WorldWideScience

Sample records for wind shear program

  1. CAT LIDAR wind shear studies

    Science.gov (United States)

    Goff, R. W.

    1978-01-01

    The studies considered the major meteorological factors producing wind shear, methods to define and classify wind shear in terms significant from an aircraft perturbation standpoint, the significance of sensor location and scan geometry on the detection and measurement of wind shear, and the tradeoffs involved in sensor performance such as range/velocity resolution, update frequency and data averaging interval.

  2. Remote Sensing Wind and Wind Shear System.

    Science.gov (United States)

    Contents: Remote sensing of wind shear and the theory and development of acoustic doppler; Wind studies; A comparison of methods for the remote detection of winds in the airport environment; Acoustic doppler system development; System calibration; Airport operational tests.

  3. Modeling and implementation of wind shear data

    Science.gov (United States)

    Frost, Walter

    1987-01-01

    The problems of implementing the JAWS wind shear data are discussed. The data sets are described from the view of utilizing them in an aircraft performance computer program. Then, some of the problems of nonstandard procedures are described in terms of programming the equations of aircraft motion when the effects of temporal and spatially variable winds are included. Finally, some of the computed effects of the various wind shear terms are shown.

  4. Program to determine space vehicle response to wind turbulence

    Science.gov (United States)

    Wilkening, H. D.

    1972-01-01

    Computer program was developed as prelaunch wind monitoring tool for Saturn 5 vehicle. Program accounts for characteristic wind changes including turbulence power spectral density, wind shear, peak wind velocity, altitude, and wind direction using stored variational statistics.

  5. Problems pilots face involving wind shear

    Science.gov (United States)

    Melvin, W. W.

    1977-01-01

    Educating pilots and the aviation industry about wind shears presents a major problem associated with this meteorological phenomenon. The pilot's second most pressing problem is the need for a language to discuss wind shear encounters with other pilots so that the reaction of the aircraft to the wind shear encounter can be accurately described. Another problem is the flight director which gives a centered pitch command for a given angular displacement from the glide slope. It was suggested that they should instead be called flight path command and should not center unless the aircraft is actually correcting to the flight path.

  6. Wind Shear Characteristics at Central Plains Tall Towers (presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Schwartz, M.; Elliott, D.

    2006-06-05

    The objectives of this report are: (1) Analyze wind shear characteristics at tall tower sites for diverse areas in the central plains (Texas to North Dakota)--Turbines hub heights are now 70-100 m above ground and Wind measurements at 70-100+ m have been rare. (2) Present conclusions about wind shear characteristics for prime wind energy development regions.

  7. Model of wind shear conditional on turbulence and its impact on wind turbine loads

    DEFF Research Database (Denmark)

    Dimitrov, Nikolay Krasimirov; Natarajan, Anand; Kelly, Mark C.

    2015-01-01

    proposed for flat terrain and that can significantly decrease the uncertainty associated with fatigue load predictions for wind turbines with large rotors. An essential contribution is the conditioning of wind shear on the 90% quantile of wind turbulence, such that the appropriate magnitude of the design...... fatigue load is achieved. The proposed wind shear model based on the wind measurements is thereby probabilistic in definition, with shear jointly distributed with wind turbulence. A simplified model for the wind shear exponent is further derived from the full stochastic model. The fatigue loads over...... is most pronounced on the blade flap loads. It is further shown that under moderate wind turbulence, the wind shear exponents may be over-specified in the design standards, and a reduction of wind shear exponent based on the present measurements can contribute to reduced fatigue damage equivalent loads...

  8. Characteristics for wind energy and wind turbines by considering vertical wind shear

    Institute of Scientific and Technical Information of China (English)

    郑玉巧; 赵荣珍

    2015-01-01

    The probability distributions of wind speeds and the availability of wind turbines were investigated by considering the vertical wind shear. Based on the wind speed data at the standard height observed at a wind farm, the power-law process was used to simulate the wind speeds at a hub height of 60 m. The Weibull and Rayleigh distributions were chosen to express the wind speeds at two different heights. The parameters in the model were estimated via the least square (LS) method and the maximum likelihood estimation (MLE) method, respectively. An adjusted MLE approach was also presented for parameter estimation. The main indices of wind energy characteristics were calculated based on observational wind speed data. A case study based on the data of Hexi area, Gansu Province of China was given. The results show that MLE method generally outperforms LS method for parameter estimation, and Weibull distribution is more appropriate to describe the wind speed at the hub height.

  9. Simulation of shear and turbulence impact on wind turbine performance

    DEFF Research Database (Denmark)

    Wagner, Rozenn; Courtney, Michael; Larsen, Torben J.

    Aerodynamic simulations (HAWC2Aero) were used to investigate the influence of the speed shear, the direction shear and the turbulence intensity on the power output of a multi-megawatt turbine. First simulation cases with laminar flow and power law wind speed profiles were compared to the case...... of a uniform inflow. Secondly, a similar analysis was done for cases with direction shear. In each case, we derived a standard power curve (function of the wind speed at hub height) and power curves obtained with various definitions of equivalent wind speed in order to reduce the scatter due to shear. Thirdly...

  10. Small-scale wind shear definition for aerospace vehicle design.

    Science.gov (United States)

    Fichtl, G. H.

    1972-01-01

    Rawinsonde wind profile data provide adequate wind shear information for vertical height intervals greater than 1 km. To specify wind shears for intervals below 1 km for space vehicle design, detailed wind-profile information like that provided by the FPS-16 Radar/Jimsphere system or an extrapolation procedure is required. This paper is concerned with the latter alternative. It is assumed that any realization from an ensemble of wind profiles can be represented in terms of a Fourier integral. This permits the calculation of the ensemble standard deviation and mean of the corresponding shear ensemble for any altitude and shear interval in terms of the power spectrum of the ensemble of wind profiles. The results of these calculations show that the mean and standard deviation of the wind shear ensemble, as well as the wind shear for any percentile, asymptotically behave like the vertical interval to the 0.7 power. This result is in excellent agreement with shear data from Cape Kennedy, Fla.

  11. Wind Shear Identification with the Retrieval Wind of Doppler Wearth Radar

    Science.gov (United States)

    Zhou, S.; Cui, Y.; Zheng, H.; Zhang, T.

    2018-05-01

    A new method, which based on the wind field retrieval algorithm of Volume Velocity Process (VVP), has been used to identified the intensity of wind shear occurred in a severe convection process in Guangzhou. The intensity of wind shear's strength shown that new cells would be more likely to generate in areas where the magnitude generally larger than 3.0 m/(s*km). Moreover, in the areas of potential areas of rainfall, the wind shear's strength would larger than 4.5 m/(s*km). This wind shear identify method is very helpful to forecasting severe convections' moving and developments.

  12. Establishment Criteria for Integrated Wind Shear Detection Systems: Low-Level Wind Shear Alert System (LLWAS), Terminal Doppler Weather Radar (TDWR), and Modified Airport Surveillance Radar

    Science.gov (United States)

    1990-12-01

    Overviev . ......................................... 9 2. Programs , Syr!ems, and Services ........................ 11 a. National Weather Service...Equipment Appropriation. ADA, a computer system developed and maintained by the Office of Aviation Policy and rlans, facilitates APS-I processing... Program Plan. The primary benefit of LLWAS, TDWR, and modified airport surveillance radar is reduced risk and expected incidence of wind shear-related

  13. Prescribed wind shear modelling with the actuator line technique

    DEFF Research Database (Denmark)

    Mikkelsen, Robert Flemming; Sørensen, Jens Nørkær; Troldborg, Niels

    2007-01-01

    A method for prescribing arbitrary steady atmospheric wind shear profiles combined with CFD is presented. The method is furthermore combined with the actuator line technique governing the aerodynamic loads on a wind turbine. Computation are carried out on a wind turbine exposed to a representative...

  14. Wind shear coefficients and their effect on energy production

    International Nuclear Information System (INIS)

    Rehman, Shafiqur; Al-Abbadi, Naif M.

    2005-01-01

    This paper provides realistic values of wind shear coefficients calculated using measured values of wind speed at 20, 30 and 40 m above the ground for the first time in Saudi Arabia in particular and, to the best of the authors' knowledge, in the Gulf region in general. The paper also presents air density values calculated using the measured air temperature and surface pressure and the effects of wind shear factor on energy production from wind machines of different sizes. The measured data used in the study covered a period of almost three years between June 17, 1995 and December 1998. An overall mean value of wind shear coefficient of 0.194 can be used with confidence to calculate the wind speed at different heights if measured values are known at one height. The study showed that the wind shear coefficient is significantly influenced by seasonal and diurnal changes. Hence, for precise estimations of wind speed at a height, both monthly or seasonal and hourly or night time and day time average values of wind shear coefficient must be used. It is suggested that the wind shear coefficients must be calculated either (i) using long term average values of wind speed at different heights or (ii) using those half hourly mean values of wind speed for which the wind shear coefficient lies in the range 0 and 0.51. The air density, calculated using measured temperature and pressure was found to be 1.18 kg/m 3 . The air density values were also found to vary with the season of the year and hour of the day, and hence, care must be taken when precise calculations are to be made. The air density values, as shown in this paper, have no significant variation with height. The energy production analysis showed that the actual wind shear coefficient presented in this paper produced 6% more energy compared to that obtained using the 1/7 power law. Similarly, higher plant capacity factors were obtained with the wind shear factor of 0.194 compared to that with 0.143

  15. Wind Shear Systems Implementation Plan, Benefit/Cost Study.

    Science.gov (United States)

    1980-08-01

    not. Accordingly, the three self contained Wind Shear Systems currently being marketed by avionics manufacturers are considered to have lower relative... RESEARC { AND I’iVEIOPMEN1 The FAA research ni d development ffort has taken a threefold appro,,ch to the vind sh#ear problem. Ore. approach was to

  16. SERI Wind Energy Program

    Energy Technology Data Exchange (ETDEWEB)

    Noun, R. J.

    1983-06-01

    The SERI Wind Energy Program manages the areas or innovative research, wind systems analysis, and environmental compatibility for the U.S. Department of Energy. Since 1978, SERI wind program staff have conducted in-house aerodynamic and engineering analyses of novel concepts for wind energy conversion and have managed over 20 subcontracts to determine technical feasibility; the most promising of these concepts is the passive blade cyclic pitch control project. In the area of systems analysis, the SERI program has analyzed the impact of intermittent generation on the reliability of electric utility systems using standard utility planning models. SERI has also conducted methodology assessments. Environmental issues related to television interference and acoustic noise from large wind turbines have been addressed. SERI has identified the causes, effects, and potential control of acoustic noise emissions from large wind turbines.

  17. The Impact of Variable Wind Shear Coefficients on Risk Reduction of Wind Energy Projects.

    Science.gov (United States)

    Corscadden, Kenneth W; Thomson, Allan; Yoonesi, Behrang; McNutt, Josiah

    2016-01-01

    Estimation of wind speed at proposed hub heights is typically achieved using a wind shear exponent or wind shear coefficient (WSC), variation in wind speed as a function of height. The WSC is subject to temporal variation at low and high frequencies, ranging from diurnal and seasonal variations to disturbance caused by weather patterns; however, in many cases, it is assumed that the WSC remains constant. This assumption creates significant error in resource assessment, increasing uncertainty in projects and potentially significantly impacting the ability to control gird connected wind generators. This paper contributes to the body of knowledge relating to the evaluation and assessment of wind speed, with particular emphasis on the development of techniques to improve the accuracy of estimated wind speed above measurement height. It presents an evaluation of the use of a variable wind shear coefficient methodology based on a distribution of wind shear coefficients which have been implemented in real time. The results indicate that a VWSC provides a more accurate estimate of wind at hub height, ranging from 41% to 4% reduction in root mean squared error (RMSE) between predicted and actual wind speeds when using a variable wind shear coefficient at heights ranging from 33% to 100% above the highest actual wind measurement.

  18. Synthetic atmospheric turbulence and wind shear in large eddy simulations of wind turbine wakes

    DEFF Research Database (Denmark)

    Keck, Rolf-Erik; Mikkelsen, Robert Flemming; Troldborg, Niels

    2014-01-01

    , superimposed on top of a mean deterministic shear layer consistent with that used in the IEC standard for wind turbine load calculations. First, the method is evaluated by running a series of large-eddy simulations in an empty domain, where the imposed turbulence and wind shear is allowed to reach a fully...

  19. Wind direction dependent vertical wind shear and surface roughness parameter in two different coastal environments

    International Nuclear Information System (INIS)

    Bagavathsingh, A.; Srinivas, C.V.; Baskaran, R.; Venkatraman, B.; Sardar Maran, P.

    2016-01-01

    Atmospheric boundary layer parameters and surface layer parameterizations are important prerequisites for air pollution dispersion analysis. The turbulent flow characteristics vary at coastal and inland sites where the nuclear facilities are situated. Many pollution sources and their dispersion occur within the roughness sub layer in the lower atmosphere. In this study analysis of wind direction dependence vertical wind shear, surface roughness lengths and surface layer wind condition has been carried out at a coastal and the urban coastal site for the different wind flow regime. The differential response of the near coastal and inland urban site SBL parameters (wind shear, roughness length, etc) was examined as a function of wind direction

  20. Power fluctuation and power loss of wind turbines due to wind shear and tower shadow

    Institute of Scientific and Technical Information of China (English)

    Binrong WEN; Sha WEI; Kexiang WEI; Wenxian YANG; Zhike PENG; Fulei CHU

    2017-01-01

    The magnitude and stability of power output are two key indices of wind turbines.This study investigates the effects of wind shear and tower shadow on power output in terms of power fluctuation and power loss to estimate the capacity and quality of the power generated by a wind turbine.First,wind speed models,particularly the wind shear model and the tower shadow model,are described in detail.The widely accepted tower shadow model is modified in view of the cone-shaped towers of modem large-scale wind turbines.Power fluctuation and power loss due to wind shear and tower shadow are analyzed by performing theoretical calculations and case analysis within the framework of a modified version of blade element momentum theory.Results indicate that power fluctuation is mainly caused by tower shadow,whereas power loss is primarily induced by wind shear.Under steady wind conditions,power loss can be divided into wind farm loss and rotor loss.Wind farm loss is constant at 3α(3α-1)R2/(8H2).By contrast,rotor loss is strongly influenced by the wind turbine control strategies and wind speed.That is,when the wind speed is measured in a region where a variable-speed controller works,the rotor loss stabilizes around zero,but when the wind speed is measured in a region where the blade pitch controller works,the rotor loss increases as the wind speed intensifies.The results of this study can serve as a reference for accurate power estimation and strategy development to mitigate the fluctuations in aerodynamic loads and power output due to wind shear and tower shadow.

  1. Wind speed and direction shears with associated vertical motion during strong surface winds

    Science.gov (United States)

    Alexander, M. B.; Camp, D. W.

    1984-01-01

    Strong surface winds recorded at the NASA 150-Meter Ground Winds Tower facility at Kennedy Space Center, Florida, are analyzed to present occurrences representative of wind shear and vertical motion known to be hazardous to the ascent and descent of conventional aircraft and the Space Shuttle. Graphical (percentage frequency distributions) and mathematical (maximum, mean, standard deviation) descriptions of wind speed and direction shears and associated updrafts and downdrafts are included as functions of six vertical layers and one horizontal distance for twenty 5-second intervals of parameters sampled simultaneously at the rate of ten per second during a period of high surface winds.

  2. Effects of extreme wind shear on aeroelastic modal damping of wind turbines

    DEFF Research Database (Denmark)

    Skjoldan, P.F.; Hansen, Morten Hartvig

    2013-01-01

    Wind shear is an important contributor to fatigue loads on wind turbines. Because it causes an azimuthal variation in angle of attack, it can also affect aerodynamic damping. In this paper, a linearized model of a wind turbine, based on the nonlinear aeroelastic code BHawC, is used to investigate...

  3. Wind energy program overview

    International Nuclear Information System (INIS)

    1992-02-01

    This overview emphasizes the amount of electric power that could be provided by wind power rather than traditional fossil fuels. New wind power markets, advances in technology, technology transfer, and wind resources are some topics covered in this publication

  4. Federal Wind Energy Program. Program summary. [USA

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-01-01

    The objective of the Federal Wind Energy Program is to accelerate the development of reliable and economically viable wind energy systems and enable the earliest possible commercialization of wind power. To achieve this objective for small and large wind systems requires advancing the technology, developing a sound industrial technology base, and addressing the non-technological issues which could deter the use of wind energy. This summary report outlines the projects being supported by the program through FY 1977 toward the achievement of these goals. It also outlines the program's general organization and specific program elements.

  5. Offshore vertical wind shear: Final report on NORSEWInD’s work task 3.1

    DEFF Research Database (Denmark)

    Pena Diaz, Alfredo; Mikkelsen, Torben; Gryning, Sven-Erik

    of power outputs. Background related to the parametrization of the vertical wind speed profile and the behavior of the vertical wind shear in and beyond the atmospheric surface layer is presented together with the application of the long-term atmospheric stability parameters for the analysis of the long......This document reports on the analysis performed by the work task 3.1 of the EU NORSEWInD project and includes the following deliverables: 3.2 Calculated vertical wind shears 3.3 Multi-variational correlation analysis 3.4 NWP data for wind shear model 3.5 Vertical extrapolation methodology 3.......6 Results input into satellite maps The nature of the offshore vertical wind shear is investigated using acquired data from the NORSEWInD network of mast and wind lidar stations. The importance of the knowledge of the vertical wind speed profile and wind shear is first illustrated for the evaluation...

  6. Effects of wind shear on the consequence model of the reactor safety study

    International Nuclear Information System (INIS)

    Sprung, J.L.; Church, H.W.

    1977-01-01

    The effects of explicit incorporation of wind shear into the consequence model of the Reactor Safety study have been investigated. The integral of exposure (X/Q) over area is unchanged by directional shear and decreased by speed shear. Consequence model predictions of early fatalities are always decreased by wind shear. Where early fatalities are decreased, survivors are subject to latent effects and, therefore, latent effects increase. However, aggregate early fatalities and latent effects always are decreased. Because the magnitude of these changes is within the present uncertainties of the consequence model, explicit incorporation of wind shear in the consequence model is not now warranted

  7. Observations of neutral winds, wind shears, and wave structure during a sporadic-E/QP event

    Directory of Open Access Journals (Sweden)

    M. F. Larsen

    2005-10-01

    Full Text Available The second Sporadic E Experiment over Kyushu (SEEK-2 was carried out on 3 August 2002, during an active sporadic-E event that also showed quasi-periodic (QP echoes. Two rockets were launched into the event from Kagoshima Space Center in southern Japan 15 min apart. Both carried a suite of instruments, but the second rocket also released a trimethyl aluminum (TMA trail to measure the neutral winds and turbulence structure. In a number of earlier measurements in similar conditions, large winds and shears that were either unstable or close to instability were observed in the altitude range where the ionization layer occurred. The SEEK-2 wind measurements showed similar vertical structure, but unlike earlier experiments, there was a significant difference between the up-leg and down-leg wind profiles. In addition, wave or billow-like fluctuations were evident in the up-leg portion of the trail, while the lower portion of the down-leg trail was found to have extremely strong turbulence that led to a rapid break-up of the trail. The large east-west gradient in the winds and the strong turbulence have not been observed before. The wind profiles and shears, as well as the qualitative characteristics of the strong turbulence are presented, along with a discussion of the implications of the dynamical features. Keywords. Ionosphere (Mid-latitude ionosphere; Ionospheric irregularities; Electric field and currents

  8. Shear and Turbulence Estimates for Calculation of Wind Turbine Loads and Responses Under Hurricane Strength Winds

    Science.gov (United States)

    Kosovic, B.; Bryan, G. H.; Haupt, S. E.

    2012-12-01

    Schwartz et al. (2010) recently reported that the total gross energy-generating offshore wind resource in the United States in waters less than 30m deep is approximately 1000 GW. Estimated offshore generating capacity is thus equivalent to the current generating capacity in the United States. Offshore wind power can therefore play important role in electricity production in the United States. However, most of this resource is located along the East Coast of the United States and in the Gulf of Mexico, areas frequently affected by tropical cyclones including hurricanes. Hurricane strength winds, associated shear and turbulence can affect performance and structural integrity of wind turbines. In a recent study Rose et al. (2012) attempted to estimate the risk to offshore wind turbines from hurricane strength winds over a lifetime of a wind farm (i.e. 20 years). According to Rose et al. turbine tower buckling has been observed in typhoons. They concluded that there is "substantial risk that Category 3 and higher hurricanes can destroy half or more of the turbines at some locations." More robust designs including appropriate controls can mitigate the risk of wind turbine damage. To develop such designs good estimates of turbine loads under hurricane strength winds are essential. We use output from a large-eddy simulation of a hurricane to estimate shear and turbulence intensity over first couple of hundred meters above sea surface. We compute power spectra of three velocity components at several distances from the eye of the hurricane. Based on these spectra analytical spectral forms are developed and included in TurbSim, a stochastic inflow turbulence code developed by the National Renewable Energy Laboratory (NREL, http://wind.nrel.gov/designcodes/preprocessors/turbsim/). TurbSim provides a numerical simulation including bursts of coherent turbulence associated with organized turbulent structures. It can generate realistic flow conditions that an operating turbine

  9. Implementation of large-scale average geostrophic wind shear in WAsP12.1

    DEFF Research Database (Denmark)

    Floors, Rogier Ralph; Troen, Ib; Kelly, Mark C.

    The vertical extrapolation model described in the European Wind Atlas Troen and Petersen (1989) is modified to take into account large-scale average geostrophic wind shear to describe the effect of horizontal temperature gradients on the geostrophic wind. The method is implemented by extracting...... the average geostrophic wind shear from Climate Forecast System Reanalysis (CFSR) data and the values of nearest grid point are automatically used in the WAsP 12.1 user interface to provide better AEP predictions....

  10. Vector wind and vector wind shear models 0 to 27 km altitude for Cape Kennedy, Florida, and Vandenberg AFB, California

    Science.gov (United States)

    Smith, O. E.

    1976-01-01

    The techniques are presented to derive several statistical wind models. The techniques are from the properties of the multivariate normal probability function. Assuming that the winds can be considered as bivariate normally distributed, then (1) the wind components and conditional wind components are univariate normally distributed, (2) the wind speed is Rayleigh distributed, (3) the conditional distribution of wind speed given a wind direction is Rayleigh distributed, and (4) the frequency of wind direction can be derived. All of these distributions are derived from the 5-sample parameter of wind for the bivariate normal distribution. By further assuming that the winds at two altitudes are quadravariate normally distributed, then the vector wind shear is bivariate normally distributed and the modulus of the vector wind shear is Rayleigh distributed. The conditional probability of wind component shears given a wind component is normally distributed. Examples of these and other properties of the multivariate normal probability distribution function as applied to Cape Kennedy, Florida, and Vandenberg AFB, California, wind data samples are given. A technique to develop a synthetic vector wind profile model of interest to aerospace vehicle applications is presented.

  11. HNEI wind-hydrogen program

    International Nuclear Information System (INIS)

    Neill, D.; Holst, B.; Yu, C.; Huang, N.; Wei, J.

    1990-01-01

    This paper reports on wind powered hydrogen production which is promising for Hawaii because Hawaii's wind energy potential exceeds the state's current electrical energy requirements by more than twenty-fold. Wind energy costs are now approaching $0.06 to $0.08/kWh, and the U.S. Department of Energy has set a goal of $0.04/kWh. These conditions make wind power a good source for electrolytic production of hydrogen. HNEI's wind-hydrogen program, at the HNEI-Kahua Wind Energy Storage Test facility on the island of Hawaii, is developing energy storage and power electronic systems for intermittent wind and solar devices to provide firm power to the utility or to a stand-alone hybrid system. In mid 1990, the first wind-hydrogen production/storage/ generation system is scheduled for installation. HNEI's wind- hydrogen program will provide research, development, demonstration, and education on the great potential and benefits of hydrogen

  12. Accounting for the speed shear in wind turbine power performance measurement

    DEFF Research Database (Denmark)

    Wagner, Rozenn

    the vertical wind shear and the turbulence intensity. The work presented in this thesis consists of the description and the investigation of a simple method to account for the wind speed shear in the power performance measurement. Ignoring this effect was shown to result in a power curve dependant on the shear...... for turbulence intensity suggested by Albers. The second method was found to be more suitable for normalising the power curve for the turbulence intensity. Using the equivalent wind speed accounting for the wind shear in the power performance measurement was shown to result in a more repeatable power curve than......The power curve of a wind turbine is the primary characteristic of the machine as it is the basis of the warranty for it power production. The current IEC standard for power performance measurement only requires the measurement of the wind speed at hub height and the air density to characterise...

  13. Wind Program Newsletter: October 2014 Edition (Newsletter)

    Energy Technology Data Exchange (ETDEWEB)

    2014-10-01

    The U.S. Department of Energy's Wind Program Newsletter, supported by the EERE Wind and Water Power Technologies office, highlights the Wind Program's key activities, events, and funding opportunities.

  14. Simulations of large winds and wind shears induced by gravity wave breaking in the mesosphere and lower thermosphere (MLT) region

    OpenAIRE

    X. Liu; X. Liu; J. Xu; H.-L. Liu; J. Yue; W. Yuan

    2014-01-01

    Using a fully nonlinear two-dimensional (2-D) numerical model, we simulated gravity waves (GWs) breaking and their contributions to the formation of large winds and wind shears in the mesosphere and lower thermosphere (MLT). An eddy diffusion coefficient is used in the 2-D numerical model to parameterize realistic turbulent mixing. Our study shows that the momentum deposited by breaking GWs accelerates the mean wind. The resultant large background wind increases the GW's app...

  15. Canadian wind energy program

    Energy Technology Data Exchange (ETDEWEB)

    Templin, R J; South, P

    1976-01-01

    Several aspects of recent work at the National Research Council of Canada on the development of vertical-axis turbines have been reviewed. Most of this work, during the past year or more, has been in support of the design of a 200 kW unit now being built for experimental operation on the Magdelen Islands in the Gulf of St. Lawrence. Results of small and large scale aeroelastic wind tunnel model experiments have confirmed that very large scale vertical-axis wind turbines are feasible, especially if designed for normal operation at constant rotational speed. A computer model of a simple mixed power system has indicated that substantial cost savings may be possible by using wind energy in Canadian east coast regions. 4 refs., 11 figs., 1 tab.

  16. Understanding and representing the effect of wind shear on the turbulent transfer in the convective boundary layer

    NARCIS (Netherlands)

    Ronda, R.J.; Vilà-Guerau de Arellano, J.; Pino, D.

    2012-01-01

    Goal of this study is to quantify the effect of wind shear on the turbulent transport in the dry Convective Boundary Layer (CBL). Questions addressed include the effect of wind shear on the depth of the mixed layer, the effect of wind shear on the depth and structure of the capping inversion, and

  17. Wind Power Today: 1998 Wind Energy Program Highlights

    Energy Technology Data Exchange (ETDEWEB)

    Tromly, K.

    1999-06-17

    The US Department of Energy's Office of Energy Efficiency and Renewable Energy manages the Federal Wind Energy Program. The mission of the program is to help the US wind industry to complete the research, testing, and field verification needed to fully develop advanced wind technologies that will lead the world in cost-effectiveness and reliability. This publication, printed annually, provides a summary of significant achievements in wind energy made during the previous calendar year. Articles include wind energy in the Midwest, an Alaskan wind energy project, the US certification program, structural testing, and the federal program in review.

  18. Evaluating winds and vertical wind shear from Weather Research and Forecasting model forecasts using seven planetary boundary layer schemes

    DEFF Research Database (Denmark)

    Draxl, Caroline; Hahmann, Andrea N.; Pena Diaz, Alfredo

    2014-01-01

    with different PBL parameterizations at one coastal site over western Denmark. The evaluation focuses on determining which PBL parameterization performs best for wind energy forecasting, and presenting a validation methodology that takes into account wind speed at different heights. Winds speeds at heights...... regarding wind energy at these levels partly depends on the formulation and implementation of planetary boundary layer (PBL) parameterizations in these models. This study evaluates wind speeds and vertical wind shears simulated by theWeather Research and Forecasting model using seven sets of simulations...

  19. Impact of Wind Shear and Tower Shadow Effects on Power System with Large Scale Wind Power Penetration

    DEFF Research Database (Denmark)

    Hu, Weihao; Su, Chi; Chen, Zhe

    2011-01-01

    presents a simulation model of a variable speed wind farm with permanent magnet synchronous generators (PMSGs) and fullscale back-to-back converters in the simulation tool of DIgSILENT/PowerFactory. In this paper, the impacts of wind shear and tower shadow effects on the small signal stability of power......Grid connected wind turbines are fluctuating power sources due to wind speed variations, the wind shear and the tower shadow effects. The fluctuating power may be able to excite the power system oscillation at a frequency close to the natural oscillation frequency of a power system. This paper...... systems with large scale wind power penetrations are investigated during continuous operation based on the wind turbine model and the power system model....

  20. Predicting wind shear effects: A study of Minnesota wind data collected at heights up to 70 meters

    Energy Technology Data Exchange (ETDEWEB)

    Artig, R. [Minnesota Dept. of Public Service, St. Paul, MN (United States)

    1997-12-31

    The Minnesota Department of Public Service (DPS) collects wind data at carefully selected sites around the state and analyzes the data to determine Minnesota`s wind power potential. DPS recently installed advanced new monitoring equipment at these sites and began to collect wind data at 30, 50, and 70 meters above ground level, with two anemometers at each level. Previously, the Department had not collected data at heights above ground level higher than 30 meters. DPS also, with the U.S. Department of Energy (DOE), installed four sophisticated monitoring sites as part of a Tall Tower Wind Shear Study that is assessing the effects of wind shear on wind power potential. At these sites, wind data are being collected at the 10, 30, 40, 50, 60, and 70 meter heights. This paper presents the preliminary results of the analysis of wind data from all sites. These preliminary results indicate that the traditional 1/7 power law does not effectively predict wind shear in Minnesota, and the result is an underestimation of Minnesota`s wind power potential at higher heights. Using a power factor of 1/5 or 1/4 may be more accurate and provide sound justification for installing wind turbines on taller towers in Minnesota.

  1. Wind power today: 1999 Wind Energy program highlights

    Energy Technology Data Exchange (ETDEWEB)

    Weis-Taylor, Pat

    2000-04-06

    Wind Power Today is an annual publication that provides an overview for the Department of Energy's Wind Energy Program. The purpose of Wind Power Today is to show how DOE's Wind Energy Program supports wind turbine research and deployment in hopes of furthering the advancement of wind technologies that produce clean, low-cost, reliable energy for the 21st century. Content objectives include: Educate readers about the advantages and potential for widespread deployment of wind energy; explain DOE wind energy program objectives and goals; describe program accomplishments in research and application; examine the barriers to widespread deployment; describe benefits of continued research and development; facilitate technology transfer; attract cooperative wind energy projects with industry.

  2. Wind Power Today: 2000 Wind Energy Program Highlights

    Energy Technology Data Exchange (ETDEWEB)

    Weis-Taylor, W.

    2001-05-08

    Wind Power Today is an annual publication that provides an overview of the U.S. Department of Energy's Wind Energy Program. The purpose of Wind Power Today is to show how DOE's Wind Energy Program supports wind turbine research and deployment in hopes of furthering the advancement of wind technologies that produce clean, low-cost, reliable energy. Content objectives include: educate readers about the advantages and potential for widespread deployment of wind energy; explain the program's objectives and goals; describe the program's accomplishments in research and application; examine the barriers to widespread deployment; describe the benefits of continued research and development; facilitate technology transfer; and attract cooperative wind energy projects with industry.

  3. Wind Program Newsletter, May 2016 Edition

    Energy Technology Data Exchange (ETDEWEB)

    2016-05-01

    The U.S. Department of Energy Wind Program Newsletter provides wind industry stakeholders and the public with information about the Wind Program R&D efforts funded by the Wind and Water Power Technologies Office. The newsletter comes out twice a year and is sent electronically to subscribers and distributed in hard copy to conference attendees.

  4. 1983 lightning, turbulence, wind shear, and Doppler radar studies at the National Severe Storms Laboratory

    Science.gov (United States)

    Lee, J. T.

    1984-01-01

    As part of continuing research on aviation related weather hazards, numerous experiments were incorporated into the 1983 Spring Observation Program. This year's program was an abbreviated one because of commitments made to the development of the Next Generation Radar (NEXRAD) project. The National Oceanic and Atmospheric Administration's (NOAA) P-3 Orion and the National Aeronautics and Space Administration's (NASA) RB-57B and U-2 were the main aircraft involved in the studies of lightning, wind shear, turbulence, and storm structure. A total of 14 flights were made by these aircraft during the period of May 16 through June 5, 1983. Aircraft instrumentation experiments are described, and resultant data sets available for research are detailed. Aircraft instrumentation and Doppler radar characteristics are detailed.

  5. Wind Energy Career Development Program

    Energy Technology Data Exchange (ETDEWEB)

    Gwen Andersen

    2012-03-29

    Saint Francis University has developed curriculum in engineering and in business that is meeting the needs of students and employers (Task 1) as well as integrating wind energy throughout the curriculum. Through a variety of approaches, the University engaged in public outreach and education that reached over 2,000 people annually (Task 2). We have demonstrated, through the success of these programs, that students are eager to prepare for emerging jobs in alternative energy, that employers are willing to assist in developing employees who understand the broader business and policy context of the industry, and that people want to learn about wind energy.

  6. Power spectral density analysis of wind-shear turbulence for related flight simulations. M.S. Thesis

    Science.gov (United States)

    Laituri, Tony R.

    1988-01-01

    Meteorological phenomena known as microbursts can produce abrupt changes in wind direction and/or speed over a very short distance in the atmosphere. These changes in flow characteristics have been labelled wind shear. Because of its adverse effects on aerodynamic lift, wind shear poses its most immediate threat to flight operations at low altitudes. The number of recent commercial aircraft accidents attributed to wind shear has necessitated a better understanding of how energy is transferred to an aircraft from wind-shear turbulence. Isotropic turbulence here serves as the basis of comparison for the anisotropic turbulence which exists in the low-altitude wind shear. The related question of how isotropic turbulence scales in a wind shear is addressed from the perspective of power spectral density (psd). The role of the psd in related Monte Carlo simulations is also considered.

  7. 2010 Wind Program Peer Review Report

    Energy Technology Data Exchange (ETDEWEB)

    Swisher, Randy [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States); Clark, Charlton [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States); Beaudry-Losique, Jacques [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States)

    2010-12-01

    This report documents the evaluation of the technical, scientific, and business results of over 80 projects of the Wind Program, as well as the productivity and management effectiveness of the Wind Program itself.

  8. Wind Power Today: Wind Energy Program Highlights 2001

    Energy Technology Data Exchange (ETDEWEB)

    2002-05-01

    Wind Power Today is an annual publication that provides an overview of the U.S. Department of Energy's Wind Energy Program accomplishments for the previous year. The purpose of Wind Power Today is to show how DOE's Wind Energy Program supports wind turbine research and deployment in hopes of furthering the advancement of wind technologies that produce clean, low-cost, reliable energy. Content objectives include: educate readers about the advantages and potential for widespread deployment of wind energy; explain the program's objectives and goals; describe the program's accomplishments in research and application; examine the barriers to widespread deployment; describe the benefits of continued research and development; facilitate technology transfer; and attract cooperative wind energy projects with industry. This 2001 edition of Wind Power Today also includes discussions about wind industry growth in 2001, how DOE is taking advantage of low wind speed regions through advancing technology, and distributed applications for small wind turbines.

  9. Accounting for the speed shear in wind turbine power performance measurement

    DEFF Research Database (Denmark)

    Wagner, Rozenn; Courtney, Michael; Gottschall, Julia

    2011-01-01

    The current IEC standard for wind turbine power performance measurement only requires measurement of the wind speed at hub height assuming this wind speed to be representative for the whole rotor swept area. However, the power output of a wind turbine depends on the kinetic energy flux, which...... itself depends on the wind speed profile, especially for large turbines. Therefore, it is important to characterize the wind profile in front of the turbine, and this should be preferably achieved by measuring the wind speed over the vertical range between lower and higher rotor tips. In this paper, we...... describe an experiment in which wind speed profiles were measured in front of a multimegawatt turbine using a ground–based pulsed lidar. Ignoring the vertical shear was shown to overestimate the kinetic energy flux of these profiles, in particular for those deviating significantly from a power law profile...

  10. Assessment of the Effects of Entrainment and Wind Shear on Nuclear Cloud Rise Modeling

    Science.gov (United States)

    Zalewski, Daniel; Jodoin, Vincent

    2001-04-01

    Accurate modeling of nuclear cloud rise is critical in hazard prediction following a nuclear detonation. This thesis recommends improvements to the model currently used by DOD. It considers a single-term versus a three-term entrainment equation, the value of the entrainment and eddy viscous drag parameters, as well as the effect of wind shear in the cloud rise following a nuclear detonation. It examines departures from the 1979 version of the Department of Defense Land Fallout Interpretive Code (DELFIC) with the current code used in the Hazard Prediction and Assessment Capability (HPAC) code version 3.2. The recommendation for a single-term entrainment equation, with constant value parameters, without wind shear corrections, and without cloud oscillations is based on both a statistical analysis using 67 U.S. nuclear atmospheric test shots and the physical representation of the modeling. The statistical analysis optimized the parameter values of interest for four cases: the three-term entrainment equation with wind shear and without wind shear as well as the single-term entrainment equation with and without wind shear. The thesis then examines the effect of cloud oscillations as a significant departure in the code. Modifications to user input atmospheric tables are identified as a potential problem in the calculation of stabilized cloud dimensions in HPAC.

  11. Simulation of shear and turbulence impact on wind turbine power performance

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, R.; Courtney, M.S.; Larsen, T.J.; Paulsen, U.S.

    2010-01-15

    Aerodynamic simulations (HAWC2Aero) were used to investigate the influence of the speed shear, the direction shear and the turbulence intensity on the power output of a multi-megawatt turbine. First simulation cases with laminar flow and power law wind speed profiles were compared to the case of a uniform inflow. Secondly, a similar analysis was done for cases with direction shear. In each case, we derived a standard power curve (function of the wind speed at hub height) and power curves obtained with various definitions of equivalent wind speed in order to reduce the scatter due to shear. Thirdly, the variations of the power output and the power curve were analysed for various turbulence intensities. Furthermore, the equivalent speed method was successfully tested on a power curve resulting from simulations cases combining shear and turbulence. Finally, we roughly simulated the wind speed measurements we may get from a LIDAR mounted on the nacelle of the turbine (measuring upwind) and we investigated different ways of deriving an equivalent wind speed from such measurements. (author)

  12. Evaluation of total energy-rate feedback for glidescope tracking in wind shear

    Science.gov (United States)

    Belcastro, C. M.; Ostroff, A. J.

    1986-01-01

    Low-altitude wind shear is recognized as an infrequent but significant hazard to all aircraft during take-off and landing. A total energy-rate sensor, which is potentially applicable to this problem, has been developed for measuring specific total energy-rate of an airplane with respect to the air mass. This paper presents control system designs, with and without energy-rate feedback, for the approach to landing of a transport airplane through severe wind shear and gusts to evaluate application of this sensor. A system model is developed which incorporates wind shear dynamics equations with the airplance equations of motion, thus allowing the control systems to be analyzed under various wind shears. The control systems are designed using optimal output feedback and are analyzed using frequency domain control theory techniques. Control system performance is evaluated using a complete nonlinear simulation of the airplane and a severe wind shear and gust data package. The analysis and simulation results indicate very similar stability and performance characteristics for the two designs. An implementation technique for distributing the velocity gains between airspeed and ground speed in the simulation is also presented, and this technique is shown to improve the performance characteristics of both designs.

  13. Accounting for the speed shear in wind turbine power performance measurement

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, R.

    2010-04-15

    The power curve of a wind turbine is the primary characteristic of the machine as it is the basis of the warranty for it power production. The current IEC standard for power performance measurement only requires the measurement of the wind speed at hub height and the air density to characterise the wind field in front of the turbine. However, with the growing size of the turbine rotors during the last years, the effect of the variations of the wind speed within the swept rotor area, and therefore of the power output, cannot be ignored any longer. Primary effects on the power performance are from the vertical wind shear and the turbulence intensity. The work presented in this thesis consists of the description and the investigation of a simple method to account for the wind speed shear in the power performance measurement. Ignoring this effect was shown to result in a power curve dependant on the shear condition, therefore on the season and the site. It was then proposed to use an equivalent wind speed accounting for the whole speed profile in front of the turbine. The method was first tested with aerodynamic simulations of a multi-megawatt wind turbine which demonstrated the decrease of the scatter in the power curve. A power curve defined in terms of this equivalent wind speed would be less dependant on the shear than the standard power curve. The equivalent wind speed method was then experimentally validated with lidar measurements. Two equivalent wind speed definitions were considered both resulting in the reduction of the scatter in the power curve. As a lidar wind profiler can measure the wind speed at several heights within the rotor span, the wind speed profile is described with more accuracy than with the power law model. The equivalent wind speed derived from measurements, including at least one measurement above hub height, resulted in a smaller scatter in the power curve than the equivalent wind speed derived from profiles extrapolated from measurements

  14. 2014 Wind Program Peer Review Report

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2014-10-01

    The Wind Program Peer Review Meeting was held March 24-28, 2014 in Arlington, VA. Principle investigators from the Energy Department, National Laboratories, academic, and industry representatives presented the progress of their DOE-funded research. This report documents the formal, rigorous evaluation process and findings of nine independent reviewers who examined the technical, scientific, and business results of Wind Program funded projects, as well as the productivity and management effectiveness of the Wind Program itself.

  15. Wind turbine blade shear web disbond detection using rotor blade operational sensing and data analysis.

    Science.gov (United States)

    Myrent, Noah; Adams, Douglas E; Griffith, D Todd

    2015-02-28

    A wind turbine blade's structural dynamic response is simulated and analysed with the goal of characterizing the presence and severity of a shear web disbond. Computer models of a 5 MW offshore utility-scale wind turbine were created to develop effective algorithms for detecting such damage. Through data analysis and with the use of blade measurements, a shear web disbond was quantified according to its length. An aerodynamic sensitivity study was conducted to ensure robustness of the detection algorithms. In all analyses, the blade's flap-wise acceleration and root-pitching moment were the clearest indicators of the presence and severity of a shear web disbond. A combination of blade and non-blade measurements was formulated into a final algorithm for the detection and quantification of the disbond. The probability of detection was 100% for the optimized wind speed ranges in laminar, 30% horizontal shear and 60% horizontal shear conditions. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  16. Brief communication: On the influence of vertical wind shear on the combined power output of two model wind turbines in yaw

    Directory of Open Access Journals (Sweden)

    J. Schottler

    2017-08-01

    Full Text Available The effect of vertical wind shear on the total power output of two aligned model wind turbines as a function of yaw misalignment of the upstream turbine is studied experimentally. It is shown that asymmetries of the power output of the downstream turbine and the combined power of both with respect to the upstream turbine's yaw misalignment angle can be linked to the vertical wind shear of the inflow.

  17. Wind Shear and the Strength of Severe Convective Phenomena—Preliminary Results from Poland in 2011–2015

    Directory of Open Access Journals (Sweden)

    Wojciech Pilorz

    2016-10-01

    Full Text Available Severe convective phenomena cause significant loss in the economy and, primarily, casualties. Therefore, it is essential to forecast such extreme events to avoid or minimize the negative consequences. Wind shear provides an updraft-downdraft separation in the convective cell, which extends the cell lifetime. Wind shears between a few different air layers have been examined in all damaging convective cases in Poland, taken from the European Severe Weather Database between 2011 and 2015, in order to find their values and patterns according to the intensity of this phenomenon. Each severe weather report was assigned wind shear values from the nearest sounding station, and subsequently the presented summary was made. It was found that wind shear values differ between the given phenomena and their intensity. This regularity is particularly visible in shears containing 0 km wind. The highest shears occur within wind reports. Lower values are associated with hail reports. An important difference between weak and F1+ tornadoes was found in most of the wind shears. Severe phenomena probability within 0–6 km and 0–1 km shears show different patterns according to the phenomena and their intensity. This finding has its application in severe weather forecasting.

  18. Establishing a Comprehensive Wind Energy Program

    Energy Technology Data Exchange (ETDEWEB)

    Fleeter, Sanford [Purdue University

    2012-09-30

    This project was directed at establishing a comprehensive wind energy program in Indiana, including both educational and research components. A graduate/undergraduate course ME-514 - Fundamentals of Wind Energy has been established and offered and an interactive prediction of VAWT performance developed. Vertical axis wind turbines for education and research have been acquired, instrumented and installed on the roof top of a building on the Calumet campus and at West Lafayette (Kepner Lab). Computational Fluid Dynamics (CFD) calculations have been performed to simulate these urban wind environments. Also, modal dynamic testing of the West Lafayette VAWT has been performed and a novel horizontal axis design initiated. The 50-meter meteorological tower data obtained at the Purdue Beck Agricultural Research Center have been analyzed and the Purdue Reconfigurable Micro Wind Farm established and simulations directed at the investigation of wind farm configurations initiated. The virtual wind turbine and wind turbine farm simulation in the Visualization Lab has been initiated.

  19. 2012 Wind Program Peer Review Report

    Energy Technology Data Exchange (ETDEWEB)

    Zayas, Jose [Energy Efficiencey and Renewable Energy (EERE), Washington, DC (United States); Higgins, Mark [Energy Efficiencey and Renewable Energy (EERE), Washington, DC (United States)

    2012-06-01

    This report summarizes the proceedings of the 2012 Wind Program Peer Review, the goals of which were to review and evaluate the strategy and goals of the Wind Program; review and evaluate the progress and accomplishments of the program's projects funded in fiscal year (FY) 2010 and FY 2011; and foster interactions among the national laboratories, industry, and academic institutions conducting research and development on behalf of the program.

  20. Performance analysis and technical assessment of coherent lidar systems for airborne wind shear detection

    Science.gov (United States)

    Huffaker, R. Milton; Targ, Russell

    1988-01-01

    Detailed computer simulations of the lidar wind-measuring process have been conducted to evaluate the use of pulsed coherent lidar for airborne windshear monitoring. NASA data fields for an actual microburst event were used in the simulation. Both CO2 and Ho:YAG laser lidar systems performed well in the microburst test case, and were able to measure wind shear in the severe weather of this wet microburst to ranges in excess of 1.4 km. The consequent warning time gained was about 15 sec.

  1. Equatorial F region neutral winds and shears near sunset measured with chemical release techniques

    Science.gov (United States)

    Kiene, A.; Larsen, M. F.; Kudeki, E.

    2015-10-01

    The period near sunset is a dynamic and critical time for the daily development of the equatorial nighttime ionosphere and the instabilities that occur there. It is during these hours that the preconditions necessary for the later development of Equatorial Spread F (ESF) plasma instabilities occur. The neutral dynamics of the sunset ionosphere are also of critical importance to the generation of currents and electric fields; however, the behavior of the neutrals is experimentally understood primarily through very limited single-altitude measurements or measurements that provide weighted altitude means of the winds as a function of time. To date, there have been very few vertically resolved neutral wind measurements in the F region at sunset. We present two sets of sounding rocket chemical release measurements, one from a launch in the Marshall Islands on Kwajalein atoll and one from Alcantara, Brazil. Analysis of the release motions has yielded vertically resolved neutral wind profiles that show both the mean horizontal winds and the vertical shears in the winds. In both experiments, we observe significant vertical gradients in the zonal wind that are unexpected by classical assumptions about the behavior of the neutral wind at these altitudes at sunset near the geomagnetic equator.

  2. An Examination of Aviation Accidents Associated with Turbulence, Wind Shear and Thunderstorm

    Science.gov (United States)

    Evans, Joni K.

    2013-01-01

    The focal point of the study reported here was the definition and examination of turbulence, wind shear and thunderstorm in relation to aviation accidents. NASA project management desired this information regarding distinct subgroups of atmospheric hazards, in order to better focus their research portfolio. A seven category expansion of Kaplan's turbulence categories was developed, which included wake turbulence, mountain wave turbulence, clear air turbulence, cloud turbulence, convective turbulence, thunderstorm without mention of turbulence, and low altitude wind shear, microburst or turbulence (with no mention of thunderstorms).More than 800 accidents from flights based in the United States during 1987-2008 were selected from a National Transportation Safety Board (NTSB) database. Accidents were selected for inclusion in this study if turbulence, thunderstorm, wind shear or microburst was considered either a cause or a factor in the accident report, and each accident was assigned to only one hazard category. This report summarizes the differences between the categories in terms of factors such as flight operations category, aircraft engine type, the accident's geographic location and time of year, degree of injury to aircraft occupants, aircraft damage, age and certification of the pilot and the phase of flight at the time of the accident.

  3. The formation of sporadic E layers by a vortical perturbation excited in a horizontal wind shear flow

    Directory of Open Access Journals (Sweden)

    G. G. Didebulidze

    2008-06-01

    Full Text Available The formation of the mid-latitude sporadic E layers (Es layers by an atmospheric vortical perturbation excited in a horizontal shear flow (horizontal wind with a horizontal linear shear is investigated. A three-dimensional atmospheric vortical perturbation (atmospheric shear waves, whose velocity vector is in the horizontal plane and has a vertical wavenumber kz≠0, can provide a vertical shear of the horizontal wind. The shear waves influence the vertical transport of heavy metallic ions and their convergence into thin and dense horizontal layers. The proposed mechanism takes into account the dynamical influence of the shear wave velocity in the horizontal wind on the vertical drift velocity of the ions. It also can explain the multi-layer structure of Es layers. The pattern of the multi-layer structure depends on the value of the shear-wave vertical wavelength, the ion-neutral collision frequency and the direction of the background horizontal wind. The modelling of formation of sporadic E layers with a single and a double peak is presented. Also, the importance of shear wave coupling with short-period atmospheric gravity waves (AGWs on the variations of sporadic E layer ion density is examined and discussed.

  4. Wake Flow Simulation of a Vertical Axis Wind Turbine Under the Influence of Wind Shear

    Science.gov (United States)

    Mendoza, Victor; Goude, Anders

    2017-05-01

    The current trend of the wind energy industry aims for large scale turbines installed in wind farms. This brings a renewed interest in vertical axis wind turbines (VAWTs) since they have several advantages over the traditional Horizontal Axis Wind Tubines (HAWTs) for mitigating the new challenges. However, operating VAWTs are characterized by complex aerodynamics phenomena, presenting considerable challenges for modeling tools. An accurate and reliable simulation tool for predicting the interaction between the obtained wake of an operating VAWT and the flow in atmospheric open sites is fundamental for optimizing the design and location of wind energy facility projects. The present work studies the wake produced by a VAWT and how it is affected by the surface roughness of the terrain, without considering the effects of the ambient turbulence intensity. This study was carried out using an actuator line model (ALM), and it was implemented using the open-source CFD library OpenFOAM to solve the governing equations and to compute the resulting flow fields. An operational H-shaped VAWT model was tested, for which experimental activity has been performed at an open site north of Uppsala-Sweden. Different terrains with similar inflow velocities have been evaluated. Simulated velocity and vorticity of representative sections have been analyzed. Numerical results were validated using normal forces measurements, showing reasonable agreement.

  5. 77 FR 31839 - Wind and Water Power Program

    Science.gov (United States)

    2012-05-30

    ... DEPARTMENT OF ENERGY Office of Energy Efficiency and Renewable Energy Wind and Water Power Program... projects. The 2012 Wind and Water Power Program, Wind Power Peer Review Meeting will review wind technology... portfolio. The 2012 Wind Power Peer Review Meeting will be held June 19 through June 21, 2012, in Alexandria...

  6. The WRF model forecast-derived low-level wind shear climatology over the United States great plains

    Energy Technology Data Exchange (ETDEWEB)

    Storm, B. [Wind Science and Engineering Research Center, Texas Tech University, Lubbock, TX (United States); Basu, S. [Atmospheric Science Group, Department of Geosciences, Texas Tech University, Lubbock, TX (United States)

    2010-07-01

    For wind resource assessment projects, it is common practice to use a power-law relationship (U(z) {proportional_to} z{sup {alpha}}) and a fixed shear exponent ({alpha} = 1/7) to extrapolate the observed wind speed from a low measurement level to high turbine hub-heights. However, recent studies using tall-tower observations have found that the annual average shear exponents at several locations over the United States Great Plains (USGP) are significantly higher than 1/7. These findings highlight the critical need for detailed spatio-temporal characterizations of wind shear climatology over the USGP, where numerous large wind farms will be constructed in the foreseeable future. In this paper, a new generation numerical weather prediction model - the Weather Research and Forecasting (WRF) model, a fast and relatively inexpensive alternative to time-consuming and costly tall-tower projects, is utilized to determine whether it can reliably estimate the shear exponent and the magnitude of the directional shear at any arbitrary location over the USGP. Our results indicate that the WRF model qualitatively captures several low-level wind shear characteristics. However, there is definitely room for physics parameterization improvements for the WRF model to reliably represent the lower part of the atmospheric boundary layer. (author)

  7. Cooperative field test program for wind systems

    Energy Technology Data Exchange (ETDEWEB)

    Bollmeier, W.S. II; Dodge, D.M.

    1992-03-01

    The objectives of the Federal Wind Energy Program, managed by the US Department of Energy (DOE), are (1) to assist industry and utilities in achieving a multi-regional US market penetration of wind systems, and (2) to establish the United States as the world leader in the development of advanced wind turbine technology. In 1984, the program conducted a series of planning workshops with representatives from the wind energy industry to obtain input on the Five-Year Research Plan then being prepared by DOE. One specific suggestion that came out of these meetings was that the federal program should conduct cooperative research tests with industry to enhance the technology transfer process. It was also felt that the active involvement of industry in DOE-funded research would improve the state of the art of wind turbine technology. DOE established the Cooperative Field Test Program (CFTP) in response to that suggestion. This program was one of the first in DOE to feature joint industry-government research test teams working toward common objectives.

  8. Results from utility wind resource assessment programs in Nebraska, Colorado, and Arizona

    Energy Technology Data Exchange (ETDEWEB)

    Drapeau, C.L. [Global Energy Concepts, Inc., Bothell, WA (United States)

    1997-12-31

    Global Energy Concepts (GEC) has been retained by utilities in Colorado, Nebraska, and Arizona to site, install, and operate 21 wind monitoring stations as part of the Utility Wind Resource Assessment Program (U*WRAP). Preliminary results indicate wind speed averages at 40 meters (132 ft) of 6.5 - 7.4 m/s (14.5-16.5 mph) in Nebraska and 7.6 - 8.9 m/s (17.0-19.9 mph) in Colorado. The Arizona stations are not yet operational. This paper presents the history and current status of the 21 monitoring stations as well as preliminary data results. Information on wind speeds, wind direction, turbulence intensity, wind shear, frequency distribution, and data recovery rates are provided.

