue and a target of research, both in the domain of civilian aviation and unmanned aerial vehicles. This paper describes a new design and evaluating of solar wind aircraft with the objective to assess the impact of a new system design on overall flight crew performance. The required endurance is in the range of some hours in the case of law enforcement, border surveillance, forest fire fighting or power line inspection. However, other applications at high altitudes, such as geomatic operations for delivering geographic information, weather research and forecast, environmental monitoring, would require remaining airborne during days, weeks or even months. The design of GNSS non precision approach procedure for different airports is based on geomatic data.

  9. NEW MODEL OF A SOLAR WIND AIRPLANE FOR GEOMATIC OPERATIONS

    Directory of Open Access Journals (Sweden)

    A. Achachi

    2015-08-01

    Full Text Available The ability for an aircraft to fly during a much extended period of time has become a key issue and a target of research, both in the domain of civilian aviation and unmanned aerial vehicles. This paper describes a new design and evaluating of solar wind aircraft with the objective to assess the impact of a new system design on overall flight crew performance. The required endurance is in the range of some hours in the case of law enforcement, border surveillance, forest fire fighting or power line inspection. However, other applications at high altitudes, such as geomatic operations for delivering geographic information, weather research and forecast, environmental monitoring, would require remaining airborne during days, weeks or even months. The design of GNSS non precision approach procedure for different airports is based on geomatic data.

  10. Cyclotron instabilities driven by temperature anisotropy in the solar wind

    Science.gov (United States)

    Noreen, N.; Yoon, P. H.; Zaheer, S.

    2017-10-01

    Kinetic plasma instabilities are important for regulating the temperature anisotropies of electrons and ions in solar wind. For the low beta regime, it is known that electromagnetic ion/electron cyclotron instabilities are important, but in the literature these unstable modes are discussed under the assumption of parallel propagation. The present paper extends the analysis to two (or with cylindrical symmetry, three) dimensions. The analysis is further extended to include quasilinear description with the assumption of the bi-Maxwellian velocity distribution function. Such an analysis lays the foundation for an eventual study in which cyclotron instabilities as well as obliquely propagating unstable modes such as the mirror instability are simultaneously taken into account. The present paper first lays down the basis for such future efforts in which the two- or three dimensional linear and quasilinear theories of cyclotron instabilities in the low beta regime are formulated.

  11. Mapping 3D plasma structure in the solar wind with the L1 constellation: joint observations from Wind, ACE, DSCOVR, and SoHO

    Science.gov (United States)

    Stevens, M. L.; Kasper, J. C.; Case, A. W.; Korreck, K. E.; Szabo, A.; Biesecker, D. A.; Prchlik, J.

    2017-12-01

    At this moment in time, four observatories with similar instrumentation- Wind, ACE, DSCOVR, and SoHO- are stationed directly upstream of the Earth and making continuous observations. They are separated by drift-time baselines of seconds to minutes, timescales on which MHD instabilities in the solar wind are known to grow and evolve, and spatial baselines of tens to 200 earth radii, length scales relevant to the Earth's magnetosphere. By comparing measurements of matched solar wind structures from the four vantage points, the form of structures and associated dynamics on these scales is illuminated. Our targets include shocks and MHD discontinuities, stream fronts, locii of reconnection and exhaust flow boundary layers, plasmoids, and solitary structures born of nonlinear instability. We use the tetrahedral quality factors and other conventions adopted for Cluster to identify periods where the WADS constellation is suitably non-degenerate and arranged in such a way as to enable specific types of spatial, temporal, or spatiotemporal inferences. We present here an overview of the geometries accessible to the L1 constellation and timing-based and plasma-based observations of solar wind structures from 2016-17. We discuss the unique potential of the constellation approach for space physics and space weather forecasting at 1 AU.

  12. SunPy: Solar Physics in Python

    Science.gov (United States)

    Ryan, Daniel; Christe, Steven; Mumford, Stuart; Perez Suarez, David; Ireland, Jack; Shih, Albert Y.; Inglis, Andrew; Liedtke, Simon; Hewett, Russel

    2015-04-01

    SunPy is a community-developed open-source software library for solar physics. It is written in Python, a free, cross-platform, general-purpose, high-level programming language which is being increasingly adopted throughout the scientific community as well as further afield. This has resulted in a wide array of software packages useful for scientific computing, from numerical computation (NumPy, SciPy, etc.), to machine learning (scifitlearn), to visualization and plotting (matplotlib). SunPy aims to provide required specialised software for analysing solar and heliospheric datasets in Python. The current version is 0.5 with 0.6 expected to be released later this year. SunPy provides solar data access through integration with the Virtual Solar Observatory (VSO), the Heliophysics Event Knowledgebase (HEK), and the HELiophysics Integrated Observatory (HELIO) webservices. It supports common data types from major solar missions such as images (SDO/AIA, STEREO, PROBA2/SWAP etc.), time series (GOES/XRS, SDO/EVE, PROBA2/LYRA), and radio spectra (e-Callisto, STEREO/WAVES). SunPy’s code base is publicly available through github.com and can be contributed to by anyone. In this poster we demonstrate SunPy’s functionality and future goals of the project. We also encourage interested users to become involved in further developing SunPy.

  13. Radiation Belt Transport Driven by Solar Wind Dynamic Pressure Fluctuations

    Science.gov (United States)

    Kress, B. T.; Hudson, M. K.; Ukhorskiy, A. Y.; Mueller, H.

    2012-12-01

    The creation of the Earth's outer zone radiation belts is attributed to earthward transport and adiabatic acceleration of electrons by drift-resonant interactions with electromagnetic fluctuations in the magnetosphere. Three types of radial transport driven by solar wind dynamic pressure fluctuations that have been identified are: (1) radial diffusion [Falthammer, 1965], (2) significant changes in the phase space density radial profile due to a single or few ULF drift-resonant interactions [Ukhorskiy et al., 2006; Degeling et al., 2008], and (3) shock associated injections of radiation belt electrons occurring in less than a drift period [Li et al., 1993]. A progress report will be given on work to fully characterize different forms of radial transport and their effect on the Earth's radiation belts. The work is being carried out by computing test-particle trajectories in electric and magnetic fields from a simple analytic ULF field model and from global MHD simulations of the magnetosphere. Degeling, A. W., L. G. Ozeke, R. Rankin, I. R. Mann, and K. Kabin (2008), Drift resonant generation of peaked relativistic electron distributions by Pc 5 ULF waves, textit{J. Geophys. Res., 113}, A02208, doi:10.1029/2007JA012411. Fälthammar, C.-G. (1965), Effects of Time-Dependent Electric Fields on Geomagnetically Trapped Radiation, J. Geophys. Res., 70(11), 2503-2516, doi:10.1029/JZ070i011p02503. Li, X., I. Roth, M. Temerin, J. R. Wygant, M. K. Hudson, and J. B. Blake (1993), Simulation of the prompt energization and transport of radiation belt particles during the March 24, 1991 SSC, textit{Geophys. Res. Lett., 20}(22), 2423-2426, doi:10.1029/93GL02701. Ukhorskiy, A. Y., B. J. Anderson, K. Takahashi, and N. A. Tsyganenko (2006), Impact of ULF oscillations in solar wind dynamic pressure on the outer radiation belt electrons, textit{Geophys. Res. Lett., 33}(6), L06111, doi:10.1029/2005GL024380.

  14. Particle acceleration via reconnection processes in the supersonic solar wind

    International Nuclear Information System (INIS)

    Zank, G. P.; Le Roux, J. A.; Webb, G. M.; Dosch, A.; Khabarova, O.

    2014-01-01

    An emerging paradigm for the dissipation of magnetic turbulence in the supersonic solar wind is via localized small-scale reconnection processes, essentially between quasi-2D interacting magnetic islands. Charged particles trapped in merging magnetic islands can be accelerated by the electric field generated by magnetic island merging and the contraction of magnetic islands. We derive a gyrophase-averaged transport equation for particles experiencing pitch-angle scattering and energization in a super-Alfvénic flowing plasma experiencing multiple small-scale reconnection events. A simpler advection-diffusion transport equation for a nearly isotropic particle distribution is derived. The dominant charged particle energization processes are (1) the electric field induced by quasi-2D magnetic island merging and (2) magnetic island contraction. The magnetic island topology ensures that charged particles are trapped in regions where they experience repeated interactions with the induced electric field or contracting magnetic islands. Steady-state solutions of the isotropic transport equation with only the induced electric field and a fixed source yield a power-law spectrum for the accelerated particles with index α = –(3 + M A )/2, where M A is the Alfvén Mach number. Considering only magnetic island contraction yields power-law-like solutions with index –3(1 + τ c /(8τ diff )), where τ c /τ diff is the ratio of timescales between magnetic island contraction and charged particle diffusion. The general solution is a power-law-like solution with an index that depends on the Alfvén Mach number and the timescale ratio τ diff /τ c . Observed power-law distributions of energetic particles observed in the quiet supersonic solar wind at 1 AU may be a consequence of particle acceleration associated with dissipative small-scale reconnection processes in a turbulent plasma, including the widely reported c –5 (c particle speed) spectra observed by Fisk and Gloeckler

  15. On Lunar Exospheric Column Densities and Solar Wind Access Beyond the Terminator from ROSAT Soft X-Ray Observations of Solar Wind Charge Exchange

    Science.gov (United States)

    Collier, Michael R.; Snowden, S. L.; Sarantos, M.; Benna, M.; Carter, J. A.; Cravens, T. E.; Farrell, W. M.; Fatemi, S.; Hills, H. Kent; Hodges, R. R.; hide

    2014-01-01

    We analyze the Rontgen satellite (ROSAT) position sensitive proportional counter soft X-ray image of the Moon taken on 29 June 1990 by examining the radial profile of the surface brightness in three wedges: two 19 deg wedges (one north and one south) 13-32 deg off the terminator toward the dark side and one wedge 38 deg wide centered on the antisolar direction. The radial profiles of both the north and the south wedges show significant limb brightening that is absent in the 38 deg wide antisolar wedge. An analysis of the soft X-ray intensity increase associated with the limb brightening shows that its magnitude is consistent with that expected due to solar wind charge exchange (SWCX) with the tenuous lunar atmosphere based on lunar exospheric models and hybrid simulation results of solar wind access beyond the terminator. Soft X-ray imaging thus can independently infer the total lunar limb column density including all species, a property that before now has not been measured, and provide a large-scale picture of the solar wind-lunar interaction. Because the SWCX signal appears to be dominated by exospheric species arising from solar wind implantation, this technique can also determine how the exosphere varies with solar wind conditions. Now, along with Mars, Venus, and Earth, the Moon represents another solar system body at which SWCX has been observed.

  16. Polar and equatorial coronal hole winds at solar minima: From the heliosphere to the inner corona

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, L.; Landi, E., E-mail: lzh@umich.edu [Department of Atmospheric, Oceanic, and Space Sciences, University of Michigan, Ann Arbor, MI 48105 (United States)

    2014-02-01

    Fast solar wind can be accelerated from at least two different sources: polar coronal holes and equatorial coronal holes. Little is known about the relationship between the wind coming from these two different latitudes and whether these two subcategories of fast wind evolve in the same way during the solar cycle. Nineteen years of Ulysses observations, from 1990 to 2009, combined with ACE observations from 1998 to the present provide us with in situ measurements of solar wind properties that span two entire solar cycles. These missions provide an ideal data set to study the properties and evolution of the fast solar wind originating from equatorial and polar holes. In this work, we focus on these two types of fast solar wind during the minima between solar cycles 22 and 23 and 23 and 24. We use data from SWICS, SWOOPS, and VHM/FGM on board Ulysses and SWICS, SWEPAM, and MAG on board ACE to analyze the proton kinetic, thermal, and dynamic characteristics, heavy ion composition, and magnetic field properties of these two fast winds. The comparison shows that: (1) their kinetic, thermal, compositional, and magnetic properties are significantly different at any time during the two minima and (2) they respond differently to the changes in solar activity from cycle 23 to 24. These results indicate that equatorial and polar fast solar wind are two separate subcategories of fast wind. We discuss the implications of these results and relate them to remote-sensing measurements of the properties of polar and equatorial coronal holes carried out in the inner corona during these two solar minima.

  17. TURBULENCE IN THE SOLAR WIND MEASURED WITH COMET TAIL TEST PARTICLES

    Energy Technology Data Exchange (ETDEWEB)

    DeForest, C. E.; Howard, T. A. [Southwest Research Institute, 1050 Walnut Street Suite 300, Boulder, CO 80302 (United States); Matthaeus, W. H. [Department of Physics and Astronomy, University of Delaware, 217 Sharp Laboratory, Newark, DE 19711 (United States); Rice, D. R. [Northwestern University, 633 Clark St., Evanston, IL 60208 (United States)

    2015-10-20

    By analyzing the motions of test particles observed remotely in the tail of Comet Encke, we demonstrate that the solar wind undergoes turbulent processing enroute from the Sun to the Earth and that the kinetic energy entrained in the large-scale turbulence is sufficient to explain the well-known anomalous heating of the solar wind. Using the heliospheric imaging (HI-1) camera on board NASA's STEREO-A spacecraft, we have observed an ensemble of compact features in the comet tail as they became entrained in the solar wind near 0.4 AU. We find that the features are useful as test particles, via mean-motion analysis and a forward model of pickup dynamics. Using population analysis of the ensemble's relative motion, we find a regime of random-walk diffusion in the solar wind, followed, on larger scales, by a surprising regime of semiconfinement that we attribute to turbulent eddies in the solar wind. The entrained kinetic energy of the turbulent motions represents a sufficient energy reservoir to heat the solar wind to observed temperatures at 1 AU. We determine the Lagrangian-frame diffusion coefficient in the diffusive regime, derive upper limits for the small scale coherence length of solar wind turbulence, compare our results to existing Eulerian-frame measurements, and compare the turbulent velocity with the size of the observed eddies extrapolated to 1 AU. We conclude that the slow solar wind is fully mixed by turbulence on scales corresponding to a 1–2 hr crossing time at Earth; and that solar wind variability on timescales shorter than 1–2 hr is therefore dominated by turbulent processing rather than by direct solar effects.

  18. Polar and equatorial coronal hole winds at solar minima: From the heliosphere to the inner corona

    International Nuclear Information System (INIS)

    Zhao, L.; Landi, E.

    2014-01-01

    Fast solar wind can be accelerated from at least two different sources: polar coronal holes and equatorial coronal holes. Little is known about the relationship between the wind coming from these two different latitudes and whether these two subcategories of fast wind evolve in the same way during the solar cycle. Nineteen years of Ulysses observations, from 1990 to 2009, combined with ACE observations from 1998 to the present provide us with in situ measurements of solar wind properties that span two entire solar cycles. These missions provide an ideal data set to study the properties and evolution of the fast solar wind originating from equatorial and polar holes. In this work, we focus on these two types of fast solar wind during the minima between solar cycles 22 and 23 and 23 and 24. We use data from SWICS, SWOOPS, and VHM/FGM on board Ulysses and SWICS, SWEPAM, and MAG on board ACE to analyze the proton kinetic, thermal, and dynamic characteristics, heavy ion composition, and magnetic field properties of these two fast winds. The comparison shows that: (1) their kinetic, thermal, compositional, and magnetic properties are significantly different at any time during the two minima and (2) they respond differently to the changes in solar activity from cycle 23 to 24. These results indicate that equatorial and polar fast solar wind are two separate subcategories of fast wind. We discuss the implications of these results and relate them to remote-sensing measurements of the properties of polar and equatorial coronal holes carried out in the inner corona during these two solar minima.

  19. RECONSTRUCTING THE SOLAR WIND FROM ITS EARLY HISTORY TO CURRENT EPOCH

    International Nuclear Information System (INIS)

    Airapetian, Vladimir S.; Usmanov, Arcadi V.

