WorldWideScience

Sample records for wind shear research

  1. Evaluating winds and vertical wind shear from Weather Research and Forecasting model forecasts using seven planetary boundary layer schemes

    DEFF Research Database (Denmark)

    Draxl, Caroline; Hahmann, Andrea N.; Pena Diaz, Alfredo

    2014-01-01

    with different PBL parameterizations at one coastal site over western Denmark. The evaluation focuses on determining which PBL parameterization performs best for wind energy forecasting, and presenting a validation methodology that takes into account wind speed at different heights. Winds speeds at heights...... regarding wind energy at these levels partly depends on the formulation and implementation of planetary boundary layer (PBL) parameterizations in these models. This study evaluates wind speeds and vertical wind shears simulated by theWeather Research and Forecasting model using seven sets of simulations...

  2. Modeling and implementation of wind shear data

    Science.gov (United States)

    Frost, Walter

    1987-01-01

    The problems of implementing the JAWS wind shear data are discussed. The data sets are described from the view of utilizing them in an aircraft performance computer program. Then, some of the problems of nonstandard procedures are described in terms of programming the equations of aircraft motion when the effects of temporal and spatially variable winds are included. Finally, some of the computed effects of the various wind shear terms are shown.

  3. Impact of Vertical Wind Shear on Tropical Cyclone Rainfall

    Science.gov (United States)

    Cecil, Dan; Marchok, Tim

    2014-01-01

    While tropical cyclone rainfall has a large axisymmetric component, previous observational and theoretical studies have shown that environmental vertical wind shear leads to an asymmetric component of the vertical motion and precipitation fields. Composites consistently depict a precipitation enhancement downshear and also cyclonically downwind from the downshear direction. For consistence with much of the literature and with Northern Hemisphere observations, this is subsequently referred to as "Downshear-Left". Stronger shear magnitudes are associated with greater amplitude precipitation asymmetries. Recent work has reinforced the prior findings, and explored details of the response of the precipitation and kinematic fields to environmental vertical wind shear. Much of this research has focused on tropical cyclones away from land, to limit the influence of other processes that might distort the signal related to vertical wind shear. Recent evidence does suggest vertical wind shear can also play a major role in precipitation asymmetries during and after landfall.

  4. Problems pilots face involving wind shear

    Science.gov (United States)

    Melvin, W. W.

    1977-01-01

    Educating pilots and the aviation industry about wind shears presents a major problem associated with this meteorological phenomenon. The pilot's second most pressing problem is the need for a language to discuss wind shear encounters with other pilots so that the reaction of the aircraft to the wind shear encounter can be accurately described. Another problem is the flight director which gives a centered pitch command for a given angular displacement from the glide slope. It was suggested that they should instead be called flight path command and should not center unless the aircraft is actually correcting to the flight path.

  5. Wind shear extremes at possible offshore wind turbine locations

    DEFF Research Database (Denmark)

    Hansen, Kurt Schaldemose; Larsen, Gunner Chr.

    2003-01-01

    Positive and negative short-term extreme wind shear distributions (conditioned on the mean wind speed) are determined and compared for a number of offshore sites. The analysis is based on rapidly sampled field measurements (1-8 Hz) extracted from the "Database on Wind Characteristics" (www.windda...... seems to be rather conservative for an offshore location, compared to the estimated values based on measurements.......Positive and negative short-term extreme wind shear distributions (conditioned on the mean wind speed) are determined and compared for a number of offshore sites. The analysis is based on rapidly sampled field measurements (1-8 Hz) extracted from the "Database on Wind Characteristics" (www.......winddata.com). Three different averaging periods (2, 5 and 10 seconds) are considered, and for each averaging period a relation between the resulting extreme shear distributions and the averaging time are presented. The short-term extreme shear analysis is based on different spatial distances, and extrapolation...

  6. Robust Kalman filter design for predictive wind shear detection

    Science.gov (United States)

    Stratton, Alexander D.; Stengel, Robert F.

    1991-01-01

    Severe, low-altitude wind shear is a threat to aviation safety. Airborne sensors under development measure the radial component of wind along a line directly in front of an aircraft. In this paper, optimal estimation theory is used to define a detection algorithm to warn of hazardous wind shear from these sensors. To achieve robustness, a wind shear detection algorithm must distinguish threatening wind shear from less hazardous gustiness, despite variations in wind shear structure. This paper presents statistical analysis methods to refine wind shear detection algorithm robustness. Computational methods predict the ability to warn of severe wind shear and avoid false warning. Comparative capability of the detection algorithm as a function of its design parameters is determined, identifying designs that provide robust detection of severe wind shear.

  7. Doppler weather radar with predictive wind shear detection capabilities

    Science.gov (United States)

    Kuntman, Daryal

    1991-01-01

    The status of Bendix research on Doppler weather radar with predictive wind shear detection capability is given in viewgraph form. Information is given on the RDR-4A, a fully coherent, solid state transmitter having Doppler turbulence capability. Frequency generation data, plans, modifications, system characteristics and certification requirements are covered.

  8. Wind Shear Characteristics at Central Plains Tall Towers (presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Schwartz, M.; Elliott, D.

    2006-06-05

    The objectives of this report are: (1) Analyze wind shear characteristics at tall tower sites for diverse areas in the central plains (Texas to North Dakota)--Turbines hub heights are now 70-100 m above ground and Wind measurements at 70-100+ m have been rare. (2) Present conclusions about wind shear characteristics for prime wind energy development regions.

  9. Model of wind shear conditional on turbulence and its impact on wind turbine loads

    DEFF Research Database (Denmark)

    Dimitrov, Nikolay Krasimirov; Natarajan, Anand; Kelly, Mark C.

    2015-01-01

    fatigue load is achieved. The proposed wind shear model based on the wind measurements is thereby probabilistic in definition, with shear jointly distributed with wind turbulence. A simplified model for the wind shear exponent is further derived from the full stochastic model. The fatigue loads over......We analyse high-frequency wind velocity measurements from two test stations over a period of several years and at heights ranging from 60 to 200 m, with the objective to validate wind shear predictions as used in load simulations for wind turbine design. A validated wind shear model is thereby...... different turbine components are evaluated under the full wind measurements, using the developed wind shear model and with standard wind conditions prescribed in the IEC 61400-1 ed. 3. The results display the effect of the Wöhler exponent and reveal that under moderate turbulence, the effect of wind shear...

  10. Roles of wind shear at different vertical levels: Cloud system organization and properties

    Science.gov (United States)

    Chen, Qian; Fan, Jiwen; Hagos, Samson; Gustafson, William I.; Berg, Larry K.

    2015-07-01

    Understanding critical processes that contribute to the organization of mesoscale convective systems (MCSs) is important for accurate weather forecasts and climate predictions. In this study, we investigate the effects of wind shear at different vertical levels on the organization and properties of convective systems using the Weather Research and Forecasting model with spectral bin microphysics. Based on a control run for a MCS with weak wind shear (Ctrl), we find that increasing wind shear at the lower troposphere (L-shear) leads to a more organized quasi-line convective system. Strong wind shear in the middle troposphere (M-shear) tends to produce large vorticity and form a mesocyclone circulation and an isolated strong storm that leans toward supercellular structure. By increasing wind shear at the upper vertical levels only (U-shear), the organization of the convection is not changed much, but the convective intensity is weakened. Increasing wind shear in the middle troposphere for the selected case results in a significant drying, and the drying is more significant when conserving moisture advection at the lateral boundaries, contributing to the suppressed convective strength and precipitation relative to Ctrl. Precipitation in the L-shear and U-shear does not change much from Ctrl. Evident changes of cloud macrophysical and microphysical properties in the strong wind shear cases are mainly due to large changes in convective organization and water vapor. The insights obtained from this study help us better understand the major factors contributing to convective organization and precipitation.

  11. Optimal recovery from microburst wind shear

    Science.gov (United States)

    Mulgund, Sandeep S.

    1993-01-01

    Severe low-altitude wind variability represents an infrequent but significant hazard to aircraft taking off or landing. During the period from 1964 to 1985, microburst wind shear was a contributing factor in at least 26 civil aviation accidents involving nearly 500 fatalities and over 200 injuries. A microburst is a strong localized downdraft that strikes the ground, creating winds that diverge radially from the impact point. The physics of microbursts have only been recently understood in detail, and it has been found that effective recovery from inadvertent encounters may require piloting techniques that are counter-intuitive to flight crews. The goal of this work was to optimize the flight path of a twin-jet transport aircraft encountering a microburst during approach to landing. The objective was to execute an escape maneuver that maintained safe ground clearance and an adequate stall margin during the climb-out portion of the trajectory.

  12. Simulation of shear and turbulence impact on wind turbine performance

    DEFF Research Database (Denmark)

    Wagner, Rozenn; Courtney, Michael; Larsen, Torben J.

    of a uniform inflow. Secondly, a similar analysis was done for cases with direction shear. In each case, we derived a standard power curve (function of the wind speed at hub height) and power curves obtained with various definitions of equivalent wind speed in order to reduce the scatter due to shear. Thirdly...

  13. Prescribed wind shear modelling with the actuator line technique

    DEFF Research Database (Denmark)

    Mikkelsen, Robert Flemming; Sørensen, Jens Nørkær; Troldborg, Niels

    2007-01-01

    A method for prescribing arbitrary steady atmospheric wind shear profiles combined with CFD is presented. The method is furthermore combined with the actuator line technique governing the aerodynamic loads on a wind turbine. Computation are carried out on a wind turbine exposed to a representative...... steady atmospheric wind shear profile with and without wind direction changes up through the atmospheric boundary layer. Results show that the main impact on the turbine is captured by the model. Analysis of the wake behind the wind turbine, reveal the formation of a skewed wake geometry interacting...

  14. Small-scale wind shear definition for aerospace vehicle design.

    Science.gov (United States)

    Fichtl, G. H.

    1972-01-01

    Rawinsonde wind profile data provide adequate wind shear information for vertical height intervals greater than 1 km. To specify wind shears for intervals below 1 km for space vehicle design, detailed wind-profile information like that provided by the FPS-16 Radar/Jimsphere system or an extrapolation procedure is required. This paper is concerned with the latter alternative. It is assumed that any realization from an ensemble of wind profiles can be represented in terms of a Fourier integral. This permits the calculation of the ensemble standard deviation and mean of the corresponding shear ensemble for any altitude and shear interval in terms of the power spectrum of the ensemble of wind profiles. The results of these calculations show that the mean and standard deviation of the wind shear ensemble, as well as the wind shear for any percentile, asymptotically behave like the vertical interval to the 0.7 power. This result is in excellent agreement with shear data from Cape Kennedy, Fla.

  15. The Impact of Variable Wind Shear Coefficients on Risk Reduction of Wind Energy Projects

    Science.gov (United States)

    Thomson, Allan; Yoonesi, Behrang; McNutt, Josiah

    2016-01-01

    Estimation of wind speed at proposed hub heights is typically achieved using a wind shear exponent or wind shear coefficient (WSC), variation in wind speed as a function of height. The WSC is subject to temporal variation at low and high frequencies, ranging from diurnal and seasonal variations to disturbance caused by weather patterns; however, in many cases, it is assumed that the WSC remains constant. This assumption creates significant error in resource assessment, increasing uncertainty in projects and potentially significantly impacting the ability to control gird connected wind generators. This paper contributes to the body of knowledge relating to the evaluation and assessment of wind speed, with particular emphasis on the development of techniques to improve the accuracy of estimated wind speed above measurement height. It presents an evaluation of the use of a variable wind shear coefficient methodology based on a distribution of wind shear coefficients which have been implemented in real time. The results indicate that a VWSC provides a more accurate estimate of wind at hub height, ranging from 41% to 4% reduction in root mean squared error (RMSE) between predicted and actual wind speeds when using a variable wind shear coefficient at heights ranging from 33% to 100% above the highest actual wind measurement. PMID:27872898

  16. Wind speed and direction shears with associated vertical motion during strong surface winds

    Science.gov (United States)

    Alexander, M. B.; Camp, D. W.

    1984-01-01

    Strong surface winds recorded at the NASA 150-Meter Ground Winds Tower facility at Kennedy Space Center, Florida, are analyzed to present occurrences representative of wind shear and vertical motion known to be hazardous to the ascent and descent of conventional aircraft and the Space Shuttle. Graphical (percentage frequency distributions) and mathematical (maximum, mean, standard deviation) descriptions of wind speed and direction shears and associated updrafts and downdrafts are included as functions of six vertical layers and one horizontal distance for twenty 5-second intervals of parameters sampled simultaneously at the rate of ten per second during a period of high surface winds.

  17. Effects of extreme wind shear on aeroelastic modal damping of wind turbines

    DEFF Research Database (Denmark)

    Skjoldan, P.F.; Hansen, Morten Hartvig

    2013-01-01

    Wind shear is an important contributor to fatigue loads on wind turbines. Because it causes an azimuthal variation in angle of attack, it can also affect aerodynamic damping. In this paper, a linearized model of a wind turbine, based on the nonlinear aeroelastic code BHawC, is used to investigate...

  18. Wind shear estimation and wake detection by rotor loads — First wind tunnel verification

    Science.gov (United States)

    Schreiber, J.; Cacciola, S.; Campagnolo, F.; Petrović, V.; Mourembles, D.; Bottasso, C. L.

    2016-09-01

    The paper describes a simple method for detecting presence and location of a wake affecting a downstream wind turbine operating in a wind power plant. First, the local wind speed and shear experienced by the wind turbine are estimated by the use of rotor loads and other standard wind turbine response data. Then, a simple wake deficit model is used to determine the lateral position of the wake with respect to the affected rotor. The method is verified in a boundary layer wind tunnel using two instrumented scaled wind turbine models, demonstrating its effectiveness.

  19. Optimal nonlinear estimation for aircraft flight control in wind shear

    Science.gov (United States)

    Mulgund, Sandeep S.

    1994-01-01

    The most recent results in an ongoing research effort at Princeton in the area of flight dynamics in wind shear are described. The first undertaking in this project was a trajectory optimization study. The flight path of a medium-haul twin-jet transport aircraft was optimized during microburst encounters on final approach. The assumed goal was to track a reference climb rate during an aborted landing, subject to a minimum airspeed constraint. The results demonstrated that the energy loss through the microburst significantly affected the qualitative nature of the optimal flight path. In microbursts of light to moderate strength, the aircraft was able to track the reference climb rate successfully. In severe microbursts, the minimum airspeed constraint in the optimization forced the aircraft to settle on a climb rate smaller than the target. A tradeoff was forced between the objectives of flight path tracking and stall prevention.

  20. Response of wind shear warning systems to turbulence with implication of nuisance alerts

    Science.gov (United States)

    Bowles, Roland L.

    1988-01-01

    The objective was to predict the inherent turbulence response characteristics of candidate wind shear warning system concepts and to assess the potential for nuisance alerts. Information on the detection system and associated signal processing, physical and mathematical models, wind shear factor root mean square turbulence response and the standard deviation of the wind shear factor due to turbulence is given in vugraph form.

  1. The classification of wind shears from the point of view of aerodynamics and flight mechanics

    Science.gov (United States)

    Seidler, Fritz; Hensel, Gunter

    1987-01-01

    A study of international statistical data shows that in about three quarters of all serious accidents which occurred with jet propelled airliners wind shear was either one of the main causes of the accident or represented a major contributory cause. Wind shear related problems are examined. The necessity of a use of different concepts, definitions, and divisions is explained, and the concepts and definitions required for the division of wind and wind shear into different categories is discussed. A description of the context between meteorological and aerodynamics-flight mechanics concepts, definitions, and divisions is also provided. Attention is given to wind and wind components, general characteristics of wind shear and the meteorological terms, the basic types of wind shear for aerodynamics-flight mechanics investigations, special types of wind shear for aerodynamics-flight mechanics investigations, and possibilities regarding a change of the wind component.

  2. Offshore vertical wind shear: Final report on NORSEWInD’s work task 3.1

    DEFF Research Database (Denmark)

    Pena Diaz, Alfredo; Mikkelsen, Torben; Gryning, Sven-Erik

    This document reports on the analysis performed by the work task 3.1 of the EU NORSEWInD project and includes the following deliverables: 3.2 Calculated vertical wind shears 3.3 Multi-variational correlation analysis 3.4 NWP data for wind shear model 3.5 Vertical extrapolation methodology 3...... of power outputs. Background related to the parametrization of the vertical wind speed profile and the behavior of the vertical wind shear in and beyond the atmospheric surface layer is presented together with the application of the long-term atmospheric stability parameters for the analysis of the long......-term vertical wind speed profile. Observed vertical wind shears are illustrated for all NORSEWInD wind lidar and meteorological stations in terms of wind shear roses, distributions, and diurnal and monthly evolutions. A multi-variational correlation analysis is performed to study the vertical wind shear...

  3. Wind shear proportional errors in the horizontal wind speed sensed by focused, range gated lidars

    DEFF Research Database (Denmark)

    Lindelöw, Per Jonas Petter; Courtney, Michael; Parmentier, R.

    2008-01-01

    altitude. The altitude errors of focused range gated lidars are likely to arise partly from an unaccounted shift of the weighting functions, describing the sample volume, due to the range dependent collection efficiency of the focused telescope. Possibilities of correcting the lidar measurements both...... an altitude dependent relation between the lidar error and the wind shear. A likely explanation for this relation is an error in the intended sensing altitude. At most this error is estimated to 9 in which induced errors in the horizontal wind velocity of up to 0.5 m/s as compared to a cup at the intended...... for wind velocity and wind shear dependent errors are discussed. The 2-parametric regression analysis described in this paper is proven to be a better approach when acceptance testing and calibrating lidars....

  4. Simulations of large winds and wind shears induced by gravity wave breaking in the mesosphere and lower thermosphere (MLT region

    Directory of Open Access Journals (Sweden)

    X. Liu

    2014-05-01

    Full Text Available Using a fully nonlinear two-dimensional (2-D numerical model, we simulated gravity waves (GWs breaking and their contributions to the formation of large winds and wind shears in the mesosphere and lower thermosphere (MLT. An eddy diffusion coefficient is used in the 2-D numerical model to parameterize realistic turbulent mixing. Our study shows that the momentum deposited by breaking GWs accelerates the mean wind. The resultant large background wind increases the GW's apparent horizontal phase velocity and decreases the GW's intrinsic frequency and vertical wavelength. Both the accelerated mean wind and the decreased GW vertical wavelength contribute to the enhancement of wind shears. This, in turn, creates a background condition that favors the occurrence of GW instability, breaking, and momentum deposition, as well as mean wind acceleration, which further enhances the wind shears. We find that GWs with longer vertical wavelengths and faster horizontal phase velocity can induce larger winds, but they may not necessarily induce larger wind shears. In addition, the background temperature can affect the time and height of GW breaking, thus causing accelerated mean winds and wind shears.

  5. Shear and Turbulence Estimates for Calculation of Wind Turbine Loads and Responses Under Hurricane Strength Winds

    Science.gov (United States)

    Kosovic, B.; Bryan, G. H.; Haupt, S. E.

    2012-12-01

    Schwartz et al. (2010) recently reported that the total gross energy-generating offshore wind resource in the United States in waters less than 30m deep is approximately 1000 GW. Estimated offshore generating capacity is thus equivalent to the current generating capacity in the United States. Offshore wind power can therefore play important role in electricity production in the United States. However, most of this resource is located along the East Coast of the United States and in the Gulf of Mexico, areas frequently affected by tropical cyclones including hurricanes. Hurricane strength winds, associated shear and turbulence can affect performance and structural integrity of wind turbines. In a recent study Rose et al. (2012) attempted to estimate the risk to offshore wind turbines from hurricane strength winds over a lifetime of a wind farm (i.e. 20 years). According to Rose et al. turbine tower buckling has been observed in typhoons. They concluded that there is "substantial risk that Category 3 and higher hurricanes can destroy half or more of the turbines at some locations." More robust designs including appropriate controls can mitigate the risk of wind turbine damage. To develop such designs good estimates of turbine loads under hurricane strength winds are essential. We use output from a large-eddy simulation of a hurricane to estimate shear and turbulence intensity over first couple of hundred meters above sea surface. We compute power spectra of three velocity components at several distances from the eye of the hurricane. Based on these spectra analytical spectral forms are developed and included in TurbSim, a stochastic inflow turbulence code developed by the National Renewable Energy Laboratory (NREL, http://wind.nrel.gov/designcodes/preprocessors/turbsim/). TurbSim provides a numerical simulation including bursts of coherent turbulence associated with organized turbulent structures. It can generate realistic flow conditions that an operating turbine

  6. Comparison of wind and wind shear climatologies derived from high-resolution radiosondes and the ECMWF model

    Science.gov (United States)

    Houchi, K.; Stoffelen, A.; Marseille, G. J.; de Kloe, J.

    2010-11-01

    The climatology of atmospheric horizontal wind and its vertical gradient, i.e., wind shear, is characterized as a function of climate region. For a better representation of the average atmospheric wind and shear and their variabilities, high-resolution radiosonde wind profiles up to about 30 km altitude are compared with the collocated operational ECMWF model for short-range forecast winds. Statistics of zonal and meridional winds are established from both data sets. The results show mainly similarity in the probability distributions of the modeled and observed horizontal winds, practically at all levels of the atmosphere, while at the same time the vertical shear of the wind is substantially underestimated in the model. The comparison of shear statistics of radiosonde and ECMWF model winds shows that the model wind shear mean and variability are on average a factor of 2.5 (zonal) and 3 (meridional) smaller than of radiosondes in the free troposphere, while in the stratosphere, the planetary boundary layer results are more variable. By applying vertical averaging to the radiosonde data, it is found that the effective vertical resolution of the ECMWF model is typically 1.7 km. Moreover, it is found for individually collocated radiosonde model wind and shear profiles that the model wind may lack in some cases variability larger than 5 m s-1 and 0.015 s-1, respectively, due mainly to the effect of lacking vertical resolution, in particular near the jets. Besides the general importance of this study in highlighting the difference in the representation of the atmospheric wind shear by model and observations, it is more specifically relevant for the future Atmospheric Dynamics Mission (ADM-Aeolus) of the European Space Agency due for launch in 2012. The results presented here are used to generate a realistic global atmospheric database, which is necessary to conduct simulations of the Aeolus Doppler wind lidar in order optimize its vertical sampling and processing.

  7. Investigations of Wind Shear Distribution on the Baltic Shore of Latvia

    Science.gov (United States)

    Bezrukovs, V.; Zacepins, A.; Bezrukovs, Vl.; Komashilovs, V.

    2016-06-01

    The paper presents a review of wind parameter measurement complexes and investigation methods used for potential wind energy evaluation. Based on results of long-term investigations of wind shear distribution regularities are shown up to 160 m height on the Baltic Sea shore. Distribution of potential wind energy in Latvia is shown as a map and table of average and average cubic wind speed values. Database of wind parameter measurements is available at a public website.

  8. Research on wind energy

    CSIR Research Space (South Africa)

    Szewczuk, S

    2012-10-01

    Full Text Available & underlying technologies Ovid: composite man- rated trainer airplane Eskom?s wind farm, Klipheuwel, Cape Town ? CSIR, then DME & City of Cape Town undertook study on large grid connected wind turbines ? included a study tour to Europe. ? Recommended...

  9. Synthetic atmospheric turbulence and wind shear in large eddy simulations of wind turbine wakes

    DEFF Research Database (Denmark)

    Keck, Rolf-Erik; Mikkelsen, Robert Flemming; Troldborg, Niels

    2014-01-01

    of the synthetic methods is found to be adequate to model atmospheric turbulence, and the wake flow results of the model are in good agreement with field data. An investigation is also carried out to estimate the wake transport velocity, used to model wake meandering in lower-order models. The conclusion......A method of generating a synthetic ambient wind field in neutral atmosphere is described and verified for modelling the effect of wind shear and turbulence on a wind turbine wake using the flow solver EllipSys3D. The method uses distributed volume forces to represent turbulent fluctuations...... is that the appropriate transport velocity of the wake lies somewhere between the centre velocity of the wake deficit and the free stream velocity. Copyright © 2013 John Wiley & Sons, Ltd....

  10. Wind Power Today: (2002) Wind Energy Research Highlights

    Energy Technology Data Exchange (ETDEWEB)

    2003-05-01

    Wind Power Today is an annual publication that provides an overview of the wind research conducted under the U.S. Department of Energy's Wind and Hydropower Technologies Program. The purpose of Wind Power Today is to show how DOE supports wind turbine research and deployment in hopes of furthering the advancement of wind technologies that produce clean, low-cost, reliable energy. Content objectives include: educate readers about the advantages and potential for widespread deployment of wind energy; explain the program's objectives and goals; describe the program's accomplishments in research and application; examine the barriers to widespread deployment; describe the benefits of continued research and development; facilitate technology transfer; and attract cooperative wind energy projects with industry. This 2002 edition of Wind Power Today also includes discussions about wind industry growth in 2002, how DOE is taking advantage of low wind speed regions through advancing technology, and distributed applications for small wind turbines.

  11. Offshore wind development research.

    Science.gov (United States)

    2014-04-01

    Offshore wind (OSW) development is a new undertaking in the US. This project is a response to : New Jerseys 2011 Energy Master Plan that envisions procuring 22.5% of the states power : originating from renewable sources by 2021. The Offshore Wi...

  12. Accounting for the speed shear in wind turbine power performance measurement

    DEFF Research Database (Denmark)

    Wagner, Rozenn

    The power curve of a wind turbine is the primary characteristic of the machine as it is the basis of the warranty for it power production. The current IEC standard for power performance measurement only requires the measurement of the wind speed at hub height and the air density to characterise...... the vertical wind shear and the turbulence intensity. The work presented in this thesis consists of the description and the investigation of a simple method to account for the wind speed shear in the power performance measurement. Ignoring this effect was shown to result in a power curve dependant on the shear...... condition, therefore on the season and the site. It was then proposed to use an equivalent wind speed accounting for the whole speed profile in front of the turbine. The method was first tested with aerodynamic simulations of a multi-megawatt wind turbine which demonstrated the decrease of the scatter...

  13. Impact of Wind Shear and Tower Shadow Effects on Power System with Large Scale Wind Power Penetration

    DEFF Research Database (Denmark)

    Hu, Weihao; Su, Chi; Chen, Zhe

    2011-01-01

    presents a simulation model of a variable speed wind farm with permanent magnet synchronous generators (PMSGs) and fullscale back-to-back converters in the simulation tool of DIgSILENT/PowerFactory. In this paper, the impacts of wind shear and tower shadow effects on the small signal stability of power...

  14. Power spectral density analysis of wind-shear turbulence for related flight simulations. M.S. Thesis

    Science.gov (United States)

    Laituri, Tony R.

    1988-01-01

    Meteorological phenomena known as microbursts can produce abrupt changes in wind direction and/or speed over a very short distance in the atmosphere. These changes in flow characteristics have been labelled wind shear. Because of its adverse effects on aerodynamic lift, wind shear poses its most immediate threat to flight operations at low altitudes. The number of recent commercial aircraft accidents attributed to wind shear has necessitated a better understanding of how energy is transferred to an aircraft from wind-shear turbulence. Isotropic turbulence here serves as the basis of comparison for the anisotropic turbulence which exists in the low-altitude wind shear. The related question of how isotropic turbulence scales in a wind shear is addressed from the perspective of power spectral density (psd). The role of the psd in related Monte Carlo simulations is also considered.

  15. The Orlando TDWR testbed and airborne wind shear date comparison results

    Science.gov (United States)

    Campbell, Steven; Berke, Anthony; Matthews, Michael

    1992-01-01

    The focus of this talk is on comparing terminal Doppler Weather Radar (TDWR) and airborne wind shear data in computing a microburst hazard index called the F factor. The TDWR is a ground-based system for detecting wind shear hazards to aviation in the terminal area. The Federal Aviation Administration will begin deploying TDWR units near 45 airports in late 1992. As part of this development effort, M.I.T. Lincoln Laboratory operates under F.A.A. support a TDWR testbed radar in Orlando, FL. During the past two years, a series of flight tests has been conducted with instrumented aircraft penetrating microburst events while under testbed radar surveillance. These tests were carried out with a Cessna Citation 2 aircraft operated by the University of North Dakota (UND) Center for Aerospace Sciences in 1990, and a Boeing 737 operated by NASA Langley Research Center in 1991. A large data base of approximately 60 instrumented microburst penetrations has been obtained from these flights.

  16. The Structure of Vertical Wind Shear in Tropical Cyclone Environments: Implications for Forecasting and Predictability

    Science.gov (United States)

    Finocchio, Peter M.

    The vertical wind shear measured between 200 and 850 hPa is commonly used to diagnose environmental interactions with a tropical cyclone (TC) and to forecast the storm's intensity and structural evolution. More often than not, stronger vertical shear within this deep layer prohibits the intensification of TCs and leads to predictable asymmetries in precipitation. But such bulk measures of vertical wind shear can occasionally mislead the forecaster. In the first part of this dissertation, we use a series of idealized numerical simulations to examine how a TC responds to changing the structure of unidirectional vertical wind shear while fixing the 200-850-hPa shear magnitude. These simulations demonstrate a significant intensity response, in which shear concentrated in shallow layers of the lower troposphere prevents vortex intensification. We attribute the arrested development of TCs in lower-level shear to the intrusion of mid-level environmental air over the surface vortex early in the simulations. Convection developing on the downshear side of the storm interacts with the intruding air so as to enhance the downward flux of low-entropy air into the boundary layer. We also construct a two-dimensional intensity response surface from a set of simulations that sparsely sample the joint shear height-depth parameter space. This surface reveals regions of the two-parameter space for which TC intensity is particularly sensitive. We interpret these parameter ranges as those which lead to reduced intensity predictability. Despite the robust response to changing the shape of a sheared wind profile in idealized simulations, we do not encounter such sensitivity within a large set of reanalyzed TCs in the Northern Hemisphere. Instead, there is remarkable consistency in the structure of reanalyzed wind profiles around TCs. This is evident in the distributions of two new parameters describing the height and depth of vertical wind shear, which highlight a clear preference for

  17. Research in Aeroelasticity EFP-2006[Wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Bak, C.

    2007-07-15

    This report contains the results from the Energy Research Project 'Program for Research in Applied Aeroelasticity, EFP-2006' covering the period from 1. April 2006 to 31. March 2007. A summary of the main results from the project is given in the following. The aerodynamics for rotors incl. spinner and winglets were clarified and the needed premises for an optimal rotor were explained. Also, the influence of viscous effects on rotor blades was investigated and the results indicated a range of optimum tip speed ratios. The use of winglets for wind turbine rotor was investigated and it was found that they can be used successfully, but that downwind and short winglets are most efficient. Investigating a strategy for reduction of loads and vibrations at extreme wind speeds showed that there are considerably uncertainties in the numerical models and that the main concluding remark is that measurements on a real blade or a real turbine are needed to further conclude the investigation. In the study of flutter and other torsional vibrations of blades at large deflections, modeling and analysis of the dynamics of a hydraulic pitch system for a 5 MW wind turbine was carried out. It was shown that the compressibility of the hydraulic oil introduced a dynamic mode in the pitch bearing degree of freedom. Also, investigating flutter for blades at large deflections showed that the flutter limit for a 5MW blade was moved significantly compared to blades without large deflections. The influence of modeling nacelle components was investigated by developing a generalized method to interface dynamic systems to the aeroelastic program HAWC2 and by exemplify by modeling the nacelle of an aeroelastic wind turbine model in a more detailed way by including a single planet stage of a gearbox. This simplified gearbox model captures in essence the splitting of the driving torque from the rotor shaft to the frame of the nacelle and to the generator. Investigating the influence of wind

  18. Wind turbine blade shear web disbond detection using rotor blade operational sensing and data analysis.

    Science.gov (United States)

    Myrent, Noah; Adams, Douglas E; Griffith, D Todd

    2015-02-28

    A wind turbine blade's structural dynamic response is simulated and analysed with the goal of characterizing the presence and severity of a shear web disbond. Computer models of a 5 MW offshore utility-scale wind turbine were created to develop effective algorithms for detecting such damage. Through data analysis and with the use of blade measurements, a shear web disbond was quantified according to its length. An aerodynamic sensitivity study was conducted to ensure robustness of the detection algorithms. In all analyses, the blade's flap-wise acceleration and root-pitching moment were the clearest indicators of the presence and severity of a shear web disbond. A combination of blade and non-blade measurements was formulated into a final algorithm for the detection and quantification of the disbond. The probability of detection was 100% for the optimized wind speed ranges in laminar, 30% horizontal shear and 60% horizontal shear conditions. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  19. Brief communication: On the influence of vertical wind shear on the combined power output of two model wind turbines in yaw

    Directory of Open Access Journals (Sweden)

    J. Schottler

    2017-08-01

    Full Text Available The effect of vertical wind shear on the total power output of two aligned model wind turbines as a function of yaw misalignment of the upstream turbine is studied experimentally. It is shown that asymmetries of the power output of the downstream turbine and the combined power of both with respect to the upstream turbine's yaw misalignment angle can be linked to the vertical wind shear of the inflow.

  20. The Low-Level Wind Shear Alert System (LLWSAS)

    Science.gov (United States)

    1980-05-01

    Weather (Meteorology) 19. Security Clasif . (of this report) 20. Security Clssif. (of this page) 21. No. of Pages 22. Price Unclassified Unclassified...sections to loosen, resulting in tower collapse. A heavier duty, three-legged tower with steel rod legs and welded steel crossmembers on a frangible base...runways 36L-18R. The sensor is atop a steel pipe which is affixed to a transmissometer tower. There is some sheltering with west winds because of

  1. Wind Shear and the Strength of Severe Convective Phenomena—Preliminary Results from Poland in 2011–2015

    Directory of Open Access Journals (Sweden)

    Wojciech Pilorz

    2016-10-01

    Full Text Available Severe convective phenomena cause significant loss in the economy and, primarily, casualties. Therefore, it is essential to forecast such extreme events to avoid or minimize the negative consequences. Wind shear provides an updraft-downdraft separation in the convective cell, which extends the cell lifetime. Wind shears between a few different air layers have been examined in all damaging convective cases in Poland, taken from the European Severe Weather Database between 2011 and 2015, in order to find their values and patterns according to the intensity of this phenomenon. Each severe weather report was assigned wind shear values from the nearest sounding station, and subsequently the presented summary was made. It was found that wind shear values differ between the given phenomena and their intensity. This regularity is particularly visible in shears containing 0 km wind. The highest shears occur within wind reports. Lower values are associated with hail reports. An important difference between weak and F1+ tornadoes was found in most of the wind shears. Severe phenomena probability within 0–6 km and 0–1 km shears show different patterns according to the phenomena and their intensity. This finding has its application in severe weather forecasting.

  2. Research in aeroelasticity[Wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Bak, C.

    2006-05-15

    In the Energy Research Project 'Program for Research in Applied Aeroelasticity' (EFP2005), Risoe National Laboratory (Risoe) and the Technical University of Denmark (DTU) have applied and further developed the tools in the aeroelastic design complex. The main results from the project are: 1) Adding a winglet to a wind turbine blade for minimizing the induced drag of the blade led to the biggest increase in power of 1.4%. 2) Transient wind loads during pitch motion are determined using CFD. Compared to the NREL/NASA Ames test, reasonably good agreement is seen. 3) A general method was developed for the determination of 3D angle of attack for rotating blades from either measurements or numerical computations using CFD. 4) A model of the far wake behind wind turbines was developed for stability studies of the tip vortices in the far wake. 5) Investigating the blade root region showed that the power efficiency, CP, locally can be increased significantly beyond the Betz limit, but that the global CP for the rotor cannot exceed the Betz limit. When including tip losses and a minimum blade drag coefficient, a maximum rotor CP in the range of 0.51-0.52 was obtained. 6) A new airfoil family was designed and a 3D airfoil design tool was developed. Compared to the Risoe-B1 family, the new airfoil family showed similar or improved aerodynamic and structural characteristics. 7) Four different airfoils were analyzed to reveal the differences between 2D and 3D CFD. The major conclusions are the dependency of computational results to transition modelling, and the ability of 3D DES calculations to realistically simulate the turbulent wake of an airfoil in stall. 8) The capability of a theory for simulation of Gaussian turbulence driven gust events was demonstrated by emulating a violent shear gust event from a complex site. An asymptotic model for the PDF of the largest excursion from the mean level, during an arbitrary recurrence period, has been derived for a stochastic

  3. Performance analysis and technical assessment of coherent lidar systems for airborne wind shear detection

    Science.gov (United States)

    Huffaker, R. Milton; Targ, Russell

    1988-01-01

    Detailed computer simulations of the lidar wind-measuring process have been conducted to evaluate the use of pulsed coherent lidar for airborne windshear monitoring. NASA data fields for an actual microburst event were used in the simulation. Both CO2 and Ho:YAG laser lidar systems performed well in the microburst test case, and were able to measure wind shear in the severe weather of this wet microburst to ranges in excess of 1.4 km. The consequent warning time gained was about 15 sec.

  4. Evolution and Growth Competition of Salt Fingers in Saline Lake with Slight Wind Shear

    Science.gov (United States)

    Yang, Ray-Yeng; Hwung, Hwung-Hweng; Shugan, Igor

    2010-05-01

    Since the discover of double-diffusive convection by Stommel, Arons & Blanchard (1956), 'evidence has accumulated for the widespread presence of double-diffusion throughout the ocean' and for its 'significant effects on global water-mass structure and the thermohaline convection' (Schmitt, 1998). The salt-fingering form of double-diffusion has particularly attracted interest because of salt-finger convection being now widely recognized as an important mechanism for mixing heat and salt both vertically and laterally in the ocean and saline lake. In oceanographic situations or saline lake where salt fingers may be an important mechanism for the transport of heat and salt in the vertical, velocity shears may also be present. Salt finger convection is analogous to Bénard convection in that the kinetic energy of the motions is obtained from the potential energy stored in the unstable distribution of a stratifying component. On the basis of the thermal analogy it is of interest to discover whether salt fingers are converted into two-dimensional sheets by the wind shear, and how the vertical fluxes of heat and salt are changed by the wind shear. Salt finger convection under the effect of steady wind shear is theoretically examined in this paper. The evolution of developing in the presence of a vertical density gradient disturbance and the horizontal Couette flow is considered near the onset of salt fingers in the saline lake under a moderate rate of wind shear. We use velocity as the basic variable and solve the pressure Poisson equation in terms of the associated Green function. Growth competition between the longitudinal rolls (LR) and the transverse rolls (TR), whose axes are respectively in the direction parallel to and perpendicular to the Couette flow, is investigated by the weakly nonlinear analysis of coupled-mode equations. The results show that the TR mode is characterized in some range of the effective Rayleigh number, and that the stability is dominated by

  5. Wind power forecasting: IEA Wind Task 36 & future research issues

    DEFF Research Database (Denmark)

    Giebel, Gregor; Cline, J.; Frank, Helmut Paul

    2016-01-01

    , MetOffice, met.no, DMI,...), operational forecaster and forecast users.The Task is divided in three work packages: Firstly, a collaboration on the improvement of the scientific basis for the wind predictions themselves. This includes numerical weather prediction model physics, but also widely......Bench. Thirdly, we will be engaging end users aiming at dissemination of the best practice in the usage of wind power predictions. As first results, an overview of current issues for research in short-term forecasting of wind power is presented....

  6. Research Advances on Fabricated Shear Wall System

    Science.gov (United States)

    Liu, Xudong; Wang, Donghui; Wang, Sheng; Zhai, Yu

    2018-03-01

    With the rapid development of the construction industry, building energy consumption has been increasing, has become a problem that can not be ignored. It is imperative to develop energy-saving buildings. A new type of prefabricated shear wall is assembled and partially assembled by prefabricated parts, and some concrete is spliced together. The new structure has good integrity, seismic resistance and excellent energy saving and environmental protection performance. It reduces building energy consumption to a great extent. Therefore, the design method, manufacturing process, site assembly process and key technical problems of the system are discussed. For the construction industry gradually entered the energy conservation, environmental protection, safety and durability of sustainable development laid the foundation.

  7. Estimating a wind shear detection range for different altitude levels in the troposphere

    Directory of Open Access Journals (Sweden)

    V. A. Gorodnichev

    2014-01-01

    Full Text Available A so-called wind shear (a vector difference of wind speeds in two points of the space referred to the distance between them is of essential practical interest to air force. The wind shear is a hidden and cliffhanging phenomenon. The growth of aircraft incidents at their taking off and landing have drawn attention to this phenomenon.Laser methods are one of the advanced remote techniques to measure a speed and detect a wind shear. Remote laser methods of wind speed measurement are divided into Doppler and correlation ones. More simple (and, respectively, demanding less expensive equipment are correlation methods and near to them non-Doppler techniques.Today almost all existing wind correlation lidars run in the visible range. However, in terms of safety for an eye, other ranges: near infrared (IK and ultra-violet (UF ones are also of interest.The work assesses a sounding range of the aircraft lidar in UF, visible, and near IK spectral ranges to solve a problem of wind shear detection for different altitude levels in the troposphere.Results of calculations show that the sounding ranges decrease with increasing flight altitude (at lidar parameters used in calculations to be in range from ~ 2.7-3.3 km (the lowest atmospheric layer height ~ 0 to ~ 200 - 300 m (a flight altitude of 10 km. And the main reduction of the sounding range vs height is within the range of heights of 5-10 km. Such dependence is caused by the strong reduction of aerosol extinction and atmosphere scattering with the altitude increase in this altitude range.In a ground layer of the terrestrial atmosphere (height ~ 0 the greatest sounding range is realized for a wave length of 0.532 microns. With increasing flight altitude a difference in sounding ranges for the wave lengths of 0.355; 9.532 and 1.54 microns decreases, and at big heights the greatest range of sounding is realized for a wave length of 1.54 microns.

  8. Factors Contributing to the Interrupted Decay of Hurricane Joaquin (2015) in a Moderate Vertical Wind Shear Environment

    Science.gov (United States)

    2017-06-01

    CONTRIBUTING TO THE INTERRUPTED DECAY OF HURRICANE JOAQUIN (2015) IN A MODERATE VERTICAL WIND SHEAR ENVIRONMENT by Adam C. Jorgensen June 2017...OF HURRICANE JOAQUIN (2015) IN A MODERATE VERTICAL WIND SHEAR ENVIRONMENT 5. FUNDING NUMBERS 6. AUTHOR(S) Adam C. Jorgensen 7. PERFORMING...maximum 200 words) This study investigates the environmental factors and the internal processes that contributed to the interrupted rapid decay of

  9. Small Wind Research Turbine: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Corbus, D.; Meadors, M.

    2005-10-01

    The Small Wind Research Turbine (SWRT) project was initiated to provide reliable test data for model validation of furling wind turbines and to help understand small wind turbine loads. This report will familiarize the user with the scope of the SWRT test and support the use of these data. In addition to describing all the testing details and results, the report presents an analysis of the test data and compares the SWRT test data to simulation results from the FAST aeroelastic simulation model.

  10. Wake Flow Simulation of a Vertical Axis Wind Turbine Under the Influence of Wind Shear

    Science.gov (United States)

    Mendoza, Victor; Goude, Anders

    2017-05-01

    The current trend of the wind energy industry aims for large scale turbines installed in wind farms. This brings a renewed interest in vertical axis wind turbines (VAWTs) since they have several advantages over the traditional Horizontal Axis Wind Tubines (HAWTs) for mitigating the new challenges. However, operating VAWTs are characterized by complex aerodynamics phenomena, presenting considerable challenges for modeling tools. An accurate and reliable simulation tool for predicting the interaction between the obtained wake of an operating VAWT and the flow in atmospheric open sites is fundamental for optimizing the design and location of wind energy facility projects. The present work studies the wake produced by a VAWT and how it is affected by the surface roughness of the terrain, without considering the effects of the ambient turbulence intensity. This study was carried out using an actuator line model (ALM), and it was implemented using the open-source CFD library OpenFOAM to solve the governing equations and to compute the resulting flow fields. An operational H-shaped VAWT model was tested, for which experimental activity has been performed at an open site north of Uppsala-Sweden. Different terrains with similar inflow velocities have been evaluated. Simulated velocity and vorticity of representative sections have been analyzed. Numerical results were validated using normal forces measurements, showing reasonable agreement.

  11. Research Needs for Wind Resource Characterization

    Science.gov (United States)

    Schreck, S. J.; Lundquist, J. K.; Shaw, W. J.

    2008-12-01

    Currently, wind energy provides about 1 percent of U.S. electricity generation. A recent analysis by DOE, NREL, and AWEA showed the feasibility of expanding U.S. wind energy capacity to 20 percent, comprising approximately 300 gigawatts. Though not a prediction of the future, this represents a plausible scenario for U.S. wind energy. To exploit these opportunities, a workshop on Research Needs for Wind Resource Characterization was held during January 2008. This event was organized on behalf of two DOE organizations; the Office of Biological and Environmental Research and the Office of Energy Efficiency and Renewable Energy. Over 120 atmospheric science and wind energy researchers attended the workshop from industry, academia, and federal laboratories in North America and Europe. Attendees identified problems that could impede achieving the 20 percent wind scenario and formulated research recommendations to attack these problems. Findings were structured into four focus areas: 1) Turbine Dynamics, 2) Micrositing and Array Effects, 3) Mesoscale Processes, and 4) Climate Effects. In the Turbine Dynamics area, detailed characterizations of inflows and turbine flow fields were deemed crucial to attaining accuracy levels in aerodynamics loads required for future designs. To address the complexities inherent in this area, an incremental approach involving hierarchical computational modeling and detailed measurements was recommended. Also recommended was work to model extreme and anomalous atmospheric inflow events and aerostructural responses of turbines to these events. The Micrositing and Array Effects area considered improved wake models important for large, multiple row wind plants. Planetary boundary layer research was deemed necessary to accurately determine inflow characteristics in the presence of atmospheric stability effects and complex surface characteristics. Finally, a need was identified to acquire and exploit large wind inflow data sets, covering heights

  12. Structural characterization of wind-sheared turbulent flow using self-organized mapping

    Science.gov (United States)

    Scott, Nicholas V.; Handler, Robert A.

    2016-05-01

    A nonlinear cluster analysis algorithm is used to characterize the spatial structure of a wind-sheared turbulent flow obtained from the direct numerical simulation (DNS) of the three-dimensional temperature and momentum fields. The application of self-organizing mapping to DNS data for data reduction is utilized because of the dimensional similitude in structure between DNS data and remotely sensed hyperspectral and multispectral data where the technique has been used extensively. For the three Reynolds numbers of 150, 180, and 220 used in the DNS, self-organized mapping is successful in the extraction of boundary layer streaky structures from the turbulent temperature and momentum fields. In addition, it preserves the cross-wind scale structure of the streaks exhibited in both fields which loosely scale with the inverse of the Reynolds number. Self-organizing mapping of the along wind component of the helicity density shows a layer of the turbulence field which is spotty suggesting significant direct coupling between the large and small-scale turbulent structures. The spatial correlation of the temperature and momentum fields allows for the possibility of the remote extrapolation of the momentum structure from thermal structure.

  13. European Wind Atlas and Wind Resource Research in Denmark

    DEFF Research Database (Denmark)

    Mortensen, Niels Gylling

    to estimate the actual wind climate at any specific site and height within this region. The Danish and European Wind Atlases are examples of how the wind atlas methodology can be employed to estimate the wind resource potential for a country or a sub-continent. Recently, the methodology has also been used...... - from wind measurements at prospective sites to wind tunnel simulations and advanced flow modelling. Among these approaches, the wind atlas methodology - developed at Ris0 National Laboratory over the last 25 years - has gained widespread recognition and is presently considered by many as the industry......-standard tool for wind resource assessment and siting of wind turbines. The PC-implementation of the methodology, the Wind Atlas Analysis and Application Program (WAsP), has been applied in more than 70 countries and territories world-wide. The wind atlas methodology is based on physical descriptions and models...

  14. Winds of change: research libraries

    DEFF Research Database (Denmark)

    Bang, Tove; Harbo, Karen

    2002-01-01

    The article takes its starting point in new trends and paradigm shifts in scholarly research methods and discusses how research libraries must act in relation to this. Various innovative initiatives at LASB are described, especially within the areas of electronic dissemination and presentation. A...... at ASB and a software company. LASB is positive towards and will continue working with this method. Finally the investment in future library services is discussed and a tangible offer is put into perspective: electronic reference services...

  15. Classification of Rotor Induced Shearing Events in the Near Wake of a Wind Turbine Array Boundary Layer

    Science.gov (United States)

    Smith, Sarah; Viggiano, Bianca; Ali, Naseem; Cal, Raul Bayoan

    2017-11-01

    Flow perturbation induced by a turbine rotor imposes considerable turbulence and shearing effects in the near wake of a turbine, altering the efficiency of subsequent units within a wind farm array. Previous methods have characterized near wake vorticity of a turbine and recovery distance of various turbine array configurations. This study aims to build on previous analysis with respect to a turbine rotor within an array and develop a model to examine stress events and energy contribution in the near wake due to rotational effects. Hot wire anemometry was employed downstream of a turbine centrally located in the third row of a 3x3 array. Data considered points planar to the rotor and included simultaneous streamwise and wall-normal velocities as well as concurrent streamwise and transverse velocities. Conditional analysis of Reynolds stresses induced by the rotor agree with former near wake research, and examination of stresses in terms of streamwise and transverse velocity components depicts areas of significant rotational effects. Continued analysis includes spectral decomposition and conditional statistics to further characterize shearing events at various points considering the swept area of the rotor.

  16. NASA airborne radar wind shear detection algorithm and the detection of wet microbursts in the vicinity of Orlando, Florida

    Science.gov (United States)

    Britt, Charles L.; Bracalente, Emedio M.

    1992-01-01

    The algorithms used in the NASA experimental wind shear radar system for detection, characterization, and determination of windshear hazard are discussed. The performance of the algorithms in the detection of wet microbursts near Orlando is presented. Various suggested algorithms that are currently being evaluated using the flight test results from Denver and Orlando are reviewed.

  17. WindScanner.eu - a new Remote Sensing Research Infrastructure for On- and Offshore Wind Energy

    DEFF Research Database (Denmark)

    Mikkelsen, Torben; Siggaard Knudsen, Søren; Sjöholm, Mikael

    2012-01-01

    will be disseminated throughout Europe to pilot European wind energy research centers. The new research infrastructure will become an open source infrastructure that also invites collaboration with wind energy related atmospheric scientists and wind energy industry overseas. Recent achievements with 3D Wind......Scanners and spin-off innovation activity are described. The Danish WindScanner.dk research facility is build from new and fast-scanning remote sensing equipment spurred from achievements within fiber optics and telecommunication technologies. At the same time the wind energy society has demanded excessive 3D wind...

  18. Research Status on Bonding Behavior of Prefabricated Concrete Shear Wall

    Science.gov (United States)

    Wang, Donghui; Liu, Xudong; Wang, Sheng; Li, Shanshan

    2018-03-01

    Prefabricated shear wall structure adapts to the development and requirements of China’s residential industrialization. The key to the prefabricated concrete shear wall structure is the connection between the prefabricated members, where the reliability of the connection of the concrete joint is related to the overall performance and seismic effect of the structure. In this paper, the microstructures of the joint surface and shear properties are analysed, and the formula for calculating the shear strength of the joint is obtained.

  19. Effect of Tower Shadow and Wind Shear in a Wind Farm on AC Tie-Line Power Oscillations of Interconnected Power Systems

    DEFF Research Database (Denmark)

    Tan, Jin; Hu, Weihao; Wang, Xiaoru

    2013-01-01

    This paper describes a frequency domain approach for evaluating the impact of tower shadow and wind shear effects (TSWS) on tie-line power oscillations. A simplified frequency domain model of an interconnected power system with a wind farm is developed. The transfer function, which relates the tie......-line power variation to the mechanical power variation of a wind turbine, and the expression of the maximum magnitude of tie-line power oscillations are derived to identify the resonant condition and evaluate the potential risk. The effects of the parameters on the resonant magnitude of the tie-line power...... are also discussed. The frequency domain analysis reveals that TSWS can excite large tie-line power oscillations if the frequency of TSWS approaches the tie-line resonant frequency, especially in the case that the wind farm is integrated into a relatively small grid and the tie-line of the interconnected...

  20. Research Developments on Power System Integration of Wind Power

    DEFF Research Database (Denmark)

    Chen, Zhe; Hansen, Jens Carsten; Qiuwei, Wu

    2011-01-01

    This paper presents an overview on the recent research activities and tendencies regarding grid integration of wind power in Denmark and some related European activities, including power electronics for enhancing wind power controllability, wind turbines and wind farms modeling,wind power...... variability and prediction, wind power plant ancillary services, grid connection and operation, Smart grids and demand side management under market functionality. The topics of the first group of PhD program starting 2011 under the wind energy Sino-Danish Centre for Education & Research (SDC) are also...

  1. Research Developments on Power System Integration of Wind Power

    DEFF Research Database (Denmark)

    Chen, Zhe; Hansen, Jens Carsten; Wu, Qiuwei

    2011-01-01

    This paper presents an overview on the recent research activities and tendencies regarding grid integration of wind power in Denmark and some related European activities, including power electronics for enhancing wind power controllability, wind turbines and wind farms modeling, wind power...... variability and prediction, wind power plant ancillary services, grid connection and operation, Smart grids and demand side management under market functionality. The topics of the first group of PhD program starting 2011 under the wind energy Sino-Danish Centre for Education & Research (SDC) are also...

  2. First wind shear observation in PMSE with the tristatic EISCAT VHF radar

    Science.gov (United States)

    Mann, I.; Häggström, I.; Tjulin, A.; Rostami, S.; Anyairo, C. C.; Dalin, P.

    2016-11-01

    The Polar Summer Mesosphere has the lowest temperatures that occur in the entire Earth system. Water ice particles below the optically observable size range participate there in the formation of strong radar echoes (Polar Mesospheric Summer Echoes, PMSE). To study PMSE we carried out observations with the European Incoherent Scatter (EISCAT) VHF and EISCAT UHF radar simultaneously from a site near Tromsø (69.58°N, 19.2272°E) and observed VHF backscattering also with the EISCAT receivers in Kiruna (67.86°N, 20.44°E) and Sodankylä (67.36°N, 26.63°E). This is one of the first tristatic measurements with EISCAT VHF, and we therefore describe the observations and geometry in detail. We present observations made on 26 June 2013 from 7:00 to 13:00 h UT where we found similar PMSE patterns with all three VHF receivers and found signs of wind shear in PMSE. The observations suggest that the PMSE contains sublayers that move in different directions horizontally, and this points to Kelvin-Helmholtz instability possibly playing a role in PMSE formation. We find no signs of PMSE in the UHF data. The electron densities that we derive from observed incoherent scatter at UHF are at PMSE altitudes close to the noise level but possibly indicate reduced electron densities directly above the PMSE.

  3. Accounting for the speed shear in wind turbine power performance measurement

    DEFF Research Database (Denmark)

    Wagner, Rozenn; Courtney, Michael; Gottschall, Julia

    2011-01-01

    The current IEC standard for wind turbine power performance measurement only requires measurement of the wind speed at hub height assuming this wind speed to be representative for the whole rotor swept area. However, the power output of a wind turbine depends on the kinetic energy flux, which...

  4. Automatic detection of low altitude wind shear due to gust fronts in the terminal Doppler weather radar operational demonstration

    Science.gov (United States)

    Klingle-Wilson, Diana

    1990-01-01

    A gust front is the leading edge of the cold air outflow from a thunderstorm. Wind shears and turbulence along the gust front may produce potentially hazardous conditions for an aircraft on takeoff or landing such that runway operations are significantly impacted. The Federal Aviation Administration (FAA) has therefore determined that the detection of gust fronts in the terminal environment be an integral part of the Terminal Doppler Weather Radar (TDWR) system. Detection of these shears by the Gust Front Algorithm permits the generation of warnings that can be issued to pilots on approach and departure. In addition to the detection capability, the algorithm provides an estimate of the wind speed and direction following the gust front (termed wind shift) and the forecasted location of the gust front up to 20 minutes before it impacts terminal operations. This has shown utility as a runway management tool, alerting runway supervisors to approaching wind shifts and the possible need to change runway configurations. The formation and characteristics of gust fronts and their signatures in Doppler radar data are discussed. A brief description of the algorithm and its products for use by Air Traffic Control (ATC), along with an assessment of the algorithm's performance during the 1988 Operational Test and Evaluation, is presented.

  5. Uncertainty in vertical extrapolation of wind statistics: shear-exponent and WAsP/EWA methods

    DEFF Research Database (Denmark)

    Kelly, Mark C.

    This report provides formulations for estimation of uncertainties involved in vertical extrapolation of winds, as well as the total uncertainty incurred when winds observed at one height are extrapolated to turbine hub height for wind resource assessment. This includes new derivations for uncerta......This report provides formulations for estimation of uncertainties involved in vertical extrapolation of winds, as well as the total uncertainty incurred when winds observed at one height are extrapolated to turbine hub height for wind resource assessment. This includes new derivations...

  6. Wind2050 – a transdisciplinary research partnership about wind energy

    DEFF Research Database (Denmark)

    Borch, Kristian; Nyborg, Sophie; Clausen, Laura Tolnov

    2017-01-01

    Strategic orientation and priority setting in energy planning are high on the political agenda in Denmark due to the ambitious national goal of fossil-free energy systems. One key issue concerns the involvement of stakeholders – and non-expert stakeholders in particular – in discussions on how...... such as environment and health or what is per-ceived as an unfair distribution of economic gains, as well as how wind turbines could contribute to local development or be seen as a local contribution to a national transi-tion of the energy system. This calls for a transdisciplinary approach to science and innovation...

