WorldWideScience

Sample records for wind shear processor

  1. Modeling and implementation of wind shear data

    Science.gov (United States)

    Frost, Walter

    1987-01-01

    The problems of implementing the JAWS wind shear data are discussed. The data sets are described from the view of utilizing them in an aircraft performance computer program. Then, some of the problems of nonstandard procedures are described in terms of programming the equations of aircraft motion when the effects of temporal and spatially variable winds are included. Finally, some of the computed effects of the various wind shear terms are shown.

  2. Problems pilots face involving wind shear

    Science.gov (United States)

    Melvin, W. W.

    1977-01-01

    Educating pilots and the aviation industry about wind shears presents a major problem associated with this meteorological phenomenon. The pilot's second most pressing problem is the need for a language to discuss wind shear encounters with other pilots so that the reaction of the aircraft to the wind shear encounter can be accurately described. Another problem is the flight director which gives a centered pitch command for a given angular displacement from the glide slope. It was suggested that they should instead be called flight path command and should not center unless the aircraft is actually correcting to the flight path.

  3. Wind shear extremes at possible offshore wind turbine locations

    DEFF Research Database (Denmark)

    Hansen, Kurt Schaldemose; Larsen, Gunner Chr.

    2003-01-01

    Positive and negative short-term extreme wind shear distributions (conditioned on the mean wind speed) are determined and compared for a number of offshore sites. The analysis is based on rapidly sampled field measurements (1-8 Hz) extracted from the "Database on Wind Characteristics" (www.windda...... seems to be rather conservative for an offshore location, compared to the estimated values based on measurements.......Positive and negative short-term extreme wind shear distributions (conditioned on the mean wind speed) are determined and compared for a number of offshore sites. The analysis is based on rapidly sampled field measurements (1-8 Hz) extracted from the "Database on Wind Characteristics" (www.......winddata.com). Three different averaging periods (2, 5 and 10 seconds) are considered, and for each averaging period a relation between the resulting extreme shear distributions and the averaging time are presented. The short-term extreme shear analysis is based on different spatial distances, and extrapolation...

  4. Robust Kalman filter design for predictive wind shear detection

    Science.gov (United States)

    Stratton, Alexander D.; Stengel, Robert F.

    1991-01-01

    Severe, low-altitude wind shear is a threat to aviation safety. Airborne sensors under development measure the radial component of wind along a line directly in front of an aircraft. In this paper, optimal estimation theory is used to define a detection algorithm to warn of hazardous wind shear from these sensors. To achieve robustness, a wind shear detection algorithm must distinguish threatening wind shear from less hazardous gustiness, despite variations in wind shear structure. This paper presents statistical analysis methods to refine wind shear detection algorithm robustness. Computational methods predict the ability to warn of severe wind shear and avoid false warning. Comparative capability of the detection algorithm as a function of its design parameters is determined, identifying designs that provide robust detection of severe wind shear.

  5. Wind Shear Characteristics at Central Plains Tall Towers (presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Schwartz, M.; Elliott, D.

    2006-06-05

    The objectives of this report are: (1) Analyze wind shear characteristics at tall tower sites for diverse areas in the central plains (Texas to North Dakota)--Turbines hub heights are now 70-100 m above ground and Wind measurements at 70-100+ m have been rare. (2) Present conclusions about wind shear characteristics for prime wind energy development regions.

  6. Model of wind shear conditional on turbulence and its impact on wind turbine loads

    DEFF Research Database (Denmark)

    Dimitrov, Nikolay Krasimirov; Natarajan, Anand; Kelly, Mark C.

    2015-01-01

    fatigue load is achieved. The proposed wind shear model based on the wind measurements is thereby probabilistic in definition, with shear jointly distributed with wind turbulence. A simplified model for the wind shear exponent is further derived from the full stochastic model. The fatigue loads over......We analyse high-frequency wind velocity measurements from two test stations over a period of several years and at heights ranging from 60 to 200 m, with the objective to validate wind shear predictions as used in load simulations for wind turbine design. A validated wind shear model is thereby...... different turbine components are evaluated under the full wind measurements, using the developed wind shear model and with standard wind conditions prescribed in the IEC 61400-1 ed. 3. The results display the effect of the Wöhler exponent and reveal that under moderate turbulence, the effect of wind shear...

  7. Optimal recovery from microburst wind shear

    Science.gov (United States)

    Mulgund, Sandeep S.

    1993-01-01

    Severe low-altitude wind variability represents an infrequent but significant hazard to aircraft taking off or landing. During the period from 1964 to 1985, microburst wind shear was a contributing factor in at least 26 civil aviation accidents involving nearly 500 fatalities and over 200 injuries. A microburst is a strong localized downdraft that strikes the ground, creating winds that diverge radially from the impact point. The physics of microbursts have only been recently understood in detail, and it has been found that effective recovery from inadvertent encounters may require piloting techniques that are counter-intuitive to flight crews. The goal of this work was to optimize the flight path of a twin-jet transport aircraft encountering a microburst during approach to landing. The objective was to execute an escape maneuver that maintained safe ground clearance and an adequate stall margin during the climb-out portion of the trajectory.

  8. Simulation of shear and turbulence impact on wind turbine performance

    DEFF Research Database (Denmark)

    Wagner, Rozenn; Courtney, Michael; Larsen, Torben J.

    of a uniform inflow. Secondly, a similar analysis was done for cases with direction shear. In each case, we derived a standard power curve (function of the wind speed at hub height) and power curves obtained with various definitions of equivalent wind speed in order to reduce the scatter due to shear. Thirdly...

  9. Prescribed wind shear modelling with the actuator line technique

    DEFF Research Database (Denmark)

    Mikkelsen, Robert Flemming; Sørensen, Jens Nørkær; Troldborg, Niels

    2007-01-01

    A method for prescribing arbitrary steady atmospheric wind shear profiles combined with CFD is presented. The method is furthermore combined with the actuator line technique governing the aerodynamic loads on a wind turbine. Computation are carried out on a wind turbine exposed to a representative...... steady atmospheric wind shear profile with and without wind direction changes up through the atmospheric boundary layer. Results show that the main impact on the turbine is captured by the model. Analysis of the wake behind the wind turbine, reveal the formation of a skewed wake geometry interacting...

  10. Small-scale wind shear definition for aerospace vehicle design.

    Science.gov (United States)

    Fichtl, G. H.

    1972-01-01

    Rawinsonde wind profile data provide adequate wind shear information for vertical height intervals greater than 1 km. To specify wind shears for intervals below 1 km for space vehicle design, detailed wind-profile information like that provided by the FPS-16 Radar/Jimsphere system or an extrapolation procedure is required. This paper is concerned with the latter alternative. It is assumed that any realization from an ensemble of wind profiles can be represented in terms of a Fourier integral. This permits the calculation of the ensemble standard deviation and mean of the corresponding shear ensemble for any altitude and shear interval in terms of the power spectrum of the ensemble of wind profiles. The results of these calculations show that the mean and standard deviation of the wind shear ensemble, as well as the wind shear for any percentile, asymptotically behave like the vertical interval to the 0.7 power. This result is in excellent agreement with shear data from Cape Kennedy, Fla.

  11. Dual shear plate power processor packaging design. [for Solar Electric Propulsion spacecraft

    Science.gov (United States)

    Franzon, A. O.; Fredrickson, C. D.; Ross, R. G.

    1975-01-01

    The use of solar electric propulsion (SEP) for spacecraft primary propulsion imposes an extreme range of operational and environmental design requirements associated with the diversity of missions for which solar electric primary propulsion is advantageous. One SEP element which is particularly sensitive to these environmental extremes is the power processor unit (PPU) which powers and controls the electric ion thruster. An improved power processor thermal-mechanical packaging approach, referred to as dual shear plate packaging, has been designed to accommodate these different requirements with minimum change to the power processor design. Details of this packaging design are presented together with test results obtained from thermal-vacuum and structural-vibration tests conducted with prototype hardware.

  12. Impact of Vertical Wind Shear on Tropical Cyclone Rainfall

    Science.gov (United States)

    Cecil, Dan; Marchok, Tim

    2014-01-01

    While tropical cyclone rainfall has a large axisymmetric component, previous observational and theoretical studies have shown that environmental vertical wind shear leads to an asymmetric component of the vertical motion and precipitation fields. Composites consistently depict a precipitation enhancement downshear and also cyclonically downwind from the downshear direction. For consistence with much of the literature and with Northern Hemisphere observations, this is subsequently referred to as "Downshear-Left". Stronger shear magnitudes are associated with greater amplitude precipitation asymmetries. Recent work has reinforced the prior findings, and explored details of the response of the precipitation and kinematic fields to environmental vertical wind shear. Much of this research has focused on tropical cyclones away from land, to limit the influence of other processes that might distort the signal related to vertical wind shear. Recent evidence does suggest vertical wind shear can also play a major role in precipitation asymmetries during and after landfall.

  13. The Impact of Variable Wind Shear Coefficients on Risk Reduction of Wind Energy Projects

    Science.gov (United States)

    Thomson, Allan; Yoonesi, Behrang; McNutt, Josiah

    2016-01-01

    Estimation of wind speed at proposed hub heights is typically achieved using a wind shear exponent or wind shear coefficient (WSC), variation in wind speed as a function of height. The WSC is subject to temporal variation at low and high frequencies, ranging from diurnal and seasonal variations to disturbance caused by weather patterns; however, in many cases, it is assumed that the WSC remains constant. This assumption creates significant error in resource assessment, increasing uncertainty in projects and potentially significantly impacting the ability to control gird connected wind generators. This paper contributes to the body of knowledge relating to the evaluation and assessment of wind speed, with particular emphasis on the development of techniques to improve the accuracy of estimated wind speed above measurement height. It presents an evaluation of the use of a variable wind shear coefficient methodology based on a distribution of wind shear coefficients which have been implemented in real time. The results indicate that a VWSC provides a more accurate estimate of wind at hub height, ranging from 41% to 4% reduction in root mean squared error (RMSE) between predicted and actual wind speeds when using a variable wind shear coefficient at heights ranging from 33% to 100% above the highest actual wind measurement. PMID:27872898

  14. Wind speed and direction shears with associated vertical motion during strong surface winds

    Science.gov (United States)

    Alexander, M. B.; Camp, D. W.

    1984-01-01

    Strong surface winds recorded at the NASA 150-Meter Ground Winds Tower facility at Kennedy Space Center, Florida, are analyzed to present occurrences representative of wind shear and vertical motion known to be hazardous to the ascent and descent of conventional aircraft and the Space Shuttle. Graphical (percentage frequency distributions) and mathematical (maximum, mean, standard deviation) descriptions of wind speed and direction shears and associated updrafts and downdrafts are included as functions of six vertical layers and one horizontal distance for twenty 5-second intervals of parameters sampled simultaneously at the rate of ten per second during a period of high surface winds.

  15. Effects of extreme wind shear on aeroelastic modal damping of wind turbines

    DEFF Research Database (Denmark)

    Skjoldan, P.F.; Hansen, Morten Hartvig

    2013-01-01

    Wind shear is an important contributor to fatigue loads on wind turbines. Because it causes an azimuthal variation in angle of attack, it can also affect aerodynamic damping. In this paper, a linearized model of a wind turbine, based on the nonlinear aeroelastic code BHawC, is used to investigate...

  16. Wind shear estimation and wake detection by rotor loads — First wind tunnel verification

    Science.gov (United States)

    Schreiber, J.; Cacciola, S.; Campagnolo, F.; Petrović, V.; Mourembles, D.; Bottasso, C. L.

    2016-09-01

    The paper describes a simple method for detecting presence and location of a wake affecting a downstream wind turbine operating in a wind power plant. First, the local wind speed and shear experienced by the wind turbine are estimated by the use of rotor loads and other standard wind turbine response data. Then, a simple wake deficit model is used to determine the lateral position of the wake with respect to the affected rotor. The method is verified in a boundary layer wind tunnel using two instrumented scaled wind turbine models, demonstrating its effectiveness.

  17. Reducing the impact of wind noise on cochlear implant processors with two microphones.

    Science.gov (United States)

    Kokkinakis, Kostas; Cox, Casey

    2014-05-01

    Behind-the-ear (BTE) processors of cochlear implant (CI) devices offer little to almost no protection from wind noise in most incidence angles. To assess speech intelligibility, eight CI recipients were tested in 3 and 9 m/s wind. Results indicated that speech intelligibility decreased substantially when the wind velocity, and in turn the wind sound pressure level, increased. A two-microphone wind noise suppression strategy was developed. Scores obtained with this strategy indicated substantial gains in speech intelligibility over other conventional noise reduction strategies tested.

  18. Doppler weather radar with predictive wind shear detection capabilities

    Science.gov (United States)

    Kuntman, Daryal

    1991-01-01

    The status of Bendix research on Doppler weather radar with predictive wind shear detection capability is given in viewgraph form. Information is given on the RDR-4A, a fully coherent, solid state transmitter having Doppler turbulence capability. Frequency generation data, plans, modifications, system characteristics and certification requirements are covered.

  19. Response of wind shear warning systems to turbulence with implication of nuisance alerts

    Science.gov (United States)

    Bowles, Roland L.

    1988-01-01

    The objective was to predict the inherent turbulence response characteristics of candidate wind shear warning system concepts and to assess the potential for nuisance alerts. Information on the detection system and associated signal processing, physical and mathematical models, wind shear factor root mean square turbulence response and the standard deviation of the wind shear factor due to turbulence is given in vugraph form.

  20. The classification of wind shears from the point of view of aerodynamics and flight mechanics

    Science.gov (United States)

    Seidler, Fritz; Hensel, Gunter

    1987-01-01

    A study of international statistical data shows that in about three quarters of all serious accidents which occurred with jet propelled airliners wind shear was either one of the main causes of the accident or represented a major contributory cause. Wind shear related problems are examined. The necessity of a use of different concepts, definitions, and divisions is explained, and the concepts and definitions required for the division of wind and wind shear into different categories is discussed. A description of the context between meteorological and aerodynamics-flight mechanics concepts, definitions, and divisions is also provided. Attention is given to wind and wind components, general characteristics of wind shear and the meteorological terms, the basic types of wind shear for aerodynamics-flight mechanics investigations, special types of wind shear for aerodynamics-flight mechanics investigations, and possibilities regarding a change of the wind component.

  1. Offshore vertical wind shear: Final report on NORSEWInD’s work task 3.1

    DEFF Research Database (Denmark)

    Pena Diaz, Alfredo; Mikkelsen, Torben; Gryning, Sven-Erik

    This document reports on the analysis performed by the work task 3.1 of the EU NORSEWInD project and includes the following deliverables: 3.2 Calculated vertical wind shears 3.3 Multi-variational correlation analysis 3.4 NWP data for wind shear model 3.5 Vertical extrapolation methodology 3...... of power outputs. Background related to the parametrization of the vertical wind speed profile and the behavior of the vertical wind shear in and beyond the atmospheric surface layer is presented together with the application of the long-term atmospheric stability parameters for the analysis of the long......-term vertical wind speed profile. Observed vertical wind shears are illustrated for all NORSEWInD wind lidar and meteorological stations in terms of wind shear roses, distributions, and diurnal and monthly evolutions. A multi-variational correlation analysis is performed to study the vertical wind shear...

  2. Wind shear proportional errors in the horizontal wind speed sensed by focused, range gated lidars

    DEFF Research Database (Denmark)

    Lindelöw, Per Jonas Petter; Courtney, Michael; Parmentier, R.

    2008-01-01

    altitude. The altitude errors of focused range gated lidars are likely to arise partly from an unaccounted shift of the weighting functions, describing the sample volume, due to the range dependent collection efficiency of the focused telescope. Possibilities of correcting the lidar measurements both...... an altitude dependent relation between the lidar error and the wind shear. A likely explanation for this relation is an error in the intended sensing altitude. At most this error is estimated to 9 in which induced errors in the horizontal wind velocity of up to 0.5 m/s as compared to a cup at the intended...... for wind velocity and wind shear dependent errors are discussed. The 2-parametric regression analysis described in this paper is proven to be a better approach when acceptance testing and calibrating lidars....

  3. Roles of wind shear at different vertical levels: Cloud system organization and properties

    Science.gov (United States)

    Chen, Qian; Fan, Jiwen; Hagos, Samson; Gustafson, William I.; Berg, Larry K.

    2015-07-01

    Understanding critical processes that contribute to the organization of mesoscale convective systems (MCSs) is important for accurate weather forecasts and climate predictions. In this study, we investigate the effects of wind shear at different vertical levels on the organization and properties of convective systems using the Weather Research and Forecasting model with spectral bin microphysics. Based on a control run for a MCS with weak wind shear (Ctrl), we find that increasing wind shear at the lower troposphere (L-shear) leads to a more organized quasi-line convective system. Strong wind shear in the middle troposphere (M-shear) tends to produce large vorticity and form a mesocyclone circulation and an isolated strong storm that leans toward supercellular structure. By increasing wind shear at the upper vertical levels only (U-shear), the organization of the convection is not changed much, but the convective intensity is weakened. Increasing wind shear in the middle troposphere for the selected case results in a significant drying, and the drying is more significant when conserving moisture advection at the lateral boundaries, contributing to the suppressed convective strength and precipitation relative to Ctrl. Precipitation in the L-shear and U-shear does not change much from Ctrl. Evident changes of cloud macrophysical and microphysical properties in the strong wind shear cases are mainly due to large changes in convective organization and water vapor. The insights obtained from this study help us better understand the major factors contributing to convective organization and precipitation.

  4. Simulations of large winds and wind shears induced by gravity wave breaking in the mesosphere and lower thermosphere (MLT region

    Directory of Open Access Journals (Sweden)

    X. Liu

    2014-05-01

    Full Text Available Using a fully nonlinear two-dimensional (2-D numerical model, we simulated gravity waves (GWs breaking and their contributions to the formation of large winds and wind shears in the mesosphere and lower thermosphere (MLT. An eddy diffusion coefficient is used in the 2-D numerical model to parameterize realistic turbulent mixing. Our study shows that the momentum deposited by breaking GWs accelerates the mean wind. The resultant large background wind increases the GW's apparent horizontal phase velocity and decreases the GW's intrinsic frequency and vertical wavelength. Both the accelerated mean wind and the decreased GW vertical wavelength contribute to the enhancement of wind shears. This, in turn, creates a background condition that favors the occurrence of GW instability, breaking, and momentum deposition, as well as mean wind acceleration, which further enhances the wind shears. We find that GWs with longer vertical wavelengths and faster horizontal phase velocity can induce larger winds, but they may not necessarily induce larger wind shears. In addition, the background temperature can affect the time and height of GW breaking, thus causing accelerated mean winds and wind shears.

  5. Shear and Turbulence Estimates for Calculation of Wind Turbine Loads and Responses Under Hurricane Strength Winds

    Science.gov (United States)

    Kosovic, B.; Bryan, G. H.; Haupt, S. E.