    2016-01-01

    Stellar winds from active solar-type stars can play a crucial role in removal of stellar angular momentum and erosion of planetary atmospheres. However, major wind properties except for mass-loss rates cannot be directly derived from observations. We employed a three-dimensional magnetohydrodynamic Alfvén wave driven solar wind model, ALF3D, to reconstruct the solar wind parameters including the mass-loss rate, terminal velocity, and wind temperature at 0.7, 2, and 4.65 Gyr. Our model treats the wind thermal electrons, protons, and pickup protons as separate fluids and incorporates turbulence transport, eddy viscosity, turbulent resistivity, and turbulent heating to properly describe proton and electron temperatures of the solar wind. To study the evolution of the solar wind, we specified three input model parameters, the plasma density, Alfvén wave amplitude, and the strength of the dipole magnetic field at the wind base for each of three solar wind evolution models that are consistent with observational constrains. Our model results show that the velocity of the paleo solar wind was twice as fast, ∼50 times denser and 2 times hotter at 1 AU in the Sun's early history at 0.7 Gyr. The theoretical calculations of mass-loss rate appear to be in agreement with the empirically derived values for stars of various ages. These results can provide realistic constraints for wind dynamic pressures on magnetospheres of (exo)planets around the young Sun and other active stars, which is crucial in realistic assessment of the Joule heating of their ionospheres and corresponding effects of atmospheric erosion

  20. Plasma physical aspects of the solar cycle

    International Nuclear Information System (INIS)

    Raadu, M.A.

    1982-08-01

    Mass motions below the photosphere drive the solar cycle which is association with variations in the magnetic field structure and accompanying phenomena. In addition to semi-empirical models, dynamo theories have been used to explain the solar cycle. The emergence of magnetic field generated by these mechanisms and its expansions into the corona involves many plasma physical processes. Magnetic buoyancy aids the expulsion of magnetic flux. The corona may respond dynamically or by continually adjusting to a quasi-static force-free or pressure-balanced equilibrium. The formation and disruption of current sheets is significant for the overall structure of the coronal magnetic field and the physics of quiescent prominences. The corona has a fine structure consisting of magnetic loops. The structure and stability of these are important as they are one of the underlying elements which make up the corona. (Author)

  1. Cryogenic 3-D Detectors for Solar Physics

    Science.gov (United States)

    Stern, R. A.

    2003-05-01

    Space and ground-based astronomy is currently undergoing a revolution in detector technology with the advent of cryogenic sensors operating in the sub-Kelvin temperature range. These detectors provide non-dispersive energy resolution at optical through gamma ray energies (e.g, E/Δ E ˜ 1500 at 6 keV), high time resolution (msec or better), and can be made into arrays using a combination of microlithography and multiplexing using SQUID amplifiers. The application of such ``3-D'' detector technology to solar physics could lead to significant advances in our understanding of magnetic reconnection in the Sun, including X-ray jet phenomena, and active region dynamics. In this talk, I will review some of the basic principles of cryogenic 3-D detectors, current astronomical applications, and their potential for future NASA solar physics Explorer-class missions. This work was supported in part by the Lockheed Martin Independent Research Program

  2. Decay of Solar Wind Turbulence behind Interplanetary Shocks

    International Nuclear Information System (INIS)

    Pitňa, Alexander; Šafránková, Jana; Němeček, Zdeněk; Franci, Luca

    2017-01-01

    We investigate the decay of magnetic and kinetic energies behind IP shocks with motivation to find a relaxation time when downstream turbulence reaches a usual solar wind value. We start with a case study that introduces computation techniques and quantifies a contribution of kinetic fluctuations to the general energy balance. This part of the study is based on high-time (31 ms) resolution plasma data provided by the Spektr-R spacecraft. On the other hand, a statistical part is based on 92 s Wind plasma and magnetic data and its results confirm theoretically established decay laws for kinetic and magnetic energies. We observe the power-law behavior of the energy decay profiles and we estimated the power-law exponents of both kinetic and magnetic energy decay rates as −1.2. We found that the decay of MHD turbulence does not start immediately after the IP shock ramp and we suggest that the proper decay of turbulence begins when a contribution of the kinetic processes becomes negligible. We support this suggestion with a detailed analysis of the decay of turbulence at the kinetic scale.

  3. Decay of Solar Wind Turbulence behind Interplanetary Shocks

    Energy Technology Data Exchange (ETDEWEB)

    Pitňa, Alexander; Šafránková, Jana; Němeček, Zdeněk [Charles University, Faculty of Mathematics and Physics, V Holesovickach 2, Prague, CZ-18000 (Czech Republic); Franci, Luca, E-mail: offelius@gmail.com [Dipartimento di Fisica e Astronomia, Universita degli Studi di Firenze, I-50125 Firenze (Italy)

    2017-07-20

    We investigate the decay of magnetic and kinetic energies behind IP shocks with motivation to find a relaxation time when downstream turbulence reaches a usual solar wind value. We start with a case study that introduces computation techniques and quantifies a contribution of kinetic fluctuations to the general energy balance. This part of the study is based on high-time (31 ms) resolution plasma data provided by the Spektr-R spacecraft. On the other hand, a statistical part is based on 92 s Wind plasma and magnetic data and its results confirm theoretically established decay laws for kinetic and magnetic energies. We observe the power-law behavior of the energy decay profiles and we estimated the power-law exponents of both kinetic and magnetic energy decay rates as −1.2. We found that the decay of MHD turbulence does not start immediately after the IP shock ramp and we suggest that the proper decay of turbulence begins when a contribution of the kinetic processes becomes negligible. We support this suggestion with a detailed analysis of the decay of turbulence at the kinetic scale.

  4. Multi-fluid MHD study of the solar wind interaction with Venus at Solar max and Solar min conditions.

    Science.gov (United States)

    Ma, Y. J.; Nagy, A. F.; Russell, C. T.; Najib, D.; Toth, G.

    2012-09-01

    We study the solar wind interaction with Venus, using a new advanced multi-fluid MHD model that has been developed recently. The model is similar to the numerical model that was successfully applied to Mars (Najib et al., 2011). Mass densities, velocities and pressures of the protons and three important ionosphere ion species (O+, O2+ and CO2+) are self-consistently calculated by solving the individual coupled continuity, momentum and energy equations. The various chemical reactions and ion-neutral collision processes are considered in the model. The simulation domain covers the region from 100 km altitude above the surface up to 16 RV in the tail. An adaptive spherical grid structure is constructed with radial resolution of about 10 km in the lower ionosphere. The model is applied to both solar-maximum and solar-minimum conditions and model results are compared in detail with multi-species single fluid model results and VEX observations.

  5. Costs of solar and wind power variability for reducing CO2 emissions.

    Science.gov (United States)

    Lueken, Colleen; Cohen, Gilbert E; Apt, Jay

    2012-09-04

    We compare the power output from a year of electricity generation data from one solar thermal plant, two solar photovoltaic (PV) arrays, and twenty Electric Reliability Council of Texas (ERCOT) wind farms. The analysis shows that solar PV electricity generation is approximately one hundred times more variable at frequencies on the order of 10(-3) Hz than solar thermal electricity generation, and the variability of wind generation lies between that of solar PV and solar thermal. We calculate the cost of variability of the different solar power sources and wind by using the costs of ancillary services and the energy required to compensate for its variability and intermittency, and the cost of variability per unit of displaced CO(2) emissions. We show the costs of variability are highly dependent on both technology type and capacity factor. California emissions data were used to calculate the cost of variability per unit of displaced CO(2) emissions. Variability cost is greatest for solar PV generation at $8-11 per MWh. The cost of variability for solar thermal generation is $5 per MWh, while that of wind generation in ERCOT was found to be on average $4 per MWh. Variability adds ~$15/tonne CO(2) to the cost of abatement for solar thermal power, $25 for wind, and $33-$40 for PV.

  6. A simple model for the energy supply of a stand-alone house using a hybrid wind-solar power system

    Science.gov (United States)

    Beke, Tamas

    2016-01-01

    A research project for secondary school students involving both physical measurements and modelling is presented. The problem to be solved is whether and how a typical house can be supplied with energy off-grid, based entirely on renewable energy sources, more specifically, on solar and wind energy, while using relatively simple devices, namely, photovoltaic modules, wind turbines and accumulators. To this end our students carried out a long term measurement series in order to assess the typical energy consumption of houses. Further, the number of solar modules and wind turbines, and the necessary accumulator capacity, was estimated.

  7. Construction of research wind-solar monitoring station 'North-East Bulgaria'

    International Nuclear Information System (INIS)

    Mateeva, Z.; Filipov, A.; Filipov, V.

    2008-01-01

    The rising energy prices, the lack of conventional energy sources, as well as the growing ecological problems, imposing the development of a new energy strategy of Bulgaria, are the prerequisites for the thorough researches in the field of wind-solar resources and the construction of experimental bases with modern equipment for the detailed investigations on the specificities of these resources with the view of their optimal utilization. The lack of homogenous covering of the territory of the country with meteorological stations, as well as the rather specific microclimatic conditions in the diverse physical-geographic localities in the country make the necessity of building experimental stations for meteo-monitoring under specific local conditions still more indispensable. This work presents the monitoring parameters of wind-solar resources in a real physical-geographic environment, for carrying out scientific-research, applied-practical and educational-training activity. A broad spectrum of scientific methods and approaches - instrumental, topographic, terrain, mathematical-statistical, numerical modeling, cartographic, educational and team-working, are envisaged for attaining the set objective. (author)

  8. Plasma depletion layer: its dependence on solar wind conditions and the Earth dipole tilt

    Directory of Open Access Journals (Sweden)

    Y. L. Wang

    2004-12-01

    Full Text Available The plasma depletion layer (PDL is a layer on the sunward side of the magnetopause with lower plasma density and higher magnetic field compared to their corresponding upstream magnetosheath values. It is believed that the PDL is controlled jointly by conditions in the solar wind plasma and the (IMF. In this study, we extend our former model PDL studies by systematically investigating the dependence of the PDL and the slow mode front on solar wind conditions using global MHD simulations. We first point out the difficulties for the depletion factor method and the plasma β method for defining the outer boundary of the plasma depletion layer. We propose to use the N/B ratio to define the PDL outer boundary, which can give the best description of flux tube depletion. We find a strong dependence of the magnetosheath environment on the solar wind magnetosonic Mach number. A difference between the stagnation point and the magnetopause derived from the open-closed magnetic field boundary is found. We also find a strong and complex dependence of the PDL and the slow mode front on the IMF Bz. A density structure right inside the subsolar magnetopause for higher IMF Bz;might be responsible for some of this dependence. Both the IMF tilt and clock angles are found to have little influence on the magnetosheath and the PDL structures. However, the IMF geometry has a much stronger influence on the slow mode fronts in the magnetosheath. Finally, the Earth dipole tilt is found to play a minor role for the magnetosheath geometry and the PDL along the Sun-Earth line. A complex slow mode front geometry is found for cases with different Earth dipole tilts. Comparisons between our results with those from some former studies are conducted, and consistencies and inconsistencies are found.

    Key words. Magnetospheric physics (magnetosheath, solar wind-magnetosphere interactions – Space plasma physics (numerical

  9. Dawn-dusk asymmetry in particles of solar wind origin within the magnetosphere

    Directory of Open Access Journals (Sweden)

    T. J. Stubbs

    2001-01-01

    Full Text Available Solar wind/magnetosheath plasma in the magnetosphere can be identified using a component that has a higher charge state, lower density and, at least soon after their entry into the magnetosphere, lower energy than plasma from a terrestrial source. We survey here observations taken over 3 years of He2+ ions made by the Magnetospheric Ion Composition Sensor (MICS of the Charge and Mass Magnetospheric Ion Composition Experiment (CAMMICE instrument aboard POLAR. The occurrence probability of these solar wind ions is then plotted as a function of Magnetic Local Time (MLT and invariant latitude (7 for various energy ranges. For all energies observed by MICS (1.8–21.4 keV and all solar wind conditions, the occurrence probabilities peaked around the cusp region and along the dawn flank. The solar wind conditions were filtered to see if this dawnward asymmetry is controlled by the Svalgaard-Mansurov effect (and so depends on the BY component of the interplanetary magnetic field, IMF or by Fermi acceleration of He2+ at the bow shock (and so depends on the IMF ratio BX /BY . It is shown that the asymmetry remained persistently on the dawn flank, suggesting it was not due to effects associated with direct entry into the magnetosphere. This asymmetry, with enhanced fluxes on the dawn flank, persisted for lower energy ions (below a "cross-over" energy of about 23 keV but reversed sense to give higher fluxes on the dusk flank at higher energies. This can be explained by the competing effects of gradient/curvature drifts and the convection electric field on ions that are convecting sunward on re-closed field lines. The lower-energy He2+ ions E × B drift dawnwards as they move earthward, whereas the higher energy ions curvature/ gradient drift towards dusk. The convection electric field in the tail is weaker for northward IMF. Ions then need less energy to drift to the dusk flank, so that the cross-over energy, at which the asymmetry changes sense, is reduced

  10. Dawn-dusk asymmetry in particles of solar wind origin within the magnetosphere

    Directory of Open Access Journals (Sweden)

    T. J. Stubbs

    Full Text Available Solar wind/magnetosheath plasma in the magnetosphere can be identified using a component that has a higher charge state, lower density and, at least soon after their entry into the magnetosphere, lower energy than plasma from a terrestrial source. We survey here observations taken over 3 years of He2+ ions made by the Magnetospheric Ion Composition Sensor (MICS of the Charge and Mass Magnetospheric Ion Composition Experiment (CAMMICE instrument aboard POLAR. The occurrence probability of these solar wind ions is then plotted as a function of Magnetic Local Time (MLT and invariant latitude (7 for various energy ranges. For all energies observed by MICS (1.8–21.4 keV and all solar wind conditions, the occurrence probabilities peaked around the cusp region and along the dawn flank. The solar wind conditions were filtered to see if this dawnward asymmetry is controlled by the Svalgaard-Mansurov effect (and so depends on the BY component of the interplanetary magnetic field, IMF or by Fermi acceleration of He2+ at the bow shock (and so depends on the IMF ratio BX /BY . It is shown that the asymmetry remained persistently on the dawn flank, suggesting it was not due to effects associated with direct entry into the magnetosphere. This asymmetry, with enhanced fluxes on the dawn flank, persisted for lower energy ions (below a "cross-over" energy of about 23 keV but reversed sense to give higher fluxes on the dusk flank at higher energies. This can be explained by the competing effects of gradient/curvature drifts and the convection electric field on ions that are convecting sunward on re-closed field lines. The lower-energy He2+ ions E × B drift dawnwards as they move earthward, whereas the higher energy ions curvature/ gradient drift towards dusk. The convection electric field in the tail is weaker for

  11. Heating of the Solar Wind Beyond 1 AU by Turbulent Dissipation

    Science.gov (United States)

    Smith, Charles

    The deposition of energy into the solar wind is argued to result from the dissipation of low frequency magnetohydrodynamic turbulence via kinetic processes at spatial scales comparable to the ion gyroradius. We present a theory for heating the solar wind that relies on uid processes such as wind shear inside about 10 AU and the pickup of interstellar ions and the associated generation of waves and turbulence beyond the ionization cavity to serve as energy sources for the heating. We compare the predictions of this theory to the observed magnetic turbulence levels and solar wind temperature measured by Voyager 2 beyond 1 AU. The contribution to the heating of the solar wind provided by interstellar pickup ions is a key feature of this theory and is chie y responsible for the excellent agreement between theory and observation that is seen beyond 10 AU.

  12. Regional variations in the health, environmental, and climate benefits of wind and solar generation.

    Science.gov (United States)

    Siler-Evans, Kyle; Azevedo, Inês Lima; Morgan, M Granger; Apt, Jay

    2013-07-16

    When wind or solar energy displace conventional generation, the reduction in emissions varies dramatically across the United States. Although the Southwest has the greatest solar resource, a solar panel in New Jersey displaces significantly more sulfur dioxide, nitrogen oxides, and particulate matter than a panel in Arizona, resulting in 15 times more health and environmental benefits. A wind turbine in West Virginia displaces twice as much carbon dioxide as the same turbine in California. Depending on location, we estimate that the combined health, environmental, and climate benefits from wind or solar range from $10/MWh to $100/MWh, and the sites with the highest energy output do not yield the greatest social benefits in many cases. We estimate that the social benefits from existing wind farms are roughly 60% higher than the cost of the Production Tax Credit, an important federal subsidy for wind energy. However, that same investment could achieve greater health, environmental, and climate benefits if it were differentiated by region.

  13. The large scale and long term evolution of the solar wind speed distribution and high speed streams

    International Nuclear Information System (INIS)

    Intriligator, D.S.