  9. The Orlando TDWR testbed and airborne wind shear date comparison results

    Science.gov (United States)

    Campbell, Steven; Berke, Anthony; Matthews, Michael

    1992-01-01

    The focus of this talk is on comparing terminal Doppler Weather Radar (TDWR) and airborne wind shear data in computing a microburst hazard index called the F factor. The TDWR is a ground-based system for detecting wind shear hazards to aviation in the terminal area. The Federal Aviation Administration will begin deploying TDWR units near 45 airports in late 1992. As part of this development effort, M.I.T. Lincoln Laboratory operates under F.A.A. support a TDWR testbed radar in Orlando, FL. During the past two years, a series of flight tests has been conducted with instrumented aircraft penetrating microburst events while under testbed radar surveillance. These tests were carried out with a Cessna Citation 2 aircraft operated by the University of North Dakota (UND) Center for Aerospace Sciences in 1990, and a Boeing 737 operated by NASA Langley Research Center in 1991. A large data base of approximately 60 instrumented microburst penetrations has been obtained from these flights.

  10. Cooperative wind turbine control for maximizing wind farm power using sequential convex programming

    International Nuclear Information System (INIS)

    Park, Jinkyoo; Law, Kincho H.

    2015-01-01

    Highlights: • The continuous wake model describes well the wake profile behind a wind turbine. • The wind farm power function describes well the power production of a wind farm. • Cooperative control increases the wind farm power efficiency by 7.3% in average. • SCP can be employed to efficiently optimize the control actions of wind turbines. - Abstract: This paper describes the use of a cooperative wind farm control approach to improve the power production of a wind farm. The power production by a downstream wind turbine can decrease significantly due to reduced wind speed caused by the upstream wind turbines, thereby lowering the overall wind farm power production efficiency. In spite of the interactions among the wind turbines, the conventional (greedy) wind turbine control strategy tries to maximize the power of each individual wind turbine by controlling its yaw angle, its blade pitch angle and its generator torque. To maximize the overall wind farm power production while taking the wake interference into account, this study employs a cooperative control strategy. We first derive the wind farm power as a differentiable function of the control actions for the wind turbines in a wind farm. The wind farm power function is then maximized using sequential convex programming (SCP) to determine the optimum coordinated control actions for the wind turbines. Using an example wind farm site and available wind data, we show how the cooperative control strategy improves the power production of the wind farm

  11. NANA Wind Resource Assessment Program Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Jay Hermanson

    2010-09-23

    NANA Regional Corporation (NRC) of northwest Alaska is located in an area with abundant wind energy resources. In 2007, NRC was awarded grant DE-FG36-07GO17076 by the US Department of Energy's Tribal Energy Program for funding a Wind Resource Assessment Project (WRAP) for the NANA region. The NANA region, including Kotzebue Electric Association (KEA) and Alaska Village Electric Cooperative (AVEC) have been national leaders at developing, designing, building, and operating wind-diesel hybrid systems in Kotzebue (starting in 1996) and Selawik (2002). Promising sites for the development of new wind energy projects in the region have been identified by the WRAP, including Buckland, Deering, and the Kivalina/Red Dog Mine Port Area. Ambler, Shungnak, Kobuk, Kiana, Noorvik & Noatak were determined to have poor wind resources at sites in or very near each community. However, all five of these communities may have better wind resources atop hills or at sites with slightly higher elevations several miles away.

  12. The impact of atmospheric stability and wind shear on vertical cloud overlap over the Tibetan Plateau

    Directory of Open Access Journals (Sweden)

    J. Li

    2018-05-01

    Full Text Available Studies have shown that changes in cloud cover are responsible for the rapid climate warming over the Tibetan Plateau (TP in the past 3 decades. To simulate the total cloud cover, atmospheric models have to reasonably represent the characteristics of vertical overlap between cloud layers. Until now, however, this subject has received little attention due to the limited availability of observations, especially over the TP. Based on the above information, the main aim of this study is to examine the properties of cloud overlaps over the TP region and to build an empirical relationship between cloud overlap properties and large-scale atmospheric dynamics using 4 years (2007–2010 of data from the CloudSat cloud product and collocated ERA-Interim reanalysis data. To do this, the cloud overlap parameter α, which is an inverse exponential function of the cloud layer separation D and decorrelation length scale L, is calculated using CloudSat and is discussed. The parameters α and L are both widely used to characterize the transition from the maximum to random overlap assumption with increasing layer separations. For those non-adjacent layers without clear sky between them (that is, contiguous cloud layers, it is found that the overlap parameter α is sensitive to the unique thermodynamic and dynamic environment over the TP, i.e., the unstable atmospheric stratification and corresponding weak wind shear, which leads to maximum overlap (that is, greater α values. This finding agrees well with the previous studies. Finally, we parameterize the decorrelation length scale L as a function of the wind shear and atmospheric stability based on a multiple linear regression. Compared with previous parameterizations, this new scheme can improve the simulation of total cloud cover over the TP when the separations between cloud layers are greater than 1 km. This study thus suggests that the effects of both wind shear and atmospheric stability on cloud overlap

  13. The impact of atmospheric stability and wind shear on vertical cloud overlap over the Tibetan Plateau

    Science.gov (United States)

    Li, Jiming; Lv, Qiaoyi; Jian, Bida; Zhang, Min; Zhao, Chuanfeng; Fu, Qiang; Kawamoto, Kazuaki; Zhang, Hua

    2018-05-01

    Studies have shown that changes in cloud cover are responsible for the rapid climate warming over the Tibetan Plateau (TP) in the past 3 decades. To simulate the total cloud cover, atmospheric models have to reasonably represent the characteristics of vertical overlap between cloud layers. Until now, however, this subject has received little attention due to the limited availability of observations, especially over the TP. Based on the above information, the main aim of this study is to examine the properties of cloud overlaps over the TP region and to build an empirical relationship between cloud overlap properties and large-scale atmospheric dynamics using 4 years (2007-2010) of data from the CloudSat cloud product and collocated ERA-Interim reanalysis data. To do this, the cloud overlap parameter α, which is an inverse exponential function of the cloud layer separation D and decorrelation length scale L, is calculated using CloudSat and is discussed. The parameters α and L are both widely used to characterize the transition from the maximum to random overlap assumption with increasing layer separations. For those non-adjacent layers without clear sky between them (that is, contiguous cloud layers), it is found that the overlap parameter α is sensitive to the unique thermodynamic and dynamic environment over the TP, i.e., the unstable atmospheric stratification and corresponding weak wind shear, which leads to maximum overlap (that is, greater α values). This finding agrees well with the previous studies. Finally, we parameterize the decorrelation length scale L as a function of the wind shear and atmospheric stability based on a multiple linear regression. Compared with previous parameterizations, this new scheme can improve the simulation of total cloud cover over the TP when the separations between cloud layers are greater than 1 km. This study thus suggests that the effects of both wind shear and atmospheric stability on cloud overlap should be taken into

  14. 77 FR 38277 - Wind and Water Power Program

    Science.gov (United States)

    2012-06-27

    ... DEPARTMENT OF ENERGY Office of Energy Efficiency and Renewable Energy Wind and Water Power Program... public meeting. SUMMARY: The Department of Energy (DOE) Wind and Water Power Program is planning a... in Washington, DC on June 13, 2012. Mark Higgins, Wind and Water Power Acting Program Manager, Office...

  15. New England Wind Forum: A Wind Powering America Project, Newsletter #5 -- January 2010, Wind and Hydropower Technologies Program (WHTP)

    Energy Technology Data Exchange (ETDEWEB)

    Grace, R. C.; Gifford, J.

    2010-01-01

    Wind Powering America program launched the New England Wind Forum (NEWF) in 2005 to provide a single comprehensive source of up-to-date, Web-based information on a broad array of wind energy issues pertaining to New England. The NEWF newsletter provides New England stakeholders with updates on wind energy development in the region. In addition to regional updates, Issue #5 offers an interview with Angus King, former governor of Maine and co-founder of Independence Wind.

  16. NASA airborne radar wind shear detection algorithm and the detection of wet microbursts in the vicinity of Orlando, Florida

    Science.gov (United States)

    Britt, Charles L.; Bracalente, Emedio M.

    1992-01-01

    The algorithms used in the NASA experimental wind shear radar system for detection, characterization, and determination of windshear hazard are discussed. The performance of the algorithms in the detection of wet microbursts near Orlando is presented. Various suggested algorithms that are currently being evaluated using the flight test results from Denver and Orlando are reviewed.

  17. Modelling of offshore wind turbine wakes with the wind farm program FLaP

    DEFF Research Database (Denmark)

    Lange, B.; Waldl, H.P.; Guerrero, A.G.

    2003-01-01

    The wind farm layout program FLaP estimates the wind speed at any point in a wind farm and the power output of the turbines. The ambient flow conditions and the properties of the turbines and the farm are used as input. The core of the program is an axisymmetric wake model describing the wake...

  18. 2015 Key Wind Program and National Laboratory Accomplishments

    Energy Technology Data Exchange (ETDEWEB)

    Office of Energy Efficiency and Renewable Energy

    2015-12-01

    The U.S. Department of Energy (DOE) Wind Program is committed to helping the nation secure cost-competitive sources of renewable energy through the development and deployment of innovative wind power technologies. By investing in improvements to wind plant design, technology development, and operation as well as developing tools to identify the highest quality wind resources, the Wind Program serves as a leader in making wind energy technologies more competitive with traditional sources of energy and a larger part of our nation’s renewable energy portfolio.

  19. Effect of Tower Shadow and Wind Shear in a Wind Farm on AC Tie-Line Power Oscillations of Interconnected Power Systems

    DEFF Research Database (Denmark)

    Tan, Jin; Hu, Weihao; Wang, Xiaoru

    2013-01-01

    This paper describes a frequency domain approach for evaluating the impact of tower shadow and wind shear effects (TSWS) on tie-line power oscillations. A simplified frequency domain model of an interconnected power system with a wind farm is developed. The transfer function, which relates the tie......-line power variation to the mechanical power variation of a wind turbine, and the expression of the maximum magnitude of tie-line power oscillations are derived to identify the resonant condition and evaluate the potential risk. The effects of the parameters on the resonant magnitude of the tie-line power...... are also discussed. The frequency domain analysis reveals that TSWS can excite large tie-line power oscillations if the frequency of TSWS approaches the tie-line resonant frequency, especially in the case that the wind farm is integrated into a relatively small grid and the tie-line of the interconnected...

  20. 76 FR 66284 - Wind and Water Power Program

    Science.gov (United States)

    2011-10-26

    ... DEPARTMENT OF ENERGY Office of Energy Efficiency and Renewable Energy Wind and Water Power Program... projects. The 2011 Wind and Water Power Program, Water Power Peer Review Meeting will review the Program's... 2011 Water Power Peer Review Meeting will be held November 1 through November 3, 2011 in Alexandria, VA...

  1. Navy-New Hampshire Wind Energy Program.

    Science.gov (United States)

    1979-11-01

    wind use for both the MOD-2 and Darrieus wind turbine -generators when located on these peaks. lIT...Horizontal Axis WECS 10 2-4 Darrieus Vertical Axis Wind Turbine 12 2-5 Alcoa Design for 500 kW Vertical Axis WECS 13 3-1 Fraction of Wind Observations... Turbines In 1925, G.J.M. Darrieus patented the concept of a vertical axis wind turbine . Today, the Darrieus design has evolved to a fixed-pitch

  2. DOE-EPRI distributed wind Turbine Verification Program (TVP III)

    Energy Technology Data Exchange (ETDEWEB)

    McGowin, C.; DeMeo, E. [Electric Power Research Institute, Palo Alto, CA (United States); Calvert, S. [Dept. of Energy, Washington, DC (United States)] [and others

    1997-12-31

    In 1992, the Electric Power Research Institute (EPRI) and the U.S. Department of Energy (DOE) initiated the Utility Wind Turbine Verification Program (TVP). The goal of the program is to evaluate prototype advanced wind turbines at several sites developed by U.S. electric utility companies. Two six MW wind projects have been installed under the TVP program by Central and South West Services in Fort Davis, Texas and Green Mountain Power Corporation in Searsburg, Vermont. In early 1997, DOE and EPRI selected five more utility projects to evaluate distributed wind generation using smaller {open_quotes}clusters{close_quotes} of wind turbines connected directly to the electricity distribution system. This paper presents an overview of the objectives, scope, and status of the EPRI-DOE TVP program and the existing and planned TVP projects.

  3. Strongly-sheared wind-forced currents in the nearshore regions of the central Southern California Bight

    Science.gov (United States)

    Noble, Marlene A.; Rosenberger, Kurt; Robertson, George L.

    2015-01-01

    Contrary to many previous reports, winds do drive currents along the shelf in the central portion of the Southern California Bight (SCB). Winds off Huntington Beach CA are the dominant forcing for currents over the nearshore region of the shelf (water depths less than 20 m). Winds control about 50–70% of the energy in nearshore alongshelf surface currents. The wind-driven current amplitudes are also anomalously high. For a relatively weak 1 dyne/cm2 wind stress, the alongshelf surface current amplitudes in this region can reach 80 cm/s or more. Mid-depth current amplitudes for the same wind stress are around 30–40 cm/s. These wind-driven surface current amplitudes are much larger than previously measured over other nearshore shelf regions, perhaps because this program is one of the few that measured currents within a meter of the surface. The near-bed cross-shelf currents over the nearshore region of the Huntington Beach shelf have an Ekman response to winds in that they upwell (downwell) for down (up) coast winds. This response disappears further offshore. Hence, there is upwelling in the SCB, but it does not occur across the entire shelf. Subthermocline water in the nearshore region that may contain nutrients and plankton move onshore when winds are southeastward, but subthermocline water over the shelf break is not transported to the beach. The currents over the outer shelf are not predominately controlled by winds, consistent with previous reports. Instead, they are mainly driven by cross-shelf pressure gradients that are independent of local wind stress.

  4. Role of upper-level wind shear on the structure and maintenance of derecho-producing convective systems

    Science.gov (United States)

    Coniglio, Michael Charles

    Common large-scale environments associated with the development of derecho-producing convective systems from a large number of events are identified using statistical clustering of the 500-mb geopotential heights as guidance. The majority of the events (72%) fall into three main patterns that include a well-defined upstream trough (40%), a ridge (20%), and a zonal, low-amplitude flow (12%), which is defined as an additional warm-season pattern that is not identified in past studies of derecho environments. Through an analysis of proximity soundings, discrepancies are found in both low-level and deep-tropospheric shear parameters between observations and the shear profiles considered favorable for strong, long-lived convective systems in idealized simulations. To explore the role of upper-level shear in derecho environments, a set of two-dimensional simulations of density currents within a dry, neutrally stable environment are used to examine the ability of a cold pool to lift environmental air within a vertically sheared flow. The results confirm that the addition of upper-level shear to a wind profile with weak to moderate low-level shear increases the vertical displacement of low-level parcels despite a decrease in the vertical velocity along the cold pool interface, as suggested by previous studies. Parcels that are elevated above the surface (1-2 km) overturn and are responsible for the deep lifting in the deep-shear environments. This deep overturning caused by the upper-level shear helps to maintain the tilt of the convective systems in more complex two-dimensional and three dimensional simulations. The overturning also is shown to greatly increase the size of the convective systems in the three-dimensional simulations by facilitating the initiation and maintenance of convective cells along the cold pool. When combined with estimates of the cold pool motion and the storm-relative hodograph, these results may best be used for the prediction of the demise of

  5. Gusts and shear within hurricane eyewalls can exceed offshore wind turbine design standards

    Science.gov (United States)

    Worsnop, Rochelle P.; Lundquist, Julie K.; Bryan, George H.; Damiani, Rick; Musial, Walt

    2017-06-01

    Offshore wind energy development is underway in the U.S., with proposed sites located in hurricane-prone regions. Turbine design criteria outlined by the International Electrotechnical Commission do not encompass the extreme wind speeds and directional shifts of hurricanes stronger than category 2. We examine a hurricane's turbulent eyewall using large-eddy simulations with Cloud Model 1. Gusts and mean wind speeds near the eyewall of a category 5 hurricane exceed the current Class I turbine design threshold of 50 m s-1 mean wind and 70 m s-1 gusts. Largest gust factors occur at the eye-eyewall interface. Further, shifts in wind direction suggest that turbines must rotate or yaw faster than current practice. Although current design standards omit mention of wind direction change across the rotor layer, large values (15-50°) suggest that veer should be considered.

  6. Solar-wind turbulence and shear: a superposed-epoch analysis of corotating interaction regions at 1 AU

    Energy Technology Data Exchange (ETDEWEB)

    Borovsky, Joseph E [Los Alamos National Laboratory; Denton, Michael H [LANCASTER UNIV.

    2009-01-01

    A superposed-epoch analysis of ACE and OMNI2 measurements is performed on 27 corotating interaction regions (CIRs) in 2003-2008, with the zero epoch taken to be the stream interface as determined by the maximum of the plasma vorticity. The structure of CIRs is investigated. When the flow measurements are rotated into the local-Parker-spiral coordinate system the shear is seen to be abrupt and intense, with vorticities on the order of 10{sup -5}-10{sup -4} sec{sup -1}. Converging flows perpendicular to the stream interface are seen in the local-Parker-spiral coordinate system and about half of the CIRs show a layer of divergent rebound flow away from the stream interface. Arguments indicate that any spreading of turbulence away from the region where it is produced is limited to about 10{sup 6} km, which is very small compared with the thickness of a CrR. Analysis of the turbulence across the CrRs is performed. When possible, the effects of discontinuities are removed from the data. Fluctuation amplitudes, the Alfvenicity, and the level of Alfvenic correlations all vary smoothly across the CrR. The Alfven ratio exhibits a decrease at the shear zone of the stream interface. Fourier analysis of 4.5-hr subintervals of ACE data is performed and the results are superposed averaged as an ensemble of realizations. The spectral slopes of the velocity, magnetic-field, and total-energy fluctuations vary smoothly across the CIR. The total-energy spectral slope is {approx} 3/2 in the slow and fast wind and in the CrRs. Analysis of the Elsasser inward-outward fluctuations shows a smooth transition across the CrR from an inward-outward balance in the slow wind to an outward dominance in the fast wind. A number of signatures of turbulence driving at the shear zone are sought (entropy change, turbulence amplitude, Alfvenicity, Alfven ratio, spectral slopes, in-out nature): none show evidence of driving of turbulence by shear.

  7. Program for stator winding leakage inductance determination by FEA

    Directory of Open Access Journals (Sweden)

    Olivian Chiver

    2009-05-01

    Full Text Available This paper presents a program designed by the author in order to determine the stator winding parameters. The program is realized in Visual Basic and, in fact, it is for computer aided design of AC machines. Starting from the design data, based on the classical analytical formulas, geometrical parameters of the stator and the parameters of the stator winding are computed. This program works with a finite elements analysis (FEA software (the one used by the author is MagNet, a product of Infolytica company and according to data obtained after the design calculation, or according to data specified by user (in case of an existing machine, the stator and stator winding are built 3D (three-dimensional. For the same stator, different types of winding can be chosen. After realizing numerical model, by 3D FEA, leakage inductance is determined.

  8. VHF radar observation of atmospheric winds, associated shears and C2n at a tropical location: interdependence and seasonal pattern

    Directory of Open Access Journals (Sweden)

    A. R. Jain

    Full Text Available The turbulence refractivity structure constant (C2n is an important parameter of the atmosphere. VHF radars have been used extensively for the measurements of C2n. Presently, most of such observations are from mid and high latitudes and only very limited observations are available for equatorial and tropical latitudes. Indian MST radar is an excellent tool for making high-resolution measurements of atmospheric winds, associated shears and turbulence refractivity structure constant (C2n. This radar is located at Gadanki (13.45° N, 79.18° E, a tropical station in India. The objective of this paper is to bring out the height structure of C2n for different seasons using the long series of data (September 1995 – August 1999 from Indian MST radar. An attempt is also made to understand such changes in the height structure of C2n in relation to background atmospheric parameters such as horizontal winds and associated shears. The height structure of C2n, during the summer monsoon and post-monsoon season, shows specific height features that are found to be related to Tropical Easterly Jet (TEJ winds. It is important to examine the nature of the radar back-scatterers and also to understand the causative mechanism of such scatterers. Aspect sensitivity of the received radar echo is examined for this purpose. It is observed that radar back-scatterers at the upper tropospheric and lower stratospheric heights are more anisotropic, with horizontal correlation length of 10–20 m, as compared to those observed at lower and middle tropospheric heights.Key words. Meteorology and atmospheric dynamics (climatology; tropical meteorology; turbulence

  9. USAF TPS L-23 Shear Wind Observed Optimized Path Investigation for NASA (SENIOR ShWOOPIN)

    National Research Council Canada - National Science Library

    Gordon, Randy; Fails, Robert; Baase, Solomon; Eckberg, Jason; Ryan, Charles; Smith, Chris

    2006-01-01

    The SENIOR ShWOOPIN TMP was conducted at the request of the USAF TPS as part of a NASA investigation into the viability of aircraft endurance enhancement through the extraction of energy from horizontal wind gradients...

  10. Cooperative field test program for wind systems. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Bollmeier, W.S. II; Dodge, D.M.

    1992-03-01

    The objectives of the Federal Wind Energy Program, managed by the US Department of Energy (DOE), are (1) to assist industry and utilities in achieving a multi-regional US market penetration of wind systems, and (2) to establish the United States as the world leader in the development of advanced wind turbine technology. In 1984, the program conducted a series of planning workshops with representatives from the wind energy industry to obtain input on the Five-Year Research Plan then being prepared by DOE. One specific suggestion that came out of these meetings was that the federal program should conduct cooperative research tests with industry to enhance the technology transfer process. It was also felt that the active involvement of industry in DOE-funded research would improve the state of the art of wind turbine technology. DOE established the Cooperative Field Test Program (CFTP) in response to that suggestion. This program was one of the first in DOE to feature joint industry-government research test teams working toward common objectives.

  11. Interaction of suprathermal solar wind electron fluxes with sheared whistler waves: fan instability

    Directory of Open Access Journals (Sweden)

    C. Krafft

    Full Text Available Several in situ measurements performed in the solar wind evidenced that solar type III radio bursts were some-times associated with locally excited Langmuir waves, high-energy electron fluxes and low-frequency electrostatic and electromagnetic waves; moreover, in some cases, the simultaneous identification of energetic electron fluxes, Langmuir and whistler waves was performed. This paper shows how whistlers can be excited in the disturbed solar wind through the so-called "fan instability" by interacting with energetic electrons at the anomalous Doppler resonance. This instability process, which is driven by the anisotropy in the energetic electron velocity distribution along the ambient magnetic field, does not require any positive slope in the suprathermal electron tail and thus can account for physical situations where plateaued reduced electron velocity distributions were observed in solar wind plasmas in association with Langmuir and whistler waves. Owing to linear calculations of growth rates, we show that for disturbed solar wind conditions (that is, when suprathermal particle fluxes propagate along the ambient magnetic field, the fan instability can excite VLF waves (whistlers and lower hybrid waves with characteristics close to those observed in space experiments.

    Key words. Space plasma physics (waves and instabilities – Radio Science (waves in plasma – Solar physics, astrophysics and astronomy (radio emissions

  12. Interaction of suprathermal solar wind electron fluxes with sheared whistler waves: fan instability

    Directory of Open Access Journals (Sweden)

    C. Krafft

    2003-07-01

    Full Text Available Several in situ measurements performed in the solar wind evidenced that solar type III radio bursts were some-times associated with locally excited Langmuir waves, high-energy electron fluxes and low-frequency electrostatic and electromagnetic waves; moreover, in some cases, the simultaneous identification of energetic electron fluxes, Langmuir and whistler waves was performed. This paper shows how whistlers can be excited in the disturbed solar wind through the so-called "fan instability" by interacting with energetic electrons at the anomalous Doppler resonance. This instability process, which is driven by the anisotropy in the energetic electron velocity distribution along the ambient magnetic field, does not require any positive slope in the suprathermal electron tail and thus can account for physical situations where plateaued reduced electron velocity distributions were observed in solar wind plasmas in association with Langmuir and whistler waves. Owing to linear calculations of growth rates, we show that for disturbed solar wind conditions (that is, when suprathermal particle fluxes propagate along the ambient magnetic field, the fan instability can excite VLF waves (whistlers and lower hybrid waves with characteristics close to those observed in space experiments.Key words. Space plasma physics (waves and instabilities – Radio Science (waves in plasma – Solar physics, astrophysics and astronomy (radio emissions

  13. Classification of Rotor Induced Shearing Events in the Near Wake of a Wind Turbine Array Boundary Layer

    Science.gov (United States)

    Smith, Sarah; Viggiano, Bianca; Ali, Naseem; Cal, Raul Bayoan

    2017-11-01

    Flow perturbation induced by a turbine rotor imposes considerable turbulence and shearing effects in the near wake of a turbine, altering the efficiency of subsequent units within a wind farm array. Previous methods have characterized near wake vorticity of a turbine and recovery distance of various turbine array configurations. This study aims to build on previous analysis with respect to a turbine rotor within an array and develop a model to examine stress events and energy contribution in the near wake due to rotational effects. Hot wire anemometry was employed downstream of a turbine centrally located in the third row of a 3x3 array. Data considered points planar to the rotor and included simultaneous streamwise and wall-normal velocities as well as concurrent streamwise and transverse velocities. Conditional analysis of Reynolds stresses induced by the rotor agree with former near wake research, and examination of stresses in terms of streamwise and transverse velocity components depicts areas of significant rotational effects. Continued analysis includes spectral decomposition and conditional statistics to further characterize shearing events at various points considering the swept area of the rotor.

  14. A Six-Week Resistance Training Program Does Not Change Shear Modulus of the Triceps Brachii.

    Science.gov (United States)

    Akagi, Ryota; Shikiba, Tomofumi; Tanaka, Jun; Takahashi, Hideyuki

    2016-08-01

    We investigated the effect of a 6-week resistance training program on the shear modulus of the triceps brachii (TB). Twenty-three young men were randomly assigned to either the training (n = 13) or control group (n = 10). Before and after conducting the resistance training program, the shear modulus of the long head of the TB was measured at the point 70% along the length of the upper arm from the acromial process of the scapula to the lateral epicondyle of the humerus using shear wave ultrasound elastography. Muscle thickness of the long head of the TB was also determined at the same site by ultrasonography used during both tests. A resistance exercise was performed 3 days a week for 6 weeks using a dumbbell mass-adjusted to 80% of the 1-repetition maximum (1RM). The training effect on the muscle thickness and 1RM was significant. Nevertheless, the muscle shear modulus was not significantly changed after the training program. From the perspective of muscle mechanical properties, the present results indicate that significant adaptation must occur to make the TB more resistant to subsequent damaging bouts during the 6-week training program to target the TB.

  15. Wind shear and wet and dry thermodynamic indices as predictors of thunderstorm motion and severity and application to the AVE 4 experimental data

    Science.gov (United States)

    Connell, J. R.; Ey, L.

    1977-01-01

    Two types of parameters are computed and mapped for use in assessing their individual merits as predictors of occurrence and severity of thunderstorms. The first group is comprised of equivalent potential temperature, potential temperature, water vapor mixing ratio, and wind speed. Equivalent potential temperature maxima and strong gradients of equivalent potential temperature at the surface correlate well with regions of thunderstorm activity. The second type, comprised of the energy index, shear index, and energy shear index, incorporates some model dynamics of thunderstorms, including nonthermodynamic forcing. The energy shear index is found to improve prediction of tornadic and high-wind situations slightly better than other indices. It is concluded that further development and refinement of nonthermodynamic aspects of predictive indices are definitely warranted.

  16. The wind resource assessment program in Quebec Canada

    Energy Technology Data Exchange (ETDEWEB)

    Kahawita, R.; Bilodeau, L.; Gaudette, M.; Gratton, Y.; Noel, R.; Quach, T.T.

    1982-09-01

    This paper provides an overview of the wind resource assessment programme undertaken by the provincial power utility Hydro-Quebec, in Quebec, Canada. The methodology used in different phases of the project is enunciated and explained and the results discussed. Supplementary studies of airflow over complex terrain using numerical modelling are described and the results evaluated. Since the program is still far from completion, conclusive statements cannot, at this time, be made about the viability of the wind energy resource. However, tentative conclusions are that wind energy as an alternate source of energy for the province is likely to be commerciaally viable since two of the most important requirements viz, the presence of a good wind regime and the availability of suitable land are satisfied in many regions.

  17. The Danish large wind turbine program. [feasibility of wind power in a utility grid

    Science.gov (United States)

    Pederson, B. M.

    1979-01-01

    A brief description of the Danish wind energy program and its present status is given. Results and experiences from tests on the Gedser windmill (200 kW) are presented. The key results are presented from the preliminary design study and detailed design of two new WECS (630 kW each) is described.

  18. Department of Energy WindSentinel Loan Program Description

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, William J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Sturges, Mark H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-12-01

    The U.S. Department of Energy (DOE) currently owns two AXYS WindSentinel buoys that collect a comprehensive set of meteorological and oceanographic data to support resource characterization for wind energy offshore. The two buoys were delivered to DOE’s Pacific Northwest National Laboratory (PNNL) in September, 2014. After acceptance testing and initial performance testing and evaluation at PNNL’s Marine Sciences Laboratory in Sequim, Washington, the buoys have been deployed off the U.S. East Coast. One buoy was deployed approximately 42 km east of Virginia Beach, Virginia from December, 2014 through June, 2016. The second buoy was deployed approximately 5 km off Atlantic City, New Jersey in November, 2015. Data from the buoys are available to the public. Interested parties can create an account and log in to http://offshoreweb.pnnl.gov. In response to a number of inquiries and unsolicited proposals, DOE’s Wind Energy Technologies Office is implementing a program, to be managed by PNNL, to lend the buoys to qualified parties for the purpose of acquiring wind resource characterization data in areas of interest for offshore wind energy development. This document describes the buoys, the scope of the loans, the process of how borrowers will be selected, and the schedule for implementation of this program, including completing current deployments.

  19. Slicken 1.0: Program for calculating the orientation of shear on reactivated faults

    Science.gov (United States)

    Xu, Hong; Xu, Shunshan; Nieto-Samaniego, Ángel F.; Alaniz-Álvarez, Susana A.

    2017-07-01

    The slip vector on a fault is an important parameter in the study of the movement history of a fault and its faulting mechanism. Although there exist many graphical programs to represent the shear stress (or slickenline) orientations on faults, programs to quantitatively calculate the orientation of fault slip based on a given stress field are scarce. In consequence, we develop Slicken 1.0, a software to rapidly calculate the orientation of maximum shear stress on any fault plane. For this direct method of calculating the resolved shear stress on a planar surface, the input data are the unit vector normal to the involved plane, the unit vectors of the three principal stress axes, and the stress ratio. The advantage of this program is that the vertical or horizontal principal stresses are not necessarily required. Due to its nimble design using Java SE 8.0, it runs on most operating systems with the corresponding Java VM. The software program will be practical for geoscience students, geologists and engineers and will help resolve a deficiency in field geology, and structural and engineering geology.

  20. A new paradigm for intensity modification of tropical cyclones: thermodynamic impact of vertical wind shear on the inflow layer

    Directory of Open Access Journals (Sweden)

    M. Riemer

    2010-04-01

    Full Text Available An important roadblock to improved intensity forecasts for tropical cyclones (TCs is our incomplete understanding of the interaction of a TC with the environmental flow. In this paper we re-visit the canonical problem of a TC in vertical wind shear on an f-plane. A suite of numerical experiments is performed with intense TCs in moderate to strong vertical shear. We employ a set of simplified model physics – a simple bulk aerodynamic boundary layer scheme and "warm rain" microphysics – to foster better understanding of the dynamics and thermodynamics that govern the modification of TC intensity. In all experiments the TC is resilient to shear but significant differences in the intensity evolution occur.

    The ventilation of the TC core with dry environmental air at mid-levels and the dilution of the upper-level warm core are two prevailing hypotheses for the adverse effect of vertical shear on storm intensity. Here we propose an alternative and arguably more effective mechanism how cooler and drier (lower θe air – "anti-fuel" for the TC power machine – can enter the core region of the TC. Strong and persistent, shear-induced downdrafts flux low θe air into the boundary layer from above, significantly depressing the θe values in the storm's inflow layer. Air with lower θe values enters the eyewall updrafts, considerably reducing eyewall θe values in the azimuthal mean. When viewed from the perspective of an idealised Carnot-cycle heat engine a decrease of storm intensity can thus be expected. Although the Carnot cycle model is – if at all – only valid for stationary and axisymmetric TCs, a close association of the downward transport of low θe into the boundary layer and the intensity evolution offers further evidence in support of our hypothesis.

    The downdrafts that flush the boundary layer with low

  1. Numerical investigations on the influence of wind shear and turbulence on aircraft trailing vortices; Numerische Untersuchungen zum Einfluss von Windscherung und Turbulenz auf Flugzeugwirbelschleppen

    Energy Technology Data Exchange (ETDEWEB)

    Hofbauer, T.

    2003-07-01

    In several aspects, the behaviour of aircraft wake vortices under situations of vertical wind shear is significantly different from non-shear scenarios and its operational real-time forcast is challenging. By means of numerical investigations of idealized scenarios, the influence of wind shear on the lateral and vertical transport of vortices is analysed both, phenomenologically as well as in the scope of a sensitivity study. The results allow for the verification of controversial views and the benchmark of modelling approaches. Case studies of turbulent shear flows focus on the persistence of vortices. A detailed analysis of the flow fields evidence that unequal vortex decay rates can be attributed to the asymmetric distribution of secondary vorticity structures. The results moreover suggest that extended vortex lifespans can be expected under situations of wind shear. The unusual vortex behaviour observed by means of a LIDAR measurement is reproduced by realistic simulations and permits to reveal potential causes. (orig.) [German] Das Wirbelschleppenverhalten unterscheidet sich in Situationen vertikaler Windscherung in mehrfacher Hinsicht signifikant von scherungsfreien Szenarien und stellt eine besondere Herausforderung fuer eine operationelle Echtzeitvorhersage dar. Mittels numerischer Untersuchungen idealisierter Szenarien wird zunaechst der Einfluss von Windscherung auf den lateralen und vertikalen Wirbeltransport sowohl phaenomenologisch als auch quantitativ im Rahmen einer Sensitivitaetsstudie analysiert. Anhand der gewonnenen Ergebnisse werden auseinandergehende Erklaerungsansaetze geprueft und Modellierungsansaetze bewertet. Fallstudien turbulenter Scherstroemungen zur Wirbelpersistenz stellen einen weiteren Schwerpunkt dieser Arbeit dar. Durch die ausfuehrliche Analyse der Stroemungsfelder wird der Nachweis erbracht, dass sich unterschiedliche Zerfallsraten der Wirbel auf die asymmetrische Verteilung von sekundaeren Vorticity-Strukturen zurueckfuehren

  2. An Updated Examination of Aviation Accidents Associated with Turbulence, Wind Shear and Thunderstorm

    Science.gov (United States)

    Evans, Joni K.

    2014-01-01

    One of the technical challenges within the Atmospheric Environment Safety Technologies (AEST) Project of the Aviation Safety Program was to "improve and expand remote sensing and mitigation of hazardous atmospheric environments and phenomena"1. In 2012, the author performed an analysis comparing various characteristics of accidents associated with different types of atmospheric hazard environments2. This document reports an update to that analysis which was done in preparation for presenting these findings at the 2015 annual meeting of the Transportation Research Board. Specifically, an additional three years of data were available, and a time-trend analysis was added.

  3. An overview of an experimental program for testing large reinforced concrete shear walls

    International Nuclear Information System (INIS)

    Farrar, C.R.; Bennett, J.G.

    1989-01-01

    The Seismic Category I Structures Program is being carried out at the Los Alamos National Laboratory under sponsorship of the US Nuclear Regulatory Commission (NRC), Office of Nuclear Regulatory Research. In the class of structure being investigated, the primary lateral load-resisting structural element is the reinforced concrete shear wall. Previous results from microconcrete models indicated that these structures responded to seismic excitations with initial frequencies that were reduced by factors of 2 or more over those calculated based on an uncracked cross-section strength-of-materials approach. Furthermore, though the structures themselves were shown to have sufficient reserve margins, the equipment and piping are designed to response spectra that are based on uncracked cross-sectional member properties, and these spectra may not be inappropriate for actual building responses. The current phase of the program is aimed at verification of these conclusions using conventional concrete structures to demonstrate that previous microconcrete results can be scaled to prototype structures. A new configuration of a shear wall structure was designed and tested to investigate the analytical-experimental differences observed during the previous model testing. Shear wall height-to-length aspect ratios were to vary from 1 to 0.25. Percentage steel ratios were to vary from 0.25% to 0.6% by area, in both horizontal and vertical directions. The test structures are shown in Fig. 1. TRG-1 and -2 were constructed with microconcrete. TRG-3, -4, -5, and -6 were constructed with conventional (19-mm aggregate) concrete. 11 refs., 4 figs

  4. Wind Powering America Anemometer Loan Program: A Retrospective

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez, T.

    2013-05-01

    This white paper details the history, mechanics, status, and impact of the Native American Anemometer Loan Program (ALP) conducted by the U.S. Department of Energy's Wind Powering America (WPA) initiative. Originally conceived in 2000 and terminated (as a WPA activity) at the end of FY 2011, the ALP has resulted in the installation of anemometers at 90 locations. In addition, the ALP provided support for the installation of anemometers at 38 additional locations under a related ALP administered by the Western Area Power Administration.

  5. NAWIG News: The Quarterly Newsletter of the Native American Wind Interest Group, Fall 2008, Wind & Hydropower Technologies Program (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2008-09-01

    As part of its Native American outreach, DOE?s Wind Powering America program produces a newsletter to present Native American wind information, including projects, interviews with pioneers, issues, WPA activities, and related events. This issue features an interview with Dave Danz, a tribal planner for the Grand Portage Band of Chippewa in northeastern Minnesota, and a feature on the new turbine that powers the KILI radio station on the Pine Ridge Reservation.

  6. Status report of wind energy programs in the Philippines

    Energy Technology Data Exchange (ETDEWEB)

    Benavidez, P.J. [National Power Corp., Quezon City (Philippines)

    1996-12-31

    This paper discusses the wind resource assessment activities being undertaken by the National Power Corporation at the extreme northern part of Luzon island. Preliminary results from the 10-month wind data are presented. This will give prospective wind developers all idea oil tile vast resources of wind energy available in the northern part of the country. This paper will also discuss briefly the stand-alone 10 kW wind turbine system that was commissioned early this year and the guidelines being drafted for the entry of new and renewable energy sources in the country`s energy generation mix. 4 figs., 1 tab.

  7. Use of Dual-Polarization Radar Variables to Assess Low-Level Wind Shear in Severe Thunderstorm Near-storm Environments in the Tennessee Valley

    Science.gov (United States)

    Crowe, Christina C.; Schultz, Christopher J.; Kumjian, Matthew; Carey, Lawerence D.; Petersen, Walter A.

    2011-01-01

    The upgrade of the National Weather Service (NWS) network of S ]band dual-polarization radars is currently underway, and the incorporation of polarimetric information into the real ]time forecasting process will enhance the forecaster fs ability to assess thunderstorms and their near ]storm environments. Recent research has suggested that the combination of polarimetric variables differential reflectivity (ZDR) and specific differential phase (KDP) can be useful in the assessment of low level wind shear within a thunderstorm. In an environment with strong low ]level veering of the wind, ZDR values will be largest along the right inflow edge of the thunderstorm near a large gradient in horizontal reflectivity (indicative of large raindrops falling with a relative lack of smaller drops), and take the shape of an arc. Meanwhile, KDP values, which are proportional to liquid water content and indicative of a large number of smaller drops, are maximized deeper into the forward flank precipitation shield than the ZDR arc as the smaller drops are being advected further from the updraft core by the low level winds than the larger raindrops. Using findings from previous work, three severe weather events that occurred in North Alabama were examined in order to assess the utility of these signatures in determining the potential for tornadic activity. The first case is from October 26, 2010, where a large number of storms indicated tornadic potential from a standard reflectivity and velocity analysis but very few storms actually produced tornadoes. The second event is from February 28, 2011, where tornadic storms were present early on in the event, but as the day progressed, the tornado threat transitioned to a high wind threat. The third case is from April 27, 2011, where multiple rounds of tornadic storms ransacked the Tennessee Valley. This event provides a dataset including multiple modes of tornadic development, including QLCS and supercell structures. The overarching goal

  8. Effects of interruptible load program on equilibrium outcomes of electricity markets with wind power

    Energy Technology Data Exchange (ETDEWEB)

    An, Xuena; Zhang, Shaohua; Li, Xue [Shanghai Univ. (China). Key Lab. of Power Station Automation Technology

    2013-07-01

    High wind power penetration presents a lot of challenges to the flexibility and reliability of power system operation. In this environment, various demand response (DR) programs have got much attention. As an effective measure of demand response programs, interruptible load (IL) programs have been widely used in electricity markets. This paper addresses the problem of impacts of the IL programs on the equilibrium outcomes of electricity wholesale markets with wind power. A Cournot equilibrium model of wholesale markets with wind power is presented, in which IL programs is included by a market demand model. The introduction of the IL programs leads to a non-smooth equilibrium problem. To solve this equilibrium problem, a novel solution method is proposed. Numerical examples show that IL programs can lower market price and its volatility significantly, facilitate the integration of wind power.

  9. National Renewable Energy Laboratory program on lightning risk and wind turbine generator protection

    Energy Technology Data Exchange (ETDEWEB)

    Muljadi, E. [National Renewable Energy Lab., Golden, CO (United States); McNiff, B. [McNiff Light Industry, Blue Hill, ME (United States)

    1997-12-31

    In the early development of wind turbine generators (WTG) in the United States, wind farms were primarily located in California where lightning activity is the lowest in the United States. As such, lightning protection for wind turbines was not considered to be a major issue for designers or wind farm operators. However, wind turbine installations are expanding into the Midwest, Southwest and other regions of the United States where lightning activity is significantly more intense and lightning damage to wind turbines is more common. There is a growing need, therefore, to better understand lightning activity on wind farms and to improve wind turbine lightning protection systems. In support of the U.S. Department of Energy/Electric Power Research Institute (DOE/EPRI) Utility Wind Turbine Verification Program (TVP), the National Renewable Energy Laboratory (NREL) has recently begun to take steps to determine the extent of damage due to lightning and the effectiveness of various lightning protection techniques for wind power plants. Working through the TVP program, NREL will also perform outreach and education to (1) help manufacturers to provide equipment that is adequately designed to survive lightning, (2) make sure that operators are aware of effective safety procedures, and (3) help site designers and wind farm developers take the risk of lightning into account as effectively as possible.

  10. Simulation model for wind energy storage systems. Volume III. Program descriptions. [SIMWEST CODE

    Energy Technology Data Exchange (ETDEWEB)

    Warren, A.W.; Edsinger, R.W.; Burroughs, J.D.

    1977-08-01

    The effort developed a comprehensive computer program for the modeling of wind energy/storage systems utilizing any combination of five types of storage (pumped hydro, battery, thermal, flywheel and pneumatic). An acronym for the program is SIMWEST (Simulation Model for Wind Energy Storage). The level of detail of SIMWEST is consistent with a role of evaluating the economic feasibility as well as the general performance of wind energy systems. The software package consists of two basic programs and a library of system, environmental, and load components. Volume III, the SIMWEST program description contains program descriptions, flow charts and program listings for the SIMWEST Model Generation Program, the Simulation program, the File Maintenance program and the Printer Plotter program. Volume III generally would not be required by SIMWEST user.

  11. SHEAR Kit case study : ConocoPhillips Canada leverages technology for health, safety and environmental operations to improve program effectiveness

    Energy Technology Data Exchange (ETDEWEB)

    Hayter, J. [Pangaea Systems Inc., Calgary, AB (Canada)

    2003-07-01

    This PowerPoint presentation outlined the elements of an automated safety program that Pangaea Systems Inc. has provided to ConocoPhillips Canada Ltd. SHEAR is a web-based computer application that centralizes health, safety and environment documentation to enable better reporting and improved business analysis of management involvement; hazard identification and risk control; rules and work procedures; training; communication; and, incident and accident reporting and investigation. SHEAR collects findings from audits, site inspections, safety meetings, hazards and risks, and accidents. Its purpose is to identify, classify and better understand events and to develop a process for remedial action. This presentation described SHEAR's incident severity potential index, the incident reporting process, and the elements of the management system. 8 figs.

  12. A Dynamic Programming based method for optimizing power system restoration with high wind power penetration

    DEFF Research Database (Denmark)

    Hu, Rui; Hu, Weihao; Li, Pengfei

    2016-01-01

    and relatively low cost. Thus, many countries are increasing the wind power penetration in their power system step by step, such as Denmark, Spain and Germany. The incremental wind power penetration brings a lot of new issues in operation and programming. The power system sometimes will operate close to its...... stable limits. Once the blackout happens, a well-designed restoration strategy is significant. This paper focuses on how to ameliorate the power system restoration procedures to adapt the high wind power penetration and how to take full advantages of the wind power plants during the restoration....... In this paper, the possibility to exploit the stochastic wind power during restoration was discussed, and a Dynamic Programming (DP) method was proposed to make wind power contribute in the restoration rationally as far as possible. In this paper, the method is tested and verified by a modified IEEE 30 Buses...

  13. Establishing an In-House Wind Maintenance Program

    Energy Technology Data Exchange (ETDEWEB)

    None

    2011-12-01

    Update to the 2008 guidebook titled “Establishing an In-house Wind Maintenance Program”, which was developed to support utilities in developing O&M strategies. This update includes significant contributions from utilities and other stakeholders around the country, representing all perspectives and regardless of whether or not they own wind turbines or projects.

  14. Studies and research concerning BNFP: shearing tests conducted at Allied-General Nuclear Services for the Consolidated Fuel Reprocessing Program

    International Nuclear Information System (INIS)

    Weil, B.; Townes, G.

    1979-09-01

    An experiment conducted to shear two dummy PWR subassemblies is described. Results pertain to the removal of end hardware by shearing, spacer grid fragmentation, the character of sheared product, product leachability, shearing force requirements, and the effects of compaction

  15. Development of Wind Farm AEP Prediction Program Considering Directional Wake Effect

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Kyoungboo; Cho, Kyungho; Huh, Jongchul [Jeju Nat’l Univ., Jeju (Korea, Republic of)

    2017-07-15

    For accurate AEP prediction in a wind farm, it is necessary to effectively calculate the wind speed reduction and the power loss due to the wake effect in each wind direction. In this study, a computer program for AEP prediction considering directional wake effect was developed. The results of the developed program were compared with the actual AEP of the wind farm and the calculation result of existing commercial software to confirm the accuracy of prediction. The applied equations are identical with those of commercial software based on existing theories, but there is a difference in the calculation process of the detection of the wake effect area in each wind direction. As a result, the developed program predicted to be less than 1% of difference to the actual capacity factor and showed more than 2% of better results compared with the existing commercial software.

  16. The AMPTE program's contribution to studies of the solar wind-magnetosphere-ionosphere interaction

    International Nuclear Information System (INIS)

    Sibeck, D.G.

    1990-01-01

    The Active Magnetospheric Particle Tracer Explorers (AMPTE) program provided important information on the behavior of clouds of plasma artificially injected into the solar wind and the earth's magnetosphere. Now that the releases are over, data from the satellites are being analyzed to investigate the processes by which the ambient solar wind mass, momentum, and energy are transferred to the magnetosphere. Work in progress at APL indicates that the solar wind is much more inhomogeneous than previously believed, that the solar wind constantly buffets the magnetosphere, and that ground observers may remotely sense these interactions as geomagnetic pulsations. 8 refs

  17. Unit commitment with wind power generation: integrating wind forecast uncertainty and stochastic programming.

    Energy Technology Data Exchange (ETDEWEB)

    Constantinescu, E. M.; Zavala, V. M.; Rocklin, M.; Lee, S.; Anitescu, M. (Mathematics and Computer Science); (Univ. of Chicago); (New York Univ.)

    2009-10-09

    We present a computational framework for integrating the state-of-the-art Weather Research and Forecasting (WRF) model in stochastic unit commitment/energy dispatch formulations that account for wind power uncertainty. We first enhance the WRF model with adjoint sensitivity analysis capabilities and a sampling technique implemented in a distributed-memory parallel computing architecture. We use these capabilities through an ensemble approach to model the uncertainty of the forecast errors. The wind power realizations are exploited through a closed-loop stochastic unit commitment/energy dispatch formulation. We discuss computational issues arising in the implementation of the framework. In addition, we validate the framework using real wind speed data obtained from a set of meteorological stations. We also build a simulated power system to demonstrate the developments.

  18. Shear Tests and Calculation of Shear Resistance with the PC Program RFEM from Thin Partition Walls of Brick in Old Buildings

    Directory of Open Access Journals (Sweden)

    Korjenic Sinan

    2015-11-01

    Full Text Available This paper is about the shear capacity of partition walls in old buildings based on shear tests which were carried out under real conditions in an existing building. There were experiments conducted on different floors and in each case, the maximum recordable horizontal force and the horizontal displacement of the respective mortar were measured. At the same time material studies and material investigations were carried out in the laboratory. The material parameters were used for the calculation of the precise shear capacity of each joint. In the shear tests, the maximum displacement of a mortar joint was determined at a maximum of two to four millimetres. Furthermore, no direct linear relationship between the theoretical load (wall above it and the shear stress occurred could be detected in the analysis of the experiment, as it was previously assumed.

  19. Shear Tests and Calculation of Shear Resistance with the PC Program RFEM from Thin Partition Walls of Brick in Old Buildings

    Science.gov (United States)

    Korjenic, Sinan; Nowak, Bernhard; Löffler, Philipp; Vašková, Anna

    2015-11-01

    This paper is about the shear capacity of partition walls in old buildings based on shear tests which were carried out under real conditions in an existing building. There were experiments conducted on different floors and in each case, the maximum recordable horizontal force and the horizontal displacement of the respective mortar were measured. At the same time material studies and material investigations were carried out in the laboratory. The material parameters were used for the calculation of the precise shear capacity of each joint. In the shear tests, the maximum displacement of a mortar joint was determined at a maximum of two to four millimetres. Furthermore, no direct linear relationship between the theoretical load (wall above it) and the shear stress occurred could be detected in the analysis of the experiment, as it was previously assumed.

  20. DOE/NASA Lewis large-wind-turbine program

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, R.L.

    1982-01-01

    There are several ongoing large wind system development project; ots directed toward meeting the technology requirements for utility applications. First generation tehcnology machines (Mod-0A and Mod-1) and second generation machines (Mod-2) are in opoeration at selected utility sites. Third generation technology machines (Mod-5) are in the design phase and are scheduled for initial operation in 1984 if project funding is continued. An overview of the large wind turbine activities managed by NASA Lewis is provided. These activities include results from the first and second generation field machines (Mod-0A, 01, and -2), the status of the Department of Interior WTS-4 machine for which NASA is responsible for technical management, and the design phase of the third generation wind turbines (Mod-5).

  1. Wind energy in the State of California: 10 years after program start-up

    International Nuclear Information System (INIS)

    Ferrari, G.; Tampone, O.; ENEA, Rome

    1992-01-01

    This article traces the evolution of the commercialization of wind energy power plants in the State of California. The brief historical review focuses on the activities during the early 80's which witnessed a rapid increase in the number of installed wind power units, especially large sized wind turbines, followed by a sharp decline due to cut-backs in State sponsored financial incentives for wind power development, as well as, to the onset of equipment maintenance and reliability problems. Statistical data - production by major wind farms, efficiency of selected types of medium-sized turbines, turbine efficiency by manufacturer and operator, wind power production cost trends, and federal funding of R ampersand D programs, are used to describe the wind energy situation in this State, currently host to 80% of the world's total of installed wind power plants. Indications are given as to the key socio-economic factors influencing the further development of this renewable energy source in California and, based on the California experience, assessments are made of the future marketing prospects of wind energy in other American states

  2. Wind resource assessment handbook: Fundamentals for conducting a successful monitoring program

    International Nuclear Information System (INIS)

    Bailey, B.H.; McDonald, S.L.; Bernadett, D.W.; Markus, M.J.; Elsholz, K.V.

    1997-01-01

    This handbook presents industry-accepted guidelines for planning and conducting a wind resource measurement program to support a wind energy feasibility initiative. These guidelines, which are detailed and highly technical, emphasize the tasks of selecting, installing, and operating wind measurement equipment, as well as collecting and analyzing the associated data, once one or more measurement sites are located. The handbook's scope encompasses state-of-the-art measurement and analysis techniques at multiple heights on tall towers (e.g., 40 m) for a measurement duration of at least one year. These guidelines do not represent every possible method of conducting a quality wind measurement program, but they address the most important elements based on field-proven experience. The intended audience for this handbook is any organization or individual who desires the planning framework and detailed procedures for conducting a formally structured wind measurement program. Personnel from the management level to field technicians will find this material applicable. The organizational aspects of a measurement program, including the setting of clear program objectives and designing commensurate measurement and quality assurance plans, all of which are essential to ensuring the program's successful outcome, are emphasized. Considerable attention is also given to the details of actually conducting the measurement program in its many aspects, from selecting instrumentation that meets minimum performance standards to analyzing and reporting on the collected data. 5 figs., 15 tabs

  3. 77 FR 5002 - Wind and Water Power Program

    Science.gov (United States)

    2012-02-01

    ...), DE-FOA-0000410 including specifically the topical areas identified here: Types of demonstrations... with offshore wind turbine support structures, will not be accepted. DOE may fund specific technical... funds may also support capital expenditures within these projects for materials or equipment that are...

  4. Effects of wind turbines on upland nesting birds in Conservation Reserve Program grasslands

    Science.gov (United States)

    Leddy, K.L.; Higgins, K.F.; Naugle, D.E.

    1999-01-01

    Grassland passerines were surveyed during summer 1995 on the Buffalo Ridge Wind Resource Area in southwestern Minnesota to determine the relative influence of wind turbines on overall densities of upland nesting birds in Conservation Reserve Program (CRP) grasslands. Birds were surveyed along 40 m fixed width transects that were placed along wind turbine strings within three CRP fields and in three CRP fields without turbines. Conservation Reserve Program grasslands without turbines and areas located 180 m from turbines supported higher densities (261.0-312.5 males/100 ha) of grassland birds than areas within 80 m of turbines (58.2-128.0 males/100 ha). Human disturbance, turbine noise, and physical movements of turbines during operation may have disturbed nesting birds. We recommend that wind turbines be placed within cropland habitats that support lower densities of grassland passerines than those found in CRP grasslands.

  5. Statistical Model of Extreme Shear

    DEFF Research Database (Denmark)

    Larsen, Gunner Chr.; Hansen, Kurt Schaldemose

    2004-01-01

    In order to continue cost-optimisation of modern large wind turbines, it is important to continously increase the knowledge on wind field parameters relevant to design loads. This paper presents a general statistical model that offers site-specific prediction of the probability density function...... by a model that, on a statistically consistent basis, describe the most likely spatial shape of an extreme wind shear event. Predictions from the model have been compared with results from an extreme value data analysis, based on a large number of high-sampled full-scale time series measurements...... are consistent, given the inevitabel uncertainties associated with model as well as with the extreme value data analysis. Keywords: Statistical model, extreme wind conditions, statistical analysis, turbulence, wind loading, statistical analysis, turbulence, wind loading, wind shear, wind turbines....