    2012-12-01

    Schwartz et al. (2010) recently reported that the total gross energy-generating offshore wind resource in the United States in waters less than 30m deep is approximately 1000 GW. Estimated offshore generating capacity is thus equivalent to the current generating capacity in the United States. Offshore wind power can therefore play important role in electricity production in the United States. However, most of this resource is located along the East Coast of the United States and in the Gulf of Mexico, areas frequently affected by tropical cyclones including hurricanes. Hurricane strength winds, associated shear and turbulence can affect performance and structural integrity of wind turbines. In a recent study Rose et al. (2012) attempted to estimate the risk to offshore wind turbines from hurricane strength winds over a lifetime of a wind farm (i.e. 20 years). According to Rose et al. turbine tower buckling has been observed in typhoons. They concluded that there is "substantial risk that Category 3 and higher hurricanes can destroy half or more of the turbines at some locations." More robust designs including appropriate controls can mitigate the risk of wind turbine damage. To develop such designs good estimates of turbine loads under hurricane strength winds are essential. We use output from a large-eddy simulation of a hurricane to estimate shear and turbulence intensity over first couple of hundred meters above sea surface. We compute power spectra of three velocity components at several distances from the eye of the hurricane. Based on these spectra analytical spectral forms are developed and included in TurbSim, a stochastic inflow turbulence code developed by the National Renewable Energy Laboratory (NREL, http://wind.nrel.gov/designcodes/preprocessors/turbsim/). TurbSim provides a numerical simulation including bursts of coherent turbulence associated with organized turbulent structures. It can generate realistic flow conditions that an operating turbine

  6. Comparison of wind and wind shear climatologies derived from high-resolution radiosondes and the ECMWF model

    Science.gov (United States)

    Houchi, K.; Stoffelen, A.; Marseille, G. J.; de Kloe, J.

    2010-11-01

    The climatology of atmospheric horizontal wind and its vertical gradient, i.e., wind shear, is characterized as a function of climate region. For a better representation of the average atmospheric wind and shear and their variabilities, high-resolution radiosonde wind profiles up to about 30 km altitude are compared with the collocated operational ECMWF model for short-range forecast winds. Statistics of zonal and meridional winds are established from both data sets. The results show mainly similarity in the probability distributions of the modeled and observed horizontal winds, practically at all levels of the atmosphere, while at the same time the vertical shear of the wind is substantially underestimated in the model. The comparison of shear statistics of radiosonde and ECMWF model winds shows that the model wind shear mean and variability are on average a factor of 2.5 (zonal) and 3 (meridional) smaller than of radiosondes in the free troposphere, while in the stratosphere, the planetary boundary layer results are more variable. By applying vertical averaging to the radiosonde data, it is found that the effective vertical resolution of the ECMWF model is typically 1.7 km. Moreover, it is found for individually collocated radiosonde model wind and shear profiles that the model wind may lack in some cases variability larger than 5 m s-1 and 0.015 s-1, respectively, due mainly to the effect of lacking vertical resolution, in particular near the jets. Besides the general importance of this study in highlighting the difference in the representation of the atmospheric wind shear by model and observations, it is more specifically relevant for the future Atmospheric Dynamics Mission (ADM-Aeolus) of the European Space Agency due for launch in 2012. The results presented here are used to generate a realistic global atmospheric database, which is necessary to conduct simulations of the Aeolus Doppler wind lidar in order optimize its vertical sampling and processing.

  7. Investigations of Wind Shear Distribution on the Baltic Shore of Latvia

    Science.gov (United States)

    Bezrukovs, V.; Zacepins, A.; Bezrukovs, Vl.; Komashilovs, V.

    2016-06-01

    The paper presents a review of wind parameter measurement complexes and investigation methods used for potential wind energy evaluation. Based on results of long-term investigations of wind shear distribution regularities are shown up to 160 m height on the Baltic Sea shore. Distribution of potential wind energy in Latvia is shown as a map and table of average and average cubic wind speed values. Database of wind parameter measurements is available at a public website.

  8. Optimal nonlinear estimation for aircraft flight control in wind shear

    Science.gov (United States)

    Mulgund, Sandeep S.

    1994-01-01

    The most recent results in an ongoing research effort at Princeton in the area of flight dynamics in wind shear are described. The first undertaking in this project was a trajectory optimization study. The flight path of a medium-haul twin-jet transport aircraft was optimized during microburst encounters on final approach. The assumed goal was to track a reference climb rate during an aborted landing, subject to a minimum airspeed constraint. The results demonstrated that the energy loss through the microburst significantly affected the qualitative nature of the optimal flight path. In microbursts of light to moderate strength, the aircraft was able to track the reference climb rate successfully. In severe microbursts, the minimum airspeed constraint in the optimization forced the aircraft to settle on a climb rate smaller than the target. A tradeoff was forced between the objectives of flight path tracking and stall prevention.

  9. Synthetic atmospheric turbulence and wind shear in large eddy simulations of wind turbine wakes

    DEFF Research Database (Denmark)

    Keck, Rolf-Erik; Mikkelsen, Robert Flemming; Troldborg, Niels

    2014-01-01

    of the synthetic methods is found to be adequate to model atmospheric turbulence, and the wake flow results of the model are in good agreement with field data. An investigation is also carried out to estimate the wake transport velocity, used to model wake meandering in lower-order models. The conclusion......A method of generating a synthetic ambient wind field in neutral atmosphere is described and verified for modelling the effect of wind shear and turbulence on a wind turbine wake using the flow solver EllipSys3D. The method uses distributed volume forces to represent turbulent fluctuations...... is that the appropriate transport velocity of the wake lies somewhere between the centre velocity of the wake deficit and the free stream velocity. Copyright © 2013 John Wiley & Sons, Ltd....

  10. Evaluating winds and vertical wind shear from Weather Research and Forecasting model forecasts using seven planetary boundary layer schemes

    DEFF Research Database (Denmark)

    Draxl, Caroline; Hahmann, Andrea N.; Pena Diaz, Alfredo

    2014-01-01

    with different PBL parameterizations at one coastal site over western Denmark. The evaluation focuses on determining which PBL parameterization performs best for wind energy forecasting, and presenting a validation methodology that takes into account wind speed at different heights. Winds speeds at heights...... regarding wind energy at these levels partly depends on the formulation and implementation of planetary boundary layer (PBL) parameterizations in these models. This study evaluates wind speeds and vertical wind shears simulated by theWeather Research and Forecasting model using seven sets of simulations...

  11. Accounting for the speed shear in wind turbine power performance measurement

    DEFF Research Database (Denmark)

    Wagner, Rozenn

    The power curve of a wind turbine is the primary characteristic of the machine as it is the basis of the warranty for it power production. The current IEC standard for power performance measurement only requires the measurement of the wind speed at hub height and the air density to characterise...... the vertical wind shear and the turbulence intensity. The work presented in this thesis consists of the description and the investigation of a simple method to account for the wind speed shear in the power performance measurement. Ignoring this effect was shown to result in a power curve dependant on the shear...... condition, therefore on the season and the site. It was then proposed to use an equivalent wind speed accounting for the whole speed profile in front of the turbine. The method was first tested with aerodynamic simulations of a multi-megawatt wind turbine which demonstrated the decrease of the scatter...

  12. Impact of Wind Shear and Tower Shadow Effects on Power System with Large Scale Wind Power Penetration

    DEFF Research Database (Denmark)

    Hu, Weihao; Su, Chi; Chen, Zhe

    2011-01-01

    presents a simulation model of a variable speed wind farm with permanent magnet synchronous generators (PMSGs) and fullscale back-to-back converters in the simulation tool of DIgSILENT/PowerFactory. In this paper, the impacts of wind shear and tower shadow effects on the small signal stability of power...

  13. Power spectral density analysis of wind-shear turbulence for related flight simulations. M.S. Thesis

    Science.gov (United States)

    Laituri, Tony R.

    1988-01-01

    Meteorological phenomena known as microbursts can produce abrupt changes in wind direction and/or speed over a very short distance in the atmosphere. These changes in flow characteristics have been labelled wind shear. Because of its adverse effects on aerodynamic lift, wind shear poses its most immediate threat to flight operations at low altitudes. The number of recent commercial aircraft accidents attributed to wind shear has necessitated a better understanding of how energy is transferred to an aircraft from wind-shear turbulence. Isotropic turbulence here serves as the basis of comparison for the anisotropic turbulence which exists in the low-altitude wind shear. The related question of how isotropic turbulence scales in a wind shear is addressed from the perspective of power spectral density (psd). The role of the psd in related Monte Carlo simulations is also considered.

  14. The Structure of Vertical Wind Shear in Tropical Cyclone Environments: Implications for Forecasting and Predictability

    Science.gov (United States)

    Finocchio, Peter M.

    The vertical wind shear measured between 200 and 850 hPa is commonly used to diagnose environmental interactions with a tropical cyclone (TC) and to forecast the storm's intensity and structural evolution. More often than not, stronger vertical shear within this deep layer prohibits the intensification of TCs and leads to predictable asymmetries in precipitation. But such bulk measures of vertical wind shear can occasionally mislead the forecaster. In the first part of this dissertation, we use a series of idealized numerical simulations to examine how a TC responds to changing the structure of unidirectional vertical wind shear while fixing the 200-850-hPa shear magnitude. These simulations demonstrate a significant intensity response, in which shear concentrated in shallow layers of the lower troposphere prevents vortex intensification. We attribute the arrested development of TCs in lower-level shear to the intrusion of mid-level environmental air over the surface vortex early in the simulations. Convection developing on the downshear side of the storm interacts with the intruding air so as to enhance the downward flux of low-entropy air into the boundary layer. We also construct a two-dimensional intensity response surface from a set of simulations that sparsely sample the joint shear height-depth parameter space. This surface reveals regions of the two-parameter space for which TC intensity is particularly sensitive. We interpret these parameter ranges as those which lead to reduced intensity predictability. Despite the robust response to changing the shape of a sheared wind profile in idealized simulations, we do not encounter such sensitivity within a large set of reanalyzed TCs in the Northern Hemisphere. Instead, there is remarkable consistency in the structure of reanalyzed wind profiles around TCs. This is evident in the distributions of two new parameters describing the height and depth of vertical wind shear, which highlight a clear preference for

  15. Wind turbine blade shear web disbond detection using rotor blade operational sensing and data analysis.

    Science.gov (United States)

    Myrent, Noah; Adams, Douglas E; Griffith, D Todd

    2015-02-28

    A wind turbine blade's structural dynamic response is simulated and analysed with the goal of characterizing the presence and severity of a shear web disbond. Computer models of a 5 MW offshore utility-scale wind turbine were created to develop effective algorithms for detecting such damage. Through data analysis and with the use of blade measurements, a shear web disbond was quantified according to its length. An aerodynamic sensitivity study was conducted to ensure robustness of the detection algorithms. In all analyses, the blade's flap-wise acceleration and root-pitching moment were the clearest indicators of the presence and severity of a shear web disbond. A combination of blade and non-blade measurements was formulated into a final algorithm for the detection and quantification of the disbond. The probability of detection was 100% for the optimized wind speed ranges in laminar, 30% horizontal shear and 60% horizontal shear conditions. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  16. Brief communication: On the influence of vertical wind shear on the combined power output of two model wind turbines in yaw

    Directory of Open Access Journals (Sweden)

    J. Schottler

    2017-08-01

    Full Text Available The effect of vertical wind shear on the total power output of two aligned model wind turbines as a function of yaw misalignment of the upstream turbine is studied experimentally. It is shown that asymmetries of the power output of the downstream turbine and the combined power of both with respect to the upstream turbine's yaw misalignment angle can be linked to the vertical wind shear of the inflow.

  17. The Low-Level Wind Shear Alert System (LLWSAS)

    Science.gov (United States)

    1980-05-01

    Weather (Meteorology) 19. Security Clasif . (of this report) 20. Security Clssif. (of this page) 21. No. of Pages 22. Price Unclassified Unclassified...sections to loosen, resulting in tower collapse. A heavier duty, three-legged tower with steel rod legs and welded steel crossmembers on a frangible base...runways 36L-18R. The sensor is atop a steel pipe which is affixed to a transmissometer tower. There is some sheltering with west winds because of

  18. Wind Shear and the Strength of Severe Convective Phenomena—Preliminary Results from Poland in 2011–2015

    Directory of Open Access Journals (Sweden)

    Wojciech Pilorz

    2016-10-01

    Full Text Available Severe convective phenomena cause significant loss in the economy and, primarily, casualties. Therefore, it is essential to forecast such extreme events to avoid or minimize the negative consequences. Wind shear provides an updraft-downdraft separation in the convective cell, which extends the cell lifetime. Wind shears between a few different air layers have been examined in all damaging convective cases in Poland, taken from the European Severe Weather Database between 2011 and 2015, in order to find their values and patterns according to the intensity of this phenomenon. Each severe weather report was assigned wind shear values from the nearest sounding station, and subsequently the presented summary was made. It was found that wind shear values differ between the given phenomena and their intensity. This regularity is particularly visible in shears containing 0 km wind. The highest shears occur within wind reports. Lower values are associated with hail reports. An important difference between weak and F1+ tornadoes was found in most of the wind shears. Severe phenomena probability within 0–6 km and 0–1 km shears show different patterns according to the phenomena and their intensity. This finding has its application in severe weather forecasting.

  19. Performance analysis and technical assessment of coherent lidar systems for airborne wind shear detection

    Science.gov (United States)

    Huffaker, R. Milton; Targ, Russell

    1988-01-01

    Detailed computer simulations of the lidar wind-measuring process have been conducted to evaluate the use of pulsed coherent lidar for airborne windshear monitoring. NASA data fields for an actual microburst event were used in the simulation. Both CO2 and Ho:YAG laser lidar systems performed well in the microburst test case, and were able to measure wind shear in the severe weather of this wet microburst to ranges in excess of 1.4 km. The consequent warning time gained was about 15 sec.

  20. Evolution and Growth Competition of Salt Fingers in Saline Lake with Slight Wind Shear

    Science.gov (United States)

    Yang, Ray-Yeng; Hwung, Hwung-Hweng; Shugan, Igor

    2010-05-01

    Since the discover of double-diffusive convection by Stommel, Arons & Blanchard (1956), 'evidence has accumulated for the widespread presence of double-diffusion throughout the ocean' and for its 'significant effects on global water-mass structure and the thermohaline convection' (Schmitt, 1998). The salt-fingering form of double-diffusion has particularly attracted interest because of salt-finger convection being now widely recognized as an important mechanism for mixing heat and salt both vertically and laterally in the ocean and saline lake. In oceanographic situations or saline lake where salt fingers may be an important mechanism for the transport of heat and salt in the vertical, velocity shears may also be present. Salt finger convection is analogous to Bénard convection in that the kinetic energy of the motions is obtained from the potential energy stored in the unstable distribution of a stratifying component. On the basis of the thermal analogy it is of interest to discover whether salt fingers are converted into two-dimensional sheets by the wind shear, and how the vertical fluxes of heat and salt are changed by the wind shear. Salt finger convection under the effect of steady wind shear is theoretically examined in this paper. The evolution of developing in the presence of a vertical density gradient disturbance and the horizontal Couette flow is considered near the onset of salt fingers in the saline lake under a moderate rate of wind shear. We use velocity as the basic variable and solve the pressure Poisson equation in terms of the associated Green function. Growth competition between the longitudinal rolls (LR) and the transverse rolls (TR), whose axes are respectively in the direction parallel to and perpendicular to the Couette flow, is investigated by the weakly nonlinear analysis of coupled-mode equations. The results show that the TR mode is characterized in some range of the effective Rayleigh number, and that the stability is dominated by

  1. Estimating a wind shear detection range for different altitude levels in the troposphere

    Directory of Open Access Journals (Sweden)

    V. A. Gorodnichev

    2014-01-01

    Full Text Available A so-called wind shear (a vector difference of wind speeds in two points of the space referred to the distance between them is of essential practical interest to air force. The wind shear is a hidden and cliffhanging phenomenon. The growth of aircraft incidents at their taking off and landing have drawn attention to this phenomenon.Laser methods are one of the advanced remote techniques to measure a speed and detect a wind shear. Remote laser methods of wind speed measurement are divided into Doppler and correlation ones. More simple (and, respectively, demanding less expensive equipment are correlation methods and near to them non-Doppler techniques.Today almost all existing wind correlation lidars run in the visible range. However, in terms of safety for an eye, other ranges: near infrared (IK and ultra-violet (UF ones are also of interest.The work assesses a sounding range of the aircraft lidar in UF, visible, and near IK spectral ranges to solve a problem of wind shear detection for different altitude levels in the troposphere.Results of calculations show that the sounding ranges decrease with increasing flight altitude (at lidar parameters used in calculations to be in range from ~ 2.7-3.3 km (the lowest atmospheric layer height ~ 0 to ~ 200 - 300 m (a flight altitude of 10 km. And the main reduction of the sounding range vs height is within the range of heights of 5-10 km. Such dependence is caused by the strong reduction of aerosol extinction and atmosphere scattering with the altitude increase in this altitude range.In a ground layer of the terrestrial atmosphere (height ~ 0 the greatest sounding range is realized for a wave length of 0.532 microns. With increasing flight altitude a difference in sounding ranges for the wave lengths of 0.355; 9.532 and 1.54 microns decreases, and at big heights the greatest range of sounding is realized for a wave length of 1.54 microns.

  2. Factors Contributing to the Interrupted Decay of Hurricane Joaquin (2015) in a Moderate Vertical Wind Shear Environment

    Science.gov (United States)

    2017-06-01

    CONTRIBUTING TO THE INTERRUPTED DECAY OF HURRICANE JOAQUIN (2015) IN A MODERATE VERTICAL WIND SHEAR ENVIRONMENT by Adam C. Jorgensen June 2017...OF HURRICANE JOAQUIN (2015) IN A MODERATE VERTICAL WIND SHEAR ENVIRONMENT 5. FUNDING NUMBERS 6. AUTHOR(S) Adam C. Jorgensen 7. PERFORMING...maximum 200 words) This study investigates the environmental factors and the internal processes that contributed to the interrupted rapid decay of

  3. Wake Flow Simulation of a Vertical Axis Wind Turbine Under the Influence of Wind Shear

    Science.gov (United States)

    Mendoza, Victor; Goude, Anders

    2017-05-01

    The current trend of the wind energy industry aims for large scale turbines installed in wind farms. This brings a renewed interest in vertical axis wind turbines (VAWTs) since they have several advantages over the traditional Horizontal Axis Wind Tubines (HAWTs) for mitigating the new challenges. However, operating VAWTs are characterized by complex aerodynamics phenomena, presenting considerable challenges for modeling tools. An accurate and reliable simulation tool for predicting the interaction between the obtained wake of an operating VAWT and the flow in atmospheric open sites is fundamental for optimizing the design and location of wind energy facility projects. The present work studies the wake produced by a VAWT and how it is affected by the surface roughness of the terrain, without considering the effects of the ambient turbulence intensity. This study was carried out using an actuator line model (ALM), and it was implemented using the open-source CFD library OpenFOAM to solve the governing equations and to compute the resulting flow fields. An operational H-shaped VAWT model was tested, for which experimental activity has been performed at an open site north of Uppsala-Sweden. Different terrains with similar inflow velocities have been evaluated. Simulated velocity and vorticity of representative sections have been analyzed. Numerical results were validated using normal forces measurements, showing reasonable agreement.