    1977-01-01

    The spatial and temporal evolution of the solar wind speed distribution and of high speed streams in the solar wind are examined. Comparisons of the solar wind streaming speeds measured at Earth, Pioneer 11, and Pioneer 10 indicate that between 1 AU and 6.4 AU the solar wind speed distributions are narrower (i.e. the 95% value minus the 5% value of the solar wind streaming speed is less) at extended heliocentric distances. These observations are consistent with one exchange of momentum in the solar wind between high speed streams and low speed streams as they propagate outward from the Sun. Analyses of solar wind observations at 1 AU from mid 1964 through 1973 confirm the earlier results reported by Intriligator (1974) that there are statistically significant variations in the solar wind in 1968 and 1969, years of solar maximum. High speed stream parameters show that the number of high speed streams in the solar wind in 1968 and 1969 is considerably more than the predicted yearly average, and in 1965 and 1972 less. Histograms of solar wind speed from 1964 through 1973 indicate that in 1968 there was the highest percentage of elevated solar wind speeds and in 1965 and 1972 the lowest. Studies by others also confirm these results although the respective authors did not indicate this fact. The duration of the streams and the histograms for 1973 imply a shifting in the primary stream source. (Auth.)

  14. Wind and Solar Energy Role in the Achievement of EU Climate Policy After 2020

    International Nuclear Information System (INIS)

    Knezevic, S.

    2016-01-01

    This paper grades the possible role of solar and wind energy in the generation of electricity after 2020. The development of those energy sources will be defined by the climate policy implemented based on the last year's Paris Climate Agreement, but also by the existing initiatives of the European Commission (2030 climate and energy framework and 2050 low-carbon economy). Additionally, electricity generation from RES is observed through the decrease of dependency on the import of fossil fuels outside of the EU. According to the report of the International Renewable Energy Agency (IRENA), the biggest share of RES power plants, after hydro power plants, in EU are wind and solar power plants. Both wind and sun are constantly available resources, but with variable specific power, which makes the maximal generation dependent on the time of day and/or weather (wind, clouds). Future increase of wind and solar energy has to be observed from various perspectives as to properly grade it for the next period, until 2020. Therefore, this paper considers the following, intertwined aspects: Maturity of wind and solar technologies and future trends, Price of electricity generation from wind and solar power plants, with an analysis of price decreasing trends; Possibilities of power energy system and measures for the acceptance of wind and solar power plants; Integrative approach to all forms and transformations of electricity; Market integration of RES - aspirations towards free trade(author).

  15. An illustrative note on the system price effect of wind and solar power. The German case

    International Nuclear Information System (INIS)

    Jaegemann, Cosima

    2014-01-01

    Exposing wind and solar power to the market price signal allows for cost-efficient investment decisions, as it incentivizes investors to account for the marginal value (MV el ) of renewable energy technologies. As shown by Lamont (2008), the MV el of wind and solar power units depends on their penetration level. More specifically, the MV el of wind and solar power units is a function of the respective unit's capacity factor and the covariance between its generation profile and the system marginal costs. The latter component of the MV el (i.e., the covariance) is found to decline as the wind and solar power penetration increases, displacing dispatchable power plants with higher short-run marginal costs of power production and thus reducing the system marginal costs in all generation hours. This so called 'system price effect' is analyzed in more detail in this paper. The analysis complements the work Lamont (2008) in two regards. First of all, an alternative expression for the MV el of wind and solar power units is derived, which shows that the MV el of fluctuating renewable energy technologies depends not only on their own penetration level but also on a variety of other parameters that are specific to the electricity system. Second, based on historical wholesale prices and wind and solar power generation data for Germany, a numerical 'ceteris paribus' example for Germany is presented which illustrates that the system price effect is already highly relevant for both wind and solar power generation in Germany.

  16. Thermodynamic characteristics of a novel wind-solar-liquid air energy storage system

    Science.gov (United States)

    Ji, W.; Zhou, Y.; Sun, Y.; Zhang, W.; Pan, C. Z.; Wang, J. J.

    2017-12-01

    Due to the nature of fluctuation and intermittency, the utilization of wind and solar power will bring a huge impact to the power grid management. Therefore a novel hybrid wind-solar-liquid air energy storage (WS-LAES) system was proposed. In this system, wind and solar power are stored in the form of liquid air by cryogenic liquefaction technology and thermal energy by solar thermal collector, respectively. Owing to the high density of liquid air, the system has a large storage capacity and no geographic constraints. The WS-LAES system can store unstable wind and solar power for a stable output of electric energy and hot water. Moreover, a thermodynamic analysis was carried out to investigate the best system performance. The result shows that the increases of compressor adiabatic efficiency, turbine inlet pressure and inlet temperature all have a beneficial effect.

  17. Lack of evidence for solar-cycle variations in high-speed streams in the solar wind

    Science.gov (United States)

    Vasyliunas, V. M.

    1975-01-01

    The observed yearly numbers and durations of high-speed streams in the solar wind previously reported by Intriligator (1973), when normalized to the duration of available observations, do not exhibit a significant systematic variation with solar cycle, contrary to the inference drawn by him.

  18. Study of the solar wind coupling to the time difference horizontal geomagnetic field

    Directory of Open Access Journals (Sweden)

    P. Wintoft

    2005-07-01

    Full Text Available The local ground geomagnetic field fluctuations (Δ B are dominated by high frequencies and 83% of the power is located at periods of 32 min or less. By forming 10-min root-mean-square (RMS of Δ B a major part of this variation is captured. Using measured geomagnetic induced currents (GIC, from a power grid transformer in Southern Sweden, it is shown that the 10-min standard deviation GIC may be computed from a linear model using the RMS Δ X and Δ Y at Brorfelde (BFE: 11.67° E, 55.63° N, Denmark, and Uppsala (UPS: 17.35° E, 59.90° N, Sweden, with a correlation of 0.926±0.015. From recurrent neural network models, that are driven by solar wind data, it is shown that the log RMS Δ X and Δ Y at the two locations may be predicted up to 30 min in advance with a correlation close to 0.8: 0.78±0.02 for both directions at BFE; 0.81±0.02 and 0.80±0.02 in the X- and Y-directions, respectively, at UPS. The most important inputs to the models are the 10-min averages of the solar wind magnetic field component Bz and velocity V, and the 10-min standard deviation of the proton number density σn. The average proton number density n has no influence.

    Keywords. Magnetospheric physics (Solar wind - magnetosphere interactions – Geomagnetism and paleomagnetism (Rapid time variations

  19. Assessment of solar and wind energy potentials for three free economic and industrial zones of Iran

    International Nuclear Information System (INIS)

    Mohammadi, Kasra; Mostafaeipour, Ali; Sabzpooshani, Majid

    2014-01-01

    This paper aims to evaluate the potential of renewable energy sources of solar and wind in three free economic and industrial zones of Chabahar, Kish and Salafchegan in Iran. Feasibility of harnessing solar energy was investigated by using key solar parameters like monthly mean global, beam and diffuse solar radiation as well as clearness index. It was found that all locations had great potentials for utilizing different solar energy systems. Additionally, the monthly, seasonal, semi-yearly and yearly optimum tilt angles of south-facing solar surfaces were determined. For all zones, adjusting the tilt angle twice a year or in other words, the semi-yearly tilt adjustment for two periods of warm (April–September) and cold (October–March) were highly recommended, since it offers almost the same level of annual solar energy gain (SEG) as those of monthly and seasonal adjustments. Weibull Distribution Function (WDF) was performed for analyzing the wind potentials at different heights. It was found that Chabahar was not suitable for wind energy development, but Kish and Salafchegan with yearly wind powers of 111.28 W/m 2 and 114.34 W/m 2 , respectively ranked in class 2 which are considered marginal for wind power development. Three different wind turbine models were proposed for Kish and Salafchegan. - Highlights: • Feasibility of solar and wind energy for three locations of Iran was investigated. • All locations were suitable for solar energy utilization. • The optimum tilt angles of solar surfaces were determined. • Chabahar was unsuitable, but Kish and Salafchegan were marginal for wind purpose

  20. Advanced instrumentation for Solar System gravitational physics

    Science.gov (United States)

    Peron, Roberto; Bellettini, G.; Berardi, S.; Boni, A.; Cantone, C.; Coradini, A.; Currie, D. G.; Dell'Agnello, S.; Delle Monache, G. O.; Fiorenza, E.; Garattini, M.; Iafolla, V.; Intaglietta, N.; Lefevre, C.; Lops, C.; March, R.; Martini, M.; Nozzoli, S.; Patrizi, G.; Porcelli, L.; Reale, A.; Santoli, F.; Tauraso, R.; Vittori, R.

    2010-05-01

    The Solar System is a complex laboratory for testing gravitational physics. Indeed, its scale and hierarchical structure make possible a wide range of tests for gravitational theories, studying the motion of both natural and artificial objects. The usual methodology makes use of tracking information related to the bodies, fitted by a suitable dynamical model. Different equations of motion are provided by different theories, which can be therefore tested and compared. Future exploration scenarios show the possibility of placing deep-space probes near the Sun or in outer Solar System, thereby extending the available experimental data sets. In particular, the Earth-Moon is the most accurately known gravitational three-body laboratory, which is undergoing a new, strong wave of research and exploration (both robotic and manned). In addition, the benefits of a synergetic study of planetary science and gravitational physics are of the greatest importance (as shown by the success of the Apollo program), especially in the Earth-Moon, Mars-Phobos, Jovian and Saturnian sub-suystems. This scenarios open critical issues regarding the quality of the available dynamical models, i.e. their capability of fitting data without an excessive number of empirical hypotheses. A typical case is represented by the non-gravitational phenomena, which in general are difficult to model. More generally, gravitation tests with Lunar Laser Ranging, inner or outer Solar System probes and the appearance of the so-called 'anomalies'(like the one indicated by the Pioneers), whatever their real origin (either instrumental effects or due to new physics), show the necessity of a coordinated improvement of tracking and modelization techniques. A common research path will be discussed, employing the development and use of advanced instrumentation to cope with current limitations of Solar System gravitational tests. In particular, the use of high-sensitivity accelerometers, combined with microwave and laser

  1. Non-radial solar wind flows and geomagnetic activity changes during 1973-2003

    Science.gov (United States)

    Pereira, B. F.; Girish, T. E.

    We have found an association between geomagnetic activity changes and non-radial solar wind flows during the period 1973-2003. The solar wind flow latitude in the GSE system is observed to be higher during intense geomagnetic storm periods. Northward-directed solar wind flows are observed to be higher and a correlation is obtained between this parameter and geomagnetic Ap index during the declining phases of the sunspot cycles. These results suggest an association of non-radial flows from coronal holes and geomagnetic activity during the declining phase of sunspot cycle.

  2. Wind and Solar Resource Assessment of Sri Lanka and the Maldives (CD-ROM)

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, D.; Schwartz, M.; Scott, G.; Haymes, S.; Heimiller, D.; George, R.

    2003-08-01

    The Wind and Solar Resource Assessment of Sri Lanka and the Maldives CD contains an electronic version of Wind Energy Resource Atlas of Sri Lanka and the Maldives (NREL/TP-500-34518), Solar Resource Assessment for Sri Lanka and the Maldives (NREL/TO-710-34645), Sri Lanka Wind Farm Analysis and Site Selection Assistance (NREL/SR-500-34646), GIS Data Viewer (software and data files with a readme file), and Hourly Solar and Typical Meteorological Year Data with a readme file.

  3. Assessing the lifecycle greenhouse gas emissions from solar PV and wind energy

    DEFF Research Database (Denmark)

    Nugent, Daniel; Sovacool, Benjamin

    2014-01-01

    This paper critically screens 153 lifecycle studies covering a broad range of wind and solar photovoltaic (PV) electricity generation technologies to identify 41 of the most relevant, recent, rigorous, original, and complete assessments so that the dynamics of their greenhouse gas (GHG) emissions...... profiles can be determined. When viewed in a holistic manner, including initial materials extraction, manufacturing, use and disposal/decommissioning, these 41 studies show that both wind and solar systems are directly tied to and responsible for GHG emissions. They are thus not actually emissions free......, this article uncovers best practices in wind and solar design and deployment that can better inform climate change mitigation efforts in the electricity sector...

  4. SunPy: Python for Solar Physics

    Science.gov (United States)

    Bobra, M.; Inglis, A. R.; Mumford, S.; Christe, S.; Freij, N.; Hewett, R.; Ireland, J.; Martinez Oliveros, J. C.; Reardon, K.; Savage, S. L.; Shih, A. Y.; Pérez-Suárez, D.

    2017-12-01

    SunPy is a community-developed open-source software library for solar physics. It is written in Python, a free, cross-platform, general-purpose, high-level programming language which is being increasingly adopted throughout the scientific community. SunPy aims to provide the software for obtaining and analyzing solar and heliospheric data. This poster introduces a new major release, SunPy version 0.8. The first major new feature introduced is Fido, the new primary interface to download data. It provides a consistent and powerful search interface to all major data providers including the VSO and the JSOC, as well as individual data sources such as GOES XRS time series. It is also easy to add new data sources as they become available, i.e. DKIST. The second major new feature is the SunPy coordinate framework. This provides a powerful way of representing coordinates, allowing simple and intuitive conversion between coordinate systems and viewpoints of different instruments (i.e., Solar Orbiter and the Parker Solar Probe), including transformation to astrophysical frames like ICRS. Other new features including new timeseries capabilities with better support for concatenation and metadata, updated documentation and example gallery. SunPy is distributed through pip and conda and all of its code is publicly available (sunpy.org).

  5. On a relation of geomagnetic activity, solar wind velocity and irregularity of daily rotation of the Earth

    International Nuclear Information System (INIS)

    Kalinin, Yu.D.; Kiselev, V.M.

    1980-01-01

    A possibility of the presence of statistic relation between the changes of the Earth rotation regime and the mean velocity of solar wind is discussed. The ratio between the solar wind velocity observed and planetary index of geomagnetic activity am is used to determine the annual average values of solar wind velocity beyond the twentieth cycle of solar activity. The restored changes of solar wind velocity are compared with solar conditioned variations of the Earth day duration and it is shown that the correspondence takes place only at frequencies lower the frequency of 11-year cycle [ru

  6. Coordinated Study on Solar Wind Turbulence During the Venus-Express, ACE and Ulysses Alignment of August 2007

    Czech Academy of Sciences Publication Activity Database

    Bruno, R.; Carbone, V.; Vörös, Z.; D'Amicis, R.; Bavassano, B.; Cattaneo, M. B.; Mura, A.; Milillo, A.; Orsini, S.; Veltri, P.; Sorriso-Valvo, L.; Zhang, T. L.; Biernat, H.; Rucker, H.; Baumjohann, W.; Jankovičová, Dana; Kovács, B.

    2009-01-01

    Roč. 104, 1-4 (2009), s. 101-104 ISSN 0167-9295. [European General Assembly on International Heliophysics Year. Torino, 18.06.2007-22.06.2007] Institutional research plan: CEZ:AV0Z30420517 Keywords : Solar wind * MHD turbulence * Space plasma physics Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 0.655, year: 2009 http://www.springerlink.com/content/4368229757764645/fulltext.pdf

  7. Behavior of current sheets at directional magnetic discontinuities in the solar wind at 0.72 AU

    Czech Academy of Sciences Publication Activity Database

    Zhang, T. L.; Russell, C. T.; Zambelli, W.; Vörös, Zoltán; Wang, C.; Cao, J. B.; Jian l, L. K.; Strangeway, R. J.; Balikhin, M.; Baumjohann, W.; Delva, M.; Volwerk, M.; Glassmeier, K.; H.

    2008-01-01

    Roč. 35, č. 24 (2008), L24102/1-L24102/5 ISSN 0094-8276 Grant - others:Austrian Wissenschaftfonds(AT) P20131-N16; NNSFC(CN) 40628003; 973 Program(CN) 2006CB806305; NASA (US) NNG06GC62G Institutional research plan: CEZ:AV0Z30420517 Keywords : solar wind * current sheets * magnetic annihilation Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.959, year: 2008

  8. The physics of wind-blown sand and dust

    OpenAIRE

    Kok, Jasper F.; Parteli, Eric J. R.; Michaels, Timothy I.; Karam, Diana Bou

    2012-01-01

    The transport of sand and dust by wind is a potent erosional force, creates sand dunes and ripples, and loads the atmosphere with suspended dust aerosols. This article presents an extensive review of the physics of wind-blown sand and dust on Earth and Mars. Specifically, we review the physics of aeolian saltation, the formation and development of sand dunes and ripples, the physics of dust aerosol emission, the weather phenomena that trigger dust storms, and the lifting of dust by dust devil...

