WorldWideScience

Sample records for wind shock models

  1. Modelling Near-IR polarization to constrain stellar wind bow shocks

    Science.gov (United States)

    Neilson, Hilding R.; Ignace, R.; Shrestha, M.; Hoffman, J. L.; Mackey, J.

    2013-06-01

    Bow shocks formed from stellar winds are common phenomena observed about massive and intermediate-mass stars such as zeta Oph, Betelgeuse and delta Cep. These bow shocks provide information about the motion of the star, the stellar wind properties and the density of the ISM. Because bow shocks are asymmetric structures, they also present polarized light that is a function of their shape and density. We present a preliminary work modeling dust polarization from a Wilkin (1996) analytic bow shock model and explore how the polarization changes as a function of stellar wind properties.

  2. Wind Tunnel Model Design for Sonic Boom Studies of Nozzle Jet with Shock Interactions

    Science.gov (United States)

    Cliff, Susan E.; Denison, Marie; Sozer, Emre; Moini-Yekta, Shayan

    2016-01-01

    NASA and Industry are performing vehicle studies of configurations with low sonic boom pressure signatures. The computational analyses of modern configuration designs have matured to the point where there is confidence in the prediction of the pressure signature from the front of the vehicle, but uncertainty in the aft signatures with often greater boundary layer effects and nozzle jet pressures. Wind tunnel testing at significantly lower Reynolds numbers than in flight and without inlet and nozzle jet pressures make it difficult to accurately assess the computational solutions of flight vehicles. A wind tunnel test in the NASA Ames 9- by 7-Foot Supersonic Wind Tunnel from Mach 1.6 to 2.0 will be used to assess the effects of shocks from components passing through nozzle jet plumes on the sonic boom pressure signature and provide datasets for comparison with CFD codes. A large number of high-fidelity numerical simulations of wind tunnel test models with a variety of shock generators that simulate horizontal tails and aft decks have been studied to provide suitable models for sonic boom pressure measurements using a minimally intrusive pressure rail in the wind tunnel. The computational results are presented and the evolution of candidate wind tunnel models is summarized and discussed in this paper.

  3. Wind Tunnel Model Design for Sonic Boom Studies of Nozzle Jet Flows with Shock Interactions

    Science.gov (United States)

    Cliff, Susan E.; Denison, Marie; Moini-Yekta, Shayan; Morr, Donald E.; Durston, Donald A.

    2016-01-01

    NASA and the U.S. aerospace industry are performing studies of supersonic aircraft concepts with low sonic boom pressure signatures. The computational analyses of modern aircraft designs have matured to the point where there is confidence in the prediction of the pressure signature from the front of the vehicle, but uncertainty remains in the aft signatures due to boundary layer and nozzle exhaust jet effects. Wind tunnel testing without inlet and nozzle exhaust jet effects at lower Reynolds numbers than in-flight make it difficult to accurately assess the computational solutions of flight vehicles. A wind tunnel test in the NASA Ames 9- by 7-Foot Supersonic Wind Tunnel is planned for February 2016 to address the nozzle jet effects on sonic boom. The experiment will provide pressure signatures of test articles that replicate waveforms from aircraft wings, tails, and aft fuselage (deck) components after passing through cold nozzle jet plumes. The data will provide a variety of nozzle plume and shock interactions for comparison with computational results. A large number of high-fidelity numerical simulations of a variety of shock generators were evaluated to define a reduced collection of suitable test models. The computational results of the candidate wind tunnel test models as they evolved are summarized, and pre-test computations of the final designs are provided.

  4. Shock heating of the solar wind plasma

    Science.gov (United States)

    Whang, Y. C.; Liu, Shaoliang; Burlaga, L. F.

    1990-01-01

    The role played by shocks in heating solar-wind plasma is investigated using data on 413 shocks which were identified from the plasma and magnetic-field data collected between 1973 and 1982 by Pioneer and Voyager spacecraft. It is found that the average shock strength increased with the heliocentric distance outside 1 AU, reaching a maximum near 5 AU, after which the shock strength decreased with the distance; the entropy of the solar wind protons also reached a maximum at 5 AU. An MHD simulation model in which shock heating is the only heating mechanism available was used to calculate the entropy changes for the November 1977 event. The calculated entropy agreed well with the value calculated from observational data, suggesting that shocks are chiefly responsible for heating solar wind plasma between 1 and 15 AU.

  5. Development of solar wind shock models with tensor plasma pressure for data analysis. Final technical report, 1 Aug 1970--31 Dec 1975

    International Nuclear Information System (INIS)

    Abraham-shrauner, B.

    1975-01-01

    The development of solar wind shock models with tensor plasma pressure and the comparison of some of the shock models with the satellite data from Pioneer 6 through Pioneer 9 are reported. Theoretically, difficulties were found in non-turbulent fluid shock models for tensor pressure plasmas. For microscopic shock theories nonlinear growth caused by plasma instabilities was frequently not clearly demonstrated to lead to the formation of a shock. As a result no clear choice for a shock model for the bow shock or interplanetary tensor pressure shocks emerged

  6. Global MHD Simulations of the Earth's Bow Shock Shape and Motion Under Variable Solar Wind Conditions

    Science.gov (United States)

    Mejnertsen, L.; Eastwood, J. P.; Hietala, H.; Schwartz, S. J.; Chittenden, J. P.

    2018-01-01

    Empirical models of the Earth's bow shock are often used to place in situ measurements in context and to understand the global behavior of the foreshock/bow shock system. They are derived statistically from spacecraft bow shock crossings and typically treat the shock surface as a conic section parameterized according to a uniform solar wind ram pressure, although more complex models exist. Here a global magnetohydrodynamic simulation is used to analyze the variability of the Earth's bow shock under real solar wind conditions. The shape and location of the bow shock is found as a function of time, and this is used to calculate the shock velocity over the shock surface. The results are compared to existing empirical models. Good agreement is found in the variability of the subsolar shock location. However, empirical models fail to reproduce the two-dimensional shape of the shock in the simulation. This is because significant solar wind variability occurs on timescales less than the transit time of a single solar wind phase front over the curved shock surface. Empirical models must therefore be used with care when interpreting spacecraft data, especially when observations are made far from the Sun-Earth line. Further analysis reveals a bias to higher shock speeds when measured by virtual spacecraft. This is attributed to the fact that the spacecraft only observes the shock when it is in motion. This must be accounted for when studying bow shock motion and variability with spacecraft data.

  7. Wind Magnetic Clouds for the Period 2013 - 2015: Model Fitting, Types, Associated Shock Waves, and Comparisons to Other Periods

    Science.gov (United States)

    Lepping, R. P.; Wu, C.-C.; Berdichevsky, D. B.; Szabo, A.

    2018-04-01

    We give the results of parameter fitting of the magnetic clouds (MCs) observed by the Wind spacecraft for the three-year period 2013 to the end of 2015 (called the "Present" period) using the MC model of Lepping, Jones, and Burlaga ( J. Geophys. Res. 95, 11957, 1990). The Present period is almost coincident with the solar maximum of the sunspot number, which has a broad peak starting in about 2012 and extending to almost 2015. There were 49 MCs identified in the Present period. The modeling gives MC quantities such as size, axial attitude, field handedness, axial magnetic-field strength, center time, and closest-approach vector. Derived quantities are also estimated, such as axial magnetic flux, axial current density, and total axial current. Quality estimates are assigned representing excellent, fair/good, and poor. We provide error estimates on the specific fit parameters for the individual MCs, where the poor cases are excluded. Model-fitting results that are based on the Present period are compared to the results of the full Wind mission from 1995 to the end of 2015 (Long-term period), and compared to the results of two other recent studies that encompassed the periods 2007 - 2009 and 2010 - 2012, inclusive. We see that during the Present period, the MCs are, on average, slightly slower, slightly weaker in axial magnetic field (by 8.7%), and larger in diameter (by 6.5%) than those in the Long-term period. However, in most respects, the MCs in the Present period are significantly closer in characteristics to those of the Long-term period than to those of the two recent three-year periods. However, the rate of occurrence of MCs for the Long-term period is 10.3 year^{-1}, whereas this rate for the Present period is 16.3 year^{-1}, similar to that of the period 2010 - 2012. Hence, the MC occurrence rate has increased appreciably in the last six years. MC Type (N-S, S-N, All N, All S, etc.) is assigned to each MC; there is an inordinately large percentage of All S

  8. The Crab nebula's ''wisps'' as shocked pulsar wind

    International Nuclear Information System (INIS)

    Gallant, Y.A.; Arons, J.; Langdon, A.B.

    1992-01-01

    The Crab synchrotron nebula has been successfully modelled as the post-shock region of a relativistic, magnetized wind carrying most of the spindown luminosity from the central pulsar. While the Crab is the best-studied example, most of the highest spindown luminosity pulsars are also surrounded by extended synchrotron nebulae, and several additional supernova remnants with ''plerionic'' morphologies similar to the Crab are known where the central object is not seen. All these objects have nonthermal, power-law spectra attributable to accelerated high-energy particles thought to originate in a Crab-like relativistic pulsar wind. However, proposed models have so far treated the wind shock as an infinitesimally thin discontinuity, with an arbitrarily ascribed particle acceleration efficiency. To make further progress, investigations resolving the shock structure seemed in order. Motivated by these considerations, we have performed ''particle-in-cell (PIC) simulations of perpendicularly magnetized shocks in electron-positron and electron-positron-ion plasmas. The shocks in pure electron-positron plasmas were found to produce only thermal distributions downstream, and are thus poor candidates as particle acceleration sites. When the upstream plasma flow also contained a smaller population of positive ions, however, efficient acceleration of positrons, and to a lesser extent of electrons, was observed in the simulations

  9. Interaction of the interplanetary shock and tangential discontinuity in the solar wind

    Science.gov (United States)

    Goncharov, Oleksandr; Koval, Andriy; Safrankova, Jana; Nemecek, Zdenek; Prech, Lubomir; Szabo, Adam; Zastenker, Georgy N.

    2017-04-01

    Collisionless shocks play a significant role in the solar wind interaction with the Earth. Fast forward interplanetary (IP) shocks driven by coronal mass ejections or by interaction of fast and slow solar wind streams can be encountered in the interplanetary space, while the bow shock is a standing fast reverse shock formed by the interaction of the supersonic solar wind with Earth's magnetic field. Both types of shocks are responsible for a transformation of a part of the energy of the directed solar wind motion to plasma heating and to acceleration of reflected particles to high energies. It is well known that the interaction of tangential discontinuities with the bow shock can create hot flow anomalies but interactions between IP shocks and tangential discontinuities in the solar wind are studied to a lesser extent due to lack of observations. A fortunate position of many spacecraft (Wind, ACE, DSCOVR, THEMIS, Spektr-R) on June 22, 2015 allows us detailed observations of an IP shock modification due to this interaction. We present an analysis of the event supported with MHD modeling that reveals basic features of the observed IP shock ramp splitting. However, a good matching of modeling and observations was found for DSCOVR and Spektr-R located above the ecliptic plane, whereas a timing of observations below this plane demonstrates problems of modeling of highly inclined discontinuities.

  10. Model for the broadband Crab nebula spectrum with injection of a log-parabola electron distribution at the wind termination shock

    Science.gov (United States)

    Fraschetti, F.; Pohl, M.

    2017-10-01

    We develop a model of the steady-state spectrum of the Crab nebula encompassing both the radio/soft X-ray and the GeV/multi-TeV observations. By solving the transport equation for TeV electrons injected at the wind termination shock as a log-parabola momentum distribution and evolved via energy losses, we determine analytically the resulting photon differential energy spectrum. We find an impressive agreement with the observations in the synchrotron region. The predicted synchrotron self-Compton accommodates the previously unsolved origin of the broad 200 GeV peak that matches the Fermi/LAT data beyond 1 GeV with the MAGIC data. A natural interpretation of the deviation from power-law of the photon spectrum customarily fit with empirical broken power-laws is provided. This model can be applied to the radio-to- multi-TeV spectra of a variety of astrophysical outflows, including pulsar wind nebulae and supernova remnants. We also show that MeV-range energetic particle distribution at interplanetary shocks typically fit with broken-power laws or Band function can be accurately reproduced by log-parabolas.

  11. Interaction of Accretion Shocks with Winds Kinsuk Acharya , Sandip ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Abstract. Accretion shocks are known to oscillate in presence of cool- ing processes in the disk. This oscillation may also cause quasi-periodic oscillations of black holes. In the presence of strong winds, these shocks have oscillations in vertical direction as well. We show examples of shock oscillations under the influence of ...

  12. Stereo Photogrammetry Measurements of the Position and Attitude of a Nozzle-Plume/Shock-Wave Interaction Model in the NASA Ames 9- by 7-Ft Supersonic Wind Tunnel

    Science.gov (United States)

    Schairer, Edward T.; Kushner, Laura K.; Drain, Bethany A.; Heineck, James T.; Durston, Donald A.

    2017-01-01

    Stereo photogrammetry was used to measure the position and attitude of a slender body of revolution during nozzle-plume/shock-wave interaction tests in the NASA Ames 9- by 7-Ft Supersonic Wind Tunnel. The model support system was designed to allow the model to be placed at many locations in the test section relative to a pressure rail on one sidewall. It included a streamwise traverse as well as a thin blade that offset the model axis from the sting axis. With these features the support system was more flexible than usual resulting in higher-than-usual uncertainty in the position and attitude of the model. Also contributing to this uncertainty were the absence of a balance, so corrections for sting deflections could not be applied, and the wings-vertical orientation of the model, which precluded using a gravity-based accelerometer to measure pitch angle. Therefore, stereo photogrammetry was chosen to provide independent measures of the model position and orientation. This paper describes the photogrammetry system and presents selected results from the test.

  13. Polarized bow shocks reveal features of the winds and environments of massive stars

    Science.gov (United States)

    Shrestha, Manisha

    2018-01-01

    Massive stars strongly affect their surroundings through their energetic stellar winds and deaths as supernovae. The bow shock structures created by fast-moving massive stars contain important information about the winds and ultimate fates of these stars as well as their local interstellar medium (ISM). Since bow shocks are aspherical, the light scattered in the dense shock material becomes polarized. Analyzing this polarization reveals details of the bow shock geometry as well as the composition, velocity, density, and albedo of the scattering material. With these quantities, we can constrain the properties of the stellar wind and thus the evolutionary state of the star, as well as the dust composition of the local ISM.In my dissertation research, I use a Monte Carlo radiative transfer code that I optimized to simulate the polarization signatures produced by both resolved and unresolved stellar wind bow shocks (SWBS) illuminated by a central star and by shock emission. I derive bow shock shapes and densities from published analytical calculations and smooth particle hydrodynamic (SPH) models. In the case of the analytical SWBS and electron scattering, I find that higher optical depths produce higher polarization and position angle rotations at specific viewing angles compared to theoretical predictions for low optical depths. This is due to the geometrical properties of the bow shock combined with multiple scattering effects. For dust scattering, the polarization signature is strongly affected by wavelength, dust grain properties, and viewing angle. The behavior of the polarization as a function of wavelength in these cases can distinguish among different dust models for the local ISM. In the case of SPH density structures, I investigate how the polarization changes as a function of the evolutionary phase of the SWBS. My dissertation compares these simulations with polarization data from Betelgeuse and other massive stars with bow shocks. I discuss the

  14. Atomic Physics of Shocked Plasma in Winds of Massive Stars

    Science.gov (United States)

    Leutenegger, Maurice A.; Cohen, David H.; Owocki, Stanley P.

    2012-01-01

    High resolution diffraction grating spectra of X-ray emission from massive stars obtained with Chandra and XMM-Newton have revolutionized our understanding of their powerful, radiation-driven winds. Emission line shapes and line ratios provide diagnostics on a number of key wind parameters. Modeling of resolved emission line velocity profiles allows us to derive independent constraints on stellar mass-loss rates, leading to downward revisions of a factor of a few from previous measurements. Line ratios in He-like ions strongly constrain the spatial distribution of Xray emitting plasma, confirming the expectations of radiation hydrodynamic simulations that X-ray emission begins moderately close to the stellar surface and extends throughout the wind. Some outstanding questions remain, including the possibility of large optical depths in resonance lines, which is hinted at by differences in line shapes of resonance and intercombination lines from the same ion. Resonance scattering leads to nontrivial radiative transfer effects, and modeling it allows us to place constraints on shock size, density, and velocity structure

  15. Colliding Stellar Wind Models with Orbital Motion

    Science.gov (United States)

    Wilkin, Francis P.; O'Connor, Brendan

    2018-01-01

    We present thin-shell models for the collision between two ballistic stellar winds, including orbital motion.The stellar orbits are assumed circular, so that steady-state solutions exist in the rotating frame, where we include centrifugal and Coriolis forces. Exact solutions for the pre-shock winds are incorporated. Here we discuss 2-D model results for equal wind momentum-loss rates, although we allow for the winds to have distinct speeds and mass loss rates. For these unequal wind conditions, we obtain a clear violation of skew-symmetry, despite equal momentum loss rates, due to the Coriolis force.

  16. Cosmic Ray Acceleration by a Versatile Family of Galactic Wind Termination Shocks

    Energy Technology Data Exchange (ETDEWEB)

    Bustard, Chad; Zweibel, Ellen G. [Physics Department, University of Wisconsin–Madison, 1150 University Avenue, Madison, WI 53706 (United States); Cotter, Cory, E-mail: bustard@wisc.edu [Department of Astronomy, University of Wisconsin–Madison, 2535 Sterling Hall, 475 N. Charter Street, Madison, WI 53706 (United States)

    2017-01-20

    There are two distinct breaks in the cosmic ray (CR) spectrum: the so-called “knee” around 3 × 10{sup 15} eV and the so-called “ankle” around 10{sup 18} eV. Diffusive shock acceleration (DSA) at supernova remnant (SNR) shock fronts is thought to accelerate galactic CRs to energies below the knee, while an extragalactic origin is presumed for CRs with energies beyond the ankle. CRs with energies between 3 × 10{sup 15} and 10{sup 18} eV, which we dub the “shin,” have an unknown origin. It has been proposed that DSA at galactic wind termination shocks, rather than at SNR shocks, may accelerate CRs to these energies. This paper uses the galactic wind model of Bustard et al. to analyze whether galactic wind termination shocks may accelerate CRs to shin energies within a reasonable acceleration time and whether such CRs can subsequently diffuse back to the Galaxy. We argue for acceleration times on the order of 100 Myr rather than a few billion years, as assumed in some previous works, and we discuss prospects for magnetic field amplification at the shock front. Ultimately, we generously assume that the magnetic field is amplified to equipartition. This formalism allows us to obtain analytic formulae, applicable to any wind model, for CR acceleration. Even with generous assumptions, we find that very high wind velocities are required to set up the necessary conditions for acceleration beyond 10{sup 17} eV. We also estimate the luminosities of CRs accelerated by outflow termination shocks, including estimates for the Milky Way wind.

  17. Multispacecraft observations of the terrestrial bow shock and magnetopause during extreme solar wind disturbances

    DEFF Research Database (Denmark)

    Tatrallyay, M.; Erdos, G.; Nemeth, Z.

    2012-01-01

    of three magnetopause and four bow shock models which describe them in considerably different ways using statistical methods based on observations. A new 2-D magnetopause model is introduced (based on Verigin et al., 2009) which takes into account the pressure of the compressed magnetosheath field raised...... by the interplanetary magnetic field (IMF) component transverse to the solar wind flow. The observed magnetopause crossings could be predicted with a reasonable accuracy (0.1-0.2 RE) by one of the presented models at least. For geosynchronous magnetopause crossings observed by the GOES satellites, (1) the new model...... by the Cluster spacecraft were best predicted by the 3-D model of Lin et al. (2010). The applied empirical bow shock models and the 3-D semi-empiric bow shock model combined with magnetohydrodynamic (MHD) solution proved to be insufficient for predicting the observed unusual bow shock locations during large...

  18. Cosmic Ray Acceleration from Multiple Galactic Wind Shocks

    Science.gov (United States)

    Cotter, Cory; Bustard, Chad; Zweibel, Ellen

    2018-01-01

    Cosmic rays still have an unknown origin. Many mechanisms have been suggested for their acceleration including quasars, pulsars, magnetars, supernovae, supernova remnants, and galactic termination shocks. The source of acceleration may be a mixture of these and a different mixture in different energy regimes. Using numerical simulations, we investigate multiple shocks in galactic winds as potential cosmic rays sources. By having shocks closer to the parent galaxy, more particles may diffuse back to the disk instead of being blown out in the wind, as found in Bustard, Zweibel, and Cotter (2017, ApJ) and also Merten, Bustard, Zweibel, and Tjus (to be submitted to ApJ). Specifically, this flux of cosmic rays could contribute to the unexplained "shin" region between the well-known "knee" and "ankle" of the cosmic ray spectrum. We would like to acknowledge support from the National Science Foundation (NSF) Graduate Research Fellowship Program under grant No. DGE-125625 and NSF grant No. AST-1616037.

  19. Wind and IMP 8 Solar Wind, Magnetosheath and Shock Data

    Science.gov (United States)

    2004-01-01

    The purpose of this project was to provide the community access to magnetosheath data near Earth. We provided 27 years of IMP 8 magnetosheath proton velocities, densities, and temperatures with our best (usually 1-min.) time resolution. IMP 8 crosses the magnetosheath twice each 125 day orbit, and we provided magnetosheath data for the roughly 27 years of data for which magnetometer data are also available (which are needed to reliably pick boundaries). We provided this 27 years of IMP 8 magnetosheath data to the NSSDC; this data is now integrated with the IMP 8 solar wind data with flags indicating whether each data point is in the solar wind, magnetosheath, or at the boundary between the two regions. The plasma speed, density, and temperature are provided for each magnetosheath point. These data are also available on the MIT web site ftp://space .mit.edu/pub/plasma/imp/www/imp.html. We provide ASCII time-ordered rows of data giving the observation time, the spacecraft position in GSE, the velocity is GSE, the density and temperature for protons. We also have analyzed and archived on our web site the Wind magnetosheath plasma parameters. These consist of ascii files of the proton and alpha densities, speeds, and thermal speeds. These data are available at ftp://space.mit.edu/pub/plasma/wind/sheath These are the two products promised in the work statement and they have been completed in full.

  20. Wind power prediction models

    Science.gov (United States)

    Levy, R.; Mcginness, H.

    1976-01-01

    Investigations were performed to predict the power available from the wind at the Goldstone, California, antenna site complex. The background for power prediction was derived from a statistical evaluation of available wind speed data records at this location and at nearby locations similarly situated within the Mojave desert. In addition to a model for power prediction over relatively long periods of time, an interim simulation model that produces sample wind speeds is described. The interim model furnishes uncorrelated sample speeds at hourly intervals that reproduce the statistical wind distribution at Goldstone. A stochastic simulation model to provide speed samples representative of both the statistical speed distributions and correlations is also discussed.

  1. Kappa-Electrons Downstream of the Solar Wind Termination Shock

    Science.gov (United States)

    Fahr, H. J.

    2017-12-01

    A theoretical description of the solar wind electron distribution function downstream of the termination shock under the influence of the shock-induced injection of overshooting KeV-energetic electrons will be presented. A kinetic phasespace transport equation in the bulk frame of the heliosheath plasma flow is developed for the solar wind electrons, taking into account shock-induced electron injection, convective changes, magnetic cooling processes and whistler wave-induced energy diffusion. Assuming that the local electron distribution under the prevailing Non-LTE conditions can be represented by a local kappa function with a local kappa parameter that varies with the streamline coordinates, we determine the parameters of the resulting, initial kappa distribution for the downstream electrons. From this initial function spectral electron fluxes can be derived and can be compared with those measured by the VOYAGER-1 spacecraft in the range between 40 to 70 KeV. It can then be shown that with kappa values around kappa = 6 one can in fact fit these data very satisfactorily. In addition it is shown that for isentropic electron flows kappa-distributed electrons have to undergo simultaneous changes of both parameters, i.e. kappa and theta, of the electron kappa function. It is also shown then that under the influence of energy sinks and sources the electron flux becomes non-isentropic with electron entropies changing along the streamline.

  2. Type IV Wind Turbine Model

    DEFF Research Database (Denmark)

    Hansen, Anca Daniela; Margaris, Ioannis D.

    (WPP) will be considered. The aggregate WPP model, which will be based on the upscaling of the individual wind turbine model on the electrical part, will make use of an equivalent wind speed. The implemented model follows the basic structure of the generic standard Type 4 wind turbine model proposed...... by the International Electrotechnical Commission (IEC), in the IEC61400-27-1 Committee Draft for electrical simulation models for wind power generation, which is currently under review, [1]. The Type 4 wind turbine model described in this report includes a set of adjustments of the standard Type 4 wind turbine model...... project to be incorporated in the wind power plant level. This document describes the Type 4 wind turbine simulation model, implemented in the EaseWind project. The implemented wind turbine model is one of the initial necessary steps toward integrating new control services in the wind power plant level...

  3. THERMAL X-RAY EMISSION FROM THE SHOCKED STELLAR WIND OF PULSAR GAMMA-RAY BINARIES

    Energy Technology Data Exchange (ETDEWEB)

    Zabalza, V.; Paredes, J. M. [Departament d' Astronomia i Meteorologia, Institut de Ciencies del Cosmos (ICC), Universitat de Barcelona (IEEC-UB), Marti i Franques 1, E08028 Barcelona (Spain); Bosch-Ramon, V., E-mail: vzabalza@am.ub.es [Dublin Institute for Advanced Studies, 31 Fitzwilliam Place, Dublin 2 (Ireland)

    2011-12-10

    Gamma-ray-loud X-ray binaries are binary systems that show non-thermal broadband emission from radio to gamma rays. If the system comprises a massive star and a young non-accreting pulsar, their winds will collide producing broadband non-thermal emission, most likely originated in the shocked pulsar wind. Thermal X-ray emission is expected from the shocked stellar wind, but until now it has neither been detected nor studied in the context of gamma-ray binaries. We present a semi-analytic model of the thermal X-ray emission from the shocked stellar wind in pulsar gamma-ray binaries, and find that the thermal X-ray emission increases monotonically with the pulsar spin-down luminosity, reaching luminosities of the order of 10{sup 33} erg s{sup -1}. The lack of thermal features in the X-ray spectrum of gamma-ray binaries can then be used to constrain the properties of the pulsar and stellar winds. By fitting the observed X-ray spectra of gamma-ray binaries with a source model composed of an absorbed non-thermal power law and the computed thermal X-ray emission, we are able to derive upper limits on the spin-down luminosity of the putative pulsar. We applied this method to LS 5039, the only gamma-ray binary with a radial, powerful wind, and obtain an upper limit on the pulsar spin-down luminosity of {approx}6 Multiplication-Sign 10{sup 36} erg s{sup -1}. Given the energetic constraints from its high-energy gamma-ray emission, a non-thermal to spin-down luminosity ratio very close to unity may be required.

  4. Decay of Solar Wind Turbulence behind Interplanetary Shocks

    International Nuclear Information System (INIS)

    Pitňa, Alexander; Šafránková, Jana; Němeček, Zdeněk; Franci, Luca

    2017-01-01

    We investigate the decay of magnetic and kinetic energies behind IP shocks with motivation to find a relaxation time when downstream turbulence reaches a usual solar wind value. We start with a case study that introduces computation techniques and quantifies a contribution of kinetic fluctuations to the general energy balance. This part of the study is based on high-time (31 ms) resolution plasma data provided by the Spektr-R spacecraft. On the other hand, a statistical part is based on 92 s Wind plasma and magnetic data and its results confirm theoretically established decay laws for kinetic and magnetic energies. We observe the power-law behavior of the energy decay profiles and we estimated the power-law exponents of both kinetic and magnetic energy decay rates as −1.2. We found that the decay of MHD turbulence does not start immediately after the IP shock ramp and we suggest that the proper decay of turbulence begins when a contribution of the kinetic processes becomes negligible. We support this suggestion with a detailed analysis of the decay of turbulence at the kinetic scale.

  5. Decay of Solar Wind Turbulence behind Interplanetary Shocks

    Energy Technology Data Exchange (ETDEWEB)

    Pitňa, Alexander; Šafránková, Jana; Němeček, Zdeněk [Charles University, Faculty of Mathematics and Physics, V Holesovickach 2, Prague, CZ-18000 (Czech Republic); Franci, Luca, E-mail: offelius@gmail.com [Dipartimento di Fisica e Astronomia, Universita degli Studi di Firenze, I-50125 Firenze (Italy)

    2017-07-20

    We investigate the decay of magnetic and kinetic energies behind IP shocks with motivation to find a relaxation time when downstream turbulence reaches a usual solar wind value. We start with a case study that introduces computation techniques and quantifies a contribution of kinetic fluctuations to the general energy balance. This part of the study is based on high-time (31 ms) resolution plasma data provided by the Spektr-R spacecraft. On the other hand, a statistical part is based on 92 s Wind plasma and magnetic data and its results confirm theoretically established decay laws for kinetic and magnetic energies. We observe the power-law behavior of the energy decay profiles and we estimated the power-law exponents of both kinetic and magnetic energy decay rates as −1.2. We found that the decay of MHD turbulence does not start immediately after the IP shock ramp and we suggest that the proper decay of turbulence begins when a contribution of the kinetic processes becomes negligible. We support this suggestion with a detailed analysis of the decay of turbulence at the kinetic scale.

  6. Model for Shock Wave Chaos

    KAUST Repository

    Kasimov, Aslan R.

    2013-03-08

    We propose the following model equation, ut+1/2(u2−uus)x=f(x,us) that predicts chaotic shock waves, similar to those in detonations in chemically reacting mixtures. The equation is given on the half line, x<0, and the shock is located at x=0 for any t≥0. Here, us(t) is the shock state and the source term f is taken to mimic the chemical energy release in detonations. This equation retains the essential physics needed to reproduce many properties of detonations in gaseous reactive mixtures: steady traveling wave solutions, instability of such solutions, and the onset of chaos. Our model is the first (to our knowledge) to describe chaos in shock waves by a scalar first-order partial differential equation. The chaos arises in the equation thanks to an interplay between the nonlinearity of the inviscid Burgers equation and a novel forcing term that is nonlocal in nature and has deep physical roots in reactive Euler equations.

  7. Shock layer vacuum UV spectroscopy in an arc-jet wind tunnel

    Science.gov (United States)

    Palumbo, G.

    1990-01-01

    An experimental program is being developed to obtain measurements of the incident surface radiation in the 1000 A to 2000 A range from the shock stagnation region of a blunt model in the Ames 20 MW Arc-Jet Wind Tunnel. The setup consists of a water-cooled blunt model, with a magnesium fluoride forward-viewing window. Radiation incident on the window is optically imaged via an evacuated system and reflective optical elements onto the entrance slit of a spectrograph. The model will be exposed to the supersonic plasma stream from the exit nozzle of the arc-jet tunnel. The resulting bow shock radiation will be measured. It is expected that this experiment will help evaluate the importance of atomic N and O lines to the radiative heating of future Aeroassist Space Transfer Vehicles (ASTVs).

  8. Modelling Wind for Wind Farm Layout Optimization Using Joint Distribution of Wind Speed and Wind Direction

    OpenAIRE

    Ju Feng; Wen Zhong Shen

    2015-01-01

    Reliable wind modelling is of crucial importance for wind farm development. The common practice of using sector-wise Weibull distributions has been found inappropriate for wind farm layout optimization. In this study, we propose a simple and easily implementable method to construct joint distributions of wind speed and wind direction, which is based on the parameters of sector-wise Weibull distributions and interpolations between direction sectors. It is applied to the wind measurement data a...

  9. A comparison of shock-cloud and wind-cloud interactions: the longer survival of clouds in winds

    Science.gov (United States)

    Goldsmith, K. J. A.; Pittard, J. M.

    2017-09-01

    The interaction of a hot, high-velocity wind with a cold, dense molecular cloud has often been assumed to resemble the evolution of a cloud embedded in a post-shock flow. However, no direct comparative study of these two processes currently exists in the literature. We present 2D adiabatic hydrodynamical simulations of the interaction of a Mach 10 shock with a cloud of density contrast χ = 10 and compare our results with those of a commensurate wind-cloud simulation. We then investigate the effect of varying the wind velocity, effectively altering the wind Mach number Mwind, on the cloud's evolution. We find that there are significant differences between the two processes: 1) the transmitted shock is much flatter in the shock-cloud interaction; 2) a low-pressure region in the wind-cloud case deflects the flow around the edge of the cloud in a different manner to the shock-cloud case; 3) there is far more axial compression of the cloud in the case of the shock. As Mwind increases, the normalized rate of mixing is reduced. Clouds in winds with higher Mwind also do not experience a transmitted shock through the cloud's rear and are more compressed axially. In contrast with shock-cloud simulations, the cloud mixing time normalized by the cloud-crushing time-scale tcc increases for increasing Mwind until it plateaus (at tmix ≃ 25 tcc) at high Mwind, thus demonstrating the expected Mach scaling. In addition, clouds in high Mach number winds are able to survive for long durations and are capable of being moved considerable distances.

  10. On the propagation of sound waves in a stellar wind traversed by periodic strong shocks

    OpenAIRE

    Pijpers, F. P.

    1994-01-01

    It has been claimed that in stellar winds traversed by strong shocks the mechanism for driving the wind by sound wave pressure cannot operate because sound waves cannot propagate past the shocks. It is shown here that sound waves can propagate through shocks in one direction and that this is a sufficient condition for the sound wave pressure mechanism to work. A strong shock amplifies a sound wave passing through it and can drag the sound wave away from the star. It is immaterial for the soun...

  11. TRANSPORT OF SOLAR WIND H{sup +} AND He{sup ++} IONS ACROSS EARTH’S BOW SHOCK

    Energy Technology Data Exchange (ETDEWEB)

    Parks, G. K.; Lin, N. [Space Sciences Laboratory, University of California, Berkeley, CA (United States); Lee, E. [School of Space Research and Institute of Natural Sciences, Kyung Hee University, Yongin (Korea, Republic of); Fu, S. Y.; Ma, Y. Q. [Institute of Space Science, Peking University, Beijing (China); Kim, H. E.; Hong, J. [School of Space Research, Kyung Hee University, Yongin (Korea, Republic of); Yang, Z. W.; Liu, Y. [Key Laboratory for Space Weather, Chinese Academy of Sciences, Beijing (China); Canu, P. [Plasma Physics Laboratory, Ecole Polytechnique, Paris (France); Dandouras, I.; Rème, H. [IRAP, Paul Sabatier University and CNRS, Toulouse (France); Goldstein, M. L., E-mail: parks@ssl.berkeley.edu [NASA Goddard Space Flight Center, Greenbelt, MD (United States)

    2016-07-10

    We have investigated the dependence of mass, energy, and charge of solar wind (SW) transport across Earth’s bow shock. An examination of 111 crossings during quiet SW in both quasi-perpendicular and quasi-parallel shock regions shows that 64 crossings had various degrees of heating and thermalization of SW. We found 22 crossings where the SW speed was <400 km s{sup −1}. The shock potential of a typical supercritical quasi-perpendicular shock estimated from deceleration of the SW and cutoff energy of electron flat top distribution is ∼50 Volts. We find that the temperatures of H{sup +} and He{sup ++} beams that penetrate the shock can sometimes be nearly the same in the upstream and downstream regions, indicating little or no heating had occurred crossing the bow shock. None of the models predict that the SW can cross the bow shock without heating. Our observations are important constraints for new models of collisionless shocks.

  12. Wind Farms: Modeling and Control

    DEFF Research Database (Denmark)

    Soleimanzadeh, Maryam

    2012-01-01

    is minimized. The controller is practically feasible. Yet, the results on load reduction in this approach are not very significant. In the second strategy, the wind farm control problem has been divided into below rated and above rated wind speed conditions. In the above rated wind speed pitch angle and power....... Distributed controller design commences with formulating the problem, where a structured matrix approach has been put in to practice. Afterwards, an H2 control problem is implemented to obtain the controller dynamics for a wind farm such that the structural loads on wind turbines are minimized.......The primary purpose of this work is to develop control algorithms for wind farms to optimize the power production and augment the lifetime of wind turbines in wind farms. In this regard, a dynamical model for wind farms was required to be the basis of the controller design. In the first stage...

  13. 3D model of bow shocks

    Science.gov (United States)

    Gustafsson, M.; Ravkilde, T.; Kristensen, L. E.; Cabrit, S.; Field, D.; Pineau Des Forêts, G.

    2010-04-01

    Context. Shocks produced by outflows from young stars are often observed as bow-shaped structures in which the H2 line strength and morphology are characteristic of the physical and chemical environments and the velocity of the impact. Aims: We present a 3D model of interstellar bow shocks propagating in a homogeneous molecular medium with a uniform magnetic field. The model enables us to estimate the shock conditions in observed flows. As an example, we show how the model can reproduce rovibrational H2 observations of a bow shock in OMC1. Methods: The 3D model is constructed by associating a planar shock with every point on a 3D bow skeleton. The planar shocks are modelled with a highly sophisticated chemical reaction network that is essential for predicting accurate shock widths and line emissions. The shock conditions vary along the bow surface and determine the shock type, the local thickness, and brightness of the bow shell. The motion of the cooling gas parallel to the bow surface is also considered. The bow shock can move at an arbitrary inclination to the magnetic field and to the observer, and we model the projected morphology and radial velocity distribution in the plane-of-sky. Results: The morphology of a bow shock is highly dependent on the orientation of the magnetic field and the inclination of the flow. Bow shocks can appear in many different guises and do not necessarily show a characteristic bow shape. The ratio of the H2 v = 2-1 S(1) line to the v = 1-0 S(1) line is variable across the flow and the spatial offset between the peaks of the lines may be used to estimate the inclination of the flow. The radial velocity comes to a maximum behind the apparent apex of the bow shock when the flow is seen at an inclination different from face-on. Under certain circumstances the radial velocity of an expanding bow shock can show the same signatures as a rotating flow. In this case a velocity gradient perpendicular to the outflow direction is a projection

  14. Wind speed dynamical model in a wind farm

    DEFF Research Database (Denmark)

    Soleimanzadeh, Maryam; Wisniewski, Rafal

    2010-01-01

    , the dynamic model for wind flow will be established. The state space variables are determined based on a fine mesh defined for the farm. The end goal of this method is to assist the development of a dynamical model of a wind farm that can be engaged for better wind farm control strategies.......This paper presents a model for wind speed in a wind farm. The basic purpose of the paper is to calculate approximately the wind speed in the vicinity of each wind turbine in a farm. In this regard the governing equations of flow will be solved for the whole wind farm. In ideal circumstances...

  15. The Asymmetric Bow Shock/Pulsar Wind Nebula of PSR J2124–3358

    Science.gov (United States)

    Romani, Roger W.; Slane, Patrick; Green, Andrew W.

    2017-12-01

    We describe new measurements of the remarkable Hα/UV/X-ray bow shock and pulsar wind nebula (PWN) of the isolated millisecond pulsar (MSP) PSR J2124‑3358. Chandra X-ray Observatory imaging shows a one-sided jet structure with a softer equatorial outflow. KOALA integral field unit spectroscopy shows that non-radiative emission dominates the bow shock and that the Hα nebula is asymmetric about the pulsar velocity with an elongation into the plane of the sky. We extend analytic models of the contact discontinuity to accommodate such shapes and compare these to the data. Using Hubble Space Telescope UV detections of the pulsar and bow shock, radio timing distance, proper motion measurements, and the CXO-detected projected spin axis, we model the 3D PWN momentum flux distribution. The integrated momentum flux depends on the ionization of the ambient ISM, but for an expected ambient warm neutral medium, we infer I=2.4× {10}45 {{g}} {{cm}}2. This implies {M}{NS}=1.6{--}2.1 {M}ȯ , depending on the equation of state, which in turn suggests that the MSP gained significant mass during recycling and then lost its companion. However, this conclusion is at present tentative, since lower ionization allows ∼ 30 % lower masses, and uncertainty in the parallax allows up to 50% error.

  16. Modelling pulsar wind nebulae

    CERN Document Server

    2017-01-01

    In view of the current and forthcoming observational data on pulsar wind nebulae, this book offers an assessment of the theoretical state of the art of modelling them. The expert authors also review the observational status of the field and provide an outlook for future developments. During the last few years, significant progress on the study of pulsar wind nebulae (PWNe) has been attained both from a theoretical and an observational perspective, perhaps focusing on the closest, more energetic, and best studied nebula: the Crab, which appears in the cover. Now, the number of TeV detected PWNe is similar to the number of characterized nebulae observed at other frequencies over decades of observations. And in just a few years, the Cherenkov Telescope Array will increase this number to several hundreds, actually providing an essentially complete account of TeV emitting PWNe in the Galaxy. At the other end of the multi-frequency spectrum, the SKA and its pathfinder instruments, will reveal thousands of new pulsa...

  17. Modeling of Wind Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Spacil, D.; Santarius, P. [VSB - Technical University of Ostrava, Department of Electrical Measurement, FEECS, 17. listopadu 15, 708 33 Ostrava- Poruba (Czech Republic); Dobrucky, B. [University of Zilina, Department of Mechatronics and Electronics, FEE, Univerzitna 1, 010 26 Zilina (Slovakia)

    2006-07-01

    The electrical power produced by the wind power plant has increased in the last years in the world and probably will increase further in the future. Therefore, wind power plants have a significant influence on the power production. In this article the connection of the wind turbine to a grid is described in order to determine the impact of the existing wind turbines as well as planned wind turbines on the grid and ensure the proper functioning of the wind turbine. The purpose of the presented work is to find an analytical generator model for the simulation of the wind power plant and determine the influence on the grid by programming with Matlab/Simulink.

  18. Modelling Wind for Wind Farm Layout Optimization Using Joint Distribution of Wind Speed and Wind Direction

    DEFF Research Database (Denmark)

    Feng, Ju; Shen, Wen Zhong

    2015-01-01

    Reliable wind modelling is of crucial importance for wind farm development. The common practice of using sector-wise Weibull distributions has been found inappropriate for wind farm layout optimization. In this study, we propose a simple and easily implementable method to construct joint distribu......Reliable wind modelling is of crucial importance for wind farm development. The common practice of using sector-wise Weibull distributions has been found inappropriate for wind farm layout optimization. In this study, we propose a simple and easily implementable method to construct joint...... quite well in terms of the coefficient of determination R-2. Then, the best of these joint distributions is used in the layout optimization of the Horns Rev 1 wind farm and the choice of bin sizes for wind speed and wind direction is also investigated. It is found that the choice of bin size for wind...... direction is especially critical for layout optimization and the recommended choice of bin sizes for wind speed and wind direction is finally presented....

  19. Reliability Modeling of Wind Turbines

    DEFF Research Database (Denmark)

    Kostandyan, Erik

    Cost reductions for offshore wind turbines are a substantial requirement in order to make offshore wind energy more competitive compared to other energy supply methods. During the 20 – 25 years of wind turbines useful life, Operation & Maintenance costs are typically estimated to be a quarter...... the actions should be made and the type of actions requires knowledge on the accumulated damage or degradation state of the wind turbine components. For offshore wind turbines, the action times could be extended due to weather restrictions and result in damage or degradation increase of the remaining...... for Operation & Maintenance planning. Concentrating efforts on development of such models, this research is focused on reliability modeling of Wind Turbine critical subsystems (especially the power converter system). For reliability assessment of these components, structural reliability methods are applied...

  20. On the electron temperature downstream of the solar wind termination shock

    Directory of Open Access Journals (Sweden)

    I. V. Chashei

    2013-07-01

    Full Text Available In this paper we study the temperatures of electrons convected with the solar wind to large solar distances and finally transported over the solar wind termination shock. Nearly nothing, unless at high energies in the cosmic ray regime, is known about the thermodynamical behaviour of these distant electrons from in~situ plasma observations. Hence it is tacitly assumed these electrons, due to their adiabatic behaviour and vanishing heat conduction or energization processes, have rapidly cooled off to very low temperatures once they eventually arrive at the solar wind termination shock (at about 100 AU. In this paper we show that such electrons, however, at their passage over the termination shock due to the shock–electric field action undergo an over-adiabatic heating and therefore appear on the downstream side as a substantially heated plasma species. Looking quantitatively into this heating process we find that solar wind electrons achieve temperatures of the order of 2–4 × 106 K downstream of the termination shock, depending on the upstream solar wind bulk velocity and the shock compression ratio. Hence these electrons therewith play an important dynamical role in structuring this shock and determining the downstream plasma flow properties. Furthermore, they present an additional ionization source for incoming neutral interstellar hydrogen and excite X-ray emission. They also behave similar to cosmic ray electrons and extend to some limited region upstream of the shock of the order of 0.1 AU by spatial diffusion and thereby also modify the upstream solar wind properties.

  1. Active control: Wind turbine model

    DEFF Research Database (Denmark)

    Bindner, H.

    1999-01-01

    This report is a part of the reporting of the work done in the project 'Active Control of Wind Turbines'. This project aim is to develop a simulation model for design of control systems for turbines with pitch control and to use that model to designcontrollers. This report describes the model...... developed for controller design and analysis. Emphasis has been put on establishment of simple models describing the dynamic behavior of the wind turbine in adequate details for controller design. This hasbeen done with extensive use of measurements as the basis for selection of model complexity and model....... The models are all formulated as linear differential equations. The models are validated throughcomparisons with measurements performed on a Vestas WD 34 400 kW wind turbine. It is shown from a control point of view simple linear models can be used to describe the dynamic behavior of a pitch controlled wind...

  2. Numerical modeling of shock-sensitivity experiments

    Energy Technology Data Exchange (ETDEWEB)

    Bowman, A.L.; Forest, C.A.; Kershner, J.D.; Mader, C.L.; Pimbley, G.H.

    1981-01-01

    The Forest Fire rate model of shock initiation of heterogeneous explosives has been used to study several experiments commonly performed to measure the sensitivity of explosives to shock and to study initiation by explosive-formed jets. The minimum priming charge test, the gap test, the shotgun test, sympathetic detonation, and jet initiation have been modeled numerically using the Forest Fire rate in the reactive hydrodynamic codes SIN and 2DE.

  3. A combinatorial wind field model

    DEFF Research Database (Denmark)

    Soleimanzadeh, Maryam; Wisniewski, Rafal; Sloth, Christoffer

    2010-01-01

    of ordinary dierential equations (ODE). Considering some assumptions on the ow model (e.g. steadiness), the sys- tem can be approximated by a linear n dimensional system. Partitioning the state space into cells is performed by dening Lyapunov function sets, such that each cell is the region between two......This report is the deliverable 2.4 in the project Distributed Control of Large-Scale Oshore Wind Farms with the acronym Aeolus. The objective of this deliverable is to provide an understanding of the wind eld model and dynamic variations superimposed on the mean eld. In this report a dynamical...... model is developed for the wind ow in a wind farm based on nite volume method. Afterwards the model is transferred into a discrete framework called combinatorial, which determines the future behavior of the discrete system. In this regard, the dynamical model is de- rived and it is explained in terms...

  4. Active control: Wind turbine model

    Energy Technology Data Exchange (ETDEWEB)

    Bindner, Henrik

    1999-07-01

    This report is a part of the reporting of the work done in the project `Active Control of Wind Turbines`. This project aim is to develop a simulation model for design of control systems for turbines with pitch control and to use that model to design controllers. This report describes the model developed for controller design and analysis. Emphasis has been put on establishment of simple models describing the dynamic behavior of the wind turbine in adequate details for controller design. This has been done with extensive use of measurements as the basis for selection of model complexity and model validation as well as parameter estimation. The model includes a simple model of the structure of the turbine including tower and flapwise blade bending, a detailed model of the gear box and induction generator, a linearized aerodynamic model including modelling of induction lag and actuator and sensor models. The models are all formulated as linear differential equations. The models are validated through comparisons with measurements performed on a Vestas WD 34 400 kW wind turbine. It is shown from a control point of view simple linear models can be used to describe the dynamic behavior of a pitch controlled wind turbine. The model and the measurements corresponds well in the relevant frequency range. The developed model is therefore applicable for controller design. (au) EFP-91. 18 ills., 22 refs.

  5. Interaction of Accretion Shocks with Winds Kinsuk Acharya , Sandip ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Black hole physics—accretion—winds—shock waves— hydrodynamics. 1. Introduction. In a black hole accretion, the flow must be sub-Keplerian close to the horizon and the specific angular momentum is almost constant. As a result, the centrifugal force dominates over gravity and a centrifugal barrier dominated boundary ...

  6. Automated interplanetary shock detection and its application to Wind observations

    Czech Academy of Sciences Publication Activity Database

    Krupařová, Oksana; Maksimovic, M.; Šafránková, J.; Němeček, Z.; Santolík, Ondřej; Krupař, Vratislav

    2013-01-01

    Roč. 118, č. 8 (2013), 4793–4803 ISSN 2169-9380 R&D Projects: GA ČR(CZ) GAP209/12/2394 Institutional support: RVO:68378289 Keywords : Interplanetary shocks * instruments and techniques Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 3.440, year: 2013 http://onlinelibrary.wiley.com/doi/10.1002/jgra.50468/abstract

  7. Equivalent models of wind farms by using aggregated wind turbines and equivalent winds

    International Nuclear Information System (INIS)

    Fernandez, L.M.; Garcia, C.A.; Saenz, J.R.; Jurado, F.

    2009-01-01

    As a result of the increasing wind farms penetration on power systems, the wind farms begin to influence power system, and therefore the modeling of wind farms has become an interesting research topic. In this paper, new equivalent models of wind farms equipped with wind turbines based on squirrel-cage induction generators and doubly-fed induction generators are proposed to represent the collective behavior on large power systems simulations, instead of using a complete model of wind farms where all the wind turbines are modeled. The models proposed here are based on aggregating wind turbines into an equivalent wind turbine which receives an equivalent wind of the ones incident on the aggregated wind turbines. The equivalent wind turbine presents re-scaled power capacity and the same complete model as the individual wind turbines, which supposes the main feature of the present equivalent models. Two equivalent winds are evaluated in this work: (1) the average wind from the ones incident on the aggregated wind turbines with similar winds, and (2) an equivalent incoming wind derived from the power curve and the wind incident on each wind turbine. The effectiveness of the equivalent models to represent the collective response of the wind farm at the point of common coupling to grid is demonstrated by comparison with the wind farm response obtained from the detailed model during power system dynamic simulations, such as wind fluctuations and a grid disturbance. The present models can be used for grid integration studies of large power system with an important reduction of the model order and the computation time

  8. Reliability assessment of competing risks with generalized mixed shock models

    International Nuclear Information System (INIS)

    Rafiee, Koosha; Feng, Qianmei; Coit, David W.

    2017-01-01

    This paper investigates reliability modeling for systems subject to dependent competing risks considering the impact from a new generalized mixed shock model. Two dependent competing risks are soft failure due to a degradation process, and hard failure due to random shocks. The shock process contains fatal shocks that can cause hard failure instantaneously, and nonfatal shocks that impact the system in three different ways: 1) damaging the unit by immediately increasing the degradation level, 2) speeding up the deterioration by accelerating the degradation rate, and 3) weakening the unit strength by reducing the hard failure threshold. While the first impact from nonfatal shocks comes from each individual shock, the other two impacts are realized when the condition for a new generalized mixed shock model is satisfied. Unlike most existing mixed shock models that consider a combination of two shock patterns, our new generalized mixed shock model includes three classic shock patterns. According to the proposed generalized mixed shock model, the degradation rate and the hard failure threshold can simultaneously shift multiple times, whenever the condition for one of these three shock patterns is satisfied. An example using micro-electro-mechanical systems devices illustrates the effectiveness of the proposed approach with sensitivity analysis. - Highlights: • A rich reliability model for systems subject to dependent failures is proposed. • The degradation rate and the hard failure threshold can shift simultaneously. • The shift is triggered by a new generalized mixed shock model. • The shift can occur multiple times under the generalized mixed shock model.

  9. Using numerical models of bow shocks to investigate the circumstellar medium of massive stars

    International Nuclear Information System (INIS)

    Van Marle, A J; Decin, L; Cox, N L J; Meliani, Z

    2015-01-01

    Many massive stars travel through the interstellar medium at supersonic speeds. As a result they form bow shocks at the interface between the stellar wind. We use numerical hydrodynamics to reproduce such bow shocks numerically, creating models that can be compared to observations. In this paper we discuss the influence of two physical phenomena, interstellar magnetic fields and the presence of interstellar dust grains on the observable shape of the bow shocks of massive stars. We find that the interstellar magnetic field, though too weak to restrict the general shape of the bow shock, reduces the size of the instabilities that would otherwise be observed in the bow shock of a red supergiant. The interstellar dust grains, due to their inertia can penetrate deep into the bow shock structure of a main sequence O-supergiant, crossing over from the ISM into the stellar wind. Therefore, the dust distribution may not always reflect the morphology of the gas. This is an important consideration for infrared observations, which are dominated by dust emission. Our models clearly show, that the bow shocks of massive stars are useful diagnostic tools that can used to investigate the properties of both the stellar wind as well as the interstellar medium

  10. Modeling wind adjustment factor and midflame wind speed for Rothermel's surface fire spread model

    Science.gov (United States)

    Patricia L. Andrews

    2012-01-01

    Rothermel's surface fire spread model was developed to use a value for the wind speed that affects surface fire, called midflame wind speed. Models have been developed to adjust 20-ft wind speed to midflame wind speed for sheltered and unsheltered surface fuel. In this report, Wind Adjustment Factor (WAF) model equations are given, and the BehavePlus fire modeling...

  11. THE FORMATION OF SECONDARY STELLAR GENERATIONS IN MASSIVE YOUNG STAR CLUSTERS FROM RAPIDLY COOLING SHOCKED STELLAR WINDS

    International Nuclear Information System (INIS)

    Wünsch, R.; Palouš, J.; Ehlerová, S.; Tenorio-Tagle, G.

    2017-01-01

    We study a model of rapidly cooling shocked stellar winds in young massive clusters and estimate the circumstances under which secondary star formation, out of the reinserted winds from a first stellar generation (1G), is possible. We have used two implementations of the model: a highly idealized, computationally inexpensive, spherically symmetric semi-analytic model, and a complex, three-dimensional radiation-hydrodynamic, simulation; they are in a good mutual agreement. The results confirm our previous findings that, in a cluster with 1G mass 10 7 M ⊙ and half-mass–radius 2.38 pc, the shocked stellar winds become thermally unstable, collapse into dense gaseous structures that partially accumulate inside the cluster, self-shield against ionizing stellar radiation, and form the second generation (2G) of stars. We have used the semi-analytic model to explore a subset of the parameter space covering a wide range of the observationally poorly constrained parameters: the heating efficiency, η he , and the mass loading, η ml . The results show that the fraction of the 1G stellar winds accumulating inside the cluster can be larger than 50% if η he ≲ 10%, which is suggested by the observations. Furthermore, for low η he , the model provides a self-consistent mechanism predicting 2G stars forming only in the central zones of the cluster. Finally, we have calculated the accumulated warm gas emission in the H30 α recombination line, analyzed its velocity profile, and estimated its intensity for super star clusters in interacting galaxies NGC4038/9 (Antennae) showing that the warm gas should be detectable with ALMA.

  12. THE FORMATION OF SECONDARY STELLAR GENERATIONS IN MASSIVE YOUNG STAR CLUSTERS FROM RAPIDLY COOLING SHOCKED STELLAR WINDS

    Energy Technology Data Exchange (ETDEWEB)

    Wünsch, R.; Palouš, J.; Ehlerová, S. [Astronomical Institute, Academy of Sciences of the Czech Republic, Boční II 1401, 141 31 Prague (Czech Republic); Tenorio-Tagle, G. [Instituto Nacional de Astrofísica Optica y Electrónica, AP 51, 72000 Puebla, México (Mexico)

    2017-01-20

    We study a model of rapidly cooling shocked stellar winds in young massive clusters and estimate the circumstances under which secondary star formation, out of the reinserted winds from a first stellar generation (1G), is possible. We have used two implementations of the model: a highly idealized, computationally inexpensive, spherically symmetric semi-analytic model, and a complex, three-dimensional radiation-hydrodynamic, simulation; they are in a good mutual agreement. The results confirm our previous findings that, in a cluster with 1G mass 10{sup 7} M {sub ⊙} and half-mass–radius 2.38 pc, the shocked stellar winds become thermally unstable, collapse into dense gaseous structures that partially accumulate inside the cluster, self-shield against ionizing stellar radiation, and form the second generation (2G) of stars. We have used the semi-analytic model to explore a subset of the parameter space covering a wide range of the observationally poorly constrained parameters: the heating efficiency, η {sub he}, and the mass loading, η {sub ml}. The results show that the fraction of the 1G stellar winds accumulating inside the cluster can be larger than 50% if η {sub he} ≲ 10%, which is suggested by the observations. Furthermore, for low η {sub he}, the model provides a self-consistent mechanism predicting 2G stars forming only in the central zones of the cluster. Finally, we have calculated the accumulated warm gas emission in the H30 α recombination line, analyzed its velocity profile, and estimated its intensity for super star clusters in interacting galaxies NGC4038/9 (Antennae) showing that the warm gas should be detectable with ALMA.

  13. An integrated modeling method for wind turbines

    Science.gov (United States)

    Fadaeinedjad, Roohollah

    To study the interaction of the electrical, mechanical, and aerodynamic aspects of a wind turbine, a detailed model that considers all these aspects must be used. A drawback of many studies in the area of wind turbine simulation is that either a very simple mechanical model is used with a detailed electrical model, or vice versa. Hence the interactions between electrical and mechanical aspects of wind turbine operation are not accurately taken into account. In this research, it will be shown that a combination of different simulation packages, namely TurbSim, FAST, and Simulink can be used to model the aerodynamic, mechanical, and electrical aspects of a wind turbine in detail. In this thesis, after a review of some wind turbine concepts and software tools, a simulation structure is proposed for studying wind turbines that integrates the mechanical and electrical components of a wind energy conversion device. Based on the simulation structure, a comprehensive model for a three-bladed variable speed wind turbine with doubly-fed induction generator is developed. Using the model, the impact of a voltage sag on the wind turbine tower vibration is investigated under various operating conditions such as power system short circuit level, mechanical parameters, and wind turbine operating conditions. It is shown how an electrical disturbance can cause more sustainable tower vibrations under high speed and turbulent wind conditions, which may disrupt the operation of pitch control system. A similar simulation structure is used to model a two-bladed fixed speed wind turbine with an induction generator. An extension of the concept is introduced by adding a diesel generator system. The model is utilized to study the impact of the aeroelastic aspects of wind turbine (i.e. tower shadow, wind shears, yaw error, turbulence, and mechanical vibrations) on the power quality of a stand-alone wind-diesel system. Furthermore, an IEEE standard flickermeter model is implemented in a

  14. ACCRETION OF SUPERSONIC WINDS ONTO BLACK HOLES IN 3D: STABILITY OF THE SHOCK CONE

    Energy Technology Data Exchange (ETDEWEB)

    Gracia-Linares, M.; Guzmán, F. S. [Instituto de Física y Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo. Edificio C-3, Cd. Universitaria, 58040 Morelia, Michoacán, México (Mexico)

    2015-10-10

    Using numerical simulations we present the accretion of supersonic winds onto a rotating black hole in three dimensions. We study five representative directions of the wind with respect to the axis of rotation of the black hole and focus on the evolution and stability of the high-density shock cone that is formed during the process. We explore both the regime in which the shock cone is expected to be stable in order to confirm previous results obtained with two-dimensional simulations, and the regime in which the shock cone is expected to show a flip–flop (FF) type of instability. The methods used to attempt a triggering of the instability were (i) the accumulation of numerical errors and (ii) the explicit application of a perturbation on the velocity field after the shock cone was formed. The result is negative, that is, we did not find the FF instability within the parameter space we explored, including cases that are expected to be unstable.

  15. Modeling Propagation of Shock Waves in Metals

    Science.gov (United States)

    Howard, W. M.; Molitoris, J. D.