  4. The Orlando TDWR testbed and airborne wind shear date comparison results

    Science.gov (United States)

    Campbell, Steven; Berke, Anthony; Matthews, Michael

    1992-01-01

    The focus of this talk is on comparing terminal Doppler Weather Radar (TDWR) and airborne wind shear data in computing a microburst hazard index called the F factor. The TDWR is a ground-based system for detecting wind shear hazards to aviation in the terminal area. The Federal Aviation Administration will begin deploying TDWR units near 45 airports in late 1992. As part of this development effort, M.I.T. Lincoln Laboratory operates under F.A.A. support a TDWR testbed radar in Orlando, FL. During the past two years, a series of flight tests has been conducted with instrumented aircraft penetrating microburst events while under testbed radar surveillance. These tests were carried out with a Cessna Citation 2 aircraft operated by the University of North Dakota (UND) Center for Aerospace Sciences in 1990, and a Boeing 737 operated by NASA Langley Research Center in 1991. A large data base of approximately 60 instrumented microburst penetrations has been obtained from these flights.

  5. Structural characterization of wind-sheared turbulent flow using self-organized mapping

    Science.gov (United States)

    Scott, Nicholas V.; Handler, Robert A.

    2016-05-01

    A nonlinear cluster analysis algorithm is used to characterize the spatial structure of a wind-sheared turbulent flow obtained from the direct numerical simulation (DNS) of the three-dimensional temperature and momentum fields. The application of self-organizing mapping to DNS data for data reduction is utilized because of the dimensional similitude in structure between DNS data and remotely sensed hyperspectral and multispectral data where the technique has been used extensively. For the three Reynolds numbers of 150, 180, and 220 used in the DNS, self-organized mapping is successful in the extraction of boundary layer streaky structures from the turbulent temperature and momentum fields. In addition, it preserves the cross-wind scale structure of the streaks exhibited in both fields which loosely scale with the inverse of the Reynolds number. Self-organizing mapping of the along wind component of the helicity density shows a layer of the turbulence field which is spotty suggesting significant direct coupling between the large and small-scale turbulent structures. The spatial correlation of the temperature and momentum fields allows for the possibility of the remote extrapolation of the momentum structure from thermal structure.

  6. NASA airborne radar wind shear detection algorithm and the detection of wet microbursts in the vicinity of Orlando, Florida

    Science.gov (United States)

    Britt, Charles L.; Bracalente, Emedio M.

    1992-01-01

    The algorithms used in the NASA experimental wind shear radar system for detection, characterization, and determination of windshear hazard are discussed. The performance of the algorithms in the detection of wet microbursts near Orlando is presented. Various suggested algorithms that are currently being evaluated using the flight test results from Denver and Orlando are reviewed.

  7. Effect of Tower Shadow and Wind Shear in a Wind Farm on AC Tie-Line Power Oscillations of Interconnected Power Systems

    DEFF Research Database (Denmark)

    Tan, Jin; Hu, Weihao; Wang, Xiaoru

    2013-01-01

    This paper describes a frequency domain approach for evaluating the impact of tower shadow and wind shear effects (TSWS) on tie-line power oscillations. A simplified frequency domain model of an interconnected power system with a wind farm is developed. The transfer function, which relates the tie......-line power variation to the mechanical power variation of a wind turbine, and the expression of the maximum magnitude of tie-line power oscillations are derived to identify the resonant condition and evaluate the potential risk. The effects of the parameters on the resonant magnitude of the tie-line power...... are also discussed. The frequency domain analysis reveals that TSWS can excite large tie-line power oscillations if the frequency of TSWS approaches the tie-line resonant frequency, especially in the case that the wind farm is integrated into a relatively small grid and the tie-line of the interconnected...

  8. First wind shear observation in PMSE with the tristatic EISCAT VHF radar

    Science.gov (United States)

    Mann, I.; Häggström, I.; Tjulin, A.; Rostami, S.; Anyairo, C. C.; Dalin, P.

    2016-11-01

    The Polar Summer Mesosphere has the lowest temperatures that occur in the entire Earth system. Water ice particles below the optically observable size range participate there in the formation of strong radar echoes (Polar Mesospheric Summer Echoes, PMSE). To study PMSE we carried out observations with the European Incoherent Scatter (EISCAT) VHF and EISCAT UHF radar simultaneously from a site near Tromsø (69.58°N, 19.2272°E) and observed VHF backscattering also with the EISCAT receivers in Kiruna (67.86°N, 20.44°E) and Sodankylä (67.36°N, 26.63°E). This is one of the first tristatic measurements with EISCAT VHF, and we therefore describe the observations and geometry in detail. We present observations made on 26 June 2013 from 7:00 to 13:00 h UT where we found similar PMSE patterns with all three VHF receivers and found signs of wind shear in PMSE. The observations suggest that the PMSE contains sublayers that move in different directions horizontally, and this points to Kelvin-Helmholtz instability possibly playing a role in PMSE formation. We find no signs of PMSE in the UHF data. The electron densities that we derive from observed incoherent scatter at UHF are at PMSE altitudes close to the noise level but possibly indicate reduced electron densities directly above the PMSE.

  9. Accounting for the speed shear in wind turbine power performance measurement

    DEFF Research Database (Denmark)

    Wagner, Rozenn; Courtney, Michael; Gottschall, Julia

    2011-01-01

    The current IEC standard for wind turbine power performance measurement only requires measurement of the wind speed at hub height assuming this wind speed to be representative for the whole rotor swept area. However, the power output of a wind turbine depends on the kinetic energy flux, which...

  10. Automatic detection of low altitude wind shear due to gust fronts in the terminal Doppler weather radar operational demonstration

    Science.gov (United States)

    Klingle-Wilson, Diana

    1990-01-01

    A gust front is the leading edge of the cold air outflow from a thunderstorm. Wind shears and turbulence along the gust front may produce potentially hazardous conditions for an aircraft on takeoff or landing such that runway operations are significantly impacted. The Federal Aviation Administration (FAA) has therefore determined that the detection of gust fronts in the terminal environment be an integral part of the Terminal Doppler Weather Radar (TDWR) system. Detection of these shears by the Gust Front Algorithm permits the generation of warnings that can be issued to pilots on approach and departure. In addition to the detection capability, the algorithm provides an estimate of the wind speed and direction following the gust front (termed wind shift) and the forecasted location of the gust front up to 20 minutes before it impacts terminal operations. This has shown utility as a runway management tool, alerting runway supervisors to approaching wind shifts and the possible need to change runway configurations. The formation and characteristics of gust fronts and their signatures in Doppler radar data are discussed. A brief description of the algorithm and its products for use by Air Traffic Control (ATC), along with an assessment of the algorithm's performance during the 1988 Operational Test and Evaluation, is presented.

  11. Uncertainty in vertical extrapolation of wind statistics: shear-exponent and WAsP/EWA methods

    DEFF Research Database (Denmark)

    Kelly, Mark C.

    This report provides formulations for estimation of uncertainties involved in vertical extrapolation of winds, as well as the total uncertainty incurred when winds observed at one height are extrapolated to turbine hub height for wind resource assessment. This includes new derivations for uncerta......This report provides formulations for estimation of uncertainties involved in vertical extrapolation of winds, as well as the total uncertainty incurred when winds observed at one height are extrapolated to turbine hub height for wind resource assessment. This includes new derivations...

  12. Role of upper-level wind shear on the structure and maintenance of derecho-producing convective systems

    Science.gov (United States)

    Coniglio, Michael Charles

    Common large-scale environments associated with the development of derecho-producing convective systems from a large number of events are identified using statistical clustering of the 500-mb geopotential heights as guidance. The majority of the events (72%) fall into three main patterns that include a well-defined upstream trough (40%), a ridge (20%), and a zonal, low-amplitude flow (12%), which is defined as an additional warm-season pattern that is not identified in past studies of derecho environments. Through an analysis of proximity soundings, discrepancies are found in both low-level and deep-tropospheric shear parameters between observations and the shear profiles considered favorable for strong, long-lived convective systems in idealized simulations. To explore the role of upper-level shear in derecho environments, a set of two-dimensional simulations of density currents within a dry, neutrally stable environment are used to examine the ability of a cold pool to lift environmental air within a vertically sheared flow. The results confirm that the addition of upper-level shear to a wind profile with weak to moderate low-level shear increases the vertical displacement of low-level parcels despite a decrease in the vertical velocity along the cold pool interface, as suggested by previous studies. Parcels that are elevated above the surface (1-2 km) overturn and are responsible for the deep lifting in the deep-shear environments. This deep overturning caused by the upper-level shear helps to maintain the tilt of the convective systems in more complex two-dimensional and three dimensional simulations. The overturning also is shown to greatly increase the size of the convective systems in the three-dimensional simulations by facilitating the initiation and maintenance of convective cells along the cold pool. When combined with estimates of the cold pool motion and the storm-relative hodograph, these results may best be used for the prediction of the demise of

  13. Solar-wind turbulence and shear: a superposed-epoch analysis of corotating interaction regions at 1 AU

    Energy Technology Data Exchange (ETDEWEB)

    Borovsky, Joseph E [Los Alamos National Laboratory; Denton, Michael H [LANCASTER UNIV.

    2009-01-01

    A superposed-epoch analysis of ACE and OMNI2 measurements is performed on 27 corotating interaction regions (CIRs) in 2003-2008, with the zero epoch taken to be the stream interface as determined by the maximum of the plasma vorticity. The structure of CIRs is investigated. When the flow measurements are rotated into the local-Parker-spiral coordinate system the shear is seen to be abrupt and intense, with vorticities on the order of 10{sup -5}-10{sup -4} sec{sup -1}. Converging flows perpendicular to the stream interface are seen in the local-Parker-spiral coordinate system and about half of the CIRs show a layer of divergent rebound flow away from the stream interface. Arguments indicate that any spreading of turbulence away from the region where it is produced is limited to about 10{sup 6} km, which is very small compared with the thickness of a CrR. Analysis of the turbulence across the CrRs is performed. When possible, the effects of discontinuities are removed from the data. Fluctuation amplitudes, the Alfvenicity, and the level of Alfvenic correlations all vary smoothly across the CrR. The Alfven ratio exhibits a decrease at the shear zone of the stream interface. Fourier analysis of 4.5-hr subintervals of ACE data is performed and the results are superposed averaged as an ensemble of realizations. The spectral slopes of the velocity, magnetic-field, and total-energy fluctuations vary smoothly across the CIR. The total-energy spectral slope is {approx} 3/2 in the slow and fast wind and in the CrRs. Analysis of the Elsasser inward-outward fluctuations shows a smooth transition across the CrR from an inward-outward balance in the slow wind to an outward dominance in the fast wind. A number of signatures of turbulence driving at the shear zone are sought (entropy change, turbulence amplitude, Alfvenicity, Alfven ratio, spectral slopes, in-out nature): none show evidence of driving of turbulence by shear.

  14. Multithreaded Processors

    Indian Academy of Sciences (India)

    IAS Admin

    processor architecture. Venkat Arun is a 3rd year. BTech Computer Science student at IIT Guwahati. He is currently working on congestion control in computer networks. In this article, we describe the constraints faced by modern computer designers due to operating speed mismatch between processors and mem- ory units ...

  15. Development of a novel pelletization technique through an extremely high-shear process using a mechanical powder processor to produce high-dose small core granules suitable for film coating.

    Science.gov (United States)

    Kondo, Keita; Kato, Aya; Niwa, Toshiyuki

    2015-04-10

    We established an extremely high-shear melt pelletization technique using a mechanical powder processor to produce high-dose granules smaller than 300 μm with properties suitable for film coating. A mixture of ethenzamide and polyethylene glycol (used as a low-melting binder) at various weight ratios was mechanically treated under various jacket temperatures. When the jacket temperature was set to 50 °C or greater, the product temperature reached the melting point of the binder, resulting in pelletization. The drug powder were pelletized with a small amount of binder to yield pellets of approximately 150 μm with a drug content of more than 90%. The mechanism of melt pelletization through ultrahigh shearing involves a series of nucleation, consolidation, coalescence and breakage stages. The power consumption profile corresponding to each stage in the pelletization revealed that pellets between 75 and 300 μm were effectively obtained at a large power consumption peak. The resultant pellets showed comparative sphericity and smoothness, and higher durability than commercial core granules for film coating. In conclusion, this study demonstrates that the extremely high-shear melt pelletization technique can give drug pellets with desirable properties as core particles for the coating process. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. USAF TPS L-23 Shear Wind Observed Optimized Path Investigation for NASA (SENIOR ShWOOPIN)

    National Research Council Canada - National Science Library

    Gordon, Randy; Fails, Robert; Baase, Solomon; Eckberg, Jason; Ryan, Charles; Smith, Chris

    2006-01-01

    The SENIOR ShWOOPIN TMP was conducted at the request of the USAF TPS as part of a NASA investigation into the viability of aircraft endurance enhancement through the extraction of energy from horizontal wind gradients...

  17. A new paradigm for intensity modification of tropical cyclones: thermodynamic impact of vertical wind shear on the inflow layer

    Science.gov (United States)

    Riemer, M.; Montgomery, M. T.; Nicholls, M. E.

    2009-05-01

    An important roadblock to improved intensity forecasts for tropical cyclones (TCs) is our incomplete understanding of the interaction of a TC with the environmental flow. In this paper we re-visit the classical idealised numerical experiment of tropical cyclones (TCs) in vertical wind shear on an f-plane. We employ a set of simplified model physics - a simple bulk aerodynamic boundary layer scheme and "warm rain" microphysics - to foster better understanding of the dynamics and thermodynamics that govern the modification of TC intensity. A suite of experiments is performed with intense TCs in moderate to strong vertical shear. In all experiments the TC is resilient to shear but significant differences in the intensity evolution occur. The ventilation of the TC core with dry environmental air at mid-levels and the dilution of the upper-level warm core are two prevailing hypotheses for the adverse effect of vertical shear on storm intensity. Here we propose an alternative and arguably more effective mechanism how cooler and drier (lower θe) air - "anti-fuel" for the TC power machine - can enter the core region of the TC. Strong and persistent downdrafts flux low θe air from the lower and middle troposphere into the boundary layer, significantly depressing the θe values in the storm's inflow layer. Air with lower θe values enters the eyewall updrafts, considerably reducing eyewall θe values in the azimuthal mean. When viewed from the perspective of an idealised Carnot-cycle heat engine a decrease of storm intensity can thus be expected. Although the Carnot cycle model is - if at all - only valid for stationary and axisymmetric TCs, a strong correlation between the downward transport of low θe into the boundary layer and the intensity evolution offers further evidence in support of our hypothesis. The downdrafts that flush the inflow layer with low θe air are associated with a quasi-stationary region of convective activity outside the TC's eyewall. We show

  18. Interaction of suprathermal solar wind electron fluxes with sheared whistler waves: fan instability

    Directory of Open Access Journals (Sweden)

    C. Krafft

    Full Text Available Several in situ measurements performed in the solar wind evidenced that solar type III radio bursts were some-times associated with locally excited Langmuir waves, high-energy electron fluxes and low-frequency electrostatic and electromagnetic waves; moreover, in some cases, the simultaneous identification of energetic electron fluxes, Langmuir and whistler waves was performed. This paper shows how whistlers can be excited in the disturbed solar wind through the so-called "fan instability" by interacting with energetic electrons at the anomalous Doppler resonance. This instability process, which is driven by the anisotropy in the energetic electron velocity distribution along the ambient magnetic field, does not require any positive slope in the suprathermal electron tail and thus can account for physical situations where plateaued reduced electron velocity distributions were observed in solar wind plasmas in association with Langmuir and whistler waves. Owing to linear calculations of growth rates, we show that for disturbed solar wind conditions (that is, when suprathermal particle fluxes propagate along the ambient magnetic field, the fan instability can excite VLF waves (whistlers and lower hybrid waves with characteristics close to those observed in space experiments.

    Key words. Space plasma physics (waves and instabilities – Radio Science (waves in plasma – Solar physics, astrophysics and astronomy (radio emissions

  19. Interaction of suprathermal solar wind electron fluxes with sheared whistler waves: fan instability

    Directory of Open Access Journals (Sweden)

    C. Krafft

    2003-07-01

    Full Text Available Several in situ measurements performed in the solar wind evidenced that solar type III radio bursts were some-times associated with locally excited Langmuir waves, high-energy electron fluxes and low-frequency electrostatic and electromagnetic waves; moreover, in some cases, the simultaneous identification of energetic electron fluxes, Langmuir and whistler waves was performed. This paper shows how whistlers can be excited in the disturbed solar wind through the so-called "fan instability" by interacting with energetic electrons at the anomalous Doppler resonance. This instability process, which is driven by the anisotropy in the energetic electron velocity distribution along the ambient magnetic field, does not require any positive slope in the suprathermal electron tail and thus can account for physical situations where plateaued reduced electron velocity distributions were observed in solar wind plasmas in association with Langmuir and whistler waves. Owing to linear calculations of growth rates, we show that for disturbed solar wind conditions (that is, when suprathermal particle fluxes propagate along the ambient magnetic field, the fan instability can excite VLF waves (whistlers and lower hybrid waves with characteristics close to those observed in space experiments.Key words. Space plasma physics (waves and instabilities – Radio Science (waves in plasma – Solar physics, astrophysics and astronomy (radio emissions

  20. A Study of Wind Shear Effects on Aircraft Operations and Safety in Australia,

    Science.gov (United States)

    1981-03-01

    basic observational data are often too obsolete to be of much assistance. At Auckland and Bahrain, ATCs record the wind speed at 2000 ft as advised...included here. Tropical cyclones, and on a much smaller scale, tornadoes . willy-willies and dust devils are phenomena of intense atmospheric activity

  1. Classification of Rotor Induced Shearing Events in the Near Wake of a Wind Turbine Array Boundary Layer

    Science.gov (United States)

    Smith, Sarah; Viggiano, Bianca; Ali, Naseem; Cal, Raul Bayoan

    2017-11-01

    Flow perturbation induced by a turbine rotor imposes considerable turbulence and shearing effects in the near wake of a turbine, altering the efficiency of subsequent units within a wind farm array. Previous methods have characterized near wake vorticity of a turbine and recovery distance of various turbine array configurations. This study aims to build on previous analysis with respect to a turbine rotor within an array and develop a model to examine stress events and energy contribution in the near wake due to rotational effects. Hot wire anemometry was employed downstream of a turbine centrally located in the third row of a 3x3 array. Data considered points planar to the rotor and included simultaneous streamwise and wall-normal velocities as well as concurrent streamwise and transverse velocities. Conditional analysis of Reynolds stresses induced by the rotor agree with former near wake research, and examination of stresses in terms of streamwise and transverse velocity components depicts areas of significant rotational effects. Continued analysis includes spectral decomposition and conditional statistics to further characterize shearing events at various points considering the swept area of the rotor.

  2. Wind shear and wet and dry thermodynamic indices as predictors of thunderstorm motion and severity and application to the AVE 4 experimental data

    Science.gov (United States)

    Connell, J. R.; Ey, L.

    1977-01-01

    Two types of parameters are computed and mapped for use in assessing their individual merits as predictors of occurrence and severity of thunderstorms. The first group is comprised of equivalent potential temperature, potential temperature, water vapor mixing ratio, and wind speed. Equivalent potential temperature maxima and strong gradients of equivalent potential temperature at the surface correlate well with regions of thunderstorm activity. The second type, comprised of the energy index, shear index, and energy shear index, incorporates some model dynamics of thunderstorms, including nonthermodynamic forcing. The energy shear index is found to improve prediction of tornadic and high-wind situations slightly better than other indices. It is concluded that further development and refinement of nonthermodynamic aspects of predictive indices are definitely warranted.

  3. Multithreaded Processors

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 20; Issue 9. Multithreaded Processors. Venkat Arun. General Article Volume 20 Issue 9 September 2015 pp 844-855. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/020/09/0844-0855. Keywords.