  7. Role of upper-level wind shear on the structure and maintenance of derecho-producing convective systems

    Science.gov (United States)

    Coniglio, Michael Charles

    Common large-scale environments associated with the development of derecho-producing convective systems from a large number of events are identified using statistical clustering of the 500-mb geopotential heights as guidance. The majority of the events (72%) fall into three main patterns that include a well-defined upstream trough (40%), a ridge (20%), and a zonal, low-amplitude flow (12%), which is defined as an additional warm-season pattern that is not identified in past studies of derecho environments. Through an analysis of proximity soundings, discrepancies are found in both low-level and deep-tropospheric shear parameters between observations and the shear profiles considered favorable for strong, long-lived convective systems in idealized simulations. To explore the role of upper-level shear in derecho environments, a set of two-dimensional simulations of density currents within a dry, neutrally stable environment are used to examine the ability of a cold pool to lift environmental air within a vertically sheared flow. The results confirm that the addition of upper-level shear to a wind profile with weak to moderate low-level shear increases the vertical displacement of low-level parcels despite a decrease in the vertical velocity along the cold pool interface, as suggested by previous studies. Parcels that are elevated above the surface (1-2 km) overturn and are responsible for the deep lifting in the deep-shear environments. This deep overturning caused by the upper-level shear helps to maintain the tilt of the convective systems in more complex two-dimensional and three dimensional simulations. The overturning also is shown to greatly increase the size of the convective systems in the three-dimensional simulations by facilitating the initiation and maintenance of convective cells along the cold pool. When combined with estimates of the cold pool motion and the storm-relative hodograph, these results may best be used for the prediction of the demise of

  8. Solar-wind turbulence and shear: a superposed-epoch analysis of corotating interaction regions at 1 AU

    Energy Technology Data Exchange (ETDEWEB)

    Borovsky, Joseph E [Los Alamos National Laboratory; Denton, Michael H [LANCASTER UNIV.

    2009-01-01

    A superposed-epoch analysis of ACE and OMNI2 measurements is performed on 27 corotating interaction regions (CIRs) in 2003-2008, with the zero epoch taken to be the stream interface as determined by the maximum of the plasma vorticity. The structure of CIRs is investigated. When the flow measurements are rotated into the local-Parker-spiral coordinate system the shear is seen to be abrupt and intense, with vorticities on the order of 10{sup -5}-10{sup -4} sec{sup -1}. Converging flows perpendicular to the stream interface are seen in the local-Parker-spiral coordinate system and about half of the CIRs show a layer of divergent rebound flow away from the stream interface. Arguments indicate that any spreading of turbulence away from the region where it is produced is limited to about 10{sup 6} km, which is very small compared with the thickness of a CrR. Analysis of the turbulence across the CrRs is performed. When possible, the effects of discontinuities are removed from the data. Fluctuation amplitudes, the Alfvenicity, and the level of Alfvenic correlations all vary smoothly across the CrR. The Alfven ratio exhibits a decrease at the shear zone of the stream interface. Fourier analysis of 4.5-hr subintervals of ACE data is performed and the results are superposed averaged as an ensemble of realizations. The spectral slopes of the velocity, magnetic-field, and total-energy fluctuations vary smoothly across the CIR. The total-energy spectral slope is {approx} 3/2 in the slow and fast wind and in the CrRs. Analysis of the Elsasser inward-outward fluctuations shows a smooth transition across the CrR from an inward-outward balance in the slow wind to an outward dominance in the fast wind. A number of signatures of turbulence driving at the shear zone are sought (entropy change, turbulence amplitude, Alfvenicity, Alfven ratio, spectral slopes, in-out nature): none show evidence of driving of turbulence by shear.

  9. Offshore wind development research (technical brief).

    Science.gov (United States)

    2014-04-01

    The study addresses all aspects of Offshore Wind (OSW) development. This includes identifying : vessel types, vessel installation methods, needs and operating characteristics through all phases : of OSW installation, construction, operations and main...

  10. 2017 Publications Demonstrate Advancements in Wind Energy Research

    Energy Technology Data Exchange (ETDEWEB)

    2018-01-17

    In 2017, wind energy experts at the National Renewable Energy Laboratory (NREL) made significant strides to advance wind energy. Many of these achievements were presented in articles published in scientific and engineering journals and technical reports that detailed research accomplishments in new and progressing wind energy technologies. During fiscal year 2017, NREL wind energy thought leaders shared knowledge and insights through 45 journal articles and 25 technical reports, benefiting academic and national-lab research communities; industry stakeholders; and local, state, and federal decision makers. Such publications serve as important outreach, informing the public of how NREL wind research, analysis, and deployment activities complement advanced energy growth in the United States and around the world. The publications also illustrate some of the noteworthy outcomes of U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) and Laboratory Directed Research and Development funding, as well as funding and facilities leveraged through strategic partnerships and other collaborations.

  11. USAF TPS L-23 Shear Wind Observed Optimized Path Investigation for NASA (SENIOR ShWOOPIN)

    National Research Council Canada - National Science Library

    Gordon, Randy; Fails, Robert; Baase, Solomon; Eckberg, Jason; Ryan, Charles; Smith, Chris

    2006-01-01

    The SENIOR ShWOOPIN TMP was conducted at the request of the USAF TPS as part of a NASA investigation into the viability of aircraft endurance enhancement through the extraction of energy from horizontal wind gradients...

  12. The USDA agricultural wind energy research program

    Science.gov (United States)

    Clark, R. N.

    Applications of wind power in agriculture were investigated. Building heating projects were conducted using a 15-kW electrical machine to power resistant heaters, and a 4-kW cycloturbine powered a water churn to heat water. The two projects in product storage and processing provided refrigeration for short and long term storage systems. Milk was cooled at a dairy and exhaust heat from the compressor was used to preheat the hot water. In the other project, apples were cooled and stored for six months. The apple storage system incorporated an ice bank for storage during nonwind periods. The two irrigation experiments involved pumping water from a surface reuse system using a vertical axis wind turbine directly coupled to a turbine pump and wind assist pumping from a deep well by combining a wind turbine with a diesel engine. The wind assist concept saved 40% of fuel normally used in pumping the well. Economic analyses of these applications show that most individual loads on a farm are usually too short in duration to make the unit profitable.

  13. The role of research in the diffusion of wind technology

    International Nuclear Information System (INIS)

    Pirazzi, L.

    2009-01-01

    This last year for the first time in Europe the stunning global growth of wind technology has made wind energy to rank highest in diffusion among all energy sources. The role of research remains critical to achieve ever more ambitions E U goals. [it

  14. Long-term research challenges in wind energy – a research agenda by the European Academy of Wind Energy

    DEFF Research Database (Denmark)

    van Kuik, G. A. M.; Peinke, Joachim; Nijssen, R.

    2016-01-01

    , this eawe document takes a longer-term perspective, addressing the scientific knowledge base that is required to develop wind energy beyond the applications of today and tomorrow. In other words, this long-term research agenda is driven by problems and curiosity, addressing basic research and fundamental......The European Academy of Wind Energy (eawe), representing universities and institutes with a significant wind energy programme in 14 countries, has discussed the long-term research challenges in wind energy. In contrast to research agendas addressing short- to medium-term research activities...... knowledge in 11 research areas, ranging from physics and design to environmental and societal aspects. Because of the very nature of this initiative, this document does not intend to be permanent or complete. It shows the vision of the experts of the eawe, but other views may be possible. We sincerely hope...

  15. A new paradigm for intensity modification of tropical cyclones: thermodynamic impact of vertical wind shear on the inflow layer

    Science.gov (United States)

    Riemer, M.; Montgomery, M. T.; Nicholls, M. E.

    2009-05-01

    An important roadblock to improved intensity forecasts for tropical cyclones (TCs) is our incomplete understanding of the interaction of a TC with the environmental flow. In this paper we re-visit the classical idealised numerical experiment of tropical cyclones (TCs) in vertical wind shear on an f-plane. We employ a set of simplified model physics - a simple bulk aerodynamic boundary layer scheme and "warm rain" microphysics - to foster better understanding of the dynamics and thermodynamics that govern the modification of TC intensity. A suite of experiments is performed with intense TCs in moderate to strong vertical shear. In all experiments the TC is resilient to shear but significant differences in the intensity evolution occur. The ventilation of the TC core with dry environmental air at mid-levels and the dilution of the upper-level warm core are two prevailing hypotheses for the adverse effect of vertical shear on storm intensity. Here we propose an alternative and arguably more effective mechanism how cooler and drier (lower θe) air - "anti-fuel" for the TC power machine - can enter the core region of the TC. Strong and persistent downdrafts flux low θe air from the lower and middle troposphere into the boundary layer, significantly depressing the θe values in the storm's inflow layer. Air with lower θe values enters the eyewall updrafts, considerably reducing eyewall θe values in the azimuthal mean. When viewed from the perspective of an idealised Carnot-cycle heat engine a decrease of storm intensity can thus be expected. Although the Carnot cycle model is - if at all - only valid for stationary and axisymmetric TCs, a strong correlation between the downward transport of low θe into the boundary layer and the intensity evolution offers further evidence in support of our hypothesis. The downdrafts that flush the inflow layer with low θe air are associated with a quasi-stationary region of convective activity outside the TC's eyewall. We show

  16. Interaction of suprathermal solar wind electron fluxes with sheared whistler waves: fan instability

    Directory of Open Access Journals (Sweden)

    C. Krafft

    Full Text Available Several in situ measurements performed in the solar wind evidenced that solar type III radio bursts were some-times associated with locally excited Langmuir waves, high-energy electron fluxes and low-frequency electrostatic and electromagnetic waves; moreover, in some cases, the simultaneous identification of energetic electron fluxes, Langmuir and whistler waves was performed. This paper shows how whistlers can be excited in the disturbed solar wind through the so-called "fan instability" by interacting with energetic electrons at the anomalous Doppler resonance. This instability process, which is driven by the anisotropy in the energetic electron velocity distribution along the ambient magnetic field, does not require any positive slope in the suprathermal electron tail and thus can account for physical situations where plateaued reduced electron velocity distributions were observed in solar wind plasmas in association with Langmuir and whistler waves. Owing to linear calculations of growth rates, we show that for disturbed solar wind conditions (that is, when suprathermal particle fluxes propagate along the ambient magnetic field, the fan instability can excite VLF waves (whistlers and lower hybrid waves with characteristics close to those observed in space experiments.

    Key words. Space plasma physics (waves and instabilities – Radio Science (waves in plasma – Solar physics, astrophysics and astronomy (radio emissions

  17. Interaction of suprathermal solar wind electron fluxes with sheared whistler waves: fan instability

    Directory of Open Access Journals (Sweden)

    C. Krafft

    2003-07-01

    Full Text Available Several in situ measurements performed in the solar wind evidenced that solar type III radio bursts were some-times associated with locally excited Langmuir waves, high-energy electron fluxes and low-frequency electrostatic and electromagnetic waves; moreover, in some cases, the simultaneous identification of energetic electron fluxes, Langmuir and whistler waves was performed. This paper shows how whistlers can be excited in the disturbed solar wind through the so-called "fan instability" by interacting with energetic electrons at the anomalous Doppler resonance. This instability process, which is driven by the anisotropy in the energetic electron velocity distribution along the ambient magnetic field, does not require any positive slope in the suprathermal electron tail and thus can account for physical situations where plateaued reduced electron velocity distributions were observed in solar wind plasmas in association with Langmuir and whistler waves. Owing to linear calculations of growth rates, we show that for disturbed solar wind conditions (that is, when suprathermal particle fluxes propagate along the ambient magnetic field, the fan instability can excite VLF waves (whistlers and lower hybrid waves with characteristics close to those observed in space experiments.Key words. Space plasma physics (waves and instabilities – Radio Science (waves in plasma – Solar physics, astrophysics and astronomy (radio emissions

  18. A Study of Wind Shear Effects on Aircraft Operations and Safety in Australia,

    Science.gov (United States)

    1981-03-01

    basic observational data are often too obsolete to be of much assistance. At Auckland and Bahrain, ATCs record the wind speed at 2000 ft as advised...included here. Tropical cyclones, and on a much smaller scale, tornadoes . willy-willies and dust devils are phenomena of intense atmospheric activity

  19. Wind shear and wet and dry thermodynamic indices as predictors of thunderstorm motion and severity and application to the AVE 4 experimental data

    Science.gov (United States)

    Connell, J. R.; Ey, L.

    1977-01-01

    Two types of parameters are computed and mapped for use in assessing their individual merits as predictors of occurrence and severity of thunderstorms. The first group is comprised of equivalent potential temperature, potential temperature, water vapor mixing ratio, and wind speed. Equivalent potential temperature maxima and strong gradients of equivalent potential temperature at the surface correlate well with regions of thunderstorm activity. The second type, comprised of the energy index, shear index, and energy shear index, incorporates some model dynamics of thunderstorms, including nonthermodynamic forcing. The energy shear index is found to improve prediction of tornadic and high-wind situations slightly better than other indices. It is concluded that further development and refinement of nonthermodynamic aspects of predictive indices are definitely warranted.

  20. Assessment of research needs for wind turbine rotor materials technology

    National Research Council Canada - National Science Library

    National Research Council Staff; Commission on Engineering and Technical Systems; Division on Engineering and Physical Sciences; National Research Council; National Academy of Sciences

    1991-01-01

    ... on Assessment of Research Needs for Wind Turbine Rotor Materials Technology Energy Engineering Board Commission on Engineering and Technical Systems National Research Council NATIONAL ACADEMY PRESS Washington, D.C. 1991 Copyrightthe true use are Please breaks Page inserted. accidentally typesetting been have may original the from errors not...

  1. Shear stress peaks in a superconductor cable during the winding of a large toroidal field coil

    International Nuclear Information System (INIS)

    Zehlein, H.

    1983-01-01

    The paper presents a simplified elastica conductor model (SECM) built by a finite chain of intervals with constant bending moment and curvature. The problem does not allow to linearize the curvature. A bilinear moment-curvature relationship as derived from bending experiments was used to describe the elastoplastic behaviour of the cable under different tension forces acting on the ''free'' end near the supply spool. Due to the geometric and material nonlinearities mentioned no direct solution is possible. The paper describes the discrete model as well as the iterative shooting method which finds the equilibrium shape of the conductor. The distributions of bending moment and shear forces on the D-shaped contour as well as along the conductor are given. They show a pronounced influence of the tension force in the relevant range of 1 to 40 kN. An inconsistency due to compromising model simplifications is shown which occurs at the contour points where the curvature radius suddenly changes. Remarks on the elastic springback of the superconductor observed there conclude the paper

  2. A new paradigm for intensity modification of tropical cyclones: thermodynamic impact of vertical wind shear on the inflow layer

    Directory of Open Access Journals (Sweden)

    M. Riemer

    2010-04-01

    Full Text Available An important roadblock to improved intensity forecasts for tropical cyclones (TCs is our incomplete understanding of the interaction of a TC with the environmental flow. In this paper we re-visit the canonical problem of a TC in vertical wind shear on an f-plane. A suite of numerical experiments is performed with intense TCs in moderate to strong vertical shear. We employ a set of simplified model physics – a simple bulk aerodynamic boundary layer scheme and "warm rain" microphysics – to foster better understanding of the dynamics and thermodynamics that govern the modification of TC intensity. In all experiments the TC is resilient to shear but significant differences in the intensity evolution occur.

    The ventilation of the TC core with dry environmental air at mid-levels and the dilution of the upper-level warm core are two prevailing hypotheses for the adverse effect of vertical shear on storm intensity. Here we propose an alternative and arguably more effective mechanism how cooler and drier (lower θe air – "anti-fuel" for the TC power machine – can enter the core region of the TC. Strong and persistent, shear-induced downdrafts flux low θe air into the boundary layer from above, significantly depressing the θe values in the storm's inflow layer. Air with lower θe values enters the eyewall updrafts, considerably reducing eyewall θe values in the azimuthal mean. When viewed from the perspective of an idealised Carnot-cycle heat engine a decrease of storm intensity can thus be expected. Although the Carnot cycle model is – if at all – only valid for stationary and axisymmetric TCs, a close association of the downward transport of low θe into the boundary layer and the intensity evolution offers further evidence in support of our hypothesis.

    The downdrafts that flush the boundary layer with low

  3. Research on definition of hard rock shear wave velocity of site for nuclear power plant

    International Nuclear Information System (INIS)

    Ding Zhenkun; Xia Zufeng

    2013-01-01

    Background: The definition of hard rock shear wave velocity is one of the most critical issues in the work of site selection. Purpose: To make a definition of hard rock site on which the model can be assumed as fixed-base condition, a series of research had been done. Several possible hard rock site soil models were developed. Methods: Shear wave velocity of hard rock had been assumed from 1100 m/s to 3200 m/s. For each case, free field analysis and soil structure analysis had been performed. And responses in soil and key nodes of structure were compared. Results: In free field analysis, responses of models that shear wave velocity below 2400 m/s decreased a lot. In SSI analysis, structure responses didn't change much when shear wave velocity was above 2400 m/s. Conclusions: 2400 m/s was the lowest shear wave velocity for hard rock site for fixed-base assumption. (authors)

  4. Numerical investigations on the influence of wind shear and turbulence on aircraft trailing vortices; Numerische Untersuchungen zum Einfluss von Windscherung und Turbulenz auf Flugzeugwirbelschleppen

    Energy Technology Data Exchange (ETDEWEB)

    Hofbauer, T.

    2003-07-01

    In several aspects, the behaviour of aircraft wake vortices under situations of vertical wind shear is significantly different from non-shear scenarios and its operational real-time forcast is challenging. By means of numerical investigations of idealized scenarios, the influence of wind shear on the lateral and vertical transport of vortices is analysed both, phenomenologically as well as in the scope of a sensitivity study. The results allow for the verification of controversial views and the benchmark of modelling approaches. Case studies of turbulent shear flows focus on the persistence of vortices. A detailed analysis of the flow fields evidence that unequal vortex decay rates can be attributed to the asymmetric distribution of secondary vorticity structures. The results moreover suggest that extended vortex lifespans can be expected under situations of wind shear. The unusual vortex behaviour observed by means of a LIDAR measurement is reproduced by realistic simulations and permits to reveal potential causes. (orig.) [German] Das Wirbelschleppenverhalten unterscheidet sich in Situationen vertikaler Windscherung in mehrfacher Hinsicht signifikant von scherungsfreien Szenarien und stellt eine besondere Herausforderung fuer eine operationelle Echtzeitvorhersage dar. Mittels numerischer Untersuchungen idealisierter Szenarien wird zunaechst der Einfluss von Windscherung auf den lateralen und vertikalen Wirbeltransport sowohl phaenomenologisch als auch quantitativ im Rahmen einer Sensitivitaetsstudie analysiert. Anhand der gewonnenen Ergebnisse werden auseinandergehende Erklaerungsansaetze geprueft und Modellierungsansaetze bewertet. Fallstudien turbulenter Scherstroemungen zur Wirbelpersistenz stellen einen weiteren Schwerpunkt dieser Arbeit dar. Durch die ausfuehrliche Analyse der Stroemungsfelder wird der Nachweis erbracht, dass sich unterschiedliche Zerfallsraten der Wirbel auf die asymmetrische Verteilung von sekundaeren Vorticity-Strukturen zurueckfuehren

  5. The development of convective instability, wind shear, and vertical motion in relation to convection activity and synoptic systems in AVE 4

    Science.gov (United States)

    Davis, J. G.; Scoggins, J. R.

    1981-01-01

    Data from the Fourth Atmospheric Variability Experiment were used to investigate conditions/factors responsible for the development (local time rate-of-change) of convective instability, wind shear, and vertical motion in areas with varying degrees of convective activity. AVE IV sounding data were taken at 3 or 6 h intervals during a 36 h period on 24-25 April 1975 over approximately the eastern half of the United States. An error analysis was performed for each variable studied.

  6. Improved velocity law parameterization for hot star winds (Research Note)

    Czech Academy of Sciences Publication Activity Database

    Krtička, J.; Kubát, Jiří

    2011-01-01

    Roč. 534, October (2011), A97/1-A97/3 ISSN 0004-6361 R&D Projects: GA ČR GA205/08/0003 Institutional research plan: CEZ:AV0Z10030501 Keywords : stars * winds * outflows Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.587, year: 2011

  7. Sensitivity of Turbine-Height Wind Speeds to Parameters in Planetary Boundary-Layer and Surface-Layer Schemes in the Weather Research and Forecasting Model

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ben; Qian, Yun; Berg, Larry K.; Ma, Po-Lun; Wharton, Sonia; Bulaevskaya, Vera; Yan, Huiping; Hou, Zhangshuan; Shaw, William J.

    2016-07-21

    We evaluate the sensitivity of simulated turbine-height winds to 26 parameters applied in a planetary boundary layer (PBL) scheme and a surface layer scheme of the Weather Research and Forecasting (WRF) model over an area of complex terrain during the Columbia Basin Wind Energy Study. An efficient sampling algorithm and a generalized linear model are used to explore the multiple-dimensional parameter space and quantify the parametric sensitivity of modeled turbine-height winds. The results indicate that most of the variability in the ensemble simulations is contributed by parameters related to the dissipation of the turbulence kinetic energy (TKE), Prandtl number, turbulence length scales, surface roughness, and the von Kármán constant. The relative contributions of individual parameters are found to be dependent on both the terrain slope and atmospheric stability. The parameter associated with the TKE dissipation rate is found to be the most important one, and a larger dissipation rate can produce larger hub-height winds. A larger Prandtl number results in weaker nighttime winds. Increasing surface roughness reduces the frequencies of both extremely weak and strong winds, implying a reduction in the variability of the wind speed. All of the above parameters can significantly affect the vertical profiles of wind speed, the altitude of the low-level jet and the magnitude of the wind shear strength. The wind direction is found to be modulated by the same subset of influential parameters. Remainder of abstract is in attachment.

  8. Wind Energy in the United States: Market and Research Update

    International Nuclear Information System (INIS)

    Goldman, P.R.; Thresher, R.W.; Hock, S.M.

    1999-01-01

    U.S. market activity has increased over the last two years. In 1998, new capacity totaled about 150 MW and projected 1999 capacity additions are over 600 MW. As the electricity market continues to evolve under restructuring, the U.S. Department of Energy (U.S. DOE) Wind Energy Program has positioned itself to work with industry to meet current challenges and opportunities, and prepare for the market of tomorrow. Some opportunities include green power markets and distributed applications, although a primary challenge involves the fact that avoided cost payments to renewable generators are not high enough to economically support projects. A recently incorporated power exchange in California, APX, Inc., has demonstrated that green power does attract a premium over prices on the conventional power exchange. The key elements of the U.S. DOE Wind Program are (1) Applied Research, which is critical for achieving advanced turbine designs capable of competing in a restructured market that emphasizes low cost generation; (2) Turbine Research, which supports the U.S. industry in developing competitive, high performance, reliable wind turbine technology for global energy markets; and (3) Cooperative Research and Testing, under which standards development and certification testing are the key activities for the current year

  9. Research Status on Reinforcement Connection Form of Precast Concrete Shear Wall Structure

    Science.gov (United States)

    Zhang, Zhuangnan; Zhang, Yan

    2018-03-01

    With the rapid development of Chinese economy and the speeding up the process of urbanization, housing industrialization has been paid more and more attention. And the fabricated structure has been widely used in China. The key of precast concrete shear wall structure is the connection of precast components. The reinforcement connection can directly affect the entirety performance and seismic behavior of the structure. Different reinforcement connections have a great impact on the overall behavior of the structure. By studying the characteristics of the reinforcement connection forms used in the vertical connection and horizontal connection of precast concrete shear wall, it can provide reference for the research and development of the reinforcement connection forms in the future.

  10. Strategy for Danish wind energy research; Startegi for dansk vindenergiforskning

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    The objective of the strategy for Danish wind energy research is to support future prioritizations - primarily as regards publicly funded programs. Most recent energy political objectives formulated in 2004 by the Danish Ministry of Economic and Business Affairs state: 'The objective of the governmental energy policy is to create efficient energy markets within a framework that secures cost efficiency, security of supplies, environmental considerations and efficient use of energy. The markets must be transparent and the competition must be fair. This will secure the energy consumers the lowest possible energy prices.' The wind energy strategy mirrors user needs and is, among other things, based upon a number of interviews with interested parties and a hearing on the strategy draft. (BA)

  11. Wind-energy Science, Technology and Research (WindSTAR) Consortium: Curriculum, Workforce Development, and Education Plan Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Manwell, James [Univ. of Massachusetts, Amherst, MA (United States)

    2013-03-19

    The purpose of the project is to modify and expand the current wind energy curriculum at the University of Massachusetts Amherst and to develop plans to expand the graduate program to a national scale. The expansion plans include the foundational steps to establish the American Academy of Wind Energy (AAWE). The AAWE is intended to be a cooperative organization of wind energy research, development, and deployment institutes and universities across North America, whose mission will be to develop and execute joint RD&D projects and to organize high-level science and education in wind energy

  12. Wind erosion research at an uranium mill tailings site

    Energy Technology Data Exchange (ETDEWEB)

    Sehmel, G A

    1977-07-01

    A uranium mill tailings pile at Grants, New Mexico, was selected for wind erosion research since the configuration provides flat area containing fine sand and made up of larger particles. The wind erosion experiment is discussed. Experimental equipment consists of meteorological instrumentation to automatically activate air samplers as a function of wind speed increments and direction, particle cascade impactors to measure airborne respirable concentrations as a function of particle size, inertial impaction devices to measure nonrespirable fluxes of airborne particles, a virtual particle cascade impactor to measure airborne concentrations of toxic trace elements, and soil depth gauges to measure changes in surface soil elevations as a function of time. Both radioactive particles as well as toxic trace element concentrations are measured. Radioactive particles are measured with both particle cascade impactors as well as high-volume air samplers. In contrast, toxic trace element airborne concentrations are measured only with a two-stage virtual particle cascade impactor. Fluxes of nonrespirable airborne particles are measured with inertial impaction devices. At particle cascade impactor sites, a rotating cyclone preseparator collects nonrespirable particles. In addition at all sites, fluxes of nonrespirable particles are measured using an open cavity inertial impaction device. (JGB)

  13. Strongly-sheared wind-forced currents in the nearshore regions of the central Southern California Bight

    Science.gov (United States)

    Noble, Marlene A.; Rosenberger, Kurt; Robertson, George L.

    2015-01-01

    Contrary to many previous reports, winds do drive currents along the shelf in the central portion of the Southern California Bight (SCB). Winds off Huntington Beach CA are the dominant forcing for currents over the nearshore region of the shelf (water depths less than 20 m). Winds control about 50–70% of the energy in nearshore alongshelf surface currents. The wind-driven current amplitudes are also anomalously high. For a relatively weak 1 dyne/cm2 wind stress, the alongshelf surface current amplitudes in this region can reach 80 cm/s or more. Mid-depth current amplitudes for the same wind stress are around 30–40 cm/s. These wind-driven surface current amplitudes are much larger than previously measured over other nearshore shelf regions, perhaps because this program is one of the few that measured currents within a meter of the surface. The near-bed cross-shelf currents over the nearshore region of the Huntington Beach shelf have an Ekman response to winds in that they upwell (downwell) for down (up) coast winds. This response disappears further offshore. Hence, there is upwelling in the SCB, but it does not occur across the entire shelf. Subthermocline water in the nearshore region that may contain nutrients and plankton move onshore when winds are southeastward, but subthermocline water over the shelf break is not transported to the beach. The currents over the outer shelf are not predominately controlled by winds, consistent with previous reports. Instead, they are mainly driven by cross-shelf pressure gradients that are independent of local wind stress.

  14. Shear layer approximation of Navier-Stokes steady equations for non-axisymmetric wind turbine wakes: Description, verification and first application

    Science.gov (United States)

    Trabucchi, Davide; Vollmer, Lukas; Kühn, Martin

    2016-09-01

    The number of turbines installed in offshore wind farms has strongly increased in the last years and at the same time the need for more precise estimation of the wind farm efficiency. For this reason, the wind energy community could benefit from more accurate models for multiple wakes. Existing engineering models can only simulate single wakes, which are superimposed if they are interacting in a wind farm. This method is a practical solution, but it is not fully supported by a physical background. The limitation to single wakes is given by the assumption that the wake is axisymmetric. As alternative, we propose a new shear model which is based on the existing engineering wake models, but is extended to simulate also non- axisymmetric wakes. In this paper, we present the theoretical background of the model and two application cases. First, we proved that for axisymmetric wakes the new model is equivalent to a commonly used engineering model. Then, we evaluated the improvements of the new model for the simulation of a non-axisymmetric wake using a large eddy simulation as reference. The results encourage the further development of the model, and promise a successful application for the simulation of multiple wakes.

  15. The Wind Energy programme - SFOE Research Programme 2000 - 2003; Programm Wind. Konzept BFE-Forschungsprogramm 'Wind' 2000 - 2003

    Energy Technology Data Exchange (ETDEWEB)

    Horbaty, R.

    2001-07-01

    This document, issued by the Swiss Federal Office of Energy (SFOE) describes the concept behind the Swiss wind energy programme. The first part of the report discusses the origins and development of the wind energy programme in Switzerland, discussing the importance of wind energy and policy matters associated with its promotion. The experience gained during the previous research programmes is reviewed. The degree to which targets were reached, promotional activities, the central government's own wind energy activities and the results of a programme evaluation are discussed. Lists of projects that have been realised and activities that have been carried out are presented and positive and negative influences on development are noted. A second part is dedicated to the goals of the wind energy programme in terms of target figures for the year 2010 and the strategies chosen to reach these goals, including pilot and demonstration projects (P and D) and promotional activities. Details of the P and D programme including lists of wind-power projects to be supported, the priorities that have been set and information and further education that is to be provided, are given. New activities in the wind power area such as the development of new type of wind turbine especially suited to alpine conditions are discussed. The role of the Swiss Association for Wind Energy 'Suisse Eole' as a network-partner in the wind energy programme is discussed. An appendix provides details of wind energy projects in Switzerland, market partners and customers. The results of a survey made of wind energy activities at Swiss institutes of higher education are presented.

  16. Assessing the vegetation canopy influences on wind flow using wind ...

    Indian Academy of Sciences (India)

    The effectiveness of vegetation in reducing wind ... Wind erosion; roughness length; shear velocity ratio; shear stress ratio; roughness density; wind tunnel. J. Earth .... flow direction induced by its kinematic viscosity. An increase in shear stress causes a proportional increase in the height-dependent change in wind velocity.

  17. Nonlinear stability research on the hydraulic system of double-side rolling shear

    Science.gov (United States)

    Wang, Jun; Huang, Qingxue; An, Gaocheng; Qi, Qisong; Sun, Binyu

    2015-10-01

    This paper researches the stability of the nonlinear system taking the hydraulic system of double-side rolling shear as an example. The hydraulic system of double-side rolling shear uses unsymmetrical electro-hydraulic proportional servo valve to control the cylinder with single piston rod, which can make best use of the space and reduce reversing shock. It is a typical nonlinear structure. The nonlinear state-space equations of the unsymmetrical valve controlling cylinder system are built first, and the second Lyapunov method is used to evaluate its stability. Second, the software AMEsim is applied to simulate the nonlinear system, and the results indicate that the system is stable. At last, the experimental results show that the system unsymmetrical valve controlling the cylinder with single piston rod is stable and conforms to what is deduced by theoretical analysis and simulation. The construction and application of Lyapunov function not only provide the theoretical basis for using of unsymmetrical valve controlling cylinder with single piston rod but also develop a new thought for nonlinear stability evaluation.

  18. Wind-Tunnel Balance Characterization for Hypersonic Research Applications

    Science.gov (United States)

    Lynn, Keith C.; Commo, Sean A.; Parker, Peter A.

    2012-01-01

    Wind-tunnel research was recently conducted at the NASA Langley Research Center s 31-Inch Mach 10 Hypersonic Facility in support of the Mars Science Laboratory s aerodynamic program. Researchers were interested in understanding the interaction between the freestream flow and the reaction control system onboard the entry vehicle. A five-component balance, designed for hypersonic testing with pressurized flow-through capability, was used. In addition to the aerodynamic forces, the balance was exposed to both thermal gradients and varying internal cavity pressures. Historically, the effect of these environmental conditions on the response of the balance have not been fully characterized due to the limitations in the calibration facilities. Through statistical design of experiments, thermal and pressure effects were strategically and efficiently integrated into the calibration of the balance. As a result of this new approach, researchers were able to use the balance continuously throughout the wide range of temperatures and pressures and obtain real-time results. Although this work focused on a specific application, the methodology shown can be applied more generally to any force measurement system calibration.

  19. Sensitivity of Turbine-Height Wind Speeds to Parameters in Planetary Boundary-Layer and Surface-Layer Schemes in the Weather Research and Forecasting Model

    Science.gov (United States)

    Yang, Ben; Qian, Yun; Berg, Larry K.; Ma, Po-Lun; Wharton, Sonia; Bulaevskaya, Vera; Yan, Huiping; Hou, Zhangshuan; Shaw, William J.

    2017-01-01

    We evaluate the sensitivity of simulated turbine-height wind speeds to 26 parameters within the Mellor-Yamada-Nakanishi-Niino (MYNN) planetary boundary-layer scheme and MM5 surface-layer scheme of the Weather Research and Forecasting model over an area of complex terrain. An efficient sampling algorithm and generalized linear model are used to explore the multiple-dimensional parameter space and quantify the parametric sensitivity of simulated turbine-height wind speeds. The results indicate that most of the variability in the ensemble simulations is due to parameters related to the dissipation of turbulent kinetic energy (TKE), Prandtl number, turbulent length scales, surface roughness, and the von Kármán constant. The parameter associated with the TKE dissipation rate is found to be most important, and a larger dissipation rate produces larger hub-height wind speeds. A larger Prandtl number results in smaller nighttime wind speeds. Increasing surface roughness reduces the frequencies of both extremely weak and strong airflows, implying a reduction in the variability of wind speed. All of the above parameters significantly affect the vertical profiles of wind speed and the magnitude of wind shear. The relative contributions of individual parameters are found to be dependent on both the terrain slope and atmospheric stability.

  20. Assessment of research needs for wind turbine rotor materials technology

    Energy Technology Data Exchange (ETDEWEB)

    1991-01-01

    Wind-driven power systems is a renewable energy technology that is still in the early stages of development. Wind power plants installed in early 1980s suffered structural failures chiefly because of incomplete understanding of wind forces (turbulent), in some cases because of poor product quality. Failures of rotor blades are now somewhat better understood. This committee has examined the experience base accumulated by wind turbines and the R and D programs sponsored by DOE. It is concluded that a wind energy system such as is described is within the capability of engineering practice; however because of certain gaps in knowledge, and the presence of only one major integrated manufacturer of wind power machines in the USA, a DOE R and D investment is still required.

  1. Earth, Wind and Fire. Natural air conditioning. Part 2. Research results; Earth, Wind and Fire. Natuurlijke airconditioning. Deel 2. Onderzoeksresultaten

    Energy Technology Data Exchange (ETDEWEB)

    Bronsema, B. [Afdeling Architectural Engineering en Technology, Faculteit Bouwkunde, Technische Universiteit Delft TUD, Delft (Netherlands)

    2013-07-15

    The Earth, Wind and Fire concept transforms a building into a 'climate machine' which is powered by the natural forces and energy of the sun, wind, the mass of the earth and gravity. This second part provides a brief overview of the research. The full results are included in the thesis of the author [Dutch] Het Earth, Wind en Fire-concept voor natuurlijke airconditioning biedt meer zekerheid voor het realiseren van energieneutrale kantoorgebouwen dan mogelijk zou zijn door verbetering van bestaande technieken. Het concept maakt gebruik van de omgevingsenergie van aardmassa, wind en zon. In deel 1 worden de onderzoeksdoelen en -methoden van dit concept besproken. Dit deel 2 geeft een kort overzicht van de onderzoeksresultaten. De volledige resultaten van de basale en gedetailleerde modellen, de simulaties, de metingen in de fysieke modellen en het validatieproces zijn opgenomen in het proefschrift van de auteur.

  2. Denmark - supplier of competitive offshore wind solutions. Megavind's strategy for offshore wind research, development and demonstration

    Energy Technology Data Exchange (ETDEWEB)

    2010-12-15

    In May 2006, the Danish Government presented a report on promoting environmentally effective technology and established a number of innovative partnerships. The partnerships intend to strengthen public-private cooperation between the state, industry, universities and venture capital to accelerate innovation for a number of green technologies. The partnership for wind energy is called Megavind. Megavind's strategy for offshore wind describes the offshore challenges and suggests research, development and demonstration (RD and D) priorities to enable offshore wind power become to competitive with other energy technologies. The strategy lists key recommendations as well as key thematic priorities and for each of these a number of RD and D priorities. Under each thematic priority references are made to the European Strategic Energy Technology plan (SET-plan), which prioritises offshore wind RD and D in Europe. (LN)

  3. Research of STATCOM Impact on Wind Farm LVRT and Protection

    OpenAIRE

    YI Hai-dong; YUAN Tie-jiang; CHAO Qin; YANG Bai-jie

    2012-01-01

    Because of the wind turbine which possesses low voltage ride through (LVRT) capability can keep on working during the system fault, greatly reduce the adverse effects of power grid and ensure the relay protection reliability. However, the asynchronous wind turbine which widely used in home and abroad doesn’t have enough LVRT capability. So this paper proposes a method to enhance the LVRT capability of fixed speed induction generator (FSIG) based on wind farm using static synchronous compensat...

  4. Comparison of wind turbine wake properties in non‐sheared inflow predicted by different computational fluid dynamics rotor models

    DEFF Research Database (Denmark)

    Troldborg, Niels; Zahle, Frederik; Réthoré, Pierre-Elouan

    2015-01-01

    The wake of the 5MW reference wind turbine designed by the National Renewable Energy Laboratory (NREL) is simulated using computational fluid dynamics with a fully resolved rotor geometry, an actuator line method and an actuator disc method, respectively. Simulations are carried out prescribing...

  5. A Reduced Wind Power Grid Model for Research and Education

    DEFF Research Database (Denmark)

    Akhmatov, Vladislav; Lund, Torsten; Hansen, Anca Daniela

    2007-01-01

    A reduced grid model of a transmission system with a number of central power plants, consumption centers, local wind turbines and a large offshore wind farm is developed and implemented in the simulation tool PowerFactory (DIgSILENT). The reduced grid model is given by Energinet.dk, Transmission...

  6. Draft South African wind energy technology platform: preliminary wind energy research and development framework

    CSIR Research Space (South Africa)

    Szewczuk, S

    2011-08-01

    Full Text Available for connection to the utility grids depending on the grid operating frequency. Due to the rapidly decreasing cost and increasing capacity of power transistors the cost impact of this power conversion has been minimal, and the loads reduction in the drive... prototype, which incorporates this approach [4]. Power electronics With the increase in the MW capacity of a single wind- farm, utility system operator?s requirements on wind farms to operate more as a conventional power plant are increasing...

  7. The use of wind data with an operational wind turbine in a research and development environment

    Science.gov (United States)

    Neustadter, H. E.

    1979-01-01

    It is noted that in 1976, 17 candidate sites were identified for detailed evaluation as potential sites for installation of large, horizontal axis Wind Turbines (WT). Attention is given to the Mod-OA, a 200 kW WT located in Clayton, New Mexico. The discussion covers the meteorological data collected, some of the analyses based on these wind data as well as additional areas currently being investigated in relation to these data.

  8. WindScanner.dk - a new Remote Sensing based Research Infrastructure for on- and offshore Wind Energy Research

    DEFF Research Database (Denmark)

    Mikkelsen, Torben

    obtained in planetary boundary layer turbulent flow have been acquired from both ground-based and wind turbine-integrated space by time and space synchronized scanning lidars. Results to date include: turbulent inflow over complex terrain scanned in a horizontal-vertical 2D scan plane, and 2-dimensional...... and 3-dimensional wind vector scan measurements obtained during various WindScanner boundary-layer field campaigns. A special designed `2D upwind rotor plane scanning SpinnerLidar', mounted in the rotating spinner, and able to provide the wind turbine control systems with detailed upwind feed......-forward inflow information, is also investigated as a provider of rotor plane inflow for accurate power curve measurements. The instrument development involves both a short range (10 -200 m) and a long-range (100 - 6000 m) synchronized 3D scanning wind lidar system....

  9. Research on wind field algorithm of wind lidar based on BP neural network and grey prediction

    Science.gov (United States)

    Chen, Yong; Chen, Chun-Li; Luo, Xiong; Zhang, Yan; Yang, Ze-hou; Zhou, Jie; Shi, Xiao-ding; Wang, Lei

    2018-01-01

    This paper uses the BP neural network and grey algorithm to forecast and study radar wind field. In order to reduce the residual error in the wind field prediction which uses BP neural network and grey algorithm, calculating the minimum value of residual error function, adopting the residuals of the gray algorithm trained by BP neural network, using the trained network model to forecast the residual sequence, using the predicted residual error sequence to modify the forecast sequence of the grey algorithm. The test data show that using the grey algorithm modified by BP neural network can effectively reduce the residual value and improve the prediction precision.

  10. Research report of fiscal 1997. Feasibility research on domestic wind farms; 1997 nendo chosa hokokusho. Kokunai wind farm kanosei chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    Research was made on large-scale wind power generation projects under planning or construction. Issues of the following 5 areas were arranged considering topographic, geographic and meteorological conditions, and the type of municipal corporations: Tomamae town, Hokkaido, Tachikawa town, Yamagata prefecture (third-sector), Hisai city, Mie prefecture, Otoyo town, Kochi prefecture, and Kishuku town, Nagasaki prefecture (third-sector). These projects are supported by MITI`s local new energy introduction promotion project subsidy started in fiscal 1997 covering a half of construction cost (within 200 million yen/year). Requirements for this subsidy are that an applicant is either a municipal corporation or a third-sector, and that a total generating capacity is not less than 1200kW. Another subsidy system covering 1/3 of construction cost and a debt guarantee system are prepared for large-scale private projects not less than 800kW. Hearing was made on some private projects in Esashi town, Akita city and Hasaki town. Technical requirements, specifications, guideline and some examples for system interconnection are also summarized. 10 figs., 24 tabs.

  11. Towards a Joint Action Plan for Research and Development in the Offshore Wind Service Industry

    DEFF Research Database (Denmark)

    Andersen, Per Dannemand; Piirainen, Kalle A.; Clausen, Niels-Erik

    2015-01-01

    This paper presents a joint action plan (JAP) for research and development and innovation (RDI) in the offshore wind service industry in Denmark, Germany, Norway and the UK. Offshore wind servicing (OWS) is in this context defined as both assembly and installation of offshore wind farms as well...... for a innovation. The JAP is built on this foundation together with stakeholders from the four regions, comprising representatives from R&D and education, policy makers and offshore wind industry. Following the workshop, the ECOWindS consortium has been developing the proposed action plan further based...

  12. Towards a Joint Action Plan for Research and Development in the Offshore Wind Service Industry

    DEFF Research Database (Denmark)

    Andersen, Per Dannemand; Piirainen, Kalle A.; Clausen, Niels-Erik

    2015-01-01

    The poster presents a joint action plan (JAP) for research and development and innovation (RDI) in the offshore wind service industry in Denmark, Germany,Norway and the UK. Offshore wind servicing (OWS) is in this context defined as both assembly and installation of offshore wind farms as well...... of an ongoing project ECOWindS, funded by the EU FP7. The overall aim of ECOWindS is to reduce OWS’s contribution to the cost of offshore wind energy production by strengthening the cooperation in the existing regional networks within OWS....

  13. Research of Effective Width of FRP U-shaped Hoop Reinforcement Properties of Concrete Beams by Shear

    Directory of Open Access Journals (Sweden)

    Li Baokun

    2015-01-01

    Full Text Available The paste fiber reinforced composite material (hereinafter referred to as FRP U-shaped hoop of reinforced concrete beams interfacial debonding is an important reinforcement technology research. For the effective width of the CFRP U-shaped hoop reinforcement, it is still a lack of in-depth research, only relying on the test research huge workload, this article (ANSYS and the numerical simulation in the whole process of the shear load release properties of finite element calculation software. According to the results of finite element analysis, the author studied the CFRP U-shaped hoop to increase the width of the shear capacity of reinforced concrete beams by the impact.

  14. Comparison of the effect of easterly and westerly vertical wind shear on tropical cyclone intensity change over the western North Pacific

    Science.gov (United States)

    Na, Wei; Xinghai, Zhang; Lianshou, Chen; Hao, Hu

    2018-03-01

    The effects of vertical wind shear (VWS) with different directions on tropical cyclone (TC) intensity change are compared in this statistical study based on TCs occurring between 1982 and 2015 over the western North Pacific (WNP). Results show that a westerly VWS has a much higher correlation (‑0.36) with change in TC intensity than an easterly VWS (‑0.07) over the WNP, especially south-westerly VWS (‑0.43). Sea surface temperature (SST) is found to modulate the effect of VWS on TC intensity change as it has a close relationship with zonal VWS (‑0.48). The favorable effect of SST, which increases with increase in easterly VWS, could offset the detrimental effect of VWS, leading to a relatively low correlation coefficient between easterly VWS and TC intensity change. By contrast, westerly VWS increases with decreasing SST, and the largest correlation coefficient appears when SST is around 301 K. Therefore, it is suggested that the direction of VWS as well as its value is taken into consideration in models used to predict TC intensity.

  15. Experimental and analytical research on the aerodynamics of wind driven turbines. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Rohrbach, C.; Wainauski, H.; Worobel, R.

    1977-12-01

    This aerodynamic research program was aimed at providing a reliable, comprehensive data base on a series of wind turbine models covering a broad range of the prime aerodynamic and geometric variables. Such data obtained under controlled laboratory conditions on turbines designed by the same method, of the same size, and tested in the same wind tunnel had not been available in the literature. Moreover, this research program was further aimed at providing a basis for evaluating the adequacy of existing wind turbine aerodynamic design and performance methodology, for assessing the potential of recent advanced theories and for providing a basis for further method development and refinement.

  16. Materials and construction techniques for cryogenic wind tunnel facilities for instruction/research use

    Science.gov (United States)

    Morse, S. F.; Roper, A. T.

    1975-01-01

    The results of the cryogenic wind tunnel program conducted at NASA Langley Research Center are presented to provide a starting point for the design of an instructional/research wind tunnel facility. The advantages of the cryogenic concept are discussed, and operating envelopes for a representative facility are presented to indicate the range and mode of operation. Special attention is given to the design, construction and materials problems peculiar to cryogenic wind tunnels. The control system for operation of a cryogenic tunnel is considered, and a portion of a linearized mathematical model is developed for determining the tunnel dynamic characteristics.

  17. Research status on aerodynamic interference effects of wind-resistant performance of pylon

    Science.gov (United States)

    LI, Shengli; Lu, Yu; Wang, Dongwei; Chen, Huai

    2011-04-01

    The aerodynamic interference effects of wind-resistant performance for pylon is one of very important problems in numerical simulation studies of wind resistant of bridges. On the basis of looking through a great deal of related literatures at home and abroad, research history, contents, method and achievements of the aerodynamic interference effects are summarized, and the existing problem for galloping, buffeting and vortex-induced vibration of pylon and directions for the next research are pointed out.

  18. An integrated modeling method for wind turbines

    Science.gov (United States)

    Fadaeinedjad, Roohollah

    To study the interaction of the electrical, mechanical, and aerodynamic aspects of a wind turbine, a detailed model that considers all these aspects must be used. A drawback of many studies in the area of wind turbine simulation is that either a very simple mechanical model is used with a detailed electrical model, or vice versa. Hence the interactions between electrical and mechanical aspects of wind turbine operation are not accurately taken into account. In this research, it will be shown that a combination of different simulation packages, namely TurbSim, FAST, and Simulink can be used to model the aerodynamic, mechanical, and electrical aspects of a wind turbine in detail. In this thesis, after a review of some wind turbine concepts and software tools, a simulation structure is proposed for studying wind turbines that integrates the mechanical and electrical components of a wind energy conversion device. Based on the simulation structure, a comprehensive model for a three-bladed variable speed wind turbine with doubly-fed induction generator is developed. Using the model, the impact of a voltage sag on the wind turbine tower vibration is investigated under various operating conditions such as power system short circuit level, mechanical parameters, and wind turbine operating conditions. It is shown how an electrical disturbance can cause more sustainable tower vibrations under high speed and turbulent wind conditions, which may disrupt the operation of pitch control system. A similar simulation structure is used to model a two-bladed fixed speed wind turbine with an induction generator. An extension of the concept is introduced by adding a diesel generator system. The model is utilized to study the impact of the aeroelastic aspects of wind turbine (i.e. tower shadow, wind shears, yaw error, turbulence, and mechanical vibrations) on the power quality of a stand-alone wind-diesel system. Furthermore, an IEEE standard flickermeter model is implemented in a

  19. Shear machines

    International Nuclear Information System (INIS)

    Astill, M.; Sunderland, A.; Waine, M.G.

    1980-01-01

    A shear machine for irradiated nuclear fuel elements has a replaceable shear assembly comprising a fuel element support block, a shear blade support and a clamp assembly which hold the fuel element to be sheared in contact with the support block. A first clamp member contacts the fuel element remote from the shear blade and a second clamp member contacts the fuel element adjacent the shear blade and is advanced towards the support block during shearing to compensate for any compression of the fuel element caused by the shear blade (U.K.)

  20. Wind power research at Oregon State University. [for selecting windpowered machinery sites

    Science.gov (United States)

    Hewson, E. W.

    1973-01-01

    There have been two primary thrusts of the research effort to date, along with several supplementary ones. One primary area has been an investigation of the wind fields along coastal areas of the Pacific Northwest, not only at the shoreline but also for a number of miles inland and offshore as well. Estimates have been made of the influence of the wind turbulence as measured at coastal sites in modifying the predicted dependence of power generated on the cube of the wind speed. Wind flow patterns in the Columbia River valley have also been studied. The second primary thrust has been to substantially modify and improve an existing wind tunnel to permit the build up of a boundary layer in which various model studies will be conducted. One of the secondary studies involved estimating the cost of building an aerogenerator.

  1. Wind noise under a pine tree canopy.

    Science.gov (United States)

    Raspet, Richard; Webster, Jeremy

    2015-02-01

    It is well known that infrasonic wind noise levels are lower for arrays placed in forests and under vegetation than for those in open areas. In this research, the wind noise levels, turbulence spectra, and wind velocity profiles are measured in a pine forest. A prediction of the wind noise spectra from the measured meteorological parameters is developed based on recent research on wind noise above a flat plane. The resulting wind noise spectrum is the sum of the low frequency wind noise generated by the turbulence-shear interaction near and above the tops of the trees and higher frequency wind noise generated by the turbulence-turbulence interaction near the ground within the tree layer. The convection velocity of the low frequency wind noise corresponds to the wind speed above the trees while the measurements showed that the wind noise generated by the turbulence-turbulence interaction is near stationary and is generated by the slow moving turbulence adjacent to the ground. Comparison of the predicted wind noise spectrum with the measured wind noise spectrum shows good agreement for four measurement sets. The prediction can be applied to meteorological estimates to predict the wind noise under other pine forests.

  2. Signal processing for airborne doppler radar detection of hazardous wind shear as applied to NASA 1991 radar flight experiment data

    Science.gov (United States)

    Baxa, Ernest G., Jr.

    1992-01-01

    Radar data collected during the 1991 NASA flight tests have been selectively analyzed to support research directed at developing both improved as well as new algorithms for detecting hazardous low-altitude windshear. Analysis of aircraft attitude data from several flights indicated that platform stability bandwidths were small compared to the data rate bandwidths which should support an assumption that radar returns can be treated as short time stationary. Various approaches at detection of weather returns in the presence of ground clutter are being investigated. Non-coventional clutter rejection through spectrum mode tracking and classification algorithms is a subject of continuing research. Based upon autoregressive modeling of the radar return time sequence, this approach may offer an alternative to overcome errors in conventional pulse-pair estimates. Adaptive filtering is being evaluated as a means of rejecting clutter with emphasis on low signal-to-clutter ratio situations, particularly in the presence of discrete clutter interference. An analysis of out-of-range clutter returns is included to illustrate effects of ground clutter interference due to range aliasing for aircraft on final approach. Data are presented to indicate how aircraft groundspeed might be corrected from the radar data as well as point to an observed problem of groundspeed estimate bias variation with radar antenna scan angle. A description of how recorded clutter return data are mixed with simulated weather returns is included. This enables the researcher to run controlled experiments to test signal processing algorithms. In the summary research efforts involving improved modelling of radar ground clutter returns and a Bayesian approach at hazard factor estimation are mentioned.

  3. Wind tunnel productivity status and improvement activities at NASA Langley Research Center

    Science.gov (United States)

    Putnam, Lawrence E.

    1996-01-01

    Over the last three years, a major effort has been underway to re-engineering the way wind tunnel testing is accomplished at the NASA Langley Research Center. This effort began with the reorganization of the LaRC and the consolidation of the management of the wind tunnels in the Aerodynamics Division under one operations branch. This paper provides an overview of the re-engineering activities and gives the status of the improvements in the wind tunnel productivity and customer satisfaction that have resulted from the new ways of working.

  4. Wind Energy Forecasting: A Collaboration of the National Center for Atmospheric Research (NCAR) and Xcel Energy

    Energy Technology Data Exchange (ETDEWEB)

    Parks, K.; Wan, Y. H.; Wiener, G.; Liu, Y.

    2011-10-01

    . The downside is costs are higher. In organized electricity markets, units that are committed for reliability reasons are paid their offer price even when prevailing market prices are lower. Often, these uplift charges are allocated to market participants that caused the inefficient dispatch in the first place. Thus, wind energy facilities are burdened with their share of costs proportional to their forecast errors. For Xcel Energy, wind energy uncertainty costs manifest depending on specific market structures. In the Public Service of Colorado (PSCo), inefficient commitment and dispatch caused by wind uncertainty increases fuel costs. Wind resources participating in the Midwest Independent System Operator (MISO) footprint make substantial payments in the real-time markets to true-up their day-ahead positions and are additionally burdened with deviation charges called a Revenue Sufficiency Guarantee (RSG) to cover out of market costs associated with operations. Southwest Public Service (SPS) wind plants cause both commitment inefficiencies and are charged Southwest Power Pool (SPP) imbalance payments due to wind uncertainty and variability. Wind energy forecasting helps mitigate these costs. Wind integration studies for the PSCo and Northern States Power (NSP) operating companies have projected increasing costs as more wind is installed on the system due to forecast error. It follows that reducing forecast error would reduce these costs. This is echoed by large scale studies in neighboring regions and states that have recommended adoption of state-of-the-art wind forecasting tools in day-ahead and real-time planning and operations. Further, Xcel Energy concluded reduction of the normalized mean absolute error by one percent would have reduced costs in 2008 by over $1 million annually in PSCo alone. The value of reducing forecast error prompted Xcel Energy to make substantial investments in wind energy forecasting research and development.

  5. Experimental and analytical research on the aerodynamics of wind driven turbines. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Rohrbach, C.; Wainauski, H.; Worobel, R.

    1977-12-01

    The successful development of reliable, cost competitive horizontal axis, propeller-type wind energy conversion systems (WECS) is strongly dependent on the availability of advanced technology for each of the system components. This aerodynamic research program was aimed at providing a reliable, comprehensive data base on a series of wind turbine models covering a broad range of the prime aerodynamic and geometric variables. Such data obtained under controlled laboratory conditions on turbines designed by the same method, of the same size, and tested in the same wind tunnel had not been available in the literature. Moreover, this research program was further aimed at providing a basis for evaluating the adequacy of existing wind turbine aerodynamic design and performance methodology, for assessing the potential of recent advanced theories and for providing a basis for further method development and refinement.

  6. Research programme related to the influence of wind on contamination containment in nuclear installations

    International Nuclear Information System (INIS)

    Soares, S.; Gelain, T.; Laborde, J.C.; Ricciardi, L.

    2006-01-01

    In nuclear industry, the response of a ventilation network to accidental disturbances, either mechanical (fan failure, damper blockage,..) or thermal (fire..) is difficult to evaluate when the network becomes complex. In order to determine and analyze the consequences of these disturbances on the radioactive materials containment, a computer code called SIMEVENT has been developed. However, among the external parameters likely to affect a ventilation network, the wind effect is actually basically modeled, due to a lack of qualified data concerning the wind impact on complex building geometries and the interaction between wind and chimney exhaust. In view of the networks complexity and the facilities diversity, a research program including experimental and model studies has been launched to assess the wind influence on contamination containment. 1. step: improvement of data (2005-2006): The diversity of facilities geometries needs the use of a qualified multi-D code for pressure coefficients Cpi assessment, characterizing the wind effect on building walls and the interaction between wind and chimney exhaust. Different chimney terminals have then been placed in a wind tunnel (the parameters are the incline angle a, the wind velocity U and the air flow in the duct W); for each angle, the evolution of the pressure coefficient versus wind velocity is determined and is characteristic of a chimney terminal geometry. Furthermore, two types of scale-model have been chosen for representing either nuclear power plants (NPP) or plants and laboratories buildings. The different values of wind pressure coefficients have been measured on both scale-models placed in a wind-tunnel. The experimental data obtained are compared with CFD simulations (CFX code), in order to qualify such code for the assessment of pressure coefficient on complex geometries. The results are quite encouraging. 2. step - wind tunnel tests on a ventilated scale model (2007-2009): Wind tunnel tests will be

  7. Program to determine space vehicle response to wind turbulence

    Science.gov (United States)

    Wilkening, H. D.

    1972-01-01

    Computer program was developed as prelaunch wind monitoring tool for Saturn 5 vehicle. Program accounts for characteristic wind changes including turbulence power spectral density, wind shear, peak wind velocity, altitude, and wind direction using stored variational statistics.

  8. Development and research of vacuum-plasma composite coatings for increase of operability of shearing dies

    Directory of Open Access Journals (Sweden)

    Volosova Marina A.