  9. MHD-IPS analysis of relationship among solar wind density, temperature, and flow speed

    Science.gov (United States)

    Hayashi, Keiji; Tokumaru, Munetoshi; Fujiki, Ken'ichi

    2016-08-01

    The solar wind properties near the Sun are a decisive factor of properties in the rest of heliosphere. As such, determining realistic plasma density and temperature near the Sun is very important in models for solar wind, specifically magnetohydrodynamics (MHD) models. We had developed a tomographic analysis to reconstruct three-dimensional solar wind structures that satisfy line-of-sight-integrated solar wind speed derived from the interplanetary scintillation (IPS) observation data and nonlinear MHD equations simultaneously. In this study, we report a new type of our IPS-MHD tomography that seeks three-dimensional MHD solution of solar wind, matching additionally near-Earth and/or Ulysses in situ measurement data for each Carrington rotation period. In this new method, parameterized relation functions of plasma density and temperature at 50 Rs are optimized through an iterative forward model minimizing discrepancy with the in situ measurements. Satisfying three constraints, the derived 50 Rs maps of plasma quantities provide realistic observation-based information on the state of solar wind near the Sun that cannot be well determined otherwise. The optimized plasma quantities exhibit long-term variations over the solar cycles 21 to 24. The differences in plasma quantities derived from the optimized and original IPS-MHD tomography exhibit correlations with the source-surface magnetic field strength, which can in future give new quantitative constrains and requirements to models of coronal heating and acceleration.

  10. Hybrid Model of Inhomogeneous Solar Wind Plasma Heating by Alfven Wave Spectrum: Parametric Studies

    Science.gov (United States)

    Ofman, L.

    2010-01-01

    Observations of the solar wind plasma at 0.3 AU and beyond show that a turbulent spectrum of magnetic fluctuations is present. Remote sensing observations of the corona indicate that heavy ions are hotter than protons and their temperature is anisotropic (T(sub perpindicular / T(sub parallel) >> 1). We study the heating and the acceleration of multi-ion plasma in the solar wind by a turbulent spectrum of Alfvenic fluctuations using a 2-D hybrid numerical model. In the hybrid model the protons and heavy ions are treated kinetically as particles, while the electrons are included as neutralizing background fluid. This is the first two-dimensional hybrid parametric study of the solar wind plasma that includes an input turbulent wave spectrum guided by observation with inhomogeneous background density. We also investigate the effects of He++ ion beams in the inhomogeneous background plasma density on the heating of the solar wind plasma. The 2-D hybrid model treats parallel and oblique waves, together with cross-field inhomogeneity, self-consistently. We investigate the parametric dependence of the perpendicular heating, and the temperature anisotropy in the H+-He++ solar wind plasma. It was found that the scaling of the magnetic fluctuations power spectrum steepens in the higher-density regions, and the heating is channeled to these regions from the surrounding lower-density plasma due to wave refraction. The model parameters are applicable to the expected solar wind conditions at about 10 solar radii.

  11. Fading Coronal Structure and the Onset of Turbulence in the Young Solar Wind

    Science.gov (United States)

    DeForest, C. E.; Matthaeus, W. H.; Viall, N. M.; Cranmer, S. R.

    2016-09-01

    Above the top of the solar corona, the young, slow solar wind transitions from low-β, magnetically structured flow dominated by radial structures to high-β, less structured flow dominated by hydrodynamics. This transition, long inferred via theory, is readily apparent in the sky region close to 10° from the Sun in processed, background-subtracted solar wind images. We present image sequences collected by the inner Heliospheric Imager instrument on board the Solar-Terrestrial Relations Observatory (STEREO/HI1) in 2008 December, covering apparent distances from approximately 4° to 24° from the center of the Sun and spanning this transition in the large-scale morphology of the wind. We describe the observation and novel techniques to extract evolving image structure from the images, and we use those data and techniques to present and quantify the clear textural shift in the apparent structure of the corona and solar wind in this altitude range. We demonstrate that the change in apparent texture is due both to anomalous fading of the radial striae that characterize the corona and to anomalous relative brightening of locally dense puffs of solar wind that we term “flocculae.” We show that these phenomena are inconsistent with smooth radial flow, but consistent with the onset of hydrodynamic or magnetohydrodynamic instabilities leading to a turbulent cascade in the young solar wind.

  12. FADING CORONAL STRUCTURE AND THE ONSET OF TURBULENCE IN THE YOUNG SOLAR WIND

    International Nuclear Information System (INIS)

    DeForest, C. E.; Matthaeus, W. H.; Viall, N. M.; Cranmer, S. R.

    2016-01-01

    Above the top of the solar corona, the young, slow solar wind transitions from low- β , magnetically structured flow dominated by radial structures to high- β , less structured flow dominated by hydrodynamics. This transition, long inferred via theory, is readily apparent in the sky region close to 10° from the Sun in processed, background-subtracted solar wind images. We present image sequences collected by the inner Heliospheric Imager instrument on board the Solar-Terrestrial Relations Observatory ( STEREO /HI1) in 2008 December, covering apparent distances from approximately 4° to 24° from the center of the Sun and spanning this transition in the large-scale morphology of the wind. We describe the observation and novel techniques to extract evolving image structure from the images, and we use those data and techniques to present and quantify the clear textural shift in the apparent structure of the corona and solar wind in this altitude range. We demonstrate that the change in apparent texture is due both to anomalous fading of the radial striae that characterize the corona and to anomalous relative brightening of locally dense puffs of solar wind that we term “flocculae.” We show that these phenomena are inconsistent with smooth radial flow, but consistent with the onset of hydrodynamic or magnetohydrodynamic instabilities leading to a turbulent cascade in the young solar wind.

  13. Fading Coronal Structure and the Onset of Turbulence in the Young Solar Wind

    Science.gov (United States)

    DeForest, C. E.; Matthaeus, W. H.; Viall, N. M.; Cranmer, S. R.

    2016-01-01

    Above the top of the solar corona, the young, slow solar wind transitions from low-beta, magnetically structured flow dominated by radial structures to high-beta, less structured flow dominated by hydrodynamics. This transition, long inferred via theory, is readily apparent in the sky region close to 10deg from the Sun in processed, background-subtracted solar wind images. We present image sequences collected by the inner Heliospheric Imager instrument on board the Solar-Terrestrial Relations Observatory (STEREO/HI1) in 2008 December, covering apparent distances from approximately 4deg to 24deg from the center of the Sun and spanning this transition in the large-scale morphology of the wind. We describe the observation and novel techniques to extract evolving image structure from the images, and we use those data and techniques to present and quantify the clear textural shift in the apparent structure of the corona and solar wind in this altitude range. We demonstrate that the change in apparent texture is due both to anomalous fading of the radial striae that characterize the corona and to anomalous relative brightening of locally dense puffs of solar wind that we term "flocculae." We show that these phenomena are inconsistent with smooth radial flow, but consistent with the onset of hydrodynamic or magnetohydrodynamic instabilities leading to a turbulent cascade in the young solar wind.

  14. Real-time 3-D hybrid simulation of Titan's plasma interaction during a solar wind excursion

    Directory of Open Access Journals (Sweden)

    S. Simon

    2009-09-01

    Full Text Available The plasma environment of Saturn's largest satellite Titan is known to be highly variable. Since Titan's orbit is located within the outer magnetosphere of Saturn, the moon can leave the region dominated by the magnetic field of its parent body in times of high solar wind dynamic pressure and interact with the thermalized magnetosheath plasma or even with the unshocked solar wind. By applying a three-dimensional hybrid simulation code (kinetic description of ions, fluid electrons, we study in real-time the transition that Titan's plasma environment undergoes when the moon leaves Saturn's magnetosphere and enters the supermagnetosonic solar wind. In the simulation, the transition between both plasma regimes is mimicked by a reversal of the magnetic field direction as well as a change in the composition and temperature of the impinging plasma flow. When the satellite enters the solar wind, the magnetic draping pattern in its vicinity is reconfigured due to reconnection, with the characteristic time scale of this process being determined by the convection of the field lines in the undisturbed plasma flow at the flanks of the interaction region. The build-up of a bow shock ahead of Titan takes place on a typical time scale of a few minutes as well. We also analyze the erosion of the newly formed shock front upstream of Titan that commences when the moon re-enters the submagnetosonic plasma regime of Saturn's magnetosphere. Although the model presented here is far from governing the full complexity of Titan's plasma interaction during a solar wind excursion, the simulation provides important insights into general plasma-physical processes associated with such a disruptive change of the upstream flow conditions.

  15. On the Relationship Between High Speed Solar Wind Streams and Radiation Belt Electron Fluxes

    Science.gov (United States)

    Zheng, Yihua

    2011-01-01

    Both past and recent research results indicate that solar wind speed has a close connection to radiation belt electron fluxes [e.g., Paulikas and Blake, 1979; Reeves et aI., 2011]: a higher solar wind speed is often associated with a higher level of radiation electron fluxes. But the relationship can be very complex [Reeves et aI., 2011]. The study presented here provides further corroboration of this viewpoint by emphasizing the importance of a global perspective and time history. We find that all the events during years 2010 and 2011 where the >0.8 MeV integral electron flux exceeds 10(exp 5) particles/sq cm/sr/s (pfu) at GEO orbit are associated with the high speed streams (HSS) following the onset of the Stream Interaction Region (SIR), with most of them belonging to the long-lasting Corotating Interaction Region (CIR). Our preliminary results indicate that during HSS events, a maximum speed of 700 km/s and above is a sufficient but not necessary condition for the > 0.8 MeV electron flux to reach 10(exp 5) pfu. But in the exception cases of HSS events where the electron flux level exceeds the 10(exp 5) pfu value but the maximum solar wind speed is less than 700 km/s, a prior impact can be noted either from a CME or a transient SIR within 3-4 days before the arrival of the HSS - stressing the importance of time history. Through superposed epoch analysis and studies providing comparisons with the CME events and the HSS events where the flux level fails to reach the 10(exp 5) pfu, we will present the quantitative assessment of behaviors and relationships of various quantities, such as the time it takes to reach the flux threshold value from the stream interface and its dependence on different physical parameters (e.g., duration of the HSS event, its maximum or average of the solar wind speed, IMF Bz, Kp). The ultimate goal is to apply what is derived to space weather forecasting.

  16. Dissipation and heating in solar wind turbulence: from the macro to the micro and back again.

    Science.gov (United States)

    Kiyani, Khurom H; Osman, Kareem T; Chapman, Sandra C

    2015-05-13

    The past decade has seen a flurry of research activity focused on discerning the physics of kinetic scale turbulence in high-speed astrophysical plasma flows. By 'kinetic' we mean spatial scales on the order of or, in particular, smaller than the ion inertial length or the ion gyro-radius--the spatial scales at which the ion and electron bulk velocities decouple and considerable change can be seen in the ion distribution functions. The motivation behind most of these studies is to find the ultimate fate of the energy cascade of plasma turbulence, and thereby the channels by which the energy in the system is dissipated. This brief Introduction motivates the case for a themed issue on this topic and introduces the topic of turbulent dissipation and heating in the solar wind. The theme issue covers the full breadth of studies: from theory and models, massive simulations of these models and observational studies from the highly rich and vast amount of data collected from scores of heliospheric space missions since the dawn of the space age. A synopsis of the theme issue is provided, where a brief description of all the contributions is discussed and how they fit together to provide an over-arching picture on the highly topical subject of dissipation and heating in turbulent collisionless plasmas in general and in the solar wind in particular. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  17. Electromagnetic Particle-in-Cell Simulations of the Solar Wind Interaction with Lunar Magnetic Anomalies

    Science.gov (United States)

    Deca, J.; Divin, A.; Lapenta, G.; Lembège, B.; Markidis, S.; Horányi, M.

    2014-04-01

    We present the first three-dimensional fully kinetic and electromagnetic simulations of the solar wind interaction with lunar crustal magnetic anomalies (LMAs). Using the implicit particle-in-cell code iPic3D, we confirm that LMAs may indeed be strong enough to stand off the solar wind from directly impacting the lunar surface forming a mini-magnetosphere, as suggested by spacecraft observations and theory. In contrast to earlier magnetohydrodynamics and hybrid simulations, the fully kinetic nature of iPic3D allows us to investigate the space charge effects and in particular the electron dynamics dominating the near-surface lunar plasma environment. We describe for the first time the interaction of a dipole model centered just below the lunar surface under plasma conditions such that only the electron population is magnetized. The fully kinetic treatment identifies electromagnetic modes that alter the magnetic field at scales determined by the electron physics. Driven by strong pressure anisotropies, the mini-magnetosphere is unstable over time, leading to only temporal shielding of the surface underneath. Future human exploration as well as lunar science in general therefore hinges on a better understanding of LMAs.

  18. Ionospheric energy input as a function of solar wind parameters: global MHD simulation results

    Directory of Open Access Journals (Sweden)

    M. Palmroth

    2004-01-01

    Full Text Available We examine the global energetics of the solar wind magnetosphere-ionosphere system by using the global MHD simulation code GUMICS-4. We show simulation results for a major magnetospheric storm (6 April 2000 and a moderate substorm (15 August 2001. The ionospheric dissipation is investigated by determining the Joule heating and precipitation powers in the simulation during the two events. The ionospheric dissipation is concentrated largely on the dayside cusp region during the main phase of the storm period, whereas the nightside oval dominates the ionospheric dissipation during the substorm event. The temporal variations of the precipitation power during the two events are shown to correlate well with the commonly used AE-based proxy of the precipitation power. The temporal variation of the Joule heating power during the substorm event is well-correlated with a commonly used AE-based empirical proxy, whereas during the storm period the simulated Joule heating is different from the empirical proxy. Finally, we derive a power law formula, which gives the total ionospheric dissipation from the solar wind density, velocity and magnetic field z-component and which agrees with the simulation result with more than 80% correlation. Key words. Ionosphere (modeling and forecasting – Magnetospheric physics (magnetosphere-ionosphere interactions; storms and substorms

  19. Ionospheric energy input as a function of solar wind parameters: global MHD simulation results

    Directory of Open Access Journals (Sweden)

    M. Palmroth

    2004-01-01

    Full Text Available We examine the global energetics of the solar wind magnetosphere-ionosphere system by using the global MHD simulation code GUMICS-4. We show simulation results for a major magnetospheric storm (6 April 2000 and a moderate substorm (15 August 2001. The ionospheric dissipation is investigated by determining the Joule heating and precipitation powers in the simulation during the two events. The ionospheric dissipation is concentrated largely on the dayside cusp region during the main phase of the storm period, whereas the nightside oval dominates the ionospheric dissipation during the substorm event. The temporal variations of the precipitation power during the two events are shown to correlate well with the commonly used AE-based proxy of the precipitation power. The temporal variation of the Joule heating power during the substorm event is well-correlated with a commonly used AE-based empirical proxy, whereas during the storm period the simulated Joule heating is different from the empirical proxy. Finally, we derive a power law formula, which gives the total ionospheric dissipation from the solar wind density, velocity and magnetic field z-component and which agrees with the simulation result with more than 80% correlation.

    Key words. Ionosphere (modeling and forecasting – Magnetospheric physics (magnetosphere-ionosphere interactions; storms and substorms

  20. Estimates of Sputter Yields of Solar-Wind Heavy Ions of Lunar Regolith Materials

    Science.gov (United States)

    Barghouty, Abdulmasser F.; Adams, James H., Jr.

    2008-01-01

    At energies of approximately 1 keV/amu, solar-wind protons and heavy ions interact with the lunar surface materials via a number of microscopic interactions that include sputtering. Solar-wind induced sputtering is a main mechanism by which the composition of the topmost layers of the lunar surface can change, dynamically and preferentially. This work concentrates on sputtering induced by solar-wind heavy ions. Sputtering associated with slow (speeds the electrons speed in its first Bohr orbit) and highly charged ions are known to include both kinetic and potential sputtering. Potential sputtering enjoys some unique characteristics that makes it of special interest to lunar science and exploration. Unlike the yield from kinetic sputtering where simulation and approximation schemes exist, the yield from potential sputtering is not as easy to estimate. This work will present a preliminary numerical scheme designed to estimate potential sputtering yields from reactions relevant to this aspect of solar-wind lunar-surface coupling.