    2006-07-01

    We present modeling results for the propagation of strong shock waves in metals. In particular, we use an arbitrary Lagrange Eulerian (ALE3D) code to model the propagation of strong pressure waves (P ˜ 300 to 400 kbars) generated with high explosives in contact with aluminum cylinders. The aluminum cylinders are assumed to be both flat-topped and have large-amplitude curved surfaces. We use 3D Lagrange mechanics. For the aluminum we use a rate-independent Steinberg-Guinan model, where the yield strength and shear modulus depend on pressure, density and temperature. The calculation of the melt temperature is based on the Lindermann law. At melt the yield strength and shear modulus is set to zero. The pressure is represented as a seven-term polynomial as a function of density. For the HMX-based high explosive, we use a JWL, with a program burn model that give the correct detonation velocity and C-J pressure (P ˜ 390 kbars). For the case of the large-amplitude curved surface, we discuss the evolving shock structure in terms of the early shock propagation experiments by Sakharov.

  16. A Prognostic Model for Development of Profound Shock among Children Presenting with Dengue Shock Syndrome.

    Directory of Open Access Journals (Sweden)

    Phung Khanh Lam

    Full Text Available To identify risk factors and develop a prediction model for the development of profound and recurrent shock amongst children presenting with dengue shock syndrome (DSS.We analyzed data from a prospective cohort of children with DSS recruited at the Paediatric Intensive Care Unit of the Hospital for Tropical Disease in Ho Chi Minh City, Vietnam. The primary endpoint was "profound DSS", defined as ≥2 recurrent shock episodes (for subjects presenting in compensated shock, or ≥1 recurrent shock episodes (for subjects presenting initially with decompensated/hypotensive shock, and/or requirement for inotropic support. Recurrent shock was evaluated as a secondary endpoint. Risk factors were pre-defined clinical and laboratory variables collected at the time of presentation with shock. Prognostic model development was based on logistic regression and compared to several alternative approaches.The analysis population included 1207 children of whom 222 (18% progressed to "profound DSS" and 433 (36% had recurrent shock. Independent risk factors for both endpoints included younger age, earlier presentation, higher pulse rate, higher temperature, higher haematocrit and, for females, worse hemodynamic status at presentation. The final prognostic model for "profound DSS" showed acceptable discrimination (AUC=0.69 for internal validation and calibration and is presented as a simple score-chart.Several risk factors for development of profound or recurrent shock among children presenting with DSS were identified. The score-chart derived from the prognostic models should improve triage and management of children presenting with DSS in dengue-endemic areas.

  17. ELECTRON ACCELERATION IN PULSAR-WIND TERMINATION SHOCKS: AN APPLICATION TO THE CRAB NEBULA GAMMA-RAY FLARES

    Energy Technology Data Exchange (ETDEWEB)

    Kroon, John J.; Becker, Peter A.; Dermer, Charles D. [Department of Physics and Astronomy, George Mason University, Fairfax, VA 22030-4444 (United States); Finke, Justin D., E-mail: jkroon@gmu.edu, E-mail: pbecker@gmu.edu, E-mail: charlesdermer@outlook.com, E-mail: justin.finke@nrl.navy.mil [Space Science Division, Naval Research Laboratory, Washington, DC 20375 (United States)

    2016-12-20

    The γ -ray flares from the Crab Nebula observed by AGILE and Fermi -LAT reaching GeV energies and lasting several days challenge the standard models for particle acceleration in pulsar-wind nebulae because the radiating electrons have energies exceeding the classical radiation-reaction limit for synchrotron. Previous modeling has suggested that the synchrotron limit can be exceeded if the electrons experience electrostatic acceleration, but the resulting spectra do not agree very well with the data. As a result, there are still some important unanswered questions about the detailed particle acceleration and emission processes occurring during the flares. We revisit the problem using a new analytical approach based on an electron transport equation that includes terms describing electrostatic acceleration, stochastic wave-particle acceleration, shock acceleration, synchrotron losses, and particle escape. An exact solution is obtained for the electron distribution, which is used to compute the associated γ -ray synchrotron spectrum. We find that in our model the γ -ray flares are mainly powered by electrostatic acceleration, but the contributions from stochastic and shock acceleration play an important role in producing the observed spectral shapes. Our model can reproduce the spectra of all the Fermi -LAT and AGILE flares from the Crab Nebula, using magnetic field strengths in agreement with the multi-wavelength observational constraints. We also compute the spectrum and duration of the synchrotron afterglow created by the accelerated electrons, after they escape into the region on the downstream side of the pulsar-wind termination shock. The afterglow is expected to fade over a maximum period of about three weeks after the γ -ray flare.

  18. Wind model for offshore power simulation

    OpenAIRE

    Hervada Sala, Carme; Jarauta Bragulat, Eusebio; Gibergans Baguena, José; Buenestado Caballero, Pablo

    2015-01-01

    Offshore wind energy is an alternative energy source of increased interest. A large offshore wind farms have been planned or under construction, mainly in northern Europe. One of the points needed to be able to implement offshore projects is to characterize and model the wind for marine generation. Models are needed for the design of the most appropriate control strategies. Some attempts have been done to do so; recently these models are implemented under a wind turbine block set in Matlab/Si...

  19. The Terrestrial Bow Shock: A Comparison of New Data from the IBEX Mission to Existing Models

    Science.gov (United States)

    Hart, S. T.; Janzen, P. H.; Reisenfeld, D. B.

    2017-12-01

    For over 50 years, models predicting the position and shape of the bow shock have been empirically produced and examined. Accurate bow shock models provide deeper understanding of the interaction between Earth's magnetosphere and the solar wind. To date, most bow shock studies have incorporated bow shock crossings within 35 RE of the Earth, or in the distant tail region (about 200 RE downstream of the Earth). Since late December 2008, the Interstellar Boundary Explorer (IBEX) has orbited earth nearly 400 times to date, collecting the position of over 600 bow shock and magnetopause crossings between 15 and 50 RE, making the IBEX data set unique for the study of the magnetosheath structure between 35 and 50 RE. With crossings determined from IBEX-Hi data, and the use of the OMNI-2 dataset to provide corresponding upstream solar wind conditions and IMF data, we will test how well the leading published bow shock models (e.g. Merka et al. 2005, Jerab et al. 2005) match the shape of these boundaries in this unexplored region.

  20. CARINA OB STARS: X-RAY SIGNATURES OF WIND SHOCKS AND MAGNETIC FIELDS

    International Nuclear Information System (INIS)

    Gagne, Marc; Fehon, Garrett; Savoy, Michael R.; Cohen, David H.; Townsley, Leisa K.; Broos, Patrick S.; Povich, Matthew S.; Corcoran, Michael F.; Walborn, Nolan R.; Remage Evans, Nancy; Moffat, Anthony F. J.; Naze, Yael; Oskinova, Lida M.

    2011-01-01

    The Chandra Carina Complex contains 200 known O- and B-type stars. The Chandra survey detected 68 of the 70 O stars and 61 of 127 known B0-B3 stars. We have assembled a publicly available optical/X-ray database to identify OB stars that depart from the canonical L X /L bol relation or whose average X-ray temperatures exceed 1 keV. Among the single O stars with high kT we identify two candidate magnetically confined wind shock sources: Tr16-22, O8.5 V, and LS 1865, O8.5 V((f)). The O4 III(fc) star HD 93250 exhibits strong, hard, variable X-rays, suggesting that it may be a massive binary with a period of >30 days. The visual O2 If* binary HD 93129A shows soft 0.6 keV and hard 1.9 keV emission components, suggesting embedded wind shocks close to the O2 If* Aa primary and colliding wind shocks between Aa and Ab. Of the 11 known O-type spectroscopic binaries, the long orbital-period systems HD 93343, HD 93403, and QZ Car have higher shock temperatures than short-period systems such as HD 93205 and FO 15. Although the X-rays from most B stars may be produced in the coronae of unseen, low-mass pre-main-sequence companions, a dozen B stars with high L X cannot be explained by a distribution of unseen companions. One of these, SS73 24 in the Treasure Chest cluster, is a new candidate Herbig Be star.

  1. Advancements in Wind Integration Study Data Modeling: The Wind Integration National Dataset (WIND) Toolkit; Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Draxl, C.; Hodge, B. M.; Orwig, K.; Jones, W.; Searight, K.; Getman, D.; Harrold, S.; McCaa, J.; Cline, J.; Clark, C.

    2013-10-01

    Regional wind integration studies in the United States require detailed wind power output data at many locations to perform simulations of how the power system will operate under high-penetration scenarios. The wind data sets that serve as inputs into the study must realistically reflect the ramping characteristics, spatial and temporal correlations, and capacity factors of the simulated wind plants, as well as be time synchronized with available load profiles. The Wind Integration National Dataset (WIND) Toolkit described in this paper fulfills these requirements. A wind resource dataset, wind power production time series, and simulated forecasts from a numerical weather prediction model run on a nationwide 2-km grid at 5-min resolution will be made publicly available for more than 110,000 onshore and offshore wind power production sites.

  2. Dynamic Models for Wind Turbines and Wind Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Singh, M.; Santoso, S.

    2011-10-01

    The primary objective of this report was to develop universal manufacturer-independent wind turbine and wind power plant models that can be shared, used, and improved without any restrictions by project developers, manufacturers, and engineers. Manufacturer-specific models of wind turbines are favored for use in wind power interconnection studies. While they are detailed and accurate, their usages are limited to the terms of the non-disclosure agreement, thus stifling model sharing. The primary objective of the work proposed is to develop universal manufacturer-independent wind power plant models that can be shared, used, and improved without any restrictions by project developers, manufacturers, and engineers. Each of these models includes representations of general turbine aerodynamics, the mechanical drive-train, and the electrical characteristics of the generator and converter, as well as the control systems typically used. To determine how realistic model performance is, the performance of one of the models (doubly-fed induction generator model) has been validated using real-world wind power plant data. This work also documents selected applications of these models.

  3. Reliability Modeling of Wind Turbines

    DEFF Research Database (Denmark)

    Kostandyan, Erik

    components. Thus, models of reliability should be developed and applied in order to quantify the residual life of the components. Damage models based on physics of failure combined with stochastic models describing the uncertain parameters are imperative for development of cost-optimal decision tools...... for Operation & Maintenance planning. Concentrating efforts on development of such models, this research is focused on reliability modeling of Wind Turbine critical subsystems (especially the power converter system). For reliability assessment of these components, structural reliability methods are applied....... Further, reliability modeling of load sharing systems is considered and a theoretical model is proposed based on sequential order statistics and structural systems reliability methods. Procedures for reliability estimation are detailed and presented in a collection of research papers....

  4. An Appropriate Wind Model for Wind Integrated Power Systems Reliability Evaluation Considering Wind Speed Correlations

    Directory of Open Access Journals (Sweden)

    Rajesh Karki

    2013-02-01

    Full Text Available Adverse environmental impacts of carbon emissions are causing increasing concerns to the general public throughout the world. Electric energy generation from conventional energy sources is considered to be a major contributor to these harmful emissions. High emphasis is therefore being given to green alternatives of energy, such as wind and solar. Wind energy is being perceived as a promising alternative. This source of energy technology and its applications have undergone significant research and development over the past decade. As a result, many modern power systems include a significant portion of power generation from wind energy sources. The impact of wind generation on the overall system performance increases substantially as wind penetration in power systems continues to increase to relatively high levels. It becomes increasingly important to accurately model the wind behavior, the interaction with other wind sources and conventional sources, and incorporate the characteristics of the energy demand in order to carry out a realistic evaluation of system reliability. Power systems with high wind penetrations are often connected to multiple wind farms at different geographic locations. Wind speed correlations between the different wind farms largely affect the total wind power generation characteristics of such systems, and therefore should be an important parameter in the wind modeling process. This paper evaluates the effect of the correlation between multiple wind farms on the adequacy indices of wind-integrated systems. The paper also proposes a simple and appropriate probabilistic analytical model that incorporates wind correlations, and can be used for adequacy evaluation of multiple wind-integrated systems.

  5. Uncertainty quantification in wind farm flow models

    DEFF Research Database (Denmark)

    Murcia Leon, Juan Pablo

    uncertainties through a model chain are presented and applied to several wind energy related problems such as: annual energy production estimation, wind turbine power curve estimation, wake model calibration and validation, and estimation of lifetime equivalent fatigue loads on a wind turbine. Statistical...

  6. Bayesian Predictive Models for Rayleigh Wind Speed

    DEFF Research Database (Denmark)

    Shahirinia, Amir; Hajizadeh, Amin; Yu, David C

    2017-01-01

    predictive model of the wind speed aggregates the non-homogeneous distributions into a single continuous distribution. Therefore, the result is able to capture the variation among the probability distributions of the wind speeds at the turbines’ locations in a wind farm. More specifically, instead of using...... a wind speed distribution whose parameters are known or estimated, the parameters are considered as random whose variations are according to probability distributions. The Bayesian predictive model for a Rayleigh which only has a single model scale parameter has been proposed. Also closed-form posterior......One of the major challenges with the increase in wind power generation is the uncertain nature of wind speed. So far the uncertainty about wind speed has been presented through probability distributions. Also the existing models that consider the uncertainty of the wind speed primarily view...

  7. Improved diagnostic model for estimating wind energy

    Energy Technology Data Exchange (ETDEWEB)

    Endlich, R.M.; Lee, J.D.

    1983-03-01

    Because wind data are available only at scattered locations, a quantitative method is needed to estimate the wind resource at specific sites where wind energy generation may be economically feasible. This report describes a computer model that makes such estimates. The model uses standard weather reports and terrain heights in deriving wind estimates; the method of computation has been changed from what has been used previously. The performance of the current model is compared with that of the earlier version at three sites; estimates of wind energy at four new sites are also presented.

  8. Wind farm models and control strategies

    Energy Technology Data Exchange (ETDEWEB)

    Soerensen, Poul; Hansen, Anca D.; Iov, F.; Blaabjerg, F.; Donovan, M.H.

    2005-08-01

    This report describes models and control strategies for 3 different concepts of wind farms. Initially, the potential in improvement of grid integration, structural loads and energy production is investigated in a survey of opportunities. Then simulation models are described, including wind turbine models for a fixed speed wind turbine with active stall control and a variable speed wind turbine with doubly-fed induction generator. After that, the 3 wind farm concepts and control strategies are described. The 3 concepts are AC connected doubly fed turbines, AC connected active stall turbines and DC connected active stall turbines. Finally, some simulation examples and conclusions are presented. (au)

  9. Wind erosion modelling in a Sahelian environment

    NARCIS (Netherlands)

    Faye-Visser, S.M.; Sterk, G.; Karssenberg, D.

    2005-01-01

    In the Sahel field observations of wind-blown mass transport often show considerable spatial variation related to the spatial variation of the wind erosion controlling parameters, e.g. soil crust and vegetation cover. A model, used to predict spatial variation in wind erosion and deposition is a

  10. Wind Tunnel Modeling Of Wind Flow Over Complex Terrain

    Science.gov (United States)

    Banks, D.; Cochran, B.

    2010-12-01

    This presentation will describe the finding of an atmospheric boundary layer (ABL) wind tunnel study conducted as part of the Bolund Experiment. This experiment was sponsored by Risø DTU (National Laboratory for Sustainable Energy, Technical University of Denmark) during the fall of 2009 to enable a blind comparison of various air flow models in an attempt to validate their performance in predicting airflow over complex terrain. Bohlund hill sits 12 m above the water level at the end of a narrow isthmus. The island features a steep escarpment on one side, over which the airflow can be expected to separate. The island was equipped with several anemometer towers, and the approach flow over the water was well characterized. This study was one of only two only physical model studies included in the blind model comparison, the other being a water plume study. The remainder were computational fluid dynamics (CFD) simulations, including both RANS and LES. Physical modeling of air flow over topographical features has been used since the middle of the 20th century, and the methods required are well understood and well documented. Several books have been written describing how to properly perform ABL wind tunnel studies, including ASCE manual of engineering practice 67. Boundary layer wind tunnel tests are the only modelling method deemed acceptable in ASCE 7-10, the most recent edition of the American Society of Civil Engineers standard that provides wind loads for buildings and other structures for buildings codes across the US. Since the 1970’s, most tall structures undergo testing in a boundary layer wind tunnel to accurately determine the wind induced loading. When compared to CFD, the US EPA considers a properly executed wind tunnel study to be equivalent to a CFD model with infinitesimal grid resolution and near infinite memory. One key reason for this widespread acceptance is that properly executed ABL wind tunnel studies will accurately simulate flow separation

  11. Dynamic modeling and simulation of wind turbines

    International Nuclear Information System (INIS)

    Ghafari Seadat, M.H.; Kheradmand Keysami, M.; Lari, H.R.

    2002-01-01

    Using wind energy for generating electricity in wind turbines is a good way for using renewable energies. It can also help to protect the environment. The main objective of this paper is dynamic modeling by energy method and simulation of a wind turbine aided by computer. In this paper, the equations of motion are extracted for simulating the system of wind turbine and then the behavior of the system become obvious by solving the equations. The turbine is considered with three blade rotor in wind direction, induced generator that is connected to the network and constant revolution for simulation of wind turbine. Every part of the wind turbine should be simulated for simulation of wind turbine. The main parts are blades, gearbox, shafts and generator

  12. Model Predictive Control of Wind Turbines

    DEFF Research Database (Denmark)

    Henriksen, Lars Christian

    Wind turbines play a major role in the transformation from a fossil fuel based energy production to a more sustainable production of energy. Total-cost-of-ownership is an important parameter when investors decide in which energy technology they should place their capital. Modern wind turbines...... are controlled by pitching the blades and by controlling the electro-magnetic torque of the generator, thus slowing the rotation of the blades. Improved control of wind turbines, leading to reduced fatigue loads, can be exploited by using less materials in the construction of the wind turbine or by reducing...... the need for maintenance of the wind turbine. Either way, better total-cost-of-ownership for wind turbine operators can be achieved by improved control of the wind turbines. Wind turbine control can be improved in two ways, by improving the model on which the controller bases its design or by improving...

  13. Extreme gust wind estimation using mesoscale modeling

    DEFF Research Database (Denmark)

    Larsén, Xiaoli Guo; Kruger, Andries

    2014-01-01

    Currently, the existing estimation of the extreme gust wind, e.g. the 50-year winds of 3 s values, in the IEC standard, is based on a statistical model to convert the 1:50-year wind values from the 10 min resolution. This statistical model assumes a Gaussian process that satisfies the classical...... through turbulent eddies. This process is modeled using the mesoscale Weather Forecasting and Research (WRF) model. The gust at the surface is calculated as the largest winds over a layer where the averaged turbulence kinetic energy is greater than the averaged buoyancy force. The experiments have been...

  14. A comparison of shock-cloud and wind-cloud interactions: effect of increased cloud density contrast on cloud evolution

    Science.gov (United States)

    Goldsmith, K. J. A.; Pittard, J. M.

    2018-05-01

    The similarities, or otherwise, of a shock or wind interacting with a cloud of density contrast χ = 10 were explored in a previous paper. Here, we investigate such interactions with clouds of higher density contrast. We compare the adiabatic hydrodynamic interaction of a Mach 10 shock with a spherical cloud of χ = 103 with that of a cloud embedded in a wind with identical parameters to the post-shock flow. We find that initially there are only minor morphological differences between the shock-cloud and wind-cloud interactions, compared to when χ = 10. However, once the transmitted shock exits the cloud, the development of a turbulent wake and fragmentation of the cloud differs between the two simulations. On increasing the wind Mach number, we note the development of a thin, smooth tail of cloud material, which is then disrupted by the fragmentation of the cloud core and subsequent `mass-loading' of the flow. We find that the normalized cloud mixing time (tmix) is shorter at higher χ. However, a strong Mach number dependence on tmix and the normalized cloud drag time, t_{drag}^' }, is not observed. Mach-number-dependent values of tmix and t_{drag}^' } from comparable shock-cloud interactions converge towards the Mach-number-independent time-scales of the wind-cloud simulations. We find that high χ clouds can be accelerated up to 80-90 per cent of the wind velocity and travel large distances before being significantly mixed. However, complete mixing is not achieved in our simulations and at late times the flow remains perturbed.

  15. Comparison of geometrical shock dynamics and kinematic models for shock-wave propagation

    Science.gov (United States)

    Ridoux, J.; Lardjane, N.; Monasse, L.; Coulouvrat, F.

    2018-03-01

    Geometrical shock dynamics (GSD) is a simplified model for nonlinear shock-wave propagation, based on the decomposition of the shock front into elementary ray tubes. Assuming small changes in the ray tube area, and neglecting the effect of the post-shock flow, a simple relation linking the local curvature and velocity of the front, known as the A{-}M rule, is obtained. More recently, a new simplified model, referred to as the kinematic model, was proposed. This model is obtained by combining the three-dimensional Euler equations and the Rankine-Hugoniot relations at the front, which leads to an equation for the normal variation of the shock Mach number at the wave front. In the same way as GSD, the kinematic model is closed by neglecting the post-shock flow effects. Although each model's approach is different, we prove their structural equivalence: the kinematic model can be rewritten under the form of GSD with a specific A{-}M relation. Both models are then compared through a wide variety of examples including experimental data or Eulerian simulation results when available. Attention is drawn to the simple cases of compression ramps and diffraction over convex corners. The analysis is completed by the more complex cases of the diffraction over a cylinder, a sphere, a mound, and a trough.

  16. Shock ignition: modelling and target design robustness

    Energy Technology Data Exchange (ETDEWEB)

    Ribeyre, X; Lafon, M; Schurtz, G; Olazabal-Loume, M; Breil, J; Galera, S; Weber, S, E-mail: ribeyre@celia.u-bordeaux1.f [Centre Lasers Intenses et Applications, Universite Bordeaux 1, CNRS, CEA, Universite Bordeaux 1, 351, cours de la Liberation, 33405 Talence (France)

    2009-12-15

    Shock ignition of a pre-compressed deuterium tritium fuel is considered here. When properly timed, a converging shock launched in the target prior to stagnation time strongly enhances the hot spot pressure. This allows ignition to be reached in a nonisobaric configuration. We show in this work that the igniting mechanism is pressure amplification by shock convergence and shock collision. The shock ignition applied to the HiPER target allows one to study the robustness of this method. It is shown that the spike energy is not a critical parameter and that the spike power delivered on the target depends mainly on the shell implosion velocity. Finally, a family of homothetic targets ignited with a shock wave is studied.

  17. Plume and Shock Interaction Effects on Sonic Boom in the 1-foot by 1-foot Supersonic Wind Tunnel

    Science.gov (United States)

    Castner, Raymond; Elmiligui, Alaa; Cliff, Susan; Winski, Courtney

    2015-01-01

    The desire to reduce or eliminate the operational restrictions of supersonic aircraft over populated areas has led to extensive research at NASA. Restrictions are due to the disturbance of the sonic boom, caused by the coalescence of shock waves formed by the aircraft. A study has been performed focused on reducing the magnitude of the sonic boom N-wave generated by airplane components with a focus on shock waves caused by the exhaust nozzle plume. Testing was completed in the 1-foot by 1-foot supersonic wind tunnel to study the effects of an exhaust nozzle plume and shock wave interaction. The plume and shock interaction study was developed to collect data for computational fluid dynamics (CFD) validation of a nozzle plume passing through the shock generated from the wing or tail of a supersonic vehicle. The wing or tail was simulated with a wedgeshaped shock generator. This test entry was the first of two phases to collect schlieren images and off-body static pressure profiles. Three wedge configurations were tested consisting of strut-mounted wedges of 2.5- degrees and 5-degrees. Three propulsion configurations were tested simulating the propulsion pod and aft deck from a low boom vehicle concept, which also provided a trailing edge shock and plume interaction. Findings include how the interaction of the jet plume caused a thickening of the shock generated by the wedge (or aft deck) and demonstrate how the shock location moved with increasing nozzle pressure ratio.

  18. out-of-n systems with shock model

    African Journals Online (AJOL)

    distributed. Sarhan, A.M. and Abouammoh (2000) used the shock model to derive the re- liability function of k-out-of-n systems with nonindependent and nonidentical components. They assumed that a system is subjected to n + m independent types of shocks. Liu et al. (2008) proposed a model to evaluate the reliability ...

  19. Wind-Farm Parametrisations in Mesoscale Models

    DEFF Research Database (Denmark)

    Volker, Patrick; Badger, Jake; Hahmann, Andrea N.

    2013-01-01

    In this paper we compare three wind-farm parametrisations for mesoscale models against measurement data from the Horns Rev I offshore wind-farm. The parametrisations vary from a simple rotor drag method, to more sophisticated models. Additional to (4) we investigated the horizontal resolution...

  20. Wind gust models derived from field data

    Science.gov (United States)

    Gawronski, W.

    1995-01-01

    Wind data measured during a field experiment were used to verify the analytical model of wind gusts. Good coincidence was observed; the only discrepancy occurred for the azimuth error in the front and back winds, where the simulated errors were smaller than the measured ones. This happened because of the assumption of the spatial coherence of the wind gust model, which generated a symmetric antenna load and, in consequence, a low azimuth servo error. This result indicates a need for upgrading the wind gust model to a spatially incoherent one that will reflect the real gusts in a more accurate manner. In order to design a controller with wind disturbance rejection properties, the wind disturbance should be known at the input to the antenna rate loop model. The second task, therefore, consists of developing a digital filter that simulates the wind gusts at the antenna rate input. This filter matches the spectrum of the measured servo errors. In this scenario, the wind gusts are generated by introducing white noise to the filter input.

  1. Reliability Modeling of Wind Turbines

    DEFF Research Database (Denmark)

    Kostandyan, Erik

    the actions should be made and the type of actions requires knowledge on the accumulated damage or degradation state of the wind turbine components. For offshore wind turbines, the action times could be extended due to weather restrictions and result in damage or degradation increase of the remaining...

  2. Multiple transonic solutions with a new class of shock transitions in steady isothermal solar and stellar winds

    International Nuclear Information System (INIS)

    Habbal, S.R.; Tsinganos, K.

    1983-01-01

    A new class of shock transitions are shown to arise in the transonic solutions of the steady isothermal solar wind equations when, for example, momentum deposition gives rise to multiple critical points in the flow. These shock transitions between critical solutions occur for a certain range of the parameters characterizing the momentum deposition function. In the presence of such shock transitions, the isothermal wind equations admit multiple transonic solutions, namely a continuous solution passing through an inner critical point and solutions involving a shock transition between critical solutions. These multiple transonic solutions have the same flow speed at the base but different supersonic flow speeds at infinity. An additional interesting feature of the isothermal equations is the equivalence of nonradial flow tube divergence and momentum addition in giving rise to multiple critical points and hence to multiple transonic solutions with shock transitions. The physical relevance of these properties for astrophysical systems such as the inner solar wind, flows in extragalactic jets and accretion discs are discussed

  3. Arrival times of Flare/Halo CME associated shocks at the Earth: comparison of the predictions of three numerical models with these observations

    Directory of Open Access Journals (Sweden)

    S. M. P. McKenna-Lawlor

    2002-07-01

    Full Text Available The arrival times at L1 of eleven travelling shocks associated both with X-ray flaring and with halo CMEs recorded aboard SOHO/LASCO have been considered. Close to the Sun the velocities of these events were estimated using either Type II radio records or CME speeds. Close to the Earth the shocks were detected in the data of various solar wind plasma, interplanetary magnetic field (IMF and energetic particle experiments aboard SOHO, ACE, WIND, INTERBALL-1 and IMP-8. The real-time shock arrival predictions of three numerical models, namely the Shock Time of Arrival Model (STOA, the Interplanetary Shock Propagation Model (ISPM and the Hakamada-Akasofu-Fry Solar Wind Model (HAFv.2 were tested against these observations. This is the first time that energetic protons (tens of keV to a few MeV have been used to complement plasma and IMF data in validating shock propagation models. The models were all generally successful in predicting shock arrivals. STOA provided the smallest values of the "predicted minus measured" arrival times and displayed a typical predictive precision better than about 8 h. The ratio of the calculated standard deviation of the transit times to Earth to the standard deviation of the measurements was estimated for each model (treating interacting events as composite shocks and these ratios turned out to be 0.60, 1.15 and 1.02 for STOA, ISPM and HAFv.2, respectively. If an event in the sample for which the shock velocity was not well known is omitted from consideration, these ratios become 0.36, 0.76 and 0.81, respectively. Larger statistical samples should now be tested. The ratio of the in situ shock velocity and the "Sun to L1" transit velocity (Vsh /Vtr was in the range of 0.7–0.9 for individual, non-interacting, shock events. HAFv.2 uniquely provided information on those changes in the COBpoint (the moving Connection point on the shock along the IMF to the OBserver which directly influenced energetic particle rise times

  4. Wind Turbine Control: Robust Model Based Approach

    DEFF Research Database (Denmark)

    Mirzaei, Mahmood

    . This is because, on the one hand, control methods can decrease the cost of energy by keeping the turbine close to its maximum efficiency. On the other hand, they can reduce structural fatigue and therefore increase the lifetime of the wind turbine. The power produced by a wind turbine is proportional...... to the square of its rotor radius, therefore it seems reasonable to increase the size of the wind turbine in order to capture more power. However as the size increases, the mass of the blades increases by cube of the rotor size. This means in order to keep structural feasibility and mass of the whole structure...... reasonable, the ratio of mass to size should be reduced. This trend results in more flexible structures. Control of the flexible structure of a wind turbine in a wind field with stochastic nature is very challenging. In this thesis we are examining a number of robust model based methods for wind turbine...

  5. Cosmic radio-noise absorption bursts caused by solar wind shocks

    Directory of Open Access Journals (Sweden)

    A. Osepian

    2004-09-01

    Full Text Available Bursts of cosmic noise absorption observed at times of sudden commencements (SC of geomagnetic storms are examined. About 300SC events in absorption for the period 1967-1990 have been considered. It is found that the response of cosmic radio-noise absorption to the passage of an interplanetary shock depends on the level of the planetary magnetic activity preceding the SC event and on the magnitude of the magnetic field perturbation associated with the SC (as measured in the equatorial magnetosphere. It is shown that for SC events observed against a quiet background (Kp<2, the effects of the SC on absorption can be seen only if the magnitude of the geomagnetic field perturbation caused by the solar wind shock exceeds a threshold value ΔBth. It is further demonstrated that the existence of this threshold value, ΔBth, deduced from experimental data, can be related to the existence of a threshold for exciting and maintaining the whistler cyclotron instability, as predicted by quasi-linear theory. SC events observed against an active background (Kp<2 are accompanied by absorption bursts for all magnetic field perturbations, however small. A quantitative description of absorption bursts associated with SC events is provided by the whistler cyclotron instability theory.

  6. Modelling Wind Turbine Inflow: The Induction Zone

    DEFF Research Database (Denmark)

    Meyer Forsting, Alexander Raul

    to the rotor, but requires exact knowledge of the flow deceleration to estimate the available, undis- turbed kinetic energy. Thus this thesis explores, mostly numerically, any wind turbine or environmental dependencies of this deceleration. The computational fluid dynamics model (CFD) employed is validated......A wind turbine decelerates the wind in front of its rotor by extracting kinetic energy. The wind speed reduction is maximal at the rotor and negligible more than five rotor radii upfront. By measuring wind speed this far from the rotor, the turbine’s performance is determined without any rotor bias...... significant parameter. Exploiting this singu- lar dependency, a fast semi-empirical model is devised that accurately predicts the velocity deficit upstream of a single turbine. Near-rotor mea-surements in combination with this model are able to retrieve the kinetic energy available to the turbine in flat...

  7. Model of wind shear conditional on turbulence and its impact on wind turbine loads

    DEFF Research Database (Denmark)

    Dimitrov, Nikolay Krasimirov; Natarajan, Anand; Kelly, Mark C.

    2015-01-01

    fatigue load is achieved. The proposed wind shear model based on the wind measurements is thereby probabilistic in definition, with shear jointly distributed with wind turbulence. A simplified model for the wind shear exponent is further derived from the full stochastic model. The fatigue loads over......We analyse high-frequency wind velocity measurements from two test stations over a period of several years and at heights ranging from 60 to 200 m, with the objective to validate wind shear predictions as used in load simulations for wind turbine design. A validated wind shear model is thereby...... different turbine components are evaluated under the full wind measurements, using the developed wind shear model and with standard wind conditions prescribed in the IEC 61400-1 ed. 3. The results display the effect of the Wöhler exponent and reveal that under moderate turbulence, the effect of wind shear...

  8. Modelling the wind climate of Ireland

    DEFF Research Database (Denmark)

    Frank, H.P.; Landberg, L.

    1997-01-01

    The wind climate of Ireland has been calculated using the Karlsruhe Atmospheric Mesoscale Model KAMM. The climatology is represented by 65 frequency classes of geostrophic wind that were selected as equiangular direction sectors and speed intervals with equal frequency in a sector. The results ar...

  9. Probabilistic Harmonic Modeling of Wind Power Plants

    DEFF Research Database (Denmark)

    Guest, Emerson; Jensen, Kim H.; Rasmussen, Tonny Wederberg

    2017-01-01

    A probabilistic sequence domain (SD) harmonic model of a grid-connected voltage-source converter is used to estimate harmonic emissions in a wind power plant (WPP) comprised of Type-IV wind turbines. The SD representation naturally partitioned converter generated voltage harmonics into those...

  10. Detonation Shock Dynamics Modelling with Arbitrary Boundaries

    Science.gov (United States)

    Hodgson, Alexander

    2017-06-01

    The Detonation Shock Dynamics (DSD) model can be used to predict detonation wave propagation in a high explosive (HE). The detonation wave is prescribed a velocity that depends on its curvature. Additionally, the angle between the wave and the HE boundary may not exceed a specified ``boundary angle'', the value of which depends on the HE and its confining material(s). The level-set method is commonly used to drive DSD computation. Boundary conditions are applied to the level-set field at the charge edges to maintain the explosive boundary angle criteria. The position of the boundary must be accurate and continuous across adjacent cells to achieve accurate and robust results. This is mainly an issue for mixed material meshes where the boundary does not coincide with the cell boundaries. For such meshes, a set of volume fractions defines the amount of material in each cell. The boundary is defined implicitly by the volume fractions, and must be reconstructed to an explicit form for use in DSD. This work describes a novel synthesis of the level-set method and simulated annealing, an optimisation method used to reconstruct the boundary. The accuracy and robustness of the resulting DSD calculation are evaluated with a range of test problems.

  11. Alternative methods of modeling wind generation using production costing models

    International Nuclear Information System (INIS)

    Milligan, M.R.; Pang, C.K.

    1996-08-01

    This paper examines the methods of incorporating wind generation in two production costing models: one is a load duration curve (LDC) based model and the other is a chronological-based model. These two models were used to evaluate the impacts of wind generation on two utility systems using actual collected wind data at two locations with high potential for wind generation. The results are sensitive to the selected wind data and the level of benefits of wind generation is sensitive to the load forecast. The total production cost over a year obtained by the chronological approach does not differ significantly from that of the LDC approach, though the chronological commitment of units is more realistic and more accurate. Chronological models provide the capability of answering important questions about wind resources which are difficult or impossible to address with LDC models

  12. Modeling of Particle Acceleration at Multiple Shocks via Diffusive Shock Acceleration: Preliminary Results

    Science.gov (United States)

    Parker, L. Neergaard; Zank, G. P.

    2013-01-01

    Successful forecasting of energetic particle events in space weather models require algorithms for correctly predicting the spectrum of ions accelerated from a background population of charged particles. We present preliminary results from a model that diffusively accelerates particles at multiple shocks. Our basic approach is related to box models in which a distribution of particles is diffusively accelerated inside the box while simultaneously experiencing decompression through adiabatic expansion and losses from the convection and diffusion of particles outside the box. We adiabatically decompress the accelerated particle distribution between each shock by either the method explored in Melrose and Pope (1993) and Pope and Melrose (1994) or by the approach set forth in Zank et al. (2000) where we solve the transport equation by a method analogous to operator splitting. The second method incorporates the additional loss terms of convection and diffusion and allows for the use of a variable time between shocks. We use a maximum injection energy (E(sub max)) appropriate for quasi-parallel and quasi-perpendicular shocks and provide a preliminary application of the diffusive acceleration of particles by multiple shocks with frequencies appropriate for solar maximum (i.e., a non-Markovian process).

  13. Modeling Innovations Advance Wind Energy Industry

    Science.gov (United States)

    2009-01-01

    In 1981, Glenn Research Center scientist Dr. Larry Viterna developed a model that predicted certain elements of wind turbine performance with far greater accuracy than previous methods. The model was met with derision from others in the wind energy industry, but years later, Viterna discovered it had become the most widely used method of its kind, enabling significant wind energy technologies-like the fixed pitch turbines produced by manufacturers like Aerostar Inc. of Westport, Massachusetts-that are providing sustainable, climate friendly energy sources today.

  14. Spectral coherence model for power fluctuations in a wind farm

    DEFF Research Database (Denmark)

    Vigueras-Rodriguez, A.; Sørensen, Poul Ejnar; Viedma, A.

    2012-01-01

    This paper provides a model for the coherence between wind speeds located in a horizontal plane corresponding to hub height of wind turbines in a large wind farm. The model has been developed using wind speed and power measurements from the 72 Wind Turbines and two of the meteorological masts from...

  15. "Financial-Sector Shocks in a Credit-View Model"

    OpenAIRE

    Burton A. Abrams

    2011-01-01

    A variation of the Bernanke-Blinder credit-view model reveals that holding constant the money supply following various financial-sector shocks, including an autonomous drop in the money multiplier, is insufficient to prevent aggregate demand from decreasing.

  16. Modeling of Shock Propagation and Attenuation in Viscoelastic Components

    Directory of Open Access Journals (Sweden)

    R. Rusovici

    2001-01-01

    Full Text Available Protection from the potentially damaging effects of shock loading is a common design requirement for diverse mechanical structures ranging from shock accelerometers to spacecraft. High damping viscoelastic materials are employed in the design of geometrically complex, impact-absorbent components. Since shock transients are characterized by a broad frequency spectrum, it is imperative to properly model frequency dependence of material behavior over a wide frequency range. The Anelastic Displacement Fields (ADF method is employed herein to model frequency-dependence within a time-domain finite element framework. Axisymmetric, ADF finite elements are developed and then used to model shock propagation and absorption through viscoelastic structures. The model predictions are verified against longitudinal wave propagation experimental data and theory.

  17. Time Series Model of Wind Speed for Multi Wind Turbines based on Mixed Copula

    Directory of Open Access Journals (Sweden)

    Nie Dan

    2016-01-01

    Full Text Available Because wind power is intermittent, random and so on, large scale grid will directly affect the safe and stable operation of power grid. In order to make a quantitative study on the characteristics of the wind speed of wind turbine, the wind speed time series model of the multi wind turbine generator is constructed by using the mixed Copula-ARMA function in this paper, and a numerical example is also given. The research results show that the model can effectively predict the wind speed, ensure the efficient operation of the wind turbine, and provide theoretical basis for the stability of wind power grid connected operation.

  18. Mesoscale to microscale wind farm flow modeling and evaluation: Mesoscale to Microscale Wind Farm Models

    Energy Technology Data Exchange (ETDEWEB)

    Sanz Rodrigo, Javier [National Renewable Energy Centre (CENER), Sarriguren Spain; Chávez Arroyo, Roberto Aurelio [National Renewable Energy Centre (CENER), Sarriguren Spain; Moriarty, Patrick [National Renewable Energy Laboratory (NREL), Golden CO USA; Churchfield, Matthew [National Renewable Energy Laboratory (NREL), Golden CO USA; Kosović, Branko [National Center for Atmospheric Research (NCAR), Boulder CO USA; Réthoré, Pierre-Elouan [Technical University of Denmark (DTU), Roskilde Denmark; Hansen, Kurt Schaldemose [Technical University of Denmark (DTU), Lyngby Denmark; Hahmann, Andrea [Technical University of Denmark (DTU), Roskilde Denmark; Mirocha, Jeffrey D. [Lawrence Livermore National Laboratory, Livermore CA USA; Rife, Daran [DNV GL, San Diego CA USA

    2016-08-31

    The increasing size of wind turbines, with rotors already spanning more than 150 m diameter and hub heights above 100 m, requires proper modeling of the atmospheric boundary layer (ABL) from the surface to the free atmosphere. Furthermore, large wind farm arrays create their own boundary layer structure with unique physics. This poses significant challenges to traditional wind engineering models that rely on surface-layer theories and engineering wind farm models to simulate the flow in and around wind farms. However, adopting an ABL approach offers the opportunity to better integrate wind farm design tools and meteorological models. The challenge is how to build the bridge between atmospheric and wind engineering model communities and how to establish a comprehensive evaluation process that identifies relevant physical phenomena for wind energy applications with modeling and experimental requirements. A framework for model verification, validation, and uncertainty quantification is established to guide this process by a systematic evaluation of the modeling system at increasing levels of complexity. In terms of atmospheric physics, 'building the bridge' means developing models for the so-called 'terra incognita,' a term used to designate the turbulent scales that transition from mesoscale to microscale. This range of scales within atmospheric research deals with the transition from parameterized to resolved turbulence and the improvement of surface boundary-layer parameterizations. The coupling of meteorological and wind engineering flow models and the definition of a formal model evaluation methodology, is a strong area of research for the next generation of wind conditions assessment and wind farm and wind turbine design tools. Some fundamental challenges are identified in order to guide future research in this area.

  19. Small Signal Modeling of Wind Farms

    DEFF Research Database (Denmark)

    Ebrahimzadeh, Esmaeil; Blaabjerg, Frede; Wang, Xiongfei

    2017-01-01

    In large power electronic systems like a wind farm, the mutual interactions between the control systems of the power converters can lead to various stability and power quality problems. In order to predict the system dynamic behavior, this paper presents an approach to model a wind farm as a Multi......-Input Multi-Output (MIMO) dynamic system, where the current control loops with Phase-Locked Loops (PLLs) are linearized around an operating point. Each sub-module of the wind farm is modeled as a 2×2 admittance matrix in dq-domain and all are combined together by using a dq nodal admittance matrix....... The frequency and damping of the oscillatory modes are calculated by finding the poles of the introduced MIMO matrix. Time-domain simulation results obtained from a 400-MW wind farm are used to verify the effectiveness of the presented model....

  20. Wind laws for shockless initialization. [numerical forecasting model

    Science.gov (United States)

    Ghil, M.; Shkoller, B.

    1976-01-01

    A system of diagnostic equations for the velocity field, or wind laws, was derived for each of a number of models of large-scale atmospheric flow. The derivation in each case is mathematically exact and does not involve any physical assumptions not already present in the prognostic equations, such as nondivergence or vanishing of derivatives of the divergence. Therefore, initial states computed by solving these diagnostic equations should be compatible with the type of motion described by the prognostic equations of the model and should not generate initialization shocks when inserted into the model. Numerical solutions of the diagnostic system corresponding to a barotropic model are exhibited. Some problems concerning the possibility of implementing such a system in operational numerical weather prediction are discussed.

  1. Shock Acceleration Model for the Toothbrush Radio Relic

    Science.gov (United States)

    Kang, Hyesung; Ryu, Dongsu; Jones, T. W.

    2017-05-01

    Although many of the observed properties of giant radio relics detected in the outskirts of galaxy clusters can be explained by relativistic electrons accelerated at merger-driven shocks, significant puzzles remain. In the case of the so-called Toothbrush relic, the shock Mach number estimated from X-ray observations ({M}{{X}}≈ 1.2{--}1.5) is substantially weaker than that inferred from the radio spectral index ({M}{rad}≈ 2.8). Toward understanding such a discrepancy, we here consider the following diffusive shock acceleration (DSA) models: (1) weak-shock models with {M}{{s}}≲ 2 and a preexisting population of cosmic-ray electrons (CRe) with a flat energy spectrum, and (2) strong-shock models with {M}{{s}}≈ 3 and either shock-generated suprathermal electrons or preexisting fossil CRe. We calculate the synchrotron emission from the accelerated CRe, following the time evolution of the electron DSA, and the subsequent radiative cooling and postshock turbulent acceleration (TA). We find that both models could reproduce reasonably well the observed integrated radio spectrum of the Toothbrush relic, but the observed broad transverse profile requires the stochastic acceleration by downstream turbulence, which we label “turbulent acceleration” or TA to distinguish it from DSA. Moreover, to account for the almost uniform radio spectral index profile along the length of the relic, the weak-shock models require a preshock region over 400 kpc with a uniform population of preexisting CRe with a high cutoff energy (≳ 40 {GeV}). Due to the short cooling time, it is challenging to explain the origin of such energetic electrons. Therefore, we suggest the strong-shock models with low-energy seed CRe (≲ 150 {MeV}) are preferred for the radio observations of this relic.

  2. Simulated solar wind plasma interaction with the Martian exosphere: influence of the solar EUV flux on the bow shock and the magnetic pile-up boundary

    Directory of Open Access Journals (Sweden)

    R. Modolo

    2006-12-01

    Full Text Available The solar wind plasma interaction with the Martian exosphere is investigated by means of 3-D multi-species hybrid simulations. The influence of the solar EUV flux on the bow shock and the magnetic pile-up boundary is examined by comparing two simulations describing the two extreme states of the solar cycle. The hybrid formalism allows a kinetic description of each ions species and a fluid description of electrons. The ionization processes (photoionization, electron impact and charge exchange are included self-consistently in the model where the production rate is computed locally, separately for each ionization act and for each neutral species. The results of simulations are in a reasonable agreement with the observations made by Phobos 2 and Mars Global Surveyor spacecraft. The position of the bow shock and the magnetic pile-up boundary is weakly dependent of the solar EUV flux. The motional electric field creates strong asymmetries for the two plasma boundaries.

  3. Uncertainty shocks in a model of effective demand

    OpenAIRE

    Bundick, Brent; Basu, Susanto

    2014-01-01

    Can increased uncertainty about the future cause a contraction in output and its components? An identified uncertainty shock in the data causes significant declines in output, consumption, investment, and hours worked. Standard general-equilibrium models with flexible prices cannot reproduce this comovement. However, uncertainty shocks can easily generate comovement with countercyclical markups through sticky prices. Monetary policy plays a key role in offsetting the negative impact of uncert...

  4. A Conditional Approach to Panel Data Models with Common Shocks

    Directory of Open Access Journals (Sweden)

    Giovanni Forchini

    2016-01-01

    Full Text Available This paper studies the effects of common shocks on the OLS estimators of the slopes’ parameters in linear panel data models. The shocks are assumed to affect both the errors and some of the explanatory variables. In contrast to existing approaches, which rely on using results on martingale difference sequences, our method relies on conditional strong laws of large numbers and conditional central limit theorems for conditionally-heterogeneous random variables.

  5. Prediction models for wind speed at turbine locations in a wind farm

    DEFF Research Database (Denmark)

    Knudsen, Torben; Bak, Thomas; Soltani, Mohsen

    2011-01-01

    turbulence models. The esti- mator includes a nonlinear time varying wind speed model, which compared with literature results in an adaptive filter. Given the estimated effective wind speed, it is possible to establish wind speed prediction models by system identification. As the prediction models are based...... manifested through the wind field is hence required. This paper develops models for this relationship. The result is based on two new contributions: the first is related to the estimation of effective wind speeds, which serves as a basis for the second contribution to wind speed prediction models. Based...... on standard turbine measurements such as rotor speed and power produced, an effective wind speed, which represents the wind field averaged over the rotor disc, is derived. The effective wind speed estimator is based on a continuous–discrete extended Kalman filter that takes advantage of nonlinear time varying...

  6. Multivariable Wind Modeling in State Space

    DEFF Research Database (Denmark)

    Sichani, Mahdi Teimouri; Pedersen, B. J.

    2011-01-01

    -spectral density matrix a frequency response matrix is constructed which determines the turbulence vector as a linear filtration of Gaussian white noise. Finally, an accurate state space modeling method is proposed which allows selection of an appropriate model order, and estimation of a state space model......Turbulence of the incoming wind field is of paramount importance to the dynamic response of wind turbines. Hence reliable stochastic models of the turbulence should be available from which time series can be generated for dynamic response and structural safety analysis. In the paper an empirical...... cross-spectral density function for the along-wind turbulence component over the rotor plane is taken as the starting point. The spectrum is spatially discretized in terms of a Hermitian cross-spectral density matrix for the turbulence state vector which turns out not to be positive definite. Since...

  7. Modelling accretion disc and stellar wind interactions: the case of Sgr A.

    Science.gov (United States)

    Christie, I M; Petropoulou, M; Mimica, P; Giannios, D

    2016-07-01

    Sgr A* is an ideal target to study low-luminosity accreting systems. It has been recently proposed that properties of the accretion flow around Sgr A* can be probed through its interactions with the stellar wind of nearby massive stars belonging to the S-cluster. When a star intercepts the accretion disc, the ram and thermal pressures of the disc terminate the stellar wind leading to the formation of a bow shock structure. Here, a semi-analytical model is constructed which describes the geometry of the termination shock formed in the wind. With the employment of numerical hydrodynamic simulations, this model is both verified and extended to a region prone to Kelvin-Helmholtz instabilities. Because the characteristic wind and stellar velocities are in ∼10 8  cm s -1 range, the shocked wind may produce detectable X-rays via thermal bremsstrahlung emission. The application of this model to the pericentre passage of S2, the brightest member of the S-cluster, shows that the shocked wind produces roughly a month long X-ray flare with a peak luminosity of L ≈ 4 × 10 33  erg s -1 for a stellar mass-loss rate, disc number density, and thermal pressure strength of [Formula: see text], n d  = 10 5  cm -3 , and α = 0.1, respectively. This peak luminosity is comparable to the quiescent X-ray emission detected from Sgr A* and is within the detection capabilities of current X-ray observatories. Its detection could constrain the density and thickness of the disc at a distance of ∼3000 gravitational radii from the supermassive black hole.

  8. Verification of high-speed solar wind stream forecasts using operational solar wind models

    DEFF Research Database (Denmark)

    Reiss, Martin A.; Temmer, Manuela; Veronig, Astrid M.

    2016-01-01

    and the background solar wind conditions. We found that both solar wind models are capable of predicting the large-scale features of the observed solar wind speed (root-mean-square error, RMSE ≈100 km/s) but tend to either overestimate (ESWF) or underestimate (WSA) the number of high-speed solar wind streams (threat...

  9. Wind atlas for South Africa: wind measurements and micro-scale modelling

    CSIR Research Space (South Africa)

    Szewczuk, S

    2010-08-01

    Full Text Available . This paper will discuss the wind atlas method, provide an overview of the wind resource in South Africa, wind measurements that are being undertaken as well as the micro-scale modelling that is planned to be done as part of the Wind Atlas for South Africa...

  10. Modelling and Measuring Flow and Wind Turbine Wakes in Large Wind Farms Offshore

    DEFF Research Database (Denmark)

    Barthelmie, Rebecca Jane; Hansen, Kurt Schaldemose; Frandsen, Sten Tronæs

    2009-01-01

    Average power losses due to wind turbine wakes are of the order of 10 to 20% of total power output in large offshore wind farms. Accurately quantifying power losses due to wakes is, therefore, an important part of overall wind farm economics. The focus of this research is to compare different types...... power losses due to wakes and loads. The research presented is part of the EC-funded UpWind project, which aims to radically improve wind turbine and wind farm models in order to continue to improve the costs of wind energy. Reducing wake losses, or even reduce uncertainties in predicting power losses...... from wakes, contributes to the overall goal of reduced costs. Here, we assess the state of the art in wake and flow modelling for offshore wind forms, the focus so for has been cases at the Horns Rev wind form, which indicate that wind form models require modification to reduce under-prediction of wake...

  11. Filament winding cylinders. I - Process model

    Science.gov (United States)

    Lee, Soo-Yong; Springer, George S.

    1990-01-01

    A model was developed which describes the filament winding process of composite cylinders. The model relates the significant process variables such as winding speed, fiber tension, and applied temperature to the thermal, chemical and mechanical behavior of the composite cylinder and the mandrel. Based on the model, a user friendly code was written which can be used to calculate (1) the temperature in the cylinder and the mandrel, (2) the degree of cure and viscosity in the cylinder, (3) the fiber tensions and fiber positions, (4) the stresses and strains in the cylinder and in the mandrel, and (5) the void diameters in the cylinder.

  12. Wind models for the NSTS ascent trajectory biasing for wind load alleviation

    Science.gov (United States)

    Smith, O. E.; Adelfang, S. I.; Batts, G. W.

    1990-01-01

    New concepts are presented for aerospace vehicle ascent wind profile biasing. The purpose for wind biasing the ascent trajectory is to provide ascent wind loads relief and thus decrease the probability for launch delays due to wind loads exceeding critical limits. Wind biasing trajectories to the the profile of monthly mean winds have been widely used for this purpose. The wind profile models presented give additional alternatives for wind biased trajectories. They are derived from the properties of the bivariate normal probability function using the available wind statistical parameters for the launch site. The analytical expressions are presented to permit generalizations. Specific examples are given to illustrate the procedures. The wind profile models can be used to establish the ascent trajectory steering commands to guide the vehicle through the first stage. For the National Space Transportation System (NSTS) program these steering commands are called I-loads.

  13. Statistical Modelling of Wind Proles - Data Analysis and Modelling

    DEFF Research Database (Denmark)

    Jónsson, Tryggvi; Pinson, Pierre

    The aim of the analysis presented in this document is to investigate whether statistical models can be used to make very short-term predictions of wind profiles.......The aim of the analysis presented in this document is to investigate whether statistical models can be used to make very short-term predictions of wind profiles....

  14. Shock, release and reshock of PBX 9502: experiments and modeling

    Science.gov (United States)

    Aslam, Tariq; Gustavsen, Richard; Whitworh, Nicholas; Menikoff, Ralph; Tarver, Craig; Handley, Caroline; Bartram, Brian

    2017-06-01

    We examine shock, release and reshock into the tri-amino-tri-nitro-benzene (TATB) based explosive PBX 9502 (95% TATB, 5% Kel-F 800) from both an experimental and modeling point of view. The experiments are performed on the 2-stage light gas gun at Los Alamos National Laboratory and are composed of a multi-layered impactor impinging on PBX 9502 backed by a polymethylmethacrylate window. The objective is to initially shock the PBX 9502 in the 7 GPa range (too weak to start significant reaction), then allow a rarefaction fan to release the material to a lower pressure/temperature state. Following this release, a strong second shock will recompress the PBX. If the rarefaction fan releases the PBX to a very low pressure, the ensuing second shock can increase the entropy and temperature substantially more than in previous double-shock experiments without an intermediate release. Predictions from a variety of reactive burn models (AWSD, CREST, Ignition and Growth, SURF) demonstrate significantly different behaviors and thus the experiments are an excellent validation test of the models, and may suggest improvements for subsequent modeling efforts.

  15. 3D Smoothed Particle Hydrodynamics Models of Betelgeuse's Bow Shock

    Science.gov (United States)

    Mohamed, S.; Mackey, J.; Langer, N.

    2013-05-01

    Betelgeuse, the bright red supergiant (RSG) in Orion, is a runaway star. Its supersonic motion through the interstellar medium has resulted in the formation of a bow shock, a cometary structure pointing in the direction of motion. We present the first 3D hydrodynamic simulations of the formation and evolution of Betelgeuse's bow shock. We show that the bow shock morphology depends substantially on the growth timescale for Rayleigh-Taylor versus Kelvin-Helmholtz instabilities. We discuss our models in light of the recent Herschel, GALEX and VLA observations. If the mass in the bow shock shell is low (~few × 10-3 M⊙), as seems to be implied by the AKARI and Herschel observations, then Betelgeuse's bow shock is very young and is unlikely to have reached a steady state. The circular, smooth bow shock shell is consistent with this conclusion. We further discuss the implications of our results, in particular, the possibility that Betelgeuse may have only recently entered the RSG phase.

  16. Testing the Wind-shock Paradigm for B-Type Star X-Ray Production with θ Car

    Science.gov (United States)

    Doyle, T. F.; Petit, V.; Cohen, D.; Leutenegger, M.

    2017-11-01

    We present Chandra X-ray grating spectroscopy of the B0.2V star, θ Carina. θ Car is in a critical transition region between the latest O-type and earliest B-type stars, where some stars are observed to have UV-determined wind densities much lower than theoretically expected (e.g., Marcolino et al. 2009). In general, X-ray emission in this low-density wind regime should be less prominent than for O-stars (e.g., Martins et al. 2005), but observations suggest a higher than expected X-ray emission filling factor (Lucy 2012; Huenemoerder et al. 2012); if a larger fraction of the wind is shock-heated, it could explain the weak UV wind signature seen in weak wind stars, but this might severely challenge predictions of radiatively-driven wind theory. We measured the line widths of several He-, H-like and Fe ions and the f/i ratio of He-like ions in the X-ray spectrum, which improves upon the results from Nazé et al. (2008) (XMM-Newton RGS) with additional measurements (Chandra HETG) of Mgxi and Sixiii by further constraining the X-ray emission location. The f/i ratio is modified by the proximity to the UV-emitting stellar photosphere, and is therefore a diagnostic of the radial location of the X-ray emitting plasma. The measured widths of X-ray lines are narrow, <300 km s-1 and the f/i ratios place the X-rays relatively close to the surface, both implying θ Car is a weak wind star. The measured widths are also consistent with other later-type stars in the weak wind regime, β Cru (Cohen et al. 2008), for example, and are smaller on average than earlier weak wind stars such as μ Col (Huenemoerder et al. 2012). This could point to a spectral type divide, where one hypothesis, low density, works for early-B type stars and the other hypothesis, a larger fraction of shock-heated gas, explains weak winds in late-O type stars. Archival IUE data still needs to be analyzed to determine the mass loss rate and hydrodynamical simulations will be compared with observations to

  17. Validation of the filament winding process model

    Science.gov (United States)

    Calius, Emilo P.; Springer, George S.; Wilson, Brian A.; Hanson, R. Scott

    1987-01-01

    Tests were performed toward validating the WIND model developed previously for simulating the filament winding of composite cylinders. In these tests two 24 in. long, 8 in. diam and 0.285 in. thick cylinders, made of IM-6G fibers and HBRF-55 resin, were wound at + or - 45 deg angle on steel mandrels. The temperatures on the inner and outer surfaces and inside the composite cylinders were recorded during oven cure. The temperatures inside the cylinders were also calculated by the WIND model. The measured and calculated temperatures were then compared. In addition, the degree of cure and resin viscosity distributions inside the cylinders were calculated for the conditions which existed in the tests.

  18. Wind turbine noise modeling : a comparison of modeling methods

    International Nuclear Information System (INIS)

    Wang, L.; Strasser, A.

    2009-01-01

    All wind turbine arrays must undergo a noise impact assessment. DataKustik GmbH developed the Computer Aided Noise Abatement (Cadna/A) modeling software for calculating noise propagation to meet accepted protocols and international standards such as CONCAWE and ISO 9613 standards. The developer of Cadna/A, recommended the following 3 models for simulating wind turbine noise. These include a disk of point sources; a ring of point sources located at the tip of each blade; and a point source located at the top of the wind turbine tower hub. This paper presented an analytical comparison of the 3 models used for a typical wind turbine with a hub tower containing 3 propeller blades, a drive-train and top-mounted generator, as well as a representative wind farm, using Cadna/A. AUC, ISO and IEC criteria requirements for the meteorological input with Cadna/A for wind farm noise were also discussed. The noise predicting modelling approach was as follows: the simplest model, positioning a single point source at the top of the hub, can be used to predict sound levels for a typical wind turbine if receptors are located 250 m from the hub; a-weighted sound power levels of a wind turbine at cut-in and cut-off wind speed should be used in the models; 20 by 20 or 50 by 50 meter terrain parameters are suitable for large wind farm modeling; and ISO 9613-2 methods are recommended to predict wind farm noise with various metrological inputs based on local conditions. The study showed that the predicted sound level differences of the 3 wind turbine models using Cadna/A are less than 0.2 dB at receptors located greater than 250 m from the wind turbine hub, which fall within the accuracy range of the calculation method. All 3 models of wind turbine noise meet ISO9613-2 standards for noise prediction using Cadna/A. However, the single point source model was found to be the most efficient in terms of modeling run-time among the 3 models. 7 refs., 3 tabs., 15 figs.