    2016-01-01

    Full Text Available The technological principles of low-temperature deposition of multilayer vacuum-plasma coatings with the increased operational properties on various types of die steels with the assistance of accelerated argon molecules beam are offered in the article. Four standard architecture of vacuum-plasma coatings - Ti/(Ti,ZrN, Cr/CrN, TiN/TiCN/(Ti,CrN and Ti/(Ti,AlN are considered. It is shown that deposition of vacuum-plasma coatings of the listed structures at the optimum modes considerably reduces intensity of wear of shearing dies therefore quality of shaped products several times increases.

  9. Research on unit commitment with large-scale wind power connected power system

    Science.gov (United States)

    Jiao, Ran; Zhang, Baoqun; Chi, Zhongjun; Gong, Cheng; Ma, Longfei; Yang, Bing

    2017-01-01

    Large-scale integration of wind power generators into power grid brings severe challenges to power system economic dispatch due to its stochastic volatility. Unit commitment including wind farm is analyzed from the two parts of modeling and solving methods. The structures and characteristics can be summarized after classification has been done according to different objective function and constraints. Finally, the issues to be solved and possible directions of research and development in the future are discussed, which can adapt to the requirements of the electricity market, energy-saving power generation dispatching and smart grid, even providing reference for research and practice of researchers and workers in this field.

  10. Source Surface Models and Their Impact on Solar Wind Research

    Science.gov (United States)

    Sokolov, I. V.; Roussev, I. I.; Gombosi, T. I.; Liu, Y.

    2005-05-01

    To perform realistic modeling of the important processes in the solar corona, such as coronal mass ejections, flares, as well as the acceleration of solar particles, one needs to incorporate into the physical models any complicated pattern of the coronal magnetic field. The coronal magnetic field topology is determined by the helmet streamers (with closed field lines), the coronal holes (with open field lines) as well as the fine, but crucially important, details of the small-scale active regions. The standard practice to recover the global 3-D structure of the solar magnetic field from observations is to use the source surface model, in which the field is assumed to be potential, i.e., current-free. This approach ignores any volumetric current there may be present in the corona, and also neglects the existence of the equatorial current sheet, which starts from a height of 3-5 Rs above the solar surface. The fully potential solar magnetic field would have only closed field lines, not allowing for the solar wind to exist. In our Solar Corona model, incorparated into the Space Weather Modelling Framework, the solar magnetic field is split into two constituitive parts: one potential part which is recovered from the magnetic field data (e.g., from WSO, MWO, or MDI data) using the source surface method; and, one other non-potential part. For the potential field, we keep only the spherical harmonics decreasing with distance from the Sun or, equivalently, we use a very large value of the source surface radius. For the non-potential field, we solve the time-dependent induction equation with zero boundary condition at the solar surface. The full set of conservation laws for the MHD system is solved numerically using the BATS-R-US code. To power the solar wind in our model, we use a phenomenological turbulence model described in an earlier paper. The resulting steady-state MHD solution includes the well-resolved current sheet and helmet streamers. The modeled structure of

  11. Renewable energy research 1995–2009: a case study of wind power research in EU, Spain, Germany and Denmark

    DEFF Research Database (Denmark)

    Sanz-Casado, Elias; Garcia- Zorita, J. Carlos; Serrano-López, Antonio Eleazar

    2013-01-01

    The paper reports the developments and citation patterns over three time periods of research on Renewable Energy generation and Wind Power 1995–2011 in EU, Spain, Germany and Denmark. Analyses are based on Web of Science and incorporate journal articles as well as conference proceeding papers....... Scientometric indicators include publication collaboration ratios, top-player distribution as well as citedness and correspondence analyses of citing publications, relative citation impact, distributions of topcited as well as top-citing institutions and publication sources and cluster analysis of citing title...... terms to map knowledge export areas. Findings show an increase in citation impact for Renewable Energy and Wind Power research albeit hampered by scarcely cited conference papers. Although EU maintains its global top position in producing Renewable Energy and Wind Power research the developments of EU...

  12. Applications of Systems Engineering to the Research, Design, and Development of Wind Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Dykes, K.; Meadows, R.; Felker, F.; Graf, P.; Hand, M.; Lunacek, M.; Michalakes, J.; Moriarty, P.; Musial, W.; Veers, P.

    2011-12-01

    This paper surveys the landscape of systems engineering methods and current wind modeling capabilities to assess the potential for development of a systems engineering to wind energy research, design, and development. Wind energy has evolved from a small industry in a few countries to a large international industry involving major organizations in the manufacturing, development, and utility sectors. Along with this growth, significant technology innovation has led to larger turbines with lower associated costs of energy and ever more complex designs for all major subsystems - from the rotor, hub, and tower to the drivetrain, electronics, and controls. However, as large-scale deployment of the technology continues and its contribution to electricity generation becomes more prominent, so have the expectations of the technology in terms of performance and cost. For the industry to become a sustainable source of electricity, innovation in wind energy technology must continue to improve performance and lower the cost of energy while supporting seamless integration of wind generation into the electric grid without significant negative impacts on local communities and environments. At the same time, issues associated with wind energy research, design, and development are noticeably increasing in complexity. The industry would benefit from an integrated approach that simultaneously addresses turbine design, plant design and development, grid interaction and operation, and mitigation of adverse community and environmental impacts. These activities must be integrated in order to meet this diverse set of goals while recognizing trade-offs that exist between them. While potential exists today to integrate across different domains within the wind energy system design process, organizational barriers such as different institutional objectives and the importance of proprietary information have previously limited a system level approach to wind energy research, design, and

  13. Rapid Weakening of Hurricane Joaquin in Strong Vertical Wind Shear and Cold SSTs: Numerical Simulations with Assimilation of High-Definition Sounding System Dropsondes During Tropical Cyclone Intensity Experiment

    Science.gov (United States)

    Pu, Z.; Zhang, S.

    2017-12-01

    Observations from High-Definition Sounding System (HDSS) Dropsondes, collected for Hurricane Joaquin (2005) during the Office of Naval Research Tropical Cyclone Intensity (TCI) Experiment in 2015, are assimilated into the Gridpoint Statistical Interpolation (GSI)-based hybrid data assimilation systems embedded in the NCEP Hurricane Weather Research and Forecasting (HWRF) system. A three-dimensional and a four-dimensional ensemble-variational hybrid (3DEnVAR and 4DEnVar) data assimilation configuration are used. It is found that the experiments with assimilation of the HDSS dropsonde observations capture well the intensity changes during the rapid weakening (RW) of Hurricane Joaquin. Compared with 3DEnVAR, 4DEnVar leads to better assimilation results and subsequent forecasts and thus offers a set of simulations to diagnose the processes associated with the RW of Hurricane Joaquin. A drastic increase in the vertical wind shear (VWS, with a magnitude of 12 m s-1) is found before the RW. This high VWS is persistent during the 0-12 h period of RW, inducing changes in the vortex structure of Hurricane Joaquin through dry air intrusion in the mid-level and the dilution of the upper-level warm core. The transport of low air from above into the boundary layer occurs at the same time, resulting in depressed values in the storm inflow layer and reduced eyewall values through the updraft. As a consequence, downdrafts flush the boundary layer with low air, leading to the weakening of inflow in the boundary layers. When Hurricane Joaquin moves over an area where the SSTs are below 28oC within the hurricane inner core during the 18-30 h period of RW, the cold SSTs significantly inhibit latent and sensible heat release within the hurricane inner core and its vicinity, thus resulting in the continuous weakening of Hurricane Joaquin.

  14. Aerodynamic Research of the Experimental Prototype of the Variable Geometry Wind Turbine

    Directory of Open Access Journals (Sweden)

    Urbahs Aleksandrs

    2017-12-01

    Full Text Available The aim of this research is to develop a vertical rotation axis variable geometry wind turbine (WT. The experimental prototype is being manufactured with the help of CAM (Computer-aided manufacturing technologies – computer-based preparation of the product manufacturing process. The Institute of Aeronautics of Riga Technical University is using CNC (Computer Numerical Control machines for manufacturing the innovative WT and its components. The aerodynamic research has been done in T-4 wind tunnel at an air flow rate from 5 m/s to 30 m/s. The power increase of the variable geometry WT is a topical issue. Installation of such WTs in wind farms is possible and is subject to further research.

  15. Hot film wall shear instrumentation for compressible boundary layer transition research

    Science.gov (United States)

    Schneider, Steven P.

    1992-01-01

    Experimental and analytical studies of hot film wall shear instrumentation were performed. A new hot film anemometer was developed and tested. The anemometer performance was not quite as good as that of commercial anemometers, but the cost was much less and testing flexibility was improved. The main focus of the project was a parametric study of the effect of sensor size and substrate material on the performance of hot film surface sensors. Both electronic and shock-induced flow experiments were performed to determine the sensitivity and frequency response of the sensors. The results are presented in Michael Moen's M.S. thesis, which is appended. A condensed form of the results was also submitted for publication.

  16. Highly cited articles in wind tunnel-related research: a bibliometric analysis.

    Science.gov (United States)

    Mo, Ziwei; Fu, Hui-Zhen; Ho, Yuh-Shan

    2018-03-22

    Wind tunnels have been widely employed in aerodynamic research. To characterize the high impact research, a bibliometric analysis was conducted on highly cited articles related to wind tunnel based on the Science Citation Index Expanded (SCI-EXPANDED) database from 1900 to 2014. Articles with at least 100 citations from the Web of Science Core Collection were selected and analyzed in terms of publication years, authors, institutions, countries/territories, journals, Web of Science categories, and citation life cycles. The results show that a total of 77 highly cited articles in 37 journals were published between 1959 and 2008. Journal of Fluid Mechanics published the most of highly cited articles. The USA was the most productive country and most frequent partner of internationally collaboration. The prolific institutions were mainly located in the USA and UK. The authors who were both first author and corresponding author published 88% of the articles. The Y index was also deployed to evaluate the publication characteristics of authors. Moreover, the articles with high citations in both history and the latest year with their citation life cycles were examined to provide insights for high impact research. The highly cited articles were almost earliest wind tunnel experimental data and reports on their own research specialty, and thus attracted high citations. It was revealed that classic works of wind tunnel research was frequently occurred in 1990s but much less in 2000s, probably due to the development of numerical models of computational fluid dynamic (CFD) in recent decades.

  17. Rotary Balance Wind Tunnel Testing for the FASER Flight Research Aircraft

    Science.gov (United States)

    Denham, Casey; Owens, D. Bruce

    2016-01-01

    Flight dynamics research was conducted to collect and analyze rotary balance wind tunnel test data in order to improve the aerodynamic simulation and modeling of a low-cost small unmanned aircraft called FASER (Free-flying Aircraft for Sub-scale Experimental Research). The impetus for using FASER was to provide risk and cost reduction for flight testing of more expensive aircraft and assist in the improvement of wind tunnel and flight test techniques, and control laws. The FASER research aircraft has the benefit of allowing wind tunnel and flight tests to be conducted on the same model, improving correlation between wind tunnel, flight, and simulation data. Prior wind tunnel tests include a static force and moment test, including power effects, and a roll and yaw damping forced oscillation test. Rotary balance testing allows for the calculation of aircraft rotary derivatives and the prediction of steady-state spins. The rotary balance wind tunnel test was conducted in the NASA Langley Research Center (LaRC) 20-Foot Vertical Spin Tunnel (VST). Rotary balance testing includes runs for a set of given angular rotation rates at a range of angles of attack and sideslip angles in order to fully characterize the aircraft rotary dynamics. Tests were performed at angles of attack from 0 to 50 degrees, sideslip angles of -5 to 10 degrees, and non-dimensional spin rates from -0.5 to 0.5. The effects of pro-spin elevator and rudder deflection and pro- and anti-spin elevator, rudder, and aileron deflection were examined. The data are presented to illustrate the functional dependence of the forces and moments on angle of attack, sideslip angle, and angular rate for the rotary contributions to the forces and moments. Further investigation is necessary to fully characterize the control effectors. The data were also used with a steady state spin prediction tool that did not predict an equilibrium spin mode.

  18. Wind Power Meteorology

    DEFF Research Database (Denmark)

    Lundtang Petersen, Erik; Mortensen, Niels Gylling; Landberg, Lars

    Wind power meteorology has evolved as an applied science, firmly founded on boundary-layer meteorology, but with strong links to climatology and geography. It concerns itself with three main areas: siting of wind turbines, regional wind resource assessment, and short-term prediction of the wind...... resource. The history, status and perspectives of wind power meteorology are presented, with emphasis on physical considerations and on its practical application. Following a global view of the wind resource, the elements of boundary layer meteorology which are most important for wind energy are reviewed......: wind profiles and shear, turbulence and gust, and extreme winds. The data used in wind power meteorology stem mainly from three sources: onsite wind measurements, the synoptic networks, and the re-analysis projects. Wind climate analysis, wind resource estimation and siting further require a detailed...

  19. Wind Turbines Adaptation to the Variability of the Wind Field

    Science.gov (United States)

    Ulianov, Yuriy; Martynenko, Gennadii; Misaylov, Vitaliy; Soliannikova, Iuliia

    2010-05-01

    WIND TURBINES ADAPTATION TO THE VARIABILITY OF THE WIND FIELD The subject of our scientific research is wind power turbines (WPT) with the horizontal axis which were now common in the world. Efficient wind turbines work is largely determined by non-stationarity of the wind field, expressed in its gustiness, the presence of vertical and horizontal shifts of wind speed and direction. At critical values of the wind parameters WPT has aerodynamic and mechanical overload, leading to breakdowns, premature wear and reduce the life of the wind turbine. To prevent accidents at the peak values of wind speed it is used the regulatory system of windwheels. WPT control systems provide a process orientation of the wind turbine rotor axis in the line of the mean wind. Wind turbines are also equipped with braking device used to protect against breakdowns when a significant increase in the wind. In general, all these methods of regulation are not always effective. Thus, in practice there may be situations when the wind speed is many times greater than the stated limit. For example, if there are microbursts in the atmospheric boundary layer, low-level wind shears caused by its gust front, storms, etc. It is required for a wind power turbine adaptation to intensive short-term wind impulses and considerable vertical wind shifts that the data about them shall be obtained ahead of time. To do this it is necessary to have the information on the real structure of the wind field in the area of the blade sweep for the minimum range against the wind that is determined by the mean speed and the system action time. The implementation of acoustic and laser traditional wind sounding systems is limited by ambient acoustic noise, by heavy rain, snowfall and by fog. There are free of these disadvantages the inclined radioacoustic sounding (IRASS) technique which works for a system of remote detection and control of wind gusts. IRASS technique is realized as low-potential Doppler pulse radar

  20. Wind conditions in urban layout - Numerical and experimental research

    Science.gov (United States)

    Poćwierz, Marta; Zielonko-Jung, Katarzyna

    2018-01-01

    This paper presents research which compares the numerical and the experimental results for different cases of airflow around a few urban layouts. The study is concerned mostly with the analysis of parameters, such as pressure and velocity fields, which are essential in the building industry. Numerical simulations have been performed by the commercial software Fluent, with the use of a few different turbulence models, including popular k-ɛ, k-ɛ realizable or k-ω. A particular attention has been paid to accurate description of the conditions on the inlet and the selection of suitable computing grid. The pressure measurement near buildings and oil visualization were undertaken and described accordingly.

  1. Statistical Model of Extreme Shear

    DEFF Research Database (Denmark)

    Hansen, Kurt Schaldemose; Larsen, Gunner Chr.

    2005-01-01

    In order to continue cost-optimisation of modern large wind turbines, it is important to continuously increase the knowledge of wind field parameters relevant to design loads. This paper presents a general statistical model that offers site-specific prediction of the probability density function...... (PDF) of turbulence driven short-term extreme wind shear events, conditioned on the mean wind speed, for an arbitrary recurrence period. The model is based on an asymptotic expansion, and only a few and easily accessible parameters are needed as input. The model of the extreme PDF is supplemented...... by a model that, on a statistically consistent basis, describes the most likely spatial shape of an extreme wind shear event. Predictions from the model have been compared with results from an extreme value data analysis, based on a large number of full-scale measurements recorded with a high sampling rate...

  2. Statistical Model of Extreme Shear

    DEFF Research Database (Denmark)

    Larsen, Gunner Chr.; Hansen, Kurt Schaldemose

    2004-01-01

    In order to continue cost-optimisation of modern large wind turbines, it is important to continously increase the knowledge on wind field parameters relevant to design loads. This paper presents a general statistical model that offers site-specific prediction of the probability density function...... (PDF) of turbulence driven short-term extreme wind shear events, conditioned on the mean wind speed, for an arbitrary recurrence period. The model is based on an asymptotic expansion, and only a few and easily accessible parameters are needed as input. The model of the extreme PDF is supplemented...... by a model that, on a statistically consistent basis, describe the most likely spatial shape of an extreme wind shear event. Predictions from the model have been compared with results from an extreme value data analysis, based on a large number of high-sampled full-scale time series measurements...

  3. Analysis of Hurricane Irene’s Wind Field Using the Advanced Research Weather Research and Forecast (WRF-ARW Model

    Directory of Open Access Journals (Sweden)

    Alfred M. Klausmann

    2014-01-01

    Full Text Available Hurricane Irene caused widespread and significant impacts along the U.S. east coast during 27–29 August 2011. During this period, the storm moved across eastern North Carolina and then tracked northward crossing into Long Island and western New England. Impacts included severe flooding from the mid-Atlantic states into eastern New York and western New England, widespread wind damage and power outages across a large portion of southern and central New England, and a major storm surge along portions of the Long Island coast. The objective of this study was to conduct retrospective simulations using the Advanced Research Weather Research and Forecast (WRF-ARW model in an effort to reconstruct the storm’s surface wind field during the period of 27–29 August 2011. The goal was to evaluate how to use the WRF modeling system as a tool for reconstructing the surface wind field from historical storm events to support storm surge studies. The results suggest that, with even modest data assimilation applied to these simulations, the model was able to resolve the detailed structure of the storm, the storm track, and the spatial surface wind field pattern very well. The WRF model shows real potential for being used as a tool to analyze historical storm events to support storm surge studies.

  4. Renewable energy research 1995-2009: a case study of wind power research in EU, Spain, Germany and Denmark

    OpenAIRE

    Sanz Casado, Elías; García Zorita, Carlos; Serrano-López, Antonio Eleazar; Larsen, Birger; Ingwersen, Peter

    2013-01-01

    The original publication is available at www.springerlink.com The paper reports the developments and citation patterns over three time periods of research on Renewable Energy generation and Wind Power 1995&-2011 in EU, Spain, Germany and Denmark. Analyses are based on Web of Science and incorporate journal articles as well as conference proceeding papers. Scientometric indicators include publication collaboration ratios, top-player distribution as well as citedness and correspondence analy...

  5. An Industry/Academe Consortium for Achieving 20% wind by 2030 through Cutting-Edge Research and Workforce Training

    Energy Technology Data Exchange (ETDEWEB)

    Sotiropoulos, Fotis [Univ. of Minnesota, Minneapolis, MN (United States); Marr, Jeffrey D.G. [Univ. of Minnesota, Minneapolis, MN (United States); Milliren, Christopher [Univ. of Minnesota, Minneapolis, MN (United States); Kaveh, Mos [Univ. of Minnesota, Minneapolis, MN (United States); Mohan, Ned [Univ. of Minnesota, Minneapolis, MN (United States); Stolarski, Henryk [Univ. of Minnesota, Minneapolis, MN (United States); Glauser, Mark [Univ. of Minnesota, Minneapolis, MN (United States); Arndt, Roger [Univ. of Minnesota, Minneapolis, MN (United States)

    2013-12-01

    In January 2010, the University of Minnesota, along with academic and industry project partners, began work on a four year project to establish new facilities and research in strategic areas of wind energy necessary to move the nation towards a goal of 20% wind energy by 2030. The project was funded by the U.S. Department of Energy with funds made available through the American Recovery and Reinvestment Act of 2009. $7.9M of funds were provided by DOE and $3.1M was provided through matching funds. The project was organized into three Project Areas. Project Area 1 focused on design and development of a utility scale wind energy research facility to support research and innovation. The project commissioned the Eolos Wind Research Field Station in November of 2011. The site, located 20 miles from St. Paul, MN operates a 2.5MW Clipper Liberty C-96 wind turbine, a 130-ft tall sensored meteorological tower and a robust sensor and data acquisition network. The site is operational and will continue to serve as a site for innovation in wind energy for the next 15 years. Project Areas 2 involved research on six distinct research projects critical to the 20% Wind Energy by 2030 goals. The research collaborations involved faculty from two universities, over nine industry partners and two national laboratories. Research outcomes include new knowledge, patents, journal articles, technology advancements, new computational models and establishment of new collaborative relationships between university and industry. Project Area 3 focused on developing educational opportunities in wind energy for engineering and science students. The primary outcome is establishment of a new graduate level course at the University of Minnesota called Wind Engineering Essentials. The seminar style course provides a comprehensive analysis of wind energy technology, economics, and operation. The course is highly successful and will continue to be offered at the University. The vision of U.S. DOE to

  6. Performance of Wind Pump Prototype

    African Journals Online (AJOL)

    Mulu

    performance of the wind pump. One year wind speed data collected at 10 m height was extrapolated to the wind pump hub height using wind shear coefficient. The model assumed balanced rotor power and reciprocating pump, hence did not consider the effect of pump size. The theoretical model estimated the average ...

  7. 75 FR 52374 - National Environmental Policy Act; NASA Glenn Research Center Plum Brook Station Wind Farm Project

    Science.gov (United States)

    2010-08-25

    ...; NASA Glenn Research Center Plum Brook Station Wind Farm Project AGENCY: National Aeronautics and Space... Environmental Impact Statement (EIS) for the NASA GRC Plum Brook Station Wind Farm Project located near Sandusky... at Plum Brook Station, which will enable NASA to meet the objectives of the Energy Policy Act of 2005...

  8. Wind energy research program 2008 - 2011; Energieforschungsprogramm Windenergie fuer die Jahre 2008-2011

    Energy Technology Data Exchange (ETDEWEB)

    Horbaty, R.

    2008-07-01

    This report published by the Swiss Federal Office of Energy (SFOE) discusses the Swiss research program on wind energy for the years 2008 to 2011. The Swiss government's energy research programs are defined every four years in co-operation with the Swiss Federal Energy Research Commission. This paper takes a look at the present situation in Switzerland and discusses current developments. Key figures are quoted. National work on basic and production-oriented research is discussed. The various actors and their co-ordination are discussed. National and international networking between research and practice is commented on. Technical and commercial goals are looked at, as are the possibilities for funding the work. Finally, four areas of emphasis for research are noted.

  9. Weather Research and Forecasting Model Wind Sensitivity Study at Edwards Air Force Base, CA

    Science.gov (United States)

    Watson, Leela R.; Bauman, William H., III; Hoeth, Brian

    2009-01-01

    This abstract describes work that will be done by the Applied Meteorology Unit (AMU) in assessing the success of different model configurations in predicting "wind cycling" cases at Edwards Air Force Base, CA (EAFB), in which the wind speeds and directions oscillate among towers near the EAFB runway. The Weather Research and Forecasting (WRF) model allows users to choose among two dynamical cores - the Advanced Research WRF (ARW) and the Non-hydrostatic Mesoscale Model (NMM). There are also data assimilation analysis packages available for the initialization of the WRF model - the Local Analysis and Prediction System (LAPS) and the Advanced Regional Prediction System (ARPS) Data Analysis System (ADAS). Having a series of initialization options and WRF cores, as well as many options within each core, creates challenges for local forecasters, such as determining which configuration options are best to address specific forecast concerns. The goal of this project is to assess the different configurations available and determine which configuration will best predict surface wind speed and direction at EAFB.

  10. Wind rose and Radionuclide Dispersion Modelling for Nuclear Malaysia Research Reactor

    International Nuclear Information System (INIS)

    Mohd Nahar Othman

    2015-01-01

    After the incident of radioactive gasses released to the environment because of unusual earthquake and tsunamis happen in Fukushima, Japan. The problem of release of radiological radionuclide became deep concern and serious problem to the world community. The incident course almost all nuclear power plant in Japan cannot operate because opposition from local people. From this point of view Malaysian Nuclear agency don't left behind in doing it research in release of radionuclide from it research reactor, in the meantime new wind rose data had been collected from 2013 to 2014. This paper will present the new radionuclide release including the new dispersion modelling that had been developed. (author)

  11. Weather Research and Forecasting model simulation of an onshore wind farm: assessment against LiDAR and SCADA data

    Science.gov (United States)

    Santoni, Christian; Garcia-Cartagena, Edgardo J.; Zhan, Lu; Iungo, Giacomo Valerio; Leonardi, Stefano

    2017-11-01

    The integration of wind farm parameterizations into numerical weather prediction models is essential to study power production under realistic conditions. Nevertheless, recent models are unable to capture turbine wake interactions and, consequently, the mean kinetic energy entrainment, which are essential for the development of power optimization models. To address the study of wind turbine wake interaction, one-way nested mesoscale to large-eddy simulation (LES) were performed using the Weather Research and Forecasting model (WRF). The simulation contains five nested domains modeling the mesoscale wind on the entire North Texas Panhandle region to the microscale wind fluctuations and turbine wakes of a wind farm located at Panhandle, Texas. The wind speed, direction and boundary layer profile obtained from WRF were compared against measurements obtained with a sonic anemometer and light detection and ranging system located within the wind farm. Additionally, the power production were assessed against measurements obtained from the supervisory control and data acquisition system located in each turbine. Furthermore, to incorporate the turbines into very coarse LES, a modification to the implementation of the wind farm parameterization by Fitch et al. (2012) is proposed. This work was supported by the NSF, Grants No. 1243482 (WINDINSPIRE) and IIP 1362033 (WindSTAR), and TACC.

  12. Analysis of FP aerosol behavior in piping in WIND project. Contract research

    Energy Technology Data Exchange (ETDEWEB)

    Hidaka, Akihide; Maruyama, Yu; Shibazaki, Hiroaki; Maeda, Akio; Harada, Yuhei [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Nagashima, Toshio; Yoshino, Takehito; Sugimoto, Jun

    1998-07-01

    In the analyses of aerosol behavior test in piping in WIND (Wide Range Piping Integrity Demonstration) project at Japan Atomic Energy Research Institute (JAERI), ART code developed by JAERI and VICTORIA code developed by Sandia National Laboratories are used to perform WIND test analysis and to validate the models in the both codes. It is noted that VICTORIA code is supposed to be used as reference code of ART at JAERI. As a part of these activities, WIND Aerosol Deposition tests (WAD4 and 5) and FP aerosol behaviors in safety relief valve (SRV) line during BWR high pressure sequence which will be performed in future WIND experiment were analyzed with ART and VICTORIA codes. The present analyses showed that the portion and mass with relatively large amount of cesium iodide (CsI) deposition observed in WAD4 and 5 tests were reasonably reproduced by ART and VICTORIA codes. A difference was found in condensation and revaporization behaviors of gaseous CsI between the two codes. VICTORIA overestimated the condensed mass of CsI vapor while ART reproduced better the experimental data than the VICTORIA calculation. Further investigation is needed for this issue. Although the deposition mass at the pipe connection part in WAD4 and 5 experiments was not measured, the mass at that portion will be measured from next experiment because relatively large amount of CsI could be deposited there and the measurement is considered to be useful for code verification. The predicted principal aerosol deposition mechanism in SRV line is turbulence. Temperature of SRV line could increase by about 300 K by decay heat from deposited FPs. However, the SRV line made of carbon steel would not be failed because the predicted temperature is still far lower than the melting temperature of carbon steel. (author)

  13. The aeroelasticity research project 2004[Wind turbines]; Forskning i aeroelasticitet EFP-2004

    Energy Technology Data Exchange (ETDEWEB)

    Bak, C.

    2005-05-01

    The report presents the results of the project ''Programme for Applied Aeroelasticity'', the Danish Energy Research Programme 2004. The main results are: 1) Based on an analysis of the NREL/NASA experiment with a wind turbine in a wind tunnel a new model is formulated for 3D corrections of profile data for aeroelastic codes. Use of the model on three rotors suggests that the load distribution is determined more correctly than in existing 3D models. 2) A near-wake model, originally developed for aerodynamic loads on helicopter rotors, is implemented for calculating dynamic induction on wind turbine rotors. The model has several advantages to the other normally used model BEM. 3) A detailed comparison of the aeroelastic models FLEX5 and HAWC shows that there are no model differences that can result in large differences in the calculated loads. The comparison shows that differences in the calculated loads are due to the use of the models. 4) A model for pitch-servo dynamics on a modern wind turbine is formed and implemented in HAWC2. The conclusion from analysis of the importance of the pitch-servo characteristics showed that coupling between structure/aerodynamics and pitch actuator may be of importance, especially for the loads on the actuator itself. Also large deflections are coupled to the pitch moment and thus also to torsion of the wing and wing bearing. 5) An un-linear stability analysis has been performed in which periodic loads are included and compared to a linear analysis used in HAWCStab. For a profile with near zero aerodynamic damping in one oscillation direction, the aerodynamic force in this direction depends mostly of the square on the profile's speed. The linear damping is changed only a little by the profile's forced oscillation. It is assumed that the present HAWCStab can predict the mean aeroelastic damping for turbines' oscillations in operation. (LN)

  14. Airborne Wind Profiling Algorithms for the Pulsed 2-Micron Coherent Doppler Lidar at NASA Langley Research Center

    Science.gov (United States)

    Beyon, Jeffrey Y.; Koch, Grady J.; Kavaya, Michael J.; Ray, Taylor J.

    2013-01-01

    Two versions of airborne wind profiling algorithms for the pulsed 2-micron coherent Doppler lidar system at NASA Langley Research Center in Virginia are presented. Each algorithm utilizes different number of line-of-sight (LOS) lidar returns while compensating the adverse effects of different coordinate systems between the aircraft and the Earth. One of the two algorithms APOLO (Airborne Wind Profiling Algorithm for Doppler Wind Lidar) estimates wind products using two LOSs. The other algorithm utilizes five LOSs. The airborne lidar data were acquired during the NASA's Genesis and Rapid Intensification Processes (GRIP) campaign in 2010. The wind profile products from the two algorithms are compared with the dropsonde data to validate their results.

  15. Research and analysis on response characteristics of bracket-line coupling system under wind load

    Science.gov (United States)

    Jiayu, Zhao; Qing, Sun

    2018-01-01

    In this paper, a three-dimensional finite element model of bracket-line coupling system is established based on ANSYS software. Using the wind velocity time series which is generated by MATLAB as a power input, by comparing and analyzing the influence of different wind speeds and different wind attack angles, it is found that when 0 degree wind acts on the structure, wires have a certain damping effect in the bracket-line coupling system and at the same wind speed, the 90 degree direction is the most unfavorable wind direction for the whole structure according to the three kinds of angle wind calculated at present. In the bracket-line coupling system, the bracket structure is more sensitive to the increase of wind speed while the conductors are more sensitive to the change of wind attack angle.

  16. Construction of research wind-solar monitoring station 'North-East Bulgaria'

    International Nuclear Information System (INIS)

    Mateeva, Z.; Filipov, A.; Filipov, V.

    2008-01-01

    The rising energy prices, the lack of conventional energy sources, as well as the growing ecological problems, imposing the development of a new energy strategy of Bulgaria, are the prerequisites for the thorough researches in the field of wind-solar resources and the construction of experimental bases with modern equipment for the detailed investigations on the specificities of these resources with the view of their optimal utilization. The lack of homogenous covering of the territory of the country with meteorological stations, as well as the rather specific microclimatic conditions in the diverse physical-geographic localities in the country make the necessity of building experimental stations for meteo-monitoring under specific local conditions still more indispensable. This work presents the monitoring parameters of wind-solar resources in a real physical-geographic environment, for carrying out scientific-research, applied-practical and educational-training activity. A broad spectrum of scientific methods and approaches - instrumental, topographic, terrain, mathematical-statistical, numerical modeling, cartographic, educational and team-working, are envisaged for attaining the set objective. (author)

  17. Wind Energy Industry Eagle Detection and Deterrents: Research Gaps and Solutions Workshop Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Sinclair, Karin [National Renewable Energy Lab. (NREL), Golden, CO (United States); DeGeorge, Elise [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-04-13

    The Bald and Golden Eagle Protection Act (BGEPA) prohibits the 'take' of these birds. The act defines take as to 'pursue, shoot, shoot at, poison, wound, kill, capture, trap, collect, destroy, molest or disturb.' The 2009 Eagle Permit Rule (74 FR 46836) authorizes the U.S. Fish and Wildlife Service (USFWS) to issue nonpurposeful (i.e., incidental) take permits, and the USFWS 2013 Eagle Conservation Plan Guidance provides a voluntary framework for issuing programmatic take permits to wind facilities that incorporate scientifically supportable advanced conservation practices (ACPs). Under these rules, the Service can issue permits that authorize individual instances of take of bald and golden eagles when the take is associated with, but not the purpose of, an otherwise lawful activity, and cannot practicably be avoided. To date, the USFWS has not approved any ACPs, citing the lack of evidence for 'scientifically supportable measures.' The Eagle Detection and Deterrents Research Gaps and Solutions Workshop was convened at the National Renewable Energy Laboratory in December 2015 with a goal to comprehensively assess the current state of technologies to detect and deter eagles from wind energy sites and the key gaps concerning reducing eagle fatalities and facilitating permitting under the BGEPA. During the workshop, presentations and discussions focused primarily on existing knowledge (and limitations) about the biology of eagles as well as technologies and emerging or novel ideas, including innovative applications of tools developed for use in other sectors, such as the U.S. Department of Defense and aviation. The main activity of the workshop was the breakout sessions, which focused on the current state of detection and deterrent technologies and novel concepts/applications for detecting and minimizing eagle collisions with wind turbines. Following the breakout sessions, participants were asked about their individual impressions of the

  18. Flexible Micropost Arrays for Shear Stress Measurement

    Science.gov (United States)

    Wohl, Christopher J.; Palmieri, Frank L.; Hopkins, John W.; Jackson, Allen M.; Connell, John W.; Lin, Yi; Cisotto, Alexxandra A.

    2015-01-01

    Increased fuel costs, heightened environmental protection requirements, and noise abatement continue to place drag reduction at the forefront of aerospace research priorities. Unfortunately, shortfalls still exist in the fundamental understanding of boundary-layer airflow over aerodynamic surfaces, especially regarding drag arising from skin friction. For example, there is insufficient availability of instrumentation to adequately characterize complex flows with strong pressure gradients, heat transfer, wall mass flux, three-dimensionality, separation, shock waves, and transient phenomena. One example is the acoustic liner efficacy on aircraft engine nacelle walls. Active measurement of shear stress in boundary layer airflow would enable a better understanding of how aircraft structure and flight dynamics affect skin friction. Current shear stress measurement techniques suffer from reliability, complexity, and airflow disruption, thereby compromising resultant shear stress data. The state-of-the-art for shear stress sensing uses indirect or direct measurement techniques. Indirect measurements (e.g., hot-wire, heat flux gages, oil interferometry, laser Doppler anemometry, small scale pressure drag surfaces, i.e., fences) require intricate knowledge of the studied flow, restrictive instrument arrangements, large surface areas, flow disruption, or seeding material; with smaller, higher bandwidth probes under development. Direct measurements involve strain displacement of a sensor element and require no prior knowledge of the flow. Unfortunately, conventional "floating" recessed components for direct measurements are mm to cm in size. Whispering gallery mode devices and Fiber Bragg Gratings are examples of recent additions to this type of sensor with much smaller (?m) sensor components. Direct detection techniques are often single point measurements and difficult to calibrate and implement in wind tunnel experiments. In addition, the wiring, packaging, and installation

  19. A Research on Wind Farm Micro-sitting Optimization in Complex Terrain

    DEFF Research Database (Denmark)

    Xu, Chang; Yang, Jianchuan; Li, Chenqi

    2013-01-01

    Wind farm layout optimization in complex terrain is a pretty difficult issue for onshore wind farm. In this article, a novel optimization method is proposed to optimize the layout for wind farms in complex terrain. This method utilized Lissaman and Jensen wake models for taking the terrain height...

  20. Particle Image Velocimetery (PIV) Diagnostics for Wind Energy and Energy Security Research

    Energy Technology Data Exchange (ETDEWEB)

    Pol, Suhas Uddhav [Los Alamos National Laboratory

    2012-06-04

    Particle Image Velocimetery (PIV) is a laser based technique that involves correlation analysis of tracer particle images to estimate the velocity field in a fluid. High resolution velocity measurement capability and non-intrusive nature of PIV make it desirable for understanding complex fluid flow phenomena occurring in various scenarios. This presentation briefly describes the development of novel PIV diagnostics that forward Wind Energy research and advance scaling models to solve expensive maintenance issues of the Strategic Petroleum Reserves (SPR). Two new diagnostic implementations of Particle Image Velocimetry (PIV) are being developed at Los Alamos National Laboratory (LANL) to facilitate understanding of wind turbine aerodynamics in unprecedented detail. It has been demonstrated that a Large-Field PIV (LF-PIV) diagnostic capable of measuring large scale flow fields of up to 4.3m x 2.8m per camera has been developed. This diagnostic, which represents a significant leap in the field of view of existing centimeter scale PIV systems, allows the measurement of velocity fields at multiple points with high accuracy for large scale flows, such as, flows around wind turbines. Further, to characterize the near blade boundary layer of wind turbines a rotating PIV system (R-PIV) is also under development at LANL (patent application in progress). Design considerations and results of bench top tests that confirm the reliability of PIV measurements obtained using the above diagnostics will be presented in this talk. PIV along with conductivity and temperature probe data has been useful to develop models that simulate the evolution of the layered structure of crude oil stored in the subterranean caverns of the Strategic Petroleum Reserves (SPR). Understanding the evolution of stratified layers of crude oil that are subjected to geothermal forcing is crucial in improving the efficiency of maintenance procedures carried out for the SPR and hence ensure Energy Security of

  1. Wind turbine rotor aerodynamics : The IEA MEXICO rotor explained

    NARCIS (Netherlands)

    Zhang, Y.

    2017-01-01

    Wind turbines are operating under very complex and uncontrolled environmental conditions, including atmospheric turbulence, atmospheric boundary layer effects, directional and spatial variations in wind shear, etc. Over the past decades, the size of a commercial wind turbine has increased

  2. Key Topics for High-Lift Research: A Joint Wind Tunnel/Flight Test Approach

    Science.gov (United States)

    Fisher, David; Thomas, Flint O.; Nelson, Robert C.

    1996-01-01

    Future high-lift systems must achieve improved aerodynamic performance with simpler designs that involve fewer elements and reduced maintenance costs. To expeditiously achieve this, reliable CFD design tools are required. The development of useful CFD-based design tools for high lift systems requires increased attention to unresolved flow physics issues. The complex flow field over any multi-element airfoil may be broken down into certain generic component flows which are termed high-lift building block flows. In this report a broad spectrum of key flow field physics issues relevant to the design of improved high lift systems are considered. It is demonstrated that in-flight experiments utilizing the NASA Dryden Flight Test Fixture (which is essentially an instrumented ventral fin) carried on an F-15B support aircraft can provide a novel and cost effective method by which both Reynolds and Mach number effects associated with specific high lift building block flows can be investigated. These in-flight high lift building block flow experiments are most effective when performed in conjunction with coordinated ground based wind tunnel experiments in low speed facilities. For illustrative purposes three specific examples of in-flight high lift building block flow experiments capable of yielding a high payoff are described. The report concludes with a description of a joint wind tunnel/flight test approach to high lift aerodynamics research.

  3. Extreme wind estimate for Hornsea wind farm

    DEFF Research Database (Denmark)

    Larsén, Xiaoli Guo

    The purpose of this study is to provide estimation of the 50-year winds of 10 min and 1-s gust value at hub height of 100 m, as well as the design parameter shear exponent for the Hornsea offshore wind farm. The turbulence intensity required for estimating the gust value is estimated using two ap....... The greatest sector-wise extreme winds are from west to northwest. Different data, different periods and different methods have provided a range of values of the 50-year wind and accordingly the gust values, as summarized in Table 15.......The purpose of this study is to provide estimation of the 50-year winds of 10 min and 1-s gust value at hub height of 100 m, as well as the design parameter shear exponent for the Hornsea offshore wind farm. The turbulence intensity required for estimating the gust value is estimated using two...... approaches. One is through the measurements from the wind Doppler lidar, WindCube, which implies serious uncertainty, and the other one is through similarity theory for the atmospheric surface layer where the hub height is likely to belong to during strong storms. The turbulence intensity for storm wind...

  4. Research on the effects of wind power grid to the distribution network of Henan province

    Science.gov (United States)

    Liu, Yunfeng; Zhang, Jian

    2018-04-01

    With the draining of traditional energy, all parts of nation implement policies to develop new energy to generate electricity under the favorable national policy. The wind has no pollution, Renewable and other advantages. It has become the most popular energy among the new energy power generation. The development of wind power in Henan province started relatively late, but the speed of the development is fast. The wind power of Henan province has broad development prospects. Wind power has the characteristics of volatility and randomness. The wind power access to power grids will cause much influence on the power stability and the power quality of distribution network, and some areas have appeared abandon the wind phenomenon. So the study of wind power access to power grids and find out improvement measures is very urgent. Energy storage has the properties of the space transfer energy can stabilize the operation of power grid and improve the power quality.

  5. Comparison of the 10x10 and the 8x6 Supersonic Wind Tunnels at the NASA Glenn Research Center for Low-Speed (Subsonic) Operation

    Science.gov (United States)

    Hoffman, Thomas R.; Johns, Albert L.; Bury, Mark E.

    2002-01-01

    NASA Glenn Research Center and Lockheed Martin tested an aircraft model in two wind tunnels to compare low-speed (subsonic) flow characteristics. Test objectives were to determine and document similarities and uniqueness of the tunnels and to verify that the 10- by 10-Foot Supersonic Wind Tunnel (10x10 SWT) is a viable low-speed test facility when compared to the 8- by 6-Foot Supersonic Wind Tunnel (8x6 SWT). Conclusions are that the data from the two facilities compares very favorably and that the 10-by 10-Foot Supersonic Wind Tunnel at NASA Glenn Research Center is a viable low-speed wind tunnel.

  6. Development of Delta Wing Aerodynamics Research in Universiti Teknologi Malaysia Low Speed Wind Tunnel

    Directory of Open Access Journals (Sweden)

    Shabudin Mat

    2014-07-01

    Full Text Available This paper presents wind tunnel experiment on two delta wing configurations which are differentiated by their leading edge profiles: sharp and round-edged wings. The experiments were performed as a part of the delta wing aerodynamics research development in Universiti Teknologi Malaysia, low speed tunnel (UTM-LST. Steady load balance and flow visualization tests were conducted at Reynolds numbers of 0.5, 1, and 1.5 × 106, respectively. The flow measurement at low Reynolds number was also performed at as low as speed of 5 m/s. During the experiments, laser with smoke flow visualizations test was performed on both wings. The study has identified interesting features of the interrelationship between the conventional leading edge primary vortex and the occurrence and development of the vortex breakdown above the delta wings. The results conclude the vortex characteristics are largely dependent on the Reynolds number, angle of attack, and leading-edge radii of the wing.

  7. FACILITIES OF MEASURING OF WIND FOR RESEARCHES AND PLANNING OF THE AIR FIELDS AND HELIPORTS

    Directory of Open Access Journals (Sweden)

    А. Бєлятинський

    2012-04-01

    Full Text Available The choice of the place for the future airdrome (heliport construction must satisfy the financial appropriatenessand also exploitation security. For this purpose on the stage of the researches and designing the information is neededabout wind speed and its direction with an error 0,5 m/s and 10 hail accordingly, in a radius up to 15 km, as to heightfrom 2 to 1000 m with resolution 30 m, a spatial interval of measuring in a horizontal plane is not more than 20 km,in time - not rarer, than each 3 hours. Information is needed to be gained for maximal temporal period (it is desirableno less than five years. A device for the receipt of such information must be of low cost. The acoustic andradioacoustic sounding systems answer the indicated requirements most of all

  8. Denmark Wind Energy Programme

    DEFF Research Database (Denmark)

    Shen, Wen Zhong

    2014-01-01

    In this paper, a summary of some ongoing wind energy projects in Denmark is given. The research topics comprise computational model development, wind turbine design, low noise airfoil and blade design, control device development, wake modelling, and wind farm layout optimization.......In this paper, a summary of some ongoing wind energy projects in Denmark is given. The research topics comprise computational model development, wind turbine design, low noise airfoil and blade design, control device development, wake modelling, and wind farm layout optimization....

  9. Research on Power System Scheduling Improving Wind Power Accommodation Considering Thermal Energy Storage and Flexible Load

    Science.gov (United States)

    Zou, Chenlu; Cui, Xue; Wang, Heng; Zhou, Bin; Liu, Yang

    2018-01-01

    In the case of rapid development of wind power and heavy wind curtailment, the study of wind power accommodation of combined heat and power system has become the focus of attention. A two-stage scheduling model contains of wind power, thermal energy storage, CHP unit and flexible load were constructed. This model with the objective function of minimizing wind curtailment and the operation cost of units while taking into account of the total coal consumption of units, constraint of thermal energy storage and electricity-heat characteristic of CHP. This paper uses MICA to solve the problem of too many constraints and make the solution more feasible. A numerical example showed that the two stage decision scheduling model can consume more wind power, and it could provide a reference for combined heat and power system short-term operation

  10. Smart Wind Turbine : Analysis and Autonomous Flap

    NARCIS (Netherlands)

    Bernhammer, L.O.

    2015-01-01

    Wind turbines convert kinetic energy of the wind into electrical energy. Unfortunately, this process is everything but constant, as the wind source shows large fluctuations with high and low frequencies. This turbulence, together with the wind shear and yawed inflow, excites the turbine structure,

  11. The National Wind Erosion Research Network: Building a standardized long-term data resource for aeolian research, modeling and land management

    Science.gov (United States)

    Webb, Nicholas P.; Herrick, Jeffrey E.; Van Zee, Justin W; Courtright, Ericha M; Hugenholtz, Ted M; Zobeck, Ted M; Okin, Gregory S.; Barchyn, Thomas E; Billings, Benjamin J; Boyd, Robert A.; Clingan, Scott D; Cooper, Brad F; Duniway, Michael C.; Derner, Justin D.; Fox, Fred A; Havstad, Kris M.; Heilman, Philip; LaPlante, Valerie; Ludwig, Noel A; Metz, Loretta J; Nearing, Mark A; Norfleet, M Lee; Pierson, Frederick B; Sanderson, Matt A; Sharrat, Brenton S; Steiner, Jean L; Tatarko, John; Tedela, Negussie H; Todelo, David; Unnasch, Robert S; Van Pelt, R Scott; Wagner, Larry

    2016-01-01

    The National Wind Erosion Research Network was established in 2014 as a collaborative effort led by the United States Department of Agriculture’s Agricultural Research Service and Natural Resources Conservation Service, and the United States Department of the Interior’s Bureau of Land Management, to address the need for a long-term research program to meet critical challenges in wind erosion research and management in the United States. The Network has three aims: (1) provide data to support understanding of basic aeolian processes across land use types, land cover types, and management practices, (2) support development and application of models to assess wind erosion and dust emission and their impacts on human and environmental systems, and (3) encourage collaboration among the aeolian research community and resource managers for the transfer of wind erosion technologies. The Network currently consists of thirteen intensively instrumented sites providing measurements of aeolian sediment transport rates, meteorological conditions, and soil and vegetation properties that influence wind erosion. Network sites are located across rangelands, croplands, and deserts of the western US. In support of Network activities, http://winderosionnetwork.org was developed as a portal for information about the Network, providing site descriptions, measurement protocols, and data visualization tools to facilitate collaboration with scientists and managers interested in the Network and accessing Network products. The Network provides a mechanism for engaging national and international partners in a wind erosion research program that addresses the need for improved understanding and prediction of aeolian processes across complex and diverse land use types and management practices.

  12. Research on wind power grid-connected operation and dispatching strategies of Liaoning power grid

    Science.gov (United States)

    Han, Qiu; Qu, Zhi; Zhou, Zhi; He, Xiaoyang; Li, Tie; Jin, Xiaoming; Li, Jinze; Ling, Zhaowei

    2018-02-01

    As a kind of clean energy, wind power has gained rapid development in recent years. Liaoning Province has abundant wind resources and the total installed capacity of wind power is in the forefront. With the large-scale wind power grid-connected operation, the contradiction between wind power utilization and peak load regulation of power grid has been more prominent. To this point, starting with the power structure and power grid installation situation of Liaoning power grid, the distribution and the space-time output characteristics of wind farm, the prediction accuracy, the curtailment and the off-grid situation of wind power are analyzed. Based on the deep analysis of the seasonal characteristics of power network load, the composition and distribution of main load are presented. Aiming at the problem between the acceptance of wind power and power grid adjustment, the scheduling strategies are given, including unit maintenance scheduling, spinning reserve, energy storage equipment settings by the analysis of the operation characteristics and the response time of thermal power units and hydroelectric units, which can meet the demand of wind power acceptance and provide a solution to improve the level of power grid dispatching.

  13. Conference on offshore wind energy development in France and Germany - Legal framework, research results and perspectives

    International Nuclear Information System (INIS)

    Schulz, Joerg; Schlegelmilch, Kai; Schulze, Karsten; Abromeit, Carolin; Jensen, Lars Bie; Svendsen, Anne; Schwebel, Olivier; Huebner, Gundula; Heidmann, Roger; Piet, Olivier; Roudil, Jean-Philippe; Fuchs, Tina

    2010-01-01

    The French-German office for Renewable energies (OFAEnR) organised a conference on offshore wind energy development in France and Germany. In the framework of this French-German exchange of experience, about 170 participants exchanged views on the actual policies, on the offshore potentialities of both countries and on the recent logistics, services, training and software innovations. This document brings together the available presentations (slides) made during this event: 1 - Opening talk by Joerg Schulz, Bremerhaven's Major; 2 - The Future of the Offshore Wind energy in Germany - Key elements of the German energy Concept (Kai Schlegelmilch); 3 - Offshore wind farms: A commercial perspective - Offshore projects profitability (Karsten Schulze); 4 - Offshore Wind Farms in the German EEZ - experiences with the German Approval Procedure: criteria for a successful approval procedure (Carolin Abromeit); 5 - Offshore Wind Parks and fishery in Denmark - Involvement and compensation of commercial fishery in Denmark (Lars Bie Jensen); 6 - Tourism, property value, residents interest and offshore parks - Usage conflicts or regional development? (Anne Svendsen); 7 - Logistics for offshore wind projects - classic ports usable? An overview (Roger Heidmann); 8 - Offshore wind energy and French harbours (Olivier Piet); 9 - French offshore wind power market and component suppliers (Jean-Philippe Roudil); 10 - Trident software - the Offshore Wind Manager. Review and Forecast after one year of construction (Tina Fuchs)

  14. Advanced structural wind engineering

    CERN Document Server

    Kareem, Ahsan

    2013-01-01

    This book serves as a textbook for advanced courses as it introduces state-of-the-art information and the latest research results on diverse problems in the structural wind engineering field. The topics include wind climates, design wind speed estimation, bluff body aerodynamics and applications, wind-induced building responses, wind, gust factor approach, wind loads on components and cladding, debris impacts, wind loading codes and standards, computational tools and computational fluid dynamics techniques, habitability to building vibrations, damping in buildings, and suppression of wind-induced vibrations. Graduate students and expert engineers will find the book especially interesting and relevant to their research and work.

  15. Microbiology of Wind-eroded Sediments: Current Knowledge and Future Research Directions

    Science.gov (United States)

    Wind erosion is a threat to the sustainability and productivity of soils that takes place at local, regional, and global scales. Current estimates of cost of wind erosion have not included the costs associated with the loss of soil biodiversity and reduced ecosystem functions. Microorganisms carrie...

  16. Wind energy renewable energy and the environment

    CERN Document Server

    Nelson, Vaughn

    2013-01-01

    As the demand for energy increases, and fossil fuels continue to decrease, Wind Energy: Renewable Energy and the Environment, Second Edition considers the viability of wind as an alternative renewable energy source. This book examines the wind industry from its start in the 1970s until now, and introduces all aspects of wind energy. The phenomenal growth of wind power for utilities is covered along with applications such as wind-diesel, village power, telecommunications, and street lighting.. It covers the characteristics of wind, such as shear, power potential, turbulence, wind resource, wind

  17. Comparison of the NASA Common Research Model European Transonic Wind Tunnel Test Data to NASA Test Data

    Science.gov (United States)

    Rivers, Melissa; Quest, Juergen; Rudnik, Ralf

    2015-01-01

    Experimental aerodynamic investigations of the NASA Common Research Model have been conducted in the NASA Langley National Transonic Facility, the NASA Ames 11-ft wind tunnel, and the European Transonic Wind Tunnel. In the NASA Ames 11-ft wind tunnel, data have been obtained at only a chord Reynolds number of 5 million for a wing/body/tail = 0 degree incidence configuration. Data have been obtained at chord Reynolds numbers of 5, 19.8 and 30 million for the same configuration in the National Transonic Facility and in the European Transonic Facility. Force and moment, surface pressure, wing bending and twist, and surface flow visualization data were obtained in all three facilities but only the force and moment and surface pressure data are presented herein.

  18. Sheared Electroconvective Instability

    Science.gov (United States)

    Kwak, Rhokyun; Pham, Van Sang; Lim, Kiang Meng; Han, Jongyoon

    2012-11-01

    Recently, ion concentration polarization (ICP) and related phenomena draw attention from physicists, due to its importance in understanding electrochemical systems. Researchers have been actively studying, but the complexity of this multiscale, multiphysics phenomenon has been limitation for gaining a detailed picture. Here, we consider electroconvective(EC) instability initiated by ICP under pressure-driven flow, a scenario often found in electrochemical desalinations. Combining scaling analysis, experiment, and numerical modeling, we reveal unique behaviors of sheared EC: unidirectional vortex structures, its size selection and vortex propagation. Selected by balancing the external pressure gradient and the electric body force, which generates Hagen-Poiseuille(HP) flow and vortical EC, the dimensionless EC thickness scales as (φ2 /UHP)1/3. The pressure-driven flow(or shear) suppresses unfavorably-directed vortices, and simultaneously pushes favorably-directed vortices with constant speed, which is linearly proportional to the total shear of HP flow. This is the first systematic characterization of sheared EC, which has significant implications on the optimization of electrodialysis and other electrochemical systems.

  19. Wind energy in Mediterranean Basin

    International Nuclear Information System (INIS)

    Gaudiosi, G.

    1991-01-01

    In its examination of wind energy potential in the Mediterranean Basin, this paper provides brief notes on the Basin's geography; indicates power production and demand; describes the area's wind characteristics and wind monitoring activities; illustrates wind velocity distributions; estimates local wind power production potential; reviews the Basin's wind energy marketing situation and each bordering country's wind energy programs; surveys installed wind energy farms; and assesses national research and commercialization efforts

  20. Winding machines for the manufacturing of superconductive coils of the main European fusion research machines

    CERN Document Server

    Cazzaniga, R; D’Urzo, C

    2005-01-01

    The successfull construction of large magnets passes through the development and application of non-conventional manufacturing processes. A difficult and delicate step in the manufacturing of superconducting coils is the conductor winding technique. It is often a challenging and technologically advanced process, developed according to the requirements of each project. An important aspect during the winding is to avoid any deformation of the cable cross section leading to a damage of the strands and to maintain the design features of the cable. A second aspect is to assure the suitable repeatability and a production rate for an industrial process. The winding line is a system of different machines linked and tuned together properly designed for each project. An adapted software assures the overall process control. TPA realized for ANSALDO Superconduttori the winding lines for many projects: TFMC (NET-TEAM), CMS (INFN-CERN), WENDELSTEIN W7-X (Max Planck Institute, IPP), etc. The experience acquired in this fiel...

  1. Lewis Research Center studies of multiple large wind turbine generators on a utility network

    Science.gov (United States)

    Gilbert, L. J.; Triezenberg, D. M.

    1979-01-01

    A NASA-Lewis program to study the anticipated performance of a wind turbine generator farm on an electric utility network is surveyed. The paper describes the approach of the Lewis Wind Energy Project Office to developing analysis capabilities in the area of wind turbine generator-utility network computer simulations. Attention is given to areas such as, the Lewis Purdue hybrid simulation, an independent stability study, DOE multiunit plant study, and the WEST simulator. Also covered are the Lewis mod-2 simulation including analog simulation of a two wind turbine system and comparison with Boeing simulation results, and gust response of a two machine model. Finally future work to be done is noted and it is concluded that the study shows little interaction between the generators and between the generators and the bus.

  2. Results from operation and research of the experimental wind farm of the Dutch electricity generating board

    International Nuclear Information System (INIS)

    Toussaint, P.; Hutting, H.K.; Mortier, M.; Cleijne, J.W.

    1992-01-01

    This combined paper consists of four parts. The order of the above authors corresponds to the order of the parts. The first part deals with the operational experience of the farm. It reports an average capacity factor of 24% and an availability of 90%. The second part reports measured power losses due to wake effects, while the third part shows wind velocity deficits and turbulence characteristics within a wake. In the last part the application of a wind farm controller is demonstrated. (au)

  3. Research of wind erosion intensity in the region of Subotica-Horgos sands

    Science.gov (United States)

    Velizar Velasevic; Ljubomir Letic

    1991-01-01

    Wind is an important erosional process in the areas of steppe-savanna climate in Europe as typified by the Bojvodina plain in Yugoslavia. Cultivated and forested plots on the Subotica-Horgos Sands were used to study aeolian erosion processes. Wind erosion on the cultivated plot was 3-29 times greater than that occurring on a plot planted to forest trees. That erosion...