  1. Sensitive test for ion-cyclotron resonant heating in the solar wind.

    Science.gov (United States)

    Kasper, Justin C; Maruca, Bennett A; Stevens, Michael L; Zaslavsky, Arnaud

    2013-03-01

    Plasma carrying a spectrum of counterpropagating field-aligned ion-cyclotron waves can strongly and preferentially heat ions through a stochastic Fermi mechanism. Such a process has been proposed to explain the extreme temperatures, temperature anisotropies, and speeds of ions in the solar corona and solar wind. We quantify how differential flow between ion species results in a Doppler shift in the wave spectrum that can prevent this strong heating. Two critical values of differential flow are derived for strong heating of the core and tail of a given ion distribution function. Our comparison of these predictions to observations from the Wind spacecraft reveals excellent agreement. Solar wind helium that meets the condition for strong core heating is nearly 7 times hotter than hydrogen on average. Ion-cyclotron resonance contributes to heating in the solar wind, and there is a close link between heating, differential flow, and temperature anisotropy.

  2. Comparative Validation of Realtime Solar Wind Forecasting Using the UCSD Heliospheric Tomography Model

    Science.gov (United States)

    MacNeice, Peter; Taktakishvili, Alexandra; Jackson, Bernard; Clover, John; Bisi, Mario; Odstrcil, Dusan

    2011-01-01

    The University of California, San Diego 3D Heliospheric Tomography Model reconstructs the evolution of heliospheric structures, and can make forecasts of solar wind density and velocity up to 72 hours in the future. The latest model version, installed and running in realtime at the Community Coordinated Modeling Center(CCMC), analyzes scintillations of meter wavelength radio point sources recorded by the Solar-Terrestrial Environment Laboratory(STELab) together with realtime measurements of solar wind speed and density recorded by the Advanced Composition Explorer(ACE) Solar Wind Electron Proton Alpha Monitor(SWEPAM).The solution is reconstructed using tomographic techniques and a simple kinematic wind model. Since installation, the CCMC has been recording the model forecasts and comparing them with ACE measurements, and with forecasts made using other heliospheric models hosted by the CCMC. We report the preliminary results of this validation work and comparison with alternative models.

  3. Smoothing out the volatility of South Africa’s wind and solar energy resources

    CSIR Research Space (South Africa)

    Mushwana, Crescent

    2015-10-01

    Full Text Available In the past, renewables were mainly driven by the US, Europe and China, but South Africa is slowly picking up. This presentation discusses South Africa's wind and solar resources as alternative energy resources....

  4. On some problems of study on solar wind on the ''Prognoz'' satellites

    International Nuclear Information System (INIS)

    Vajsberg, O.L.; Kambu, F.; Bogdanov, A.V.

    1976-01-01

    The problems are discussed of investigation into the solar wind in high-apogee satellites of the Prognoz series. The measuring procedure and plasma spectrometers characteristics are presented. The study principal results are briefly reported

  5. Western Wind and Solar Integration Study Phase 3 – Frequency Response and Transient Stability

    Energy Technology Data Exchange (ETDEWEB)

    Miller, N. W. [GE Energy Management, Schenectady, NY (United States); Shao, M. [GE Energy Management, Schenectady, NY (United States); Pajic, S. [GE Energy Management, Schenectady, NY (United States); D' Aquila, R. [GE Energy Management, Schenectady, NY (United States)

    2014-12-01

    Power system operators and utilities worldwide have concerns about the impact of high-penetration wind and solar generation on electric grid reliability (EirGrid 2011b, Hydro-Quebec 2006, ERCOT 2010). The stability of North American grids under these conditions is a particular concern and possible impediment to reaching future renewable energy goals. Phase 3 of the Western Wind and Solar Integration Study (WWSIS-3) considers a 33% wind and solar annual energy penetration level that results in substantial changes to the characteristics of the bulk power system, including different power flow patterns, different commitment and dispatch of existing synchronous generation, and different dynamic behavior of wind and solar generation. WWSIS-3 evaluates two specific aspects of fundamental frequency system stability: frequency response and transient stability.

  6. Seasonal optimal mix of wind and solar power in a future, highly renewable Europe

    DEFF Research Database (Denmark)

    Heide, Dominik; Bremen, Lueder von; Greiner, Martin

    2010-01-01

    behaviors are able to counterbalance each other to a certain extent to follow the seasonal load curve. The best point of counterbalancing represents the seasonal optimal mix between wind and solar power generation. It leads to a pronounced minimum in required stored energy. For a 100% renewable Europe......The renewable power generation aggregated across Europe exhibits strong seasonal behaviors. Wind power generation is much stronger in winter than in summer. The opposite is true for solar power generation. In a future Europe with a very high share of renewable power generation those two opposite...... the seasonal optimal mix becomes 55% wind and 45% solar power generation. For less than 100% renewable scenarios the fraction of wind power generation increases and that of solar power generation decreases....

  7. Quantitative tests of a steady state theory of solar wind electrons

    Science.gov (United States)

    Feldman, W. C.; Asbridge, J. R.; Bame, S. J.; Gosling, J. T.

    1982-01-01

    A comparison is made of IMP 6, 7 and 8 electron data with the predictions of a solar wind electron steady state theory in which the control of transport by the macroscopic interplanetary electric and magnetic fields, as well as elastic Coulomb collisions with solar wind protons and thermal electrons, is assumed. While a ratio of forward to backward phase density for field-aligned extrathermal electrons of 6:1 is predicted, electron distribution measurements within the high speed solar wind show this ratio to be typically about an order of magnitude larger. A set of solar wind bulk speed anticorrelations predicted by the theory on the basis of a larger set of assumptions cannot be found in the IMP electron data set, so that improved agreement may require such modifications of the theory's assumptions as the inclusion of inelastic Coulomb and/or wave electron collisions.

  8. Nanotechnologies for efficient solar and wind energy harvesting and storage

    Science.gov (United States)

    Eldada, Louay A.

    2010-08-01

    We describe nanotechnologies used to improve the efficient harvest of energy from the Sun and the wind, and the efficient storage of energy in secondary batteries and ultracapacitors, for use in a variety of applications including smart grids, electric vehicles, and portable electronics. We demonstrate high-quality nanostructured copper indium gallium selenide (CIGS) thin films for photovoltaic (PV) applications. The self-assembly of nanoscale p-n junction networks creates n-type networks that act as preferential electron pathways, and p-type networks that act as preferential hole pathways, allowing positive and negative charges to travel to the contacts in physically separated paths, reducing charge recombination. We also describe PV nanotechnologies used to enhance light trapping, photon absorption, charge generation, charge transport, and current collection. Furthermore, we describe nanotechnologies used to improve the efficiency of power-generating wind turbines. These technologies include nanoparticle-containing lubricants that reduce the friction generated from the rotation of the turbines, nanocoatings for de-icing and self-cleaning technologies, and advanced nanocomposites that provide lighter and stronger wind blades. Finally, we describe nanotechnologies used in advanced secondary batteries and ultracapacitors. Nanostructured powder-based and carbon-nanotube-based cathodes and anodes with ultra-high surface areas boost the energy and power densities in secondary batteries, including lithium-ion and sodium-sulfur batteries. Nanostructured carbon materials are also controlled on a molecular level to offer large surface areas for the electrodes of ultracapacitors, allowing to store and supply large bursts of energy needed in some applications.

  9. Assessment of wind and solar power in global low-carbon energy scenarios: An introduction

    Energy Technology Data Exchange (ETDEWEB)

    Luderer, Gunnar; Pietzcker, Robert C.; Carrara, Samuel; de Boer, Harmen Sytze; Fujimori, Shinichiro; Johnson, Nils; Mima, Silvana; Arent, Douglas

    2017-04-07

    This preface introduces the special section on the assessment of wind and solar in global low-carbon energy scenarios. The special section documents the results of a coordinated research effort to improve the representation of variable renewable energies (VRE), including wind and solar power, in Integrated Assessment Models (IAM) and presents an overview of the results obtained in the underlying coordinated model inter-comparison exercise.

  10. Statistical study of chorus wave distributions in the inner magnetosphere using Ae and solar wind parameters

    Science.gov (United States)

    Aryan, Homayon; Yearby, Keith; Balikhin, Michael; Agapitov, Oleksiy; Krasnoselskikh, Vladimir; Boynton, Richard

    2014-08-01

    Energetic electrons within the Earth's radiation belts represent a serious hazard to geostationary satellites. The interactions of electrons with chorus waves play an important role in both the acceleration and loss of radiation belt electrons. The common approach is to present model wave distributions in the inner magnetosphere under different values of geomagnetic activity as expressed by the geomagnetic indices. However, it has been shown that only around 50% of geomagnetic storms increase flux of relativistic electrons at geostationary orbit while 20% causes a decrease and the remaining 30% has relatively no effect. This emphasizes the importance of including solar wind parameters such as bulk velocity (V), density (n), flow pressure (P), and the vertical interplanetary magnetic field component (Bz) that are known to be predominately effective in the control of high energy fluxes at the geostationary orbit. Therefore, in the present study the set of parameters of the wave distributions is expanded to include the solar wind parameters in addition to the geomagnetic activity. The present study examines almost 4 years (1 January 2004 to 29 September 2007) of Spatio-Temporal Analysis of Field Fluctuation data from Double Star TC1 combined with geomagnetic indices and solar wind parameters from OMNI database in order to present a comprehensive model of wave magnetic field intensities for the chorus waves as a function of magnetic local time, L shell (L), magnetic latitude (λm), geomagnetic activity, and solar wind parameters. Generally, the results indicate that the intensity of chorus emission is not only dependent upon geomagnetic activity but also dependent on solar wind parameters with velocity and southward interplanetary magnetic field Bs (Bz < 0), evidently the most influential solar wind parameters. The largest peak chorus intensities in the order of 50 pT are observed during active conditions, high solar wind velocities, low solar wind densities, high

  11. Perturbations of the solar wind flow by radial and latitudinal pick-up ion pressure gradients

    Directory of Open Access Journals (Sweden)

    H. J. Fahr

    2004-06-01

    Full Text Available It has been found that pick-up ions at their dynamical incorporation into the solar wind modify the original conditions of the asymptotic solar wind plasma flow. In this respect, it has meanwhile been revealed in many papers that these type of solar wind modifications, i.e. deceleration and decrease of effective Mach number, are not only due to the pick-up ion loading effects, but also to the action of pick-up ion pressure gradients. Up to now only the effects of radial pick-up ion pressure gradients were considered, however, analogously but latitudinal pressure gradients also appear to be important. Here we study the effects of radial and latitudinal pick-up ion pressure gradients, occurring especially during solar minimum conditions at mid-latitude regions where slow solar wind streams change to fast solar wind streams. First, we give estimates of the latitudinal wind components connected with these gradients, and then after revealing its importance, present a more quantitative calculation of solar wind velocity and density perturbations resulting from these pressure forces. It is shown that the relative density perturbations near and in the ecliptic increase with radial distance and thus may well explain the measured non-spherically symmetric density decrease with distance. We also show that the solar wind decelerations actually seen with Voyager-1/2 are in conciliation with interstellar hydrogen densities of nH∞≥0.1cm-3, in contrast to earlier claims for nH∞=0.05cm-3.

  12. Perturbations of the solar wind flow by radial and latitudinal pick-up ion pressure gradients

    Directory of Open Access Journals (Sweden)

    H. J. Fahr

    2004-06-01

    Full Text Available It has been found that pick-up ions at their dynamical incorporation into the solar wind modify the original conditions of the asymptotic solar wind plasma flow. In this respect, it has meanwhile been revealed in many papers that these type of solar wind modifications, i.e. deceleration and decrease of effective Mach number, are not only due to the pick-up ion loading effects, but also to the action of pick-up ion pressure gradients. Up to now only the effects of radial pick-up ion pressure gradients were considered, however, analogously but latitudinal pressure gradients also appear to be important. Here we study the effects of radial and latitudinal pick-up ion pressure gradients, occurring especially during solar minimum conditions at mid-latitude regions where slow solar wind streams change to fast solar wind streams. First, we give estimates of the latitudinal wind components connected with these gradients, and then after revealing its importance, present a more quantitative calculation of solar wind velocity and density perturbations resulting from these pressure forces. It is shown that the relative density perturbations near and in the ecliptic increase with radial distance and thus may well explain the measured non-spherically symmetric density decrease with distance. We also show that the solar wind decelerations actually seen with Voyager-1/2 are in conciliation with interstellar hydrogen densities of nH∞≥0.1cm-3, in contrast to earlier claims for nH∞=0.05cm-3.

  13. Application of synchronous grid-connected controller in the wind-solar-storage micro grid

    OpenAIRE

    Li, Hua; Ren, Yongfeng; Li, Le; Luo, Zhenpeng

    2016-01-01

    Recently, there has been an increasing interest in using distributed generators (DG) not only to inject power into the grid, but also to enhance the power quality. In this study, a space voltage pulse width modulation (SVPWM) control method is proposed for a synchronous grid-connected controller in a wind-solar-storage micro grid. This method is based on the appropriate topology of the synchronous controller. The wind-solar-storage micro grid is controlled to reconnect to the grid synchronous...

  14. Solar wind conditions leading to efficient radiation belt electron acceleration: A superposed epoch analysis

    OpenAIRE

    Li, W; Thorne, RM; Bortnik, J; Baker, DN; Reeves, GD; Kanekal, SG; Spence, HE; Green, JC

    2015-01-01

    ©2015. American Geophysical Union. All Rights Reserved. Determining preferential solar wind conditions leading to efficient radiation belt electron acceleration is crucial for predicting radiation belt electron dynamics. Using Van Allen Probes electron observations ( > 1 MeV) from 2012 to 2015, we identify a number of efficient and inefficient acceleration events separately to perform a superposed epoch analysis of the corresponding solar wind parameters and geomagnetic indices. By directly c...

  15. Bibliometric Analysis of International Collaboration in Wind and Solar Energy

    Directory of Open Access Journals (Sweden)

    Ichiro Sakata

    2013-09-01

    Full Text Available Modern technology is increasingly complex and demands an ever-widening range of knowledge and skills. No single country will possess all the knowledge and skills required for addressing global issues such as climate change. Technology collaboration between leading countries is important to promptly and efficiently address the problem. Previous studies have shown that a high level of collaboration is correlated with high paper productivity. This paper first aims to use objective data and create maps that enable us to see both the distribution of worldwide research competency and the relationship of international collaboration in clean energy research. In the international research network of wind power and solar cell, 4,189 institutions located in 121 countries and 6,600 institutions located in 125 countries are included respectively. This paper discusses various factors that would have an impact on research capability and support strong international relationships. With respect to research capability, governmental policies, stability of governmental commitment, natural conditions and historical and institutional differences have a significant impact on it. For research collaborations, factors such as geographical proximity, international science and technology policy, and developmental stage of technology have been brought to attention. This study demonstrates that bibliometrics is a methodology that is capable of providing a knowledge base that is useful in the development of the international science and technology policy and technological management strategy.

  16. TESTING THE EFFECTS OF EXPANSION ON SOLAR WIND TURBULENCE

    International Nuclear Information System (INIS)

    Vech, Daniel; Chen, Christopher H K

    2016-01-01

    We present a multi-spacecraft approach to test the predictions of recent studies on the effect of solar wind expansion on the radial spectral, variance, and local 3D anisotropies of the turbulence. We found that on small scales (5000–10,000 km) the power levels of the B-trace structure functions do not depend on the sampling direction with respect to the radial suggesting that on this scale the effect of expansion is small possibly due to fast turbulent timescales. On larger scales (110–135 R E ), the fluctuations of the radial magnetic field component are reduced by ∼20% compared to the transverse (perpendicular to radial) ones, which could be due to expansion confining the fluctuations into the plane perpendicular to radial. For the local 3D spectral anisotropy, the B-trace structure functions showed dependence on the sampling direction with respect to radial. The anisotropy in the perpendicular plane is reduced when the increments are taken perpendicular with respect to radial, which could be an effect of expansion.

  17. Solar Wind Electron Scattering by Kinetic Instabilities and Whistler Turbulence

    Science.gov (United States)

    Gary, S. P.