  4. Shear stress peaks in a superconductor cable during the winding of a large toroidal field coil

    International Nuclear Information System (INIS)

    Zehlein, H.

    1983-01-01

    The paper presents a simplified elastica conductor model (SECM) built by a finite chain of intervals with constant bending moment and curvature. The problem does not allow to linearize the curvature. A bilinear moment-curvature relationship as derived from bending experiments was used to describe the elastoplastic behaviour of the cable under different tension forces acting on the ''free'' end near the supply spool. Due to the geometric and material nonlinearities mentioned no direct solution is possible. The paper describes the discrete model as well as the iterative shooting method which finds the equilibrium shape of the conductor. The distributions of bending moment and shear forces on the D-shaped contour as well as along the conductor are given. They show a pronounced influence of the tension force in the relevant range of 1 to 40 kN. An inconsistency due to compromising model simplifications is shown which occurs at the contour points where the curvature radius suddenly changes. Remarks on the elastic springback of the superconductor observed there conclude the paper

  5. A new paradigm for intensity modification of tropical cyclones: thermodynamic impact of vertical wind shear on the inflow layer

    Directory of Open Access Journals (Sweden)

    M. Riemer

    2010-04-01

    Full Text Available An important roadblock to improved intensity forecasts for tropical cyclones (TCs is our incomplete understanding of the interaction of a TC with the environmental flow. In this paper we re-visit the canonical problem of a TC in vertical wind shear on an f-plane. A suite of numerical experiments is performed with intense TCs in moderate to strong vertical shear. We employ a set of simplified model physics – a simple bulk aerodynamic boundary layer scheme and "warm rain" microphysics – to foster better understanding of the dynamics and thermodynamics that govern the modification of TC intensity. In all experiments the TC is resilient to shear but significant differences in the intensity evolution occur.

    The ventilation of the TC core with dry environmental air at mid-levels and the dilution of the upper-level warm core are two prevailing hypotheses for the adverse effect of vertical shear on storm intensity. Here we propose an alternative and arguably more effective mechanism how cooler and drier (lower θe air – "anti-fuel" for the TC power machine – can enter the core region of the TC. Strong and persistent, shear-induced downdrafts flux low θe air into the boundary layer from above, significantly depressing the θe values in the storm's inflow layer. Air with lower θe values enters the eyewall updrafts, considerably reducing eyewall θe values in the azimuthal mean. When viewed from the perspective of an idealised Carnot-cycle heat engine a decrease of storm intensity can thus be expected. Although the Carnot cycle model is – if at all – only valid for stationary and axisymmetric TCs, a close association of the downward transport of low θe into the boundary layer and the intensity evolution offers further evidence in support of our hypothesis.

    The downdrafts that flush the boundary layer with low

  6. Numerical investigations on the influence of wind shear and turbulence on aircraft trailing vortices; Numerische Untersuchungen zum Einfluss von Windscherung und Turbulenz auf Flugzeugwirbelschleppen

    Energy Technology Data Exchange (ETDEWEB)

    Hofbauer, T.

    2003-07-01

    In several aspects, the behaviour of aircraft wake vortices under situations of vertical wind shear is significantly different from non-shear scenarios and its operational real-time forcast is challenging. By means of numerical investigations of idealized scenarios, the influence of wind shear on the lateral and vertical transport of vortices is analysed both, phenomenologically as well as in the scope of a sensitivity study. The results allow for the verification of controversial views and the benchmark of modelling approaches. Case studies of turbulent shear flows focus on the persistence of vortices. A detailed analysis of the flow fields evidence that unequal vortex decay rates can be attributed to the asymmetric distribution of secondary vorticity structures. The results moreover suggest that extended vortex lifespans can be expected under situations of wind shear. The unusual vortex behaviour observed by means of a LIDAR measurement is reproduced by realistic simulations and permits to reveal potential causes. (orig.) [German] Das Wirbelschleppenverhalten unterscheidet sich in Situationen vertikaler Windscherung in mehrfacher Hinsicht signifikant von scherungsfreien Szenarien und stellt eine besondere Herausforderung fuer eine operationelle Echtzeitvorhersage dar. Mittels numerischer Untersuchungen idealisierter Szenarien wird zunaechst der Einfluss von Windscherung auf den lateralen und vertikalen Wirbeltransport sowohl phaenomenologisch als auch quantitativ im Rahmen einer Sensitivitaetsstudie analysiert. Anhand der gewonnenen Ergebnisse werden auseinandergehende Erklaerungsansaetze geprueft und Modellierungsansaetze bewertet. Fallstudien turbulenter Scherstroemungen zur Wirbelpersistenz stellen einen weiteren Schwerpunkt dieser Arbeit dar. Durch die ausfuehrliche Analyse der Stroemungsfelder wird der Nachweis erbracht, dass sich unterschiedliche Zerfallsraten der Wirbel auf die asymmetrische Verteilung von sekundaeren Vorticity-Strukturen zurueckfuehren

  7. The development of convective instability, wind shear, and vertical motion in relation to convection activity and synoptic systems in AVE 4

    Science.gov (United States)

    Davis, J. G.; Scoggins, J. R.

    1981-01-01

    Data from the Fourth Atmospheric Variability Experiment were used to investigate conditions/factors responsible for the development (local time rate-of-change) of convective instability, wind shear, and vertical motion in areas with varying degrees of convective activity. AVE IV sounding data were taken at 3 or 6 h intervals during a 36 h period on 24-25 April 1975 over approximately the eastern half of the United States. An error analysis was performed for each variable studied.

  8. Producing chopped firewood with firewood processors

    International Nuclear Information System (INIS)

    Kaerhae, K.; Jouhiaho, A.

    2009-01-01

    The TTS Institute's research and development project studied both the productivity of new, chopped firewood processors (cross-cutting and splitting machines) suitable for professional and independent small-scale production, and the costs of the chopped firewood produced. Seven chopped firewood processors were tested in the research, six of which were sawing processors and one shearing processor. The chopping work was carried out using wood feeding racks and a wood lifter. The work was also carried out without any feeding appliances. Altogether 132.5 solid m 3 of wood were chopped in the time studies. The firewood processor used had the most significant impact on chopping work productivity. In addition to the firewood processor, the stem mid-diameter, the length of the raw material, and of the firewood were also found to affect productivity. The wood feeding systems also affected productivity. If there is a feeding rack and hydraulic grapple loader available for use in chopping firewood, then it is worth using the wood feeding rack. A wood lifter is only worth using with the largest stems (over 20 cm mid-diameter) if a feeding rack cannot be used. When producing chopped firewood from small-diameter wood, i.e. with a mid-diameter less than 10 cm, the costs of chopping work were over 10 EUR solid m -3 with sawing firewood processors. The shearing firewood processor with a guillotine blade achieved a cost level of 5 EUR solid m -3 when the mid-diameter of the chopped stem was 10 cm. In addition to the raw material, the cost-efficient chopping work also requires several hundred annual operating hours with a firewood processor, which is difficult for individual firewood entrepreneurs to achieve. The operating hours of firewood processors can be increased to the required level by the joint use of the processors by a number of firewood entrepreneurs. (author)

  9. Strongly-sheared wind-forced currents in the nearshore regions of the central Southern California Bight

    Science.gov (United States)

    Noble, Marlene A.; Rosenberger, Kurt; Robertson, George L.

    2015-01-01

    Contrary to many previous reports, winds do drive currents along the shelf in the central portion of the Southern California Bight (SCB). Winds off Huntington Beach CA are the dominant forcing for currents over the nearshore region of the shelf (water depths less than 20 m). Winds control about 50–70% of the energy in nearshore alongshelf surface currents. The wind-driven current amplitudes are also anomalously high. For a relatively weak 1 dyne/cm2 wind stress, the alongshelf surface current amplitudes in this region can reach 80 cm/s or more. Mid-depth current amplitudes for the same wind stress are around 30–40 cm/s. These wind-driven surface current amplitudes are much larger than previously measured over other nearshore shelf regions, perhaps because this program is one of the few that measured currents within a meter of the surface. The near-bed cross-shelf currents over the nearshore region of the Huntington Beach shelf have an Ekman response to winds in that they upwell (downwell) for down (up) coast winds. This response disappears further offshore. Hence, there is upwelling in the SCB, but it does not occur across the entire shelf. Subthermocline water in the nearshore region that may contain nutrients and plankton move onshore when winds are southeastward, but subthermocline water over the shelf break is not transported to the beach. The currents over the outer shelf are not predominately controlled by winds, consistent with previous reports. Instead, they are mainly driven by cross-shelf pressure gradients that are independent of local wind stress.

  10. The LASS hardware processor

    International Nuclear Information System (INIS)

    Kunz, P.F.

    1976-01-01

    The problems of data analysis with hardware processors are reviewed and a description is given of a programmable processor. This processor, the 168/E, has been designed for use in the LASS multi-processor system; it has an execution speed comparable to the IBM 370/168 and uses the subset of IBM 370 instructions appropriate to the LASS analysis task. (Auth.)

  11. Shear layer approximation of Navier-Stokes steady equations for non-axisymmetric wind turbine wakes: Description, verification and first application

    Science.gov (United States)

    Trabucchi, Davide; Vollmer, Lukas; Kühn, Martin

    2016-09-01

    The number of turbines installed in offshore wind farms has strongly increased in the last years and at the same time the need for more precise estimation of the wind farm efficiency. For this reason, the wind energy community could benefit from more accurate models for multiple wakes. Existing engineering models can only simulate single wakes, which are superimposed if they are interacting in a wind farm. This method is a practical solution, but it is not fully supported by a physical background. The limitation to single wakes is given by the assumption that the wake is axisymmetric. As alternative, we propose a new shear model which is based on the existing engineering wake models, but is extended to simulate also non- axisymmetric wakes. In this paper, we present the theoretical background of the model and two application cases. First, we proved that for axisymmetric wakes the new model is equivalent to a commonly used engineering model. Then, we evaluated the improvements of the new model for the simulation of a non-axisymmetric wake using a large eddy simulation as reference. The results encourage the further development of the model, and promise a successful application for the simulation of multiple wakes.

  12. Assessing the vegetation canopy influences on wind flow using wind ...

    Indian Academy of Sciences (India)

    The effectiveness of vegetation in reducing wind ... Wind erosion; roughness length; shear velocity ratio; shear stress ratio; roughness density; wind tunnel. J. Earth .... flow direction induced by its kinematic viscosity. An increase in shear stress causes a proportional increase in the height-dependent change in wind velocity.

  13. Comparison of wind turbine wake properties in non‐sheared inflow predicted by different computational fluid dynamics rotor models

    DEFF Research Database (Denmark)

    Troldborg, Niels; Zahle, Frederik; Réthoré, Pierre-Elouan

    2015-01-01

    The wake of the 5MW reference wind turbine designed by the National Renewable Energy Laboratory (NREL) is simulated using computational fluid dynamics with a fully resolved rotor geometry, an actuator line method and an actuator disc method, respectively. Simulations are carried out prescribing...

  14. Embedded Processor Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Embedded Processor Laboratory provides the means to design, develop, fabricate, and test embedded computers for missile guidance electronics systems in support...

  15. Multithreading in vector processors

    Energy Technology Data Exchange (ETDEWEB)

    Evangelinos, Constantinos; Kim, Changhoan; Nair, Ravi

    2018-01-16

    In one embodiment, a system includes a processor having a vector processing mode and a multithreading mode. The processor is configured to operate on one thread per cycle in the multithreading mode. The processor includes a program counter register having a plurality of program counters, and the program counter register is vectorized. Each program counter in the program counter register represents a distinct corresponding thread of a plurality of threads. The processor is configured to execute the plurality of threads by activating the plurality of program counters in a round robin cycle.

  16. Comparison of the effect of easterly and westerly vertical wind shear on tropical cyclone intensity change over the western North Pacific

    Science.gov (United States)

    Na, Wei; Xinghai, Zhang; Lianshou, Chen; Hao, Hu

    2018-03-01

    The effects of vertical wind shear (VWS) with different directions on tropical cyclone (TC) intensity change are compared in this statistical study based on TCs occurring between 1982 and 2015 over the western North Pacific (WNP). Results show that a westerly VWS has a much higher correlation (‑0.36) with change in TC intensity than an easterly VWS (‑0.07) over the WNP, especially south-westerly VWS (‑0.43). Sea surface temperature (SST) is found to modulate the effect of VWS on TC intensity change as it has a close relationship with zonal VWS (‑0.48). The favorable effect of SST, which increases with increase in easterly VWS, could offset the detrimental effect of VWS, leading to a relatively low correlation coefficient between easterly VWS and TC intensity change. By contrast, westerly VWS increases with decreasing SST, and the largest correlation coefficient appears when SST is around 301 K. Therefore, it is suggested that the direction of VWS as well as its value is taken into consideration in models used to predict TC intensity.

  17. Shear machines

    International Nuclear Information System (INIS)

    Astill, M.; Sunderland, A.; Waine, M.G.

    1980-01-01

    A shear machine for irradiated nuclear fuel elements has a replaceable shear assembly comprising a fuel element support block, a shear blade support and a clamp assembly which hold the fuel element to be sheared in contact with the support block. A first clamp member contacts the fuel element remote from the shear blade and a second clamp member contacts the fuel element adjacent the shear blade and is advanced towards the support block during shearing to compensate for any compression of the fuel element caused by the shear blade (U.K.)

  18. Integrated fuel processor development

    International Nuclear Information System (INIS)

    Ahmed, S.; Pereira, C.; Lee, S. H. D.; Krumpelt, M.

    2001-01-01

    The Department of Energy's Office of Advanced Automotive Technologies has been supporting the development of fuel-flexible fuel processors at Argonne National Laboratory. These fuel processors will enable fuel cell vehicles to operate on fuels available through the existing infrastructure. The constraints of on-board space and weight require that these fuel processors be designed to be compact and lightweight, while meeting the performance targets for efficiency and gas quality needed for the fuel cell. This paper discusses the performance of a prototype fuel processor that has been designed and fabricated to operate with liquid fuels, such as gasoline, ethanol, methanol, etc. Rated for a capacity of 10 kWe (one-fifth of that needed for a car), the prototype fuel processor integrates the unit operations (vaporization, heat exchange, etc.) and processes (reforming, water-gas shift, preferential oxidation reactions, etc.) necessary to produce the hydrogen-rich gas (reformate) that will fuel the polymer electrolyte fuel cell stacks. The fuel processor work is being complemented by analytical and fundamental research. With the ultimate objective of meeting on-board fuel processor goals, these studies include: modeling fuel cell systems to identify design and operating features; evaluating alternative fuel processing options; and developing appropriate catalysts and materials. Issues and outstanding challenges that need to be overcome in order to develop practical, on-board devices are discussed

  19. Graphics Processor Units (GPUs)

    Science.gov (United States)

    Wyrwas, Edward J.

    2017-01-01

    This presentation will include information about Graphics Processor Units (GPUs) technology, NASA Electronic Parts and Packaging (NEPP) tasks, The test setup, test parameter considerations, lessons learned, collaborations, a roadmap, NEPP partners, results to date, and future plans.

  20. Logistic Fuel Processor Development

    National Research Council Canada - National Science Library

    Salavani, Reza

    2004-01-01

    The Air Base Technologies Division of the Air Force Research Laboratory has developed a logistic fuel processor that removes the sulfur content of the fuel and in the process converts logistic fuel...

  1. Adaptive signal processor

    Energy Technology Data Exchange (ETDEWEB)

    Walz, H.V.

    1980-07-01

    An experimental, general purpose adaptive signal processor system has been developed, utilizing a quantized (clipped) version of the Widrow-Hoff least-mean-square adaptive algorithm developed by Moschner. The system accommodates 64 adaptive weight channels with 8-bit resolution for each weight. Internal weight update arithmetic is performed with 16-bit resolution, and the system error signal is measured with 12-bit resolution. An adapt cycle of adjusting all 64 weight channels is accomplished in 8 ..mu..sec. Hardware of the signal processor utilizes primarily Schottky-TTL type integrated circuits. A prototype system with 24 weight channels has been constructed and tested. This report presents details of the system design and describes basic experiments performed with the prototype signal processor. Finally some system configurations and applications for this adaptive signal processor are discussed.

  2. Adaptive signal processor

    International Nuclear Information System (INIS)

    Walz, H.V.

    1980-07-01

    An experimental, general purpose adaptive signal processor system has been developed, utilizing a quantized (clipped) version of the Widrow-Hoff least-mean-square adaptive algorithm developed by Moschner. The system accommodates 64 adaptive weight channels with 8-bit resolution for each weight. Internal weight update arithmetic is performed with 16-bit resolution, and the system error signal is measured with 12-bit resolution. An adapt cycle of adjusting all 64 weight channels is accomplished in 8 μsec. Hardware of the signal processor utilizes primarily Schottky-TTL type integrated circuits. A prototype system with 24 weight channels has been constructed and tested. This report presents details of the system design and describes basic experiments performed with the prototype signal processor. Finally some system configurations and applications for this adaptive signal processor are discussed

  3. 3081/E processor

    International Nuclear Information System (INIS)

    Kunz, P.F.; Gravina, M.; Oxoby, G.

    1984-04-01

    The 3081/E project was formed to prepare a much improved IBM mainframe emulator for the future. Its design is based on a large amount of experience in using the 168/E processor to increase available CPU power in both online and offline environments. The processor will be at least equal to the execution speed of a 370/168 and up to 1.5 times faster for heavy floating point code. A single processor will thus be at least four times more powerful than the VAX 11/780, and five processors on a system would equal at least the performance of the IBM 3081K. With its large memory space and simple but flexible high speed interface, the 3081/E is well suited for the online and offline needs of high energy physics in the future

  4. Array processor architecture

    Science.gov (United States)

    Barnes, George H. (Inventor); Lundstrom, Stephen F. (Inventor); Shafer, Philip E. (Inventor)

    1983-01-01

    A high speed parallel array data processing architecture fashioned under a computational envelope approach includes a data base memory for secondary storage of programs and data, and a plurality of memory modules interconnected to a plurality of processing modules by a connection network of the Omega gender. Programs and data are fed from the data base memory to the plurality of memory modules and from hence the programs are fed through the connection network to the array of processors (one copy of each program for each processor). Execution of the programs occur with the processors operating normally quite independently of each other in a multiprocessing fashion. For data dependent operations and other suitable operations, all processors are instructed to finish one given task or program branch before all are instructed to proceed in parallel processing fashion on the next instruction. Even when functioning in the parallel processing mode however, the processors are not locked-step but execute their own copy of the program individually unless or until another overall processor array synchronization instruction is issued.

  5. Functional unit for a processor

    NARCIS (Netherlands)

    Rohani, A.; Kerkhoff, Hans G.

    2013-01-01

    The invention relates to a functional unit for a processor, such as a Very Large Instruction Word Processor. The invention further relates to a processor comprising at least one such functional unit. The invention further relates to a functional unit and processor capable of mitigating the effect of

  6. Program to determine space vehicle response to wind turbulence

    Science.gov (United States)

    Wilkening, H. D.

    1972-01-01

    Computer program was developed as prelaunch wind monitoring tool for Saturn 5 vehicle. Program accounts for characteristic wind changes including turbulence power spectral density, wind shear, peak wind velocity, altitude, and wind direction using stored variational statistics.