  4. Research for Electric Brake Using NTC Thermistors on Micro Wind Turbine

    OpenAIRE

    Sugawara, Akira; Yamamoto, Kenichi; Yoshimi, Takeshi; Sato, Shingo; Tsurumaki, Akira; Ito, Tsuguru

    2006-01-01

    As a brake system for small wind turbine, mechanical brake and electric brake by the short circuit of 3-phase permanent magnet generator are used. However, an electric braking method may damage the rotor and/or blades by rapid stop of the generator revolution. Moreover, generator winding may also be damaged by large short-circuit current. In this paper, the electric braking method using NTC thermistors (negative temperature coefficient resistors) is proposed as a braking system for a cheaper ...

  5. Active Power Control Simulation Platform Research of Wind Farm Based on Multi-Agent

    Directory of Open Access Journals (Sweden)

    Liu Xingjie

    2015-01-01

    Full Text Available The realization of the automation, routinization and intelligentization of dispatch control in wind farms is the key to the integration of wind farms into power grid management system. Active power regulate and control system in wind farms has increasingly high demand on timeliness, but at present this system is mostly equipped with centralized unidirectional control with poor timeliness and low utilization ratio for wind energy resources. The characteristics of distribution and instantaneity owned by the active power regulate and control system in wind farms are highly consistent with Multi-Agent system. This paper discusses a kind of processing method that is used in real-time, distributed and parallel computation and processing for multiple simultaneously running wind turbines, which is based on Multi-Agent technology and adopting JADE development platform. This method converts massive centralized computation to distributed computation, which optimizes the effect of the power control. This method makes the effectiveness of active power regulate and control system better, wins time for timely allocating electricity generation assignments and dealing with problems, and avoids the heavy loss of resources.

  6. Wind Turbines Wake Aerodynamics

    DEFF Research Database (Denmark)

    Vermeer, L.; Sørensen, Jens Nørkær; Crespo, A.

    2003-01-01

    The aerodynamics of horizontal axis wind turbine wakes is studied. The contents is directed towards the physics of power extraction by wind turbines and reviews both the near and the far wake region. For the near wake, the survey is restricted to uniform, steady and parallel flow conditions......, thereby excluding wind shear, wind speed and rotor setting changes and yawed conditions. The emphasis is put on measurements in controlled conditions.For the far wake, the survey focusses on both single turbines and wind farm effects, and the experimental and numerical work are reviewed; the main interest...... is to study how the far wake decays downstream, in order to estimate the effect produced in downstream turbines.The article is further restricted to horizontal axis wind turbines and excludes all other types of turbines....

  7. Assessing the vegetation canopy influences on wind flow using wind ...

    Indian Academy of Sciences (India)

    Service. References. Brown S, Nickling W G and Gillies J A 2008 A wind tunnel examination of shear stress partitioning for an assortment of surface roughness distribution; J. Geophys. Res. 113. F02S06, doi: 10.1029/2007JF000790. Buckley R 1987 The effect of sparse vegetation on the transport of dune sand by wind; ...

  8. FY 1998 Report on development of large-scale wind power generation systems. Research on the future prospects of wind power generation systems; 1998 nendo ogata furyoku hatsuden system kaihatsu. Furyoku hatsuden system no shorai tenbo ni kansuru chosa kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Current status of wind power generation in Japan and situations in foreign countries ahead of Japan are surveyed, in order to clarify the prospects for the future diffusion and expansion of wind power generation systems in Japan. The surveyed trends of wind power generation in Japan include those related to mandatory laws and regulations, e.g., the Electricity Enterprises Act, introductory and operation situations in local autonomies and electric power companies, and R and D efforts by academic and research organizations. The surveyed wind power generation situations in foreign countries include trends of international standardization for wind power generation, and global situations of introducing these systems. The on-the-spot oversea surveys include location/wind conditions in Greece's islands, cyclone-caused damages in India, World Renewable Energy Congress in Perth and advanced technologies in Europe for wind power generation systems, and the survey results are reported in detail. The surveyed R and D projects in Japan include the basic technological R and D plans (draft) for, e.g., wind power generation systems for isolated islands. (NEDO)

  9. Shear-thinning Fluid

    Science.gov (United States)

    2001-01-01

    Whipped cream and the filling for pumpkin pie are two familiar materials that exhibit the shear-thinning effect seen in a range of industrial applications. It is thick enough to stand on its own atop a piece of pie, yet flows readily when pushed through a tube. This demonstrates the shear-thinning effect that was studied with the Critical Viscosity of Xenon Experiment (CVX-2) on the STS-107 Research 1 mission in 2002. CVX observed the behavior of xenon, a heavy inert gas used in flash lamps and ion rocket engines, at its critical point. The principal investigator was Dr. Robert Berg of the National Institutes of Standards and Technology in Gaithersburg, MD.

  10. Understanding and controlling wind-induced vibrations of bridge cables: Results from the Femern Crossing research project

    DEFF Research Database (Denmark)

    Georgakis, Christos T.; Jakobsen, J. B.; Koss, Holger

    Following the successful completion of the Storebælt and Øresund Crossings, the Danish Ministry of Transport appointed Femern A/S to be in charge of preparation, investigations and planning in relation to the establishment of a fixed link across the Fehmarnbelt. To further investigate the causes...... behind the cable vibrations that were observed on the cable-supported bridges forming part of the aforementioned crossings, Femern A/S commissioned a 5-year international collaborative research project, entitled “Understanding and controlling wind-induced vibrations of bridge cables”. The ultimate goal...... of the project has been the establishment of novel vibration mitigation schemes that could be readily, economically, and effectively implemented on a cable-supported bridge that might form part of the fixed link. In support of the proposed research, Femern A/S commissioned a new climatic wind tunnel, designed...

  11. Understanding and controlling wind-induced vibrations of bridge cables: Results from the Femern Crossing research project

    DEFF Research Database (Denmark)

    Georgakis, Christos T.; Jakobsen, J. B.; Koss, Holger

    of the project has been the establishment of novel vibration mitigation schemes that could be readily, economically, and effectively implemented on a cable-supported bridge that might form part of the fixed link. In support of the proposed research, Femern A/S commissioned a new climatic wind tunnel, designed......Following the successful completion of the Storebælt and Øresund Crossings, the Danish Ministry of Transport appointed Femern A/S to be in charge of preparation, investigations and planning in relation to the establishment of a fixed link across the Fehmarnbelt. To further investigate the causes...... behind the cable vibrations that were observed on the cable-supported bridges forming part of the aforementioned crossings, Femern A/S commissioned a 5-year international collaborative research project, entitled “Understanding and controlling wind-induced vibrations of bridge cables”. The ultimate goal...

  12. Implementation of a Generalized Actuator Line Model for Wind Turbine Parameterization in the Weather Research and Forecasting Model

    Energy Technology Data Exchange (ETDEWEB)

    Lundquist, Julie [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Marjanovic, Nikola [University of California, Berkeley; Lawrence Livermore National Laboratory; Mirocha, Jeffrey D. [Lawrence Livermore National Laboratory; Kosovic, Branko [University Corporation for Atmospheric Research; Chow, Fotini Katopodes [University of California, Berkeley

    2017-12-22

    A generalized actuator line (GAL) wind turbine parameterization is implemented within the Weather Research and Forecasting model to enable high-fidelity large-eddy simulations of wind turbine interactions with boundary layer flows under realistic atmospheric forcing conditions. Numerical simulations using the GAL parameterization are evaluated against both an already implemented generalized actuator disk (GAD) wind turbine parameterization and two field campaigns that measured the inflow and near-wake regions of a single turbine. The representation of wake wind speed, variance, and vorticity distributions is examined by comparing fine-resolution GAL and GAD simulations and GAD simulations at both fine and coarse-resolutions. The higher-resolution simulations show slightly larger and more persistent velocity deficits in the wake and substantially increased variance and vorticity when compared to the coarse-resolution GAD. The GAL generates distinct tip and root vortices that maintain coherence as helical tubes for approximately one rotor diameter downstream. Coarse-resolution simulations using the GAD produce similar aggregated wake characteristics to both fine-scale GAD and GAL simulations at a fraction of the computational cost. The GAL parameterization provides the capability to resolve near wake physics, including vorticity shedding and wake expansion.

  13. Final Technical Report: Supporting Wind Turbine Research and Testing - Gearbox Durability Study

    Energy Technology Data Exchange (ETDEWEB)

    Matthew Malkin

    2012-04-30

    The combination of premature failure of wind turbine gearboxes and the downtime caused by those failures leads to an increase in the cost of electricity produced by the wind. There is a need for guidance to asset managers regarding how to maximize the longevity of their gearboxes in order to help keep the cost of wind energy as low as possible. A low cost of energy supports the US Department of Energy's goal of achieving 20% of the electricity in the United States produced by wind by the year 2030. DNV KEMA has leveraged our unique position in the industry as an independent third party engineering organization to study the problem of gearbox health management and develop guidance to project operators. This report describes the study. The study was conducted in four tasks. In Task 1, data that may be related to gearbox health and are normally available to wind project operators were collected for analysis. Task 2 took a more in-depth look at a small number of gearboxes to gain insight in to relevant failure modes. Task 3 brought together the previous tasks by evaluating the available data in an effort to identify data that could provide early indications of impending gearbox failure. Last, the observations from the work were collected to develop recommendations regarding gearbox health management.

  14. Wind conditions and resource assessment

    DEFF Research Database (Denmark)

    Lundtang Petersen, Erik; Troen, Ib

    2012-01-01

    The development of wind power as a competitive energy source requires resource assessment of increasing accuracy and detail (including not only the long-term ‘raw’ wind resource, but also turbulence, shear, and extremes), and in areas of increasing complexity. This in turn requires the use...

  15. Research on Short-Term Wind Power Prediction Based on Combined Forecasting Models

    Directory of Open Access Journals (Sweden)

    Zhang Chi

    2016-01-01

    Full Text Available Short-Term wind power forecasting is crucial for power grid since the generated energy of wind farm fluctuates frequently. In this paper, a physical forecasting model based on NWP and a statistical forecasting model with optimized initial value in the method of BP neural network are presented. In order to make full use of the advantages of the models presented and overcome the limitation of the disadvantage, the equal weight model and the minimum variance model are established for wind power prediction. Simulation results show that the combination forecasting model is more precise than single forecasting model and the minimum variance combination model can dynamically adjust weight of each single method, restraining the forecasting error further.

  16. Steel Plate Shear Walls: Efficient Structural Solution for Slender High-Rise in China

    International Nuclear Information System (INIS)

    Mathias, Neville; Long, Eric; Sarkisian, Mark; Huang Zhihui

    2008-01-01

    The 329.6 meter tall 74-story Jinta Tower in Tianjin, China, is expected, when complete, to be the tallest building in the world with slender steel plate shear walls used as the primary lateral load resisting system. The tower has an overall aspect ratio close to 1:8, and the main design challenge was to develop an efficient lateral system capable of resisting significant wind and seismic lateral loads, while simultaneously keeping wind induced oscillations under acceptable perception limits. This paper describes the process of selection of steel plate shear walls as the structural system, and presents the design philosophy, criteria and procedures that were arrived at by integrating the relevant requirements and recommendations of US and Chinese codes and standards, and current on-going research

  17. Climatology of the Iberia coastal low-level wind jet: weather research forecasting model high-resolution results

    Directory of Open Access Journals (Sweden)

    Pedro M. M. Soares

    2013-01-01

    Full Text Available Coastal low-level jets (CLLJ are a low-tropospheric wind feature driven by the pressure gradient produced by a sharp contrast between high temperatures over land and lower temperatures over the sea. This contrast between the cold ocean and the warm land in the summer is intensified by the impact of the coastal parallel winds on the ocean generating upwelling currents, sharpening the temperature gradient close to the coast and giving rise to strong baroclinic structures at the coast. During summertime, the Iberian Peninsula is often under the effect of the Azores High and of a thermal low pressure system inland, leading to a seasonal wind, in the west coast, called the Nortada (northerly wind. This study presents a regional climatology of the CLLJ off the west coast of the Iberian Peninsula, based on a 9 km resolution downscaling dataset, produced using the Weather Research and Forecasting (WRF mesoscale model, forced by 19 years of ERA-Interim reanalysis (1989–2007. The simulation results show that the jet hourly frequency of occurrence in the summer is above 30% and decreases to about 10% during spring and autumn. The monthly frequencies of occurrence can reach higher values, around 40% in summer months, and reveal large inter-annual variability in all three seasons. In the summer, at a daily base, the CLLJ is present in almost 70% of the days. The CLLJ wind direction is mostly from north-northeasterly and occurs more persistently in three areas where the interaction of the jet flow with local capes and headlands is more pronounced. The coastal jets in this area occur at heights between 300 and 400 m, and its speed has a mean around 15 m/s, reaching maximum speeds of 25 m/s.

  18. The Impact of Coastal Terrain on Offshore Wind and Implications for Wind Energy

    Science.gov (United States)

    Strobach, Edward Justin

    The development of offshore wind energy is moving forward as one of several options for carbon-free energy generation along the populous US east coast. Accurate assessments of the wind resource are essential and can significantly lower financing costs that have been a barrier to development. Wind resource assessment in the Mid-Atlantic region is challenging since there are no long-term measurements of winds across the rotor span. Features of the coastal and inland terrain, such as such as the Appalachian mountains and the Chesapeake Bay, are known to lead to complex mesoscale wind regimes onshore, including low-level jets (LLJs), downslope winds and sea breezes. Little is known, however, about whether or how the inland physiography impacts the winds offshore. This research is based on the first comprehensive set of offshore wind observations in the Maryland Wind Energy Area gathered during a UMBC measurement campaign. The presentation will include a case study of a strong nocturnal LLJ that persisted for several hours before undergoing a rapid breakdown and loss of energy to smaller scales. Measurements from an onshore wind profiler and radiosondes, together with North American Regional Analysis (NARR) and a high resolution Weather Research and Forecast (WRF) model simulation, are used to untangle the forcing mechanisms on synoptic, regional and local scales that led to the jet and its collapse. The results suggest that the evolution of LLJs were impacted by a downslope wind from the Appalachians that propagated offshore riding atop a shallow near-surface boundary layer across the coastal plain. Baroclinic forcing from low sea surface temperatures (SSTs) due to coastal upwelling is also discussed. Smaller scale details of the LLJ breakdown are analyzed using a wave/mean flow/turbulence interaction approach. The case study illustrates several characteristics of low-level winds offshore that are important for wind energy, including LLJs, strong wind shear, turbulence

  19. Research on Condition Assessment Method of Transmission Tower Under the Action of Strong Wind

    Science.gov (United States)

    Huang, Ren-mou; An, Li-qiang; Zhang, Rong-lun; Wu, Jiong; Liang, Ya-feng

    2018-03-01

    Transmission towers are often subjected to the external damage of severe weather like strong wind and so on, which may cause the collapse due to the yield and fracture of the tower material. Aiming this issue, an assessment method was proposed in this paper to assess the operation condition of transmission towers under strong wind. With a reasonable assess index system established firstly, then the internal force of the tower material was solved and its stability was determined through the mechanical analysis of the transmission tower finite element model. Meanwhile, the condition risk level of the tower was finally determined by considering the difference among the influences of other factors like corrosion and loose of members, slope on the transmission tower through the analytic hierarchy process. The assessment method was applied to assess the wind-induced collapse of towers in 110kV Bao Yi II line in Wenchang City, Hainan Province, of which the result proves the method can assess the condition of transmission tower under strong wind and of guiding significance for improving the windproof capability of transmission towers.

  20. Wind energy and wildlife research at the Forest and Rangeland Ecosystem Science Center

    Science.gov (United States)

    Phillips, Susan L.

    2011-01-01

    The United States has embarked on a goal to increase electricity generation from clean, renewable sources by 2012. Towards this end, wind energy is emerging as a widely distributed form of renewable energy throughout the country. The national goal is for energy from wind to supply 20 percent of the country's electricity by 2030. As with many land uses, trade-offs exist between costs and benefits. New wind developments are occurring rapidly in parts of the United States, often leaving little time for evaluation of potential site-specific effects. These developments are known to affect wildlife, directly from fatality due to collision with the infrastructure and indirectly from loss of habitat and migration routes. The Department of the Interior, in particular, is challenged to balance energy development on public lands and also to conserve fish and wildlife. The Secretary of the Interior has proposed a number of initiatives to encourage responsible development of renewable energy. These initiatives are especially important in the western United States where large amounts of land are being developed or evaluated for wind farms.

  1. Insights from action research: implementing the balanced scorecard at a wind-farm company

    NARCIS (Netherlands)

    Schneider, R.; Vieira, R.

    2010-01-01

    Purpose - After a diagnosis of the existing management control systems (MCS) at a wind-farm company, the paper seeks to develop a balanced scorecard (BSC) in order to enable the organization to compress and streamline management decision making and to show what is to be taken into account for a

  2. Lidar-based Research and Innovation at DTU Wind Energy – a Review

    DEFF Research Database (Denmark)

    Mikkelsen, Torben

    2014-01-01

    " for huge wind turbines, the hub-height of a recently installed 8 MW Vestas V164 turbine soars 143 meters up above the ground, and its rotor of amazing 164 meters in diameter make the turbine tips flicker 225 meters into the sky. Following the revolution in photonics-based telecommunication at the turn...

  3. HVDC Connected Offshore Wind Power Plants: Review and Outlook of Current Research

    DEFF Research Database (Denmark)

    Glasdam, Jakob; Zeni, Lorenzo; Gryning, Mikkel

    2013-01-01

    and the PED widely used in the wind turbine generators (WTGs). Challenges hereto include PED control system interaction (from a stability point of view), assessment of the quality of vendor supplied control systems and their robustness against e.g. short circuits and load rejection. Furthermore, the outcome...

  4. Application and improvement of Raupach's shear stress partitioning model

    Science.gov (United States)

    Walter, B. A.; Lehning, M.; Gromke, C.

    2012-12-01

    Aeolian processes such as the entrainment, transport and redeposition of sand, soil or snow are able to significantly reshape the earth's surface. In times of increasing desertification and land degradation, often driven by wind erosion, investigations of aeolian processes become more and more important in environmental sciences. The reliable prediction of the sheltering effect of vegetation canopies against sediment erosion, for instance, is a clear practical application of such investigations to identify suitable and sustainable counteractive measures against wind erosion. This study presents an application and improvement of a theoretical model presented by Raupach (Boundary-Layer Meteorology, 1992, Vol.60, 375-395 and Journal of Geophysical Research, 1993, Vol.98, 3023-3029) which allows for quantifying the sheltering effect of vegetation against sediment erosion. The model predicts the shear stress ratios τS'/τ and τS''/τ. Here, τS is the part of the total shear stress τ that acts on the ground beneath the plants. The spatial peak τS'' of the surface shear stress is responsible for the onset of particle entrainment whereas the spatial mean τS' can be used to quantify particle mass fluxes. The precise and accurate prediction of these quantities is essential when modeling wind erosion. Measurements of the surface shear stress distributions τS(x,y) on the ground beneath live vegetation canopies (plant species: lolium perenne) were performed in a controlled wind tunnel environment to determine the model parameters and to evaluate the model performance. Rigid, non-porous wooden blocks instead of the plants were additionally tested for the purpose of comparison, since previous wind tunnel studies used exclusively artificial plant imitations for their experiments on shear stress partitioning. The model constant c, which is needed to determine the total stress τ for a canopy of interest and which remained rather unspecified to date, was found to be c ≈ 0

  5. Potential Coir Fibre Composite for Small Wind Turbine Blade Application

    Directory of Open Access Journals (Sweden)

    Bakri Bakri

    2017-03-01

    Full Text Available Natural fibers have been developed as reinforcement of composite to shift synthetic fibers. One of potential natural fibers developed is coir fiber. This paper aims to describe potential coir fiber as reinforcement of composite for small wind turbine blade application. The research shows that mechanical properties ( tensile, impact, shear, flexural and compression strengths of coir fiber composite have really similar to wood properties for small wind turbine blade material, but inferior to glass fiber composite properties. The effect of weathering was also evaluated to coir fiber composite in this paper.

  6. Wind Climate Parameters for Wind Turbine Fatigue Load Assessment

    DEFF Research Database (Denmark)

    Toft, Henrik Stensgaard; Svenningsen, Lasse; Moser, Wolfgang

    2016-01-01

    established from the on-site distribution functions of the horizontal mean wind speeds, the 90% quantile of turbulence along with average values of vertical wind shear and air density and the maximum flow inclination. This paper investigates the accuracy of fatigue loads estimated using this equivalent wind...... climate required by the current design standard by comparing damage equivalent fatigue loads estimated based on wind climate parameters for each 10 min time-series with fatigue loads estimated based on the equivalent wind climate parameters. Wind measurements from Boulder, CO, in the United States...... and Høvsøre in Denmark have been used to estimate the natural variation in the wind conditions between 10 min time periods. The structural wind turbine loads have been simulated using the aero-elastic model FAST. The results show that using a 90% quantile for the turbulence leads to an accurate assessment...

  7. Air Flow Modeling in the Wind Tunnel of the FHWA Aerodynamics Laboratory at Turner-Fairbank Highway Research Center

    Energy Technology Data Exchange (ETDEWEB)

    Sitek, M. A. [Argonne National Lab. (ANL), Argonne, IL (United States). Transportation Research and Analysis Computing Center (TRACC) Energy Systems Division; Lottes, S. A. [Argonne National Lab. (ANL), Argonne, IL (United States). Transportation Research and Analysis Computing Center (TRACC) Energy Systems Division; Bojanowski, C. [Argonne National Lab. (ANL), Argonne, IL (United States). Transportation Research and Analysis Computing Center (TRACC) Energy Systems Division

    2017-09-01

    Computational fluid dynamics (CFD) modeling is widely used in industry for design and in the research community to support, compliment, and extend the scope of experimental studies. Analysis of transportation infrastructure using high performance cluster computing with CFD and structural mechanics software is done at the Transportation Research and Analysis Computing Center (TRACC) at Argonne National Laboratory. These resources, available at TRACC, were used to perform advanced three-dimensional computational simulations of the wind tunnel laboratory at the Turner-Fairbank Highway Research Center (TFHRC). The goals were to verify the CFD model of the laboratory wind tunnel and then to use versions of the model to provide the capability to (1) perform larger parametric series of tests than can be easily done in the laboratory with available budget and time, (2) to extend testing to wind speeds that cannot be achieved in the laboratory, and (3) to run types of tests that are very difficult or impossible to run in the laboratory. Modern CFD software has many physics models and domain meshing options. Models, including the choice of turbulence and other physics models and settings, the computational mesh, and the solver settings, need to be validated against measurements to verify that the results are sufficiently accurate for use in engineering applications. The wind tunnel model was built and tested, by comparing to experimental measurements, to provide a valuable tool to perform these types of studies in the future as a complement and extension to TFHRC’s experimental capabilities. Wind tunnel testing at TFHRC is conducted in a subsonic open-jet wind tunnel with a 1.83 m (6 foot) by 1.83 m (6 foot) cross section. A three component dual force-balance system is used to measure forces acting on tested models, and a three degree of freedom suspension system is used for dynamic response tests. Pictures of the room are shown in Figure 1-1 to Figure 1-4. A detailed CAD

  8. Demonstration of a Basis for Tall Wind Turbine Design, EUDP Project Final Report

    DEFF Research Database (Denmark)

    Natarajan, Anand; Dimitrov, Nikolay Krasimirov; Madsen, Peter Hauge

    Wind turbine design using calibrated wind models have been proposed to be used in conjunction with load cases which lead to reduced uncertainties in the design of wind turbines with hub heights above 60m. These recommended wind profiles have been made for shear, wind directional change and turbul......Wind turbine design using calibrated wind models have been proposed to be used in conjunction with load cases which lead to reduced uncertainties in the design of wind turbines with hub heights above 60m. These recommended wind profiles have been made for shear, wind directional change...

  9. Temperature and wind speed data from XBT and bucket casts from the R/V OCEANOGRAPHER AND R/V RESEARCHER I (NODC Accession 7700678)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Air temperature, water temperature, and wind speed data were collected using XBT and bucket casts from the R/V OCEANGRAPHER AND R/V RESEARCHER I.

  10. Wind Power Now!

    Science.gov (United States)

    Inglis, David Rittenhouse

    1975-01-01

    The government promotes and heavily subsidizes research in nuclear power plants. Federal development of wind power is slow in comparison even though much research with large wind-electric machines has already been conducted. Unless wind power programs are accelerated it will not become a major energy alternative to nuclear power. (MR)

  11. Offshore wind energy developments

    DEFF Research Database (Denmark)

    Stolpe, Mathias; Buhl, Thomas; Sumer, B. Mutlu

    2014-01-01

    This chapter will give a brief overview of a few of the activities within offshore wind energy research, specifically 1) Support structure optimization, 2) Blade coatings for wind turbines; 3) Scour protection of foundations, 4) Offshore HVDC and 5) Offshore wind services.......This chapter will give a brief overview of a few of the activities within offshore wind energy research, specifically 1) Support structure optimization, 2) Blade coatings for wind turbines; 3) Scour protection of foundations, 4) Offshore HVDC and 5) Offshore wind services....

  12. Arctic wind energy

    International Nuclear Information System (INIS)

    Peltola, E.; Holttinen, H.; Marjaniemi, M.; Tammelin, B.

    1998-01-01

    Arctic wind energy research was aimed at adapting existing wind technologies to suit the arctic climatic conditions in Lapland. Project research work included meteorological measurements, instrument development, development of a blade heating system for wind turbines, load measurements and modelling of ice induced loads on wind turbines, together with the development of operation and maintenance practices in arctic conditions. As a result the basis now exists for technically feasible and economically viable wind energy production in Lapland. New and marketable products, such as blade heating systems for wind turbines and meteorological sensors for arctic conditions, with substantial export potential, have also been developed. (orig.)

  13. Arctic wind energy

    Energy Technology Data Exchange (ETDEWEB)

    Peltola, E. [Kemijoki Oy (Finland); Holttinen, H.; Marjaniemi, M. [VTT Energy, Espoo (Finland); Tammelin, B. [Finnish Meteorological Institute, Helsinki (Finland)

    1998-12-31

    Arctic wind energy research was aimed at adapting existing wind technologies to suit the arctic climatic conditions in Lapland. Project research work included meteorological measurements, instrument development, development of a blade heating system for wind turbines, load measurements and modelling of ice induced loads on wind turbines, together with the development of operation and maintenance practices in arctic conditions. As a result the basis now exists for technically feasible and economically viable wind energy production in Lapland. New and marketable products, such as blade heating systems for wind turbines and meteorological sensors for arctic conditions, with substantial export potential, have also been developed. (orig.)

  14. Research of influence of open-winding faults on properties of brushless permanent magnets motor

    Directory of Open Access Journals (Sweden)

    Bogusz Piotr

    2017-12-01

    Full Text Available The paper presents an analysis of influence of selected fault states on properties of brushless DC motor with permanent magnets. The subject of study was a BLDC motor designed by the authors for unmanned aerial vehicle hybrid drive. Four parallel branches per each phase were provided in the discussed 3-phase motor. After open-winding fault in single or few parallel branches, a further operation of the motor can be continued. Waveforms of currents, voltages and electromagnetic torque were determined in discussed fault states based on the developed mathematical and simulation models. Laboratory test results concerning an influence of open-windings faults in parallel branches on properties of BLDC motor were presented.

  15. Research of influence of open-winding faults on properties of brushless permanent magnets motor

    Science.gov (United States)

    Bogusz, Piotr; Korkosz, Mariusz; Powrózek, Adam; Prokop, Jan; Wygonik, Piotr

    2017-12-01

    The paper presents an analysis of influence of selected fault states on properties of brushless DC motor with permanent magnets. The subject of study was a BLDC motor designed by the authors for unmanned aerial vehicle hybrid drive. Four parallel branches per each phase were provided in the discussed 3-phase motor. After open-winding fault in single or few parallel branches, a further operation of the motor can be continued. Waveforms of currents, voltages and electromagnetic torque were determined in discussed fault states based on the developed mathematical and simulation models. Laboratory test results concerning an influence of open-windings faults in parallel branches on properties of BLDC motor were presented.

  16. Calibration of the Flow in the Test Section of the Research Wind Tunnel at DST Group

    Science.gov (United States)

    2015-10-01

    the tunnel. The calibration data are presented and analysed and explanations of flow behaviour are given. 2. Mean-Velocity Measurements 2.1...1073. Defence Science and Technology Organisation , Melbourne, Australia. Erm, L. P. 2003 Calibration of the flow in the extended test section...of the low-speed wind tunnel at DSTO. DSTO-TR-1384. Defence Science and Technology Organisation , Melbourne, Australia. Erm, L. P. 2015

  17. Research of Short-range Missile Motion in Terms of Different Wind Loads

    Directory of Open Access Journals (Sweden)

    A. N. Klishin

    2015-01-01

    Full Text Available When modeling the aircraft motion it is advisable to choose a particular model of the Earth, depending both on the task and on the required accuracy of calculation. The article describes various models of the Earth, such as the flat Earth with a plane-parallel field of gravity, spherical and non-rotating Earth with a plane-parallel field of gravity, spherical and non-rotating Earth with a central gravitational field, spherical and non-rotating Earth, taking into account the polar flattening of the Earth, spherical Earth based compression and polar daily rotation. The article also considers the influence of these models on the motion of the selected aircraft.To date, there is technical equipment to provide highly accurate description of the Earthshape, gravitational field, etc. The improved accuracy of the Earth model description results in more correct description of the trajectory and motion parameters of a ballistic missile. However, for short ranges (10-20 km this accuracy is not essential, and, furthermore, it increases time of calculation. Therefore, there is a problem of choosing the optimal description of the Earth parameters.The motion in the model of the Earth, which takes into account a daily rotation of the planet and polar flattening, is discussed in more detail, and the geographical latitude impact on coordinates of the points of fall of a ballistic missile is analyzed on the basis of obtained graphs.The article individually considers a problem of the wind effect on the aircraft motion and defines dependences of the missile motion on the parameters of different wind loads, such as wind speed and height of its action.A mathematical model of the missile motion was built and numerically integrated, using the Runge-Kutta 4th order method, for implementation and subsequent analysis.Based on the analysis of the calculation results in the abovementioned models of the Earth, differences in impact of these models on the parameters of the

  18. Wind Technologies and Evolving Opportunities (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Robi Robichaud

    2014-03-01

    This presentation provides an overview of wind energy research being conducted at the National Wind Technology Center, market and technology trends in wind energy, and opportunities for wind technology.

  19. Analysis of extreme wind events at Høvsøre and the effect on wind turbine loads

    DEFF Research Database (Denmark)

    Hannesdóttir, Ásta; Kelly, Mark C.; Mann, Jakob

    used to simulate wind turbine response in time domain. The simulations are made for the DTU 10 MW reference wind turbine. Load analysis shows that the maximum tilt moment on the tower yaw bearing correlates well with the wind shear of the measurements. When these loads are compared with the extreme...... wind shear load case of the IEC standards, it is seen that they are of similar magnitude and in one case even higher....

  20. M2-F1 mounted in NASA Ames Research Center 40x80 foot wind tunnel

    Science.gov (United States)

    1962-01-01

    After the first attempted ground-tow tests of the M2-F1 in March 1963, the vehicle was taken to the Ames Research Center, Mountain View, CA, for wind-tunnel testing. During these tests, Milt Thompson and others were in the M2-F1 to position the control surfaces for each test. The wingless, lifting body aircraft design was initially conceived as a means of landing an aircraft horizontally after atmospheric reentry. The absence of wings would make the extreme heat of re-entry less damaging to the vehicle. In 1962, Dryden management approved a program to build a lightweight, unpowered lifting body as a prototype to flight test the wingless concept. It would look like a 'flying bathtub,' and was designated the M2-F1, the 'M' referring to 'manned' and 'F' referring to 'flight' version. It featured a plywood shell placed over a tubular steel frame crafted at Dryden. Construction was completed in 1963. The first flight tests of the M2-F1 were over Rogers Dry Lake at the end of a tow rope attached to a hopped-up Pontiac convertible driven at speeds up to about 120 mph. This vehicle needed to be able to tow the M2-F1 on the Rogers Dry Lakebed adjacent to NASA's Flight Research Center (FRC) at a minimum speed of 100 miles per hour. To do that, it had to handle the 400-pound pull of the M2-F1. Walter 'Whitey' Whiteside, who was a retired Air Force maintenance officer working in the FRC's Flight Operations Division, was a dirt-bike rider and hot-rodder. Together with Boyden 'Bud' Bearce in the Procurement and Supply Branch of the FRC, Whitey acquired a Pontiac Catalina convertible with the largest engine available. He took the car to Bill Straup's renowned hot-rod shop near Long Beach for modification. With a special gearbox and racing slicks, the Pontiac could tow the 1,000-pound M2-F1 110 miles per hour in 30 seconds. It proved adequate for the roughly 400 car tows that got the M2-F1 airborne to prove it could fly safely and to train pilots before they were towed behind a C

  1. Experimental and analytical research on the aerodynamics of wind turbines. Mid-term technical report, June 1--December 31, 1975

    Energy Technology Data Exchange (ETDEWEB)

    Rohrbach, C.

    1976-02-01

    The successful development of reliable, cost competitive horizontal axis, propeller-type wind energy conversion systems (WECS) is strongly dependent on the availability of advanced technology for each of the system components. Past experience and current studies of this type of wind energy conversion systems have shown that the wind turbine subsystem most significantly effects the system's cost effectiveness and performance capability. Thus adequate technology bases are essential for all elements of the wind turbine design. Information is presented concerning aerodynamic design and performance technology, wind turbine parametric performance study, selection of model wind turbine configurations, and structural design of wind turbine models.

  2. The influence of the Wind Speed Profile on Wind Turbine Performance Measurements

    DEFF Research Database (Denmark)

    Wagner, Rozenn; Antoniou, Ioannis; Pedersen, Søren M.

    2009-01-01

    . Assuming a certain turbine hub height, the profiles with hub-height wind speeds between 6 m s-1 and 8 m s-1 are normalized at 7 m s-1 and grouped to a number of mean shear profiles. The energy in the profiles varies considerably for the same hub-height wind speed. These profiles are then used as input...... the swept rotor area would allow the determination of the electrical power as a function of an equivalent wind speed where wind shear and turbulence intensity are taken into account. Electrical power is found to correlate significantly better to the equivalent wind speed than to the single point hub...

  3. Coupling the Weather Research and Forecasting (WRF) model and Large Eddy Simulations with Actuator Disk Model: predictions of wind farm power production

    Science.gov (United States)

    Garcia Cartagena, Edgardo Javier; Santoni, Christian; Ciri, Umberto; Iungo, Giacomo Valerio; Leonardi, Stefano

    2015-11-01

    A large-scale wind farm operating under realistic atmospheric conditions is studied by coupling a meso-scale and micro-scale models. For this purpose, the Weather Research and Forecasting model (WRF) is coupled with an in-house LES solver for wind farms. The code is based on a finite difference scheme, with a Runge-Kutta, fractional step and the Actuator Disk Model. The WRF model has been configured using seven one-way nested domains where the child domain has a mesh size one third of its parent domain. A horizontal resolution of 70 m is used in the innermost domain. A section from the smallest and finest nested domain, 7.5 diameters upwind of the wind farm is used as inlet boundary condition for the LES code. The wind farm consists in six-turbines aligned with the mean wind direction and streamwise spacing of 10 rotor diameters, (D), and 2.75D in the spanwise direction. Three simulations were performed by varying the velocity fluctuations at the inlet: random perturbations, precursor simulation, and recycling perturbation method. Results are compared with a simulation on the same wind farm with an ideal uniform wind speed to assess the importance of the time varying incoming wind velocity. Numerical simulations were performed at TACC (Grant CTS070066). This work was supported by NSF, (Grant IIA-1243482 WINDINSPIRE).

  4. Research on Chinese life cycle-based wind power plant environmental influence prevention measures.

    Science.gov (United States)

    Wang, Hanxi; Xu, Jianling; Liu, Yuanyuan; Zhang, Tian

    2014-08-19

    The environmental impact of wind power plants over their life cycle is divided into three stages: construction period, operation period and retired period. The impact is mainly reflected in ecological destruction, noise pollution, water pollution and the effect on bird migration. In response to these environmental effects, suggesting reasonable locations, reducing plant footprint, optimizing construction programs, shielding noise, preventing pollution of terrestrial ecosystems, implementing combined optical and acoustical early warning signals, making synthesized use of power generation equipment in the post-retired period and using other specific measures, including methods involving governance and protection efforts to reduce environmental pollution, can be performed to achieve sustainable development.

  5. Research on Chinese Life Cycle-Based Wind Power Plant Environmental Influence Prevention Measures

    Science.gov (United States)

    Wang, Hanxi; Xu, Jianling; Liu, Yuanyuan; Zhang, Tian

    2014-01-01

    The environmental impact of wind power plants over their life cycle is divided into three stages: construction period, operation period and retired period. The impact is mainly reflected in ecological destruction, noise pollution, water pollution and the effect on bird migration. In response to these environmental effects, suggesting reasonable locations, reducing plant footprint, optimizing construction programs, shielding noise, preventing pollution of terrestrial ecosystems, implementing combined optical and acoustical early warning signals, making synthesized use of power generation equipment in the post-retired period and using other specific measures, including methods involving governance and protection efforts to reduce environmental pollution, can be performed to achieve sustainable development. PMID:25153474

  6. Research on Chinese Life Cycle-Based Wind Power Plant Environmental Influence Prevention Measures

    Directory of Open Access Journals (Sweden)

    Hanxi Wang

    2014-08-01

    Full Text Available The environmental impact of wind power plants over their life cycle is divided into three stages: construction period, operation period and retired period. The impact is mainly reflected in ecological destruction, noise pollution, water pollution and the effect on bird migration. In response to these environmental effects, suggesting reasonable locations, reducing plant footprint, optimizing construction programs, shielding noise, preventing pollution of terrestrial ecosystems, implementing combined optical and acoustical early warning signals, making synthesized use of power generation equipment in the post-retired period and using other specific measures, including methods involving governance and protection efforts to reduce environmental pollution, can be performed to achieve sustainable development.

  7. Earth, Wind and Fire. Natural air conditioning. Part 1. Research aims and methods; Earth, Wind and Fire. Natuurlijke airconditioning. Deel 1. Onderzoeksdoelen en -methoden

    Energy Technology Data Exchange (ETDEWEB)

    Bronsema, B. [Afdeling Architectural Engineering en Technology, Faculteit Bouwkunde, Technische Universiteit Delft TUD, Delft (Netherlands)

    2013-07-15

    The Earth, Wind and Fire concept transforms a building into a 'climate machine' which is powered by the natural forces and energy of the sun, wind, the mass of the earth and gravity. This concept consists of a Climate Cascade, a solar chimney and a Ventec roof, which have been tested in physical mock-ups. Simulation models have been validated on the basis of real measurements. This work has resulted in the creation of reliable tools for design practice [Dutch] Het Earth, Wind en Fire-concept voor natuurlijke airconditioning biedt meer zekerheid voor het realiseren van energieneutrale kantoorgebouwen dan mogelijk zou zijn door verbetering van bestaande technieken. Het concept maakt gebruik van de omgevingsenergie van aardmassa, wind en zon. Enerzijds wordt deze energie passief gebruikt voor het realiseren van een natuurlijke airconditioning, waarbij de gewenste luchtstromingen tot stand komen onder invloed van thermisch gedreven drukverschillen. Anderzijds worden zon en wind benut voor actieve energieopwekking, waardoor een gebouw in principe energieneutraal kan worden. Een dergelijk gebouw kan worden beschouwd als 'klimaatmachine', geactiveerd door zwaartekracht, wind en zon.

  8. Wind energy

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This chapter discusses the role wind energy may have in the energy future of the US. The topics discussed in the chapter include historical aspects of wind energy use, the wind energy resource, wind energy technology including intermediate-size and small wind turbines and intermittency of wind power, public attitudes toward wind power, and environmental, siting and land use issues

  9. Research on Misalignment Fault Isolation of Wind Turbines Based on the Mixed-Domain Features

    Directory of Open Access Journals (Sweden)

    Yancai Xiao

    2017-06-01

    Full Text Available The misalignment of the drive system of the DFIG (Doubly Fed Induction Generator wind turbine is one of the important factors that cause damage to the gears, bearings of the high-speed gearbox and the generator bearings. How to use the limited information to accurately determine the type of failure has become a difficult study for the scholars. In this paper, the time-domain indexes and frequency-domain indexes are extracted by using the vibration signals of various misaligned simulation conditions of the wind turbine drive system, and the time-frequency domain features—energy entropy are also extracted by the IEMD (Improved Empirical Mode Decomposition. A mixed-domain feature set is constructed by them. Then, SVM (Support Vector Machine is used as the classifier, the mixed-domain features are used as the inputs of SVM, and PSO (Particle Swarm Optimization is used to optimize the parameters of SVM. The fault types of misalignment are classified successfully. Compared with other methods, the accuracy of the given fault isolation model is improved.

  10. Enabling Advanced Wind-Tunnel Research Methods Using the NASA Langley 12-Foot Low Speed Tunnel

    Science.gov (United States)

    Busan, Ronald C.; Rothhaar, Paul M.; Croom, Mark A.; Murphy, Patrick C.; Grafton, Sue B.; O-Neal, Anthony W.

    2014-01-01

    Design of Experiment (DOE) testing methods were used to gather wind tunnel data characterizing the aerodynamic and propulsion forces and moments acting on a complex vehicle configuration with 10 motor-driven propellers, 9 control surfaces, a tilt wing, and a tilt tail. This paper describes the potential benefits and practical implications of using DOE methods for wind tunnel testing - with an emphasis on describing how it can affect model hardware, facility hardware, and software for control and data acquisition. With up to 23 independent variables (19 model and 2 tunnel) for some vehicle configurations, this recent test also provides an excellent example of using DOE methods to assess critical coupling effects in a reasonable timeframe for complex vehicle configurations. Results for an exploratory test using conventional angle of attack sweeps to assess aerodynamic hysteresis is summarized, and DOE results are presented for an exploratory test used to set the data sampling time for the overall test. DOE results are also shown for one production test characterizing normal force in the Cruise mode for the vehicle.

  11. Wind energy information guide

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-04-01

    This book is divided into nine chapters. Chapters 1--8 provide background and annotated references on wind energy research, development, and commercialization. Chapter 9 lists additional sources of printed information and relevant organizations. Four indices provide alphabetical access to authors, organizations, computer models and design tools, and subjects. A list of abbreviations and acronyms is also included. Chapter topics include: introduction; economics of using wind energy; wind energy resources; wind turbine design, development, and testing; applications; environmental issues of wind power; institutional issues; and wind energy systems development.

  12. Wind Power Career Chat

    Energy Technology Data Exchange (ETDEWEB)

    2011-01-01

    This document will teach students about careers in the wind energy industry. Wind energy, both land-based and offshore, is expected to provide thousands of new jobs in the next several decades. Wind energy companies are growing rapidly to meet America's demand for clean, renewable, and domestic energy. These companies need skilled professionals. Wind power careers will require educated people from a variety of areas. Trained and qualified workers manufacture, construct, operate, and manage wind energy facilities. The nation will also need skilled researchers, scientists, and engineers to plan and develop the next generation of wind energy technologies.

  13. A Research Plan for Assessing the Power and Energy Capability of a River Network Under an Integrated Wind/Hydro-Electric Dispatchable Regime

    Science.gov (United States)

    Banka, John Czeslaw

    The world strives for more clean and renewable energy, but the amount of dispatchable energy in river networks is not accurately known and difficult to assess. When wind is integrated with water, the dispatchable yield can be greatly increased, but the uncertainty of the wind further degrades predictability. This thesis demonstrates how simulating the flows is a river network integrated with wind over a long time domain yields a solution. Time-shifting the freshet and pumped storage will ameliorate the seasonal summer drought; the risk of ice jams and uncontrolled flooding is reduced. An artificial market eliminates the issue of surplus energy from wind at night. Furthermore, this thesis shows how the necessary infrastructure can be built to accomplish the goals of the intended research. While specific to Northern Ontario and sensitive to the lives of the Native peoples living there, it indicates where the research might be applicable elsewhere in the world.

  14. Effects of shear coupling on shear properties of wood

    Science.gov (United States)

    Jen Y. Liu

    2000-01-01

    Under pure shear loading, an off-axis element of orthotropic material such as pure wood undergoes both shear and normal deformations. The ratio of the shear strain to a normal strain is defined as the shear coupling coefficient associated with the direction of the normal strain. The effects of shear coupling on shear properties of wood as predicted by the orthotropic...

  15. Denmark Wind Energy Programme

    DEFF Research Database (Denmark)

    Shen, Wen Zhong

    2015-01-01

    In this chapter, a summary of some ongoing wind energy projects in Denmark is given. The research topics comprise computational model development, wind turbine (WT) design, low-noise airfoil and blade design, control device development, wake modelling and wind farm layout optimization....

  16. Winds of Change: Expanding the Frontiers of Flight. Langley Research Center's 75 Years of Accomplishment, 1917-1992

    Science.gov (United States)

    Schultz, James

    1992-01-01

    This commemorative volume highlights in pictures and text seventy five years of accomplishments of the Langley Research Center. The introductory matter features wind tunnels and their contribution to the development of aeronautics. A chronological survey details four different periods in Langley's history. The first period, 1917-1939, is subtitled 'Perfecting the Plane' which details Langley's contribution to early aeronautics with examples from specific aircraft. The second period, 1940-1957, focuses on the development of military aircraft during and after World War II. The third period, 1958-1969, tells the story of Langley's involvement with NASA and the satellite and Apollo era. The fourth period, entitled 'Charting New Courses: 1970-1992 and Beyond', treats various new topics from aerospace planes to Mars landing, as well as older topics such as the Space Shuttle and research spinoffs.

  17. Vandenberg Air Force Base Upper Level Wind Launch Weather Constraints

    Science.gov (United States)

    Shafer, Jaclyn A.; Wheeler, Mark M.

    2012-01-01

    The 30th Operational Support Squadron Weather Flight (30 OSSWF) provides comprehensive weather services to the space program at Vandenberg Air Force Base (VAFB) in California. One of their responsibilities is to monitor upper-level winds to ensure safe launch operations of the Minuteman III ballistic missile. The 30 OSSWF tasked the Applied Meteorology Unit (AMU) to analyze VAFB sounding data with the goal of determining the probability of violating (PoV) their upper-level thresholds for wind speed and shear constraints specific to this launch vehicle, and to develop a tool that will calculate the PoV of each constraint on the day of launch. In order to calculate the probability of exceeding each constraint, the AMU collected and analyzed historical data from VAFB. The historical sounding data were retrieved from the National Oceanic and Atmospheric Administration Earth System Research Laboratory archive for the years 1994-2011 and then stratified into four sub-seasons: January-March, April-June, July-September, and October-December. The maximum wind speed and 1000-ft shear values for each sounding in each subseason were determined. To accurately calculate the PoV, the AMU determined the theoretical distributions that best fit the maximum wind speed and maximum shear datasets. Ultimately it was discovered that the maximum wind speeds follow a Gaussian distribution while the maximum shear values follow a lognormal distribution. These results were applied when calculating the averages and standard deviations needed for the historical and real-time PoV calculations. In addition to the requirements outlined in the original task plan, the AMU also included forecast sounding data from the Rapid Refresh model. This information provides further insight for the launch weather officers (LWOs) when determining if a wind constraint violation will occur over the next few hours on day of launch. The interactive graphical user interface (GUI) for this project was developed in

  18. Aeroelastic large eddy simulations using vortex methods: unfrozen turbulent and sheared inflow

    DEFF Research Database (Denmark)

    Branlard, Emmanuel Simon Pierre; Papadakis, G.; Gaunaa, Mac

    2015-01-01

    Vortex particles methods are applied to the aeroelastic simulation of a wind turbine in sheared and turbulent inflow. The possibility to perform large-eddy simulations of turbulence with the effect of the shear vorticity is demonstrated for the first time in vortex methods simulations. Most vortex...... methods formulation of shear, including segment formulations, assume a frozen shear. It is here shown that these formulations omit two source terms in the vorticity equation. The current paper also present unfrozen simulation of shear. The infinite support of the shear vorticity is accounted for using...

  19. Applied research on energy storage and conversion for photovoltaic and wind energy systems. Volume III. Wind conversion systems with energy storage. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1978-01-01

    The variability of energy output inherent in wind energy conversion systems (WECS) has led to the investigation of energy storage as a means of managing the available energy when immediate, direct use is not possible or desirable. This portion of the General Electric study was directed at an evaluation of those energy storage technologies deemed best suited for use in conjunction with a wind energy conversion system in utility, residential and intermediate applications. Break-even cost goals are developed for several storage technologies in each application. These break-even costs are then compared with cost projections presented in Volume I of this report to show technologies and time frames of potential economic viability. The report summarizes the investigations performed and presents the results, conclusions and recommendations pertaining to use of energy storage with wind energy conversion systems.

  20. Evaluation of the wind farm parameterization in the Weather Research and Forecasting model (version 3.8.1) with meteorological and turbine power data

    Science.gov (United States)

    Lee, Joseph C. Y.; Lundquist, Julie K.

    2017-11-01

    Forecasts of wind-power production are necessary to facilitate the integration of wind energy into power grids, and these forecasts should incorporate the impact of wind-turbine wakes. This paper focuses on a case study of four diurnal cycles with significant power production, and assesses the skill of the wind farm parameterization (WFP) distributed with the Weather Research and Forecasting (WRF) model version 3.8.1, as well as its sensitivity to model configuration. After validating the simulated ambient flow with observations, we quantify the value of the WFP as it accounts for wake impacts on power production of downwind turbines. We also illustrate with statistical significance that a vertical grid with approximately 12 m vertical resolution is necessary for reproducing the observed power production. Further, the WFP overestimates wake effects and hence underestimates downwind power production during high wind speed, highly stable, and low turbulence conditions. We also find the WFP performance is independent of the number of wind turbines per model grid cell and the upwind-downwind position of turbines. Rather, the ability of the WFP to predict power production is most dependent on the skill of the WRF model in simulating the ambient wind speed.

  1. Evaluation of the wind farm parameterization in the Weather Research and Forecasting model (version 3.8.1 with meteorological and turbine power data

    Directory of Open Access Journals (Sweden)

    J. C. Y. Lee

    2017-11-01

    Full Text Available Forecasts of wind-power production are necessary to facilitate the integration of wind energy into power grids, and these forecasts should incorporate the impact of wind-turbine wakes. This paper focuses on a case study of four diurnal cycles with significant power production, and assesses the skill of the wind farm parameterization (WFP distributed with the Weather Research and Forecasting (WRF model version 3.8.1, as well as its sensitivity to model configuration. After validating the simulated ambient flow with observations, we quantify the value of the WFP as it accounts for wake impacts on power production of downwind turbines. We also illustrate with statistical significance that a vertical grid with approximately 12 m vertical resolution is necessary for reproducing the observed power production. Further, the WFP overestimates wake effects and hence underestimates downwind power production during high wind speed, highly stable, and low turbulence conditions. We also find the WFP performance is independent of the number of wind turbines per model grid cell and the upwind–downwind position of turbines. Rather, the ability of the WFP to predict power production is most dependent on the skill of the WRF model in simulating the ambient wind speed.

  2. Guideline concerning financial aid by the state to '250 MW wind' wind power plants within the framework of the third programme 'Energy research and energy technologies'

    International Nuclear Information System (INIS)

    1994-01-01

    An industrial-scale wind power experiment will receive financial aid for several years. An installed power of 250 MW is to be reached within a 5-year period if possible. The BMFT will grant financial aid on a per kWh basis up to a maximum sum, or - if desired by certain applicants - in the form of an investment aid, both for a maximum period of 10 years from the start-up of the wind power plant. The BMFT will also finance a scientific programme for measurement and evaluation. (orig.) [de

  3. The Importance of basic Research for Inventions and Innovations in Wind Industry. Some Experiences from Denmark and China 1973 - 2011

    DEFF Research Database (Denmark)

    Pedersen, Jørgen Lindgaard; Xinxin, Kong

    districts in Denmark. With the traditional Dutch wind mills at that time it was possible to harvest 7 percent of the energy in the wind. For la Cour it was clear from beginning that this yield percentage should be much higher if wind electricity should be relevant in practice. The solution came with help...

  4. Thermal and Pressure Characterization of a Wind Tunnel Force Balance Using the Single Vector System. Experimental Design and Analysis Approach to Model Pressure and Temperature Effects in Hypersonic Wind Tunnel Research

    Science.gov (United States)

    Lynn, Keith C.; Commo, Sean A.; Johnson, Thomas H.; Parker, Peter A,

    2011-01-01

    Wind tunnel research at NASA Langley Research Center s 31-inch Mach 10 hypersonic facility utilized a 5-component force balance, which provided a pressurized flow-thru capability to the test article. The goal of the research was to determine the interaction effects between the free-stream flow and the exit flow from the reaction control system on the Mars Science Laboratory aeroshell during planetary entry. In the wind tunnel, the balance was exposed to aerodynamic forces and moments, steady-state and transient thermal gradients, and various internal balance cavity pressures. Historically, these effects on force measurement accuracy have not been fully characterized due to limitations in the calibration apparatus. A statistically designed experiment was developed to adequately characterize the behavior of the balance over the expected wind tunnel operating ranges (forces/moments, temperatures, and pressures). The experimental design was based on a Taylor-series expansion in the seven factors for the mathematical models. Model inversion was required to calculate the aerodynamic forces and moments as a function of the strain-gage readings. Details regarding transducer on-board compensation techniques, experimental design development, mathematical modeling, and wind tunnel data reduction are included in this paper.

  5. Remarks on impact shearing

    Science.gov (United States)

    Klepaczko, J. R.

    1998-10-01

    A review is presented on recent progress in shear testing of materials at high and very high strain rates. Some experimental techniques are discussed which allow for materials testing in shear up to 10 6 ls. More detailed informations are provided on experimental techniques based on the Modified Double Shear specimen loaded by direct impact. This technique has been applied so far to test a variety of materials, including construction, armor and inoxidable steels, and also aluminum alloys. The double shear configuration has also been applied to test sheet metals, mostly used in the automotive industry, in a wide range of strain rates. Details of both techniques, including measuring systems and elastic wave propagation in tubes, are discussed. In addition, a new experimental configuration which can be applied for experimental studies of adiabatic shear propagation and high speed machining is discussed. The role of adiabatic heating at different rates of shearing is also discussed, including transition from pure isothermal to pure adiabatic deformation. It appears that the initial impact velocity is an important parameter in development of plastic localization. Finally, a new development is discussed in determination of the Critical Impact Velocity in shear. A comparison is shown between recent experimental findings and a simple analytic estimation. The CIV in shear is a certain mode of adiabatic failure which occurs at relatively high shear velocities of adjacent material layers. Numerical simulations support the existence of the CIV in shear which can be recognized to some extent as a material constant.

  6. Shear Stress Sensing with Elastic Microfence Structures

    Science.gov (United States)

    Cisotto, Alexxandra; Palmieri, Frank L.; Saini, Aditya; Lin, Yi; Thurman, Christopher S; Kim, Jinwook; Kim, Taeyang; Connell, John W.; Zhu, Yong; Gopalarathnam, Ashok; hide

    2015-01-01

    In this work, elastic microfences were generated for the purpose of measuring shear forces acting on a wind tunnel model. The microfences were fabricated in a two part process involving laser ablation patterning to generate a template in a polymer film followed by soft lithography with a two-part silicone. Incorporation of a fluorescent dye was demonstrated as a method to enhance contrast between the sensing elements and the substrate. Sensing elements consisted of multiple microfences prepared at different orientations to enable determination of both shear force and directionality. Microfence arrays were integrated into an optical microscope with sub-micrometer resolution. Initial experiments were conducted on a flat plate wind tunnel model. Both image stabilization algorithms and digital image correlation were utilized to determine the amount of fence deflection as a result of airflow. Initial free jet experiments indicated that the microfences could be readily displaced and this displacement was recorded through the microscope.

  7. Load alleviation of wind turbines by yaw misalignment

    DEFF Research Database (Denmark)

    Kragh, Knud Abildgaard; Hansen, Morten Hartvig

    2014-01-01

    Vertical wind shear is one of the dominating causes of load variations on the blades of a horizontal axis wind turbine. To alleviate the varying loads, wind turbine control systems have been augmented with sensors and actuators for individual pitch control. However, the loads caused by a vertical...... wind shear can also be affected through yaw misalignment. Recent studies of yaw control have been focused on improving the yaw alignment to increase the power capture at below rated wind speeds. In this study, the potential of alleviating blade load variations induced by the wind shear through yaw...... be applied without power loss for wind speeds above rated wind speed. In deterministic inflow, it is shown that the range of the steady-state blade load variations can be reduced by up to 70%. For turbulent inflows, it is shown that the potential blade fatigue load reductions depend on the turbulence level...

  8. Research on Automatic Positioning System of Ultrasonic Testing of Wind Turbine Blade Flaws

    Science.gov (United States)

    Liu, Q. X.; Wang, Z. H.; Long, S. G.; Cai, M.; Cai, M.; Wang, X.; Chen, X. Y.; Bu, J. L.

    2017-11-01

    Ultrasonic testing technology has been used essentially in non-destructive testing of wind turbine blades. However, it is fact that the ultrasonic flaw detection method has inefficiently employed in recent years. This is because the testing result will illustrate a small deviation due to the artificial, environmental and technical factors. Therefore, it is an urgent technical demand for engineers to test the various flaws efficiently and quickly. An automatic positioning system has been designed in this paper to record the moving coordinates and the target distance in real time. Simultaneously, it could launch and acquire the sonic wave automatically. The ADNS-3080 optoelectronic chip is manufactured by Agilent Technologies Inc, which is also utilized in the system. With the combination of the chip, the power conversion module and the USB transmission module, the collected data can be transmitted from the upper monitor to the hardware that could process and control the data through software programming. An experiment has been designed to prove the reliability of automotive positioning system. The result has been validated by comparing the result collected form LABVIEW and actual plots on Perspex plane, it concludes that the system possesses high accuracy and magnificent meanings in practical engineering.