  6. Shear machines

    International Nuclear Information System (INIS)

    Astill, M.; Sunderland, A.; Waine, M.G.

    1980-01-01

    A shear machine for irradiated nuclear fuel elements has a replaceable shear assembly comprising a fuel element support block, a shear blade support and a clamp assembly which hold the fuel element to be sheared in contact with the support block. A first clamp member contacts the fuel element remote from the shear blade and a second clamp member contacts the fuel element adjacent the shear blade and is advanced towards the support block during shearing to compensate for any compression of the fuel element caused by the shear blade (U.K.)

  7. Factors Contributing to the Interrupted Decay of Hurricane Joaquin (2015) in a Moderate Vertical Wind Shear Environment

    Science.gov (United States)

    2017-06-01

    11  C.  TCI MISSIONS INTO HURRICANE JOAQUIN ............................. 13  III.  DATA AND METHODOLOGY ...October (Figure 12) indicated that the convection in Joaquin had become more organized with an enshrouded eye and rainbands spiraling outward on the...mission. Note that the intensity of Joaquin was still 75 kt at 0600 UTC 6 October (Table 1). 25 III. DATA AND METHODOLOGY A. TCI FIELD PROGRAM

  8. Matching policy with objectives : an analysis of international wind programs and results

    International Nuclear Information System (INIS)

    Deveaux, L.

    2008-01-01

    There are a variety of mechanisms used to procure wind energy, but successful programs typically combine legislative backing with financial incentives that aim to maintain acceptable prices for wind power developers. This presentation discussed mechanisms used in Ireland and Texas to ensure the success of wind power programs. Alternative energy requirement programs were designed as a competitive bid-style procurement program launched to increase the development of renewable resources in Ireland. Power purchase agreements for up to 15 years were awarded to winning bidders. The purpose of the program was to lower systems costs through the competitive bid process from 1996 to 2002. The program's failure was attributed to permitting delays, unsustainable bid pricing and constraints on transmission. The financial incentives did not compensate for the low bid prices. A renewable energy feed-in tariff program was launched in 2006 to pay electricity retailers for contracted projects. The tariff program provided reliable pricing mechanisms and promoted sector growth for both large-scale and small wind power projects. Texas developed renewable portfolio standards (RPSs) in 1999. The state's renewable energy certificate (REC) program was designed to issue RECs to generators for each MWh or eligible generation produced and sold in Texas. Retailers purchase the credits through the merchant market, resale, or long-term contracts. The system has strong legislative backing, which ensures that noncompliant retailers pay heavy penalties. It was concluded that competitive bid programs need strong legislative backing, financial support, and industry commitments. By contrast, feed-in tariffs can be used to promote many different sized wind farms. refs., tabs., figs

  9. 76 FR 11506 - Fisheries and Habitat Conservation and Migratory Birds Programs; Draft Land-Based Wind Energy...

    Science.gov (United States)

    2011-03-02

    ...] RIN 1018-AX45 Fisheries and Habitat Conservation and Migratory Birds Programs; Draft Land-Based Wind... Impacts from Wind Turbines (Interim Guidance). As stated in the notice, the comment period on the draft... Minimizing Wildlife Impacts from Wind Turbines. We expect to issue final Guidelines for public use after...

  10. 77 FR 17496 - Fisheries and Habitat Conservation and Migratory Birds Programs; Final Land-Based Wind Energy...

    Science.gov (United States)

    2012-03-26

    ...] RIN 1018-AX45 Fisheries and Habitat Conservation and Migratory Birds Programs; Final Land-Based Wind...) established the Wind Turbine Guidelines Advisory Committee (Committee) under the Federal Advisory Committee... concern over certain issues such as the effects of wind turbine noise on wildlife, these issues have not...

  11. Remote community electrification program - small wind integration in BC's offgrid communities

    Energy Technology Data Exchange (ETDEWEB)

    Lafaille, Julien [BC Hydro (Canada)

    2011-07-01

    The paper presents the Remote Community Electrification (RCE) program and wind integration in BC's off grid communities. The program offers electric utility service to eligible remote communities in BC. Most of them are offered off-grid services although it is cheaper to connect a community to a grid. BC hydro serves some communities that are not connected to the main grid. Local diesel or small hydro-generating stations are used to serve remote communities. The renewable energy program target is to reach 50% of remote communities. The reason that wind is a small part of the renewables is that hydro and biomass are abundant in BC. Some other barriers include high installation costs, durability concerns, and lack of in-house technical expertise. Some small Wind initiatives that have been taken were relatively few and fairly small. It can be concluded that due to a poor wind resource and the relatively low cost of diesel, there is limited potential for wind in BC remote communities.

  12. A Compendium of Wind Statistics and Models for the NASA Space Shuttle and Other Aerospace Vehicle Programs

    Science.gov (United States)

    Smith, O. E.; Adelfang, S. I.

    1998-01-01

    The wind profile with all of its variations with respect to altitude has been, is now, and will continue to be important for aerospace vehicle design and operations. Wind profile databases and models are used for the vehicle ascent flight design for structural wind loading, flight control systems, performance analysis, and launch operations. This report presents the evolution of wind statistics and wind models from the empirical scalar wind profile model established for the Saturn Program through the development of the vector wind profile model used for the Space Shuttle design to the variations of this wind modeling concept for the X-33 program. Because wind is a vector quantity, the vector wind models use the rigorous mathematical probability properties of the multivariate normal probability distribution. When the vehicle ascent steering commands (ascent guidance) are wind biased to the wind profile measured on the day-of-launch, ascent structural wind loads are reduced and launch probability is increased. This wind load alleviation technique is recommended in the initial phase of vehicle development. The vehicle must fly through the largest load allowable versus altitude to achieve its mission. The Gumbel extreme value probability distribution is used to obtain the probability of exceeding (or not exceeding) the load allowable. The time conditional probability function is derived from the Gumbel bivariate extreme value distribution. This time conditional function is used for calculation of wind loads persistence increments using 3.5-hour Jimsphere wind pairs. These increments are used to protect the commit-to-launch decision. Other topics presented include the Shuttle Shuttle load-response to smoothed wind profiles, a new gust model, and advancements in wind profile measuring systems. From the lessons learned and knowledge gained from past vehicle programs, the development of future launch vehicles can be accelerated. However, new vehicle programs by their very

  13. Off-shore wind power plant modelling precision and efficiency in electromagnetic transient simulation programs

    Energy Technology Data Exchange (ETDEWEB)

    Karaagac, U.; Saad, H.; Mahseredjian, J. [Ecole Polytechnique de Montreal, Montreal, QC (Canada); Jensen, S.; Cai, L. [REpower Systems AG, Hamburg (Germany)

    2012-07-01

    The large number of switching elements in the modular multilevel converter (MMC) is a challenging problem for modeling the MMC-HVDC systems in electromagnetic transient type (EMT-type) programs. The modeling complexity increases even further when MMC-HVDC systems are used to integrate offshore wind farms (OWFs) with power electronics based wind energy converters, such as doubly-fed induction generators (DFIGs). This paper compares the computational performances of various combinations of MMC-HVDC and OWF models. Practical onshore ac fault scenarios are simulated for an OWF composed of DFIG type wind turbines and connected to a practical ac grid through a point-to-point MMC-HVDC system. (orig.)

  14. Intelligent and robust prediction of short term wind power using genetic programming based ensemble of neural networks

    International Nuclear Information System (INIS)

    Zameer, Aneela; Arshad, Junaid; Khan, Asifullah; Raja, Muhammad Asif Zahoor

    2017-01-01

    Highlights: • Genetic programming based ensemble of neural networks is employed for short term wind power prediction. • Proposed predictor shows resilience against abrupt changes in weather. • Genetic programming evolves nonlinear mapping between meteorological measures and wind-power. • Proposed approach gives mathematical expressions of wind power to its independent variables. • Proposed model shows relatively accurate and steady wind-power prediction performance. - Abstract: The inherent instability of wind power production leads to critical problems for smooth power generation from wind turbines, which then requires an accurate forecast of wind power. In this study, an effective short term wind power prediction methodology is presented, which uses an intelligent ensemble regressor that comprises Artificial Neural Networks and Genetic Programming. In contrast to existing series based combination of wind power predictors, whereby the error or variation in the leading predictor is propagated down the stream to the next predictors, the proposed intelligent ensemble predictor avoids this shortcoming by introducing Genetical Programming based semi-stochastic combination of neural networks. It is observed that the decision of the individual base regressors may vary due to the frequent and inherent fluctuations in the atmospheric conditions and thus meteorological properties. The novelty of the reported work lies in creating ensemble to generate an intelligent, collective and robust decision space and thereby avoiding large errors due to the sensitivity of the individual wind predictors. The proposed ensemble based regressor, Genetic Programming based ensemble of Artificial Neural Networks, has been implemented and tested on data taken from five different wind farms located in Europe. Obtained numerical results of the proposed model in terms of various error measures are compared with the recent artificial intelligence based strategies to demonstrate the

  15. Wind energy systems

    Science.gov (United States)

    Stewart, H. J.

    1978-01-01

    A discussion on wind energy systems involved with the DOE wind energy program is presented. Some of the problems associated with wind energy systems are discussed. The cost, efficiency, and structural design of wind energy systems are analyzed.

  16. Wind Power Meteorology

    DEFF Research Database (Denmark)

    Lundtang Petersen, Erik; Mortensen, Niels Gylling; Landberg, Lars

    Wind power meteorology has evolved as an applied science, firmly founded on boundary-layer meteorology, but with strong links to climatology and geography. It concerns itself with three main areas: siting of wind turbines, regional wind resource assessment, and short-term prediction of the wind...... resource. The history, status and perspectives of wind power meteorology are presented, with emphasis on physical considerations and on its practical application. Following a global view of the wind resource, the elements of boundary layer meteorology which are most important for wind energy are reviewed......: wind profiles and shear, turbulence and gust, and extreme winds. The data used in wind power meteorology stem mainly from three sources: onsite wind measurements, the synoptic networks, and the re-analysis projects. Wind climate analysis, wind resource estimation and siting further require a detailed...

  17. NedWind 25 Blade Testing at NREL for the European Standards Measurement and Testing Program

    Energy Technology Data Exchange (ETDEWEB)

    Larwood, S.; Musial, W.; Freebury, G.; Beattie, A.G.

    2001-04-19

    In the mid-90s the European community initiated the Standards, Measurements, and Testing (SMT) program to harmonize testing and measurement procedures in several industries. Within the program, a project was carried out called the European Wind Turbine Testing Procedure Development. The second part of that project, called Blade Test Methods and Techniques, included the United States and was devised to help blade-testing laboratories harmonize their testing methods. This report provides the results of those tests conducted by the National Renewable Energy Laboratory.

  18. Program of solar wind data analysis utilizing data from Pioneer 6, Mariner 5 and explorer 35

    Science.gov (United States)

    Siscoe, G. L.

    1972-01-01

    A combined data analysis and theoretical program aimed at interpreting and utilizing solar wind data obtained from Pioneer 6, Mariner 5, and Explorer 35 has been completed. A theoretical model of the radial dependence of large scale solar wind inhomogeneities was developed and used to map solar wind variations measured by Explorer 35 to various heliocentric distances and to the orbits of Mercury, Venus, and Mars. The model was also used to determine power spectra velocity, density and temperature variations of 20 R sub s from spectra obtained from the Mariner 5 data at an average heliocentric distance of 180 R sub s. Five stream-stream interaction events in the Pioneer 6 data were analyzed which confirmed the picture of a spiral compression ridge interfacing the two streams and the associated east-west deflections of the solar wind flow. Magnetopause crossings observed in Explorer 35 plasma data were used to develop statics on boundary motions at lunar distance. A study of the geomagnetic disturbance field asymmetry was performed and a model of disturbance field from a partial ring current was developed.

  19. Real Time Wave Forecasting Using Wind Time History and Genetic Programming

    Directory of Open Access Journals (Sweden)

    A.R. Kambekar

    2014-12-01

    Full Text Available The significant wave height and average wave period form an essential input for operational activities in ocean and coastal areas. Such information is important in issuing appropriate warnings to people planning any construction or instillation works in the oceanic environment. Many countries over the world routinely collect wave and wind data through a network of wave rider buoys. The data collecting agencies transmit the resulting information online to their registered users through an internet or a web-based system. Operational wave forecasts in addition to the measured data are also made and supplied online to the users. This paper discusses operational wave forecasting in real time mode at locations where wind rather than wave data are continuously recorded. It is based on the time series modeling and incorporates an artificial intelligence technique of genetic programming. The significant wave height and average wave period values are forecasted over a period of 96 hr in future from the observations of wind speed and directions extending to a similar time scale in the past. Wind measurements made by floating buoys at eight different locations around India over a period varying from 1.5 yr to 9.0 yr were considered. The platform of Matlab and C++ was used to develop a graphical user interface that will extend an internet based user-friendly access of the forecasts to any registered user of the data dissemination authority.

  20. Field Verification Program for Small Wind Turbines: Quarterly Report for January-March 2001; 1st Quarter, Issue No.4

    Energy Technology Data Exchange (ETDEWEB)

    Forsyth, T.; Cardinal, J.

    2001-10-30

    This newsletter provides a brief overview of the Field Verification Program for Small Wind Turbines conducted out of the NWTC and a description of current activities. The newsletter also contains case studies of current projects.

  1. Field Verification Program for Small Wind Turbines: Quarterly Report for October-December 2000; 4th Quarter, Iss. No.3

    Energy Technology Data Exchange (ETDEWEB)

    Cardinal, J.

    2001-07-03

    This newsletter provides a brief overview of the Field Verification Program for Small Wind Turbines conducted out of the NWTC and a description of current activities. The newsletter also contains case studies of current projects.

  2. Field Verification Program for Small Wind Turbines, Quarterly Report: 3rd Quarter, Issue No.2, July-September 2000

    Energy Technology Data Exchange (ETDEWEB)

    Cardinal. J.; Tu, P.

    2001-05-16

    This newsletter provides a brief overview of the Field Verification Program for Small Wind Turbines conducted out of the NWTC and a description of current activities. The newsletter also contains case studies of current projects.

  3. Computer Programs for Calculating and Plotting the Stability Characteristics of a Balloon Tethered in a Wind

    Science.gov (United States)

    Bennett, R. M.; Bland, S. R.; Redd, L. T.

    1973-01-01

    Computer programs for calculating the stability characteristics of a balloon tethered in a steady wind are presented. Equilibrium conditions, characteristic roots, and modal ratios are calculated for a range of discrete values of velocity for a fixed tether-line length. Separate programs are used: (1) to calculate longitudinal stability characteristics, (2) to calculate lateral stability characteristics, (3) to plot the characteristic roots versus velocity, (4) to plot the characteristic roots in root-locus form, (5) to plot the longitudinal modes of motion, and (6) to plot the lateral modes for motion. The basic equations, program listings, and the input and output data for sample cases are presented, with a brief discussion of the overall operation and limitations. The programs are based on a linearized, stability-derivative type of analysis, including balloon aerodynamics, apparent mass, buoyancy effects, and static forces which result from the tether line.

  4. Composite wind turbine towers

    Energy Technology Data Exchange (ETDEWEB)

    Polyzois, D. [Manitoba Univ., Winnipeg, MB (Canada). Dept. of Civil Engineering

    2008-07-01

    This paper discussed experiments conducted to optimized the advanced composite materials such as fiberglass reinforced plastics (FRP) used to fabricate wind turbine towers. FRP materials are used in tubular steel, lattice, guyed, and reinforced concrete towers. The towers and turbine blades are transported in segments and assembled on-site, sometimes in offshore or remote locations.The FRP composites are used to build towers with a high strength-to-weight ratio as well as to provide resistance to chemical attacks and corrosion. Use of the materials has resulted in towers that do not require heavy installation equipment. Experimental programs were conducted to verify the structural behaviour of the tower structure's individual-scaled cells as well as to evaluate the performance of multi-cell assemblies. Joint assembly designs were optimized, and a filament winding machine was used to conduct the experimental study and to test individual cells. Failure mode analyses were conducted to determine local buckling and shear rupture. Tension, compression, and shear properties of the FRP materials were tested experimentally, and data from the test were then used to develop finite element models of the composite towers as well as to obtain load deflection curves and tip oscillation data. A case study of a 750 kW wind turbine in Churchill, Manitoba was used to test the design. tabs., figs.

  5. A proposed national wind power R and D program. [offshore wind power system for electric energy supplies

    Science.gov (United States)

    Heronemus, W.

    1973-01-01

    An offshore wind power system is described that consists of wind driven electrical dc generators mounted on floating towers in offshore waters. The output from the generators supplies underwater electrolyzer stations in which water is converted into hydrogen and oxygen. The hydrogen is piped to shore for conversion to electricity in fuel cell stations. It is estimated that this system can produce 159 x 10 to the ninth power kilowatt-hours per year. It is concluded that solar energy - and that includes wind energy - is the only way out of the US energy dilemma in the not too distant future.

  6. Catching the Wind in a Bottle: Collection Development for Wind Energy Technology Programs at Universities and Colleges

    Science.gov (United States)

    Johnson-Renvall, Poppy

    2009-01-01

    This article aims to assist information professionals in developing a resource collection that serves Wind Energy students in academic settings. Traditional as well as Internet resources should be utilized in order to meet the needs of this unique student population.

  7. Field Verification Program for Small Wind Turbines, Quartelry Report: 2nd Quarter, Issue No.1, October 2000

    Energy Technology Data Exchange (ETDEWEB)

    Tu, P.; Forsyth, T.

    2000-11-02

    The Field Verification Program for Small Wind Turbines quarterly report provides industry members with a description of the program, its mission, and purpose. It also provides a vehicle for participants to report performance data, activities, and issues during quarterly test periods.

  8. Extreme wind estimate for Hornsea wind farm

    DEFF Research Database (Denmark)

    Larsén, Xiaoli Guo

    The purpose of this study is to provide estimation of the 50-year winds of 10 min and 1-s gust value at hub height of 100 m, as well as the design parameter shear exponent for the Hornsea offshore wind farm. The turbulence intensity required for estimating the gust value is estimated using two...... approaches. One is through the measurements from the wind Doppler lidar, WindCube, which implies serious uncertainty, and the other one is through similarity theory for the atmospheric surface layer where the hub height is likely to belong to during strong storms. The turbulence intensity for storm wind...... strength is taken as 0.1. The shear exponents at several heights were calculated from the measurements. The values at 100 m are less than the limit given by IEC standard for all sectors. The 50-year winds have been calculated from various global reanalysis and analysis products as well as mesoscale models...

  9. Generation Expansion Planning With Large Amounts of Wind Power via Decision-Dependent Stochastic Programming

    Energy Technology Data Exchange (ETDEWEB)

    Zhan, Yiduo; Zheng, Qipeng P.; Wang, Jianhui; Pinson, Pierre

    2017-07-01

    Power generation expansion planning needs to deal with future uncertainties carefully, given that the invested generation assets will be in operation for a long time. Many stochastic programming models have been proposed to tackle this challenge. However, most previous works assume predetermined future uncertainties (i.e., fixed random outcomes with given probabilities). In several recent studies of generation assets' planning (e.g., thermal versus renewable), new findings show that the investment decisions could affect the future uncertainties as well. To this end, this paper proposes a multistage decision-dependent stochastic optimization model for long-term large-scale generation expansion planning, where large amounts of wind power are involved. In the decision-dependent model, the future uncertainties are not only affecting but also affected by the current decisions. In particular, the probability distribution function is determined by not only input parameters but also decision variables. To deal with the nonlinear constraints in our model, a quasi-exact solution approach is then introduced to reformulate the multistage stochastic investment model to a mixed-integer linear programming model. The wind penetration, investment decisions, and the optimality of the decision-dependent model are evaluated in a series of multistage case studies. The results show that the proposed decision-dependent model provides effective optimization solutions for long-term generation expansion planning.

  10. Mathematical programming models for the economic design and assessment of wind energy conversion systems

    Science.gov (United States)

    Reinert, K. A.

    The use of linear decision rules (LDR) and chance constrained programming (CCP) to optimize the performance of wind energy conversion clusters coupled to storage systems is described. Storage is modelled by LDR and output by CCP. The linear allocation rule and linear release rule prescribe the size and optimize a storage facility with a bypass. Chance constraints are introduced to explicitly treat reliability in terms of an appropriate value from an inverse cumulative distribution function. Details of deterministic programming structure and a sample problem involving a 500 kW and a 1.5 MW WECS are provided, considering an installed cost of $1/kW. Four demand patterns and three levels of reliability are analyzed for optimizing the generator choice and the storage configuration for base load and peak operating conditions. Deficiencies in ability to predict reliability and to account for serial correlations are noted in the model, which is concluded useful for narrowing WECS design options.

  11. Wind energy research program 2008 - 2011; Energieforschungsprogramm Windenergie fuer die Jahre 2008-2011

    Energy Technology Data Exchange (ETDEWEB)

    Horbaty, R.

    2008-07-01

    This report published by the Swiss Federal Office of Energy (SFOE) discusses the Swiss research program on wind energy for the years 2008 to 2011. The Swiss government's energy research programs are defined every four years in co-operation with the Swiss Federal Energy Research Commission. This paper takes a look at the present situation in Switzerland and discusses current developments. Key figures are quoted. National work on basic and production-oriented research is discussed. The various actors and their co-ordination are discussed. National and international networking between research and practice is commented on. Technical and commercial goals are looked at, as are the possibilities for funding the work. Finally, four areas of emphasis for research are noted.

  12. Statistical Model of Extreme Shear

    DEFF Research Database (Denmark)

    Hansen, Kurt Schaldemose; Larsen, Gunner Chr.

    2005-01-01

    In order to continue cost-optimisation of modern large wind turbines, it is important to continuously increase the knowledge of wind field parameters relevant to design loads. This paper presents a general statistical model that offers site-specific prediction of the probability density function...... by a model that, on a statistically consistent basis, describes the most likely spatial shape of an extreme wind shear event. Predictions from the model have been compared with results from an extreme value data analysis, based on a large number of full-scale measurements recorded with a high sampling rate...

  13. Fast calculation of microphone array steering vectors with shear flow

    NARCIS (Netherlands)

    Sijtsma, P.

    2018-01-01

    This paper proposes a fast method for calculating the acoustic time delay between an observer and a receiver in a shear flow. This method is applied to an outdoor microphone array measurement on a large-scale wind turbine. In such a set-up, a shear flow represents the actual wind field better than a

  14. Nebraska wind resource assessment first year results

    Energy Technology Data Exchange (ETDEWEB)

    Hurley, P.J.F.; Vilhauer, R. [RLA Consulting, Inc., Bothell, WA (United States); Stooksbury, D. [Univ. of Nebraska, Lincoln, NE (United States)

    1996-12-31

    This paper presents the preliminary results from a wind resource assessment program in Nebraska sponsored by the Nebraska Power Association. During the first year the measured annual wind speed at 40 meters ranged from 6.5 - 7.5 m/s (14.6 - 16.8 mph) at eight stations across the state. The site selection process is discussed as well as an overview of the site characteristics at the monitoring locations. Results from the first year monitoring period including data recovery rate, directionality, average wind speeds, wind shear, and turbulence intensity are presented. Results from the eight sites are qualitatively compared with other midwest and west coast locations. 5 figs., 2 tabs.

  15. The Department of Energy (DOE) research program in structural analysis of vertical-axis wind turbines

    Science.gov (United States)

    Sullivan, W. N.

    The Darrieus-type Vertical Axis Wind Turbine (VAWT) presents a variety of unusual structural problems to designers. The level of understanding of these structural problems governs, to a large degree, the success or failure of today's rotor designs. A survey is presented of the technology available for rotor structural design with emphasis on the DOE research program now underway. Itemizations are included of the major structural issues unique to the VAWT along with discussion of available analysis techniques for each problem area. It is concluded that tools are available to at least approximately address the most important problems. However, experimental data for confirmation is rather limited in terms of volume and the range of rotor configurations tested.

  16. US Department of Energy wind turbine candidate site program: the regulatory process

    Energy Technology Data Exchange (ETDEWEB)

    Greene, M.R.; York, K.R.

    1982-06-01

    Sites selected in 1979 as tentative sites for installation of a demonstration MOD-2 turbine are emphasized. Selection as a candidate site in this program meant that the US Department of Energy (DOE) designated the site as eligible for a DOE-purchased and installed meteorological tower. The regulatory procedures involved in the siting and installation of these meteorological towers at the majority of the candidate sites are examined. An attempt is also made, in a preliminary fashion, to identify the legal and regulatory procedures that would be required to put up a turbine at each of these candidate sites. The information provided on each of these sites comes primarily from utility representatives, supplemented by conversations with state and local officials. The major findings are summarized on the following: federal requirements, state requirements, local requirements, land ownership, wind rights, and public attitudes.

  17. MOD-5A wind turbine generator program design report: Volume 1: Executive Summary

    Science.gov (United States)

    1984-01-01

    The design, development and analysis of the 7.3 MW MOD-5A wind turbine generator covering work performed between July 1980 and June 1984 is discussed. The report is divided into four volumes: Volume 1 summarizes the entire MOD-5A program, Volume 2 discusses the conceptual and preliminary design phases, Volume 3 describes the final design of the MOD-5A, and Volume 4 contains the drawings and specifications developed for the final design. Volume 1, the Executive Summary, summarizes all phases of the MOD-5A program. The performance and cost of energy generated by the MOD-5A are presented. Each subsystem - the rotor, drivetrain, nacelle, tower and foundation, power generation, and control and instrumentation subsystems - is described briefly. The early phases of the MOD-5A program, during which the design was analyzed and optimized, and new technologies and materials were developed, are discussed. Manufacturing, quality assurance, and safety plans are presented. The volume concludes with an index of volumes 2 and 3.

  18. Wind Atlas Analysis and Application Program: WAsP 11 Help Facility

    DEFF Research Database (Denmark)

    2014-01-01

    of specific wind turbines and wind farms. The WAsP Help Facility includes a Quick Start Tutorial, a User's Guide and a Technical Reference. It further includes descriptions of the Observed Wind Climate Wizard, the WAsP Climate Analyst, the WAsP Map Editor tool, the WAsP Turbine Editor tool, the Air Density...

  19. A tall tower study of Missouri winds

    Energy Technology Data Exchange (ETDEWEB)

    Fox, Neil I. [Department of Soil, Environmental and Atmospheric Sciences, 332 ABNR Building, University of Missouri, Columbia, MO 65211 (United States)

    2011-01-15

    This paper summarizes the results of a study of wind speeds observed at heights up to 150 m above ground level around Missouri. This is an amalgamation of four projects that allowed a total of eleven tall communication towers to be instrumented with wind observation equipment across the State of Missouri. This provided an assessment of the wind resource and the characteristics of the seasonal and diurnal cycles of wind in different areas of Missouri at the heights of utility scale wind turbines. Comparisons were also made to wind speeds predicted at these levels from a previously published wind map. The main finding was that the observed winds at each tower were smaller than those presented in the wind map. The discrepancy is most likely to be due to underestimation of the surface roughness and turbulence leading to an overestimation of near-surface wind shear. However, the wind shear, as expressed by the shear parameter was consistently greater than the 'standard' value of 1.4. The reconciliation of these two apparently contradictory findings is that the shear varies with the height at which it is measured. In wind resource assessment, wind shear is usually observed below 50 m and is tacitly assumed to be constant with height when used to extrapolate winds to higher levels. The author advocates the use of the friction velocity as a measure of shear in wind power applications in preference to the shear parameter that is usually used. This is because the shear parameter has a velocity bias that can also manifest as a bias with height or season. As wind power resource assessment is starting to use taller towers than the standard 50 m, intercomparison of site resources and extrapolation to turbine heights can be compromised if the shear parameter is used. (author)

  20. NASA/University JOint VEnture (JOVE) Program: Transverse Shear Moduli Using the Torsional Responses of Rectangular Laminates

    Science.gov (United States)

    Bogan, Sam

    2001-01-01

    The first year included a study of the non-visible damage of composite overwrapped pressure vessels with B. Poe of the Materials Branch of Nasa-Langley. Early determinations showed a clear reduction in non-visible damage for thin COPVs when partially pressurized rather than unpressurized. Literature searches on Thicker-wall COPVs revealed surface damage but clearly visible. Analysis of current Analytic modeling indicated that that current COPV models lacked sufficient thickness corrections to predict impact damage. After a comprehensive study of available published data and numerous numerical studies based on observed data from Langley, the analytic framework for modeling the behavior was determined lacking and both Poe and Bogan suggested any short term (3yr) result for Jove would be overly ambitious and emphasis should be placed on transverse shear moduli studies. Transverse shear moduli determination is relevant to the study of fatigue, fracture and aging effects in composite structures. Based on the techniques developed by Daniel & Tsai, Bogan and Gates determined to verify the results for K3B and 8320. A detailed analytic and experimental plan was established and carried out that included variations in layup, width, thickness, and length. As well as loading rate variations to determine effects and relaxation moduli. The additional axial loads during the torsion testing were studied as was the placement of gages along the composite specimen. Of the proposed tasks, all of tasks I and 2 were completed with presentations given at Langley, SEM conferences and ASME/AIAA conferences. Sensitivity issues with the technique associated with the use of servohydraulic test systems for applying the torsional load to the composite specimen limited the torsion range for predictable and repeatable transverse shear properties. Bogan and Gates determined to diverge on research efforts with Gates continuing the experimental testing at Langley and Bogan modeling the apparent non

  1. Wind turbine rotor aerodynamics : The IEA MEXICO rotor explained

    NARCIS (Netherlands)

    Zhang, Y.

    2017-01-01

    Wind turbines are operating under very complex and uncontrolled environmental conditions, including atmospheric turbulence, atmospheric boundary layer effects, directional and spatial variations in wind shear, etc. Over the past decades, the size of a commercial wind turbine has increased

  2. Graduate Education Programs in Wind Energy in North America and Europe

    OpenAIRE

    Acker, Thomas L.; Manwell, James F.; Mcgowan, Jon G.; Swift, Andrew H. P., Jr.

    2015-01-01

    The purpose of the North American Wind Energy Academy (NAWEA) is to facilitate the growth of wind power into a cost-effective, high-penetration, sustainable national energy source producing at least 10 times the 2012 electricity production levels. To meet this energy goal, the academy will expedite the creation of a critical new wind energy research and development agenda that bridges education, multiple disciplines, and diverse organizations, and fosters national and international collaborat...

  3. Advanced Wind Turbine Program Next Generation Turbine Development Project: June 17, 1997--April 30, 2005

    Energy Technology Data Exchange (ETDEWEB)

    GE Wind Energy, LLC

    2006-05-01

    This document reports the technical results of the Next Generation Turbine Development Project conducted by GE Wind Energy LLC. This project is jointly funded by GE and the U.S. Department of Energy's National Renewable Energy Laboratory.The goal of this project is for DOE to assist the U.S. wind industry in exploring new concepts and applications of cutting-edge technology in pursuit of the specific objective of developing a wind turbine that can generate electricity at a levelized cost of energy of $0.025/kWh at sites with an average wind speed of 15 mph (at 10 m height).

  4. Wind energy in Mediterranean Basin

    International Nuclear Information System (INIS)

    Gaudiosi, G.

    1991-01-01

    In its examination of wind energy potential in the Mediterranean Basin, this paper provides brief notes on the Basin's geography; indicates power production and demand; describes the area's wind characteristics and wind monitoring activities; illustrates wind velocity distributions; estimates local wind power production potential; reviews the Basin's wind energy marketing situation and each bordering country's wind energy programs; surveys installed wind energy farms; and assesses national research and commercialization efforts

  5. Northeast Utilities' participation in the Kaman/NASA wind power program

    Science.gov (United States)

    Lotker, M.

    1975-01-01

    The role of Northeast Utilities in the Kaman/NASA large wind generator study is reviewed. The participation falls into four principal areas: (1) technical assistance; (2) economic analysis; (3) applications; and (4) institutional and legal. A model for the economic viability of wind power is presented.

  6. Mod-5A wind turbine generator program design report. Volume 4: Drawings and specifications, book 5

    Science.gov (United States)

    1984-01-01

    The design, development and analysis of the 7.3 MW MOD-5A wind turbine generator is documented. There are four volumes. This volume contains the drawings and specifications that were developed in preparation for building the MOD-5A wind turbine generator. Detail drawings of several assemblies and subassemblies are given. This is the fifth book of volume 4.

  7. Smart Wind Turbine : Analysis and Autonomous Flap

    NARCIS (Netherlands)

    Bernhammer, L.O.

    2015-01-01

    Wind turbines convert kinetic energy of the wind into electrical energy. Unfortunately, this process is everything but constant, as the wind source shows large fluctuations with high and low frequencies. This turbulence, together with the wind shear and yawed inflow, excites the turbine structure,

  8. Degree of coupling in high-rise mixed shear walls structures

    Indian Academy of Sciences (India)

    assessment of the structural behaviour of coupled shear wall bents in mixed shear wall ... efficient lateral load resisting system against wind and earthquake effects. .... can be obtained from the second derivative of equation (11) which must be ...

  9. A Multiobjective Interval Programming Model for Wind-Hydrothermal Power System Dispatching Using 2-Step Optimization Algorithm

    Science.gov (United States)

    Jihong, Qu

    2014-01-01

    Wind-hydrothermal power system dispatching has received intensive attention in recent years because it can help develop various reasonable plans to schedule the power generation efficiency. But future data such as wind power output and power load would not be accurately predicted and the nonlinear nature involved in the complex multiobjective scheduling model; therefore, to achieve accurate solution to such complex problem is a very difficult task. This paper presents an interval programming model with 2-step optimization algorithm to solve multiobjective dispatching. Initially, we represented the future data into interval numbers and simplified the object function to a linear programming problem to search the feasible and preliminary solutions to construct the Pareto set. Then the simulated annealing method was used to search the optimal solution of initial model. Thorough experimental results suggest that the proposed method performed reasonably well in terms of both operating efficiency and precision. PMID:24895663

  10. A multiobjective interval programming model for wind-hydrothermal power system dispatching using 2-step optimization algorithm.

    Science.gov (United States)

    Ren, Kun; Jihong, Qu

    2014-01-01

    Wind-hydrothermal power system dispatching has received intensive attention in recent years because it can help develop various reasonable plans to schedule the power generation efficiency. But future data such as wind power output and power load would not be accurately predicted and the nonlinear nature involved in the complex multiobjective scheduling model; therefore, to achieve accurate solution to such complex problem is a very difficult task. This paper presents an interval programming model with 2-step optimization algorithm to solve multiobjective dispatching. Initially, we represented the future data into interval numbers and simplified the object function to a linear programming problem to search the feasible and preliminary solutions to construct the Pareto set. Then the simulated annealing method was used to search the optimal solution of initial model. Thorough experimental results suggest that the proposed method performed reasonably well in terms of both operating efficiency and precision.

  11. The role of demand response in single and multi-objective wind-thermal generation scheduling: A stochastic programming

    International Nuclear Information System (INIS)

    Falsafi, Hananeh; Zakariazadeh, Alireza; Jadid, Shahram

    2014-01-01

    This paper focuses on using DR (Demand Response) as a means to provide reserve in order to cover uncertainty in wind power forecasting in SG (Smart Grid) environment. The proposed stochastic model schedules energy and reserves provided by both of generating units and responsive loads in power systems with high penetration of wind power. This model is formulated as a two-stage stochastic programming, where first-stage is associated with electricity market, its rules and constraints and the second-stage is related to actual operation of the power system and its physical limitations in each scenario. The discrete retail customer responses to incentive-based DR programs are aggregated by DRPs (Demand Response Providers) and are submitted as a load change price and amount offer package to ISO (Independent System Operator). Also, price-based DR program behavior and random nature of wind power are modeled by price elasticity concept of the demand and normal probability distribution function, respectively. In the proposed model, DRPs can participate in energy market as well as reserve market and submit their offers to the wholesale electricity market. This approach is implemented on a modified IEEE 30-bus test system over a daily time horizon. The simulation results are analyzed in six different case studies. The cost, emission and multiobjective functions are optimized in both without and with DR cases. The multiobjective generation scheduling model is solved using augmented epsilon constraint method and the best solution can be chosen by Entropy and TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) methods. The results indicate demand side participation in energy and reserve scheduling reduces the total operation costs and emissions. - Highlights: • Simultaneous participation of loads in both energy and reserve scheduling. • Environmental/economical scheduling of energy and reserve. • Using demand response for covering wind generation forecast

  12. Wind energy renewable energy and the environment

    CERN Document Server

    Nelson, Vaughn

    2013-01-01

    As the demand for energy increases, and fossil fuels continue to decrease, Wind Energy: Renewable Energy and the Environment, Second Edition considers the viability of wind as an alternative renewable energy source. This book examines the wind industry from its start in the 1970s until now, and introduces all aspects of wind energy. The phenomenal growth of wind power for utilities is covered along with applications such as wind-diesel, village power, telecommunications, and street lighting.. It covers the characteristics of wind, such as shear, power potential, turbulence, wind resource, wind

  13. Sequential Convex Programming for Power Set-point Optimization in a Wind Farm using Black-box Models, Simple Turbine Interactions, and Integer Variables

    DEFF Research Database (Denmark)

    Hovgaard, Tobias Gybel; Larsen, Lars F. S.; Jørgensen, John Bagterp

    2012-01-01

    We consider the optimization of power set-points to a large number of wind turbines arranged within close vicinity of each other in a wind farm. The goal is to maximize the total electric power extracted from the wind, taking the wake effects that couple the individual turbines in the farm into a...... is far superior to, a more naive distribution scheme. We employ a fast convex quadratic programming solver to carry out the iterations in the range of microseconds for even large wind farms....

  14. A Mixed-Integer Linear Programming approach to wind farm layout and inter-array cable routing

    DEFF Research Database (Denmark)

    Fischetti, Martina; Leth, John-Josef; Borchersen, Anders Bech

    2015-01-01

    A Mixed-Integer Linear Programming (MILP) approach is proposed to optimize the turbine allocation and inter-array offshore cable routing. The two problems are considered with a two steps strategy, solving the layout problem first and then the cable problem. We give an introduction to both problems...... and present the MILP models we developed to solve them. To deal with interference in the onshore cases, we propose an adaptation of the standard Jensen’s model, suitable for 3D cases. A simple Stochastic Programming variant of our model allows us to consider different wind scenarios in the optimization...

  15. Automatic Identification of Closed-Loop Wind Turbine Dynamics via Genetic Programming

    Energy Technology Data Exchange (ETDEWEB)

    La Cava, William; Danai, Kourosh; Lackner, Matthew; Spector, Lee; Fleming, Paul; Wright, Alan

    2015-10-03

    Wind turbines are nonlinear systems that operate in turbulent environments. As such, their behavior is difficult to characterize accurately across a wide range of operating conditions by physically meaningful models. Customarily, data-based models of wind turbines are defined in 'black box' format, lacking in both conciseness and physical intelligibility. To address this deficiency, we identify models of a modern horizontal-axis wind turbine in symbolic form using a recently developed symbolic regression method. The method used relies on evolutionary multi-objective optimization to produce succinct dynamic models from operational data without 'a priori' knowledge of the system. We compare the produced models with models derived by other methods for their estimation capacity and evaluate the tradeoff between model intelligibility and accuracy. Several succinct models are found that predict wind turbine behavior as well as or better than more complex alternatives derived by other methods.

  16. Optimisation Sizing of Hybrid Wind-Diesel Systems using Linear Programming Technique

    OpenAIRE

    Gan, Leong Kit; Shek, Jonathan; Mueller, Markus

    2014-01-01

    Despite the great potential of hybrid wind-diesel system in supplying energy to remote or island communities, sizing the system components have been a challenging problem for many project managers due to the reliance on various factors. This work considers utilising a fixed speed wind turbine (induction generator) in the hybrid system. It requires energy for start-up operation and this work takes into account for sizing the battery storage. In addition, the trade-off between the number of bat...

  17. A large sample of shear-selected clusters from the Hyper Suprime-Cam Subaru Strategic Program S16A Wide field mass maps

    Science.gov (United States)

    Miyazaki, Satoshi; Oguri, Masamune; Hamana, Takashi; Shirasaki, Masato; Koike, Michitaro; Komiyama, Yutaka; Umetsu, Keiichi; Utsumi, Yousuke; Okabe, Nobuhiro; More, Surhud; Medezinski, Elinor; Lin, Yen-Ting; Miyatake, Hironao; Murayama, Hitoshi; Ota, Naomi; Mitsuishi, Ikuyuki

    2018-01-01

    We present the result of searching for clusters of galaxies based on weak gravitational lensing analysis of the ˜160 deg2 area surveyed by Hyper Suprime-Cam (HSC) as a Subaru Strategic Program. HSC is a new prime focus optical imager with a 1.5°-diameter field of view on the 8.2 m Subaru telescope. The superb median seeing on the HSC i-band images of 0.56" allows the reconstruction of high angular resolution mass maps via weak lensing, which is crucial for the weak lensing cluster search. We identify 65 mass map peaks with a signal-to-noise (S/N) ratio larger than 4.7, and carefully examine their properties by cross-matching the clusters with optical and X-ray cluster catalogs. We find that all the 39 peaks with S/N > 5.1 have counterparts in the optical cluster catalogs, and only 2 out of the 65 peaks are probably false positives. The upper limits of X-ray luminosities from the ROSAT All Sky Survey (RASS) imply the existence of an X-ray underluminous cluster population. We show that the X-rays from the shear-selected clusters can be statistically detected by stacking the RASS images. The inferred average X-ray luminosity is about half that of the X-ray-selected clusters of the same mass. The radial profile of the dark matter distribution derived from the stacking analysis is well modeled by the Navarro-Frenk-White profile with a small concentration parameter value of c500 ˜ 2.5, which suggests that the selection bias on the orientation or the internal structure for our shear-selected cluster sample is not strong.

  18. An interactive graphics program to retrieve, display, compare, manipulate, curve fit, difference and cross plot wind tunnel data

    Science.gov (United States)

    Elliott, R. D.; Werner, N. M.; Baker, W. M.

    1975-01-01

    The Aerodynamic Data Analysis and Integration System (ADAIS), developed as a highly interactive computer graphics program capable of manipulating large quantities of data such that addressable elements of a data base can be called up for graphic display, compared, curve fit, stored, retrieved, differenced, etc., was described. The general nature of the system is evidenced by the fact that limited usage has already occurred with data bases consisting of thermodynamic, basic loads, and flight dynamics data. Productivity using ADAIS of five times that for conventional manual methods of wind tunnel data analysis is routinely achieved. In wind tunnel data analysis, data from one or more runs of a particular test may be called up and displayed along with data from one or more runs of a different test. Curves may be faired through the data points by any of four methods, including cubic spline and least squares polynomial fit up to seventh order.

  19. Turbine endwall two-cylinder program. [wind tunnel and water tunnel investigation of three dimensional separation of fluid flow

    Science.gov (United States)

    Langston, L. S.

    1980-01-01

    Progress is reported in an effort to study the three dimensional separation of fluid flow around two isolated cylinders mounted on an endwall. The design and performance of a hydrogen bubble generator for water tunnel tests to determine bulk flow properties and to measure main stream velocity and boundary layer thickness are described. Although the water tunnel tests are behind schedule because of inlet distortion problems, tests are far enough along to indicate cylinder spacing, wall effects and low Reynolds number behavior, all of which impacted wind tunnel model design. The construction, assembly, and operation of the wind tunnel and the check out of its characteristics are described. An off-body potential flow program was adapted to calculate normal streams streamwise pressure gradients at the saddle point locations.

  20. Mod-5A wind turbine generator program design report. Volume 3: Final design and system description, book 2

    Science.gov (United States)

    1984-01-01

    The design, development and analysis of the 7.3MW MOD-5A wind turbine generator is documented. The report is divided into four volumes: Volume 1 summarizes the entire MOD-5A program, Volume 2 discusses the conceptual and preliminary design phases, Volume 3 describes the final design of the MOD-5A, and Volume 4 contains the drawings and specifications developed for the final design. Volume 3, book 2 describes the performance and characteristics of the MOD-5A wind turbine generator in its final configuration. The subsystem for power generation, control, and instrumentation subsystems is described in detail. The manufacturing and construction plans, and the preparation of a potential site on Oahu, Hawaii, are documented. The quality assurance and safety plan, and analyses of failure modes and effects, and reliability, availability and maintainability are presented.

  1. Mod-5A wind turbine generator program design report. Volume 4: Drawings and specifications, book 4

    Science.gov (United States)

    1984-01-01

    The design, development and analysis of the 7.3 MW MOD-5A wind turbine generator are documented. There are four volumes. This volume contains the drawings and specifications that were developed in preparation for building the MOD-5A wind turbine generator. This volume contains 5 books of which this is the fourth, providing drawings 47A380128 through 47A387125. In addition to the parts listing and where-used list, the logic design of the controller software and the code listing of the controller software are provided. Also given are the aerodynamic profile coordinates.

  2. Mod-5A wind turbine generator program design report. Volume 4: Drawings and specifications, book 2

    Science.gov (United States)

    1984-01-01

    The design, development and analysis of the 7.3 MW MOD-5A wind turbine generator is documented. There are four volumes. This volume contains the drawings and specifications that were developed in preparation for building the MOD-5A wind turbine generator. This is the second book of volume four. Some of the items it contains are specs for the emergency shutdown panel, specs for the simulator software, simulator hardware specs, site operator terminal requirements, control data system requirements, software project management plan, elastomeric teeter bearing requirement specs, specs for the controls electronic cabinet, and specs for bolt pretensioning.

  3. Mod-5A Wind Turbine Generator Program Design Report. Volume 4: Drawings and Specifications, Book 1

    Science.gov (United States)

    1984-01-01

    The design, development and analysis of the 7.3 MW MOD-5A wind turbine generator is documented. Volume 4 contains the drawings and specifications that were developed in preparation for building the MOD-5A wind turbine generator. This is the first of five books of volume four. It contains structural design criteria, generator step-up transformer specs, specs for design, fabrication and testing of the system, specs for the ground control enclosure, systems specs, slip ring specs, and control system specs.

  4. Wind power today

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-04-01

    This publication highlights initiatives of the US DOE`s Wind Energy Program. 1997 yearly activities are also very briefly summarized. The first article describes a 6-megawatt wind power plant installed in Vermont. Another article summarizes technical advances in wind turbine technology, and describes next-generation utility and small wind turbines in the planning stages. A village power project in Alaska using three 50-kilowatt turbines is described. Very brief summaries of the Federal Wind Energy Program and the National Wind Technology Center are also included in the publication.

  5. Delayed shear enhancement in mesoscale atmospheric dispersion

    Energy Technology Data Exchange (ETDEWEB)

    Moran, M.D. [Atmospheric Environment Service, Ontario (Canada); Pielke, R.A. [Colorado State Univ., Fort Collins, CO (United States)

    1994-12-31

    Mesoscale atmospheric dispersion (MAD) is more complicated than smaller-scale dispersion because the mean wind field can no longer be considered steady or horizontally homogeneous over mesoscale time and space scales. Wind shear also plays a much more important role on the mesoscale: horizontal dispersion can be enhanced and often dominated by vertical wind shear on these scales through the interaction of horizontal differential advection and vertical mixing. Just over 30 years ago, Pasquill suggested that this interaction need not be simultaneous and that the combination of differential horizontal advection with delayed or subsequent vertical mixing could maintain effective horizontal diffusion in spite of temporal or spatial reductions in boundary-layer turbulence intensity. This two-step mechanism has not received much attention since then, but a recent analysis of observations from and numerical simulations of two mesoscale tracer experiments suggests that delayed shear enhancement can play an important role in MAD. This paper presents an overview of this analysis, with particular emphasis on the influence of resolvable vertical shear on MAD in these two case studies and the contributions made by delayed shear enhancement.

  6. Wind Turbines Wake Aerodynamics

    DEFF Research Database (Denmark)

    Vermeer, L.; Sørensen, Jens Nørkær; Crespo, A.

    2003-01-01

    The aerodynamics of horizontal axis wind turbine wakes is studied. The contents is directed towards the physics of power extraction by wind turbines and reviews both the near and the far wake region. For the near wake, the survey is restricted to uniform, steady and parallel flow conditions......, thereby excluding wind shear, wind speed and rotor setting changes and yawed conditions. The emphasis is put on measurements in controlled conditions.For the far wake, the survey focusses on both single turbines and wind farm effects, and the experimental and numerical work are reviewed; the main interest...... is to study how the far wake decays downstream, in order to estimate the effect produced in downstream turbines.The article is further restricted to horizontal axis wind turbines and excludes all other types of turbines....

  7. Wind Shear Modeling for Aircraft Hazard Definition.

    Science.gov (United States)

    1978-02-01

    should give a valid representation of most terminal areas. For air- ports located near unusual terrain features such as mountains or cliffs...A ( IP+t—1 , 11, 2 )—A(1~~+i— 1 , 10,2) )/u1~ lJd L J U INt)r. ~AA (1. O ALEA )* (1. O — b E L A ) $ L )X X ( 1, 1) +bE.Lu *C 1.0 ALd~A )*L)XX (1

  8. Wind Shear Modeling for Aircraft Hazard Definition

    Science.gov (United States)

    1977-03-01

    Fichtl, "Rough to Smooth Transition of an Equilibrium Neutral Constant Stress Layer," NASA TM X-3322, (1975). 5-36 Geiger, Rudolf , The Climate Near the...Roy Steiner , and K. G. Pratt. "Dynamic Response of Airplanes to Atmospheric Turbulence Including Flight Data on Input and Response," NASA TR R-199

  9. Smart Wind Turbine: Analysis and Autonomous Flap

    OpenAIRE

    Bernhammer, L.O.

    2015-01-01

    Wind turbines convert kinetic energy of the wind into electrical energy. Unfortunately, this process is everything but constant, as the wind source shows large fluctuations with high and low frequencies. This turbulence, together with the wind shear and yawed inflow, excites the turbine structure, thereby driving the loads and the design of turbines in general and blades in particular. In response to this, several control mechanisms have been applied to wind turbines since the generation of s...

  10. A Three-Stage Birandom Program for Unit Commitment with Wind Power Uncertainty

    Directory of Open Access Journals (Sweden)

    Na Zhang

    2014-01-01

    Full Text Available The integration of large-scale wind power adds a significant uncertainty to power system planning and operating. The wind forecast error is decreased with the forecast horizon, particularly when it is from one day to several hours ahead. Integrating intraday unit commitment (UC adjustment process based on updated ultra-short term wind forecast information is one way to improve the dispatching results. A novel three-stage UC decision method, in which the day-ahead UC decisions are determined in the first stage, the intraday UC adjustment decisions of subfast start units are determined in the second stage, and the UC decisions of fast-start units and dispatching decisions are determined in the third stage is presented. Accordingly, a three-stage birandom UC model is presented, in which the intraday hours-ahead forecasted wind power is formulated as a birandom variable, and the intraday UC adjustment event is formulated as a birandom event. The equilibrium chance constraint is employed to ensure the reliability requirement. A birandom simulation based hybrid genetic algorithm is designed to solve the proposed model. Some computational results indicate that the proposed model provides UC decisions with lower expected total costs.

  11. Mixed Integer Linear Programming for new trends in wind farm cable routing

    DEFF Research Database (Denmark)

    Fischetti, Martina; Pisinger, David

    2018-01-01

    The efficient production of green energy plays an import role in modern economies. In this paper we address the optimization of cable connections between turbines in an offshore wind park. Different versions of this problem have been studied recently. In a previous joint project with Vattenfall BA...

  12. Wind conditions and resource assessment

    DEFF Research Database (Denmark)

    Lundtang Petersen, Erik; Troen, Ib

    2012-01-01

    The development of wind power as a competitive energy source requires resource assessment of increasing accuracy and detail (including not only the long-term ‘raw’ wind resource, but also turbulence, shear, and extremes), and in areas of increasing complexity. This in turn requires the use of the...

  13. Turbofan Noise Studied in Unique Model Research Program in NASA Glenn's 9- by 15-Foot Low-Speed Wind Tunnel

    Science.gov (United States)

    Hughes, Christopher E.

    2001-01-01

    A comprehensive aeroacoustic research program called the Source Diagnostic Test was recently concluded in NASA Glenn Research Center's 9- by 15-Foot Low Speed Wind Tunnel. The testing involved representatives from Glenn, NASA Langley Research Center, GE Aircraft Engines, and the Boeing Company. The technical objectives of this research were to identify the different source mechanisms of noise in a modern, high-bypass turbofan aircraft engine through scale-model testing and to make detailed acoustic and aerodynamic measurements to more fully understand the physics of how turbofan noise is generated.

  14. On the Impact of using Mixed Integer Programming Techniques on Real-world Offshore Wind Parks

    DEFF Research Database (Denmark)

    Fischetti, Martina; Pisinger, David

    2017-01-01

    Wind power is a leading technology in the transition to sustainable energy. Being a new and still more competitive field, it is of major interest to investigate new techniques to solve the design challenges involved. In this paper, we consider optimization of the inter-array cable routing...... optimization problem considers two objectives: minimizing immediate costs (CAPEX) and minimizing costs due to power losses. This makes it possible to perform various what-if analyses to evaluate the impact of different preferences to CAPEX versus reduction of power losses. Thanks to the close collaboration...... with a leading energy company, we have been able to report results on a set of real-world instances, based on six existing wind parks, studying the economical impact of considering power losses in the cable routing design phase....

  15. Mod-5A wind turbine generator program design report. Volume 4: Drawings and specifications, book 3

    Science.gov (United States)

    1984-01-01

    The design, development and analysis of the 7.3 MW MOD-5A wind turbine generator is documented. This volume contains the drawings and specifications developed for the final design. This volume is divided into 5 books of which this is the third, containing drawings 47A380074 through 47A380126. A full breakdown parts listing is provided as well as a where used list.

  16. Computerized lateral-shear interferometer

    Science.gov (United States)

    Hasegan, Sorin A.; Jianu, Angela; Vlad, Valentin I.

    1998-07-01

    A lateral-shear interferometer, coupled with a computer for laser wavefront analysis, is described. A CCD camera is used to transfer the fringe images through a frame-grabber into a PC. 3D phase maps are obtained by fringe pattern processing using a new algorithm for direct spatial reconstruction of the optical phase. The program describes phase maps by Zernike polynomials yielding an analytical description of the wavefront aberration. A compact lateral-shear interferometer has been built using a laser diode as light source, a CCD camera and a rechargeable battery supply, which allows measurements in-situ, if necessary.

  17. CAN-DO, CFD-based Aerodynamic Nozzle Design and Optimization program for supersonic/hypersonic wind tunnels

    Science.gov (United States)

    Korte, John J.; Kumar, Ajay; Singh, D. J.; White, J. A.