  7. 3081//sub E/ processor

    International Nuclear Information System (INIS)

    Kunz, P.F.; Gravina, M.; Oxoby, G.; Trang, Q.; Fucci, A.; Jacobs, D.; Martin, B.; Storr, K.

    1983-03-01

    Since the introduction of the 168//sub E/, emulating processors have been successful over an amazingly wide range of applications. This paper will describe a second generation processor, the 3081//sub E/. This new processor, which is being developed as a collaboration between SLAC and CERN, goes beyond just fixing the obvious faults of the 168//sub E/. Not only will the 3081//sub E/ have much more memory space, incorporate many more IBM instructions, and have much more memory space, incorporate many more IBM instructions, and have full double precision floating point arithmetic, but it will also have faster execution times and be much simpler to build, debug, and maintain. The simple interface and reasonable cost of the 168//sub E/ will be maintained for the 3081//sub E/

  8. Universal hybrid quantum processors

    International Nuclear Information System (INIS)

    Vlasov, A.Yu.

    2003-01-01

    A quantum processor (the programmable gate array) is a quantum network with a fixed structure. A space of states is represented as tensor product of data and program registers. Different unitary operations with the data register correspond to 'loaded' programs without any changing or 'tuning' of the network itself. Due to such property and undesirability of entanglement between program and data registers, universality of quantum processors is a subject of rather strong restrictions. Universal 'stochastic' quantum gate arrays were developed by different authors. It was also proved that 'deterministic' quantum processors with finite-dimensional space of states may be universal only in approximate sense. In the present paper it is shown that, using a hybrid system with continuous and discrete quantum variables, it is possible to suggest a design of strictly universal quantum processors. It is also shown that 'deterministic' limit of specific programmable 'stochastic' U(1) gates (probability of success becomes a unit for the infinite program register), discussed by other authors, may be essentially the same kind of hybrid quantum systems used here

  9. Beyond processor sharing

    NARCIS (Netherlands)

    S. Aalto; U. Ayesta (Urtzi); S.C. Borst (Sem); V. Misra; R. Núñez Queija (Rudesindo)

    2007-01-01

    textabstractWhile the (Egalitarian) Processor-Sharing (PS) discipline offers crucial insights in the performance of fair resource allocation mechanisms, it is inherently limited in analyzing and designing differentiated scheduling algorithms such as Weighted Fair Queueing and Weighted Round-Robin.

  10. Automobile Crash Sensor Signal Processor

    Science.gov (United States)

    1973-11-01

    The crash sensor signal processor described interfaces between an automobile-installed doppler radar and an air bag activating solenoid or equivalent electromechanical device. The processor utilizes both digital and analog techniques to produce an ou...

  11. The Central Trigger Processor (CTP)

    CERN Multimedia

    Franchini, Matteo

    2016-01-01

    The Central Trigger Processor (CTP) receives trigger information from the calorimeter and muon trigger processors, as well as from other sources of trigger. It makes the Level-1 decision (L1A) based on a trigger menu.

  12. Processor register error correction management

    Science.gov (United States)

    Bose, Pradip; Cher, Chen-Yong; Gupta, Meeta S.

    2016-12-27

    Processor register protection management is disclosed. In embodiments, a method of processor register protection management can include determining a sensitive logical register for executable code generated by a compiler, generating an error-correction table identifying the sensitive logical register, and storing the error-correction table in a memory accessible by a processor. The processor can be configured to generate a duplicate register of the sensitive logical register identified by the error-correction table.

  13. Wind Power Meteorology

    DEFF Research Database (Denmark)

    Lundtang Petersen, Erik; Mortensen, Niels Gylling; Landberg, Lars

    Wind power meteorology has evolved as an applied science, firmly founded on boundary-layer meteorology, but with strong links to climatology and geography. It concerns itself with three main areas: siting of wind turbines, regional wind resource assessment, and short-term prediction of the wind...... resource. The history, status and perspectives of wind power meteorology are presented, with emphasis on physical considerations and on its practical application. Following a global view of the wind resource, the elements of boundary layer meteorology which are most important for wind energy are reviewed......: wind profiles and shear, turbulence and gust, and extreme winds. The data used in wind power meteorology stem mainly from three sources: onsite wind measurements, the synoptic networks, and the re-analysis projects. Wind climate analysis, wind resource estimation and siting further require a detailed...

  14. The Molen Polymorphic Media Processor

    NARCIS (Netherlands)

    Kuzmanov, G.K.

    2004-01-01

    In this dissertation, we address high performance media processing based on a tightly coupled co-processor architectural paradigm. More specifically, we introduce a reconfigurable media augmentation of a general purpose processor and implement it into a fully operational processor prototype. The

  15. Dual-core Itanium Processor

    CERN Multimedia

    2006-01-01

    Intel’s first dual-core Itanium processor, code-named "Montecito" is a major release of Intel's Itanium 2 Processor Family, which implements the Intel Itanium architecture on a dual-core processor with two cores per die (integrated circuit). Itanium 2 is much more powerful than its predecessor. It has lower power consumption and thermal dissipation.

  16. Statistical Model of Extreme Shear

    DEFF Research Database (Denmark)

    Hansen, Kurt Schaldemose; Larsen, Gunner Chr.

    2005-01-01

    In order to continue cost-optimisation of modern large wind turbines, it is important to continuously increase the knowledge of wind field parameters relevant to design loads. This paper presents a general statistical model that offers site-specific prediction of the probability density function...... (PDF) of turbulence driven short-term extreme wind shear events, conditioned on the mean wind speed, for an arbitrary recurrence period. The model is based on an asymptotic expansion, and only a few and easily accessible parameters are needed as input. The model of the extreme PDF is supplemented...... by a model that, on a statistically consistent basis, describes the most likely spatial shape of an extreme wind shear event. Predictions from the model have been compared with results from an extreme value data analysis, based on a large number of full-scale measurements recorded with a high sampling rate...

  17. Statistical Model of Extreme Shear

    DEFF Research Database (Denmark)

    Larsen, Gunner Chr.; Hansen, Kurt Schaldemose

    2004-01-01

    In order to continue cost-optimisation of modern large wind turbines, it is important to continously increase the knowledge on wind field parameters relevant to design loads. This paper presents a general statistical model that offers site-specific prediction of the probability density function...... (PDF) of turbulence driven short-term extreme wind shear events, conditioned on the mean wind speed, for an arbitrary recurrence period. The model is based on an asymptotic expansion, and only a few and easily accessible parameters are needed as input. The model of the extreme PDF is supplemented...... by a model that, on a statistically consistent basis, describe the most likely spatial shape of an extreme wind shear event. Predictions from the model have been compared with results from an extreme value data analysis, based on a large number of high-sampled full-scale time series measurements...

  18. Multimode power processor

    Science.gov (United States)

    O'Sullivan, George A.; O'Sullivan, Joseph A.

    1999-01-01

    In one embodiment, a power processor which operates in three modes: an inverter mode wherein power is delivered from a battery to an AC power grid or load; a battery charger mode wherein the battery is charged by a generator; and a parallel mode wherein the generator supplies power to the AC power grid or load in parallel with the battery. In the parallel mode, the system adapts to arbitrary non-linear loads. The power processor may operate on a per-phase basis wherein the load may be synthetically transferred from one phase to another by way of a bumpless transfer which causes no interruption of power to the load when transferring energy sources. Voltage transients and frequency transients delivered to the load when switching between the generator and battery sources are minimized, thereby providing an uninterruptible power supply. The power processor may be used as part of a hybrid electrical power source system which may contain, in one embodiment, a photovoltaic array, diesel engine, and battery power sources.

  19. Distributed processor allocation for launching applications in a massively connected processors complex

    Science.gov (United States)

    Pedretti, Kevin

    2008-11-18

    A compute processor allocator architecture for allocating compute processors to run applications in a multiple processor computing apparatus is distributed among a subset of processors within the computing apparatus. Each processor of the subset includes a compute processor allocator. The compute processor allocators can share a common database of information pertinent to compute processor allocation. A communication path permits retrieval of information from the database independently of the compute processor allocators.

  20. Performance of Wind Pump Prototype

    African Journals Online (AJOL)

    Mulu

    performance of the wind pump. One year wind speed data collected at 10 m height was extrapolated to the wind pump hub height using wind shear coefficient. The model assumed balanced rotor power and reciprocating pump, hence did not consider the effect of pump size. The theoretical model estimated the average ...

  1. Trigger and decision processors

    International Nuclear Information System (INIS)

    Franke, G.

    1980-11-01

    In recent years there have been many attempts in high energy physics to make trigger and decision processes faster and more sophisticated. This became necessary due to a permanent increase of the number of sensitive detector elements in wire chambers and calorimeters, and in fact it was possible because of the fast developments in integrated circuits technique. In this paper the present situation will be reviewed. The discussion will be mainly focussed upon event filtering by pure software methods and - rather hardware related - microprogrammable processors as well as random access memory triggers. (orig.)

  2. Video frame processor

    International Nuclear Information System (INIS)

    Joshi, V.M.; Agashe, Alok; Bairi, B.R.

    1993-01-01

    This report provides technical description regarding the Video Frame Processor (VFP) developed at Bhabha Atomic Research Centre. The instrument provides capture of video images available in CCIR format. Two memory planes each with a capacity of 512 x 512 x 8 bit data enable storage of two video image frames. The stored image can be processed on-line and on-line image subtraction can also be carried out for image comparisons. The VFP is a PC Add-on board and is I/O mapped within the host IBM PC/AT compatible computer. (author). 9 refs., 4 figs., 19 photographs

  3. Optical Finite Element Processor

    Science.gov (United States)

    Casasent, David; Taylor, Bradley K.

    1986-01-01

    A new high-accuracy optical linear algebra processor (OLAP) with many advantageous features is described. It achieves floating point accuracy, handles bipolar data by sign-magnitude representation, performs LU decomposition using only one channel, easily partitions and considers data flow. A new application (finite element (FE) structural analysis) for OLAPs is introduced and the results of a case study presented. Error sources in encoded OLAPs are addressed for the first time. Their modeling and simulation are discussed and quantitative data are presented. Dominant error sources and the effects of composite error sources are analyzed.

  4. Command and Data Handling Processor

    OpenAIRE

    Perschy, James

    1996-01-01

    This command and data handling processor is designed to perform mission critical functions for the NEAR and ACE spacecraft. For both missions the processor formats telemetry and executes real-time, delayed and autonomy-rule commands. For the ACE mission the processor also performs spin stabilized attitude control. The design is based on the Harris RTX2010 microprocessor and the UTMC Summit MIL-STD-1553 bus controller. Fault tolerant features added include error detection, correction and write...

  5. AMD's 64-bit Opteron processor

    CERN Multimedia

    CERN. Geneva

    2003-01-01

    This talk concentrates on issues that relate to obtaining peak performance from the Opteron processor. Compiler options, memory layout, MPI issues in multi-processor configurations and the use of a NUMA kernel will be covered. A discussion of recent benchmarking projects and results will also be included.BiographiesDavid RichDavid directs AMD's efforts in high performance computing and also in the use of Opteron processors...

  6. Analog processor for electroluminescent detector

    International Nuclear Information System (INIS)

    Belkin, V.S.

    1988-01-01

    Analog processor for spectrometric channel of soft X-ray radiation electroluminescent detector is described. Time internal spectrometric measurer (TIM) with 1 ns/chan quick action serves as signal analyzer. Analog processor restores signals direct component, integrates detector signals and generates control pulses on the TIM input, provides signal discrimination by amplitude and duration, counts number of input pulses per measuring cycle. Flowsheet of analog processor and its man characteristics are presented. Analog processor dead time constitutes 0.5-5 ms. Signal/noise relation is ≥ 500. Scale integral nonlinearity is < 2%

  7. Spaceborne Processor Array

    Science.gov (United States)

    Chow, Edward T.; Schatzel, Donald V.; Whitaker, William D.; Sterling, Thomas

    2008-01-01

    A Spaceborne Processor Array in Multifunctional Structure (SPAMS) can lower the total mass of the electronic and structural overhead of spacecraft, resulting in reduced launch costs, while increasing the science return through dynamic onboard computing. SPAMS integrates the multifunctional structure (MFS) and the Gilgamesh Memory, Intelligence, and Network Device (MIND) multi-core in-memory computer architecture into a single-system super-architecture. This transforms every inch of a spacecraft into a sharable, interconnected, smart computing element to increase computing performance while simultaneously reducing mass. The MIND in-memory architecture provides a foundation for high-performance, low-power, and fault-tolerant computing. The MIND chip has an internal structure that includes memory, processing, and communication functionality. The Gilgamesh is a scalable system comprising multiple MIND chips interconnected to operate as a single, tightly coupled, parallel computer. The array of MIND components shares a global, virtual name space for program variables and tasks that are allocated at run time to the distributed physical memory and processing resources. Individual processor- memory nodes can be activated or powered down at run time to provide active power management and to configure around faults. A SPAMS system is comprised of a distributed Gilgamesh array built into MFS, interfaces into instrument and communication subsystems, a mass storage interface, and a radiation-hardened flight computer.

  8. Never Trust Your Word Processor

    Science.gov (United States)

    Linke, Dirk

    2009-01-01

    In this article, the author talks about the auto correction mode of word processors that leads to a number of problems and describes an example in biochemistry exams that shows how word processors can lead to mistakes in databases and in papers. The author contends that, where this system is applied, spell checking should not be left to a word…

  9. Embedded Processor Oriented Compiler Infrastructure

    Directory of Open Access Journals (Sweden)

    DJUKIC, M.

    2014-08-01

    Full Text Available In the recent years, research of special compiler techniques and algorithms for embedded processors broaden the knowledge of how to achieve better compiler performance in irregular processor architectures. However, industrial strength compilers, besides ability to generate efficient code, must also be robust, understandable, maintainable, and extensible. This raises the need for compiler infrastructure that provides means for convenient implementation of embedded processor oriented compiler techniques. Cirrus Logic Coyote 32 DSP is an example that shows how traditional compiler infrastructure is not able to cope with the problem. That is why the new compiler infrastructure was developed for this processor, based on research. in the field of embedded system software tools and experience in development of industrial strength compilers. The new infrastructure is described in this paper. Compiler generated code quality is compared with code generated by the previous compiler for the same processor architecture.

  10. Melt pelletization with polyethylene glycol in a rotary processor.

    Science.gov (United States)

    Vilhelmsen, Thomas; Kristensen, Jakob; Schaefer, Torben

    2004-05-04

    The purpose of this study was to investigate the effect of the airflow, the binder concentration, the massing time, the friction plate rotation speed, and the surface structure of the friction plate on melt pelletization in a laboratory scale rotary processor. Lactose monohydrate was melt agglomerated with polyethylene glycol (PEG) 3000 as meltable binder. The study was performed as a full factorial design. An increase in agglomerate size was found when the binder concentration, the massing time, or the friction plate rotation speed was increased. The agglomerate size was also increased when increasing the shearing forces by using a friction plate with a different surface structure. The size distribution of the agglomerates was significantly narrowed when the binder concentration or the shearing forces caused by the friction plate were increased. An increase in the adhesion of material to the friction plate was found when the shearing forces of the friction plate were increased either by the rotation speed or by the surface structure. Generally, the rotary processor was found to be a suitable alternative to melt pelletization in a high shear mixer.

  11. Making CSB + -Trees Processor Conscious

    DEFF Research Database (Denmark)

    Samuel, Michael; Pedersen, Anders Uhl; Bonnet, Philippe

    2005-01-01

    Cache-conscious indexes, such as CSB+-tree, are sensitive to the underlying processor architecture. In this paper, we focus on how to adapt the CSB+-tree so that it performs well on a range of different processor architectures. Previous work has focused on the impact of node size on the performance...... of the CSB+-tree. We argue that it is necessary to consider a larger group of parameters in order to adapt CSB+-tree to processor architectures as different as Pentium and Itanium. We identify this group of parameters and study how it impacts the performance of CSB+-tree on Itanium 2. Finally, we propose...

  12. Distributed processor systems

    International Nuclear Information System (INIS)

    Zacharov, B.

    1976-01-01

    In recent years, there has been a growing tendency in high-energy physics and in other fields to solve computational problems by distributing tasks among the resources of inter-coupled processing devices and associated system elements. This trend has gained further momentum more recently with the increased availability of low-cost processors and with the development of the means of data distribution. In two lectures, the broad question of distributed computing systems is examined and the historical development of such systems reviewed. An attempt is made to examine the reasons for the existence of these systems and to discern the main trends for the future. The components of distributed systems are discussed in some detail and particular emphasis is placed on the importance of standards and conventions in certain key system components. The ideas and principles of distributed systems are discussed in general terms, but these are illustrated by a number of concrete examples drawn from the context of the high-energy physics environment. (Auth.)

  13. Meteorological Processors and Accessory Programs

    Science.gov (United States)

    Surface and upper air data, provided by NWS, are important inputs for air quality models. Before these data are used in some of the EPA dispersion models, meteorological processors are used to manipulate the data.

  14. A* Algorithm for Graphics Processors

    OpenAIRE

    Inam, Rafia; Cederman, Daniel; Tsigas, Philippas

    2010-01-01

    Today's computer games have thousands of agents moving at the same time in areas inhabited by a large number of obstacles. In such an environment it is important to be able to calculate multiple shortest paths concurrently in an efficient manner. The highly parallel nature of the graphics processor suits this scenario perfectly. We have implemented a graphics processor based version of the A* path finding algorithm together with three algorithmic improvements that allow it to work faster and ...

  15. 7 CFR 926.13 - Processor.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Processor. 926.13 Section 926.13 Agriculture... Processor. Processor means any person who receives or acquires fresh or frozen cranberries or cranberries in the form of concentrate from handlers, producer-handlers, importers, brokers or other processors and...

  16. 40 CFR 791.45 - Processors.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 31 2010-07-01 2010-07-01 true Processors. 791.45 Section 791.45...) DATA REIMBURSEMENT Basis for Proposed Order § 791.45 Processors. (a) Generally, processors will be... processors will have a responsibility to provide reimbursement directly to those paying for the testing: (1...

  17. Seismometer array station processors

    International Nuclear Information System (INIS)

    Key, F.A.; Lea, T.G.; Douglas, A.

    1977-01-01

    A description is given of the design, construction and initial testing of two types of Seismometer Array Station Processor (SASP), one to work with data stored on magnetic tape in analogue form, the other with data in digital form. The purpose of a SASP is to detect the short period P waves recorded by a UK-type array of 20 seismometers and to edit these on to a a digital library tape or disc. The edited data are then processed to obtain a rough location for the source and to produce seismograms (after optimum processing) for analysis by a seismologist. SASPs are an important component in the scheme for monitoring underground explosions advocated by the UK in the Conference of the Committee on Disarmament. With digital input a SASP can operate at 30 times real time using a linear detection process and at 20 times real time using the log detector of Weichert. Although the log detector is slower, it has the advantage over the linear detector that signals with lower signal-to-noise ratio can be detected and spurious large amplitudes are less likely to produce a detection. It is recommended, therefore, that where possible array data should be recorded in digital form for input to a SASP and that the log detector of Weichert be used. Trial runs show that a SASP is capable of detecting signals down to signal-to-noise ratios of about two with very few false detections, and at mid-continental array sites it should be capable of detecting most, if not all, the signals with magnitude above msub(b) 4.5; the UK argues that, given a suitable network, it is realistic to hope that sources of this magnitude and above can be detected and identified by seismological means alone. (author)

  18. Wind turbine rotor aerodynamics : The IEA MEXICO rotor explained

    NARCIS (Netherlands)

    Zhang, Y.