  9. Pressure-Sensitive Paint Measurements on the NASA Common Research Model in the NASA 11-ft Transonic Wind Tunnel

    Science.gov (United States)

    Bell, James H.

    2011-01-01

    The luminescence lifetime technique was used to make pressure-sensitive paint (PSP) measurements on a 2.7% Common Research Model in the NASA Ames 11ft Transonic Wind Tunnel. PSP data were obtained on the upper and lower surfaces of the wing and horizontal tail, as well as one side of the fuselage. Data were taken for several model attitudes of interest at Mach numbers between 0.70 and 0.87. Image data were mapped onto a three-dimensional surface grid suitable both for comparison with CFD and for integration of pressures to determine loads. Luminescence lifetime measurements were made using strobed LED (light-emitting diode) lamps to illuminate the PSP and fast-framing interline transfer cameras to acquire the PSP emission.

  10. Shear Thinning in Xenon

    Science.gov (United States)

    Bergm Robert F.; Moldover, Michael R.; Yao, Minwu; Zimmerli, Gregory A.

    2009-01-01

    We measured shear thinning, a viscosity decrease ordinarily associated with complex liquids such as molten plastics or ketchup, near the critical point of xenon. The data span a wide range of dimensionless shear rate: the product of the shear rate and the relaxation time of critical fluctuations was greater than 0.001 and was less than 700. As predicted by theory, shear thinning occurred when this product was greater than 1. The measurements were conducted aboard the Space Shuttle Columbia to avoid the density stratification caused by Earth's gravity.

  11. Aeroservoelasticity of wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Skovmose Kallesoee, B.

    2007-12-14

    This thesis deals with the fundamental aeroelastic interaction between structural motion, Pitch action and control for a wind turbine blade. As wind turbines become larger, the interaction between pitch action, blade motion, aerodynamic forces, and control become even more important to understand and address. The main contribution of this thesis is the development of an aeroelastic blade model which on the one hand includes the important effects of steady state blade deformation, gravity and pitch action, and on the other it is transparent, suitable for analytical analysis and parameter studies, and furthermore linear and therefore suitable for control design. The development of the primary aeroelastic blade model is divided into four steps: 1) Nonlinear partial differential equations (PDEs) of structural blade motion are derived together with equations of pitch action and rotor speed; the individual terms in these equations are discussed and given physical interpretations; 2) Steady state blade deformation and induced velocities are computed by combining the PDEs with a steady state aerodynamic model; 3) Aeroelastic modes of motion are computed by combining the linearized PDEs with a linear unsteady aerodynamic model; this model is used to analyze how blade deformation effects the modes of motion; and 4) the linear aeroelastic blade model is derived by a modal expansion of the linearized PDEs combined with a linear unsteady aerodynamic model. The aeroelastic blade model has many similarities to a 2D blade section model, and it can be used instead of this in many applications, giving a transparent connection to a real wind turbine blade. In this work the aeroelastic blade model is used to analyze interaction between pitch action, blade motion and wind speed variations. Furthermore the model is used to develop a state estimator for estimating the wind speed and wind shear, and to suggest a load reducing controller. The state estimator estimates the wind shear very

  12. Kansas Wind Energy Consortium

    Energy Technology Data Exchange (ETDEWEB)

    Gruenbacher, Don [Kansas State Univ., Manhattan, KS (United States)

    2015-12-31

    This project addresses both fundamental and applied research problems that will help with problems defined by the DOE “20% Wind by 2030 Report”. In particular, this work focuses on increasing the capacity of small or community wind generation capabilities that would be operated in a distributed generation approach. A consortium (KWEC – Kansas Wind Energy Consortium) of researchers from Kansas State University and Wichita State University aims to dramatically increase the penetration of wind energy via distributed wind power generation. We believe distributed generation through wind power will play a critical role in the ability to reach and extend the renewable energy production targets set by the Department of Energy. KWEC aims to find technical and economic solutions to enable widespread implementation of distributed renewable energy resources that would apply to wind.

  13. DISCLOSURE OF WIND SHIFT ON SMALL HEIGHT AND ATMOSPHERIC TURBULENCE ON TAKE-OFF - LANDING STRIPE WITH USE REGISTER ARRANGEMENTS ON MICROWAVE AND OPTICS BEAMS

    Directory of Open Access Journals (Sweden)

    S. A. Dubyanskiy

    2014-01-01

    Full Text Available The method of detecting of wind shear at low height and atmospheric turbulence on take-off and landing runways with the use of parametric register arrangements on microwave and optics beams are considered. The results of the research of register arrangements response when these beams are being used.

  14. Wind effect in turbulence parametrization

    Science.gov (United States)

    Colombini, M.; Stocchino, A.

    2005-09-01

    The action of wind blowing over a closed basin ultimately results in a steady shear-induced circulation pattern and in a leeward rising of the free surface—and a corresponding windward lowering—known as wind set-up. If the horizontal dimensions of the basin are large with respect to the average flow depth, the occurrence of local quasi-equilibrium conditions can be expected, i.e. the flow can be assumed to be locally driven only by the wind stress and by the opposing free surface gradient due to set-up. This wind-induced flow configuration shows a strong similarity with turbulent Couette-Poiseuille flow, the one dimensional flow between parallel plates generated by the simultaneous action of a constant pressure gradient and of the shear induced by the relative motion of the plates. A two-equation turbulence closure is then employed to perform a numerical study of turbulent Couette-Poiseuille flows for different values of the ratio of the shear stresses at the two walls. The resulting eddy viscosity vertical distributions are analyzed in order to devise analytical profiles of eddy viscosity that account for the effect of wind. The results of this study, beside allowing for a physical insight on the turbulence process of this class of flows, will allow for a more accurate description of the wind effect to be included in the formulation of quasi-3D and 3D models of lagoon hydrodynamics.

  15. Analysis of technological innovation in Danish wind turbine industry - including the Test Station for Windturbines dual roll as research institution and certification authority

    International Nuclear Information System (INIS)

    Dannemand Andersen, P.

    1993-01-01

    The overall aim of this thesis is to examine the interactions between the Danish wind turbine industry and the Test Station for Wind Turbines. Because these interactions are concerning technological innovation, it follows that the innovation processes within the enterprises must be analyzed and modelled. The study is carried out as an iterative model-developing process using case study methods. The findings from some less structured interviews are discussed with literature and forms a basis for models and new interviews. The thesis is based on interviews with 20 R and D engineers in the Danish wind turbine industry, 7 engineers at The Test Station and 7 people involved in wind power abroad (American and British). The theoretical frame for this thesis is sociology/organizational theory and industrial engineering. The thesis consists of five main sections, dealing with technology and knowledge, innovation processes, organizational culture, innovation and interaction between the Test Station's research activities and the companies' innovation processes, and finally interaction through the Test Stations certification activity. First a taxonomy for technology and knowledge is established in order to clarify what kind of technology the interactions are all about, and what kind of knowledge is transferred during the interactions. This part of the thesis also contains an analysis of the patents drawn by the Danish wind turbine industry. The analysis shows that the Danish wind turbine industry do not use patents. Instead the nature of the technology and the speed of innovation are used to protect the industry's knowledge. (EG) (192 refs.)

  16. Mapping Wind Energy Controversies

    DEFF Research Database (Denmark)

    Munk, Anders Kristian

    As part the Wind2050 project funded by the Danish Council for Strategic Research we have mapped controversies on wind energy as they unfold online. Specifically we have collected two purpose built datasets, a web corpus containing information from 758 wind energy websites in 6 different countries......, and a smaller social media corpus containing information from 14 Danish wind energy pages on Facebook. These datasets have been analyzed to answer questions like: How do wind proponents and opponents organize online? Who are the central actors? And what are their matters of concern? The purpose of this report...

  17. Two improvements to the dynamic wake meandering model: including the effects of atmospheric shear on wake turbulence and incorporating turbulence build-up in a row of wind turbines

    DEFF Research Database (Denmark)

    Keck, Rolf-Erik; de Mare, Martin Tobias; Churchfield, Matthew J.

    2015-01-01

    The dynamic wake meandering (DWM) model is an engineering wake model designed to physically model the wake deficit evolution and the unsteady meandering that occurs in wind turbine wakes. The present study aims at improving two features of the model: The effect of the atmospheric boundary layer s...

  18. Development research for wind power weather insurance index through analysis of weather elements and new renewable energy

    Science.gov (United States)

    Park, Ki-Jun; jung, jihoon

    2014-05-01

    Recently, social interests and concerns regarding weather risk are gradually growing with increase in frequency of unusual phenomena. Actually, the threat to many vulnerable industries (sensitive to climate conditions) such as agriculture, architecture, logistics, transportation, clothing, home appliance, and food is increasing. According to climate change scenario reports published by National Institute of Meteorological Research (NIMR) in 2012, temperature and precipitation are expected to increase by 4.8% and 13.2% respectively with current status of CO2 emissions (RCP 8.5) at the end of the 21st century. Furthermore, most of areas in Korea except some mountainous areas are also expected to shift from temperate climate to subtropical climate. In the context of climate change, the intensity of severe weathers such as heavy rainfalls and droughts is enhanced, which, in turn, increases the necessity and importance of weather insurance. However, most insurance market is small and limited to policy insurance like crop disaster insurance, and natural disaster insurance in Korea. The reason for poor and small weather insurance market could result from the lack of recognition of weather risk management even though all economic components (firms, governments, and households) are significantly influenced by weather. However, fortunately, new renewable energy and leisure industry which are vulnerable to weather risk are in a long term uptrend and the interest of weather risk is also getting larger and larger in Korea. So, in the long run, growth potential of weather insurance market in Korea might be higher than ever. Therefore, in this study, the capacity of power generation per hour and hourly wind speed are analyzed to develop and test weather insurance index for wind power, and then the effectiveness of weather insurance index are investigated and the guidance will be derived to objectively calculate the weather insurance index.

  19. On the asymmetric distribution of shear-relative typhoon rainfall

    Science.gov (United States)

    Gao, Si; Zhai, Shunan; Li, Tim; Chen, Zhifan

    2018-02-01

    The Tropical Rainfall Measuring Mission (TRMM) 3B42 precipitation, the National Centers for Environmental Prediction (NCEP) Final analysis and the Regional Specialized Meteorological Center (RSMC) Tokyo best-track data during 2000-2015 are used to compare spatial rainfall distribution associated with Northwest Pacific tropical cyclones (TCs) with different vertical wind shear directions and investigate possible mechanisms. Results show that the maximum TC rainfall are all located in the downshear left quadrant regardless of shear direction, and TCs with easterly shear have greater magnitudes of rainfall than those with westerly shear, consistent with previous studies. Rainfall amount of a TC is related to its relative position and proximity from the western Pacific subtropical high (WPSH) and the intensity of water vapor transport, and low-level jet is favorable for water vapor transport. The maximum of vertically integrated moisture flux convergence (MFC) are located on the downshear side regardless of shear direction, and the contribution of wind convergence to the total MFC is far larger than that of moisture advection. The cyclonic displacement of the maximum rainfall relative to the maximum MFC is possibly due to advection of hydrometeors by low- and middle-level cyclonic circulation of TCs. The relationship between TC rainfall and the WPSH through water vapor transport and vertical wind shear implies that TC rainfall may be highly predictable given the high predictability of the WPSH.

  20. Research on the Cascading Tripping Risk of Wind Turbine Generators Caused by Transient Overvoltage and Its Countermeasures

    Science.gov (United States)

    Yu, Haiyang; Zhang, Meilun; Zu, Guangxin

    2017-12-01

    At present, China’s electricity utility develops rapidly, however, the wind power consumption ability has been unable to meet the actual demand of consumption. Therefore, it is necessary to send wind power across the region. The commutation failure in the operation will lead to the cascading tripping of wind turbines. In order to solve the above problems, this paper will analyze the causes of such problems, analyze the basic principles of wind power cascading trips and analyze the specific solutions, hoping to give some reference for relevant people.

  1. Offshore wind farm repowering optimization

    DEFF Research Database (Denmark)

    Hou, Peng; Enevoldsen, Peter; Hu, Weihao

    2017-01-01

    is focused on optimization of offshore wind farm repowering, which is one option for the wind farm owner at end of life for the offshore wind farm. The LCoE is used as the evaluation index to identify whether it is economical to invest in such a way. In an optimized repowering strategy, different types...... of wind turbines are selected to replace the original wind turbines to reconstruct the wind farm, which is demonstrated to be better than the refurbishment approach which replaces the old wind turbines with the same type. The simulations performed in this research reveal that the reconstructed wind farm......, which consists of multiple types of wind turbine, has a smaller LCoE (10.43%) than the refurbishment approach, which shows the superiority of the proposed method. This research contributes an optimization tool to the wind industry, which consequently drives down the cost of energy produced by offshore...

  2. Wind power today: 1999 Wind Energy program highlights

    Energy Technology Data Exchange (ETDEWEB)

    Weis-Taylor, Pat

    2000-04-06

    Wind Power Today is an annual publication that provides an overview for the Department of Energy's Wind Energy Program. The purpose of Wind Power Today is to show how DOE's Wind Energy Program supports wind turbine research and deployment in hopes of furthering the advancement of wind technologies that produce clean, low-cost, reliable energy for the 21st century. Content objectives include: Educate readers about the advantages and potential for widespread deployment of wind energy; explain DOE wind energy program objectives and goals; describe program accomplishments in research and application; examine the barriers to widespread deployment; describe benefits of continued research and development; facilitate technology transfer; attract cooperative wind energy projects with industry.

  3. Wind turbine control and monitoring

    CERN Document Server

    Luo, Ningsu; Acho, Leonardo

    2014-01-01

    Maximizing reader insights into the latest technical developments and trends involving wind turbine control and monitoring, fault diagnosis, and wind power systems, 'Wind Turbine Control and Monitoring' presents an accessible and straightforward introduction to wind turbines, but also includes an in-depth analysis incorporating illustrations, tables and examples on how to use wind turbine modeling and simulation software.   Featuring analysis from leading experts and researchers in the field, the book provides new understanding, methodologies and algorithms of control and monitoring, comput

  4. Wind energy renewable energy and the environment

    CERN Document Server

    Nelson, Vaughn; Nelson, Vaughn

    2009-01-01

    Due to the mounting demand for energy and increasing population of the world, switching from nonrenewable fossil fuels to other energy sources is not an option-it is a necessity. Focusing on a cost-effective option for the generation of electricity, Wind Energy: Renewable Energy and the Environment covers all facets of wind energy and wind turbines. The book begins by outlining the history of wind energy, before providing reasons to shift from fossil fuels to renewable energy. After examining the characteristics of wind, such as shear, power potential, and turbulence, it discusses the measur

  5. Development of an Integrated Water and Wind Erosion Model

    Science.gov (United States)

    Flanagan, D. C.; Ascough, J. C.; Wagner, L. E.; Geter, W. F.

    2006-12-01

    Prediction technologies for soil erosion by the forces of wind or water have largely been developed independently from one another, especially within the United States. Much of this has been due to the initial creation of equations and models which were empirical in nature (i.e., Universal Soil Loss Equation, Wind Erosion Equation) and based upon separate water erosion or wind erosion plot and field measurements. Additionally, institutional organizations in place typically divided research efforts and funding to unique wind or water erosion research and modeling projects. However, during the past 20 years computer technologies and erosion modeling have progressed to the point where it is now possible to merge physical process-based computer simulation models into an integrated water and wind erosion prediction system. In a physically- based model, many of the processes which must be simulated for wind and water erosion computations are the same, e.g., climate, water balance, runoff, plant growth, etc. Model components which specifically deal with the wind or water detachment, transport and deposition processes are those that must differ, as well as any necessary parameterization of input variables (e.g., adjusted soil erodibilities, critical shear stresses, etc.) for those components. This presentation describes current efforts towards development of a combined wind and water erosion model, based in part upon technologies present in the Water Erosion Prediction Project (WEPP) and the Wind Erosion Prediction System (WEPS) models. Initial efforts during the past two years have resulted in modular modeling components that allow for prediction of infiltration, surface runoff, and water erosion at a hillslope scale within an Object Modeling System. Additional components currently in development include wind detachment at a single field point, continuous water balance, and unified plant growth. Challenges in this project are many, and include adequate field

  6. Equivalent models of wind farms by using aggregated wind turbines and equivalent winds

    International Nuclear Information System (INIS)

    Fernandez, L.M.; Garcia, C.A.; Saenz, J.R.; Jurado, F.

    2009-01-01

    As a result of the increasing wind farms penetration on power systems, the wind farms begin to influence power system, and therefore the modeling of wind farms has become an interesting research topic. In this paper, new equivalent models of wind farms equipped with wind turbines based on squirrel-cage induction generators and doubly-fed induction generators are proposed to represent the collective behavior on large power systems simulations, instead of using a complete model of wind farms where all the wind turbines are modeled. The models proposed here are based on aggregating wind turbines into an equivalent wind turbine which receives an equivalent wind of the ones incident on the aggregated wind turbines. The equivalent wind turbine presents re-scaled power capacity and the same complete model as the individual wind turbines, which supposes the main feature of the present equivalent models. Two equivalent winds are evaluated in this work: (1) the average wind from the ones incident on the aggregated wind turbines with similar winds, and (2) an equivalent incoming wind derived from the power curve and the wind incident on each wind turbine. The effectiveness of the equivalent models to represent the collective response of the wind farm at the point of common coupling to grid is demonstrated by comparison with the wind farm response obtained from the detailed model during power system dynamic simulations, such as wind fluctuations and a grid disturbance. The present models can be used for grid integration studies of large power system with an important reduction of the model order and the computation time

  7. Role of Surface Energy Exchange for Simulating Wind Turbine Inflow: A Case Study in the Southern Great Plains, USA

    Directory of Open Access Journals (Sweden)

    Sonia Wharton

    2014-12-01

    Full Text Available The Weather Research and Forecasting (WRF model is used to investigate choice of land surface model (LSM on the near surface wind profile, including heights reached by multi-megawatt (MW wind turbines. Simulations of wind profiles and surface energy fluxes were made using five LSMs of varying degrees of sophistication in dealing with soil–plant–atmosphere feedbacks for the Department of Energy (DOE Southern Great Plains (SGP Atmospheric Radiation Measurement Program (ARM Central Facility in Oklahoma, USA. Surface flux and wind profile measurements were available for validation. WRF was run for three, two-week periods covering varying canopy and meteorological conditions. The LSMs predicted a wide range of energy flux and wind shear magnitudes even during the cool autumn period when we expected less variability. Simulations of energy fluxes varied in accuracy by model sophistication, whereby LSMs with very simple or no soil–plant–atmosphere feedbacks were the least accurate; however, the most complex models did not consistently produce more accurate results. Errors in wind shear were also sensitive to LSM choice and were partially related to energy flux accuracy. The variability of LSM performance was relatively high suggesting that LSM representation of energy fluxes in WRF remains a large source of model uncertainty for simulating wind turbine inflow conditions.

  8. Wind Energy Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Laurie, Carol

    2017-02-01

    This book takes readers inside the places where daily discoveries shape the next generation of wind power systems. Energy Department laboratory facilities span the United States and offer wind research capabilities to meet industry needs. The facilities described in this book make it possible for industry players to increase reliability, improve efficiency, and reduce the cost of wind energy -- one discovery at a time. Whether you require blade testing or resource characterization, grid integration or high-performance computing, Department of Energy laboratory facilities offer a variety of capabilities to meet your wind research needs.

  9. Black start research of the wind and storage system based on the dual master-slave control

    Science.gov (United States)

    Leng, Xue; Shen, Li; Hu, Tian; Liu, Li

    2018-02-01

    Black start is the key to solving the problem of large-scale power failure, while the introduction of new renewable clean energy as a black start power supply was a new hotspot. Based on the dual master-slave control strategy, the wind and storage system was taken as the black start reliable power, energy storage and wind combined to ensure the stability of the micorgrid systems, to realize the black start. In order to obtain the capacity ratio of the storage in the small system based on the dual master-slave control strategy, and the black start constraint condition of the wind and storage combined system, obtain the key points of black start of wind storage combined system, but also provide reference and guidance for the subsequent large-scale wind and storage combined system in black start projects.

  10. Mapping a Wind-Modified Urban Heat Island in Tucson, Arizona (with Comments on Integrating Research and Undergraduate Learning).

    Science.gov (United States)

    Comrie, Andrew C.

    2000-10-01

    Tucson, Arizona, is an example of the many cities in the southwestern United States experiencing rapid growth and urban sprawl over the last several decades. The accompanying extensive modification of land use and land cover leads to many environmental impacts, including urban heat islands. The primary aim of this paper is to expand knowledge of the phenomenon for Tucson, by quantifying the amount of urban warming, and by mapping temperature patterns over the city and examining related aspects of the local-scale atmospheric circulation. The secondary aim is to document how an applied empirical research project was integrated into an introductory undergraduate climatology class via active learning. The paper begins and concludes with general and practical comments on combining the research and educational aspects of the project. An analysis of 30-yr temporal trends in urban and nonurban minimum temperatures across the region shows the rate of urban warming to be about three-quarters of the general regional warming. Tucson's urban heat island is ~3°C over the last century, with >2°C of this warming in the last 30 years. The annual average urban warming trend over the last three decades is 0.071°C yr-1 with the strongest effect in March and the weakest effect in November. There is evidence that the latter is caused by strong, near-surface winds under stable conditions. A case study is presented comprising field measurements and map analysis of urban temperatures and supporting variables for 13 February 1999. Measurements include comprehensive mapping using vehicle-mounted thermistors and numerous local meteorological observations from around the city. Wind speeds during the field measurements were somewhat stronger than is typical of heat island studies, up to 12 m s-1. Nonetheless, because of terrain-induced flows and land surface heterogeneity, complex temperature patterns were observed. Several transient katabatic flows off surrounding mountain ranges were

  11. Wind Energy

    International Nuclear Information System (INIS)

    Rodriguez D, J.M.

    1998-01-01

    The general theory of the wind energy conversion systems is presented. The availability of the wind resource in Colombia and the ranges of the speed of the wind in those which is possible economically to use the wind turbines are described. It is continued with a description of the principal technological characteristics of the wind turbines and are split into wind power and wind-powered pumps; and its use in large quantities grouped in wind farms or in autonomous systems. Finally, its costs and its environmental impact are presented

  12. Wind energy in Europe

    International Nuclear Information System (INIS)

    Evans, L.C.

    1992-01-01

    Wind energy should be an important part of the energy supply mix, both at home and abroad, to provide cleaner air and a more stable fuel supply. Not only can wind energy contribute to solving complex global issues, it also can provide a large market for American technological leadership. Even though utilities are paying more attention to wind in a number of states, there are no plans for major installations of wind power plants in the United States. At the same time, European nations have developed aggressive wind energy development programs, including both ambitious research and development efforts and market incentives. Many countries recognize the importance of the clean energy provided by wind technology and are taking steps to promote their fledgling domestic industries. The emphasis on market incentives is starting to pay off. In 1991, European utilities and developers installed nearly twice as much wind capacity as Americans did. In 1992 the gap will be even greater. This article reviews aggressive incentives offered by European governments to boost their domestic wind industries at home and abroad in this almost $1 billion per year market. By offering substantial incentives - considerably more than the American Wind Energy Association (AWEA) is proposing - European nations are ensuring dramatic near-term wind energy development and are taking a major step toward dominating the international wind industry of the 21st century

  13. Wind Characteristics of Three Meteorological Stations in China

    Directory of Open Access Journals (Sweden)

    Yang Yang

    2015-01-01

    Full Text Available With rapid economic development of China, demand for energy is growing rapidly. Many experts have begun to pay attention on exploiting wind energy. Wind characteristics of three meteorological stations in China were analyzed to find out if or not it is possible to build a wind farm in this paper. First of all, studies about the wind characteristics and potential wind energy were summarized. Then ways of collecting and manipulating wind data were introduced. Wind-generation potential was assessed by the method of Weibull distribution. Wind shear exponent, extreme wind speed in 50 years, and turbulence intensity were calculated. The wind characteristics were summarized and assessment of wind-generation potential was given. At last, the wind was simulated with autoregressive method by Matlab software.

  14. Sixth international wind-diesel workshop

    International Nuclear Information System (INIS)

    1992-01-01

    At a workshop on hybrid wind/diesel power generation systems, papers were presented on international research programs, demonstration projects, wind/diesel deployment strategies and requirements, wind/diesel market development and economics, wind turbine design requirements, and wind/diesel models and analytical tools. Separate abstracts have been prepared for 11 papers from this workshop

  15. Sixth international wind-diesel workshop

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    At a workshop on hybrid wind/diesel power generation systems, papers were presented on international research programs, demonstration projects, wind/diesel deployment strategies and requirements, wind/diesel market development and economics, wind turbine design requirements, and wind/diesel models and analytical tools. Separate abstracts have been prepared for 11 papers from this workshop.

  16. Spatially-resolved microstructure in shear banding wormlike micellar solutions

    International Nuclear Information System (INIS)

    Helgeson, Matthew E.; Reichert, Matthew D.; Wagner, Norman J.; Kaler, Eric W.

    2008-01-01

    Recently proposed theories for shear banding in wormlike micellar solutions (WLMs) rely on a shear-induced isotropic-nematic (I-N) phase separation as the mechanism for banding. Critical tests of such theories require spatially-resolved measurements of flow-kinematics and local mesoscale microstructure within the shear bands. We have recently developed such capabilities using a short gap Couette cell for flow-small angle neutron scattering (flow-SANS) measurements in the 1-2 plane of shear with collaborators at the NIST Center for Neutron Research. This work combines flow-SANS measurements with rheology, rheo-optics and velocimetry measurements to present the first complete spatially-resolved study of WLMs through the shear banding transition for a model shear banding WLM solution near the I-N phase boundary. The shear rheology is well-modeled by the Giesekus constitutive equation, with incorporated stress diffusion to predict shear banding. By fitting the stress diffusivity at the onset of banding, the model enables prediction of velocity profiles in the shear banded state which are in quantitative agreement with measured flow-kinematics. Quantitative analysis of the flow-SANS measurements shows a critical segmental alignment for banding and validates the Giesekus model predictions, linking segmental orientation to shear banding and providing the first rigorous evidence for the shear-induced I-N transition mechanism for shear banding

  17. Research and Application Based on Adaptive Boosting Strategy and Modified CGFPA Algorithm: A Case Study for Wind Speed Forecasting

    Directory of Open Access Journals (Sweden)

    Jiani Heng

    2016-03-01

    Full Text Available Wind energy is increasingly considered one of the most promising sustainable energy sources for its characteristics of cleanliness without any pollution. Wind speed forecasting is a vital problem in wind power industry. However, individual forecasting models ignore the significance of data preprocessing and model parameter optimization, which may lead to poor forecasting performance. In this paper, a novel hybrid [k, Bt] -ABBP (back propagation based on adaptive strategy with parameters k and Bt model was developed based on an adaptive boosting (AB strategy that integrates several BP (back propagation neural networks for wind speed forecasting. The fast ensemble empirical mode decomposition technique is initially conducted in the preprocessing stage to reconstruct data, while a novel modified FPA (flower pollination algorithm incorporating a conjugate gradient (CG is proposed for searching for the optimal parameters of the [k, Bt] -ABBP mode. The case studies of five wind power stations in Penglai, China are used as illustrative examples for evaluating the effectiveness and efficiency of the developed hybrid forecast strategy. Numerical results show that the developed hybrid model is simple and can satisfactorily approximate the actual wind speed series. Therefore, the developed hybrid model can be an effective tool in mining and analysis for wind power plants.

  18. IMAGE ANALYSIS FOR MODELLING SHEAR BEHAVIOUR

    Directory of Open Access Journals (Sweden)

    Philippe Lopez

    2011-05-01

    Full Text Available Through laboratory research performed over the past ten years, many of the critical links between fracture characteristics and hydromechanical and mechanical behaviour have been made for individual fractures. One of the remaining challenges at the laboratory scale is to directly link fracture morphology of shear behaviour with changes in stress and shear direction. A series of laboratory experiments were performed on cement mortar replicas of a granite sample with a natural fracture perpendicular to the axis of the core. Results show that there is a strong relationship between the fracture's geometry and its mechanical behaviour under shear stress and the resulting damage. Image analysis, geostatistical, stereological and directional data techniques are applied in combination to experimental data. The results highlight the role of geometric characteristics of the fracture surfaces (surface roughness, size, shape, locations and orientations of asperities to be damaged in shear behaviour. A notable improvement in shear understanding is that shear behaviour is controlled by the apparent dip in the shear direction of elementary facets forming the fracture.

  19. The Research of Doubly-fed Wind Turbine Gear Box of the Status of the Comprehensive Evaluation Method

    Science.gov (United States)

    Jiang, Xiuchen; Sheng, Gehao; Wang, Zhijie; Liu, Sanming; Sun, Congcong

    2017-05-01

    Multiple indexes and multiple level comprehensive evaluations for wind power gear box focus more attention in recent days. Through the analysis of the state of wind turbine gearbox, fault hazard degree and other factors that is related with the internal temperature in gear box, environment temperature and the characteristics of wind speed, state evaluation index system of health indicators that is based on the current state of the age and the fault hazard health degree is established in this paper. Combined with the hazard matrix, current hazard degree is obtained. The effectiveness of adding health indicators is proved by examples.

  20. Numerical investigation into strong axis bending shear interaction in rolled I-shaped steel sections

    NARCIS (Netherlands)

    Dekker, R.W.A.; Snijder, B.H.; Maljaars, J.

    2016-01-01

    Clause 6.2.8 of EN 1993-1-1 covers the design rules on bending-shear resistance, taking presence of shear into account by a reduced yield stress for the shear area. Numerical research on bending-shear interaction by means of the Abaqus Finite Element modelling soft-ware is presented. The numerical

  1. Assessment of Wind Parameter Sensitivity on Ultimate and Fatigue Wind Turbine Loads: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, Amy N [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sethuraman, Latha [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Jonkman, Jason [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Quick, Julian [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-02-13

    Wind turbines are designed using a set of simulations to ascertain the structural loads that the turbine could encounter. While mean hub-height wind speed is considered to vary, other wind parameters such as turbulence spectra, sheer, veer, spatial coherence, and component correlation are fixed or conditional values that, in reality, could have different characteristics at different sites and have a significant effect on the resulting loads. This paper therefore seeks to assess the sensitivity of different wind parameters on the resulting ultimate and fatigue loads on the turbine during normal operational conditions. Eighteen different wind parameters are screened using an Elementary Effects approach with radial points. As expected, the results show a high sensitivity of the loads to the turbulence standard deviation in the primary wind direction, but the sensitivity to wind shear is often much greater. To a lesser extent, other wind parameters that drive loads include the coherence in the primary wind direction and veer.

  2. A New Approach for Offshore Wind Farm Energy Yields Calculation with Mixed Hub Height Wind Turbines

    DEFF Research Database (Denmark)

    Hou, Peng; Hu, Weihao; Soltani, Mohsen

    2016-01-01

    In this paper, a mathematical model for calculating the energy yields of offshore wind farm with mixed types of wind turbines is proposed. The Jensen model is selected as the base and developed to a three dimension wake model to estimate the energy yields. Since the wind turbines are with differe...... hub heights, the wind shear effect is also taken into consideration. The results show that the proposed wake model is effective in calculating the wind speed deficit. The calculation framework is applicable for energy yields calculation in offshore wind farms.......In this paper, a mathematical model for calculating the energy yields of offshore wind farm with mixed types of wind turbines is proposed. The Jensen model is selected as the base and developed to a three dimension wake model to estimate the energy yields. Since the wind turbines are with different...

  3. Assessment of Wind Parameter Sensitivity on Extreme and Fatigue Wind Turbine Loads

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, Amy N [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sethuraman, Latha [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Jonkman, Jason [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Quick, Julian [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-01-12

    Wind turbines are designed using a set of simulations to ascertain the structural loads that the turbine could encounter. While mean hub-height wind speed is considered to vary, other wind parameters such as turbulence spectra, sheer, veer, spatial coherence, and component correlation are fixed or conditional values that, in reality, could have different characteristics at different sites and have a significant effect on the resulting loads. This paper therefore seeks to assess the sensitivity of different wind parameters on the resulting ultimate and fatigue loads on the turbine during normal operational conditions. Eighteen different wind parameters are screened using an Elementary Effects approach with radial points. As expected, the results show a high sensitivity of the loads to the turbulence standard deviation in the primary wind direction, but the sensitivity to wind shear is often much greater. To a lesser extent, other wind parameters that drive loads include the coherence in the primary wind direction and veer.

  4. Wind Power Today: 2000 Wind Energy Program Highlights

    Energy Technology Data Exchange (ETDEWEB)

    Weis-Taylor, W.

    2001-05-08

    Wind Power Today is an annual publication that provides an overview of the U.S. Department of Energy's Wind Energy Program. The purpose of Wind Power Today is to show how DOE's Wind Energy Program supports wind turbine research and deployment in hopes of furthering the advancement of wind technologies that produce clean, low-cost, reliable energy. Content objectives include: educate readers about the advantages and potential for widespread deployment of wind energy; explain the program's objectives and goals; describe the program's accomplishments in research and application; examine the barriers to widespread deployment; describe the benefits of continued research and development; facilitate technology transfer; and attract cooperative wind energy projects with industry.

  5. Operation and control of large wind turbines and wind farms

    Energy Technology Data Exchange (ETDEWEB)

    Soerensen, Poul; Hansen, Anca D.; Thomsen, Kenneth (and others)

    2005-09-01

    This report is the final report of a Danish research project 'Operation and control of large wind turbines and wind farms'. The objective of the project has been to analyse and assess operational strategies and possibilities for control of different types of wind turbines and different wind farm concepts. The potentials of optimising the lifetime/energy production ratio by means of using revised operational strategies for the individual wind turbines are investigated. Different strategies have been simulated, where the power production is decreased to an optimum when taking loads and actual price of produced electricity into account. Dynamic models and control strategies for the wind farms have also been developed, with the aim to optimise the operation of the wind farms considering participation in power system control of power (frequency) and reactive power (voltage), maximise power production, keep good power quality and limit mechanical loads and life time consumption. The project developed models for 3 different concepts for wind farms. Two of the concepts use active stall controlled wind turbines, one with AC connection and one with modern HVDC/VSC connection of the wind farm. The third concept is based on pitch controlled wind turbines using doubly fed induction generators. The models were applied to simulate the behaviour of the wind farm control when they were connected to a strong grid, and some initial simulations were performed to study the behaviour of the wind farms when it was isolated from the main grid on a local grid. Also the possibility to use the available information from the wind turbine controllers to predict the wind speed has been investigated. The main idea has been to predict the wind speed at a wind turbine using up-wind measurements of the wind speed in another wind turbine. (au)

  6. The Role of Surface Energy Exchange for Simulating Wind Inflow: An Evaluation of Multiple Land Surface Models in WRF for the Southern Great Plains Site Field Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Wharton, Sonia [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Simpson, Matthew [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Osuna, Jessica [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Newman, Jennifer [National Renewable Energy Lab. (NREL), Golden, CO (United States); Biraud, Sebastien [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-05-01

    The Weather Research and Forecasting (WRF) model is used to investigate choice of land surface model (LSM) on the near-surface wind profile, including heights reached by multi-megawatt wind turbines. Simulations of wind profiles and surface energy fluxes were made using five LSMs of varying degrees of sophistication in dealing with soil-plant-atmosphere feedbacks for the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility’s Southern Great Plains (SGP) Central Facility in Oklahoma. Surface-flux and wind-profile measurements were available for validation. The WRF model was run for three two-week periods during which varying canopy and meteorological conditions existed. The LSMs predicted a wide range of energy-flux and wind-shear magnitudes even during the cool autumn period when we expected less variability. Simulations of energy fluxes varied in accuracy by model sophistication, whereby LSMs with very simple or no soil-plant-atmosphere feedbacks were the least accurate; however, the most complex models did not consistently produce more accurate results. Errors in wind shear also were sensitive to LSM choice and were partially related to the accuracy of energy flux data. The variability of LSM performance was relatively high, suggesting that LSM representation of energy fluxes in the WRF model remains a significant source of uncertainty for simulating wind turbine inflow conditions.

  7. Edge-Induced Shear Banding in Entangled Polymeric Fluids

    Science.gov (United States)

    Hemingway, Ewan J.; Fielding, Suzanne M.

    2018-03-01

    Despite decades of research, the question of whether solutions and melts of highly entangled polymers exhibit shear banding as their steady state response to a steadily imposed shear flow remains controversial. From a theoretical viewpoint, an important unanswered question is whether the underlying constitutive curve of shear stress σ as a function of shear rate γ ˙ (for states of homogeneous shear) is monotonic, or has a region of negative slope, d σ /d γ ˙ edge fracture." Here we show by numerical simulation that in fact even only very modest edge disturbances—which are the precursor of full edge fracture but might well, in themselves, go unnoticed experimentally—can cause strong secondary flows in the form of shear bands that invade deep into the fluid bulk. Crucially, this is true even when the underlying constitutive curve is monotonically increasing, precluding true bulk shear banding in the absence of edge effects.

  8. SERI Wind Energy Program

    Energy Technology Data Exchange (ETDEWEB)

    Noun, R. J.

    1983-06-01

    The SERI Wind Energy Program manages the areas or innovative research, wind systems analysis, and environmental compatibility for the U.S. Department of Energy. Since 1978, SERI wind program staff have conducted in-house aerodynamic and engineering analyses of novel concepts for wind energy conversion and have managed over 20 subcontracts to determine technical feasibility; the most promising of these concepts is the passive blade cyclic pitch control project. In the area of systems analysis, the SERI program has analyzed the impact of intermittent generation on the reliability of electric utility systems using standard utility planning models. SERI has also conducted methodology assessments. Environmental issues related to television interference and acoustic noise from large wind turbines have been addressed. SERI has identified the causes, effects, and potential control of acoustic noise emissions from large wind turbines.

  9. Aerodynamics of Wind Turbines

    DEFF Research Database (Denmark)

    Hansen, Martin Otto Laver

    Aerodynamics of Wind Turbines is the established essential text for the fundamental solutions to efficient wind turbine design. Now in its second edition, it has been entirely updated and substantially extended to reflect advances in technology, research into rotor aerodynamics and the structural...

  10. Wind Power Today: 1998 Wind Energy Program Highlights

    Energy Technology Data Exchange (ETDEWEB)

    Tromly, K.

    1999-06-17

    The US Department of Energy's Office of Energy Efficiency and Renewable Energy manages the Federal Wind Energy Program. The mission of the program is to help the US wind industry to complete the research, testing, and field verification needed to fully develop advanced wind technologies that will lead the world in cost-effectiveness and reliability. This publication, printed annually, provides a summary of significant achievements in wind energy made during the previous calendar year. Articles include wind energy in the Midwest, an Alaskan wind energy project, the US certification program, structural testing, and the federal program in review.

  11. in the wind clothes dance on a line. Performative inquiry: A (re)search methodology. Possibilities and absences within a space-moment of imagining a universe

    Science.gov (United States)

    Fels, Lynn Margaret

    in the wind clothes dance on a line is the conceptualization and articulation of performative inquiry as a research methodology within the field of education. Performative inquiry invites innovative and non-linear investigations, playing upon the multiple realities and interpretations of co-evolving worlds realized and recognized through creative action and interaction between researcher/teacher and participants/students within individual and shared, existing and imagined environments through motivating (im)pulse(s) of inquiry. Performative inquiry is elusively and momentarily balanced on the "edge of chaos" within the interstices of enactivism, complexity, interpretation, and performance. In articulating an ecological-cognitive reading of performance, I am in company with curricular theorists who envision curriculum as a journey and expression of students' and teachers' shared investigations within co-evolving landscapes of action and interaction. in the wind clothes dance on a line is a playful response to current conversations among researchers seeking recognition and articulation of arts-based processes as legitimate site(s) and praxis of research. Performative inquiry offers researchers---in drama education, in particular, and in education, in general---a theoretical and practical venue to investigate their fields of inquiry through an integrated vehicle of body, mind and imagination. This dissertation is informed by a three year science education research project (1995--1997) conducted with science educator, Karen Meyer. Our research investigated the teaching and learning of science education through drama and storytelling, culminating in a performance piece, Light Sound Movin' Around: What Are Monsters Made Of? Follow-up interviews with pre-service teachers speak eloquently to the possibility and power of performative inquiry as a research tool and learning vehicle in science education. in the wind clothes dance on a line has been imagined "in the air

  12. Financing wind projects

    International Nuclear Information System (INIS)

    Manson, J.

    2006-01-01

    This presentation reviewed some of the partnership opportunities available from GE Energy. GE Energy's ecomagination commitment has promised to double research investment, make customers true partners and reduce greenhouse gases (GHGs). GE Energy's renewable energy team provides a broad range of financial products, and has recently funded 30 wind farms and 2 large solar projects. The company has a diverse portfolio of technology providers and wind regimes, and is increasing their investment in technology. GE Energy recognizes that the wind industry is growing rapidly and has received increased regulatory support that is backed by strong policy and public support. It is expected that Canada will have 3006 wind projects either planned or under construction by 2007. According to GE Energy, successful wind financing is dependent on the location of the site and its wind resources, as well as on the wind developer's power sales agreement. The success of a wind project is also determined by clear financing goals. Site-specific data is needed to determine the quality of wind resource, and off-site data can also be used to provide validation. Proximity to load centres will help to minimize capital costs. Power sales agreements should be based on the project's realistic net capacity factor as well as on the cost of the turbines. The economics of many wind farms is driven by the size of the turbines used. Public consultations are also needed to ensure the success of wind power projects. It was concluded that a good partner will have staying power in the wind power industry, and will understand the time-lines and needs that are peculiar to wind energy developers. refs., tabs., figs

  13. Impact of tower modeling on wind turbine wakes

    Science.gov (United States)

    Kleusberg, Elektra; Schlatter, Philipp; Henningson, Dan

    2017-11-01

    Recent research suggests the importance of modeling the support structure (tower and nacelle) when investigating the wake development behind wind turbines. These investigations are however mostly limited to low ambient turbulence levels which seldomly occur in field conditions. We present numerical simulations of wind turbine wakes using the actuator line method under different inflow conditions including varying turbulence levels and sheared inflow. The wind turbine, which employs the NREL S826 airfoil, is modeled after experiments conducted at the Norwegian University of Science and Technology. The rotor is investigated when perpendicular to the inflow and at a yaw angle of 30 degrees. The support structure is modeled using lift and drag body forces based on tabulated data. The simulations are performed with the spectral-element code Nek5000. After discussing the setup of the numerical domain and the turbulent inflow boundary condition, the influence of the tower model is characterized under turbulent, sheared and uniform inflow and the impact on downstream turbines is evaluated.

  14. Vertically and Horizontally Mounted Wind Mills : Wind Energy Production in Tampere University of Applied Sciences

    OpenAIRE

    Evdokimova, Ekaterina

    2013-01-01

    The purpose of this thesis was to gather information about vertical and horizontal wind mills and to complete a research on wind power production by wind mills which were installed in Tampere University of Applied Sciences. The horizontally mounted wind mill Windspot 3.5 and vertically mounted wind mill Cypress were installed in summer 2011 but they started functioning and supplying energy only during 2012. In the theoretical part of this thesis wind speed and wind power production is dis...

  15. Wind Structure and Wind Loading

    DEFF Research Database (Denmark)

    Brorsen, Michael

    The purpose of this note is to provide a short description of wind, i.e. of the flow in the atmosphere of the Earth and the loading caused by wind on structures. The description comprises: causes to the generation of windhe interaction between wind and the surface of the Earthhe stochastic nature...... of windhe interaction between wind and structures, where it is shown that wind loading depends strongly on this interaction...

  16. Wind Resource Assessment of Gujarat (India)

    Energy Technology Data Exchange (ETDEWEB)

    Draxl, C.; Purkayastha, A.; Parker, Z.

    2014-07-01

    India is one of the largest wind energy markets in the world. In 1986 Gujarat was the first Indian state to install a wind power project. In February 2013, the installed wind capacity in Gujarat was 3,093 MW. Due to the uncertainty around existing wind energy assessments in India, this analysis uses the Weather Research and Forecasting (WRF) model to simulate the wind at current hub heights for one year to provide more precise estimates of wind resources in Gujarat. The WRF model allows for accurate simulations of winds near the surface and at heights important for wind energy purposes. While previous resource assessments published wind power density, we focus on average wind speeds, which can be converted to wind power densities by the user with methods of their choice. The wind resource estimates in this study show regions with average annual wind speeds of more than 8 m/s.

  17. Wind tunnel tests of a free yawing downwind wind turbine

    NARCIS (Netherlands)

    Verelst, D.R.S.; Larsen, T.J.; Van Wingerden, J.W.

    2014-01-01

    This research paper presents preliminary results on a behavioural study of a free yawing downwind wind turbine. A series of wind tunnel tests was performed at the TU Delft Open Jet Facility with a three bladed downwind wind turbine and a rotor radius of 0.8 meters. The setup includes an off the

  18. Research on Operation Strategy for Bundled Wind-thermal Generation Power Systems Based on Two-Stage Optimization Model

    Science.gov (United States)

    Sun, Congcong; Wang, Zhijie; Liu, Sanming; Jiang, Xiuchen; Sheng, Gehao; Liu, Tianyu

    2017-05-01

    Wind power has the advantages of being clean and non-polluting and the development of bundled wind-thermal generation power systems (BWTGSs) is one of the important means to improve wind power accommodation rate and implement “clean alternative” on generation side. A two-stage optimization strategy for BWTGSs considering wind speed forecasting results and load characteristics is proposed. By taking short-term wind speed forecasting results of generation side and load characteristics of demand side into account, a two-stage optimization model for BWTGSs is formulated. By using the environmental benefit index of BWTGSs as the objective function, supply-demand balance and generator operation as the constraints, the first-stage optimization model is developed with the chance-constrained programming theory. By using the operation cost for BWTGSs as the objective function, the second-stage optimization model is developed with the greedy algorithm. The improved PSO algorithm is employed to solve the model and numerical test verifies the effectiveness of the proposed strategy.

  19. Final Report for Project: Impacts of stratification and non-equilibrium winds and waves on hub-height winds

    Energy Technology Data Exchange (ETDEWEB)

    Patton, Edward G. [Univ. Corporation for Atmospheric Research, Boulder, CO (United States)

    2015-07-14

    This project used a combination of turbulence-resolving large-eddy simulations, single-column modeling (where turbulence is parameterized), and currently available observations to improve, assess, and develop a parameterization of the impact of non-equilibrium wave states and stratification on the buoy-observed winds to establish reliable wind data at the turbine hub-height level. Analysis of turbulence-resolving simulations and observations illuminates the non-linear coupling between the atmosphere and the undulating sea surface. This analysis guides modification of existing boundary layer parameterizations to include wave influences for upward extrapolation of surface-based observations through the turbine layer. Our surface roughness modifications account for the interaction between stratification and the effects of swell’s amplitude and wavelength as well as swell’s relative motion with respect to the mean wind direction. The single-column version of the open source Weather and Research Forecasting (WRF) model (Skamarock et al., 2008) serves as our platform to test our proposed planetary boundary layer parameterization modifications that account for wave effects on marine atmospheric boundary layer flows. WRF has been widely adopted for wind resource analysis and forecasting. The single column version is particularly suitable to development, analysis, and testing of new boundary layer parameterizations. We utilize WRF’s single-column version to verify and validate our proposed modifications to the Mellor-Yamada-Nakanishi-Niino (MYNN) boundary layer parameterization (Nakanishi and Niino, 2004). We explore the implications of our modifications for two-way coupling between WRF and wave models (e.g.,Wavewatch III). The newly implemented parameterization accounting for marine atmospheric boundary layer-wave coupling is then tested in three-dimensional WRF simulations at grid sizes near 1 km. These simulations identify the behavior of simulated winds at the

  20. Wind Forcing of the Pacific Ocean Using Scatterometer Wind Data

    Science.gov (United States)

    Kelly, Kathryn A.

    1999-01-01

    The long-term objective of this research was an understanding of the wind-forced ocean circulation, particularly for the Pacific Ocean. To determine the ocean's response to the winds, we first needed to generate accurate maps of wind stress. For the ocean's response to wind stress we examined the sea surface height (SSH) both from altimeters and from numerical models for the Pacific Ocean.

  1. WIND TUNNEL RESEARCH ON THE INFLUENCE OF ACTIVE AIRFLOW ON THE LIFT FORCE GENERATED BY THE AIRFOIL

    Directory of Open Access Journals (Sweden)

    Paweł Magryta

    2013-09-01

    Full Text Available The paper discusses the results of wind tunnel tests of airfoils with additional active airflow applied to their upper surfaces. These studies were carried out for a range of velocities up to 28 m/s in an open wind tunnel. Several types of airfoils selected for the examination feature different geometries and are widely applied in today’s aviation industry. The changes in the lift and drag force generated by these airfoils were recorded during the study. The test bench for the tests was equipped with a compressor and a vacuum pump to enable airflow through some holes on the airfoil upper surface. A rapid prototyping method and a 3D printer based on a powder printing technique were applied to print the airfoils. All of their surfaces were subject to surface grinding to smooth their external surfaces. The wind tunnel tests with and without active airflow applied to airfoils are summarised in the paper.

  2. About the wind energetics development

    International Nuclear Information System (INIS)

    Strebkov, D.S.; Kharitonov, V.P.; Murugov, V.P.; Sokol'skij, A.K.

    1996-01-01

    The review of wind power energetics state in USA, Europe, Russia is given. The data of EC on wind power plants production in different periods are presented. The directions of scientific-research works with the purpose of increasing the level of wind power industry of Russia corresponding to economics demands were elaborated. (author). 8 refs., 3 tabs

  3. Rotor equivalent wind speed for power curve measurement – comparative exercise for IEA Wind Annex 32

    DEFF Research Database (Denmark)

    Wagner, Rozenn; Cañadillas, B.; Clifton, A.

    2014-01-01

    A comparative exercise has been organised within the International Energy Agency (IEA) Wind Annex 32 in order to test the Rotor Equivalent Wind Speed (REWS) method under various conditions of wind shear and measurement techniques. Eight organisations from five countries participated in the exercise....... Each member of the group has derived both the power curve based on the wind speed at hub height and the power curve based on the REWS. This yielded results for different wind turbines, located in diverse types of terrain and where the wind speed profile was measured with different instruments (mast...... was the definition of the segment area used as weighting for the wind speeds measured at the various heights in the calculation of the REWS. This comparative exercise showed that the REWS method results in a significant difference compared to the standard method using the wind speed at hub height in conditions...

  4. Wind Power Today: Wind Energy Program Highlights 2001

    Energy Technology Data Exchange (ETDEWEB)

    2002-05-01

    Wind Power Today is an annual publication that provides an overview of the U.S. Department of Energy's Wind Energy Program accomplishments for the previous year. The purpose of Wind Power Today is to show how DOE's Wind Energy Program supports wind turbine research and deployment in hopes of furthering the advancement of wind technologies that produce clean, low-cost, reliable energy. Content objectives include: educate readers about the advantages and potential for widespread deployment of wind energy; explain the program's objectives and goals; describe the program's accomplishments in research and application; examine the barriers to widespread deployment; describe the benefits of continued research and development; facilitate technology transfer; and attract cooperative wind energy projects with industry. This 2001 edition of Wind Power Today also includes discussions about wind industry growth in 2001, how DOE is taking advantage of low wind speed regions through advancing technology, and distributed applications for small wind turbines.

  5. Investigation of boundary-layer wind predictions during nocturnal low-level jet events using the Weather Research and Forecasting model

    Energy Technology Data Exchange (ETDEWEB)

    Mirocha, Jeff D.; Simpson, Matthew D.; Fast, Jerome D.; Berg, Larry K.; Baskett, R.

    2016-04-01

    Simulations of two periods featuring three consecutive low level jet (LLJ) events in the US Upper Great Plains during the autumn of 2011 were conducted to explore the impacts of various setup configurations and physical process models on simulated flow parameters within the lowest 200 m above the surface, using the Weather Research and Forecasting (WRF) model. Sensitivities of simulated flow parameters to the horizontal and vertical grid spacing, planetary boundary layer (PBL) and land surface model (LSM) physics options, were assessed. Data from a Light Detection and Ranging (lidar) system, deployed to the Weather Forecast Improvement Project (WFIP; Finley et al. 2013) were used to evaluate the accuracy of simulated wind speed and direction at 80 m above the surface, as well as their vertical distributions between 120 and 40 m, covering the typical span of contemporary tall wind turbines. All of the simulations qualitatively captured the overall diurnal cycle of wind speed and stratification, producing LLJs during each overnight period, however large discrepancies occurred at certain times for each simulation in relation to the observations. 54-member ensembles encompassing changes of the above discussed configuration parameters displayed a wide range of simulated vertical distributions of wind speed and direction, and potential temperature, reflecting highly variable representations of stratification during the weakly stable overnight conditions. Root mean square error (RMSE) statistics show that different ensemble members performed better and worse in various simulated parameters at different times, with no clearly superior configuration . Simulations using a PBL parameterization designed specifically for the stable conditions investigated herein provided superior overall simulations of wind speed at 80 m, demonstrating the efficacy of targeting improvements of physical process models in areas of known deficiencies. However, the considerable magnitudes of the

  6. MHD effects of the solar wind flow around planets

    Directory of Open Access Journals (Sweden)

    H. K. Biernat

    2000-01-01

    Full Text Available The study of the interaction of the solar wind with magnetized and unmagnetized planets forms a central topic of space research. Focussing on planetary magnetosheaths, we review some major developments in this field. Magnetosheath structures depend crucially on the orientation of the interplanetary magnetic field, the solar wind Alfvén Mach number, the shape of the obstacle (axisymmetric/non-axisymmetric, etc., the boundary conditions at the magnetopause (low/high magnetic shear, and the degree of thermal anisotropy of the plasma. We illustrate the cases of Earth, Jupiter and Venus. The terrestrial magnetosphere is axisymmetric and has been probed in-situ by many spacecraft. Jupiter's magnetosphere is highly non-axisymmetric. Furthermore, we study magnetohydrodynamic effects in the Venus magnetosheath.

  7. Plasticity Approach to Shear Design

    DEFF Research Database (Denmark)

    Hoang, Cao Linh; Nielsen, Mogens Peter

    1998-01-01

    The paper presents some plastic models for shear design of reinforced concrete beams. Distinction is made between two shear failure modes, namely web crushing and crack sliding. The first mentioned mode is met in beams with large shear reinforcement degrees. The mode of crack sliding is met in non......-shear reinforced beams as well as in lightly shear reinforced beams. For such beams the shear strength is determined by the recently developed crack sliding model. This model is based upon the hypothesis that cracks can be transformed into yield lines, which have lower sliding resistance than yield lines formed...

  8. Propagation of low-level jet's signals across the wind turbine structures

    Science.gov (United States)

    Gutierrez, Walter; Ruiz-Columbie, Arquimedes; Tutkun, Murat; Castillo, Luciano

    2017-11-01

    Low-level jets (LLJs) are identified as relative maxima in the vertical profile of the horizontal wind speed at the top of the stable boundary layer. Such peaks constitute major power resources, since they are observed at altitudes within the heights of commercial-size wind turbines (e.g., 40m and 100 m). However, the stronger wind speed and the stronger wind shear below the peak altitude can also increase the mechanical loading on the wind turbine. Moreover, LLJs can act as a carrier of firm frequencies that can excite several of the turbine's parts. How those loads and frequencies are replicated along the turbine's structure has not been thoroughly studied. Using high-frequency data of actual atmospheric LLJ as input for the NREL aeroelastic simulator FAST, together with spectral analysis, we determine how the signal from the incoming wind is first created at the elements facing the wind and then transported across all turbine's parts. We found that the tower is the main source of perturbation breaking the symmetry of many of the turbine's responses. Results from this research can provide a better understanding of how several LLJ's features act to exacerbate or mitigate the damages on turbine's parts. NSF-CBET #1157246, NSF-CMMI #1100948, and NSF-OISE-1243482.

  9. Sheared solid materials

    Indian Academy of Sciences (India)

    cores eventually breaks the Peierls potential leading to slow relaxations in the stress and the free energy (aging). .... Figure 1 displays the stress–strain curves at constant shear rate ˙γ applied for t > 0 in units of µ0 and τ−1 ..... In particular, the slow structural relaxations evidently arise from migration of the free volume.

  10. Research on improved design of airfoil profiles based on the continuity of airfoil surface curvature of wind turbines

    DEFF Research Database (Denmark)

    Chen, Jin; Cheng, Jiangtao; Shen, Wenzhong

    2013-01-01

    Aerodynamic of airfoil performance is closely related to the continuity of its surface curvature, and airfoil profiles with a better aerodynamic performance plays an important role in the design of wind turbine. The surface curvature distribution along the chord direction and pressure distributio...

  11. Scaling of turbulence spectra measured in strong shear flow near the Earth’s surface

    DEFF Research Database (Denmark)

    Mikkelsen, Torben Krogh; Larsen, Søren Ejling; Ejsing Jørgensen, Hans

    2017-01-01

    Within the lowest kilometer of the Earth's atmosphere, in the so-called atmospheric boundary layer, winds are often gusty and turbulent. Nearest to the ground, the turbulence is predominately generated by mechanical wall-bounded wind shear, whereas at higher altitudes turbulent mixing of heat......) their generation; (2) the cascade of energy across the spectrum from large- to small-scale; and (3) the eventual decay of turbulence into heat owing to viscosity effects on the Kolmogorov microscale, in which the eddy size is only a fraction of a millimeter. This paper addresses atmospheric turbulence spectra...... in the lowest part of the atmospheric boundary layer—the so-called surface layer—where the wind shear is strong owing to the nonslip condition at the ground. Theoretical results dating back to Tchen's early work in 1953 'on the spectrum of energy in turbulent shear flow' led Tchen to predict a shear production...