    2015-12-01

    The expansion of the solar wind away from the Sun drives electron velocity distributions away from the thermal Maxwellian form, yielding distributions near 1 AU which typically can be characterized as consisting of three anisotropic components: a more dense, relatively cool core, a relatively tenuous , relatively warm halo and a similarly tenuous, warm strahl. Each of these nonthermal components are potential sources of kinetic plasma instabilities; the enhanced waves from each instability can scatter the electrons, acting to reduce the various anisotropies and making their overall velocity distribution more nearly (but not completely) thermal. In contrast, simulations are demonstrating that the forward decay of whistler turbulence can lead to the development of a T||> T_perp electron anisotropy. This presentation will review linear theories of electron-driven kinetic instabilities (following the presentation by Daniel Verscharen at the 2015 SHINE Workshop), and will further consider the modification of electron velocity distributions as obtained from particle-in-cell simulations of such instabilities as well as from the decay of whistler turbulence.

  18. Solar wind and cosmic ray irradiation of grains and ices - application to erosion and synthesis of organic compounds in the solar system

    Science.gov (United States)

    Rocard, F.; Benit, J.; Meunier, J. P.; Bibring, R.; Vassent, B.

    1984-01-01

    Solar wind and cosmic and cosmic ray irradiation of grains induces physical and chemical effects including their erosion and the synthesis of molecular compounds within the implanted layers. The experiments performed with H2O ice implanted by keV ions are presented. The ion implantation is intended to simulate the irradiation of comets, ring grains, and satellites of outer planets, either by the primitive solar particles or by contemporary solar wind (SW) or solar cosmic rays (SCR) fluxes. The detection of molecules was obtained through in-situ infrared spectroscopy. A model is proposed for the formation of organic matter within icy solar system bodies which is in agreement with experimental results of erosion rates. The organic molecules, frozen-in within the icy mantles of the grains present in the protosolar nebula, would originate from their primitive irradiation. Such an irradiation would have taken place during an early stage of the proto-sun, when both the SW and SCR particles were more intense by orders of magnitude.

  19. Dependence of Lunar Surface Charging on Solar Wind Plasma Conditions and Solar Irradiation

    Science.gov (United States)

    Stubbs, T. J.; Farrell, W. M.; Halekas, J. S.; Burchill, J. K.; Collier, M. R.; Zimmerman, M. I.; Vondrak, R. R.; Delory, G. T.; Pfaff, R. F.

    2014-01-01

    The surface of the Moon is electrically charged by exposure to solar radiation on its dayside, as well as by the continuous flux of charged particles from the various plasma environments that surround it. An electric potential develops between the lunar surface and ambient plasma, which manifests itself in a near-surface plasma sheath with a scale height of order the Debye length. This study investigates surface charging on the lunar dayside and near-terminator regions in the solar wind, for which the dominant current sources are usually from the pohotoemission of electrons, J(sub p), and the collection of plasma electrons J(sub e) and ions J(sub i). These currents are dependent on the following six parameters: plasma concentration n(sub 0), electron temperature T(sub e), ion temperature T(sub i), bulk flow velocity V, photoemission current at normal incidence J(sub P0), and photo electron temperature T(sub p). Using a numerical model, derived from a set of eleven basic assumptions, the influence of these six parameters on surface charging - characterized by the equilibrium surface potential, Debye length, and surface electric field - is investigated as a function of solar zenith angle. Overall, T(sub e) is the most important parameter, especially near the terminator, while J(sub P0) and T(sub p) dominate over most of the dayside.

  20. ROSAT Observations of Solar Wind Charge Exchange with the Lunar Exosphere

    Science.gov (United States)

    Collier, Michael R.; Snowden, S. L.; Benna, M.; Carter, J. A.; Cravens, T. E.; Hills, H. Kent; Hodges, R. R.; Kuntz, K. D.; Porter, F. Scott; Read, A.; hide

    2012-01-01

    We analyze the ROSAT PSPC soft X-ray image of the Moon taken on 29 June 1990 by examining the radial profile of the count rate in three wedges, two wedges (one north and one south) 13-32 degrees off (19 degrees wide) the terminator towards the dark side and one wedge 38 degrees wide centered on the anti-solar direction. The radial profiles of both the north and the south wedges show substantial limb brightening that is absent in the 38 degree wide antisolar wedge. An analysis of the count rate increase associated with the limb brightening shows that its magnitude is consistent with that expected due to solar wind charge exchange (SWCX) with the tenuous lunar atmosphere. Along with Mars, Venus, and Earth, the Moon represents another solar system body at which solar wind charge exchange has been observed. This technique can be used to explore the solar wind-lunar interaction.

  1. Modeling Solar Wind Expansion with Wave-Particle Interactions and Coulomb Collisions

    Science.gov (United States)

    Matteini, L.; Hellinger, P.; Landi, S.; Pantellini, F. G. E.; Velli, M.; Franci, L.; Verdini, A.

    2017-12-01

    The evolution of the solar wind plasma is strongly influenced by its spherical expansion in interplanetary space. Due to the weak - but not fully negligible - collisionality of the plasma, the behaviour of the system can be hardly modelled through standard approaches, either fluid or fully collisionless. Moreover, solar wind microphysics depends on many different processes, including the interaction of particles with background waves and turbulence, and plasma instabilities. Disentangling the effect of these processes from the role of intra- and inter-species particle collisions in the framework of the overall secular evolution imposed by the expansion is particularly challenging.In this presentation we will review some basics of the solar wind expansion as well as some of the recent results obtained by means of kinetic numerical models which take into account the radial expansion on the plasma, with emphasis on the comparison with in situ observations and the role of the forthcoming Solar Orbiter and Parker Solar Probe missions.

  2. On the difference between the magnetic intermittent micro-structures in fast wind and slow wind and it's implication for the solar wind turbulence cascade

    Science.gov (United States)

    Tu, C.; Wang, X.; He, J.; Marsch, E.; Wang, L.

    2013-12-01

    The magnetic intermittent micro-structures (on time scales of 20-40s) in both fast and slow solar wind are studied by using plasma and field measurements from the WIND spacecraft. In the fast wind these structures are found to be composed of mostly rotational discontinuities (RDs) and rarely tangential current sheets (TCSs). The RDs do not show prominent plasma-parameter changes. Conversely, the TCSs have a distinct tendency to be associated with local enhancements of the proton temperature, density, and plasma beta, and a local decrease of the magnetic field magnitude. These results show that dissipation of solar wind turbulence can take place in intermittent or locally isolated small-scale regions which correspond to the TCSs found in fast wind. However in slow wind, magnetic intermittent micro-structures are found to consist of mainly magnetic field directional turnings (MFDTs, Tu & Marsch, Ann. Geophysicae, 9, 319,1991) and rarely tangential current sheets (TCSs). The MFDTs are characterized by: (1) clear variation of the field component in the L dimension of the LMN coordinate system using the MVA method; (2) at least one of B_M or B_N is near to zero, or the velocity component V_L is near to zero; (3) the magnetic magnitude does not have a clear change; (4) no significant temperature and density peaks. The TCSs found in slow wind are not associated with prominent temperature enhancements. The TCSs found in both fast and slow wind may be created by turbulence interactions. The heating effect of TCSs in slow wind is weaker because the turbulence level is lower. The origin of the RDs in fast wind and the MFDTs in slow wind will be a topic for future studies. MFDTs may be observed when crossing a magnetic helical micro-tube, which may be formed due to tearing mode instability and magnetic multi-x-point reconnection in the slow wind.

  3. Turbulence-driven coronal heating and improvements to empirical forecasting of the solar wind

    International Nuclear Information System (INIS)

    Woolsey, Lauren N.; Cranmer, Steven R.

    2014-01-01

    Forecasting models of the solar wind often rely on simple parameterizations of the magnetic field that ignore the effects of the full magnetic field geometry. In this paper, we present the results of two solar wind prediction models that consider the full magnetic field profile and include the effects of Alfvén waves on coronal heating and wind acceleration. The one-dimensional magnetohydrodynamic code ZEPHYR self-consistently finds solar wind solutions without the need for empirical heating functions. Another one-dimensional code, introduced in this paper (The Efficient Modified-Parker-Equation-Solving Tool, TEMPEST), can act as a smaller, stand-alone code for use in forecasting pipelines. TEMPEST is written in Python and will become a publicly available library of functions that is easy to adapt and expand. We discuss important relations between the magnetic field profile and properties of the solar wind that can be used to independently validate prediction models. ZEPHYR provides the foundation and calibration for TEMPEST, and ultimately we will use these models to predict observations and explain space weather created by the bulk solar wind. We are able to reproduce with both models the general anticorrelation seen in comparisons of observed wind speed at 1 AU and the flux tube expansion factor. There is significantly less spread than comparing the results of the two models than between ZEPHYR and a traditional flux tube expansion relation. We suggest that the new code, TEMPEST, will become a valuable tool in the forecasting of space weather.

  4. Early time interaction of lithium ions with the solar wind in the AMPTE mission

    International Nuclear Information System (INIS)

    Lui, A.T.Y.; Goodrich, C.C.; Mankofsky, A.; Papadopoulos, K.

    1986-01-01

    The early time interaction of an artificially injected lithium cloud with the solar wind is simulated with a one-dimensional hybrid code. Simulation results indicate that the lithium cloud presents an obstacle to the solar wind flow, forming a shock-like interaction region. Several notable features are found: (1) The magnetic field is enhanced up to a factor of about 6 followed by a magnetic cavity downstream. (2) Solar wind ions are slowed down inside the lithium cloud, with substantial upstream reflection. (3) Most of the lithium ions gradually pick up the velocity of the solar wind and move downstream. (4) Intense and short-wavelength electric fields exist ahead of the interaction region. (5) Strong electron heating occurs within the lithium clouds. (6) The convection electric field in the in the solar wind is modulated in the interaction region. The simulation results are in remarkable agreement with in situ spacecraft measurements made during lithium releases in the solar wind by the AMPTE (Active magnetospheric Particle Tracer Explorers) Program

  5. Unit commitment and system reliability in electric utility systems with independent wind and solar generation

    Science.gov (United States)

    Schooley, David Christopher

    Concerns about the environmental impacts of fossil fuels and changes in government regulations concerning electric utilities are likely to lead to increased use of wind and solar energy in the generation mix. In many cases, the wind and solar energy conversion systems will be owned by small, independent power producers that sell power to electric utilities. The output of wind and solar energy conversion systems is highly random; therefore, a method is necessary to determine the effects of these sources on the system reliability. This dissertation discusses a method of integrating the behavior of small power producing facilities (SPPFS) into the generation mix. The research method integrates models of wind and solar energy conversion systems with a model of the small power producers. The SPPF model is then integrated into the electric utility unit commitment procedure. System reliability indices such as the loss of load expectation (LOLE ) and the expected unserved energy (EUE) can be calculated once the SPPFs have been integrated into the generation mix. This dissertation demonstrates the procedure and provides results for a large electric utility with SPPFS located in Atlanta, Georgia; Bismark, North Dakota; and Oklahoma City, Oklahoma. Various combinations of wind and/or solar energy conversion systems are studied. The results include comparisons of the effective utilization of the wind and solar energy conversion systems at the different sites and of the effects on the system reliability.

  6. The Potential of hybrid solar-wind electricity generation in Ghana

    International Nuclear Information System (INIS)

    Tibiru, Ayirewura Vitus

    2013-07-01

    In this work the potential of harnessing electricity from solar and wind sources in Ghana is evaluated both quantitatively and qualitatively. In this regard solar, wind and other relevant data were collected (over a period of one year) from various parts of Ghana. Detailed assessment of the capacity or potential of power production from hybrid solar-wind sources is done with the use of empirical mathematical formulae and the PRO VITUS model incorporated in the 'ENERGY X' software. The various characteristics of wind, solar and available energy resources for the five locations over a one year period have been studied too. The annual mean wind speed at a height of 10 m above ground level for five locations namely Accra, Kumasi, Takoradi, Sunyani and Tamale are 2.38 ms -1 ± 0.05, 2.39 ms -1 ± 0.05, 2.38 ms -1 ± 0.06, 2.18 ms -1 ± 0.05 and 2.47 ± ms -1 respectively and their corresponding annual mean solar radiations are 228.71 Wm -2 ± 9.81, 187.69 Wm -2 ± 9.60, 236.58 Wm -2 ± 10.39, 200.99 Wm -2 ± 9.88 and 231.63 Wm -2 . Thus, the five sites hold potential for hybrid solar-wind energy exploitation. (au)

  7. Enhancing information for solar and wind energy technology deployment in Brazil

    International Nuclear Information System (INIS)

    Ramos Martins, Fernando; Pereira, Enio Bueno

    2011-01-01

    Brazil's primary energy matrix is based on more than 47% of renewables, and more than 85% of its electricity is generated by hydro power sources. Despite this large fraction of renewable energy resources, less than 0.3% of the national energy supply comes from solar or wind sources. This paper presents a diagnostic review on the penetration of the solar and wind energy technologies in Brazil. It also includes a survey of the latest government policies and incentives for renewable energies deployment by entrepreneurs, industry and commercial and residential consumers. In addition, the paper analyses how to best meet the requirements for policy support and information technology to boost the deployment of solar technology and wind energy in Brazil. This study was mostly based on results of a widely distributed survey covering key issues, and also by personal interviews carried out with key stakeholders in order to better understand the issues highlighted in the survey responses. The study pointed out some of the main obstacles to effectively promote and improve government policies and actions for investment in solar and wind energy market in Brazil. - Highlights: → Current status on the solar and wind energy deployment in Brazil is presented. → Policy framework required to support solar and wind energy was discussed. → Study was based on responses for consultations with key stakeholders. → Worthiness Index was established to rank the stakeholders outlooks. → Energy price, human resources and tax reductions were indicated as priority.

  8. Enhancing information for solar and wind energy technology deployment in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Ramos Martins, Fernando, E-mail: fernando.martins@inpe.br [Centro de Ciencia do Sistema Terrestre-Instituto Nacisonal de Pesquisas Espaciais (Earth System Center-National Institute for Space Research), P.O. Box 515, 12245-970, Sao Jose dos Campos (Brazil); Pereira, Enio Bueno, E-mail: enio.pereira@inpe.br [Centro de Ciencia do Sistema Terrestre-Instituto Nacisonal de Pesquisas Espaciais (Earth System Center-National Institute for Space Research), P.O. Box 515, 12245-970, Sao Jose dos Campos (Brazil)

    2011-07-15

    Brazil's primary energy matrix is based on more than 47% of renewables, and more than 85% of its electricity is generated by hydro power sources. Despite this large fraction of renewable energy resources, less than 0.3% of the national energy supply comes from solar or wind sources. This paper presents a diagnostic review on the penetration of the solar and wind energy technologies in Brazil. It also includes a survey of the latest government policies and incentives for renewable energies deployment by entrepreneurs, industry and commercial and residential consumers. In addition, the paper analyses how to best meet the requirements for policy support and information technology to boost the deployment of solar technology and wind energy in Brazil. This study was mostly based on results of a widely distributed survey covering key issues, and also by personal interviews carried out with key stakeholders in order to better understand the issues highlighted in the survey responses. The study pointed out some of the main obstacles to effectively promote and improve government policies and actions for investment in solar and wind energy market in Brazil. - Highlights: > Current status on the solar and wind energy deployment in Brazil is presented. > Policy framework required to support solar and wind energy was discussed. > Study was based on responses for consultations with key stakeholders. > Worthiness Index was established to rank the stakeholders outlooks. > Energy price, human resources and tax reductions were indicated as priority.

  9. Solar neutrino physics in the nineties

    Energy Technology Data Exchange (ETDEWEB)

    Wilkerson, J.F.

    1990-12-31

    The decade of the 1990`s should prove to be landmark period for the study of solar neutrino physics. Current observations show 2--3 times fewer neutrinos coming from the sun than are theoretically expected. As we enter the decade, new experiments are poised to attempt and discover whether this deficit is a problem with our understanding of how the sun works, is a hint of new neutrino properties beyond those predicted by the standard model of particle physics, or perhaps a combination of both. This paper will briefly review the current status of the field and point out how future measurements should help solve this interesting puzzle. 11 refs., 3 figs., 1 tab.

  10. Use of meteorological information in the risk analysis of a mixed wind farm and solar

    Science.gov (United States)

    Mengelkamp, H.-T.; Bendel, D.