  19. Modeling of the dynamics of wind to power conversion including high wind speed behavior

    DEFF Research Database (Denmark)

    Litong-Palima, Marisciel; Bjerge, Martin Huus; Cutululis, Nicolaos Antonio

    2016-01-01

    This paper proposes and validates an efficient, generic and computationally simple dynamic model for the conversion of the wind speed at hub height into the electrical power by a wind turbine. This proposed wind turbine model was developed as a first step to simulate wind power time series...... speed shutdowns and restarts are represented as on–off switching rules that govern the output of the wind turbine at extreme wind speed conditions. The model uses the concept of equivalent wind speed, estimated from the single point (hub height) wind speed using a second-order dynamic filter...... measurements available from the DONG Energy offshore wind farm Horns Rev 2. Copyright © 2015 John Wiley & Sons, Ltd....

  20. Multiphase Modeling of Secondary Atomization in a Shock Environment

    Science.gov (United States)

    St. Clair, Jeffrey; McGrath, Thomas; Balachandar, Sivaramakrishnan

    2017-06-01

    Understanding and developing accurate modeling strategies for shock-particulate interaction remains a challenging and important topic, with application to energetic materials development, volcanic eruptions, and safety/risk assessment. This work presents computational modeling of compressible multiphase flows with shock-induced droplet atomization. Droplet size has a strong influence on the interphase momentum and heat transfer. A test case is presented that is sensitive to this, requiring the dynamic modeling of the secondary atomization process occurring when the shock impacts the droplets. An Eulerian-Eulerian computational model that treats all phases as compressible, is hyperbolic and satisfies the 2nd Law of Thermodynamics is applied. Four different breakup models are applied to the test case in which a planar shock wave encounters a cloud of water droplets. The numerical results are compared with both experimental and previously-generated modeling results. The effect of the drag relation used is also investigated. The computed results indicate the necessity of using a droplet breakup model for this application, and the relative accuracy of results obtained with the different droplet breakup and drag models is discussed.

  1. Simulation analysis of a wind farm with different aggregated models

    DEFF Research Database (Denmark)

    Li, H.; Wang, H.; Zhao, B.

    2011-01-01

    Based on a wind farm including wind turbines with squirrel cage induction generators (SCIGs), different aggregated models of a wind farm, such as a single weighted average model, a reduced-order re-scaled model, a parameter transformed model and a single weighted arithmetic model were presented, ...

  2. IEA Wind Task 37: Systems Modeling Framework and Ontology for Wind Turbines and Plants

    Energy Technology Data Exchange (ETDEWEB)

    Dykes, Katherine L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Zahle, Frederik [Technical University of Denmark; Merz, Karl [SINTEF Energy Research; McWilliam, Mike [Technical University of Denmark; Bortolotti, Pietro [Technical University Munich

    2017-08-14

    This presentation will provide an overview of progress to date in the development of a system modeling framework and ontology for wind turbines and plants as part of the larger IEA Wind Task 37 on wind energy systems engineering. The goals of the effort are to create a set of guidelines for a common conceptual architecture for wind turbines and plants so that practitioners can more easily share descriptions of wind turbines and plants across multiple parties and reduce the effort for translating descriptions between models; integrate different models together and collaborate on model development; and translate models among different levels of fidelity in the system.

  3. Stochastic Modeling Of Wind Turbine Drivetrain Components

    DEFF Research Database (Denmark)

    Rafsanjani, Hesam Mirzaei; Sørensen, John Dalsgaard

    2014-01-01

    reliable components are needed for wind turbine. In this paper focus is on reliability of critical components in drivetrain such as bearings and shafts. High failure rates of these components imply a need for more reliable components. To estimate the reliability of these components, stochastic models...

  4. SimWIND: A geospatial infrastructure model for optimizing wind power generation and transmission

    International Nuclear Information System (INIS)

    Phillips, Benjamin R.; Middleton, Richard S.

    2012-01-01

    Wind is a clean, enduring energy resource with the capacity to satisfy 20% or more of U.S. electricity demand. Presently, wind potential is limited by a paucity of electrical transmission lines and/or capacity between promising wind resources and primary load centers. We present the model SimWIND to address this shortfall. SimWIND is an integrated optimization model for the geospatial arrangement and cost minimization of wind-power generation–transmission–delivery infrastructure. Given a set of possible wind-farm sites, the model simultaneously determines (1) where and how much power to generate and (2) where to build new transmission infrastructure and with what capacity in order to minimize the cost for delivering a targeted amount of power to load. Costs and routing of transmission lines consider geographic and social constraints as well as electricity losses. We apply our model to the Electric Reliability Council of Texas (ERCOT) Interconnection, considering scenarios that deliver up to 20 GW of new wind power. We show that SimWIND could potentially reduce ERCOT's projected ∼$5B transmission network upgrade line length and associated costs by 50%. These results suggest that SimWIND's coupled generation–transmission–delivery modeling approach could play a critical role in enhancing planning efforts and reducing costs for wind energy integration. - Highlights: ► Wind power is limited by transmission capacity between resources and demands. ► SimWIND is a coupled generation-transmission-delivery model for wind infrastructure. ► The model minimizes costs considering realistic transmission routing and networking. ► We show that SimWIND could save 50% of $5B costs for expanding the Texas grid. ► Results suggest SimWIND may play a critical role in enhancings wind planning efforts.

  5. Pitchcontrol of wind turbines using model free adaptivecontrol based on wind turbine code

    DEFF Research Database (Denmark)

    Zhang, Yunqian; Chen, Zhe; Cheng, Ming

    2011-01-01

    value is only based on I/O data of the wind turbine is identified and then the wind turbine system is replaced by a dynamic linear time-varying model. In order to verify the correctness and robustness of the proposed model free adaptive pitch controller, the wind turbine code FAST which can predict...

  6. Actuator disk model of wind farms based on the rotor average wind speed

    DEFF Research Database (Denmark)

    Han, Xing Xing; Xu, Chang; Liu, De You

    2016-01-01

    Due to difficulty of estimating the reference wind speed for wake modeling in wind farm, this paper proposes a new method to calculate the momentum source based on the rotor average wind speed. The proposed model applies volume correction factor to reduce the influence of the mesh recognition...

  7. A two-temperature model for shocked porous explosive

    Science.gov (United States)

    Lambourn, Brian; Handley, Caroline

    2017-01-01

    Mesoscale calculations of hotpots created by a shock wave in a porous explosive show that the hotspots do not cool in times of order at least a microsecond. This suggests that simple models of porosity like the Snowplough model, which assume that a shocked porous explosive jumps to a point on the Hugoniot that is instantaneously in thermodynamic equilibrium, are not correct. A two-temperature model of shocked porous explosive has been developed in which a small fraction of the material, representing the hotspots, has a high temperature, but the bulk of the material is cooler than the temperature calculated by the Snowplough model. In terms of the mean state of the material, it is shown that the two-temperature model only minimally affects the pressure vs. volume and shock velocity vs. particle velocity plot of the Hugoniot, but that the mean state lies slightly off the equation of state surface. The results of the model are compared with two dimensional mesoscale calculations.

  8. Wind Turbine and Wind Power Plant Modelling Aspects for Power System Stability Studies

    DEFF Research Database (Denmark)

    Altin, Müfit; Hansen, Anca Daniela; Göksu, Ömer

    2014-01-01

    is not reasonable regarding the focus of the study. Therefore the power system operators should be aware of the modelling aspects of the wind power considering the related stability study and implement the required model in the appropriate power system toolbox. In this paper, the modelling aspects of wind turbines...... and wind power plants are reviewed for power system stability studies. Important remarks of the models are presented by means of simulations to emphasize the impact of these modelling details on the power system.......Large amount of wind power installations introduce modeling challenges for power system operators at both the planning and operational stages of power systems. Depending on the scope of the study, the modeling details of the wind turbine or the wind power plant are required to be different. A wind...

  9. Quantitative understanding of Forbush decrease drivers based on shock-only and CME-only models using global signature of February 14, 1978 event

    International Nuclear Information System (INIS)

    Raghav, Anil; Lotekar, Ajay; Bhaskar, Ankush; Vichare, Geeta; Yadav, Virendra

    2014-01-01

    We have studied the Forbush decrease (FD) event that occurred on February 14, 1978 using 43 neutron monitor observatories to understand the global signature of FD. We have studied rigidity dependence of shock amplitude and total FD amplitude. We have found almost the same power law index for both shock phase amplitude and total FD amplitude. Local time variation of shock phase amplitude and maximum depression time of FD have been investigated which indicate possible effect of shock/CME orientation. We have analyzed rigidity dependence of time constants of two phase recovery. Time constants of slow component of recovery phase show rigidity dependence and imply possible effect of diffusion. Solar wind speed was observed to be well correlated with slow component of FD recovery phase. This indicates solar wind speed as possible driver of recovery phase. To investigate the contribution of interplanetary drivers, shock and CME in FD, we have used shock-only and CME-only models. We have applied these models separately to shock phase and main phase amplitudes respectively. This confirms presently accepted physical scenario that the first step of FD is due to propagating shock barrier and second step is due to flux rope of CME/magnetic cloud

  10. Unsteady aerodynamic modelling of wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Coton, F.N.; Galbraith, R.A. [Univ. og Glasgow, Dept. of Aerospace Engineering, Glasgow (United Kingdom)

    1997-08-01

    The following current and future work is discussed: Collaborative wind tunnel based PIV project to study wind turbine wake structures in head-on and yawed flow. Prescribed wake model has been embedded in a source panel representation of the wind tunnel walls to allow comparison with experiment; Modelling of tower shadow using high resolution but efficient vortex model in tower shadow domain; Extension of model to yawing flow; Upgrading and tuning of unsteady aerodynamic model for low speed, thick airfoil flows. Glasgow has a considerable collection of low speed dynamic stall data. Currently, the Leishman - Beddoes model is not ideally suited to such flows. For example: Range of stall onset criteria used for dynamic stall prediction including Beddoes. Wide variation of stall onset prediction. Beddoes representation was developed primarily with reference to compressible flows. Analyses of low speed data from Glasgow indicate deficiencies in the current model; Predicted versus measured response during ramp down motion. Modification of the Beddoes representation is required to obtain a fit with the measured data. (EG)

  11. Detailed ADM-based Modeling of Shock Retreat and X-ray Emission of τ Sco

    Science.gov (United States)

    Fletcher, C. L.; Petit, V.; Cohen, D. H.; Townsend, R. H.; Wade, G. A.

    2018-01-01

    Leveraging the improvement of spectropolarimeters over the past few decades, surveys have found that about 10% of OB-type stars host strong (˜ kG) and mostly dipolar surface magnetic fields. One B-type star, τ Sco, has a more complex surface magnetic field than the general population of OB stars. Interestingly, its X-ray luminosity is an order of magnitude higher than predicted from analytical models of magnetized winds. Previous studies of τ Sco's magnetosphere have predicted that the region of closed field loops should be located close to the stellar surface. However, the lack of X-ray variability and the location of the shock-heated plasma measured from forbidden-to-intercombination X-ray line ratios suggest that the hot plasma, and hence the closed magnetic loops, extend considerably farther from the stellar surface, implying a significantly lower mass loss rate than initially assumed. We present an adaptation of the Analytic Dynamical Magnetosphere model, describing the magnetic confinement of the stellar wind, for an arbitrary field loop configuration. This model is used to predict the shock-heated plasma temperatures for individual field loops, which are then compared to high resolution grating spectra from the Chandra X-ray Observatory. This comparison shows that larger closed magnetic loops are needed.

  12. Modelling soil transport by wind in drylands

    International Nuclear Information System (INIS)

    Hassan, M.H.A.

    1994-01-01

    Understanding the movement of windblown soil particles and the resulting formation of complex surface features are among the most intriguing problems in dryland research. This understanding can only be achieved trough physical and mathematical modelling and must also involve observational data and laboratory experiments. Some current mathematical models that have contributed to the basic understanding of the transportation and deposition of soil particles by wind are presented and solved in these notes. (author). 26 refs, 5 figs

  13. Wind farm electrical power production model for load flow analysis

    International Nuclear Information System (INIS)

    Segura-Heras, Isidoro; Escriva-Escriva, Guillermo; Alcazar-Ortega, Manuel

    2011-01-01

    The importance of renewable energy increases in activities relating to new forms of managing and operating electrical power: especially wind power. Wind generation is increasing its share in the electricity generation portfolios of many countries. Wind power production in Spain has doubled over the past four years and has reached 20 GW. One of the greatest problems facing wind farms is that the electrical power generated depends on the variable characteristics of the wind. To become competitive in a liberalized market, the reliability of wind energy must be guaranteed. Good local wind forecasts are therefore essential for the accurate prediction of generation levels for each moment of the day. This paper proposes an electrical power production model for wind farms based on a new method that produces correlated wind speeds for various wind farms. This method enables a reliable evaluation of the impact of new wind farms on the high-voltage distribution grid. (author)

  14. Effects of Yaw Error on Wind Turbine Running Characteristics Based on the Equivalent Wind Speed Model

    Directory of Open Access Journals (Sweden)

    Shuting Wan

    2015-06-01

    Full Text Available Natural wind is stochastic, being characterized by its speed and direction which change randomly and frequently. Because of the certain lag in control systems and the yaw body itself, wind turbines cannot be accurately aligned toward the wind direction when the wind speed and wind direction change frequently. Thus, wind turbines often suffer from a series of engineering issues during operation, including frequent yaw, vibration overruns and downtime. This paper aims to study the effects of yaw error on wind turbine running characteristics at different wind speeds and control stages by establishing a wind turbine model, yaw error model and the equivalent wind speed model that includes the wind shear and tower shadow effects. Formulas for the relevant effect coefficients Tc, Sc and Pc were derived. The simulation results indicate that the effects of the aerodynamic torque, rotor speed and power output due to yaw error at different running stages are different and that the effect rules for each coefficient are not identical when the yaw error varies. These results may provide theoretical support for optimizing the yaw control strategies for each stage to increase the running stability of wind turbines and the utilization rate of wind energy.

  15. Modeling lifetime of high power IGBTs in wind power applications

    DEFF Research Database (Denmark)

    Busca, Cristian

    2011-01-01

    The wind power industry is continuously developing bringing to the market larger and larger wind turbines. Nowadays reliability is more of a concern than in the past especially for the offshore wind turbines since the access to offshore wind turbines in case of failures is both costly and difficult....... Lifetime modeling of future large wind turbines is needed in order to make reliability predictions about these new wind turbines early in the design phase. By doing reliability prediction in the design phase the manufacturer can ensure that the new wind turbines will live long enough. This paper represents...... an overview of the different aspects of lifetime modeling of high power IGBTs in wind power applications. In the beginning, wind turbine reliability survey results are briefly reviewed in order to gain an insight into wind turbine subassembly failure rates and associated downtimes. After that the most common...

  16. A multiple shock model for common cause failures using discrete Markov chain

    International Nuclear Information System (INIS)

    Chung, Dae Wook; Kang, Chang Soon

    1992-01-01

    The most widely used models in common cause analysis are (single) shock models such as the BFR, and the MFR. But, single shock model can not treat the individual common cause separately and has some irrational assumptions. Multiple shock model for common cause failures is developed using Markov chain theory. This model treats each common cause shock as separately and sequently occuring event to implicate the change in failure probability distribution due to each common cause shock. The final failure probability distribution is evaluated and compared with that from the BFR model. The results show that multiple shock model which minimizes the assumptions in the BFR model is more realistic and conservative than the BFR model. The further work for application is the estimations of parameters such as common cause shock rate and component failure probability given a shock,p, through the data analysis

  17. Economic performance indicators of wind energy based on wind speed stochastic modeling

    International Nuclear Information System (INIS)

    D’Amico, Guglielmo; Petroni, Filippo; Prattico, Flavio

    2015-01-01

    Highlights: • We propose a new and different wind energy production indicator. • We compute financial profitability of potential wind power sites. • The wind speed process is modeled as an indexed semi-Markov chain. • We check if the wind energy is a good investment with and without incentives. - Abstract: We propose the computation of different wind energy production indicators and financial profitability of potential wind power sites. The computation is performed by modeling the wind speed process as an indexed semi-Markov chain to predict and simulate the wind speed dynamics. We demonstrate that the indexed semi-Markov chain approach enables reproducing the indicators calculated on real data. Two different time horizons of 15 and 30 years are analyzed. In the first case we consider the government incentives on the energy price now present in Italy, while in the second case the incentives have not been taken into account

  18. IEA Wind Task 37 System Modeling Framework and Ontology for Wind Turbines and Plants

    NARCIS (Netherlands)

    Dykes, K; Sanchez Perez Moreno, S.; Zahle, Frederik; Ning, A; McWilliam, M.; Zaayer, M B

    2017-01-01

    This presentation will provide an overview of progress to date in the development of a system modeling framework and ontology for wind turbines and plants as part of the larger IEA Wind Task 37 on wind energy systems engineering. The goals of the effort are to create a set of guidelines for a common

  19. Modelling of offshore wind turbine wakes with the wind farm program FLaP

    DEFF Research Database (Denmark)

    Lange, B.; Waldl, H.P.; Guerrero, A.G.

    2003-01-01

    The wind farm layout program FLaP estimates the wind speed at any point in a wind farm and the power output of the turbines. The ambient flow conditions and the properties of the turbines and the farm are used as input. The core of the program is an axisymmetric wake model describing the wake...

  20. Guest Editorial Modeling and Advanced Control of Wind Turbines/Wind Farms

    Energy Technology Data Exchange (ETDEWEB)

    Hu, J.; Hou, Y.; Zhu, Z.; Xu, D.; Xu, D.; Muljadi, E.; Liu, F.; Iwanski, G.; Geng, H.; Erlich, I.; Wen, J.; Harnefors, L.; Fan, L.; El Moursi, M. S.; Kjaer, P. C.; Nelson, R. J.; Cardenas, R.; Feng, S.; Islam, S.; Qiao, W.; Yuan, X.

    2017-09-01

    The papers in this special section brings together papers focused on the recent advancements and breakthroughs in the technology of modeling and enhanced active/reactive power control of wind power conversion systems, ranging from components of wind turbines to wind farms.

  1. An improved canopy wind model for predicting wind adjustment factors and wildland fire behavior

    Science.gov (United States)

    W. J. Massman; J. M. Forthofer; M. A. Finney

    2017-01-01

    The ability to rapidly estimate wind speed beneath a forest canopy or near the ground surface in any vegetation is critical to practical wildland fire behavior models. The common metric of this wind speed is the "mid-flame" wind speed, UMF. However, the existing approach for estimating UMF has some significant shortcomings. These include the assumptions that...

  2. Model Predictive Control with Constraints of a Wind Turbine

    DEFF Research Database (Denmark)

    Henriksen, Lars Christian; Poulsen, Niels Kjølstad

    2007-01-01

    Model predictive control of wind turbines offer a more systematic approach of constructing controllers that handle constraints while focusing on the main control objective. In this article several controllers are designed for different wind conditions and appropriate switching conditions ensure...... an efficient control of the wind turbine over the entire range of wind speeds. Both onshore and floating offshore wind turbines are tested with the controllers....

  3. Three-fluid, three-dimensional magnetohydrodynamic solar wind model with eddy viscosity and turbulent resistivity

    Energy Technology Data Exchange (ETDEWEB)

    Usmanov, Arcadi V.; Matthaeus, William H. [Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States); Goldstein, Melvyn L., E-mail: arcadi.usmanov@nasa.gov [Code 672, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2014-06-10

    We have developed a three-fluid, three-dimensional magnetohydrodynamic solar wind model that incorporates turbulence transport, eddy viscosity, turbulent resistivity, and turbulent heating. The solar wind plasma is described as a system of co-moving solar wind protons, electrons, and interstellar pickup protons, with separate energy equations for each species. Numerical steady-state solutions of Reynolds-averaged solar wind equations coupled with turbulence transport equations for turbulence energy, cross helicity, and correlation length are obtained by the time relaxation method in the corotating with the Sun frame of reference in the region from 0.3 to 100 AU (but still inside the termination shock). The model equations include the effects of electron heat conduction, Coulomb collisions, photoionization of interstellar hydrogen atoms and their charge exchange with the solar wind protons, turbulence energy generation by pickup protons, and turbulent heating of solar wind protons and electrons. The turbulence transport model is based on the Reynolds decomposition and turbulence phenomenologies that describe the conversion of fluctuation energy into heat due to a turbulent cascade. In addition to using separate energy equations for the solar wind protons and electrons, a significant improvement over our previous work is that the turbulence model now uses an eddy viscosity approximation for the Reynolds stress tensor and the mean turbulent electric field. The approximation allows the turbulence model to account for driving of turbulence by large-scale velocity gradients. Using either a dipole approximation for the solar magnetic field or synoptic solar magnetograms from the Wilcox Solar Observatory for assigning boundary conditions at the coronal base, we apply the model to study the global structure of the solar wind and its three-dimensional properties, including embedded turbulence, heating, and acceleration throughout the heliosphere. The model results are

  4. A study of shock-associated magnetohydrodynamic waves in the solar wind

    Science.gov (United States)

    Spangler, Steven R.

    1992-01-01

    Three major topics were addressed, one theoretical and two observational. The topics were: (1) an attempt to understand the evolution of the large-amplitude magnetohydrodynamic (MHD) waves in the foreshock, using a nonlinear wave equation called the Derivative Nonlinear Schrodinger equation (henceforth DNLS) as a model, (2) using the extensive set of ISE data to test for the presence of various nonlinear wave processes which might be present, and (3) a study of plasma turbulence in the interstellar medium which might be physically similar to that in the solar wind. For these investigations we used radioastronomical techniques. Good progress was made in each of these areas and a separate discussion of each is given.

  5. Surface Ship Shock Modeling and Simulation: Two-Dimensional Analysis

    Directory of Open Access Journals (Sweden)

    Young S. Shin

    1998-01-01

    Full Text Available The modeling and simulation of the response of a surface ship system to underwater explosion requires an understanding of many different subject areas. These include the process of underwater explosion events, shock wave propagation, explosion gas bubble behavior and bubble-pulse loading, bulk and local cavitation, free surface effect, fluid-structure interaction, and structural dynamics. This paper investigates the effects of fluid-structure interaction and cavitation on the response of a surface ship using USA-NASTRAN-CFA code. First, the one-dimensional Bleich-Sandler model is used to validate the approach, and second, the underwater shock response of a two-dimensional mid-section model of a surface ship is predicted with a surrounding fluid model using a constitutive equation of a bilinear fluid which does not allow transmission of negative pressures.

  6. Oil shocks in New Keynesian models: Positive and normative implications

    Science.gov (United States)

    Chang, Jian

    Chapter 1 investigates optimal monetary policy response towards oil shocks in a New Keynesian model. We find that optimal policy, in general, becomes contractionary in response to an adverse oil shock. However, the optimal policy rule and the inflation-output trade-off depend on the specific structure of the model. The benchmark economy consists of a flexible-price energy sector and a sticky-price manufacturing sector where energy is used as an intermediate input. We show that optimal policy is to stabilize the sticky (core) price level. We then show that after incorporating a less oil-dependent sticky-price service sector, the model exhibits a trade-off in stabilizing prices and output gaps in the different sticky-price sectors. It predicts that central bank should not try to stabilize the core price level, and the economy will experience higher inflation and rising output gaps, even if central banks respond optimally. Chapter 2 addresses the observed volatility and persistence of real exchange rates and the terms of trade. It contributes to the literature with a quantitative study on the U.S. and Canada. A two-country New Keynesian model consisting of traded, non-traded, and oil production sectors is proposed to examine the time series properties of the real exchange rate, the terms of trade and the real oil price. We find that after incorporating several realistic features (namely oil price shocks, sector specific labor, non-traded goods, asymmetric pricing decisions of exporters and asymmetric consumer preferences over tradables), the benchmark model broadly matches the volatilities of the relative prices and some business cycle correlations. The model matches the data more closely after adding real demand shocks, suggesting their importance in explaining the relative price movements between the US and Canada. Chapter 3 explores several sources and transmission channels of international relative price movements. In particular, we elaborate on the role of

  7. An improved market penetration model for wind energy technology forecasting

    Energy Technology Data Exchange (ETDEWEB)

    Lund, P.D. [Helsinki Univ. of Technology, Espoo (Finland). Advanced Energy Systems

    1995-12-31

    An improved market penetration model with application to wind energy forecasting is presented. In the model, a technology diffusion model and manufacturing learning curve are combined. Based on a 85% progress ratio that was found for European wind manufactures and on wind market statistics, an additional wind power capacity of ca 4 GW is needed in Europe to reach a 30 % price reduction. A full breakthrough to low-cost utility bulk power markets could be achieved at a 24 GW level. (author)

  8. An improved market penetration model for wind energy technology forecasting

    International Nuclear Information System (INIS)

    Lund, P.D.

    1995-01-01

    An improved market penetration model with application to wind energy forecasting is presented. In the model, a technology diffusion model and manufacturing learning curve are combined. Based on a 85% progress ratio that was found for European wind manufactures and on wind market statistics, an additional wind power capacity of ca 4 GW is needed in Europe to reach a 30 % price reduction. A full breakthrough to low-cost utility bulk power markets could be achieved at a 24 GW level. (author)

  9. Wind atlas for Egypt: Measurements, micro- and mesoscale modelling

    DEFF Research Database (Denmark)

    Mortensen, N.G.; Hansen, J.C.; Badger, J.

    2006-01-01

    with SRTM 3 elevation data and satellite imagery, provide the means for immediate WAsP wind resource assessments anywhere in Egypt. In addition to the very high wind resource in the Gulfs of Suez and Aqaba, the wind atlas has discovered a large region in the Western Desert with a fairly high resource......The results of a comprehensive, 8-year wind resource assessment programme in Egypt are presented. The objective has been to provide reliable and accurate wind atlas data sets for evaluating the potential wind power output from large electricity-producing wind turbine installations. The regional...... wind climates of Egypt have been determined by two independent methods: a traditional wind atlas based on observations from more than 30 stations all over Egypt, and a numerical wind atlas based on long-term reanalysis data and a mesoscale model (KAMM). The mean absolute error comparing the two methods...

  10. Simulation analysis of a wind farm with different aggregated models

    DEFF Research Database (Denmark)

    Li, H.; Wang, H.; Zhao, B.

    2011-01-01

    Based on a wind farm including wind turbines with squirrel cage induction generators (SCIGs), different aggregated models of a wind farm, such as a single weighted average model, a reduced-order re-scaled model, a parameter transformed model and a single weighted arithmetic model were presented, ...... by using Matlab/Simulink, based on the conditions of the wind speed disturbance and three-phase short-circuit fault at the point of connected grid. The results have shown that the presented wind farm models are correct and valid.......Based on a wind farm including wind turbines with squirrel cage induction generators (SCIGs), different aggregated models of a wind farm, such as a single weighted average model, a reduced-order re-scaled model, a parameter transformed model and a single weighted arithmetic model were presented......, as well as the detailed SCIG wind turbine model. Regarding for the two cases of a wind farm including SCIGs with identical parameters and different parameters, the dynamic characteristics and transient performances of the presented wind farm using different aggregated models were studied and compared...

  11. Forecasting wind power production from a wind farm using the RAMS model

    DEFF Research Database (Denmark)

    Tiriolo, L.; Torcasio, R. C.; Montesanti, S.

    2015-01-01

    The importance of wind power forecast is commonly recognized because it represents a useful tool for grid integration and facilitates the energy trading. This work considers an example of power forecast for a wind farm in the Apennines in Central Italy. The orography around the site is complex...... and the horizontal resolution of the wind forecast has an important role. To explore this point we compared the performance of two 48 h wind power forecasts using the winds predicted by the Regional Atmospheric Modeling System (RAMS) for the year 2011. The two forecasts differ only for the horizontal resolution...... of the ECMWF Integrated Forecasting System (IFS), whose horizontal resolution over Central Italy is about 25 km at the time considered in this paper. Because wind observations were not available for the site, the power curve for the whole wind farm was derived from the ECMWF wind operational analyses available...

  12. SUPERNOVA PTF 09UJ: A POSSIBLE SHOCK BREAKOUT FROM A DENSE CIRCUMSTELLAR WIND

    International Nuclear Information System (INIS)

    Ofek, E. O.; Neill, J. D.; Kulkarni, S. R.; Forster, K.; Kasliwal, M. M.; Law, N.; Martin, C.; Quimby, R. M.; Rabinak, I.; Arcavi, I.; Waxman, E.; Gal-Yam, A.; Cenko, S. B.; Bloom, J. S.; Filippenko, A. V.; Poznanski, D.; Nugent, P. E.; Jacobsen, J.; Bildsten, L.; Howell, D. A.

    2010-01-01

    Type-IIn supernovae (SNe IIn), which are characterized by strong interaction of their ejecta with the surrounding circumstellar matter (CSM), provide a unique opportunity to study the mass-loss history of massive stars shortly before their explosive death. We present the discovery and follow-up observations of an SN IIn, PTF 09uj, detected by the Palomar Transient Factory (PTF). Serendipitous observations by Galaxy Evolution Explorer (GALEX) at ultraviolet (UV) wavelengths detected the rise of the SN light curve prior to the PTF discovery. The UV light curve of the SN rose fast, with a timescale of a few days, to a UV absolute AB magnitude of about -19.5. Modeling our observations, we suggest that the fast rise of the UV light curve is due to the breakout of the SN shock through the dense CSM (n ∼ 10 10 cm -3 ). Furthermore, we find that prior to the explosion the progenitor went through a phase of high mass-loss rate (∼0.1 M sun yr -1 ) that lasted for a few years. The decay rate of this SN was fast relative to that of other SNe IIn.

  13. Ion heating and energy partition at the heliospheric termination shock: hybrid simulations and analytical model

    Energy Technology Data Exchange (ETDEWEB)

    Gary, S Peter [Los Alamos National Laboratory; Winske, Dan [Los Alamos National Laboratory; Wu, Pin [BOSTON UNIV.; Schwadron, N A [BOSTON UNIV.; Lee, M [UNIV OF NEW HAMPSHIRE

    2009-01-01

    The Los Alamos hybrid simulation code is used to examine heating and the partition of dissipation energy at the perpendicular heliospheric termination shock in the presence of pickup ions. The simulations are one-dimensional in space but three-dimensional in field and velocity components, and are carried out for a range of values of pickup ion relative density. Results from the simulations show that because the solar wind ions are relatively cold upstream, the temperature of these ions is raised by a relatively larger factor than the temperature of the pickup ions. An analytic model for energy partition is developed on the basis of the Rankine-Hugoniot relations and a polytropic energy equation. The polytropic index {gamma} used in the Rankine-Hugoniot relations is varied to improve agreement between the model and the simulations concerning the fraction of downstream heating in the pickup ions as well as the compression ratio at the shock. When the pickup ion density is less than 20%, the polytropic index is about 5/3, whereas for pickup ion densities greater than 20%, the polytropic index tends toward 2.2, suggesting a fundamental change in the character of the shock, as seen in the simulations, when the pickup ion density is large. The model and the simulations both indicate for the upstream parameters chosen for Voyager 2 conditions that the pickup ion density is about 25% and the pickup ions gain the larger share (approximately 90%) of the downstream thermal pressure, consistent with Voyager 2 observations near the shock.

  14. Wind climate modeling using Weibull and extreme value distribution ...

    African Journals Online (AJOL)

    The expected number of stress cycles in the projected working life of a structure is related to the expected number of hours in the critical wind speed range and wind climate modelling is required to know this. The most popular model for this purpose is Weibull distribution. Again, wind energy is proportional to the cube of the ...

  15. Modeling the Propagation of Shock Waves in Metals

    Science.gov (United States)

    Howard, W. Michael

    2005-07-01

    We present modeling results for the propagation of strong shock waves in metals. In particular, we use an arbitrary Lagrange Eulerian (ALE3D) code to model the propagation of strong pressure waves (P ˜300 to 400 kbars) generated with high explosives in contact with aluminum cylinders. The aluminum cylinders are assumed to be both flat-topped and have large-amplitude curved surfaces. We use 3D Lagrange mechanics. For the aluminum we use a rate-independent Steinberg-Guinan model, where the yield strength and bulk modulus depends on pressure, density and temperature. The calculation of the melt temperature is based on the Lindermann law. At melt the yield strength and bulk modulus is set to zero. The pressure is represented as a seven-term polynomial as a function of density. For the HMX-based high explosive, we use a JWL, with a program burn model that gives the correct detonation velocity and C-J pressure (P ˜ 390 kbars). For the case of the large-amplitude curved surface, we discuss the evolving shock structure in terms of the early shock propagation experiments by Sakharov. We also discuss the dependence of our results upon our material model for aluminum.

  16. 3D numerical modeling of YSO accretion shocks

    Directory of Open Access Journals (Sweden)

    Matsakos T.

    2014-01-01

    Full Text Available The dynamics of YSO accretion shocks is determined by radiative processes as well as the strength and structure of the magnetic field. A quasi-periodic emission signature is theoretically expected to be observed, but observations do not confirm any such pattern. In this work, we assume a uniform background field, in the regime of optically thin energy losses, and we study the multi-dimensional shock evolution in the presence of perturbations, i.e. clumps in the stream and an acoustic energy flux flowing at the base of the chromosphere. We perform 3D MHD simulations using the PLUTO code, modelling locally the impact of the infalling gas onto the chromosphere. We find that the structure and dynamics of the post-shock region is strongly dependent on the plasma-beta (thermal over magnetic pressure, different values of which may give distinguishable emission signatures, relevant for observations. In particular, a strong magnetic field effectively confines the plasma inside its flux tubes and leads to the formation of quasi-independent fibrils. The fibrils may oscillate out of phase and hence the sum of their contributions in the emission results in a smooth overall profile. On the contrary, a weak magnetic field is not found to have any significant effect on the shocked plasma and the turbulent hot slab that forms is found to retain its periodic signature.

  17. Electric solar wind sail mass budget model

    Directory of Open Access Journals (Sweden)

    P. Janhunen

    2013-02-01

    Full Text Available The electric solar wind sail (E-sail is a new type of propellantless propulsion system for Solar System transportation, which uses the natural solar wind to produce spacecraft propulsion. The E-sail consists of thin centrifugally stretched tethers that are kept charged by an onboard electron gun and, as such, experience Coulomb drag through the high-speed solar wind plasma stream. This paper discusses a mass breakdown and a performance model for an E-sail spacecraft that hosts a mission-specific payload of prescribed mass. In particular, the model is able to estimate the total spacecraft mass and its propulsive acceleration as a function of various design parameters such as the number of tethers and their length. A number of subsystem masses are calculated assuming existing or near-term E-sail technology. In light of the obtained performance estimates, an E-sail represents a promising propulsion system for a variety of transportation needs in the Solar System.

  18. Frontiers in Anisotropic Shock-Wave Modeling

    Science.gov (United States)

    2012-02-01

    Nowadays, some models incorporate a user-defined subroutine within the commercial software (e.g., ABAQUS ) to take into account either a homogenous...I.; Razorenov, S. V.; Baumung, K. Impact Strength Properties of Nickel-Based Refractory Superalloys at Normal and Elevated Temperatures. Int. J

  19. Wind resource modelling for micro-siting - Validation at a 60-MW wind farm site

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, J.C.; Gylling Mortensen, N. [Risoe National Lab., Wind Energy and Atmospheric Physics Dept., Roskilde (Denmark); Said, U.S. [New and Renewable Energy Authority, Cairo (Egypt)

    1999-03-01

    This paper investigates and validates the applicability of the WAsP-model for layout optimization and micro-siting of wind turbines at a given site for a 60-MW wind farm at Zafarana at the Gulf of Suez in Egypt. Previous investigations show large gradients in the wind climate within the area. For the design and optimization of the wind farm it was found necessary to verify the WAsP extrapolation of wind atlas results from 2 existing meteorological masts located 5 and 10 km, respectively, from the wind farm site. On-site measurements at the 3.5 x 3.5 km{sup 2} wind farm site in combination with 7 years of near-site wind atlas measurements offer significant amounts of data for verification of wind conditions for micro-siting. Wind speeds, wind directions, turbulence intensities and guests in 47.5 m a.g.l. have been measured at 9 locations across the site. Additionally, one of the site masts is equipped as a reference mast, measuring both vertical profiles of wind speed and temperature as well as air pressure and temperature. The exercise is further facilitated by the fact that winds are highly uni-directional; the north direction accounting for 80-90% of the wind resource. The paper presents comparisons of 5 months of on-site measurements and modeled predictions from 2 existing meteorological masts located at distances of 5 and 10 km, respectively, from the wind farm site. Predictions based on terrain descriptions of the Wind Atlas for the Gulf of Suez 1991-95 showed over-predictions of wind speeds of 4-10%. With calibrated terrain descriptions, made based on measured data and a re-visit to critical parts of the terrain, the average prediction error of wind speeds was reduced to about 1%. These deviations are smaller than generally expected for such wind resource modeling, clearly documenting the validity of using WAsP modeling for micro-siting and layout optimization of the wind farm. (au)

  20. Development and Verification of CFD Models for Modeling Wind Conditions on Forested Wind Turbine Sites

    DEFF Research Database (Denmark)

    Andersen, Morten Q.; Mortensen, Kasper; Nielsen, Daniel E.

    2009-01-01

    This paper describes a proposed CFD model to simulate the wind conditions on a forested site. The model introduces porous subdomains representing the forests in the terrain. Obtained simulation values are compared to field measurements in- and outside a forest. Initial results are very promising...

  1. Modeling Shocks Detected by Voyager 1 in the Local Interstellar Medium

    Energy Technology Data Exchange (ETDEWEB)

    Kim, T. K.; Pogorelov, N. V. [Center for Space Plasma and Aeronomic Research, University of Alabama in Huntsville, Huntsville, AL 35805 (United States); Burlaga, L. F. [NASA Goddard Space Flight Center, Code 673, Greenbelt, MD 20771 (United States)

    2017-07-10

    The magnetometer (MAG) on Voyager 1 ( V1 ) has been sampling the interstellar magnetic field (ISMF) since 2012 August. The V1 MAG observations have shown draped ISMF in the very local interstellar medium disturbed occasionally by significant enhancements in magnetic field strength. Using a three-dimensional, data-driven, multi-fluid model, we investigated these magnetic field enhancements beyond the heliopause that are supposedly associated with solar transients. To introduce time-dependent effects at the inner boundary at 1 au, we used daily averages of the solar wind parameters from the OMNI data set. The model ISMF strength, direction, and proton number density are compared with V1 data beyond the heliopause. The model reproduced the large-scale fluctuations between 2012.652 and 2016.652, including major events around 2012.9 and 2014.6. The model also predicts shocks arriving at V1 around 2017.395 and 2019.502. Another model driven by OMNI data with interplanetary coronal mass ejections (ICMEs) removed at the inner boundary suggests that ICMEs may play a significant role in the propagation of shocks into the interstellar medium.

  2. Simulation model of an active stall wind turbine controller

    Energy Technology Data Exchange (ETDEWEB)

    Jauch, C.; Hansen, A.D.; Soerensen, P. [Risoe National Lab., Wind Energy Dept., Rosilde (Denmark); Blaabjerg, F. [Aalborg Univ., Inst. of Energy Technology (Denmark)

    2004-07-01

    This paper describes an active stall wind turbine controller. The objective is to develop a general model of an active stall controller in order to simulate the operation of grid connected active stall wind turbines. The active stall turbine concept and its control strategies are presented and evaluated on the basis of simulations. The presented controller is described for continuous operation under all wind speeds from start-up wind speed to shut doven wind speed. Due to its parametric implementation it is general i.e. it can represent different active stall wind turbine controllers and can be implemented in different simulation tools. (au)

  3. Prescribed wind shear modelling with the actuator line technique

    DEFF Research Database (Denmark)

    Mikkelsen, Robert Flemming; Sørensen, Jens Nørkær; Troldborg, Niels

    2007-01-01

    A method for prescribing arbitrary steady atmospheric wind shear profiles combined with CFD is presented. The method is furthermore combined with the actuator line technique governing the aerodynamic loads on a wind turbine. Computation are carried out on a wind turbine exposed to a representative...... steady atmospheric wind shear profile with and without wind direction changes up through the atmospheric boundary layer. Results show that the main impact on the turbine is captured by the model. Analysis of the wake behind the wind turbine, reveal the formation of a skewed wake geometry interacting...

  4. Wind Plant Models in IEC 61400-27-2 and WECC - latest developments in international standards on wind turbine and wind plant modeling

    DEFF Research Database (Denmark)

    Fortmann, Jens; Miller, Nicholas; Kazachkov, Yuri

    This paper describes the latest developments in the standardization of wind plant and wind plant controller models. As a first step IEC TC88 WG 27 and WECC jointly developed generic wind turbine models which have been published by WECC in 2014 and IEC in 2015 as IEC 61400-27-1, which also include...

  5. Arrival times of Flare/Halo CME associated shocks at the Earth: comparison of the predictions of three numerical models with these observations

    Directory of Open Access Journals (Sweden)

    S. M. P. McKenna-Lawlor

    Full Text Available The arrival times at L1 of eleven travelling shocks associated both with X-ray flaring and with halo CMEs recorded aboard SOHO/LASCO have been considered. Close to the Sun the velocities of these events were estimated using either Type II radio records or CME speeds. Close to the Earth the shocks were detected in the data of various solar wind plasma, interplanetary magnetic field (IMF and energetic particle experiments aboard SOHO, ACE, WIND, INTERBALL-1 and IMP-8. The real-time shock arrival predictions of three numerical models, namely the Shock Time of Arrival Model (STOA, the Interplanetary Shock Propagation Model (ISPM and the Hakamada-Akasofu-Fry Solar Wind Model (HAFv.2 were tested against these observations. This is the first time that energetic protons (tens of keV to a few MeV have been used to complement plasma and IMF data in validating shock propagation models. The models were all generally successful in predicting shock arrivals. STOA provided the smallest values of the "predicted minus measured" arrival times and displayed a typical predictive precision better than about 8 h. The ratio of the calculated standard deviation of the transit times to Earth to the standard deviation of the measurements was estimated for each model (treating interacting events as composite shocks and these ratios turned out to be 0.60, 1.15 and 1.02 for STOA, ISPM and HAFv.2, respectively. If an event in the sample for which the shock velocity was not well known is omitted from consideration, these ratios become 0.36, 0.76 and 0.81, respectively. Larger statistical samples should now be tested. The ratio of the in situ shock velocity and the "Sun to L1" transit velocity (Vsh /Vtr was in the range of 0.7–0.9 for individual, non-interacting, shock events. HAFv.2 uniquely provided information on those changes in the COBpoint (the moving Connection point on the shock along the IMF to the OBserver which directly influenced energetic

  6. Laser shock experiments to investigate and to model various aspects of the response of metals to shock loading

    Directory of Open Access Journals (Sweden)

    Berthe L.

    2011-01-01

    Full Text Available Laser driven shocks allow studying the dynamic behaviour of condensed matter over small spatial (∼μm to mm-order and temporal (∼ps to ns-order scales, at extremely high strain rates (∼107 s−1. They can be used to test the predictive capability of constitutive models over wide ranges of loading pressures and pulse durations. We present experimental results in laser shock-loaded metals (iron, gold, tin, based on various, complementary techniques including time-resolved velocity measurements, transverse shadowgraphy and post-shock analyses of recovered samples. The data are used to investigate several shock wave processes such as yielding and polymorphic transformations, melting, spall fracture and dynamic fragmentation in both solid and melted states. On the basis of comparisons with numerical simulations, the abilities and limitations of several models are briefly discussed.

  7. Modeling of wind turbines for power system studies

    Energy Technology Data Exchange (ETDEWEB)

    Petru, T.

    2001-05-01

    When wind turbines are installed into the electric grid, the power quality is affected. Today, strict installation recommendations often prevail due to a lack of knowledge on this subject. Consequently, it is important to predict the impact of wind turbines on the electric grid before the turbines are installed. The thesis describes relevant power quality issues, discusses different configurations of wind turbines with respect to power quality and draw requirements regarding wind turbine modeling. A model of a stall-regulated, fixed-speed wind turbine system is introduced and its power quality impact on the electric grid is evaluated. The model is verified with field measurements.

  8. Uncovering wind turbine properties through two-dimensional stochastic modeling of wind dynamics.

    Science.gov (United States)

    Raischel, Frank; Scholz, Teresa; Lopes, Vitor V; Lind, Pedro G

    2013-10-01

    Using a method for stochastic data analysis borrowed from statistical physics, we analyze synthetic data from a Markov chain model that reproduces measurements of wind speed and power production in a wind park in Portugal. We show that our analysis retrieves indeed the power performance curve, which yields the relationship between wind speed and power production, and we discuss how this procedure can be extended for extracting unknown functional relationships between pairs of physical variables in general. We also show how specific features, such as the rated speed of the wind turbine or the descriptive wind speed statistics, can be related to the equations describing the evolution of power production and wind speed at single wind turbines.

  9. Earth aeolian wind streaks: Comparison to wind data from model and stations

    Science.gov (United States)

    Cohen-Zada, A. L.; Maman, S.; Blumberg, D. G.

    2017-05-01

    Wind streak is a collective term for a variety of aeolian features that display distinctive albedo surface patterns. Wind streaks have been used to map near-surface winds and to estimate atmospheric circulation patterns on Mars and Venus. However, because wind streaks have been studied mostly on Mars and Venus, much of the knowledge regarding the mechanism and time frame of their formation and their relationship to the atmospheric circulation cannot be verified. This study aims to validate previous studies' results by a comparison of real and modeled wind data with wind streak orientations as measured from remote-sensing images. Orientations of Earth wind streaks were statistically correlated to resultant drift direction (RDD) values calculated from reanalysis and wind data from 621 weather stations. The results showed good agreement between wind streak orientations and reanalysis RDD (r = 0.78). A moderate correlation was found between the wind streak orientations and the weather station data (r = 0.47); a similar trend was revealed on a regional scale when the analysis was performed by continent, with r ranging from 0.641 in North America to 0.922 in Antarctica. At sites where wind streak orientations did not correspond to the RDDs (i.e., a difference of 45°), seasonal and diurnal variations in the wind flow were found to be responsible for deviation from the global pattern. The study thus confirms that Earth wind streaks were formed by the present wind regime and they are indeed indicative of the long-term prevailing wind direction on global and regional scales.

  10. Wake models developed during the Wind Shadow Project

    DEFF Research Database (Denmark)

    Larsen, Søren Ejling; Ott, Søren; Pena Diaz, Alfredo

    The Wind Shadow project has developed and validated improved models for determining the wakes losses, and thereby the array efficiency of very large, closely packed wind farms. The rationale behind the project has been that the existing software has been covering these types of wind farms poorly...

  11. Modeling and Identification of Harmonic Instability Problems In Wind Farms

    DEFF Research Database (Denmark)

    Ebrahimzadeh, Esmaeil; Blaabjerg, Frede; Wang, Xiongfei

    2016-01-01

    to identify harmonic instability problems in wind farms, where many wind turbines, cables, transformers, capacitor banks, shunt reactors, etc, typically are located. This methodology introduces the wind farm as a Multi-Input Multi-Outpur (MIMO) control system, where the linearized models of fast inner control...

  12. Offshore Wind Energy Cost Modeling Installation and Decommissioning

    CERN Document Server

    Kaiser, Mark J

    2012-01-01

    Offshore wind energy is one of the most promising and fastest growing alternative energy sources in the world. Offshore Wind Energy Cost Modeling provides a methodological framework to assess installation and decommissioning costs, and using examples from the European experience, provides a broad review of existing processes and systems used in the offshore wind industry. Offshore Wind Energy Cost Modeling provides a step-by-step guide to modeling costs over four sections. These sections cover: ·Background and introductory material, ·Installation processes and vessel requirements, ·Installation cost estimation, and ·Decommissioning methods and cost estimation.  This self-contained and detailed treatment of the key principles in offshore wind development is supported throughout by visual aids and data tables. Offshore Wind Energy Cost Modeling is a key resource for anyone interested in the offshore wind industry, particularly those interested in the technical and economic aspects of installation and decom...

  13. Comparing satellite SAR and wind farm wake models

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Vincent, P.; Husson, R.

    2015-01-01

    . These extend several tens of kilometres downwind e.g. 70 km. Other SAR wind maps show near-field fine scale details of wake behind rows of turbines. The satellite SAR wind farm wake cases are modelled by different wind farm wake models including the PARK microscale model, the Weather Research and Forecasting...... (WRF) model in high resolution and WRF with coupled microscale parametrization....

  14. On wake modeling, wind-farm gradients, and AEP predictions at the Anholt wind farm

    Directory of Open Access Journals (Sweden)

    A. Peña

    2018-04-01

    Full Text Available We investigate wake effects at the Anholt offshore wind farm in Denmark, which is a farm experiencing strong horizontal wind-speed gradients because of its size and proximity to land. Mesoscale model simulations are used to study the horizontal wind-speed gradients over the wind farm. From analysis of the mesoscale simulations and supervisory control and data acquisition (SCADA, we show that for westerly flow in particular, there is a clear horizontal wind-speed gradient over the wind farm. We also use the mesoscale simulations to derive the undisturbed inflow conditions that are coupled with three commonly used wake models: two engineering approaches (the Park and G. C. Larsen models and a linearized Reynolds-averaged Navier–Stokes approach (Fuga. The effect of the horizontal wind-speed gradient on annual energy production estimates is not found to be critical compared to estimates from both the average undisturbed wind climate of all turbines' positions and the undisturbed wind climate of a position in the middle of the wind farm. However, annual energy production estimates can largely differ when using wind climates at positions that are strongly influenced by the horizontal wind-speed gradient. When looking at westerly flow wake cases, where the impact of the horizontal wind-speed gradient on the power of the undisturbed turbines is largest, the wake models agree with the SCADA fairly well; when looking at a southerly flow case, where the wake losses are highest, the wake models tend to underestimate the wake loss. With the mesoscale-wake model setup, we are also able to estimate the capacity factor of the wind farm rather well when compared to that derived from the SCADA. Finally, we estimate the uncertainty of the wake models by bootstrapping the SCADA. The models tend to underestimate the wake losses (the median relative model error is 8.75 % and the engineering wake models are as uncertain as Fuga. These results are specific for

  15. Modeling of wind turbines with doubly fed generator system

    CERN Document Server

    Fortmann, Jens

    2014-01-01

    Jens Fortmann describes the deduction of models for the grid integration of variable speed wind turbines and the reactive power control design of wind plants. The modeling part is intended as background to understand the theory, capabilities and limitations of the generic doubly fed generator and full converter wind turbine models described in the IEC 61400-27-1 and as 2nd generation WECC models that are used as standard library models of wind turbines for grid simulation software. Focus of the reactive power control part is a deduction of the origin and theory behind the reactive current requ

  16. Complete wind farm electromagnetic transient modelling for grid integration studies

    International Nuclear Information System (INIS)

    Zubia, I.; Ostolaza, X.; Susperregui, A.; Tapia, G.

    2009-01-01

    This paper presents a modelling methodology to analyse the impact of wind farms in surrounding networks. Based on the transient modelling of the asynchronous generator, the multi-machine model of a wind farm composed of N generators is developed. The model incorporates step-up power transformers, distribution lines and surrounding loads up to their connection to the power network. This model allows the simulation of symmetric and asymmetric short-circuits located in the distribution network and the analysis of transient stability of wind farms. It can be also used to study the islanding operation of wind farms

  17. Shock Absorbers Multi-Modeling and Suspension Optimization

    Directory of Open Access Journals (Sweden)

    LUPU Ciprian

    2013-05-01

    Full Text Available The standard dampers used by more 90% of vehicles have damping coefficients constant along stroke, so they can’t solve simultaneous all of them, situation solving practically using a relative dampingcoefficient able to made compromise between them. This paper design and simulation testing multi-models of two types of Damp (DSA and VZN. To compare the two types of suspension they are simulated in various road and load conditions. Analysis of simulation results is presente a new VZN shock absorber. This is an invention of the Institute of Mechanics of the Romanian Academy, and patented at European and U.S. [1], [2]. This is Called VZN shock absorber, iscoming from Variable Zeta Necessary acronym, for well moving in all road and load Conditions, Where zeta Represents the relative damping, Which is Adjusted automatically, stepwise, According to the piston positions [3,4,5]. Suspension systems are used in all air and ground transportation to protect that building transportation and cargo transported around against shocks and vibrations induced in the systemfrom the road Modifying damping coefficients (Zeta function piston position, being correlated with vehicle load and road unevenness.

  18. Model Predictive Control of Wind Turbines using Uncertain LIDAR Measurements

    DEFF Research Database (Denmark)

    Mirzaei, Mahmood; Soltani, Mohsen; Poulsen, Niels Kjølstad

    2013-01-01

    The problem of Model predictive control (MPC) of wind turbines using uncertain LIDAR (LIght Detection And Ranging) measurements is considered. A nonlinear dynamical model of the wind turbine is obtained. We linearize the obtained nonlinear model for different operating points, which are determined......, we simplify state prediction for the MPC. Consequently, the control problem of the nonlinear system is simplified into a quadratic programming. We consider uncertainty in the wind propagation time, which is the traveling time of wind from the LIDAR measurement point to the rotor. An algorithm based...... by the effective wind speed on the rotor disc. We take the wind speed as a scheduling variable. The wind speed is measurable ahead of the turbine using LIDARs, therefore, the scheduling variable is known for the entire prediction horizon. By taking the advantage of having future values of the scheduling variable...

  19. Frequency weighted model predictive control of wind turbine

    DEFF Research Database (Denmark)

    Klauco, Martin; Poulsen, Niels Kjølstad; Mirzaei, Mahmood

    2013-01-01

    This work is focused on applying frequency weighted model predictive control (FMPC) on three blade horizontal axis wind turbine (HAWT). A wind turbine is a very complex, non-linear system influenced by a stochastic wind speed variation. The reduced dynamics considered in this work...... are the rotational degree of freedom of the rotor and the tower for-aft movement. The MPC design is based on a receding horizon policy and a linearised model of the wind turbine. Due to the change of dynamics according to wind speed, several linearisation points must be considered and the control design adjusted...... accordingly. In practice is very hard to measure the effective wind speed, this quantity will be estimated using measurements from the turbine itself. For this purpose stationary predictive Kalman filter has been used. Stochastic simulations of the wind turbine behaviour with applied frequency weighted model...

  20. Dynamic wind turbine models in power system simulation tool

    DEFF Research Database (Denmark)

    Hansen, Anca D.; Iov, Florin; Sørensen, Poul

    This report presents a collection of models and control strategies developed and implemented in the power system simulation tool PowerFactory DIgSILENT for different wind turbine concepts. It is the second edition of Risø-R-1400(EN) and it gathers and describes a whole wind turbine model database...... speed doubly-fed induction generator wind turbine concept 3. Variable speed multi-pole permanent magnet synchronous generator wind turbine concept These wind turbine concept models can be used and even extended for the study of different aspects, e.g. the assessment of power quality, control strategies......, connection of the wind turbine at different types of grid and storage systems. Different control strategies have been developed and implemented for these wind turbine concepts, their performance in normal or fault operation being assessed and discussed by means of simulations. The described control...

  1. Global empirical wind model for the upper mesosphere/lower thermosphere. I. Prevailing wind

    Directory of Open Access Journals (Sweden)

    Y. I. Portnyagin

    Full Text Available An updated empirical climatic zonally averaged prevailing wind model for the upper mesosphere/lower thermosphere (70-110 km, extending from 80°N to 80°S is presented. The model is constructed from the fitting of monthly mean winds from meteor radar and MF radar measurements at more than 40 stations, well distributed over the globe. The height-latitude contour plots of monthly mean zonal and meridional winds for all months of the year, and of annual mean wind, amplitudes and phases of annual and semiannual harmonics of wind variations are analyzed to reveal the main features of the seasonal variation of the global wind structures in the Northern and Southern Hemispheres. Some results of comparison between the ground-based wind models and the space-based models are presented. It is shown that, with the exception of annual mean systematic bias between the zonal winds provided by the ground-based and space-based models, a good agreement between the models is observed. The possible origin of this bias is discussed.

    Key words: Meteorology and Atmospheric dynamics (general circulation; middle atmosphere dynamics; thermospheric dynamics

  2. Modeling shock waves in an ideal gas: combining the Burnett approximation and Holian's conjecture.

    Science.gov (United States)

    He, Yi-Guang; Tang, Xiu-Zhang; Pu, Yi-Kang

    2008-07-01

    We model a shock wave in an ideal gas by combining the Burnett approximation and Holian's conjecture. We use the temperature in the direction of shock propagation rather than the average temperature in the Burnett transport coefficients. The shock wave profiles and shock thickness are compared with other theories. The results are found to agree better with the nonequilibrium molecular dynamics (NEMD) and direct simulation Monte Carlo (DSMC) data than the Burnett equations and the modified Navier-Stokes theory.

  3. Turbulence modeling of shock separated boundary-layer flows

    Science.gov (United States)

    Coakley, T. J.; Viegas, J. R.

    1977-01-01

    Computations of transonic and hypersonic shock-separated boundary-layer flows using zero-equation (algebraic), one-equation (kinetic energy), and two-equation (kinetic energy plus length scale) turbulence eddy viscosity models are described and compared with measurements. The computations make use of a new Navier-Stokes computer algorithm that has reduced computing times by one to two orders of magnitude. The algorithm, and how the turbulence models are incorporated into it, are described. Results for the transonic flow show that the unmodified one-equation model is superior to the zero-equation model in skin-friction predictions. For the hypersonic flow, a highly modified one-equation model that accurately predicts surface pressure and heat transfer is described. Preliminary two-equation model results are also presented.

  4. An Improved Shock Model for Bare and Covered Explosives

    Science.gov (United States)

    Scholtes, Gert; Bouma, Richard

    2017-06-01

    TNO developed a toolbox to estimate the probability of a violent event on a ship or other platform, when the munition bunker is hit by e.g. a bullet or fragment from a missile attack. To obtain the proper statistical output, several millions of calculations are needed to obtain a reliable estimate. Because millions of different scenarios have to be calculated, hydrocode calculations cannot be used for this type of application, but a fast and good engineering solutions is needed. At this moment the Haskins and Cook-model is used for this purpose. To obtain a better estimate for covered explosives and munitions, TNO has developed a new model which is a combination of the shock wave model at high pressure, as described by Haskins and Cook, in combination with the expanding shock wave model of Green. This combined model gives a better fit with the experimental values for explosives response calculations, using the same critical energy fluence values for covered as well as for bare explosives. In this paper the theory is explained and results of the calculations for several bare and covered explosives will be presented. To show this, the results will be compared with the experimental values from literature for composition B, Composition B-3 and PBX-9404.

  5. Models for wind turbines - a collection

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, G.C.; Hansen, M.H. (eds.); Baumgart, A.

    2002-02-01

    This report is a collection of notes which were intended to be short communications. Main target of the work presented is to supply new approaches to stability investigations of wind turbines. The authors opinion is that an efficient, systematic stability analysis can not be performed for large systems of differential equations (i.e. the order of the differential equations > 100), because numerical 'effects' in the solution of the equations of motion as initial value problem, eigenvalue problem or whatsoever become predominant. It is therefore necessary to find models which are reduced to the elementary coordinates but which can still describe the physical processes under consideration with sufficiently good accuracy. Such models are presented. (au)

  6. Modeling and evaluation of HE driven shock effects in copper with the MTS model

    International Nuclear Information System (INIS)

    Murphy, M.J.; Lassila, D.F.