    2017-01-01

    Wind turbines are operating under very complex and uncontrolled environmental conditions, including atmospheric turbulence, atmospheric boundary layer effects, directional and spatial variations in wind shear, etc. Over the past decades, the size of a commercial wind turbine has increased

  19. Extreme wind estimate for Hornsea wind farm

    DEFF Research Database (Denmark)

    Larsén, Xiaoli Guo

    The purpose of this study is to provide estimation of the 50-year winds of 10 min and 1-s gust value at hub height of 100 m, as well as the design parameter shear exponent for the Hornsea offshore wind farm. The turbulence intensity required for estimating the gust value is estimated using two ap....... The greatest sector-wise extreme winds are from west to northwest. Different data, different periods and different methods have provided a range of values of the 50-year wind and accordingly the gust values, as summarized in Table 15.......The purpose of this study is to provide estimation of the 50-year winds of 10 min and 1-s gust value at hub height of 100 m, as well as the design parameter shear exponent for the Hornsea offshore wind farm. The turbulence intensity required for estimating the gust value is estimated using two...... approaches. One is through the measurements from the wind Doppler lidar, WindCube, which implies serious uncertainty, and the other one is through similarity theory for the atmospheric surface layer where the hub height is likely to belong to during strong storms. The turbulence intensity for storm wind...

  20. Smart Wind Turbine : Analysis and Autonomous Flap

    NARCIS (Netherlands)

    Bernhammer, L.O.

    2015-01-01

    Wind turbines convert kinetic energy of the wind into electrical energy. Unfortunately, this process is everything but constant, as the wind source shows large fluctuations with high and low frequencies. This turbulence, together with the wind shear and yawed inflow, excites the turbine structure,

  1. Libera Electron Beam Position Processor

    CERN Document Server

    Ursic, Rok

    2005-01-01

    Libera is a product family delivering unprecedented possibilities for either building powerful single station solutions or architecting complex feedback systems in the field of accelerator instrumentation and controls. This paper presents functionality and field performance of its first member, the electron beam position processor. It offers superior performance with multiple measurement channels delivering simultaneously position measurements in digital format with MHz kHz and Hz bandwidths. This all-in-one product, facilitating pulsed and CW measurements, is much more than simply a high performance beam position measuring device delivering micrometer level reproducibility with sub-micrometer resolution. Rich connectivity options and innate processing power make it a powerful feedback building block. By interconnecting multiple Libera electron beam position processors one can build a low-latency high throughput orbit feedback system without adding additional hardware. Libera electron beam position processor ...

  2. XL-100S microprogrammable processor

    International Nuclear Information System (INIS)

    Gorbunov, N.V.; Guzik, Z.; Sutulin, V.A.; Forytski, A.

    1983-01-01

    The XL-100S microprogrammable processor providing the multiprocessor operation mode in the XL system crate is described. The processor meets the EUR 6500 CAMAC standards, address up to 4 Mbyte memory, and interacts with 7 CAMAC branchas. Eight external requests initiate operations preset by a sequence of microcommands in a memory of the capacity up to 64 kwords of 32-Git. The microprocessor architecture allows one to emulate commands of the majority of mini- or micro-computers, including floating point operations. The XL-100S processor may be used in various branches of experimental physics: for physical experiment apparatus control, fast selection of useful physical events, organization of the of input/output operations, organization of direct assess to memory included, etc. The Am2900 microprocessor set is used as an elementary base. The device is made in the form of a single width CAMAC module

  3. Java Processor Optimized for RTSJ

    Directory of Open Access Journals (Sweden)

    Tu Shiliang

    2007-01-01

    Full Text Available Due to the preeminent work of the real-time specification for Java (RTSJ, Java is increasingly expected to become the leading programming language in real-time systems. To provide a Java platform suitable for real-time applications, a Java processor which can execute Java bytecode is directly proposed in this paper. It provides efficient support in hardware for some mechanisms specified in the RTSJ and offers a simpler programming model through ameliorating the scoped memory of the RTSJ. The worst case execution time (WCET of the bytecodes implemented in this processor is predictable by employing the optimization method proposed in our previous work, in which all the processing interfering predictability is handled before bytecode execution. Further advantage of this method is to make the implementation of the processor simpler and suited to a low-cost FPGA chip.

  4. Fast processor for dilepton triggers

    International Nuclear Information System (INIS)

    Katsanevas, S.; Kostarakis, P.; Baltrusaitis, R.

    1983-01-01

    We describe a fast trigger processor, developed for and used in Fermilab experiment E-537, for selecting high-mass dimuon events produced by negative pions and anti-protons. The processor finds candidate tracks by matching hit information received from drift chambers and scintillation counters, and determines their momenta. Invariant masses are calculated for all possible pairs of tracks and an event is accepted if any invariant mass is greater than some preselectable minimum mass. The whole process, accomplished within 5 to 10 microseconds, achieves up to a ten-fold reduction in trigger rate

  5. Optical Array Processor: Laboratory Results

    Science.gov (United States)

    Casasent, David; Jackson, James; Vaerewyck, Gerard

    1987-01-01

    A Space Integrating (SI) Optical Linear Algebra Processor (OLAP) is described and laboratory results on its performance in several practical engineering problems are presented. The applications include its use in the solution of a nonlinear matrix equation for optimal control and a parabolic Partial Differential Equation (PDE), the transient diffusion equation with two spatial variables. Frequency-multiplexed, analog and high accuracy non-base-two data encoding are used and discussed. A multi-processor OLAP architecture is described and partitioning and data flow issues are addressed.

  6. Making CSB + -Trees Processor Conscious

    DEFF Research Database (Denmark)

    Samuel, Michael; Pedersen, Anders Uhl; Bonnet, Philippe

    2005-01-01

    Cache-conscious indexes, such as CSB+-tree, are sensitive to the underlying processor architecture. In this paper, we focus on how to adapt the CSB+-tree so that it performs well on a range of different processor architectures. Previous work has focused on the impact of node size on the performan...... a systematic method for adapting CSB+-tree to new platforms. This work is a first step towards integrating CSB+-tree in MySQL’s heap storage manager....

  7. Wind energy renewable energy and the environment

    CERN Document Server

    Nelson, Vaughn

    2013-01-01

    As the demand for energy increases, and fossil fuels continue to decrease, Wind Energy: Renewable Energy and the Environment, Second Edition considers the viability of wind as an alternative renewable energy source. This book examines the wind industry from its start in the 1970s until now, and introduces all aspects of wind energy. The phenomenal growth of wind power for utilities is covered along with applications such as wind-diesel, village power, telecommunications, and street lighting.. It covers the characteristics of wind, such as shear, power potential, turbulence, wind resource, wind

  8. The L0(muon) processor

    CERN Document Server

    Aslanides, Elie; Le Gac, R; Menouni, M; Potheau, R; Tsaregorodtsev, A Yu; Tsaregorodtsev, Andrei

    1999-01-01

    99-008 In this note we review the Marseille implementation for the L0(muon) processor. We describe the data flow, hardware implementation, synchronization issue as well as our first ideas on debugging and monitoring procedure. We also present the performance of the proposed architecture with an estimate of its cost.

  9. Very Long Instruction Word Processors

    Indian Academy of Sciences (India)

    Explicitly Parallel Instruction Computing (EPIC) is an instruction processing paradigm that has been in the spot- light due to its adoption by the next generation of Intel. Processors starting with the IA-64. The EPIC processing paradigm is an evolution of the Very Long Instruction. Word (VLIW) paradigm. This article gives an ...

  10. A Course on Reconfigurable Processors

    Science.gov (United States)

    Shoufan, Abdulhadi; Huss, Sorin A.

    2010-01-01

    Reconfigurable computing is an established field in computer science. Teaching this field to computer science students demands special attention due to limited student experience in electronics and digital system design. This article presents a compact course on reconfigurable processors, which was offered at the Technische Universitat Darmstadt,…

  11. GENERALIZED PROCESSOR SHARING (GPS) TECHNIQUES

    African Journals Online (AJOL)

    Olumide

    popular technique, Generalized Processor Sharing (GPS), provided an effective and efficient utilization of the available resources at the face of stringent and varied QoS requirements. This paper, therefore, presents the comparison of two GPS techniques –. PGPS and CDGPS – based on performance with limited resources ...

  12. Very Long Instruction Word Processors

    Indian Academy of Sciences (India)

    memory stage. The fetch stage fetches instructions from the cache. In this stage, current day processors (like the IA-64) also incorporate a branch prediction unit. The branch prediction unit predicts the direction of branch instructions and speculatively fetches instructions from the predicted path. This is necessary to keep the ...

  13. Very Long Instruction Word Processors

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 6; Issue 12. Very Long Instruction Word Processors. S Balakrishnan. General Article Volume 6 Issue 12 December 2001 pp 61-68. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/006/12/0061-0068 ...

  14. Cassava processors' awareness of occupational and environmental ...

    African Journals Online (AJOL)

    ) is not without hazards both to the environment, the processors, and even the consumers. This study, therefore, investigated cassava processors' awareness of occupational and environmental hazards associated with and factors affecting ...

  15. Deterministic chaos in the processor load

    International Nuclear Information System (INIS)

    Halbiniak, Zbigniew; Jozwiak, Ireneusz J.

    2007-01-01

    In this article we present the results of research whose purpose was to identify the phenomenon of deterministic chaos in the processor load. We analysed the time series of the processor load during efficiency tests of database software. Our research was done on a Sparc Alpha processor working on the UNIX Sun Solaris 5.7 operating system. The conducted analyses proved the presence of the deterministic chaos phenomenon in the processor load in this particular case

  16. Rapid Weakening of Hurricane Joaquin in Strong Vertical Wind Shear and Cold SSTs: Numerical Simulations with Assimilation of High-Definition Sounding System Dropsondes During Tropical Cyclone Intensity Experiment

    Science.gov (United States)

    Pu, Z.; Zhang, S.

    2017-12-01

    Observations from High-Definition Sounding System (HDSS) Dropsondes, collected for Hurricane Joaquin (2005) during the Office of Naval Research Tropical Cyclone Intensity (TCI) Experiment in 2015, are assimilated into the Gridpoint Statistical Interpolation (GSI)-based hybrid data assimilation systems embedded in the NCEP Hurricane Weather Research and Forecasting (HWRF) system. A three-dimensional and a four-dimensional ensemble-variational hybrid (3DEnVAR and 4DEnVar) data assimilation configuration are used. It is found that the experiments with assimilation of the HDSS dropsonde observations capture well the intensity changes during the rapid weakening (RW) of Hurricane Joaquin. Compared with 3DEnVAR, 4DEnVar leads to better assimilation results and subsequent forecasts and thus offers a set of simulations to diagnose the processes associated with the RW of Hurricane Joaquin. A drastic increase in the vertical wind shear (VWS, with a magnitude of 12 m s-1) is found before the RW. This high VWS is persistent during the 0-12 h period of RW, inducing changes in the vortex structure of Hurricane Joaquin through dry air intrusion in the mid-level and the dilution of the upper-level warm core. The transport of low air from above into the boundary layer occurs at the same time, resulting in depressed values in the storm inflow layer and reduced eyewall values through the updraft. As a consequence, downdrafts flush the boundary layer with low air, leading to the weakening of inflow in the boundary layers. When Hurricane Joaquin moves over an area where the SSTs are below 28oC within the hurricane inner core during the 18-30 h period of RW, the cold SSTs significantly inhibit latent and sensible heat release within the hurricane inner core and its vicinity, thus resulting in the continuous weakening of Hurricane Joaquin.

  17. Element Load Data Processor (ELDAP) Users Manual

    Science.gov (United States)

    Ramsey, John K., Jr.; Ramsey, John K., Sr.

    2015-01-01

    Often, the shear and tensile forces and moments are extracted from finite element analyses to be used in off-line calculations for evaluating the integrity of structural connections involving bolts, rivets, and welds. Usually the maximum forces and moments are desired for use in the calculations. In situations where there are numerous structural connections of interest for numerous load cases, the effort in finding the true maximum force and/or moment combinations among all fasteners and welds and load cases becomes difficult. The Element Load Data Processor (ELDAP) software described herein makes this effort manageable. This software eliminates the possibility of overlooking the worst-case forces and moments that could result in erroneous positive margins of safety and/or selecting inconsistent combinations of forces and moments resulting in false negative margins of safety. In addition to forces and moments, any scalar quantity output in a PATRAN report file may be evaluated with this software. This software was originally written to fill an urgent need during the structural analysis of the Ares I-X Interstage segment. As such, this software was coded in a straightforward manner with no effort made to optimize or minimize code or to develop a graphical user interface.

  18. 7 CFR 1215.14 - Processor.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Processor. 1215.14 Section 1215.14 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS... Processor. Processor means a person engaged in the preparation of unpopped popcorn for the market who owns...

  19. 7 CFR 989.13 - Processor.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Processor. 989.13 Section 989.13 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... CALIFORNIA Order Regulating Handling Definitions § 989.13 Processor. Processor means any person who receives...

  20. 7 CFR 927.14 - Processor.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Processor. 927.14 Section 927.14 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... Order Regulating Handling Definitions § 927.14 Processor. Processor means any person who as owner, agent...

  1. Communications systems and methods for subsea processors

    Science.gov (United States)

    Gutierrez, Jose; Pereira, Luis

    2016-04-26

    A subsea processor may be located near the seabed of a drilling site and used to coordinate operations of underwater drilling components. The subsea processor may be enclosed in a single interchangeable unit that fits a receptor on an underwater drilling component, such as a blow-out preventer (BOP). The subsea processor may issue commands to control the BOP and receive measurements from sensors located throughout the BOP. A shared communications bus may interconnect the subsea processor and underwater components and the subsea processor and a surface or onshore network. The shared communications bus may be operated according to a time division multiple access (TDMA) scheme.

  2. Wind Turbines Wake Aerodynamics

    DEFF Research Database (Denmark)

    Vermeer, L.; Sørensen, Jens Nørkær; Crespo, A.

    2003-01-01

    The aerodynamics of horizontal axis wind turbine wakes is studied. The contents is directed towards the physics of power extraction by wind turbines and reviews both the near and the far wake region. For the near wake, the survey is restricted to uniform, steady and parallel flow conditions......, thereby excluding wind shear, wind speed and rotor setting changes and yawed conditions. The emphasis is put on measurements in controlled conditions.For the far wake, the survey focusses on both single turbines and wind farm effects, and the experimental and numerical work are reviewed; the main interest...... is to study how the far wake decays downstream, in order to estimate the effect produced in downstream turbines.The article is further restricted to horizontal axis wind turbines and excludes all other types of turbines....

  3. Invasive tightly coupled processor arrays

    CERN Document Server

    LARI, VAHID

    2016-01-01

    This book introduces new massively parallel computer (MPSoC) architectures called invasive tightly coupled processor arrays. It proposes strategies, architecture designs, and programming interfaces for invasive TCPAs that allow invading and subsequently executing loop programs with strict requirements or guarantees of non-functional execution qualities such as performance, power consumption, and reliability. For the first time, such a configurable processor array architecture consisting of locally interconnected VLIW processing elements can be claimed by programs, either in full or in part, using the principle of invasive computing. Invasive TCPAs provide unprecedented energy efficiency for the parallel execution of nested loop programs by avoiding any global memory access such as GPUs and may even support loops with complex dependencies such as loop-carried dependencies that are not amenable to parallel execution on GPUs. For this purpose, the book proposes different invasion strategies for claiming a desire...

  4. Assessing the vegetation canopy influences on wind flow using wind ...

    Indian Academy of Sciences (India)

    Service. References. Brown S, Nickling W G and Gillies J A 2008 A wind tunnel examination of shear stress partitioning for an assortment of surface roughness distribution; J. Geophys. Res. 113. F02S06, doi: 10.1029/2007JF000790. Buckley R 1987 The effect of sparse vegetation on the transport of dune sand by wind; ...

  5. Implementation of kernels on the Maestro processor

    Science.gov (United States)

    Suh, Jinwoo; Kang, D. I. D.; Crago, S. P.

    Currently, most microprocessors use multiple cores to increase performance while limiting power usage. Some processors use not just a few cores, but tens of cores or even 100 cores. One such many-core microprocessor is the Maestro processor, which is based on Tilera's TILE64 processor. The Maestro chip is a 49-core, general-purpose, radiation-hardened processor designed for space applications. The Maestro processor, unlike the TILE64, has a floating point unit (FPU) in each core for improved floating point performance. The Maestro processor runs at 342 MHz clock frequency. On the Maestro processor, we implemented several widely used kernels: matrix multiplication, vector add, FIR filter, and FFT. We measured and analyzed the performance of these kernels. The achieved performance was up to 5.7 GFLOPS, and the speedup compared to single tile was up to 49 using 49 tiles.

  6. Wind conditions and resource assessment

    DEFF Research Database (Denmark)

    Lundtang Petersen, Erik; Troen, Ib

    2012-01-01

    The development of wind power as a competitive energy source requires resource assessment of increasing accuracy and detail (including not only the long-term ‘raw’ wind resource, but also turbulence, shear, and extremes), and in areas of increasing complexity. This in turn requires the use...

  7. Wind Climate Parameters for Wind Turbine Fatigue Load Assessment

    DEFF Research Database (Denmark)

    Toft, Henrik Stensgaard; Svenningsen, Lasse; Moser, Wolfgang

    2016-01-01

    established from the on-site distribution functions of the horizontal mean wind speeds, the 90% quantile of turbulence along with average values of vertical wind shear and air density and the maximum flow inclination. This paper investigates the accuracy of fatigue loads estimated using this equivalent wind...... climate required by the current design standard by comparing damage equivalent fatigue loads estimated based on wind climate parameters for each 10 min time-series with fatigue loads estimated based on the equivalent wind climate parameters. Wind measurements from Boulder, CO, in the United States...... and Høvsøre in Denmark have been used to estimate the natural variation in the wind conditions between 10 min time periods. The structural wind turbine loads have been simulated using the aero-elastic model FAST. The results show that using a 90% quantile for the turbulence leads to an accurate assessment...

  8. Online track processor for the CDF upgrade

    International Nuclear Information System (INIS)

    Ciobanu, C.; Gertenslager, J.; Hoftiezer, J.