  12. Shear rate normalization is not essential for removing the dependency of flow-mediated dilation on baseline artery diameter: past research revisited

    International Nuclear Information System (INIS)

    Atkinson, Greg

    2014-01-01

    A ratio index (FMD%) is used ubiquitously to scale (by simple division) brachial artery flow-mediated dilation (D diff ) in direct proportion to baseline diameter (D base ). It is now known that D diff is inversely proportional to D base rendering FMD% wholly inappropriate. Consequently, FMD% is still substantially dependent on D base . Although this problem is grounded in statistics, normalization of FMD% for the change in arterial shear rate (ΔSR) has been proposed to remove this D base -dependency. It was hypothesized that, if the flow-mediated response is scaled properly to D base in the first place, shear rate normalization would not be needed to remove D base -dependency. Dedicated software (Digitizelt) was employed to extract the data from a seminal study on FMD% normalization. The underlying allometric relationship between D base and peak diameter (D peak ) was described. The re-analyses revealed that the absolute change in arterial diameter was strongly inversely proportional to D base (r= − 0.7, P < 0.0005). The allometric exponent for the D base –D peak relationship was 0.82 (95% CI: 0.78–0.86) rather than the value of 1 needed for appropriate use of FMD%. The allometric approach completely eliminated the originally reported dependency on D base without any need for ΔSR normalization (r=0.0, P=0.96). The correlation between ΔSR and FMD% reduced from 0.69 to 0.37, when adjusted for D base . In conclusion, this new re-analysis of data from an influential study demonstrates that the FMD%–D base correlation is caused by the inappropriate size-scaling properties of FMD% itself. Removal of D base -dependency via FMD%/ΔSR normalization is not essential at all if allometric scaling is applied to isolate the flow-mediated response in the first place. Consequently, the influence of ΔSR on this properly scaled response can also be isolated and quantified accurately without the confounding influence of D base . (paper)

  13. Breezing ahead: the Spanish wind energy market

    International Nuclear Information System (INIS)

    Avia Aranda, Felix; Cruz, I.C.

    2000-01-01

    This article traces the rapid increase in Spain's wind generating capacity, and examines Spain's wind strategy, the assessment of wind power potential at regional level, and the guaranteeing of the market price for power generators using wind energy with yearly reviews of the price of electricity from wind power. Prices payable for electricity generated from renewable sources are listed, and the regional distribution of wind energy production is illustrated. Recent wind power installations in Spain, target levels for wind energy installations, wind farms larger than 1MW installed in 1999, and the impact of the growth of the wind energy market on the manufacturing industry and the manufacturers are discussed. Details of the wind energy capacity in the provinces of Navarra and Galicia are given, and plans for wind energy projects in the New National Plan for Scientific research, Development and Technological innovation (2000-2003) are considered

  14. Wakes in large offshore wind farms

    DEFF Research Database (Denmark)

    Berthelmie, Rebecca J.; Frandsen, Sten Tronæs; Rathmann, Ole

    2008-01-01

    Power losses due to wind turbine wakes are of the order of 10 and 20% of total power output in large wind farms. The focus of this research carried out within the EC funded UPWIND project is wind speed and turbulence modelling for large wind farms/wind turbines in complex terrain and offshore...... in order to optimise wind farm layouts to reduce wake losses and loads. For complex terrain, a set of three evaluations is underway. The first is a model comparison for a Gaussian Hill where CFD models and wind farm models are being compared for the case of one hilltop wind turbine. The next case...... is for five turbines in flat terrain. Finally a complex terrain wind farm will be modelled and compared with observations. For offshore wind farms, the focus is on cases at the Horns Rev wind farm which indicate wind farm models require modification to reduce under-prediction of wake losses while CFD models...

  15. Evaluation of composite shear walls behavior (parametric study

    Directory of Open Access Journals (Sweden)

    Ali Nikkhoo

    2017-11-01

    Full Text Available Composite shear walls which are made of a layer of steel plate with a concrete cover in one or both sides of the steel plate, are counted as the third generation of the shear walls. Nowadays, composite shear walls are widely utilized in building new resisting structures as well as rehabilitating of the existing structures in earthquake-prone countries. Despite of its advantages, use of the composite shear walls is not yet prevalent as it demands more detailed appropriate investigation. Serving higher strength, flexibility and better energy absorption, while being more economical are the main advantages of this system which has paved its path to be used in high-rise buildings, structural retrofit and reservoir tanks. In this research, channel shear connectors are utilized to connect the concrete cover to the steel plate. As a key parameter, variation in the distance of shear connectors and their arrangement on the behavior of composite shear walls has been scrutinized. In addition, the shear stiffness, flexibility, out of plane displacement and the energy absorption of the structural system has been explored. For this purpose, several structural models with different shear distances and arrangements have been investigated. The obtained results reveal that with increase in shear connectors’ distance, the wall stiffness would reduce while its lateral displacement increases up to eighty percent While the out of plane displacement of the steel plate will reduce up to three times.

  16. Glass panel under shear loading: use of glass envelopes in building stabilization

    OpenAIRE

    Mocibob, Danijel; Lebet, Jean-Paul

    2009-01-01

    The latest trends in contemporary architecture are fully transparent pavilions: a single storey building free of any steel or concrete frame, where glass panels are used as unique vertical structural elements to support the roof and as wind bracing to stabilize and stiffen the building. In this application, individual glass panel is supported on two sides (roof and foundation) and subjected to in-plane shear force (lateral wind), out-of-plane distributed load (perpendicular wind) and in-plane...

  17. Glass panel under shear loading: use of glass envelopes in building stabilization

    OpenAIRE

    Mocibob, Danijel

    2008-01-01

    The latest trends in contemporary architecture are fully transparent pavilions: a single storey building free of any steel or concrete frame, where glass panels are used as unique vertical structural elements to support the roof and as wind bracing to stabilize and stiffen the building. In this application, individual glass panel is supported on two sides (roof and foundation) and subjected to in-plane shear force (lateral wind), out-of-plane distributed load (perpendicular wind) and in-plane...

  18. Potential health impact of wind turbines

    International Nuclear Information System (INIS)

    2010-05-01

    In response to public health concerns about wind turbines, a study was conducted to review the scientific evidence on the potential health effects of wind turbines. Several research questions were examined, including scientific evidence on the potential health impacts of wind turbines; the relationship between wind turbine noise and health; the relationship between low frequency sound, infrasound and health; assessment of exposure to wind turbines; wind turbine health and safety hazards and Ontario wind turbine setbacks; community consultation prior to wind farm construction and data gaps and research needs. The study showed that although some people living near wind turbines reported symptoms such as dizziness, headaches, and sleep disturbance, the scientific evidence available to date does not demonstrate a direct causal link between wind turbine noise and adverse health effects. The sound level from wind turbines at common residential setbacks is not sufficient to cause hearing impairment or other direct health effects, although some people may find it annoying. 41 refs., 1 appendix.

  19. Potential health impact of wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-05-15

    In response to public health concerns about wind turbines, a study was conducted to review the scientific evidence on the potential health effects of wind turbines. Several research questions were examined, including scientific evidence on the potential health impacts of wind turbines; the relationship between wind turbine noise and health; the relationship between low frequency sound, infrasound and health; assessment of exposure to wind turbines; wind turbine health and safety hazards and Ontario wind turbine setbacks; community consultation prior to wind farm construction and data gaps and research needs. The study showed that although some people living near wind turbines reported symptoms such as dizziness, headaches, and sleep disturbance, the scientific evidence available to date does not demonstrate a direct causal link between wind turbine noise and adverse health effects. The sound level from wind turbines at common residential setbacks is not sufficient to cause hearing impairment or other direct health effects, although some people may find it annoying. 41 refs., 1 appendix.

  20. Illinois Wind Workers Group

    Energy Technology Data Exchange (ETDEWEB)

    David G. Loomis

    2012-05-28

    The Illinois Wind Working Group (IWWG) was founded in 2006 with about 15 members. It has grown to over 200 members today representing all aspects of the wind industry across the State of Illinois. In 2008, the IWWG developed a strategic plan to give direction to the group and its activities. The strategic plan identifies ways to address critical market barriers to the further penetration of wind. The key to addressing these market barriers is public education and outreach. Since Illinois has a restructured electricity market, utilities no longer have a strong control over the addition of new capacity within the state. Instead, market acceptance depends on willing landowners to lease land and willing county officials to site wind farms. Many times these groups are uninformed about the benefits of wind energy and unfamiliar with the process. Therefore, many of the project objectives focus on conferences, forum, databases and research that will allow these stakeholders to make well-educated decisions.

  1. Aerodynamics of Wind Turbines

    DEFF Research Database (Denmark)

    Hansen, Martin Otto Laver

    Aerodynamics of Wind Turbines is the established essential text for the fundamental solutions to efficient wind turbine design. Now in its second edition, it has been entirely updated and substantially extended to reflect advances in technology, research into rotor aerodynamics and the structural...... response of the wind turbine structure. Topics covered include increasing mass flow through the turbine, performance at low and high wind speeds, assessment of the extreme conditions under which the turbine will perform and the theory for calculating the lifetime of the turbine. The classical Blade Element...... Momentum method is also covered, as are eigenmodes and the dynamic behavior of a turbine. The new material includes a description of the effects of the dynamics and how this can be modeled in an aeroelastic code, which is widely used in the design and verification of modern wind turbines. Further...

  2. Wind Power Today and Tomorrow

    Energy Technology Data Exchange (ETDEWEB)

    2004-03-01

    Wind Power Today and Tomorrow is an annual publication that provides an overview of the wind research conducted under the U.S. Department of Energy's Wind and Hydropower Technologies Program. The purpose of Wind Power Today and Tomorrow is to show how DOE supports wind turbine research and deployment in hopes of furthering the advancement of wind technologies that produce clean, low-cost, reliable energy. Content objectives include: educate readers about the advantages and potential for widespread deployment of wind energy; explain the program's objectives and goals; describe the program's accomplishments in research and application; examine the barriers to widespread deployment; describe the benefits of continued research and development; facilitate technology transfer; and attract cooperative wind energy projects with industry. This 2003 edition of the program overview also includes discussions about wind industry growth in 2003, how DOE is taking advantage of low wind speed region s through advancing technology, and distributed applications for small wind turbines.

  3. Wind energy - an overview

    International Nuclear Information System (INIS)

    Rangi, R.; Oprisan, M.

    1998-01-01

    The current status of wind technology developments in Canada and around the world was reviewed. Information regarding the level of wind turbine deployment was presented. It was shown that significant effort has been made on the national and international level to increase the capacity of this clean, non-polluting form of energy. Wind energy has become competitive with conventional sources of electricity due to lower cost, higher efficiency and improved reliability of generating equipment. The advantages and disadvantages of wind electricity generating systems and the economics and atmospheric emissions of the systems were described. At present, there is about 23 MW of wind energy generating capacity installed in Canada, but the potential is very large. It was suggested that wind energy could supply as much as 60 per cent of Canada's electricity needs if only one per cent of the land with 'good winds' were covered by wind turbines. Recently, the Canadian government has provided an accelerated capital cost allowance for certain types of renewable energies under the Income Tax Act, and the flow-through share financing legislation to include intangible expenses in certain renewable energy projects has been extended. Besides the support provided to the private sector through tax advantages, the Government also supports renewable energy development by purchasing 'green' energy for its own buildings across the country, and by funding a research and development program to identify and promote application of wind energy technologies, improve its cost effectiveness, and support Canadian wind energy industries with technology development to enhance their competitiveness at home and abroad. Details of the Wind Energy Program, operated by Natural Resources Canada, are described. 3 tabs., 5 figs

  4. Experiments on sheet metal shearing

    OpenAIRE

    Gustafsson, Emil

    2013-01-01

    Within the sheet metal industry, different shear cutting technologies are commonly used in several processing steps, e.g. in cut to length lines, slitting lines, end cropping etc. Shearing has speed and cost advantages over competing cutting methods like laser and plasma cutting, but involves large forces on the equipment and large strains in the sheet material.Numerical models to predict forces and sheared edge geometry for different sheet metal grades and different shear parameter set-ups a...

  5. The aerodynamics of wind turbines

    DEFF Research Database (Denmark)

    Sørensen, Jens Nørkær; Mikkelsen, Robert Flemming; Troldborg, Niels

    2013-01-01

    In the paper we present state-of-the-art of research in wind turbine aerodynamics. We start be giving a brief historical review and a survey over aerodynamic research in wind energy. Next, we focus on some recent research results obtained by our wind energy group at Department of Mechanical...... Engineering at DTU. In particular, we show some new results on the classical problem of the ideal rotor and present a series of new results from an on-going research project dealing with the modelling and simulation of turbulent flow structures in the wake behind wind turbines....

  6. Wind Speed Perception and Risk

    Science.gov (United States)

    Agdas, Duzgun; Webster, Gregory D.; Masters, Forrest J.

    2012-01-01

    Background How accurately do people perceive extreme wind speeds and how does that perception affect the perceived risk? Prior research on human–wind interaction has focused on comfort levels in urban settings or knock-down thresholds. No systematic experimental research has attempted to assess people's ability to estimate extreme wind speeds and perceptions of their associated risks. Method We exposed 76 people to 10, 20, 30, 40, 50, and 60 mph (4.5, 8.9, 13.4, 17.9, 22.3, and 26.8 m/s) winds in randomized orders and asked them to estimate wind speed and the corresponding risk they felt. Results Multilevel modeling showed that people were accurate at lower wind speeds but overestimated wind speeds at higher levels. Wind speed perceptions mediated the direct relationship between actual wind speeds and perceptions of risk (i.e., the greater the perceived wind speed, the greater the perceived risk). The number of tropical cyclones people had experienced moderated the strength of the actual–perceived wind speed relationship; consequently, mediation was stronger for people who had experienced fewer storms. Conclusion These findings provide a clearer understanding of wind and risk perception, which can aid development of public policy solutions toward communicating the severity and risks associated with natural disasters. PMID:23226230

  7. Wind speed perception and risk.

    Directory of Open Access Journals (Sweden)

    Duzgun Agdas

    Full Text Available BACKGROUND: How accurately do people perceive extreme wind speeds and how does that perception affect the perceived risk? Prior research on human-wind interaction has focused on comfort levels in urban settings or knock-down thresholds. No systematic experimental research has attempted to assess people's ability to estimate extreme wind speeds and perceptions of their associated risks. METHOD: We exposed 76 people to 10, 20, 30, 40, 50, and 60 mph (4.5, 8.9, 13.4, 17.9, 22.3, and 26.8 m/s winds in randomized orders and asked them to estimate wind speed and the corresponding risk they felt. RESULTS: Multilevel modeling showed that people were accurate at lower wind speeds but overestimated wind speeds at higher levels. Wind speed perceptions mediated the direct relationship between actual wind speeds and perceptions of risk (i.e., the greater the perceived wind speed, the greater the perceived risk. The number of tropical cyclones people had experienced moderated the strength of the actual-perceived wind speed relationship; consequently, mediation was stronger for people who had experienced fewer storms. CONCLUSION: These findings provide a clearer understanding of wind and risk perception, which can aid development of public policy solutions toward communicating the severity and risks associated with natural disasters.

  8. Wind power

    International Nuclear Information System (INIS)

    Gipe, P.

    2007-01-01

    This book is a translation of the edition published in the USA under the title of ''wind power: renewable energy for home, farm and business''. In the wake of mass blackouts and energy crises, wind power remains a largely untapped resource of renewable energy. It is a booming worldwide industry whose technology, under the collective wing of aficionados like author Paul Gipe, is coming of age. Wind Power guides us through the emergent, sometimes daunting discourse on wind technology, giving frank explanations of how to use wind technology wisely and sound advice on how to avoid common mistakes. Since the mid-1970's, Paul Gipe has played a part in nearly every aspect of wind energy development from installing small turbines to promoting wind energy worldwide. As an American proponent of renewable energy, Gipe has earned the acclaim and respect of European energy specialists for years, but his arguments have often fallen on deaf ears at home. Today, the topic of wind power is cropping up everywhere from the beaches of Cape Cod to the Oregon-Washington border, and one wind turbine is capable of producing enough electricity per year to run 200 average American households. Now, Paul Gipe is back to shed light on this increasingly important energy source with a revised edition of Wind Power. Over the course of his career, Paul Gipe has been a proponent, participant, observer, and critic of the wind industry. His experience with wind has given rise to two previous books on the subject, Wind Energy Basics and Wind Power for Home and Business, which have sold over 50,000 copies. Wind Power for Home and Business has become a staple for both homeowners and professionals interested in the subject, and now, with energy prices soaring, interest in wind power is hitting an all-time high. With chapters on output and economics, Wind Power discloses how much you can expect from each method of wind technology, both in terms of energy and financial savings. The book updated models

  9. Research on a new fiber-optic axial pressure sensor of transformer winding based on fiber Bragg grating

    Science.gov (United States)

    Liu, Yuan; Li, Lianqing; Zhao, Lin; Wang, Jiqiang; Liu, Tongyu

    2017-12-01

    Based on the principle of the fiber Bragg grating, a new type of fiber-optic pressure sensor for axial force measurement of transformer winding is designed, which is designed with the structure of bending plate beam, the optimization of the packaging process, and material of the sensor. Through the calibration experiment to calibrate the sensor, the field test results of the Taikai transformer factory show that the sensitivity of the sensor is 0.133 pm/kPa and the repeatability error is 2.7% FS. The data of the fiber-optic pressure sensor in different positions maintain consistent and repeatable, which can meet the requirement of the real-time monitoring of the axial force of transformer winding.

  10. Shear Behavior of Concrete Beams Reinforced with GFRP Shear Reinforcement

    Directory of Open Access Journals (Sweden)

    Heecheul Kim

    2015-01-01

    Full Text Available This paper presents the shear capacities of concrete beams reinforced with glass fiber reinforced polymer (GFRP plates as shear reinforcement. To examine the shear performance, we manufactured and tested a total of eight specimens. Test variables included the GFRP strip-width-to-spacing ratio and type of opening array. The specimen with a GFRP plate with a 3×2 opening array showed the highest shear strength. From the test results, the shear strength increased as the strip-width-to-strip-spacing ratio increased. Also, we used the experimental results to evaluate whether the shear strength equations of ACI 318-14 and ACI 440.1R can be applied to the design of GFRP shear reinforcement. In the results, the ACI 440 equation underestimated the experimental results more than that of ACI 318.

  11. Repetitive model predictive approach to individual pitch control of wind turbines

    DEFF Research Database (Denmark)

    Adegas, Fabiano Daher; Stoustrup, Jakob; Odgaard, Peter Fogh

    2011-01-01

    Wind turbines are inherently exposed to nonuniform wind fields with of wind shear, tower shadow, and possible wake contributions. Asymmetrical aerodynamic rotor loads are a consequence of such periodic, repetitive wind disturbances experienced by the blades. A controller may estimate and use this....... A simulation comparison betweeen the proposed controller and an industry-standard PID controller shows better mitigation of drive-train, blade and tower loads.......Wind turbines are inherently exposed to nonuniform wind fields with of wind shear, tower shadow, and possible wake contributions. Asymmetrical aerodynamic rotor loads are a consequence of such periodic, repetitive wind disturbances experienced by the blades. A controller may estimate and use...... this peculiar disturbance pattern to better attenuate loads and regulate power by controlling the blade pitch angles individually. A novel model predictive (MPC) approach for individual pitch control of wind turbines is proposed in this paper. A repetitive wind disturbance model is incorporated into the MPC...

  12. Gusts and Shear in an Idealized LES-modeled Hurricane

    Science.gov (United States)

    Worsnop, R.; Lundquist, J. K.; Bryan, G. H.; Damiani, R.; Musial, W.

    2016-12-01

    Tropical cyclone winds can cause extreme loading and damage to coastal structures such as buildings and energy infrastructure. Offshore wind energy development is underway along the US East Coast where hurricanes pose a substantial risk. Understanding wind gusts, gust factor, shear, and veer in the hurricane boundary layer (HBL) can help manufacturers assess risk and design wind turbines to better withstand these extreme wind conditions. Because of the paucity of observational data at low-levels (200 m and below), we use the Cloud Model Version I (CM1) large-eddy simulation numerical model to simulate high spatial- (10 m) and temporal- (0.1 s) resolution data. This unique dataset is used to answer the following questions: do severe mean wind speeds and gusts that exceed current design limits occur?; how does the gust factor vary with distance from the eye?; and lastly, how does wind direction vary horizontally and with height? We find that mean winds and gusts near the eyewall can exceed current turbine design thresholds of 50 m s-1 and 70 m s-1, respectively. Gust factors are greatest at the eye-eyewall interface just inward of the peak gust location and can exceed the 1.4 value used to convert a 50 m s-1 reference wind speed to a 50-year 3-second gust. Strong veer (15-30 degrees) across a 120 m-layer suggests that veer should be assessed against standard design prescriptions. Lastly, wind directions can shift 10-25 degrees in durations shorter than 10 minutes, which can challenge structures designed to endure winds from a consistent direction for periods longer than 10 minutes, including wind turbines.

  13. Forflytning: shear og friktion

    DEFF Research Database (Denmark)

    2005-01-01

    friktion). Formålet med filmprojektet er: At give personalet i Apopleksiafsnittet viden om shear og friktion, så det motiveres til forebyggelse. Mål At udarbejde et enkelt undervisningsmateriale til bed-side-brug Projektbeskrivelse (resume) Patienter med apopleksi er særligt udsatte for tryksår, fordi de...... ofte er immobile, har svært ved at opretholde en god siddestilling eller ligger tungt i sengen som følger efter apopleksien Hvis personalet bruger forkert lejrings-og forflytningsteknik, udsættes patienterne for shear og friktion. Målgruppen i projektet er de personer, der omgås patienterne, dvs...

  14. Shear Roll Mill Reactivation

    Science.gov (United States)

    2012-09-13

    pneumatically operated paste dumper and belt conveyor system , the loss in weight feeder system , the hydraulically operated shear roll mill, the pellet...out feed belt conveyor , and the pack out system comprised of the metal detector, scale, and pack out empty and full drum roller conveyors . Page | 4...process equipment sprinkler protection systems , and the 5 psig steam supply serving the building heating and make-up air systems . It also included

  15. Short Communications The effect of shearing pregnant ewes prior to ...

    African Journals Online (AJOL)

    shearing of winter-lambing ewes prior to lambing, although effects on lamb birth mass and survival were ... The effect on lambs of shearing ewes prior to lambing in pad- docks has not been researched to the same ..... production and feed intake in unmated and mated Border Leicester x. Romney crossbred ewes shorn in ...

  16. Implementation of a generalized actuator disk wind turbine model into the weather research and forecasting model for large-eddy simulation applications

    Energy Technology Data Exchange (ETDEWEB)

    Mirocha, J. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kosovic, B. [National Center for Atmospheric Research, Boulder, CO (United States); Aitken, M. L. [Univ. of Colorado, Boulder, CO (United States); Lundquist, J. K. [Univ. of Colorado, Boulder, CO (United States); National Renewable Energy Lab., Golden, CO (United States)

    2014-01-10

    A generalized actuator disk (GAD) wind turbine parameterization designed for large-eddy simulation (LES) applications was implemented into the Weather Research and Forecasting (WRF) model. WRF-LES with the GAD model enables numerical investigation of the effects of an operating wind turbine on and interactions with a broad range of atmospheric boundary layer phenomena. Numerical simulations using WRF-LES with the GAD model were compared with measurements obtained from the Turbine Wake and Inflow Characterization Study (TWICS-2011), the goal of which was to measure both the inflow to and wake from a 2.3-MW wind turbine. Data from a meteorological tower and two light-detection and ranging (lidar) systems, one vertically profiling and another operated over a variety of scanning modes, were utilized to obtain forcing for the simulations, and to evaluate characteristics of the simulated wakes. Simulations produced wakes with physically consistent rotation and velocity deficits. Two surface heat flux values of 20 W m–2 and 100 W m–2 were used to examine the sensitivity of the simulated wakes to convective instability. Simulations using the smaller heat flux values showed good agreement with wake deficits observed during TWICS-2011, whereas those using the larger value showed enhanced spreading and more-rapid attenuation. This study demonstrates the utility of actuator models implemented within atmospheric LES to address a range of atmospheric science and engineering applications. In conclusion, validated implementation of the GAD in a numerical weather prediction code such as WRF will enable a wide range of studies related to the interaction of wind turbines with the atmosphere and surface.

  17. Electrostatic Solitary Waves in the Solar Wind: Evidence for Instability at Solar Wind Current Sheets

    Science.gov (United States)

    Malaspina, David M.; Newman, David L.; Wilson, Lynn Bruce; Goetz, Keith; Kellogg, Paul J.; Kerstin, Kris

    2013-01-01

    A strong spatial association between bipolar electrostatic solitary waves (ESWs) and magnetic current sheets (CSs) in the solar wind is reported here for the first time. This association requires that the plasma instabilities (e.g., Buneman, electron two stream) which generate ESWs are preferentially localized to solar wind CSs. Distributions of CS properties (including shear angle, thickness, solar wind speed, and vector magnetic field change) are examined for differences between CSs associated with ESWs and randomly chosen CSs. Possible mechanisms for producing ESW-generating instabilities at solar wind CSs are considered, including magnetic reconnection.

  18. Comparison of different methods for evaluation of wind turbine power production based on wind measurements

    Directory of Open Access Journals (Sweden)

    Bezrukovs Valerijs

    2016-01-01

    Full Text Available Investigations of the wind shear up to the height of 200 (m on the Latvian coast of the Baltic Sea have been carried out using a Pentalum SpiDAR laser measuring complex. Based on wind speeds measurements for three levels – 30, 40 and 50 (m, assessment of the operational efficiency of the wind turbines for heights 100, 140 and 180 (m have been performed. For comparison, this analysis involves five different approaches: the Rayleigh frequency distribution, three different Weibull frequency distributions and method based on approximation of the cubic wind speed. Results are compared with measurements on the corresponding heights.

  19. ESTIMATION OF SHEAR STRENGTH PARAMETERS OF ...

    African Journals Online (AJOL)

    This research work seeks to develop models for predicting the shear strength parameters (cohesion and angle of friction) of lateritic soils in central and southern areas of Delta State using artificial neural network modeling technique. The application of these models will help reduce cost and time in acquiring geotechnical ...

  20. Effects of Yaw Error on Wind Turbine Running Characteristics Based on the Equivalent Wind Speed Model

    Directory of Open Access Journals (Sweden)

    Shuting Wan

    2015-06-01

    Full Text Available Natural wind is stochastic, being characterized by its speed and direction which change randomly and frequently. Because of the certain lag in control systems and the yaw body itself, wind turbines cannot be accurately aligned toward the wind direction when the wind speed and wind direction change frequently. Thus, wind turbines often suffer from a series of engineering issues during operation, including frequent yaw, vibration overruns and downtime. This paper aims to study the effects of yaw error on wind turbine running characteristics at different wind speeds and control stages by establishing a wind turbine model, yaw error model and the equivalent wind speed model that includes the wind shear and tower shadow effects. Formulas for the relevant effect coefficients Tc, Sc and Pc were derived. The simulation results indicate that the effects of the aerodynamic torque, rotor speed and power output due to yaw error at different running stages are different and that the effect rules for each coefficient are not identical when the yaw error varies. These results may provide theoretical support for optimizing the yaw control strategies for each stage to increase the running stability of wind turbines and the utilization rate of wind energy.

  1. LIDAR Wind Speed Measurements of Evolving Wind Fields

    Energy Technology Data Exchange (ETDEWEB)

    Simley, E.; Pao, L. Y.

    2012-07-01

    Light Detection and Ranging (LIDAR) systems are able to measure the speed of incoming wind before it interacts with a wind turbine rotor. These preview wind measurements can be used in feedforward control systems designed to reduce turbine loads. However, the degree to which such preview-based control techniques can reduce loads by reacting to turbulence depends on how accurately the incoming wind field can be measured. Past studies have assumed Taylor's frozen turbulence hypothesis, which implies that turbulence remains unchanged as it advects downwind at the mean wind speed. With Taylor's hypothesis applied, the only source of wind speed measurement error is distortion caused by the LIDAR. This study introduces wind evolution, characterized by the longitudinal coherence of the wind, to LIDAR measurement simulations to create a more realistic measurement model. A simple model of wind evolution is applied to a frozen wind field used in previous studies to investigate the effects of varying the intensity of wind evolution. LIDAR measurements are also evaluated with a large eddy simulation of a stable boundary layer provided by the National Center for Atmospheric Research. Simulation results show the combined effects of LIDAR errors and wind evolution for realistic turbine-mounted LIDAR measurement scenarios.

  2. An Appropriate Wind Model for Wind Integrated Power Systems Reliability Evaluation Considering Wind Speed Correlations

    Directory of Open Access Journals (Sweden)

    Rajesh Karki

    2013-02-01

    Full Text Available Adverse environmental impacts of carbon emissions are causing increasing concerns to the general public throughout the world. Electric energy generation from conventional energy sources is considered to be a major contributor to these harmful emissions. High emphasis is therefore being given to green alternatives of energy, such as wind and solar. Wind energy is being perceived as a promising alternative. This source of energy technology and its applications have undergone significant research and development over the past decade. As a result, many modern power systems include a significant portion of power generation from wind energy sources. The impact of wind generation on the overall system performance increases substantially as wind penetration in power systems continues to increase to relatively high levels. It becomes increasingly important to accurately model the wind behavior, the interaction with other wind sources and conventional sources, and incorporate the characteristics of the energy demand in order to carry out a realistic evaluation of system reliability. Power systems with high wind penetrations are often connected to multiple wind farms at different geographic locations. Wind speed correlations between the different wind farms largely affect the total wind power generation characteristics of such systems, and therefore should be an important parameter in the wind modeling process. This paper evaluates the effect of the correlation between multiple wind farms on the adequacy indices of wind-integrated systems. The paper also proposes a simple and appropriate probabilistic analytical model that incorporates wind correlations, and can be used for adequacy evaluation of multiple wind-integrated systems.

  3. Piezoelectric energy harvesting through shear mode operation

    International Nuclear Information System (INIS)

    Malakooti, Mohammad H; Sodano, Henry A

    2015-01-01

    Piezoelectric materials are excellent candidates for use in energy harvesting applications due to their high electromechanical coupling properties that enable them to convert input mechanical energy into useful electric power. The electromechanical coupling coefficient of the piezoelectric material is one of the most significant parameters affecting energy conversion and is dependent on the piezoelectric mode of operation. In most piezoceramics, the d 15 piezoelectric shear coefficient is the highest coefficient compared to the commonly used axial and transverse modes that utilize the d 33 and the d 31 piezoelectric strain coefficients. However, complicated electroding methods and challenges in evaluating the performance of energy harvesting devices operating in the shear mode have slowed research in this area. The shear deformation of a piezoelectric layer can be induced in a vibrating sandwich beam with a piezoelectric core. Here, a model based on Timoshenko beam theory is developed to predict the electric power output from a cantilever piezoelectric sandwich beam under base excitations. It is shown that the energy harvester operating in the shear mode is able to generate ∼50% more power compared to the transverse mode for a numerical case study. Reduced models of both shear and transverse energy harvesters are obtained to determine the optimal load resistance in the system and perform an efficiency comparison between two models with fixed and adaptive resistances. (paper)

  4. Wind Farm Wake

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Karagali, Ioanna; Volker, Patrick

    2017-01-01

    together to investigate the atmospheric conditions at the time of the photos by analysing local meteorological observations and wind turbine information, satellite remote sensing and nearby radiosonde data. Two wake models and one mesoscale model were used to model the case and explain what was seen.......On 25 January 2016 at 12:45 UTC several photographs of the offshore wind farm Horns Rev 2 were taken by helicopter pilot Gitte Lundorff with an iPhone. A very shallow layer of fog covered the sea. The photos of the fog over the sea dramatically pictured the offshore wind farm wake. Researchers got...

  5. Wind Effects on Retention Time in Highway Ponds

    DEFF Research Database (Denmark)

    Bentzen, Thomas Ruby; Larsen, Torben; Rasmussen, Michael R.

    2007-01-01

    is to evaluate the quality of long term simulations based on historical rain series of the pollutant discharges from roads and highways. The idea of this paper is to evaluate the effects of wind on the retention time and compare the retention time for the situation of a spatial uniform wind shear stress...

  6. Wind Effects on Retention Time in Highway Ponds

    DEFF Research Database (Denmark)

    Bentzen, Thomas Ruby; Larsen, Torben; Rasmussen, Michael R.

    2008-01-01

    is to evaluate the quality of long term simulations based on historical rain series of the pollutant discharges from roads and highways. The idea of this paper is to evaluate the effects of wind on the retention time and compare the retention time for the situation of a spatial uniform wind shear stress...

  7. Wind turbine wake characterization using long-range Doppler lidar

    Science.gov (United States)

    Aitken, M.; Lundquist, J. K.; Hestmark, K.; Banta, R. M.; Pichugina, Y.; Brewer, A.

    2012-12-01

    Wind turbines extract energy from the freestream flow, resulting in a waked region behind the rotor which is characterized by reduced wind speed and increased turbulence. The velocity deficit in the wake diminishes with distance, as faster-moving air outside is gradually entrained. In a concentrated group of turbines, then, downwind machines experience very different inflow conditions compared to those in the front row. As utility-scale turbines rarely exist in isolation, detailed knowledge of the mean flow and turbulence structure inside wakes is needed to correctly model both power production and turbine loading at modern wind farms. To this end, the Turbine Wake and Inflow Characterization Study (TWICS) was conducted in the spring of 2011 to determine the reduction in wind speeds downstream from a multi-MW turbine located at the National Renewable Energy Laboratory's National Wind Technology Center (NWTC) near Boulder, Colorado. Full-scale measurements of wake dynamics are hardly practical or even possible with conventional sensors, such as cup anemometers mounted on meteorological (met) masts. Accordingly, the High Resolution Doppler Lidar (HRDL) developed by the National Oceanic and Atmospheric Administration's Earth System Research Laboratory was employed to investigate the formation and propagation of wakes under varying levels of ambient wind speed, shear, atmospheric stability, and turbulence. HRDL remotely senses line-of-sight wind velocities and has been used in several previous studies of boundary layer aerodynamics. With a fully steerable beam and a maximum range up to about 5 km, depending on atmospheric conditions, HRDL performed a comprehensive survey of the wind flow in front of and behind the turbine to study the shape, meandering, and attenuation of wakes. Due in large part to limited experimental data availability, wind farm wake modeling is still subject to an unacceptable amount of uncertainty, particularly in complex terrain. Here, analytical

  8. Effects of opening in shear walls of 30- storey building

    Directory of Open Access Journals (Sweden)

    Ruchi Sharma

    2015-03-01

    Full Text Available Tall towers and multi-storey buildings have fascinated mankind from the beginning of civilization, their construction being initially for defense and subsequently for ecclesiastical purposes. These tall buildings because of its height, is affected by lateral forces due to wind or earthquake actions tends to snap the building in shear and push it over in bending. In general, the rigidity (i.e. Resistance to lateral deflection and stability (i.e. Resistance to overturning moments requirement become more important. Shear walls (Structural walls contribute significant lateral stiffness, strength, and overall ductility and energy dissipation capacity. In many structural walls a regular pattern of openings has to be provided due to various functional requirements such as to accommodate doors, windows and service ducts. Such type of openings reduces the stiffness of the shear wall to some extent depending on the shape and size of the opening. In the present parametric study, efforts are made to investigate and critically assess the effects of various size of openings in shear walls on the responses and behaviors of multi-storey buildings. The 30 storey Prototype buildings with different types of openings in shear wall with and without incorporating the volume of shear wall reduced in the boundary elements are analyzed using software E-TABS using Response spectrum method (1893(Part-1-2002 and Time history method.

  9. University of Colorado - Center for Research and Education in Wind (CREW): Cooperative Research and Development Final Report, CRADA Number CRD-11-446

    Energy Technology Data Exchange (ETDEWEB)

    Sprague, Michael A. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-10-01

    Enabled by petascale supercomputing, the next generation of computer models for wind energy will simulate a vast range of scales and physics, spanning from turbine structural dynamics and blade-scale turbulence to mesoscale atmospheric flow. A single model covering all scales and physics is not feasible. Thus, these simulations will require the coupling of different models/codes, each for different physics, interacting at their domain boundaries.

  10. Extreme model reduction of shear layers

    Science.gov (United States)

    Qawasmeh, Bashar Rafee

    The aim of this research is to develop nonlinear low-dimensional models (LDMs) to describe vortex dynamics in shear layers. A modified Proper Orthogonal Decomposition (POD)/Galerkin projection method is developed to obtain models at extremely low dimension for shear layers. The idea is to dynamically scale the shear layer along y direction to factor out the shear layer growth and capture the dynamics by only a couple of modes. The models are developed for two flows, incompressible spatially developing and weakly compressible temporally developing shear layers, respectively. To capture basic dynamics, the low-dimensional models require only two POD modes for each wavenumber/frequency. Thus, a two-mode model is capable of representing single-wavenumber/frequency dynamics such as vortex roll-up, and a four-mode model is capable of representing the nonlinear dynamics involving a fundamental wavenumber/frequency and its subharmonic, such as vortex pairing/merging. Most of the energy is captured by the first mode of each wavenumber/frequency, the second POD mode, however, plays a critical role and needs to be included. In the thesis, we first apply the approach on temporally developing weakly compressible shear layers. In compressible flows, the thermodynamic variables are dynamically important, and must be considered. We choose isentropic Navier-Stokes equations for simplicity, and choose a proper inner product to present both kinetic energy and thermal energy. Two cases of convective Mach numbers are studied for low compressibility and moderate compressibility. Moreover, we study the sensitivity of the compressible four-mode model to several flow parameters: Mach number, the strength of initial perturbations of the fundamental and its subharmonic, and Reynolds number. Secondly we apply the approach on spatially developing incompressible shear layers with periodicity in time. We consider a streamwise parabolic form of the Navier-Stokes equations. When we add arbitrary

  11. Research on the Control Strategy for Grid-side Converter of PWM Doubly Fed Induction Wind Power Generators

    Science.gov (United States)

    Liu, Yifang; Wang, Zhijie; Li, Renfu; Jiang, Xiuchen; Sheng, Gehao; Liu, Tianyu; Liu, Sanming

    2017-05-01

    When the grid voltage drop, over current of transient rotor and over voltage may damage the power electronic devices. The attenuation of electromagnetic torque will lead to speed up. This paper proposes an improved feed-forward control strategy and its application in the PWM converter. When the PWM converter on voltage drops, bus voltage will be more stable. So over current problems of the DFIG rotor side can be reduced, and it also can improve voltage regulation speed of the DC bus voltage and reduce the oscillation amplitude. Furthermore, the stability of doubly fed wind generator system can be improved. The simulation results verify the validity of the modified control strategy.

  12. Mitigation of Power System Oscillation Caused by Wind Power Fluctuation

    DEFF Research Database (Denmark)

    Su, Chi; Hu, Weihao; Chen, Zhe

    2013-01-01

    Wind power is increasingly integrated in modern power grids, which brings new challenges to the power system operation. Wind power is fluctuating because of the uncertain nature of wind, whereas wind shear and tower shadow effects also cause periodic fluctuations. These may lead to serious forced...... oscillation when the frequencies of the periodic fluctuations are close to the natural oscillation frequencies of the connected power system. By using modal analysis and time-domain simulations, this study studies the forced oscillation caused by the wind shear and tower shadow effects. Three forced...... oscillation mitigation controllers are proposed and compared. A model of direct-drive-full-convertor-based wind farm connected to the IEEE 10-machine 39-bus system is adopted as the test system. The calculations and simulations are conducted in DIgSILENT PowerFactory 14.0. Results are presented to show...

  13. Rotor equivalent wind speed for power curve measurement - comparative exercise for IEA Wind Annex 32

    Science.gov (United States)

    Wagner, R.; Cañadillas, B.; Clifton, A.; Feeney, S.; Nygaard, N.; Poodt, M.; St. Martin, C.; Tüxen, E.; Wagenaar, J. W.

    2014-06-01

    A comparative exercise has been organised within the International Energy Agency (IEA) Wind Annex 32 in order to test the Rotor Equivalent Wind Speed (REWS) method under various conditions of wind shear and measurement techniques. Eight organisations from five countries participated in the exercise. Each member of the group has derived both the power curve based on the wind speed at hub height and the power curve based on the REWS. This yielded results for different wind turbines, located in diverse types of terrain and where the wind speed profile was measured with different instruments (mast or various lidars). The participants carried out two preliminary steps in order to reach consensus on how to implement the REWS method. First, they all derived the REWS for one 10 minute wind speed profile. Secondly, they all derived the power curves for one dataset. The main point requiring consensus was the definition of the segment area used as weighting for the wind speeds measured at the various heights in the calculation of the REWS. This comparative exercise showed that the REWS method results in a significant difference compared to the standard method using the wind speed at hub height in conditions with large shear and low turbulence intensity.

  14. Database on wind characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, K.S. [The Technical Univ. of Denmark (Denmark); Courtney, M.S. [Risoe National Lab., (Denmark)

    1999-08-01

    The organisations that participated in the project consists of five research organisations: MIUU (Sweden), ECN (The Netherlands), CRES (Greece), DTU (Denmark), Risoe (Denmark) and one wind turbine manufacturer: Vestas Wind System A/S (Denmark). The overall goal was to build a database consisting of a large number of wind speed time series and create tools for efficiently searching through the data to select interesting data. The project resulted in a database located at DTU, Denmark with online access through the Internet. The database contains more than 50.000 hours of measured wind speed measurements. A wide range of wind climates and terrain types are represented with significant amounts of time series. Data have been chosen selectively with a deliberate over-representation of high wind and complex terrain cases. This makes the database ideal for wind turbine design needs but completely unsuitable for resource studies. Diversity has also been an important aim and this is realised with data from a large range of terrain types; everything from offshore to mountain, from Norway to Greece. (EHS)

  15. Data mining for wind power forecasting

    OpenAIRE

    Fugon, Lionel; Juban, Jérémie; Kariniotakis, Georges

    2008-01-01

    International audience; Short-term forecasting of wind energy production up to 2-3 days ahead is recognized as a major contribution for reliable large-scale wind power integration. Increasing the value of wind generation through the improvement of prediction systems performance is recognised as one of the priorities in wind energy research needs for the coming years. This paper aims to evaluate Data Mining type of models for wind power forecasting. Models that are examined include neural netw...

  16. Time Series Model of Wind Speed for Multi Wind Turbines based on Mixed Copula

    Directory of Open Access Journals (Sweden)

    Nie Dan

    2016-01-01

    Full Text Available Because wind power is intermittent, random and so on, large scale grid will directly affect the safe and stable operation of power grid. In order to make a quantitative study on the characteristics of the wind speed of wind turbine, the wind speed time series model of the multi wind turbine generator is constructed by using the mixed Copula-ARMA function in this paper, and a numerical example is also given. The research results show that the model can effectively predict the wind speed, ensure the efficient operation of the wind turbine, and provide theoretical basis for the stability of wind power grid connected operation.

  17. The economics of offshore wind

    International Nuclear Information System (INIS)

    Green, Richard; Vasilakos, Nicholas

    2011-01-01

    This paper presents an overview of the main issues associated with the economics of offshore wind. Investment in offshore wind systems has been growing rapidly throughout Europe, and the technology will be essential in meeting EU targets for renewable energy in 2020. Offshore wind suffers from high installation and connection costs, however, making government support essential. We review various support policies used in Europe, concluding that tender-based feed-in tariff schemes, as used in Denmark, may be best for providing adequate support while minimising developers' rents. It may prove economic to build an international offshore grid connecting wind farms belonging to different countries that are sited close to each other. - Research Highlights: → Market trends for investment in offshore wind generation. → Cost analysis and comparison of offshore and onshore wind farms. → Review of policy support schemes in Europe for offshore wind generators and implications.

  18. Research of the flow-over of the mechanical core of four pipes by a wind current, using Control Volume Method

    Directory of Open Access Journals (Sweden)

    Chernyshev Dmitry

    2017-01-01

    Full Text Available One of the most important stages of designing the framework of high-rise stacks is the calculation of loads on the stack and on the mechanical core of the gas outlet pipes located inside the stack. In current normative documents there is no data on the aerodynamics of the mechanical core. At the same time the aerodynamic coefficients of pipes in the core differ from the aerodynamic coefficients of single cylinders. When dealing with gas dynamics problems, program complexes in which control volume method is applied are getting widespread use. When problems are solved in such complexes, the speed of wind current and the size of the structure are selected, and the required Reynolds numbers similarity is achieved. This paper presents the results of the research which deals with the flow-over of the mechanical core of four pipes in the gas-dynamic complex STAR-CD, the work of which is based on control volume method. In the research two options of the mechanical core model are considered, depending on the cylinders’ relative position. The first option is the ratio of the distance between the cylinders’ centers 1.5d, the second option is the ratio 2. For each design option the flow-over by the wind current at three angles of attack 0°, 30° and 45° is simulated.

  19. Improving Maryland’s Offshore Wind Energy Resource Estimate Using Doppler Wind Lidar Technology to Assess Microtmeteorology Controls

    Directory of Open Access Journals (Sweden)

    Pé Alexandra St.

    2016-01-01

    Compared to lidar measurements, power law extrapolation estimates and operational National Weather Service models underestimated hub-height wind speeds in the WEA. In addition, lidar observations suggest the frequent development of a low-level wind maximum (LLWM, with high turbinelayer wind shear and low turbulence intensity within a turbine’s rotor layer (40m-160m. Results elucidate the advantages of using Doppler wind lidar technology to improve offshore wind resource estimates and its ability to monitor under-sampled offshore meteorological controls impact on a potential turbine’s ability to produce power.

  20. Designing shear-thinning

    Science.gov (United States)

    Nelson, Arif Z.; Ewoldt, Randy H.

    2017-11-01

    Design in fluid mechanics often focuses on optimizing geometry (airfoils, surface textures, microfluid channels), but here we focus on designing fluids themselves. The dramatically shear-thinning ``yield-stress fluid'' is currently the most utilized non-Newtonian fluid phenomenon. These rheologically complex materials, which undergo a reversible transition from solid-like to liquid-like fluid flow, are utilized in pedestrian products such as paint and toothpaste, but also in emerging applications like direct-write 3D printing. We present a paradigm for yield-stress fluid design that considers constitutive model representation, material property databases, available predictive scaling laws, and the many ways to achieve a yield stress fluid, flipping the typical structure-to-rheology analysis to become the inverse: rheology-to-structure with multiple possible materials as solutions. We describe case studies of 3D printing inks and other flow scenarios where designed shear-thinning enables performance remarkably beyond that of Newtonian fluids. This work was supported by Wm. Wrigley Jr. Company and the National Science Foundation under Grant No. CMMI-1463203.

  1. Noise from wind turbines

    International Nuclear Information System (INIS)

    Andersen, B.; Larsen, P.

    1993-01-01

    Denmark has 3200 wind turbines with an installed maximum capacity of 418MW. The most important Danish research projects into wind turbine noise and the main results are listed. These date from 1983. Two comprehensive studies are currently in progress. The first is an analytical and empirical investigation of aerodynamic noise from wind turbine rotors and has so far dealt mainly with tip noise. The measurement method, using a hard board mounted microphone on the ground near the turbine, is described. Four different tip designs have been tested. Some examples of reference sound power level spectra for three of the designs are presented. During the past two years a computerbased data acquisition system has been used for real-time determination of sound power levels. The second study, which has just commenced, is on annoyance from wind turbine noise. It will include noise measurements, masking calculations and a social survey on the perceived nuisance. (UK)

  2. Wind turbines and health

    International Nuclear Information System (INIS)

    Rideout, K.; Copes, R.; Bos, C.

    2010-01-01

    This document summarized the potential health hazards associated with wind turbines, such as noise and low frequency sound, vibration and infrasound; electromagnetic fields (EMF); shadow flicker; and ice throw and structural failure. Various symptoms can be attributed to wind turbines, including dizziness, sleep disruption, and headaches. A review of available research regarding potential health affects to residents living in close proximity to wind turbines showed that the sound level associated with wind turbines at common residential setbacks is not sufficient to damage hearing, but may lead to annoyance and sleep disturbance. Research has shown that wind turbines are not a significant source of EMF exposure, and although shadows caused by the blades may be annoying, they are not likely to cause epileptic seizures at normal operational speeds. The risk of injury from ice throw can be minimized with setbacks of 200 to 400 m. Examples of Canadian wind turbine setback guidelines and regulations were also offered. It was concluded that setbacks and operational guidelines can be utilized in combination to address safety hazards, sound levels, land use issues, and impacts on people. 46 refs., 2 tabs., 2 figs.

  3. Wind turbines and health

    Energy Technology Data Exchange (ETDEWEB)

    Rideout, K.; Copes, R.; Bos, C. [National Colaborating Centre for Environmental Health, Vancouver, BC (Canada)

    2010-01-15

    This document summarized the potential health hazards associated with wind turbines, such as noise and low frequency sound, vibration and infrasound; electromagnetic fields (EMF); shadow flicker; and ice throw and structural failure. Various symptoms can be attributed to wind turbines, including dizziness, sleep disruption, and headaches. A review of available research regarding potential health affects to residents living in close proximity to wind turbines showed that the sound level associated with wind turbines at common residential setbacks is not sufficient to damage hearing, but may lead to annoyance and sleep disturbance. Research has shown that wind turbines are not a significant source of EMF exposure, and although shadows caused by the blades may be annoying, they are not likely to cause epileptic seizures at normal operational speeds. The risk of injury from ice throw can be minimized with setbacks of 200 to 400 m. Examples of Canadian wind turbine setback guidelines and regulations were also offered. It was concluded that setbacks and operational guidelines can be utilized in combination to address safety hazards, sound levels, land use issues, and impacts on people. 46 refs., 2 tabs., 2 figs.

  4. Real time computer data system for the 40 x 80 ft wind tunnel facility at Ames Research Center

    Science.gov (United States)

    Cambra, J. M.; Tolari, G. P.

    1974-01-01

    The wind tunnel realtime computer system is a distributed data gathering system that features a master computer subsystem, a high speed data gathering subsystem, a quick look dynamic analysis and vibration control subsystem, an analog recording back-up subsystem, a pulse code modulation (PCM) on-board subsystem, a communications subsystem, and a transducer excitation and calibration subsystem. The subsystems are married to the master computer through an executive software system and standard hardware and FORTRAN software interfaces. The executive software system has four basic software routines. These are the playback, setup, record, and monitor routines. The standard hardware interfaces along with the software interfaces provide the system with the capability of adapting to new environments.

  5. 3D WindScanner lidar measurements of wind and turbulence around wind turbines, buildings and bridges

    DEFF Research Database (Denmark)

    Mikkelsen, Torben Krogh; Sjöholm, Mikael; Angelou, Nikolas

    2017-01-01

    WindScanner is a distributed research infrastructure developed at DTU with the participation of a number of European countries. The research infrastructure consists of a mobile technically advanced facility for remote measurement of wind and turbulence in 3D. The WindScanners provide coordinated ...

  6. Magnetorheological dampers in shear mode

    International Nuclear Information System (INIS)

    Wereley, N M; Cho, J U; Choi, Y T; Choi, S B

    2008-01-01

    In this study, three types of shear mode damper using magnetorheological (MR) fluids are theoretically analyzed: linear, rotary drum, and rotary disk dampers. The damping performance of these shear mode MR dampers is characterized in terms of the damping coefficient, which is the ratio of the equivalent viscous damping at field-on status to the damping at field-off status. For these three types of shear mode MR damper, the damping coefficient or dynamic range is derived using three different constitutive models: the Bingham–plastic, biviscous, and Herschel–Bulkley models. The impact of constitutive behavior on shear mode MR dampers is theoretically presented and compared

  7. Next Generation Wind Turbine

    Energy Technology Data Exchange (ETDEWEB)

    Cheraghi, S. Hossein [Western New England Univ., Springfield, MA (United States); Madden, Frank [FloDesign Wind Turbine Corp., Waltham, MA (United States)

    2012-09-01

    The goal of this collaborative effort between Western New England University's College of Engineering and FloDesign Wind Turbine (FDWT) Corporation to wok on a novel areodynamic concept that could potentially lead to the next generation of wind turbines. Analytical studies and early scale model tests of FDWT's Mixer/Ejector Wind Turbine (MEWT) concept, which exploits jet-age advanced fluid dynamics, indicate that the concept has the potential to significantly reduce the cost of electricity over conventional Horizontal Axis Wind Turbines while reducing land usage. This project involved the design, fabrication, and wind tunnel testing of components of MEWT to provide the research and engineering data necessary to validate the design iterations and optimize system performance. Based on these tests, a scale model prototype called Briza was designed, fabricated, installed and tested on a portable tower to investigate and improve the design system in real world conditions. The results of these scale prototype efforts were very promising and have contributed significantly to FDWT's ongoing development of a product scale wind turbine for deployment in multiple locations around the U.S. This research was mutually beneficial to Western New England University, FDWT, and the DOE by utilizing over 30 student interns and a number of faculty in all efforts. It brought real-world wind turbine experience into the classroom to further enhance the Green Engineering Program at WNEU. It also provided on-the-job training to many students, improving their future employment opportunities, while also providing valuable information to further advance FDWT's mixer-ejector wind turbine technology, creating opportunities for future project innovation and job creation.

  8. Using machine learning to predict wind turbine power output

    International Nuclear Information System (INIS)

    Clifton, A; Kilcher, L; Lundquist, J K; Fleming, P

    2013-01-01

    Wind turbine power output is known to be a strong function of wind speed, but is also affected by turbulence and shear. In this work, new aerostructural simulations of a generic 1.5 MW turbine are used to rank atmospheric influences on power output. Most significant is the hub height wind speed, followed by hub height turbulence intensity and then wind speed shear across the rotor disk. These simulation data are used to train regression trees that predict the turbine response for any combination of wind speed, turbulence intensity, and wind shear that might be expected at a turbine site. For a randomly selected atmospheric condition, the accuracy of the regression tree power predictions is three times higher than that from the traditional power curve methodology. The regression tree method can also be applied to turbine test data and used to predict turbine performance at a new site. No new data are required in comparison to the data that are usually collected for a wind resource assessment. Implementing the method requires turbine manufacturers to create a turbine regression tree model from test site data. Such an approach could significantly reduce bias in power predictions that arise because of the different turbulence and shear at the new site, compared to the test site. (letter)

  9. Coherent structures in compressible free-shear-layer flows

    Energy Technology Data Exchange (ETDEWEB)

    Aeschliman, D.P.; Baty, R.S. [Sandia National Labs., Albuquerque, NM (United States). Engineering Sciences Center; Kennedy, C.A.; Chen, J.H. [Sandia National Labs., Livermore, CA (United States). Combustion and Physical Sciences Center

    1997-08-01

    Large scale coherent structures are intrinsic fluid mechanical characteristics of all free-shear flows, from incompressible to compressible, and laminar to fully turbulent. These quasi-periodic fluid structures, eddies of size comparable to the thickness of the shear layer, dominate the mixing process at the free-shear interface. As a result, large scale coherent structures greatly influence the operation and efficiency of many important commercial and defense technologies. Large scale coherent structures have been studied here in a research program that combines a synergistic blend of experiment, direct numerical simulation, and analysis. This report summarizes the work completed for this Sandia Laboratory-Directed Research and Development (LDRD) project.

  10. Integration of wind generation forecasts. Volume 2

    International Nuclear Information System (INIS)

    Ahlstrom, M.; Zavadil, B.; Jones, L.

    2005-01-01

    WindLogics is a company that specializes in atmospheric modelling, visualization and fine-scale forecasting systems for the wind power industry. A background of the organization was presented. The complexities of wind modelling were discussed. Issues concerning location and terrain, shear, diurnal and interannual variability were reviewed. It was suggested that wind power producers should aim to be mainstream, and that variability should be considered as intrinsic to fuel supply. Various utility operating impacts were outlined. Details of an Xcel NSP wind integration study were presented, as well as a studies conducted in New York state and Colorado. It was concluded that regulations and load following impacts with wind energy integration are modest. Overall impacts are dominated by costs incurred to accommodate wind generation variability and uncertainty in the day-ahead time frame. Cost impacts can be reduced with adjustments to operating strategies, improvements in wind forecasting and access to real-time markets. Details of WindLogic's wind energy forecast system were presented, as well as examples of day ahead and hour ahead forecasts and wind speed and power forecasts. Screenshots of control room integration, EMS integration and simulations were presented. Details of a utility-scale wind energy forecasting system funded by Xcel Renewable Development Fund (RDF) were also presented. The goal of the system was to optimize the way that wind forecast information is integrated into the control room environment. Project components were outlined. It was concluded that accurate day-ahead forecasting can lead to significant asset optimization. It was recommended that wind plants share data, and aim to resolve issues concerning grid codes and instrumentation. refs., tabs., figs

  11. Effects of Clay and Moisture Content on Direct Shear Tests for Clay-Sand Mixtures

    OpenAIRE

    Muawia A. Dafalla

    2013-01-01

    The direct shear test using shear box is commonly recommended by practicing geotechnical engineers to obtain the cohesion and angle of internal friction for granular soils. The clay liners involve sand as a main constituent with added clay of variable proportions. This research aims at investigating the reliability of using the direct shear test for different clay contents and different moisture contents using an adequate shearing strain. These factors were found to affect the bilinear trends...

  12. Shear strength of non-shear reinforced concrete elements

    DEFF Research Database (Denmark)

    Hoang, Cao linh

    1997-01-01

    The report deals with the shear strength of statically indeterminate reinforced concrete beams without shear reinforcement. Solutions for a number of beams with different load and support conditions have been derived by means of the crack sliding model developed by Jin- Ping Zhang.This model is b...