    1997-01-01

    Many experimental studies have investigated the effect of shock pressure on the post-shock mechanical properties of OFHC copper. These studies have shown that significant hardening occurs during shock loading due to dislocation processes and twinning. It has been demonstrated that when an appropriate initial value of the Mechanical Threshold Stress (MTS) is specified, the post-shock flow stress of OFE copper is well described by relationships derived independently for unshocked materials. In this study we consider the evolution of the MTS during HE driven shock loading processes and the effect on the subsequent flow stress of the copper. An increased post shock flow stress results in a higher material temperature due to an increase in the plastic work. An increase in temperature leads to thermal softening which reduces the flow stress. These coupled effects will determine if there is melting in a shaped charge jet or a necking instability in an EFP Ww. 'Me critical factor is the evolution path followed combined with the 'current' temperature, plastic strain, and strain rate. Preliminary studies indicate that in simulations of HE driven shock with very high resolution zoning, the MTS saturates because of the rate dependence in the evolution law. On going studies are addressing this and other issues with the goal of developing a version of the MT'S model that treats HE driven, shock loading, temperature, strain, and rate effects apriori

  7. Wall modeled LES of wind turbine wakes with geometrical effects

    Science.gov (United States)

    Bricteux, Laurent; Benard, Pierre; Zeoli, Stephanie; Moureau, Vincent; Lartigue, Ghislain; Vire, Axelle

    2017-11-01

    This study focuses on prediction of wind turbine wakes when geometrical effects such as nacelle, tower, and built environment, are taken into account. The aim is to demonstrate the ability of a high order unstructured solver called YALES2 to perform wall modeled LES of wind turbine wake turbulence. The wind turbine rotor is modeled using an Actuator Line Model (ALM) while the geometrical details are explicitly meshed thanks to the use of an unstructured grid. As high Reynolds number flows are considered, sub-grid scale models as well as wall modeling are required. The first test case investigated concerns a wind turbine flow located in a wind tunnel that allows to validate the proposed methodology using experimental data. The second test case concerns the simulation of a wind turbine wake in a complex environment (e.g. a Building) using realistic turbulent inflow conditions.

  8. Empirically modelled Pc3 activity based on solar wind parameters

    Directory of Open Access Journals (Sweden)

    B. Heilig

    2010-09-01

    Full Text Available It is known that under certain solar wind (SW/interplanetary magnetic field (IMF conditions (e.g. high SW speed, low cone angle the occurrence of ground-level Pc3–4 pulsations is more likely. In this paper we demonstrate that in the event of anomalously low SW particle density, Pc3 activity is extremely low regardless of otherwise favourable SW speed and cone angle. We re-investigate the SW control of Pc3 pulsation activity through a statistical analysis and two empirical models with emphasis on the influence of SW density on Pc3 activity. We utilise SW and IMF measurements from the OMNI project and ground-based magnetometer measurements from the MM100 array to relate SW and IMF measurements to the occurrence of Pc3 activity. Multiple linear regression and artificial neural network models are used in iterative processes in order to identify sets of SW-based input parameters, which optimally reproduce a set of Pc3 activity data. The inclusion of SW density in the parameter set significantly improves the models. Not only the density itself, but other density related parameters, such as the dynamic pressure of the SW, or the standoff distance of the magnetopause work equally well in the model. The disappearance of Pc3s during low-density events can have at least four reasons according to the existing upstream wave theory: 1. Pausing the ion-cyclotron resonance that generates the upstream ultra low frequency waves in the absence of protons, 2. Weakening of the bow shock that implies less efficient reflection, 3. The SW becomes sub-Alfvénic and hence it is not able to sweep back the waves propagating upstream with the Alfvén-speed, and 4. The increase of the standoff distance of the magnetopause (and of the bow shock. Although the models cannot account for the lack of Pc3s during intervals when the SW density is extremely low, the resulting sets of optimal model inputs support the generation of mid latitude Pc3 activity predominantly through

  9. Methodologies for Wind Turbine and STATCOM Integration in Wind Power Plant Models for Harmonic Resonances Assessment

    DEFF Research Database (Denmark)

    Freijedo Fernandez, Francisco Daniel; Chaudhary, Sanjay Kumar; Guerrero, Josep M.

    2015-01-01

    This paper approaches modelling methodologies for integration of wind turbines and STATCOM in harmonic resonance studies. Firstly, an admittance equivalent model representing the harmonic signature of grid connected voltage source converters is provided. A simplified type IV wind turbine modelling......-domain. As an alternative, a power based averaged modelling is also proposed. Type IV wind turbine harmonic signature and STATCOM active harmonic mitigation are considered for the simulation case studies. Simulation results provide a good insight of the features and limitations of the proposed methodologies....

  10. Wind turbine model and loop shaping controller design

    Science.gov (United States)

    Gilev, Bogdan

    2017-12-01

    A model of a wind turbine is evaluated, consisting of: wind speed model, mechanical and electrical model of generator and tower oscillation model. Model of the whole system is linearized around of a nominal point. By using the linear model with uncertainties is synthesized a uncertain model. By using the uncertain model is developed a H∞ controller, which provide mode of stabilizing the rotor frequency and damping the tower oscillations. Finally is simulated work of nonlinear system and H∞ controller.

  11. Glide back booster wind tunnel model testing

    Science.gov (United States)

    Pricop, M. V.; Cojocaru, M. G.; Stoica, C. I.; Niculescu, M. L.; Neculaescu, A. M.; Persinaru, A. G.; Boscoianu, M.

    2017-07-01

    Affordable space access requires partial or ideally full launch vehicle reuse, which is in line with clean environment requirement. Although the idea is old, the practical use is difficult, requiring very large technology investment for qualification. Rocket gliders like Space Shuttle have been successfullyoperated but the price and correspondingly the energy footprint were found not sustainable. For medium launchers, finally there is a very promising platform as Falcon 9. For very small launchers the situation is more complex, because the performance index (payload to start mass) is already small, versus medium and heavy launchers. For partial reusable micro launchers this index is even smaller. However the challenge has to be taken because it is likely that in a multiyear effort, technology is going to enable the performance recovery to make such a system economically and environmentally feasible. The current paper is devoted to a small unitary glide back booster which is foreseen to be assembled in a number of possible configurations. Although the level of analysis is not deep, the solution is analyzed from the aerodynamic point of view. A wind tunnel model is designed, with an active canard, to enablea more efficient wind tunnel campaign, as a national level premiere.

  12. Use of wind data in global modelling

    Science.gov (United States)

    Pailleux, J.

    1985-01-01

    The European Centre for Medium Range Weather Forecasts (ECMWF) is producing operational global analyses every 6 hours and operational global forecasts every day from the 12Z analysis. How the wind data are used in the ECMWF golbal analysis is described. For each current wind observing system, its ability to provide initial conditions for the forecast model is discussed as well as its weaknesses. An assessment of the impact of each individual system on the quality of the analysis and the forecast is given each time it is possible. Sometimes the deficiencies which are pointed out are related not only to the observing system itself but also to the optimum interpolation (OI) analysis scheme; then some improvements are generally possible through ad hoc modifications of the analysis scheme and especially tunings of the structure functions. Examples are given. The future observing network over the North Atlantic is examined. Several countries, coordinated by WMO, are working to set up an 'Operational WWW System Evaluation' (OWSE), in order to evaluate the operational aspects of the deployment of new systems (ASDAR, ASAP). Most of the new systems are expected to be deployed before January 1987, and in order to make the best use of the available resources during the deployment phase, some network studies are carried out at the present time, by using simulated data for ASDAR and ASAP systems. They are summarized.

  13. Multiobjective Optimization Model for Wind Power Allocation

    Directory of Open Access Journals (Sweden)

    Juan Alemany

    2017-01-01

    Full Text Available There is an increasing need for the injection to the grid of renewable energy; therefore, to evaluate the optimal location of new renewable generation is an important task. The primary purpose of this work is to develop a multiobjective optimization model that permits finding multiple trade-off solutions for the location of new wind power resources. It is based on the augmented ε-constrained methodology. Two competitive objectives are considered: maximization of preexisting energy injection and maximization of new wind energy injection, both embedded, in the maximization of load supply. The results show that the location of new renewable generation units affects considerably the transmission network flows, the load supply, and the preexisting energy injection. Moreover, there are diverse opportunities to benefit the preexisting generation, contrarily to the expected effect where renewable generation displaces conventional power. The proposed methodology produces a diverse range of equivalent solutions, expanding and enriching the horizon of options and giving flexibility to the decision-making process.

  14. Probabilistic Modeling of Wind Turbine Drivetrain Components

    DEFF Research Database (Denmark)

    Rafsanjani, Hesam Mirzaei

    Wind energy is one of several energy sources in the world and a rapidly growing industry in the energy sector. When placed in offshore or onshore locations, wind turbines are exposed to wave excitations, highly dynamic wind loads and/or the wakes from other wind turbines. Therefore, most componen....../nodules on fatigue life of cast iron samples. The cast iron samples scanned by 3D tomography equipment at the DTU Wind Energy (Risø campus), and the distribution of nodules are used to estimate the fatigue life....

  15. Model of analysis of maximum loads in wind generators produced by extreme winds

    International Nuclear Information System (INIS)

    Herrera – Sánchez, Omar; Schellong, Wolfgang; González – Fernández, Vladimir

    2010-01-01

    The use of the wind energy by means of the wind turbines in areas of high risk of occurrence of Hurricanes comes being an important challenge for the designers of wind farm at world for some years. The wind generator is not usually designed to support this type of phenomena, for this reason the areas of high incidence of tropical hurricanes of the planning are excluded, that which, in occasions disables the use of this renewable source of energy totally, either because the country is very small, or because it coincides the area of more potential fully with that of high risk. To counteract this situation, a model of analysis of maxims loads has been elaborated taken place the extreme winds in wind turbines of great behavior. This model has the advantage of determining, in a chosen place, for the installation of a wind farm, the micro-areas with higher risk of wind loads above the acceptable for the standard classes of wind turbines. (author)

  16. Empirical models for predicting wind potential for wind energy applications in rural locations of Nigeria

    Energy Technology Data Exchange (ETDEWEB)

    Odo, F.C. [National Centre for Energy Research and Development, University of Nigeria, Nsukka (Nigeria); Department of Physics and Astronomy, University of Nigeria, Nsukka (Nigeria); Akubue, G.U.; Offiah, S.U.; Ugwuoke, P.E. [National Centre for Energy Research and Development, University of Nigeria, Nsukka (Nigeria)

    2013-07-01

    In this paper, we use the correlation between the average wind speed and ambient temperature to develop models for predicting wind potentials for two Nigerian locations. Assuming that the troposphere is a typical heterogeneous mixture of ideal gases, we find that for the studied locations, wind speed clearly correlates with ambient temperature in a simple polynomial of 3rd degree. The coefficient of determination and root-mean-square error of the models are 0.81; 0.0024 and 0.56; 0.0041, respectively, for Enugu (6.40N; 7.50E) and Owerri (5.50N; 7.00E). These results suggest that the temperature-based model can be used, with acceptable accuracy, in predicting wind potentials needed for preliminary design assessment of wind energy conversion devices for the locations and others with similar meteorological conditions.

  17. The Wind Profile in the Coastal Boundary Layer: Wind Lidar Measurements and Numerical Modelling

    DEFF Research Database (Denmark)

    Floors, Rogier; Vincent, Claire Louise; Gryning, Sven-Erik

    2013-01-01

    Traditionally it has been difficult to verify mesoscale model wind predictions against observations in the planetary boundary layer (PBL). Here we used measurements from a wind lidar to study the PBL up to 800 m above the surface at a flat coastal site in Denmark during a one month period in autu...

  18. Model Predictive Control of Wind Turbines using Uncertain LIDAR Measurements

    DEFF Research Database (Denmark)

    Mirzaei, Mahmood; Soltani, Mohsen; Poulsen, Niels Kjølstad

    2013-01-01

    The problem of Model predictive control (MPC) of wind turbines using uncertain LIDAR (LIght Detection And Ranging) measurements is considered. A nonlinear dynamical model of the wind turbine is obtained. We linearize the obtained nonlinear model for different operating points, which are determined...

  19. Wind Plant Models in IEC 61400-27-2 and WECC - latest developments in international standards on wind turbine and wind plant modeling

    DEFF Research Database (Denmark)

    Fortmann, Jens; Miller, Nicholas; Kazachkov, Yuri

    2015-01-01

    This paper describes the latest developments in the standardization of wind plant and wind plant controller models. As a first step IEC TC88 WG 27 and WECC jointly developed generic wind turbine models which have been published by WECC in 2014 and IEC in 2015 as IEC 61400-27-1, which also included...... a draft plant controller model in an informative annex. In a second step, parallel activities have been going on in WECC and IEC TC88 WG 27 to create plant models that can include a number of wind turbines, a plant controller and optional equipment. The WECC models are intended to be finalized in 2015...

  20. O Star Wind Mass-Loss Rates and Shock Physics from X-ray Line Profiles in Archival XMM RGS Data

    Science.gov (United States)

    Cohen, David

    O stars are characterized by their dense, supersonic stellar winds. These winds are the site of X-ray emission from shock-heated plasma. By analyzing high-resolution X-ray spectra of these O stars, we can learn about the wind-shock heating and X-ray production mechanism. But in addition, the X-rays can also be used to measure the mass-loss rate of the stellar wind, which is a key observational quantity whose value affects stellar evolution and energy, momentum, and mass input to the Galactic interstellar medium. We make this X-ray based mass-loss measurement by analyzing the profile shapes of the X-ray emission lines observed at high resolution with the Chandra and XMM-Newton grating spectrometers. One advantage of our method is that it is insensitive to small-scale clumping that affects density-squared diagnostics. We are applying this analysis technique to O stars in the Chandra archive, and are finding mass-loss rates lower than those traditionally assumed for these O stars, and in line with more recent independent determinations that do account for clumping. By extending this analysis to the XMM RGS data archive, we will make significant contributions to the understanding of both X-ray production in O stars and to addressing the issue of the actual mass-loss rates of O stars. The XMM RGS data archive provides several extensions and advantages over the smaller Chandra HETGS archive: (1) there are roughly twice as many O and early B stars in the XMM archive; (2) the longer wavelength response of the RGS provides access to diagnostically important lines of nitrogen and carbon; (3) the very long, multiple exposures of zeta Pup provide the opportunity to study this canonical O supergiant's X-ray spectrum in unprecedented detail, including looking at the time variability of X-ray line profiles. Our research team has developed a sophisticated empirical line profile model as well as a computational infrastructure for fitting the model to high-resolution X-ray spectra

  1. Wall Correction Model for Wind Tunnels with Open Test Section

    DEFF Research Database (Denmark)

    Sørensen, Jens Nørkær; Shen, Wen Zhong; Mikkelsen, Robert Flemming

    2004-01-01

    In th paper we present a correction model for wall interference on rotors of wind turbines or propellers in wind tunnels. The model, that is based on a onedimensional momentum approach, is validated against results from CFD computations using a generalized actuator disc principle. Generally......, the corrections from the model are in very good agreement with the CFD computaions, demonstrating that one-dimensional momentum theory is a reliable way of predicting corrections for wall interference in wind tunnels with closed as well as open cross sections. Keywords: Wind tunnel correction, momentum theory...

  2. A SIMPLE EXPERIMENTAL MODEL OF HEAT SHOCK RESPONSE IN RATS

    Directory of Open Access Journals (Sweden)

    Tufi Neder Meyer

    1998-10-01

    Full Text Available Objective: To obtain a simple model for the elicitation of the heat shock response in rats. Design: Laboratory study. Setting: University research laboratories. Sample: Seventy-nine adult male albino rats (weight range 200 g to 570 g. Procedures: Exposure to heat stress by heating animals in a warm bath for 5 min after their rectal temperatures reached 107.60 F (420 C. Liver and lung samples were collected for heat-shock protein 70 (HSP70 detection (Western analysis. Results: Western analysis was positive for HSP70 in the liver and in the lungs of heated animals. There was a temporal correlation between heating and HSP70 detection: it was strongest 1 day after heating and reduced afterwards. No heated animals died. Conclusion: These data show that heating rats in a warm (45o C bath, according to parameters set in this model, elicits efficiently the heat shock response.OBJETIVO: Obter um modelo simples para tentar esclarecer a resposta ao choque térmico em ratos. LOCAL: Laboratório de pesquisa da Universidade. MÉTODO: Amostra: 79 ratos albinos, adultos, entre 200g a 570g. Procedimentos: Exposição ao calor, em banho quente, por 5 minutos, após a temperatura retal chegar a 42 graus centigrados. Biópsias de fígado e pulmão foram obtidas para detectar a proteina 70 (HSP 70, pelo "Western blot". RESULTADOS: As análises foram positivas nos animais aquecidos, com uma correlação entre aquecimento e constatação da HSP 70. Foi mais elevada no primeiro dia e não houve óbitos nos animais aquecidos. CONCLUSÃO: Os ratos aquecidos a 45 graus centígrados respondem eficientemente ao choque térmico.

  3. SimWIND: A Geospatial Infrastructure Model for Wind Energy Production and Transmission

    Science.gov (United States)

    Middleton, R. S.; Phillips, B. R.; Bielicki, J. M.

    2009-12-01

    Wind is a clean, enduring energy resource with a capacity to satisfy 20% or more of the electricity needs in the United States. A chief obstacle to realizing this potential is the general paucity of electrical transmission lines between promising wind resources and primary load centers. Successful exploitation of this resource will therefore require carefully planned enhancements to the electric grid. To this end, we present the model SimWIND for self-consistent optimization of the geospatial arrangement and cost of wind energy production and transmission infrastructure. Given a set of wind farm sites that satisfy meteorological viability and stakeholder interest, our model simultaneously determines where and how much electricity to produce, where to build new transmission infrastructure and with what capacity, and where to use existing infrastructure in order to minimize the cost for delivering a given amount of electricity to key markets. Costs and routing of transmission line construction take into account geographic and social factors, as well as connection and delivery expenses (transformers, substations, etc.). We apply our model to Texas and consider how findings complement the 2008 Electric Reliability Council of Texas (ERCOT) Competitive Renewable Energy Zones (CREZ) Transmission Optimization Study. Results suggest that integrated optimization of wind energy infrastructure and cost using SimWIND could play a critical role in wind energy planning efforts.

  4. A canopy-type similarity model for wind farm optimization

    Science.gov (United States)

    Markfort, Corey D.; Zhang, Wei; Porté-Agel, Fernando

    2013-04-01

    The atmospheric boundary layer (ABL) flow through and over wind farms has been found to be similar to canopy-type flows, with characteristic flow development and shear penetration length scales (Markfort et al., 2012). Wind farms capture momentum from the ABL both at the leading edge and from above. We examine this further with an analytical canopy-type model. Within the flow development region, momentum is advected into the wind farm and wake turbulence draws excess momentum in from between turbines. This spatial heterogeneity of momentum within the wind farm is characterized by large dispersive momentum fluxes. Once the flow within the farm is developed, the area-averaged velocity profile exhibits a characteristic inflection point near the top of the wind farm, similar to that of canopy-type flows. The inflected velocity profile is associated with the presence of a dominant characteristic turbulence scale, which may be responsible for a significant portion of the vertical momentum flux. Prediction of this scale is useful for determining the amount of available power for harvesting. The new model is tested with results from wind tunnel experiments, which were conducted to characterize the turbulent flow in and above model wind farms in aligned and staggered configurations. The model is useful for representing wind farms in regional scale models, for the optimization of wind farms considering wind turbine spacing and layout configuration, and for assessing the impacts of upwind wind farms on nearby wind resources. Markfort CD, W Zhang and F Porté-Agel. 2012. Turbulent flow and scalar transport through and over aligned and staggered wind farms. Journal of Turbulence. 13(1) N33: 1-36. doi:10.1080/14685248.2012.709635.

  5. Accurate wind farm development and operation. Advanced wake modelling

    Energy Technology Data Exchange (ETDEWEB)

    Brand, A.; Bot, E.; Ozdemir, H. [ECN Unit Wind Energy, P.O. Box 1, NL 1755 ZG Petten (Netherlands); Steinfeld, G.; Drueke, S.; Schmidt, M. [ForWind, Center for Wind Energy Research, Carl von Ossietzky Universitaet Oldenburg, D-26129 Oldenburg (Germany); Mittelmeier, N. REpower Systems SE, D-22297 Hamburg (Germany))

    2013-11-15

    The ability is demonstrated to calculate wind farm wakes on the basis of ambient conditions that were calculated with an atmospheric model. Specifically, comparisons are described between predicted and observed ambient conditions, and between power predictions from three wind farm wake models and power measurements, for a single and a double wake situation. The comparisons are based on performance indicators and test criteria, with the objective to determine the percentage of predictions that fall within a given range about the observed value. The Alpha Ventus site is considered, which consists of a wind farm with the same name and the met mast FINO1. Data from the 6 REpower wind turbines and the FINO1 met mast were employed. The atmospheric model WRF predicted the ambient conditions at the location and the measurement heights of the FINO1 mast. May the predictability of the wind speed and the wind direction be reasonable if sufficiently sized tolerances are employed, it is fairly impossible to predict the ambient turbulence intensity and vertical shear. Three wind farm wake models predicted the individual turbine powers: FLaP-Jensen and FLaP-Ainslie from ForWind Oldenburg, and FarmFlow from ECN. The reliabilities of the FLaP-Ainslie and the FarmFlow wind farm wake models are of equal order, and higher than FLaP-Jensen. Any difference between the predictions from these models is most clear in the double wake situation. Here FarmFlow slightly outperforms FLaP-Ainslie.

  6. Hydrodynamic modelling of the shock ignition scheme for inertial confinement fusion

    International Nuclear Information System (INIS)

    Vallet, Alexandra

    2014-01-01

    The shock ignition concept in inertial confinement fusion uses an intense power spike at the end of an assembly laser pulse. The key features of shock ignition are the generation of a high ablation pressure, the shock pressure amplification by at least a factor of a hundred in the cold fuel shell and the shock coupling to the hot-spot. In this thesis, new semi-analytical hydrodynamic models are developed to describe the ignitor shock from its generation up to the moment of fuel ignition. A model is developed to describe a spherical converging shock wave in a pre-heated hot spot. The self-similar solution developed by Guderley is perturbed over the shock Mach number Ms ≥≥1. The first order correction accounts for the effects of the shock strength. An analytical ignition criterion is defined in terms of the shock strength and the hot-spot areal density. The ignition threshold is higher when the initial Mach number of the shock is lower. A minimal shock pressure of 20 Gbar is needed when it enters the hot-spot. The shock dynamics in the imploding shell is then analyzed. The shock is propagating into a non inertial medium with a high radial pressure gradient and an overall pressure increase with time. The collision with a returning shock coming from the assembly phase enhances further the ignitor shock pressure. The analytical theory allows to describe the shock pressure and strength evolution in a typical shock ignition implosion. It is demonstrated that, in the case of the HiPER target design, a generation shock pressure near the ablation zone on the order of 300-400 Mbar is needed. An analysis of experiments on the strong shock generation performed on the OMEGA laser facility is presented. It is shown that a shock pressure close to 300 Mbar near the ablation zone has been reached with an absorbed laser intensity up to 2 * 10 15 W:cm -2 and a laser wavelength of 351 nm. This value is two times higher than the one expected from collisional laser absorption only

  7. A Reliability Based Model for Wind Turbine Selection

    Directory of Open Access Journals (Sweden)

    A.K. Rajeevan

    2013-06-01

    Full Text Available A wind turbine generator output at a specific site depends on many factors, particularly cut- in, rated and cut-out wind speed parameters. Hence power output varies from turbine to turbine. The objective of this paper is to develop a mathematical relationship between reliability and wind power generation. The analytical computation of monthly wind power is obtained from weibull statistical model using cubic mean cube root of wind speed. Reliability calculation is based on failure probability analysis. There are many different types of wind turbinescommercially available in the market. From reliability point of view, to get optimum reliability in power generation, it is desirable to select a wind turbine generator which is best suited for a site. The mathematical relationship developed in this paper can be used for site-matching turbine selection in reliability point of view.

  8. CME Flux Rope and Shock Identifications and Locations: Comparison of White Light Data, Graduated Cylindrical Shell Model, and MHD Simulations

    Science.gov (United States)

    Schmidt, J. M.; Cairns, Iver H.; Xie, Hong; St. Cyr, O. C.; Gopalswamy, N.

    2016-01-01

    Coronal mass ejections (CMEs) are major transient phenomena in the solar corona that are observed with ground-based and spacecraft-based coronagraphs in white light or with in situ measurements by spacecraft. CMEs transport mass and momentum and often drive shocks. In order to derive the CME and shock trajectories with high precision, we apply the graduated cylindrical shell (GCS) model to fit a flux rope to the CME directed toward STEREO A after about 19:00 UT on 29 November 2013 and check the quality of the heliocentric distance-time evaluations by carrying out a three-dimensional magnetohydrodynamic (MHD) simulation of the same CME with the Block Adaptive Tree Solar-Wind Roe Upwind Scheme (BATS-R-US) code. Heliocentric distances of the CME and shock leading edges are determined from the simulated white light images and magnetic field strength data. We find very good agreement between the predicted and observed heliocentric distances, showing that the GCS model and the BATS-R-US simulation approach work very well and are consistent. In order to assess the validity of CME and shock identification criteria in coronagraph images, we also compute synthetic white light images of the CME and shock. We find that the outer edge of a cloud-like illuminated area in the observed and predicted images in fact coincides with the leading edge of the CME flux rope and that the outer edge of a faint illuminated band in front of the CME leading edge coincides with the CME-driven shock front.

  9. Model predictive control for wind power gradients

    DEFF Research Database (Denmark)

    Hovgaard, Tobias Gybel; Boyd, Stephen; Jørgensen, John Bagterp

    2015-01-01

    We consider the operation of a wind turbine and a connected local battery or other electrical storage device, taking into account varying wind speed, with the goal of maximizing the total energy generated while respecting limits on the time derivative (gradient) of power delivered to the grid. We...... wind data and modern wind forecasting methods. The simulation results using real wind data demonstrate the ability to reject the disturbances from fast changes in wind speed, ensuring certain power gradients, with an insignificant loss in energy production....... ranges. The system dynamics are quite non-linear, and the constraints and objectives are not convex functions of the control inputs, so the resulting optimal control problem is difficult to solve globally. In this paper, we show that by a novel change of variables, which focuses on power flows, we can...

  10. Halo Emission of the Cat's Eye Nebula, NGC 6543 Shock Excitation by Fast Stellar Winds

    Directory of Open Access Journals (Sweden)

    Siek Hyung

    2002-09-01

    Full Text Available Images taken with the Chandra X-ray telescope have for the the first time revealed the central, wind-driven, hot bubble (Chu et al. 2001, while Hubble Space Telescope (HST WFPC2 images of the Cat's Eye nebula, NGC 6543, show that the temperature of the halo region of angular radius ~ 20'', is much higher than that of the inner bright H II region. With the coupling of a photoionization calculation to a hydrodynamic simulation, we predict the observed [O III] line intensities of the halo region with the same O abundance as in the core H II region: oxygen abundance gradient does not appear to exist in the NGC 6543 inner halo. An interaction between a (leaky fast stellar wind and halo gas may cause the higher excitation temperatures in the halo region and the inner hot bubble region observed with the Chandra X-ray telescope.

  11. Modeling and implementation of wind shear data

    Science.gov (United States)

    Frost, Walter

    1987-01-01

    The problems of implementing the JAWS wind shear data are discussed. The data sets are described from the view of utilizing them in an aircraft performance computer program. Then, some of the problems of nonstandard procedures are described in terms of programming the equations of aircraft motion when the effects of temporal and spatially variable winds are included. Finally, some of the computed effects of the various wind shear terms are shown.

  12. Comparison of Hydroxocobalamin Versus Norepinephrine Versus Saline in a Swine Model of Servere Septic Shock

    Science.gov (United States)

    2016-05-20

    Versus Saline in a Swine Model of Severe Septic Shock presented at/published to SURF Conference, San Antonio, TX 20 May 2016 with MDWJ 41-108, and has...PRESENTED: Comparison of hydroxocobalamin versus norepinephrine versus saline in a Swine model of severe septic shock 7. FUNDING RECEIVED FOR THIS...Comparison of hydroxocbalamin versus norepinephrine versus saline in a swine model of severe septic shock . Background: Sepsis is associated with a mortality

  13. Comparison of Hydroxocobalamin Versus Norepinephrine Versus Saline in a Swine Model of Severe Septic Shock

    Science.gov (United States)

    2016-05-18

    Versus Saline in a Swine Model of Severe Septic Shock presented at/published to the Lightning Oral, SAEM Conference, New Orleans, LA 10-13 May 2016 with...PRESENTED: Comparison of hydroxocobalamin versus norepinephrine versus sal ine in a Swine model of severe septic shock 7. FUNDING RECEIVED FOR THIS...saline in a swine model of severe septic shock . Background: Sepsis is associated with a mortality of nearly 30%. Mortality is due, in part, to an

  14. Modeling and Parameter Estimation of a Small Wind Generation System

    Directory of Open Access Journals (Sweden)

    Carlos A. Ramírez Gómez

    2013-11-01

    Full Text Available The modeling and parameter estimation of a small wind generation system is presented in this paper. The system consists of a wind turbine, a permanent magnet synchronous generator, a three phase rectifier, and a direct current load. In order to estimate the parameters wind speed data are registered in a weather station located in the Fraternidad Campus at ITM. Wind speed data were applied to a reference model programed with PSIM software. From that simulation, variables were registered to estimate the parameters. The wind generation system model together with the estimated parameters is an excellent representation of the detailed model, but the estimated model offers a higher flexibility than the programed model in PSIM software.

  15. Modeling and Analysis of AGS (1998) Thermal Shock Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Haines, J.R.; Kim, S.H.; Taleyarkhan, R.P.

    1999-11-14

    An overview is provided on modeling and analysis of thermal shock experiments conducted during 1998 with high-energy, short-pulse energy deposition in a mercury filled container in the Alternating Gradient Synchrotron (AGS) facility at Brookhaven National Laboratory (BNL). The simulation framework utilized along with the results of simulations for pressure and strain profiles are presented. While the magnitude of penk strain predictions versus data are in reasonable agreement, the temporal variations were found to differ significantly in selected cases, indicating lack of modeling of certain physical phenomena or due to uncertainties in the experimental data gathering techniques. Key thermal-shock related issues and uncertainties are highlighted. Specific experiments conducted at BNL's AGS facility during 1998 (the subject of this paper) involved high-energy (24 GeV) proton energy deposition in the mercury target over a time frame of - 0.1s. The target consisted of an - 1 m. long cylindrical stainless steel shell with a hemispherical dome at the leading edge. It was filled with mercury at room temperature and pressure. Several optical strain gages were attached to the surface of the steel target. Figure 1 shows a schematic representation of the test vessel along with the main dimensions and positions of three optical strain gages at which meaningful data were obtained. As

  16. Elements of extreme wind modeling for hurricanes

    DEFF Research Database (Denmark)

    Larsen, Søren Ejling; Ejsing Jørgensen, Hans; Kelly, Mark C.

    The report summarizes characteristics of the winds associated with Tropical Cyclones (Hurricanes, Typhoons). It has been conducted by the authors across several years, from 2012-2015, to identify the processes and aspects that one should consider when building at useful computer support system...... for evaluation hurricane extreme wind conditions for a given offshore site. It was initiated by a grant from DNV that has as well been represented by one of the authors in this report. Finally, we wish to emphasize the debt of this report to an earlier work at the DTU-Wind Energy Department on “Extreme winds...

  17. A Reduced Wind Power Grid Model for Research and Education

    DEFF Research Database (Denmark)

    Akhmatov, Vladislav; Lund, Torsten; Hansen, Anca Daniela

    2007-01-01

    A reduced grid model of a transmission system with a number of central power plants, consumption centers, local wind turbines and a large offshore wind farm is developed and implemented in the simulation tool PowerFactory (DIgSILENT). The reduced grid model is given by Energinet.dk, Transmission...

  18. Modelling and measurements of wakes in large wind farms

    DEFF Research Database (Denmark)

    Barthelmie, Rebecca Jane; Rathmann, Ole; Frandsen, Sten Tronæs

    2007-01-01

    The paper presents research conducted in the Flow workpackage of the EU funded UPWIND project which focuses on improving models of flow within and downwind of large wind farms in complex terrain and offshore. The main activity is modelling the behaviour of wind turbine wakes in order to improve p...

  19. Calculation of extreme wind atlases using mesoscale modeling. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, X.G..; Badger, J.

    2012-06-15

    The objective of this project is to develop new methodologies for extreme wind atlases using mesoscale modeling. Three independent methodologies have been developed. All three methodologies are targeted at confronting and solving the problems and drawbacks in existing methods for extreme wind estimation regarding the use of modeled data (coarse resolution, limited representation of storms) and measurements (short period and technical issues). The first methodology is called the selective dynamical downscaling method. For a chosen area, we identify the yearly strongest storms through global reanalysis data at each model grid point and run a mesoscale model, here the Weather Research and Forecasting (WRF) model, for all storms identified. Annual maximum winds and corresponding directions from each mesoscale grid point are then collected, post-processed and used in Gumbel distribution to obtain the 50-year wind. The second methodology is called the statistical-dynamical downscaling method. For a chosen area, the geostrophic winds at a representative grid point from the global reanalysis data are used to obtain the annual maximum winds in 12 sectors for a period of 30 years. This results in 360 extreme geostrophic winds. Each of the 360 winds is used as a stationary forcing in a mesoscale model, here KAMM. For each mesoscale grid point the annual maximum winds are post-processed and used to a Gumbel fit to obtain the 50-year wind. For the above two methods, the post-processing is an essential part. It calculates the speedup effects using a linear computation model (LINCOM) and corrects the winds from the mesoscale modeling to a standard condition, i.e. 10 m above a homogeneous surface with a roughness length 5 cm. Winds of the standard condition can then be put into a microscale model to resolve the local terrain and roughness effects around particular turbine sites. By converting both the measured and modeled winds to the same surface conditions through the post

  20. Wind turbine noise propagation modelling: An unsteady approach

    DEFF Research Database (Denmark)

    Barlas, Emre; Zhu, Wei Jun; Shen, Wen Zhong

    2016-01-01

    Wind turbine sound generation and propagation phenomena are inherently time dependent, hence tools that incorporate the dynamic nature of these two issues are needed for accurate modelling. In this paper, we investigate the sound propagation from a wind turbine by considering the effects of unste......Wind turbine sound generation and propagation phenomena are inherently time dependent, hence tools that incorporate the dynamic nature of these two issues are needed for accurate modelling. In this paper, we investigate the sound propagation from a wind turbine by considering the effects...

  1. A Method for Modeling of Floating Vertical Axis Wind Turbine

    DEFF Research Database (Denmark)

    Wang, Kai; Hansen, Martin Otto Laver; Moan, Torgeir

    2013-01-01

    It is of interest to investigate the potential advantages of floating vertical axis wind turbine (FVAWT) due to its economical installation and maintenance. A novel 5MW vertical axis wind turbine concept with a Darrieus rotor mounted on a semi-submersible support structure is proposed in this paper....... In order to assess the technical and economic feasibility of this novel concept, a comprehensive simulation tool for modeling of the floating vertical axis wind turbine is needed. This work presents the development of a coupled method for modeling of the dynamics of a floating vertical axis wind turbine...

  2. Drop Hammer Tests with Three Oleo Strut Models and Three Different Shock Strut Oils at Low Temperatures

    Science.gov (United States)

    Kranz, M

    1954-01-01

    Drop hammer tests with different shock strut models and shock strut oils were performed at temperatures ranging to -40 C. The various shock strut models do not differ essentially regarding their springing and damping properties at low temperatures; however, the influence of the different shock strut oils on the springing properties at low temperatures varies greatly.

  3. Experimental studies on power transformer model winding provided with MOVs

    Directory of Open Access Journals (Sweden)

    G.H. Kusumadevi

    2017-05-01

    Full Text Available Surge voltage distribution across a HV transformer winding due to appearance of very fast rise time (rise time of order 1 μs transient voltages is highly non-uniform along the length of the winding for initial time instant of occurrence of surge. In order to achieve nearly uniform initial time instant voltage distribution along the length of the HV winding, investigations have been carried out on transformer model winding. By connecting similar type of metal oxide varistors across sections of HV transformer model winding, it is possible to improve initial time instant surge voltage distribution across length of the HV transformer winding. Transformer windings with α values 5.3, 9.5 and 19 have been analyzed. The experimental studies have been carried out using high speed oscilloscope of good accuracy. The initial time instant voltage distribution across sections of winding with MOV remains nearly uniform along length of the winding. Also results of fault diagnostics carried out with and without connection of MOVs across sections of winding are reported.

  4. Wind Farm Wake Models From Full Scale Data

    DEFF Research Database (Denmark)

    Knudsen, Torben; Bak, Thomas

    2012-01-01

    on real full scale data. The modelling is based on so called effective wind speed. It is shown that there is a wake for a wind direction range of up to 20 degrees. Further, when accounting for the wind direction it is shown that the two model structures considered can both fit the experimental data......This investigation is part of the EU FP7 project “Distributed Control of Large-Scale Offshore Wind Farms”. The overall goal in this project is to develop wind farm controllers giving power set points to individual turbines in the farm in order to minimise mechanical loads and optimise power. One...... control configuration examined is distributed control where turbines only communicate with their nearest upwind neighbors. Design of such controllers needs wake models and these models should ideally be distributed. This paper compares two simple multiple wake models for this purpose. The study is based...

  5. TIMING SIGNATURES OF THE INTERNAL-SHOCK MODEL FOR BLAZARS

    International Nuclear Information System (INIS)

    Boettcher, M.; Dermer, C. D.

    2010-01-01

    We investigate the spectral and timing signatures of the internal-shock model for blazars. For this purpose, we develop a semi-analytical model for the time-dependent radiative output from internal shocks arising from colliding relativistic shells in a blazar jet. The emission through synchrotron and synchrotron-self Compton radiation as well as Comptonization of an isotropic external radiation field are taken into account. We evaluate the discrete correlation function (DCF) of the model light curves in order to evaluate features of photon-energy-dependent time lags and the quality of the correlation, represented by the peak value of the DCF. The almost completely analytic nature of our approach allows us to study in detail the influence of various model parameters on the resulting spectral and timing features. This paper focuses on a range of parameters in which the γ-ray production is dominated by Comptonization of external radiation, most likely appropriate for γ-ray bright flat-spectrum radio quasars (FSRQs) or low-frequency peaked BL Lac objects (LBLs). In most cases relevant for FSRQs and LBLs, the variability of the optical emission is highly correlated with the X-ray and high-energy (HE: > 100 MeV) γ-ray emission. Our baseline model predicts a lead of the optical variability with respect to the higher-energy bands by 1-2 hr and of the HE γ-rays before the X-rays by about 1 hr. We show that variations of certain parameters may lead to changing signs of inter-band time lags, potentially explaining the lack of persistent trends of time lags in most blazars.

  6. Limited Area Forecasting and Statistical Modelling for Wind Energy Scheduling

    DEFF Research Database (Denmark)

    Rosgaard, Martin Haubjerg

    forecast accuracy for operational wind power scheduling. Numerical weather prediction history and scales of atmospheric motion are summarised, followed by a literature review of limited area wind speed forecasting. Hereafter, the original contribution to research on the topic is outlined. The quality...... control of wind farm data used as forecast reference is described in detail, and a preliminary limited area forecasting study illustrates the aggravation of issues related to numerical orography representation and accurate reference coordinates at ne weather model resolutions. For the o shore and coastal...... sites studied limited area forecasting is found to deteriorate wind speed prediction accuracy, while inland results exhibit a steady forecast performance increase with weather model resolution. Temporal smoothing of wind speed forecasts is shown to improve wind power forecast performance by up to almost...

  7. Reference Manual for the System Advisor Model's Wind Power Performance Model

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, J.; Jorgenson, J.; Gilman, P.; Ferguson, T.

    2014-08-01

    This manual describes the National Renewable Energy Laboratory's System Advisor Model (SAM) wind power performance model. The model calculates the hourly electrical output of a single wind turbine or of a wind farm. The wind power performance model requires information about the wind resource, wind turbine specifications, wind farm layout (if applicable), and costs. In SAM, the performance model can be coupled to one of the financial models to calculate economic metrics for residential, commercial, or utility-scale wind projects. This manual describes the algorithms used by the wind power performance model, which is available in the SAM user interface and as part of the SAM Simulation Core (SSC) library, and is intended to supplement the user documentation that comes with the software.

  8. Structural model of dodecameric heat-shock protein Hsp21

    DEFF Research Database (Denmark)

    Rutsdottir, Gudrun; Härmark, Johan; Weide, Yoran

    2017-01-01

    Small heat-shock proteins (sHsps) prevent aggregation of thermosensitive client proteins in a first line of defense against cellular stress. The mechanisms by which they perform this function have been hard to define due to limited structural information; currently, there is only one high......-resolution structure of a plant sHsp published, that of the cytosolic Hsp16.9. We took interest in Hsp21, a chloroplast-localized sHsp crucial for plant stress resistance, which has even longer N-terminal arms than Hsp16.9, with a functionally important and conserved methionine-rich motif. To provide a framework...... for investigating structure-function relationships of Hsp21 and understanding these sequence variations, we developed a structural model of Hsp21 based on homology modeling, cryo-EM, cross-linking mass spectrometry, NMR, and small-angle X-ray scattering. Our data suggest a dodecameric arrangement of two trimer...

  9. Scaling forecast models for wind turbulence and wind turbine power intermittency

    Science.gov (United States)

    Duran Medina, Olmo; Schmitt, Francois G.; Calif, Rudy

    2017-04-01

    The intermittency of the wind turbine power remains an important issue for the massive development of this renewable energy. The energy peaks injected in the electric grid produce difficulties in the energy distribution management. Hence, a correct forecast of the wind power in the short and middle term is needed due to the high unpredictability of the intermittency phenomenon. We consider a statistical approach through the analysis and characterization of stochastic fluctuations. The theoretical framework is the multifractal modelisation of wind velocity fluctuations. Here, we consider three wind turbine data where two possess a direct drive technology. Those turbines are producing energy in real exploitation conditions and allow to test our forecast models of power production at a different time horizons. Two forecast models were developed based on two physical principles observed in the wind and the power time series: the scaling properties on the one hand and the intermittency in the wind power increments on the other. The first tool is related to the intermittency through a multifractal lognormal fit of the power fluctuations. The second tool is based on an analogy of the power scaling properties with a fractional brownian motion. Indeed, an inner long-term memory is found in both time series. Both models show encouraging results since a correct tendency of the signal is respected over different time scales. Those tools are first steps to a search of efficient forecasting approaches for grid adaptation facing the wind energy fluctuations.

  10. The Effects of Permanent Technology Shocks on Labour Productivity and Hours in the RBC Model

    OpenAIRE

    Lindé, Jesper

    2005-01-01

    Recent work on the effects of permanent technology shocks argue that the basic RBC model cannot account for a negative correlation between hours worked and labour productivity. In this Paper, I show that this conjecture is not necessarily correct. In the basic RBC model, I find that hours worked fall and labour productivity rises after a positive permanent technology shock once one allows for the possibility that the process for the permanent technology shock is persistent in growth rates. A ...

  11. Quantification model of the consequences of monetary policy shocks

    Directory of Open Access Journals (Sweden)

    Coralia Emilia POPA

    2017-11-01

    Full Text Available The monetary analysis based on the BVAR (Bayesian Vector Autoregression model is extremely important in the monetary policy implementation strategy, the information provided is important not only for the Central Bank, but also for the economic agents and the population. Therefore, conducting this analysis at the level of Romania helps to understand better the mechanism by which monetary policy is transmitted in order to achieve the set target, namely inflation targeting, but it also provides us with important information regarding the accession to the euro area. The model we are trying to test helps us understand through the correlations between the interest rate, GDP and the inflation rate how monetary policy responds to shocks. The model follows the methodology presented by Sims and Zha (1998 in the paper "Bayesian Methods for Dynamic Multivariate Models and Using the Bayesian Autoregressive Vector". In the analysis of this model, quarterly data for a minimum of three years, three variables are used to make the results relevant. The data needed to model the model are used in logarithmic form, except for the interest rate, and the outcome is applied to a differentiated premium operator. Of the variables used, the interest rate is the only one that does not allow seasonal adjustment.

  12. Development of an Integrated Water and Wind Erosion Model

    Science.gov (United States)

    Flanagan, D. C.; Ascough, J. C.; Wagner, L. E.; Geter, W. F.

    2006-12-01

    Prediction technologies for soil erosion by the forces of wind or water have largely been developed independently from one another, especially within the United States. Much of this has been due to the initial creation of equations and models which were empirical in nature (i.e., Universal Soil Loss Equation, Wind Erosion Equation) and based upon separate water erosion or wind erosion plot and field measurements. Additionally, institutional organizations in place typically divided research efforts and funding to unique wind or water erosion research and modeling projects. However, during the past 20 years computer technologies and erosion modeling have progressed to the point where it is now possible to merge physical process-based computer simulation models into an integrated water and wind erosion prediction system. In a physically- based model, many of the processes which must be simulated for wind and water erosion computations are the same, e.g., climate, water balance, runoff, plant growth, etc. Model components which specifically deal with the wind or water detachment, transport and deposition processes are those that must differ, as well as any necessary parameterization of input variables (e.g., adjusted soil erodibilities, critical shear stresses, etc.) for those components. This presentation describes current efforts towards development of a combined wind and water erosion model, based in part upon technologies present in the Water Erosion Prediction Project (WEPP) and the Wind Erosion Prediction System (WEPS) models. Initial efforts during the past two years have resulted in modular modeling components that allow for prediction of infiltration, surface runoff, and water erosion at a hillslope scale within an Object Modeling System. Additional components currently in development include wind detachment at a single field point, continuous water balance, and unified plant growth. Challenges in this project are many, and include adequate field

  13. A Multidirectional Wind Erosion Model for Western Saxony

    Science.gov (United States)

    Schmidt, Simon; Meusburger, Katrin; de Figueiredo, Tomás; Alewell, Christine

    2016-04-01

    Wind erosion can trigger a non-visible loss of fine soil up to 40 t ha-1 per single event and is as such a major soil threat and environmental concern in areas susceptible to wind erosion. Western Saxony was assessed to be among the most susceptible landscapes not only within Germany but even within Europe (Borelli et al., 2015; Borelli et al., 2014). Moreover, wind erosion events in eastern Germany cause very severe off-site effects with impacts on road traffic. So far the wind erosion model that is normally applied in Germany is based on the norm DIN standard 19706. The DIN standard 19706 was revised by new controlling factors and fuzzy logic to consider the multi-directionality of wind and make it more realistic to wind erosion processes. The new factors are based on different datasets like (i) wind and temperature data (1hr resolution) for 9 gauging stations and interpolated long-term wind speed (1981-2000, 200m resolution) provided by the German Weather Service, (ii) soil erodibility extracted from the digital soil map 1:50,000, (iii) landscape components from different data sources (ATKIS, OpenStreetMap and others), and (iv) a DEM (20m resolution) for local orographic modeling. For a risky sub-region, local wind speeds and directions were modelled based on the Wind Atlas Analysis and Application Programs (WAsP) orography-model to assess road bodies for priority actions. Major improvements of the proposed model are the consideration of changing wind directions and the implementation of factors on soil cover and field length. An estimation of the long-term spatiotemporal variability under changing climate is possible with the model conception. The revised model assesses 3.6% of western Saxonies agricultural fields under very high risk to wind erosion. Larger fields (greater than 116 ha) are connected to a higher frequency (51.7%) of very high risk. Only a small proportion (5.2%) of the high risk class was found in small fields (smaller than 21 ha). Fields under

  14. Dynamic wind turbine models in power system simulation tool

    DEFF Research Database (Denmark)

    Hansen, A.; Jauch, Clemens; Soerensen, P.

    The present report describes the dynamic wind turbine models implemented in the power system simulation tool DIgSILENT. The developed models are a part of the results of a national research project, whose overall objective is to create a model database in different simulation tools. The report...... provides a description of the wind turbine modelling, both at a component level and at a system level....

  15. Modelling of the urban wind profile

    DEFF Research Database (Denmark)

    Gryning, Sven-Erik; Batchvarova, Ekaterina

    2008-01-01

    Analysis of meteorological measurements from tall masts in rural and urban areas show that the height of the boundary layer influences the wind profile even in the lowest hundreds of meters. A parameterization of the wind profile for the entire boundary layer is formulated with emphasis...... on the lowest 200-300 m and presented here. Results are shown from applying the parameterization of the wind profile on independent measurements from an urban experimental campaign that was carried out in Sofia, Bulgaria in 2003....

  16. INFERENCE AND SENSITIVITY IN STOCHASTIC WIND POWER FORECAST MODELS.

    KAUST Repository

    Elkantassi, Soumaya

    2017-10-03

    Reliable forecasting of wind power generation is crucial to optimal control of costs in generation of electricity with respect to the electricity demand. Here, we propose and analyze stochastic wind power forecast models described by parametrized stochastic differential equations, which introduce appropriate fluctuations in numerical forecast outputs. We use an approximate maximum likelihood method to infer the model parameters taking into account the time correlated sets of data. Furthermore, we study the validity and sensitivity of the parameters for each model. We applied our models to Uruguayan wind power production as determined by historical data and corresponding numerical forecasts for the period of March 1 to May 31, 2016.

  17. Computational Modelling of Materials for Wind Turbine Blades: Selected DTU Wind Energy Activities.

    Science.gov (United States)

    Mikkelsen, Lars Pilgaard; Mishnaevsky, Leon

    2017-11-08

    Computational and analytical studies of degradation of wind turbine blade materials at the macro-, micro-, and nanoscale carried out by the modelling team of the Section Composites and Materials Mechanics, Department of Wind Energy, DTU, are reviewed. Examples of the analysis of the microstructural effects on the strength and fatigue life of composites are shown. Computational studies of degradation mechanisms of wind blade composites under tensile and compressive loading are presented. The effect of hybrid and nanoengineered structures on the performance of the composite was studied in computational experiments as well.

  18. Measuring and modelling of the wind on the scale of tall wind turbines

    DEFF Research Database (Denmark)

    Floors, Rogier Ralph

    and the friction velocity had a bias, which were related to the change in surface roughness. A higher-order boundary-layer scheme represented the wind profile of the westerly flow over sea better, while a first-order scheme modelled the flow from the east with low-level jets better. The wind profile shape...... to baroclinity. The variation of the resistance law constants in neutral, baroclinic conditions was approximately the same as in experiments that where assumed to be barotropic; part of the variation was explained by baroclinity showing the importance of including this effect when studying boundary-layer winds....

  19. Modeling of energy transfer in hypersonic shocks using high fidelity models

    Science.gov (United States)

    Zhu, Tong

    The spectra of high-temperature, chemically reacting hypersonic flows provides the most powerful diagnostic available for testing thermochemically nonequilibrium models in re-entry conditions. Several shock tube experiments have revealed that conventional phenomenological approach can not accurately predict the internal temperature of the gas and also the corresponding radiation. In particular, large rotational nonequilibrium in strong shocks has been observed in several experiments with high peak translational temperatures. The Direct Simulation Monte Carlo (DSMC) method is a particlebased simulation method that is capable of properly simulating flows with large nonequilibrium. In the experiments above, one dimensional shocks are most widely studied but they are challenging to simulate using the DSMC method due to the unsteady nature of the flows and especially for hypersonic flows with chemical reactions taking place. Therefore, efficient approaches for simulating one-dimensional shocks are developed for use in DSMC simulations. Both a shock stabilization technique and a modified DSMC unsteady sampling approach are used in simulating one dimensional, unsteady shocks. In the latter approach, a moving sampling region is used to obtain an accurate profile of the reflected shock in air. The shock number density and temperature profiles are obtained and used to calculate excitation and radiation. The Quasi-Steady-State (QSS) assumption is made in the excitation calculation where both electron impact and heavy particle impact excitation for the NO(A2sum +) and the N+2 (B2sum +u ) states are studied. The calculated NOradiation in the wavelength range o lambda = 235 +/- 7 nm for shock speeds below 7 km/s are in good agreement with the experiment, but, the predicted radiation is lower than the experiment for shock speeds above 7 km/s. In addition, the N+2 radiation in the wavelength range of lambda = 391.4 +/- 0.2 nm are in good agreement with the experimental data for

  20. Experimental models of sepsis and septic shock: an overview

    Directory of Open Access Journals (Sweden)

    Garrido Alejandra G.

    2004-01-01

    Full Text Available Sepsis remains a major cause of morbidity and mortality in surgical patients and trauma victims, mainly due to sepsis-induced multiple organ dysfunction. In contrast to preclinical studies, most clinical trials of promising new treatment strategies for sepsis have fails to demonstrate efficacy. Although many reasons could account for this discrepancy, the misinterpretation of preclinical data obtained from experimental studies, and especially the use of animal models that do not adequately mimic human sepsis may have been contributing factors. In this review, the benefits and limitations of various animal models of sepsis are discussed to clarify the extend to which findings are relevant to human sepsis, particularly with respect to the subsequent design and execution of clinical trials. Such models include intravascular infusion of endotoxin or live bacteria, bacterial peritonitis, cecal ligation and perforation, soft tissue infection, pneumonia or meningitis models, using different animal species including rats, mice, rabbits, dogs, pigs, sheep and nonhuman primates. Despite several limitations, animal models remain essential in the development of all new therapies for sepsis and septic shock, because they provide fundamental information about the pharmacokinetics, toxicity, and mechanism of drug action that cannot be duplicated by other methods. New therapeutic agents should be studies in infection models, even after the initiation of the septic process. Furthermore, debility conditions need to be reproduced to avoid the exclusive use of healthy animals, which often do not represent the human septic patient.

  1. Material model validation for laser shock peening process simulation

    International Nuclear Information System (INIS)

    Amarchinta, H K; Grandhi, R V; Langer, K; Stargel, D S

    2009-01-01

    Advanced mechanical surface enhancement techniques have been used successfully to increase the fatigue life of metallic components. These techniques impart deep compressive residual stresses into the component to counter potentially damage-inducing tensile stresses generated under service loading. Laser shock peening (LSP) is an advanced mechanical surface enhancement technique used predominantly in the aircraft industry. To reduce costs and make the technique available on a large-scale basis for industrial applications, simulation of the LSP process is required. Accurate simulation of the LSP process is a challenging task, because the process has many parameters such as laser spot size, pressure profile and material model that must be precisely determined. This work focuses on investigating the appropriate material model that could be used in simulation and design. In the LSP process material is subjected to strain rates of 10 6  s −1 , which is very high compared with conventional strain rates. The importance of an accurate material model increases because the material behaves significantly different at such high strain rates. This work investigates the effect of multiple nonlinear material models for representing the elastic–plastic behavior of materials. Elastic perfectly plastic, Johnson–Cook and Zerilli–Armstrong models are used, and the performance of each model is compared with available experimental results

  2. Modelling and transient stability of large wind farms

    DEFF Research Database (Denmark)

    Akhmatov, Vladislav; Knudsen, Hans; Nielsen, Arne Hejde

    2003-01-01

    by a physical model of grid-connected windmills. The windmill generators ate conventional induction generators and the wind farm is ac-connected to the power system. Improvements-of short-term voltage stability in case of failure events in the external power system are treated with use of conventional generator...... technology. This subject is treated as a parameter study with respect to the windmill electrical and mechanical parameters and with use of control strategies within the conventional generator technology. Stability improvements on the wind farm side of the connection point lead to significant reduction......The paper is dealing-with modelling and short-term Voltage stability considerations of large wind farms. A physical model of a large offshore wind farm consisting of a large number of windmills is implemented in the dynamic simulation tool PSS/E. Each windmill in the wind farm is represented...

  3. Capacity expansion model of wind power generation based on ELCC

    Science.gov (United States)

    Yuan, Bo; Zong, Jin; Wu, Shengyu

    2018-02-01

    Capacity expansion is an indispensable prerequisite for power system planning and construction. A reasonable, efficient and accurate capacity expansion model (CEM) is crucial to power system planning. In most current CEMs, the capacity of wind power generation is considered as boundary conditions instead of decision variables, which may lead to curtailment or over construction of flexible resource, especially at a high renewable energy penetration scenario. This paper proposed a wind power generation capacity value(CV) calculation method based on effective load-carrying capability, and a CEM that co-optimizes wind power generation and conventional power sources. Wind power generation is considered as decision variable in this model, and the model can accurately reflect the uncertainty nature of wind power.

  4. F-Region Neutral Winds Obtained from the Thermospheric Wind Assimilation Model (TWAM).

    Science.gov (United States)

    Molina, I.; Scherliess, L.; Lomidze, L.

    2017-12-01

    Thermospheric neutral winds play a major role in the transport of energy and momentum in the Earth's upper atmosphere. They are also responsible for changes in the composition of the thermosphere and affect the dynamics and morphology of the ionospheric plasma. However, direct observations of the winds are limited both temporally and spatially, which makes global studies very difficult. On the other hand, ionospheric measurements are relatively easier to make and there is a very good distribution of various instruments worldwide. Data assimilation is a technique that combines information from observations and a physical model. Observed data are assimilated into the model as a constraint for the physical equations that describe the dynamics of the system, which allows estimates of unobserved driving forces, e.g., the neutral wind. The Thermospheric Wind Assimilation Model (TWAM) is a data assimilation model that uses the output of the Global Assimilation of Ionospheric Measurements Full Physics (GAIM-FP) model. GAIM-FP is an ionospheric data assimilation model that is based on an ensemble Kalman filter. The ionosphere and plasmasphere electron density and its associated errors are evolved using a physics-based Ionosphere-Plasmasphere Model which solves the ion and electron continuity and momentum equations numerically. TWAM uses an implicit Kalman filter and combines the magnetic meridional winds from GAIM-FP with the equation of motion of the neutral gas. TWAM also uses information from GAIM-FP about the 3-D electron density and ion diffusion velocities. The output of the model is the global zonal and meridional thermospheric neutral winds at low and mid latitudes. This approach has been successfully used to investigate the climatology of thermospheric neutral winds and the physical mechanisms that drive the Weddell Sea Anomaly. We present the first results of our efforts to develop TWAM to use it to analyze day-to-day quiet time data.

  5. A model of rotationally-sampled wind turbulence for predicting fatigue loads in wind turbines

    Science.gov (United States)

    Spera, David A.

    1995-01-01

    Empirical equations are presented with which to model rotationally-sampled (R-S) turbulence for input to structural-dynamic computer codes and the calculation of wind turbine fatigue loads. These equations are derived from R-S turbulence data which were measured at the vertical-plane array in Clayton, New Mexico. For validation, the equations are applied to the calculation of cyclic flapwise blade loads for the NASA/DOE Mod-2 2.5-MW experimental HAWT's (horizontal-axis wind turbines), and the results compared to measured cyclic loads. Good correlation is achieved, indicating that the R-S turbulence model developed in this study contains the characteristics of the wind which produce many of the fatigue loads sustained by wind turbines. Empirical factors are included which permit the prediction of load levels at specified percentiles of occurrence, which is required for the generation of fatigue load spectra and the prediction of the fatigue lifetime of structures.

  6. Thermal shock analysis of functionally graded materials by micromechanical model

    International Nuclear Information System (INIS)

    Ueda, Sei

    2002-01-01

    The transient thermoelastic behavior of the functionally graded plate due to a thermal shock with temperature dependent properties is studied in this paper. The development of a micromechanical model for the functionally graded materials is presented and its application to thermoelastic analysis is discussed for the case of the W-Cu functionally graded material for the International Thermonuclear Experimental Reactor divertor plate. The divertor plate is made of a graded layer bonded between a homogeneous substrate and a homogeneous coating, and it is subjected to a cycle of heating and cooling on the coating surface of the material. The thermal and elastic properties of the material are dependent on the temperature and the position. Numerical calculations are carried out, and the results for the transient temperature and thermal stress distributions are displayed graphically. (author)

  7. The Influence of Pickup Protons, from Interstellar Neutral Hydrogen, on the Propagation of Interplanetary Shocks from the Halloween 2003 Solar Events to ACE and Ulysses: A 3-D MHD Modeling Study

    Science.gov (United States)

    Detman, T. R.; Intriligator, D. S.; Dryer, M.; Sun, W.; Deehr, C. S.; Intriligator, J.