    1999-01-01

    A trigger track processor is being designed for the CDF upgrade. This processor identifies high momentum (P T > 1.5 GeV/c) charged tracks in the new central outer tracking chamber for CDF II. The track processor is called the Extremely Fast Tracker (XFT). The XFT design is highly parallel to handle the input rate of 183 Gbits/sec and output rate of 44 Gbits/sec. The processor is pipelined and reports the results for a new event every 132 ns. The processor uses three stages, hit classification, segment finding, and segment linking. The pattern recognition algorithms for the three stages are implemented in programmable logic devices (PLDs) which allow for in-situ modification of the algorithm at any time. The PLDs reside on three different types of modules. Prototypes of each of these modules have been designed and built, and are presently undergoing testing. An overview of the track processor and results of testing are presented

  9. Configurable Multi-Purpose Processor

    Science.gov (United States)

    Valencia, J. Emilio; Forney, Chirstopher; Morrison, Robert; Birr, Richard

    2010-01-01

    Advancements in technology have allowed the miniaturization of systems used in aerospace vehicles. This technology is driven by the need for next-generation systems that provide reliable, responsive, and cost-effective range operations while providing increased capabilities such as simultaneous mission support, increased launch trajectories, improved launch, and landing opportunities, etc. Leveraging the newest technologies, the command and telemetry processor (CTP) concept provides for a compact, flexible, and integrated solution for flight command and telemetry systems and range systems. The CTP is a relatively small circuit board that serves as a processing platform for high dynamic, high vibration environments. The CTP can be reconfigured and reprogrammed, allowing it to be adapted for many different applications. The design is centered around a configurable field-programmable gate array (FPGA) device that contains numerous logic cells that can be used to implement traditional integrated circuits. The FPGA contains two PowerPC processors running the Vx-Works real-time operating system and are used to execute software programs specific to each application. The CTP was designed and developed specifically to provide telemetry functions; namely, the command processing, telemetry processing, and GPS metric tracking of a flight vehicle. However, it can be used as a general-purpose processor board to perform numerous functions implemented in either hardware or software using the FPGA s processors and/or logic cells. Functionally, the CTP was designed for range safety applications where it would ultimately become part of a vehicle s flight termination system. Consequently, the major functions of the CTP are to perform the forward link command processing, GPS metric tracking, return link telemetry data processing, error detection and correction, data encryption/ decryption, and initiate flight termination action commands. Also, the CTP had to be designed to survive and

  10. Design Principles for Synthesizable Processor Cores

    DEFF Research Database (Denmark)

    Schleuniger, Pascal; McKee, Sally A.; Karlsson, Sven

    2012-01-01

    As FPGAs get more competitive, synthesizable processor cores become an attractive choice for embedded computing. Currently popular commercial processor cores do not fully exploit current FPGA architectures. In this paper, we propose general design principles to increase instruction throughput...... through the use of micro-benchmarks that our principles guide the design of a processor core that improves performance by an average of 38% over a similar Xilinx MicroBlaze configuration....

  11. Accuracies Of Optical Processors For Adaptive Optics

    Science.gov (United States)

    Downie, John D.; Goodman, Joseph W.

    1992-01-01

    Paper presents analysis of accuracies and requirements concerning accuracies of optical linear-algebra processors (OLAP's) in adaptive-optics imaging systems. Much faster than digital electronic processor and eliminate some residual distortion. Question whether errors introduced by analog processing of OLAP overcome advantage of greater speed. Paper addresses issue by presenting estimate of accuracy required in general OLAP that yields smaller average residual aberration of wave front than digital electronic processor computing at given speed.

  12. Digital Signal Processor For GPS Receivers

    Science.gov (United States)

    Thomas, J. B.; Meehan, T. K.; Srinivasan, J. M.

    1989-01-01

    Three innovative components combined to produce all-digital signal processor with superior characteristics: outstanding accuracy, high-dynamics tracking, versatile integration times, lower loss-of-lock signal strengths, and infrequent cycle slips. Three components are digital chip advancer, digital carrier downconverter and code correlator, and digital tracking processor. All-digital signal processor intended for use in receivers of Global Positioning System (GPS) for geodesy, geodynamics, high-dynamics tracking, and ionospheric calibration.

  13. Demonstration of a Basis for Tall Wind Turbine Design, EUDP Project Final Report

    DEFF Research Database (Denmark)

    Natarajan, Anand; Dimitrov, Nikolay Krasimirov; Madsen, Peter Hauge

    Wind turbine design using calibrated wind models have been proposed to be used in conjunction with load cases which lead to reduced uncertainties in the design of wind turbines with hub heights above 60m. These recommended wind profiles have been made for shear, wind directional change and turbul......Wind turbine design using calibrated wind models have been proposed to be used in conjunction with load cases which lead to reduced uncertainties in the design of wind turbines with hub heights above 60m. These recommended wind profiles have been made for shear, wind directional change...

  14. Data register and processor for multiwire chambers

    International Nuclear Information System (INIS)

    Karpukhin, V.V.

    1985-01-01

    A data register and a processor for data receiving and processing from drift chambers of a device for investigating relativistic positroniums are described. The data are delivered to the register input in the form of the Grey 8 bit code, memorized and transformed to a position code. The register information is delivered to the KAMAK trunk and to the front panel plug. The processor selects particle tracks in a horizontal plane of the facility. ΔY maximum coordinate divergence and minimum point quantity on the track are set from the processor front panel. Processor solution time is 16 μs maximum quantity of simultaneously analyzed coordinates is 16

  15. Alternative Water Processor Test Development

    Science.gov (United States)

    Pickering, Karen D.; Mitchell, Julie L.; Adam, Niklas M.; Barta, Daniel; Meyer, Caitlin E.; Pensinger, Stuart; Vega, Leticia M.; Callahan, Michael R.; Flynn, Michael; Wheeler, Ray; hide

    2013-01-01

    The Next Generation Life Support Project is developing an Alternative Water Processor (AWP) as a candidate water recovery system for long duration exploration missions. The AWP consists of biological water processor (BWP) integrated with a forward osmosis secondary treatment system (FOST). The basis of the BWP is a membrane aerated biological reactor (MABR), developed in concert with Texas Tech University. Bacteria located within the MABR metabolize organic material in wastewater, converting approximately 90% of the total organic carbon to carbon dioxide. In addition, bacteria convert a portion of the ammonia-nitrogen present in the wastewater to nitrogen gas, through a combination of nitrification and denitrification. The effluent from the BWP system is low in organic contaminants, but high in total dissolved solids. The FOST system, integrated downstream of the BWP, removes dissolved solids through a combination of concentration-driven forward osmosis and pressure driven reverse osmosis. The integrated system is expected to produce water with a total organic carbon less than 50 mg/l and dissolved solids that meet potable water requirements for spaceflight. This paper describes the test definition, the design of the BWP and FOST subsystems, and plans for integrated testing.

  16. Alternative Water Processor Test Development

    Science.gov (United States)

    Pickering, Karen D.; Mitchell, Julie; Vega, Leticia; Adam, Niklas; Flynn, Michael; Wjee (er. Rau); Lunn, Griffin; Jackson, Andrew

    2012-01-01

    The Next Generation Life Support Project is developing an Alternative Water Processor (AWP) as a candidate water recovery system for long duration exploration missions. The AWP consists of biological water processor (BWP) integrated with a forward osmosis secondary treatment system (FOST). The basis of the BWP is a membrane aerated biological reactor (MABR), developed in concert with Texas Tech University. Bacteria located within the MABR metabolize organic material in wastewater, converting approximately 90% of the total organic carbon to carbon dioxide. In addition, bacteria convert a portion of the ammonia-nitrogen present in the wastewater to nitrogen gas, through a combination of nitrogen and denitrification. The effluent from the BWP system is low in organic contaminants, but high in total dissolved solids. The FOST system, integrated downstream of the BWP, removes dissolved solids through a combination of concentration-driven forward osmosis and pressure driven reverse osmosis. The integrated system is expected to produce water with a total organic carbon less than 50 mg/l and dissolved solids that meet potable water requirements for spaceflight. This paper describes the test definition, the design of the BWP and FOST subsystems, and plans for integrated testing.

  17. Analysis of extreme wind events at Høvsøre and the effect on wind turbine loads

    DEFF Research Database (Denmark)

    Hannesdóttir, Ásta; Kelly, Mark C.; Mann, Jakob

    used to simulate wind turbine response in time domain. The simulations are made for the DTU 10 MW reference wind turbine. Load analysis shows that the maximum tilt moment on the tower yaw bearing correlates well with the wind shear of the measurements. When these loads are compared with the extreme...... wind shear load case of the IEC standards, it is seen that they are of similar magnitude and in one case even higher....

  18. The influence of the Wind Speed Profile on Wind Turbine Performance Measurements

    DEFF Research Database (Denmark)

    Wagner, Rozenn; Antoniou, Ioannis; Pedersen, Søren M.

    2009-01-01

    . Assuming a certain turbine hub height, the profiles with hub-height wind speeds between 6 m s-1 and 8 m s-1 are normalized at 7 m s-1 and grouped to a number of mean shear profiles. The energy in the profiles varies considerably for the same hub-height wind speed. These profiles are then used as input...... the swept rotor area would allow the determination of the electrical power as a function of an equivalent wind speed where wind shear and turbulence intensity are taken into account. Electrical power is found to correlate significantly better to the equivalent wind speed than to the single point hub...

  19. The communication processor of TUMULT-64

    NARCIS (Netherlands)

    Smit, Gerardus Johannes Maria; Jansen, P.G.

    1988-01-01

    Tumult (Twente University MULTi-processor system) is a modular extendible multi-processor system designed and implemented at the Twente University of Technology in co-operation with Oce Nederland B.V. and the Dr. Neher Laboratories (Dutch PTT). Characteristics of the hardware are: MIMD type,

  20. Models of Communication for Multicore Processors

    DEFF Research Database (Denmark)

    Schoeberl, Martin; Sørensen, Rasmus Bo; Sparsø, Jens

    2015-01-01

    To efficiently use multicore processors we need to ensure that almost all data communication stays on chip, i.e., the bits moved between tasks executing on different processor cores do not leave the chip. Different forms of on-chip communication are supported by different hardware mechanism, e...

  1. Towards a Process Algebra for Shared Processors

    DEFF Research Database (Denmark)

    Buchholtz, Mikael; Andersen, Jacob; Løvengreen, Hans Henrik

    2002-01-01

    We present initial work on a timed process algebra that models sharing of processor resources allowing preemption at arbitrary points in time. This enables us to model both the functional and the timely behaviour of concurrent processes executed on a single processor. We give a refinement relation...

  2. An interactive parallel processor for data analysis

    International Nuclear Information System (INIS)

    Mong, J.; Logan, D.; Maples, C.; Rathbun, W.; Weaver, D.

    1984-01-01

    A parallel array of eight minicomputers has been assembled in an attempt to deal with kiloparameter data events. By exporting computer system functions to a separate processor, the authors have been able to achieve computer amplification linearly proportional to the number of executing processors

  3. Vector and parallel processors in computational science

    International Nuclear Information System (INIS)

    Duff, I.S.; Reid, J.K.

    1985-01-01

    These proceedings contain the articles presented at the named conference. These concern hardware and software for vector and parallel processors, numerical methods and algorithms for the computation on such processors, as well as applications of such methods to different fields of physics and related sciences. See hints under the relevant topics. (HSI)

  4. A Study of Communication Processor Systems

    Science.gov (United States)

    1979-12-01

    by S . The processor and manually controlled switches mp Skp enable a link between each processor and controllers (K io) which in turn allow access to... proceso i S thle base leel wh Ichl scans all LIines And Initiates all non--interrut drvn rcsse0s . The voice switching functioni Is performed by one

  5. The TM3270 Media-processor

    NARCIS (Netherlands)

    van de Waerdt, J.W.

    2006-01-01

    I n this thesis, we present the TM3270 VLIW media-processor, the latest of TriMedia processors, and describe the innovations with respect to its prede- cessor: the TM3260. We describe enhancements to the load/store unit design, such as a new data prefetching technique, and architectural

  6. SCAN secure processor and its biometric capabilities

    Science.gov (United States)

    Kannavara, Raghudeep; Mertoguno, Sukarno; Bourbakis, Nikolaos

    2011-04-01

    This paper presents the design of the SCAN secure processor and its extended instruction set to enable secure biometric authentication. The SCAN secure processor is a modified SparcV8 processor architecture with a new instruction set to handle voice, iris, and fingerprint-based biometric authentication. The algorithms for processing biometric data are based on the local global graph methodology. The biometric modules are synthesized in reconfigurable logic and the results of the field-programmable gate array (FPGA) synthesis are presented. We propose to implement the above-mentioned modules in an off-chip FPGA co-processor. Further, the SCAN-secure processor will offer a SCAN-based encryption and decryption of 32 bit instructions and data.

  7. A fully reconfigurable photonic integrated signal processor

    Science.gov (United States)

    Liu, Weilin; Li, Ming; Guzzon, Robert S.; Norberg, Erik J.; Parker, John S.; Lu, Mingzhi; Coldren, Larry A.; Yao, Jianping

    2016-03-01

    Photonic signal processing has been considered a solution to overcome the inherent electronic speed limitations. Over the past few years, an impressive range of photonic integrated signal processors have been proposed, but they usually offer limited reconfigurability, a feature highly needed for the implementation of large-scale general-purpose photonic signal processors. Here, we report and experimentally demonstrate a fully reconfigurable photonic integrated signal processor based on an InP-InGaAsP material system. The proposed photonic signal processor is capable of performing reconfigurable signal processing functions including temporal integration, temporal differentiation and Hilbert transformation. The reconfigurability is achieved by controlling the injection currents to the active components of the signal processor. Our demonstration suggests great potential for chip-scale fully programmable all-optical signal processing.

  8. Wind energy

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This chapter discusses the role wind energy may have in the energy future of the US. The topics discussed in the chapter include historical aspects of wind energy use, the wind energy resource, wind energy technology including intermediate-size and small wind turbines and intermittency of wind power, public attitudes toward wind power, and environmental, siting and land use issues

  9. Effects of shear coupling on shear properties of wood

    Science.gov (United States)

    Jen Y. Liu

    2000-01-01

    Under pure shear loading, an off-axis element of orthotropic material such as pure wood undergoes both shear and normal deformations. The ratio of the shear strain to a normal strain is defined as the shear coupling coefficient associated with the direction of the normal strain. The effects of shear coupling on shear properties of wood as predicted by the orthotropic...

  10. Effect of processor temperature on film dosimetry.

    Science.gov (United States)

    Srivastava, Shiv P; Das, Indra J

    2012-01-01

    Optical density (OD) of a radiographic film plays an important role in radiation dosimetry, which depends on various parameters, including beam energy, depth, field size, film batch, dose, dose rate, air film interface, postexposure processing time, and temperature of the processor. Most of these parameters have been studied for Kodak XV and extended dose range (EDR) films used in radiation oncology. There is very limited information on processor temperature, which is investigated in this study. Multiple XV and EDR films were exposed in the reference condition (d(max.), 10 × 10 cm(2), 100 cm) to a given dose. An automatic film processor (X-Omat 5000) was used for processing films. The temperature of the processor was adjusted manually with increasing temperature. At each temperature, a set of films was processed to evaluate OD at a given dose. For both films, OD is a linear function of processor temperature in the range of 29.4-40.6°C (85-105°F) for various dose ranges. The changes in processor temperature are directly related to the dose by a quadratic function. A simple linear equation is provided for the changes in OD vs. processor temperature, which could be used for correcting dose in radiation dosimetry when film is used. Copyright © 2012 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.

  11. Effect of processor temperature on film dosimetry

    International Nuclear Information System (INIS)

    Srivastava, Shiv P.; Das, Indra J.

    2012-01-01

    Optical density (OD) of a radiographic film plays an important role in radiation dosimetry, which depends on various parameters, including beam energy, depth, field size, film batch, dose, dose rate, air film interface, postexposure processing time, and temperature of the processor. Most of these parameters have been studied for Kodak XV and extended dose range (EDR) films used in radiation oncology. There is very limited information on processor temperature, which is investigated in this study. Multiple XV and EDR films were exposed in the reference condition (d max. , 10 × 10 cm 2 , 100 cm) to a given dose. An automatic film processor (X-Omat 5000) was used for processing films. The temperature of the processor was adjusted manually with increasing temperature. At each temperature, a set of films was processed to evaluate OD at a given dose. For both films, OD is a linear function of processor temperature in the range of 29.4–40.6°C (85–105°F) for various dose ranges. The changes in processor temperature are directly related to the dose by a quadratic function. A simple linear equation is provided for the changes in OD vs. processor temperature, which could be used for correcting dose in radiation dosimetry when film is used.

  12. Enabling Future Robotic Missions with Multicore Processors

    Science.gov (United States)

    Powell, Wesley A.; Johnson, Michael A.; Wilmot, Jonathan; Some, Raphael; Gostelow, Kim P.; Reeves, Glenn; Doyle, Richard J.

    2011-01-01

    Recent commercial developments in multicore processors (e.g. Tilera, Clearspeed, HyperX) have provided an option for high performance embedded computing that rivals the performance attainable with FPGA-based reconfigurable computing architectures. Furthermore, these processors offer more straightforward and streamlined application development by allowing the use of conventional programming languages and software tools in lieu of hardware design languages such as VHDL and Verilog. With these advantages, multicore processors can significantly enhance the capabilities of future robotic space missions. This paper will discuss these benefits, along with onboard processing applications where multicore processing can offer advantages over existing or competing approaches. This paper will also discuss the key artchitecural features of current commercial multicore processors. In comparison to the current art, the features and advancements necessary for spaceflight multicore processors will be identified. These include power reduction, radiation hardening, inherent fault tolerance, and support for common spacecraft bus interfaces. Lastly, this paper will explore how multicore processors might evolve with advances in electronics technology and how avionics architectures might evolve once multicore processors are inserted into NASA robotic spacecraft.

  13. Aeroelastic large eddy simulations using vortex methods: unfrozen turbulent and sheared inflow

    DEFF Research Database (Denmark)

    Branlard, Emmanuel Simon Pierre; Papadakis, G.; Gaunaa, Mac

    2015-01-01

    Vortex particles methods are applied to the aeroelastic simulation of a wind turbine in sheared and turbulent inflow. The possibility to perform large-eddy simulations of turbulence with the effect of the shear vorticity is demonstrated for the first time in vortex methods simulations. Most vortex...... methods formulation of shear, including segment formulations, assume a frozen shear. It is here shown that these formulations omit two source terms in the vorticity equation. The current paper also present unfrozen simulation of shear. The infinite support of the shear vorticity is accounted for using...

  14. The GF-3 SAR Data Processor.

    Science.gov (United States)

    Han, Bing; Ding, Chibiao; Zhong, Lihua; Liu, Jiayin; Qiu, Xiaolan; Hu, Yuxin; Lei, Bin

    2018-03-10

    The Gaofen-3 (GF-3) data processor was developed as a workstation-based GF-3 synthetic aperture radar (SAR) data processing system. The processor consists of two vital subsystems of the GF-3 ground segment, which are referred to as data ingesting subsystem (DIS) and product generation subsystem (PGS). The primary purpose of DIS is to record and catalogue GF-3 raw data with a transferring format, and PGS is to produce slant range or geocoded imagery from the signal data. This paper presents a brief introduction of the GF-3 data processor, including descriptions of the system architecture, the processing algorithms and its output format.

  15. Making CSB+-Tree Processor Conscious

    DEFF Research Database (Denmark)

    Samuel, Michael; Pedersen, Anders Uhl; Bonnet, Philippe

    2005-01-01

    Cache-conscious indexes, such as CSB+-tree, are sensitive to the underlying processor architecture. In this paper, we focus on how to adapt the CSB+-tree so that it performs well on a range of different processor architectures. Previous work has focused on the impact of node size on the performance...... of the CSB+-tree. We argue that it is necessary to consider a larger group of parameters in order to adapt CSB+-tree to processor architectures as different as Pentium and Itanium. We identify this group of parameters and study how it impacts the performance of CSB+-tree on Itanium 2. Finally, we propose...