    1992-01-01

    A design program is developed which incorporates a modern approach to the design of supersonic/hypersonic wind-tunnel nozzles. The approach is obtained by the coupling of computational fluid dynamics (CFD) with design optimization. The program can be used to design a 2D or axisymmetric, supersonic or hypersonic, wind-tunnel nozzles that can be modeled with a calorically perfect gas. The nozzle design is obtained by solving a nonlinear least-squares optimization problem (LSOP). The LSOP is solved using an iterative procedure which requires intermediate flowfield solutions. The nozzle flowfield is simulated by solving the Navier-Stokes equations for the subsonic and transonic flow regions and the parabolized Navier-Stokes equations for the supersonic flow regions. The advantages of this method are that the design is based on the solution of the viscous equations eliminating the need to make separate corrections to a design contour, and the flexibility of applying the procedure to different types of nozzle design problems.

  18. Wind energy expo '82 and national conference American Wind Energy Association

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, V. (ed.)

    1982-01-01

    Separate abstracts were prepared for 41 papers in this conference report. Wind farms, large wind turbines, new wind turbines, marketing small wind systems, programs, performance, and economics, analytic methods, testing, power conversion, and rotor systems are the principal topics covered.

  19. Appendix E: Wind Technologies Program inputs for FY 2008 benefits estimates

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2009-01-18

    Document summarizes the results of the benefits analysis of EERE’s programs, as described in the FY 2008 Budget Request. EERE estimates benefits for its overall portfolio and nine Research, Development, Demonstration, and Deployment (RD3) programs.

  20. Wind Power Now!

    Science.gov (United States)

    Inglis, David Rittenhouse

    1975-01-01

    The government promotes and heavily subsidizes research in nuclear power plants. Federal development of wind power is slow in comparison even though much research with large wind-electric machines has already been conducted. Unless wind power programs are accelerated it will not become a major energy alternative to nuclear power. (MR)

  1. Semiconductor laser shearing interferometer

    International Nuclear Information System (INIS)

    Ming Hai; Li Ming; Chen Nong; Xie Jiaping

    1988-03-01

    The application of semiconductor laser on grating shearing interferometry is studied experimentally in the present paper. The method measuring the coherence of semiconductor laser beam by ion etching double frequency grating is proposed. The experimental result of lens aberration with semiconductor laser shearing interferometer is given. Talbot shearing interferometry of semiconductor laser is also described. (author). 2 refs, 9 figs

  2. Analysis of extreme wind events at Høvsøre and the effect on wind turbine loads

    DEFF Research Database (Denmark)

    Hannesdóttir, Ásta; Kelly, Mark C.; Mann, Jakob

    used to simulate wind turbine response in time domain. The simulations are made for the DTU 10 MW reference wind turbine. Load analysis shows that the maximum tilt moment on the tower yaw bearing correlates well with the wind shear of the measurements. When these loads are compared with the extreme...... wind shear load case of the IEC standards, it is seen that they are of similar magnitude and in one case even higher....

  3. Vandenberg Air Force Base Upper Level Wind Launch Weather Constraints

    Science.gov (United States)

    Shafer, Jaclyn A.; Wheeler, Mark M.

    2012-01-01

    The 30th Operational Support Squadron Weather Flight (30 OSSWF) provides comprehensive weather services to the space program at Vandenberg Air Force Base (VAFB) in California. One of their responsibilities is to monitor upper-level winds to ensure safe launch operations of the Minuteman III ballistic missile. The 30 OSSWF tasked the Applied Meteorology Unit (AMU) to analyze VAFB sounding data with the goal of determining the probability of violating (PoV) their upper-level thresholds for wind speed and shear constraints specific to this launch vehicle, and to develop a tool that will calculate the PoV of each constraint on the day of launch. In order to calculate the probability of exceeding each constraint, the AMU collected and analyzed historical data from VAFB. The historical sounding data were retrieved from the National Oceanic and Atmospheric Administration Earth System Research Laboratory archive for the years 1994-2011 and then stratified into four sub-seasons: January-March, April-June, July-September, and October-December. The maximum wind speed and 1000-ft shear values for each sounding in each subseason were determined. To accurately calculate the PoV, the AMU determined the theoretical distributions that best fit the maximum wind speed and maximum shear datasets. Ultimately it was discovered that the maximum wind speeds follow a Gaussian distribution while the maximum shear values follow a lognormal distribution. These results were applied when calculating the averages and standard deviations needed for the historical and real-time PoV calculations. In addition to the requirements outlined in the original task plan, the AMU also included forecast sounding data from the Rapid Refresh model. This information provides further insight for the launch weather officers (LWOs) when determining if a wind constraint violation will occur over the next few hours on day of launch. The interactive graphical user interface (GUI) for this project was developed in

  4. Wind for Schools: A Wind Powering America Project

    Science.gov (United States)

    US Department of Energy, 2007

    2007-01-01

    The U.S. Department of Energy's (DOE's) Wind Powering America program (based at the National Renewable Energy Laboratory) sponsors the Wind for Schools Project to raise awareness in rural America about the benefits of wind energy while simultaneously educating college seniors regarding wind energy applications. The three primary project goals of…

  5. Wind inflow observation from load harmonics

    OpenAIRE

    Marta, Bertelè; Bottasso, Carlo L.; Cacciola, Stefano; Fabiano Daher Adegas,; Sara, Delport

    2017-01-01

    The wind field leaves its fingerprint on the rotor response. This fact can be exploited by using the rotor as a sensor: by looking at the rotor response, in the present case in terms of blade loads, one may infer the wind characteristics. This paper describes a wind state observer that estimates four wind parameters, namely the vertical and horizontal shears and the yaw and upflow misalignment angles, from out-of-plane and in-plane blade bending moments. The resulting observ...

  6. Wind energy

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This chapter discusses the role wind energy may have in the energy future of the US. The topics discussed in the chapter include historical aspects of wind energy use, the wind energy resource, wind energy technology including intermediate-size and small wind turbines and intermittency of wind power, public attitudes toward wind power, and environmental, siting and land use issues

  7. VisibleWind: wind profile measurements at low altitude

    Science.gov (United States)

    Wilkerson, Tom; Bradford, Bill; Marchant, Alan; Apedaile, Tom; Wright, Cordell

    2009-09-01

    VisibleWindTM is developing an inexpensive rapid response system, for accurately characterizing wind shear and small scale wind phenomena in the boundary layer and for prospecting suitable locations for wind power turbines. The ValidWind system can also collect reliable "ground truth" for other remote wind sensors. The system employs small (0.25 m dia.) lightweight balloons and a tracker consisting of an Impulse 200 XL laser rangefinder coupled to a PC for automated data recording. Experiments on balloon trajectories demonstrate that the laser detection of range (+/- 0.5 m), together with measured azimuth and altitude, is an inexpensive, convenient, and capable alternative to other wind tracking methods. The maximum detection range has been increased to 2200 meters using micro-corner-cube retroreflector tape on balloons. Low power LEDs enable nighttime tracking. To avoid large balloon gyrations about the mean trajectory, we use balloons having low ascent rates and subcritical Reynolds numbers. Trajectory points are typically recorded every 4 - 7 seconds. Atmospheric features observed under conditions of inversions or "light and variable winds" include abrupt onsets of shear at altitudes of 100-250 m, velocity changes of order 1-3 m/s within layers of 10-20 m thickness, and veering of the wind direction by 180 degrees or more as altitude increases from 300 to 500 m. We have previously reported comparisons of balloon-based wind profiles with the output of a co-located sodar. Even with the Impulse rangefinder, our system still requires a "man in the loop" to track the balloon. A future system enhancement will automate balloon tracking, so that laser returns are obtained automatically at 1 Hz. While balloon measurements of large-scale, high altitude wind profiles are well known, this novel measurement system provides high-resolution, real-time characterization of the fluctuating local wind fields at the bottom of the boundary layer where wind power turbines and other

  8. Generation Expansion Planning with Large Amounts of Wind Power via Decision-Dependent Stochastic Programming

    DEFF Research Database (Denmark)

    Zhan, Yiduo; Zheng, Qipeng; Wang, Jianhui

    2016-01-01

    , the probability distribution function is determined by not only input parameters but also decision variables. To deal with the nonlinear constraints in our model, a quasi-exact solution approach is then introduced to reformulate the multistage stochastic investment model to a mixed-integer linear programming......Power generation expansion planning needs to deal with future uncertainties carefully, given that the invested generation assets will be in operation for a long time. Many stochastic programming models have been proposed to tackle this challenge. However, most previous works assume predetermined...

  9. Evaluate the capability and accuracy of response-2000 program in prediction of the shear capacities of reinforced and prestressed concrete members

    Directory of Open Access Journals (Sweden)

    Ibrahim M. Metwally

    2012-08-01

    Member response analysis and sectional analysis were both used in Response-2000 to predict the behavior of the beams. Member response calculates the full member behavior including the deflection and curvature along the member length, as well as predicted failure modes. The analysis was performed by specifying the length subjected to shear and any constant moment region. Response-2000 provided a very good prediction of experimental behavior when compared to a database of 534 beams tested in shear. These include prestressed and reinforced sections, very large footing-like sections, sections made with very high strength concrete and elements with unusual geometry. All are predicted well. The results include that Response-2000 can predict the failure shear with an average experimental over predicted shear ratio of 1.05 with a coefficient of variation of 12%. This compares favorably to the ACI 318-08 [2] Code prediction ratios that have an average of 1.20 and a coefficient of variation of 32%.

  10. Retrospective Benefit-Cost Evaluation of U.S. DOE Wind Energy R&D Program: Impact of Selected Energy Technology Investments

    Energy Technology Data Exchange (ETDEWEB)

    Pelsoci, Thomas M. [Delta Research Co., Evanston, IL (United States)

    2010-06-01

    This benefit-cost analysis focuses on the DOE Wind Energy Program's public sector R&D investments and returns. The analysis accounts for the program's additionality – that is, comparing what has happened as a result of the program to what would have happened without it. The analysis does not address the return on the investments of private companies ("private returns"). Public returns on the program's investments from 1976 to 2008 are identified and analyzed using retrospective analysis.

  11. Mixed-Integer-Linear-Programming-Based Energy Management System for Hybrid PV-Wind-Battery Microgrids

    DEFF Research Database (Denmark)

    Hernández, Adriana Carolina Luna; Aldana, Nelson Leonardo Diaz; Graells, Moises

    2017-01-01

    -side strategy, defined as a general mixed-integer linear programming by taking into account two stages for proper charging of the storage units. This model is considered as a deterministic problem that aims to minimize operating costs and promote self-consumption based on 24-hour ahead forecast data...

  12. Micromechanics of soil responses in cyclic simple shear tests

    Directory of Open Access Journals (Sweden)

    Cui Liang

    2017-01-01

    Full Text Available Offshore wind turbine (OWT foundations are subjected to a combination of cyclic and dynamic loading arising from wind, wave, rotor and blade shadowing. Under cyclic loading, most soils change their characteristics including stiffness, which may cause the system natural frequency to approach the loading frequency and lead to unplanned resonance and system damage or even collapse. To investigate such changes and the underlying micromechanics, a series of cyclic simple shear tests were performed on the RedHill 110 sand with different shear strain amplitudes, vertical stresses and initial relative densities of soil. The test results showed that: (a Vertical accumulated strain is proportional to the shear strain amplitude but inversely proportional to relative density of soil; (b Shear modulus increases rapidly in the initial loading cycles and then the rate of increase diminishes and the shear modulus remains below an asymptote; (c Shear modulus increases with increasing vertical stress and relative density, but decreasing with increasing strain amplitude. Coupled DEM simulations were performed using PFC2D to analyse the micromechanics underlying the cyclic behaviour of soils. Micromechanical parameters (e.g. fabric tensor, coordination number were examined to explore the reasons for the various cyclic responses to different shear strain amplitudes or vertical stresses. Both coordination number and magnitude of fabric anisotropy contribute to the increasing shear modulus.

  13. European Wind Atlas and Wind Resource Research in Denmark

    DEFF Research Database (Denmark)

    Mortensen, Niels Gylling

    to estimate the actual wind climate at any specific site and height within this region. The Danish and European Wind Atlases are examples of how the wind atlas methodology can be employed to estimate the wind resource potential for a country or a sub-continent. Recently, the methodology has also been used...... - from wind measurements at prospective sites to wind tunnel simulations and advanced flow modelling. Among these approaches, the wind atlas methodology - developed at Ris0 National Laboratory over the last 25 years - has gained widespread recognition and is presently considered by many as the industry......-standard tool for wind resource assessment and siting of wind turbines. The PC-implementation of the methodology, the Wind Atlas Analysis and Application Program (WAsP), has been applied in more than 70 countries and territories world-wide. The wind atlas methodology is based on physical descriptions and models...

  14. U.S. aerospace industry opinion of the effect of computer-aided prediction-design technology on future wind-tunnel test requirements for aircraft development programs

    Science.gov (United States)

    Treon, S. L.

    1979-01-01

    A survey of the U.S. aerospace industry in late 1977 suggests that there will be an increasing use of computer-aided prediction-design technology (CPD Tech) in the aircraft development process but that, overall, only a modest reduction in wind-tunnel test requirements from the current level is expected in the period through 1995. Opinions were received from key spokesmen in 23 of the 26 solicited major companies or corporate divisions involved in the design and manufacture of nonrotary wing aircraft. Development programs for nine types of aircraft related to test phases and wind-tunnel size and speed range were considered.

  15. Mongolia wind resource assessment project

    International Nuclear Information System (INIS)

    Elliott, D.; Chadraa, B.; Natsagdorj, L.

    1998-01-01

    The development of detailed, regional wind-resource distributions and other pertinent wind resource characteristics (e.g., assessment maps and reliable estimates of seasonal, diurnal, and directional) is an important step in planning and accelerating the deployment of wind energy systems. This paper summarizes the approach and methods being used to conduct a wind energy resource assessment of Mongolia. The primary goals of this project are to develop a comprehensive wind energy resource atlas of Mongolia and to establish a wind measurement program in specific regions of Mongolia to identify prospective sites for wind energy projects and to help validate some of the wind resource estimates. The Mongolian wind resource atlas will include detailed, computerized wind power maps and other valuable wind resource characteristic information for the different regions of Mongolia

  16. On the Effect of Offshore Wind Parks on Ocean Dynamics

    Science.gov (United States)

    Ludewig, E.; Pohlmann, T.

    2012-12-01

    Nowadays renewable energy resources play a key role in the energy supply discussion and especially an increasingly interest in wind energy induces intensified installations of wind parks. At this offshore wind energy gains in popularity in the course of higher and more consistent energy availability than over land. For example Germany's government adopted a national interurban offshore wind energy program comprising the construction of hundreds of wind turbines within Germany's Exclusive Economic Zone to ensure up to 50% of Germany's renewable energy supply. The large number of installation in coastal regions asks for analyzing the impact of offshore wind parks (OWPs) on the atmosphere and the ocean. As known from literature such wind parks excite also-called wake-effect and such an influence on the wind field in turn affects ocean circulation. To cover OWP's impact on ocean dynamics we evaluate model simulations using the Hamburg Shelf-Ocean-Model (HAMSOM). All simulations were driven with a wind forcing produced by the Mesoscale Atmosphere Model of the Hamburg University (METRAS) which has implemented wind turbines. Wind forcing data were generated in collaboration with and by courtesy of the Meteorological Institute of the University of Hamburg, Department Technical Meteorology, Numeric Modeling-METRAS. To evaluate dynamical changes forced by the OWP's wind wake-effect we did a sensitivity study with a theoretical setup of a virtual ocean of 60m depth with a flat bottom and a temperature and salinity stratification according to common North Sea's conditions. Here our results show that already a small OWP of 12 wind turbines, placed in an area of 4 km^2, lead to a complex change in ocean dynamics. Due to the wake-effect zones of upwelling and downwelling are formed within a minute after turning-on wind turbines. The evolving vertical cells have a size of around 15x15 kilometers with a vertical velocity in order of 10^-2 mm/sec influencing the dynamic of an area

  17. Canadian small wind market

    International Nuclear Information System (INIS)

    Moorhouse, E.

    2010-01-01

    This PowerPoint presentation discussed initiatives and strategies adopted by the Canadian Wind Energy Association (CanWEA) to support the development of Canada's small wind market. The general public has shown a significant interest in small wind projects of 300 kW. Studies have demonstrated that familiarity and comfort with small wind projects can help to ensure the successful implementation of larger wind projects. Small wind markets include residential, farming and commercial, and remote community applications. The results of CanWEA market survey show that the small wind market grew by 78 percent in 2008 over 2007, and again in 2009 by 32 percent over 2008. The average turbine size is 1 kW. A total of 11,000 turbines were purchased in 2007 and 2008. Global small wind market growth increased by 110 percent in 2008, and the average turbine size was 2.4 kW. Eighty-seven percent of the turbines made by Canadian mid-size wind turbine manufacturers are exported, and there is now a significant risk that Canada will lose its competitive advantage in small wind manufacturing as financial incentives have not been implemented. American and Canadian-based small wind manufacturers were listed, and small wind policies were reviewed. The presentation concluded with a set of recommendations for future incentives, educational programs and legislation. tabs., figs.

  18. Distributed Wind Energy in Idaho

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, John [Boise State Univ., ID (United States); Johnson, Kathryn [Colorado School of Mines, Golden, CO (United States); Haynes, Todd [Boise State Univ., ID (United States); Seifert, Gary [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2009-01-31

    This project is a research and development program aimed at furthering distributed wind technology. In particular, this project addresses some of the barriers to distributed wind energy utilization in Idaho.

  19. Role of Surface Energy Exchange for Simulating Wind Turbine Inflow: A Case Study in the Southern Great Plains, USA

    Directory of Open Access Journals (Sweden)

    Sonia Wharton

    2014-12-01

    Full Text Available The Weather Research and Forecasting (WRF model is used to investigate choice of land surface model (LSM on the near surface wind profile, including heights reached by multi-megawatt (MW wind turbines. Simulations of wind profiles and surface energy fluxes were made using five LSMs of varying degrees of sophistication in dealing with soil–plant–atmosphere feedbacks for the Department of Energy (DOE Southern Great Plains (SGP Atmospheric Radiation Measurement Program (ARM Central Facility in Oklahoma, USA. Surface flux and wind profile measurements were available for validation. WRF was run for three, two-week periods covering varying canopy and meteorological conditions. The LSMs predicted a wide range of energy flux and wind shear magnitudes even during the cool autumn period when we expected less variability. Simulations of energy fluxes varied in accuracy by model sophistication, whereby LSMs with very simple or no soil–plant–atmosphere feedbacks were the least accurate; however, the most complex models did not consistently produce more accurate results. Errors in wind shear were also sensitive to LSM choice and were partially related to energy flux accuracy. The variability of LSM performance was relatively high suggesting that LSM representation of energy fluxes in WRF remains a large source of model uncertainty for simulating wind turbine inflow conditions.

  20. Wind: new wind markets

    International Nuclear Information System (INIS)

    Cameron, A.

    2005-01-01

    The June 2005 edition of 'Wind Force 12' suggests that wind could generate 12% of global electricity requirements by 2020. But what moves a potential market into an emerging one? Geographical factors include a good wind resource, plenty of open space and the ability to get the generated electricity to end-users. A country's political framework is equally important, with fixed price systems, renewable quota systems and political will all playing a part. Some potential wind markets around the world are thought to have the conditions necessary to become key players in the wind industry. The emerging markets in countries such as Australia, Brazil, Canada, France, Japan and the Philippines are highlighted as examples

  1. Sixth international wind-diesel workshop

    International Nuclear Information System (INIS)

    1992-01-01

    At a workshop on hybrid wind/diesel power generation systems, papers were presented on international research programs, demonstration projects, wind/diesel deployment strategies and requirements, wind/diesel market development and economics, wind turbine design requirements, and wind/diesel models and analytical tools. Separate abstracts have been prepared for 11 papers from this workshop

  2. Sixth international wind-diesel workshop

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    At a workshop on hybrid wind/diesel power generation systems, papers were presented on international research programs, demonstration projects, wind/diesel deployment strategies and requirements, wind/diesel market development and economics, wind turbine design requirements, and wind/diesel models and analytical tools. Separate abstracts have been prepared for 11 papers from this workshop.

  3. Aeroservoelasticity of wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Skovmose Kallesoee, B.

    2007-12-14

    This thesis deals with the fundamental aeroelastic interaction between structural motion, Pitch action and control for a wind turbine blade. As wind turbines become larger, the interaction between pitch action, blade motion, aerodynamic forces, and control become even more important to understand and address. The main contribution of this thesis is the development of an aeroelastic blade model which on the one hand includes the important effects of steady state blade deformation, gravity and pitch action, and on the other it is transparent, suitable for analytical analysis and parameter studies, and furthermore linear and therefore suitable for control design. The development of the primary aeroelastic blade model is divided into four steps: 1) Nonlinear partial differential equations (PDEs) of structural blade motion are derived together with equations of pitch action and rotor speed; the individual terms in these equations are discussed and given physical interpretations; 2) Steady state blade deformation and induced velocities are computed by combining the PDEs with a steady state aerodynamic model; 3) Aeroelastic modes of motion are computed by combining the linearized PDEs with a linear unsteady aerodynamic model; this model is used to analyze how blade deformation effects the modes of motion; and 4) the linear aeroelastic blade model is derived by a modal expansion of the linearized PDEs combined with a linear unsteady aerodynamic model. The aeroelastic blade model has many similarities to a 2D blade section model, and it can be used instead of this in many applications, giving a transparent connection to a real wind turbine blade. In this work the aeroelastic blade model is used to analyze interaction between pitch action, blade motion and wind speed variations. Furthermore the model is used to develop a state estimator for estimating the wind speed and wind shear, and to suggest a load reducing controller. The state estimator estimates the wind shear very

  4. Computer land management : New programs and systems wind along revolutionary roads

    International Nuclear Information System (INIS)

    Marsters, S.

    1998-01-01

    New advances in computer software programs and systems that are used to prepare maps that display detailed up-to-date lease and drilling activities in Western Canada were discussed. Petroleum Information/Dwights Canada Ltd. has changed its land database from a mainframe-based system into an Oracle database. The conversion allows the company to offer a more comprehensive storage medium, a more flexible delivery system, and more complete data. PI/Dwights supplies land data to software and mapping vendors such as geoLOGIC Systems Ltd. and AccuMap Enerdata Ltd. The company has also developed a CD-ROM-based electronic atlas which combines land data with pipelines and facilities, unit boundaries and well locations. The open system has the ability to integrate or import data sets. 2 figs

  5. Wind effect in turbulence parametrization

    Science.gov (United States)

    Colombini, M.; Stocchino, A.

    2005-09-01

    The action of wind blowing over a closed basin ultimately results in a steady shear-induced circulation pattern and in a leeward rising of the free surface—and a corresponding windward lowering—known as wind set-up. If the horizontal dimensions of the basin are large with respect to the average flow depth, the occurrence of local quasi-equilibrium conditions can be expected, i.e. the flow can be assumed to be locally driven only by the wind stress and by the opposing free surface gradient due to set-up. This wind-induced flow configuration shows a strong similarity with turbulent Couette-Poiseuille flow, the one dimensional flow between parallel plates generated by the simultaneous action of a constant pressure gradient and of the shear induced by the relative motion of the plates. A two-equation turbulence closure is then employed to perform a numerical study of turbulent Couette-Poiseuille flows for different values of the ratio of the shear stresses at the two walls. The resulting eddy viscosity vertical distributions are analyzed in order to devise analytical profiles of eddy viscosity that account for the effect of wind. The results of this study, beside allowing for a physical insight on the turbulence process of this class of flows, will allow for a more accurate description of the wind effect to be included in the formulation of quasi-3D and 3D models of lagoon hydrodynamics.

  6. Two improvements to the dynamic wake meandering model: including the effects of atmospheric shear on wake turbulence and incorporating turbulence build-up in a row of wind turbines

    DEFF Research Database (Denmark)

    Keck, Rolf-Erik; de Mare, Martin Tobias; Churchfield, Matthew J.

    2015-01-01

    The dynamic wake meandering (DWM) model is an engineering wake model designed to physically model the wake deficit evolution and the unsteady meandering that occurs in wind turbine wakes. The present study aims at improving two features of the model: The effect of the atmospheric boundary layer s...

  7. Wind forces and related saltation transport

    NARCIS (Netherlands)

    Leenders, J.K.; van Boxel, J.H.; Sterk, G.

    2005-01-01

    The effect of several wind characteristics on sand transport was studied in three experiments in north Burkina Faso, West Africa. The first experiment is used to analyse the relation between wind speed and shear stress fluctuations across height. The second experiment is used to study the relation

  8. Wind inflow observation from load harmonics

    Directory of Open Access Journals (Sweden)

    M. Bertelè

    2017-12-01

    Full Text Available The wind field leaves its fingerprint on the rotor response. This fact can be exploited by using the rotor as a sensor: by looking at the rotor response, in the present case in terms of blade loads, one may infer the wind characteristics. This paper describes a wind state observer that estimates four wind parameters, namely the vertical and horizontal shears and the yaw and upflow misalignment angles, from out-of-plane and in-plane blade bending moments. The resulting observer provides on-rotor wind inflow characteristics that can be exploited for wind turbine and wind farm control. The proposed formulation is evaluated through extensive numerical simulations in turbulent and nonturbulent wind conditions using a high-fidelity aeroservoelastic model of a multi-MW wind turbine.

  9. Mod-5A wind turbine generator program design report. Volume 3: Final design and system description, book 1

    Science.gov (United States)

    1984-01-01

    The design, development and analysis of the 7.3 MW MOD-5A wind turbine generator is documented. Volume 3, book 1 describes the performance and characteristics of the MOD-5A wind turbine generator in its final configuration. Each subsystem - the rotor, drivetrain, nacelle, tower and foundation is described in detail.

  10. Mod-5A wind turbine generator program design report. Volume 2: Conceptual and preliminary design, book 2

    Science.gov (United States)

    1984-01-01

    The design, development and analysis of the 7.3 MW MOD-5A wind tunnel generator is documented. There are four volumes. In Volume 2, book 2 the requirements and criteria for the design are presented. The development tests, which determined or characterized many of the materials and components of the wind turbine generator, are described.

  11. Experimental study on concrete shear wall behavior under seismic loading

    International Nuclear Information System (INIS)

    Gantenbein, F.; Queval, J.C.; Epstein, A.; Dalbera, J.

    1991-01-01

    An experimental program has been undertaken on the dynamic behavior of shear walls with and without openings. The experimental set-up, the test program and the main results will be detailed in the paper

  12. Wind energy in Europe

    International Nuclear Information System (INIS)

    Evans, L.C.

    1992-01-01

    Wind energy should be an important part of the energy supply mix, both at home and abroad, to provide cleaner air and a more stable fuel supply. Not only can wind energy contribute to solving complex global issues, it also can provide a large market for American technological leadership. Even though utilities are paying more attention to wind in a number of states, there are no plans for major installations of wind power plants in the United States. At the same time, European nations have developed aggressive wind energy development programs, including both ambitious research and development efforts and market incentives. Many countries recognize the importance of the clean energy provided by wind technology and are taking steps to promote their fledgling domestic industries. The emphasis on market incentives is starting to pay off. In 1991, European utilities and developers installed nearly twice as much wind capacity as Americans did. In 1992 the gap will be even greater. This article reviews aggressive incentives offered by European governments to boost their domestic wind industries at home and abroad in this almost $1 billion per year market. By offering substantial incentives - considerably more than the American Wind Energy Association (AWEA) is proposing - European nations are ensuring dramatic near-term wind energy development and are taking a major step toward dominating the international wind industry of the 21st century

  13. Experimental study of a shear wall with numerous small openings

    International Nuclear Information System (INIS)

    Sotomura, K.; Murazumi, Y.; Yoshizaki, S.; Ezaki, T.

    1981-01-01

    Many small openings for piping and ducts are usually required in the shear walls for PWR nuclear power plant. It is generally believed that such openings oadversely affect the strength and stiffness of shear walls. However, little information is available concerning the behavior of walls with numerous small openings. Therefore, tests using wall specimens and an analysis using an FEM program were carried out to investigate this behavior. Main findings are as follows: 1) The ultimate strength of a shear wall with numerous small openings may be obtained by using the effective area at the critical cross section of the shear wall. 2) Shear walls with openings can be restored to the same shear strength and stiffness as shear walls without openings by diagonal reinforcement. (orig./HP)

  14. Alcoa wind turbines

    Science.gov (United States)

    Ai, D. K.

    1979-01-01

    An overview of Alcoa's wind energy program is given with emphasis on the the development of a low cost, reliable Darrieus Vertical Axis Wind Turbine System. The design layouts and drawings for fabrication are now complete, while fabrication and installation to utilize the design are expected to begin shortly.

  15. Wind energy renewable energy and the environment

    CERN Document Server

    Nelson, Vaughn; Nelson, Vaughn

    2009-01-01

    Due to the mounting demand for energy and increasing population of the world, switching from nonrenewable fossil fuels to other energy sources is not an option-it is a necessity. Focusing on a cost-effective option for the generation of electricity, Wind Energy: Renewable Energy and the Environment covers all facets of wind energy and wind turbines. The book begins by outlining the history of wind energy, before providing reasons to shift from fossil fuels to renewable energy. After examining the characteristics of wind, such as shear, power potential, and turbulence, it discusses the measur

  16. Inplane shear capacity of reinforced composite masonry block walls

    International Nuclear Information System (INIS)

    White, W.H.; Tseng, W.S.

    1981-01-01

    The objective of this paper is to describe a test program performed to determine the inplane shear capacity, stiffness and ductility of composite masonry walls subjected to earthquake type loadings. Specimens were simultaneously subjected to a range of compressive loads to simulate dead load; and inplane shear loads with full load reversal to simulate the earthquake cycling load. The influence of horizontal and vertical reinforcing steel percentages on the inplane shear capacity, stiffness and ductility was also investigated. (orig./HP)

  17. Wind Energy

    International Nuclear Information System (INIS)

    Rodriguez D, J.M.

    1998-01-01

    The general theory of the wind energy conversion systems is presented. The availability of the wind resource in Colombia and the ranges of the speed of the wind in those which is possible economically to use the wind turbines are described. It is continued with a description of the principal technological characteristics of the wind turbines and are split into wind power and wind-powered pumps; and its use in large quantities grouped in wind farms or in autonomous systems. Finally, its costs and its environmental impact are presented

  18. Shear Elasticity and Shear Viscosity Imaging in Soft Tissue

    Science.gov (United States)

    Yang, Yiqun

    In this thesis, a new approach is introduced that provides estimates of shear elasticity and shear viscosity using time-domain measurements of shear waves in viscoelastic media. Simulations of shear wave particle displacements induced by an acoustic radiation force are accelerated significantly by a GPU. The acoustic radiation force is first calculated using the fast near field method (FNM) and the angular spectrum approach (ASA). The shear waves induced by the acoustic radiation force are then simulated in elastic and viscoelastic media using Green's functions. A parallel algorithm is developed to perform these calculations on a GPU, where the shear wave particle displacements at different observation points are calculated in parallel. The resulting speed increase enables rapid evaluation of shear waves at discrete points, in 2D planes, and for push beams with different spatial samplings and for different values of the f-number (f/#). The results of these simulations show that push beams with smaller f/# require a higher spatial sampling rate. The significant amount of acceleration achieved by this approach suggests that shear wave simulations with the Green's function approach are ideally suited for high-performance GPUs. Shear wave elasticity imaging determines the mechanical parameters of soft tissue by analyzing measured shear waves induced by an acoustic radiation force. To estimate the shear elasticity value, the widely used time-of-flight method calculates the correlation between shear wave particle velocities at adjacent lateral observation points. Although this method provides accurate estimates of the shear elasticity in purely elastic media, our experience suggests that the time-of-flight (TOF) method consistently overestimates the shear elasticity values in viscoelastic media because the combined effects of diffraction, attenuation, and dispersion are not considered. To address this problem, we have developed an approach that directly accounts for all

  19. Wind Turbines Adaptation to the Variability of the Wind Field

    Science.gov (United States)

    Ulianov, Yuriy; Martynenko, Gennadii; Misaylov, Vitaliy; Soliannikova, Iuliia

    2010-05-01

    WIND TURBINES ADAPTATION TO THE VARIABILITY OF THE WIND FIELD The subject of our scientific research is wind power turbines (WPT) with the horizontal axis which were now common in the world. Efficient wind turbines work is largely determined by non-stationarity of the wind field, expressed in its gustiness, the presence of vertical and horizontal shifts of wind speed and direction. At critical values of the wind parameters WPT has aerodynamic and mechanical overload, leading to breakdowns, premature wear and reduce the life of the wind turbine. To prevent accidents at the peak values of wind speed it is used the regulatory system of windwheels. WPT control systems provide a process orientation of the wind turbine rotor axis in the line of the mean wind. Wind turbines are also equipped with braking device used to protect against breakdowns when a significant increase in the wind. In general, all these methods of regulation are not always effective. Thus, in practice there may be situations when the wind speed is many times greater than the stated limit. For example, if there are microbursts in the atmospheric boundary layer, low-level wind shears caused by its gust front, storms, etc. It is required for a wind power turbine adaptation to intensive short-term wind impulses and considerable vertical wind shifts that the data about them shall be obtained ahead of time. To do this it is necessary to have the information on the real structure of the wind field in the area of the blade sweep for the minimum range against the wind that is determined by the mean speed and the system action time. The implementation of acoustic and laser traditional wind sounding systems is limited by ambient acoustic noise, by heavy rain, snowfall and by fog. There are free of these disadvantages the inclined radioacoustic sounding (IRASS) technique which works for a system of remote detection and control of wind gusts. IRASS technique is realized as low-potential Doppler pulse radar

  20. Database on Wind Characteristics

    DEFF Research Database (Denmark)

    Højstrup, J.; Ejsing Jørgensen, Hans; Lundtang Petersen, Erik

    1999-01-01

    his report describes the work and results of the project: Database on Wind Characteristics which was sponsered partly by the European Commision within the framework of JOULE III program under contract JOR3-CT95-0061......his report describes the work and results of the project: Database on Wind Characteristics which was sponsered partly by the European Commision within the framework of JOULE III program under contract JOR3-CT95-0061...

  1. Numerical investigation of optimal yaw misalignment and collective pitch angle for load imbalance reduction of rigid and flexible HAWT blades under sheared inflow

    International Nuclear Information System (INIS)

    Jeong, Min-Soo; Cha, Myung-Chan; Kim, Sang-Woo; Lee, In

    2015-01-01

    Wind shear can strongly influence the cyclic loading on horizontal axis wind turbine blades. These load fluctuation causes a variation of power output and introduces fatigue load. Thus, individual pitch controllers have been developed that are focused on the load alleviations, however, comes at a price of actuator requirements for control. Moreover, these controllers are unable to apply to already existing wind turbines with active yaw and collective pitch control system. Therefore, the investigations for minimizing load imbalance through the adjustments of yaw misalignment and collective pitch angle are implemented for the rigid and flexible blades under the sheared inflow. By applying the optimization process based on a sequential quadratic programming approach, the optimal yaw and pitch angle can be estimated. Then, the numerical simulations for predicting the performance are performed. The results showed that the fluctuation range of the root flapwise bending moment for the rigid blades can be reduced by 84.5%, whereas the vibratory bending moment for the flexible blades can be reduced by up to approximately 82.4% in the best case. Therefore, the magnitudes of load imbalance can be minimized by the adjustment of the optimal yaw misalignment and collective pitch angle without any power loss. - Highlights: • We propose a novel method for the reduction of load imbalance under sheared inflow. • We estimate optimal yaw misalignment and collective pitch angle through optimization. • Numerical results of performance are predicted for rigid and flexible blades. • By applying optimal angles, load variations are reduced without any power loss

  2. Assessment of Wind Parameter Sensitivity on Extreme and Fatigue Wind Turbine Loads

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, Amy N [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sethuraman, Latha [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Jonkman, Jason [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Quick, Julian [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-01-12

    Wind turbines are designed using a set of simulations to ascertain the structural loads that the turbine could encounter. While mean hub-height wind speed is considered to vary, other wind parameters such as turbulence spectra, sheer, veer, spatial coherence, and component correlation are fixed or conditional values that, in reality, could have different characteristics at different sites and have a significant effect on the resulting loads. This paper therefore seeks to assess the sensitivity of different wind parameters on the resulting ultimate and fatigue loads on the turbine during normal operational conditions. Eighteen different wind parameters are screened using an Elementary Effects approach with radial points. As expected, the results show a high sensitivity of the loads to the turbulence standard deviation in the primary wind direction, but the sensitivity to wind shear is often much greater. To a lesser extent, other wind parameters that drive loads include the coherence in the primary wind direction and veer.

  3. Assessment of Wind Parameter Sensitivity on Ultimate and Fatigue Wind Turbine Loads: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, Amy N [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sethuraman, Latha [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Jonkman, Jason [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Quick, Julian [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-02-13

    Wind turbines are designed using a set of simulations to ascertain the structural loads that the turbine could encounter. While mean hub-height wind speed is considered to vary, other wind parameters such as turbulence spectra, sheer, veer, spatial coherence, and component correlation are fixed or conditional values that, in reality, could have different characteristics at different sites and have a significant effect on the resulting loads. This paper therefore seeks to assess the sensitivity of different wind parameters on the resulting ultimate and fatigue loads on the turbine during normal operational conditions. Eighteen different wind parameters are screened using an Elementary Effects approach with radial points. As expected, the results show a high sensitivity of the loads to the turbulence standard deviation in the primary wind direction, but the sensitivity to wind shear is often much greater. To a lesser extent, other wind parameters that drive loads include the coherence in the primary wind direction and veer.

  4. Load alleviation of wind turbines by yaw misalignment

    DEFF Research Database (Denmark)

    Kragh, Knud Abildgaard; Hansen, Morten Hartvig

    2014-01-01

    Vertical wind shear is one of the dominating causes of load variations on the blades of a horizontal axis wind turbine. To alleviate the varying loads, wind turbine control systems have been augmented with sensors and actuators for individual pitch control. However, the loads caused by a vertical...... wind shear can also be affected through yaw misalignment. Recent studies of yaw control have been focused on improving the yaw alignment to increase the power capture at below rated wind speeds. In this study, the potential of alleviating blade load variations induced by the wind shear through yaw...... misalignment is assessed. The study is performed through simulations of a reference turbine. The study shows that optimal yaw misalignment angles for minimizing the blade load variations can be identified for both deterministic and turbulent inflows. It is shown that the optimal yaw misalignment angles can...

  5. Incentive policies for promoting wind power production in Brazil: Scenarios for the Alternative Energy Sources Incentive Program (PROINFA) under the New Brazilian electric power sector regulation

    International Nuclear Information System (INIS)

    Dutra, Ricardo Marques; Szklo, Alexandre Salem

    2008-01-01

    The Alternative Energy Sources Incentive Program (PROINFA) was designed in 2002 to stimulate the electricity generation from three energy sources (wind, biomass and small-scale hydro) in Brazil. The Program was divided into two phases. The first one uses feed-in tariffs for promoting the development of 3300 MW. The second one that was originally based on feed-in tariffs was modified in 2003, in order to be based on biddings for renewables. These biddings are capped to limit their impact on the final electricity tariff. Due to this bound, the highest-cost power option promoted by PROINFA (wind power generation) might have development problems. Simulating different scenarios for the biddings, it was verified that the only way to reach the original goal set by PROINFA (10% of the annual electricity consumption provided by alternative sources up to 2020) and, simultaneously, not overcome the bidding bound is to promote biomass-fired power generation alone, during the Program's second phase. However, this action contradicts one of the targets of the Program, which is to diversify the energy matrix. An alternative option could be biddings for renewables according to specific criteria (complementarities, industrial and technological development and cost), based not only on their cost-effectiveness. (author)

  6. Shear crack formation and propagation in reinforced Engineered Cementitious Composites

    DEFF Research Database (Denmark)

    Paegle, Ieva; Fischer, Gregor

    2011-01-01

    capacity of beams loaded primarily in shear. The experimental program consists of ECC with short randomly distributed polyvinyl alcohol (PVA) fiber beams with different stirrup arrangements and conventional reinforced concrete (R/C) counterparts for comparison. The shear crack formation mechanism of ECC......This paper describes an experimental investigation of the shear behaviour of beams consisting of steel reinforced Engineered Cementitious Composites (R/ECC). Based on the strain hardening and multiple cracking behaviour of ECC, this study investigates the extent to which ECC influences the shear...

  7. Wind noise under a pine tree canopy.

    Science.gov (United States)

    Raspet, Richard; Webster, Jeremy

    2015-02-01

    It is well known that infrasonic wind noise levels are lower for arrays placed in forests and under vegetation than for those in open areas. In this research, the wind noise levels, turbulence spectra, and wind velocity profiles are measured in a pine forest. A prediction of the wind noise spectra from the measured meteorological parameters is developed based on recent research on wind noise above a flat plane. The resulting wind noise spectrum is the sum of the low frequency wind noise generated by the turbulence-shear interaction near and above the tops of the trees and higher frequency wind noise generated by the turbulence-turbulence interaction near the ground within the tree layer. The convection velocity of the low frequency wind noise corresponds to the wind speed above the trees while the measurements showed that the wind noise generated by the turbulence-turbulence interaction is near stationary and is generated by the slow moving turbulence adjacent to the ground. Comparison of the predicted wind noise spectrum with the measured wind noise spectrum shows good agreement for four measurement sets. The prediction can be applied to meteorological estimates to predict the wind noise under other pine forests.

  8. Tidal influence on offshore wind fields and resource predictions[Efficient Development of Offshore Windfarms

    Energy Technology Data Exchange (ETDEWEB)

    Khan, D. [Entec UK Ltd., Doherty Innovation Centre, Penicuik (United Kingdom); Infield, D. [Loughborough Univ., Centre for Renewable Energy Systems Tecnology, Loughborough (United Kingdom)

    2002-03-01

    The rise and fall of the sea surface due to tides effectively moves an offshore wind turbine hub through the wind shear profile. This effect is quantified using measured data from 3 offshore UK sites. Statistical evidence of the influence of tide on mean wind speed and turbulence is presented. The implications of this effect for predicting offshore wind resource are outlined. (au)

  9. Three Dimensional Dynamic Model Based Wind Field Reconstruction from Lidar Data

    International Nuclear Information System (INIS)

    Raach, Steffen; Schlipf, David; Haizmann, Florian; Cheng, Po Wen

    2014-01-01

    Using the inflowing horizontal and vertical wind shears for individual pitch controller is a promising method if blade bending measurements are not available. Due to the limited information provided by a lidar system the reconstruction of shears in real-time is a challenging task especially for the horizontal shear in the presence of changing wind direction. The internal model principle has shown to be a promising approach to estimate the shears and directions in 10 minutes averages with real measurement data. The static model based wind vector field reconstruction is extended in this work taking into account a dynamic reconstruction model based on Taylor's Frozen Turbulence Hypothesis. The presented method provides time series over several seconds of the wind speed, shears and direction, which can be directly used in advanced optimal preview control. Therefore, this work is an important step towards the application of preview individual blade pitch control under realistic wind conditions. The method is tested using a turbulent wind field and a detailed lidar simulator. For the simulation, the turbulent wind field structure is flowing towards the lidar system and is continuously misaligned with respect to the horizontal axis of the wind turbine. Taylor's Frozen Turbulence Hypothesis is taken into account to model the wind evolution. For the reconstruction, the structure is discretized into several stages where each stage is reduced to an effective wind speed, superposed with a linear horizontal and vertical wind shear. Previous lidar measurements are shifted using again Taylor's Hypothesis. The wind field reconstruction problem is then formulated as a nonlinear optimization problem, which minimizes the residual between the assumed wind model and the lidar measurements to obtain the misalignment angle and the effective wind speed and the wind shears for each stage. This method shows good results in reconstructing the wind characteristics of a three

  10. Wind energy - an overview

    International Nuclear Information System (INIS)

    Rangi, R.; Oprisan, M.

    1998-01-01

    The current status of wind technology developments in Canada and around the world was reviewed. Information regarding the level of wind turbine deployment was presented. It was shown that significant effort has been made on the national and international level to increase the capacity of this clean, non-polluting form of energy. Wind energy has become competitive with conventional sources of electricity due to lower cost, higher efficiency and improved reliability of generating equipment. The advantages and disadvantages of wind electricity generating systems and the economics and atmospheric emissions of the systems were described. At present, there is about 23 MW of wind energy generating capacity installed in Canada, but the potential is very large. It was suggested that wind energy could supply as much as 60 per cent of Canada's electricity needs if only one per cent of the land with 'good winds' were covered by wind turbines. Recently, the Canadian government has provided an accelerated capital cost allowance for certain types of renewable energies under the Income Tax Act, and the flow-through share financing legislation to include intangible expenses in certain renewable energy projects has been extended. Besides the support provided to the private sector through tax advantages, the Government also supports renewable energy development by purchasing 'green' energy for its own buildings across the country, and by funding a research and development program to identify and promote application of wind energy technologies, improve its cost effectiveness, and support Canadian wind energy industries with technology development to enhance their competitiveness at home and abroad. Details of the Wind Energy Program, operated by Natural Resources Canada, are described. 3 tabs., 5 figs

  11. Mod-5A Wind Turbine Generator Program Design Report. Volume 2: Conceptual and Preliminary Design, Book 1

    Science.gov (United States)

    1984-01-01

    The design, development and analysis of the 7.3 MW MOD-5A wind turbine generator is documented. There are four volumes. In Volume 2, book 1 the requirements and criteria for the design are presented. The conceptual design studies, which defined a baseline configuration and determined the weights, costs and sizes of each subsystem, are described. The development and optimization of the wind turbine generator are presented through the description of the ten intermediate configurations between the conceptual and final designs. Analyses of the system's load and dynamics are presented.

  12. Wind energy: Science or fiction?

    International Nuclear Information System (INIS)

    Sisouw de Zilwa, L.G.

    1993-01-01

    The energy policy of the Dutch government is aimed at the use of different energy sources (diversification). Therefore the Dutch government supports the implementation of wind turbines and stimulates product improvement and research by means of the TWIN-program (a program to support the application of wind energy in the Netherlands). The purpose of the program is to commercialize efficient wind turbines. Without subsidies it is not yet possible to exploit wind turbines in an efficient way. Around the year 2000 a capacity of 1000 MW must be realized. 1 fig., 1 ill., 5 tabs., 1 ref

  13. Keyed shear joints

    DEFF Research Database (Denmark)

    Hansen, Klaus

    This report gives a summary of the present information on the behaviour of vertical keyed shear joints in large panel structures. An attemp is made to outline the implications which this information might have on the analysis and design of a complete wall. The publications also gives a short...

  14. Sheared Electroconvective Instability

    Science.gov (United States)

    Kwak, Rhokyun; Pham, Van Sang; Lim, Kiang Meng; Han, Jongyoon

    2012-11-01

    Recently, ion concentration polarization (ICP) and related phenomena draw attention from physicists, due to its importance in understanding electrochemical systems. Researchers have been actively studying, but the complexity of this multiscale, multiphysics phenomenon has been limitation for gaining a detailed picture. Here, we consider electroconvective(EC) instability initiated by ICP under pressure-driven flow, a scenario often found in electrochemical desalinations. Combining scaling analysis, experiment, and numerical modeling, we reveal unique behaviors of sheared EC: unidirectional vortex structures, its size selection and vortex propagation. Selected by balancing the external pressure gradient and the electric body force, which generates Hagen-Poiseuille(HP) flow and vortical EC, the dimensionless EC thickness scales as (φ2 /UHP)1/3. The pressure-driven flow(or shear) suppresses unfavorably-directed vortices, and simultaneously pushes favorably-directed vortices with constant speed, which is linearly proportional to the total shear of HP flow. This is the first systematic characterization of sheared EC, which has significant implications on the optimization of electrodialysis and other electrochemical systems.

  15. An underwater shear compactor

    International Nuclear Information System (INIS)

    Biver, E.; Sims, J.

    1997-01-01

    This paper, originally presented at the WM'96 Conference in Tucson Arizona, describes a concept of a specialised decommissioning tool designed to operate underwater and to reduce the volume of radioactive components by shearing and compacting. The shear compactor was originally conceived to manage the size reduction of a variety of decommissioned stainless steel tubes stored within a reactor fuel cooling pond and which were consuming a substantial volume of the pond. The main objective of this tool was to cut the long tubes into shorter lengths and to compact them into a flat rectangular form which could be stacked on the pond floor, thus saving valuable space. The development programme, undertaken on this project, investigated a wide range of factors which could contribute to an extended cutting blade performance, ie: materials of construction, cutting blade shape and cutting loads required, shock effects, etc. The second phase was to review other aspects of the design, such as radiological protection, cutting blade replacement, maintenance, pond installation and resultant wall loads, water hydraulics, collection of products of shearing/compacting operations, corrosion of the equipment, control system, operational safety and the ability of the equipment to operate in dry environments. The paper summarises the extended work programme involved with this shear compactor tool. (author)

  16. A fuzzy chance-constrained program for unit commitment problem considering demand response, electric vehicle and wind power

    DEFF Research Database (Denmark)

    Zhang, Ning; Hu, Zhaoguang; Han, Xue

    2015-01-01

    As a form of renewable and low-carbon energy resource, wind power is anticipated to play an essential role in the future energy structure. Whereas, its features of time mismatch with power demand and uncertainty pose barriers for the power system to utilize it effectively. Hence, a novel unit com...... system operation more eco-friendly and economical....

  17. Shear strength of non-shear reinforced concrete elements

    DEFF Research Database (Denmark)

    Hoang, Cao linh

    1997-01-01

    The paper deals with the plastic shear strength of non shear reinforced T-beams.The influence of an un-reinforced flange on the shear capacity is investigated by considering a failure mechanism involving crack sliding in the web and a kind of membrane action over an effective width of the flange...

  18. Flexible Micropost Arrays for Shear Stress Measurement

    Science.gov (United States)

    Wohl, Christopher J.; Palmieri, Frank L.; Hopkins, John W.; Jackson, Allen M.; Connell, John W.; Lin, Yi; Cisotto, Alexxandra A.

    2015-01-01

    Increased fuel costs, heightened environmental protection requirements, and noise abatement continue to place drag reduction at the forefront of aerospace research priorities. Unfortunately, shortfalls still exist in the fundamental understanding of boundary-layer airflow over aerodynamic surfaces, especially regarding drag arising from skin friction. For example, there is insufficient availability of instrumentation to adequately characterize complex flows with strong pressure gradients, heat transfer, wall mass flux, three-dimensionality, separation, shock waves, and transient phenomena. One example is the acoustic liner efficacy on aircraft engine nacelle walls. Active measurement of shear stress in boundary layer airflow would enable a better understanding of how aircraft structure and flight dynamics affect skin friction. Current shear stress measurement techniques suffer from reliability, complexity, and airflow disruption, thereby compromising resultant shear stress data. The state-of-the-art for shear stress sensing uses indirect or direct measurement techniques. Indirect measurements (e.g., hot-wire, heat flux gages, oil interferometry, laser Doppler anemometry, small scale pressure drag surfaces, i.e., fences) require intricate knowledge of the studied flow, restrictive instrument arrangements, large surface areas, flow disruption, or seeding material; with smaller, higher bandwidth probes under development. Direct measurements involve strain displacement of a sensor element and require no prior knowledge of the flow. Unfortunately, conventional "floating" recessed components for direct measurements are mm to cm in size. Whispering gallery mode devices and Fiber Bragg Gratings are examples of recent additions to this type of sensor with much smaller (?m) sensor components. Direct detection techniques are often single point measurements and difficult to calibrate and implement in wind tunnel experiments. In addition, the wiring, packaging, and installation

  19. Experiments on sheet metal shearing

    OpenAIRE

    Gustafsson, Emil

    2013-01-01

    Within the sheet metal industry, different shear cutting technologies are commonly used in several processing steps, e.g. in cut to length lines, slitting lines, end cropping etc. Shearing has speed and cost advantages over competing cutting methods like laser and plasma cutting, but involves large forces on the equipment and large strains in the sheet material.Numerical models to predict forces and sheared edge geometry for different sheet metal grades and different shear parameter set-ups a...

  20. Wind-energy storage

    Science.gov (United States)

    Gordon, L. H.

    1980-01-01

    Program SIMWEST can model wind energy storage system using any combination of five types of storage: pumped hydro, battery, thermal, flywheel, and pneumatic. Program is tool to aid design of optional system for given application with realistic simulation for further evaluation and verification.

  1. Control of cracking in R.C. Structures: Numerical simulation of a squat shear wall

    NARCIS (Netherlands)

    Damoni, C.; Belletti, B.; Lilliu, G.

    2013-01-01

    In this paper the behavior of a squat shear wall subjected to monotonic shear loading is investigated. The study fits into the experimental program driven by CEOS.fr on modeling of the behavior of the tested mocks-ups (monotonic and cycling loading-under prevented or free shrinkage). The shear wall

  2. Shear weakening for different lithologies observed at different saturation stages

    Science.gov (United States)

    Diethart-Jauk, Elisabeth; Gegenhuber, Nina

    2018-01-01

    For this study, samples from different lithologies ("Leitha"-limestone, "Dachstein"-limestone, "Haupt"-dolomite, "Bunt"-sandstone, Grey Berea sandstone, granite, quartzite and basalt) were selected. Samples were dried at 70 °C, respectively 105 °C and were saturated with brine. Mass, porosity, permeability, compressional and shear wave velocity were determined from dry and brine saturated samples at laboratory conditions, based on an individual measurement program. Shear modulus was calculated to find out, if shear weakening exists for the dataset. Shear weakening means that shear modulus of dry samples is higher than of saturated samples, but it is assumed that shear modulus is unaffected by saturation. "Dachstein"-limestone and basalt show shear weakening, quartzite samples show both weakening and hardening. Granite samples are affected by temperature, after drying with 105 °C no change can be observed anymore. "Bunt"-sandstone samples show a change in the shear modulus in a small extent, although they may contain clay minerals. The other lithologies show no effect. Explanations for carbonate samples can be the complicated pore structure, for basalt it could be that weathering creates clay minerals which are known as causes for a change of the shear modulus. Fluid viscosity can also be an important factor.