    2012-01-01

    We describe our 3-D, time ]dependent, MHD solar wind model that we recently modified to include the physics of pickup protons from interstellar neutral hydrogen. The model has a time-dependent lower boundary condition, at 0.1 AU, that is driven by source surface map files through an empirical interface module. We describe the empirical interface and its parameter tuning to maximize model agreement with background (quiet) solar wind observations at ACE. We then give results of a simulation study of the famous Halloween 2003 series of solar events. We began with shock inputs from the Fearless Forecast real ]time shock arrival prediction study, and then we iteratively adjusted input shock speeds to obtain agreement between observed and simulated shock arrival times at ACE. We then extended the model grid to 5.5 AU and compared those simulation results with Ulysses observations at 5.2 AU. Next we undertook the more difficult tuning of shock speeds and locations to get matching shock arrival times at both ACE and Ulysses. Then we ran this last case again with neutral hydrogen density set to zero, to identify the effect of pickup ions. We show that the speed of interplanetary shocks propagating from the Sun to Ulysses is reduced by the effects of pickup protons. We plan to make further improvements to the model as we continue our benchmarking process to 10 AU, comparing our results with Cassini observations, and eventually on to 100 AU, comparing our results with Voyager 1 and 2 observations.

  8. Modelling of a chaotic load of wind turbines drivetrain

    Science.gov (United States)

    Bielecki, Andrzej; Barszcz, Tomasz; Wójcik, Mateusz

    2015-03-01

    The purpose of this paper is to present a model of the load of the wind turbine gears for simulation of real, varying operational conditions for modelling of wind turbine vibration. The characteristics of the wind, which generates chaotically varying loads on the drivetrain components generating load in teeth and bearings of gears during torque transfer, are discussed. A generator of variable load of wind turbines drivetrain is proposed. Firstly, the module for generation of wind speed is designed. It is based on the approach in which the wind speed was considered as a time series approximated by the Weierstrass function. Secondly, the rotational speed of the main shaft is proposed as a function of the wind speed value. The function depends on a few parameters that are fitted by using a genetic algorithm. Finally, the model of torque of the main shaft is introduced. This model has been created by using a multi-layer artificial neural network. The results show that the proposed approach yields a very good fit for the experimental data. The fit brings about the proper reproducing of all the aspects of the load that are crucial for causing fatigue and, as a consequence, damaging of gears of the wind turbines.

  9. Wind climate from the regional climate model REMO

    DEFF Research Database (Denmark)

    Larsén, Xiaoli Guo; Mann, Jakob; Berg, Jacob

    2010-01-01

    Selected outputs from simulations with the regional climate model REMO from the Max Planck Institute, Hamburg, Germany were studied in connection with wind energy resource assessment. It was found that the mean wind characteristics based on observations from six mid-latitude stations are well...

  10. Mesoscale to microscale wind farm flow modeling and evaluation

    DEFF Research Database (Denmark)

    Sanz Rodrigo, Javier; Chávez Arroyo, Roberto Aurelio; Moriarty, Patrick

    2017-01-01

    The increasing size of wind turbines, with rotors already spanning more than 150m diameter and hub heights above 100m, requires proper modeling of the atmospheric boundary layer (ABL) from the surface to the free atmosphere. Furthermore, large wind farm arrays create their own boundary layer stru...

  11. Wind Power Curve Modeling in Simple and Complex Terrain

    Energy Technology Data Exchange (ETDEWEB)

    Bulaevskaya, V. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wharton, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Irons, Z. [Enel Green Power North America, Andover, MA (United States); Qualley, G. [Pentalum, Colleyville, TX (United States)

    2015-02-09

    Our previous work on wind power curve modeling using statistical models focused on a location with a moderately complex terrain in the Altamont Pass region in northern California (CA). The work described here is the follow-up to that work, but at a location with a simple terrain in northern Oklahoma (OK). The goal of the present analysis was to determine the gain in predictive ability afforded by adding information beyond the hub-height wind speed, such as wind speeds at other heights, as well as other atmospheric variables, to the power prediction model at this new location and compare the results to those obtained at the CA site in the previous study. While we reach some of the same conclusions at both sites, many results reported for the CA site do not hold at the OK site. In particular, using the entire vertical profile of wind speeds improves the accuracy of wind power prediction relative to using the hub-height wind speed alone at both sites. However, in contrast to the CA site, the rotor equivalent wind speed (REWS) performs almost as well as the entire profile at the OK site. Another difference is that at the CA site, adding wind veer as a predictor significantly improved the power prediction accuracy. The same was true for that site when air density was added to the model separately instead of using the standard air density adjustment. At the OK site, these additional variables result in no significant benefit for the prediction accuracy.

  12. Interval forecasts of a novelty hybrid model for wind speeds

    Directory of Open Access Journals (Sweden)

    Shanshan Qin

    2015-11-01

    Full Text Available The utilization of wind energy, as a booming technology in the field of renewable energies, has been highly regarded around the world. Quantification of uncertainties associated with accurate wind speed forecasts is essential for regulating wind power generation and integration. However, it remains difficult work primarily due to the stochastic and nonlinear characteristics of wind speed series. Traditional models for wind speed forecasting mostly focus on generating certain predictive values, which cannot properly handle uncertainties. For quantifying potential uncertainties, a hybrid model constructed by the Cuckoo Search Optimization (CSO-based Back Propagation Neural Network (BPNN is proposed to establish wind speed interval forecasts (IFs by estimating the lower and upper bounds. The quality of IFs is assessed quantitatively using IFs coverage probability (IFCP and IFs normalized average width (IFNAW. Moreover, to assess the overall quality of IFs comprehensively, a tradeoff between informativeness (IFNAW and validity (IFCP of IFs is examined by coverage width-based criteria (CWC. As an applicative study, wind speeds from the Xinjiang Region in China are used to validate the proposed hybrid model. The results demonstrate that the proposed model can construct higher quality IFs for short-term wind speed forecasts.

  13. 3D Smoothed Particle Hydrodynamics Models of Betelgeuse's Bow Shock

    OpenAIRE

    Mohamed, Shazrene; Mackey, Jonathan; Langer, Norbert

    2013-01-01

    Betelgeuse, the bright red supergiant (RSG) in Orion, is a runaway star. Its supersonic motion through the interstellar medium has resulted in the formation of a bow shock, a cometary structure pointing in the direction of motion. We present the first 3D hydrodynamic simulations of the formation and evolution of Betelgeuse's bow shock. We show that the bow shock morphology depends substantially on the growth timescale for Rayleigh-Taylor versus Kelvin-Helmholtz instabilities. We discuss our m...

  14. Continuous-output terminal-shock-position sensor for mixed-compression inlets evaluated in wind tunnel tests of YF-12 aircraft inlet

    Science.gov (United States)

    Dustin, M. O.; Cole, G. L.; Neiner, G. H.

    1974-01-01

    An electronic sensor was built to measure the position of the terminal shock in a supersonic inlet. The sensor uses several static-pressure taps in the inlet wall. The sensor output is continuously proportional to shock position. When the sensor was installed in a YF-12 aircraft flight inlet during wind tunnel tests, it indicated shock position within + or - 5 percent of the total distance covered by the static-pressure-tap region. The maximum error caused by an angle of attack change of 4 deg was less than 25 percent. In the region of normal inlet operation, the angle of attack error is negligible. Frequency-response tests show the amplitude ratio is constant out to 60 Hz, and decreases to about 50 percent at 100 Hz, with a phase lag of 50 deg.

  15. A Combined Reliability Model of VSC-HVDC Connected Offshore Wind Farms Considering Wind Speed Correlation

    DEFF Research Database (Denmark)

    Guo, Yifei; Gao, Houlei; Wu, Qiuwei

    2017-01-01

    and WTGs outage. The wind speed correlation between different WFs is included in the two-dimensional multistate WF model by using an improved k-means clustering method. Then, the entire system with two WFs and a threeterminal VSC-HVDC system is modeled as a multi-state generation unit. The proposed model...

  16. Extended charge banking model of dual path shocks for implantable cardioverter defibrillators.

    Science.gov (United States)

    Dosdall, Derek J; Sweeney, James D

    2008-08-01

    Single path defibrillation shock methods have been improved through the use of the Charge Banking Model of defibrillation, which predicts the response of the heart to shocks as a simple resistor-capacitor (RC) circuit. While dual path defibrillation configurations have significantly reduced defibrillation thresholds, improvements to dual path defibrillation techniques have been limited to experimental observations without a practical model to aid in improving dual path defibrillation techniques. The Charge Banking Model has been extended into a new Extended Charge Banking Model of defibrillation that represents small sections of the heart as separate RC circuits, uses a weighting factor based on published defibrillation shock field gradient measures, and implements a critical mass criteria to predict the relative efficacy of single and dual path defibrillation shocks. The new model reproduced the results from several published experimental protocols that demonstrated the relative efficacy of dual path defibrillation shocks. The model predicts that time between phases or pulses of dual path defibrillation shock configurations should be minimized to maximize shock efficacy. Through this approach the Extended Charge Banking Model predictions may be used to improve dual path and multi-pulse defibrillation techniques, which have been shown experimentally to lower defibrillation thresholds substantially. The new model may be a useful tool to help in further improving dual path and multiple pulse defibrillation techniques by predicting optimal pulse durations and shock timing parameters.

  17. Numerical prediction of shock induced oscillations over a 2D airfoil: Influence of turbulence modelling and test section walls

    International Nuclear Information System (INIS)

    Thiery, Mylene; Coustols, Eric

    2006-01-01

    The present study deals with recent numerical results from on-going research conducted at ONERA/DMAE regarding the prediction of transonic flows, for which shock wave/boundary layer interaction is important. When this interaction is strong enough (M ≥ 1.3), shock induced oscillations (SIO) appear at the suction side of the airfoil and lead to the formation of unsteady separated areas. The main issue is then to perform unsteady computations applying appropriate turbulence modelling and relevant boundary conditions with respect to the test case. Computations were performed with the ONERA elsA software and the URANS-type approach, closure relationships being achieved from transport-equation models. Applications are provided for the OAT15A airfoil data base, well documented for unsteady CFD validation (mean and r.m.s. pressure, phase-averaged LDA data, ...). In this paper, the capabilities of turbulence models are evaluated with two 2D URANS strategies, under free-stream or confined conditions. The latter takes into account the adaptive upper and lower wind-tunnel walls. A complete 3D URANS simulation was then performed to demonstrate the real impact of all lateral wind-tunnel walls on such a flow

  18. Wind model for low frequency power fluctuations in offshore wind farms

    DEFF Research Database (Denmark)

    Vigueras-Rodríguez, A.; Sørensen, Poul Ejnar; Cutululis, Nicolaos Antonio

    2010-01-01

    of hours, taking into account the spectral correlation between different wind turbines. The modelling is supported by measurements from two large wind farms, namely Nysted and Horns Rev. Measurements from individual wind turbines and meteorological masts are used. Finally, the models are integrated...... into an aggregated model which is used for estimating some electrical parameters as power ramps and reserves requirements, showing a quite good agreement between simulations and measurement. The comparison with measurements generally show that the inclusion of the correlation between low frequency components...... is an improvement, but the effect is relatively small. The effect of including the low frequency components in the model is much more significant. Therefore, that aggregated model is useful in the power system planning and operation, e.g. regarding load following and regulation. Copyright © 2009 John Wiley & Sons...

  19. An assessment of wind forcing impact on a spectral wave model for ...

    Indian Academy of Sciences (India)

    The focus of the present study is the assessment of the impact of wind forcing on the spectral wave model MIKE 21 SW in the Indian Ocean region. Three different wind fields, namely the ECMWF analyzed winds, the ECMWF blended winds, and the NCEP blended winds have been used to drive the model. The wave model ...

  20. Evaluating winds and vertical wind shear from Weather Research and Forecasting model forecasts using seven planetary boundary layer schemes

    DEFF Research Database (Denmark)

    Draxl, Caroline; Hahmann, Andrea N.; Pena Diaz, Alfredo

    2014-01-01

    with different PBL parameterizations at one coastal site over western Denmark. The evaluation focuses on determining which PBL parameterization performs best for wind energy forecasting, and presenting a validation methodology that takes into account wind speed at different heights. Winds speeds at heights...... regarding wind energy at these levels partly depends on the formulation and implementation of planetary boundary layer (PBL) parameterizations in these models. This study evaluates wind speeds and vertical wind shears simulated by theWeather Research and Forecasting model using seven sets of simulations...

  1. A noise generation and propagation model for large wind farms

    DEFF Research Database (Denmark)

    Bertagnolio, Franck

    2016-01-01

    A wind turbine noise calculation model is combined with a ray tracing method in order to estimate wind farm noise in its surrounding assuming an arbitrary topography. The wind turbine noise model is used to generate noise spectra for which each turbine is approximated as a point source. However......, the detailed three-dimensional directivity features are taken into account for the further calculation of noise propagation over the surrounding terrain. An arbitrary number of turbines constituting a wind farm can be spatially distributed. The noise from each individual turbine is propagated into the far......-field using the ray tracing method. These results are added up assuming the noise from each turbine is uncorrelated. The methodology permits to estimate a wind farm noise map over the surrounding terrain in a reasonable amount of computational time on a personal computer....

  2. Leaning against the Wind Policies on Vietnam’s Economy with DSGE Model

    Directory of Open Access Journals (Sweden)

    Phuc Huynh

    2017-01-01

    Full Text Available The global financial crisis of 2007–2008 had a negative impact on many countries, including Vietnam. Many policies have been applied to stabilize the macro-economic indicators. However, most of them are based on old qualitative models, which do not help policy makers understand deeply how each one affects the economy. In this paper, we investigate a quantitative macro-economic approach and use leaning against the wind policies with the Dynamic Stochastic General Equilibrium model (DSGE to find a better way to understand how policies stabilize the Vietnamese economy. Based on the framework of Gerali et al., we calibrate the hyper-parameter for Vietnam financial data and do the comparison between the standard Taylor rule and the cases in which we add asset price and credit elements. The results show that the credit-augmented Taylor rule is better than the asset-price-augmented one under the technology shock and contrary to the cost-push shock. Moreover, the extended simulation result shows that combining both asset-price and credit rules on the model is not useful for Vietnam’s economy in both types of shock.

  3. Evaluation of turbulence models for three primary types of shock-separated boundary layers

    Science.gov (United States)

    Coakley, T. J.; Viegas, J. R.; Horstman, C. C.

    1977-01-01

    Zero-equation (algebraic), one-equation (kinetic energy), and two-equation (kinetic energy plus length scale) turbulence eddy viscosity models were used in computing three basic types of shock-separated boundary-layer flows. The three basic types of shock boundary-layer interaction discussed are: (1) a normal shock wave at transonic speeds, (2) a compression corner shock at supersonic speeds, and (3) an incident oblique shock at hypersonic speeds. The models tested are simple, unmodified models used extensively for incompressible, unseparated flows. A comparison of computed and measured results for the compressible, separated flows described herein indicates that model performance is dependent on flow configuration with no distinct superiority of one model over the other for all three flow configurations.

  4. Heat flux and shock shape measurements on an Aeroassist Flight Experiment model in a high enthalpy free piston shock tunnel

    Science.gov (United States)

    Gai, S. L.; Mudford, N. R.; Hackett, C.

    1992-01-01

    This paper describes measurements of heat flux and shock shapes made on a 2.08 percent scale model of the proposed Aeroassist Flight Experiment model in a high enthalpy free piston shock tunnel T3 at the Australian National University in Canberra, Australia. The enthalpy and Reynolds number range covered were 7.5 MJ/kg to 20 MJ/kg and 150,000 to 270,000 per meter respectively. The test Mach number varied between 7.5 and 8. Two test gases, air and nitrogen, were used and the model angle of attack varied from -10 deg to +10 deg to the free stream. The results are discussed and compared to the Mach 10 cold hypersonic air data as obtained in the Langley 31 inch Mach 10 Facility as well as the perfect gas CFD calculations of NASA LaRC.

  5. IEA-Task 31 WAKEBENCH: Towards a protocol for wind farm flow model evaluation. Part 2: Wind farm wake models

    DEFF Research Database (Denmark)

    Moriarty, Patrick; Rodrigo, Javier Sanz; Gancarski, Pawel

    2014-01-01

    .windbench.net). This paper provides an overview of the building-block validation approach applied to wind farm wake models, including best practices for the benchmarking and data processing procedures for validation datasets from wind farm SCADA and meteorological databases. A hierarchy of test cases has been proposed...

  6. Comparison Between Surf and Multi-Shock Forest Fire High Explosive Burn Models

    Energy Technology Data Exchange (ETDEWEB)

    Greenfield, Nicholas Alexander [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-07-18

    PAGOSA1 has several different burn models used to model high explosive detonation. Two of these, Multi-Shock Forest Fire and Surf, are capable of modeling shock initiation. Accurately calculating shock initiation of a high explosive is important because it is a mechanism for detonation in many accident scenarios (i.e. fragment impact). Comparing the models to pop-plot data give confidence that the models are accurately calculating detonation or lack thereof. To compare the performance of these models, pop-plots2 were created from simulations where one two cm block of PBX 9502 collides with another block of PBX 9502.

  7. Model predictive control of wind energy conversion systems

    CERN Document Server

    Yaramasu, Venkata Narasimha R

    2017-01-01

    The authors provide a comprehensive analysis on the model predictive control of power converters employed in a wide variety of variable-speed wind energy conversion systems (WECS). The contents of this book includes an overview of wind energy system configurations, power converters for variable-speed WECS, digital control techniques, MPC, modeling of power converters and wind generators for MPC design. Other topics include the mapping of continuous-time models to discrete-time models by various exact, approximate, and quasi-exact discretization methods, modeling and control of wind turbine grid-side two-level and multilevel voltage source converters. The authors also focus on the MPC of several power converter configurations for full variable-speed permanent magnet synchronous generator based WECS, squirrel-cage induction generator based WECS, and semi-variable-speed doubly fed induction generator based WECS.

  8. Wall correction model for wind tunnels with open test section

    DEFF Research Database (Denmark)

    Sørensen, Jens Nørkær; Shen, Wen Zhong; Mikkelsen, Robert Flemming

    2006-01-01

    In the paper we present a correction model for wall interference on rotors of wind turbines or propellers in wind tunnels. The model, which is based on a one-dimensional momentum approach, is validated against results from CFD computations using a generalized actuator disc principle. In the model...... the exchange of axial momentum between the tunnel and the ambient room is represented by a simple formula, derived from actuator disc computations. The correction model is validated against Navier-Stokes computations of the flow about a wind turbine rotor. Generally, the corrections from the model are in very...... good agreement with the CFD computations, demonstrating that one-dimensional momentum theory is a reliable way of predicting corrections for wall interference in wind tunnels with closed as well as open cross sections....

  9. Robust Model Predictive Control of a Wind Turbine

    DEFF Research Database (Denmark)

    Mirzaei, Mahmood; Poulsen, Niels Kjølstad; Niemann, Hans Henrik

    2012-01-01

    , a new sensor is introduced in the EKF to give faster estimations. Wind speed estimation error is used to assess uncertainties in the linearized model. Significant uncertainties are considered to be in the gain of the system (B matrix of the state space model). Therefore this special structure......In this work the problem of robust model predictive control (robust MPC) of a wind turbine in the full load region is considered. A minimax robust MPC approach is used to tackle the problem. Nonlinear dynamics of the wind turbine are derived by combining blade element momentum (BEM) theory...... and first principle modeling of the turbine flexible structure. Thereafter the nonlinear model is linearized using Taylor series expansion around system operating points. Operating points are determined by effective wind speed and an extended Kalman filter (EKF) is employed to estimate this. In addition...

  10. Error analysis of short term wind power prediction models

    International Nuclear Information System (INIS)

    De Giorgi, Maria Grazia; Ficarella, Antonio; Tarantino, Marco

    2011-01-01

    The integration of wind farms in power networks has become an important problem. This is because the electricity produced cannot be preserved because of the high cost of storage and electricity production must follow market demand. Short-long-range wind forecasting over different lengths/periods of time is becoming an important process for the management of wind farms. Time series modelling of wind speeds is based upon the valid assumption that all the causative factors are implicitly accounted for in the sequence of occurrence of the process itself. Hence time series modelling is equivalent to physical modelling. Auto Regressive Moving Average (ARMA) models, which perform a linear mapping between inputs and outputs, and Artificial Neural Networks (ANNs) and Adaptive Neuro-Fuzzy Inference Systems (ANFIS), which perform a non-linear mapping, provide a robust approach to wind power prediction. In this work, these models are developed in order to forecast power production of a wind farm with three wind turbines, using real load data and comparing different time prediction periods. This comparative analysis takes in the first time, various forecasting methods, time horizons and a deep performance analysis focused upon the normalised mean error and the statistical distribution hereof in order to evaluate error distribution within a narrower curve and therefore forecasting methods whereby it is more improbable to make errors in prediction. (author)

  11. On Practical tuning of Model Uncertainty in Wind Turbine Model Predictive Control

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Hovgaard, Tobias

    2015-01-01

    model of a wind turbine. In this paper, we investigate the impact of this approach on the performance of a wind turbine. In particular, we focus on the most non-linear operational ranges of a wind turbine. The MPC controller is designed for, tested, and evaluated at an industrial high fidelity wind......Model predictive control (MPC) has in previous works been applied on wind turbines with promising results. These results apply linear MPC, i.e., linear models linearized at different operational points depending on the wind speed. The linearized models are derived from a nonlinear first principles...... parameters in the linearized model to fit the actual physical wind turbine behavior. We evaluate the MPC with the different model parameters, and show that, e.g., over-speed events are avoided, and a good performance of the wind turbine control is obtained....

  12. An In Silico Model of Endotoxic Shock Mediators (Briefing Charts)

    Science.gov (United States)

    2012-03-12

    organ dysfunction Arachidonic acid metabolism Thromboxanes (TX) Prostaglandins (PG) Leukotrienes (LT) Distribution A. Approved for public release...Increased plasma TXB2 in humans suffering from severe septic shock • Endotoxemia and sepsis: Blood PAF levels are elevated Distribution A. Approved...mediators are capable of modifying the course of endotoxic shock • Lipoxygenase (LOX) inhibitors protect mice and rats from lethal endotoxemia

  13. Wind-wave modelling aspects within complicate topography

    Directory of Open Access Journals (Sweden)

    S. Christopoulos

    Full Text Available Wave forecasting aspects for basins with complicate geomorphology, such as the Aegean Sea, are investigated through an intercomparison study. The efficiency of the available wind models (ECMWF, UKMO to reproduce wind patterns over special basins, as well as three wave models incorporating different physics and characteristics (WAM, AUT, WACCAS, are tested for selected storm cases representing the typical wind situations over the basin. From the wave results, discussed in terms of time-series and statistical parameters, the crucial role is pointed out of the wind resolution and the reliability of the different wave models to estimate the wave climate in such a basin. The necessary grid resolution is also tested, while for a specific test case (December 1991 ERS-1 satellite data are compared with those of the model.

  14. Engineering models for merging wakes in wind farm optimization applications

    DEFF Research Database (Denmark)

    Machefaux, Ewan; Larsen, Gunner Chr.; Murcia Leon, Juan Pablo

    2015-01-01

    The present paper deals with validation of 4 different engineering wake superposition approaches against detailed CFD simulations and covering different turbine interspacing, ambient turbulence intensities and mean wind speeds. The first engineering model is a simple linear superposition of wake ...

  15. Quantitative analysis of a wind energy conversion model

    International Nuclear Information System (INIS)

    Zucker, Florian; Gräbner, Anna; Strunz, Andreas; Meyn, Jan-Peter

    2015-01-01

    A rotor of 12 cm diameter is attached to a precision electric motor, used as a generator, to make a model wind turbine. Output power of the generator is measured in a wind tunnel with up to 15 m s −1 air velocity. The maximum power is 3.4 W, the power conversion factor from kinetic to electric energy is c p = 0.15. The v 3 power law is confirmed. The model illustrates several technically important features of industrial wind turbines quantitatively. (paper)

  16. An aerodynamic noise propagation model for wind turbines

    DEFF Research Database (Denmark)

    Zhu, Wei Jun; Sørensen, Jens Nørkær; Shen, Wen Zhong

    2005-01-01

    A model based on 2-D sound ray theory for aerodynamic noise propagation from wind turbine rotating blades is introduced. The model includes attenuation factors from geometric spreading, sound directivity of source, air absorption, ground deflection and reflection, as well as effects from...... temperature and airflow. At a given receiver point, the sound pressure is corrected by taking into account these propagation effects. As an overall assumption, the noise field generated by the wind turbine is simplified as a point source placed at the hub height of the wind turbine. This assumtion...

  17. Wind power electric systems modeling, simulation and control

    CERN Document Server

    Rekioua, Djamila

    2014-01-01

    The book helps readers understand key concepts in standalone and grid connected wind energy systems and features analysis into the modeling and optimization of commonly used configurations through the implementation of different control strategies.Utilizing several electrical machinery control approaches, such as vector control and direct torque control 'Wind Power Electric Systems' equips readers with the means to understand, assess and develop their own wind energy systems and to evaluate the performance of such systems.Mathematical models are provided for each system and a corresponding MAT

  18. Quantitative analysis of a wind energy conversion model

    Science.gov (United States)

    Zucker, Florian; Gräbner, Anna; Strunz, Andreas; Meyn, Jan-Peter

    2015-03-01

    A rotor of 12 cm diameter is attached to a precision electric motor, used as a generator, to make a model wind turbine. Output power of the generator is measured in a wind tunnel with up to 15 m s-1 air velocity. The maximum power is 3.4 W, the power conversion factor from kinetic to electric energy is cp = 0.15. The v3 power law is confirmed. The model illustrates several technically important features of industrial wind turbines quantitatively.

  19. Sequence Domain Harmonic Modeling of Type-IV Wind Turbines

    DEFF Research Database (Denmark)

    Guest, Emerson; Jensen, Kim Høj; Rasmussen, Tonny Wederberg

    2017-01-01

    -sampled pulsewidth modulation and an analysis of converter generated voltage harmonics due to compensated dead-time. The decoupling capabilities of the proposed the SD harmonic model are verified through a power quality (PQ) assessment of a 3MW Type-IV wind turbine. The assessment shows that the magnitude and phase...... of low-order odd converter generated voltage harmonics are dependent on the converter operating point and the phase of the fundamental component of converter current respectively. The SD harmonic model can be used to make PQ assessments of Type-IV wind turbines or incorporated into harmonic load flows...... for computation of PQ in wind power plants....

  20. Shock-induced electrical activity in polymeric solids. A mechanically induced bond scission model

    International Nuclear Information System (INIS)

    Graham, R.A.

    1979-01-01

    When polymeric solids are subjected to high-pressure shock loading, two anomalous electrical phenomena, shock-induced conduction and shock-induced polarization, are observed. The present paper proposes a model of mechanically induced bond scission within the shock front to account for the effects. An experimental study of shock-induced polarization in poly(pyromellitimide) (Vespel SP-1) is reported for shock compressions from 17 to 23% (pressures from 2.5 to 5.4 GPa). Poly(pyromellitimide) is found to be a strong generator of such polarization and the polarization is found to reflect an irreversible or highly hysteretic process. The present measurements are combined with prior measurements to establish a correlation between monomer structure and strength of shock-induced polarization; feeble signals are observed in the simpler monomer repeat units of poly(tetrafluoroethylene) and polyethylene while the strongest signals are observed in more complex monomers of poly(methyl methacrylate) and poly(pyromellitimide). It is also noted that there is an apparent correlation between shock-induced conduction and shock-induced polarization. Such shock-induced electrical activity is also found to be well correlated with the propensity for mechanical bond scission observed in experiments carried out in conventional mechanochemical studies. The bond scission model can account for characteristics observed for electrical activity in shock-loaded polymers and their correlation to monomer structure. Localization of elastic energy within the monomer repeat unit or along the main chain leads to the different propensities for bond scission and resulting shock-induced electrical activity

  1. Simulation platform to model, optimize and design wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Iov, F.; Hansen, A.D.; Soerensen, P.; Blaabjerg, F.

    2004-03-01

    This report is a general overview of the results obtained in the project 'Electrical Design and Control. Simulation Platform to Model, Optimize and Design Wind Turbines'. The motivation for this research project is the ever-increasing wind energy penetration into the power network. Therefore, the project has the main goal to create a model database in different simulation tools for a system optimization of the wind turbine systems. Using this model database a simultaneous optimization of the aerodynamic, mechanical, electrical and control systems over the whole range of wind speeds and grid characteristics can be achieved. The report is structured in six chapters. First, the background of this project and the main goals as well as the structure of the simulation platform is given. The main topologies for wind turbines, which have been taken into account during the project, are briefly presented. Then, the considered simulation tools namely: HAWC, DIgSILENT, Saber and Matlab/Simulink have been used in this simulation platform are described. The focus here is on the modelling and simulation time scale aspects. The abilities of these tools are complementary and they can together cover all the modelling aspects of the wind turbines e.g. mechanical loads, power quality, switching, control and grid faults. However, other simulation packages e.g PSCAD/EMTDC can easily be added in the simulation platform. New models and new control algorithms for wind turbine systems have been developed and tested in these tools. All these models are collected in dedicated libraries in Matlab/Simulink as well as in Saber. Some simulation results from the considered tools are presented for MW wind turbines. These simulation results focuses on fixed-speed and variable speed/pitch wind turbines. A good agreement with the real behaviour of these systems is obtained for each simulation tool. These models can easily be extended to model different kinds of wind turbines or large wind

  2. Three-model ensemble wind prediction in southern Italy

    Directory of Open Access Journals (Sweden)

    R. C. Torcasio

    2016-03-01

    Full Text Available Quality of wind prediction is of great importance since a good wind forecast allows the prediction of available wind power, improving the penetration of renewable energies into the energy market. Here, a 1-year (1 December 2012 to 30 November 2013 three-model ensemble (TME experiment for wind prediction is considered. The models employed, run operationally at National Research Council – Institute of Atmospheric Sciences and Climate (CNR-ISAC, are RAMS (Regional Atmospheric Modelling System, BOLAM (BOlogna Limited Area Model, and MOLOCH (MOdello LOCale in H coordinates. The area considered for the study is southern Italy and the measurements used for the forecast verification are those of the GTS (Global Telecommunication System. Comparison with observations is made every 3 h up to 48 h of forecast lead time. Results show that the three-model ensemble outperforms the forecast of each individual model. The RMSE improvement compared to the best model is between 22 and 30 %, depending on the season. It is also shown that the three-model ensemble outperforms the IFS (Integrated Forecasting System of the ECMWF (European Centre for Medium-Range Weather Forecast for the surface wind forecasts. Notably, the three-model ensemble forecast performs better than each unbiased model, showing the added value of the ensemble technique. Finally, the sensitivity of the three-model ensemble RMSE to the length of the training period is analysed.

  3. Three-model ensemble wind prediction in southern Italy

    Science.gov (United States)

    Torcasio, Rosa Claudia; Federico, Stefano; Calidonna, Claudia Roberta; Avolio, Elenio; Drofa, Oxana; Landi, Tony Christian; Malguzzi, Piero; Buzzi, Andrea; Bonasoni, Paolo

    2016-03-01

    Quality of wind prediction is of great importance since a good wind forecast allows the prediction of available wind power, improving the penetration of renewable energies into the energy market. Here, a 1-year (1 December 2012 to 30 November 2013) three-model ensemble (TME) experiment for wind prediction is considered. The models employed, run operationally at National Research Council - Institute of Atmospheric Sciences and Climate (CNR-ISAC), are RAMS (Regional Atmospheric Modelling System), BOLAM (BOlogna Limited Area Model), and MOLOCH (MOdello LOCale in H coordinates). The area considered for the study is southern Italy and the measurements used for the forecast verification are those of the GTS (Global Telecommunication System). Comparison with observations is made every 3 h up to 48 h of forecast lead time. Results show that the three-model ensemble outperforms the forecast of each individual model. The RMSE improvement compared to the best model is between 22 and 30 %, depending on the season. It is also shown that the three-model ensemble outperforms the IFS (Integrated Forecasting System) of the ECMWF (European Centre for Medium-Range Weather Forecast) for the surface wind forecasts. Notably, the three-model ensemble forecast performs better than each unbiased model, showing the added value of the ensemble technique. Finally, the sensitivity of the three-model ensemble RMSE to the length of the training period is analysed.

  4. Wind tunnel modeling of roadways: Comparison with mathematical models

    International Nuclear Information System (INIS)

    Heidorn, K.; Davies, A.E.; Murphy, M.C.

    1991-01-01

    The assessment of air quality impacts from roadways is a major concern to urban planners. In order to assess future road and building configurations, a number of techniques have been developed including mathematical models, which simulate traffic emissions and atmospheric dispersion through a series of mathematical relationships and physical models. The latter models simulate emissions and dispersion through scaling of these processes in a wind tunnel. Two roadway mathematical models, HIWAY-2 and CALINE-4, were applied to a proposed development in a large urban area. Physical modeling procedures developed by Rowan Williams Davies and Irwin Inc. (RWDI) in the form of line source simulators were also applied, and the resulting carbon monoxide concentrations were compared. The results indicated a factor of two agreement between the mathematical and physical models. The physical model, however, reacted to change in building massing and configuration. The mathematical models did not, since no provision for such changes was included in the mathematical models. In general, the RWDI model resulted in higher concentrations than either HIWAY-2 or CALINE-4. Where there was underprediction, it was often due to shielding of the receptor by surrounding buildings. Comparison of these three models with the CALTRANS Tracer Dispersion Experiment showed good results although concentrations were consistently underpredicted

  5. Entropy Generation Across Earth's Bow Shock

    Science.gov (United States)

    Parks, George K.; McCarthy, Michael; Fu, Suiyan; Lee E. s; Cao, Jinbin; Goldstein, Melvyn L.; Canu, Patrick; Dandouras, Iannis S.; Reme, Henri; Fazakerley, Andrew; hide

    2011-01-01

    Earth's bow shock is a transition layer that causes an irreversible change in the state of plasma that is stationary in time. Theories predict entropy increases across the bow shock but entropy has never been directly measured. Cluster and Double Star plasma experiments measure 3D plasma distributions upstream and downstream of the bow shock that allow calculation of Boltzmann's entropy function H and his famous H-theorem, dH/dt O. We present the first direct measurements of entropy density changes across Earth's bow shock. We will show that this entropy generation may be part of the processes that produce the non-thermal plasma distributions is consistent with a kinetic entropy flux model derived from the collisionless Boltzmann equation, giving strong support that solar wind's total entropy across the bow shock remains unchanged. As far as we know, our results are not explained by any existing shock models and should be of interests to theorists.

  6. Demonstration of the Ability of RCAS to Model Wind Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Jonkman, J.; Cotrell, J.

    2003-08-01

    In recent years, the wind industry has sponsored the development, verification, and validation of comprehensive aeroelastic simulators, which are used for wind turbine design, certification, and research. Unfortunately, as wind turbines continue to grow in size and sometimes exhibit unconventional design characteristics, the existing codes do not always support the additional analysis features required for proper design. The development history, functionality, and advanced nature of RCAS (Rotorcraft Comprehensive Analysis System) make this code a sensible option. RCAS is an aeroelastic simulator developed over a 4-year cooperative effort amongst the U.S. Army's Aeroflightdynamics Directorate, Advanced Rotorcraft Technology (ART), Inc., and the helicopter industry. As its name suggests, RCAS was created for the rotorcraft industry but developed as a general purpose code for modeling the aerodynamic and structural response of any system with rotating and nonrotating subsystems (such as wind turbines). To demonstrate that RCAS can analyze wind turbines, models of a conventional, 1.5-MW, 3-bladed, upwind, horizontal axis wind turbine (HAWT) are created in RCAS and wind turbine analysis codes FAST (Fatigue, Aerodynamics, Structures, and Turbulence) and ADAMS (Automatic Dynamic Analysis of Mechanical Systems). Using these models, a side-by-side comparison of structural response predictions is performed under several test scenarios.

  7. Fluctuations of offshore wind generation: Statistical modelling

    DEFF Research Database (Denmark)

    Pinson, Pierre; Christensen, Lasse E.A.; Madsen, Henrik

    2007-01-01

    The magnitude of power fluctuations at large offshore wind farms has a significant impact on the control and management strategies of their power output. If focusing on the minute scale, one observes successive periods with smaller and larger power fluctuations. It seems that different regimes yi...

  8. Stellar wind models of subluminous hot stars

    Czech Academy of Sciences Publication Activity Database

    Krtička, J.; Kubát, Jiří; Krtičková, I.

    2016-01-01

    Roč. 593, September (2016), A101/1-A101/14 ISSN 0004-6361 R&D Projects: GA ČR GA13-10589S Grant - others:GA MŠk(CZ) LM2010005 Institutional support: RVO:67985815 Keywords : stars * winds * outflows Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.378, year: 2014

  9. NLTE wind models of hot subdwarf stars

    Czech Academy of Sciences Publication Activity Database

    Krtička, J.; Kubát, Jiří

    2010-01-01

    Roč. 329, 1-2 (2010), s. 145-150 ISSN 0004-640X R&D Projects: GA ČR GA205/07/0031 Institutional research plan: CEZ:AV0Z10030501 Keywords : stars * winds * outflows Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 1.437, year: 2010

  10. Models for wind turbines - a collection

    DEFF Research Database (Denmark)

    2002-01-01

    This report is a collection of notes which were intended to be short communications. Main target of the work presented is to supply new approaches to stability investigations of wind turbines. The author's opinion is that an efficient, systematicstability analysis can not be performed for large...

  11. Theoretical models of interstellar shocks. I - Radiative transfer and UV precursors

    Science.gov (United States)

    Shull, J. M.; Mckee, C. F.

    1979-01-01

    Theoretical models of interstellar radiative shocks are constructed, with special attention to the transfer of ionizing radiation. These models are 'self-consistent' in the sense that the emergent ionizing radiation (the UV precursor) is coupled with the ionization state of H, He, and the metals in the preshock gas. For shock velocities of at least 110 km/s the shocks generate sufficient UV radiation for complete preionization of H and He, the latter to He(+). At lower velocities the preionization can be much smaller, with important consequences for the cooling function, the shock structure, and the emission. For models with shock velocities of 40 to 130 km/s the intensities of the strongest emission lines in the UV, optical, and infrared are tabulated, as well as postshock column densities of metal ions potentially observable by UV absorption spectroscopy. Possible applications to supernova remnants and high-velocity interstellar gas are assessed.

  12. Reducing Turbine Mechanical Loads Using Flow Model-Based Wind Farm Controller

    DEFF Research Database (Denmark)

    Kazda, Jonas; Cutululis, Nicolaos Antonio

    WindFarm [2]. SimWindFarm allows for the simultaneous simulation of the turbulent hub height flow field in the wind farm, the turbine dynamics and the wind farm control. The tests show a reduction of loads when compared to other optimal wind farm control approaches. Future work shall enhance the controller......Cumulated O&M costs of offshore wind farms are comparable with wind turbine CAPEX of such wind farm. In wind farms, wake effects can result in up to 80% higher fatigue loads at downstream wind turbines [1] and consequently larger O&M costs. The present work therefore investigates to reduce...... these loads during the provision of grid balancing services using optimal model-based wind farm control. Wind farm controllers coordinate the operating point of wind turbines in a wind farm in order to achieve a given objective. The investigated objective of the control in this work is to follow a total wind...

  13. Influence of Regional Climate Model spatial resolution on wind climates

    Science.gov (United States)

    Pryor, S. C.; Barthelmie, R. J.; Nikulin, G.; Jones, C.

    2010-12-01

    Global and regional climate models are being run at increasingly fine horizontal and vertical resolution with the goal of increased skill. However, relatively few studies have quantified the change in modeled wind climates that derives from applying a Regional Climate Model (RCM) at varying resolutions, and the response to varying resolution may be highly non-linear since most models run in climate mode are hydrostatic. Thus, herein we examine the influence of grid-resolution on modelled wind speeds and gusts and derived extremes thereof over southern Scandinavia using output from the Rossby Centre (RCA3) RCM run at four different resolutions from 50 x 50 km to 6 x 6 km, and with two different vertical grid-spacings. Domain averaged fifty-year return period wind speeds and wind gusts derived using the method of moments approach to compute the Gumbel parameters, increase with resolution (Table 1), though the change is strongly mediated by the model grid-cell surface characteristics. Power spectra of the 3-hourly model time-step ‘instantaneous’ wind speeds and daily wind gusts at all four resolutions show clear peaks in the variance associated with bi-annual, annual, seasonal and synoptic frequencies. The variance associated with these peaks is enhanced with increased resolution, though not in a monotonic fashion, and is more marked in wind gusts than wind speeds. Relative to in situ observations, the model generally underestimates the variance, particularly associated with the synoptic time scale, even for the highest resolution simulations. There is some evidence to suggest that the change in the power spectra with horizontal resolution is less marked in the transition from 12.5 km to 6.25 km, than from 50 to 25 km, or 25 km to 12.5 km.Table 1. Domain averaged mean annual wind speed (U), 50-year return period extreme wind speed (U50yr) and wind gust (Gust50yr) (m/s) from the four RCA3 simulations at different resolution based on output from 1987-2008. The

  14. The collision of a strong shock with a gas cloud: a model for Cassiopeia A

    International Nuclear Information System (INIS)

    Sgro, A.G.

    1975-01-01

    The result of the collision of the shock with the cloud is a shock traveling around the cloud, a shock transmitted into the cloud, and a shock reflected from the cloud. By equating the cooling time of the posttransmitted shock gas to the time required for the transmitted shock to travel the length of the cloud, a critical cloud density n/subc/ /sup prime/ is defined. For clouds with density greater than n/subc/ /sup prime/, the posttransmitted shock gas cools rapidly and then emits the lines of the lower ionization stages of its constituent elements. The structure of such and its expected appearance to an observer are discussed and compared with the quasi-stationary condensations of Cas A. Conversely, clouds with density less than n/subc//sup prime/ remain hot for several thousand years, and are sources of X-radiation whose temperatures are much less than that of the intercloud gas. After the transmitted shock passes, the cloud pressure is greater than the pressure in the surrounding gas, causing the cloud to expand and the emission to decrease from its value just after the collision. A model in which the soft X-radiation of Cas A is due to a collection of such clouds is discussed. The faint emission patches to the north of Cas A are interpreted as preshocked clouds which will probably become quasi-stationary condensations after being hit by the shock

  15. Topics in Computational Modeling of Shock and Wave Propagation

    National Research Council Canada - National Science Library

    Gazonas, George A; Main, Joseph A; Laverty, Rich; Su, Dan; Santare, Michael H; Raghupathy, R; Molinari, J. F; Zhou, F

    2006-01-01

    This report contains reprints of four papers that focus on various aspects of shock and wave propagation in cellular, viscoelastic, microcracked, and fragmented media that appear in the Proceedings...

  16. Comparison of wind and wind shear climatologies derived from high-resolution radiosondes and the ECMWF model

    Science.gov (United States)

    Houchi, K.; Stoffelen, A.; Marseille, G. J.; de Kloe, J.

    2010-11-01

    The climatology of atmospheric horizontal wind and its vertical gradient, i.e., wind shear, is characterized as a function of climate region. For a better representation of the average atmospheric wind and shear and their variabilities, high-resolution radiosonde wind profiles up to about 30 km altitude are compared with the collocated operational ECMWF model for short-range forecast winds. Statistics of zonal and meridional winds are established from both data sets. The results show mainly similarity in the probability distributions of the modeled and observed horizontal winds, practically at all levels of the atmosphere, while at the same time the vertical shear of the wind is substantially underestimated in the model. The comparison of shear statistics of radiosonde and ECMWF model winds shows that the model wind shear mean and variability are on average a factor of 2.5 (zonal) and 3 (meridional) smaller than of radiosondes in the free troposphere, while in the stratosphere, the planetary boundary layer results are more variable. By applying vertical averaging to the radiosonde data, it is found that the effective vertical resolution of the ECMWF model is typically 1.7 km. Moreover, it is found for individually collocated radiosonde model wind and shear profiles that the model wind may lack in some cases variability larger than 5 m s-1 and 0.015 s-1, respectively, due mainly to the effect of lacking vertical resolution, in particular near the jets. Besides the general importance of this study in highlighting the difference in the representation of the atmospheric wind shear by model and observations, it is more specifically relevant for the future Atmospheric Dynamics Mission (ADM-Aeolus) of the European Space Agency due for launch in 2012. The results presented here are used to generate a realistic global atmospheric database, which is necessary to conduct simulations of the Aeolus Doppler wind lidar in order optimize its vertical sampling and processing.

  17. Online identification of wind model for improving quadcopter trajectory monitoring

    Science.gov (United States)

    Beniak, Ryszard; Gudzenko, Oleksandr

    2017-10-01

    In this paper, we consider a problem of quadcopter control in severe weather conditions. One type of such weather conditions is a strong variable wind. In this paper, we ponder deterministic and stochastic models of winds at low altitudes with the quadcopter performing aggressive maneuvers. We choose an adaptive algorithm as our control algorithm. This algorithm might seem suitable one to solve the given problem, as it is able to adjust quickly to changing conditions. However, as shown in the paper, this algorithm is not applicable to rapidly changing winds and requires additional filters to smooth the impulse streams, so as not to lose the stability of the object.

  18. Online identification of wind model for improving quadcopter trajectory monitoring

    Directory of Open Access Journals (Sweden)

    Beniak Ryszard

    2017-01-01

    Full Text Available In this paper, we consider a problem of quadcopter control in severe weather conditions. One type of such weather conditions is a strong variable wind. In this paper, we ponder deterministic and stochastic models of winds at low altitudes with the quadcopter performing aggressive maneuvers. We choose an adaptive algorithm as our control algorithm. This algorithm might seem suitable one to solve the given problem, as it is able to adjust quickly to changing conditions. However, as shown in the paper, this algorithm is not applicable to rapidly changing winds and requires additional filters to smooth the impulse streams, so as not to lose the stability of the object.

  19. Short-Term Wind Speed Hybrid Forecasting Model Based on Bias Correcting Study and Its Application

    OpenAIRE

    Mingfei Niu; Shaolong Sun; Jie Wu; Yuanlei Zhang

    2015-01-01

    The accuracy of wind speed forecasting is becoming increasingly important to improve and optimize renewable wind power generation. In particular, reliable short-term wind speed forecasting can enable model predictive control of wind turbines and real-time optimization of wind farm operation. However, due to the strong stochastic nature and dynamic uncertainty of wind speed, the forecasting of wind speed data using different patterns is difficult. This paper proposes a novel combination bias c...

  20. IEA-Task 31 WAKEBENCH: Towards a protocol for wind farm flow model evaluation. Part 2: Wind farm wake models

    International Nuclear Information System (INIS)

    Moriarty, Patrick; Rodrigo, Javier Sanz; Gancarski, Pawel; Chuchfield, Matthew; Naughton, Jonathan W; Hansen, Kurt S; Machefaux, Ewan; Maguire, Eoghan; Castellani, Francesco; Terzi, Ludovico; Breton, Simon-Philippe; Ueda, Yuko

    2014-01-01

    Researchers within the International Energy Agency (IEA) Task 31: Wakebench have created a framework for the evaluation of wind farm flow models operating at the microscale level. The framework consists of a model evaluation protocol integrated with a web-based portal for model benchmarking (www.windbench.net). This paper provides an overview of the building-block validation approach applied to wind farm wake models, including best practices for the benchmarking and data processing procedures for validation datasets from wind farm SCADA and meteorological databases. A hierarchy of test cases has been proposed for wake model evaluation, from similarity theory of the axisymmetric wake and idealized infinite wind farm, to single-wake wind tunnel (UMN-EPFL) and field experiments (Sexbierum), to wind farm arrays in offshore (Horns Rev, Lillgrund) and complex terrain conditions (San Gregorio). A summary of results from the axisymmetric wake, Sexbierum, Horns Rev and Lillgrund benchmarks are used to discuss the state-of-the-art of wake model validation and highlight the most relevant issues for future development

  1. A Numerical Model for a Floating TLP Wind Turbine

    DEFF Research Database (Denmark)

    Kumari Ramachandran, Gireesh Kumar Vasanta

    A numerical model is developed for a TLP configuration of a floating offshore wind turbine. The platform dynamics and hydrodynamic forces are derived and implemented in an advanced aero-elastic code, Flex5, to compute the hydro-aero-servo-elastic loads and responses on the floater and the wind...... turbine. This is achieved through three steps. In the first step, an independent 2D code with fourteen degrees of freedom (DOFs) is developed and the responses are verified for load cases concerning steady and spatially coherent turbulent wind with regular and irregular waves. In the second step, the 2D...... irregular waves. In addition, the effect of wind-wave misalignment is investigated. Further, in the third step, the 3D platform dynamics and wave loading are implemented into Flex5, resulting in a fully coupled hydro-aero-servo-elastic code. The implementation is tested to make the model reliable and robust...

  2. SIMWEST - A simulation model for wind energy storage systems

    Science.gov (United States)

    Edsinger, R. W.; Warren, A. W.; Gordon, L. H.; Chang, G. C.

    1978-01-01

    This paper describes a comprehensive and efficient computer program for the modeling of wind energy systems with storage. The level of detail of SIMWEST (SImulation Model for Wind Energy STorage) is consistent with evaluating the economic feasibility as well as the general performance of wind energy systems with energy storage options. The software package consists of two basic programs and a library of system, environmental, and control components. The first program is a precompiler which allows the library components to be put together in building block form. The second program performs the technoeconomic system analysis with the required input/output, and the integration of system dynamics. An example of the application of the SIMWEST program to a current 100 kW wind energy storage system is given.

  3. Impacts of Wake Effect and Time Delay on the Dynamic Analysis of Wind Farms Models

    Science.gov (United States)

    El-Fouly, Tarek H. M.; El-Saadany, Ehab F.; Salama, Magdy M. A.

    2008-01-01

    This article investigates the impacts of proper modeling of the wake effects and wind speed delays, between different wind turbines' rows, on the dynamic performance accuracy of the wind farms models. Three different modeling scenarios were compared to highlight the impacts of wake effects and wind speed time-delay models. In the first scenario,…

  4. A high resolution WRF model for wind energy forecasting

    Science.gov (United States)

    Vincent, Claire Louise; Liu, Yubao

    2010-05-01

    The increasing penetration of wind energy into national electricity markets has increased the demand for accurate surface layer wind forecasts. There has recently been a focus on forecasting the wind at wind farm sites using both statistical models and numerical weather prediction (NWP) models. Recent advances in computing capacity and non-hydrostatic NWP models means that it is possible to nest mesoscale models down to Large Eddy Simulation (LES) scales over the spatial area of a typical wind farm. For example, the WRF model (Skamarock 2008) has been run at a resolution of 123 m over a wind farm site in complex terrain in Colorado (Liu et al. 2009). Although these modelling attempts indicate a great hope for applying such models for detailed wind forecasts over wind farms, one of the obvious challenges of running the model at this resolution is that while some boundary layer structures are expected to be modelled explicitly, boundary layer eddies into the inertial sub-range can only be partly captured. Therefore, the amount and nature of sub-grid-scale mixing that is required is uncertain. Analysis of Liu et al. (2009) modelling results in comparison to wind farm observations indicates that unrealistic wind speed fluctuations with a period of around 1 hour occasionally occurred during the two day modelling period. The problem was addressed by re-running the same modelling system with a) a modified diffusion constant and b) two-way nesting between the high resolution model and its parent domain. The model, which was run with horizontal grid spacing of 370 m, had dimensions of 505 grid points in the east-west direction and 490 points in the north-south direction. It received boundary conditions from a mesoscale model of resolution 1111 m. Both models had 37 levels in the vertical. The mesoscale model was run with a non-local-mixing planetary boundary layer scheme, while the 370 m model was run with no planetary boundary layer scheme. It was found that increasing the

  5. Study on Parameters Modeling of Wind Turbines Using SCADA Data

    Directory of Open Access Journals (Sweden)

    Yonglong YAN

    2014-08-01

    Full Text Available Taking the advantage of the current massive monitoring data from Supervisory Control and Data Acquisition (SCADA system of wind farm, it is of important significance for anomaly detection, early warning and fault diagnosis to build the data model of state parameters of wind turbines (WTs. The operational conditions and the relationships between the state parameters of wind turbines are complex. It is difficult to establish the model of state parameter accurately, and the modeling method of state parameters of wind turbines considering parameter selection is proposed. Firstly, by analyzing the characteristic of SCADA data, a reasonable range of data and monitoring parameters are chosen. Secondly, neural network algorithm is adapted, and the selection method of input parameters in the model is presented. Generator bearing temperature and cooling air temperature are regarded as target parameters, and the two models are built and input parameters of the models are selected, respectively. Finally, the parameter selection method in this paper and the method using genetic algorithm-partial least square (GA-PLS are analyzed comparatively, and the results show that the proposed methods are correct and effective. Furthermore, the modeling of two parameters illustrate that the method in this paper can applied to other state parameters of wind turbines.

  6. Stochastic wind turbine modeling for individual pitch control

    DEFF Research Database (Denmark)

    Thomsen, Sven Creutz; Niemann, Hans Henrik; Poulsen, Niels Kjølstad

    2009-01-01

    and a simplified description of the aerodynamics with sufficient detail to design model-based individual pitch controllers. Combined with a simplified model of the wind turbine, we exemplify how to use the model elements to systematically design an individual pitch controller. The design is investigated...

  7. Nonlinear Eddy Viscosity Models applied to Wind Turbine Wakes

    DEFF Research Database (Denmark)

    Laan, van der, Paul Maarten; Sørensen, Niels N.; Réthoré, Pierre-Elouan

    2013-01-01

    The linear k−ε eddy viscosity model and modified versions of two existing nonlinear eddy viscosity models are applied to single wind turbine wake simulations using a Reynolds Averaged Navier-Stokes code. Results are compared with field wake measurements. The nonlinear models give better results...

  8. Dynamic wind turbine models in power system simulation tool

    DEFF Research Database (Denmark)

    Hansen, A.; Jauch, Clemens; Soerensen, P.

    The present report describes the dynamic wind turbine models implemented in the power system simulation tool DIgSILENT. The developed models are a part of the results of a national research project, whose overall objective is to create a model database in different simulation tools. The report...

  9. Evaluation of RCAS Inflow Models for Wind Turbine Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Tangler, J.; Bir, G.

    2004-02-01

    The finite element structural modeling in the Rotorcraft Comprehensive Analysis System (RCAS) provides a state-of-the-art approach to aeroelastic analysis. This, coupled with its ability to model all turbine components, results in a methodology that can simulate complex system interactions characteristic of large wind. In addition, RCAS is uniquely capable of modeling advanced control algorithms and the resulting dynamic responses.

  10. Modelling the Spatial Distribution of Wind Energy Resources in Latvia

    Science.gov (United States)

    Aniskevich, S.; Bezrukovs, V.; Zandovskis, U.; Bezrukovs, D.

    2017-12-01

    The paper studies spatial wind energy flow distribution in Latvia based on wind speed measurements carried out at an altitude of 10 m over a period of two years, from 2015 to 2016. The measurements, with 1 min increments, were carried out using certified measuring instruments installed at 22 observation stations of the Latvian National Hydrometeorological and Climatological Service of the Latvian Environment, Geology and Meteorology Centre (LEGMC). The models of the spatial distribution of averaged wind speed and wind energy density were developed using the method of spatial interpolation based on the historical measurement results and presented in the form of colour contour maps with a 1×1 km resolution. The paper also provides the results of wind speed spatial distribution modelling using a climatological reanalysis ERA5 at the altitudes of 10, 54, 100 and 136 m with a 31×31 km resolution. The analysis includes the comparison of actual wind speed measurement results with the outcomes of ERA5 modelling for meteorological observation stations in Ainazi, Daugavpils, Priekuli, Saldus and Ventspils.

  11. Different Models for Forecasting Wind Power Generation: Case Study

    Directory of Open Access Journals (Sweden)

    David Barbosa de Alencar

    2017-11-01

    Full Text Available Generation of electric energy through wind turbines is one of the practically inexhaustible alternatives of generation. It is considered a source of clean energy, but still needs a lot of research for the development of science and technologies that ensures uniformity in generation, providing a greater participation of this source in the energy matrix, since the wind presents abrupt variations in speed, density and other important variables. In wind-based electrical systems, it is essential to predict at least one day in advance the future values of wind behavior, in order to evaluate the availability of energy for the next period, which is relevant information in the dispatch of the generating units and in the control of the electrical system. This paper develops ultra-short, short, medium and long-term prediction models of wind speed, based on computational intelligence techniques, using artificial neural network models, Autoregressive Integrated Moving Average (ARIMA and hybrid models including forecasting using wavelets. For the application of the methodology, the meteorological variables of the database of the national organization system of environmental data (SONDA, Petrolina station, from 1 January 2004 to 31 March 2017, were used. A comparison among results by different used approaches is also done and it is also predicted the possibility of power and energy generation using a certain kind of wind generator.

  12. Wave modelling for the North Indian Ocean using MSMR analysed winds

    Digital Repository Service at National Institute of Oceanography (India)

    Vethamony, P.; Sudheesh, K.; Rupali, S.P.; Babu, M.T.; Jayakumar, S.; Saran, A.K.; Basu, S.K.; Kumar, R.; Sarkar, A.

    NCMRWF (National Centre for Medium Range Weather Forecast) winds assimilated with MSMR (Multi-channel Scanning Microwave Radiometer) winds are used as input to MIKE21 Offshore Spectral Wave model (OSW) which takes into account wind induced wave...

  13. Using albedo to reform wind erosion modelling, mapping and monitoring

    Science.gov (United States)

    Chappell, Adrian; Webb, Nicholas P.

    2016-12-01

    Wind erosion and dust emission models are used to assess the impacts of dust on radiative forcing in the atmosphere, cloud formation, nutrient fertilisation and human health. The models are underpinned by a two-dimensional geometric property (lateral cover; L) used to characterise the three-dimensional aerodynamic roughness (sheltered area or wakes) of the Earth's surface and calibrate the momentum it extracts from the wind. We reveal a fundamental weakness in L and demonstrate that values are an order of magnitude too small and significant aerodynamic interactions between roughness elements and their sheltered areas have been omitted, particularly under sparse surface roughness. We describe a solution which develops published work to establish a relation between sheltered area and the proportion of shadow over a given area; the inverse of direct beam directional hemispherical reflectance (black sky albedo; BSA). We show direct relations between shadow and wind tunnel measurements and thereby provide direct calibrations of key aerodynamic properties. Estimation of the aerodynamic parameters from albedo enables wind erosion assessments over areas, across platforms from the field to airborne and readily available satellite data. Our new approach demonstrated redundancy in existing wind erosion models and thereby reduced model complexity and improved fidelity. We found that the use of albedo enabled an adequate description of aerodynamic sheltering to characterise fluid dynamics and predict sediment transport without the use of a drag partition scheme (Rt) or threshold friction velocity (u∗t). We applied the calibrations to produce global maps of aerodynamic properties which showed very similar spatial patterns to each other and confirmed the redundancy in the traditional parameters of wind erosion modelling. We evaluated temporal patterns of predicted horizontal mass flux at locations across Australia which revealed variation between land cover types that would not

  14. Overload prevention in model supports for wind tunnel model testing

    Directory of Open Access Journals (Sweden)

    Anton IVANOVICI

    2015-09-01

    Full Text Available Preventing overloads in wind tunnel model supports is crucial to the integrity of the tested system. Results can only be interpreted as valid if the model support, conventionally called a sting remains sufficiently rigid during testing. Modeling and preliminary calculation can only give an estimate of the sting’s behavior under known forces and moments but sometimes unpredictable, aerodynamically caused model behavior can cause large transient overloads that cannot be taken into account at the sting design phase. To ensure model integrity and data validity an analog fast protection circuit was designed and tested. A post-factum analysis was carried out to optimize the overload detection and a short discussion on aeroelastic phenomena is included to show why such a detector has to be very fast. The last refinement of the concept consists in a fast detector coupled with a slightly slower one to differentiate between transient overloads that decay in time and those that are the result of aeroelastic unwanted phenomena. The decision to stop or continue the test is therefore conservatively taken preserving data and model integrity while allowing normal startup loads and transients to manifest.