    2010-09-01

    Use of meteorological information in the risk analysis of a mixed wind farm and solar power plant portfolio H.-T. Mengelkamp*,** , D. Bendel** *GKSS Research Center Geesthacht GmbH **anemos Gesellschaft für Umweltmeteorologie mbH The renewable energy industry has rapidly developed during the last two decades and so have the needs for high quality comprehensive meteorological services. It is, however, only recently that international financial institutions bundle wind farms and solar power plants and offer shares in these aggregate portfolios. The monetary value of a mixed wind farm and solar power plant portfolio is determined by legal and technical aspects, the expected annual energy production of each wind farm and solar power plant and the associated uncertainty of the energy yield estimation or the investment risk. Building an aggregate portfolio will reduce the overall uncertainty through diversification in contrast to the single wind farm/solar power plant energy yield uncertainty. This is similar to equity funds based on a variety of companies or products. Meteorological aspects contribute to the diversification in various ways. There is the uncertainty in the estimation of the expected long-term mean energy production of the wind and solar power plants. Different components of uncertainty have to be considered depending on whether the power plant is already in operation or in the planning phase. The uncertainty related to a wind farm in the planning phase comprises the methodology of the wind potential estimation and the uncertainty of the site specific wind turbine power curve as well as the uncertainty of the wind farm effect calculation. The uncertainty related to a solar power plant in the pre-operational phase comprises the uncertainty of the radiation data base and that of the performance curve. The long-term mean annual energy yield of operational wind farms and solar power plants is estimated on the basis of the actual energy production and it

  11. Detection of solar wind-produced water in irradiated rims on silicate minerals.

    Science.gov (United States)

    Bradley, John P; Ishii, Hope A; Gillis-Davis, Jeffrey J; Ciston, James; Nielsen, Michael H; Bechtel, Hans A; Martin, Michael C

    2014-02-04

    The solar wind (SW), composed of predominantly ∼1-keV H(+) ions, produces amorphous rims up to ∼150 nm thick on the surfaces of minerals exposed in space. Silicates with amorphous rims are observed on interplanetary dust particles and on lunar and asteroid soil regolith grains. Implanted H(+) may react with oxygen in the minerals to form trace amounts of hydroxyl (-OH) and/or water (H2O). Previous studies have detected hydroxyl in lunar soils, but its chemical state, physical location in the soils, and source(s) are debated. If -OH or H2O is generated in rims on silicate grains, there are important implications for the origins of water in the solar system and other astrophysical environments. By exploiting the high spatial resolution of transmission electron microscopy and valence electron energy-loss spectroscopy, we detect water sealed in vesicles within amorphous rims produced by SW irradiation of silicate mineral grains on the exterior surfaces of interplanetary dust particles. Our findings establish that water is a byproduct of SW space weathering. We conclude, on the basis of the pervasiveness of the SW and silicate materials, that the production of radiolytic SW water on airless bodies is a ubiquitous process throughout the solar system.

  12. A contribution to the study of the influence of the energy of solar wind upon the atmospheric processes

    Directory of Open Access Journals (Sweden)

    Radovanović Milan M.

    2003-01-01

    Full Text Available According to the satellite observing of solar wind, and as well according the development of certain weather conditions it is realized that their interactive connections could have important role on the development of atmospheric processes. In this paper is given several of such situations. We have tried to point to a very important significance of new methodological approach in understanding development of meteorological conditions. Researching the influence of the solar wind on the changes of conditions in the atmosphere could develop in several ways but in any case for the further steps a multidiscipline approach is needed. Karen Labitske in Germany has done a lot of research in this area. "The physics is still highly speculative at this point though".

  13. Dynamical Networks Characterization of Geomagnetic Substorms and Transient Response to the Solar Wind State.

    Science.gov (United States)

    Chapman, S. C.; Dods, J.; Gjerloev, J. W.

    2017-12-01

    Observations of how the solar wind interacts with earth's magnetosphere, and its dynamical response, are increasingly becoming a data analytics challenge. Constellations of satellites observe the solar corona, the upstream solar wind and throughout earth's magnetosphere. These data are multipoint in space and extended in time, so in principle are ideal for study using dynamical networks to characterize the full time evolving spatial pattern. We focus here on analysis of data from the full set of 100+ auroral ground based magnetometer stations that have been collated by SuperMAG. Spatio-temporal patterns of correlation between the magnetometer time series can be used to form a dynamical network [1]. The properties of the network can then be captured by (time dependent) network parameters. This offers the possibility of characterizing detailed spatio-temporal pattern by a few parameters, so that many events can then be compared [2] with each other. Whilst networks are in widespread use in the data analytics of societal and commercial data, there are additional challenges in their application to physical timeseries. Determining whether two nodes (here, ground based magnetometer stations) are connected in a network (seeing the same dynamics) requires normalization w.r.t. the detailed sensitivities and dynamical responses of specific observing stations and seasonal conductivity variations and we have developed methods to achieve this dynamical normalization. The detailed properties of the network capture time dependent spatial correlation in the magnetometer responses and we will show how this can be used to infer a transient current system response to magnetospheric activity. [l] Dods et al, J. Geophys. Res 120, doi:10.1002/2015JA02 (2015). [2] Dods et al, J. Geophys. Res. 122, doi:10.1002/2016JA02 (2017).

  14. The Solar Wind: Our Current Understanding and How We Got Here ...

    Indian Academy of Sciences (India)

    impetus to ongoing studies of the ion-cyclotron resonance in the fast wind. After a historical review, we discuss the basic ideas behind current research, emphasizing the importance of particle kinetics. We conclude with some guesses as to how work might proceed in the future. Key words. Solar wind—coronal holes—solar ...

  15. Integrating Wind And Solar With Hydrogen Producing Fuel Cells

    NARCIS (Netherlands)

    Hemmes, K.

    2007-01-01

    The often proposed solution for the fluctuating wind energy supply is the conversion of the surplus of wind energy into hydrogen by means of electrolysis. In this paper a patented alternative is proposed consisting of the integration of wind turbines with internal reforming fuel-cells, capable of

  16. Temporal and spatial complementarity of the wind and the solar resources in the Iberian Peninsula

    Science.gov (United States)

    Jerez, Sonia; Trigo, Ricardo M.; Sarsa, Antonio; Lorente-PLazas, Raquel; Pozo-Vázquez, David; Montávez, Juan Pedro

    2013-04-01

    Both Iberian countries (Portugal and Spain) are investing considerably in new wind and solar power plants to achieve a sustainable future, both in environmental and economic terms. Resource evaluation, aimed at optimizing the power generation according to the energy demand, is a mandatory requisite for the success of such a large amount of investments. However, this aim is difficult to attain due to the lack of lengthy and reliable observational datasets, implying poor spatial coverage. Hence, here we rely on a hindcast simulation spanning the period 1959-2007 and covering the whole Iberian Peninsula with resolution of 10 km, to retrieve the primary meteorological variables from which estimations of wind and solar power are done. Based on that, we have investigated the temporal (at the monthly timescale) and spatial complementarity of the wind and the solar resources in the Iberian Peninsula. The annual cycle of energy demand in Iberia shows two maxima centered in winter and summer and relatively smaller loads during the transitional seasons, with both the shape and the monthly values of this cycle having experienced small changes in the recent years. Since the annual cycle of wind (solar) power presents a clear maximum in winter (summer), it is immediate to infer that both cycles could be combined in order to achieve the shape required by the annual cycle of energy demand. Interannually, both resources show large variability in the winter months. Nevertheless, our results indicate that the monthly series of wind and solar power are strongly anticorrelated during winter and thus, both series could be also combined in order to achieve minimum interannual variability in the resulting wind-plus-solar production output. Moreover we found that this interannual complementarity is related, at least partially, to the multiple influence of the three main large-scale modes of climatic variability affecting Europe (NAO, EA and SCAND) since while their positive phases enhance

  17. Gyrokinetic Simulations of Solar Wind Turbulence from Ion to Electron Scales

    International Nuclear Information System (INIS)

    Howes, G. G.; TenBarge, J. M.; Dorland, W.; Numata, R.; Quataert, E.; Schekochihin, A. A.; Tatsuno, T.

    2011-01-01

    A three-dimensional, nonlinear gyrokinetic simulation of plasma turbulence resolving scales from the ion to electron gyroradius with a realistic mass ratio is presented, where all damping is provided by resolved physical mechanisms. The resulting energy spectra are quantitatively consistent with a magnetic power spectrum scaling of k -2.8 as observed in in situ spacecraft measurements of the 'dissipation range' of solar wind turbulence. Despite the strongly nonlinear nature of the turbulence, the linear kinetic Alfven wave mode quantitatively describes the polarization of the turbulent fluctuations. The collisional ion heating is measured at subion-Larmor radius scales, which provides evidence of the ion entropy cascade in an electromagnetic turbulence simulation.

  18. A study of shock-associated magnetohydrodynamic waves in the solar wind

    Science.gov (United States)

    Spangler, Steven R.

    1992-01-01

    Three major topics were addressed, one theoretical and two observational. The topics were: (1) an attempt to understand the evolution of the large-amplitude magnetohydrodynamic (MHD) waves in the foreshock, using a nonlinear wave equation called the Derivative Nonlinear Schrodinger equation (henceforth DNLS) as a model, (2) using the extensive set of ISE data to test for the presence of various nonlinear wave processes which might be present, and (3) a study of plasma turbulence in the interstellar medium which might be physically similar to that in the solar wind. For these investigations we used radioastronomical techniques. Good progress was made in each of these areas and a separate discussion of each is given.

  19. Interaction of the interplanetary shock and tangential discontinuity in the solar wind

    Science.gov (United States)

    Goncharov, Oleksandr; Koval, Andriy; Safrankova, Jana; Nemecek, Zdenek; Prech, Lubomir; Szabo, Adam; Zastenker, Georgy N.

    2017-04-01

    Collisionless shocks play a significant role in the solar wind interaction with the Earth. Fast forward interplanetary (IP) shocks driven by coronal mass ejections or by interaction of fast and slow solar wind streams can be encountered in the interplanetary space, while the bow shock is a standing fast reverse shock formed by the interaction of the supersonic solar wind with Earth's magnetic field. Both types of shocks are responsible for a transformation of a part of the energy of the directed solar wind motion to plasma heating and to acceleration of reflected particles to high energies. It is well known that the interaction of tangential discontinuities with the bow shock can create hot flow anomalies but interactions between IP shocks and tangential discontinuities in the solar wind are studied to a lesser extent due to lack of observations. A fortunate position of many spacecraft (Wind, ACE, DSCOVR, THEMIS, Spektr-R) on June 22, 2015 allows us detailed observations of an IP shock modification due to this interaction. We present an analysis of the event supported with MHD modeling that reveals basic features of the observed IP shock ramp splitting. However, a good matching of modeling and observations was found for DSCOVR and Spektr-R located above the ecliptic plane, whereas a timing of observations below this plane demonstrates problems of modeling of highly inclined discontinuities.

  20. Recent Optical and SEM Characterization of Genesis Solar Wind Concentrator Diamond on Silicon Collector

    Science.gov (United States)

    Allton, Judith H.; Rodriquez, M. C.; Burkett, P. J.; Ross, D. K.; Gonzalez, C. P.; McNamara, K. M.

    2013-01-01

    One of the 4 Genesis solar wind concentrator collectors was a silicon substrate coated with diamond-like carbon (DLC) in which to capture solar wind. This material was designed for analysis of solar nitrogen and noble gases [1, 2]. This particular collector fractured during landing, but about 80% of the surface was recovered, including a large piece which was subdivided in 2012 [3, 4, 5]. The optical and SEM imaging and analysis described below supports the subdivision and allocation of the diamond-on-silicon (DOS) concentrator collector.

  1. The S-Web Model for the Sources of the Slow Solar Wind

    Science.gov (United States)

    Antiochos, Spiro K.; Karpen, Judith T.; DeVore, C. Richard

    2012-01-01

    Models for the origin of the slow solar wind must account for two seemingly contradictory observations: The slow wind has the composition of the closed-field corona, implying that it originates from the continuous opening and closing of flux at the boundary between open and closed field. On the other hand, the slow wind has large angular width, up to 60 degrees, suggesting that its source extends far from the open-closed boundary. We describe a model that can explain both observations. The key idea is that the source of the slow wind at the Sun is a network of narrow (possibly singular) open-field corridors that map to a web of separatrices (the S-Web) and quasi-separatrix layers in the heliosphere. We discuss the dynamics of the S-Web model and its implications for present observations and for the upcoming observations from Solar Orbiter and Solar Probe Plus.

  2. On Intermittent Turbulence Heating of the Solar Wind: Differences between Tangential and Rotational Discontinuities

    Science.gov (United States)

    Wang, Xin; Tu, Chuanyi; He, Jiansen; Marsch, Eckart; Wang, Linghua

    2013-08-01

    The intermittent structures in solar wind turbulence, studied by using measurements from the WIND spacecraft, are identified as being mostly rotational discontinuities (RDs) and rarely tangential discontinuities (TDs) based on the technique described by Smith. Only TD-associated current sheets (TCSs) are found to be accompanied with strong local heating of the solar wind plasma. Statistical results show that the TCSs have a distinct tendency to be associated with local enhancements of the proton temperature, density, and plasma beta, and a local decrease of magnetic field magnitude. Conversely, for RDs, our statistical results do not reveal convincing heating effects. These results confirm the notion that dissipation of solar wind turbulence can take place in intermittent or locally isolated small-scale regions which correspond to TCSs. The possibility of heating associated with RDs is discussed.

  3. Comparison of Solar and Wind Power Output and Correlation with Real-Time Pricing

    Science.gov (United States)

    Hoepfl, Kathryn E.; Compaan, Alvin D.; Solocha, Andrew

    2011-03-01

    This study presents a method that can be used to determine the least volatile power output of a wind and solar hybrid energy system in which wind and solar systems have the same peak power. Hourly data for wind and PV systems in Northwest Ohio are used to show that a combination of both types of sustainable energy sources produces a more stable power output and would be more valuable to the grid than either individually. This method could be used to determine the ideal ratio in any part of the country and should help convince electric utility companies to bring more renewable generation online. This study also looks at real-time market pricing and how each system (solar, wind, and hybrid) correlates with 2009 hourly pricing from the Midwest Interconnect. KEH acknowledges support from the NSF-REU grant PHY-1004649 to the Univ. of Toledo and Garland Energy Systems/Ohio Department of Development.

  4. Charge state evolution in the solar wind. III. Model comparison with observations

    Energy Technology Data Exchange (ETDEWEB)

    Landi, E.; Oran, R.; Lepri, S. T.; Zurbuchen, T. H.; Fisk, L. A.; Van der Holst, B. [Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor, MI 48109 (United States)

    2014-08-01

    We test three theoretical models of the fast solar wind with a set of remote sensing observations and in-situ measurements taken during the minimum of solar cycle 23. First, the model electron density and temperature are compared to SOHO/SUMER spectroscopic measurements. Second, the model electron density, temperature, and wind speed are used to predict the charge state evolution of the wind plasma from the source regions to the freeze-in point. Frozen-in charge states are compared with Ulysses/SWICS measurements at 1 AU, while charge states close to the Sun are combined with the CHIANTI spectral code to calculate the intensities of selected spectral lines, to be compared with SOHO/SUMER observations in the north polar coronal hole. We find that none of the theoretical models are able to completely reproduce all observations; namely, all of them underestimate the charge state distribution of the solar wind everywhere, although the levels of disagreement vary from model to model. We discuss possible causes of the disagreement, namely, uncertainties in the calculation of the charge state evolution and of line intensities, in the atomic data, and in the assumptions on the wind plasma conditions. Last, we discuss the scenario where the wind is accelerated from a region located in the solar corona rather than in the chromosphere as assumed in the three theoretical models, and find that a wind originating from the corona is in much closer agreement with observations.

  5. Keynote Address: Outstanding Problems in Solar Physics

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... The solar neutrino problem; Structure of the solar interior (helioseismology); The solar magnetic field (dynamo, solar cycle, corona); Hydrodynamics of coronal loops; MHD oscillations and waves (coronal seismology); The coronal heating problem; Self-organized criticality (from nanoflares to giant flares) ...