  13. EDITORIAL: Wind energy

    Science.gov (United States)

    Mann, Jakob; Nørkær Sørensen, Jens; Morthorst, Poul-Erik

    2008-01-01

    Wind energy is rapidly growing. In 2006 the installed generating capacity in the world increased by 25%, a growth rate which has more or less been sustained during the last decade. And there is no reason to believe that this growth will slow significantly in the coming years. For example, the United Kingdom's goal for installed wind turbines by 2020 is 33 GW up from 2 GW in 2006, an average annual growth rate of 22% over that period. More than half of all turbines are installed in Europe, but United States, India and lately China are also rapidly growing markets. The cradle of modern wind energy was set by innovative blacksmiths in rural Denmark. Now the wind provides more than 20% of the electrical power in Denmark, the industry has professionalized and has close ties with public research at universities. This focus issue is concerned with research in wind energy. The main purposes of research in wind energy are to: decrease the cost of power generated by the wind; increase the reliability and predictability of the energy source; investigate and reduce the adverse environmental impact of massive deployment of wind turbines; build research based educations for wind energy engineers. This focus issue contains contributions from several fields of research. Decreased costs cover a very wide range of activities from aerodynamics of the wind turbine blades, optimal site selection for the turbines, optimization of the electrical grid and power market for a fluctuating source, more efficient electrical generators and gears, and new materials and production techniques for turbine manufacturing. The United Kingdom recently started the construction of the London Array, a 1 GW off-shore wind farm east of London consisting of several hundred turbines. To design such a farm optimally it is necessary to understand the chaotic and very turbulent flow downwind from a turbine, which decreases the power production and increases the mechanical loads on other nearby turbines. Also

  14. Wind energy: A renewable energy option

    Science.gov (United States)

    Zimmerman, J. S.

    1977-01-01

    Wind turbine generator research programs administered by the Energy Research and Development Administration are examined. The design and operation of turbine demonstration models are described. Wind assessments were made to determine the feasibility of using wind generated power for various parts of the country.

  15. Wind energy availability above gaps in a forest

    DEFF Research Database (Denmark)

    Sogachev, Andrey; Mann, Jakob; Dellwik, Ebba

    2009-01-01

    installation strategies. The canopy-planetary boundary-layer model SCADIS is used to investigate the effect of forest gap size (within the diameter range of 3 - 75 tree heights, h) on wind energy related variables. A wind turbine was assumed with following features: the hub height and rotor diameter of 3.5h......There is a lack of data on availability of wind energy above a forest disturbed by clear-cuts, where a wind energy developer may find an opportunity to install a wind farm. Computational fluid dynamics (CFD) models can provide spatial patterns of wind and turbulence, and help to develop optimal...... and 3h, respectively; this provides the clearance between the rotor and ground of 2h which is similar to the value obtained by the rule of thumb. Spatial variations of wind energy production, the average wind speed shear and cumulative TKE inside the layer of 2h - 5h above the ground around the gaps...

  16. Wind power's coming of age

    International Nuclear Information System (INIS)

    Phillips, J.A.

    1992-01-01

    This article examines the role that wind power has in meeting future energy demand. The topics of the article include demonstration of current technology, an overview of research and market activity, institutional and regulatory barriers and other issues, financing of wind power projects, incentives and penalties, current market experience, national trends in application of wind power plants, advanced technologies, intermittency, power quality, and transmission and distribution

  17. Environmental impact of wind energy

    DEFF Research Database (Denmark)

    Mann, Jakob; Teilmann, Jonas

    2013-01-01

    One purpose of wind turbines is to provide pollution-free electric power at a reasonable price in an environmentally sound way. In this focus issue the latest research on the environmental impact of wind farms is presented. Offshore wind farms affect the marine fauna in both positive and negative...... emission of eight air pollutants. Finally, noise generation and its impact on humans are studied....

  18. Wind Turbine Optimization with WISDEM

    Energy Technology Data Exchange (ETDEWEB)

    Dykes, Katherine L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Damiani, Rick R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Graf, Peter A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Scott, George N [National Renewable Energy Laboratory (NREL), Golden, CO (United States); King, Ryan N [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Guo, Yi [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Quick, Julian [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sethuraman, Latha [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Veers, Paul S [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Ning, Andrew [Brigham Young University

    2018-01-03

    This presentation for the Fourth Wind Energy Systems Engineering Workshop explains the NREL wind energy systems engineering initiative-developed analysis platform and research capability to capture important system interactions to achieve a better understanding of how to improve system-level performance and achieve system-level cost reductions. Topics include Wind-Plant Integrated System Design and Engineering Model (WISDEM) and multidisciplinary design analysis and optimization.

  19. Ancillary Services from Wind Farms

    DEFF Research Database (Denmark)

    Meeting the EU objectives of sustainable energy supply in the near future involves a dramatic increase of the electricity demand covered by variable renewable sources, among which wind power holds an important role. This important role comes together with ever increasing requirements of wind powe...... plants ability of delivering ancillary services to the power system. The presentation attempts at giving an overview of the present (and future) research on the ability of large (offshore) wind farms to provide power system services....

  20. The First Results of the Application of Shear Wave Transient Elastography When Determining the State of Pancreatic Parenchyma (Review of Literature and Own Researches

    Directory of Open Access Journals (Sweden)

    Yu.M. Stepanov

    2015-09-01

    Full Text Available Elastography is a rapidly developing diagnostic me-thod and enables to identify and to differentiate focal masses of different origin, as well as the stage of fibrous transformation of the liver, as evidenced by many research works. The method is firmly established in the practice of gastroenterology. The appearance of a new generation devices with the function of ARFI (VTQ and SWEI has allowed scientists to begin a transient study of the stiffness of pancreatic parenchyma. However, there is small quantity of these works, it is necessary to standardize the technique of execution of the research and its results in various diseases. The apparatus Ultima PA Expert® (Radmir, Ukraine with the function of SWEI enables to conduct transient elastography of the pancreas, when using certain technical methods, in order to determine the stiffness of the parenchyma in normal and in diffuse pathology. The values of the stiffness obtained with the apparatus Ultima PA Expert® (Radmir, Ukraine presented in kPa and at the same time in m/s, making these data comparable with those obtained by other researchers on the devices having only one measurement function. In apparently healthy individuals, we have received the parameter of the stiffness of pancreatic parenchyma of (4.86 ± 0.05 kPa, (1.33 ± 0.05 m/s. In chronic pancreatitis, this measure is (6.48 ± 0.80 kPa, (1.52 ± 0.17 m/s. The findings make it possible to determine the therapeutic approach, as well as its effectiveness, based on the indicators of stiffness.

  1. Wind energy

    CERN Document Server

    Woll, Kris

    2016-01-01

    Across the country, huge open spaces are covered in gently turning wind turbines. In Wind Energy, explore how these machines generate electricity, learn about the history of wind power, and discover the latest advances in the field. Easy-to-read text, vivid images, and helpful back matter give readers a clear look at this subject. Features include a table of contents, infographics, a glossary, additional resources, and an index. Aligned to Common Core Standards and correlated to state standards. Core Library is an imprint of Abdo Publishing, a division of ABDO.

  2. SAT-WIND project. Final report[Winds from satellites for offshore and coastal wind energy mapping and wind-indexing

    Energy Technology Data Exchange (ETDEWEB)

    Hasager, C.B.; Astrup, P.; Nielsen, M. (and others)

    2007-04-15

    The SAT-WIND project 'Winds from satellites for offshore and coastal wind energy mapping and wind-indexing' was a research project funded by STVF/DSF in the years 2003 to 2006 (Sagsnr. 2058-03-0006). The goal of the project was to verify the applicability of satellite wind maps derived from passive microwave, altimeter, scatterometer and imaging Synthetic Aperture Radar (SAR) technologies for wind energy tools for wind resources and wind-indexing. The study area was the Danish Seas including the North Sea, interior seas and the Baltic Sea. The report describes technical details on the satellite data sources including: 1) passive microwave (SSM/I, AMSR-E), 2) passive microwave polarimetric (WindSat), 3) scatterometer (ERS, QuikSCAT, Midori-2 and NSCAT), 4) altimeter (ERS, Topex, Poseidon, GFO-1, Jason-1), 5) SAR (ERS, Envisat). The SAR wind maps were treated in S-WAsP developed by Risoe National Laboratory in cooperation with GRAS A/S in the innovative project SAT-WIND-SMV (Sagsnr. 2104-05-0084) in the years 2005 and 2006 in parallel with SAT-WIND. The results from the SAT-WIND project are presented. These include ocean wind statistics, offshore wind resource estimates and comparison results for wind-indexing. (au)

  3. Wind Energy: A Maturing Power Supply Possibility.

    Science.gov (United States)

    Petersen, Erik Lundtang; And Others

    1987-01-01

    Suggests that wind energy for electrification will prove to be an appropriate technology with very positive socioeconomic benefits, especially in developing countries. Provides examples of projects conducted by a Danish wind research laboratory. (TW)

  4. Research and technological development in the subject of the wind power generation; Investigacion y desarrollo tecnologico en el tema de la generacion eoloelectrica

    Energy Technology Data Exchange (ETDEWEB)

    Borja Diaz, Marco A.; Gonzalez Galarza, Raul [Instituto de Investigaciones Electricas, Temixco, Morelos (Mexico)

    2000-07-01

    The wind power technology has advanced in an important way during the last decade. In the industrialized countries the annual sales of aero generators reach surprising numbers and increase annually at a rate of 30%. But, is this the direct product of the maturity of this technology?, is at the moment the wind power technology economically competitive with the conventional options? Do necessities exist of Research and Technological Development in the subject? This article presents some facts and indicators that will help the reader to deduce his own conclusions. [Spanish] La tecnologia eoloelectrica ha avanzado de manera importante durante la ultima decada. En los paises industrializados las ventas anuales de aerogeneradores alcanzan cifras sorprendentes y se incrementan al 30% anual. Pero, es esto el producto directo de la madurez de esta tecnologia?, actualmente la tecnologia eoloelectrica es economicamente competitiva con las opciones convencionales?, existen necesidades de Investigacion y Desarrollo Tecnologico en el tema? Este articulo presenta algunos hechos e indicadores que ayudaran al lector a deducir sus propias conclusiones.

  5. Wind Power Prediction Considering Nonlinear Atmospheric Disturbances

    Directory of Open Access Journals (Sweden)

    Yagang Zhang

    2015-01-01

    Full Text Available This paper considers the effect of nonlinear atmospheric disturbances on wind power prediction. A Lorenz system is introduced as an atmospheric disturbance model. Three new improved wind forecasting models combined with a Lorenz comprehensive disturbance are put forward in this study. Firstly, we define the form of the Lorenz disturbance variable and the wind speed perturbation formula. Then, different artificial neural network models are used to verify the new idea and obtain better wind speed predictions. Finally we separately use the original and improved wind speed series to predict the related wind power. This proves that the corrected wind speed provides higher precision wind power predictions. This research presents a totally new direction in the wind prediction field and has profound theoretical research value and practical guiding significance.

  6. Offshore Wind Turbine Design

    DEFF Research Database (Denmark)

    Frandsen, Sten; Hansen, Erik Asp; Ibsen, Lars Bo

    2006-01-01

    Current offshore wind turbine design methods have matured to a 1st generation state, manifested in the draft of a possible standard, IEC 61400-3 (2005). It is now time to investigate the possibilities of improving existing methods. To do so in an efficient manner a clear identification of the most...... important uncertainty drivers specific for offshore wind turbine design loads is required. Describing the initial efforts in a Danish research project, the paper points to focal points for research and development. These are mainly: soil-structure interaction, improved modelling of wave loads from deep...

  7. The design of wind turbine for electrical power generation in Malaysian wind characteristics

    International Nuclear Information System (INIS)

    Abas Ab Wahab; Chong Wen Thong

    2000-01-01

    The paper describes the study of a wind turbine for electrical power generation in Malaysia wind characteristics. In this research, the wind turbine is designs based on the local wind characteristics and tries to avoid the problems faced in the past (turbine design, access, manpower and technical). The new wind turbine rotor design for a medium speed wind speed turbine utilises the concept of open-close type of horizontal axis (up-wind) wind turbine is intended to widen the optimum performance range for electrical generation in Malaysia wind characteristics. The wind turbine has been designed to cut-in at a lower speed, and to provide the rotation speed that high enough to run a generator. The analysis and design of new low speed wind turbine blades and open-close turbine rotor and prediction of turbine performance are being detailed in this paper. (Author)

  8. Solar wind stream interfaces

    International Nuclear Information System (INIS)

    Gosling, J.T.; Asbridge, J.R.; Bame, S.J.; Feldman, W.C.

    1978-01-01

    Measurements aboard Imp 6, 7, and 8 reveal that approximately one third of all high-speed solar wind streams observed at 1 AU contain a sharp boundary (of thickness less than approx.4 x 10 4 km) near their leading edge, called a stream interface, which separates plasma of distinctly different properties and origins. Identified as discontinuities across which the density drops abruptly, the proton temperature increases abruptly, and the speed rises, stream interfaces are remarkably similar in character from one stream to the next. A superposed epoch analysis of plasma data has been performed for 23 discontinuous stream interfaces observed during the interval March 1971 through August 1974. Among the results of this analysis are the following: (1) a stream interface separates what was originally thick (i.e., dense) slow gas from what was originally thin (i.e., rare) fast gas; (2) the interface is the site of a discontinuous shear in the solar wind flow in a frame of reference corotating with the sun; (3) stream interfaces occur at speeds less than 450 km s - 1 and close to or at the maximum of the pressure ridge at the leading edges of high-speed streams; (4) a discontinuous rise by approx.40% in electron temperature occurs at the interface; and (5) discontinuous changes (usually rises) in alpha particle abundance and flow speed relative to the protons occur at the interface. Stream interfaces do not generally recur on successive solar rotations, even though the streams in which they are embedded often do. At distances beyond several astronomical units, stream interfaces should be bounded by forward-reverse shock pairs; three of four reverse shocks observed at 1 AU during 1971--1974 were preceded within approx.1 day by stream interfaces. Our observations suggest that many streams close to the sun are bounded on all sides by large radial velocity shears separating rapidly expanding plasma from more slowly expanding plasma

  9. Wind tunnel tests of a free yawing downwind wind turbine

    DEFF Research Database (Denmark)

    Verelst, David Robert; Larsen, Torben J.; van Wingerden, Jan-Willem

    2014-01-01

    . The discussed test cases show that the turbine is stable while operating in free yawing conditions. Further, the effect of the tower shadow passage on the blade flapwise strain measurement is evaluated. Finally, data from the experiment is compared with preliminary simulations using DTU Wind Energy......This research paper presents preliminary results on a behavioural study of a free yawing downwind wind turbine. A series of wind tunnel tests was performed at the TU Delft Open Jet Facility with a three bladed downwind wind turbine and a rotor radius of 0.8 meters. The setup includes an off...

  10. Lateral Displacement and Shear Lag Effect of Combination of Diagrid-Frame

    Science.gov (United States)

    Abd. Samat, Roslida; Chua, Fong Teng; Mustakim, Nur Akmal Hayati Mohd; Saad, Sariffuddin; Abu Bakar, Suhaimi

    2018-03-01

    Diagrid system, which is the portmanteau of diagonal grid member, is an exterior lateral load resisting system for tall building that has gained a wide acceptance in the design of tall buildings. There is abundance of researches that studied the efficiency of diagrid systems, which are constructed from the ground level to the top of the buildings in resisting the lateral load. Nevertheless, no study had been performed on the effectiveness of the diagrid that is constructed above other tall building systems despite the existence of a few buildings in the world that employ such system. The objective of this research is to understand the behavior of the lateral displacement and shear lag effect due to wind load when the diagrid structure is constructed above a frame. Models of 60-story buildings with a footprint of 36m x 36m were analyzed by using Staad.Pro software. The level where the diagrid members started was altered. The lateral displacement was reduced to 60.6 percent and 41 percent of the lateral displacement of a building with full frame system when the combination of frame-diagrid that had the diagrid started at Level 1 and Level 45, respectively were employed. Furthermore, the shear lag ratio was reduced from 1.7 to 1.3 when the level where the diagrid started was increased from Level 1 to Level 45.

  11. World Wind

    Data.gov (United States)

    National Aeronautics and Space Administration — World Wind allows any user to zoom from satellite altitude into any place on Earth, leveraging high resolution LandSat imagery and SRTM elevation data to experience...

  12. Database on wind characteristics - Analyses of wind turbine design loads

    DEFF Research Database (Denmark)

    Larsen, Gunner Chr.; Hansen, K.S.

    2004-01-01

    The main objective of IEA R&D Wind Annex XVII - Database on Wind Characteristics - has been to provide wind energy planners, designers and researchers, as well as the international wind engineering community in general, with a source of actual wind fielddata (time series and resource data) observed...... in a wide range of different wind climates and terrain types. Connected to an extension of the initial Annex period, the scope for the continuation was widened to include also support to the international windturbine standardisation efforts.. The project partners are Sweden, Norway, U.S.A., The Netherlands...... and Denmark, with Denmark as the Operating Agent. The reporting of the continuation of Annex XVII falls in two separate parts. Part one accounts in detailsfor the available data in the established database bank, and part two describes various data analyses performed with the overall purpose of improving...

  13. A Piezoelectric Shear Stress Sensor

    Science.gov (United States)

    Kim, Taeyang; Saini, Aditya; Kim, Jinwook; Gopalarathnam, Ashok; Zhu, Yong; Palmieri, Frank L.; Wohl, Christopher J.; Jiang, Xiaoning

    2016-01-01

    In this paper, a piezoelectric sensor with a floating element was developed for shear stress measurement. The piezoelectric sensor was designed to detect the pure shear stress suppressing effects of normal stress generated from the vortex lift-up by applying opposite poling vectors to the: piezoelectric elements. The sensor was first calibrated in the lab by applying shear forces and it showed high sensitivity to shear stress (=91.3 +/- 2.1 pC/Pa) due to the high piezoelectric coefficients of PMN-33%PT (d31=-1330 pC/N). The sensor also showed almost no sensitivity to normal stress (less than 1.2 pC/Pa) because of the electromechanical symmetry of the device. The usable frequency range of the sensor is 0-800 Hz. Keywords: Piezoelectric sensor, shear stress, floating element, electromechanical symmetry

  14. Modelling and Measuring Flow and Wind Turbine Wakes in Large Wind Farms Offshore

    DEFF Research Database (Denmark)

    Barthelmie, Rebecca Jane; Hansen, Kurt Schaldemose; Frandsen, Sten Tronæs

    2009-01-01

    Average power losses due to wind turbine wakes are of the order of 10 to 20% of total power output in large offshore wind farms. Accurately quantifying power losses due to wakes is, therefore, an important part of overall wind farm economics. The focus of this research is to compare different types...... power losses due to wakes and loads. The research presented is part of the EC-funded UpWind project, which aims to radically improve wind turbine and wind farm models in order to continue to improve the costs of wind energy. Reducing wake losses, or even reduce uncertainties in predicting power losses...... from wakes, contributes to the overall goal of reduced costs. Here, we assess the state of the art in wake and flow modelling for offshore wind forms, the focus so for has been cases at the Horns Rev wind form, which indicate that wind form models require modification to reduce under-prediction of wake...

  15. 78 FR 29364 - Exelon Corporation, Exelon Wind 1, LLC, Exelon Wind 2, LLC, Exelon Wind 3, LLC, Exelon Wind 4...

    Science.gov (United States)

    2013-05-20

    ...-005, QF07-257-004] Exelon Corporation, Exelon Wind 1, LLC, Exelon Wind 2, LLC, Exelon Wind 3, LLC, Exelon Wind 4, LLC, Exelon Wind 5, LLC, Exelon Wind 6, LLC, Exelon Wind 7, LLC, Exelon Wind 8, LLC, Exelon Wind 9, LLC, Exelon Wind 10, LLC, Exelon Wind 11, LLC, High Plains Wind Power, LLC v. Xcel Energy...

  16. Wind energy: Science or fiction?

    International Nuclear Information System (INIS)

    Sisouw de Zilwa, L.G.

    1993-01-01

    The energy policy of the Dutch government is aimed at the use of different energy sources (diversification). Therefore the Dutch government supports the implementation of wind turbines and stimulates product improvement and research by means of the TWIN-program (a program to support the application of wind energy in the Netherlands). The purpose of the program is to commercialize efficient wind turbines. Without subsidies it is not yet possible to exploit wind turbines in an efficient way. Around the year 2000 a capacity of 1000 MW must be realized. 1 fig., 1 ill., 5 tabs., 1 ref

  17. Remotely measuring the wind using turbine-mounted lidars: Application to power performance testing

    DEFF Research Database (Denmark)

    Borraccino, Antoine

    of the wind field reconstruction methods. Two wind models were developed in this thesis. The first one employs lidar measurement at a single distance – but several heights –, accounts for shear through a power law profile, and estimates hub height wind speed, direction and the shear exponent. The second model...... combines the wind model with a simple one-dimensional induction model. The lidar inputs were line-of-sight velocity measurements taken at multiple distances close to the rotor, from 0.5 to 1.25 rotor diameters. Using the combined wind-induction model, hub height free stream wind characteristics...... uncertainties were also quantified. Further, the annual energy production (AEP) was computed for a range of annual mean wind speeds. At 8ms−1, the lidar-estimated AEP was within 1% to the one obtained with the cup anemometer. The combined wind-induction reconstruction technique represents a paradigm shift...

  18. Multi-MW wind turbine power curve measurements using remote sensing instruments – the first Høvsøre campaign

    DEFF Research Database (Denmark)

    Wagner, Rozenn; Courtney, Michael

    Power curve measurement for large wind turbines requires taking into account more parameters than only the wind speed at hub height. Based on results from aerodynamic simulations, an equivalent wind speed taking the wind shear into account was defined and found to reduce the scatter in the power...

  19. Establishing a Comprehensive Wind Energy Program

    Energy Technology Data Exchange (ETDEWEB)

    Fleeter, Sanford [Purdue University

    2012-09-30

    This project was directed at establishing a comprehensive wind energy program in Indiana, including both educational and research components. A graduate/undergraduate course ME-514 - Fundamentals of Wind Energy has been established and offered and an interactive prediction of VAWT performance developed. Vertical axis wind turbines for education and research have been acquired, instrumented and installed on the roof top of a building on the Calumet campus and at West Lafayette (Kepner Lab). Computational Fluid Dynamics (CFD) calculations have been performed to simulate these urban wind environments. Also, modal dynamic testing of the West Lafayette VAWT has been performed and a novel horizontal axis design initiated. The 50-meter meteorological tower data obtained at the Purdue Beck Agricultural Research Center have been analyzed and the Purdue Reconfigurable Micro Wind Farm established and simulations directed at the investigation of wind farm configurations initiated. The virtual wind turbine and wind turbine farm simulation in the Visualization Lab has been initiated.

  20. Reliability Modeling of Wind Turbines

    DEFF Research Database (Denmark)

    Kostandyan, Erik

    Cost reductions for offshore wind turbines are a substantial requirement in order to make offshore wind energy more competitive compared to other energy supply methods. During the 20 – 25 years of wind turbines useful life, Operation & Maintenance costs are typically estimated to be a quarter...... the actions should be made and the type of actions requires knowledge on the accumulated damage or degradation state of the wind turbine components. For offshore wind turbines, the action times could be extended due to weather restrictions and result in damage or degradation increase of the remaining...... for Operation & Maintenance planning. Concentrating efforts on development of such models, this research is focused on reliability modeling of Wind Turbine critical subsystems (especially the power converter system). For reliability assessment of these components, structural reliability methods are applied...

  1. 3D WindScanner lidar measurements of wind and turbulence around wind turbines, buildings and bridges

    Science.gov (United States)

    Mikkelsen, T.; Sjöholm, M.; Angelou, N.; Mann, J.

    2017-12-01

    WindScanner is a distributed research infrastructure developed at DTU with the participation of a number of European countries. The research infrastructure consists of a mobile technically advanced facility for remote measurement of wind and turbulence in 3D. The WindScanners provide coordinated measurements of the entire wind and turbulence fields, of all three wind components scanned in 3D space. Although primarily developed for research related to on- and offshore wind turbines and wind farms, the facility is also well suited for scanning turbulent wind fields around buildings, bridges, aviation structures and of flow in urban environments. The mobile WindScanner facility enables 3D scanning of wind and turbulence fields in full scale within the atmospheric boundary layer at ranges from 10 meters to 5 (10) kilometers. Measurements of turbulent coherent structures are applied for investigation of flow pattern and dynamical loads from turbines, building structures and bridges and in relation to optimization of the location of, for example, wind farms and suspension bridges. This paper presents our achievements to date and reviews briefly the state-of-the-art of the WindScanner measurement technology with examples of uses for wind engineering applications.

  2. Non-gyrotropic pressure anisotropy induced by velocity shear.

    Science.gov (United States)

    Tenerani, A.; Del Sarto, D.; Pegoraro, F.; Califano, F.

    2015-12-01

    We discuss how, in a collisionless magnetized plasma, a sheared velocity field may lead to the anisotropization of an initial Maxwellian state. By including the full pressure tensor dynamics in a fluid plasma model, we show, analytically and numerically, that a sheared velocity field makes an initial isotropic state anisotropic and non-gyrotropic [1], i.e., makes the plasma pressure tensor anisotropic also in the plane perpendicular to the magnetic field. The propagation of transverse magneto-elastic waves in the anisotropic plasma affects the process of formation of a non-gyrotropic pressure and can lead to its spatial filamentation. This plasma dynamics implies in particular that isotropic MHD equilibria cease to be equilibria in presence of a stationary sheared flow. Similarly, in the case of turbulence, where small-scale spatial inhomogeneities are naturally developed during the direct cascade, we may expect that isotropic turbulent states are not likely to exist whenever a full pressure tensor evolution is accounted for. These results may be relevant to understanding the agyrotropic pressure configurations which are well documented in solar wind measurements and possibly correlated to plasma flows (see e.g. Refs.[2,3]), and which have also been measured in Vlasov simulations of Alfvenic turbulence [4]. [1] D. Del Sarto, F. Pegoraro, F. Califano, "Pressure anisotropy and small spatial scales induced by a velocity shear", http://arxiv.org/abs/1507.04895 [2] H.F. Astudillo, E. Marsch, S. Livi, H. Rosenbauer, "TAUS measurements of non-gyrotropic distribution functions of solar wind alpha particles", AIP Conf. Proc. 328, 289 (1996). [3] A. Posner, M.W. Liemhon, T.H. Zurbuchen, "Upstream magnetospheric ion flux tube within a magnetic cloud: Wind/STICS", Geophys. Res. Lett. 30, (2003). [4] S. Servidio, F. Valentini, F. Califano, P. Veltri, "Local kinetic effects in Two-Dimensional Plasma Turbulence", Phys. Rev. Lett. 108, 045001 (2012).

  3. Stimulated bioluminescence by fluid shear stress associated with pipe flow

    Energy Technology Data Exchange (ETDEWEB)

    Cao Jing; Wang Jiangan; Wu Ronghua, E-mail: caojing981@126.com [Col. of Electronic Eng., Naval University of Engineering, Wuhan 430033 (China)

    2011-01-01

    Dinoflagellate can be stimulated bioluminescence by hydrodynamic agitation. Two typical dinoflagellate (Lingulodinium polyedrum and Pyrocystis noctiluca) was choosed to research stimulated bioluminescence. The bioluminescence intensity and shear stress intensity were measured using fully developed pipe flow. There is shear stress threshold to agitate organism bioluminescence. From these experiment, the response thresholds of the stimulated bioluminscence always occurred in laminar flows at a shear stress level of 0.6-3 dyn/cm{sup 2}. At the same time, the spectral characteristc of dinoflagellate was recorded, the wavelength of them is about 470nm, and the full width at half maximum is approximate 30nm.

  4. Response Modification Factor of Coupled Steel Shear Walls

    Directory of Open Access Journals (Sweden)

    gholamreza abdollahzadeh

    2013-06-01

    Full Text Available The present research is concerned with the determination of ductility, over-strength and response modification factors of coupled steel shear wall frames. Three structural models with various numbers of stories, bay width and coupling beam height were analyzed using static pushover and incremental nonlinear dynamic analyses. The ductility, over-strength and response modification factors for the three models are determined. Tentative values of 11.1, 11.6 and 10.6 are suggested for the response modification factor of coupled steel shear wall frames with deep and medium depth coupling beams, and uncoupled steel shear wall frames, respectively in the allowable stress design method.

  5. Using wind speed from a blade-mounted flow sensor for power and load assessment on modern wind turbines

    Directory of Open Access Journals (Sweden)

    M. M. Pedersen

    2017-11-01

    Full Text Available In this paper an alternative method to evaluate power performance and loads on wind turbines using a blade-mounted flow sensor is investigated. The hypothesis is that the wind speed measured at the blades has a high correlation with the power and loads such that a power or load assessment can be performed from a few hours or days of measurements.In the present study a blade-mounted five-hole pitot tube is used as the flow sensor as an alternative to the conventional approach, where the reference wind speed is either measured at a nearby met mast or on the nacelle using lidar technology or cup anemometers. From the flow sensor measurements, an accurate estimate of the wind speed at the rotor plane can be obtained. This wind speed is disturbed by the presence of the wind turbine, and it is therefore different from the free-flow wind speed. However, the recorded wind speed has a high correlation with the actual power production as well as the flap-wise loads as it is measured close to the blade where the aerodynamic forces are acting.Conventional power curves are based on at least 180 h of 10 min mean values, but using the blade-mounted flow sensor both the observation average time and the overall assessment time can potentially be shortened. The basis for this hypothesis is that the sensor is able to provide more observations with higher accuracy, as the sensor follows the rotation of the rotor and because of the high correlation between the flow at the blades and the power production. This is the research question addressed in this paper.The method is first tested using aeroelastic simulations where the dependence of the radial position and effect of multiple blade-mounted flow sensors are also investigated. Next the method is evaluated on the basis of full-scale measurements on a pitch-regulated, variable-speed 3.6 MW wind turbine.It is concluded that the wind speed derived from the blade-mounted flow sensor is highly correlated with the

  6. The boundary layer of Tropical Storm Erika (2015) observed by airborne Doppler Wind Lidar

    Science.gov (United States)

    Zhang, J.; Emmitt, G. D.; Atlas, R. M.; Bucci, L. R.; Ryan, K. E.; O'Handley, C.; Marks, F.

    2016-12-01

    This talk presents analysis of the Doppler Wind Lidar (DWL) measured wind profiles in Tropical Storm (TS) Erika (2015) by NOAA's P3 aircraft. This work was funded by NOAA's Sandy Supplemental Program that supports new technologies such as the DWL for hurricane research. It is for the first time, the DWL onboard a NOAA P3 has become operational in hurricane reconnaissance missions and collected high-quality wind profile data. The DWL wind profiles were first verified against the collocated dropsonde and Doppler radar observations, showing good agreement. To the authors' knowledge, the DWL data collected in TS Erika provided the best data coverage in the boundary layer of any given TS. This data set allows us to investigate the detailed boundary layer structure, including the boundary layer height, the strength of the inflow and outflow, and their asymmetric distributions. Composite analysis of the DWL data shows that the axisymmetric boundary layer structure of TS Erika is largely different from that of a typical hurricane from previous dropsonde observations. The vorticity budget conducted using the DWL data suggests that the boundary layer of TS Erika is far from being in vorticity balance. The large magnitude of boundary-layer divergence and the small magnitude of mass flux above the boundary layer may explain why TS Erika did not intensify during the period of observation. The boundary-layer structure asymmetry is found to be tied to the vortex tilt that is induced by the environmental vertical wind shear.

  7. Wind Field Reconstruction from Nacelle-Mounted Lidars Short Range Measurements

    OpenAIRE

    Borraccino, Antoine; Schlipf, David; Haizmann, Florian; Wagner, Rozenn

    2017-01-01

    Profiling nacelle lidars probe the wind at several heights and several distances upstream of the rotor. The development of such lidar systems is relatively recent, and it is still unclear how to condense the lidar raw measurements into useful wind field characteristics such as speed, direction, vertical and longitudinal gradients (wind shear). In this paper, we demonstrate an innovative method to estimate wind field characteristics using nacelle lidar measurements taken within the induction z...

  8. Improving Interlaminar Shear Strength

    Science.gov (United States)

    Jackson, Justin

    2015-01-01

    To achieve NASA's mission of space exploration, innovative manufacturing processes are being applied to the fabrication of complex propulsion elements.1 Use of fiber-reinforced, polymeric composite tanks are known to reduce weight while increasing performance of propulsion vehicles. Maximizing the performance of these materials is needed to reduce the hardware weight to result in increased performance in support of NASA's missions. NASA has partnered with the Mississippi State University (MSU) to utilize a unique scalable approach of locally improving the critical properties needed for composite structures. MSU is responsible for the primary development of the concept with material and engineering support provided by NASA. The all-composite tank shown in figure 1 is fabricated using a prepreg system of IM7 carbon fiber/CYCOM 5320-1 epoxy resin. This is a resin system developed for out-of-autoclave applications. This new technology is needed to support the fabrication of large, all composite structures and is currently being evaluated on a joint project with Boeing for the Space Launch System (SLS) program. In initial efforts to form an all composite pressure vessel using this prepreg system, a 60% decrease in properties was observed in scarf joint regions. Inspection of these areas identified interlaminar failure in the adjacent laminated structure as the main failure mechanism. This project seeks to improve the interlaminar shear strength (ILSS) within the prepreg layup by locally modifying the interply region shown in figure 2.2

  9. Wind energy systems information user study

    Energy Technology Data Exchange (ETDEWEB)

    Belew, W.W.; Wood, B.L.; Marle, T.L.; Reinhardt, C.L.

    1981-01-01

    This report describes the results of a series of telephone interviews with potential users of information on wind energy conversion. These interviews, part of a larger study covering nine different solar technologies, attempted to identify: the type of information each distinctive group of information users needed, and the best way of getting information to that group. Groups studied include: wind energy conversion system researchers; wind energy conversion system manufacturer representatives; wind energy conversion system distributors; wind turbine engineers; utility representatives; educators; county agents and extension service agents; and wind turbine owners.

  10. Nordic wind power conference 2007. Proceedings

    International Nuclear Information System (INIS)

    Cutululis, Nicolaos; Soerensen, Poul

    2007-11-01

    This fourth Nordic Wind Power Conference was focused on power system integration and electrical systems of wind turbines and wind farms. NWPC presents the newest research results related to technical electrical aspects of wind power, spanning from power system integration to electrical design and control of wind turbines. The first NWPC was held in Trondheim (2000), Norway, the second in Gothenburg (2004), Sweden, and the third in Espoo (2006), Finland. Invited speakers, oral presentation of papers and poster sessions ensured this to be a valuable event for professionals and high-level students wanting to strengthen their knowledge on wind power integration and electrical systems. (au)

  11. Nordic wind power conference 2007. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Cutululis, N.; Soerensen, P. (eds.)

    2007-11-15

    This fourth Nordic Wind Power Conference was focused on power system integration and electrical systems of wind turbines and wind farms. NWPC presents the newest research results related to technical electrical aspects of wind power, spanning from power system integration to electrical design and control of wind turbines. The first NWPC was held in Trondheim (2000), Norway, the second in Gothenburg (2004), Sweden, and the third in Espoo (2006), Finland. Invited speakers, oral presentation of papers and poster sessions ensured this to be a valuable event for professionals and high-level students wanting to strengthen their knowledge on wind power integration and electrical systems. (au)

  12. Reminiscences on the study of wind waves.

    Science.gov (United States)

    Mitsuyasu, Hisashi

    2015-01-01

    The wind blowing over sea surface generates tiny wind waves. They develop with time and space absorbing wind energy, and become huge wind waves usually referred to ocean surface waves. The wind waves cause not only serious sea disasters but also take important roles in the local and global climate changes by affecting the fluxes of momentum, heat and gases (e.g. CO2) through the air-sea boundary. The present paper reviews the selected studies on wind waves conducted by our group in the Research Institute for Applied Mechanics (RIAM), Kyushu University. The themes discussed are interactions between water waves and winds, the energy spectrum of wind waves, nonlinear properties of wind waves, and the effects of surfactant on some air-sea interaction phenomena.

  13. Fifty years of shear zones

    Science.gov (United States)

    Graham, Rodney

    2017-04-01

    We are here, of course, because 1967 saw the publication of John Ramsay's famous book. Two years later a memorable field trip from Imperial College to the Outer Hebrides saw John on a bleak headland on the coast of North Uist where a relatively undeformed metadolerite within Lewisian (Precambrian) gneisses contained ductile shear zones with metamorphic fabrics in amphibolite facies. One particular outcrop was very special - a shear zone cutting otherwise completely isotropic, undeformed metadolerite, with an incremental foliation starting to develop at 45° to the deformation zone, and increasing in intensity as it approached the shear direction. Here was proof of the process of simple shear under ductile metamorphic conditions - the principles of simple shear outlined in John Ramsay's 1967 book clearly visible in nature, and verified by Ramsay's mathematical proofs in the eventual paper (Ramsay and Graham, 1970). Later work on the Lewisian on the mainland of Scotland, in South Harris, in Africa, and elsewhere applied Ramsay's simple shear principles more liberally, more imprecisely and on larger scale than at Caisteal Odair, but in retrospect it documented what seems now to be the generality of mid and lower crustal deformation. Deep seismic reflection data show us that on passive margins hyper-stretched continental crust (whether or not cloaked by Seaward Dipping Reflectors) seems to have collapsed onto the mantle. Crustal faults mostly sole out at or above the mantle - so the Moho is a detachment- an 'outer marginal detachment', if you like, and, of course, it must be a ductile shear. On non-volcanic margins this shear zone forms the first formed ocean floor before true sea floor spreading gets going to create real oceanic crust. Gianreto Manatschal, Marcel Lemoine and others realised that the serpentinites described in parts of the Alps are exposed remnants of this ductile shear zone. Associated ophicalcite breccias tell of sea floor exposure, while high

  14. WIND TURBINES FOR WIND POWER INSTALLATIONS

    Directory of Open Access Journals (Sweden)

    Barladean A.S.

    2008-04-01

    Full Text Available The problem of wind turbine choice for wind power stations is examined in this paper. It is shown by comparison of parameters and characteristics of wind turbines, that for existing modes and speeds of wind in territory of Republic of Moldova it is necessary to use multi-blade small speed rotation wind turbines of fan class.

  15. Parametric Study of Rockbolt Shear Behaviour by Double Shear Test

    Science.gov (United States)

    Li, L.; Hagan, P. C.; Saydam, S.; Hebblewhite, B.; Li, Y.

    2016-12-01

    Failure of rockbolts as a result of shear or bending loads can often be found in underground excavations. The response of rock anchorage systems has been studied in shear, both by laboratory tests as well as numerical modelling in this study. A double shear test was developed to examine the shear behaviour of a bolt installed across two joints at different angles. To investigate the influence of various parameters in the double shear test, a numerical model of a fully grouted rockbolt installed in concrete was constructed and analysed using FLAC3D code. A number of parameters were considered including concrete strength, inclination between rockbolt and joints and rockbolt diameter. The numerical model considered three material types (steel, grout and concrete) and three interfaces (concrete-concrete, grout-concrete and grout-rockbolt). The main conclusions drawn from the study were that the level of bolt resistance to shear was influenced by rock strength, inclination angle, and diameter of the rockbolt. The numerical simulation of the bolt/grout interaction and deformational behaviour was found to be in close agreement with earlier experimental test results.

  16. Wind turbine

    Science.gov (United States)

    Cheney, Jr., Marvin C.

    1982-01-01

    A wind turbine of the type having an airfoil blade (15) mounted on a flexible beam (20) and a pitch governor (55) which selectively, torsionally twists the flexible beam in response to wind turbine speed thereby setting blade pitch, is provided with a limiter (85) which restricts unwanted pitch change at operating speeds due to torsional creep of the flexible beam. The limiter allows twisting of the beam by the governor under excessive wind velocity conditions to orient the blades in stall pitch positions, thereby preventing overspeed operation of the turbine. In the preferred embodiment, the pitch governor comprises a pendulum (65,70) which responds to changing rotor speed by pivotal movement, the limiter comprising a resilient member (90) which engages an end of the pendulum to restrict further movement thereof, and in turn restrict beam creep and unwanted blade pitch misadjustment.

  17. Technology Roadmaps: Wind Energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    Wind energy is perhaps the most advanced of the 'new' renewable energy technologies, but there is still much work to be done. This roadmap identifies the key tasks that must be undertaken in order to achieve a vision of over 2 000 GW of wind energy capacity by 2050. Governments, industry, research institutions and the wider energy sector will need to work together to achieve this goal. Best technology and policy practice must be identified and exchanged with emerging economy partners, to enable the most cost-effective and beneficial development.

  18. Ducted wind turbines : A potential energy shaper

    NARCIS (Netherlands)

    Dighe, V.V.

    2016-01-01

    In order to harvest wind resources more efficiently and to the greatest extent possible, unconventional wind turbine designs have been proposed, but never gained any acceptance in the marketplace. A team of researchers from TU Delft plans to revisit the concept of ducted wind turbines, which have

  19. Satellite Remote Sensing in Offshore Wind Energy

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Badger, Merete; Astrup, Poul

    2013-01-01

    Satellite remote sensing of ocean surface winds are presented with focus on wind energy applications. The history on operational and research-based satellite ocean wind mapping is briefly described for passive microwave, scatterometer and synthetic aperture radar (SAR). Currently 6 GW installed...

  20. Coastal Ohio Wind Project

    Energy Technology Data Exchange (ETDEWEB)

    Gorsevski, Peter [Bowling Green State Univ., OH (United States); Afjeh, Abdollah [Univ. of Toledo, OH (United States); Jamali, Mohsin [Univ. of Toledo, OH (United States); Bingman, Verner [Bowling Green State Univ., OH (United States)

    2014-04-04

    The Coastal Ohio Wind Project intends to address problems that impede deployment of wind turbines in the coastal and offshore regions of Northern Ohio. The project evaluates different wind turbine designs and the potential impact of offshore turbines on migratory and resident birds by developing multidisciplinary research, which involves wildlife biology, electrical and mechanical engineering, and geospatial science. Firstly, the project conducts cost and performance studies of two- and three-blade wind turbines using a turbine design suited for the Great Lakes. The numerical studies comprised an analysis and evaluation of the annual energy production of two- and three-blade wind turbines to determine the levelized cost of energy. This task also involved wind tunnel studies of model wind turbines to quantify the wake flow field of upwind and downwind wind turbine-tower arrangements. The experimental work included a study of a scaled model of an offshore wind turbine platform in a water tunnel. The levelized cost of energy work consisted of the development and application of a cost model to predict the cost of energy produced by a wind turbine system placed offshore. The analysis found that a floating two-blade wind turbine presents the most cost effective alternative for the Great Lakes. The load effects studies showed that the two-blade wind turbine model experiences less torque under all IEC Standard design load cases considered. Other load effects did not show this trend and depending on the design load cases, the two-bladed wind turbine showed higher or lower load effects. The experimental studies of the wake were conducted using smoke flow visualization and hot wire anemometry. Flow visualization studies showed that in the downwind turbine configuration the wake flow was insensitive to the presence of the blade and was very similar to that of the tower alone. On the other hand, in the upwind turbine configuration, increasing the rotor blade angle of attack

  1. Tensile and shear methods for measuring strength of bilayer tablets.

    Science.gov (United States)

    Chang, Shao-Yu; Li, Jian-Xin; Sun, Changquan Calvin

    2017-05-15

    Both shear and tensile measurement methods have been used to quantify interfacial bonding strength of bilayer tablets. The shear method is more convenient to perform, but reproducible strength data requires careful control of the placement of tablet and contact point for shear force application. Moreover, data obtained from the shear method depend on the orientation of the bilayer tablet. Although more time-consuming to perform, the tensile method yields data that are straightforward to interpret. Thus, the tensile method is preferred in fundamental bilayer tableting research to minimize ambiguity in data interpretation. Using both shear and tensile methods, we measured the mechanical strength of bilayer tablets made of several different layer combinations of lactose and microcrystalline cellulose. We observed a good correlation between strength obtained by the tensile method and carefully conducted shear method. This suggests that the shear method may be used for routine quality test of bilayer tablets during manufacturing because of its speed and convenience, provided a protocol for careful control of the placement of the tablet interface, tablet orientation, and blade is implemented. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Research on Control Strategies of an Open-End Winding Permanent Magnet Synchronous Driving Motor (OW-PMSM-Equipped Dual Inverter with a Switchable Winding Mode for Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Liang Chu

    2017-05-01

    Full Text Available An open-end winding permanent magnet synchronous motor (PMSM has a larger range of speed regulation than normal PMSM with the same DC voltage, and the control method is more flexible. It can also manage energy distribution between two power sources without a DC/DC converter. This paper aims at an electric vehicle equipped with OW-PMSM drive system with dual power sources and dual inverters; based on analyzing the external characteristics of each winding mode, we propose a winding mode switching strategy whose torque saturation judgmental algorithm, which is insensitive to motor’s parameters, could automatically realize upswitching of the winding mode. The proposed multi-level current hysteresis modulation algorithm could set the major power source and switch it at any time in independent mode, which accomplishes energy distribution between two power sources; its two control methods, low switching frequency method and high power difference method, could achieve different energy distribution effects. Simulation results confirm the validity and effectiveness of the winding mode switching strategy and current modulation method. They also show that an electric vehicle under the proposed control methods has better efficiency than one equipped with a traditional OW-PMSM drive system under traditional control.

  3. Effects of ExB velocity shear and magnetic shear on turbulence and transport in magnetic confinement devices

    Energy Technology Data Exchange (ETDEWEB)

    Burrell, K.H.

    1996-11-01

    One of the scientific success stories of fusion research over the past decade is the development of the ExB shear stabilization model to explain the formation of transport barriers in magnetic confinement devices. This model was originally developed to explain the transport barrier formed at the plasma edge in tokamaks after the L (low) to H (high) transition. This concept has the universality needed to explain the edge transport barriers seen in limiter and divertor tokamaks, stellarators, and mirror machines. More recently, this model has been applied to explain the further confinement improvement from H (high)-mode to VH (very high)-mode seen in some tokamaks, where the edge transport barrier becomes wider. Most recently, this paradigm has been applied to the core transport barriers formed in plasmas with negative or low magnetic shear in the plasma core. These examples of confinement improvement are of considerable physical interest; it is not often that a system self-organizes to a higher energy state with reduced turbulence and transport when an additional source of free energy is applied to it. The transport decrease that is associated with ExB velocity shear effects also has significant practical consequences for fusion research. The fundamental physics involved in transport reduction is the effect of ExB shear on the growth, radial extent and phase correlation of turbulent eddies in the plasma. The same fundamental transport reduction process can be operational in various portions of the plasma because there are a number ways to change the radial electric field Er. An important theme in this area is the synergistic effect of ExB velocity shear and magnetic shear. Although the ExB velocity shear appears to have an effect on broader classes of microturbulence, magnetic shear can mitigate some potentially harmful effects of ExB velocity shear and facilitate turbulence stabilization.

  4. SEDflume - High Shear Stress Flume

    Data.gov (United States)

    Federal Laboratory Consortium — The U.S. Army Corps of Engineers High Shear Stress flume (SEDflume) is designed for estimating erosion rates of fine-grained and mixed fine/coarse grained sediments...

  5. Multi Resonance Shear Mode Transducers

    Science.gov (United States)

    2016-11-21

    engineering in the single crystal lead magnesium niobate-lead titanate (PMNT) system has uncovered a very unique piezoelectric shear mode. Contrary to...ABSTRACT Crystallographic engineering of single crystal relaxor-based ferroelectrics was used to design broadband, compact, high power, low frequency...utilize the d36 shear piezoelectric coefficient, which has advantages for compact low frequency sonar transducers. The d36 cut is unique in that large

  6. Shear Alfven waves in tokamaks

    International Nuclear Information System (INIS)

    Kieras, C.E.

    1982-12-01

    Shear Alfven waves in an axisymmetric tokamak are examined within the framework of the linearized ideal MHD equations. Properties of the shear Alfven continuous spectrum are studied both analytically and numerically. Implications of these results in regards to low frequency rf heating of toroidally confined plasmas are discussed. The structure of the spatial singularities associated with these waves is determined. A reduced set of ideal MHD equations is derived to describe these waves in a very low beta plasma

  7. Nebraska wind resource assessment first year results

    Energy Technology Data Exchange (ETDEWEB)

    Hurley, P.J.F.; Vilhauer, R. [RLA Consulting, Inc., Bothell, WA (United States); Stooksbury, D. [Univ. of Nebraska, Lincoln, NE (United States)

    1996-12-31

    This paper presents the preliminary results from a wind resource assessment program in Nebraska sponsored by the Nebraska Power Association. During the first year the measured annual wind speed at 40 meters ranged from 6.5 - 7.5 m/s (14.6 - 16.8 mph) at eight stations across the state. The site selection process is discussed as well as an overview of the site characteristics at the monitoring locations. Results from the first year monitoring period including data recovery rate, directionality, average wind speeds, wind shear, and turbulence intensity are presented. Results from the eight sites are qualitatively compared with other midwest and west coast locations. 5 figs., 2 tabs.

  8. Wind Power: The Economic Impact of Intermittency

    OpenAIRE

    G. Cornelis van Kooten

    2009-01-01

    Wind is the fastest growing renewable energy source for generating electricity, but economic research lags behind. In this study, therefore, we examine the economics of integrating large-scale wind energy into an existing electrical grid. Using a simple grid management model to investigate the impact of various levels of wind penetration on grid management costs, we show that costs of reducing CO2 emissions by relying more on wind power depend on the generation mix of the existing electrical ...

  9. The Cup Anemometer, a Fundamental Meteorological Instrument for the Wind Energy Industry. Research at the IDR/UPM Institute

    OpenAIRE

    Pindado Carrion, Santiago; Cubas Cano, Javier; Sorribes Palmer, Felix

    2014-01-01

    The results of several research campaigns investigating cup anemometer performance carried out since 2008 at the IDR/UPM Institute are included in the present paper. Several analysis of large series of calibrations were done by studying the effect of the rotor's geometry, climatic conditions during calibration, and anemometers' ageing. More specific testing campaigns were done regarding the cup anemometer rotor aerodynamics, and the anemometer signals. The effect of the rotor's geometry on th...

  10. Wind power

    International Nuclear Information System (INIS)

    2006-06-01

    This road-map proposes by the Group Total aims to inform the public on the wind power. It presents the principles, the technology takes off, its applications and technology focus, the global market trends and the outlooks and Total commitments in the domain. (A.L.B.)

  11. Wind energy

    International Nuclear Information System (INIS)

    Portilla S, L.A.

    1995-01-01

    The wind energy or eolic energy is a consequence of solar energy, the one which is absorbed by the atmosphere and is transformed into energy of movement of large bulks of air. In this process the atmosphere acts as the filter to the solar radiation and demotes the ultraviolet beams that result fatal to life in the Earth. The ionosphere is the most external cap and this is ionized by means of absorption process of ultraviolet radiation arising to the Sun. The atmosphere also acts as a trap to the infrared radiation, it that results from the continual process of energetic degradation. In this way, the interaction between Earth - Atmospheres, is behaved as a great greenhouse, maintaining the constant temperatures, including in the dark nights. Processes as the natural convection (that occur by the thermodynamic phenomenon), equatorial calmness, trade winds and against trade winds and global distribution of the air currents are described. The other hand, techniques as the transformation of the wind into energy and its parameters also are shown

  12. Averaging interval selection for the calculation of Reynolds shear stress for studies of boundary layer turbulence.

    Science.gov (United States)

    Lee, Zoe; Baas, Andreas

    2013-04-01

    It is widely recognised that boundary layer turbulence plays an important role in sediment transport dynamics in aeolian environments. Improvements in the design and affordability of ultrasonic anemometers have provided significant contributions to studies of aeolian turbulence, by facilitating high frequency monitoring of three dimensional wind velocities. Consequently, research has moved beyond studies of mean airflow properties, to investigations into quasi-instantaneous turbulent fluctuations at high spatio-temporal scales. To fully understand, how temporal fluctuations in shear stress drive wind erosivity and sediment transport, research into the best practice for calculating shear stress is necessary. This paper builds upon work published by Lee and Baas (2012) on the influence of streamline correction techniques on Reynolds shear stress, by investigating the time-averaging interval used in the calculation. Concerns relating to the selection of appropriate averaging intervals for turbulence research, where the data are typically non-stationary at all timescales, are well documented in the literature (e.g. Treviño and Andreas, 2000). For example, Finnigan et al. (2003) found that underestimating the required averaging interval can lead to a reduction in the calculated momentum flux, as contributions from turbulent eddies longer than the averaging interval are lost. To avoid the risk of underestimating fluxes, researchers have typically used the total measurement duration as a single averaging period. For non-stationary data, however, using the whole measurement run as a single block average is inadequate for defining turbulent fluctuations. The data presented in this paper were collected in a field study of boundary layer turbulence conducted at Tramore beach near Rosapenna, County Donegal, Ireland. High-frequency (50 Hz) 3D wind velocity measurements were collected using ultrasonic anemometry at thirteen different heights between 0.11 and 1.62 metres above

  13. Wind Energy Japan

    Energy Technology Data Exchange (ETDEWEB)

    Komatsubara, Kazuyo [Embassy of the Kingdom of the Netherlands, Tokyo (Japan)

    2012-06-15

    An overview is given of wind energy in Japan: Background; Wind Energy in Japan; Japanese Wind Energy Industry; Government Supports; Useful Links; Major Japanese Companies; Profiles of Major Japanese Companies; Major Wind Energy Projects in Japan.

  14. Wind energy impact of turbulence

    CERN Document Server

    Hölling, Michae; Ivanell, Stefan

    2014-01-01

    This book presents the results of the seminar ""Wind Energy and the Impact of Turbulence on the Conversion Process"" which was supported from three societies, namely the EUROMech, EAWE and ERCOFATC and took place in Oldenburg, Germany in spring 2012.The seminar was one of the first scientific meetings devoted to the common topic of wind energy and basic turbulence. The established community of researchers working on the challenging puzzle of turbulence for decades met the quite young community of researchers, who face the upcoming challenges in the fast growing field of wind energy application

  15. High resolution climatological wind measurements for wind energy applications

    Energy Technology Data Exchange (ETDEWEB)

    Bergstroem, H. [Uppsala Univ. (Sweden). Dept. of Meteorology

    1996-12-01

    Measurements with a combined cup anemometer/wind vane instrument, developed at the Department of Meteorology in Uppsala, is presented. The instrument has a frequency response of about 1 Hz, making it suitable not only for mean wind measurements, but also for studies of atmospheric turbulence. It is robust enough to be used for climatological purposes. Comparisons with data from a hot-film anemometer show good agreement, both as regards standard deviations and the spectral decomposition of the turbulent wind signal. The cup anemometer/wind vane instrument is currently used at three sites within the Swedish wind energy research programme. These measurements are shortly described, and a few examples of the results are given. 1 ref, 10 figs

  16. The cup anemometer, a fundamental meteorological instrument for the wind energy industry. Research at the IDR/UPM Institute.

    Science.gov (United States)

    Pindado, Santiago; Cubas, Javier; Sorribes-Palmer, Félix

    2014-11-12

    The results of several research campaigns investigating cup anemometer performance carried out since 2008 at the IDR/UPM Institute are included in the present paper. Several analysis of large series of calibrations were done by studying the effect of the rotor's geometry, climatic conditions during calibration, and anemometers' ageing. More specific testing campaigns were done regarding the cup anemometer rotor aerodynamics, and the anemometer signals. The effect of the rotor's geometry on the cup anemometer transfer function has been investigated experimentally and analytically. The analysis of the anemometer's output signal as a way of monitoring the anemometer status is revealed as a promising procedure for detecting anomalies.

  17. Shear viscosity of an ordering latex suspension

    NARCIS (Netherlands)

    van der Vorst, A.M.; van der Vorst, B.; van den Ende, Henricus T.M.; Aelmans, N.J.J.; Mellema, J.

    1997-01-01

    The shear viscosity of a latex which is ordered at rest is studied as a function of the shear rate and volume fraction. At low shear rates and for moderate to high volume fractions, the flow curves show dynamic yield behavior which disappears below a volume fraction of 8%. At high shear rates, the

  18. Experimental observation of shear thickening oscillation

    DEFF Research Database (Denmark)

    Nagahiro, Shin-ichiro; Nakanishi, Hiizu; Mitarai, Namiko

    2013-01-01

    We report experimental observations of the shear thickening oscillation, i.e. the spontaneous macroscopic oscillation in the shear flow of severe shear thickening fluid. Using a density-matched starch-water mixture, in the cylindrical shear flow of a few centimeters flow width, we observed...

  19. Shear testing of fiber reinforced metal matrix composites

    Science.gov (United States)

    Pindera, Marek-Jerzy

    1989-01-01

    This paper outlines the elements of a combined experimental/analytical methodology for accurate shear characterization of unidirectional composites in the linear and nonlinear range, with particular attention devoted to metal matrix composites. It is illustrated that consistent results can be obtained for a large class of composites from two commonly employed shear test methods currently in use by composites researchers when the influence of various factors that affect the determination of the actual shear response is properly analyzed. These factors include the effects of material anisotropy, specimen geometry, manner of load introduction, and test fixture design on the stress and deformation fields in the test section of off-axis and Iosipescu specimens. Common errors associated with the measurement of deformation fields and calculation of stress fields are discussed and quantified. Particular problems in the determination of the shear response of unidirectional boron/aluminum using the Iosipescu test are illustrated and discussed.

  20. Effect of atmospheric turbulence on wind turbine wakes: An LES study

    Science.gov (United States)

    Wu, Y. T.; Porté-Agel, F.