  15. Wind Tunnel Management and Resource Optimization: A Systems Modeling Approach

    Science.gov (United States)

    Jacobs, Derya, A.; Aasen, Curtis A.

    2000-01-01

    Time, money, and, personnel are becoming increasingly scarce resources within government agencies due to a reduction in funding and the desire to demonstrate responsible economic efficiency. The ability of an organization to plan and schedule resources effectively can provide the necessary leverage to improve productivity, provide continuous support to all projects, and insure flexibility in a rapidly changing environment. Without adequate internal controls the organization is forced to rely on external support, waste precious resources, and risk an inefficient response to change. Management systems must be developed and applied that strive to maximize the utility of existing resources in order to achieve the goal of "faster, cheaper, better". An area of concern within NASA Langley Research Center was the scheduling, planning, and resource management of the Wind Tunnel Enterprise operations. Nine wind tunnels make up the Enterprise. Prior to this research, these wind tunnel groups did not employ a rigorous or standardized management planning system. In addition, each wind tunnel unit operated from a position of autonomy, with little coordination of clients, resources, or project control. For operating and planning purposes, each wind tunnel operating unit must balance inputs from a variety of sources. Although each unit is managed by individual Facility Operations groups, other stakeholders influence wind tunnel operations. These groups include, for example, the various researchers and clients who use the facility, the Facility System Engineering Division (FSED) tasked with wind tunnel repair and upgrade, the Langley Research Center (LaRC) Fabrication (FAB) group which fabricates repair parts and provides test model upkeep, the NASA and LARC Strategic Plans, and unscheduled use of the facilities by important clients. Expanding these influences horizontally through nine wind tunnel operations and vertically along the NASA management structure greatly increases the

  16. The isolated perfused kidney of the pig: new model to evaluate shock wave-induced lesions.

    Science.gov (United States)

    Köhrmann, K U; Back, W; Bensemann, J; Florian, J; Weber, A; Kahmann, F; Rassweiler, J; Alken, P

    1994-04-01

    Little is known about the mechanisms and determining factors of shock wave-induced kidney trauma. After classification of the renal lesion in a canine model, we attempted to establish an ex vivo model using the isolated kidney of the pig perfused by Tyrode's solution under physiologic conditions. After shock wave application on the Modulith SL 20, vessel lesions were evaluated by microangiography to determine the size and frequency of dye extravasation in the different areas of the organ. Variation of the focus localization caused different patterns of lesions that characterized the pathway of the shock wave. In particular, constant petechial extravasation in the cortex was observed. The generator voltage correlated with the diameter and the frequency of the lesion area. The number of shock waves primarily affected the incidence of vessel rupture in the regions adjacent to the focal zone. Light microscopy revealed dose-dependent necrosis of tubular cells up to gap-like parenchymal defects. Even after application of the minimal shock wave doses, electron microscopy demonstrated vacuolization of tubular cells in the shock wave focus. Traumatic junctions between capillaries and the tubulur system can explain clinically observed macrohematuria without renal hematomas. With this model, it was possible to evaluate localization and dose dependence of shock wave-induced kidney trauma with high sensitivity and reproducibility. Further advantages of the model were easy availability and the fact that studies on living animals were not necessary. Therefore, standardization and comparison of different lithotripters becomes possible.

  17. Some challenges of wind modelling for modern wind turbines: The Weibull distribution

    DEFF Research Database (Denmark)

    Gryning, Sven-Erik; Batchvarova, Ekatarina; Floors, Rogier

    2012-01-01

    Wind power assessments, as well as forecast of wind energy production, are key issues in wind energy and grid related studies. However the hub height of today’s wind turbines is well above the surface layer. Wind profiles studies based on mast data show that the wind profile above the surface layer...

  18. Exploration of dispatch model integrating wind generators and electric vehicles

    International Nuclear Information System (INIS)

    Haque, A.N.M.M.; Ibn Saif, A.U.N.; Nguyen, P.H.; Torbaghan, S.S.

    2016-01-01

    Highlights: • A novel business model for the BRPs is analyzed. • Imbalance cost of wind generation is considered in the UC-ED model. • Smart charging of EVs is included into the UC-ED problem to mitigate the imbalance cost. • Effects of smart charging on generation cost, CO 2 emissions and total network load are assessed. - Abstract: In recent years, the share of renewable energy sources (RES) in the electricity generation mix has been expanding rapidly. However, limited predictability of the RES poses challenges for traditional scheduling and dispatching mechanisms based on unit commitment (UC) and economic dispatch (ED). This paper presents an advanced UC-ED model to incorporate wind generators as RES-based units alongside conventional centralized generators. In the proposed UC-ED model, an imbalance cost is introduced reflecting the wind generation uncertainty along with the marginal generation cost. The proposed UC-ED model aims to utilize the flexibility of fleets of plug-in electric vehicles (PEVs) to optimally compensate for the wind generation uncertainty. A case study with 15 conventional units and 3 wind farms along with a fixed-sized PEV fleet demonstrates that shifting of PEV fleets charging at times of high wind availability realizes generation cost savings. Nevertheless, the operational cost saving incurred by controlled charging appears to diminish when dispatched wind energy becomes considerably larger than the charging energy of PEV fleets. Further analysis of the results reveals that the effectiveness of PEV control strategy in terms of CO 2 emission reduction is strongly coupled with generation mix and the proposed control strategy is favored in cases where less pollutant-based plants like nuclear and hydro power are profoundly dominant.

  19. Modeling X-ray Emission of Galactic Winds

    Science.gov (United States)

    Tomesh, Teague; Gould Zweibel, Ellen; Bustard, Chad

    2017-06-01

    Despite galaxies being the main players on the cosmological scene, and our living inside of one, the processes of evolution which create these structures are still a mystery. Galactic winds are an important component of galaxy evolution and the mechanisms which drive these outflows have yet to be explained. We have incorporated x-ray production into a preexisting model of galactic outflows in order to generate predictions of x-ray luminosity to test current wind theories against observations. Specifically, the model is a representation of thermally driven winds. First, we incorporated the equations for x-ray luminosity into the wind model and tested its effects over a wide range of parameter space. We then created models to match the parameters of several cool galactic outflows previously studied. Finally, we searched the relevant literature for observations of these galaxies that we could use to compare with our predicted luminosities. Our models consistently predicted luminosities within a factor of two of the observed values. This led to the conclusion that if the hot and cool gas are coupled then thermal energy may play a role in the driving of these winds. Unraveling this mystery will be key to understanding galactic outflows and galactic evolution overall.

  20. Wake models developed during the Wind Shadow project

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, S.; Ott, S.; Pena, A.; Berg, J.; Nielsen, M.; Rathmann, O.; Joergensen, H.

    2011-11-15

    The Wind Shadow project has developed and validated improved models for determining the wakes losses, and thereby the array efficiency of very large, closely packed wind farms. The rationale behind the project has been that the existing software has been covering these types of wind farms poorly, both with respect to the densely packed turbines and the large fetches needed to describe the collective shadow effects of one farm to the next. Further the project has developed the necessary software for the use of the models. Guidelines with recommendations for the use of the models are included in the model deliverables. The project has been carried out as a collaborative project between Risoe DTU, DONG, Vattenfall, DNV and VESTAS, and it has been financed by energinet.dk grant no. 10086. (Author)

  1. Modelling of a PMSG Wind Turbine with Autonomous Control

    Directory of Open Access Journals (Sweden)

    Chia-Nan Wang

    2014-01-01

    Full Text Available The aim of this research is to model an autonomous control wind turbine driven permanent magnetic synchronous generator (PMSG which feeds alternating current (AC power to the utility grid. Furthermore, this research also demonstrates the effects and the efficiency of PMSG wind turbine which is integrated by autonomous controllers. In order for well autonomous control, two voltage source inverters are used to control wind turbine connecting with the grid. The generator-side inverter is used to adjust the synchronous generator as well as separating the generator from the grid when necessary. The grid-side inverter controls the power flow between the direct current (DC bus and the AC side. Both of them are oriented control by space vector pulse width modulation (PWM with back-to-back frequency inverter. Moreover, the proportional-integral (PI controller is enhanced to control both of the inverters and the pitch angle of the wind turbine. Maximum power point tracking (MPPT is integrated in generator-side inverter to track the maximum power, when wind speed changes. The simulation results in Matlab Simulink 2012b showing the model have good dynamic and static performance. The maximum power can be tracked and the generator wind turbine can be operated with high efficiency.

  2. Stochastic Optimization of Wind Turbine Power Factor Using Stochastic Model of Wind Power

    DEFF Research Database (Denmark)

    Chen, Peiyuan; Siano, Pierluigi; Bak-Jensen, Birgitte

    2010-01-01

    This paper proposes a stochastic optimization algorithm that aims to minimize the expectation of the system power losses by controlling wind turbine (WT) power factors. This objective of the optimization is subject to the probability constraints of bus voltage and line current requirements....... The optimization algorithm utilizes the stochastic models of wind power generation (WPG) and load demand to take into account their stochastic variation. The stochastic model of WPG is developed on the basis of a limited autoregressive integrated moving average (LARIMA) model by introducing a crosscorrelation...... structure to the LARIMA model. The proposed stochastic optimization is carried out on a 69-bus distribution system. Simulation results confirm that, under various combinations of WPG and load demand, the system power losses are considerably reduced with the optimal setting of WT power factor as compared...

  3. An empirical model of the Earth's bow shock based on an artificial neural network

    Science.gov (United States)

    Pallocchia, Giuseppe; Ambrosino, Danila; Trenchi, Lorenzo

    2014-05-01

    All of the past empirical models of the Earth's bow shock shape were obtained by best-fitting some given surfaces to sets of observed crossings. However, the issue of bow shock modeling can be addressed by means of artificial neural networks (ANN) as well. In this regard, here it is presented a perceptron, a simple feedforward network, which computes the bow shock distance along a given direction using the two angular coordinates of that direction, the bow shock predicted distance RF79 (provided by Formisano's model (F79)) and the upstream alfvénic Mach number Ma. After a brief description of the ANN architecture and training method, we discuss the results of the statistical comparison, performed over a test set of 1140 IMP8 crossings, between the prediction accuracies of ANN and F79 models.

  4. Turbulence Models: Shock Boundary Layer Interaction at M=2.05

    Data.gov (United States)

    National Aeronautics and Space Administration — Exp: Shock Boundary Layer Interaction at M=2.05. This web page provides data from experiments that may be useful for the validation of turbulence models. This...

  5. Modular structure of wind turbine models in IEC 61400-27-1

    DEFF Research Database (Denmark)

    Sørensen, Poul Ejnar; Andresen, Bjørn; Fortmann, Jens

    2013-01-01

    This paper presents the modular structure of wind turbine models to be published in a new standard IEC 61400-27 for “Electrical simulation models for wind power generation”. The purpose of this standardization work is to define generic simulation models for wind turbines (Part 1) and wind power p...

  6. Model-Based Control of a Ballast-Stabilized Floating Wind Turbine Exposed to Wind and Waves

    DEFF Research Database (Denmark)

    Christiansen, Søren

    2013-01-01

    wind turbine, for water depths beyond 50 meters where winds are stronger and less turbulent. A floating wind turbine is subject to not only aerodynamics and wind induced loads, but also to hy-drodynamics and wave induced loads. In contrast to a bottom fixed wind turbine, the floating structure....... A time varying control model is presented based on the wind speed and wave frequency. Estimates of the wind speed and wave frequency are used as scheduling variables in a gain scheduled linear quadratic controller to improve the electrical power production while reducing fatigue. To address the problem...... of negative damped fore--aft tower motion, addi-tional control loops are suggested which stabilize the response of the onshore controller and reduce the impact of the wave induced loads. This research is then extended to model predictive control, to further address wave disturbances. In the context of control...

  7. Hydrodynamic modeling and simulations of shock ignition thresholds

    Directory of Open Access Journals (Sweden)

    Lafon M.

    2013-11-01

    Full Text Available The Shock Ignition (SI scheme [1] offers to reduce the laser requirements by relaxing the implosion phase to sub-ignition velocities and later adding an intense laser spike. Depending on laser energy, target characteristics and implosion velocity, high gains are expected [2,3]. Relevant intensities for scaled targets imploded in the velocity range from 150 to 400 km/s are defined at ignition thresholds. A range of moderate implosion velocities is specified to match safe implosions. These conditions for target design are then inferred for relevant NIF and LMJ shock-ignited targets.

  8. A BROADBAND EMISSION MODEL OF MAGNETAR WIND NEBULAE

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Shuta J. [Department of Physics, Faculty of Science and Engineering, Konan University, 8-9-1 Okamoto, Kobe, Hyogo 658-8501 (Japan)

    2016-08-20

    Angular momentum loss by the plasma wind is considered as a universal feature of isolated neutron stars including magnetars. The wind nebulae that are powered by magnetars allow us to compare the wind properties and the spin evolution of magnetars with those of rotation-powered pulsars (RPPs). In this paper, we construct a broadband emission model of magnetar wind nebulae (MWNe). This model is similar to past studies of young pulsar wind nebulae (PWNe) around RPPs, but is modified for the application to MWNe that have far less observational information than the young PWNe. We apply the model to the MWN around the youngest (∼1 kyr) magnetar, 1E 1547.0-5408, which has the largest spin-down power L {sub spin} among all the magnetars. However, the MWN is faint because of the low L {sub spin} of 1E 1547.0-5408 when compared to the young RPPs. Since most parameters are not well constrained by only an X-ray flux upper limit of the MWN, we adopt the model’s parameters from the young PWN Kes 75 around PSR J1846-0258, which is a peculiar RPP showing magnetar-like behaviors. The model predicts that γ -ray flux will be detected in a future TeV γ -ray observation by CTA (Cherenkov Telescope Array). The MWN spectrum does not allow us to test the hypothesis that 1E 1547.0-5408 had a period of milliseconds at its birth because the particles injected during the early phase of evolution suffered from severe adiabatic and synchrotron losses. Furthermore, both observational and theoretical studies of the wind nebulae around magnetars are required to constrain the wind and the spin-down properties of magnetars.

  9. Geoeffectiveness of interplanetary shocks controlled by impact angles: A review

    Science.gov (United States)

    Oliveira, D. M.; Samsonov, A. A.

    2018-01-01

    The high variability of the Sun's magnetic field is responsible for the generation of perturbations that propagate throughout the heliosphere. Such disturbances often drive interplanetary shocks in front of their leading regions. Strong shocks transfer momentum and energy into the solar wind ahead of them which in turn enhance the solar wind interaction with magnetic fields in its way. Shocks then eventually strike the Earth's magnetosphere and trigger a myriad of geomagnetic effects observed not only by spacecraft in space, but also by magnetometers on the ground. Recently, it has been revealed that shocks can show different geoeffectiveness depending closely on the angle of impact. Generally, frontal shocks are more geoeffective than inclined shocks, even if the former are comparatively weaker than the latter. This review is focused on results obtained from modeling and experimental efforts in the last 15 years. Some theoretical and observational background are also provided.

  10. 3D Simulations of Betelgeuse's Bow Shock

    OpenAIRE

    Mohamed, S.; Mackey, J.; Langer, N.

    2011-01-01

    Betelgeuse, the bright, cool red supergiant in Orion, is moving supersonically relative to the local interstellar medium. The star emits a powerful stellar wind which collides with this medium, forming a cometary structure, a bow shock, pointing in the direction of motion. We present the first 3D hydrodynamic simulations of the formation and evolution of Betelgeuse's bow shock. The models include realistic low temperature cooling and cover a range of plausible interstellar medium densities an...

  11. Improved Reactive Flow Modeling of the LX-17 Double Shock Experiments

    Science.gov (United States)

    Rehagen, Thomas J.; Vitello, Peter

    2017-06-01

    Over driven double shock experiments provide a measurement of the properties of the reaction product states of the insensitive high explosive LX-17 (92.5% TATB and 7.5% Kel-F by weight). These experiments used two flyer materials mounted on the end of a projectile to send an initial shock through the LX-17, followed by a second shock of a higher magnitude into the detonation products. In the experiments, the explosive was initially driven by the flyer plate to pressures above the Chapman-Jouguet state. The particle velocity history was recorded by Photonic Doppler Velocimetry (PDV) probes pointing at an aluminum foil coated LiF window. The PDV data shows a sharp initial shock and decay, followed by a rounded second shock. Here, the experimental results are compared to 2D and 3D Cheetah reactive flow modeling. Our default Cheetah reactive flow model fails to accurately reproduce the decay of the first shock or the curvature or strength of the second shock. A new model is proposed in which the carbon condensate produced in the reaction zone is controlled by a kinetic rate. This allows the carbon condensate to be initially out of chemical equilibrium with the product gas. This new model reproduces the initial detonation peak and decay, and matches the curvature of the second shock, however, it still over-predicts the strength of the second shock. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344.

  12. Numerical wind wave model with a dynamic boundary layer

    Directory of Open Access Journals (Sweden)

    V. G. Polnikov

    2002-01-01

    Full Text Available A modern version of a numerical wind wave model of the fourth generation is constructed for a case of deep water. The following specific terms of the model source function are used: (a a new analytic parameterization of the nonlinear evolution term proposed recently in Zakharov and Pushkarev (1999; (b a traditional input term added by the routine for an atmospheric boundary layer fitting to a wind wave state according to Makin and Kudryavtsev (1999; (c a dissipative term of the second power in a wind wave spectrum according to Polnikov (1991. The direct fetch testing results showed an adequate description of the main empirical wave evolution effects. Besides, the model gives a correct description of the boundary layer parameters' evolution, depending on a wind wave stage of development. This permits one to give a physical treatment of the dependence mentioned. These performances of the model allow one to use it both for application and for investigation aims in the task of the joint description of wind and wave fields.

  13. Numerical wind wave model with a dynamic boundary layer

    Science.gov (United States)

    Polnikov, V. G.; Volkov, Y. A.; Pogarskii, F. A.

    A modern version of a numerical wind wave model of the fourth generation is constructed for a case of deep water. The following specific terms of the model source function are used: (a) a new analytic parameterization of the nonlinear evolution term proposed recently in Zakharov and Pushkarev (1999); (b) a traditional input term added by the routine for an atmospheric boundary layer fitting to a wind wave state according to Makin and Kudryavtsev (1999); (c) a dissipative term of the second power in a wind wave spectrum according to Polnikov (1991). The direct fetch testing results showed an adequate description of the main empirical wave evolution effects. Besides, the model gives a correct description of the boundary layer parameters' evolution, depending on a wind wave stage of development. This permits one to give a physical treatment of the dependence mentioned. These performances of the model allow one to use it both for application and for investigation aims in the task of the joint description of wind and wave fields.

  14. Wind Power in Europe. A Simultaneous Innovation-Diffusion Model

    International Nuclear Information System (INIS)

    Soederholm, P.; Klaassen, G.

    2007-01-01

    The purpose of this paper is to provide a quantitative analysis of innovation and diffusion in the European wind power sector. We derive a simultaneous model of wind power innovation and diffusion, which combines a rational choice model of technological diffusion and a learning curve model of dynamic cost reductions. These models are estimated using pooled annual time series data for four European countries (Denmark, Germany, Spain and the United Kingdom) over the time period 1986-2000. The empirical results indicate that reductions in investment costs have been important determinants of increased diffusion of wind power, and these cost reductions can in turn be explained by learning activities and public R and D support. Feed-in tariffs also play an important role in the innovation and diffusion processes. The higher the feed-in price the higher, ceteris paribus, the rate of diffusion, and we present some preliminary empirical support for the notion that the impact on diffusion of a marginal increase in the feed-in tariff will differ depending on the support system used. High feed-in tariffs, though, also have a negative effect on cost reductions as they induce wind generators to choose high-cost sites and provide fewer incentives for cost cuts. This illustrates the importance of designing an efficient wind energy support system, which not only promotes diffusion but also provides continuous incentives for cost-reducing innovations

  15. Short-Circuit Modeling of a Wind Power Plant: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Muljadi, E.; Gevorgian, V.

    2011-03-01

    This paper investigates the short-circuit behavior of a WPP for different types of wind turbines. The short-circuit behavior will be presented. Both the simplified models and detailed models are used in the simulations and both symmetrical faults and unsymmetrical faults are discussed.

  16. Conceptual models of the wind-driven and thermohaline circulation

    NARCIS (Netherlands)

    Drijfhout, S.S.; Marshall, D.P.; Dijkstra, H.A.

    2013-01-01

    Conceptual models are a vital tool for understanding the processes that maintain the global ocean circulation, both in nature and in complex numerical ocean models. In this chapter we provide a broad overview of our conceptual understanding of the wind-driven circulation, the thermohaline

  17. Comparison of aerodynamic models for Vertical Axis Wind Turbines

    NARCIS (Netherlands)

    Simao Ferreira, C.J.; Aagaard Madsen, H.; Barone, M.; Roscher, B.; Deglaire, P.; Arduin, I.

    2014-01-01

    Multi-megawatt Vertical Axis Wind Turbines (VAWTs) are experiencing an increased interest for floating offshore applications. However, VAWT development is hindered by the lack of fast, accurate and validated simulation models. This work compares six different numerical models for VAWTS: a multiple

  18. Comparison of aerodynamic models for Vertical Axis Wind Turbines

    DEFF Research Database (Denmark)

    Ferreira, C. Simão; Aagaard Madsen, Helge; Barone, M.

    2014-01-01

    Multi-megawatt Vertical Axis Wind Turbines (VAWTs) are experiencing an increased interest for floating offshore applications. However, VAWT development is hindered by the lack of fast, accurate and validated simulation models. This work compares six different numerical models for VAWTS: a multipl...

  19. Response of an ocean general circulation model to wind and ...

    Indian Academy of Sciences (India)

    The stretched-coordinate ocean general circulation model has been designed to study the observed variability due to wind and thermodynamic forcings. The model domain extends from 60°N to 60°S and cyclically continuous in the longitudinal direction. The horizontal resolution is 5° × 5° and 9 discrete vertical levels.

  20. Models for simulation of transient events in a wind farm

    DEFF Research Database (Denmark)

    Sørensen, P.; Hansen, A. D.; Bindner, H.

    2002-01-01

    with different tools with each other and with measurements. This present paper limits to describe the models including our reflections on which effects we expect to be essential for obtaining useful simulation results. The models comprise the substation, where the wind farm is connected, the power collection...

  1. Generalized Sagdeev potential theory for shock waves modeling

    Science.gov (United States)

    Akbari-Moghanjoughi, M.

    2017-05-01

    In this paper, we develop an innovative approach to study the shock wave propagation using the Sagdeev potential method. We also present an analytical solution for Korteweg de Vries Burgers (KdVB) and modified KdVB equation families with a generalized form of the nonlinearity term which agrees well with the numerical one. The novelty of the current approach is that it is based on a simple analogy of the particle in a classical potential with the variable particle energy providing one with a deeper physical insight into the problem and can easily be extended to more complex physical situations. We find that the current method well describes both monotonic and oscillatory natures of the dispersive-diffusive shock structures in different viscous fluid configurations. It is particularly important that all essential parameters of the shock structure can be deduced directly from the Sagdeev potential in small and large potential approximation regimes. Using the new method, we find that supercnoidal waves can decay into either compressive or rarefactive shock waves depending on the initial wave amplitude. Current investigation provides a general platform to study a wide range of phenomena related to nonlinear wave damping and interactions in diverse fluids including plasmas.

  2. Detailed signal model of coherent wind measurement lidar

    Science.gov (United States)

    Ma, Yuechao; Li, Sining; Lu, Wei

    2016-11-01

    Lidar is short for light detection and ranging, which is a tool to help measuring some useful information of atmosphere. In the recent years, more and more attention was paid to the research of wind measurement by lidar. Because the accurate wind information can be used not only in weather report, but also the safety guarantee of the airplanes. In this paper, a more detailed signal model of wind measurement lidar is proposed. It includes the laser transmitting part which describes the broadening of the spectral, the laser attenuation in the atmosphere, the backscattering signal and the detected signal. A Voigt profile is used to describe the broadening of the transmitting laser spectral, which is the most common situation that is the convolution of different broadening line shapes. The laser attenuation includes scattering and absorption. We use a Rayleigh scattering model and partially-Correlated quadratic-Velocity-Dependent Hard-Collision (pCqSDHC) model to describe the molecule scattering and absorption. When calculate the particles scattering and absorption, the Gaussian particles model is used to describe the shape of particles. Because of the Doppler Effect occurred between the laser and atmosphere, the wind velocity can be calculated by the backscattering signal. Then, a two parameter Weibull distribution is used to describe the wind filed, so that we can use it to do the future work. After all the description, the signal model of coherent wind measurement lidar is decided. And some of the simulation is given by MATLAB. This signal model can describe the system more accurate and more detailed, so that the following work will be easier and more efficient.

  3. The Role of Uncoupling Protein 2 During Myocardial Dysfunction in a Canine Model of Endotoxin Shock.

    Science.gov (United States)

    Wang, Xiaoting; Liu, Dawei; Chai, Wenzhao; Long, Yun; Su, Longxiang; Yang, Rongli

    2015-03-01

    To explore the role of uncoupling protein 2 (UCP2) during myocardial dysfunction in a canine model of endotoxin shock, 26 mongrel canines were randomly divided into the following four groups: A (control group; n = 6), B2 (shock after 2 h; n = 7), B4 (shock after 4 h; n = 7), and B6 (shock after 6 h; n = 6). Escherichia coli endotoxin was injected into the canines via the central vein, and hemodynamics were monitored. Energy metabolism, UCP2 mRNA and protein expression, and UCP2 localization were analyzed, and the correlation between energy metabolism changes, and UCP2 expression was determined. After the canine endotoxin shock model was successfully established, the expression of UCP2 mRNA and protein was found to increase, with later time points showing significant increases (P shock (P shock, and UCP2 may play an important role in this process. The negative correlation between UCP2 expression and energy metabolism requires further study, as the results might contribute to the treatment of sepsis with heart failure.

  4. Introducing WISDEM:An Integrated System Modeling for Wind Turbines and Plant (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Dykes, K.; Graf, P.; Scott, G.; Ning, A.; King, R.; Guo, Y.; Parsons, T.; Damiani, R.; Felker, F.; Veers, P.

    2015-01-01

    The National Wind Technology Center wind energy systems engineering initiative has developed an analysis platform to leverage its research capabilities toward integrating wind energy engineering and cost models across wind plants. This Wind-Plant Integrated System Design & Engineering Model (WISDEM) platform captures the important interactions between various subsystems to achieve a better National Wind Technology Center wind energy systems engineering initiative has developed an analysis platform to leverage its research capabilities toward integrating wind energy engineering and cost models across wind plants. This Wind-Plant Integrated System Design & Engineering Model (WISDEM) platform captures the important interactions between various subsystems to achieve a better understanding of how to improve system-level performance and achieve system-level cost reductions. This work illustrates a few case studies with WISDEM that focus on the design and analysis of wind turbines and plants at different system levels.

  5. Modeling the Long-Term Market Penetration of Wind in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Short, W.; Blair, N.; Heimiller, D.; Singh, V.

    2003-07-01

    This paper presents an overview of the Wind Deployment Systems Model (WinDS). WinDS is a multiregional, multitime-period, Geographic Information System (GIS), and linear programming model of capacity expansion in the electric sector of the United States. WinDS is designed to address the principal market issues related to the penetration of wind energy technologies into the electric sector. These principal market issues include access to and cost of transmission, and the intermittency of wind power. WinDS addresses these issues through a highly discretized regional structure, explicit accounting for the variability in wind output over time, and consideration of ancillary services requirements and costs.

  6. Assessment of RANS CFD modelling for pressurised thermal shock analysis

    International Nuclear Information System (INIS)

    Sander M Willemsen; Ed MJ Komen; Sander Willemsen

    2005-01-01

    Full text of publication follows: The most severe Pressurised Thermal Shock (PTS) scenario is a cold water Emergency Core Coolant (ECC) injection into the cold leg during a LOCA. The injected ECC water mixes with the hot fluid present in the cold leg and flows towards the downcomer where further mixing takes place. When the cold mixture comes into contact with the Reactor Pressure Vessel (RPV) wall, it may lead to large temperature gradients and consequently to high stresses in the RPV wall. Knowledge of these thermal loads is important for RPV remnant life assessments. The existing thermal-hydraulic system codes currently applied for this purpose are based on one-dimensional approximations and can, therefore, not predict the complex three-dimensional flows occurring during ECC injection. Computational Fluid Dynamics (CFD) can be applied to predict these phenomena, with the ultimate benefit of improved remnant RPV life assessment. The present paper presents an assessment of various Reynolds Averaged Navier Stokes (RANS) CFD approaches for modeling the complex mixing phenomena occurring during ECC injection. This assessment has been performed by comparing the numerical results obtained using advanced turbulence models available in the CFX 5.6 CFD code in combination with a hybrid meshing strategy with experimental results of the Upper Plenum Test Facility (UPTF). The UPTF was a full-scale 'simulation' of the primary system of the four loop 1300 MWe Siemens/KWU Pressurised Water Reactor at Grafenrheinfeld. The test vessel upper plenum internals, downcomer and primary coolant piping were replicas of the reference plant, while other components, such as core, coolant pump and steam generators were replaced by simulators. From the extensive test programme, a single-phase fluid-fluid mixing experiment in the cold leg and downcomer was selected. Prediction of the mixing and stratification is assessed by comparison with the measured temperature profiles at several locations

  7. Surface Winds and Dust Biases in Climate Models

    Science.gov (United States)

    Evan, A. T.

    2018-01-01

    An analysis of North African dust from models participating in the Fifth Climate Models Intercomparison Project (CMIP5) suggested that, when forced by observed sea surface temperatures, these models were unable to reproduce any aspects of the observed year-to-year variability in dust from North Africa. Consequently, there would be little reason to have confidence in the models' projections of changes in dust over the 21st century. However, no subsequent study has elucidated the root causes of the disagreement between CMIP5 and observed dust. Here I develop an idealized model of dust emission and then use this model to show that, over North Africa, such biases in CMIP5 models are due to errors in the surface wind fields and not due to the representation of dust emission processes. These results also suggest that because the surface wind field over North Africa is highly spatially autocorrelated, intermodel differences in the spatial structure of dust emission have little effect on the relative change in year-to-year dust emission over the continent. I use these results to show that similar biases in North African dust from the NASA Modern Era Retrospective analysis for Research and Applications (MERRA) version 2 surface wind field biases but that these wind biases were not present in the first version of MERRA.

  8. Extreme winds over Europe in the ENSEMBLES regional climate models

    Directory of Open Access Journals (Sweden)

    S. D. Outten

    2013-05-01

    Full Text Available Extreme winds cause vast amounts of damage every year and represent a major concern for numerous industries including construction, afforestation, wind energy and many others. Under a changing climate, the intensity and frequency of extreme events are expected to change, and accurate projections of these changes will be invaluable to decision makers and society as a whole. This work examines four regional climate model downscalings over Europe following the SRES A1B scenario from the "ENSEMBLE-based Predictions of Climate Changes and their Impacts" project (ENSEMBLES. It investigates the projected changes in the 50 yr return wind speeds and the associated uncertainties. This is accomplished by employing the peaks-over-threshold method with the use of the generalised Pareto distribution. The models show that, for much of Europe, the 50 yr return wind is projected to change by less than 2 m s−1, while the uncertainties associated with the statistical estimates are larger than this. In keeping with previous works in this field, the largest source of uncertainty is found to be the inter-model spread, with some locations showing differences in the 50 yr return wind of over 20 m s−1 between two different downscalings.

  9. Modeling of the maintenance policy of an offshore wind farm

    International Nuclear Information System (INIS)

    Maddens, L.; Labeau, P.E.

    2004-01-01

    Wind energy has a key position in the market of renewable electricity production means. Offshore wind farms offer additional surfaces to exploit this form of energy, together with more favourable wind conditions. Yet offshore windmills ask for higher investment and maintenance costs. Optimising the latter costs should therefore turn out to be particularly beneficial for this technology. The present paper summarizes the main modelling aspects of the maintenance of a typical offshore wind farm, such as the accessibility of the wind turbines and the impact of weather conditions, the cost of the different transport resources, the number of maintenance teams, a tolerated unavailability of part of the windmills, the opportunity to combine corrective and preventive maintenance actions on one or several windmills. All these features were embedded in a Petri net model of the maintenance policy of the farm, allowing to estimate the maintenance costs entailed by several strategies. Advantages and drawbacks of using Petri nets for the modelling of such a maintenance strategy are finally discussed. (authors)

  10. Model of a synthetic wind speed time series generator

    DEFF Research Database (Denmark)

    Negra, N.B.; Holmstrøm, O.; Bak-Jensen, B.

    2008-01-01

    is described and some statistical issues (seasonal characteristics, autocorrelation functions, average values and distribution functions) are used for verification. The output of the model has been designed as input for sequential Monte Carlo simulation; however, it is expected that it can be used for other...... of the main elements to consider for this purpose is the model of the wind speed that is usually required as input. Wind speed measurements may represent a solution for this problem, but, for techniques such as sequential Monte Carlo simulation, they have to be long enough in order to describe a wide range...

  11. Selection of References in Wind Turbine Model Predictive Control Design

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Hovgaard, Tobias

    2015-01-01

    a model predictive controller for a wind turbine. One of the important aspects for a tracking control problem is how to setup the optimal reference tracking problem, as it might be relevant to track, e.g., the three concurrent references: optimal pitch angle, optimal rotational speed, and optimal power....... The importance if the individual references differ depending in particular on the wind speed. In this paper we investigate the performance of a reference tracking model predictive controller with two different setups of the used optimal reference signals. The controllers are evaluated using an industrial high...

  12. MODELING WIND TURBINES IN THE GRIDLAB-D SOFTWARE ENVIRONMENT

    Energy Technology Data Exchange (ETDEWEB)

    Fuller, J.C.; Schneider, K.P.

    2009-01-01

    In recent years, the rapid expansion of wind power has resulted in a need to more accurately model the effects of wind penetration on the electricity infrastructure. GridLAB-D is a new simulation environment developed for the U.S. Department of Energy (DOE) by the Pacifi c Northwest National Laboratory (PNNL), in cooperation with academic and industrial partners. GridLAB-D was originally written and designed to help integrate end-use smart grid technologies, and it is currently being expanded to include a number of other technologies, including distributed energy resources (DER). The specifi c goal of this project is to create a preliminary wind turbine generator (WTG) model for integration into GridLAB-D. As wind power penetration increases, models are needed to accurately study the effects of increased penetration; this project is a beginning step at examining these effects within the GridLAB-D environment. Aerodynamic, mechanical and electrical power models were designed to simulate the process by which mechanical power is extracted by a wind turbine and converted into electrical energy. The process was modeled using historic atmospheric data, collected over a period of 30 years as the primary energy input. This input was then combined with preliminary models for synchronous and induction generators. Additionally, basic control methods were implemented, using either constant power factor or constant power modes. The model was then compiled into the GridLAB-D simulation environment, and the power outputs were compared against manufacturers’ data and then a variation of the IEEE 4 node test feeder was used to examine the model’s behavior. Results showed the designs were suffi cient for a prototype model and provided output power similar to the available manufacturers’ data. The prototype model is designed as a template for the creation of new modules, with turbine-specifi c parameters to be added by the user.

  13. Quantifying wind resource assessment and grid integration challenges for Delaware offshore wind power utilizing mesoscale modeling techniques

    Science.gov (United States)

    Brodie, Joseph F.

    Offshore wind in the United States continues to be a focused area of research as our society grapples with the Earth's changing climate and our ongoing and increasing demand for electricity. While the first offshore wind project in the U.S. is expected to be operational soon, much still remains to be done to help improve viability of offshore wind in additional locations. This dissertation discusses three studies conducted to improve the understanding of and expectations from developing wind energy in the Delaware Wind Energy Area off the Delaware coast. The first study examines the capabilities of the Weather Research and Forecasting (WRF) model to account for variations in wind farm array geometries in an idealized set-up of the model, and determines features of those array geometries that can positively influence the energy production of an offshore farm. The second study investigates the impacts that the misprediction of wind ramp events would have on the interaction of an offshore wind farm with the electricity grid, quantifying some of these impacts and discussing factors which contribute to grid instability. The third study combines the knowledge gained in the first two studies to evaluate potential wind farm array geometries in a regional study of the Delaware Wind Energy Area using WRF along with a selection of case study dates selected to examine the impacts of the synoptic variability of the region throughout the year. These studies demonstrate that careful consideration of the meteorology and climatology of a region when determining the layout of an offshore wind array can improve the power production of the farm, thereby improving wind farm viability. It is shown that using a mesoscale model that incorporates a wind farm parameterization can improve resource assessment by allowing the assessment to evaluate the wind farm's interactions with the weather and climate in the Delaware Wind Energy Area. Furthermore, it is shown that while certain synoptic

  14. Effects of low ambient temperature on hemodynamics and oxygen dynamics in a porcine hemorrhagic shock model

    Directory of Open Access Journals (Sweden)

    Xue-feng ZHANG

    2013-02-01

    Full Text Available Objective  To investigate the effects of low ambient temperature on hemodynamics and oxygen dynamics in a porcine hemorrhagic shock model. Methods  Thirty-two healthy adult Bama miniature pigs were randomly divided into four groups (8 each: control (group C, shock under room temperature (22℃, group R, shock under low ambient temperature (–10℃, group L and shock under normal body temperature (keep pulmonary arterial temperature ranged from 38.5 to 39.5℃, group N. The hemorrhagic shock model was reproduced by venous bleeding (40% of total blood volume, and the core temperature (pulmonary arterial temperature and rectal temperature, heart rate (HR, mean arterial pressure (MAP, pulmonary arterial pressure (PAP, pulmonary arterial wedge pressure (PAWP, central venous pressure (CVP, cardiac output (CO, hemoglobin (Hb, saturation of mixed venous blood (SvO2 and blood gas analysis were recorded before reproduction of shock and at different time points after hemorrhagic shock. The whole body oxygen delivery index (DO2I, oxygen uptake index (VO2I, and oxygen extraction ratio (O2ER were calculated. Results  Four pigs died in group N during the experiment, meanwhile, no pig died in other groups. The core temperature in group C, R and L decreased significantly compared with group N (P<0.05, and the core temperature in group L was significantly lower than that in groups C and R from 120 minutes after shock. No difference was found in hemodynamics, oxygen dynamics and prognosis between group R and group L. The HR and VO2I in group N were significantly higher than those in group L and group R, while there was no difference in other indices between the 3 groups. Conclusion  The hemodynamics and oxygen dynamics indices don't worsen in hemorrhagic shock pigs under low ambient temperature, possibly resulting from induced hypothermia caused by anesthesia.

  15. A model for the origin of solar wind stream interfaces

    International Nuclear Information System (INIS)

    Hundhausen, A.J.; Burlaga, L.F.

    1975-01-01

    The basic variations in solar wind properties that have been observed at 'stream interfaces' near 1 AU are explained by a gas dynamic model in which a radially propagating stream, produced by a temperature variation in the solar envelope, steepens nonlinearly while moving through interplanetary space. The region thus identified with the stream interface separates the ambient solar wind from the fresh hot material originally in the stream. However, the interface regions given by the present model are thicker than most stream interfaces observed in the solar wind, a fact suggesting that some additional physical process may be important in determining that thickness. Variations in the density, speed, or Alfven pressure alone appear not to produce streams with such an interface

  16. Comparing different CFD wind turbine modelling approaches with wind tunnel measurements

    Science.gov (United States)

    Kalvig, Siri; Manger, Eirik; Hjertager, Bjørn

    2014-12-01

    The performance of a model wind turbine is simulated with three different CFD methods: actuator disk, actuator line and a fully resolved rotor. The simulations are compared with each other and with measurements from a wind tunnel experiment. The actuator disk is the least accurate and most cost-efficient, and the fully resolved rotor is the most accurate and least cost-efficient. The actuator line method is believed to lie in between the two ends of the scale. The fully resolved rotor produces superior wake velocity results compared to the actuator models. On average it also produces better results for the force predictions, although the actuator line method had a slightly better match for the design tip speed. The open source CFD tool box, OpenFOAM, was used for the actuator disk and actuator line calculations, whereas the market leading commercial CFD code, ANSYS/FLUENT, was used for the fully resolved rotor approach.

  17. Mortality Prediction Model of Septic Shock Patients Based on Routinely Recorded Data

    Directory of Open Access Journals (Sweden)

    Marta Carrara

    2015-01-01

    Full Text Available We studied the problem of mortality prediction in two datasets, the first composed of 23 septic shock patients and the second composed of 73 septic subjects selected from the public database MIMIC-II. For each patient we derived hemodynamic variables, laboratory results, and clinical information of the first 48 hours after shock onset and we performed univariate and multivariate analyses to predict mortality in the following 7 days. The results show interesting features that individually identify significant differences between survivors and nonsurvivors and features which gain importance only when considered together with the others in a multivariate regression model. This preliminary study on two small septic shock populations represents a novel contribution towards new personalized models for an integration of multiparameter patient information to improve critical care management of shock patients.

  18. On the Consistency of Gamma-Ray Burst Spectral Indices with the Synchrotron Shock Model

    Science.gov (United States)

    Preece, R. D.; Briggs, M. S.; Giblin, T. W.; Mallozzi, R. S.; Pendleton, G. N.; Paciesad, W. S.; Band, D. L.

    2002-01-01

    The current scenario for gamma-ray bursts (GRBs) involves internal shocks for the prompt GRB emission phase and external shocks for the afterglow phase. Assuming optically thin synchrotron emission from isotropically distributed energetic shocked electrons, GRB spectra observed with a low-energy power-law spectral index greater than -2/3 (for positive photon number indices E(exp alpha) indicate a problem with this model. For spectra that do not violate this condition, additional tests of the shock model can be made by comparing the low- and high-energy spectral indices, on the basis of the model's assertion that synchrotron emission from a single power-law distribution of electrons is responsible for both the low-energy and the high-energy power-law portions of the spectra. We find in most cases that the inferred relationship between the two spectral indices of observed GRB spectra is inconsistent with the constraints from the simple optically thin synchrotron shock emission model. In this sense, the prompt burst phase is different from the afterglow phase, and this difference may be related to anisotropic distributions of particles or to their continual acceleration in shocks during the prompt phase.

  19. Extragalactic gamma-ray background from AGN winds and star-forming galaxies in cosmological galaxy-formation models

    Science.gov (United States)

    Lamastra, A.; Menci, N.; Fiore, F.; Antonelli, L. A.; Colafrancesco, S.; Guetta, D.; Stamerra, A.

    2017-10-01

    We derive the contribution to the extragalactic gamma-ray background (EGB) from active galactic nuclei (AGN) winds and star-forming galaxies by including a physical model for the γ-ray emission produced by relativistic protons accelerated by AGN-driven and supernova-driven shocks into a state-of-the-art semi-analytic model of galaxy formation. This is based on galaxy interactions as triggers of AGN accretion and starburst activity and on expanding blast waves as the mechanism to communicate outwards the energy injected into the interstellar medium by the active nucleus. We compare the model predictions with the latest measurement of the EGB spectrum performed by the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope (Fermi) in the range between 100 MeV and 820 GeV. We find that AGN winds can provide 35 ± 15% of the observed EGB in the energy interval Eγ = 0.1-1 GeV, for 73 ± 15% at Eγ = 1-10 GeV, and for 60 ± 20% at Eγ ≳10 GeV. The AGN wind contribution to the EGB is predicted to be larger by a factor of 3-5 than that provided by star-forming galaxies (quiescent plus starburst) in the hierarchical clustering scenario. The cumulative γ-ray emission from AGN winds and blazars can account for the amplitude and spectral shape of the EGB, assuming the standard acceleration theory, and AGN wind parameters that agree with observations. We also compare the model prediction for the cumulative neutrino background from AGN winds with the most recent IceCube data. We find that for AGN winds with accelerated proton spectral index p = 2.2-2.3, and taking into account internal absorption of γ-rays, the Fermi-LAT and IceCube data could be reproduced simultaneously.

  20. Synchronisation under shocks: The Lévy Kuramoto model

    Science.gov (United States)

    Roberts, Dale; Kalloniatis, Alexander C.

    2018-04-01

    We study the Kuramoto model of identical oscillators on Erdős-Rényi (ER) and Barabasi-Alberts (BA) scale free networks examining the dynamics when perturbed by a Lévy noise. Lévy noise exhibits heavier tails than Gaussian while allowing for their tempering in a controlled manner. This allows us to understand how 'shocks' influence individual oscillator and collective system behaviour of a paradigmatic complex system. Skewed α-stable Lévy noise, equivalent to fractional diffusion perturbations, are considered, but overlaid by exponential tempering of rate λ. In an earlier paper we found that synchrony takes a variety of forms for identical Kuramoto oscillators subject to stable Lévy noise, not seen for the Gaussian case, and changing with α: a noise-induced drift, a smooth α dependence of the point of cross-over of synchronisation point of ER and BA networks, and a severe loss of synchronisation at low values of α. In the presence of tempering we observe both analytically and numerically a dramatic change to the α behaviour where synchronisation is sustained over a larger range of values of the 'noise strength' σ, improved compared to the α > 1 tempered cases. Analytically we study the system close to the phase synchronised fixed point and solve the tempered fractional Fokker-Planck equation. There we observe that densities show stronger support in the basin of attraction at low α for fixed coupling, σ and tempering λ. We then perform numerical simulations for networks of size N = 1000 and average degree d ¯ = 10. There, we compute the order parameter r as a function of σ for fixed α and λ and observe values of r ≈ 1 over larger ranges of σ for α < 1 and λ ≠ 0. In addition we observe drift of both positive and negative slopes for different α and λ when native frequencies are equal, and confirm a sustainment of synchronisation down to low values of α. We propose a mechanism for this in terms of the basic shape of the tempered stable L

  1. An Approach to Comprehensive and Sustainable Solar Wind Model Validation

    Science.gov (United States)

    Rastaetter, L.; MacNeice, P. J.; Mays, M. L.; Boblitt, J. M.; Wiegand, C.

    2017-12-01

    The number of models of the corona and inner heliosphere and of their updates and upgrades grows steadily, as does the number and character of the model inputs. Maintaining up to date validation of these models, in the face of this constant model evolution, is a necessary but very labor intensive activity. In the last year alone, both NASA's LWS program and the CCMC's ongoing support of model forecasting activities at NOAA SWPC have sought model validation reports on the quality of all aspects of the community's coronal and heliospheric models, including both ambient and CME related wind solutions at L1. In this presentation I will give a brief review of the community's previous model validation results of L1 wind representation. I will discuss the semi-automated web based system we are constructing at the CCMC to present comparative visualizations of all interesting aspects of the solutions from competing models.This system is designed to be easily queried to provide the essential comprehensive inputs to repeat andupdate previous validation studies and support extensions to them. I will illustrate this by demonstrating how the system is being used to support the CCMC/LWS Model Assessment Forum teams focused on the ambient and time dependent corona and solar wind, including CME arrival time and IMF Bz.I will also discuss plans to extend the system to include results from the Forum teams addressing SEP model validation.

  2. Sustainable business models for wind and solar energy in Romania

    Directory of Open Access Journals (Sweden)

    Nichifor Maria Alexandra

    2015-06-01

    Full Text Available Renewable energy has become a crucial element for the business environment as the need for new energy resources and the degree of climate change are increasing. As developed economies strive towards greater progress, sustainable business models are of the essence in order to maintain a balance between the triple bottom line: people, planet and profit. In recent years, European Union countries have installed important capacities of renewable energy, especially wind and solar energy to achieve this purpose. The objective of this article is to make a comparative study between the current sustainable business models implemented in companies that are active in the wind and solar energy sector in Romania. Both sectors underwent tremendous changes in the last two years due to changing support schemes which have had a significant influence on the mechanism of the renewable energy market, as well as on its development. Using the classical Delphi method, based on questionnaires and interviews with experts in the fields of wind and solar energy, this paper offers an overview of the sustainable business models of wind and solar energy companies, both sectors opting for the alternative of selling electricity to trading companies as a main source of revenue until 2013 and as the main future trend until 2020. Furthermore, the participating wind energy companies noted a pessimistic outlook of future investments due to legal instability that made them to reduce their projects in comparison to PV investments, which are expected to continue. The subject of the article is of interest to scientific literature because sustainable business models in wind and photovoltaic energy have been scarcely researched in previous articles and are essential in understanding the activity of the companies in these two fields of renewable energy.

  3. Sensitivity analysis of nacelle lidar free stream wind speed measurements to wind-induction reconstruction model and lidar range configuration

    DEFF Research Database (Denmark)

    Svensson, Elin; Borraccino, Antoine; Meyer Forsting, Alexander Raul

    configurations. The wind speeds were reconstructed using both a onedimensional and two-dimensional induction model to test the sensitivity towards the wind-induction model. In all cases, the sensitivity of the reconstructed wind speed was determined from the wind speed error and root mean square error (RMSE...... based on the NKE sensitivity analysis results. Based on these results, it is recommended to configure nacelle lidars to measure at approximately 3-5 ranges. The minimum distance should be configured to roughly 0.5 rotor diameters (Drot) while it is recommended that the maximum range lay within 1-1.5Drot...

  4. Business Cycle Effects of Credit and Technology Shocks in a DSGE Model with Firm Defaults

    OpenAIRE

    Pesaran, Hashem; Xu, TengTeng

    2011-01-01

    This paper proposes a theoretical framework to analyze the impacts of credit and technology shocks on business cycle dynamics, where firms rely on banks and households for capital financing. Firms are identical ex ante but differ ex post due to different realizations of firm specific technology shocks, possibly leading to default by some firms. The paper advances a new modelling approach for the analysis of financial intermediation and firm defaults that takes account of the financial implica...

  5. Mathematical Modeling of the Heat-Shock Response in HeLa Cells

    Science.gov (United States)

    2015-07-01

    concentration as a representative of damage because free misfolded proteins are known to play a critical cytotoxic role in the response to hyperthermia...heat-shock protein dynamics in the long-term heat-shock response. In addition, our model was able to consis- tently predict the extent of damage produced...mech- anism to mitigate the cytotoxic effects of damaged or mis- folded proteins . In addition to heat stress, a variety of other physiological

  6. Model-based control of a ballast-stabilized floating wind turbine exposed to wind and waves

    Energy Technology Data Exchange (ETDEWEB)

    Christiansen, Soeren

    2013-01-15

    The wind turbine is a commercial product which is competing against other sources of energy, such as coal and gas. This competition drives a constant development to reduce costs and improve efficiency in order to reduce the total cost of the energy. The latest offshore development is the floating wind turbine, for water depths beyond 50 meters where winds are stronger and less turbulent. A floating wind turbine is subject to not only aerodynamics and wind induced loads, but also to hydrodynamics and wave induced loads. In contrast to a bottom fixed wind turbine, the floating structure, the hydrodynamics and the loads change the dynamic behavior of a floating wind turbine. Consequently, conventional wind turbine control cause instabilities on floating wind turbines. This work addresses the control of a floating spar buoy wind turbine, and focuses on the impact of the additional platform dynamics. A time varying control model is presented based on the wind speed and wave frequency. Estimates of the wind speed and wave frequency are used as scheduling variables in a gain scheduled linear quadratic controller to improve the electrical power production while reducing fatigue. To address the problem of negative damped fore-aft tower motion, additional control loops are suggested which stabilize the response of the onshore controller and reduce the impact of the wave induced loads. This research is then extended to model predictive control, to further address wave disturbances. In the context of control engineering, the dynamics and disturbances of a floating wind turbine have been identified and modeled. The objectives of maximizing the production of electrical power and minimizing fatigue have been reached by using advanced methods of estimation and control. (Author)

  7. Astrophysical radiative shocks: From modeling to laboratory experiments

    Czech Academy of Sciences Publication Activity Database

    Gonzales, N.; Stehlé, C.; Audit, E.; Busquet, M.; Rus, Bedřich; Thais, F.; Acef, O.; Barroso, P.; Bar-Shalom, A.; Bauduin, D.; Kozlová, Michaela; Lery, T.; Madouri, A.; Mocek, Tomáš; Polan, Jiří

    2006-01-01

    Roč. 24, - (2006), s. 535-540 ISSN 0263-0346 EU Projects: European Commission(XE) 506350 - LASERLAB-EUROPE; European Commission(XE) 5592 - JETSET Grant - others:CNRS(FR) PNPS Institutional research plan: CEZ:AV0Z10100523 Keywords : laboratory astrophysics * laser plasmas * radiative shock waves * radiative transfer Subject RIV: BH - Optics, Masers, Lasers Impact factor: 3.958, year: 2006

  8. Shock-darkening in ordinary chondrites: impact modelling

    Czech Academy of Sciences Publication Activity Database

    Moreau, J.; Kohout, Tomáš; Wünnemann, K.

    2016-01-01

    Roč. 88, Special volume (2016), s. 285-285 ISSN 0367-5211. [Nordic Geological Winter Meeting /32./. 13.01.2016-15.01.2016, Helsinki] Institutional support: RVO:67985831 Keywords : impact, shock * reflectance spectra * chondrite * meteorite * Chelyabinsk Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics http://www.geologinenseura.fi/bulletin/Special_Volume_1_2016/BGSF-NGWM2016_Abstract_Volume.pdf

  9. Suprathermal ions in the solar wind from the Voyager spacecraft: Instrument modeling and background analysis

    International Nuclear Information System (INIS)

    Randol, B M; Christian, E R

    2015-01-01

    Using publicly available data from the Voyager Low Energy Charged Particle (LECP) instruments, we investigate the form of the solar wind ion suprathermal tail in the outer heliosphere inside the termination shock. This tail has a commonly observed form in the inner heliosphere, that is, a power law with a particular spectral index. The Voyager spacecraft have taken data beyond 100 AU, farther than any other spacecraft. However, during extended periods of time, the data appears to be mostly background. We have developed a technique to self-consistently estimate the background seen by LECP due to cosmic rays using data from the Voyager cosmic ray instruments and a simple, semi-analytical model of the LECP instruments

  10. Numerical simulation of the aerodynamic field in complex terrain wind farm based on actuator disk model

    DEFF Research Database (Denmark)

    Xu, Chang; Li, Chen Qi; Han, Xing Xing

    2015-01-01

    Study on the aerodynamic field in complex terrain is significant to wind farm micro-sitting and wind power prediction. This paper modeled the wind turbine through an actuator disk model, and solved the aerodynamic field by CFD to study the influence of meshing, boundary conditions and turbulence...... model on the calculation results. Comparison with the measured data of a wind farm was applied to find an appropriate method for simulating the aerodynamic field in the complex terrain wind farm. Related research can provide reference for wind farm micro-siting and wind power prediction....

  11. Finite element modelling of radial shock wave therapy for chronic plantar fasciitis.

    Science.gov (United States)

    Alkhamaali, Zaied K; Crocombe, Andrew D; Solan, Matthew C; Cirovic, Srdjan

    2016-01-01

    Therapeutic use of high-amplitude pressure waves, or shock wave therapy (SWT), is emerging as a popular method for treating musculoskeletal disorders. However, the mechanism(s) through which this technique promotes healing are unclear. Finite element models of a shock wave source and the foot were constructed to gain a better understanding of the mechanical stimuli that SWT produces in the context of plantar fasciitis treatment. The model of the shock wave source was based on the geometry of an actual radial shock wave device, in which pressure waves are generated through the collision of two metallic objects: a projectile and an applicator. The foot model was based on the geometry reconstructed from magnetic resonance images of a volunteer and it comprised bones, cartilage, soft tissue, plantar fascia, and Achilles tendon. Dynamic simulations were conducted of a single and of two successive shock wave pulses administered to the foot. The collision between the projectile and the applicator resulted in a stress wave in the applicator. This wave was transmitted into the soft tissue in the form of compression-rarefaction pressure waves with an amplitude of the order of several MPa. The negative pressure at the plantar fascia reached values of over 1.5 MPa, which could be sufficient to generate cavitation in the tissue. The results also show that multiple shock wave pulses may have a cumulative effect in terms of strain energy accumulation in the foot.

  12. Modelling of a CFD Microscale Model and Its Application in Wind Energy Resource Assessment

    Directory of Open Access Journals (Sweden)

    Yue Jie-shun

    2016-01-01

    Full Text Available The prediction of a wind farm near the wind turbines has a significant effect on the safety as well as economy of wind power generation. To assess the wind resource distribution within a complex terrain, a computational fluid dynamics (CFD based wind farm forecast microscale model is developed. The model uses the Reynolds Averaged Navier-Stokes (RANS model to characterize the turbulence. By using the results of Weather Research and Forecasting (WRF mesoscale weather forecast model as the input of the CFD model, a coupled model of CFD-WRF is established. A special method is used for the treatment of the information interchange on the lateral boundary between two models. This established coupled model is applied in predicting the wind farm near a wind turbine in Hong Gang-zi, Jilin, China. The results from this simulation are compared to real measured data. On this basis, the accuracy and efficiency of turbulence characterization schemes are discussed. It indicates that this coupling system is easy to implement and can make these two separate models work in parallel. The CFD model coupled with WRF has the advantage of high accuracy and fast speed, which makes it valid for the wind power generation.

  13. Modelling of hydro and wind power in the regulation market

    International Nuclear Information System (INIS)

    Kiviluoma, J.; Holttinen, H.; Meibom, P.

    2006-01-01

    The amount of required regulation capacity in the power system is affected by the wind power prediction errors. A model has been developed which can evaluate the monetary effects of prediction errors. The model can be used to evaluate (1) the regulation costs of wind power, (2) regulation market prices including effects related to the participation of power producers in the regulating power market, (3) value of accurate wind forecasts and (4) the effect of decreasing the length of the spot market clearance. This article discusses the problems related to developing a realistic model of the regulating power market including the interaction between the spot market and the regulating power market. There are several issues that make things complicated. (1) How to calculate the minimum amount of needed secondary (minute) reserves. Traditionally the Nordic TSOs have used an N-1 criteria in each country to determine the required amounts of positive secondary reserve, but as installed wind power capacity grows, it will become relevant to include the wind power prediction errors in the estimation of secondary reserves. (2) Consumption forecast errors and plant outages also contribute to activation of regulating power and should have stochastic input series besides wind power. (3) Risk premiums and transaction costs in the regulating power market are difficult to estimate as well as the effects of the possible use of market power. This is especially true in the Nordic system with the high share of hydro power, since the water value and hydrological limitations make things more complex than in a thermal system. (4) The available regulation capacity is not necessarily equal to the truly available capacity. All producers don't participate in the regulation market although in principle they could. (orig.)

  14. Cosmic ray acceleration by stellar wind. Simulation for heliosphere

    International Nuclear Information System (INIS)

    Petukhov, S.I.; Turpanov, A.A.; Nikolaev, V.S.