  3. Wind energy

    International Nuclear Information System (INIS)

    Kotevski, Darko

    2003-01-01

    Wind is not only free, it is inexhaustible. Wind energy has come a very long way since the prototypes of just 20 years ago. today's wind turbines are state-of-the-art technology - modular and quick to install anywhere where there is sufficient wind potential to provide secure, centralised or distributed generation. It is a global phenomenon, the world's fastest growing energy sector, a clean and effective modern technology that completely avoids pollution and thus reducing the 'green house' effect. (Original)

  4. Stochastic energy procurement of large electricity consumer considering photovoltaic, wind-turbine, micro-turbines, energy storage system in the presence of demand response program

    International Nuclear Information System (INIS)

    Nojavan, Sayyad; Aalami, Habib allah

    2015-01-01

    Highlights: • A stochastic energy procurement cost function in presence of DRP is proposed. • The load, price and output power of PV and wind uncertainties are modeled. • Four case studies are used to assess the effects of ESS and DRP on SEPP. • Case 4 is considered the effects of ESS and DRP simultaneously. • The expected energy procurement cost of case 4 is lower than cases 1, 2 and 3. - Abstract: This paper proposes a stochastic energy procurement problem (SEPP) for large electricity consumer (LEC) with multiple energy procurement sources (EPSs) considering the effects of demand response program (DRP) and energy storage system (ESS). The EPSs contain power market (PM), bilateral contracts (BCs), micro-turbines (MTs), and renewable energy sources (RESs). Moreover, the RESs include photovoltaic (PV) systems and wind-turbines (WT). The ESS and DRP are incorporated in the SEPP by the LEC’s decision-maker to reduce the expected energy procurement cost (EEPC). Meanwhile, the uncertainty models of market price, load and RES output power are considered in the SEPP formulation. The error of forecasting of market price, load, temperature and radiation of PV systems are modeled using the normal distribution for generating the related scenarios. Also, the weibull distribution is used to generate variable wind speed scenarios for WT output power uncertainty modeling. Furthermore, the fast forward selection based on Kantorovich distance approach is used for the scenarios reduction. Finally, the influences of ESS and DRP on EEPC are investigated, and four case studies are used to illustrate the capability of the proposed SEPP. The obtained results demonstrate the efficiency of the proposed stochastic program

  5. Summary of Jimsphere wind profiles: Programs, data, comments, part 1. [for use in aeronautical vehicle design and engineering

    Science.gov (United States)

    Willett, J. A.

    1979-01-01

    Jimsphere wind profiles are documented for the following ranges and installations: Eastern Test Range, Cape Kennedy, Florida; Western Test Range; Point Mugu, California; White Sands Missile Range, New Mexico; Wallops Island, Virginia; Green River, Utah; and Vandenberg Air Force Base, California. Profile information for 1964-1977 includes data summaries, computer formats, frequency distributions, composite listings, etc., for use in establishing and interpreting natural environment criteria for aeronautical vehicle design and engineering operations.

  6. Gelation under shear

    Energy Technology Data Exchange (ETDEWEB)

    Butler, B.D.; Hanley, H.J.M.; Straty, G.C. [National Institute of Standards and Technology, Boulder, CO (United States); Muzny, C.D. [Univ. of Colorado, Boulder, CO (United States)

    1995-12-31

    An experimental small angle neutron scattering (SANS) study of dense silica gels, prepared from suspensions of 24 nm colloidal silica particles at several volume fractions {theta} is discussed. Provided that {theta}{approx_lt}0.18, the scattered intensity at small wave vectors q increases as the gelation proceeds, and the structure factor S(q, t {yields} {infinity}) of the gel exhibits apparent power law behavior. Power law behavior is also observed, even for samples with {theta}>0.18, when the gel is formed under an applied shear. Shear also enhances the diffraction maximum corresponding to the inter-particle contact distance of the gel. Difficulties encountered when trying to interpret SANS data from these dense systems are outlined. Results of computer simulations intended to mimic gel formation, including computations of S(q, t), are discussed. Comments on a method to extract a fractal dimension characterizing the gel are included.

  7. Forflytning: shear og friktion

    DEFF Research Database (Denmark)

    2005-01-01

    friktion). Formålet med filmprojektet er: At give personalet i Apopleksiafsnittet viden om shear og friktion, så det motiveres til forebyggelse. Mål At udarbejde et enkelt undervisningsmateriale til bed-side-brug Projektbeskrivelse (resume) Patienter med apopleksi er særligt udsatte for tryksår, fordi de...... ofte er immobile, har svært ved at opretholde en god siddestilling eller ligger tungt i sengen som følger efter apopleksien Hvis personalet bruger forkert lejrings-og forflytningsteknik, udsættes patienterne for shear og friktion. Målgruppen i projektet er de personer, der omgås patienterne, dvs...

  8. Shear Roll Mill Reactivation

    Science.gov (United States)

    2012-09-13

    pneumatically operated paste dumper and belt conveyor system, the loss in weight feeder system, the hydraulically operated shear roll mill, the pellet...out feed belt conveyor , and the pack out system comprised of the metal detector, scale, and pack out empty and full drum roller conveyors . Page | 4...feed hopper and conveyor supplying the loss in weight feeder were turned on, and it was verified that these items functioned as designed . The

  9. Gusts and Shear in an Idealized LES-modeled Hurricane

    Science.gov (United States)

    Worsnop, R.; Lundquist, J. K.; Bryan, G. H.; Damiani, R.; Musial, W.

    2016-12-01

    Tropical cyclone winds can cause extreme loading and damage to coastal structures such as buildings and energy infrastructure. Offshore wind energy development is underway along the US East Coast where hurricanes pose a substantial risk. Understanding wind gusts, gust factor, shear, and veer in the hurricane boundary layer (HBL) can help manufacturers assess risk and design wind turbines to better withstand these extreme wind conditions. Because of the paucity of observational data at low-levels (200 m and below), we use the Cloud Model Version I (CM1) large-eddy simulation numerical model to simulate high spatial- (10 m) and temporal- (0.1 s) resolution data. This unique dataset is used to answer the following questions: do severe mean wind speeds and gusts that exceed current design limits occur?; how does the gust factor vary with distance from the eye?; and lastly, how does wind direction vary horizontally and with height? We find that mean winds and gusts near the eyewall can exceed current turbine design thresholds of 50 m s-1 and 70 m s-1, respectively. Gust factors are greatest at the eye-eyewall interface just inward of the peak gust location and can exceed the 1.4 value used to convert a 50 m s-1 reference wind speed to a 50-year 3-second gust. Strong veer (15-30 degrees) across a 120 m-layer suggests that veer should be assessed against standard design prescriptions. Lastly, wind directions can shift 10-25 degrees in durations shorter than 10 minutes, which can challenge structures designed to endure winds from a consistent direction for periods longer than 10 minutes, including wind turbines.

  10. Plasticity Approach to Shear Design

    DEFF Research Database (Denmark)

    Hoang, Cao Linh; Nielsen, Mogens Peter

    1998-01-01

    The paper presents some plastic models for shear design of reinforced concrete beams. Distinction is made between two shear failure modes, namely web crushing and crack sliding. The first mentioned mode is met in beams with large shear reinforcement degrees. The mode of crack sliding is met in non......-shear reinforced beams as well as in lightly shear reinforced beams. For such beams the shear strength is determined by the recently developed crack sliding model. This model is based upon the hypothesis that cracks can be transformed into yield lines, which have lower sliding resistance than yield lines formed...... in uncracked concrete. Good agree between theory and tests has been found.Keywords: dsign, plasticity, reinforced concrete, reinforcement, shear, web crushing....

  11. Determining the Probability of Violating Upper-Level Wind Constraints for the Launch of Minuteman Ill Ballistic Missiles At Vandenberg Air Force Base

    Science.gov (United States)

    Shafer, Jaclyn A.; Brock, Tyler M.

    2013-01-01

    The 30th Operational Support Squadron Weather Flight (30 OSSWF) provides comprehensive weather services to the space program at Vandenberg Air Force Base (VAFB) in California. One of their responsibilities is to monitor upper-level winds to ensure safe launch operations of the Minuteman Ill ballistic missile. The 30 OSSWF requested the Applied Meteorology Unit (AMU) analyze VAFB sounding data to determine the probability of violating (PoV) upper-level thresholds for wind speed and shear constraints specific to this launch vehicle, and to develop a graphical user interface (GUI) that will calculate the PoV of each constraint on the day of launch. The AMU suggested also including forecast sounding data from the Rapid Refresh (RAP) model. This would provide further insight for the launch weather officers (LWOs) when determining if a wind constraint violation will occur over the next few hours, and help to improve the overall upper winds forecast on launch day.

  12. Offshore wind energy prospects

    International Nuclear Information System (INIS)

    Gaudiosi, Gaetano

    1999-01-01

    In last two years offshore wind energy is becoming a focal point of national and non national organisations particularly after the limitations of fossil fuel consumption, adopted by many developed countries after Kyoto conference at the end of 1997 on global climate change. North Europe is particularly interested in offshore for the limited land areas still available, due to the intensive use of its territory and its today high wind capacity. Really the total wind capacity in Europe could increase from the 1997 value of 4450 MW up to 40 000 MW within 2010, according the White Paper 1997 of the European Commission; a significant percentage (25%) could be sited offshore up to 10 000 MW, because of close saturation of the land sites at that time. World wind capacity could increase from the 1997 value of 7200 MW up to 60 000 MW within 2010 with a good percentage (20%) offshore 12 000 MW. In last seven years wind capacity in shallow water of coastal areas has reached 34 MW. Five wind farms are functioning in the internal seas of Netherlands, Denmark, Sweden; however such siting is mostly to be considered as semi-offshore condition. Wind farms in real offshore sites, open seas with waves and water depth over 10 m, are now proposed in North Sea at 10-20 km off the coasts of Netherlands, Denmark using large size wind turbine (1-2 MW). In 1997 an offshore proposal was supported in Netherlands by Greenpeace after the OWEMES '97 seminar, held in Italy on offshore wind in the spring 1997. A review is presented in the paper of European offshore wind programs with trends in technology, economics and siting effects. (Author)

  13. Wind Structure and Wind Loading

    DEFF Research Database (Denmark)

    Brorsen, Michael

    The purpose of this note is to provide a short description of wind, i.e. of the flow in the atmosphere of the Earth and the loading caused by wind on structures. The description comprises: causes to the generation of windhe interaction between wind and the surface of the Earthhe stochastic nature...

  14. Results of shear studies with 241-AY-101 sludge

    International Nuclear Information System (INIS)

    WARRANT, R.W.

    2001-01-01

    The Department of Energy's Tanks Focus Area (TFA) authorized a project to study the effect of shear on the settling properties of high-level waste sludge to support retrieval programs. A series of settling studies was conducted on a composite sample of tank 241-AY-101 (AY-101) material. Comparisons were made with duplicate samples that were sheared with a tissue homogenizer and allowed to settle. Aliquots of sheared and unsheared settled solids were submitted for chemical and radiological analyses. There are five major conclusions from the study that apply to AY-101 sludge: (1) Sludge settling rates are detectably decreased after shearing of particles by means of a tissue homogenizer. A significant decrease in the settling rates was measured after 2 minutes of shearing. A smaller additional decrease in the settling rates was observed after an additional 10 minutes of shearing. (2) Sodium and Cesium appear to be present in both the liquid and solid phases of the composite sample. (3) The shearing of the solids does not appear to significantly change the distribution of the radionuclides, ( 241 Am, 90 Sr, Total Alpha, or other radionuclides), within the solids. (4) The mean particle diameter decreases after shearing with the tissue homogenizer and affects the settling rate in proportion to the square of the particle diameter. (5) The sonication of the unsheared particles produces a similar particle size reduction to that of shearing with a tissue homogenizer. It is difficult to quantitatively compare the shear produced by a mixer pump installed in a double-shell tank with that produced by the tissue homogenizer in the laboratory. On a qualitative basis, the mixing pump would be expected to have less mechanical and more hydraulic shearing effect than the tissue homogenizer. Since the particle size distribution studies indicate that (for the AY-101 solids) the breaking up of particle aggregates is the main means of particle size reduction, then the hydraulic shearing

  15. Electricity production from wind energy: world situation and the French program EOLE 2005; Production d'electricite par energie eolienne: situation dans le monde et programme francais EOLE 2005

    Energy Technology Data Exchange (ETDEWEB)

    Electricite de France [ed.] [Electricite de France (EDF), 75 - Paris (France)

    2000-06-07

    The wind electricity world market shows at present an important development stage characterized by an annual increase rate of 20% to 30%. The total installed power in the world reached the value 7,200 MW in November 1997 and, according to forecasts, it could increase fivefold up to 2005. For France's high wind potential sites, namely the DOM-TOM and in Corsica, where the electricity production is more expensive than in inland France, this energy production mode approaches the threshold of competitiveness with other production means. The program EOLE 2005 (targeting 250 to 500 MW from wind turbines to be installed in France until 2005), launched in 1996 by EDF in collaboration with ADEME, on request of public authorities, is thought to implement this demand. The sections of the report are titled as following: - An energy used by man from long time ago; - Momentous developments of the wind power technology since eighties; - From wind turbines of some hundreds kW to 3 MW, based on robust technologies and newly devised methods; - Wind energy becomes equally interesting from economic viewpoint but for which applications?; - This option presents some drawbacks; - Which is the wind potential economically acceptable if the mentioned constraints are taken into account?; - The wind generators will be installed on sea near seashores; - An outstanding change in this field in France since 1996: the programme EOLE 2005; - 35 selected projects of 125,3 MW total power; - Future. The electricity production from wind energy seems promising particularly for the countries that have not resorted to either nuclear energy or hydropower options and which possess important wind resources.

  16. Wind power

    International Nuclear Information System (INIS)

    Gipe, P.

    2007-01-01

    This book is a translation of the edition published in the USA under the title of ''wind power: renewable energy for home, farm and business''. In the wake of mass blackouts and energy crises, wind power remains a largely untapped resource of renewable energy. It is a booming worldwide industry whose technology, under the collective wing of aficionados like author Paul Gipe, is coming of age. Wind Power guides us through the emergent, sometimes daunting discourse on wind technology, giving frank explanations of how to use wind technology wisely and sound advice on how to avoid common mistakes. Since the mid-1970's, Paul Gipe has played a part in nearly every aspect of wind energy development from installing small turbines to promoting wind energy worldwide. As an American proponent of renewable energy, Gipe has earned the acclaim and respect of European energy specialists for years, but his arguments have often fallen on deaf ears at home. Today, the topic of wind power is cropping up everywhere from the beaches of Cape Cod to the Oregon-Washington border, and one wind turbine is capable of producing enough electricity per year to run 200 average American households. Now, Paul Gipe is back to shed light on this increasingly important energy source with a revised edition of Wind Power. Over the course of his career, Paul Gipe has been a proponent, participant, observer, and critic of the wind industry. His experience with wind has given rise to two previous books on the subject, Wind Energy Basics and Wind Power for Home and Business, which have sold over 50,000 copies. Wind Power for Home and Business has become a staple for both homeowners and professionals interested in the subject, and now, with energy prices soaring, interest in wind power is hitting an all-time high. With chapters on output and economics, Wind Power discloses how much you can expect from each method of wind technology, both in terms of energy and financial savings. The book updated models

  17. Effects of opening in shear walls of 30- storey building

    Directory of Open Access Journals (Sweden)

    Ruchi Sharma

    2015-03-01

    Full Text Available Tall towers and multi-storey buildings have fascinated mankind from the beginning of civilization, their construction being initially for defense and subsequently for ecclesiastical purposes. These tall buildings because of its height, is affected by lateral forces due to wind or earthquake actions tends to snap the building in shear and push it over in bending. In general, the rigidity (i.e. Resistance to lateral deflection and stability (i.e. Resistance to overturning moments requirement become more important. Shear walls (Structural walls contribute significant lateral stiffness, strength, and overall ductility and energy dissipation capacity. In many structural walls a regular pattern of openings has to be provided due to various functional requirements such as to accommodate doors, windows and service ducts. Such type of openings reduces the stiffness of the shear wall to some extent depending on the shape and size of the opening. In the present parametric study, efforts are made to investigate and critically assess the effects of various size of openings in shear walls on the responses and behaviors of multi-storey buildings. The 30 storey Prototype buildings with different types of openings in shear wall with and without incorporating the volume of shear wall reduced in the boundary elements are analyzed using software E-TABS using Response spectrum method (1893(Part-1-2002 and Time history method.

  18. Research in Aeroelasticity EFP-2006[Wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Bak, C.

    2007-07-15

    This report contains the results from the Energy Research Project 'Program for Research in Applied Aeroelasticity, EFP-2006' covering the period from 1. April 2006 to 31. March 2007. A summary of the main results from the project is given in the following. The aerodynamics for rotors incl. spinner and winglets were clarified and the needed premises for an optimal rotor were explained. Also, the influence of viscous effects on rotor blades was investigated and the results indicated a range of optimum tip speed ratios. The use of winglets for wind turbine rotor was investigated and it was found that they can be used successfully, but that downwind and short winglets are most efficient. Investigating a strategy for reduction of loads and vibrations at extreme wind speeds showed that there are considerably uncertainties in the numerical models and that the main concluding remark is that measurements on a real blade or a real turbine are needed to further conclude the investigation. In the study of flutter and other torsional vibrations of blades at large deflections, modeling and analysis of the dynamics of a hydraulic pitch system for a 5 MW wind turbine was carried out. It was shown that the compressibility of the hydraulic oil introduced a dynamic mode in the pitch bearing degree of freedom. Also, investigating flutter for blades at large deflections showed that the flutter limit for a 5MW blade was moved significantly compared to blades without large deflections. The influence of modeling nacelle components was investigated by developing a generalized method to interface dynamic systems to the aeroelastic program HAWC2 and by exemplify by modeling the nacelle of an aeroelastic wind turbine model in a more detailed way by including a single planet stage of a gearbox. This simplified gearbox model captures in essence the splitting of the driving torque from the rotor shaft to the frame of the nacelle and to the generator. Investigating the influence of wind

  19. Shear Resistance Variations in Experimentally Sheared Mudstone Granules: A Possible Shear-Thinning and Thixotropic Mechanism

    Science.gov (United States)

    Hu, Wei; Xu, Qiang; Wang, Gonghui; Scaringi, Gianvito; Mcsaveney, Mauri; Hicher, Pierre-Yves

    2017-11-01

    We present results of ring shear frictional resistance for mudstone granules of different size obtained from a landslide shear zone. Little rate dependency of shear resistance was observed in sand-sized granules in any wet or dry test, while saturated gravel-sized granules exhibited significant and abrupt reversible rate-weakening (from μ = 0.6 to 0.05) at about 2 mm/s. Repeating resistance variations occurred also under constant shear displacement rate. Mudstone granules generate mud as they are crushed and softened. Shear-thinning and thixotropic behavior of the mud can explain the observed behavior: with the viscosity decreasing, the mud can flow through the coarser soil pores and migrate out from the shear zone. This brings new granules into contact which produces new mud. Thus, the process can start over. Similarities between experimental shear zones and those of some landslides in mudstone suggest that the observed behavior may play a role in some landslide kinematics.

  20. Electrostatic Solitary Waves in the Solar Wind: Evidence for Instability at Solar Wind Current Sheets

    Science.gov (United States)

    Malaspina, David M.; Newman, David L.; Wilson, Lynn Bruce; Goetz, Keith; Kellogg, Paul J.; Kerstin, Kris

    2013-01-01

    A strong spatial association between bipolar electrostatic solitary waves (ESWs) and magnetic current sheets (CSs) in the solar wind is reported here for the first time. This association requires that the plasma instabilities (e.g., Buneman, electron two stream) which generate ESWs are preferentially localized to solar wind CSs. Distributions of CS properties (including shear angle, thickness, solar wind speed, and vector magnetic field change) are examined for differences between CSs associated with ESWs and randomly chosen CSs. Possible mechanisms for producing ESW-generating instabilities at solar wind CSs are considered, including magnetic reconnection.

  1. Effects of Yaw Error on Wind Turbine Running Characteristics Based on the Equivalent Wind Speed Model

    Directory of Open Access Journals (Sweden)

    Shuting Wan

    2015-06-01

    Full Text Available Natural wind is stochastic, being characterized by its speed and direction which change randomly and frequently. Because of the certain lag in control systems and the yaw body itself, wind turbines cannot be accurately aligned toward the wind direction when the wind speed and wind direction change frequently. Thus, wind turbines often suffer from a series of engineering issues during operation, including frequent yaw, vibration overruns and downtime. This paper aims to study the effects of yaw error on wind turbine running characteristics at different wind speeds and control stages by establishing a wind turbine model, yaw error model and the equivalent wind speed model that includes the wind shear and tower shadow effects. Formulas for the relevant effect coefficients Tc, Sc and Pc were derived. The simulation results indicate that the effects of the aerodynamic torque, rotor speed and power output due to yaw error at different running stages are different and that the effect rules for each coefficient are not identical when the yaw error varies. These results may provide theoretical support for optimizing the yaw control strategies for each stage to increase the running stability of wind turbines and the utilization rate of wind energy.

  2. Individual pitch control of NREL 5MW wind turbine blade for load reduction

    International Nuclear Information System (INIS)

    La, Yo Han; Nam, Yoon Su; Hoon, Son Jae

    2012-01-01

    As the size of a wind turbine increases, the rotor diameter increases. Rotor blades experience mechanical loads caused by the wind shear and the tower shadow effect. These mechanical loads reduce the life of the wind turbine. Therefore, with increasing size of the wind turbine, wind turbine control system design for the mitigation of mechanical loads is important. In this study, Individual Pitch Control in introduced for reducing the mechanical loads of rotor blades, and a simulation for IPC performance verification is discussed

  3. Shear-induced chaos

    International Nuclear Information System (INIS)

    Lin, Kevin K; Young, Lai-Sang

    2008-01-01

    Guided by a geometric understanding developed in earlier works of Wang and Young, we carry out numerical studies of shear-induced chaos in several parallel but different situations. The settings considered include periodic kicking of limit cycles, random kicks at Poisson times and continuous-time driving by white noise. The forcing of a quasi-periodic model describing two coupled oscillators is also investigated. In all cases, positive Lyapunov exponents are found in suitable parameter ranges when the forcing is suitably directed

  4. Shear-induced chaos

    Science.gov (United States)

    Lin, Kevin K.; Young, Lai-Sang

    2008-05-01

    Guided by a geometric understanding developed in earlier works of Wang and Young, we carry out numerical studies of shear-induced chaos in several parallel but different situations. The settings considered include periodic kicking of limit cycles, random kicks at Poisson times and continuous-time driving by white noise. The forcing of a quasi-periodic model describing two coupled oscillators is also investigated. In all cases, positive Lyapunov exponents are found in suitable parameter ranges when the forcing is suitably directed.

  5. Bolt Shear Force Sensor

    Science.gov (United States)

    2015-03-12

    0030] FIG. 7 is an isometric view of a deformable ring of the bolt shear force sensor of the present invention with an optical Attorney Docket No...102587 9 of 19 fiber having Bragg gratings wound around the ring; [0031] FIG. 8 is an isometric view of the deformable ring with wire strain... strength . [0047] Once the joint is subjected to an external load (see force arrows “F” and “F/2”); any frictional resistance to slip is overcome and

  6. Interfacial shear behavior of composite flanged concrete beams

    Directory of Open Access Journals (Sweden)

    Moataz Awry Mahmoud

    2014-08-01

    Full Text Available Composite concrete decks are commonly used in the construction of highway bridges due to their rapid constructability. The interfacial shear transfer between the top slab and the supporting beams is of great significance to the overall deck load carrying capacity and performance. Interfacial shear capacity is directly influenced by the distribution and the percentage of shear connectors. Research and design guidelines suggest the use of two different approaches to quantify the required interfacial shear strength, namely based on the maximum compressive forces in the flange at mid span or the maximum shear flow at the supports. This paper investigates the performance of flanged reinforced concrete composite beams with different shear connector’s distribution and reinforcing ratios. The study incorporated both experimental and analytical programs for beams. Key experimental findings suggest that concentrating the connectors at the vicinity of the supports enhances the ductility of the beam. The paper proposes a simple and straight forward approach to estimate the interfacial shear capacity that was proven to give good correlation with the experimental results and selected code provisions. The paper presents a method to predict the horizontal shear force between precast beams and cast in-situ slabs.

  7. Excited waves in shear layers

    Science.gov (United States)

    Bechert, D. W.

    1982-01-01

    The generation of instability waves in free shear layers is investigated. The model assumes an infinitesimally thin shear layer shed from a semi-infinite plate which is exposed to sound excitation. The acoustical shear layer excitation by a source further away from the plate edge in the downstream direction is very weak while upstream from the plate edge the excitation is relatively efficient. A special solution is given for the source at the plate edge. The theory is then extended to two streams on both sides of the shear layer having different velocities and densities. Furthermore, the excitation of a shear layer in a channel is calculated. A reference quantity is found for the magnitude of the excited instability waves. For a comparison with measurements, numerical computations of the velocity field outside the shear layer were carried out.

  8. Designing shear-thinning

    Science.gov (United States)

    Nelson, Arif Z.; Ewoldt, Randy H.

    2017-11-01

    Design in fluid mechanics often focuses on optimizing geometry (airfoils, surface textures, microfluid channels), but here we focus on designing fluids themselves. The dramatically shear-thinning ``yield-stress fluid'' is currently the most utilized non-Newtonian fluid phenomenon. These rheologically complex materials, which undergo a reversible transition from solid-like to liquid-like fluid flow, are utilized in pedestrian products such as paint and toothpaste, but also in emerging applications like direct-write 3D printing. We present a paradigm for yield-stress fluid design that considers constitutive model representation, material property databases, available predictive scaling laws, and the many ways to achieve a yield stress fluid, flipping the typical structure-to-rheology analysis to become the inverse: rheology-to-structure with multiple possible materials as solutions. We describe case studies of 3D printing inks and other flow scenarios where designed shear-thinning enables performance remarkably beyond that of Newtonian fluids. This work was supported by Wm. Wrigley Jr. Company and the National Science Foundation under Grant No. CMMI-1463203.

  9. Mexico Wind Resource Assessment Project

    Energy Technology Data Exchange (ETDEWEB)

    Schwartz, M.N.; Elliott, D.L.

    1995-05-01

    A preliminary wind energy resource assessment of Mexico that produced wind resource maps for both utility-scale and rural applications was undertaken as part of the Mexico-U.S. Renewable Energy Cooperation Program. This activity has provided valuable information needed to facilitate the commercialization of small wind turbines and windfarms in Mexico and to lay the groundwork for subsequent wind resource activities. A surface meteorological data set of hourly data in digital form was utilized to prepare a more detailed and accurate wind resource assessment of Mexico than otherwise would have been possible. Software was developed to perform the first ever detailed analysis of the wind characteristics data for over 150 stations in Mexico. The hourly data set was augmented with information from weather balloons (upper-air data), ship wind data from coastal areas, and summarized wind data from sources in Mexico. The various data were carefully evaluated for their usefulness in preparing the wind resource assessment. The preliminary assessment has identified many areas of good-to-excellent wind resource potential and shows that the wind resource in Mexico is considerably greater than shown in previous surveys.

  10. Effects of opening in shear walls of 30- storey building

    OpenAIRE

    Ruchi Sharma; Jignesh A Amin

    2015-01-01

    Tall towers and multi-storey buildings have fascinated mankind from the beginning of civilization, their construction being initially for defense and subsequently for ecclesiastical purposes. These tall buildings because of its height, is affected by lateral forces due to wind or earthquake actions tends to snap the building in shear and push it over in bending. In general, the rigidity (i.e. Resistance to lateral deflection) and stability (i.e. Resistance to overturning moments) requirement ...

  11. Inductive shearing of drilling pipe

    Science.gov (United States)

    Ludtka, Gerard M.; Wilgen, John; Kisner, Roger; Mcintyre, Timothy

    2016-04-19

    Induction shearing may be used to cut a drillpipe at an undersea well. Electromagnetic rings may be built into a blow-out preventer (BOP) at the seafloor. The electromagnetic rings create a magnetic field through the drillpipe and may transfer sufficient energy to change the state of the metal drillpipe to shear the drillpipe. After shearing the drillpipe, the drillpipe may be sealed to prevent further leakage of well contents.

  12. Mitigation of Power System Oscillation Caused by Wind Power Fluctuation

    DEFF Research Database (Denmark)

    Su, Chi; Hu, Weihao; Chen, Zhe

    2013-01-01

    oscillation mitigation controllers are proposed and compared. A model of direct-drive-full-convertor-based wind farm connected to the IEEE 10-machine 39-bus system is adopted as the test system. The calculations and simulations are conducted in DIgSILENT PowerFactory 14.0. Results are presented to show......Wind power is increasingly integrated in modern power grids, which brings new challenges to the power system operation. Wind power is fluctuating because of the uncertain nature of wind, whereas wind shear and tower shadow effects also cause periodic fluctuations. These may lead to serious forced...... oscillation when the frequencies of the periodic fluctuations are close to the natural oscillation frequencies of the connected power system. By using modal analysis and time-domain simulations, this study studies the forced oscillation caused by the wind shear and tower shadow effects. Three forced...

  13. Coherent structures in compressible free-shear-layer flows

    Energy Technology Data Exchange (ETDEWEB)

    Aeschliman, D.P.; Baty, R.S. [Sandia National Labs., Albuquerque, NM (United States). Engineering Sciences Center; Kennedy, C.A.; Chen, J.H. [Sandia National Labs., Livermore, CA (United States). Combustion and Physical Sciences Center

    1997-08-01

    Large scale coherent structures are intrinsic fluid mechanical characteristics of all free-shear flows, from incompressible to compressible, and laminar to fully turbulent. These quasi-periodic fluid structures, eddies of size comparable to the thickness of the shear layer, dominate the mixing process at the free-shear interface. As a result, large scale coherent structures greatly influence the operation and efficiency of many important commercial and defense technologies. Large scale coherent structures have been studied here in a research program that combines a synergistic blend of experiment, direct numerical simulation, and analysis. This report summarizes the work completed for this Sandia Laboratory-Directed Research and Development (LDRD) project.

  14. Magnetorheological dampers in shear mode

    International Nuclear Information System (INIS)

    Wereley, N M; Cho, J U; Choi, Y T; Choi, S B

    2008-01-01

    In this study, three types of shear mode damper using magnetorheological (MR) fluids are theoretically analyzed: linear, rotary drum, and rotary disk dampers. The damping performance of these shear mode MR dampers is characterized in terms of the damping coefficient, which is the ratio of the equivalent viscous damping at field-on status to the damping at field-off status. For these three types of shear mode MR damper, the damping coefficient or dynamic range is derived using three different constitutive models: the Bingham–plastic, biviscous, and Herschel–Bulkley models. The impact of constitutive behavior on shear mode MR dampers is theoretically presented and compared

  15. Some consequences of shear on galactic dynamos with helicity fluxes

    Science.gov (United States)

    Zhou, Hongzhe; Blackman, Eric G.

    2017-08-01

    Galactic dynamo models sustained by supernova (SN) driven turbulence and differential rotation have revealed that the sustenance of large-scale fields requires a flux of small-scale magnetic helicity to be viable. Here we generalize a minimalist analytic version of such galactic dynamos to explore some heretofore unincluded contributions from shear on the total turbulent energy and turbulent correlation time, with the helicity fluxes maintained by either winds, diffusion or magnetic buoyancy. We construct an analytic framework for modelling the turbulent energy and correlation time as a function of SN rate and shear. We compare our prescription with previous approaches that include only rotation. The solutions depend separately on the rotation period and the eddy turnover time and not just on their ratio (the Rossby number). We consider models in which these two time-scales are allowed to be independent and also a case in which they are mutually dependent on radius when a radial-dependent SN rate model is invoked. For the case of a fixed rotation period (or a fixed radius), we show that the influence of shear is dramatic for low Rossby numbers, reducing the correlation time of the turbulence, which, in turn, strongly reduces the saturation value of the dynamo compared to the case when the shear is ignored. We also show that even in the absence of winds or diffusive fluxes, magnetic buoyancy may be able to sustain sufficient helicity fluxes to avoid quenching.

  16. Wind Effects on Retention Time in Highway Ponds

    DEFF Research Database (Denmark)

    Bentzen, Thomas Ruby; Larsen, Torben; Rasmussen, Michael R.

    2007-01-01

    is to evaluate the quality of long term simulations based on historical rain series of the pollutant discharges from roads and highways. The idea of this paper is to evaluate the effects of wind on the retention time and compare the retention time for the situation of a spatial uniform wind shear stress...... with the situation of a "real" spatial non-uniform shear stress distribution on the surface of the pond. The result of this paper shows that wind plays a dominant role for the retention time and flow pattern. Furthermore, the results shows that the differences in retention time between the use of uniform and non...

  17. Wind Effects on Retention Time in Highway Ponds

    DEFF Research Database (Denmark)

    Bentzen, Thomas Ruby; Larsen, Torben; Rasmussen, Michael R.

    2008-01-01

    is to evaluate the quality of long term simulations based on historical rain series of the pollutant discharges from roads and highways. The idea of this paper is to evaluate the effects of wind on the retention time and compare the retention time for the situation of a spatial uniform wind shear stress...... with the situation of a "real" spatial non-uniform shear stress distribution on the surface of the pond. The result of this paper shows that wind plays a dominant role for the retention time and flow pattern. Furthermore, the results shows that the differences in retention time between the use of uniform and non...

  18. Heat generation by a wind turbine

    Energy Technology Data Exchange (ETDEWEB)

    Corten, G.P. [ECN Wind, Petten (Netherlands)

    2001-01-01

    It will be shown that an actuator disk operating in wind turbine mode extracts more energy from the fluid than can be transferred into useful energy. At the Lanchester-Betz limit the decrease of the kinetic energy in the wind is converted by 2 /3 into useful power and by 1 /3 into heat. Behind the wind turbine the outer flow and the flow that has passed the actuator disk will mix. In this process momentum is conserved but part of the kinetic energy will dissipate in heat via viscous shear. 7 refs.

  19. Shear strength of non-shear reinforced concrete elements

    DEFF Research Database (Denmark)

    Hoang, Cao linh

    1997-01-01

    The paper deals with the shear strength of prestressed hollow-core slabs determined by the theory of plasticity. Two failure mechanisms are considered in order to derive the solutions.In the case of sliding failure in a diagonal crack, the shear strength is determined by means of the crack sliding...

  20. Primer: The DOE Wind Energy Program's Approach to Calculating Cost of Energy: July 9, 2005 - July 8, 2006

    Energy Technology Data Exchange (ETDEWEB)

    George, K.; Schweizer, T.

    2008-01-01

    This report details the methodology used by DOE to calculate levelized cost of wind energy and demonstrates the variation in COE estimates due to different financing assumptions independent of wind generation technology.

  1. Scaling of turbulence spectra measured in strong shear flow near the Earth’s surface

    DEFF Research Database (Denmark)

    Mikkelsen, Torben Krogh; Larsen, Søren Ejling; Ejsing Jørgensen, Hans

    2017-01-01

    Within the lowest kilometer of the Earth's atmosphere, in the so-called atmospheric boundary layer, winds are often gusty and turbulent. Nearest to the ground, the turbulence is predominately generated by mechanical wall-bounded wind shear, whereas at higher altitudes turbulent mixing of heat...... subrange with a distinct inverse-linear power law for turbulence in a strongly sheared high-Reynolds number wall-bounded flow, as is encountered in the lowest sheared part of the atmospheric boundary layer, also known as the eddy surface layer. This paper presents observations of spectra measured...... and moisture also play a role. The variance (square of the standard deviation) of the fluctuation around the mean wind speed is a measure of the kinetic energy content of the turbulence. This kinetic energy can be resolved into the spectral distributions, or spectra, as functions of eddy size, wavenumber...

  2. Siting wind farms in and around forests

    Energy Technology Data Exchange (ETDEWEB)

    Douglas, N. [Natural Power Consultants, Vancouver, BC (Canada)

    2010-07-01

    This PowerPoint presentation discussed methods of assessing the impact of trees on wind resources. Turbulence is generated and also absorbed by trees. Disturbances generated at tree level are then transported upwards and down-wind by the wind. The turbulence induced by trees can be felt kilometers downwind of forests at wind turbine hub heights. Wind speeds can be less than predicted, and significant over-estimations can occur with modelled results. The effects of high shear and high turbulence can also have an impact on power curve performance and lead to higher levels of mechanical stress. A SCADA analysis was used to demonstrate the impact of forests on power curves. Wind power predictions near forests can be optimized by using a full year of data capture at hub height, full rotor measurements, and a consideration of seasonal variations. Accurate tree maps are needed to determine the effects of trees on wind shear. Various forestry scenarios were modelled to demonstrate the effects of forestry management over time. tabs., figs.

  3. Wind energy.

    Science.gov (United States)

    Leithead, W E

    2007-04-15

    From its rebirth in the early 1980s, the rate of development of wind energy has been dramatic. Today, other than hydropower, it is the most important of the renewable sources of power. The UK Government and the EU Commission have adopted targets for renewable energy generation of 10 and 12% of consumption, respectively. Much of this, by necessity, must be met by wind energy. The US Department of Energy has set a goal of 6% of electricity supply from wind energy by 2020. For this potential to be fully realized, several aspects, related to public acceptance, and technical issues, related to the expected increase in penetration on the electricity network and the current drive towards larger wind turbines, need to be resolved. Nevertheless, these challenges will be met and wind energy will, very likely, become increasingly important over the next two decades. An overview of the technology is presented.

  4. Using machine learning to predict wind turbine power output

    International Nuclear Information System (INIS)

    Clifton, A; Kilcher, L; Lundquist, J K; Fleming, P

    2013-01-01

    Wind turbine power output is known to be a strong function of wind speed, but is also affected by turbulence and shear. In this work, new aerostructural simulations of a generic 1.5 MW turbine are used to rank atmospheric influences on power output. Most significant is the hub height wind speed, followed by hub height turbulence intensity and then wind speed shear across the rotor disk. These simulation data are used to train regression trees that predict the turbine response for any combination of wind speed, turbulence intensity, and wind shear that might be expected at a turbine site. For a randomly selected atmospheric condition, the accuracy of the regression tree power predictions is three times higher than that from the traditional power curve methodology. The regression tree method can also be applied to turbine test data and used to predict turbine performance at a new site. No new data are required in comparison to the data that are usually collected for a wind resource assessment. Implementing the method requires turbine manufacturers to create a turbine regression tree model from test site data. Such an approach could significantly reduce bias in power predictions that arise because of the different turbulence and shear at the new site, compared to the test site. (letter)

  5. Next Generation Wind Turbine

    Energy Technology Data Exchange (ETDEWEB)

    Cheraghi, S. Hossein [Western New England Univ., Springfield, MA (United States); Madden, Frank [FloDesign Wind Turbine Corp., Waltham, MA (United States)

    2012-09-01

    The goal of this collaborative effort between Western New England University's College of Engineering and FloDesign Wind Turbine (FDWT) Corporation to wok on a novel areodynamic concept that could potentially lead to the next generation of wind turbines. Analytical studies and early scale model tests of FDWT's Mixer/Ejector Wind Turbine (MEWT) concept, which exploits jet-age advanced fluid dynamics, indicate that the concept has the potential to significantly reduce the cost of electricity over conventional Horizontal Axis Wind Turbines while reducing land usage. This project involved the design, fabrication, and wind tunnel testing of components of MEWT to provide the research and engineering data necessary to validate the design iterations and optimize system performance. Based on these tests, a scale model prototype called Briza was designed, fabricated, installed and tested on a portable tower to investigate and improve the design system in real world conditions. The results of these scale prototype efforts were very promising and have contributed significantly to FDWT's ongoing development of a product scale wind turbine for deployment in multiple locations around the U.S. This research was mutually beneficial to Western New England University, FDWT, and the DOE by utilizing over 30 student interns and a number of faculty in all efforts. It brought real-world wind turbine experience into the classroom to further enhance the Green Engineering Program at WNEU. It also provided on-the-job training to many students, improving their future employment opportunities, while also providing valuable information to further advance FDWT's mixer-ejector wind turbine technology, creating opportunities for future project innovation and job creation.

  6. Wind energy: A renewable energy option

    Science.gov (United States)

    Zimmerman, J. S.

    1977-01-01

    Wind turbine generator research programs administered by the Energy Research and Development Administration are examined. The design and operation of turbine demonstration models are described. Wind assessments were made to determine the feasibility of using wind generated power for various parts of the country.

  7. A Piezoelectric Shear Stress Sensor

    Science.gov (United States)

    Kim, Taeyang; Saini, Aditya; Kim, Jinwook; Gopalarathnam, Ashok; Zhu, Yong; Palmieri, Frank L.; Wohl, Christopher J.; Jiang, Xiaoning

    2016-01-01

    In this paper, a piezoelectric sensor with a floating element was developed for shear stress measurement. The piezoelectric sensor was designed to detect the pure shear stress suppressing effects of normal stress generated from the vortex lift-up by applying opposite poling vectors to the: piezoelectric elements. The sensor was first calibrated in the lab by applying shear forces and it showed high sensitivity to shear stress (=91.3 +/- 2.1 pC/Pa) due to the high piezoelectric coefficients of PMN-33%PT (d31=-1330 pC/N). The sensor also showed almost no sensitivity to normal stress (less than 1.2 pC/Pa) because of the electromechanical symmetry of the device. The usable frequency range of the sensor is 0-800 Hz. Keywords: Piezoelectric sensor, shear stress, floating element, electromechanical symmetry

  8. Wind-induced response analysis of a wind turbine tower including the blade-tower coupling effect

    Institute of Scientific and Technical Information of China (English)

    Xiao-bo CHEN; Jing LI; Jian-yun CHEN

    2009-01-01

    To analyze wind-induced response characteristics of a wind turbine tower more accurately, the blade-tower coupling effect was investigated. The mean wind velocity of the rotating blades and tower was simulated according to wind shear effects,and the fluctuating wind velocity time series of the wind turbine were simulated by a harmony superposition method. A dynamic finite element method (FEM) was used to calculate the wind-induced response of the blades and tower. Wind-induced responses of the tower were calculated in two cases (one included the blade-tower coupling effect, and the other only added the mass of blades and the hub at the top of the tower), and then the maximal displacements at the top of the tower of the tow cases were compared with each other. As a result of the influence of the blade-tower coupling effect and the total base shear of the blades, the maximal displacement of the first case increased nearly by 300% compared to the second case. To obtain more precise analysis, the blade-tower coupling effect and the total base shear of the blades should be considered simultaneously in the design of wind turbine towers.

  9. Integration of wind generation forecasts. Volume 2

    International Nuclear Information System (INIS)

    Ahlstrom, M.; Zavadil, B.; Jones, L.

    2005-01-01

    WindLogics is a company that specializes in atmospheric modelling, visualization and fine-scale forecasting systems for the wind power industry. A background of the organization was presented. The complexities of wind modelling were discussed. Issues concerning location and terrain, shear, diurnal and interannual variability were reviewed. It was suggested that wind power producers should aim to be mainstream, and that variability should be considered as intrinsic to fuel supply. Various utility operating impacts were outlined. Details of an Xcel NSP wind integration study were presented, as well as a studies conducted in New York state and Colorado. It was concluded that regulations and load following impacts with wind energy integration are modest. Overall impacts are dominated by costs incurred to accommodate wind generation variability and uncertainty in the day-ahead time frame. Cost impacts can be reduced with adjustments to operating strategies, improvements in wind forecasting and access to real-time markets. Details of WindLogic's wind energy forecast system were presented, as well as examples of day ahead and hour ahead forecasts and wind speed and power forecasts. Screenshots of control room integration, EMS integration and simulations were presented. Details of a utility-scale wind energy forecasting system funded by Xcel Renewable Development Fund (RDF) were also presented. The goal of the system was to optimize the way that wind forecast information is integrated into the control room environment. Project components were outlined. It was concluded that accurate day-ahead forecasting can lead to significant asset optimization. It was recommended that wind plants share data, and aim to resolve issues concerning grid codes and instrumentation. refs., tabs., figs

  10. Wind speed forecasting in the central California wind resource area

    Energy Technology Data Exchange (ETDEWEB)

    McCarthy, E.F. [Wind Economics & Technology, Inc., Martinez, CA (United States)

    1997-12-31

    A wind speed forecasting program was implemented in the summer seasons of 1985 - 87 in the Central California Wind Resource Area (WRA). The forecasting program is designed to use either meteorological observations from the WRA and local upper air observations or upper air observations alone to predict the daily average windspeed at two locations. Forecasts are made each morning at 6 AM and are valid for a 24 hour period. Ease of use is a hallmark of the program as the daily forecast can be made using data entered into a programmable HP calculator. The forecasting program was the first step in a process to examine whether the electrical energy output of an entire wind power generation facility or defined subsections of the same facility could be predicted up to 24 hours in advance. Analysis of the results of the summer season program using standard forecast verification techniques show the program has skill over persistence and climatology.

  11. Wind/solar resource in Texas

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, V.; Starcher, K.; Gaines, H. [West Texas A& M Univ., Canyon, TX (United States)

    1997-12-31

    Data are being collected at 17 sites to delineate a baseline for the wind and solar resource across Texas. Wind data are being collected at 10, 25, and 40 m (in some cases at 50 m) to determine wind shear and power at hub heights of large turbines. Many of the sites are located in areas of predicted terrain enhancement. The typical day in a month for power and wind turbine output was calculated for selected sites and combination of sites; distributed systems. Major result to date is that there is the possibility of load matching in South Texas during the summer months, even though the average values by month indicate a low wind potential.

  12. The Low-Level Wind Shear Alert System (LLWSAS)

    Science.gov (United States)

    1980-05-01

    ALERT SYSTEM (LLWSAS). (May R.. a.-ol - 8..’P" Imng Organization Report No, 9, Perfo~ring Or~ni-otlon Ro-r. -andAddress 10. Work Unit No. (TRAIS) Federal...rather than electronic approach. The 2-minute average adheres to recommended International Civil Aviation Organization (ICAO) standards (referernce 14...speed of 140 knots. **Cold front. 80 ’ # 90 0 STRONG CASES: COFF , 1975 80 9STRONG CASES: UNPU1BLISHED 70 60 A STRONG CASES: COFF , et al., 1978 50 \\ 50 -0

  13. Meteorological aspects of siting large wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Hiester, T.R.; Pennell, W.T.

    1981-01-01

    This report, which focuses on the meteorological aspects of siting large wind turbines (turbines with a rated output exceeding 100 kW), has four main goals. The first is to outline the elements of a siting strategy that will identify the most favorable wind energy sites in a region and that will provide sufficient wind data to make responsible economic evaluations of the site wind resource possible. The second is to critique and summarize siting techniques that were studied in the Department of Energy (DOE) Wind Energy Program. The third goal is to educate utility technical personnel, engineering consultants, and meteorological consultants (who may have not yet undertaken wind energy consulting) on meteorological phenomena relevant to wind turbine siting in order to enhance dialogues between these groups. The fourth goal is to minimize the chances of failure of early siting programs due to insufficient understanding of wind behavior.

  14. Enhancement of shear strength and ductility for reinforced concrete wide beams due to web reinforcement

    Directory of Open Access Journals (Sweden)

    M. Said

    2013-12-01

    Full Text Available The shear behavior of reinforced concrete wide beams was investigated. The experimental program consisted of nine beams of 29 MPa concrete strength tested with a shear span-depth ratio equal to 3.0. One of the tested beams had no web reinforcement as a control specimen. The flexure mode of failure was secured for all of the specimens to allow for shear mode of failure. The key parameters covered in this investigation are the effect of the existence, spacing, amount and yield stress of the vertical stirrups on the shear capacity and ductility of the tested wide beams. The study shows that the contribution of web reinforcement to the shear capacity is significant and directly proportional to the amount and spacing of the shear reinforcement. The increase in the shear capacity ranged from 32% to 132% for the range of the tested beams compared with the control beam. High grade steel was more effective in the contribution of the shear strength of wide beams. Also, test results demonstrate that the shear reinforcement significantly enhances the ductility of the wide beams. In addition, shear resistances at failure recorded in this study are compared to the analytical strengths calculated according to the current Egyptian Code and the available international codes. The current study highlights the need to include the contribution of shear reinforcement in the Egyptian Code requirements for shear capacity of wide beams.

  15. Grid Integration of Offshore Wind | Wind | NREL

    Science.gov (United States)

    Grid Integration of Offshore Wind Grid Integration of Offshore Wind Much can be learned from the existing land-based integration research for handling the variability and uncertainty of the wind resource Arklow Bank offshore wind park consists of seven GE Wind 3.6-MW wind turbines. Integration and

  16. Wind Energy

    Energy Technology Data Exchange (ETDEWEB)

    Beurskens, H.J.M. [SET Analysis, Kievitlaan 26, 1742 AD Schagen (Netherlands); Brand, A.J. [Energy research Centre of the Netherlands ECN, Unit Wind Energy, P.O. Box 1, 1755 ZG Petten (Netherlands)

    2013-02-15

    Over the years, wind energy has become a major source of renewable energy worldwide. The present chapter addresses the wind resource, which is available for exploitation for large-scale electricity production, and its specific physical properties. Furthermore, the technical options available to convert the energy of the air flow into mechanical energy and electricity are described. Specific problems of large-scale integration of wind energy into the grid as well as the present and future market developments are described in this chapter. Finally, environmental aspects are discussed briefly.

  17. Sources of the wind power stations

    International Nuclear Information System (INIS)

    Chudivani, J.; Huettner, L.

    2012-01-01

    The paper deals with problems of the wind power stations. Describes the basic properties of wind energy. Shows and describes the different types of electrical machines used as a source of electricity in the wind power stations. Shows magnetic fields synchronous generator with salient poles and permanent magnets in the program FEMM. Describes methods for assessing of reversing the effects of the wind power stations on the distribution network. (Authors)

  18. Non-gyrotropic pressure anisotropy induced by velocity shear.

    Science.gov (United States)

    Tenerani, A.; Del Sarto, D.; Pegoraro, F.; Califano, F.

    2015-12-01

    We discuss how, in a collisionless magnetized plasma, a sheared velocity field may lead to the anisotropization of an initial Maxwellian state. By including the full pressure tensor dynamics in a fluid plasma model, we show, analytically and numerically, that a sheared velocity field makes an initial isotropic state anisotropic and non-gyrotropic [1], i.e., makes the plasma pressure tensor anisotropic also in the plane perpendicular to the magnetic field. The propagation of transverse magneto-elastic waves in the anisotropic plasma affects the process of formation of a non-gyrotropic pressure and can lead to its spatial filamentation. This plasma dynamics implies in particular that isotropic MHD equilibria cease to be equilibria in presence of a stationary sheared flow. Similarly, in the case of turbulence, where small-scale spatial inhomogeneities are naturally developed during the direct cascade, we may expect that isotropic turbulent states are not likely to exist whenever a full pressure tensor evolution is accounted for. These results may be relevant to understanding the agyrotropic pressure configurations which are well documented in solar wind measurements and possibly correlated to plasma flows (see e.g. Refs.[2,3]), and which have also been measured in Vlasov simulations of Alfvenic turbulence [4]. [1] D. Del Sarto, F. Pegoraro, F. Califano, "Pressure anisotropy and small spatial scales induced by a velocity shear", http://arxiv.org/abs/1507.04895 [2] H.F. Astudillo, E. Marsch, S. Livi, H. Rosenbauer, "TAUS measurements of non-gyrotropic distribution functions of solar wind alpha particles", AIP Conf. Proc. 328, 289 (1996). [3] A. Posner, M.W. Liemhon, T.H. Zurbuchen, "Upstream magnetospheric ion flux tube within a magnetic cloud: Wind/STICS", Geophys. Res. Lett. 30, (2003). [4] S. Servidio, F. Valentini, F. Califano, P. Veltri, "Local kinetic effects in Two-Dimensional Plasma Turbulence", Phys. Rev. Lett. 108, 045001 (2012).

  19. Solar wind stream interfaces

    International Nuclear Information System (INIS)

    Gosling, J.T.; Asbridge, J.R.; Bame, S.J.; Feldman, W.C.

    1978-01-01

    Measurements aboard Imp 6, 7, and 8 reveal that approximately one third of all high-speed solar wind streams observed at 1 AU contain a sharp boundary (of thickness less than approx.4 x 10 4 km) near their leading edge, called a stream interface, which separates plasma of distinctly different properties and origins. Identified as discontinuities across which the density drops abruptly, the proton temperature increases abruptly, and the speed rises, stream interfaces are remarkably similar in character from one stream to the next. A superposed epoch analysis of plasma data has been performed for 23 discontinuous stream interfaces observed during the interval March 1971 through August 1974. Among the results of this analysis are the following: (1) a stream interface separates what was originally thick (i.e., dense) slow gas from what was originally thin (i.e., rare) fast gas; (2) the interface is the site of a discontinuous shear in the solar wind flow in a frame of reference corotating with the sun; (3) stream interfaces occur at speeds less than 450 km s - 1 and close to or at the maximum of the pressure ridge at the leading edges of high-speed streams; (4) a discontinuous rise by approx.40% in electron temperature occurs at the interface; and (5) discontinuous changes (usually rises) in alpha particle abundance and flow speed relative to the protons occur at the interface. Stream interfaces do not generally recur on successive solar rotations, even though the streams in which they are embedded often do. At distances beyond several astronomical units, stream interfaces should be bounded by forward-reverse shock pairs; three of four reverse shocks observed at 1 AU during 1971--1974 were preceded within approx.1 day by stream interfaces. Our observations suggest that many streams close to the sun are bounded on all sides by large radial velocity shears separating rapidly expanding plasma from more slowly expanding plasma

  20. Effect of wind turbine wakes on summer-time wind profiles in the US Great Plains

    Science.gov (United States)

    Rhodes, M. E.; Lundquist, J. K.; Aitken, M.

    2011-12-01

    Wind energy is steadily becoming a significant source of grid electricity in the United States, and the Midwestern United States provides one of the nation's richest wind resources. This study examines the effect of wind turbine wakes on the wind profile in central Iowa. Data were collected using a coherent Doppler LiDAR system located approximately 2.5 rotor diameters north of a row of modern multi-MW wind turbine generators. The prevailing wind direction was from the South allowing the LiDAR to capture wind turbine wake properties; however, a number of periods existed where the LiDAR captured undisturbed flow. The LiDAR system reliably obtained readings up to 200 m above ground level (AGL), spanning the entire rotor disk (~40 m to 120 m AGL) which far surpasses the information provided by traditional wind resource assessment instrumentation. We extract several relevant parameters from the lidar data including: horizontal wind speed, vertical velocity, horizontal turbulence intensity, wind shear, and turbulent kinetic energy (TKE). Each time period at a particular LiDAR measurement height was labeled "wake" or "undisturbed" based on the wind direction at that height. Wake and undisturbed data were averaged separately to create a time-height cross-section averaged day for each parameter. Significant differences between wake and undisturbed data emerge. During the day, wake conditions experience larger values of TKE within the altitudes of the turbine rotor disk while TKE values above the rotor disk are similar between waked and undisturbed conditions. Furthermore, the morning transition of TKE in the atmospheric boundary layer commences earlier during wake conditions than in undisturbed conditions, and the evening decay of TKE persists longer during wake conditions. Waked wind shear is consistently greater than undisturbed periods at the edges of the wind turbine rotor disk (40m & 120m AGL), but especially so during the night where wind shear values during wake

  1. Molecular dynamics calculation of shear viscosity for molten salt

    International Nuclear Information System (INIS)

    Okamoto, Yoshihiro; Yokokawa, Mitsuo; Ogawa, Toru

    1993-12-01

    A computer program of molecular dynamics simulation has been made to calculate shear viscosity of molten salt. Correlation function for an off-diagonal component of stress tensor can be obtained as the results of calculation. Shear viscosity is calculated by integration of the correlation function based on the Kubo-type formula. Shear viscosities for a molten KCl ranging in temperature from 1047K to 1273K were calculated using the program. Calculation of 10 5 steps (1 step corresponds to 5 x 10 -15 s) was performed for each temperature in the 216 ions system. The obtained results were in good agreement with the reported experimental values. The program has been vectorized to achieve a faster computation in supercomputer. It makes possible to calculate the viscosity using a large number of statistics amounting to several million MD steps. (author)

  2. World Wind

    Data.gov (United States)

    National Aeronautics and Space Administration — World Wind allows any user to zoom from satellite altitude into any place on Earth, leveraging high resolution LandSat imagery and SRTM elevation data to experience...