  6. Turbulence in the solar wind: spectra from Voyager 2 data at 5 AU

    International Nuclear Information System (INIS)

    Fraternale, F; Gallana, L; Iovieno, M; Tordella, D; Opher, M; Richardson, J D

    2016-01-01

    Fluctuations in the flow velocity and magnetic fields are ubiquitous in the Solar System. These fluctuations are turbulent, in the sense that they are disordered and span a broad range of scales in both space and time. The study of solar wind turbulence is motivated by a number of factors all keys to the understanding of the Solar Wind origin and thermodynamics. The solar wind spectral properties are far from uniformity and evolve with the increasing distance from the sun. Most of the available spectra of solar wind turbulence were computed at 1 astronomical unit, while accurate spectra on wide frequency ranges at larger distances are still few. In this paper we consider solar wind spectra derived from the data recorded by the Voyager 2 mission during 1979 at about 5 AU from the sun. Voyager 2 data are an incomplete time series with a voids/signal ratio that typically increases as the spacecraft moves away from the sun (45% missing data in 1979), making the analysis challenging. In order to estimate the uncertainty of the spectral slopes, different methods are tested on synthetic turbulence signals with the same gap distribution as V2 data. Spectra of all variables show a power law scaling with exponents between −2.1 and −1.1, depending on frequency subranges. Probability density functions (PDFs) and correlations indicate that the flow has a significant intermittency. (invited comment)

  7. An analytical investigation: Effect of solar wind on lunar photoelectron sheath

    Science.gov (United States)

    Mishra, S. K.; Misra, Shikha

    2018-02-01

    The formation of a photoelectron sheath over the lunar surface and subsequent dust levitation, under the influence of solar wind plasma and continuous solar radiation, has been analytically investigated. The photoelectron sheath characteristics have been evaluated using the Poisson equation configured with population density contributions from half Fermi-Dirac distribution of the photoemitted electrons and simplified Maxwellian statistics of solar wind plasma; as a consequence, altitude profiles for electric potential, electric field, and population density within the photoelectron sheath have been derived. The expression for the accretion rate of sheath electrons over the levitated spherical particles using anisotropic photoelectron flux has been derived, which has been further utilized to characterize the charging of levitating fine particles in the lunar sheath along with other constituent photoemission and solar wind fluxes. This estimate of particle charge has been further manifested with lunar sheath characteristics to evaluate the altitude profile of the particle size exhibiting levitation. The inclusion of solar wind flux into analysis is noticed to reduce the sheath span and altitude of the particle levitation; the dependence of the sheath structure and particle levitation on the solar wind plasma parameters has been discussed and graphically presented.

  8. The relationship between plasmapause, solar wind and geomagnetic activity between 2007 and 2011

    Directory of Open Access Journals (Sweden)

    G. Verbanac

    2015-10-01

    Full Text Available Taking advantage of the Cluster satellite mission and especially the observations made by the instrument WHISPER to deduce the electron number density along the orbit of the satellites, we studied the relationships between the plasmapause positions (LPP and the following LPP indicators: (a solar wind coupling functions Bz (Z component of the interplanetary magnetic field vector, B, in GSM system, BV (related to the interplanetary electric field; B is the magnitude of the interplanetary magnetic field vector, V is solar wind velocity, and dΦmp/dt (which combines different physical processes responsible for the magnetospheric activity and (b geomagnetic indices Dst, Ap and AE. The analysis is performed separately for three magnetic local time (MLT sectors (Sector1 – night sector (01:00–07:00 MLT; Sector2 – day sector (07:00–16:00 MLT; Sector3 – evening sector (16:00–01:00 MLT and for all MLTs taken together. All LPP indicators suggest the faster plasmapause response in the postmidnight sector. Delays in the plasmapause responses (hereafter time lags are approximately 2–27 h, always increasing from Sector1 to Sector3. The obtained fits clearly resolve the MLT structures. The variability in the plasmapause is the largest for low values of LPP indicators, especially in Sector2. At low activity levels,LPP exhibits the largest values on the dayside (in Sector2 and the smallest on the postmidnight side (Sector1. Displacements towards larger values on the evening side (Sector3 and towards lower values on the dayside (Sector2 are identified for enhanced magnetic activity. Our results contribute to constraining the physical mechanisms involved in the plasmapause formation and to further study the still not well understood related issues.

  9. Indirect solar wind geothermal: Alternative energy sources 4, volume 4

    Science.gov (United States)

    Veziroglu, T. N.

    The utilities are obliged to provide electricity in a reliable and cost effective manner. Some unique problems posed by large scale wind turbines as an electricity source have to be considered. A value model is presented which is based upon the fuel displacement capability and the capacity displacement capability of wind turbines. The amount of fossil fuels which is saved by wind turbines depends on the forecasted wind power output, the actual power output fluctuations of the wind turbines and on system operation. The highly controversial capacity credit of wind turbines is discussed under the aspect of system reliability. It is shown that calculations of the capacity credit should be based upon detailed investigations with regard to the time dependence of the hourly wind power output.

  10. Firehose constraints of the bi-Kappa-distributed electrons: a zero-order approach for the suprathermal electrons in the solar wind

    Czech Academy of Sciences Publication Activity Database

    Lazar, M.; Shaaban, S. M.; Poedts, S.; Štverák, Štěpán

    2017-01-01

    Roč. 464, č. 1 (2017), s. 564-571 ISSN 0035-8711 Institutional support: RVO:68378289 Keywords : instabilities * plasmas * methods * analytical * methods: observational * solar wind Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 4.961, year: 2016 https://academic.oup.com/mnras/article-abstract/464/1/564/2236068/Firehose-constraints-of-the-bi-Kappa-distributed?redirectedFrom=fulltext

  11. Wind effects on convective heat loss from a cavity receiver for a parabolic concentrating solar collector

    Energy Technology Data Exchange (ETDEWEB)

    Ma, R.Y. [California State Polytechnic Univ., Pomoma, CA (United States). Dept. of Mechanical Engineering

    1993-09-01

    Tests were performed to determine the convective heat loss characteristics of a cavity receiver for a parabolid dish concentrating solar collector for various tilt angles and wind speeds of 0-24 mph. Natural (no wind) convective heat loss from the receiver is the highest for a horizontal receiver orientation and negligible with the reveler facing straight down. Convection from the receiver is substantially increased by the presence of side-on wind for all receiver tilt angles. For head-on wind, convective heat loss with the receiver facing straight down is approximately the same as that for side-on wind. Overall it was found that for wind speeds of 20--24 mph, convective heat loss from the receiver can be as much as three times that occurring without wind.

  12. The distribution of waves in the inner magnetosphere as a function of solar wind parameters

    Science.gov (United States)

    Aryan, Homayon; Balikhin, Michael A.; Agapitov, Oleksiy; Krasnoselskikh, Vladimir; Yearby, Keith

    Energetic electrons within the Earth’s radiation belts represent a serious hazard to geostationary satellites. The interactions of electrons with chorus waves play an important role in both the acceleration and loss of radiation belt electrons. Studies of the evolution of energetic electron fluxes rely heavily on numerical codes in order to model energy and pitch angle diffusion due to electron interaction with plasma waves in the frame of quasilinear approximation. Application of these codes requires knowledge of statistical wave models to present wave distributions in the magnetosphere. A number of such models are based on CRESS, Cluster, THEMIS and other mission data. These models present wave distributions as a function of L-shell, magnetic local time, magnetic latitude and geomagnetic activity expressed by geomagnetic indices (Kp or Ae). However, it has been shown by G. Reeves and co-authors that only 50% of geomagnetic storms increase flux of relativistic electrons at GEO while 20% cause a decrease. This emphasizes the importance of including solar wind parameters in addition to geomagnetic indices. The present study examines almost four years (01, January, 2004 to 29, September, 2007) of STAFF (Spatio-Temporal Analysis of Field Fluctuation) data from Double Star TC1 combined with geomagnetic indices and solar wind parameters from OMNI database in order to present a comprehensive model of chorus wave intensities as a function of L-shell, magnetic local time, magnetic latitude, geomagnetic indices and solar wind parameters. The results show that chorus emission is not only sub-storm dependent but also dependent upon solar wind parameters with solar wind velocity evidently the most influential solar wind parameter. The largest peak intensities are observed for lower band chorus during active conditions, high solar wind velocity, low density and high pressure.

  13. Physical understanding of the tropical cyclone wind-pressure relationship.

    Science.gov (United States)

    Chavas, Daniel R; Reed, Kevin A; Knaff, John A

    2017-11-08

    The relationship between the two common measures of tropical cyclone intensity, the central pressure deficit and the peak near-surface wind speed, is a long-standing problem in tropical meteorology that has been approximated empirically yet lacks physical understanding. Here we provide theoretical grounding for this relationship. We first demonstrate that the central pressure deficit is highly predictable from the low-level wind field via gradient wind balance. We then show that this relationship reduces to a dependence on two velocity scales: the maximum azimuthal-mean azimuthal wind speed and half the product of the Coriolis parameter and outer storm size. This simple theory is found to hold across a hierarchy of models spanning reduced-complexity and Earth-like global simulations and observations. Thus, the central pressure deficit is an intensity measure that combines maximum wind speed, storm size, and background rotation rate. This work has significant implications for both fundamental understanding and risk analysis, including why the central pressure better explains historical economic damages than does maximum wind speed.

  14. Power Flow Simulations of a More Renewable California Grid Utilizing Wind and Solar Insolation Forecasting

    Science.gov (United States)

    Hart, E. K.; Jacobson, M. Z.; Dvorak, M. J.

    2008-12-01

    Time series power flow analyses of the California electricity grid are performed with extensive addition of intermittent renewable power. The study focuses on the effects of replacing non-renewable and imported (out-of-state) electricity with wind and solar power on the reliability of the transmission grid. Simulations are performed for specific days chosen throughout the year to capture seasonal fluctuations in load, wind, and insolation. Wind farm expansions and new wind farms are proposed based on regional wind resources and time-dependent wind power output is calculated using a meteorological model and the power curves of specific wind turbines. Solar power is incorporated both as centralized and distributed generation. Concentrating solar thermal plants are modeled using local insolation data and the efficiencies of pre-existing plants. Distributed generation from rooftop PV systems is included using regional insolation data, efficiencies of common PV systems, and census data. The additional power output of these technologies offsets power from large natural gas plants and is balanced for the purposes of load matching largely with hydroelectric power and by curtailment when necessary. A quantitative analysis of the effects of this significant shift in the electricity portfolio of the state of California on power availability and transmission line congestion, using a transmission load-flow model, is presented. A sensitivity analysis is also performed to determine the effects of forecasting errors in wind and insolation on load-matching and transmission line congestion.

  15. Residential Solar Power and the Physics Teacher

    Science.gov (United States)

    Carpenter, David

    2007-10-01

    The roof of my house sports one of the largest residential photovoltaic arrays in Ohio. It produces all of the electricity for my house and family of four. With state and federal incentives, it cost less to install than the price of a new car. It will pay for itself within the warrantee period. A picture of my house with solar panels is the background on my classroom computer. I am the physics teacher at Hayes High School in Delaware, Ohio. I don't need a formal curriculum. Sooner or later my students start asking questions. They even ask the exact same questions that adults do. The inverter for my PV system sends performance data to my computer. I post this on my website, which takes it into my classroom. This sparks conversation on a whole variety of topics, from sun angles to energy, electricity, technology and climate studies.

  16. EVOLUTION OF INTERMITTENCY IN THE SLOW AND FAST SOLAR WIND BEYOND THE ECLIPTIC PLANE

    Energy Technology Data Exchange (ETDEWEB)

    Wawrzaszek, A.; Macek, W. M. [Space Research Centre, Polish Academy of Sciences, Warsaw (Poland); Echim, M. [The Belgian Institute for Space Aeronomy, Brussels (Belgium); Bruno, R., E-mail: anna.wawrzaszek@cbk.waw.pl, E-mail: marius.echim@oma.be, E-mail: macek@cbk.waw.pl, E-mail: roberto.bruno@iaps.inaf.it [Institute for Space Astrophysics and Planetology, Roma (Italy)

    2015-12-01

    We study intermittency as a departure from self-similarity of the solar wind magnetic turbulence and investigate the evolution with the heliocentric distance and latitude. We use data from the Ulysses spacecraft measured during two solar minima (1997–1998 and 2007–2008) and one solar maximum (1999–2001). In particular, by modeling a multifractal spectrum, we revealed the intermittent character of turbulence in the small-scale fluctuations of the magnetic field embedded in the slow and fast solar wind. Generally, at small distances from the Sun, in both the slow and fast solar wind, we observe the high degree of multifractality (intermittency) that decreases somewhat slowly with distance and slowly with latitude. The obtained results seem to suggest that generally intermittency in the solar wind has a solar origin. However, the fast and slow streams, shocks, and other nonlinear interactions can only be considered as the drivers of the intermittent turbulence. It seems that analysis shows that turbulence beyond the ecliptic plane evolves too slowly to maintain the intermittency with the distance and latitude. Moreover, we confirm that the multifractality and intermittency are at a lower level than in the ecliptic, as well as the existence of symmetry with respect to the ecliptic plane, suggesting that there are similar turbulent properties observed in the two hemispheres.

  17. EVOLUTION OF INTERMITTENCY IN THE SLOW AND FAST SOLAR WIND BEYOND THE ECLIPTIC PLANE

    International Nuclear Information System (INIS)

    Wawrzaszek, A.; Macek, W. M.; Echim, M.; Bruno, R.

    2015-01-01

    We study intermittency as a departure from self-similarity of the solar wind magnetic turbulence and investigate the evolution with the heliocentric distance and latitude. We use data from the Ulysses spacecraft measured during two solar minima (1997–1998 and 2007–2008) and one solar maximum (1999–2001). In particular, by modeling a multifractal spectrum, we revealed the intermittent character of turbulence in the small-scale fluctuations of the magnetic field embedded in the slow and fast solar wind. Generally, at small distances from the Sun, in both the slow and fast solar wind, we observe the high degree of multifractality (intermittency) that decreases somewhat slowly with distance and slowly with latitude. The obtained results seem to suggest that generally intermittency in the solar wind has a solar origin. However, the fast and slow streams, shocks, and other nonlinear interactions can only be considered as the drivers of the intermittent turbulence. It seems that analysis shows that turbulence beyond the ecliptic plane evolves too slowly to maintain the intermittency with the distance and latitude. Moreover, we confirm that the multifractality and intermittency are at a lower level than in the ecliptic, as well as the existence of symmetry with respect to the ecliptic plane, suggesting that there are similar turbulent properties observed in the two hemispheres

  18. Kinetic and Potential Sputtering of Lunar Regolith: The Contribution of the Heavy Highly Charged (Minority) Solar Wind Ions

    Science.gov (United States)

    Meyer, F. W.; Barghouty, A. F.

    2012-01-01

    Solar wind sputtering of the lunar surface helps determine the composition of the lunar exosphere and contributes to surface weathering. To date, only the effects of the two dominant solar wind constituents, H+ and He+, have been considered. The heavier, less abundant solar wind constituents have much larger sputtering yields because they have greater mass (kinetic sputtering) and they are highly charged (potential sputtering) Their contribution to total sputtering can therefore be orders of magnitude larger than their relative abundances would suggest

  19. Decrease of the solar flare/solar wind flux ratio in the past several aeons from solar neon and tracks in lunar soil plagioclases

    International Nuclear Information System (INIS)

    Wieler, R.; Etique, Ph.; Signer, P.; Poupeau, G.

    1982-08-01

    The He, Ne, and Ar concentrations and isotopic compositions of mineral separates of six lunar subsurface samples and of two regolith breccias which were exposed to the sun as early as 2 - 3 billion years ago are determined. The results are compared with our noble gas data obtained previously on mineral separates of lunar surface soil samples most of which contain recently implanted solar gases. The mean solar flare track densities were determined on aliquots of several of the plagioclase separates analyzed for noble gases. Solar wind retentive mafic minerals and ilmenites show that a possible secular increase of the 20 Ne/ 22 Ne ratio in the solar wind during the last 2 - 3 Ga. is 20 Ne/ 22 Ne of approximately 11.3 - 11.8, reported for solar flare Ne retained in plagioclase separates from lunar soils. The solar flare track data and the Ne data independently show that plagioclases exposed to the sun over the last 10 8 years recorded a lower mean ratio of solar flare to solar wind intensities than samples exposed about 1 - 3 billion years ago. On the basis of track data these ratios are estimated to differ by a factor approximately 2. (Author) [pt

  20. On the surface physics affecting solar oscillation frequencies

    DEFF Research Database (Denmark)

    Houdek, G.; Trampedach, R.; Aarslev, M. J.

    2017-01-01

    . In this Letter, we address the physical processes of turbulent convection that are predominantly responsible for the frequency differences between standard models and observations, also called 'surface effects'. We compare measured solar frequencies from the Michelson Doppler Imager instrument on the SOlar...... physics in our model