    1985-01-01

    The solar wind deceleration by the interstellar medium may result in the existence of the solar wind terminal shock. In this case a certain fraction of thermal particles after being heated at the shock would obtain enough energy to be injected to the regular acceleration process. An analytical solution for the spectrum in the frame of a simplified model that includes particle acceleration at the shock front and adiabatic cooling inside the stellar wind cavity has been derived. It is shown that the acceleration of the solar wind particles at the solar wind terminal shock is capable of providing the total flux, spectrum and radial gradients of the low-energy protons close to one observed in the interplanetary space

  15. Modelling the pultrusion process of off shore wind turbine blades

    NARCIS (Netherlands)

    Baran, Ismet

    This thesis is devoted to the numerical modelling of the pultrusion process for industrial products such as wind turbine blades and structural profiles. The main focus is on the thermo-chemical and mechanical analyses of the process in which the process induced tresses and shape distortions together

  16. Modeling of uncertainties for wind turbine blade design

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Toft, Henrik Stensgaard

    2014-01-01

    Wind turbine blades are designed by a combination of tests and numerical calculations using finite element models of the blade. The blades are typically composite structures with laminates of glass-fiber and/or carbon-fibers glued together by a matrix material. This paper presents a framework...

  17. Stochastic Models for Strength of Wind Turbine Blades using Tests

    DEFF Research Database (Denmark)

    Toft, Henrik Stensgaard; Sørensen, John Dalsgaard

    2008-01-01

    The structural cost of wind turbine blades is dependent on the values of the partial safety factors which reflect the uncertainties in the design values, including statistical uncertainty from a limited number of tests. This paper presents a probabilistic model for ultimate and fatigue strength...

  18. Model output statistics applied to wind power prediction

    Energy Technology Data Exchange (ETDEWEB)

    Joensen, A.; Giebel, G.; Landberg, L. [Risoe National Lab., Roskilde (Denmark); Madsen, H.; Nielsen, H.A. [The Technical Univ. of Denmark, Dept. of Mathematical Modelling, Lyngby (Denmark)

    1999-03-01

    Being able to predict the output of a wind farm online for a day or two in advance has significant advantages for utilities, such as better possibility to schedule fossil fuelled power plants and a better position on electricity spot markets. In this paper prediction methods based on Numerical Weather Prediction (NWP) models are considered. The spatial resolution used in NWP models implies that these predictions are not valid locally at a specific wind farm. Furthermore, due to the non-stationary nature and complexity of the processes in the atmosphere, and occasional changes of NWP models, the deviation between the predicted and the measured wind will be time dependent. If observational data is available, and if the deviation between the predictions and the observations exhibits systematic behavior, this should be corrected for; if statistical methods are used, this approaches is usually referred to as MOS (Model Output Statistics). The influence of atmospheric turbulence intensity, topography, prediction horizon length and auto-correlation of wind speed and power is considered, and to take the time-variations into account, adaptive estimation methods are applied. Three estimation techniques are considered and compared, Extended Kalman Filtering, recursive least squares and a new modified recursive least squares algorithm. (au) EU-JOULE-3. 11 refs.

  19. Code Shift: Grid Specifications and Dynamic Wind Turbine Models

    DEFF Research Database (Denmark)

    Ackermann, Thomas; Ellis, Abraham; Fortmann, Jens

    2013-01-01

    Grid codes (GCs) and dynamic wind turbine (WT) models are key tools to allow increasing renewable energy penetration without challenging security of supply. In this article, the state of the art and the further development of both tools are discussed, focusing on the European and North American e...

  20. Wind Tunnel Experiments with Active Control of Bridge Section Model

    DEFF Research Database (Denmark)

    Hansen, Henriette I.; Thoft-Christensen, Palle

    This paper describes results of wind tunnel experiments with a bridge section model where movable flaps are integrated in the bridge girder so each flap is the streamlined part of the edge of the girder. This active control flap system is patented by COWIconsult and may be used to increase...

  1. PIV in a model wind turbine rotor wake

    DEFF Research Database (Denmark)

    Meyer, Knud Erik; Naumov, Igor; Karbadin, Ivan

    2013-01-01

    Stereoscopic particle image velocimetry (PIV) measurements of the flow in the wake of scale model of a horizontal axis wind turbine is presented Near the rotor, measurements are made in vertical planes intersecting the rotor axis These planes capture flow effect from the tip and root vortices...

  2. Polymer Nanocomposites for Wind Energy Applications: Perspectives and Computational Modeling

    DEFF Research Database (Denmark)

    Mishnaevsky, Leon; Zhou, H.W.; Peng, R.D.

    2013-01-01

    Strength and reliability of wind blades produced from polymer composites are the important preconditions for the successful development of wind energy. One of the ways to increase the reliability and lifetime of polymer matrix composites is the nanoengineering of matrix or fiber/matrix interfaces...... in these composites. The potential and results of nanoclay reinforcements for the improvement of the mechanical properties of polymer composites are investigated using continuum mechanics and micromechanics methods and effective phase model. It is demonstrated that nanoreinforcement allows to increase the stiffness...

  3. Fourier Simulation of a Non-Isotropic Wind Field Model

    DEFF Research Database (Denmark)

    Mann, J.; Krenk, S.

    -spectra. In this paper a method is described which builds on a recently developed model of a spectral tensor for atmospheric surface layer turbulence at high wind speeds. Although the tensor does not in principle contain more information than the cross-spectra, it leads to a more natural and direct representation...... the vertical velocity fluctuations give rise to loads. There may even be structures where combinations of velocity fluctuations in different direction are of importance. Most methods that have been developed to simulate the turbulent wind field are based on one-point (cross-)spectra and two-point cross...

  4. Importance of Dynamic Inflow Model Predictive Control of Wind Turbines

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Knudsen, Torben; Overgaard, Anders

    2015-01-01

    The efficiency of including dynamic inflow in the model based design of wind turbine controller has been discussed for many years in the wind energy community with out getting to a safe conclusion. This paper delivers a good argument in favor of including dynamic inflow. The main contributions...... pronounces. For this the well accepted NREL 5MW reference turbine simulated with FAST is used. The main result is a reduction in tower fatigue load at 22% while power error, rotor speed error, generator torque and pitch rate is improved from 2 to 33%....

  5. 3D modeling of dual wind-up extensional rheometers

    DEFF Research Database (Denmark)

    Yu, Kaijia; Román Marín, José Manuel; Rasmussen, Henrik K.

    2010-01-01

    Fully three-dimensional numerical simulations of a dual wind-up drum rheometer of the Sentmanat Extensional Rheometer (SER; Sentmanat, 2004 [1]) or the Extensional Viscosity Fixture (EVF; Garritano and Berting, 2006 [2]) type have been performed. In the SER and EVF a strip of rectangular shape...... is attached onto two drums, followed by a rotation of both drums in opposite direction. The numerical modeling is based on integral constitutive equations of the K-BKZ type. Generally, to ensure a proper uni-axial extensional deformation in dual wind-up drum rheometers the simulations show that a very small...

  6. Wake Development of a Model Vertical Axis Wind Turbine

    Science.gov (United States)

    Kadum, Hawwa; Friedman, Sasha; Camp, Elizabeth; Cal, Rau'l.

    2015-11-01

    At the Portland State University wind tunnel facility, an experiment is conducted to observe the downstream development of the wake past a model vertical axis wind turbine (VAWT). The flow domain is composed of streamwise-spanwise planes at mid-height of the VAWT rotor and data is obtained via particle image velocimetry (PIV). The flow field is assessed by analyzing contours of mean velocities and the full Reynolds stress tensor. Furthermore, profiles of the aforementioned quantities and flow parameters are discussed in the context of downstream evolution/flow development.

  7. Stochastic models for strength of wind turbine blades using tests

    DEFF Research Database (Denmark)

    Toft, H.S.; Sørensen, John Dalsgaard

    2008-01-01

    The structural cost of wind turbine blades is dependent on the values of the partial safety factors which reflect the uncertainties in the design values, including statistical uncertainty from a limited number of tests. This paper presents a probabilistic model for ultimate and fatigue strength...... of wind turbine blades especially considering the influence of prior knowledge and test results and how partial safety factors can be updated when additional full-scale tests are performed. This updating is performed by adopting a probabilistic design basis based on Bayesian statistical methods....

  8. Wind Farm parametrization in the mesoscale model WRF

    DEFF Research Database (Denmark)

    Volker, Patrick; Badger, Jake; Hahmann, Andrea N.

    2012-01-01

    , but are parametrized as another sub-grid scale process. In order to appropriately capture the wind farm wake recovery and its direction, two properties are important, among others, the total energy extracted by the wind farm and its velocity deficit distribution. In the considered parametrization the individual...... the extracted force is proportional to the turbine area interfacing a grid cell. The sub-grid scale wake expansion is achieved by adding turbulence kinetic energy (proportional to the extracted power) to the flow. The validity of both wind farm parametrizations has been verified against observational data. We...... turbines produce a thrust dependent on the background velocity. For the sub-grid scale velocity deficit, the entrainment from the free atmospheric flow into the wake region, which is responsible for the expansion, is taken into account. Furthermore, since the model horizontal distance is several times...

  9. Well-posed Euler model of shock-induced two-phase flow in bubbly liquid

    Science.gov (United States)

    Tukhvatullina, R. R.; Frolov, S. M.

    2018-03-01

    A well-posed mathematical model of non-isothermal two-phase two-velocity flow of bubbly liquid is proposed. The model is based on the two-phase Euler equations with the introduction of an additional pressure at the gas bubble surface, which ensures the well-posedness of the Cauchy problem for a system of governing equations with homogeneous initial conditions, and the Rayleigh-Plesset equation for radial pulsations of gas bubbles. The applicability conditions of the model are formulated. The model is validated by comparing one-dimensional calculations of shock wave propagation in liquids with gas bubbles with a gas volume fraction of 0.005-0.3 with experimental data. The model is shown to provide satisfactory results for the shock propagation velocity, pressure profiles, and the shock-induced motion of the bubbly liquid column.

  10. Avian collision risk models for wind energy impact assessments

    Energy Technology Data Exchange (ETDEWEB)

    Masden, E.A., E-mail: elizabeth.masden@uhi.ac.uk [Environmental Research Institute, North Highland College-UHI, University of the Highlands and Islands, Ormlie Road, Thurso, Caithness KW14 7EE (United Kingdom); Cook, A.S.C.P. [British Trust for Ornithology, The Nunnery, Thetford IP24 2PU (United Kingdom)

    2016-01-15

    With the increasing global development of wind energy, collision risk models (CRMs) are routinely used to assess the potential impacts of wind turbines on birds. We reviewed and compared the avian collision risk models currently available in the scientific literature, exploring aspects such as the calculation of a collision probability, inclusion of stationary components e.g. the tower, angle of approach and uncertainty. 10 models were cited in the literature and of these, all included a probability of collision of a single bird colliding with a wind turbine during passage through the rotor swept area, and the majority included a measure of the number of birds at risk. 7 out of the 10 models calculated the probability of birds colliding, whilst the remainder used a constant. We identified four approaches to calculate the probability of collision and these were used by others. 6 of the 10 models were deterministic and included the most frequently used models in the UK, with only 4 including variation or uncertainty in some way, the most recent using Bayesian methods. Despite their appeal, CRMs have their limitations and can be ‘data hungry’ as well as assuming much about bird movement and behaviour. As data become available, these assumptions should be tested to ensure that CRMs are functioning to adequately answer the questions posed by the wind energy sector. - Highlights: • We highlighted ten models available to assess avian collision risk. • Only 4 of the models included variability or uncertainty. • Collision risk models have limitations and can be ‘data hungry’. • It is vital that the most appropriate model is used for a given task.

  11. Understanding Dynamic Model Validation of a Wind Turbine Generator and a Wind Power Plant: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Muljadi, Eduard; Zhang, Ying Chen; Gevorgian, Vahan; Kosterev, Dmitry

    2016-09-01

    Regional reliability organizations require power plants to validate the dynamic models that represent them to ensure that power systems studies are performed to the best representation of the components installed. In the process of validating a wind power plant (WPP), one must be cognizant of the parameter settings of the wind turbine generators (WTGs) and the operational settings of the WPP. Validating the dynamic model of a WPP is required to be performed periodically. This is because the control parameters of the WTGs and the other supporting components within a WPP may be modified to comply with new grid codes or upgrades to the WTG controller with new capabilities developed by the turbine manufacturers or requested by the plant owners or operators. The diversity within a WPP affects the way we represent it in a model. Diversity within a WPP may be found in the way the WTGs are controlled, the wind resource, the layout of the WPP (electrical diversity), and the type of WTGs used. Each group of WTGs constitutes a significant portion of the output power of the WPP, and their unique and salient behaviors should be represented individually. The objective of this paper is to illustrate the process of dynamic model validations of WTGs and WPPs, the available data recorded that must be screened before it is used for the dynamic validations, and the assumptions made in the dynamic models of the WTG and WPP that must be understood. Without understanding the correct process, the validations may lead to the wrong representations of the WTG and WPP modeled.

  12. A Generalized Equatorial Model for the Accelerating Solar Wind

    Science.gov (United States)

    Tasnim, S.; Cairns, Iver H.; Wheatland, M. S.

    2018-02-01

    A new theoretical model for the solar wind is developed that includes the wind's acceleration, conservation of angular momentum, deviations from corotation, and nonradial velocity and magnetic field components from an inner boundary (corresponding to the onset of the solar wind) to beyond 1 AU. The model uses a solution of the time-steady isothermal equation of motion to describe the acceleration and analytically predicts the Alfvénic critical radius. We fit the model to near-Earth observations of the Wind spacecraft during the solar rotation period of 1-27 August 2010. The resulting data-driven model demonstrates the existence of noncorotating, nonradial flows and fields from the inner boundary (r = rs) outward and predicts the magnetic field B = (Br,Bϕ), velocity v = (vr,vϕ), and density n(r,ϕ,t), which vary with heliocentric distance r, heliolatitude ϕ, and time t in a Sun-centered standard inertial plane. The description applies formally only in the equatorial plane. In a frame corotating with the Sun, the transformed velocity v' and a field B' are not parallel, resulting in an electric field with a component Ez' along the z axis. The resulting E'×B'=E'×B drift lies in the equatorial plane, while the ∇B and curvature drifts are out of the plane. Together these may lead to enhanced scattering/heating of sufficiently energetic particles. The model predicts that deviations δvϕ from corotation at the inner boundary are common, with δvϕ(rs,ϕs,ts) comparable to the transverse velocities due to granulation and supergranulation motions. Abrupt changes in δvϕ(rs,ϕs,ts) are interpreted in terms of converging and diverging flows at the cell boundaries and centers, respectively. Large-scale variations in the predicted angular momentum demonstrate that the solar wind can drive vorticity and turbulence from near the Sun to 1 AU and beyond.

  13. Mapping Winds over Martian Sand Dunes from Ripples and Digital Terrain Models

    Science.gov (United States)

    Johnson, M. B.; Zimbelman, J. R.

    2015-05-01

    Sand dunes preserve wind flow patterns in their ripple formations. DTMs can be used with wind modeling software to simulate wind speed and direction over these dunes. Results can be compared and together offer a more complete picture of recent wind.

  14. Aspects of Using CFD for Wind Comfort Modeling Around Tall Buildings

    DEFF Research Database (Denmark)

    Rasmussen, Michael R.; Andersen, Lars

    2008-01-01

    The Light*House complex is investigated for uncomfortable wind climate and dangerous winds at pedestrian level. A CFD model is used for simulating the wind effect for 12 different directions and correlated to the wind statistics of a nearby meteorological station. Comparing to practical standards...

  15. Examination of the wind speed limit function in the Rothermel surface fire spread model

    Science.gov (United States)

    Patricia L. Andrews; Miguel G. Cruz; Richard C. Rothermel

    2013-01-01

    The Rothermel surface fire spread model includes a wind speed limit, above which predicted rate of spread is constant. Complete derivation of the wind limit as a function of reaction intensity is given, along with an alternate result based on a changed assumption. Evidence indicates that both the original and the revised wind limits are too restrictive. Wind limit is...

  16. Distributed Model Predictive Control for Active Power Control of Wind Farm

    DEFF Research Database (Denmark)

    Zhao, Haoran; Wu, Qiuwei; Rasmussen, Claus Nygaard

    2014-01-01

    This paper presents the active power control of a wind farm using the Distributed Model Predictive Controller (D- MPC) via dual decomposition. Different from the conventional centralized wind farm control, multiple objectives such as power reference tracking performance and wind turbine load can......-scale wind farm control....

  17. How Many Model Evaluations Are Required To Predict The AEP Of A Wind Power Plant?

    DEFF Research Database (Denmark)

    Murcia Leon, Juan Pablo; Réthoré, Pierre-Elouan; Natarajan, Anand

    2015-01-01

    (AEP) predictions expensive. The objective of the present paper is to minimize the number of model evaluations required to capture the wind power plant's AEP using stationary wind farm flow models. Polynomial chaos techniques are proposed based on arbitrary Weibull distributed wind speed and Von Misses......Wind farm flow models have advanced considerably with the use of large eddy simulations (LES) and Reynolds averaged Navier-Stokes (RANS) computations. The main limitation of these techniques is their high computational time requirements; which makes their use for wind farm annual energy production...... distributed wind direction. The correlation between wind direction and wind speed are captured by defining Weibull-parameters as functions of wind direction. In order to evaluate the accuracy of these methods the expectation and variance of the wind farm power distributions are compared against...

  18. Sting Dynamics of Wind Tunnel Models

    Science.gov (United States)

    1976-05-01

    Titanium Alloys . *N1ckle-Base Superalloys *Steel Alloys * Cobalt -Base Superalloys *Molybdenum Alloys *Tungsten Sintered Tungsten-Titanium Carbide Alloys E... Carbide -Steel Sting... • 0 • • • • • • • • . . . 11 13 14 19 6. Sting Coordinate Systems a. Planar Deflection Geometry of the Sting-Model Concentrated...36 b. Cl’p::; 0.25, 0.50, and 0.75 deg . . . . . . 37 10. Motion History for ATT Model and Carbide -Steel Sting, Condition No

  19. Effect of wind turbine generator model and siting on wind power changes out of large WECS arrays

    Science.gov (United States)

    Schleuter, R. A.; Park, G. L.; Lotfalian, M.; Dorsey, J.; Shayanfar, H.

    1981-01-01

    Methods of reducing the WECS generation change through selection of the wind turbine model for each site, selection of an appropriate siting configuration, and wind array controls are discussed. An analysis of wind generation change from an echelon and a farm for passage of a thunderstorm is presented. Reduction of the wind generation change over ten minutes is shown to reduce the increase in spinning reserve, unloadable generation and load following requirements on unit commitment when significant WECS generation is present and the farm penetration constraint is satisfied. Controls on the blade pitch angle of all wind turbines in an array or a battery control are shown to reduce both the wind generation change out of an array and the effective farm penetration in anticipation of a storm so that the farm penetration constraint may be satisfied.

  20. Changes in Surface Wind Speed over North America from CMIP5 Model Projections and Implications for Wind Energy

    Directory of Open Access Journals (Sweden)

    Sujay Kulkarni

    2014-01-01

    Full Text Available The centennial trends in the surface wind speed over North America are deduced from global climate model simulations in the Climate Model Intercomparison Project—Phase 5 (CMIP5 archive. Using the 21st century simulations under the RCP 8.5 scenario of greenhouse gas emissions, 5–10 percent increases per century in the 10 m wind speed are found over Central and East-Central United States, the Californian Coast, and the South and East Coasts of the USA in winter. In summer, climate models projected decreases in the wind speed ranging from 5 to 10 percent per century over the same coastal regions. These projected changes in the surface wind speed are moderate and imply that the current estimate of wind power potential for North America based on present-day climatology will not be significantly changed by the greenhouse gas forcing in the coming decades.

  1. Key aspects of stratospheric tracer modeling using assimilated winds

    Directory of Open Access Journals (Sweden)

    B. Bregman

    2006-01-01

    Full Text Available This study describes key aspects of global chemistry-transport models and their impact on stratospheric tracer transport. We concentrate on global models that use assimilated winds from numerical weather predictions, but the results also apply to tracer transport in general circulation models. We examined grid resolution, numerical diffusion, air parcel dispersion, the wind or mass flux update frequency, and time interpolation. The evaluation is performed with assimilated meteorology from the "operational analyses or operational data" (OD from the European Centre for Medium-Range Weather Forecasts (ECMWF. We also show the effect of the mass flux update frequency using the ECMWF 40-year re-analyses (ERA40. We applied the three-dimensional chemistry-transport Tracer Model version 5 (TM5 and a trajectory model and performed several diagnoses focusing on different transport regimes. Covering different time and spatial scales, we examined (1 polar vortex dynamics during the Arctic winter, (2 the large-scale stratospheric meridional circulation, and (3 air parcel dispersion in the tropical lower stratosphere. Tracer distributions inside the Arctic polar vortex show considerably worse agreement with observations when the model grid resolution in the polar region is reduced to avoid numerical instability. The results are sensitive to the diffusivity of the advection. Nevertheless, the use of a computational cheaper but diffusive advection scheme is feasible for tracer transport when the horizontal grid resolution is equal or smaller than 1 degree. The use of time interpolated winds improves the tracer distributions, particularly in the middle and upper stratosphere. Considerable improvement is found both in the large-scale tracer distribution and in the polar regions when the update frequency of the assimilated winds is increased from 6 to 3 h. It considerably reduces the vertical dispersion of air parcels in the tropical lower stratosphere. Strong

  2. Day-ahead wind speed forecasting using f-ARIMA models

    International Nuclear Information System (INIS)

    Kavasseri, Rajesh G.; Seetharaman, Krithika

    2009-01-01

    With the integration of wind energy into electricity grids, it is becoming increasingly important to obtain accurate wind speed/power forecasts. Accurate wind speed forecasts are necessary to schedule dispatchable generation and tariffs in the day-ahead electricity market. This paper examines the use of fractional-ARIMA or f-ARIMA models to model, and forecast wind speeds on the day-ahead (24 h) and two-day-ahead (48 h) horizons. The models are applied to wind speed records obtained from four potential wind generation sites in North Dakota. The forecasted wind speeds are used in conjunction with the power curve of an operational (NEG MICON, 750 kW) turbine to obtain corresponding forecasts of wind power production. The forecast errors in wind speed/power are analyzed and compared with the persistence model. Results indicate that significant improvements in forecasting accuracy are obtained with the proposed models compared to the persistence method. (author)

  3. Actuator Line Modeling of Wind Turbine Wakes

    DEFF Research Database (Denmark)

    Troldborg, Niels

    2009-01-01

    with the 3D Navier Stokes solver EllipSys3D and a LES turbulence model. Simple models, based on applying body forces in the computational domain, are developed for imposing sheared and turbulent infow and their validity is discussed. A few computations on stand alone turbines are compared to measurements...... inflow shows that besides an expected vertical skewed wake the wake also becomes increasingly asymmetric in the horizontal direction as it is convected downstream. The latter phenomena, which is also often observed in measurements, is argued to be caused by the rotation of the wake. A detailed study...

  4. The k-ε-fP model applied to wind farms

    DEFF Research Database (Denmark)

    Laan, van der, Paul Maarten; Sørensen, Niels N.; Réthoré, Pierre-Elouan

    2015-01-01

    The recently developed k-ε-fP eddy-viscosity model is applied to one on-shore and two off-shore wind farms. The results are compared with power measurements and results of the standard k-ε eddy-viscosity model. In addition, the wind direction uncertainty of the measurements is used to correct...... by the turbulence models becomes smaller for wind turbines that are located further downstream. Moreover, the difference between the capability of the turbulence models to estimate the wind farm efficiency reduces with increasing wind farm size and wind turbine spacing. Copyright © 2014 John Wiley & Sons, Ltd....

  5. A Discontinuous Galerkin Method for Two-Dimensional Shock Wave Modeling

    Directory of Open Access Journals (Sweden)

    W. Lai

    2011-01-01

    Full Text Available A numerical scheme based on discontinuous Galerkin method is proposed for the two-dimensional shallow water flows. The scheme is applied to model flows with shock waves. The form of shallow water equations that can eliminate numerical imbalance between flux term and source term and simplify computation is adopted here. The HLL approximate Riemann solver is employed to calculate the mass and momentum flux. A slope limiting procedure that is suitable for incompressible two-dimensional flows is presented. A simple method is adapted for flow over initially dry bed. A new formulation is introduced for modeling the net pressure force and gravity terms in discontinuous Galerkin method. To validate the scheme, numerical tests are performed to model steady and unsteady shock waves. Applications include circular dam break with shock, shock waves in channel contraction, and dam break in channel with 45∘ bend. Numerical results show that the scheme is accurate and efficient to model two-dimensional shallow water flows with shock waves.

  6. MATHEMATICAL MODELING OF FLOW PARAMETERS FOR SINGLE WIND TURBINE

    Directory of Open Access Journals (Sweden)

    2016-01-01

    Full Text Available It is known that on the territory of the Russian Federation the construction of several large wind farms is planned. The tasks connected with design and efficiency evaluation of wind farm work are in demand today. One of the possible directions in design is connected with mathematical modeling. The method of large eddy simulation developed within the direction of computational hydrodynamics allows to reproduce unsteady structure of the flow in details and to determine various integrated values. The calculation of work for single wind turbine installation by means of large eddy simulation and Actuator Line Method along the turbine blade is given in this work. For problem definition the numerical method in the form of a box was considered and the adapted unstructured grid was used.The mathematical model included the main equations of continuity and momentum equations for incompressible fluid. The large-scale vortex structures were calculated by means of integration of the filtered equations. The calculation was carried out with Smagorinsky model for determination of subgrid scale turbulent viscosity. The geometrical parametersof wind turbine were set proceeding from open sources in the Internet.All physical values were defined at center of computational cell. The approximation of items in equations was ex- ecuted with the second order of accuracy for time and space. The equations for coupling velocity and pressure were solved by means of iterative algorithm PIMPLE. The total quantity of the calculated physical values on each time step was equal to 18. So, the resources of a high performance cluster were required.As a result of flow calculation in wake for the three-bladed turbine average and instantaneous values of velocity, pressure, subgrid kinetic energy and turbulent viscosity, components of subgrid stress tensor were worked out. The re- ceived results matched the known results of experiments and numerical simulation, testify the opportunity

  7. Study of wind turbine wake modeling based on a modified actuator disk model and extended k-ε turbulence model

    DEFF Research Database (Denmark)

    Xu, Chang; Han, Xingxing; Wang, Xin

    2015-01-01

    This paper presented an improved computational fluid dynamics (CFD) model for simulating a horizontal-axis wind turbine wake. The model used the actuator disk model to simplify the wind turbine effect on the aerodynamic field by adding an extra momentum source and an improved term to correct...... the underestimation issue of the wind speed deficit when applying the STD k-ε model. In addition, the model also introduced a radial distribution function to assess the non-uniform load on the actuator disk and a coefficient C4ε of the turbulent source. To validate the model, the wind turbines of Nibe `B' and Dawin...

  8. The Effect of Wind Forcing on Modeling Coastal Circulation at a Marine Renewable Test Site

    Directory of Open Access Journals (Sweden)

    Lei Ren

    2017-12-01

    Full Text Available The hydrodynamic circulation in estuaries is primarily driven by tides, river inflows and surface winds. While tidal and river data can be quite easily obtained for input to hydrodynamic models, sourcing accurate surface wind data is problematic. Inaccurate wind data can lead to inaccuracies in the surface currents computed by three-dimensional hydrodynamic models. In this research, a high-resolution wind model was coupled with a three-dimensional hydrodynamic model of Galway Bay, a semi-enclosed estuary on the west coast of Ireland, to investigate the effect of wind forcing on model accuracy. Two wind-forcing conditions were investigated: (1 using wind data measured onshore on the NUI Galway campus (NUIG and (2 using offshore wind data provided by a high resolution wind model (HR. A scenario with no wind forcing (NW was also assessed. The onshore wind data varied with time but the speed and direction were applied across the full model domain. The modeled offshore wind fields varied with both time and space. The effect of wind forcing on modeled hydrodynamics was assessed via comparison of modeled surface currents with surface current measurements obtained from a High-Frequency (HF radar Coastal Ocean Dynamics Applications Radar (CODAR observation system. Results indicated that winds were most significant in simulating the north-south surface velocity component. The model using high resolution temporally- and spatially-varying wind data achieved better agreement with the CODAR surface currents than the model using the onshore wind measurements and the model without any wind forcing.

  9. Validation of Model Forecasts of the Ambient Solar Wind

    Science.gov (United States)

    Macneice, P. J.; Hesse, M.; Kuznetsova, M. M.; Rastaetter, L.; Taktakishvili, A.

    2009-01-01

    Independent and automated validation is a vital step in the progression of models from the research community into operational forecasting use. In this paper we describe a program in development at the CCMC to provide just such a comprehensive validation for models of the ambient solar wind in the inner heliosphere. We have built upon previous efforts published in the community, sharpened their definitions, and completed a baseline study. We also provide first results from this program of the comparative performance of the MHD models available at the CCMC against that of the Wang-Sheeley-Arge (WSA) model. An important goal of this effort is to provide a consistent validation to all available models. Clearly exposing the relative strengths and weaknesses of the different models will enable forecasters to craft more reliable ensemble forecasting strategies. Models of the ambient solar wind are developing rapidly as a result of improvements in data supply, numerical techniques, and computing resources. It is anticipated that in the next five to ten years, the MHD based models will supplant semi-empirical potential based models such as the WSA model, as the best available forecast models. We anticipate that this validation effort will track this evolution and so assist policy makers in gauging the value of past and future investment in modeling support.

  10. Wind field and trajectory models for tornado-propelled objects

    International Nuclear Information System (INIS)

    Anon

    1978-01-01

    This report contains the results of the second phase of a research program which has as its objective the development of a mathematical model to predict the trajectory of tornado-borne objects postulated to be in the vicinity of nuclear power plants. An improved tornado wind field model satisfies the no-slip ground boundary condition of fluid mechanics and includes the functional dependence of eddy viscosity with altitude. Sub-scale wind tunnel data are obtained for all of the missiles currently specified for nuclear plant design. Confirmatory full-scale data are obtained for a 12-inch pipe and automobile. The original six-degree-of-freedom trajectory model is modified to include the improved wind field and increased capability as to body shapes and inertial characteristics that can be handled. The improved trajectory model is used to calculate maximum credible speeds, which for all of the heavy missiles are considerably less than those currently specified for design. Equivalent coefficients for use in three-degree-of-freedom models are developed and the sensitivity of range and speed to various trajectory parameters for the 12-inch diameter pipe is examined

  11. Repetitive model predictive approach to individual pitch control of wind turbines

    DEFF Research Database (Denmark)

    Adegas, Fabiano Daher; Stoustrup, Jakob; Odgaard, Peter Fogh

    2011-01-01

    Wind turbines are inherently exposed to nonuniform wind fields with of wind shear, tower shadow, and possible wake contributions. Asymmetrical aerodynamic rotor loads are a consequence of such periodic, repetitive wind disturbances experienced by the blades. A controller may estimate and use this....... A simulation comparison betweeen the proposed controller and an industry-standard PID controller shows better mitigation of drive-train, blade and tower loads.......Wind turbines are inherently exposed to nonuniform wind fields with of wind shear, tower shadow, and possible wake contributions. Asymmetrical aerodynamic rotor loads are a consequence of such periodic, repetitive wind disturbances experienced by the blades. A controller may estimate and use...... this peculiar disturbance pattern to better attenuate loads and regulate power by controlling the blade pitch angles individually. A novel model predictive (MPC) approach for individual pitch control of wind turbines is proposed in this paper. A repetitive wind disturbance model is incorporated into the MPC...

  12. Modeling and investigation of Gulf El-Zayt wind farm for stability studying during extreme

    Directory of Open Access Journals (Sweden)

    Omar Noureldeen

    2014-03-01

    Full Text Available This paper investigates the impact of extreme gust wind as a case of wind speed variation on a wind farm interconnected electrical grid. The impact of extreme gust wind speed variation on active and reactive power of the wind farms is studied for variable speed wind farm equipped with Doubly Fed Induction Generators (DFIGs. A simulation model of the under implementation 120 MW wind farm at Gulf El-Zayt region, Red Sea, Egypt, is simulated as a case study. A detailed model of extreme gust wind speed variation is implemented and simulated, using MATLAB/Simulink toolbox, based on International Electrotechnical Commission IEC 61400-1 and climate characteristic of Gulf El-Zayt site. The simulation results show the influence of different extreme gust wind speed variations on the fluctuation of active power and reactive power at the Point of Common Coupling (PCC of the studied wind farm.

  13. Thermodynamic parameters for mixtures of quartz under shock wave loading in views of the equilibrium model

    International Nuclear Information System (INIS)

    Maevskii, K. K.; Kinelovskii, S. A.

    2015-01-01

    The numerical results of modeling of shock wave loading of mixtures with the SiO 2 component are presented. The TEC (thermodynamic equilibrium component) model is employed to describe the behavior of solid and porous multicomponent mixtures and alloys under shock wave loading. State equations of a Mie–Grüneisen type are used to describe the behavior of condensed phases, taking into account the temperature dependence of the Grüneisen coefficient, gas in pores is one of the components of the environment. The model is based on the assumption that all components of the mixture under shock-wave loading are in thermodynamic equilibrium. The calculation results are compared with the experimental data derived by various authors. The behavior of the mixture containing components with a phase transition under high dynamic loads is described

  14. Comparison of Standard Wind Turbine Models with Vendor Models for Power System Stability Analysis: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Honrubia-Escribano, A.; Gomez Lazaro, E.; Jimenez-Buendia, F.; Muljadi, Eduard

    2016-11-01

    The International Electrotechnical Commission Standard 61400-27-1 was published in February 2015. This standard deals with the development of generic terms and parameters to specify the electrical characteristics of wind turbines. Generic models of very complex technological systems, such as wind turbines, are thus defined based on the four common configurations available in the market. Due to its recent publication, the comparison of the response of generic models with specific vendor models plays a key role in ensuring the widespread use of this standard. This paper compares the response of a specific Gamesa dynamic wind turbine model to the corresponding generic IEC Type III wind turbine model response when the wind turbine is subjected to a three-phase voltage dip. This Type III model represents the doubly-fed induction generator wind turbine, which is not only one of the most commonly sold and installed technologies in the current market but also a complex variable-speed operation implementation. In fact, active and reactive power transients are observed due to the voltage reduction. Special attention is given to the reactive power injection provided by the wind turbine models because it is a requirement of current grid codes. Further, the boundaries of the generic models associated with transient events that cannot be represented exactly are included in the paper.

  15. CFD Wake Modelling with a BEM Wind Turbine Sub-Model

    Directory of Open Access Journals (Sweden)

    Anders Hallanger

    2013-01-01

    Full Text Available Modelling of wind farms using computational fluid dynamics (CFD resolving the flow field around each wind turbine's blades on a moving computational grid is still too costly and time consuming in terms of computational capacity and effort. One strategy is to use sub-models for the wind turbines, and sub-grid models for turbulence production and dissipation to model the turbulent viscosity accurately enough to handle interaction of wakes in wind farms. A wind turbine sub-model, based on the Blade Momentum Theory, see Hansen (2008, has been implemented in an in-house CFD code, see Hallanger et al. (2002. The tangential and normal reaction forces from the wind turbine blades are distributed on the control volumes (CVs at the wind turbine rotor location as sources in the conservation equations of momentum. The classical k-epsilon turbulence model of Launder and Spalding (1972 is implemented with sub-grid turbulence (SGT model, see Sha and Launder (1979 and Sand and Salvesen (1994. Steady state CFD simulations were compared with flow and turbulence measurements in the wake of a model scale wind turbine, see Krogstad and Eriksen (2011. The simulated results compared best with experiments when stalling (boundary layer separation on the wind turbine blades did not occur. The SGT model did improve turbulence level in the wake but seems to smear the wake flow structure. It should be noted that the simulations are carried out steady state not including flow oscillations caused by vortex shedding from tower and blades as they were in the experiments. Further improvement of the simulated velocity defect and turbulence level seems to rely on better parameter estimation to the SGT model, improvements to the SGT model, and possibly transient- instead of steady state simulations.

  16. Modeling and Control of Direct Driven PMSG for Ultra Large Wind Turbines

    OpenAIRE

    Ahmed M. Hemeida; Wael A. Farag; Osama A. Mahgoub

    2011-01-01

    This paper focuses on developing an integrated reliable and sophisticated model for ultra large wind turbines And to study the performance and analysis of vector control on large wind turbines. With the advance of power electronics technology, direct driven multi-pole radial flux PMSG (Permanent Magnet Synchronous Generator) has proven to be a good choice for wind turbines manufacturers. To study the wind energy conversion systems, it is important to develop a wind turbin...

  17. TRANSMISSION AND EMISSION OF SOLAR ENERGETIC PARTICLES IN SEMI-TRANSPARENT SHOCKS

    Energy Technology Data Exchange (ETDEWEB)

    Kocharov, Leon; Usoskin, Ilya [Sodankylä Geophysical Observatory (Oulu Unit), University of Oulu, P.O. Box 3000, FI-90014 Oulu (Finland); Laitinen, Timo [Jeremiah Horrocks Institute, University of Central Lancashire, Preston PR1 2HE (United Kingdom); Vainio, Rami [Department of Physics and Astronomy, University of Turku, FI-20014 Turku (Finland)

    2014-06-01

    While major solar energetic particle (SEP) events are associated with coronal mass ejection (CME)-driven shocks in solar wind, accurate SEP measurements reveal that more than one component of energetic ions exist in the beginning of the events. Solar electromagnetic emissions, including nuclear gamma-rays, suggest that high-energy ions could also be accelerated by coronal shocks, and some of those particles could contribute to SEPs in interplanetary space. However, the CME-driven shock in solar wind is thought to shield any particle source beneath the shock because of the strong scattering required for the diffusive shock acceleration. In this Letter, we consider a shock model that allows energetic particles from the possible behind-shock source to appear in front of the shock simultaneously with SEPs accelerated by the shock itself. We model the energetic particle transport in directions parallel and perpendicular to the magnetic field in a spherical shock expanding through the highly turbulent magnetic sector with an embedded quiet magnetic tube, which makes the shock semi-transparent for energetic particles. The model energy spectra and time profiles of energetic ions escaping far upstream of the shock are similar to the profiles observed during the first hour of some gradual SEP events.

  18. Statistical Modeling of Extreme Values and Evidence of Presence of Dragon King (DK) in Solar Wind

    Science.gov (United States)

    Gomes, T.; Ramos, F.; Rempel, E. L.; Silva, S.; C-L Chian, A.

    2017-12-01

    The solar wind constitutes a nonlinear dynamical system, presenting intermittent turbulence, multifractality and chaotic dynamics. One characteristic shared by many such complex systems is the presence of extreme events, that play an important role in several Geophysical phenomena and their statistical characterization is a problem of great practical relevance. This work investigates the presence of extreme events in time series of the modulus of the interplanetary magnetic field measured by Cluster spacecraft on February 2, 2002. One of the main results is that the solar wind near the Earth's bow shock can be modeled by the Generalized Pareto (GP) and Generalized Extreme Values (GEV) distributions. Both models present a statistically significant positive shape parameter which implyies a heavy tail in the probability distribution functions and an unbounded growth in return values as return periods become too long. There is evidence that current sheets are the main responsible for positive values of the shape parameter. It is also shown that magnetic reconnection at the interface between two interplanetary magnetic flux ropes in the solar wind can be considered as Dragon Kings (DK), a class of extreme events whose formation mechanisms are fundamentally different from others. As long as magnetic reconnection can be classified as a Dragon King, there is the possibility of its identification and even its prediction. Dragon kings had previously been identified in time series of financial crashes, nuclear power generation accidents, stock market and so on. It is believed that they are associated with the occurrence of extreme events in dynamical systems at phase transition, bifurcation, crises or tipping points.

  19. Evidence on a Real Business Cycle Model with Neutral and Investment-Specific Technology Shocks using Bayesian Model Averaging

    NARCIS (Netherlands)

    R.W. Strachan (Rodney); H.K. van Dijk (Herman)

    2010-01-01

    textabstractThe empirical support for a real business cycle model with two technology shocks is evaluated using a Bayesian model averaging procedure. This procedure makes use of a finite mixture of many models within the class of vector autoregressive (VAR) processes. The linear VAR model is

  20. Experimental model of a wind energy conversion system

    Science.gov (United States)

    Vasar, C.; Rat, C. L.; Prostean, O.

    2018-01-01

    The renewable energy domain represents an important issue for the sustainable development of the mankind in the actual context of increasing demand for energy along with the increasing pollution that affect the environment. A significant quota of the clean energy is represented by the wind energy. As a consequence, the developing of wind energy conversion systems (WECS) in order to achieve high energetic performances (efficiency, stability, availability, competitive cost etc) represents a topic of permanent actuality. Testing and developing of an optimized control strategy for a WECS direct implemented on a real energetic site is quite difficult and not cost efficient. Thus a more convenient solution consists in a flexible laboratory setup which requires an experimental model of a WECS. Such approach would allow the simulation of various real conditions very similar with existing energetic sites. This paper presents a grid-connected wind turbine emulator. The wind turbine is implemented through a real-time Hardware-in-the-Loop (HIL) emulator, which will be analyzed extensively in the paper. The HIL system uses software implemented in the LabVIEW programming environment to control an ABB ACS800 electric drive. ACS800 has the task of driving an induction machine coupled to a permanent magnet synchronous generator. The power obtained from the synchronous generator is rectified, filtered and sent to the main grid through a controlled inverter. The control strategy is implemented on a NI CompactRIO (cRIO) platform.

  1. Modeling pulsations in hot stars with winds

    Energy Technology Data Exchange (ETDEWEB)

    Noels, Arlette; Godart, Melanie [Institut d' Astrophysique et de Geophysique, Liege (Belgium); Dupret, Marc-Antoine [Observatoire de Paris-Meudon, LESIA (France)], E-mail: Arlette.Noels@ulg.ac.be, E-mail: ma.dupret@obspm.fr, E-mail: Melanie.Godart@ulg.ac.be

    2008-10-15

    The interaction pulsation/mass loss takes different aspects. Pulsations can trigger mass loss as in LBVs and Miras; on the other hand, mass loss can modify the driving conditions within the stars. But the most spectacular aspect is the effect on stellar models which, in turn, opens a royal way to asteroseismology to test physical conditions inside massive stars, such as the extent of convective cores or the appearance of new driving mechanisms. We start with a discussion on MS stars and their strange mode instabilities. We then move on to the excitation of the LBV phenomenon. WR stars and the newly observed MOST period in WR123 are discussed in view of the power of asteroseismology. We then turn to B supergiants, in particular HD163899, and show how asteroseismology can really probe convection, semiconvection and mass loss.

  2. Modeling pulsations in hot stars with winds

    International Nuclear Information System (INIS)

    Noels, Arlette; Godart, Melanie; Dupret, Marc-Antoine

    2008-01-01

    The interaction pulsation/mass loss takes different aspects. Pulsations can trigger mass loss as in LBVs and Miras; on the other hand, mass loss can modify the driving conditions within the stars. But the most spectacular aspect is the effect on stellar models which, in turn, opens a royal way to asteroseismology to test physical conditions inside massive stars, such as the extent of convective cores or the appearance of new driving mechanisms. We start with a discussion on MS stars and their strange mode instabilities. We then move on to the excitation of the LBV phenomenon. WR stars and the newly observed MOST period in WR123 are discussed in view of the power of asteroseismology. We then turn to B supergiants, in particular HD163899, and show how asteroseismology can really probe convection, semiconvection and mass loss.

  3. A 3D Convective Model for the Jovian Wind Bands

    Science.gov (United States)

    Mayr, H. G.; Chan, K. L.

    2004-01-01

    In an earlier paper, we proposed that Jupiter's alternating wind bands are a manifestation of the global interaction between rotation and convection in a shallow layer. The model, however, was obtained from linearization of the 2D equations of motions. At HKUST/Hong Kong, we are now trying to study this problem by rigorous numerical simulation. Using a three-dimensional spectral numerical code, we compute models for the outermost layer of Jupiter's convective envelope. Two cases have been studied. In one the atmospheric pressure varies from 1 to 23 bar, and in the other from 1 to 115 bar. The physical parameters (internal energy flux, rotation rate) are chosen to be close to those expected, but solar heating, chemistry, as well as dynamical influences from deeper layers are ignored. The models generate wind field patterns that contain alternating jet streams with resemblance to the Jovian bands. Instantaneous values of the mean zonal flow at the equator reach 80 m/sec. Yet the mean meridional flows are less than 1% of such value. The meridional temperature profile at the cloud top level also shows a double hump structure of a few degrees (as observed) in the subtropics. Though there is not complete quantitative agreement (caused perhaps by neglected effects like solar radiation), these models demonstrate, in principle, the feasibility of generating a Jovian type wind pattern through the interaction of fast rotation and convection in a thin shell.

  4. Impact of tower modeling on wind turbine wakes

    Science.gov (United States)

    Kleusberg, Elektra; Schlatter, Philipp; Henningson, Dan

    2017-11-01

    Recent research suggests the importance of modeling the support structure (tower and nacelle) when investigating the wake development behind wind turbines. These investigations are however mostly limited to low ambient turbulence levels which seldomly occur in field conditions. We present numerical simulations of wind turbine wakes using the actuator line method under different inflow conditions including varying turbulence levels and sheared inflow. The wind turbine, which employs the NREL S826 airfoil, is modeled after experiments conducted at the Norwegian University of Science and Technology. The rotor is investigated when perpendicular to the inflow and at a yaw angle of 30 degrees. The support structure is modeled using lift and drag body forces based on tabulated data. The simulations are performed with the spectral-element code Nek5000. After discussing the setup of the numerical domain and the turbulent inflow boundary condition, the influence of the tower model is characterized under turbulent, sheared and uniform inflow and the impact on downstream turbines is evaluated.

  5. Numerical investigation of turbulence models for shock separated boundary-layer flows

    Science.gov (United States)

    Viegas, J. R.; Coakley, T. J.

    1977-01-01

    Numerical solutions of the Navier-Stokes equations for shock separated turbulent boundary-layer flows are presented. Several turbulence models are investigated and assessed by their ability to predict the physical phenomena associated with two extensively documented experiments. The experimental flows consist of shock-wave boundary-layer interactions in axisymmetric internal and external geometries at Mach numbers of 1.5 and 7, respectively. Algebraic and one-equation eddy viscosity models are used to describe the Reynolds shear stress. Calculated values of skin friction, wall pressure distribution, kinetic energy of turbulence, and heat transfer are compared with measurements.

  6. Computational Support of 9x7 Wind Tunnel Test of Sonic Boom Models with Plumes

    Science.gov (United States)

    Jensen, James C.; Denison, Marie; Durston, Don; Cliff, Susan E.

    2017-01-01

    NASA and its industry partners are performing studies of supersonic aircraft concepts with low sonic boom pressure signatures. The interaction of the nozzle jet flow with the aircrafts' aft components is typically where the greatest uncertainly in the pressure signature is observed with high-fidelity numerical simulations. An extensive wind tunnel test was conducted in February 2016 in the NASA Ames 9- by 7- Foot Supersonic Wind Tunnel to help address the nozzle jet effects on sonic boom. Five test models with a variety of shock generators of differing waveforms and strengths were tested with a convergent-divergent nozzle for a wide range of nozzle pressure ratios. The LAVA unstructured flow solver was used to generate first CFD comparisons with the new experimental database using best practice meshing and analysis techniques for sonic boom vehicle design for all five different configurations. LAVA was also used to redesign the internal flow path of the nozzle and to better understand the flow field in the test section, both of which significantly improved the quality of the test data.

  7. Offshore Wind Resources Assessment from Multiple Satellite Data and WRF Modeling over South China Sea

    Directory of Open Access Journals (Sweden)

    Rui Chang

    2015-01-01

    Full Text Available Using accurate inputs of wind speed is crucial in wind resource assessment, as predicted power is proportional to the wind speed cubed. This study outlines a methodology for combining multiple ocean satellite winds and winds from WRF simulations in order to acquire the accurate reconstructed offshore winds which can be used for offshore wind resource assessment. First, wind speeds retrieved from Synthetic Aperture Radar (SAR and Scatterometer ASCAT images were validated against in situ measurements from seven coastal meteorological stations in South China Sea (SCS. The wind roses from the Navy Operational Global Atmospheric Prediction System (NOGAPS and ASCAT agree well with these observations from the corresponding in situ measurements. The statistical results comparing in situ wind speed and SAR-based (ASCAT-based wind speed for the whole co-located samples show a standard deviation (SD of 2.09 m/s (1.83 m/s and correlation coefficient of R 0.75 (0.80. When the offshore winds (i.e., winds directed from land to sea are excluded, the comparison results for wind speeds show an improvement of SD and R, indicating that the satellite data are more credible over the open ocean. Meanwhile, the validation of satellite winds against the same co-located mast observations shows a satisfactory level of accuracy which was similar for SAR and ASCAT winds. These satellite winds are then assimilated into the Weather Research and Forecasting (WRF Model by WRF Data Assimilation (WRFDA system. Finally, the wind resource statistics at 100 m height based on the reconstructed winds have been achieved over the study area, which fully combines the offshore wind information from multiple satellite data and numerical model. The findings presented here may be useful in future wind resource assessment based on satellite data.

  8. A multiple-scales model of the shock-cell structure of imperfectly expanded supersonic jets

    Science.gov (United States)

    Tam, C. K. W.; Jackson, J. A.; Seiner, J. M.

    1985-01-01

    The present investigation is concerned with the development of an analytical model of the quasi-periodic shock-cell structure of an imperfectly expanded supersonic jet. The investigation represents a part of a program to develop a mathematical theory of broadband shock-associated noise of supersonic jets. Tam and Tanna (1982) have suggested that this type of noise is generated by the weak interaction between the quasi-periodic shock cells and the downstream-propagating large turbulence structures in the mixing layer of the jet. In the model developed in this paper, the effect of turbulence in the mixing layer of the jet is simulated by the addition of turbulent eddy-viscosity terms to the momentum equation. Attention is given to the mean-flow profile and the numerical solution, and a comparison of the numerical results with experimental data.

  9. Chemical kinetics modeling of the influence of molecular structure on shock tube ignition delay

    International Nuclear Information System (INIS)

    Westbrook, C.K.; Pitz, W.J.

    1985-07-01

    The current capabilities of kinetic modeling of hydrocarbon oxidation in shock waves are discussed. The influence of molecular size and structure on ignition delay times are stressed. The n-paraffin fuels from CH 4 to n-C 5 H 12 are examined under shock tube conditions, as well as the branched chain fuel isobutane, and the computed results are compared with available experimental data. The modeling results show that it is important in the reaction mechanism to distinguish between abstraction of primary, secondary and tertiary H atom sites from the fuel molecule. This is due to the fact that both the rates and the product distributions of the subsequent alkyl radical decomposition reactions depend on which H atoms were abstracted. Applications of the reaction mechanisms to shock tube problems and to other practical problems such as engine knock are discussed

  10. Finite element modeling of the filament winding process using ABAQUS

    OpenAIRE

    Miltenberger, Louis C.

    1992-01-01

    A comprehensive stress model of the filament winding fabrication process, previously implemented in the finite element program, WACSAFE, was implemented using the ABAQUS finite element software package. This new implementation, referred to as the ABWACSAFE procedure, consists of the ABAQUS software and a pre/postprocessing routine that was developed to prepare necessary ABAQUS input files and process ABAQUS displacement results for stress and strain computation. The ABWACSAF...

  11. Wind-US Code Physical Modeling Improvements to Complement Hypersonic Testing and Evaluation

    Science.gov (United States)

    Georgiadis, Nicholas J.; Yoder, Dennis A.; Towne, Charles S.; Engblom, William A.; Bhagwandin, Vishal A.; Power, Greg D.; Lankford, Dennis W.; Nelson, Christopher C.

    2009-01-01

    This report gives an overview of physical modeling enhancements to the Wind-US flow solver which were made to improve the capabilities for simulation of hypersonic flows and the reliability of computations to complement hypersonic testing. The improvements include advanced turbulence models, a bypass transition model, a conjugate (or closely coupled to vehicle structure) conduction-convection heat transfer capability, and an upgraded high-speed combustion solver. A Mach 5 shock-wave boundary layer interaction problem is used to investigate the benefits of k- s and k-w based explicit algebraic stress turbulence models relative to linear two-equation models. The bypass transition model is validated using data from experiments for incompressible boundary layers and a Mach 7.9 cone flow. The conjugate heat transfer method is validated for a test case involving reacting H2-O2 rocket exhaust over cooled calorimeter panels. A dual-mode scramjet configuration is investigated using both a simplified 1-step kinetics mechanism and an 8-step mechanism. Additionally, variations in the turbulent Prandtl and Schmidt numbers are considered for this scramjet configuration.

  12. Modelling and Simulation of VSC-HVDC Connection for Wind Power Plants

    DEFF Research Database (Denmark)

    Chaudhary, Sanjay Kumar; Teodorescu, Remus; Rodriguez, Pedro

    2009-01-01

    This paper describes the modelling and simulation of offshore wind power plants (WPP) connected to the onshore power system grid by VSC based HVDC transmission. Offshore wind power plant is modelled with several wind turbine generators connected to two separate collector buses with their own plant...... wind turbines. Simulation of power ramping up and down as well as steady state operation has been demonstrated. As an additional case, the primary reserve control logic has been implemented and simulated in PSCAD model....

  13. A minimal titration model of the mammalian dynamical heat shock response

    Science.gov (United States)

    Sivéry, Aude; Courtade, Emmanuel; Thommen, Quentin

    2016-12-01

    Environmental stress, such as oxidative or heat stress, induces the activation of the heat shock response (HSR) and leads to an increase in the heat shock proteins (HSPs) level. These HSPs act as molecular chaperones to maintain cellular proteostasis. Controlled by highly intricate regulatory mechanisms, having stress-induced activation and feedback regulations with multiple partners, the HSR is still incompletely understood. In this context, we propose a minimal molecular model for the gene regulatory network of the HSR that reproduces quantitatively different heat shock experiments both on heat shock factor 1 (HSF1) and HSPs activities. This model, which is based on chemical kinetics laws, is kept with a low dimensionality without altering the biological interpretation of the model dynamics. This simplistic model highlights the titration of HSF1 by chaperones as the guiding line of the network. Moreover, by a steady states analysis of the network, three different temperature stress regimes appear: normal, acute, and chronic, where normal stress corresponds to pseudo thermal adaption. The protein triage that governs the fate of damaged proteins or the different stress regimes are consequences of the titration mechanism. The simplicity of the present model is of interest in order to study detailed modelling of cross regulation between the HSR and other major genetic networks like the cell cycle or the circadian clock.

  14. Data Mining Methods to Generate Severe Wind Gust Models

    Directory of Open Access Journals (Sweden)

    Subana Shanmuganathan

    2014-01-01

    Full Text Available Gaining knowledge on weather patterns, trends and the influence of their extremes on various crop production yields and quality continues to be a quest by scientists, agriculturists, and managers. Precise and timely information aids decision-making, which is widely accepted as intrinsically necessary for increased production and improved quality. Studies in this research domain, especially those related to data mining and interpretation are being carried out by the authors and their colleagues. Some of this work that relates to data definition, description, analysis, and modelling is described in this paper. This includes studies that have evaluated extreme dry/wet weather events against reported yield at different scales in general. They indicate the effects of weather extremes such as prolonged high temperatures, heavy rainfall, and severe wind gusts. Occurrences of these events are among the main weather extremes that impact on many crops worldwide. Wind gusts are difficult to anticipate due to their rapid manifestation and yet can have catastrophic effects on crops and buildings. This paper examines the use of data mining methods to reveal patterns in the weather conditions, such as time of the day, month of the year, wind direction, speed, and severity using a data set from a single location. Case study data is used to provide examples of how the methods used can elicit meaningful information and depict it in a fashion usable for management decision making. Historical weather data acquired between 2008 and 2012 has been used for this study from telemetry devices installed in a vineyard in the north of New Zealand. The results show that using data mining techniques and the local weather conditions, such as relative pressure, temperature, wind direction and speed recorded at irregular intervals, can produce new knowledge relating to wind gust patterns for vineyard management decision making.

  15. Trailing edge noise model applied to wind turbine airfoils

    Energy Technology Data Exchange (ETDEWEB)

    Bertagnolio, F.

    2008-01-15

    The aim of this work is firstly to provide a quick introduction to the theory of noise generation that are relevant to wind turbine technology with focus on trailing edge noise. Secondly, the socalled TNO trailing edge noise model developed by Parchen [1] is described in more details. The model is tested and validated by comparing with other results from the literature. Finally, this model is used in the optimization process of two reference airfoils in order to reduce their noise signature: the RISOE-B1-18 and the S809 airfoils. (au)

  16. Data Driven Modelling of the Dynamic Wake Between Two Wind Turbines

    DEFF Research Database (Denmark)

    Knudsen, Torben; Bak, Thomas

    2012-01-01

    turbine. This paper establishes flow models relating the wind speeds at turbines in a farm. So far, research in this area has been mainly based on first principles static models and the data driven modelling done has not included the loading of the upwind turbine and its impact on the wind speed downwind......Wind turbines in a wind farm, influence each other through the wind flow. Downwind turbines are in the wake of upwind turbines and the wind speed experienced at downwind turbines is hence a function of the wind speeds at upwind turbines but also the momentum extracted from the wind by the upwind....... This paper is the first where modern commercial mega watt turbines are used for data driven modelling including the upwind turbine loading by changing power reference. Obtaining the necessary data is difficult and data is therefore limited. A simple dynamic extension to the Jensen wake model is tested...

  17. Modelling Solar Energetic Particle Propagation in Realistic Heliospheric Solar Wind Conditions Using a Combined MHD and Stochastic Differential Equation Approach

    Science.gov (United States)

    Wijsen, N.; Poedts, S.; Pomoell, J.

    2017-12-01

    Solar energetic particles (SEPs) are high energy particles originating from solar eruptive events. These particles can be energised at solar flare sites during magnetic reconnection events, or in shock waves propagating in front of coronal mass ejections (CMEs). These CME-driven shocks are in particular believed to act as powerful accelerators of charged particles throughout their propagation in the solar corona. After escaping from their acceleration site, SEPs propagate through the heliosphere and may eventually reach our planet where they can disrupt the microelectronics on satellites in orbit and endanger astronauts among other effects. Therefore it is of vital importance to understand and thereby build models capable of predicting the characteristics of SEP events. The propagation of SEPs in the heliosphere can be described by the time-dependent focused transport equation. This five-dimensional parabolic partial differential equation can be solved using e.g., a finite difference method or by integrating a set of corresponding first order stochastic differential equations. In this work we take the latter approach to model SEP events under different solar wind and scattering conditions. The background solar wind in which the energetic particles propagate is computed using a magnetohydrodynamic model. This allows us to study the influence of different realistic heliospheric configurations on SEP transport. In particular, in this study we focus on exploring the influence of high speed solar wind streams originating from coronal holes that are located close to the eruption source region on the resulting particle characteristics at Earth. Finally, we discuss our upcoming efforts towards integrating our particle propagation model with time-dependent heliospheric MHD space weather modelling.

  18. Acceleration of solar wind ions to 1 MeV by electromagnetic structures upstream of the Earth's bow shock

    Science.gov (United States)

    Stasiewicz, K.; Markidis, S.; Eliasson, B.; Strumik, M.; Yamauchi, M.

    2013-05-01

    We present measurements from the ESA/NASA Cluster mission that show in situ acceleration of ions to energies of 1 MeV outside the bow shock. The observed heating can be associated with the presence of electromagnetic structures with strong spatial gradients of the electric field that lead to ion gyro-phase breaking and to the onset of chaos in ion trajectories. It results in rapid, stochastic acceleration of ions in the direction perpendicular to the ambient magnetic field. The electric potential of the structures can be compared to a field of moguls on a ski slope, capable of accelerating and ejecting the fast running skiers out of piste. This mechanism may represent the universal mechanism for perpendicular acceleration and heating of ions in the magnetosphere, the solar corona and in astrophysical plasmas. This is also a basic mechanism that can limit steepening of nonlinear electromagnetic structures at shocks and foreshocks in collisionless plasmas.