  3. Wind power

    International Nuclear Information System (INIS)

    2009-01-01

    At the end of 2008,the European wind power capacity had risen to 65,247 MW which is a 15,1% increase on 2007. The financial crisis does not appear to have any real consequences of the wind power sector's activity in 2008. At the end of 2008 the European Union accommodated 53,9% of the world's wind power capacity. The top ten countries in terms of installed wind capacities are: 1) Usa with 25,388 MW, 2) Germany with 23,903 MW, 3) Spain with 16,740 MW, 4) China with 12,200 MW, 5) India with 9,645 MW, 6) Italy with 3,736 MW, 7) France with 3,542 MW, 8) U.K. with 3,406 MW, 9) Denmark with 3,166 MW and 10) Portugal with 2,862 MW. (A.C.)

  4. Fifty years of shear zones

    Science.gov (United States)

    Graham, Rodney

    2017-04-01

    We are here, of course, because 1967 saw the publication of John Ramsay's famous book. Two years later a memorable field trip from Imperial College to the Outer Hebrides saw John on a bleak headland on the coast of North Uist where a relatively undeformed metadolerite within Lewisian (Precambrian) gneisses contained ductile shear zones with metamorphic fabrics in amphibolite facies. One particular outcrop was very special - a shear zone cutting otherwise completely isotropic, undeformed metadolerite, with an incremental foliation starting to develop at 45° to the deformation zone, and increasing in intensity as it approached the shear direction. Here was proof of the process of simple shear under ductile metamorphic conditions - the principles of simple shear outlined in John Ramsay's 1967 book clearly visible in nature, and verified by Ramsay's mathematical proofs in the eventual paper (Ramsay and Graham, 1970). Later work on the Lewisian on the mainland of Scotland, in South Harris, in Africa, and elsewhere applied Ramsay's simple shear principles more liberally, more imprecisely and on larger scale than at Caisteal Odair, but in retrospect it documented what seems now to be the generality of mid and lower crustal deformation. Deep seismic reflection data show us that on passive margins hyper-stretched continental crust (whether or not cloaked by Seaward Dipping Reflectors) seems to have collapsed onto the mantle. Crustal faults mostly sole out at or above the mantle - so the Moho is a detachment- an 'outer marginal detachment', if you like, and, of course, it must be a ductile shear. On non-volcanic margins this shear zone forms the first formed ocean floor before true sea floor spreading gets going to create real oceanic crust. Gianreto Manatschal, Marcel Lemoine and others realised that the serpentinites described in parts of the Alps are exposed remnants of this ductile shear zone. Associated ophicalcite breccias tell of sea floor exposure, while high

  5. Wind power

    Energy Technology Data Exchange (ETDEWEB)

    1979-01-01

    This publication describes some of the technical, economic, safety and institutional considerations involved in the selection, installation and evaluation of a wind generation system. This information is presented, where possible, in practical, non-technical terms. The first four sections provide background information, theory, and general knowledge, while the remaining six sections are of a more specific nature to assist the prospective owner of a wind generator in his calculations and selections. Meteorological information is provided relating to the wind regime in Nova Scotia. The section on cost analysis discusses some of the factors and considerations which must be examined in order to provide a logical comparison between the alternatives of electricity produced from other sources. The final two sections are brief summaries of the regulations and hazards pertaining to the use of wind generators. The cost of wind-generated electricity is high compared to present Nova Scotia Power Corporation rates, even on Sable Island, Nova Scotia's highest wind area. However, it may be observed that Sable Island is one of the areas of Nova Scotia which is not presently supplied through the power grid and, particularly if there was a significant increase in the price of diesel oil, wind-generated electricity may well be the most economical alternative in that area. Generally speaking, however, where a consumer can purchase electricity at the normal domestic rate, wind generators are not economical, and they will not become economical unless there is a great reduction in their cost, an great increase in electricity rates, or both. Includes glossary. 23 figs., 11 tabs.

  6. EDITORIAL: Wind energy

    Science.gov (United States)

    Mann, Jakob; Nørkær Sørensen, Jens; Morthorst, Poul-Erik

    2008-01-01

    addressed within the issue is how much conventional power production can be replaced by the ceaseless wind, with the question of how Greece's target of 29% renewables by 2020 is to be met efficiently. Other topics include an innovative way to determine the power curve of a turbine experimentally more accurately, the use of fluid dynamics tools to investigate the implications of placing vortex generators on wind turbine blades (thereby possibly improving their efficiency) and a study of the perception of wind turbine noise. It turns out that a small but significant fraction of wind turbine neighbours feel that turbine generated noise impairs their ability to rest. The annoyance is correlated with a negative attitude towards the visual impact on the landscape, but what is cause and effect is too early to say. As mentioned there is a rush for wind turbines in many countries. However, this positive development for the global climate is currently limited by practical barriers. One bottleneck is the difficulties for the sub-suppliers of gears and other parts to meet the demand. Another is the difficulties to meet the demand for engineers specialized in wind. For that reason the Technical University of Denmark (DTU) recently launched the world's first Wind Energy Masters Program. Here and elsewhere in the world of wind education and research we should really speed up now, as our chances of contributing to emission free energy production and a healthier global climate have never been better. Focus on Wind Energy Contents The articles below represent the first accepted contributions and further additions will appear in the near future. Wind turbines—low level noise sources interfering with restoration? Eja Pedersen and Kerstin Persson Waye On the effect of spatial dispersion of wind power plants on the wind energy capacity credit in Greece George Caralis, Yiannis Perivolaris, Konstantinos Rados and Arthouros Zervos Large-eddy simulation of spectral coherence in a wind turbine wake

  7. Category I structures program

    International Nuclear Information System (INIS)

    Endebrock, E.G.; Dove, R.C.

    1981-01-01

    The objective of the Category I Structure Program is to supply experimental and analytical information needed to assess the structural capacity of Category I structures (excluding the reactor cntainment building). Because the shear wall is a principal element of a Category I structure, and because relatively little experimental information is available on the shear walls, it was selected as the test element for the experimental program. The large load capacities of shear walls in Category I structures dictates that the experimental tests be conducted on small size shear wall structures that incorporates the general construction details and characteristics of as-built shear walls

  8. SEDflume - High Shear Stress Flume

    Data.gov (United States)

    Federal Laboratory Consortium — The U.S. Army Corps of Engineers High Shear Stress flume (SEDflume) is designed for estimating erosion rates of fine-grained and mixed fine/coarse grained sediments...

  9. Analytical Study on the Beyond Design Seismic Capacity of Reinforced Concrete Shear Walls

    Energy Technology Data Exchange (ETDEWEB)

    Nugroho, Tino Sawaldi Adi [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Chi, Ho-Seok [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2015-10-15

    The OECD-NEA has organized an international benchmarking program to better understand this critical issue. The benchmark program provides test specimen geometry, test setup, material properties, loading conditions, recorded measures, and observations of the test specimens. The main objective of this research is to assess the beyond design seismic capacity of the reinforced concrete shear walls tested at the European Laboratory for Structural Assessment between 1997 and 1998 through participation in the OECD-NEA benchmark program. In this study, assessing the beyond design seismic capacity of reinforced concrete shear walls is performed analytically by comparing numerical results with experimental results. The seismic shear capacity of the reinforced concrete shear wall was predicted reasonably well using ABAQUS program. However, the proper calibration of the concrete material model was necessary for better prediction of the behavior of the reinforced concrete shear walls since the response was influenced significantly by the material constitutive model.

  10. Dynamic programming for reduction of fuel consumption in a photovoltaic/wind/diesel generating system; Doteki keikakuho ni yoru taiyoko/furyoku/diesel hatsuden system no nenryo shohiryo no sakugen

    Energy Technology Data Exchange (ETDEWEB)

    Ishikawa, K.; Kenmoku, Y.; Sakakibara, T. [Toyohashi University of Technology, Aichi (Japan); Nakagawa, S. [Maizuru National College of Technology, Kyoto (Japan); Kawamoto, T. [Shizuoka University, Shizuoka (Japan)

    1997-11-25

    Dynamic programming is employed in the study of the operation of the diesel engine in a photovoltaic/wind-force/diesel-engine power generating system, which aims at reduction in the system fuel consumption and at determining an optimum system constitution. The parameters set in this system are the photovoltaic/wind-force supply rate, photovoltaic/wind-force power generation ratio, and battery capacity. An island in Ise Bay, with an annual load power of approximately 1.59-million kWh and mean daily load power of approximately 4336kWh is assumed as the location for the system. Observation data of Ommaezaki Weather Station are utilized for the calculation of the amount of photovoltaic/wind-force power generation. It is found as the result that the fuel consumption of the diesel engine in this system decreases to 82-84% when the natural energy supply rate is 20%. It is also found that the fuel consumption of the system records the minimum at a photovoltaic/wind-force ratio of 60/40, irrespective of the battery capacity or natural energy supply rate, and this ratio is the optimum ratio. 3 refs., 9 figs., 1 tab.

  11. Size effects in shear interfaces

    OpenAIRE

    GARNIER, J

    2001-01-01

    In physical modelling (centrifuge tests, calibration chambers, laboratory tests), the size of the soil particles may not be negligible when compared to the dimensions of the models. Size effects may so disturb the response of the models and the experimental data obtained on these cannot be extended to true scale conditions. Different tests have been performed to study and quantify the size effects that may happen in shear interfaces between soils and structures : modified shear box tests, pul...

  12. Multifractal spectra in shear flows

    Science.gov (United States)

    Keefe, L. R.; Deane, Anil E.

    1989-01-01

    Numerical simulations of three-dimensional homogeneous shear flow and fully developed channel flow, are used to calculate the associated multifractal spectra of the energy dissipation field. Only weak parameterization of the results with the nondimensional shear is found, and this only if the flow has reached its asymptotic development state. Multifractal spectra of these flows coincide with those from experiments only at the range alpha less than 1.

  13. Shear Alfven waves in tokamaks

    International Nuclear Information System (INIS)

    Kieras, C.E.

    1982-12-01

    Shear Alfven waves in an axisymmetric tokamak are examined within the framework of the linearized ideal MHD equations. Properties of the shear Alfven continuous spectrum are studied both analytically and numerically. Implications of these results in regards to low frequency rf heating of toroidally confined plasmas are discussed. The structure of the spatial singularities associated with these waves is determined. A reduced set of ideal MHD equations is derived to describe these waves in a very low beta plasma

  14. Research in aeroelasticity[Wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Bak, C.

    2006-05-15

    In the Energy Research Project 'Program for Research in Applied Aeroelasticity' (EFP2005), Risoe National Laboratory (Risoe) and the Technical University of Denmark (DTU) have applied and further developed the tools in the aeroelastic design complex. The main results from the project are: 1) Adding a winglet to a wind turbine blade for minimizing the induced drag of the blade led to the biggest increase in power of 1.4%. 2) Transient wind loads during pitch motion are determined using CFD. Compared to the NREL/NASA Ames test, reasonably good agreement is seen. 3) A general method was developed for the determination of 3D angle of attack for rotating blades from either measurements or numerical computations using CFD. 4) A model of the far wake behind wind turbines was developed for stability studies of the tip vortices in the far wake. 5) Investigating the blade root region showed that the power efficiency, CP, locally can be increased significantly beyond the Betz limit, but that the global CP for the rotor cannot exceed the Betz limit. When including tip losses and a minimum blade drag coefficient, a maximum rotor CP in the range of 0.51-0.52 was obtained. 6) A new airfoil family was designed and a 3D airfoil design tool was developed. Compared to the Risoe-B1 family, the new airfoil family showed similar or improved aerodynamic and structural characteristics. 7) Four different airfoils were analyzed to reveal the differences between 2D and 3D CFD. The major conclusions are the dependency of computational results to transition modelling, and the ability of 3D DES calculations to realistically simulate the turbulent wake of an airfoil in stall. 8) The capability of a theory for simulation of Gaussian turbulence driven gust events was demonstrated by emulating a violent shear gust event from a complex site. An asymptotic model for the PDF of the largest excursion from the mean level, during an arbitrary recurrence period, has been derived for a stochastic

  15. Report on wind energy for small communities

    Energy Technology Data Exchange (ETDEWEB)

    Maissan, J.F. [Leading Edge Projects Inc., Whitehorse, YT (Canada)

    2006-04-15

    Wind energy projects can be economically viable in the north under a range of conditions when oil prices are in the range of $60 U.S. per barrel. Some of the requirements for economic viability include locations with economies of scale, availability of local equipment, availability of local technical human resources, access to reasonable transportation, and a committed community and project proponent. This paper presented the results of a study on wind energy in small northern communities. The objective of the paper was to provide an assessment of the feasibility of wind power to community leaders in diesel-dependant remote communities. The paper provided a review of wind power technologies including wind turbines; wind turbine towers; wind-diesel integration; wind penetration levels; anti-icing technology; suppliers of wind-diesel integration systems; and wind turbine manufacturers promoting wind-diesel systems. The paper also provided a review of the historical capital costs for the installation of wind projects; recommendations from project developers; project site selection criteria; as well as a simplified economic analyses for small communities. The paper also discussed the successful Kotzebue Alaska wind-diesel project as a model to follow. It described how to start a wind energy program with reference to the roles of the federal government, territorial governments and their power utilities. It was demonstrated that wind energy can be a cost effective option to reduce diesel generation requirements in the appropriate circumstances. It was concluded that deployment of wind energy in the north still needs to proceed on a carefully planned path beginning with leader projects and branching out from there. In addition, there is a need for good quality wind resource assessment at potential wind project locations in many communities in the north. refs., tabs., figs.

  16. Experimental observation of shear thickening oscillation

    DEFF Research Database (Denmark)

    Nagahiro, Shin-ichiro; Nakanishi, Hiizu; Mitarai, Namiko

    2013-01-01

    We report experimental observations of the shear thickening oscillation, i.e. the spontaneous macroscopic oscillation in the shear flow of severe shear thickening fluid. Using a density-matched starch-water mixture, in the cylindrical shear flow of a few centimeters flow width, we observed...

  17. Proceedings: Small Wind Turbine Systems, 1981

    Energy Technology Data Exchange (ETDEWEB)

    1981-01-01

    Small wind turbine technology is discussed. Systems development, test programs, utility interface issues, safety and reliability programs, applications, and marketing are discussed. For individual titles, see N83-23723 through N83-23741.

  18. Wind resource assessment and wind energy system cost analysis: Fort Huachuca, Arizona

    Energy Technology Data Exchange (ETDEWEB)

    Olsen, T.L. [Tim Olsen Consulting, Denver, CO (United States); McKenna, E. [National Renewable Energy Lab., Golden, CO (United States)

    1997-12-01

    The objective of this joint DOE and National Renewable Energy Laboratory (NREL) Strategic Environmental Research and Development Program (SERDP) project is to determine whether wind turbines can reduce costs by providing power to US military facilities in high wind areas. In support of this objective, one year of data on the wind resources at several Fort Huachuca sites was collected. The wind resource data were analyzed and used as input to an economic study for a wind energy installation at Fort Huachuca. The results of this wind energy feasibility study are presented in the report.

  19. Wind Generators

    Science.gov (United States)

    1989-01-01

    When Enerpro, Inc. president, Frank J. Bourbeau, attempted to file a patent on a system for synchronizing a wind generator to the electric utility grid, he discovered Marshall Space Flight Center's Frank Nola's power factor controller. Bourbeau advanced the technology and received a NASA license and a patent for his Auto Synchronous Controller (ASC). The ASC reduces generator "inrush current," which occurs when large generators are abruptly brought on line. It controls voltage so the generator is smoothly connected to the utility grid when it reaches its synchronous speed, protecting the components from inrush current damage. Generator efficiency is also increased in light winds by applying lower than rated voltage. Wind energy is utilized to drive turbines to generate electricity for utility companies.

  20. Wind turbine

    Science.gov (United States)

    Cheney, Jr., Marvin C.

    1982-01-01

    A wind turbine of the type having an airfoil blade (15) mounted on a flexible beam (20) and a pitch governor (55) which selectively, torsionally twists the flexible beam in response to wind turbine speed thereby setting blade pitch, is provided with a limiter (85) which restricts unwanted pitch change at operating speeds due to torsional creep of the flexible beam. The limiter allows twisting of the beam by the governor under excessive wind velocity conditions to orient the blades in stall pitch positions, thereby preventing overspeed operation of the turbine. In the preferred embodiment, the pitch governor comprises a pendulum (65,70) which responds to changing rotor speed by pivotal movement, the limiter comprising a resilient member (90) which engages an end of the pendulum to restrict further movement thereof, and in turn restrict beam creep and unwanted blade pitch misadjustment.

  1. 78 FR 29364 - Exelon Corporation, Exelon Wind 1, LLC, Exelon Wind 2, LLC, Exelon Wind 3, LLC, Exelon Wind 4...

    Science.gov (United States)

    2013-05-20

    ...-005, QF07-55-005, QF07-56-005, QF07-257-004] Exelon Corporation, Exelon Wind 1, LLC, Exelon Wind 2, LLC, Exelon Wind 3, LLC, Exelon Wind 4, LLC, Exelon Wind 5, LLC, Exelon Wind 6, LLC, Exelon Wind 7, LLC, Exelon Wind 8, LLC, Exelon Wind 9, LLC, Exelon Wind 10, LLC, Exelon Wind 11, LLC, High Plains...

  2. Engineering handbook on the atmospheric environmental guidelines for use in wind turbine generator development

    Science.gov (United States)

    Frost, W.; Long, B. H.; Turner, R. E.

    1978-01-01

    The guidelines are given in the form of design criteria relative to wind speed, wind shear, turbulence, wind direction, ice and snow loading, and other climatological parameters which include rain, hail, thermal effects, abrasive and corrosive effects, and humidity. This report is a presentation of design criteria in an engineering format which can be directly input to wind turbine generator design computations. Guidelines are also provided for developing specialized wind turbine generators or for designing wind turbine generators which are to be used in a special region of the United States.

  3. The effect of baroclinicity on the wind in the planetary boundary layer

    DEFF Research Database (Denmark)

    Floors, Rogier Ralph; Peña, Alfredo; Gryning, Sven-Erik

    2015-01-01

    close to zero and a standard deviation of approximately 3ms−1km−1. The geostrophic wind shear had a strong seasonal dependence because of temperature differences between land and sea. The mean wind profile in Hamburg, observed during an intensive campaign using radio sounding and during the whole year...... using the wind lidar, was influenced by baroclinicity. For easterly winds at Høvsøre, the estimated gradient wind decreased rapidly with height, resulting in a mean low-level jet. The turning of the wind in the boundary layer, the boundary-layer height and the empirical constants in the geostrophic drag...

  4. Modelling the wind climate of Ireland

    DEFF Research Database (Denmark)

    Frank, H.P.; Landberg, L.

    1997-01-01

    The wind climate of Ireland has been calculated using the Karlsruhe Atmospheric Mesoscale Model KAMM. The climatology is represented by 65 frequency classes of geostrophic wind that were selected as equiangular direction sectors and speed intervals with equal frequency in a sector. The results...... are compared with data from the European Wind Atlas which have been analyzed using the Wind Atlas Analysis and Application Program, WA(S)P. The prediction of the areas of higher wind power is fair. Stations with low power are overpredicted....

  5. Tariff based value of wind energy

    Energy Technology Data Exchange (ETDEWEB)

    Raekkoelaeinen, J; Vilkko, M; Antila, H; Lautala, P [Tampere Univ. of Technology (Finland)

    1996-12-31

    In this article an approach for determining a value of wind energy is presented. Calculation is based on wholesale tariffs, i.e. the value of wind energy is defined in comparison with other purchase. This approach can be utilised as an aid in the investment planning in defining the benefits of new wind generation capacity. Linear programming optimization method is used. A case study is presented for different wind scenarios. The value of wind energy can vary remarkably depending on timing of power output. (author)

  6. Tariff based value of wind energy

    Energy Technology Data Exchange (ETDEWEB)

    Raekkoelaeinen, J.; Vilkko, M.; Antila, H.; Lautala, P. [Tampere Univ. of Technology (Finland)

    1995-12-31

    In this article an approach for determining a value of wind energy is presented. Calculation is based on wholesale tariffs, i.e. the value of wind energy is defined in comparison with other purchase. This approach can be utilised as an aid in the investment planning in defining the benefits of new wind generation capacity. Linear programming optimization method is used. A case study is presented for different wind scenarios. The value of wind energy can vary remarkably depending on timing of power output. (author)

  7. Shear strength of non-shear reinforced concrete elements

    DEFF Research Database (Denmark)

    Hoang, Cao linh

    1997-01-01

    is based upon the hypothesis that cracks can be transformed into yield lines, which have lower sliding resistance than yield lines formed in uncracked concrete.Proposals have been made on how the derived standard solutions may be applied to more complicated cases, such as continuous beams, beams......The report deals with the shear strength of statically indeterminate reinforced concrete beams without shear reinforcement. Solutions for a number of beams with different load and support conditions have been derived by means of the crack sliding model developed by Jin- Ping Zhang.This model...

  8. Development of a computing program for prediction of wind power for midsize and wide grid areas. Final report; Entwicklung eines Rechenmodells zur Vorhersage der Windleistung fuer mittlere und grosse Versorgungsgebiete. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Reeder, L.; Rohrig, K.; Ernst, B.; Schorn, P.; Bettels, B.

    2002-06-30

    In co-operation with partners out of industry and research a machine program was developed predicting the output of wind power plants. Three attributes should be realised by this prediction tool: Short computing time, usable for various grid regions, high reliability. Therewith the transmission system operators get a tool for reducing the amount of control energy which is needed to ensure the balance between power generation and consumption in their networks. This prediction tool for up to two days was developed exemplary for the northern grid area of the transmission system operator 'E.ON Netz GmbH' (ENE). The wind power prediction is based on numerical weather forecast from the German weather service (Deutscher Wetterdienst). The weather forecast is given for 16 representative sites within the ENE-area. The meso-scale model KLIMM (Klima Model Mainz) was used to calculate the meteorological variables near to the wind farms, which are connected to the one transformer substation belonging to one representative place. Therefor KLIMM is fed with the weather forecast given for one limited location in the representative sites. The transformation of the meteorological variables to the output of wind power plants at the representative site is done by Neural Networks. These Neural Networks have been trained with corresponding measurements. Using an existing online-model the total wind power for the whole ENE-area will be calculated from the individual wind power of the representative sites. The Evaluation of the prediction- and measured data from 2001 shows comparing with reference-models, that the prediction-model evolved in the project lead to very good results. (orig.)

  9. Focusing of Shear Shock Waves

    Science.gov (United States)

    Giammarinaro, Bruno; Espíndola, David; Coulouvrat, François; Pinton, Gianmarco

    2018-01-01

    Focusing is a ubiquitous way to transform waves. Recently, a new type of shock wave has been observed experimentally with high-frame-rate ultrasound: shear shock waves in soft solids. These strongly nonlinear waves are characterized by a high Mach number, because the shear wave velocity is much slower, by 3 orders of magnitude, than the longitudinal wave velocity. Furthermore, these waves have a unique cubic nonlinearity which generates only odd harmonics. Unlike longitudinal waves for which only compressional shocks are possible, shear waves exhibit cubic nonlinearities which can generate positive and negative shocks. Here we present the experimental observation of shear shock wave focusing, generated by the vertical motion of a solid cylinder section embedded in a soft gelatin-graphite phantom to induce linearly vertically polarized motion. Raw ultrasound data from high-frame-rate (7692 images per second) acquisitions in combination with algorithms that are tuned to detect small displacements (approximately 1 μ m ) are used to generate quantitative movies of gel motion. The features of shear shock wave focusing are analyzed by comparing experimental observations with numerical simulations of a retarded-time elastodynamic equation with cubic nonlinearities and empirical attenuation laws for soft solids.

  10. Modeling of shear wall buildings

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, A K [North Carolina State Univ., Raleigh (USA). Dept. of Civil Engineering

    1984-05-01

    Many nuclear power plant buildings, for example, the auxiliary building, have reinforced concrete shear walls as the primary lateral load resisting system. Typically, these walls have low height to length ratio, often less than unity. Such walls exhibit marked shear lag phenomenon which would affect their bending stiffness and the overall stress distribution in the building. The deformation and the stress distribution in walls have been studied which is applicable to both the short and the tall buildings. The behavior of the wall is divided into two parts: the symmetric flange action and the antisymmetry web action. The latter has two parts: the web shear and the web bending. Appropriate stiffness equations have been derived for all the three actions. These actions can be synthesized to solve any nonlinear cross-section. Two specific problems, that of lateral and torsional loadings of a rectangular box, have been studied. It is found that in short buildings shear lag plays a very important role. Any beam type formulation which either ignores shear lag or includes it in an idealized form is likely to lead to erroneous results. On the other hand a rigidity type approach with some modifications to the standard procedures would yield nearly accurate answers.

  11. Wind energy

    International Nuclear Information System (INIS)

    Portilla S, L.A.

    1995-01-01

    The wind energy or eolic energy is a consequence of solar energy, the one which is absorbed by the atmosphere and is transformed into energy of movement of large bulks of air. In this process the atmosphere acts as the filter to the solar radiation and demotes the ultraviolet beams that result fatal to life in the Earth. The ionosphere is the most external cap and this is ionized by means of absorption process of ultraviolet radiation arising to the Sun. The atmosphere also acts as a trap to the infrared radiation, it that results from the continual process of energetic degradation. In this way, the interaction between Earth - Atmospheres, is behaved as a great greenhouse, maintaining the constant temperatures, including in the dark nights. Processes as the natural convection (that occur by the thermodynamic phenomenon), equatorial calmness, trade winds and against trade winds and global distribution of the air currents are described. The other hand, techniques as the transformation of the wind into energy and its parameters also are shown

  12. Wind power

    International Nuclear Information System (INIS)

    2006-06-01

    This road-map proposes by the Group Total aims to inform the public on the wind power. It presents the principles, the technology takes off, its applications and technology focus, the global market trends and the outlooks and Total commitments in the domain. (A.L.B.)

  13. Wind Energy Japan

    Energy Technology Data Exchange (ETDEWEB)

    Komatsubara, Kazuyo [Embassy of the Kingdom of the Netherlands, Tokyo (Japan)

    2012-06-15

    An overview is given of wind energy in Japan: Background; Wind Energy in Japan; Japanese Wind Energy Industry; Government Supports; Useful Links; Major Japanese Companies; Profiles of Major Japanese Companies; Major Wind Energy Projects in Japan.

  14. Nonlinear internal gravity waves and their interaction with the mean wind

    International Nuclear Information System (INIS)

    Grimshaw, R.

    1975-01-01

    The interaction of a wave packet of internal gravity waves with the mean wind is investigated, for the case when there is a region of wind shear and hence a critical level. The principal equations are the Doppler-shifted dispersion relation, the equation for conservation of wave action and the mean momentum equation, in which the mean wind is accelerated by a 'radiation stress' tensor, due to the waves. These equations are integrated numerically to study the behaviour of a wave packet approaching a critical level, where the horizontal phase speed matches the mean wind. The results demonstrate the exchange of energy from the waves to the mean wind in the vicinity of the critical level. The interaction between the waves and the mean wind is also studied in the absence of any initial wind shear. (author)

  15. Could Crop Height Affect the Wind Resource at Agriculturally Productive Wind Farm Sites?

    Science.gov (United States)

    Vanderwende, Brian; Lundquist, Julie K.

    2016-03-01

    The collocation of cropland and wind turbines in the US Midwest region introduces complex meteorological interactions that could influence both agriculture and wind-power production. Crop management practices may affect the wind resource through alterations of land-surface properties. We use the weather research and forecasting (WRF) model to estimate the impact of crop height variations on the wind resource in the presence of a large turbine array. A hypothetical wind farm consisting of 121 1.8-MW turbines is represented using the WRF model wind-farm parametrization. We represent the impact of selecting soybeans rather than maize by altering the aerodynamic roughness length in a region approximately 65 times larger than that occupied by the turbine array. Roughness lengths of 0.1 and 0.25 m represent the mature soy crop and a mature maize crop, respectively. In all but the most stable atmospheric conditions, statistically significant hub-height wind-speed increases and rotor-layer wind-shear reductions result from switching from maize to soybeans. Based on simulations for the entire month of August 2013, wind-farm energy output increases by 14 %, which would yield a significant monetary gain. Further investigation is required to determine the optimal size, shape, and crop height of the roughness modification to maximize the economic benefit and minimize the cost of such crop-management practices. These considerations must be balanced by other influences on crop choice such as soil requirements and commodity prices.

  16. FEM Simulation of Incremental Shear

    International Nuclear Information System (INIS)

    Rosochowski, Andrzej; Olejnik, Lech

    2007-01-01

    A popular way of producing ultrafine grained metals on a laboratory scale is severe plastic deformation. This paper introduces a new severe plastic deformation process of incremental shear. A finite element method simulation is carried out for various tool geometries and process kinematics. It has been established that for the successful realisation of the process the inner radius of the channel as well as the feeding increment should be approximately 30% of the billet thickness. The angle at which the reciprocating die works the material can be 30 deg. . When compared to equal channel angular pressing, incremental shear shows basic similarities in the mode of material flow and a few technological advantages which make it an attractive alternative to the known severe plastic deformation processes. The most promising characteristic of incremental shear is the possibility of processing very long billets in a continuous way which makes the process more industrially relevant

  17. SHEAR ACCELERATION IN EXPANDING FLOWS

    Energy Technology Data Exchange (ETDEWEB)

    Rieger, F. M. [ZAH, Institut für Theoretische Astrophysik, Universität Heidelberg, Philosophenweg 12, D-69120 Heidelberg (Germany); Duffy, P., E-mail: frank.rieger@mpi-hd.mpg.de, E-mail: peter.duffy@ucd.ie [University College Dublin, Belfield, Dublin 4 (Ireland)

    2016-12-10

    Shear flows are naturally expected to occur in astrophysical environments and potential sites of continuous non-thermal Fermi-type particle acceleration. Here we investigate the efficiency of expanding relativistic outflows to facilitate the acceleration of energetic charged particles to higher energies. To this end, the gradual shear acceleration coefficient is derived based on an analytical treatment. The results are applied to the context of the relativistic jets from active galactic nuclei. The inferred acceleration timescale is investigated for a variety of conical flow profiles (i.e., power law, Gaussian, Fermi–Dirac) and compared to the relevant radiative and non-radiative loss timescales. The results exemplify that relativistic shear flows are capable of boosting cosmic-rays to extreme energies. Efficient electron acceleration, on the other hand, requires weak magnetic fields and may thus be accompanied by a delayed onset of particle energization and affect the overall jet appearance (e.g., core, ridge line, and limb-brightening).

  18. Contact stresses by rounded punch subject to axial and transverse shear

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyung Kyu [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1999-05-01

    Contact shear stresses by rounded punch were evaluated numerically. Numerical program was successfully implemented by using an influence function method. To simulate the physical fretting problem, a closed load path of shear was considered. The influence functions on surface displacements fo both axial and transverse direction were calculated using a triangular shear traction element. Behaviour of the contact surface, such as stick and slip region during the load path was investigated together with compliance change. Irreversibility of the shear stress was shown. The importance and the utilization of the present research were discussed for analyzing the material failure induced by contact such as fretting wear and fatigue.

  19. Contact stresses by rounded punch subject to axial and transverse shear

    International Nuclear Information System (INIS)

    Kim, Hyung Kyu

    1999-01-01

    Contact shear stresses by rounded punch were evaluated numerically. Numerical program was successfully implemented by using an influence function method. To simulate the physical fretting problem, a closed load path of shear was considered. The influence functions on surface displacements fo both axial and transverse direction were calculated using a triangular shear traction element. Behaviour of the contact surface, such as stick and slip region during the load path was investigated together with compliance change. Irreversibility of the shear stress was shown. The importance and the utilization of the present research were discussed for analyzing the material failure induced by contact such as fretting wear and fatigue

  20. Shear Capacity of Large-Scale RC Beams Affected by ASR

    DEFF Research Database (Denmark)

    Gustenhoff Hansen, Søren; Barbosa, Ricardo Antonio; Hoang, Linh Cao

    2016-01-01

    This paper deals with the influence of alkali-silica reaction (ASR) on the shear capacity for concrete slabs without shear reinforcement. An experimental full-scale in-situ program consisting of four slabs from a bridge (Vosnæsvej) has been carried out and the results have been published in ref. [1......) and Eurocode 2 (EN 1992-1-1). The analysis shows that three experiments were highly affected by the preparation of the experimental setup. Only one experiment contained useful information about the shear capacity. The analysis of this experiment shows that the shear capacity is not reduced as much...

  1. Strength and stiffness of uniaxially tensioned reinforced concrete panels subjected to membrane shear. Technical report

    International Nuclear Information System (INIS)

    Hilmy, S.I.; White, R.N.; Gergely, P.

    1982-06-01

    This report presents experimental and analytical results on internal pressurization effects and seismic shear effects in a concrete containment vessel that is cracked by tension in one direction only. The experimental program, which was restricted to 6 in. thick flat specimens with two-way reinforcement, included establishment of (a) extensional stiffness for uniaxially tensioned specimens stressed to 0.6fy, and (b) shear strength and stiffness of these cracked specimens with tension levels ranging from 0 to 0.9fy; values were about 10 to 15 percent higher than in similar biaxially tensioned specimens. Eleven (11) specimens were tested (6 in monotonic shear and 5 in reversing cyclic shear)

  2. Applications of wind turbines in Canada

    Energy Technology Data Exchange (ETDEWEB)

    South, P; Rangi, R S; Templin, R J

    1977-01-01

    There are differing views as to the role of wind energy in the overall requirements. While some people tend to ignore it there are others who think that wind could be a major source of energy. In this paper an effort has been made to determine the wind power potential and also the amount that is economically usable. From the existing wind data a map showing the distribution of wind power density has been prepared. This map shows that the maritime provinces and the west coast of Hudson Bay have high wind power potential. These figures show that the wind power potential is of the same order as the installed electrical generating capacity in Canada (58 x 10/sup 6/kW in 1974). However, in order to determine how much of this power is usable the economics of adding wind energy to an existing system must be considered. A computer program has been developed at NRC to analyze the coupling of wind turbines with mixed power systems. Using this program and making certain assumptions about the cost of WECS and fuel the maximum amount of usable wind energy has been calculated. It is shown that if an installed capacity of 420 megawatts of wind power was added to the existing diesel capacity it would result in a savings of 60,000,000 gallons of fuel oil per year. On the other hand it is shown that if the existing installed hydro electric capacity of 37,000 megawatts (1976) was increased to 60,000 megawatts without increasing the average water flow rate, an installed capacity of 60,000 megawatts of wind power could be added to the system. This would result in an average of 14,000 megawatts from the wind. Using projected manufacturing costs for vertical axis wind turbines, the average cost of wind energy could be in the range of 1.4 cents/kwh to 3.6 cents/kwh.

  3. WindScanner.eu - a new remote sensing research infrastructure for on- and offshore wind energy

    Energy Technology Data Exchange (ETDEWEB)

    Mikkelsen, Torben; Knudsen, Soeren; Sjoeholm, M.; Angeloua, N.; Tegtmeier, A. [Technical Univ. og Denmark. DTU Wind Energy, DTU Risoe Campus, Roskilde (Denmark)

    2012-07-01

    A new remote sensing based research infrastructure for atmospheric boundary-layer wind and turbulence measurements named WindScanner have during the past three years been in its early phase of development at DTU Wind Energy in Denmark. During the forthcoming three years the technology will be disseminated throughout Europe to pilot European wind energy research centers. The new research infrastructure will become an open source infrastructure that also invites collaboration with wind energy related atmospheric scientists and wind energy industry overseas. Recent achievements with 3D WindScanners and spin-off innovation activity are described. The Danish WindScanner.dk research facility is build from new and fast-scanning remote sensing equipment spurred from achievements within fiber optics and telecommunication technologies. At the same time the wind energy society has demanded excessive 3D wind flow and ever taller wind profile measurements for the wind energy resource assessment studies on- and off shore of the future. Today, hub heights on +5 MW wind turbines exceed the 100 m mark. At the Danish DTU test site Oesterild testing is ongoing with a Siemens turbine with hub height 120 meters and a rotor diameter of 154 meters; hence its blade tips reaches almost 200 meters into the sky. The wind speed profiles over the rotor planes are consequently no longer representatively measured by a single cup anemometer at hub height from a nearby met-mast; power curve assessment as well as turbine control call for multi-height multi point measurement strategies of wind speed and wind shear within the turbines entire rotor plane. The development of our new remote sensing-based WindScanner.dk facility as well as the first measurement results obtained to date are here presented, including a first wind lidar measurement of turbulence in complex terrain within an internal boundary layer developing behind an escarpment. Also measurements of wind speed and direction profiles

  4. Investigation of Shear Stud Performance in Flat Plate Using Finite Element Analysis

    Directory of Open Access Journals (Sweden)

    T.S. Viswanathan

    2014-09-01

    Full Text Available Three types of shear stud arrangement, respectively featuring an orthogonal, a radial and a critical perimeter pattern, were evaluated numerically. A numerical investigation was conducted using the finite element software ABAQUS to evaluate their ability to resist punching shear in a flat plate. The finite element analysis here is an application of the nonlinear analysis of reinforced concrete structures using three-dimensional solid finite elements. The nonlinear characteristics of concrete were achieved by employing the concrete damaged plasticity model in the finite element program. Transverse shear stress was evaluated using finite element analysis in terms of shear stress distribution for flat plate with and without shear stud reinforcement. The model predicted that shear studs placed along the critical perimeter are more effective compared to orthogonal and radial patterns.

  5. Air permeability for a concrete shear wall after a damaging seismic load simulation cycle

    International Nuclear Information System (INIS)

    Girrens, S.P.; Farrar, C.R.

    1991-01-01

    A study was initiated to estimate air leakage, driven by wind-generated pressure gradients, from a seismically damaged concrete structure. This paper describes an experiment performed to measure the air permeability in a reinforced concrete shear wall, both before and after simulated seismic loading. Static load-cycle testing was used to simulate earthquake loading. Permeability measurements were made by pressurizing one side of the shear wall above atmospheric conditions and recording the transient-pressure decay. Air permeability measurements made on the shear wall before loading fell within the range of values for concrete permeability published in the literature. As long as the structure exhibited linear load-displacement response, no variation in the air permeability was detected. However, experimental results indicate that the air permeability in the shear wall increased by a factor of 40 after the wall had been damaged (cracked)

  6. Wind Loads on Structures

    DEFF Research Database (Denmark)

    Dyrbye, Claes; Hansen, Svend Ole

    Wind loads have to be taken into account when designing civil engineering structures. The wind load on structures can be systematised by means of the wind load chain: wind climate (global), terrain (wind at low height), aerodynamic response (wind load to pressure), mechanical response (wind...... pressure to structural response) and design criteria. Starting with an introduction of the wind load chain, the book moves on to meteorological considerations, atmospheric boundary layer, static wind load, dynamic wind load and scaling laws used in wind-tunnel tests. The dynamic wind load covers vibrations...... induced by wind turbulence, vortex shedding, flutter and galloping. The book gives a comprehensive treatment of wind effects on structures and it will be useful for consulting engineers designing wind-sensitive structures. It will also be valuable for students of civil engineering as textbook...

  7. A HPC “Cyber Wind Facility” Incorporating Fully-Coupled CFD/CSD for Turbine-Platform-Wake Interactions with the Atmosphere and Ocean

    Energy Technology Data Exchange (ETDEWEB)

    Brasseur, James G. [Univ. of Colorado, Boulder, CO (United States)

    2017-05-09

    The central aims of the DOE-supported “Cyber Wind Facility” project center on the recognition that wind turbines over land and ocean generate power from atmospheric winds that are inherently turbulent and strongly varying, both spatially over the rotor disk and in temporally as the rotating blades pass through atmospheric eddies embedded within the mean wind. The daytime unstable atmospheric boundary layer (ABL) is particularly variable in space time as solar heating generates buoyancy-driven motions that interact with strong mean shear in the ABL “surface layer,” the lowest 200 - 300 m where wind turbines reside in farms. With the “Cyber Wind Facility” (CWF) program we initiate a research and technology direction in which “cyber data” are generated from “computational experiments” within a “facility” akin to a wind tunnel, but with true space-time atmospheric turbulence that drive utility-scale wind turbines at full-scale Reynolds numbers. With DOE support we generated the key “modules” within a computational framework to create a first generation Cyber Wind Facility (CWF) for single wind turbines in the daytime ABL---both over land where the ABL globally unstable and over water with closer-to-neutral atmospheric conditions but with time response strongly affected by wave-induced forcing of the wind turbine platform (here a buoy configuration). The CWF program has significantly improved the accuracy of actuator line models, evaluated with the Cyber Wind Facility in full blade-boundary-layer-resolved mode. The application of the CWF made in this program showed the existence of important ramp-like response events that likely contribute to bearing fatigue failure on the main shaft and that the advanced ALM method developed here captures the primary nonsteady response characteristics. Long-time analysis uncovered distinctive key dynamics that explain primary mechanisms that underlie potentially deleterious load transients. We also showed

  8. Wind Tunnel Modeling Of Wind Flow Over Complex Terrain

    Science.gov (United States)

    Banks, D.; Cochran, B.

    2010-12-01

    , vortex shedding, and local turbulence intensity and wind shear values. To achieve accurate results, attention must of course be paid to issues such as ensuring Reynolds number independence, avoiding blockage issues, and properly matching the velocity power spectrum, but once this is done, the laws of fluid mechanics take care of the rest. There will not be an overproduction of turbulent kinetic energy at the top of escarpments, or unacceptable dissipation of inlet turbulence levels. Modern atmospheric boundary layer wind tunnels are also often used to provide validation data for evaluating the performance of CFD model in complex flow environments. Present day computers have further increased the quality and quantity of data that can be economically obtained in a timely manner, for example through wind speed measurement using a computer controlled 3-D measurement positioning system Given this accuracy and widespread acceptance, it is perhaps surprising that ours was the only wind tunnel model in the Bolund blind experiment, an indication of how seldom physical modelling is used when estimating terrain effect for wind farms. In demonstrating how the Bolund test was modeled, this presentation will provide background on wind tunnel testing, including the governing scaling parameters. And we’ll see how our results compared to the full scale tests.

  9. Transient stability of wind turbines connected to a power grid

    Energy Technology Data Exchange (ETDEWEB)

    Counan, C.; Juston, P.; Testud, G.

    1986-09-01

    A wind turbine generator model has been adapted for digital simulation using the E.D.F. transient stability program. Component models of the wind generator are described and computed results are provided.

  10. Measurements in support of wind farm simulations and power forecasts: The Crop/Wind-energy Experiments (CWEX)

    International Nuclear Information System (INIS)

    Takle, E S; Rajewski, D A; Lundquist, J K; Gallus, W A Jr; Sharma, A

    2014-01-01

    The Midwest US currently is experiencing a large build-out of wind turbines in areas where the nocturnal low-level jet (NLLJ) is a prominent and frequently occurring feature. We describe shear characteristics of the NLLJ and their influence on wind power production. Reports of individual turbine power production and concurrent measurements of near-surface thermal stratification are used to turbine wake interactions and turbine interaction with the overlying atmosphere. Progress in forecasting conditions such as wind ramps and shear are discussed. Finally, the pressure perturbation introduced by a line of turbines produces surface flow convergence that may create a vertical velocity and hence a mesoscale influence on cloud formation by a wind farm

  11. Composite Behavior of Insulated Concrete Sandwich Wall Panels Subjected to Wind Pressure and Suction

    Directory of Open Access Journals (Sweden)

    Insub Choi

    2015-03-01

    Full Text Available A full-scale experimental test was conducted to analyze the composite behavior of insulated concrete sandwich wall panels (ICSWPs subjected to wind pressure and suction. The experimental program was composed of three groups of ICSWP specimens, each with a different type of insulation and number of glass-fiber-reinforced polymer (GFRP shear grids. The degree of composite action of each specimen was analyzed according to the load direction, type of the insulation, and number of GFRP shear grids by comparing the theoretical and experimental values. The failure modes of the ICSWPs were compared to investigate the effect of bonds according to the load direction and type of insulation. Bonds based on insulation absorptiveness were effective to result in the composite behavior of ICSWP under positive loading tests only, while bonds based on insulation surface roughness were effective under both positive and negative loading tests. Therefore, the composite behavior based on surface roughness can be applied to the calculation of the design strength of ICSWPs with continuous GFRP shear connectors.

  12. Along-wind response of a wind turbine tower with blade coupling subjected to rotationally sampled wind loading

    Energy Technology Data Exchange (ETDEWEB)

    Murtagh, P J; Basu, B; Broderick, B M [Department of Civil, Structural and Environmental Engineering, Trinity College, Dublin (Ireland)

    2005-07-15

    This paper proposes an approach to investigate the along-wind forced vibration response of a wind turbine tower and rotating blades assembly subjected to rotationally sampled stationary wind loading. The wind turbine assembly consists of three rotating rotor blades connected to the top of a flexible annular tower, constituting a multi-body dynamic entity. The tower and rotating blades are each modelled as discretized multi-degree-of-freedom (MDOF) entities, allowing the free vibration characteristics of each to be obtained using a discrete parameter approach. The free vibration properties of the tower include the effect of a rigid mass at the top, representing the nacelle, and those of the blade include the effects of centrifugal stiffening due to rotation and blade gravity loadings. The blades are excited by drag force time-histories derived from discrete Fourier transform (DFT) representations of rotationally sampled wind turbulence spectra. Blade response time-histories are obtained using the mode acceleration method, which allows for the quantification of base shear forces due to flapping for the three blades to be obtained. This resultant base shear is imparted into the top of the tower. Wind drag loading on the tower is also considered, with a series of spatially correlated nodal force time-histories being derived using DFTs of wind force spectra. The tower/nacelle is then coupled with the rotating blades by combining their equations of motion and solving for the displacement at the top of the tower under compatibility conditions in the frequency domain. An inverse Fourier transform of the frequency domain response yields the response time-history of the coupled system. The response of an equivalent system that does not consider the blade/tower interaction is also investigated, and the results are compared. (Author)

  13. 2016 Fee Wind energy directory

    International Nuclear Information System (INIS)

    2015-12-01

    France is currently engaged in the energy transition where ambitious goals are at stake to allow the country to be one of the leading European countries in renewable energies. The cost of onshore wind is getting more and more competitive and for this reason, wind energy professionals are committed in contributing actively to reach the 32 % objective of renewable energies in the final energy consumption and 40 % of renewable energies in the electricity mix for 2030. 2014 was marked by a swift growth of the installed onshore wind energy, the positive trend is confirmed in 2015 with more than 500 MW connected to the grid in the first half of the year, corresponding to the annual forecast of 1,200 MW for 2015. Thanks to the energy transition law, operational policies will be implemented through the multi-annual energy programming (PPE- programmation pluriannuelle de l'energie). France will therefore continue increasing its development of renewable energies. This law will also allow France to develop offshore wind energy and to strengthen its position regarding wind energy: with an objective of 15 GW of fixed offshore wind energy and 6 GW of floating wind energy to be built in the 2030 horizon, the sector will be able to guarantee its development, especially in the current context of strong worldwide competition. Some 10,000 direct and indirect jobs are awaited for offshore wind energy on the national territory and wind energy professionals underline that the development of the offshore wind sector will contribute to the economic dynamism of the country. This sector is thus a job creating sector as confirmed in the figures of the wind employment monitor (observatoire de l'emploi) in France, recording a significant growth in 2013 with 10,800 jobs. This upward trend was confirmed in 2014. This proves the continuous commitment of the wind industry in seeing the success of the energy transition in France in a context marked by numerous energy and climate events

  14. Quality controls for wind measurement of a 1290-MHz boundary layer profiler under strong wind conditions.

    Science.gov (United States)

    Liu, Zhao; Zheng, Chaorong; Wu, Yue

    2017-09-01

    Wind profilers have been widely adopted to observe the wind field information in the atmosphere for different purposes. But accuracy of its observation has limitations due to various noises or disturbances and hence need to be further improved. In this paper, the data measured under strong wind conditions, using a 1290-MHz boundary layer profiler (BLP), are quality controlled via a composite quality control (QC) procedure proposed by the authors. Then, through the comparison with the data measured by radiosonde flights (balloon observations), the critical thresholds in the composite QC procedure, including consensus average threshold T 1 and vertical shear threshold T 3 , are systematically discussed. And the performance of the BLP operated under precipitation is also evaluated. It is found that to ensure the high accuracy and high data collectable rate, the optimal range of subsets is determined to be 4 m/s. Although the number of data rejected by the combined algorithm of vertical shear examination and small median test is quite limited, it is proved that the algorithm is quite useful to recognize the outlier with a large discrepancy. And the optimal wind shear threshold T 3 can be recommended as 5 ms -1 /100m. During patchy precipitation, the quality of data measured by the four oblique beams (using the DBS measuring technique) can still be ensured. After the BLP data are quality controlled by the composite QC procedure, the output can show good agreement with the balloon observation.

  15. Research Developments on Power System Integration of Wind Power

    DEFF Research Database (Denmark)

    Chen, Zhe; Hansen, Jens Carsten; Wu, Qiuwei

    2011-01-01

    variability and prediction, wind power plant ancillary services, grid connection and operation, Smart grids and demand side management under market functionality. The topics of the first group of PhD program starting 2011 under the wind energy Sino-Danish Centre for Education & Research (SDC) are also......This paper presents an overview on the recent research activities and tendencies regarding grid integration of wind power in Denmark and some related European activities, including power electronics for enhancing wind power controllability, wind turbines and wind farms modeling, wind power...

  16. Wind Powering America's Wind for Schools Project: Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Baring-Gould, I.; Newcomb, C.

    2012-06-01

    This report provides an overview of the U.S. Department of Energy, Wind Powering America, Wind for Schools project. It outlines teacher-training activities and curriculum development; discusses the affiliate program that allows school districts and states to replicate the program; and contains reports that provide an update on activities and progress in the 11 states in which the Wind for Schools project operates.

  17. Stellar winds

    International Nuclear Information System (INIS)

    Weymann, R.J.

    1978-01-01

    It is known that a steady outflow of material at comparable rates of mass loss but vastly different speeds is now known to be ubiquitous phenomenon among both the luminous hot stars and the luminous but cool red giants. The flows are probably massive enough in both cases to give rise to significant effects on stellar evolution and the mass balance between stars and the interstellar medium. The possible mechanisms for these phenomena as well as the methods of observation used are described. In particular, the mass-loss processes in stars other than the sun that also involve a steady flow of matter are considered. The evidence for their existence is described, and then the question of whether the process thought to produce the solar wind is also responsible for producing these stellar winds is explored

  18. Calculating wind profiles above a pine forest

    International Nuclear Information System (INIS)

    Murphy, C.E.; Dexter, A.H.

    1978-01-01

    A major part of the environmental transport work at the Savannah River Laboratory (SRL) involves the dispersion of airborne pollutants (aerosols and gases). A major part of the Savannah River Plant (SRP) site is covered with pine forests. Because forests are ''rough'' surfaces which increase turbulence and surface shear stress and, hence, alter the dispersion patterns, the nature of the wind profiles above the forests is being investigated. Two methods for determining the surface shear caused by the atmospheric wind field over a pine plantation were compared. Friction velocity [the square root of the ratio of shearing stress over the density of air; U/sub */ = (stress/density)1/2] calculated by eddy correlation was compared with friction velocity calculated from wind profiles. Data from the first five meters above the pine forest were compared. The data indicated that there was no significant difference in the mean friction velocity measured by each method. However, there were large differences in individual values calculated by the two methods for many of the measurement periods. An attempt was made to reconcile the differences in the measured values, but no satisfactory method was found

  19. Scaling of turbulence spectra measured in strong shear flow near the Earth’s surface

    Science.gov (United States)

    Mikkelsen, T.; Larsen, S. E.; Jørgensen, H. E.; Astrup, P.; Larsén, X. G.

    2017-12-01

    Within the lowest kilometer of the Earth’s atmosphere, in the so-called atmospheric boundary layer, winds are often gusty and turbulent. Nearest to the ground, the turbulence is predominately generated by mechanical wall-bounded wind shear, whereas at higher altitudes turbulent mixing of heat and moisture also play a role. The variance (square of the standard deviation) of the fluctuation around the mean wind speed is a measure of the kinetic energy content of the turbulence. This kinetic energy can be resolved into the spectral distributions, or spectra, as functions of eddy size, wavenumber, or frequency. Spectra are derived from Fourier transforms of wind records as functions of space or time corresponding to wavenumber and frequency spectra, respectively. Atmospheric spectra often exhibit different subranges that can be distinguished and scaled by the physical parameters responsible for: (1) their generation; (2) the cascade of energy across the spectrum from large- to small-scale; and (3) the eventual decay of turbulence into heat owing to viscosity effects on the Kolmogorov microscale, in which the eddy size is only a fraction of a millimeter. This paper addresses atmospheric turbulence spectra in the lowest part of the atmospheric boundary layer—the so-called surface layer—where the wind shear is strong owing to the nonslip condition at the ground. Theoretical results dating back to Tchen’s early work in 1953 ‘on the spectrum of energy in turbulent shear flow’ led Tchen to predict a shear production subrange with a distinct inverse-linear power law for turbulence in a strongly sheared high-Reynolds number wall-bounded flow, as is encountered in the lowest sheared part of the atmospheric boundary layer, also known as the eddy surface layer. This paper presents observations of spectra measured in a meteorological mast at Høvsøre, Denmark, that support Tchen’s prediction of a shear production subrange following a distinct power law of degree -1

  20. Grouted Connections with Shear Keys

    DEFF Research Database (Denmark)

    Pedersen, Ronnie; Jørgensen, M. B.; Damkilde, Lars

    2012-01-01

    This paper presents a finite element model in the software package ABAQUS in which a reliable analysis of grouted pile-to-sleeve connections with shear keys is the particular purpose. The model is calibrated to experimental results and a consistent set of input parameters is estimated so that dif...... that different structural problems can be reproduced successfully....