    2012-04-01

    A comprehensive numerical study of atmospheric turbulence effect on wind-turbine wakes is presented. Large-eddy simulations of neutrally-stratified boundary layers developed over different flat surfaces (forest, farmland, grass, and snow) are performed to investigate the structure of turbine wakes in cases where the incident flows to the wind turbine have the same mean velocity at the hub height but different mean wind shears and turbulence intensity levels. The simulation results show that the different wind shears and turbulence intensity levels of the incoming flow lead to considerable influence on the spatial distribution of the mean velocity deficit, turbulence intensity, and turbulent shear stress in the wake region downstream of the turbine. In general, the recovery of the turbine-induced wake (velocity deficit) is faster and the turbulence intensity level is higher and has its maximum closer to the turbine for wakes of turbines over rougher terrain. In order to isolate the effect of turbulence intensity from that of wind shear, simulations have also been performed with synthetic inflow velocity fields that have the same mean wind shear but different turbulence intensity levels. We find that the effect of the inflow turbulence intensity on the wake recovery and turbulence levels is stronger than that of the mean shear.

  1. Health impact of wind farms.

    Science.gov (United States)

    Kurpas, Donata; Mroczek, Bozena; Karakiewicz, Beata; Kassolik, Krzysztof; Andrzejewski, Waldemar

    2013-01-01

    Wind power is employed worldwide as an alternative source of energy. At the same time, however, the health effects of wind turbines have become a matter of discussion. The purpose of this study is a critical review of available reports providing arguments both for and against the construction of wind farms. The authors also attempt to propose recommendations in accordance with the Evidence-Based Medicine (EBM) guidelines. In the case of exposure to wind farms, a randomized controlled trial (RCT) is impossible. To obtain the highest-level recommendations, analysis of case-control studies or cohort studies with control groups should be performed. Preferably, it should include geostatistical analysis conducted with the use of variograms and the kriging technique. Combinations of key words were entered into the Thomson Reuters Web of Knowledge (SM) and the Internet search engine Google. SHORT DESCRIPTION OF STATE OF THE ART: The nuisance caused by wind turbines is stereotypically linked with the noise that they produce. Nevertheless, the visual aspect of wind farms, opinions about them, and sensitivity to sound seem to be of the greater importance. To date, the direct correlations between the vicinity of modern wind farms, the noise that wind turbines make, and possible consequences to health have not been described in peer reviewed articles. Health effects are more probably associated with some environmental factors leading to annoyance or frustration. All types of studies share the same conclusion: wind turbines can provoke annoyance. As with any project involving changes in the local environment, a certain level of irritation among the population can be expected. There are elected officials and government representatives who should decide what level of social annoyance is acceptable, and whether wind power advantages outweigh its potential drawbacks. The influence of wind turbines on human emotional and physical health is a relatively new field of research. Further

  2. Shear Response of Fibrous High Strength Concrete Beams without Web Reinforcement

    Directory of Open Access Journals (Sweden)

    Gunneswara Rao, T.D.

    2011-01-01

    Full Text Available The use of steel fibers to improve the mechanical properties of concrete has been the ongoing interest in the research work. This paper deals with one such improvement in the mechanical property of concrete, which is the shear strength. In this paper an attempt has been made to study the improvement of shear strength of high strength concrete beams (70 MPa with different shear span to depth ratios (a/d = 1, 2, 3, and 4 and various dosages of fibers (0.4%, 0.8%, and 1.2% by volume of concrete, without shear reinforcement. The experimental work revealed that steel fiber volume has different influence at different shear span to depth ratios (a/d. The test results indicated an increase in the cracking shear resistance noticeably and ultimate shear strength moderately.

  3. The Cup Anemometer, a Fundamental Meteorological Instrument for the Wind Energy Industry. Research at the IDR/UPM Institute

    Directory of Open Access Journals (Sweden)

    Santiago Pindado

    2014-11-01

    Full Text Available The results of several research campaigns investigating cup anemometer performance carried out since 2008 at the IDR/UPM Institute are included in the present paper. Several analysis of large series of calibrations were done by studying the effect of the rotor’s geometry, climatic conditions during calibration, and anemometers’ ageing. More specific testing campaigns were done regarding the cup anemometer rotor aerodynamics, and the anemometer signals. The effect of the rotor’s geometry on the cup anemometer transfer function has been investigated experimentally and analytically. The analysis of the anemometer’s output signal as a way of monitoring the anemometer status is revealed as a promising procedure for detecting anomalies.

  4. Database on wind characteristics - Analyses of wind turbine design loads

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, G.C.; Hansen, K.S.

    2004-06-01

    The main objective of IEA R and D Wind Annex XVII - Database on Wind Characteristics - has been to provide wind energy planners, designers and researchers, as well as the international wind engineering community in general, with a source of actual wind field data (time series and resource data) observed in a wide range of different wind climates and terrain types. Connected to an extension of the initial Annex period, the scope for the continuation was widened to include also support to the international wind turbine standardisation efforts.. The project partners are Sweden, Norway, U.S.A., The Netherlands and Denmark, with Denmark as the Operating Agent. The reporting of the continuation of Annex XVII falls in two separate parts. Part one accounts in details for the available data in the established database bank, and part two describes various data analyses performed with the overall purpose of improving the design load cases with relevance for to wind turbine structures. The present report constitutes the second part of the Annex XVII reporting. Both fatigue and extreme load aspects are dealt with, however, with the main emphasis on the latter. The work has been supported by The Ministry of Environment and Energy, Danish Energy Agency, The Netherlands Agency for Energy and the Environment (NOVEM), The Norwegian Water Resources and Energy Administration (NVE), The Swedish National Energy Administration (STEM) and The Government of the United States of America. (au)

  5. Improved Estimates of Moments and Winds from Radar Wind Profiler

    Energy Technology Data Exchange (ETDEWEB)

    Helmus, Jonathan [Argonne National Lab. (ANL), Argonne, IL (United States); Ghate, Virendra P. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-01-02

    The U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility (ACRF) operates nine radar wind profilers (RWP) across its sites. These RWPs operate at 915 MHz or 1290 MHz frequency and report the first three moments of the Doppler spectrum. The operational settings of the RWP were modified in summer, 2015 to have single pulse length setting for the wind mode and two pulse length settings for the precipitation mode. The moments data collected during the wind mode are used to retrieve horizontal winds. The vendor-reported winds are available at variable time resolution (10 mins, 60 mins, etc.) and contain a significant amount of contamination due to noise and clutter. In this data product we have recalculated the moments and the winds from the raw radar Doppler spectrum and have made efforts to mitigate the contamination due to instrument noise in the wind estimates. Additionally, the moments and wind data has been reported in a harmonized layout identical for all locations and sites.

  6. Surface shear rheology of saponin adsorption layers.

    Science.gov (United States)

    Golemanov, Konstantin; Tcholakova, Slavka; Denkov, Nikolai; Pelan, Edward; Stoyanov, Simeon D

    2012-08-21

    Saponins are a wide class of natural surfactants, with molecules containing a rigid hydrophobic group (triterpenoid or steroid), connected via glycoside bonds to hydrophilic oligosaccharide chains. These surfactants are very good foam stabiliziers and emulsifiers, and show a range of nontrivial biological activities. The molecular mechanisms behind these unusual properties are unknown, and, therefore, the saponins have attracted significant research interest in recent years. In our previous study (Stanimirova et al. Langmuir 2011, 27, 12486-12498), we showed that the triterpenoid saponins extracted from Quillaja saponaria plant (Quillaja saponins) formed adsorption layers with unusually high surface dilatational elasticity, 280 ± 30 mN/m. In this Article, we study the shear rheological properties of the adsorption layers of Quillaja saponins. In addition, we study the surface shear rheological properties of Yucca saponins, which are of steroid type. The experimental results show that the adsorption layers of Yucca saponins exhibit purely viscous rheological response, even at the lowest shear stress applied, whereas the adsorption layers of Quillaja saponins behave like a viscoelastic two-dimensional body. For Quillaja saponins, a single master curve describes the data for the viscoelastic creep compliance versus deformation time, up to a certain critical value of the applied shear stress. Above this value, the layer compliance increases, and the adsorption layers eventually transform into viscous ones. The experimental creep-recovery curves for the viscoelastic layers are fitted very well by compound Voigt rheological model. The obtained results are discussed from the viewpoint of the layer structure and the possible molecular mechanisms, governing the rheological response of the saponin adsorption layers.

  7. Wind resource analysis. Annual report

    Energy Technology Data Exchange (ETDEWEB)

    Hardy, D. M.

    1978-12-01

    FY78 results of the Wind Resource Analyses task of the ERAB are described. Initial steps were taken to acquire modern atmosphere models of near-surface wind flow and primary data sets used in previous studies of national and regional wind resources. Because numerous assumptions are necessary to interpret available data in terms of wind energy potential, conclusions of previous studies differ considerably. These data analyses may be improved by future SERI research. State-of-the-art atmosphere models are a necessary component of the SERI wind resource analyses capacity. However, these methods also need to be tested and verified in diverse applications. The primary data sets and principal features of the models are discussed.

  8. Wind Loads on Structures

    DEFF Research Database (Denmark)

    Dyrbye, Claes; Hansen, Svend Ole

    Wind loads have to be taken into account when designing civil engineering structures. The wind load on structures can be systematised by means of the wind load chain: wind climate (global), terrain (wind at low height), aerodynamic response (wind load to pressure), mechanical response (wind...... pressure to structural response) and design criteria. Starting with an introduction of the wind load chain, the book moves on to meteorological considerations, atmospheric boundary layer, static wind load, dynamic wind load and scaling laws used in wind-tunnel tests. The dynamic wind load covers vibrations...... induced by wind turbulence, vortex shedding, flutter and galloping. The book gives a comprehensive treatment of wind effects on structures and it will be useful for consulting engineers designing wind-sensitive structures. It will also be valuable for students of civil engineering as textbook...

  9. Wind Energy Department annual progress report 2002

    Energy Technology Data Exchange (ETDEWEB)

    Johansen, B.D.; Riis, U. (eds.)

    2003-12-01

    Research and development activities of the Wind Energy Department range from boundary layer meteorology, fluid dynamics, and structural mechanics to power and control engineering as well as wind turbine loading and safety. The overall purpose of our work is to meet the needs for knowledge, methods and procedures from government, the scientific community, and the wind turbine industry in particular. Our assistance to the wind turbine manufacturers serve to pave the way for technological development and thus further the exploitation of wind energy worldwide. We do this by means of research and innovation, education, testing and consultancy. In providing services for the wind turbine industry, we are involved in technology development, design, testing, procedures for operation and maintenance, certification and international wind turbine projects s as well as the solution of problems encountered in the application of wind energy, e.g. grid connection. A major proportion of these activities are on a commercial basis, for instance consultancy, software development, accredited testing of wind turbines and blades as well as approval and certification in co-operation with Det Norske Veritas. The departments activities also include research into atmospheric physics and environmental issues related to the atmosphere. One example is the development of online warning systems for airborne bacteria and other harmful substances. The department is organized in programmes according to its main scientific and technical activities. Research programmes: 1) Aeroelastic Design, AED; 2) Atmospheric Phyrics, ATM; 3) Electrical DEsign and Control, EDS; 4) Wind Power Meteorology, VKM; 5) Wind Turbines, VIM; 6) Wind Turbine Diagnostics, VMD. Commercial programmes: 1) The Test Station for Large Wind Turbines, Hoevsoere, HOeV; 2) Risoe Wind Consult, INR; 3) Wind Turbine Testing; 4) Sparkaer Blade Test Centre.(au)

  10. Wind Tunnel Modeling Of Wind Flow Over Complex Terrain

    Science.gov (United States)

    Banks, D.; Cochran, B.

    2010-12-01

    , vortex shedding, and local turbulence intensity and wind shear values. To achieve accurate results, attention must of course be paid to issues such as ensuring Reynolds number independence, avoiding blockage issues, and properly matching the velocity power spectrum, but once this is done, the laws of fluid mechanics take care of the rest. There will not be an overproduction of turbulent kinetic energy at the top of escarpments, or unacceptable dissipation of inlet turbulence levels. Modern atmospheric boundary layer wind tunnels are also often used to provide validation data for evaluating the performance of CFD model in complex flow environments. Present day computers have further increased the quality and quantity of data that can be economically obtained in a timely manner, for example through wind speed measurement using a computer controlled 3-D measurement positioning system Given this accuracy and widespread acceptance, it is perhaps surprising that ours was the only wind tunnel model in the Bolund blind experiment, an indication of how seldom physical modelling is used when estimating terrain effect for wind farms. In demonstrating how the Bolund test was modeled, this presentation will provide background on wind tunnel testing, including the governing scaling parameters. And we’ll see how our results compared to the full scale tests.

  11. Wind power potential and integration in Africa

    Directory of Open Access Journals (Sweden)

    Agbetuyi, A.F.

    2013-03-01

    Full Text Available Wind energy penetration into power networks is increasing very rapidly all over the world. The great concern about global warming and continued apprehensions about nuclear power around the world should drive most countries in Africa into strong demand for wind generation because of its advantages which include the absence of harmful emissions, very clean and almost infinite availability of wind that is converted into electricity. This paper shows the power available in the wind. It also gives an overview of the wind power potential and integration in some selected Africa countries like Egypt, Morocco, South Africa and Nigeria and the challenges of wind power integration in Africa’s continent are also discussed. The Northern part of Africa is known to be Africa’s Wind pioneers having installed and connected the Wind Energy Converters (WEC to the grid. About 97% of the continent’s total wind installations are located in Egypt, Morocco and Tunisia. Research work should commence on the identified sites with high wind speeds in those selected Africa countries, so that those potential sites can be connected to the grid. This is because the ability of a site to sufficiently accommodate wind generation not only depends on wind speeds but on its ability to interconnect to the existing grid. If these wind energy potentials are tapped and connected to the grid, the erratic and epileptic power supply facing most countries in Africa will be reduced; thereby reducing rural-urban migration and more jobs will be created.

  12. Fiscal 1998 research report. Feasibility survey on offshore wind power generation in Japan; 1998 nendo chosa hokokusho. Nippon ni okeru yojo furyoku hatsuden no donyu kanosei chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    This survey studied the feasibility of large-scale offshore wind power generation in Japan. Attempt was also made on preparation of outline maps of offshore wind around Japan. The cost of future offshore wind power generation systems is roughly dependent on technical issues and environmental issues. As technical issues, 'installation site,' 'foundation,' 'system interconnection' and 'maintenance/management' were summarized based on applications in Europe. As a result, it was clarified that technical issues can be solved with existing technologies to a certain extent, however, those relate to economical problems closely. The previous environment impact assessments say that wind power generation has no problems on the environmental issues. As relatively strong wind coastal areas, the outline maps of offshore wind point out Western Hokkaido area, Japan Sea area of Tohoku district, Pacific ocean area of the central part of Honshu, Genkai Nada area, Western Kyushu area and Southwest islands area, and suggest that these areas are promising for offshore wind power generation. (NEDO)

  13. Focusing of Shear Shock Waves

    Science.gov (United States)

    Giammarinaro, Bruno; Espíndola, David; Coulouvrat, François; Pinton, Gianmarco

    2018-01-01

    Focusing is a ubiquitous way to transform waves. Recently, a new type of shock wave has been observed experimentally with high-frame-rate ultrasound: shear shock waves in soft solids. These strongly nonlinear waves are characterized by a high Mach number, because the shear wave velocity is much slower, by 3 orders of magnitude, than the longitudinal wave velocity. Furthermore, these waves have a unique cubic nonlinearity which generates only odd harmonics. Unlike longitudinal waves for which only compressional shocks are possible, shear waves exhibit cubic nonlinearities which can generate positive and negative shocks. Here we present the experimental observation of shear shock wave focusing, generated by the vertical motion of a solid cylinder section embedded in a soft gelatin-graphite phantom to induce linearly vertically polarized motion. Raw ultrasound data from high-frame-rate (7692 images per second) acquisitions in combination with algorithms that are tuned to detect small displacements (approximately 1 μ m ) are used to generate quantitative movies of gel motion. The features of shear shock wave focusing are analyzed by comparing experimental observations with numerical simulations of a retarded-time elastodynamic equation with cubic nonlinearities and empirical attenuation laws for soft solids.

  14. Stellar winds

    International Nuclear Information System (INIS)

    Weymann, R.J.

    1978-01-01

    It is known that a steady outflow of material at comparable rates of mass loss but vastly different speeds is now known to be ubiquitous phenomenon among both the luminous hot stars and the luminous but cool red giants. The flows are probably massive enough in both cases to give rise to significant effects on stellar evolution and the mass balance between stars and the interstellar medium. The possible mechanisms for these phenomena as well as the methods of observation used are described. In particular, the mass-loss processes in stars other than the sun that also involve a steady flow of matter are considered. The evidence for their existence is described, and then the question of whether the process thought to produce the solar wind is also responsible for producing these stellar winds is explored

  15. Experimental evaluation of two turning vane designs for fan drive corner of 0.1-scale model of NASA Lewis Research Center's proposed altitude wind tunnel

    Science.gov (United States)

    Boldman, Donald R.; Moore, Royce D.; Shyne, Rickey J.

    1987-01-01

    Two turning vane designs were experimentally evaluated for corner 2 of a 0.1 scale model of the NASA Lewis Research Center's proposed Altitude Wind Tunnel (AWT). Corner 2 contained a simulated shaft fairing for a fan drive system to be located downstream of the corner. The corner was tested with a bellmouth inlet followed by a 0.1 scale model of the crossleg diffuser designed to connect corners 1 and 2 of the AWT. Vane A was a controlled-diffusion airfoil shape; vane B was a circular-arc airfoil shape. The A vanes were tested in several arrangements which included the resetting of the vane angle by -5 degrees or the removal of the outer vane. The lowest total pressure loss for vane A configuration was obtained at the negative reset angle. The loss coefficient increased slightly with the Mach number, ranging from 0.165 to 0.175 with a loss coefficient of 0.170 at the inlet design Mach number of 0.24. Removal of the outer vane did not alter the loss. Vane B loss coefficients were essentially the same as those for the reset vane A configurations. The crossleg diffuser loss coefficient was 0.018 at the inlet design Mach number of 0.33.

  16. Wind conditions for wind turbine design

    Energy Technology Data Exchange (ETDEWEB)

    Maribo Pedersen, B.

    1999-04-01

    Delegates from Europe and USA attended the meeting and discussed general aspects of wind conditions for wind turbine design. The subjects and the presented papers covered a very broad range of aspects of wind conditions and related influence on the wind turbine. (EHS)

  17. Surface shear stress dependence of gas transfer velocity parameterizations using DNS

    Science.gov (United States)

    Fredriksson, S. T.; Arneborg, L.; Nilsson, H.; Handler, R. A.

    2016-10-01

    Air-water gas-exchange is studied in direct numerical simulations (DNS) of free-surface flows driven by natural convection and weak winds. The wind is modeled as a constant surface-shear-stress and the gas-transfer is modeled via a passive scalar. The simulations are characterized via a Richardson number Ri=Bν/u*4 where B, ν, and u* are the buoyancy flux, kinematic viscosity, and friction velocity respectively. The simulations comprise 0water gas-exchange, (ii) determine, for a given buoyancy flux, the wind speed at which gas transfer becomes primarily shear driven, and (iii) find an expression for the gas-transfer velocity for flows driven by both convection and shear. The evaluated gas transfer-velocity parametrizations are based on either the rate of turbulent kinetic energy dissipation, the surface flow-divergence, the surface heat-flux, or the wind-speed. The parametrizations based on dissipation or divergence show an unfavorable Ri dependence for flows with combined forcing whereas the parametrization based on heat-flux only shows a limited Ri dependence. The two parametrizations based on wind speed give reasonable estimates for the transfer-velocity, depending however on the surface heat-flux. The transition from convection- to shear-dominated gas-transfer-velocity is shown to be at Ri≈0.004. Furthermore, the gas-transfer is shown to be well represented by two different approaches: (i) additive forcing expressed as kg,sum =AShearu*|Ri/Ric+1| 1/4Sc-n where Ric=|AShear/ABuoy|4, and (ii) either buoyancy or shear dominated expressed as, kg=ABuoy|Bν| 1/4Sc-n, Ri>Ric or kg=AShearu*Sc-n, Riwater surface-characteristics.

  18. Calculating wind profiles above a pine forest

    International Nuclear Information System (INIS)

    Murphy, C.E.; Dexter, A.H.

    1978-01-01

    A major part of the environmental transport work at the Savannah River Laboratory (SRL) involves the dispersion of airborne pollutants (aerosols and gases). A major part of the Savannah River Plant (SRP) site is covered with pine forests. Because forests are ''rough'' surfaces which increase turbulence and surface shear stress and, hence, alter the dispersion patterns, the nature of the wind profiles above the forests is being investigated. Two methods for determining the surface shear caused by the atmospheric wind field over a pine plantation were compared. Friction velocity [the square root of the ratio of shearing stress over the density of air; U/sub */ = (stress/density)1/2] calculated by eddy correlation was compared with friction velocity calculated from wind profiles. Data from the first five meters above the pine forest were compared. The data indicated that there was no significant difference in the mean friction velocity measured by each method. However, there were large differences in individual values calculated by the two methods for many of the measurement periods. An attempt was made to reconcile the differences in the measured values, but no satisfactory method was found

  19. Squirming through shear thinning fluids

    Science.gov (United States)

    Datt, Charu; Zhu, Lailai; Elfring, Gwynn J.; Pak, On Shun

    2015-11-01

    Many microorganisms find themselves surrounded by fluids which are non-Newtonian in nature; human spermatozoa in female reproductive tract and motile bacteria in mucosa of animals are common examples. These biological fluids can display shear-thinning rheology whose effects on the locomotion of microorganisms remain largely unexplored. Here we study the self-propulsion of a squirmer in shear-thinning fluids described by the Carreau-Yasuda model. The squirmer undergoes surface distortions and utilizes apparent slip-velocities around its surface to swim through a fluid medium. In this talk, we will discuss how the nonlinear rheological properties of a shear-thinning fluid affect the propulsion of a swimmer compared with swimming in Newtonian fluids.

  20. Shear Brillouin light scattering microscope.

    Science.gov (United States)

    Kim, Moonseok; Besner, Sebastien; Ramier, Antoine; Kwok, Sheldon J J; An, Jeesoo; Scarcelli, Giuliano; Yun, Seok Hyun

    2016-01-11

    Brillouin spectroscopy has been used to characterize shear acoustic phonons in materials. However, conventional instruments had slow acquisition times over 10 min per 1 mW of input optical power, and they required two objective lenses to form a 90° scattering geometry necessary for polarization coupling by shear phonons. Here, we demonstrate a confocal Brillouin microscope capable of detecting both shear and longitudinal phonons with improved speeds and with a single objective lens. Brillouin scattering spectra were measured from polycarbonate, fused quartz, and borosilicate in 1-10 s at an optical power level of 10 mW. The elastic constants, phonon mean free path and the ratio of the Pockels coefficients were determined at microscopic resolution.

  1. SHEAR ACCELERATION IN EXPANDING FLOWS

    Energy Technology Data Exchange (ETDEWEB)

    Rieger, F. M. [ZAH, Institut für Theoretische Astrophysik, Universität Heidelberg, Philosophenweg 12, D-69120 Heidelberg (Germany); Duffy, P., E-mail: frank.rieger@mpi-hd.mpg.de, E-mail: peter.duffy@ucd.ie [University College Dublin, Belfield, Dublin 4 (Ireland)

    2016-12-10

    Shear flows are naturally expected to occur in astrophysical environments and potential sites of continuous non-thermal Fermi-type particle acceleration. Here we investigate the efficiency of expanding relativistic outflows to facilitate the acceleration of energetic charged particles to higher energies. To this end, the gradual shear acceleration coefficient is derived based on an analytical treatment. The results are applied to the context of the relativistic jets from active galactic nuclei. The inferred acceleration timescale is investigated for a variety of conical flow profiles (i.e., power law, Gaussian, Fermi–Dirac) and compared to the relevant radiative and non-radiative loss timescales. The results exemplify that relativistic shear flows are capable of boosting cosmic-rays to extreme energies. Efficient electron acceleration, on the other hand, requires weak magnetic fields and may thus be accompanied by a delayed onset of particle energization and affect the overall jet appearance (e.g., core, ridge line, and limb-brightening).

  2. Shear and shear friction of ultra-high performance concrete bridge girders

    Science.gov (United States)

    Crane, Charles Kennan

    Ultra-High Performance Concrete (UHPC) is a new class of concrete characterized by no coarse aggregate, steel fiber reinforcement, low w/c, low permeability, compressive strength exceeding 29,000 psi (200 MPa), tensile strength ranging from 1,200 to 2,500 psi (8 to 17 MPa), and very high toughness. These properties make prestressed precast UHPC bridge girders a very attractive replacement material for steel bridge girders, particularly when site demands require a comparable beam depth to steel and a 100+ year life span is desired. In order to efficiently utilize UHPC in bridge construction, it is necessary to create new design recommendations for its use. The interface between precast UHPC girder and cast-in-place concrete decks must be characterized in order to safely use composite design methods with this new material. Due to the lack of reinforcing bars, all shear forces in UHPC girders have to be carried by the concrete and steel fibers. Current U.S. codes do not consider fiber reinforcement in calculating shear capacity. Fiber contribution must be accurately accounted for in shear equations in order to use UHPC. Casting of UHPC may cause fibers to orient in the direction of casting. If fibers are preferentially oriented, physical properties of the concrete may also become anisotropic, which must be considered in design. The current research provides new understanding of shear and shear friction phenomena in UHPC including: (1) Current AASHTO codes provide a non-conservative estimate of interface shear performance of smooth UHPC interfaces with and without interface steel. (2) Fluted interfaces can be created by impressing formliners into the surface of plastic UHPC. AASHTO and ACI codes for roughened interfaces are conservative for design of fluted UHPC interfaces.(3) A new equation for the calculation of shear capacity of UHPC girders is presented which takes into account the contribution of steel fiber reinforcement. (4) Fibers are shown to preferentially

  3. Structural Aspects of Railway Truss Bridges Affecting Transverse Shear Forces in Steel-Concrete Composite Decks

    Directory of Open Access Journals (Sweden)

    Siekierski Wojciech

    2015-03-01

    Full Text Available At the steel-concrete interface, the horizontal shear forces that are transverse to cross beams occur due to joint action of the steel-concrete composite deck and the truss girders. Numerical analysis showed that values of the forces are big in comparison to the longitudinal shear forces. In both cases extreme force values occur near side edges of a slab. The paper studies possibilities of reduction of these shear forces by structural alterations of the following: rigidity of a concrete slab, arrangement of a wind bracing, arrangement of concrete slab expansion joints. An existing railway truss bridge span has been analysed. Numerical analysis shows that it is possible to reduce the values of shear forces transverse to cross beams. It may reach 20% near the side edges of slabs and 23% in the centre of slab width.

  4. Air permeability for a concrete shear wall after a damaging seismic load simulation cycle

    International Nuclear Information System (INIS)

    Girrens, S.P.; Farrar, C.R.

    1991-01-01

    A study was initiated to estimate air leakage, driven by wind-generated pressure gradients, from a seismically damaged concrete structure. This paper describes an experiment performed to measure the air permeability in a reinforced concrete shear wall, both before and after simulated seismic loading. Static load-cycle testing was used to simulate earthquake loading. Permeability measurements were made by pressurizing one side of the shear wall above atmospheric conditions and recording the transient-pressure decay. Air permeability measurements made on the shear wall before loading fell within the range of values for concrete permeability published in the literature. As long as the structure exhibited linear load-displacement response, no variation in the air permeability was detected. However, experimental results indicate that the air permeability in the shear wall increased by a factor of 40 after the wall had been damaged (cracked)

  5. Strengthening of Shear Walls

    DEFF Research Database (Denmark)

    Hansen, Christian Skodborg

    -plane loaded walls and disks is however not included in any guidelines, and only a small fraction of scientists have initiated research within this topic. Furthermore, studies of the principal behavior and response of a strengthened disk has not yet been investigated satisfactorily, and this is the principal...

  6. Shear rheology of extended nanoparticles

    Science.gov (United States)

    Petersen, Matt K.; Lane, J. Matthew D.; Grest, Gary S.

    2010-07-01

    Nonequilibrium molecular-dynamics simulations are presented for the shear rheology of suspensions of extended “jack”-shaped nanoparticles in an explicit solvent. The shear viscosity is measured for two jack-shaped nanoparticle suspensions for volume fractions from 0.01 to 0.15 and compared to spherical nanoparticles of the same mass. Large differences, in some cases, orders of magnitude, are observed for both the equilibrium viscosity and diffusion constant as the shape of the nanoparticle is varied. The source of enhanced viscosity is the very large effective volume swept out by these extended nanoparticles which allows them to become highly entangled even at low volume fraction.

  7. Shear strength of non-shear reinforced concrete elements

    DEFF Research Database (Denmark)

    Hoang, Cao linh

    1997-01-01

    . The position of the crack in which sliding takes place is determined by the crack sliding model developed by Jin-Ping Zhang. The theoretical calculations are compared with test results reported in the literature. A good agreement has been found.A simplified method to calculate the shear capacity of T...

  8. Quantifying the Impact of Wind Turbine Wakes on Power Output at Offshore Wind Farms

    DEFF Research Database (Denmark)

    Barthelmie, Rebecca Jane; Pryor, Sara; Frandsen, Sten Tronæs

    2010-01-01

    There is an urgent need to develop and optimize tools for designing large wind farm arrays for deployment offshore. This research is focused on improving the understanding of, and modeling of, wind turbine wakes in order to make more accurate power output predictions for large offshore wind farms...

  9. Flow and wakes in large wind farms: Final report for UpWind WP8

    DEFF Research Database (Denmark)

    Barthelmie, Rebecca Jane; Frandsen, Sten Tronæs; Rathmann, Ole

    This report summarises the research undertaken through the European Commission funded project UpWind Wp8:Flow. The objective of the work was to develop understanding of flow in large wind farms and to evaluate models of power losses due to wind turbine wakes focusing on complex terrain and offsho...

  10. Roughness Effects on Wind-Turbine Wake Dynamics in a Boundary-Layer Wind Tunnel

    DEFF Research Database (Denmark)

    Barlas, Emre; Buckingham, Sophia; van Beeck, Jeroen

    2016-01-01

    Increasing demand in wind energy has resulted in increasingly clustered wind farms, and raised the interest in wake research dramatically in the last couple of years. To this end, the present work employs an experimental approach with scaled three-bladed wind-turbine models in a large boundary-la...

  11. Wind Technologies & Evolving Opportunities (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Robichaud, R.

    2014-07-01

    This presentation covers opportunities for wind technology; wind energy market trends; an overview of the National Wind Technology Center near Boulder, Colorado; wind energy price and cost trends; wind turbine technology improvements; and wind resource characterization improvements.

  12. The Brazier effect in wind turbine blades and its influence on design

    DEFF Research Database (Denmark)

    Jensen, Find Mølholt; Weaver, P.M.; Cecchini, L.S.

    2012-01-01

    Critical failure was observed in the shear web of a wind turbine blade during a full-scale testing. This failure occurred immediately before the ultimate failure and was partly caused by buckling and non-linear cross-sectional strain. Experimental values had been used to compare and validate both...... numerical and semi-analytical results in the analysis of the shear webs in the reinforced wind turbine blade. Only elastic material behaviour was analysed, and attention was primarily focused on the Brazier effect. The complex, geometrically non-linear and elastic stress–strain behaviour of the shear webs...

  13. WIND ENERGY CONVERSION SYSTEMS - A TECHNICAL REVIEW

    Directory of Open Access Journals (Sweden)

    N. RAMESH BABU

    2013-08-01

    Full Text Available Wind power production has been under the main focus for the past decade in power production and tremendous amount of research work is going on renewable energy, specifically on wind power extraction. Wind power provides an eco-friendly power generation and helps to meet the national energy demand when there is a diminishing trend in terms of non-renewable resources. This paper reviews the modeling of Wind Energy Conversion Systems (WECS, control strategies of controllers and various Maximum Power Point Tracking (MPPT technologies that are being proposed for efficient production of wind energy from the available resource.

  14. Design of Wind Turbine Vibration Monitoring System

    Directory of Open Access Journals (Sweden)

    Shoubin Wang

    2013-04-01

    Full Text Available In order to ensure safety of wind turbine operation and to reduce the occurrence of faults as well as to improve the reliability of wind turbine operation, a vibration monitoring for wind turbine is developed. In this paper, it analyses the enlargement of all the parts of the structure and the working mechanism, the research method of wind turbine operation vibration is introduced, with the focus being the use of the sensor principle. Finally the hardware design and software of this system is introduced and the main function of this system is described, which realizes condition monitoring of the work state of wind turbines.

  15. INCAS TRISONIC WIND TUNNEL

    Directory of Open Access Journals (Sweden)

    Florin MUNTEANU

    2009-09-01

    Full Text Available The 1.2 m x 1.2 m Trisonic Blowdown Wind Tunnel is the largest of the experimental facilities at the National Institute for Aerospace Research - I.N.C.A.S. "Elie Carafoli", Bucharest, Romania. The tunnel has been designed by the Canadian company DSMA (now AIOLOS and since its commissioning in 1978 has performed high speed aerodynamic tests for more than 120 projects of aircraft, missiles and other objects among which the twin jet fighter IAR-93, the jet trainer IAR-99, the MIG-21 Lancer, the Polish jet fighter YRYDA and others. In the last years the wind tunnel has been used mostly for experimental research in European projects such as UFAST. The high flow quality parameters and the wide range of testing capabilities ensure the competitivity of the tunnel at an international level.

  16. Alternative methods of estimating hub-height wind speed for small wind turbine performance evaluation

    Science.gov (United States)

    Ziter, Brett

    Current industry standards for evaluating wind turbine power performance require erecting a meteorological mast on site to obtain reference measurements of hub-height wind speed. New considerations for small wind turbines (SWTs) offer the alternative of using an anemometer extending from a lower elevation on the turbine tower. In either case, SWT owners face questions and impracticalities when applying this standard in-situ. Alternative methods of predicting hub-height wind speed for SWT performance evaluation have been assessed experimentally using a Bergey XL.1 SWT collocated with a meteorological mast. Findings indicate that vertical extrapolation can increase the accuracy of tower-mounted anemometry for predicting hub-height wind speed. It is recommended to use concurrent wind speed measurements from anemometers at two elevations to develop site-specific wind shear parameters. Three-dimensional wind speed data from a sonic anemometer were used alongside a theoretical model to determine the optimal location for the topmost anemometer but results were inconclusive.

  17. Scaling of turbulence spectra measured in strong shear flow near the Earth’s surface

    Science.gov (United States)

    Mikkelsen, T.; Larsen, S. E.; Jørgensen, H. E.; Astrup, P.; Larsén, X. G.

    2017-12-01

    Within the lowest kilometer of the Earth’s atmosphere, in the so-called atmospheric boundary layer, winds are often gusty and turbulent. Nearest to the ground, the turbulence is predominately generated by mechanical wall-bounded wind shear, whereas at higher altitudes turbulent mixing of heat and moisture also play a role. The variance (square of the standard deviation) of the fluctuation around the mean wind speed is a measure of the kinetic energy content of the turbulence. This kinetic energy can be resolved into the spectral distributions, or spectra, as functions of eddy size, wavenumber, or frequency. Spectra are derived from Fourier transforms of wind records as functions of space or time corresponding to wavenumber and frequency spectra, respectively. Atmospheric spectra often exhibit different subranges that can be distinguished and scaled by the physical parameters responsible for: (1) their generation; (2) the cascade of energy across the spectrum from large- to small-scale; and (3) the eventual decay of turbulence into heat owing to viscosity effects on the Kolmogorov microscale, in which the eddy size is only a fraction of a millimeter. This paper addresses atmospheric turbulence spectra in the lowest part of the atmospheric boundary layer—the so-called surface layer—where the wind shear is strong owing to the nonslip condition at the ground. Theoretical results dating back to Tchen’s early work in 1953 ‘on the spectrum of energy in turbulent shear flow’ led Tchen to predict a shear production subrange with a distinct inverse-linear power law for turbulence in a strongly sheared high-Reynolds number wall-bounded flow, as is encountered in the lowest sheared part of the atmospheric boundary layer, also known as the eddy surface layer. This paper presents observations of spectra measured in a meteorological mast at Høvsøre, Denmark, that support Tchen’s prediction of a shear production subrange following a distinct power law of degree

  18. Advancements in Wind Energy Metrology – UPWIND 1A2.3

    DEFF Research Database (Denmark)

    Angelou, Nikolas; Bingöl, Ferhat; Courtney, Michael

    of wind turbines. These measurements document the meandering wake pattern. The second part of the overview considers power performance measurements. A new investigation on the influence of wind shear points to a revision of the definition of a power curve. A new measurement method has been developed which...

  19. A methodology for the design and testing of atmospheric boundary layer models for wind energy applications

    Directory of Open Access Journals (Sweden)

    J. Sanz Rodrigo

    2017-02-01

    Full Text Available The GEWEX Atmospheric Boundary Layer Studies (GABLS 1, 2 and 3 are used to develop a methodology for the design and testing of Reynolds-averaged Navier–Stokes (RANS atmospheric boundary layer (ABL models for wind energy applications. The first two GABLS cases are based on idealized boundary conditions and are suitable for verification purposes by comparing with results from higher-fidelity models based on large-eddy simulation. Results from three single-column RANS models, of 1st, 1.5th and 2nd turbulence closure order, show high consistency in predicting the mean flow. The third GABLS case is suitable for the study of these ABL models under realistic forcing such that validation versus observations from the Cabauw meteorological tower are possible. The case consists on a diurnal cycle that leads to a nocturnal low-level jet and addresses fundamental questions related to the definition of the large-scale forcing, the interaction of the ABL with the surface and the evaluation of model results with observations. The simulations are evaluated in terms of surface-layer fluxes and wind energy quantities of interest: rotor equivalent wind speed, hub-height wind direction, wind speed shear and wind direction veer. The characterization of mesoscale forcing is based on spatially and temporally averaged momentum budget terms from Weather Research and Forecasting (WRF simulations. These mesoscale tendencies are used to drive single-column models, which were verified previously in the first two GABLS cases, to first demonstrate that they can produce similar wind profile characteristics to the WRF simulations even though the physics are more simplified. The added value of incorporating different forcing mechanisms into microscale models is quantified by systematically removing forcing terms in the momentum and heat equations. This mesoscale-to-microscale modeling approach is affected, to a large extent, by the input uncertainties of the mesoscale

  20. Estimating the Wind Resource in Uttarakhand: Comparison of Dynamic Downscaling with Doppler Lidar Wind Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Lundquist, J. K. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Pukayastha, A. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Martin, C. [Univ. of Colorado, Boulder, CO (United States); Newsom, R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-03-01

    Previous estimates of the wind resources in Uttarakhand, India, suggest minimal wind resources in this region. To explore whether or not the complex terrain in fact provides localized regions of wind resource, the authors of this study employed a dynamic down scaling method with the Weather Research and Forecasting model, providing detailed estimates of winds at approximately 1 km resolution in the finest nested simulation.

  1. Management of moderate wind energy coastal resources

    International Nuclear Information System (INIS)

    Karamanis, D.

    2011-01-01

    Research highlights: → Life cycle analysis reveals the viability of moderate wind fields utilization. → Wind turbine is the greenest electricity generator at a touristic site. → Wind parks should be collective applications of small hotel-apartments owners. -- Abstract: The feasibility of wind energy utilization at moderate wind fields was investigated for a typical touristic coastal site in Western Greece. Initially, the wind speed and direction as well as its availability, duration and diurnal variation were assessed. For an analysis period of eight years, the mean wind speed at ten meters was determined as 3.8 m s -1 with a small variation in monthly average wind speeds between 3.0 (January) and 4.4 m s -1 (October). The mean wind power density was less than 200 W m -2 at 10 m indicating the limiting suitability of the site for the usual renewable energy applications. However, life cycle analysis for wind turbine generators with lower cut-in, cut-out, and rated speeds revealed that the energy yield ratio can reach a value of six for a service life of 20 years while the energy pay-back period can be 3 years with 33 kt CO 2 -e of avoided greenhouse emissions. Therefore, the recent technological turbine improvements make wind power viable even at moderate wind fields. Moreover, the study of electricity supply of typical small hotel-apartments in the region of Western Greece indicated that the installation of 300 wind turbine generators in these moderate wind fields would cover the total consumption during the open touristic period with profits during the rest of the year. According to these results, wind turbine generators are the 'greenest' way of generating electricity in touristic coastal sites, even of moderate wind speeds.

  2. Research relative to weather radar measurement techniques

    Science.gov (United States)

    Smith, Paul L.

    1992-01-01

    Research relative to weather radar measurement techniques, which involves some investigations related to measurement techniques applicable to meteorological radar systems in Thailand, is reported. A major part of the activity was devoted to instruction and discussion with Thai radar engineers, technicians, and meteorologists concerning the basic principles of radar meteorology and applications to specific problems, including measurement of rainfall and detection of wind shear/microburst hazards. Weather radar calibration techniques were also considered during this project. Most of the activity took place during two visits to Thailand, in December 1990 and February 1992.

  3. Meniscal shear stress for punching

    NARCIS (Netherlands)

    Tuijthof, Gabrielle J. M.; Meulman, Hubert N.; Herder, Just L.; van Dijk, C. Niek

    2009-01-01

    Aim: Experimental determination of the shear stress for punching meniscal tissue. Methods: Meniscectomy (surgical treatment of a lesion of one of the menisci) is the most frequently performed arthroscopic procedure. The performance of a meniscectomy is not optimal with the currently available

  4. In vivo shear stress response.

    Science.gov (United States)

    Egginton, Stuart

    2011-12-01

    EC (endothelial cell) responses to shear stress generated by vascular perfusion play an important role in circulatory homoeostasis, whereas abnormal responses are implicated in vascular diseases such as hypertension and atherosclerosis. ECs subjected to high shear stress in vitro alter their morphology, function and gene expression. The molecular basis for mechanotransduction of a shear stress signal, and the identity of the sensing mechanisms, remain unclear with many candidates under investigation. Translating these findings in vivo has proved difficult. The role of VEGF (vascular endothelial growth factor) flow-dependent nitric oxide release in remodelling skeletal muscle microcirculation is established for elevated (activity, dilatation) and reduced (overload, ischaemia) shear stress, although their temporal relationship to angiogenesis varies. It is clear that growth factor levels may offer only a permissive environment, and alteration of receptor levels may be a viable therapeutic target. Angiogenesis in vivo appears to be a graded phenomenon, and capillary regression on withdrawal of stimulus may be rapid. Combinations of physiological angiogenic stimuli appear not to be additive.

  5. The Long distance wake behind Horns Rev I studied using large eddy simulations and a wind turbine parameterization in WRF

    Science.gov (United States)

    Eriksson, O.; Baltscheffsky, M.; Breton, S.-P.; Söderberg, S.; Ivanell, S.

    2017-05-01

    The aim of the present paper is to obtain a better understanding of long distance wakes generated by wind farms as a first step towards a better understanding of farm to farm interaction. The Horns Rev I (HR) wind farm is considered for this purpose, where comparisons are performed between microscale Large Eddy Simulations (LES) using an Actuator Disc model (ACD), mesoscale simulations in the Weather Research and Forecasting Model (WRF) using a wind turbine parameterization, production data as well as wind measurements in the wind farm wake. The LES is manually set up according to the wind conditions obtained from the mesoscale simulation as a first step towards a meso/microscale coupling. The LES using an ACD are performed in the EllipSys3D code. A forced boundary layer (FBL) approach is used to introduce the desired wind shear and the atmospheric turbulence field from the Mann model. The WRF uses a wind turbine parameterization based on momentum sink. To make comparisons with the LESs and the site data possible an idealized setup of WRF is used in this study. The case studied here considers a westerly wind direction sector (at hub height) of 270 ± 2.5 degrees and a wind speed of 8 ± 0.5 m/s. For both the simulations and the site data a neutral atmosphere is considered. The simulation results for the relative production as well as the wind speed 2 km and 6 km downstream from the wind farm are compared to site data. Further comparisons between LES and WRF are also performed regarding the wake recovery and expansion. The results are also compared to an earlier study of HR using LES as well as an earlier comparison of LES and WRF. Overall the results in this study show a better agreement between LES and WRF as well as better agreement between simulations and site data. The procedure of using the profile from WRF as inlet to LES can be seen as a simplified coupling of the models that could be developed further to combine the methods for cases of farm to farm

  6. Prospecting for Wind

    Science.gov (United States)

    Swapp, Andy; Schreuders, Paul; Reeve, Edward

    2011-01-01

    Many people use wind to help meet their needs. Over the years, people have been able to harness or capture the wind in many different ways. More recently, people have seen the rebirth of electricity-generating wind turbines. Thus, the age-old argument about technology being either good or bad can also be applied to the wind. The wind can be a…

  7. Careers in Wind Energy

    Science.gov (United States)

    Liming, Drew; Hamilton, James

    2011-01-01

    As a common form of renewable energy, wind power is generating more than just electricity. It is increasingly generating jobs for workers in many different occupations. Many workers are employed on wind farms: areas where groups of wind turbines produce electricity from wind power. Wind farms are frequently located in the midwestern, western, and…

  8. Analysis on shearing deformation of roof support bolt in gob-side entry of fully-mechanized caving face

    Energy Technology Data Exchange (ETDEWEB)

    Miao Xie-xing; Mao Xian-biao; Zhu Chuan-qu; Liu Wei-qun [China University of Mining and Technology, Xuzhou (China)

    2005-07-01

    The bolt probably supports larger shearing deformation in the course of huge deformation of roadway surrounding rock, for instance the cable bolts-metal mesh reinforcement of small pillar adopted largely in coalmines, especially that in gob-side entry of fully-mechanized caving face (FCF). The mechanism that the full-column roof support bolt sustains during shearing deformation in gob-side entry of FCF was analyzed by theoretical research, and the shearing stress distribution, the maximum shearing force and the maximum shearing stress in bolts were obtained with the help of numerical simulation. It is indicated that the maximum shearing stress of the roof support bolt in gob-side entry of FCF will approach or exceed the allowable shearing stress of bolt materials in condition of large deformation in surrounding rock, and here, the shearing effect of bolt is not to be neglected. 6 refs., 4 figs., 1 tab.

  9. Bottom shear stress and salinity distribution in a windy Mediterranean lagoon

    Science.gov (United States)

    Alekseenko, Elena; Roux, Bernard; Kuznetsov, Konstantin

    2017-04-01

    This work concerns the wind influence on bottom shear stress and salinity levels in a Mediterranean semi-enclosed coastal lagoon (Etang de Berre), with respect to a replanting program of Zostera noltii. The MARS3D numerical model is used to analyze the 3D current, salinity and temperature distribution induced by three meteorological, oceanic and anthropogenic forcings in this lagoon. The numerical model has been carefully validated by comparison with daily observations of the vertical salinity and temperature profiles at three mooring stations, for one year. Then, two modelling scenarios are considered. The first scenario (scen.#1), starting with an homogeneous salinity of S=20 PSU and without wind forcing, studies a stratification process under the influence of a periodic seawater inflow and a strong freshwater inflow from an hydropower plant (250 m3/s). Then, in the second scenario (scen.#2), we study how a strong wind of 80 km/h can mix the haline stratification obtained at the end of scen.#1. The most interesting results concern four nearshore replanting areas ; two are situated on the eastern side of EB and two on the western side. The results of scen.#2 show that all these areas are subject to a downwind coastal jet. Concerning bottom salinity, the destratification process is very beneficial; it always remains greater than 12 PSU for a N-NW wind of 80 km/h and a hydropower runoff of 250 m3/s. Special attention is devoted to the bottom shear stress (BSS) for different values of the bottom roughness parameter (for gravels, sands and silts), and to the bottom salinity. BSS presents a maximum near the shoreline and decreases along transects perpendicular to the shoreline. There exists a zone, parallel to the shoreline, where BSS presents a minimum (close to zero). When comparing the BSS value at the four replanting areas with the critical value, BSScr, at which the sediment mobility would occur, we see that for the smaller roughness values (ranging from z0=3.5 e

  10. Integrated Wind Power Planning Tool

    DEFF Research Database (Denmark)

    Rosgaard, M. H.; Giebel, Gregor; Nielsen, T. S.

    2012-01-01

    This poster presents the current state of the public service obligation (PSO) funded project PSO 10464, with the working title "Integrated Wind Power Planning Tool". The project commenced October 1, 2011, and the goal is to integrate a numerical weather prediction (NWP) model with purely statisti......This poster presents the current state of the public service obligation (PSO) funded project PSO 10464, with the working title "Integrated Wind Power Planning Tool". The project commenced October 1, 2011, and the goal is to integrate a numerical weather prediction (NWP) model with purely...... statistical tools in order to assess wind power fluctuations, with focus on long term power system planning for future wind farms as well as short term forecasting for existing wind farms. Currently, wind power fluctuation models are either purely statistical or integrated with NWP models of limited...... resolution. With regard to the latter, one such simulation tool has been developed at the Wind Energy Division, Risø DTU, intended for long term power system planning. As part of the PSO project the inferior NWP model used at present will be replaced by the state-of-the-art Weather Research & Forecasting...

  11. Wind profiler observations of a monsoon low-level jet over a tropical Indian station

    Directory of Open Access Journals (Sweden)

    M. C. R. Kalapureddy

    2007-11-01

    Full Text Available Three-year high-resolution wind observations of the wind profiler have been utilized to characterize the diurnal and seasonal features of the monsoon Low-Level Jet (LLJ over a tropical station, Gadanki (13.5° N, 79.2° E, with a focus on the diurnal variability of low-level winds. The Boreal summer monsoon winds show a conspicuously strong westerly LLJ with average wind speed exceeding 20 m s−1. The L-band wind profiler measurements have shown an advantage of better height and time resolutions over the conventional radiosonde method for diurnal wind measurements. An interesting diurnal oscillation of LLJ core has been observed. It is varying in the height range of 1.8±0.6 km with the maximum and minimum intensity noticed during the early morning and afternoon hours, respectively. The jet core (wind maxima height is observed to coincide with the inversion height. Strong wind shears are normally located beneath the LLJ core. The sole wind profiler observations are capable of identifying the monsoon phases, such as onset, break and active spells, etc. The mutual influence between the LLJ and the boundary layer has been discussed. One notices that the observed LLJ diurnal structures depend on the local convective activity, wind shears and turbulence activity associated with boundary layer winds. The day-to-day change in the LLJ structure depends on the latitudinal position of the LLJ core.

  12. Overview and Meteorological Validation of the Wind Integration National Dataset toolkit

    Energy Technology Data Exchange (ETDEWEB)

    Draxl, C. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Hodge, B. M. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Clifton, A. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); McCaa, J. [3TIER by VAisala, Seattle, WA (United States)

    2015-04-13

    The Wind Integration National Dataset (WIND) Toolkit described in this report fulfills these requirements, and constitutes a state-of-the-art national wind resource data set covering the contiguous United States from 2007 to 2013 for use in a variety of next-generation wind integration analyses and wind power planning. The toolkit is a wind resource data set, wind forecast data set, and wind power production and forecast data set derived from the Weather Research and Forecasting (WRF) numerical weather prediction model. WIND Toolkit data are available online for over 116,000 land-based and 10,000 offshore sites representing existing and potential wind facilities.

  13. Network Wind Power Over the Pacific Northwest. Progress Report, October 1979-September 1980.

    Energy Technology Data Exchange (ETDEWEB)

    Baker, Robert W.; Hewson, E. Wendell

    1980-10-01

    The research in FY80 is composed of six primary tasks. These tasks include data collection and analysis, wind flow studies around an operational wind turbine generator (WTG), kite anemometer calibration, wind flow analysis and prediction, the Klickitat County small wind energy conversion system (SWECS) program, and network wind power analysis. The data collection and analysis task consists of four sections, three of which deal with wind flow site surveys and the fourth with collecting and analyzing wind data from existing data stations. This report also includes an appendix which contains mean monthly wind speed data summaries, wind spectrum summaries, time series analysis plots, and high wind summaries.

  14. Global composites of surface wind speeds in tropical cyclones based on a 12 year scatterometer database

    Science.gov (United States)

    Klotz, Bradley W.; Jiang, Haiyan

    2016-10-01

    A 12 year global database of rain-corrected satellite scatterometer surface winds for tropical cyclones (TCs) is used to produce composites of TC surface wind speed distributions relative to vertical wind shear and storm motion directions in each TC-prone basin and various TC intensity stages. These composites corroborate ideas presented in earlier studies, where maxima are located right of motion in the Earth-relative framework. The entire TC surface wind asymmetry is down motion left for all basins and for lower strength TCs after removing the motion vector. Relative to the shear direction, the motion-removed composites indicate that the surface wind asymmetry is located down shear left for the outer region of all TCs, but for the inner-core region it varies from left of shear to down shear right for different basin and TC intensity groups. Quantification of the surface wind asymmetric structure in further stratifications is a necessary next step for this scatterometer data set.

  15. Shelter effect on a row of coal piles to prevent wind erosion

    Energy Technology Data Exchange (ETDEWEB)

    Borges, A.R.; Viergas, D.X.

    1988-08-01

    The shelter effect of porous wind breakers over a row of coal piles was studied in a wind tunnel. Two sets of tests are described, one performed in two dimensional configuration in which the shelter effect of several barriers with different heights and porosities is evaluated. The effect of wind direction is considered using a tridimensional model. Wall shear stress measurements performed with a hot film sensor allowed the characterization of the transport properties of fine particles of coal. By integration of the local wind properties the rates of pollutant emission were determined leading to the conclusion of an effective shelter action of the porous wind breakers.

  16. Network wind power over the Pacific Northwest

    Energy Technology Data Exchange (ETDEWEB)

    Hewson, E W; Baker, R W; Barber, D A; Peterson, B

    1978-09-01

    Since 1975 the Bonneville Power Administration (BPA) has been sponsoring wind power research at Oregon State University. A feasibility study that initially concentrated on the wind power potential in the Columbia River Gorge has expanded to the BPA service area which covers Washington, Oregon, Idaho, western Montana and northern Nevada. Previous BPA reports have documented the progress of this research.

  17. Experimental Verification of Current Shear Design Equations for HSRC Beams

    Directory of Open Access Journals (Sweden)

    Attaullah Shah

    2012-07-01

    Full Text Available Experimental research on the shear capacity of HSRC (High Strength Reinforced Concrete beams is relatively very limited as compared to the NSRC (Normal Strength Reinforced Concrete beams. Most of the Building Codes determine the shear strength of HSRC with the help of empirical equations based on experimental work of NSRC beams and hence these equations are generally regarded as un-conservative for HSRC beams particularly at low level of longitudinal reinforcement. In this paper, 42 beams have been tested in two sets, such that in 21 beams no transverse reinforcement has been used, whereas in the remaining 21 beams, minimum transverse reinforcement has been used as per ACI-318 (American Concrete Institute provisions. Two values of compressive strength 52 and 61 MPa, three values of longitudinal steel ratio and seven values of shear span to depth ratio have been have been used. The beams were tested under concentrated load at the mid span. The results are compared with the equations proposed by different international building codes like ACI, AASHTO LRFD, EC (Euro Code, Canadian Code and Japanese Code for shear strength of HSRC beams.From comparison, it has been observed that some codes are less conservative for shear design of HSRC beams and further research is required to rationalize these equations.

  18. Microfluidic viscometers for shear rheology of complex fluids and biofluids

    Science.gov (United States)

    Wang, William S.; Vanapalli, Siva A.

    2016-01-01

    The rich diversity of man-made complex fluids and naturally occurring biofluids is opening up new opportunities for investigating their flow behavior and characterizing their rheological properties. Steady shear viscosity is undoubtedly the most widely characterized material property of these fluids. Although widely adopted, macroscale rheometers are limited by sample volumes, access to high shear rates, hydrodynamic instabilities, and interfacial artifacts. Currently, microfluidic devices are capable of handling low sample volumes, providing precision control of flow and channel geometry, enabling a high degree of multiplexing and automation, and integrating flow visualization and optical techniques. These intrinsic advantages of microfluidics have made it especially suitable for the steady shear rheology of complex fluids. In this paper, we review the use of microfluidics for conducting shear viscometry of complex fluids and biofluids with a focus on viscosity curves as a function of shear rate. We discuss the physical principles underlying different microfluidic viscometers, their unique features and limits of operation. This compilation of technological options will potentially serve in promoting the benefits of microfluidic viscometry along with evincing further interest and research in this area. We intend that this review will aid researchers handling and studying complex fluids in selecting and adopting microfluidic viscometers based on their needs. We conclude with challenges and future directions in microfluidic rheometry of complex fluids and biofluids. PMID:27478521

  19. The Great Plains Wind Power Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, John [Texas Tech Univ., Lubbock, TX (United States)

    2014-01-30

    This multi-year, multi-faceted project was focused on the continued development of a nationally-recognized facility for the testing, characterization, and improvement of grid-connected wind turbines, integrated wind-water desalination systems, and related educational and outreach topics. The project involved numerous faculty and graduate students from various engineering departments, as well as others from the departments of Geosciences (in particular the Atmospheric Science Group) and Economics. It was organized through the National Wind Institute (NWI), which serves as an intellectual hub for interdisciplinary and transdisciplinary research, commercialization and education related to wind science, wind energy, wind engineering and wind hazard mitigation at Texas Tech University (TTU). Largely executed by an academic based team, the project resulted in approximately 38 peer-reviewed publications, 99 conference presentations, the development/expansion of several experimental facilities, and two provisional patents.

  20. Wind turbines fundamentals, technologies, application, economics

    CERN Document Server

    Hau, Erich

    2013-01-01

    "Wind Turbines" addresses all those professionally involved in research, development, manufacture and operation of wind turbines. It provides a cross-disciplinary overview of modern wind turbine technology and an orientation in the associated technical, economic and environmental fields.  In its revised third edition, special emphasis has been given to the latest trends in wind turbine technology and design, such as gearless drive train concepts, as well as on new fields of application, in particular the offshore utilisation of wind energy. The author has gained experience over decades designing wind energy converters with a major industrial manufacturer and, more recently, in technical consulting and in the planning of large wind park installations, with special attention to economics.