  19. Shock-to-detonation transition of RDX and NTO based composite high explosives: experiments and modeling

    Science.gov (United States)

    Baudin, Gerard; Roudot, Marie; Genetier, Marc

    2013-06-01

    Composite HMX and NTO based high explosives (HE) are widely used in ammunitions. Designing modern warheads needs robust and reliable models to compute shock ignition and detonation propagation inside HE. Comparing to a pressed HE, a composite HE is not porous and the hot-spots are mainly located at the grain - binder interface leading to a different behavior during shock-to-detonation transition. An investigation of how shock-to-detonation transition occurs inside composite HE containing RDX and NTO is proposed in this lecture. Two composite HE have been studied. The first one is HMX - HTPB 82:18. The second one is HMX - NTO - HTPB 12:72:16. These HE have been submitted to plane sustained shock waves at different pressure levels using a laboratory powder gun. Pressure signals are measured using manganin gauges inserted at several distances inside HE. The corresponding run-distances to detonation are determined using wedge test experiments where the plate impact is performed using a powder gun. Both HE exhibit a single detonation buildup curve in the distance - time diagram of shock-to-detonation transition. This feature seems a common shock-to-detonation behavior for composite HE without porosity. This behavior is also confirmed for a RDX - HTPB 85:15 based composite HE. Such a behavior is exploited to determine the heterogeneous reaction rate versus the shock pressure using a method based on the Cauchy-Riemann problem inversion. The reaction rate laws obtained allow to compute both run-distance to detonation and pressure signals.

  20. How Many Model Evaluations Are Required To Predict The AEP Of A Wind Power Plant?

    International Nuclear Information System (INIS)

    Murcia, J P; Réthoré, P E; Natarajan, A; Sørensen, J D

    2015-01-01

    Wind farm flow models have advanced considerably with the use of large eddy simulations (LES) and Reynolds averaged Navier-Stokes (RANS) computations. The main limitation of these techniques is their high computational time requirements; which makes their use for wind farm annual energy production (AEP) predictions expensive. The objective of the present paper is to minimize the number of model evaluations required to capture the wind power plant's AEP using stationary wind farm flow models. Polynomial chaos techniques are proposed based on arbitrary Weibull distributed wind speed and Von Misses distributed wind direction. The correlation between wind direction and wind speed are captured by defining Weibull-parameters as functions of wind direction. In order to evaluate the accuracy of these methods the expectation and variance of the wind farm power distributions are compared against the traditional binning method with trapezoidal and Simpson's integration rules.The wind farm flow model used in this study is the semi-empirical wake model developed by Larsen [1]. Three test cases are studied: a single turbine, a simple and a real offshore wind power plant. A reduced number of model evaluations for a general wind power plant is proposed based on the convergence of the present method for each case. (paper)

  1. Intercomparison of state-of-the-art models for wind energy resources with mesoscale models:

    Science.gov (United States)

    Olsen, Bjarke Tobias; Hahmann, Andrea N.; Sempreviva, Anna Maria; Badger, Jake; Joergensen, Hans E.

    2016-04-01

    1. Introduction Mesoscale models are increasingly being used to estimate wind conditions to identify perspective areas and sites where to develop wind farm projects. Mesoscale models are functional for giving information over extensive areas with various terrain complexities where measurements are scarce and measurement campaigns costly. Several mesoscale models and families of models are being used, and each often contains thousands of setup options. Since long-term integrations are expensive and tedious to carry out, only limited comparisons exist. To remedy this problem and for evaluating the capabilities of mesoscale models to estimate site wind conditions, a tailored benchmarking study has been co-organized by the European Wind Energy Association (EWEA) and the European Energy Research Alliance Joint Programme Wind Energy (EERA JP WIND). EWEA hosted results and ensured that participants were anonymous. The blind evaluation was performed at the Wind Energy Department of the Technical University of Denmark (DTU) with the following objectives: (1) To highlight common issues on mesoscale modelling of wind conditions on sites with different characteristics, and (2) To identify gaps and strengths of models and understand the root conditions for further evaluating uncertainties. 2. Approach Three experimental sites were selected: FINO 3 (offshore, GE), Høvsore (coastal, DK), and Cabauw (land-based, NL), and three other sites without observations based on . The three mast sites were chosen because the availability of concurrent suitable time series of vertical profiles of winds speed and other surface parameters. The participants were asked to provide hourly time series of wind speed, wind direction, temperature, etc., at various vertical heights for a complete year. The methodology used to derive the time series was left to the choice of the participants, but they were asked for a brief description of their model and many other parameters (e.g., horizontal and

  2. Atmospheric stability-dependent infinite wind-farm models and the wake-decay coefficient

    OpenAIRE

    Peña, Alfredo; Rathmann, Ole

    2014-01-01

    We extend the infinite wind-farm boundary-layer (IWFBL) model of Frandsen to take into account atmospheric static stability effects. This extended model is compared with the IWFBL model of Emeis and to the Park wake model used inWind Atlas Analysis and Application Program (WAsP), which is computed for an infinite wind farm. The models show similar behavior for the wind-speed reduction when accounting for a number of surface roughness lengths, turbine to turbine separations and wind speeds und...

  3. An intercomparison of mesoscale models at simple sites for wind energy applications

    DEFF Research Database (Denmark)

    Olsen, Bjarke Tobias; Hahmann, Andrea N.; Sempreviva, Anna Maria

    2017-01-01

    of the output from 25 NWP models is presented for three sites in northern Europe characterized by simple terrain. The models are evaluated sing a number of statistical properties relevant to wind energy and verified with observations. On average the models have small wind speed biases offshore and aloft ( ... decreases the accuracy of the models, but we found no evidence that using a grid spacing smaller than 3 km is necessary for these simple sites. Applying the models to a simple wind energy offshore wind farm highlights the importance of capturing the correct distributions of wind speed and direction....

  4. Ionization and thermal equilibrium models for O star winds based on time-independent radiation-driven wind theory

    Science.gov (United States)

    Drew, J. E.

    1989-01-01

    Ab initio ionization and thermal equilibrium models are calculated for the winds of O stars using the results of steady state radiation-driven wind theory to determine the input parameters. Self-consistent methods are used for the roles of H, He, and the most abundant heavy elements in both the statistical and the thermal equilibrium. The model grid was chosen to encompass all O spectral subtypes and the full range of luminosity classes. Results of earlier modeling of O star winds by Klein and Castor (1978) are reproduced and used to motivate improvements in the treatment of the hydrogen equilibrium. The wind temperature profile is revealed to be sensitive to gross changes in the heavy element abundances, but insensitive to other factors considered such as the mass-loss rate and velocity law. The reduced wind temperatures obtained in observing the luminosity dependence of the Si IV lambda 1397 wind absorption profile are shown to eliminate any prospect of explaining the observed O VI lambda 1036 line profiles in terms of time-independent radiation-driven wind theory.

  5. Ionization and thermal equilibrium models for O star winds based on time-independent radiation-driven wind theory

    International Nuclear Information System (INIS)

    Drew, J.E.

    1989-01-01

    Ab initio ionization and thermal equilibrium models are calculated for the winds of O stars using the results of steady state radiation-driven wind theory to determine the input parameters. Self-consistent methods are used for the roles of H, He, and the most abundant heavy elements in both the statistical and the thermal equilibrium. The model grid was chosen to encompass all O spectral subtypes and the full range of luminosity classes. Results of earlier modeling of O star winds by Klein and Castor (1978) are reproduced and used to motivate improvements in the treatment of the hydrogen equilibrium. The wind temperature profile is revealed to be sensitive to gross changes in the heavy element abundances, but insensitive to other factors considered such as the mass-loss rate and velocity law. The reduced wind temperatures obtained in observing the luminosity dependence of the Si IV lambda 1397 wind absorption profile are shown to eliminate any prospect of explaining the observed O VI lambda 1036 line profiles in terms of time-independent radiation-driven wind theory. 55 refs

  6. Hydrodynamic modelling of small upland lakes under strong wind forcing

    Science.gov (United States)

    Morales, L.; French, J.; Burningham, H.

    2012-04-01

    Small lakes (Area important source of water supply. Lakes also provide an important sedimentary archive of environmental and climate changes and ecosystem function. Hydrodynamic controls on the transport and distribution of lake sediments, and also seasonal variations in thermal structure due to solar radiation, precipitation, evaporation and mixing and the complex vertical and horizontal circulation patterns induced by the action of wind are not very well understood. The work presented here analyses hydrodynamic motions present in small upland lakes due to circulation and internal scale waves, and their linkages with the distribution of bottom sediment accumulation in the lake. For purpose, a 3D hydrodynamic is calibrated and implemented for Llyn Conwy, a small oligotrophic upland lake in North Wales, UK. The model, based around the FVCOM open source community model code, resolves the Navier-Stokes equations using a 3D unstructured mesh and a finite volume scheme. The model is forced by meteorological boundary conditions. Improvements made to the FVCOM code include a new graphical user interface to pre- and post process the model input and results respectively, and a JONSWAT wave model to include the effects of wind-wave induced bottom stresses on lake sediment dynamics. Modelled internal scale waves are validated against summer temperature measurements acquired from a thermistor chain deployed at the deepest part of the lake. Seiche motions were validated using data recorded by high-frequency level sensors around the lake margins, and the velocity field and the circulation patterns were validated using the data recorded by an ADCP and GPS drifters. The model is shown to reproduce the lake hydrodynamics and reveals well-developed seiches at different frequencies superimposed on wind-driven circulation patterns that appear to control the distribution of bottom sediments in this small upland lake.

  7. A Self-consistent Model of the Coronal Heating and Solar Wind Acceleration Including Compressible and Incompressible Heating Processes

    Science.gov (United States)

    Shoda, Munehito; Yokoyama, Takaaki; Suzuki, Takeru K.

    2018-02-01

    We propose a novel one-dimensional model that includes both shock and turbulence heating and qualify how these processes contribute to heating the corona and driving the solar wind. Compressible MHD simulations allow us to automatically consider shock formation and dissipation, while turbulent dissipation is modeled via a one-point closure based on Alfvén wave turbulence. Numerical simulations were conducted with different photospheric perpendicular correlation lengths {λ }0, which is a critical parameter of Alfvén wave turbulence, and different root-mean-square photospheric transverse-wave amplitudes δ {v}0. For the various {λ }0, we obtain a low-temperature chromosphere, high-temperature corona, and supersonic solar wind. Our analysis shows that turbulence heating is always dominant when {λ }0≲ 1 {Mm}. This result does not mean that we can ignore the compressibility because the analysis indicates that the compressible waves and their associated density fluctuations enhance the Alfvén wave reflection and therefore the turbulence heating. The density fluctuation and the cross-helicity are strongly affected by {λ }0, while the coronal temperature and mass-loss rate depend weakly on {λ }0.

  8. A high performance finite element model for wind farm modeling in forested areas

    Science.gov (United States)

    Owen, Herbert; Avila, Matias; Folch, Arnau; Cosculluela, Luis; Prieto, Luis

    2015-04-01

    Wind energy has grown significantly during the past decade and is expected to continue growing in the fight against climate change. In the search for new land where the impact of the wind turbines is small several wind farms are currently being installed in forested areas. In order to optimize the distribution of the wind turbines within the wind farm the Reynolds Averaged Navier Stokes equations are solved over the domain of interest using either commercial or in house codes. The existence of a canopy alters the Atmospheric Boundary Layer wind profile close to the ground. Therefore in order to obtain a more accurate representation of the flow in forested areas modification to both the Navier Stokes and turbulence variables equations need to be introduced. Several existing canopy models have been tested in an academic problem showing that the one proposed by Sogachev et. al gives the best results. This model has been implemented in an in house CFD solver named Alya. It is a high performance unstructured finite element code that has been designed from scratch to be able to run in the world's biggest supercomputers. Its scalabililty has recently been tested up to 100000 processors in both American and European supercomputers. During the past three years the code has been tuned and tested for wind energy problems. Recent efforts have focused on the canopy model following industry needs. In this work we shall benchmark our results in a wind farm that is currently being designed by Scottish Power and Iberdrola in Scotland. This is a very interesting real case with extensive experimental data from five different masts with anemometers at several heights. It is used to benchmark both the wind profiles and the speed up obtained between different masts. Sixteen different wind directions are simulated. The numerical model provides very satisfactory results for both the masts that are affected by the canopy and those that are not influenced by it.

  9. Model of a generator end-winding cage

    International Nuclear Information System (INIS)

    Leger, A.C.; Fanton, J.P.; Davies, C.

    1994-09-01

    This document presents some studies concerning the vibratory characterization of particular structures called: generator end-winding cages. These structures are mainly made up of the endings of armature windings. The question of their good mechanical behaviour is of prime importance, since they are submitted to high electromagnetic efforts during the different electrical ratings encountered during operation. The designer (GEC-Alsthom) and the user (EDF) have both undertaken numerical calculations in order to characterize a given machine, in this case a 600 MW bipolar generator; it appeared interesting to compare such calculations. The models realized respectively by GEC-Alsthom and EDF make use of different techniques and hypotheses. GEC-Alsthom represents the sets of rods and spacers by plates, which properties are determined by a pre-processor. The model is simplified to take into account the existing symmetries. It takes profit of previous experience and aims at a fast utilisation. The EDF model tends to allow a further comprehensive calculation, form the electromagnetic efforts to the determination of local stresses. The whole set of the constituting elements of the structure is modelled by beams, which leads to an important size for the model (21 000 degrees of freedom). The validation performed on the two models has been focused on the comparison between respective results and also with experimental results. Each model provides values for the first eigenfrequencies and the associated modes shapes. (authors). 3 refs., 3 figs., 2 tabs

  10. LINCOM wind flow model: Application to complex terrain with thermal stratification

    DEFF Research Database (Denmark)

    Dunkerley, F.; Moreno, J.; Mikkelsen, T.

    2001-01-01

    LINCOM is a fast linearised and spectral wind flow model for use over hilly terrain. It is designed to rapidly generate mean wind field predictions which provide input to atmospheric dispersion models and wind engineering applications. The thermal module, LINCOM-T, has recently been improved to p...

  11. Use of high-dose nandrolone aggravates septic shock in a mouse model

    Directory of Open Access Journals (Sweden)

    Che Lin

    2011-06-01

    Full Text Available Nandrolone, an anabolic-androgenic steroid, is widely misused by athletes who wish to rapidly increase muscle mass and performance. An increasing number of reports have indicated that nandrolone may affect and modulate the immune system. This study aimed to investigate the effects of nandrolone on septic shock-caused immune responses and the cellular mechanism of action using a sepsis murine model. Before septic shock induction, BALB/c mice were given a high dose of nandrolone or peanut oil only. After septic shock induction, mice were sacrificed at different time points. Their blood and tissue specimens were analyzed. It was found that the high-dose nandrolone group had significantly increased mortality compared with the control group (p<0.001. The serum malondialdehyde level was significantly increased in the high-dose group compared with the control group. Animals administered a high dose of nandrolone had significantly increased hepatic tumor necrosis factor-α or splenic interferon-γ at 0 and 6 hours. In lung tissue, insulin-like growth factor-1, insulin-like growth factor binding proteins (IGFBPs and insulin-like growth factor-1 receptor, and IGFBP1 and IGFBP2 mRNA expression were increased in the high-dose nandrolone group at 6 hours. Nandrolone abuse may hasten the death of patients with septic shock and may aggravate septic shock in mice.

  12. Atomic Scale Modeling of Laser Shock induced Spallation of FCC Metals

    Science.gov (United States)

    Galitskiy, Sergey; Ivanov, Dmitry; Dongare, Avinash

    2017-06-01

    An atomistic-continuum approach combining the molecular dynamics (MD) simulations with a two temperature model (TTM) was used to simulate the laser induced shock loading and spall failure in FCC metals. The combined TTM-MD approach incorporates the laser energy absorption, fast electron heat conduction, and the electron-phonon non-equilibrium interaction, as well as the shock wave propagation, plastic deformation, and failure processes (spallation) in metals at atomic scales. The simulations are carried out for systems corresponding to dimensions of up to 500 nm in the loading direction for various Cu and Al microstructures and laser loading conditions (intensity and pulse durations). The front end of the metal that absorbs the laser energy is observed to undergo melting and a shock wave is generated that travels towards the rear surface. The shock wave reaches the rear surface, reflects, and interacts with the its tail to create a high triaxial tensile stress region and initiates spall failure (void nucleation). The predicted values of spall strength and wave velocities of shock waves compare very well with experimentally reported values at these dimensions and laser loading conditions. The effect of microstructure and the defect evolution in the system on the predicted spall failure behavior will be presented.

  13. Wind and Water Power Modeling and Simulation at the NWTC (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2015-02-01

    Researchers and engineers at the National Wind Technology Center have developed a wide range of computer modeling and simulation tools to support the wind and water power industries with state-of-the-art design and analysis capabilities.

  14. Modeling shock waves in an ideal gas: Going beyond the Navier-Stokes level

    International Nuclear Information System (INIS)

    Holian, B.L.; Patterson, C.W.; Mareschal, M.; Salomons, E.

    1993-01-01

    We model a shock wave in an ideal gas by solving a modified version of the compressible Navier-Stokes equations of hydrodynamics, where, following an earlier conjecture by Holian [Phys. Rev. A 37, 2562 (1988)], we use the temperature in the direction of shock propagation T xx , rather than the average temperature T=(T xx +T yy +T zz )/3, in the evaluation of the linear transport coefficients. The results are found to agree much better with the molecular-dynamics simulations of Salomons and Mareschal [Phys. Rev. Lett. 69, 269 (1992)] than standard Navier-Stokes theory

  15. Laser Beam Propagation Through Inhomogeneous Media with Shock-Like Profiles: Modeling and Computing

    Science.gov (United States)

    Adamovsky, Grigory; Ida, Nathan

    1997-01-01

    Wave propagation in inhomogeneous media has been studied for such diverse applications as propagation of radiowaves in atmosphere, light propagation through thin films and in inhomogeneous waveguides, flow visualization, and others. In recent years an increased interest has been developed in wave propagation through shocks in supersonic flows. Results of experiments conducted in the past few years has shown such interesting phenomena as a laser beam splitting and spreading. The paper describes a model constructed to propagate a laser beam through shock-like inhomogeneous media. Numerical techniques are presented to compute the beam through such media. The results of computation are presented, discussed, and compared with experimental data.

  16. Distributed Model Predictive Control of A Wind Farm for Optimal Active Power Control

    DEFF Research Database (Denmark)

    Zhao, Haoran; Wu, Qiuwei; Guo, Qinglai

    2015-01-01

    , which combines the clustering, linear identification and pattern recognition techniques. The developed model, consisting of 47 affine dynamics, is verified by the comparison with a widely-used nonlinear wind turbine model. It can be used as a predictive model for the Model Predictive Control (MPC......This paper presents a dynamic discrete-time Piece- Wise Affine (PWA) model of a wind turbine for the optimal active power control of a wind farm. The control objectives include both the power reference tracking from the system operator and the wind turbine mechanical load minimization. Instead...... of partial linearization of the wind turbine model at selected operating points, the nonlinearities of the wind turbine model are represented by a piece-wise static function based on the wind turbine system inputs and state variables. The nonlinearity identification is based on the clustering-based algorithm...

  17. Social Skills Difficulty: Model of Culture Shock for International Graduate Students

    Science.gov (United States)

    Chapdelaine, Raquel Faria; Alexitch, Louise R.

    2004-01-01

    This study expanded and tested Furnham and Bochner's (1982) model of culture shock, employing a sample of 156 male international students in a Canadian university. Path analysis was used to assess the effects of cultural differences, size of co-national group, family status, cross-cultural experience, and social interaction with hosts on culture…

  18. Wind turbine fatigue damage evaluation based on a linear model and a spectral method

    DEFF Research Database (Denmark)

    Tibaldi, Carlo; Henriksen, Lars Christian; Hansen, Morten Hartvig

    2015-01-01

    presents a method to estimate wind turbine fatigue damage suited for optimization design applications. The method utilizes a high-order linear wind turbine model. The model comprehends a detailed description of the wind turbine and the controller. The fatigue is computed with a spectral method applied...... to power spectral densities of wind turbine sensor responses to turbulent wind. In this paper, the model is validated both in time domain and frequency domain with a nonlinear aeroservoelastic model. The approach is compared quantitatively against fatigue damage obtained from the power spectra of time...

  19. Stochastic Prediction of Wind Generating Resources Using the Enhanced Ensemble Model for Jeju Island’s Wind Farms in South Korea

    OpenAIRE

    Deockho Kim; Jin Hur

    2017-01-01

    Due to the intermittency of wind power generation, it is very hard to manage its system operation and planning. In order to incorporate higher wind power penetrations into power systems that maintain secure and economic power system operation, an accurate and efficient estimation of wind power outputs is needed. In this paper, we propose the stochastic prediction of wind generating resources using an enhanced ensemble model for Jeju Island’s wind farms in South Korea. When selecting the poten...

  20. A Critical Assessment of Burn Models Available for Implementation into a Computer Code to Model Shock Initiation of Heterogeneous Explosives

    Science.gov (United States)

    1989-07-01

    includes a dependence on the shock strength has been described by Damamme and Missonier [391 and is known as the Krakatoa model. It has the form dA...is a function which depends on the shock strength, and Am and ’a are constants. K(P) = pn (27) and H(A) = (Q - A) [2n (1 - 2/3 (28) 17 The Krakatoa ...with the model. Both the DAGMAR and Krakatoa models are also inappropriate, as neither addresses the problem of particle size effects. The multiphase

  1. The Sandia MEMS Passive Shock Sensor : FY08 testing for functionality, model validation, and technology readiness.

    Energy Technology Data Exchange (ETDEWEB)

    Walraven, Jeremy Allen; Blecke, Jill; Baker, Michael Sean; Clemens, Rebecca C.; Mitchell, John Anthony; Brake, Matthew Robert; Epp, David S.; Wittwer, Jonathan W.

    2008-10-01

    This report summarizes the functional, model validation, and technology readiness testing of the Sandia MEMS Passive Shock Sensor in FY08. Functional testing of a large number of revision 4 parts showed robust and consistent performance. Model validation testing helped tune the models to match data well and identified several areas for future investigation related to high frequency sensitivity and thermal effects. Finally, technology readiness testing demonstrated the integrated elements of the sensor under realistic environments.

  2. Nonrelativistic Perpendicular Shocks Modeling Young Supernova Remnants: Nonstationary Dynamics and Particle Acceleration at Forward and Reverse Shocks

    Science.gov (United States)

    Wieland, Volkmar; Pohl, Martin; Niemiec, Jacek; Rafighi, Iman; Nishikawa, Ken-Ichi

    2016-03-01

    For parameters that are applicable to the conditions at young supernova remnants, we present results of two-dimensional, three-vector (2D3V) particle-in-cell simulations of a non-relativistic plasma shock with a large-scale perpendicular magnetic field inclined at a 45^\\circ angle to the simulation plane to approximate three-dimensional (3D) physics. We developed an improved clean setup that uses the collision of two plasma slabs with different densities and velocities, leading to the development of two distinctive shocks and a contact discontinuity. The shock formation is mediated by Weibel-type filamentation instabilities that generate magnetic turbulence. Cyclic reformation is observed in both shocks with similar period, for which we note global variations due to shock rippling and local variations arising from turbulent current filaments. The shock rippling occurs on spatial and temporal scales produced by the gyro-motions of shock-reflected ions. The drift motion of electrons and ions is not a gradient drift, but is commensurate with {\\boldsymbol{E}}× {\\boldsymbol{B}} drift. We observe a stable supra-thermal tail in the ion spectra, but no electron acceleration because the amplitude of the Buneman modes in the shock foot is insufficient for trapping relativistic electrons. We see no evidence of turbulent reconnection. A comparison with other two-dimensional (2D) simulation results suggests that the plasma beta and the ion-to-electron mass ratio are not decisive for efficient electron acceleration, but the pre-acceleration efficacy might be reduced with respect to the 2D results once 3D effects are fully accounted for. Other microphysical factors may also play a part in limiting the amplitude of the Buneman waves or preventing the return of electrons to the foot region.

  3. Scaling up from field to region for wind erosion prediction using a field-scale wind erosion model and GIS

    Science.gov (United States)

    Zobeck, T.M.; Parker, N.C.; Haskell, S.; Guoding, K.

    2000-01-01

    Factors that affect wind erosion such as surface vegetative and other cover, soil properties and surface roughness usually change spatially and temporally at the field-scale to produce important field-scale variations in wind erosion. Accurate estimation of wind erosion when scaling up from fields to regions, while maintaining meaningful field-scale process details, remains a challenge. The objectives of this study were to evaluate the feasibility of using a field-scale wind erosion model with a geographic information system (GIS) to scale up to regional levels and to quantify the differences in wind erosion estimates produced by different scales of soil mapping used as a data layer in the model. A GIS was used in combination with the revised wind erosion equation (RWEQ), a field-scale wind erosion model, to estimate wind erosion for two 50 km2 areas. Landsat Thematic Mapper satellite imagery from 1993 with 30 m resolution was used as a base map. The GIS database layers included land use, soils, and other features such as roads. The major land use was agricultural fields. Data on 1993 crop management for selected fields of each crop type were collected from local government agency offices and used to 'train' the computer to classify land areas by crop and type of irrigation (agroecosystem) using commercially available software. The land area of the agricultural land uses was overestimated by 6.5% in one region (Lubbock County, TX, USA) and underestimated by about 21% in an adjacent region (Terry County, TX, USA). The total estimated wind erosion potential for Terry County was about four times that estimated for adjacent Lubbock County. The difference in potential erosion among the counties was attributed to regional differences in surface soil texture. In a comparison of different soil map scales in Terry County, the generalised soil map had over 20% more of the land area and over 15% greater erosion potential in loamy sand soils than did the detailed soil map. As

  4. Offshore Code Comparison Collaboration within IEA Wind Task 23: Phase IV Results Regarding Floating Wind Turbine Modeling; Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Jonkman, J.; Larsen, T.; Hansen, A.; Nygaard, T.; Maus, K.; Karimirad, M.; Gao, Z.; Moan, T.; Fylling, I.

    2010-04-01

    Offshore wind turbines are designed and analyzed using comprehensive simulation codes that account for the coupled dynamics of the wind inflow, aerodynamics, elasticity, and controls of the turbine, along with the incident waves, sea current, hydrodynamics, and foundation dynamics of the support structure. This paper describes the latest findings of the code-to-code verification activities of the Offshore Code Comparison Collaboration, which operates under Subtask 2 of the International Energy Agency Wind Task 23. In the latest phase of the project, participants used an assortment of codes to model the coupled dynamic response of a 5-MW wind turbine installed on a floating spar buoy in 320 m of water. Code predictions were compared from load-case simulations selected to test different model features. The comparisons have resulted in a greater understanding of offshore floating wind turbine dynamics and modeling techniques, and better knowledge of the validity of various approximations. The lessons learned from this exercise have improved the participants' codes, thus improving the standard of offshore wind turbine modeling.

  5. Measurements and modeling of the wind profile up to 600 meters at a flat coastal site

    DEFF Research Database (Denmark)

    Batchvarova, Ekaterina; Gryning, Sven-Erik; Floors, Rogier Ralph

    2014-01-01

    This study shows long-term ABL wind profile features by comparing long-range wind lidar measurements and the output from a mesoscale model. The study is based on one-year pulsed lidar (Wind Cube 70) measurements of wind speed and direction from 100 to 600 meters with vertical resolution of 50......) and shape (k) parameters of the Weibull dis-tribution above 100 m. The latter signifies that the model suggests a wider distri-bution in the wind speed compared to measurements....... meters and time resolution of 10 minutes at a coastal site on the West coast of Denmark and WRF ARW (NCAR) simulations for the same period. The model evaluation is performed based on wind speed, wind direction, as well as statistical parameters of the Weibull distribution of the wind speed time series...

  6. Modelling Wind Turbine Failures based on Weather Conditions

    Science.gov (United States)

    Reder, Maik; Melero, Julio J.

    2017-11-01

    A large proportion of the overall costs of a wind farm is directly related to operation and maintenance (O&M) tasks. By applying predictive O&M strategies rather than corrective approaches these costs can be decreased significantly. Here, especially wind turbine (WT) failure models can help to understand the components’ degradation processes and enable the operators to anticipate upcoming failures. Usually, these models are based on the age of the systems or components. However, latest research shows that the on-site weather conditions also affect the turbine failure behaviour significantly. This study presents a novel approach to model WT failures based on the environmental conditions to which they are exposed to. The results focus on general WT failures, as well as on four main components: gearbox, generator, pitch and yaw system. A penalised likelihood estimation is used in order to avoid problems due to for example highly correlated input covariates. The relative importance of the model covariates is assessed in order to analyse the effect of each weather parameter on the model output.

  7. Fatigue reliability and effective turbulence models in wind farms

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Frandsen, Sten Tronæs; Tarp-Johansen, N.J.

    2007-01-01

    Offshore wind farms with 100 or more wind turbines are expected to be installed many places during the next years. Behind a wind turbine a wake is formed where the mean wind speed decreases slightly and the turbulence intensity increases significantly. This increase in turbulence intensity in wak...

  8. ANISOTROPIC WINDS FROM CLOSE-IN EXTRASOLAR PLANETS

    International Nuclear Information System (INIS)

    Stone, James M.; Proga, Daniel

    2009-01-01

    We present two-dimensional hydrodynamic models of thermally driven winds from highly irradiated, close-in extrasolar planets. We adopt a very simple treatment of the radiative heating processes at the base of the wind, and instead focus on the differences between the properties of outflows in multidimensions in comparison to spherically symmetric models computed with the same methods. For hot (T ∼> 2 x 10 4 K) or highly ionized gas, we find that strong (supersonic) polar flows are formed above the planet surface which produce weak shocks and outflow on the night side. In comparison to a spherically symmetric wind with the same parameters, the sonic surface on the day side is much closer to the planet surface in multidimensions, and the total mass-loss rate is reduced by almost a factor of 4. We also compute the steady-state structure of interacting planetary and stellar winds. Both winds end in a termination shock, with a parabolic contact discontinuity which is draped over the planet separating the two shocked winds. The planetary wind termination shock and the sonic surface in the wind are well separated, so that the mass-loss rate from the planet is essentially unaffected. However, the confinement of the planetary wind to the small volume bounded by the contact discontinuity greatly enhances the column density close to the planet, which might be important for the interpretation of observations of absorption lines formed by gas surrounding transiting planets.

  9. Developments of the offshore wind turbine wake model Fuga

    DEFF Research Database (Denmark)

    Ott, Søren; Nielsen, Morten

    with the modified equations. - Meandering. Meandering has been included in the form of a post processing of the model results that bend and twist the wake centreline. The meandering centrelines are calculated using a Gaussian process developed on the basis of measured spectra. An analysis of meteorological data...... from Horns Rev has been made in order to quantify the impact of non-stationarity of the wind direction. The results are generalized so as to account for the uncertainties imposed by a ten minute mean value trend as well as by the distance between turbines and the met mast. The old model has been...... with data is made. Even if the model predictions fall within estimated error bars, the model seems to over predict the measured efficiencies by a few percent. The model works best for unstable, neutral and light stable conditions whereas the results for stable and very stable conditions are questionable. We...

  10. Multivariate Modelling of Extreme Load Combinations for Wind Turbines

    DEFF Research Database (Denmark)

    Dimitrov, Nikolay Krasimirov

    2015-01-01

    We demonstrate a model for estimating the joint probability distribution of two load components acting on a wind turbine blade cross section. The model addresses the problem of modelling the probability distribution of load time histories with large periodic components by dividing the signal...... into a periodic part and a perturbation term, where each part has a known probability distribution. The proposed model shows good agreement with simulated data under stationary conditions, and a design load envelope based on this model is comparable to the load envelope estimated using the standard procedure...... for determining contemporaneous loads. By defining a joint probability distribution and full return-period contours for multiple load components, the suggested procedure gives the possibility for determining the most critical loading direction in a blade cross section, or for carrying out reliability analysis...

  11. Filament winding cylinders. II - Validation of the process model

    Science.gov (United States)

    Calius, Emilio P.; Lee, Soo-Yong; Springer, George S.

    1990-01-01

    Analytical and experimental studies were performed to validate the model developed by Lee and Springer for simulating the manufacturing process of filament wound composite cylinders. First, results calculated by the Lee-Springer model were compared to results of the Calius-Springer thin cylinder model. Second, temperatures and strains calculated by the Lee-Springer model were compared to data. The data used in these comparisons were generated during the course of this investigation with cylinders made of Hercules IM-6G/HBRF-55 and Fiberite T-300/976 graphite-epoxy tows. Good agreement was found between the calculated and measured stresses and strains, indicating that the model is a useful representation of the winding and curing processes.

  12. The suitability of the IEC 61400-2 wind model for small wind turbines operating in the built environment★

    Directory of Open Access Journals (Sweden)

    Evans Samuel P.

    2017-01-01

    Full Text Available This paper investigates the applicability of the assumed wind fields in International Electrotechnical Commission (IEC standard 61400 Part 2, the design standard for small wind turbines, for a turbine operating in the built environment, and the effects these wind fields have on the predicted performance of a 5 kW Aerogenesis turbine using detailed aeroelastic models developed in Fatigue Aerodynamics Structures and Turbulence (FAST. Detailed wind measurements were acquired at two built environment sites: from the rooftop of a Bunnings Ltd. warehouse at Port Kennedy (PK (Perth, Australia and from the small wind turbine site at the University of Newcastle at Callaghan (Newcastle, Australia. For both sites, IEC 61400-2 underestimates the turbulence intensity for the majority of the measured wind speeds. A detailed aeroelastic model was built in FAST using the assumed wind field from IEC 61400-2 and the measured wind fields from PK and Callaghan as an input to predict key turbine performance parameters. The results of this analysis show a modest increase in the predicted mean power for the higher turbulence regimes of PK and Callaghan as well as higher variation in output power. Predicted mean rotor thrust and blade flapwise loading showed a minor increase due to higher turbulence, with mean predicted torque almost identical but with increased variations due to higher turbulence. Damage equivalent loading for the blade flapwise moment was predicted to be 58% and 11% higher for a turbine operating at Callaghan and PK respectively, when compared with IEC 61400-2 wind field. Time series plots for blade flapwise moments and power spectral density plots in the frequency domain show consistently higher blade flapwise bending moments for the Callaghan site with both the sites showing a once-per-revolution response.

  13. Alternative wind power modeling methods using chronological and load duration curve production cost models

    Energy Technology Data Exchange (ETDEWEB)

    Milligan, M R

    1996-04-01

    As an intermittent resource, capturing the temporal variation in windpower is an important issue in the context of utility production cost modeling. Many of the production cost models use a method that creates a cumulative probability distribution that is outside the time domain. The purpose of this report is to examine two production cost models that represent the two major model types: chronological and load duration cure models. This report is part of the ongoing research undertaken by the Wind Technology Division of the National Renewable Energy Laboratory in utility modeling and wind system integration.

  14. Surface wind mixing in the Regional Ocean Modeling System (ROMS)

    Science.gov (United States)

    Robertson, Robin; Hartlipp, Paul

    2017-12-01

    Mixing at the ocean surface is key for atmosphere-ocean interactions and the distribution of heat, energy, and gases in the upper ocean. Winds are the primary force for surface mixing. To properly simulate upper ocean dynamics and the flux of these quantities within the upper ocean, models must reproduce mixing in the upper ocean. To evaluate the performance of the Regional Ocean Modeling System (ROMS) in replicating the surface mixing, the results of four different vertical mixing parameterizations were compared against observations, using the surface mixed layer depth, the temperature fields, and observed diffusivities for comparisons. The vertical mixing parameterizations investigated were Mellor- Yamada 2.5 level turbulent closure (MY), Large- McWilliams- Doney Kpp (LMD), Nakanishi- Niino (NN), and the generic length scale (GLS) schemes. This was done for one temperate site in deep water in the Eastern Pacific and three shallow water sites in the Baltic Sea. The model reproduced the surface mixed layer depth reasonably well for all sites; however, the temperature fields were reproduced well for the deep site, but not for the shallow Baltic Sea sites. In the Baltic Sea, the models overmixed the water column after a few days. Vertical temperature diffusivities were higher than those observed and did not show the temporal fluctuations present in the observations. The best performance was by NN and MY; however, MY became unstable in two of the shallow simulations with high winds. The performance of GLS nearly as good as NN and MY. LMD had the poorest performance as it generated temperature diffusivities that were too high and induced too much mixing. Further observational comparisons are needed to evaluate the effects of different stratification and wind conditions and the limitations on the vertical mixing parameterizations.

  15. Simulation Model of an Active-stall Fixed-speed Wind Turbine Controller

    DEFF Research Database (Denmark)

    Jauch, Clemens; Hansen, Anca D.; Soerensen, Poul

    2004-01-01

    This paper describes an active-stall wind turbine controller. The objective is to develop a general model of an active stall controller in order to simulate the operation of grid connected active stall wind turbines. The active stall turbine concept and its control strategies are presented...... and evaluated by simulations. The presented controller is described for continuous operation under all wind speeds from start-up wind speed to shut down wind speed. Due to its parametric implementation it is general i.e. it can represent different active stall wind turbine controllers and can be implemented...

  16. Wind-induced response of CN-Tower: comparison of model and full scale

    International Nuclear Information System (INIS)

    Monbaliu, J.; Ruigrok, C.; Isyumov, N.

    1985-01-01

    The approximately 555-m high CN Communications Tower in Toronto has now been operational for nearly a decade. The action of wind on this tower was extensively tested at the Boundary Layer Wind Tunnel Laboratory during the design of the tower. This study provided information on the overall wind loads and responses of the structure, the action of wind on various components, and its effects on the tower performance including transmission quality. A program of monitoring and recording the wind induced response and various meteorological data was started in 1977. This paper presents some results of that program and makes comparisons with wind tunnel model data. (author)

  17. Simulation model of an active-stall fixed-speed wind turbine controller

    Energy Technology Data Exchange (ETDEWEB)

    Jauch, C.; Hansen, A.D.; Sorensen, P.; Blaabjerg, F.

    2004-07-01

    This paper describes an active-stall wind turbine controller. The objective is to develop a general model of an active stall controller in order to simulate the operation of grid connected active stall wind turbines. The active stall turbine concept and its control strategies are presented and evaluated by simulations. The presented controller is described for continuous operation under all wind speeds from start-up wind speed to shut down wind speed. Due to its parametric implementation it is general i. e. it can represent different active stall wind turbine controllers and can be implemented in different simulation tools. (author)

  18. Systematic Wind Farm Measurement Data Filtering Tool for Wake Model Calibration

    DEFF Research Database (Denmark)

    Rethore, Pierre-Elouan Mikael; Johansen, Nicholas Alan; Frandsen, Sten Tronæs

    A set of systematic methods for characterizing the sensors of a wind farm and using these sensors to filter more accurately large volumes of measurement data is proposed. These methods are based on the experience accumulated while processing datasets from two large offshore wind farms in Denmark....... Both wake model developers and wind farm operators seeking to determine how the wind farm operates under specific conditions can find these methods valuable. The methods are general and can be applied successfully to any wind farm by taking into consideration the specific aspects of each wind farm....

  19. ARIMA-Based Time Series Model of Stochastic Wind Power Generation

    DEFF Research Database (Denmark)

    Chen, Peiyuan; Pedersen, Troels; Bak-Jensen, Birgitte

    2010-01-01

    This paper proposes a stochastic wind power model based on an autoregressive integrated moving average (ARIMA) process. The model takes into account the nonstationarity and physical limits of stochastic wind power generation. The model is constructed based on wind power measurement of one year from...... the Nysted offshore wind farm in Denmark. The proposed limited-ARIMA (LARIMA) model introduces a limiter and characterizes the stochastic wind power generation by mean level, temporal correlation and driving noise. The model is validated against the measurement in terms of temporal correlation...... and probability distribution. The LARIMA model outperforms a first-order transition matrix based discrete Markov model in terms of temporal correlation, probability distribution and model parameter number. The proposed LARIMA model is further extended to include the monthly variation of the stochastic wind power...

  20. Advanced modelling of doubly fed induction generator wind turbine under network disturbance

    DEFF Research Database (Denmark)

    Seman, S.; Iov, Florin; Niiranen, J.

    This paper presents a variable speed wind turbine simulator. The simulator is used for a 2 MW wind turbine transient behavior study during a short-term symmetrical network disturbance. The mechanical part of wind turbine model consists of the rotor aerodynamic model, the wind turbine control...... and the drive train model. The Doubly Fed Induction Generator (DFIG) is represented by an analytical two-axis model with constant lumped parameters and by Finite Element Method (FEM) based model. The model of the DFIG is coupled with the model of the passive crowbar protected and DTC controlled frequency...

  1. A Shock-Refracted Acoustic Wave Model for the Prediction of Screech Amplitude in Supersonic Jets

    Science.gov (United States)

    Kandula, Max

    2007-01-01

    A physical model is proposed for the estimation of the screech amplitude in underexpanded supersonic jets. The model is based on the hypothesis that the interaction of a plane acoustic wave with stationary shock waves provides amplification of the transmitted acoustic wave upon traversing the shock. Powell's discrete source model for screech incorporating a stationary array of acoustic monopoles is extended to accommodate variable source strength. The proposed model reveals that the acoustic sources are of increasing strength with downstream distance. It is shown that the screech amplitude increases with the fuiiy expanded jet Mach number. Comparisons of predicted screech amplitude with available test data show satisfactory agreement. The effect of variable source strength on directivity of the fundamental (first harmonic, lowest frequency mode) and the second harmonic (overtone) is found to be unimportant with regard to the principal lobe (main or major lobe) of considerable relative strength, and is appreciable only in the secondary or minor lobes (of relatively weaker strength

  2. Stochastic modeling for reliability shocks, burn-in and heterogeneous populations

    CERN Document Server

    Finkelstein, Maxim

    2013-01-01

    Focusing on shocks modeling, burn-in and heterogeneous populations, Stochastic Modeling for Reliability naturally combines these three topics in the unified stochastic framework and presents numerous practical examples that illustrate recent theoretical findings of the authors.  The populations of manufactured items in industry are usually heterogeneous. However, the conventional reliability analysis is performed under the implicit assumption of homogeneity, which can result in distortion of the corresponding reliability indices and various misconceptions. Stochastic Modeling for Reliability fills this gap and presents the basics and further developments of reliability theory for heterogeneous populations. Specifically, the authors consider burn-in as a method of elimination of ‘weak’ items from heterogeneous populations. The real life objects are operating in a changing environment. One of the ways to model an impact of this environment is via the external shocks occurring in accordance with some stocha...

  3. Linear and non-linear autoregressive models for short-term wind speed forecasting

    International Nuclear Information System (INIS)

    Lydia, M.; Suresh Kumar, S.; Immanuel Selvakumar, A.; Edwin Prem Kumar, G.

    2016-01-01

    Highlights: • Models for wind speed prediction at 10-min intervals up to 1 h built on time-series wind speed data. • Four different multivariate models for wind speed built based on exogenous variables. • Non-linear models built using three data mining algorithms outperform the linear models. • Autoregressive models based on wind direction perform better than other models. - Abstract: Wind speed forecasting aids in estimating the energy produced from wind farms. The soaring energy demands of the world and minimal availability of conventional energy sources have significantly increased the role of non-conventional sources of energy like solar, wind, etc. Development of models for wind speed forecasting with higher reliability and greater accuracy is the need of the hour. In this paper, models for predicting wind speed at 10-min intervals up to 1 h have been built based on linear and non-linear autoregressive moving average models with and without external variables. The autoregressive moving average models based on wind direction and annual trends have been built using data obtained from Sotavento Galicia Plc. and autoregressive moving average models based on wind direction, wind shear and temperature have been built on data obtained from Centre for Wind Energy Technology, Chennai, India. While the parameters of the linear models are obtained using the Gauss–Newton algorithm, the non-linear autoregressive models are developed using three different data mining algorithms. The accuracy of the models has been measured using three performance metrics namely, the Mean Absolute Error, Root Mean Squared Error and Mean Absolute Percentage Error.

  4. Summary Report: The Shadow effect of large wind farms: measurements, data analysis and modelling

    DEFF Research Database (Denmark)

    Frandsen, Sten Tronæs; Barthelmie, Rebecca Jane; Rathmann, Ole

    It was the goal of the project – by means of data from the demonstration wind farms Horns Rev and Nysted, analyses of these data and modelling – to facilitate prediction of the power losses from a wind farm should a new wind farm be built upwind relative to the prevailing wind direction......: • Measurements were carried out at the Nysted and Horns Rev demonstration wind farms for several years. Doing so included design, installation and operation of the measurement system • A data base was built from the incoming data. The data have been organized to facilitate verification of the models developed....... Or conversely, predict with adequate accuracy the production of a new wind farm built downwind of an existing wind farm. The project should be seen in the perspective of the two existing demonstration wind farms that extend 5-10 km in each direction. In order to e.g. use the existing electrical infrastructure...

  5. Modelling and control of variable speed wind turbines for power system studies

    DEFF Research Database (Denmark)

    Michalke, Gabriele; Hansen, Anca Daniela

    2010-01-01

    and implemented in the power system simulation tool DIgSILENT. Important issues like the fault ride-through and grid support capabilities of these wind turbine concepts are addressed. The paper reveals that advanced control of variable speed wind turbines can improve power system stability. Finally......, it will be shown in the paper that wind parks consisting of variable speed wind turbines can help nearby connected fixed speed wind turbines to ride-through grid faults. Copyright © 2009 John Wiley & Sons, Ltd.......Modern wind turbines are predominantly variable speed wind turbines with power electronic interface. Emphasis in this paper is therefore on the modelling and control issues of these wind turbine concepts and especially on their impact on the power system. The models and control are developed...

  6. Documentation, User Support, and Verification of Wind Turbine and Plant Models

    Energy Technology Data Exchange (ETDEWEB)

    Robert Zavadil; Vadim Zheglov; Yuriy Kazachkov; Bo Gong; Juan Sanchez; Jun Li

    2012-09-18

    As part of the Utility Wind Energy Integration Group (UWIG) and EnerNex's Wind Turbine Modeling Project, EnerNex has received ARRA (federal stimulus) funding through the Department of Energy (DOE) to further the progress of wind turbine and wind plant models. Despite the large existing and planned wind generation deployment, industry-standard models for wind generation have not been formally adopted. Models commonly provided for interconnection studies are not adequate for use in general transmission planning studies, where public, non-proprietary, documented and validated models are needed. NERC MOD (North American Electric Reliability Corporation) reliability standards require that power flow and dynamics models be provided, in accordance with regional requirements and procedures. The goal of this project is to accelerate the appropriate use of generic wind turbine models for transmission network analysis by: (1) Defining proposed enhancements to the generic wind turbine model structures that would allow representation of more advanced; (2) Comparative testing of the generic models against more detailed (and sometimes proprietary) versions developed by turbine vendors; (3) Developing recommended parameters for the generic models to best mimic the performance of specific commercial wind turbines; (4) Documenting results of the comparative simulations in an application guide for users; (5) Conducting technology transfer activities in regional workshops for dissemination of knowledge and information gained, and to engage electric power and wind industry personnel in the project while underway; (6) Designing of a "living" homepage to establish an online resource for transmission planners.

  7. An Experimental Investigation of FNN Model for Wind Speed Forecasting Using EEMD and CS

    Directory of Open Access Journals (Sweden)

    Jianzhou Wang

    2015-01-01

    Full Text Available With depletion of traditional energy and increasing environmental problems, wind energy, as an alternative renewable energy, has drawn more and more attention internationally. Meanwhile, wind is plentiful, clean, and environmentally friendly; moreover, its speed is a very important piece of information needed in the operations and planning of the wind power system. Therefore, choosing an effective forecasting model with good performance plays a quite significant role in wind power system. A hybrid CS-EEMD-FNN model is firstly proposed in this paper for multistep ahead prediction of wind speed, in which EEMD is employed as a data-cleaning method that aims to remove the high frequency noise embedded in the wind speed series. CS optimization algorithm is used to select the best parameters in the FNN model. In order to evaluate the effectiveness and performance of the proposed hybrid model, three other short-term wind speed forecasting models, namely, FNN model, EEMD-FNN model, and CS-FNN model, are carried out to forecast wind speed using data measured at a typical site in Shandong wind farm, China, over three seasons in 2011. Experimental results demonstrate that the developed hybrid CS-EEMD-FNN model outperforms other models with more accuracy, which is suitable to wind speed forecasting in this area.

  8. Design and Study of a Low-Cost Laboratory Model Digital Wind Power Meter

    Science.gov (United States)

    Radhakrishnan, Rugmini; Karthika, S.

    2010-01-01

    A vane-type low-cost laboratory model anemometer cum power meter is designed and constructed for measuring low wind energy created from accelerating fluids. The constructed anemometer is a device which records the electrical power obtained by the conversion of wind power using a wind sensor coupled to a DC motor. It is designed for its…

  9. Comparing mixing-length models of the diabatic wind profile over homogeneous terrain

    DEFF Research Database (Denmark)

    Pena Diaz, Alfredo; Gryning, Sven-Erik; Hasager, Charlotte Bay

    2010-01-01

    Models of the diabatic wind profile over homogeneous terrain for the entire atmospheric boundary layer are developed using mixing-length theory and are compared to wind speed observations up to 300 m at the National Test Station for Wind Turbines at Høvsøre, Denmark. The measurements are performed...

  10. Markov Chain model for the stochastic behaviors of wind-direction data

    International Nuclear Information System (INIS)

    Masseran, Nurulkamal

    2015-01-01

    Highlights: • I develop a Markov chain model to describe about the stochastic and probabilistic behaviors of wind direction data. • I describe some of the theoretical arguments regarding the Markov chain model in term of wind direction data. • I suggest a limiting probabilities approach to determine a dominant directions of wind blow. - Abstract: Analyzing the behaviors of wind direction can complement knowledge concerning wind speed and help researchers draw conclusions regarding wind energy potential. Knowledge of the wind’s direction enables the wind turbine to be positioned in such a way as to maximize the total amount of captured energy and optimize the wind farm’s performance. In this paper, first-order and higher-order Markov chain models are proposed to describe the probabilistic behaviors of wind-direction data. A case study is conducted using data from Mersing, Malaysia. The wind-direction data are classified according to an eight-state Markov chain based on natural geographical directions. The model’s parameters are estimated using the maximum likelihood method and the linear programming formulation. Several theoretical arguments regarding the model are also discussed. Finally, limiting probabilities are used to determine a long-run proportion of the wind directions generated. The results explain the dominant direction for Mersing’s wind in terms of probability metrics

  11. Model Validation at the 204 MW New Mexico Wind Energy Center: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Muljadi, E.; Butterfield, C. P.; Ellis, A.; Mechenbier, J.; Hochheimer, J.; Young, R.; Miller, N.; Delmerico, R.; Zavadil, R.; Smith, J. C.

    2006-06-01

    In this paper, we describe methods to derive and validate equivalent models for a large wind farm. FPL Energy's 204-MW New Mexico Wind Energy Center, which is interconnected to the Public Service Company of New Mexico (PNM) transmission system, was used as a case study. The methods described are applicable to any large wind power plant.

  12. Investigation of a Hybrid Winding Concept for Toroidal Inductors using 3D Finite Element Modeling

    DEFF Research Database (Denmark)

    Schneider, Henrik; Andersen, Thomas; Mønster, Jakob Døllner

    2013-01-01

    This paper investigates a hybrid winding concept for a toroidal inductor by simulating the winding resistance as a function of frequency. The problem of predicting the resistance of a non-uniform and complex winding shape is solved using 3D Finite Element Modeling. A prototype is built and tested...

  13. A Novel Porcine Model of Septic Shock Induced by Acute Respiratory Distress Syndrome due to Methicillin-resistant Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    Shuo Wang

    2017-01-01

    Conclusions: In the present study, we developed a novel porcine model of septic shock induced by ARDS due to severe MRSA pneumonia with characteristic hyperdynamic and hypodynamic phases in 24 h, which mimicked the hemodynamic changing of septic shock in human.

  14. Fresh Frozen Plasma Modulates Brain Gene Expression in a Swine Model of Traumatic Brain Injury and Shock

    DEFF Research Database (Denmark)

    Sillesen, Martin; Bambakidis, Ted; Dekker, Simone E

    2017-01-01

    BACKGROUND: Resuscitation with fresh frozen plasma (FFP) decreases brain lesion size and swelling in a swine model of traumatic brain injury and hemorrhagic shock. We hypothesized that brain gene expression profiles after traumatic brain injury and hemorrhagic shock would be modulated by FFP resu...

  15. CORONAL HEATING BY SURFACE ALFVEN WAVE DAMPING: IMPLEMENTATION IN A GLOBAL MAGNETOHYDRODYNAMICS MODEL OF THE SOLAR WIND

    Energy Technology Data Exchange (ETDEWEB)

    Evans, R. M. [NASA Goddard Space Flight Center, Space Weather Lab, Greenbelt, MD 20771 (United States); Opher, M. [Astronomy Department, Boston University, 675 Commonwealth Avenue, Boston, MA 02215 (United States); Oran, R.; Van der Holst, B.; Sokolov, I. V.; Frazin, R.; Gombosi, T. I. [Center for Space Environment Modeling, University of Michigan, 2455 Hayward Street, Ann Arbor, MI 48109 (United States); Vasquez, A., E-mail: Rebekah.e.frolov@nasa.gov [Instituto de Astronomia y Fisica del Espacio (CONICET-UBA) and FCEN (UBA), CC 67, Suc 28, Ciudad de Buenos Aires (Argentina)

    2012-09-10

    The heating and acceleration of the solar wind is an active area of research. Alfven waves, because of their ability to accelerate and heat the plasma, are a likely candidate in both processes. Many models have explored wave dissipation mechanisms which act either in closed or open magnetic field regions. In this work, we emphasize the boundary between these regions, drawing on observations which indicate unique heating is present there. We utilize a new solar corona component of the Space Weather Modeling Framework, in which Alfven wave energy transport is self-consistently coupled to the magnetohydrodynamic equations. In this solar wind model, the wave pressure gradient accelerates and wave dissipation heats the plasma. Kolmogorov-like wave dissipation as expressed by Hollweg along open magnetic field lines was presented in van der Holst et al. Here, we introduce an additional dissipation mechanism: surface Alfven wave (SAW) damping, which occurs in regions with transverse (with respect to the magnetic field) gradients in the local Alfven speed. For solar minimum conditions, we find that SAW dissipation is weak in the polar regions (where Hollweg dissipation is strong), and strong in subpolar latitudes and the boundaries of open and closed magnetic fields (where Hollweg dissipation is weak). We show that SAW damping reproduces regions of enhanced temperature at the boundaries of open and closed magnetic fields seen in tomographic reconstructions in the low corona. Also, we argue that Ulysses data in the heliosphere show enhanced temperatures at the boundaries of fast and slow solar wind, which is reproduced by SAW dissipation. Therefore, the model's temperature distribution shows best agreement with these observations when both dissipation mechanisms are considered. Lastly, we use observational constraints of shock formation in the low corona to assess the Alfven speed profile in the model. We find that, compared to a polytropic solar wind model, the wave

  16. Modeling large offshore wind farms under different atmospheric stability regimes with the Park wake model

    DEFF Research Database (Denmark)

    Pena Diaz, Alfredo; Réthoré, Pierre-Elouan; Rathmann, Ole

    2014-01-01

    We evaluate a modified version of the Park wake model against power data from a west-east row in the middle of the Horns Rev I offshore wind farm. The evaluation is performed on data classified in four different atmospheric stability conditions, for a narrow wind speed range, and a wide range...... turbines on the row and those using the WAsP recommended value closer to the data for the first turbines. It is generally seen that under stable and unstable atmospheric conditions the power deficits are the highest and lowest, respectively, but the wind conditions under both stability regimes...

  17. Modeling large offshore wind farms under different atmospheric stability regimes with the Park wake model

    DEFF Research Database (Denmark)

    Peña, Alfredo; Réthoré, Pierre-Elouan; Rathmann, Ole

    2013-01-01

    Here, we evaluate a modified version of the Park wake model against power data from a west-east row in the middle of the Horns Rev I offshore wind farm. The evaluation is performed on data classified in four different atmospheric stability conditions, for a narrow wind speed range, and a wide range...... turbines and those using the WAsP recommended value closer to the data for the first turbines. It is generally seen that under stable and unstable atmospheric conditions the power deficits are the highest and lowest, respectively, but the wind conditions under both stability regimes are different...

  18. Comparison of aerodynamic models for Vertical Axis Wind Turbines

    Science.gov (United States)

    Simão Ferreira, C.; Aagaard Madsen, H.; Barone, M.; Roscher, B.; Deglaire, P.; Arduin, I.

    2014-06-01

    Multi-megawatt Vertical Axis Wind Turbines (VAWTs) are experiencing an increased interest for floating offshore applications. However, VAWT development is hindered by the lack of fast, accurate and validated simulation models. This work compares six different numerical models for VAWTS: a multiple streamtube model, a double-multiple streamtube model, the actuator cylinder model, a 2D potential flow panel model, a 3D unsteady lifting line model, and a 2D conformal mapping unsteady vortex model. The comparison covers rotor configurations with two NACA0015 blades, for several tip speed ratios, rotor solidity and fixed pitch angle, included heavily loaded rotors, in inviscid flow. The results show that the streamtube models are inaccurate, and that correct predictions of rotor power and rotor thrust are an effect of error cancellation which only occurs at specific configurations. The other four models, which explicitly model the wake as a system of vorticity, show mostly differences due to the instantaneous or time averaged formulation of the loading and flow, for which further research is needed.

  19. Modelling the colliding-wind spectra of the WC8d+O8-9IV binary CV Ser (WR 113)

    Science.gov (United States)

    Hill, G. M.; Moffat, A. F. J.; St-Louis, N.

    2018-03-01

    Striking profile variations of the C III λ5696 emission line are visible amongst the high signal-to-noise ratio, moderate resolution spectra of the 29.7 d WC8d+O8-9IV binary CV Ser (WR 113) presented here. Using a significantly revised code, we have modelled these variations assuming the emission originates from the undisturbed WR star wind and a colliding wind shock region that partially wraps around the O star. Changes to the modelling code are chiefly in the form of additional parameters, intended to refine the modelling and facilitate comparison with recent predictions arising from theoretical and hydrodynamical work. This modelling provides measurements of crucial parameters such as the orbital inclination (63.5° ± 2.5°) and thus, together with the RV orbits, the stellar masses (11.7 ± 0.9 M⊙ for the WR star and 33.3 ± 2.0 M⊙ for the O star). We find good agreement with expectations based on theoretical studies and hydrodynamical modelling of colliding wind systems. Moreover, it raises the exciting prospect of providing a reliable method to learn more about WR stellar masses and winds, and for studying the physics of colliding winds in massive stars.

  20. Modeling utility-scale wind power plants, part 1: Economics

    Energy Technology Data Exchange (ETDEWEB)

    Milligan, M.

    2000-06-29

    As the worldwide use of wind turbine generators continues to increase in utility-scale applications, it will become increasingly important to assess the economic and reliability impact of these intermittent resources. Although the utility industry in the United States appears to be moving towards a restructured environment, basic economic and reliability issues will continue to be relevant to companies involved with electricity generation. This paper is the first of two that address modeling approaches and results obtained in several case studies and research projects at the National Renewable Energy Laboratory (NREL). This first paper addresses the basic economic issues associated with electricity production from several generators that include large-scale wind power plants. An important part of this discussion is the role of unit commitment and economic dispatch in production-cost models. This paper includes overviews and comparisons of the prevalent production-cost modeling met hods, including several case studies applied to a variety of electric utilities. The second paper discusses various methods of assessing capacity credit and results from several reliability-based studies performed at NREL.