  1. Meniscal shear stress for punching.

    Science.gov (United States)

    Tuijthof, Gabrielle J M; Meulman, Hubert N; Herder, Just L; van Dijk, C Niek

    2009-01-01

    Experimental determination of the shear stress for punching meniscal tissue. Meniscectomy (surgical treatment of a lesion of one of the menisci) is the most frequently performed arthroscopic procedure. The performance of a meniscectomy is not optimal with the currently available instruments. To design new instruments, the punching force of meniscal tissue is an important parameter. Quantitative data are unavailable. The meniscal punching process was simulated by pushing a rod through meniscal tissue at constant speed. Three punching rods were tested: a solid rod of Oslash; 3.00 mm, and two hollow tubes (Oslash; 3.00-2.60 mm) with sharpened cutting edges of 0.15 mm and 0.125 mm thick, respectively. Nineteen menisci acquired from 10 human cadaveric knee joints were punched (30 tests). The force and displacement were recorded from which the maximum shear stress was determined (average added with three times the standard deviation). The maximum shear stress for the solid rod was determined at 10.2 N/mm2. This rod required a significantly lower punch force in comparison with the hollow tube having a 0.15 mm cutting edge (plt;0.01). The maximum shear stress for punching can be applied to design instruments, and virtual reality training environments. This type of experiment is suitable to form a database with material properties of human tissue similar to databases for the manufacturing industry.

  2. Centrifuges and inertial shear forces

    NARCIS (Netherlands)

    Loon, van J.J.W.A.; Folgering, H.T.E.; Bouten, C.V.C.; Smit, T.H.

    2004-01-01

    Centrifuges are often used in biological studies for 1xg control samples in space flight microgravity experiments as well as in ground based research. Using centrifugation as a tool to generate an Earth like acceleration introduces unwanted inertial shear forces to the sample. Depending on the

  3. Wind Energy Resource Atlas of Mongolia

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, D; Schwartz, M; Scott, G.; Haymes, S.; Heimiller, D.; George, R.

    2001-08-27

    The United States Department of Energy (DOE) and the United States Agency for International Development (USAID) sponsored a project to help accelerate the large-scale use of wind energy technologies in Mongolia through the development of a wind energy resource atlas of Mongolia. DOE's National Renewable Energy Laboratory (NREL) administered and conducted this project in collaboration with USAID and Mongolia. The Mongolian organizations participating in this project were the Scientific, Production, and Trade Corporation for Renewable Energy (REC) and the Institute of Meteorology and Hydrology (IMH). The primary goals of the project were to develop detailed wind resource maps for all regions of Mongolia for a comprehensive wind resource atlas, and to establish a wind-monitoring program to identify prospective sites for wind energy projects and help validate some of the wind resource estimates.

  4. Wind conditions for wind turbine design

    Energy Technology Data Exchange (ETDEWEB)

    Maribo Pedersen, B.

    1999-04-01

    Delegates from Europe and USA attended the meeting and discussed general aspects of wind conditions for wind turbine design. The subjects and the presented papers covered a very broad range of aspects of wind conditions and related influence on the wind turbine. (EHS)

  5. Analytical Model for Mean Flow and Fluxes of Momentum and Energy in Very Large Wind Farms

    Science.gov (United States)

    Markfort, Corey D.; Zhang, Wei; Porté-Agel, Fernando

    2018-01-01

    As wind-turbine arrays continue to be installed and the array size continues to grow, there is an increasing need to represent very large wind-turbine arrays in numerical weather prediction models, for wind-farm optimization, and for environmental assessment. We propose a simple analytical model for boundary-layer flow in fully-developed wind-turbine arrays, based on the concept of sparsely-obstructed shear flows. In describing the vertical distribution of the mean wind speed and shear stress within wind farms, our model estimates the mean kinetic energy harvested from the atmospheric boundary layer, and determines the partitioning between the wind power captured by the wind turbines and that absorbed by the underlying land or water. A length scale based on the turbine geometry, spacing, and performance characteristics, is able to estimate the asymptotic limit for the fully-developed flow through wind-turbine arrays, and thereby determine if the wind-farm flow is fully developed for very large turbine arrays. Our model is validated using data collected in controlled wind-tunnel experiments, and its usefulness for the prediction of wind-farm performance and optimization of turbine-array spacing are described. Our model may also be useful for assessing the extent to which the extraction of wind power affects the land-atmosphere coupling or air-water exchange of momentum, with implications for the transport of heat, moisture, trace gases such as carbon dioxide, methane, and nitrous oxide, and ecologically important oxygen.

  6. NUMERICAL SIMULATION OF AN AGRICULTURAL SOIL SHEAR STRESS TEST

    Directory of Open Access Journals (Sweden)

    Andrea Formato

    2007-03-01

    Full Text Available In this work a numerical simulation of agricultural soil shear stress tests was performed through soil shear strength data detected by a soil shearometer. We used a soil shearometer available on the market to measure soil shear stress and constructed special equipment that enabled automated detection of soil shear stress. It was connected to an acquisition data system that displayed and recorded soil shear stress during the full field tests. A soil shearometer unit was used to the in situ measurements of soil shear stress in full field conditions for different types of soils located on the right side of the Sele river, at a distance of about 1 km from each other, along the perpendicular to the Sele river in the direction of the sea. Full field tests using the shearometer unit were performed alongside considered soil characteristic parameter data collection. These parameter values derived from hydrostatic compression and triaxial tests performed on considered soil samples and repeated 4 times and we noticed that the difference between the maximum and minimum values detected for every set of performed tests never exceeded 4%. Full field shear tests were simulated by the Abaqus program code considering three different material models of soils normally used in the literature, the Mohr-Coulomb, Drucker-Prager and Cam-Clay models. We then compared all data outcomes obtained by numerical simulations with those from the experimental tests. We also discussed any further simulation data results obtained with different material models and selected the best material model for each considered soil to be used in tyre/soil contact simulation or in soil compaction studies.

  7. Switching overvoltages in offshore wind power grids

    DEFF Research Database (Denmark)

    Arana Aristi, Ivan

    and cables are presented. In Chapter 4 results from time domain measurements and simulations of switching operations in offshore wind power grids are described. Specifically, switching operations on a single wind turbine, the collection grid, the export system and the external grid measured in several real...... offshore wind farms are shown together with simulation results. Switching operations in offshore wind power grids can be simulated with different electromagnetic transient programs. Different programs were used in the project and compared results are included in Chapter 4. Also in Chapter 4 different......Switching transients in wind turbines, the collection grid, the export system and the external grid in offshore wind farms, during normal or abnormal operation, are the most important phenomena when conducting insulation coordination studies. However, the recommended models and methods from...

  8. Wind Vision: A New Era for Wind Power in the United States (Highlights); U.S. Department of Energy (DOE), NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-03-01

    This is a four-part Wind Vision project, consisting of Wind Vision Highlights, Executive Summary, a Full Report, and Appendix. The U.S. Department of Energy (DOE) Wind Program, in close cooperation with the wind industry, led a comprehensive analysis to evaluate future pathways for the wind industry. The Wind Vision report updates and expands upon the DOE's 2008 report, 20% Wind Energy by 2030, and defines the societal, environmental, and economic benefits of wind power in a scenario with wind energy supplying 10% of national end-use electricity demand by 2020, 20% by 2030, and 35% by 2050.

  9. Use of wind energy

    Energy Technology Data Exchange (ETDEWEB)

    Vasil' yeva, I G

    1982-01-01

    Programs on the use of wind energy have been adopted in over 12 countries. The WU of low power is manufactured by over 100 firms. One of the main trends for the use of wind energy currently is water pumping. The cost of operating water pumps with diesel and electric drive has increased and they have become not very accessible for a considerable part of the population in the developing countries. There are now about one million wind pump units (WPU) operating in the world, mainly in the United States, Australia and Argentina. The average power of the WPU is less than or equal to 0.5 kW. A trend is developing wind energy associated with the creation of wind heat units for heat supply of houses. When powerful experimental WEU are operating, the problem was revealed of their influence on the environment. The main difficulties are associated with creating WEU of electromagnetic interference, which in particular, influence the quality of television transmissions. This problem was encountered in operating the WEU P = 200 kW in the United States in Rhode Island. Normal operation of the television receivers was guaranteed with the help of cable network. A method was developed from calculating the zone of interferences which should be used in the future in setting up the WEU. A study was made of the noise from the operating of the WEU. The noise level of the WEU is in limits of permissible, however in direct proximity to the unit, intensive infrasonic fluctuations develop. The most important ecological consequence of building powerful WEU could be the death of nocturnal birds as a result of their colliding with the rotating blades. It is noted that this can be avoided by lighting the WEU.

  10. Worldwide potential of wind energy

    Energy Technology Data Exchange (ETDEWEB)

    Flavin, C

    1982-01-01

    A well-documented discussion is presented dealing with the worldwide potential of wind energy as a source of electrical and mechanical power. It is pointed out that 2% of the solar insolation is converted to wind kinetic energy; it is constantly renewed and nondepletable. Efficiency of windmills are discussed (20 to 40%) and payback periods of less than 5 years are cited. Effects of wind velocity and site location are described. Wind pumps are reviewed and the need for wind pumps, particularly in the developing countries is stressed. The generation of electricity by windmills using small turbines is reviewed and appears promising in areas with wind velocities greater than 12 mi/hr. The development of large windmills and groups of windmills (windfarms) for large scale electrical power is discussed, illustrated, and reviewed (offshore sites included). Environmental and safety problems are considered as well as the role of electrical utilities, government support and research activities. It is concluded that the potential contribution of wind energy is immense and that mechanical windmills may become one of the most important renewable technologies. Electrical generating potential is estimated at 20 to 30% of electrical needs. International programs are discussed briefly. 57 references. (MJJ)

  11. Wind load effects on high rise buildings in Peninsular Malaysia

    Science.gov (United States)

    Nizamani, Z.; Thang, K. C.; Haider, B.; Shariff, M.

    2018-04-01

    Wind is a randomly varying dynamic phenomenon composed of a multitude of eddies of varying sizes and rotational characteristics along a general stream of air moving relative to the ground. These eddies give wind its gustiness, creating fluctuation and results in a complex flow characteristics. The wind vector at any point can be regarded as the sum of mean wind vector and the fluctuation components. These components not only vary with height but also dependant on the approach terrain and topography. Prevailing wind exerts pressure onto the structural surfaces. The effects of wind pressure in the form of shear and bending moments are found to be a major problem in structural failure. This study aims to study the effects of wind load on a fifteen-storey high rise building using EN 1991-1-4 code and MS1553:2002. The simulation results showed that by increasing the wind speed, the storey resultant forces, namely storey shear and storey moment increases significantly. Furthermore, simulation results according to EN 1991-1-4 yield higher values compared to the simulation results according to MS1553:2002.

  12. IEA Wind Energy Annual Report 2000

    Energy Technology Data Exchange (ETDEWEB)

    2001-05-01

    The twenty-third IEA Wind Energy Annual Report reviews the progress during 2000 of the activities in the Implementing Agreement for Co-operation in the Research and Development on Wind Turbine Systems under the auspices of the International Energy Agency (IEA). The agreement and its program, which is known as IEA R&D Wind, is a collaborative venture among 19 contracting parties from 17 IEA member countries and the European Commission.

  13. Effect of shear span, concrete strength and strrup spacing on behavior of pre-stressed concrete beams

    International Nuclear Information System (INIS)

    Ahmad, S.; Bukhari, I.A.

    2007-01-01

    The shear strength of pre-stressed concrete beams is one of the most important factors to be considered in their design. The available data on shear behavior of pre-tensioned prestressed concrete beams is very limited. In this experimental study, pre-tensioned prestressed concrete I-beams are fabricated with normal and high- strength concretes, varying stirrup spacing and shear span-to-depth ratios. 1Wenty one I-beam specimens that are 300 mm deep and 3745-4960mm long are tested up to failure while deflections, cracking pattern, cracking and failure loads were recorded. The research results are compared with ACI 318-02 and Structure Analysis Program, Response 2000. It was observed that with the decrease in concrete strength, failure mode of prestressed concrete beams changes from flexure shear to web shear cracking for values of shear span-to-depth ratio less than 4.75. Increase in stirrup spacing decreased the effectiveness of stirrups in transmitting shear across crack as a result of which failure mode is changed to web shear cracking especially for beams with lower values of shear span-to-depth ratios. ACI code underestimates the shear carrying capacity of prestressed concrete beams with lower values of shear span- to-depth ratios. Response 2000 can be used more effectively in predicting shear behavior of normal strength prestressed concrete beams. (author)

  14. Remote Sensing for Wind Energy

    DEFF Research Database (Denmark)

    The Remote Sensing in Wind Energy Compendium provides a description of several topics and it is our hope that students and others interested will learn from it. The idea behind this compendium began in year 2008 at Risø DTU during the first PhD Summer School: Remote Sensing in Wind Energy. Thus...... in the Meteorology and Test and Measurements Programs from the Wind Energy Division at Risø DTU in the PhD Summer Schools. We hope to add more topics in future editions and to update as necessary, to provide a truly state-of-the-art compendium available for people involved in Remote Sensing in Wind Energy....

  15. 2011 Wind Technologies Market Report

    Energy Technology Data Exchange (ETDEWEB)

    Wiser, Ryan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Bolinger, Mark [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Barbose, Galen [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Darghouth, Naim [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hoen, Ben [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Mills, Andrew [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Porter, Kevin [Exeter Associates, Columbia, MD (United States); Buckley, Michael [Exeter Associates, Columbia, MD (United States); Fink, Sari [Exeter Associates, Columbia, MD (United States); Oteri, Frank [National Renewable Energy Lab. (NREL), Golden, CO (United States); Tegen, Suzanne [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2012-08-01

    The U.S. wind power industry is facing uncertain times. With 2011 capacity additions having risen from 2010 levels and with a further sizable increase expected in 2012, there are – on the surface – grounds for optimism. Key factors driving growth in 2011 included continued state and federal incentives for wind energy, recent improvements in the cost and performance of wind power technology, and the need to meet an end-of-year construction start deadline in order to qualify for the Section 1603 Treasury grant program. At the same time, the currently-slated expiration of key federal tax incentives for wind energy at the end of 2012 – in concert with continued low natural gas prices and modest electricity demand growth – threatens to dramatically slow new builds in 2013.

  16. Megawatt wind turbines gaining momentum

    International Nuclear Information System (INIS)

    Oehlenschlaeger, K.; Madsen, B.T.

    1996-01-01

    Through the short history of the modern wind turbine, electric utilities have made it amply clear that they have held a preference for large scale wind turbines over smaller ones, which is why wind turbine builders through the years have made numerous attempts develop such machines - machines that would meet the technical, aesthetic and economic demands that a customer would require. Considerable effort was put into developing such wind turbines in the early 1980s. There was the U.S. Department of Energy's MOD 1-5 program, which ranged up to 3.2 MW, Denmark's Nibe A and B, 630 kW turbine and the 2 MW Tjaereborg machine, Sweden's Naesudden, 3 MW, and Germany's Growian, 3 MW. Most of these were dismal failures, though some did show the potential of MW technology. (au)

  17. Accounting for the effect of turbulence on wind turbine power curves

    DEFF Research Database (Denmark)

    Clifton, A.; Wagner, Rozenn

    2014-01-01

    in turbulence; the turbulence renormalization method cannot account for changes in shear other than by using the the equivalent wind speed, which is derived from wind speed data at multiple heights in the rotor disk. The machine learning method is best able to predict the power as conditions change, and could...

  18. Shear banding, discontinuous shear thickening, and rheological phase transitions in athermally sheared frictionless disks

    Science.gov (United States)

    Vâgberg, Daniel; Olsson, Peter; Teitel, S.

    2017-05-01

    We report on numerical simulations of simple models of athermal, bidisperse, soft-core, massive disks in two dimensions, as a function of packing fraction ϕ , inelasticity of collisions as measured by a parameter Q , and applied uniform shear strain rate γ ˙. Our particles have contact interactions consisting of normally directed elastic repulsion and viscous dissipation, as well as tangentially directed viscous dissipation, but no interparticle Coulombic friction. Mapping the phase diagram in the (ϕ ,Q ) plane for small γ ˙, we find a sharp first-order rheological phase transition from a region with Bagnoldian rheology to a region with Newtonian rheology, and show that the system is always Newtonian at jamming. We consider the rotational motion of particles and demonstrate the crucial importance that the coupling between rotational and translational degrees of freedom has on the phase structure at small Q (strongly inelastic collisions). At small Q , we show that, upon increasing γ ˙, the sharp Bagnoldian-to-Newtonian transition becomes a coexistence region of finite width in the (ϕ ,γ ˙) plane, with coexisting Bagnoldian and Newtonian shear bands. Crossing this coexistence region by increasing γ ˙ at fixed ϕ , we find that discontinuous shear thickening can result if γ ˙ is varied too rapidly for the system to relax to the shear-banded steady state corresponding to the instantaneous value of γ ˙.

  19. Shear behaviour of reinforced phyllite concrete beams

    International Nuclear Information System (INIS)

    Adom-Asamoah, Mark; Owusu Afrifa, Russell

    2013-01-01

    Highlights: ► Phyllite concrete beams often exhibited shear with anchorage bond failure. ► Different shear design provisions for reinforced phyllite beams are compared. ► Predicted shear capacity of phyllite beams must be modified by a reduction factor. -- Abstract: The shear behaviour of concrete beams made from phyllite aggregates subjected to monotonic and cyclic loading is reported. First diagonal shear crack load of beams with and without shear reinforcement was between 42–58% and 42–92% of the failure loads respectively. The phyllite concrete beams without shear links had lower post-diagonal cracking shear resistance compared to corresponding phyllite beams with shear links. As a result of hysteretic energy dissipation, limited cyclic loading affected the stiffness, strength and deformation of the phyllite beams with shear reinforcement. Generally, beams with and without shear reinforcement showed anchorage bond failure in addition to the shear failure due to high stress concentration near the supports. The ACI, BS and EC codes are conservative for the prediction of phyllite concrete beams without shear reinforcement but they all overestimate the shear strength of phyllite concrete beams with shear reinforcement. It is recommended that the predicted shear capacity of phyllite beams reinforced with steel stirrups be modified by a reduction factor of 0.7 in order to specify a high enough safety factor on their ultimate strength. It is also recommended that susceptibility of phyllite concrete beams to undergo anchorage bond failure is averted in design by the provision of greater anchorage lengths than usually permitted.

  20. Shear instability of a gyroid diblock copolymer

    DEFF Research Database (Denmark)

    Eskimergen, Rüya; Mortensen, Kell; Vigild, Martin Etchells

    2005-01-01

    -induced destabilization is discussed in relation to analogous observations on shear-induced order-to-order and disorder-to-order transitions observed in related block copolymer systems and in microemulsions. It is discussed whether these phenomena originate in shear-reduced fluctuations or shear-induced dislocations....

  1. Study on shear properties of coral sand under cyclic simple shear condition

    Science.gov (United States)

    Ji, Wendong; Zhang, Yuting; Jin, Yafei

    2018-05-01

    In recent years, the ocean development in our country urgently needs to be accelerated. The construction of artificial coral reefs has become an important development direction. In this paper, experimental studies of simple shear and cyclic simple shear of coral sand are carried out, and the shear properties and particle breakage of coral sand are analyzed. The results show that the coral sand samples show an overall shear failure in the simple shear test, which is more accurate and effective for studying the particle breakage. The shear displacement corresponding to the peak shear stress of the simple shear test is significantly larger than that corresponding to the peak shear stress of the direct shear test. The degree of particle breakage caused by the simple shear test is significantly related to the normal stress level. The particle breakage of coral sand after the cyclic simple shear test obviously increases compared with that of the simple shear test, and universal particle breakage occurs within the whole particle size range. The increasing of the cycle-index under cyclic simple shear test results in continuous compacting of the sample, so that the envelope curve of peak shearing force increases with the accumulated shear displacement.

  2. Wind Energy Basics | NREL

    Science.gov (United States)

    Wind Energy Basics Wind Energy Basics We have been harnessing the wind's energy for hundreds of grinding grain. Today, the windmill's modern equivalent-a wind turbine can use the wind's energy to most energy. At 100 feet (30 meters) or more aboveground, they can take advantage of the faster and

  3. Prospecting for Wind

    Science.gov (United States)

    Swapp, Andy; Schreuders, Paul; Reeve, Edward

    2011-01-01

    Many people use wind to help meet their needs. Over the years, people have been able to harness or capture the wind in many different ways. More recently, people have seen the rebirth of electricity-generating wind turbines. Thus, the age-old argument about technology being either good or bad can also be applied to the wind. The wind can be a…

  4. Careers in Wind Energy

    Science.gov (United States)

    Liming, Drew; Hamilton, James

    2011-01-01

    As a common form of renewable energy, wind power is generating more than just electricity. It is increasingly generating jobs for workers in many different occupations. Many workers are employed on wind farms: areas where groups of wind turbines produce electricity from wind power. Wind farms are frequently located in the midwestern, western, and…

  5. Determination of mechanical properties of some glass fiber reinforced plastics suitable to Wind Turbine Blade construction

    Science.gov (United States)

    Steigmann, R.; Savin, A.; Goanta, V.; Barsanescu, P. D.; Leitoiu, B.; Iftimie, N.; Stanciu, M. D.; Curtu, I.

    2016-08-01

    The control of wind turbine's components is very rigorous, while the tower and gearbox have more possibility for revision and repairing, the rotor blades, once they are deteriorated, the defects can rapidly propagate, producing failure, and the damages can affect large regions around the wind turbine. This paper presents the test results, performed on glass fiber reinforced plastics (GFRP) suitable to construction of wind turbine blades (WTB). The Young modulus, shear modulus, Poisson's ratio, ultimate stress have been determined using tensile and shear tests. Using Dynamical Mechanical Analysis (DMA), the activation energy for transitions that appear in polyester matrix as well as the complex elastic modulus can be determined, function of temperature.

  6. Shear failure of granular materials

    Science.gov (United States)

    Degiuli, Eric; Balmforth, Neil; McElwaine, Jim; Schoof, Christian; Hewitt, Ian

    2012-02-01

    Connecting the macroscopic behavior of granular materials with the microstructure remains a great challenge. Recent work connects these scales with a discrete calculus [1]. In this work we generalize this formalism from monodisperse packings of disks to 2D assemblies of arbitrarily shaped grains. In particular, we derive Airy's expression for a symmetric, divergence-free stress tensor. Using these tools, we derive, from first-principles and in a mean-field approximation, the entropy of frictional force configurations in the Force Network Ensemble. As a macroscopic consequence of the Coulomb friction condition at contacts, we predict shear failure at a critical shear stress, in accordance with the Mohr-Coulomb failure condition well known in engineering. Results are compared with numerical simulations, and the dependence on the microscopic geometric configuration is discussed. [4pt] [1] E. DeGiuli & J. McElwaine, PRE 2011. doi: 10.1103/PhysRevE.84.041310

  7. Global composites of surface wind speeds in tropical cyclones based on a 12 year scatterometer database

    Science.gov (United States)

    Klotz, Bradley W.; Jiang, Haiyan

    2016-10-01

    A 12 year global database of rain-corrected satellite scatterometer surface winds for tropical cyclones (TCs) is used to produce composites of TC surface wind speed distributions relative to vertical wind shear and storm motion directions in each TC-prone basin and various TC intensity stages. These composites corroborate ideas presented in earlier studies, where maxima are located right of motion in the Earth-relative framework. The entire TC surface wind asymmetry is down motion left for all basins and for lower strength TCs after removing the motion vector. Relative to the shear direction, the motion-removed composites indicate that the surface wind asymmetry is located down shear left for the outer region of all TCs, but for the inner-core region it varies from left of shear to down shear right for different basin and TC intensity groups. Quantification of the surface wind asymmetric structure in further stratifications is a necessary next step for this scatterometer data set.

  8. Shear capacity of ASR damaged structures – in-depth analysis of some in-situ shear tests on bridge slabs

    DEFF Research Database (Denmark)

    Hansen, Søren Gustenhoff; Barbosa, Ricardo Antonio; Hoang, Linh Cao

    2016-01-01

    This paper deals with the influence of alkali-silica reaction (ASR) on the shear capacity for concrete slabs without shear reinforcement. An experimental full-scale in-situ program consisting of four slabs from a bridge (Vosnæsvej) has been carried out and the results have been published in ref. [1......] with the principal author of this paper as co-author. After the experiments, a detailed measurement of the test specimens was conducted. Based on these measurements a thorough analysis of the experimental results was carried out and evaluated by a plastic model for shear capacity, Crack Sliding Model (CSM...

  9. Wind profiler observations of a monsoon low-level jet over a tropical Indian station

    Directory of Open Access Journals (Sweden)

    M. C. R. Kalapureddy

    2007-11-01

    Full Text Available Three-year high-resolution wind observations of the wind profiler have been utilized to characterize the diurnal and seasonal features of the monsoon Low-Level Jet (LLJ over a tropical station, Gadanki (13.5° N, 79.2° E, with a focus on the diurnal variability of low-level winds. The Boreal summer monsoon winds show a conspicuously strong westerly LLJ with average wind speed exceeding 20 m s−1. The L-band wind profiler measurements have shown an advantage of better height and time resolutions over the conventional radiosonde method for diurnal wind measurements. An interesting diurnal oscillation of LLJ core has been observed. It is varying in the height range of 1.8±0.6 km with the maximum and minimum intensity noticed during the early morning and afternoon hours, respectively. The jet core (wind maxima height is observed to coincide with the inversion height. Strong wind shears are normally located beneath the LLJ core. The sole wind profiler observations are capable of identifying the monsoon phases, such as onset, break and active spells, etc. The mutual influence between the LLJ and the boundary layer has been discussed. One notices that the observed LLJ diurnal structures depend on the local convective activity, wind shears and turbulence activity associated with boundary layer winds. The day-to-day change in the LLJ structure depends on the latitudinal position of the LLJ core.

  10. Taylor dispersion in wind-driven current

    Science.gov (United States)

    Li, Gang; Wang, Ping; Jiang, Wei-Quan; Zeng, Li; Li, Zhi; Chen, G. Q.

    2017-12-01

    Taylor dispersion associated with wind-driven currents in channels, shallow lakes and estuaries is essential to hydrological environmental management. For solute dispersion in a wind-driven current, presented in this paper is an analytical study of the evolution of concentration distribution. The concentration moments are intensively derived for an accurate presentation of the mean concentration distribution, up to the effect of kurtosis. The vertical divergence of concentration is then deduced by Gill's method of series expansion up to the fourth order. Based on the temporal evolution of the vertical concentration distribution, the dispersion process in the wind-driven current is concretely characterized. The uniform shear leads to a special symmetrical distribution of mean concentration free of skewness. The non-uniformity of vertical concentration is caused by convection and smeared out gradually by the effect of diffusion, but fails to disappear even at large times.

  11. Trajectory and Relative Dispersion Case Studies and Statistics from the Green River Mesoscale Deformation, Dispersion, and Dissipation Program

    Science.gov (United States)

    Niemann, Brand Lee

    A major field program to study beta-mesoscale transport and dispersion over complex mountainous terrain was conducted during 1969 with the cooperation of three government agencies at the White Sands Missile Range in central Utah. The purpose of the program was to measure simultaneously on a large number of days the synoptic and mesoscale wind fields, the relative dispersion between pairs of particle trajectories and the rate of small scale turbulence dissipation. The field program included measurements during more than 60 days in the months of March, June, and November. The large quantity of data generated from this program has been processed and analyzed to provide case studies and statistics to evaluate and refine Lagrangian variable trajectory models. The case studies selected to illustrate the complexities of mesoscale transport and dispersion over complex terrain include those with terrain blocking, lee waves, and stagnation, as well as those with large vertical wind shears and horizontal wind field deformation. The statistics of relative particle dispersion were computed and compared to the classical theories of Richardson and Batchelor and the more recent theories of Lin and Kao among others. The relative particle dispersion was generally found to increase with travel time in the alongwind and crosswind directions, but in a more oscillatory than sustained or even accelerated manner as predicted by most theories, unless substantial wind shears or finite vertical separations between particles were present. The relative particle dispersion in the vertical was generally found to be small and bounded even when substantial vertical motions due to lee waves were present because of the limiting effect of stable temperature stratification. The data show that velocity shears have a more significant effect than turbulence on relative particle dispersion and that sufficient turbulence may not always be present above the planetary boundary layer for "wind direction shear

  12. Haptic Edge Detection Through Shear

    Science.gov (United States)

    Platkiewicz, Jonathan; Lipson, Hod; Hayward, Vincent

    2016-03-01

    Most tactile sensors are based on the assumption that touch depends on measuring pressure. However, the pressure distribution at the surface of a tactile sensor cannot be acquired directly and must be inferred from the deformation field induced by the touched object in the sensor medium. Currently, there is no consensus as to which components of strain are most informative for tactile sensing. Here, we propose that shape-related tactile information is more suitably recovered from shear strain than normal strain. Based on a contact mechanics analysis, we demonstrate that the elastic behavior of a haptic probe provides a robust edge detection mechanism when shear strain is sensed. We used a jamming-based robot gripper as a tactile sensor to empirically validate that shear strain processing gives accurate edge information that is invariant to changes in pressure, as predicted by the contact mechanics study. This result has implications for the design of effective tactile sensors as well as for the understanding of the early somatosensory processing in mammals.

  13. Cyclic pitch for the control of wind turbine noise amplitude modulation

    DEFF Research Database (Denmark)

    Bertagnolio, Franck; Aagaard Madsen, Helge; Fischer, Andreas

    2014-01-01

    Using experimental data acquired during a wind turbine measurement campaign, it is shown that amplitude modulation of aerodynamic noise can be generated by the rotating blades in conjunction with the atmospheric wind shear. As an attempt to alleviate this phenomenon, a control strategy is designed...... if such a strategy is to be implemented on an actual wind turbine, though at the expense of an increased wear and tear of the pitch control system....

  14. Unsteady aerodynamics simulation of a full-scale horizontal axis wind turbine using CFD methodology

    International Nuclear Information System (INIS)

    Cai, Xin; Gu, Rongrong; Pan, Pan; Zhu, Jie

    2016-01-01

    Highlights: • A full-scale HAWT is simulated under operational conditions of wind shear and yaw. • The CFD method and sliding mesh are adopted to complete the calculation. • Thrust and torque of blades reach the peak and valley at the same time in wind shear. • The wind turbine produces yaw moment during the whole revolution in yaw case. • The torques and thrusts of the three blades present cyclical changes. - Abstract: The aerodynamic performance of wind turbines is significantly influenced by the unsteady flow around the rotor blades. The research on unsteady aerodynamics for Horizontal Axis Wind Turbines (HAWTs) is still poorly understood because of the complex flow physics. In this study, the unsteady aerodynamic configuration of a full-scale HAWT is simulated with consideration of wind shear, tower shadow and yaw motion. The calculated wind turbine which contains tapered tower, rotor overhang and tilted rotor shaft is constructed by making reference of successfully commercial operated wind turbine designed by NEG Micon and Vestas. A validated CFD method is utilized to analyze unsteady aerodynamic characteristics which affect the performance on such a full-scale HAWT. The approach of sliding mesh is used to carefully deal with the interface between static and moving parts in the flow field. The annual average wind velocity and wind profile in the atmospheric border are applied as boundary conditions. Considering the effects of wind shear and tower shadow, the simulation results show that the each blade reaches its maximum and minimum aerodynamic loads almost at the same time during the rotation circle. The blade–tower interaction imposes great impact on the power output performance. The wind turbine produces yaw moment during the whole revolution and the maximum aerodynamic loads appear at the upwind azimuth in the yaw computation case.

  15. CFD simulation of estimating critical shear stress for cleaning flat ...

    Indian Academy of Sciences (India)

    Sumit Kawale

    2017-11-22

    Nov 22, 2017 ... Jet impingement; wall shear stress; cleaning of flat plate; turbulence model; critical shear stress; ... On comparing the theoretical predictions with wall shear ... distance and Reynolds number on peak value of local shear stress ...

  16. Continuous shear - a method for studying material elements passing a stationary shear plane

    DEFF Research Database (Denmark)

    Lindegren, Maria; Wiwe, Birgitte; Wanheim, Tarras

    2003-01-01

    circumferential groove. Normally shear in metal forming processes is of another nature, namely where the material elements move through a stationary shear zone, often of small width. In this paper a method enabling the simulation of this situation is presented. A tool for continuous shear has beeen manufactured...... and tested with AlMgSil and copper. The sheared material has thereafter been tested n plane strain compression with different orientation concerning the angle between the shear plane and the compression direction....

  17. A Combined Experimental and Modeling Program to Study the Impact of Solar Wind Ions on the Surface and Exosphere of Mercury

    Science.gov (United States)

    Savin, D. W.; Bostick, B. C.; Domingue, D. L.; Ebel, D. S.; Harlow, G. E.; Killen, R. M.

    2018-05-01

    We aim to improve the interpretation of in-situ and remote-sensing data of Mercury. We will use updated exosphere and spectrophotometric models incorporating new data from lab simulations of solar wind ion irradiation of Mercury’s regolith surface.

  18. The Wind Energy Potential of Iceland

    DEFF Research Database (Denmark)

    Nawri, Nikolai; Petersen, Guðrún Nína; Björnsson, Halldór

    2014-01-01

    Downscaling simulations performed with theWeather Research and Forecasting (WRF) model were used to determine the large-scale wind energy potential of Iceland. Local wind speed distributions are represented by Weibull statistics. The shape parameter across Iceland varies between 1.2 and 3...... is higher by 100 e700 W m_2 than that of offshore winds. Based on these results, 14 test sites were selected for more detailed analyses using the Wind Atlas Analysis and Application Program (WAsP). © 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license...

  19. Turbulent wind field characterization and re-generation based on pitot tube measurements mounted on a wind turbine

    DEFF Research Database (Denmark)

    Pedersen, Mads Mølgaard; Larsen, Torben J.; Aagaard Madsen, Helge

    2015-01-01

    models that compensate for axial and tangential induction, approximated by blade element momentum theory, radial expansion of the inflow, rotor tilt, dynamic and skew inflow, tip loss, as well as braking and circulation of the flow local to the airfoil. The wind speeds measured on the rotating blades...... the measured wind speeds at the recording position. In the theoretical part of this study a quite good agreement is seen between load sensors on a turbine model exposed to the reference and the re-generated turbulence field. Finally the method is applied to full scale measurements and reasonable wind shear...

  20. Simulations of Granular Particles Under Cyclic Shear

    Science.gov (United States)

    Royer, John; Chaikin, Paul

    2012-02-01

    We perform molecular dynamics (MD) simulations of spherical grains subjected to cyclic, quasi-static shear in a 3D parallelepiped shear cell. This virtual shear cell is constructed out of rough, bumpy walls in order to minimize wall-induced ordering and has an open top surface to allow the packing to readily dilate or compact. Using a standard routine for MD simulations of frictional grains, we simulate over 1000 shear cycles, measuring grain displacements, the local packing density and changes in the contact network. Varying the shear amplitude and the friction coefficient between grains, we map out a phase diagram for the different types of behavior exhibited by these sheared grains. With low friction and high enough shear, the grains can spontaneously order into densely packed crystals. With low shear and increasing friction the packing remains disordered, yet the grains arrange themselves into configurations which exhibit limit cycles where all grains return to the same position after each full shear cycle. At higher shear and friction there is a transition to a diffusive state, where grains continue rearrange and move throughout the shear cell.

  1. Repowering of wind farms - A case study

    Energy Technology Data Exchange (ETDEWEB)

    Nivedh, B.S. [Quality Engineering and Software Technologies, Bangalore (India); Devi, R.P.K. [College of Engineering. Power Systems Engineering, Guindy (India); Sreevalsan, E. [Gamesa Wind Turbines India Private Limited, Chennai (India)

    2012-07-01

    The main objective of the study is to devise a method for assessing the repowering potential and to improve the energy output from the wind farms and also to understand the impact on the power quality due to repowering. With repowering, the first-generation wind turbines can be replaced with modern multi-megawatt wind turbines. To carry-out the study an old wind farm located at Kayathar, Tamilnadu is selected. The wind farm was commissioned in 1990's with a capacity of 7.35MW, which consists of 36 Wind Turbines each with the capacity of 200kW and 225kW. The present annual energy generation of the wind farm is 7350MWhr with the plant load factor of 11.41%. The intent of this study is to predict the annual energy output of the wind farm after the repowering using WAsP (Wind Atlas Analysis Application Program). Further this study analyses the power quality issues of the various Wind Turbines. In addition, the main feeder, in which the wind farm which is taken for the study also modeled and the impact on power quality due to repowering also studied. Simulations were carried out using MATLAB. The results are analyzed to understand the significance of repowering to overcome the energy crisis of the nation since the best locations for wind in India are occupied by old wind turbines. The following are the observations and conclusions from the above study. Plant load factor (PLF) increased to 24 %, Energy yield increased to more than 4 times and the capacity of the wind farm became double. And in the view of power quality, comparing to the existing Feeder, Repowered Feeder having less reactive power consumption, voltage variations and flickers except the harmonic distortion. (Author)

  2. Modelling Wind for Wind Farm Layout Optimization Using Joint Distribution of Wind Speed and Wind Direction

    OpenAIRE

    Ju Feng; Wen Zhong Shen

    2015-01-01

    Reliable wind modelling is of crucial importance for wind farm development. The common practice of using sector-wise Weibull distributions has been found inappropriate for wind farm layout optimization. In this study, we propose a simple and easily implementable method to construct joint distributions of wind speed and wind direction, which is based on the parameters of sector-wise Weibull distributions and interpolations between direction sectors. It is applied to the wind measurement data a...

  3. The thermal structure of a wind-driven Reynolds ridge

    Energy Technology Data Exchange (ETDEWEB)

    Phongikaroon, Supathorn; Peter Judd, K.; Smith, Geoffrey B.; Handler, Robert A. [Remote Sensing Division, Naval Research Laboratory, 20375, Washington, DC (United States)

    2004-08-01

    In this study, we investigate the nature of a Reynolds ridge formed by wind shear. We have simultaneously imaged the water surface, with a deposit of a monolayer of the surfactant, oleyl alcohol, subject to different wind shears, by using a high-resolution infrared (IR) detector and a high-speed (HS) digital camera. The results reveal that the regions around the wind-driven Reynolds ridge, which have subtle manifestations in visual imagery, possess surprisingly complex hydrodynamical and thermal structures when observed in the infrared. The IR measurements reveal a warm, clean region upstream of the ridge, which is composed of the so called fishscale structures observed in earlier investigations. The region downstream of the ridge is composed of colder fluid which forms two counter-rotating cells. A region of intermediate temperature, which we call the mixing (wake) region, forms immediately downstream of the ridge near the channel centerline. By measuring the velocity of the advected fishscales, we have determined a surface drift speed of about 2% of the wind speed. The spanwise length-scale of the structures has also been used to estimate the wind shear. In addition, a comparison of IR and visual imagery shows that the thermal field is a very sensitive indicator of the exact position of the ridge itself. (orig.)

  4. Aleutian Pribilof Islands Wind Energy Feasibility Study

    Energy Technology Data Exchange (ETDEWEB)

    Bruce A. Wright

    2012-03-27

    Under this project, the Aleutian Pribilof Islands Association (APIA) conducted wind feasibility studies for Adak, False Pass, Nikolski, Sand Point and St. George. The DOE funds were also be used to continue APIA's role as project coordinator, to expand the communication network quality between all participants and with other wind interest groups in the state and to provide continued education and training opportunities for regional participants. This DOE project began 09/01/2005. We completed the economic and technical feasibility studies for Adak. These were funded by the Alaska Energy Authority. Both wind and hydro appear to be viable renewable energy options for Adak. In False Pass the wind resource is generally good but the site has high turbulence. This would require special care with turbine selection and operations. False Pass may be more suitable for a tidal project. APIA is funded to complete a False Pass tidal feasibility study in 2012. Nikolski has superb potential for wind power development with Class 7 wind power density, moderate wind shear, bi-directional winds and low turbulence. APIA secured nearly $1M from the United States Department of Agriculture Rural Utilities Service Assistance to Rural Communities with Extremely High Energy Costs to install a 65kW wind turbine. The measured average power density and wind speed at Sand Point measured at 20m (66ft), are 424 W/m2 and 6.7 m/s (14.9 mph) respectively. Two 500kW Vestas turbines were installed and when fully integrated in 2012 are expected to provide a cost effective and clean source of electricity, reduce overall diesel fuel consumption estimated at 130,000 gallons/year and decrease air emissions associated with the consumption of diesel fuel. St. George Island has a Class 7 wind resource, which is superior for wind power development. The current strategy, led by Alaska Energy Authority, is to upgrade the St. George electrical distribution system and power plant. Avian studies in Nikolski

  5. Wind farm project economics : value of wind

    Energy Technology Data Exchange (ETDEWEB)

    Bills-Everett, T. [Mainstream Renewable Power, Toronto, ON (Canada)

    2010-07-01

    This PowerPoint presentation discussed methods of increasing the value of wind power projects. Appropriate turbine selection and layout is needed to ensure that wind resources are fully developed. Construction costs have a significant impact on project costs. The world turbine price index has not significantly fluctuated since 2006. Operating costs, and the value of wind power projects, are linked with OPEX fluctuations. Wind power projects can significantly reduce greenhouse gas (GHG) emissions. An increase in wind power capacity will reduce the overall cost of energy produced from wind power. Countries can use wind power as part of a renewable energy portfolio designed to reduce risks related to diminishing petroleum supplies. Wind power will help to ensure a global transition to renewable energy use. tabs., figs.

  6. Wind turbines, is it just wind?

    International Nuclear Information System (INIS)

    Boiteux, M.

    2012-01-01

    The author first outlines that wind energy is not only random, but almost absent in extreme situations when it would be needed (for example and notably, very cold weather without wind). He suggests the association of a gas turbine to each wind turbine, so that the gas turbine will replace non operating wind turbines. He notices that wind turbines are not proximity energy as they were said to be, and that profitability in fact requires tens of grouped giant wind turbines. He also outlines the high cost of construction of grids for the connection of these wind turbines. Thus, he states that wind energy is far from being profitable in the present conditions of electricity tariffs in France

  7. Wind energy global trends: Opportunities and challenges

    International Nuclear Information System (INIS)

    Ancona, D.F.

    1995-01-01

    Wind energy is one of the least cost and environmentally attractive new electricity source options for many parts of the world. Because of new wind turbine technology, reduced costs, short installation time, and environmental benefits, countries all over the world are beginning to once again develop one of the world's oldest energy technologies. A unique set of opportunities and challenges now faces the wind industry and its proponents. This paper discusses the potential and challenges of wind power. The US Department of Energy (DOE) is working closely with industry to develop new, improved wind turbine technology and to support both domestic and international deployment. The US DOE Wind Program is discussed within this context

  8. Main Coast Winds - Final Scientific Report

    Energy Technology Data Exchange (ETDEWEB)

    Jason Huckaby; Harley Lee

    2006-03-15

    The Maine Coast Wind Project was developed to investigate the cost-effectiveness of small, distributed wind systems on coastal sites in Maine. The restructuring of Maine's electric grid to support net metering allowed for the installation of small wind installations across the state (up to 100kW). The study performed adds insight to the difficulties of developing cost-effective distributed systems in coastal environments. The technical hurdles encountered with the chosen wind turbine, combined with the lower than expected wind speeds, did not provide a cost-effective return to make a distributed wind program economically feasible. While the turbine was accepted within the community, the low availability has been a negative.

  9. Wind Powering America FY06 Activities Summary

    Energy Technology Data Exchange (ETDEWEB)

    2007-02-01

    The Wind Powering America FY06 Activities Summary reflects the accomplishments of our state wind working groups, our programs at the National Renewable Energy Laboratory, and our partner organizations. The national WPA team remains a leading force for moving wind energy forward in the United States. WPA continues to work with its national, regional, and state partners to communicate the opportunities and benefits of wind energy to a diverse set of stakeholders. WPA now has 29 state wind working groups (welcoming New Jersey, Indiana, Illinois, and Missouri in 2006) that form strategic alliances to communicate wind's benefits to the state stakeholders. More than 120 members of national and state public and private sector organizations from 34 states attended the 5th Annual WPA All-States Summit in Pittsburgh in June.

  10. Wind of opportunity

    International Nuclear Information System (INIS)

    Jamieson, Peter

    1999-01-01

    This article traces the move towards the offshore exploitation of wind energy in Europe, and presents information on existing offshore wind energy projects and proposed wind turbine prototypes for offshore operation. The building of the first major offshore wind project at Vindeby, the use of rock socketed monopile foundations for pile drilling and erection of the wind turbines from a mobile jack-up barge, the costs of wind turbines, the fatigue loads on the support structures due to the wind loading, and the offshore wind market in the UK and Europe are discussed. (UK)

  11. Advanced structural wind engineering

    CERN Document Server

    Kareem, Ahsan

    2013-01-01

    This book serves as a textbook for advanced courses as it introduces state-of-the-art information and the latest research results on diverse problems in the structural wind engineering field. The topics include wind climates, design wind speed estimation, bluff body aerodynamics and applications, wind-induced building responses, wind, gust factor approach, wind loads on components and cladding, debris impacts, wind loading codes and standards, computational tools and computational fluid dynamics techniques, habitability to building vibrations, damping in buildings, and suppression of wind-induced vibrations. Graduate students and expert engineers will find the book especially interesting and relevant to their research and work.

  12. The economical accounting of the industrial wind power

    International Nuclear Information System (INIS)

    Poizat, F.

    2006-11-01

    The aim of this document is the description of the implementing mechanism concerning the wind energy, of February 2000 for the principles and July 2006 for the investment program of the Government on the purchase obligation of the wind electricity by EDF. The laws and orders, the cost of the wind energy are detailed and discussed. (A.L.B.)

  13. Simulation of interaction between wind farm and power system

    DEFF Research Database (Denmark)

    Sørensen, Poul Ejnar; Hansen, Anca Daniela; Janosi, L.

    2002-01-01

    A dynamic model of the wind farm Hagesholm has been implemented in the dedicated power system simulation program DIgSILENT. The wind farm con- sists of six 2MW NM2000/72 wind turbines from NEG-Micon. The model has been verified using simultaneous powerquality measurements on the 10 kV terminals...

  14. Quantifying offshore wind resources from satellite wind maps: Study area the North Sea

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Barthelmie, Rebecca Jane; Christiansen, Merete B.

    2006-01-01

    Offshore wind resources are quantified from satellite synthetic aperture radar (SAR) and satellite scatterometer observations at local and regional scale respectively at the Horns Rev site in Denmark. The method for wind resource estimation from satellite observations interfaces with the wind atlas...... of the Horns Rev wind farm is quantified from satellite SAR images and compared with state-of-the-art wake model results with good agreement. It is a unique method using satellite observations to quantify the spatial extent of the wake behind large offshore wind farms. Copyright © 2006 John Wiley & Sons, Ltd....... analysis and application program (WAsP). An estimate of the wind resource at the new project site at Horns Rev is given based on satellite SAR observations. The comparison of offshore satellite scatterometer winds, global model data and in situ data shows good agreement. Furthermore, the wake effect...

  15. Applied wind energy research at the National Wind Technology Center

    International Nuclear Information System (INIS)

    Robinson, M.C.; Tu, P.

    1997-01-01

    Applied research activities currently being undertaken at the National Wind Technology Center, part of the National Renewable Energy Laboratory, in the United States, are divided into several technical disciplines. An integrated multi-disciplinary approach is urged for the future in order to evaluate advanced turbine designs. The risk associated with any new turbine development program can thus be mitigated through the provision of the advanced technology, analysis tools and innovative designs available at the Center, and wind power can be promoted as a viable renewable energy alternative. (UK)

  16. Advanced wind turbine near-term product development. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1996-01-01

    In 1990 the US Department of Energy initiated the Advanced Wind Turbine (AWT) Program to assist the growth of a viable wind energy industry in the US. This program, which has been managed through the National Renewable Energy Laboratory (NREL) in Golden, Colorado, has been divided into three phases: (1) conceptual design studies, (2) near-term product development, and (3) next-generation product development. The goals of the second phase were to bring into production wind turbines which would meet the cost goal of $0.05 kWh at a site with a mean (Rayleigh) windspeed of 5.8 m/s (13 mph) and a vertical wind shear exponent of 0.14. These machines were to allow a US-based industry to compete domestically with other sources of energy and to provide internationally competitive products. Information is given in the report on design values of peak loads and of fatigue spectra and the results of the design process are summarized in a table. Measured response is compared with the results from mathematical modeling using the ADAMS code and is discussed. Detailed information is presented on the estimated costs of maintenance and on spare parts requirements. A failure modes and effects analysis was carried out and resulted in approximately 50 design changes including the identification of ten previously unidentified failure modes. The performance results of both prototypes are examined and adjusted for air density and for correlation between the anemometer site and the turbine location. The anticipated energy production at the reference site specified by NREL is used to calculate the final cost of energy using the formulas indicated in the Statement of Work. The value obtained is $0.0514/kWh in January 1994 dollars. 71 figs., 30 tabs.

  17. Repetitive model predictive approach to individual pitch control of wind turbines

    DEFF Research Database (Denmark)

    Adegas, Fabiano Daher; Stoustrup, Jakob; Odgaard, Peter Fogh

    2011-01-01

    prediction. As a consequence, individual pitch feed-forward control action is generated by the controller, taking ”future” wind disturbance into account. Information about the estimated wind spatial distribution one blade experience can be used in the prediction model to better control the next passing blade......Wind turbines are inherently exposed to nonuniform wind fields with of wind shear, tower shadow, and possible wake contributions. Asymmetrical aerodynamic rotor loads are a consequence of such periodic, repetitive wind disturbances experienced by the blades. A controller may estimate and use...... this peculiar disturbance pattern to better attenuate loads and regulate power by controlling the blade pitch angles individually. A novel model predictive (MPC) approach for individual pitch control of wind turbines is proposed in this paper. A repetitive wind disturbance model is incorporated into the MPC...

  18. Evaluation of wind energy investment interest and electricity generation cost analysis for Turkey

    International Nuclear Information System (INIS)

    Akdag, Seyit Ahmet; Gueler, Oender

    2010-01-01

    Turkey has remarkable wind energy potential, but its utilisation rate is very low. However, in 2007, energy investors applied to the Energy Market Regulatory Authority (EMRA) with 751 wind projects to obtain a 78180.2 MW wind power plant license. This paper first presents an overview of wind energy development in the world and then reviews related situations in Turkey. Second, to motivate the interest in wind energy investment, new wind power plant license applications in Turkey are analysed. Finally, wind electricity generation cost analyses were performed at 14 locations in Turkey. Capacity factors of investigated locations were calculated between 19.7% and 56.8%, and the production cost of electrical energy was between 1.73 and 4.99 cent/kW h for two different wind shear coefficients. (author)

  19. Flicker Mitigation by Individual Pitch Control of Variable Speed Wind Turbines With DFIG

    DEFF Research Database (Denmark)

    Zhang, Yunqian; Chen, Zhe; Hu, Weihao

    2014-01-01

    generatorto investigate the flicker emission and mitigation issues. An individual pitch control (IPC) strategy is proposed to reduce the flicker emission at different wind speed conditions. The IPC scheme is proposed and the individual pitch controller is designed according to the generator active power...... and the azimuth angle of the wind turbine. The simulations are performed on the NREL (National Renewable Energy Laboratory) 1.5-MW upwind reference wind turbine model. Simulation results show that damping the generator active power by IPC is an effective means for flicker mitigation of variable speed wind......Due to the wind speed variation, wind shear and tower shadow effects, grid connected wind turbines are the sources of power fluctuations which may produce flicker during continuous operation. This paper presents a model of an MW-level variable-speed wind turbine with a doubly fed induction...

  20. Wind energy developments in the Americas

    International Nuclear Information System (INIS)

    Swisher, R.; Ancona, D.F.

    1990-01-01

    This paper will highlight the key wind energy activities and programs of American countries. In South and Central America, wind technology awareness and opportunity is spreading. Countries have projects in the beginning stages of development and many sites with excellent wind resources are believed to exist. Argentina, Costa Rica, Colombia, Mexico, and several Caribbean countries are among those active in wind energy development. In Canada, after a decade of research and systems development, the Department of Energy Mines and Resources is conducting a review of all renewable energy technologies, including wind, to develop a strategic plan for future activities. Canadian industry continues development of various vertical axis projects and the Province of Alberta has begun a program to assess wind potential in that region. In the United States, commercial application of wind energy is continuing to expand. During 1989, over 140 MW of new wind turbine capacity was installed in wind power plants, bringing the total operating in the U.S. to 14600 turbines and 1,400 MW. During 1989, these machines produced over 2.1 billion kWh, enough to supply the residential needs of Washington D.C. or San Francisco. This is an increase of 15% over the 1988 total, even though installed operating capacity dropped by about 10% as smaller, out-dated turbines were phased out or replaced. The U.S. government is in the process of formulating a new National Energy Strategy. It seems clear that renewable energy and energy efficiency will play an increasingly important role in this strategy. The U.S. wind program continues to emphasize broad-based technology development, but has also initiated conceptual design studies for an advanced wind turbine for power generation in the late 1990s. (Author)

  1. Wind Speed Preview Measurement and Estimation for Feedforward Control of Wind Turbines

    Science.gov (United States)

    Simley, Eric J.

    Wind turbines typically rely on feedback controllers to maximize power capture in below-rated conditions and regulate rotor speed during above-rated operation. However, measurements of the approaching wind provided by Light Detection and Ranging (lidar) can be used as part of a preview-based, or feedforward, control system in order to improve rotor speed regulation and reduce structural loads. But the effectiveness of preview-based control depends on how accurately lidar can measure the wind that will interact with the turbine. In this thesis, lidar measurement error is determined using a statistical frequency-domain wind field model including wind evolution, or the change in turbulent wind speeds between the time they are measured and when they reach the turbine. Parameters of the National Renewable Energy Laboratory (NREL) 5-MW reference turbine model are used to determine measurement error for a hub-mounted circularly-scanning lidar scenario, based on commercially-available technology, designed to estimate rotor effective uniform and shear wind speed components. By combining the wind field model, lidar model, and turbine parameters, the optimal lidar scan radius and preview distance that yield the minimum mean square measurement error, as well as the resulting minimum achievable error, are found for a variety of wind conditions. With optimized scan scenarios, it is found that relatively low measurement error can be achieved, but the attainable measurement error largely depends on the wind conditions. In addition, the impact of the induction zone, the region upstream of the turbine where the approaching wind speeds are reduced, as well as turbine yaw error on measurement quality is analyzed. In order to minimize the mean square measurement error, an optimal measurement prefilter is employed, which depends on statistics of the correlation between the preview measurements and the wind that interacts with the turbine. However, because the wind speeds encountered by

  2. Investigation of the Shear Flow Effect and Tip Clearance on a Low Speed Axial Flow Compressor Cascade

    Directory of Open Access Journals (Sweden)

    Mahesh Varpe

    2013-01-01

    Full Text Available This paper explores the effect of inlet shear flow on the tip leakage flow in an axial flow compressor cascade. A flow with a high shear rate is generated in the test section of an open circuit cascade wind tunnel by using a combination of screens with a prescribed solidity. It is observed that a stable shear flow of shear rate 1.33 is possible and has a gradual decay rate until 15 times the height of the shear flow generator downstream. The computational results obtained agree well with the available experimental data on the baseline configuration. The detailed numerical analysis shows that the tip clearance improves the blade loading near the tip through the promotion of favorable incidence by the tip leakage flow. The tip clearance shifts the centre of pressure on the blade surface towards the tip. It, however, has no effect on the distribution of end wall loss and deviation angle along the span up to 60% from the hub. In the presence of a shear inflow, the end wall effects are considerable. On the other hand, with a shear inflow, the effects of tip leakage flow are observed to be partly suppressed. The shear flow reduces the tip leakage losses substantially in terms of kinetic energy associated with it.

  3. The dynamics of a shear band

    Science.gov (United States)

    Giarola, Diana; Capuani, Domenico; Bigoni, Davide

    2018-03-01

    A shear band of finite length, formed inside a ductile material at a certain stage of a continued homogeneous strain, provides a dynamic perturbation to an incident wave field, which strongly influences the dynamics of the material and affects its path to failure. The investigation of this perturbation is presented for a ductile metal, with reference to the incremental mechanics of a material obeying the J2-deformation theory of plasticity (a special form of prestressed, elastic, anisotropic, and incompressible solid). The treatment originates from the derivation of integral representations relating the incremental mechanical fields at every point of the medium to the incremental displacement jump across the shear band faces, generated by an impinging wave. The boundary integral equations (under the plane strain assumption) are numerically approached through a collocation technique, which keeps into account the singularity at the shear band tips and permits the analysis of an incident wave impinging a shear band. It is shown that the presence of the shear band induces a resonance, visible in the incremental displacement field and in the stress intensity factor at the shear band tips, which promotes shear band growth. Moreover, the waves scattered by the shear band are shown to generate a fine texture of vibrations, parallel to the shear band line and propagating at a long distance from it, but leaving a sort of conical shadow zone, which emanates from the tips of the shear band.

  4. A Comparison of Wind Flow Models for Wind Resource Assessment in Wind Energy Applications

    Directory of Open Access Journals (Sweden)

    Mathieu Landry

    2012-10-01

    Full Text Available The objective of this work was to assess the accuracy of various coupled mesoscale-microscale wind flow modeling methodologies for wind energy applications. This is achieved by examining and comparing mean wind speeds from several wind flow modeling methodologies with observational measurements from several 50 m met towers distributed across the study area. At the mesoscale level, with a 5 km resolution, two scenarios are examined based on the Mesoscale Compressible Community Model (MC2 model: the Canadian Wind Energy Atlas (CWEA scenario, which is based on standard input data, and the CWEA High Definition (CWEAHD scenario where high resolution land cover input data is used. A downscaling of the obtained mesoscale wind climate to the microscale level is then performed, where two linear microscale models, i.e., MsMicro and the Wind Atlas Analysis and Application Program (WAsP, are evaluated following three downscaling scenarios: CWEA-WAsP, CWEA-MsMicro and CWEAHD-MsMicro. Results show that, for the territory studied, with a modeling approach based on the MC2 and MsMicro models, also known as Wind Energy Simulation Toolkit (WEST, the use of high resolution land cover and topography data at the mesoscale level helps reduce modeling errors for both the mesoscale and microscale models, albeit only marginally. At the microscale level, results show that the MC2-WAsP modeling approach gave substantially better results than both MC2 and MsMicro modeling approaches due to tweaked meso-micro coupling.

  5. Advanced Offshore Wind Energy - Atlantic Consortium

    Energy Technology Data Exchange (ETDEWEB)

    Kempton, Willett

    2015-11-04

    This project developed relationships among the lead institution, U of Delaware, wind industry participants from 11 companies, and two other universities in the region. The participating regional universities were University of Maryland and Old Dominion University. Research was carried out in six major areas: Analysis and documentation of extreme oceanic wind events & their impact on design parameters, calibration of corrosivity estimates measured on a coastal turbine, measurment and modeling of tower structures, measurement and modeling of the tribology of major drive components, and gearbox conditioning monitoring using acoustic sensors. The project also had several educational goals, including establishing a course in wind energy and training graduate students. Going beyond these goals, three new courses were developed, a graduate certificate program in wind power was developed and approved, and an exchange program in wind energy was established with Danish Technical University. Related to the installation of a Gamesa G90 turbine on campus and a Gamesa-UD research program established in part due to this award, several additional research projects have been carried out based on mutual industry-university interests, and funded by turbine revenues. This award and the Gamesa partnership have jointly led to seven graduate students receiving full safety and climb training, to become “research climbers” as part of their wind power training, and contributing to on-turbine research. As a result of the educational program, already six graduate students have taken jobs in the US wind industry.

  6. Relative viscosity of emulsions in simple shear flow: Temperature, shear rate, and interfacial tension dependence

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Se Bin; Lee, Joon Sang [Dept. of Mechanical Engineering, Yonsei Unversity, Seoul (Korea, Republic of)

    2015-08-15

    We simulate an emulsion system under simple shear rates to analyze its rheological characteristics using the lattice Boltzmann method (LBM). We calculate the relative viscosity of an emulsion under a simple shear flow along with changes in temperature, shear rate, and surfactant concentration. The relative viscosity of emulsions decreased with an increase in temperature. We observed the shear-thinning phenomena, which is responsible for the inverse proportion between the shear rate and viscosity. An increase in the interfacial tension caused a decrease in the relative viscosity of the decane-in-water emulsion because the increased deformation caused by the decreased interfacial tension significantly influenced the wall shear stress.

  7. Steel Plate Shear Walls: Efficient Structural Solution for Slender High-Rise in China

    International Nuclear Information System (INIS)

    Mathias, Neville; Long, Eric; Sarkisian, Mark; Huang Zhihui

    2008-01-01

    The 329.6 meter tall 74-story Jinta Tower in Tianjin, China, is expected, when complete, to be the tallest building in the world with slender steel plate shear walls used as the primary lateral load resisting system. The tower has an overall aspect ratio close to 1:8, and the main design challenge was to develop an efficient lateral system capable of resisting significant wind and seismic lateral loads, while simultaneously keeping wind induced oscillations under acceptable perception limits. This paper describes the process of selection of steel plate shear walls as the structural system, and presents the design philosophy, criteria and procedures that were arrived at by integrating the relevant requirements and recommendations of US and Chinese codes and standards, and current on-going research

  8. Simulation of reinforced concrete short shear wall subjected to cyclic loading

    International Nuclear Information System (INIS)

    Parulekar, Y.M.; Reddy, G.R.; Vaze, K.K.; Pegon, P.; Wenzel, H.

    2014-01-01

    Highlights: • Prediction of the capacity of squat shear wall using tests and analysis. • Modification of model of concrete in the softening part. • Pushover analysis using softened truss theory and FE analysis is performed. • Modified concrete model gives reasonable accurate peak load and displacement. • The ductility, ultimate load and also crack pattern can be accurately predicted. - Abstract: This paper addresses the strength and deformation capacity of stiff squat shear wall subjected to monotonic and pseudo-static cyclic loading using experiments and analysis. Reinforced concrete squat shear walls offer great potential for lateral load resistance and the failure mode of these shear walls is brittle shear mode. Shear strength of these shear walls depend strongly on softening of concrete struts in principal compression direction due to principal tension in other direction. In this work simulation of the behavior of a squat shear wall is accurately predicted by finite element modeling by incorporating the appropriate softening model in the program. Modification of model of concrete in the softening part is suggested and reduction factor given by Vecchio et al. (1994) is used in the model. The accuracy of modeling is confirmed by comparing the simulated response with experimental one. The crack pattern generated from the 3D model is compared with that obtained from experiments. The load deflection for monotonic loads is also obtained using softened truss theory and compared with experimental one

  9. Study on the shear transfer of reinforced concrete at elevated temperature

    International Nuclear Information System (INIS)

    Ishida, Hiroaki; Kanazu, Tsutomu

    1989-01-01

    Reinforced concrete structures in nuclear power stations, such as a containment vessel and structural members supporting a reactor vessel, are designed assuming that they may be subjected to elevated temperature. In the design code, it is specified that the temperature of concrete must not exceed the limitation, and thermal effect shall be taken into account. In this study, the shearing test using Mattock type specimens was performed to investigate into the shear behavior of the reinforced concrete subjected to elevated temperature. The test parameters studied in this program were the reinforcement ratio in a shear plane, the compressive stress normal to a shear plane and temperature. The maximum shearing load of the specimens heated to 200 degC was about 10-20 % lower than that at normal temperature, but nearly equal to that of the specimens heated to 100 degC. The equation for evaluating the shearing strength ratio was proposed. The cracking width and slip at maximum shearing load increased as temperature rose. Up to 200 degC, the same relation existed between interface shear transfer rigidity and cracking width. (K.I.)

  10. Wind tunnel tests of a free yawing downwind wind turbine

    DEFF Research Database (Denmark)

    Verelst, David Robert; Larsen, Torben J.; van Wingerden, J.W.

    2012-01-01

    During February and April 2012 a series of wind tunnel tests were performed at the TU Delft Open Jet Facility (OJF) with a three bladed downwind wind turbine and a rotor radius of 0.8 meters. The setup includes an off the shelf three bladed hub, nacelle and generator on which relatively flexible ...... in free yawing conditions. Further, the effect of the tower shadow passage on the blade flapwise strain measurement is evaluated. Finally, data from the experiment is compared with preliminary simulations using DTU Wind Energy's aeroelastic simulation program HAWC2....... blades are mounted. The tower support structure has free yawing capabilities provided at the tower base. A short overview on the technical details of the experiment is provided as well as a brief summary of the design process. The discussed test cases show that the turbine is stable while operating...

  11. Predicting Shear Transformation Events in Metallic Glasses

    Science.gov (United States)

    Xu, Bin; Falk, Michael L.; Li, J. F.; Kong, L. T.

    2018-03-01

    Shear transformation is the elementary process for plastic deformation of metallic glasses, the prediction of the occurrence of the shear transformation events is therefore of vital importance to understand the mechanical behavior of metallic glasses. In this Letter, from the view of the potential energy landscape, we find that the protocol-dependent behavior of shear transformation is governed by the stress gradient along its minimum energy path and we propose a framework as well as an atomistic approach to predict the triggering strains, locations, and structural transformations of the shear transformation events under different shear protocols in metallic glasses. Verification with a model Cu64 Zr36 metallic glass reveals that the prediction agrees well with athermal quasistatic shear simulations. The proposed framework is believed to provide an important tool for developing a quantitative understanding of the deformation processes that control mechanical behavior of metallic glasses.

  12. Investigation of the Behavior of Steel Shear Walls Using Finite Elements Analysis

    Directory of Open Access Journals (Sweden)

    K. Abubakri

    2016-10-01

    Full Text Available Currently, steel shear walls are considered by engineers as an economic method against lateral loads imposed by wind and earthquake in tall structures. Accordingly, there is a growing need to develop accurate methods alongside approximation methods to estimate the behavior of these structural elements. The finite element technique is one of the strongest numerical methods in analysis of solid mechanics problems. Finite element analysis however requires high technical knowledge of the behavioral models of materials. Therefore, it is less used by designers for certain structural elements such as steel shear walls. This study examines the failure mechanism of steel shear walls using finite elements analysis and validates this modeling by comparing the results with experimental studies.

  13. Shear wall ultimate drift limits

    International Nuclear Information System (INIS)

    Duffey, T.A.; Goldman, A.; Farrar, C.R.

    1994-04-01

    Drift limits for reinforced-concrete shear walls are investigated by reviewing the open literature for appropriate experimental data. Drift values at ultimate are determined for walls with aspect ratios ranging up to a maximum of 3.53 and undergoing different types of lateral loading (cyclic static, monotonic static, and dynamic). Based on the geometry of actual nuclear power plant structures exclusive of containments and concerns regarding their response during seismic (i.e.,cyclic) loading, data are obtained from pertinent references for which the wall aspect ratio is less than or equal to approximately 1, and for which testing is cyclic in nature (typically displacement controlled). In particular, lateral deflections at ultimate load, and at points in the softening region beyond ultimate for which the load has dropped to 90, 80, 70, 60, and 50 percent of its ultimate value, are obtained and converted to drift information. The statistical nature of the data is also investigated. These data are shown to be lognormally distributed, and an analysis of variance is performed. The use of statistics to estimate Probability of Failure for a shear wall structure is illustrated

  14. Wind engineering in Africa

    NARCIS (Netherlands)

    Wisse, J.A.; Stigter, C.J.

    2007-01-01

    The International Association for Wind Engineering (IAWE) has very few contacts in Africa, the second-largest continent. This paper reviews important wind-related African issues. They all require data on wind climate, which are very sparse in Africa. Wind engineering in Africa can assist in

  15. The importance of site selection for setting up a wind turbine

    Energy Technology Data Exchange (ETDEWEB)

    Raghunandan, A.; Gowda, G.; Pandian, A. [MS RAMAIAH Institute of Technology, Bangalore (India); Ramanan, G. [RV College of Engineering, Bangalore (India)

    2012-07-01

    A wind energy system transforms the kinetic energy of the wind into mechanical or electrical energy that can be harnessed for practical use. Building a wind turbine is far more than simply a matter of finding a field or mountaintop where the wind is blowing and plopping one down. A great deal of attention should be given to finding the proper site for a wind turbine. The main factor one should consider is the average speed of the wind over an extended time. Estimation of the wind power potential for a site is the most important requirement for selecting a site for the installation of a wind turbine. Also wind turbines should be sited well above trees, buildings, and other obstacles else, the result will be poor energy production and increased wear and tear on the turbine. One way to get rid of this is to place the wind turbine on a tall tower. When selecting a place for setting up a wind turbine, engineers consider factors such as wind hazards, characteristics of the land that affect wind speed, and the effects of one turbine on nearby turbines in wind farms. The other factors that are important for selecting a site for installation of wind turbines are Hill effect, Roughness, or the amount of friction that Earth's surface exerts on wind, Tunnel effect, Turbulence, Variations in wind speed, Wind obstacles and Wind shear. This paper will emphasis on the necessary inspections which are to be done on the site before installing a Wind Turbine. (Author)

  16. Investigation of the Behavior of Steel Shear Walls Using Finite Elements Analysis

    OpenAIRE

    Abubakri, K.; Veladi, H.

    2016-01-01

    Currently, steel shear walls are considered by engineers as an economic method against lateral loads imposed by wind and earthquake in tall structures. Accordingly, there is a growing need to develop accurate methods alongside approximation methods to estimate the behavior of these structural elements. The finite element technique is one of the strongest numerical methods in analysis of solid mechanics problems. Finite element analysis however requires high technical knowledge of the behavior...

  17. Hurricane Katrina Wind Investigation Report

    Energy Technology Data Exchange (ETDEWEB)

    Desjarlais, A. O.

    2007-08-15

    This investigation of roof damage caused by Hurricane Katrina is a joint effort of the Roofing Industry Committee on Weather Issues, Inc. (RICOWI) and the Oak Ridge National Laboratory/U.S. Department of Energy (ORNL/DOE). The Wind Investigation Program (WIP) was initiated in 1996. Hurricane damage that met the criteria of a major windstorm event did not materialize until Hurricanes Charley and Ivan occurred in August 2004. Hurricane Katrina presented a third opportunity for a wind damage investigation in August 29, 2005. The major objectives of the WIP are as follows: (1) to investigate the field performance of roofing assemblies after major wind events; (2) to factually describe roofing assembly performance and modes of failure; and (3) to formally report results of the investigations and damage modes for substantial wind speeds The goal of the WIP is to perform unbiased, detailed investigations by credible personnel from the roofing industry, the insurance industry, and academia. Data from these investigations will, it is hoped, lead to overall improvement in roofing products, systems, roofing application, and durability and a reduction in losses, which may lead to lower overall costs to the public. This report documents the results of an extensive and well-planned investigative effort. The following program changes were implemented as a result of the lessons learned during the Hurricane Charley and Ivan investigations: (1) A logistics team was deployed to damage areas immediately following landfall; (2) Aerial surveillance--imperative to target wind damage areas--was conducted; (3) Investigation teams were in place within 8 days; (4) Teams collected more detailed data; and (5) Teams took improved photographs and completed more detailed photo logs. Participating associations reviewed the results and lessons learned from the previous investigations and many have taken the following actions: (1) Moved forward with recommendations for new installation procedures

  18. Accurate wind farm development and operation. Advanced wake modelling

    Energy Technology Data Exchange (ETDEWEB)

    Brand, A.; Bot, E.; Ozdemir, H. [ECN Unit Wind Energy, P.O. Box 1, NL 1755 ZG Petten (Netherlands); Steinfeld, G.; Drueke, S.; Schmidt, M. [ForWind, Center for Wind Energy Research, Carl von Ossietzky Universitaet Oldenburg, D-26129 Oldenburg (Germany); Mittelmeier, N. REpower Systems SE, D-22297 Hamburg (Germany))

    2013-11-15

    The ability is demonstrated to calculate wind farm wakes on the basis of ambient conditions that were calculated with an atmospheric model. Specifically, comparisons are described between predicted and observed ambient conditions, and between power predictions from three wind farm wake models and power measurements, for a single and a double wake situation. The comparisons are based on performance indicators and test criteria, with the objective to determine the percentage of predictions that fall within a given range about the observed value. The Alpha Ventus site is considered, which consists of a wind farm with the same name and the met mast FINO1. Data from the 6 REpower wind turbines and the FINO1 met mast were employed. The atmospheric model WRF predicted the ambient conditions at the location and the measurement heights of the FINO1 mast. May the predictability of the wind speed and the wind direction be reasonable if sufficiently sized tolerances are employed, it is fairly impossible to predict the ambient turbulence intensity and vertical shear. Three wind farm wake models predicted the individual turbine powers: FLaP-Jensen and FLaP-Ainslie from ForWind Oldenburg, and FarmFlow from ECN. The reliabilities of the FLaP-Ainslie and the FarmFlow wind farm wake models are of equal order, and higher than FLaP-Jensen. Any difference between the predictions from these models is most clear in the double wake situation. Here FarmFlow slightly outperforms FLaP-Ainslie.

  19. Analysis of Disturbance Source Inducing by The Variable Speed Wind Turbine System Forced Power Oscillations

    DEFF Research Database (Denmark)

    Tan, Jin; Hu, Weihao; Wang, Xiaoru

    2015-01-01

    The main focus of forced low frequency oscillations is to analyze the disturbance source and the origin of forced oscillations. In this paper, the origin of low-frequency periodical oscillations induced by wind turbines’ mechanical power is investigated and the mechanism is studied of fluctuating...... power transfer through permanent magnet generator wind turbine system. Considering the tower shadow and the wind shear effect, the mechanical and generator coupling model is developed by PSCAD. Simulation is done to analyze the impacts on output power of operation points and mechanical fluctuation...... components. It is shown that when the oscillation frequency of tower shadow coincides with the system natural frequency, it may cause forced oscillations, whereas, the wind shear and natural wind speed fluctuation are not likely to induce forced oscillations....

  20. Origins of Shear Jamming for Frictional Grains

    Science.gov (United States)

    Wang, Dong; Zheng, Hu; Ren, Jie; Dijksman, Joshua; Bares, Jonathan; Behringer, Robert

    2016-11-01

    Granular systems have been shown to be able to behave like solids, under shear, even when their densities are below the critical packing fraction for frictionless isotropic jamming. To understand such a phenomena, called shear jamming, the question we address here is: how does shear bring a system from a unjammed state to a jammed state, where the coordination number, Z, is no less than 3, the isotropic jamming point for frictional grains? Since Z can be used to distinguish jammed states from unjammed ones, it is vital to understand how shear increases Z. We here propose a set of three particles in contact, denoted as a trimer, as the basic unit to characterize the deformation of the system. Trimers, stabilized by inter-grain friction, fail under a certain amount of shear and bend to make extra contacts to regain stability. By defining a projection operator of the opening angle of the trimer to the compression direction in the shear, O, we see a systematically linear decrease of this quantity with respect to shear strain, demonstrating the bending of trimers as expected. In addition, the average change of O from one shear step to the next shows a good collapse when plotted against Z, indicating a universal behavior in the process of shear jamming. We acknowledge support from NSF DMR1206351, NASA NNX15AD38G, the William M. Keck Foundation and a RT-MRSEC Fellowship.

  1. Low-rise shear wall failure modes

    International Nuclear Information System (INIS)

    Farrar, C.R.; Hashimoto, P.S.; Reed, J.W.

    1991-01-01

    A summary of the data that are available concerning the structural response of low-rise shear walls is presented. This data will be used to address two failure modes associated with the shear wall structures. First, data concerning the seismic capacity of the shear walls with emphasis on excessive deformations that can cause equipment failure are examined. Second, data concerning the dynamic properties of shear walls (stiffness and damping) that are necessary to compute the seismic inputs to attached equipment are summarized. This case addresses the failure of equipment when the structure remains functional. 23 refs

  2. Wind resource assessment using the WAsP software (DTU Wind Energy E-0135)

    DEFF Research Database (Denmark)

    Mortensen, Niels Gylling

    These course notes are intended for the three-week course 46200 Planning and Development of Wind Farms given each year at the Technical University of Denmark. The purpose of the course notes is to give an introduction to wind resource assessment and siting issues using the WAsP suite of programs....

  3. 46200 Planning and Development of Wind Farms: Wind resource assessment using the WAsP software

    DEFF Research Database (Denmark)

    Mortensen, Niels Gylling

    These course notes are intended for the three-week course 46200 Planning and Development of Wind Farms given each year at the Technical University of Denmark. The purpose of the course notes is to give an introduction to wind resource assessment and siting issues using the WAsP suite of programs....

  4. Planning and Development of Wind Farms: Wind Resource Assessment and Siting

    DEFF Research Database (Denmark)

    Mortensen, Niels Gylling

    These course notes are intended for the three-week course 45700 Planning and Development of Wind Farms given at the Technical University of Denmark. The purpose of the course notes is to give an introduction to wind resource assessment and siting issues using the WAsP suite of programs....

  5. Planning and Development of Wind Farms: Wind Resource Assessment and Siting

    DEFF Research Database (Denmark)

    Mortensen, Niels Gylling

    These course notes are intended for the three-week course 46200 Planning and Development of Wind Farms given at the Technical University of Denmark. The purpose of the course notes is to give an introduction to wind resource assessment and siting issues using the WAsP suite of programs....

  6. Reconnection During Periods of Large IMF By Producing Shear Instabilities at the Dayside Convection Reversal Boundary

    Science.gov (United States)

    Qamar, S.; Clauer, C. R.; Hartinger, M.; Xu, Z.

    2017-12-01

    During periods of large interplanetary magnetic field (IMF) By component and small negative Bz (GSM Coordinates), the ionospheric polar electric potential system is distorted so as to produce large east-west convection shears across local noon. Past research has shown examples of ULF waves with periods of approximately 10 - 20 minutes observed at this convection shear by the Greenland west coast chain of magnetometers. Past work has shown examples of these waves and associated them with conditions in the solar wind and IMF, particularly periods of large IMF By component. Here we report the results of a search of several years of solar wind data to identify periods when the IMF By component is large and the magnetometer chains along the 40-degree magnetic meridian (Greenland west coast and conjugate Antarctic chains) are within a few hours of local noon. We test here the hypothesis that large IMF By reconnection leads to large convection shears across local noon that generate ULF waves through, presumably, a shear instability such as Kelvin-Helmholtz.

  7. Wind power investment within a market environment

    International Nuclear Information System (INIS)

    Baringo, L.; Conejo, A.J.

    2011-01-01

    Highlights: → The interaction of a wind power investor and the pool is represented via an MPEC. → The considered electricity pool is cleared through a network constrained auction. → Uncertainty of load and wind production is characterized by a moderate number of scenarios. → The investment model can be recast as a mixed integer linear programming problem. → Large instances of the considered model are computationally tractable. - Abstract: Within an existing transmission network, this paper considers the problem of identifying the wind power plants to be built by a wind power investor to maximize its profit. For this analysis a future target year is considered and the loads at different buses are represented by stepwise load-duration curves. The stochastic nature of both load and wind is represented via scenarios. The considered electric energy system operates under a pool-market arrangement and each producer/consumer is paid/pays the Local Marginal Price (LMP) of the bus at which it is located. The higher the wind penetration is, the lower the resulting LMPs. To tackle this problem a stochastic bilevel model is proposed, whose upper-level represents the wind investment and operation decisions with the target of maximizing profits; and its lower-level represents the market clearing under differing load and wind conditions and provides LMPs. This model can be recast as a mixed-integer linear programming problem solvable using commercially available branch-and-cut solvers. The proposed model is illustrated using an example and two case studies.

  8. Wind power plant

    Energy Technology Data Exchange (ETDEWEB)

    Caneghem, A.E. von

    1975-07-24

    The invention applies to a wind power plant in which the wind is used to drive windmills. The plant consists basically of a vertical tube with a lateral wind entrance opening with windmill on its lower end. On its upper end, the tube carries a nozzle-like top which increases the wind entering the tube by pressure decrease. The wind is thus made suitable for higher outputs. The invention is illustrated by constructional examples.

  9. Wind energy analysis system

    OpenAIRE

    2014-01-01

    M.Ing. (Electrical & Electronic Engineering) One of the most important steps to be taken before a site is to be selected for the extraction of wind energy is the analysis of the energy within the wind on that particular site. No wind energy analysis system exists for the measurement and analysis of wind power. This dissertation documents the design and development of a Wind Energy Analysis System (WEAS). Using a micro-controller based design in conjunction with sensors, WEAS measure, calcu...

  10. Wind power. [electricity generation

    Science.gov (United States)

    Savino, J. M.

    1975-01-01

    A historical background on windmill use, the nature of wind, wind conversion system technology and requirements, the economics of wind power and comparisons with alternative systems, data needs, technology development needs, and an implementation plan for wind energy are presented. Considerable progress took place during the 1950's. Most of the modern windmills feature a wind turbine electricity generator located directly at the top of their rotor towers.

  11. Volumetric scans of wind turbine wakes performed with three simultaneous wind LiDARs under different atmospheric stability regimes

    International Nuclear Information System (INIS)

    Iungo, Giacomo Valerio; Porté-Agel, Fernando

    2014-01-01

    Aerodynamic optimization of wind farm layout is a crucial task to reduce wake effects on downstream wind turbines, thus to maximize wind power harvesting. However, downstream evolution and recovery of wind turbine wakes are strongly affected by the characteristics of the incoming atmospheric boundary layer (ABL) flow, such as wind shear and turbulence intensity, which are in turn affected by the ABL thermal stability. In order to characterize the downstream evolution of wakes produced by full-scale wind turbines under different atmospheric conditions, wind velocity measurements were performed with three wind LiDARs. The volumetric scans are performed by continuously sweeping azimuthal and elevation angles of the LiDARs in order to cover a 3D volume that includes the wind turbine wake. The minimum wake velocity deficit is then evaluated as a function of the downstream location for different atmospheric conditions. It is observed that the ABL thermal stability has a significant effect on the wake evolution, and the wake recovers faster under convective conditions

  12. Shear thinning behaviors in magmas

    Science.gov (United States)

    Vetere, F. P.; Cassetta, M.; Perugini, D.

    2017-12-01

    Studies on magma rheology are of fundamental importance to understanding magmatic processes from depth to surface. Since viscosity is one of the most important parameter controlling eruption mechanisms, as well as lava flow emplacement, a comprehensive knowledge on the evolution of magma viscosities during crystallization is required. We present new viscosity data on partly crystalized basalt, andesite and analogue lavas comparable to those erupted on Mercury's northern volcanic plains. High-temperature viscosity measurements were performed using a rotational Anton Paar RheolabQC viscometer head at the PVRG labs, in Perugia (Italy) (http://pvrg.unipg.it). The relative proportion of phases in each experimental run were determined by image analysis on BS-SEM images at different magnifications; phases are glasses, clinopyroxene, spinel, plagioclase for the basalt, plagioclase and spinel for the andesite and pure enstatite and clinopyroxenes, for the analogue Mercury's composition. Glass and crystalline fractions determined by image analysis well correlate with compositions of residual melts. In order to constrain the viscosity (η) variations as a function of crystallinity, shear rate (γ) was varied from 0.1 to 5 s-1. Viscosity vs. time at constant temperature shows a typical S-shape curve. In particular, for basaltic composition η vary from 3.1-3.8 Pa s [log η] at 1493 K and crystallinity of 19 area % as γ vary from 1.0 to 0.1 s-1; the andesite viscosity evolution is 3.2 and 3.7 Pa s [log η] as γ varies from 1 to 0.1 at 1493 K and crystal content of 17 area %; finally, Mercury's analogue composition was investigated at different temperature ranging from 1533 to 1502 K (Vetere et al., 2017). Results, for γ = 0.1, 1.0 and 5.0 s-1, show viscosity variation between 2.7-4.0, 2.5-3.4 and 2.0-3.0 [log η inPa s] respectively while crystallinity vary from 9 to 27 (area %). As viscosity decreases as shear rate increases, these data points to a shear thinning behaviour

  13. Analysis of the performance and cost effectiveness of nine small wind energy conversion systems funded by the DOE small grants program

    Energy Technology Data Exchange (ETDEWEB)

    Kay, Joshua [Univ. of California, Berkeley, CA (United States)

    1982-04-01

    This report presents an analysis of the technical performance and cost effectiveness of nine small wind energy conversion systems (SWECS) funded during FY 1979 by the U.S. Department of Energy. Chapter 1 gives an analytic framework with which to evaluate the systems. Chapter 2 consists of a review of each of the nine projects, including project technical overviews, estimates of energy savings, and results of economic analysis. Chapter 3 summarizes technical, economic, and institutional barriers that are likely to inhibit widespread dissemination of SWECS technology.

  14. Industrial initiatives in the wind industry

    International Nuclear Information System (INIS)

    Edworthy, J.

    1992-01-01

    Industrial initiatives are methods of lobbying and marketing to increase the activity, revenues, profits, and commercial viability of an industry. They may be undertaken by industry individuals or firms, industry groups, government agencies, or combinations of all these. In Canada, one example of an industrial initiative is the Canadian Wind Energy Association. Other initiatives relevant to the wind power industry include Technology Inflow Programs sponsored by External Affairs Canada, used for visiting foreign firms with the view to licensing foreign technology, and Industrial Research Assistance Programs to develop or adapt new technologies in partnership with government. The Conservation/Renewable Energy Council, Small Power Producers of Alberta, and Independent Power Producers Society of Ontario are also active in supporting wind energy initiatives. In other countries, notable initiatives for wind energy include the Danish wind turbine warranty guarantee program. The Western Wind Industry Network of Canada conducts regional lobbying. It is suggested that in Canada, more such networks are needed, as well as joint ventures with utilities and governments, and more work with the regulatory agencies, to promote wind energy

  15. The Offshore New European Wind Atlas

    Science.gov (United States)

    Karagali, I.; Hahmann, A. N.; Badger, M.; Hasager, C.; Mann, J.

    2017-12-01

    The New European Wind Atlas (NEWA) is a joint effort of research agencies from eight European countries, co-funded under the ERANET Plus Program. The project is structured around two areas of work: development of dynamical downscaling methodologies and measurement campaigns to validate these methodologies, leading to the creation and publication of a European wind atlas in electronic form. This atlas will contain an offshore component extending 100 km from the European coasts. To achieve this, mesoscale models along with various observational datasets are utilised. Scanning lidars located at the coastline were used to compare the coastal wind gradient reproduced by the meso-scale model. Currently, an experimental campaign is occurring in the Baltic Sea, with a lidar located in a commercial ship sailing from Germany to Lithuania, thus covering the entire span of the south Baltic basin. In addition, satellite wind retrievals from scatterometers and Synthetic Aperture Radar (SAR) instruments were used to generate mean wind field maps and validate offshore modelled wind fields and identify the optimal model set-up parameters.The aim of this study is to compare the initial outputs from the offshore wind atlas produced by the Weather & Research Forecasting (WRF) model, still in pre-operational phase, and the METOP-A/B Advanced Scatterometer (ASCAT) wind fields, reprocessed to stress equivalent winds at 10m. Different experiments were set-up to evaluate the model sensitivity for the various domains covered by the NEWA offshore atlas. ASCAT winds were utilised to assess the performance of the WRF offshore atlases. In addition, ASCAT winds were used to create an offshore atlas covering the years 2007 to 2016, capturing the signature of various spatial wind features, such as channelling and lee effects from complex coastal topographical elements.

  16. Weak lensing Study in VOICE Survey I: Shear Measurement

    Science.gov (United States)

    Fu, Liping; Liu, Dezi; Radovich, Mario; Liu, Xiangkun; Pan, Chuzhong; Fan, Zuhui; Covone, Giovanni; Vaccari, Mattia; Amaro, Valeria; Brescia, Massimo; Capaccioli, Massimo; De Cicco, Demetra; Grado, Aniello; Limatola, Luca; Miller, Lance; Napolitano, Nicola R.; Paolillo, Maurizio; Pignata, Giuliano

    2018-06-01

    The VST Optical Imaging of the CDFS and ES1 Fields (VOICE) Survey is a Guaranteed Time program carried out with the ESO/VST telescope to provide deep optical imaging over two 4 deg2 patches of the sky centred on the CDFS and ES1 pointings. We present the cosmic shear measurement over the 4 deg2 covering the CDFS region in the r-band using LensFit. Each of the four tiles of 1 deg2 has more than one hundred exposures, of which more than 50 exposures passed a series of image quality selection criteria for weak lensing study. The 5σ limiting magnitude in r- band is 26.1 for point sources, which is ≳1 mag deeper than other weak lensing survey in the literature (e.g. the Kilo Degree Survey, KiDS, at VST). The photometric redshifts are estimated using the VOICE u, g, r, i together with near-infrared VIDEO data Y, J, H, Ks. The mean redshift of the shear catalogue is 0.87, considering the shear weight. The effective galaxy number density is 16.35 gal/arcmin2, which is nearly twice the one of KiDS. The performance of LensFit on such a deep dataset was calibrated using VOICE-like mock image simulations. Furthermore, we have analyzed the reliability of the shear catalogue by calculating the star-galaxy cross-correlations, the tomographic shear correlations of two redshift bins and the contaminations of the blended galaxies. As a further sanity check, we have constrained cosmological parameters by exploring the parameter space with Population Monte Carlo sampling. For a flat ΛCDM model we have obtained Σ _8 = σ _8(Ω _m/0.3)^{0.5} = 0.68^{+0.11}_{-0.15}.

  17. Determining the Probability of Violating Upper-Level Wind Constraints for the Launch of Minuteman III Ballistic Missiles at Vandenberg Air Force Base

    Science.gov (United States)

    Shafer, Jaclyn A.; Brock, Tyler M.

    2012-01-01

    The 30th Operational Support Squadron Weather Flight (30 OSSWF) provides comprehensive weather services to the space program at Vandenberg Air Force Base (VAFB) in California. One of their responsibilities is to monitor upper-level winds to ensure safe launch operations of the Minuteman Ill ballistic missile. The 30 OSSWF tasked the Applied Meteorology Unit (AMU) to analyze VAFB sounding data with the goal of determining the probability of violating (PoV) their upper-level thresholds for wind speed and shear constraints specific to this launch vehicle, and to develop a tool that will calculate the PoV of each constraint on the day of launch. In order to calculate the probability of exceeding each constraint, the AMU collected and analyzed historical data from VAFB. The historical sounding data were retrieved from the National Oceanic and Atmospheric Administration Earth System Research Laboratory archive for the years 1994-2011 and then stratified into four sub-seasons: January-March, April-June, July-September, and October-December. The AMU determined the theoretical distributions that best fit the maximum wind speed and maximum wind shear datasets and applied this information when calculating the averages and standard deviations needed for the historical and real-time PoV calculations. In addition, the AMU included forecast sounding data from the Rapid Refresh model. This information provides further insight for the launch weather officers (LWOs) when determining if a wind constraint violation will occur over the next few hours on the day of launch. The AMU developed an interactive graphical user interface (GUI) in Microsoft Excel using Visual Basic for Applications. The GUI displays the critical sounding data easily and quickly for LWOs on day of launch. This tool will replace the existing one used by the 30 OSSWF, assist the LWOs in determining the probability of exceeding specific wind threshold values, and help to improve the overall upper winds forecast for

  18. Comparison of direct shear and simple shear responses of municipal solid waste in USA

    KAUST Repository

    Fei, Xunchang; Zekkos, Dimitrios

    2017-01-01

    Although large-size simple shear (SS) testing of municipal solid waste (MSW) may arguably provide a more realistic estimate of the shear strength (τ ) of MSW than the most commonly used direct shear (DS) testing, a systematic comparison between

  19. Turbulence suppression by E x B shear in JET optimized shear pulses

    International Nuclear Information System (INIS)

    Beer, M.A.; Budny, R.V.; Challis, C.D.; Conway, G.

    2000-01-01

    The authors calculate microinstability growth rates in JET optimized shear plasmas with a comprehensive gyrofluid model, including sheared E x B flows, trapped electrons, and all dominant ion species in realistic magnetic geometry. They find good correlation between E x B shear suppression of microinstabilities and both the formation and collapse of the internal transport barrier

  20. Shear Punch Testing of BOR-60 Irradiated TEM Specimens

    Energy Technology Data Exchange (ETDEWEB)

    Saleh, Tarik A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Quintana, Matthew Estevan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Romero, Tobias J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-06-13

    As a part of the project “High Fidelity Ion Beam Simulation of High Dose Neutron Irradiation” an Integrated Research Program (IRP) project from the U.S. Department of Energy, Nuclear Energy University Programs (NEUP), TEM geometry samples of ferritic cladding alloys, Ni based super alloys and model alloys were irradiated in the BOR-60 reactor to ~16 dpa at ~370°C and ~400°C. Samples were sent to Los Alamos National Laboratory and subjected to shear punch testing. This report presents the results from this testing.

  1. Detection and monitoring of shear crack growth using S-P conversion of seismic waves

    Science.gov (United States)

    Modiriasari, A.; Bobet, A.; Pyrak-Nolte, L. J.

    2017-12-01

    , which causes energy partitioning into P, S, and P-to-S or S-to-P waves. This finding provides a diagnostic method for detecting shear crack initiation and growth using seismic wave conversions. Acknowledgments: This material is based upon work supported by the National Science Foundation, Geomechanics and Geotechnical Systems Program (award No. CMMI-1162082).

  2. Constitutive Behavior of Reinforced Concrete Membrane Elements under Tri-directional Shear

    Science.gov (United States)

    Labib, Moheb

    The two-dimensional behavior of typical reinforced concrete (RC) structures has been extensively studied in the past several decades by investigating the constitutive behavior of full-scale reinforced concrete elements subjected to a bi-axial state of stress. In order to understand the true behavior of many large complex structures, the goal of this investigation is to develop new constitutive relationships for RC elements subjected to tri-directional shear stresses. Recently, additional out-of-plane jacks were installed on the panel tester at University of Houston so that concrete elements could be subjected to tri-directional shear stresses. This upgrade makes the panel tester the only one of its kind in the US that is capable of applying such combinations of stresses on full-scale reinforced concrete elements. This dissertation presents the details of the mounting and installation of the additional hydraulic jacks on the universal panel tester. The experimental program includes a series of seven reinforced concrete elements subjected to different combinations of in-plane and out-of-plane shear stresses. Increasing the applied out-of-plane shear stresses reduced the membrane shear strength of the elements. The effect of applying out-of-plane shear stresses on the in-plane shear strength was represented by modifying the softening coefficient in the compression stress strain curve of concrete struts. The modified model was able to capture the behavior and the ultimate capacity of the tested elements. The effect of the in-plane shear reinforcement ratio on the interaction between in-plane and out-of-plane shear stresses was evaluated. The model was implemented in the Finite Element package FEAP and was used to predict the ultimate capacity of many structures subjected to a combination of in-plane and out-of-plane shear stresses. The results of the analytical model were used to develop simplified design equations for members subjected to bi-directional shear loads

  3. Climatic wind tunnel for wind engineering tasks

    Czech Academy of Sciences Publication Activity Database

    Kuznetsov, Sergeii; Pospíšil, Stanislav; Král, Radomil

    2015-01-01

    Roč. 112, 2-B (2015), s. 303-316 ISSN 1897-628X R&D Projects: GA ČR(CZ) GA14-12892S Keywords : climatic tunnel * wind tunnel * atmospheric boundary layer * flow resistance * wind tunnel contraction Subject RIV: JM - Building Engineering https://suw.biblos.pk.edu.pl/resources/i5/i6/i6/i7/i6/r56676/KuznetsovS_ClimaticWind.pdf

  4. GAPHAT-II, program for outlined analysis of wind turbines. Part 1: model description and verification. GAPHAT-II, programma voor globale analyses van windturbines. Deel 1: Modelbeschrijving en verificatie

    Energy Technology Data Exchange (ETDEWEB)

    Schepers, J.G.

    1988-05-01

    The second version of the program GAPHAT (Outlined Analysis Program Horizontal Axis Wind Turbines) is discussed. The program can be used for investigated analysis and gives the following results: 1. aerodynamical coefficients as functions of high-speed, blade angle and rotor azimuth angle; 2. loads in the heart of the blade and on the rotor axis as function of the time; 3. dynamic behavior at different adjustments. The aerodynamic loads follow a combination of linear momentum theory and blade element theory. The resulting equations are calculated with a quadratic equation with the inflow angle as an unknown. Summation of aerodynamic, innate weight and centrifugal loads gives the total loads. For the blade angle control a few general models were developed: an active on/off control for power and a PID control for linear speed (PID is proportional, integral and differential control). Calculations of aerodynamic coefficients and of loads in the heart of the blade were compared to calculations with the program PHATAS-I. The differences are less than 10% in most cases. 16 figs., 7 refs., 1 tab

  5. Optimal Tuning of Multivariable Disturbance-Observer-Based Control for Flicker Mitigation Using Individual Pitch Control of Wind Turbine

    DEFF Research Database (Denmark)

    Raja, Muhammad Imran; Hussain, Dil muhammed Akbar; Soltani, Mohsen

    2017-01-01

    Multivariable disturbance accommodated observer based control (DOBC) scheme is presented to mitigate loads generated due to wind shear and tower shadow using individual blade pitch for above-rated wind speed condition of wind turbine. Wind shear and tower shadow add flickers as 1p, 3p, 6p and so on......, (p is the rotor rotational frequency) for three-bladed wind turbine. Novel DOBC with individual pitch control (IPC) to mitigate the flickers is presented and linear state-space model of wind turbine with tower dynamics is developed. The proposed controller is tuned using optimal control theory...... density of generator speed, drive-train torsion and tower fore-aft moment shows better mitigation to the flickers by proposed controller as compared with proportional–integral (PI) and disturbance accommodation control (DAC) with collective pitch control. Furthermore, it shows less degradation...

  6. Wind Atlas for Egypt

    DEFF Research Database (Denmark)

    The results of a comprehensive, 8-year wind resource assessment programme in Egypt are presented. The objective has been to provide reliable and accurate wind atlas data sets for evaluating the potential wind power output from large electricityproducing wind turbine installations. The regional wind...... climates of Egypt have been determined by two independent methods: a traditional wind atlas based on observations from more than 30 stations all over Egypt, and a numerical wind atlas based on long-term reanalysis data and a mesoscale model (KAMM). The mean absolute error comparing the two methods is about...... 10% for two large-scale KAMM domains covering all of Egypt, and typically about 5% for several smaller-scale regional domains. The numerical wind atlas covers all of Egypt, whereas the meteorological stations are concentrated in six regions. The Wind Atlas for Egypt represents a significant step...

  7. Wind Atlas for Egypt

    DEFF Research Database (Denmark)

    Mortensen, Niels Gylling; Said Said, Usama; Badger, Jake

    2006-01-01

    The results of a comprehensive, 8-year wind resource assessment programme in Egypt are presented. The objective has been to provide reliable and accurate wind atlas data sets for evaluating the potential wind power output from large electricityproducing wind turbine installations. The regional wind...... climates of Egypt have been determined by two independent methods: a traditional wind atlas based on observations from more than 30 stations all over Egypt, and a numerical wind atlas based on long-term reanalysis data and a mesoscale model (KAMM). The mean absolute error comparing the two methods is about...... 10% for two large-scale KAMM domains covering all of Egypt, and typically about 5% for several smaller-scale regional domains. The numerical wind atlas covers all of Egypt, whereas the meteorological stations are concentrated in six regions. The Wind Atlas for Egypt represents a significant step...

  8. SMES for wind energy systems

    Science.gov (United States)

    Paul Antony, Anish

    copper oxide (BSCCO), Yttrium barium copper oxide (YBCO) and Magnesium diboride (MgB 2)] is carried out. The assessed attributes include superconducting transition temperature (Tc), critical current density (Jc ), the irreversibility field (H*) and the superconducting critical field (Hc). Chapter 4 presents the design of a solenoid shaped 1MJ MgB2 SMES. This SMES is used to mitigate the problem of momentary interruptions on a wind turbine. The total length of superconducting wire required for a 1MJ solenoid is calculated to be 21km. The maximum wire lengths currently available are 6km thus we hypothesize that either wire lengths have to be increased or work has to be done on MgB2 superconducting splice technology for multifilament wire. Another design consisting of 8 solenoids storing 120 kJ each is presented. The stress analysis on the proposed coil is performed using finite element analysis exhibiting the safety of the proposed design. Chapter 5 presents the design of a toroid shaped 20MJ MgB2 SMES. This is used to mitigate the problem of sustained interruptions on a wind turbine. The toroid coil is chosen since the magnetic field could be completely contained within the coil, thus reducing stray magnetic fields. A combination of genetic algorithm and nonlinear programming is used in determining the design. In Chapter 6, the different methods of operation of the SMES are examined. The Voltage Source Convertor (VSC) based SMES topology was chosen based on its ease of switching. The VSC switching strategy is based on a sinusoidal pulse width modulation technique. EMTDC/PSCAD software was used to demonstrate the efficacy of the VSC based SMES coupled to a wind turbine. The wind generator was modeled as an induction machine feeding into a load. The simulation results established that SMES connected to wind turbines improved output quality. Although the efficacy of SMES for wind energy has been stated previously in other work, this chapter specifically demonstrates through

  9. Tribal Wind Assessment by the Eastern Shoshone Tribe of the Wind River Reservation

    Energy Technology Data Exchange (ETDEWEB)

    Pete, Belvin; Perry, Jeremy W.; Stump, Raphaella Q.

    2009-08-28

    The Tribes, through its consultant and advisor, Distributed Generation Systems (Disgen) -Native American Program and Resources Division, of Lakewood CO, assessed and qualified, from a resource and economic perspective, a wind energy generation facility on tribal lands. The goal of this feasibility project is to provide wind monitoring and to engage in preproject planning activities designed to provide a preliminary evaluation of the technical, economic, social and environmental feasibility of developing a sustainable, integrated wind energy plan for the Eastern Shoshone and the Northern Arapahoe Tribes, who resides on the Wind River Indian Reservation. The specific deliverables of the feasibility study are: 1) Assessments of the wind resources on the Wind River Indian Reservation 2) Assessments of the potential environmental impacts of renewable development 3) Assessments of the transmission capacity and capability of a renewable energy project 4) Established an economic models for tribal considerations 5) Define economic, cultural and societal impacts on the Tribe

  10. Tensile and shear strength of adhesives

    Science.gov (United States)

    Stibolt, Kenneth A.

    1990-01-01

    This experiment is conducted in a freshman-level course: Introduction to Engineering Materials. There are no prerequisites for the course although students should have some knowledge of basic algebra. The objectives are to tension and shear test adhesives and to determine the tensile and shear properties of adhesives. Details of equipment of procedure are given.

  11. Crosswind Shear Gradient Affect on Wake Vortices

    Science.gov (United States)

    Proctor, Fred H.; Ahmad, Nashat N.

    2011-01-01

    Parametric simulations with a Large Eddy Simulation (LES) model are used to explore the influence of crosswind shear on aircraft wake vortices. Previous studies based on field measurements, laboratory experiments, as well as LES, have shown that the vertical gradient of crosswind shear, i.e. the second vertical derivative of the environmental crosswind, can influence wake vortex transport. The presence of nonlinear vertical shear of the crosswind velocity can reduce the descent rate, causing a wake vortex pair to tilt and change in its lateral separation. The LES parametric studies confirm that the vertical gradient of crosswind shear does influence vortex trajectories. The parametric results also show that vortex decay from the effects of shear are complex since the crosswind shear, along with the vertical gradient of crosswind shear, can affect whether the lateral separation between wake vortices is increased or decreased. If the separation is decreased, the vortex linking time is decreased, and a more rapid decay of wake vortex circulation occurs. If the separation is increased, the time to link is increased, and at least one of the vortices of the vortex pair may have a longer life time than in the case without shear. In some cases, the wake vortices may never link.

  12. Shear stresses around circular cylindrical openings

    NARCIS (Netherlands)

    Hoogenboom, P.C.J.; Van Weelden, C.; Blom, C.M.B.

    2010-01-01

    In this paper stress concentrations are studied around circular cylindrical openings or voids in a linear elastic continuum. The loading is such that a uniform shear stress occurs in the continuum, which is disturbed by the opening. The shear stress is in the direction of the centre axis of the

  13. Simulations of biopolymer networks under shear

    NARCIS (Netherlands)

    Huisman, Elisabeth Margaretha

    2011-01-01

    In this thesis we present a new method to simulate realistic three-dimensional networks of biopolymers under shear. These biopolymer networks are important for the structural functions of cells and tissues. We use the method to analyze these networks under shear, and consider the elastic modulus,

  14. Rating precast prestressed concrete bridges for shear

    Science.gov (United States)

    2008-12-01

    Shear capacity of real-world prestressed concrete girders designed in the 1960s and 1970s is a concern because : AASHTO Standard Specifications (AASHTO-STD) employed the quarter-point rule for shear design, which is less : conservative for shea...

  15. Anisotropy of turbulence in wind turbine wakes

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Elvira, Rafael [Comision Nacional de Energia (Spain); Crespo, Antonio; Migoya, Emilio; Manuel, Fernando [Departamento de Ingenieria Energetica y Fluidomecanica, Escuela Tecnica Superior de Ingenieros Industriales, Universidad Politecnica de Madrid, Jose Gutierrez Abascal, 2. 28006 Madrid (Spain); Hernandez, Julio [Departamento de Mecanica, ETSII, Universidad Nacional de Educacion a Distancia, Ciudad Universitaria, 28040 Madrid (Spain)

    2005-10-01

    This work is mainly dedicated to the study of non-isotropic characteristics of turbulence in wind turbine wakes, specifically the shear layer of the near wake. A calculation method based on an explicit algebraic model for the components of the turbulent stress tensor is proposed, and the results are found to be in acceptable agreement with experimental results. Analytical expressions for the estimation of an upper limit of the global turbulence kinetic energy, k, and the individual contributions of each diagonal term in the turbulent stress tensor are proposed. Their predictions are compared with experimental results.

  16. 75 FR 23263 - Alta Wind I, LLC; Alta Wind II, LLC; Alta Wind III, LLC; Alta Wind IV, LLC; Alta Wind V, LLC...

    Science.gov (United States)

    2010-05-03

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. EL10-62-000] Alta Wind I, LLC; Alta Wind II, LLC; Alta Wind III, LLC; Alta Wind IV, LLC; Alta Wind V, LLC; Alta Wind VI, LLC; Alta Wind VII, LLC; Alta Wind VIII, LLC; Alta Windpower Development, LLC; TGP Development Company, LLC...

  17. 77 FR 29633 - Alta Wind VII, LLC, Alta Wind IX, LLC, Alta Wind X, LLC, Alta Wind XI, LLC, Alta Wind XII, LLC...

    Science.gov (United States)

    2012-05-18

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. EL12-68-000] Alta Wind VII, LLC, Alta Wind IX, LLC, Alta Wind X, LLC, Alta Wind XI, LLC, Alta Wind XII, LLC, Alta Wind XIII, LLC, Alta Wind XIV, LLC, Alta Wind XV, LLC, Alta Windpower Development, LLC, TGP Development Company, LLC...

  18. Performance Enhancement and Load Reduction on Wind Turbines Using Inflow Measurements

    DEFF Research Database (Denmark)

    Kragh, Knud Abildgaard

    . The load variations on a wind turbine can be alleviated using either yaw or pitch actuation. A method is presented for alleviating load variations using yaw control, and it is shown how the method can be efficiently applied for decreasing the load variations that are caused by a vertical wind shear...... wind energy research is focused on decreasing the cost of the energy that can be produced from the wind. The cost of energy can for example be decreased by ensuring that wind turbines are operated in a way that ensures that the maximum amount of energy is extracted, and that the turbines are not loaded...... excessively. The operation of a wind turbine is governed by a number of controllers that are based on a series of sensors and actuators. Classical wind turbine control utilizes sensors for measuring turbine parameters such as rotor speed, power and shaft torque, as well as actuators for applying generator...

  19. Shear punch and microhardness tests for strength and ductility measurements

    International Nuclear Information System (INIS)

    Lucas, G.E.; Odette, G.R.; Sheckherd, J.W.

    1983-01-01

    In response to the requirements of the fusion reactor materials development program for small-scale mechanical property tests, two techniques have been developed, namely ball microhardness and shear punch tests. The ball microhardness test is based on the repeated measurement at increasing loads of the chordal diameter of an impression made by a spherical penetrator. A correlation has been developed to predict the constitutive relation of the test material from these data. In addition, the indentation pile-up geometry can be analyzed to provide information on the homogeneity of plastic flow in the test material. The shear punch test complements the microhardness test. It is based on blanking a circular disk from a fixed sheet metal specimen. The test is instrumented to provide punch load-displacement data, and these data can be used to determine flow properties of the test material such as yield stress, ultimate tensile strength, work-hardening exponent, and reduction of area

  20. A Multi-Phase Based Fluid-Structure-Microfluidic interaction sensor for Aerodynamic Shear Stress

    Science.gov (United States)

    Hughes, Christopher; Dutta, Diganta; Bashirzadeh, Yashar; Ahmed, Kareem; Qian, Shizhi

    2014-11-01

    A novel innovative microfluidic shear stress sensor is developed for measuring shear stress through multi-phase fluid-structure-microfluidic interaction. The device is composed of a microfluidic cavity filled with an electrolyte liquid. Inside the cavity, two electrodes make electrochemical velocimetry measurements of the induced convection. The cavity is sealed with a flexible superhydrophobic membrane. The membrane will dynamically stretch and flex as a result of direct shear cross-flow interaction with the seal structure, forming instability wave modes and inducing fluid motion within the microfluidic cavity. The shear stress on the membrane is measured by sensing the induced convection generated by membrane deflections. The advantages of the sensor over current MEMS based shear stress sensor technology are: a simplified design with no moving parts, optimum relationship between size and sensitivity, no gaps such as those created by micromachining sensors in MEMS processes. We present the findings of a feasibility study of the proposed sensor including wind-tunnel tests, microPIV measurements, electrochemical velocimetry, and simulation data results. The study investigates the sensor in the supersonic and subsonic flow regimes. Supported by a NASA SBIR phase 1 contract.