  16. Hardware trigger processor for the MDT system

    CERN Document Server

    AUTHOR|(SzGeCERN)757787; The ATLAS collaboration; Hazen, Eric; Butler, John; Black, Kevin; Gastler, Daniel Edward; Ntekas, Konstantinos; Taffard, Anyes; Martinez Outschoorn, Verena; Ishino, Masaya; Okumura, Yasuyuki

    2017-01-01

    We are developing a low-latency hardware trigger processor for the Monitored Drift Tube system in the Muon spectrometer. The processor will fit candidate Muon tracks in the drift tubes in real time, improving significantly the momentum resolution provided by the dedicated trigger chambers. We present a novel pure-FPGA implementation of a Legendre transform segment finder, an associative-memory alternative implementation, an ARM (Zynq) processor-based track fitter, and compact ATCA carrier board architecture. The ATCA architecture is designed to allow a modular, staged approach to deployment of the system and exploration of alternative technologies.

  17. Remarks on impact shearing

    Science.gov (United States)

    Klepaczko, J. R.

    1998-10-01

    A review is presented on recent progress in shear testing of materials at high and very high strain rates. Some experimental techniques are discussed which allow for materials testing in shear up to 10 6 ls. More detailed informations are provided on experimental techniques based on the Modified Double Shear specimen loaded by direct impact. This technique has been applied so far to test a variety of materials, including construction, armor and inoxidable steels, and also aluminum alloys. The double shear configuration has also been applied to test sheet metals, mostly used in the automotive industry, in a wide range of strain rates. Details of both techniques, including measuring systems and elastic wave propagation in tubes, are discussed. In addition, a new experimental configuration which can be applied for experimental studies of adiabatic shear propagation and high speed machining is discussed. The role of adiabatic heating at different rates of shearing is also discussed, including transition from pure isothermal to pure adiabatic deformation. It appears that the initial impact velocity is an important parameter in development of plastic localization. Finally, a new development is discussed in determination of the Critical Impact Velocity in shear. A comparison is shown between recent experimental findings and a simple analytic estimation. The CIV in shear is a certain mode of adiabatic failure which occurs at relatively high shear velocities of adjacent material layers. Numerical simulations support the existence of the CIV in shear which can be recognized to some extent as a material constant.

  18. Shear Stress Sensing with Elastic Microfence Structures

    Science.gov (United States)

    Cisotto, Alexxandra; Palmieri, Frank L.; Saini, Aditya; Lin, Yi; Thurman, Christopher S; Kim, Jinwook; Kim, Taeyang; Connell, John W.; Zhu, Yong; Gopalarathnam, Ashok; hide

    2015-01-01

    In this work, elastic microfences were generated for the purpose of measuring shear forces acting on a wind tunnel model. The microfences were fabricated in a two part process involving laser ablation patterning to generate a template in a polymer film followed by soft lithography with a two-part silicone. Incorporation of a fluorescent dye was demonstrated as a method to enhance contrast between the sensing elements and the substrate. Sensing elements consisted of multiple microfences prepared at different orientations to enable determination of both shear force and directionality. Microfence arrays were integrated into an optical microscope with sub-micrometer resolution. Initial experiments were conducted on a flat plate wind tunnel model. Both image stabilization algorithms and digital image correlation were utilized to determine the amount of fence deflection as a result of airflow. Initial free jet experiments indicated that the microfences could be readily displaced and this displacement was recorded through the microscope.

  19. Development of Innovative Design Processor

    International Nuclear Information System (INIS)

    Park, Y.S.; Park, C.O.

    2004-01-01

    The nuclear design analysis requires time-consuming and erroneous model-input preparation, code run, output analysis and quality assurance process. To reduce human effort and improve design quality and productivity, Innovative Design Processor (IDP) is being developed. Two basic principles of IDP are the document-oriented design and the web-based design. The document-oriented design is that, if the designer writes a design document called active document and feeds it to a special program, the final document with complete analysis, table and plots is made automatically. The active documents can be written with ordinary HTML editors or created automatically on the web, which is another framework of IDP. Using the proper mix-up of server side and client side programming under the LAMP (Linux/Apache/MySQL/PHP) environment, the design process on the web is modeled as a design wizard style so that even a novice designer makes the design document easily. This automation using the IDP is now being implemented for all the reload design of Korea Standard Nuclear Power Plant (KSNP) type PWRs. The introduction of this process will allow large reduction in all reload design efforts of KSNP and provide a platform for design and R and D tasks of KNFC. (authors)

  20. Load alleviation of wind turbines by yaw misalignment

    DEFF Research Database (Denmark)

    Kragh, Knud Abildgaard; Hansen, Morten Hartvig

    2014-01-01

    Vertical wind shear is one of the dominating causes of load variations on the blades of a horizontal axis wind turbine. To alleviate the varying loads, wind turbine control systems have been augmented with sensors and actuators for individual pitch control. However, the loads caused by a vertical...... wind shear can also be affected through yaw misalignment. Recent studies of yaw control have been focused on improving the yaw alignment to increase the power capture at below rated wind speeds. In this study, the potential of alleviating blade load variations induced by the wind shear through yaw...... be applied without power loss for wind speeds above rated wind speed. In deterministic inflow, it is shown that the range of the steady-state blade load variations can be reduced by up to 70%. For turbulent inflows, it is shown that the potential blade fatigue load reductions depend on the turbulence level...

  1. Data register and processor for multiwire chambers

    International Nuclear Information System (INIS)

    Karpukhin, V.V.

    1985-01-01

    A data register and processor for acquisition and processing of data from drift chambers if apparatus for studying relativistic positrona are described. Data are input to the register in eight-bit Gray code, stored, and converted to position code. Data are output from the register to a CAMAC highway and to a front-panel connector. The processor selects the tracks of particles that lie in the horizontal plane of the apparatus. The maximum coordinate spread delta Y and the minimum number of points on a track are set from the front panel of the processor. The resolving time of the processor is 16 microsec and the maximum number of simultaneously analyzable coordinates is 16

  2. Probabilistic implementation of universal quantum processors

    International Nuclear Information System (INIS)

    Hillery, Mark; Buzek, Vladimir; Ziman, Mario

    2002-01-01

    We present a probabilistic quantum processor for qudits on a single qudit of dimension N. The processor itself is represented by a fixed array of gates. The input of the processor consists of two registers. In the program register the set of instructions (program) is encoded. This program is applied to the data register. The processor can perform any operation on a single qudit of dimension N with a certain probability. For a general unitary operation, the probability is 1/N 2 , but for more restricted sets of operators the probability can be higher. In fact, this probability can be independent of the dimension of the qudit Hilbert space of the qudit under some conditions

  3. Heterogeneous Multicore Processor Technologies for Embedded Systems

    CERN Document Server

    Uchiyama, Kunio; Kasahara, Hironori; Nojiri, Tohru; Noda, Hideyuki; Tawara, Yasuhiro; Idehara, Akio; Iwata, Kenichi; Shikano, Hiroaki

    2012-01-01

    To satisfy the higher requirements of digitally converged embedded systems, this book describes heterogeneous multicore technology that uses various kinds of low-power embedded processor cores on a single chip. With this technology, heterogeneous parallelism can be implemented on an SoC, and greater flexibility and superior performance per watt can then be achieved. This book defines the heterogeneous multicore architecture and explains in detail several embedded processor cores including CPU cores and special-purpose processor cores that achieve highly arithmetic-level parallelism. The authors developed three multicore chips (called RP-1, RP-2, and RP-X) according to the defined architecture with the introduced processor cores. The chip implementations, software environments, and applications running on the chips are also explained in the book. Provides readers an overview and practical discussion of heterogeneous multicore technologies from both a hardware and software point of view; Discusses a new, high-p...

  4. Limit characteristics of digital optoelectronic processor

    Science.gov (United States)

    Kolobrodov, V. G.; Tymchik, G. S.; Kolobrodov, M. S.

    2018-01-01

    In this article, the limiting characteristics of a digital optoelectronic processor are explored. The limits are defined by diffraction effects and a matrix structure of the devices for input and output of optical signals. The purpose of a present research is to optimize the parameters of the processor's components. The developed physical and mathematical model of DOEP allowed to establish the limit characteristics of the processor, restricted by diffraction effects and an array structure of the equipment for input and output of optical signals, as well as to optimize the parameters of the processor's components. The diameter of the entrance pupil of the Fourier lens is determined by the size of SLM and the pixel size of the modulator. To determine the spectral resolution, it is offered to use a concept of an optimum phase when the resolved diffraction maxima coincide with the pixel centers of the radiation detector.

  5. Photonics and Fiber Optics Processor Lab

    Data.gov (United States)

    Federal Laboratory Consortium — The Photonics and Fiber Optics Processor Lab develops, tests and evaluates high speed fiber optic network components as well as network protocols. In addition, this...

  6. Radiation Tolerant Software Defined Video Processor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — MaXentric's is proposing a radiation tolerant Software Define Video Processor, codenamed SDVP, for the problem of advanced motion imaging in the space environment....

  7. Real time monitoring of electron processors

    International Nuclear Information System (INIS)

    Nablo, S.V.; Kneeland, D.R.; McLaughlin, W.L.

    1995-01-01

    A real time radiation monitor (RTRM) has been developed for monitoring the dose rate (current density) of electron beam processors. The system provides continuous monitoring of processor output, electron beam uniformity, and an independent measure of operating voltage or electron energy. In view of the device's ability to replace labor-intensive dosimetry in verification of machine performance on a real-time basis, its application to providing archival performance data for in-line processing is discussed. (author)

  8. Matrix Manipulation Algorithms for Hasse Processor Implementation

    OpenAIRE

    Hahanov, Vladimir; Dahiri, Farid

    2014-01-01

    The processor is implemented in software-hardware modules, which are based on the use of programming languages: C ++, Verilog, Python 2.7 and platforms: Microsoft Windows, X Window (in Unix and Linux) and Macintosh OS X. HDL-code generator makes it possible to automatically synthesize HDL-code of the processor structure from 1 to 16 bits for parallel processing corresponding number of input vectors or words.

  9. Shear Thinning in Xenon

    Science.gov (United States)

    Bergm Robert F.; Moldover, Michael R.; Yao, Minwu; Zimmerli, Gregory A.

    2009-01-01

    We measured shear thinning, a viscosity decrease ordinarily associated with complex liquids such as molten plastics or ketchup, near the critical point of xenon. The data span a wide range of dimensionless shear rate: the product of the shear rate and the relaxation time of critical fluctuations was greater than 0.001 and was less than 700. As predicted by theory, shear thinning occurred when this product was greater than 1. The measurements were conducted aboard the Space Shuttle Columbia to avoid the density stratification caused by Earth's gravity.

  10. Optimal processor assignment for pipeline computations

    Science.gov (United States)

    Nicol, David M.; Simha, Rahul; Choudhury, Alok N.; Narahari, Bhagirath

    1991-01-01

    The availability of large scale multitasked parallel architectures introduces the following processor assignment problem for pipelined computations. Given a set of tasks and their precedence constraints, along with their experimentally determined individual responses times for different processor sizes, find an assignment of processor to tasks. Two objectives are of interest: minimal response given a throughput requirement, and maximal throughput given a response time requirement. These assignment problems differ considerably from the classical mapping problem in which several tasks share a processor; instead, it is assumed that a large number of processors are to be assigned to a relatively small number of tasks. Efficient assignment algorithms were developed for different classes of task structures. For a p processor system and a series parallel precedence graph with n constituent tasks, an O(np2) algorithm is provided that finds the optimal assignment for the response time optimization problem; it was found that the assignment optimizing the constrained throughput in O(np2log p) time. Special cases of linear, independent, and tree graphs are also considered.

  11. Accuracy Limitations in Optical Linear Algebra Processors

    Science.gov (United States)

    Batsell, Stephen Gordon

    1990-01-01

    One of the limiting factors in applying optical linear algebra processors (OLAPs) to real-world problems has been the poor achievable accuracy of these processors. Little previous research has been done on determining noise sources from a systems perspective which would include noise generated in the multiplication and addition operations, noise from spatial variations across arrays, and from crosstalk. In this dissertation, we propose a second-order statistical model for an OLAP which incorporates all these system noise sources. We now apply this knowledge to determining upper and lower bounds on the achievable accuracy. This is accomplished by first translating the standard definition of accuracy used in electronic digital processors to analog optical processors. We then employ our second-order statistical model. Having determined a general accuracy equation, we consider limiting cases such as for ideal and noisy components. From the ideal case, we find the fundamental limitations on improving analog processor accuracy. From the noisy case, we determine the practical limitations based on both device and system noise sources. These bounds allow system trade-offs to be made both in the choice of architecture and in individual components in such a way as to maximize the accuracy of the processor. Finally, by determining the fundamental limitations, we show the system engineer when the accuracy desired can be achieved from hardware or architecture improvements and when it must come from signal pre-processing and/or post-processing techniques.

  12. 7 CFR 1160.108 - Fluid milk processor.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 9 2010-01-01 2009-01-01 true Fluid milk processor. 1160.108 Section 1160.108... Order Definitions § 1160.108 Fluid milk processor. (a) Fluid milk processor means any person who... term fluid milk processor shall not include in each of the respective fiscal periods those persons who...

  13. 7 CFR 1435.310 - Sharing processors' allocations with producers.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Sharing processors' allocations with producers. 1435... Flexible Marketing Allotments For Sugar § 1435.310 Sharing processors' allocations with producers. (a) Every sugar beet and sugarcane processor must provide CCC a certification that: (1) The processor...

  14. 21 CFR 120.25 - Process verification for certain processors.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Process verification for certain processors. 120... Pathogen Reduction § 120.25 Process verification for certain processors. Each juice processor that relies... covered by this section, processors shall take subsamples according to paragraph (a) of this section for...

  15. Aeroservoelasticity of wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Skovmose Kallesoee, B.

    2007-12-14

    This thesis deals with the fundamental aeroelastic interaction between structural motion, Pitch action and control for a wind turbine blade. As wind turbines become larger, the interaction between pitch action, blade motion, aerodynamic forces, and control become even more important to understand and address. The main contribution of this thesis is the development of an aeroelastic blade model which on the one hand includes the important effects of steady state blade deformation, gravity and pitch action, and on the other it is transparent, suitable for analytical analysis and parameter studies, and furthermore linear and therefore suitable for control design. The development of the primary aeroelastic blade model is divided into four steps: 1) Nonlinear partial differential equations (PDEs) of structural blade motion are derived together with equations of pitch action and rotor speed; the individual terms in these equations are discussed and given physical interpretations; 2) Steady state blade deformation and induced velocities are computed by combining the PDEs with a steady state aerodynamic model; 3) Aeroelastic modes of motion are computed by combining the linearized PDEs with a linear unsteady aerodynamic model; this model is used to analyze how blade deformation effects the modes of motion; and 4) the linear aeroelastic blade model is derived by a modal expansion of the linearized PDEs combined with a linear unsteady aerodynamic model. The aeroelastic blade model has many similarities to a 2D blade section model, and it can be used instead of this in many applications, giving a transparent connection to a real wind turbine blade. In this work the aeroelastic blade model is used to analyze interaction between pitch action, blade motion and wind speed variations. Furthermore the model is used to develop a state estimator for estimating the wind speed and wind shear, and to suggest a load reducing controller. The state estimator estimates the wind shear very

  16. Wind effect in turbulence parametrization

    Science.gov (United States)

    Colombini, M.; Stocchino, A.

    2005-09-01

    The action of wind blowing over a closed basin ultimately results in a steady shear-induced circulation pattern and in a leeward rising of the free surface—and a corresponding windward lowering—known as wind set-up. If the horizontal dimensions of the basin are large with respect to the average flow depth, the occurrence of local quasi-equilibrium conditions can be expected, i.e. the flow can be assumed to be locally driven only by the wind stress and by the opposing free surface gradient due to set-up. This wind-induced flow configuration shows a strong similarity with turbulent Couette-Poiseuille flow, the one dimensional flow between parallel plates generated by the simultaneous action of a constant pressure gradient and of the shear induced by the relative motion of the plates. A two-equation turbulence closure is then employed to perform a numerical study of turbulent Couette-Poiseuille flows for different values of the ratio of the shear stresses at the two walls. The resulting eddy viscosity vertical distributions are analyzed in order to devise analytical profiles of eddy viscosity that account for the effect of wind. The results of this study, beside allowing for a physical insight on the turbulence process of this class of flows, will allow for a more accurate description of the wind effect to be included in the formulation of quasi-3D and 3D models of lagoon hydrodynamics.

  17. A lock circuit for a multi-core processor

    DEFF Research Database (Denmark)

    2015-01-01

    An integrated circuit comprising a multiple processor cores and a lock circuit that comprises a queue register with respective bits set or reset via respective, connections dedicated to respective processor cores, whereby the queue register identifies those among the multiple processor cores...... that are enqueued in the queue register. Furthermore, the integrated circuit comprises a current register and a selector circuit configured to select a processor core and identify that processor core by a value in the current register. A selected processor core is a prioritized processor core among the cores...... that have a bit that is set in the queue register. The processor cores are connected to receive a signal from the current register. Correspondingly: a method of synchronizing access to software and/or hardware resources by a core of a multi-core processor by means of a lock circuit; a multi-core processor...

  18. Architectural design and analysis of a programmable image processor

    International Nuclear Information System (INIS)

    Siyal, M.Y.; Chowdhry, B.S.; Rajput, A.Q.K.

    2003-01-01

    In this paper we present an architectural design and analysis of a programmable image processor, nicknamed Snake. The processor was designed with a high degree of parallelism to speed up a range of image processing operations. Data parallelism found in array processors has been included into the architecture of the proposed processor. The implementation of commonly used image processing algorithms and their performance evaluation are also discussed. The performance of Snake is also compared with other types of processor architectures. (author)

  19. Two improvements to the dynamic wake meandering model: including the effects of atmospheric shear on wake turbulence and incorporating turbulence build-up in a row of wind turbines

    DEFF Research Database (Denmark)

    Keck, Rolf-Erik; de Mare, Martin Tobias; Churchfield, Matthew J.

    2015-01-01

    The dynamic wake meandering (DWM) model is an engineering wake model designed to physically model the wake deficit evolution and the unsteady meandering that occurs in wind turbine wakes. The present study aims at improving two features of the model: The effect of the atmospheric boundary layer s...

  20. On the asymmetric distribution of shear-relative typhoon rainfall

    Science.gov (United States)

    Gao, Si; Zhai, Shunan; Li, Tim; Chen, Zhifan

    2018-02-01

    The Tropical Rainfall Measuring Mission (TRMM) 3B42 precipitation, the National Centers for Environmental Prediction (NCEP) Final analysis and the Regional Specialized Meteorological Center (RSMC) Tokyo best-track data during 2000-2015 are used to compare spatial rainfall distribution associated with Northwest Pacific tropical cyclones (TCs) with different vertical wind shear directions and investigate possible mechanisms. Results show that the maximum TC rainfall are all located in the downshear left quadrant regardless of shear direction, and TCs with easterly shear have greater magnitudes of rainfall than those with westerly shear, consistent with previous studies. Rainfall amount of a TC is related to its relative position and proximity from the western Pacific subtropical high (WPSH) and the intensity of water vapor transport, and low-level jet is favorable for water vapor transport. The maximum of vertically integrated moisture flux convergence (MFC) are located on the downshear side regardless of shear direction, and the contribution of wind convergence to the total MFC is far larger than that of moisture advection. The cyclonic displacement of the maximum rainfall relative to the maximum MFC is possibly due to advection of hydrometeors by low- and middle-level cyclonic circulation of TCs. The relationship between TC rainfall and the WPSH through water vapor transport and vertical wind shear implies that TC rainfall may be highly predictable given the high predictability of the WPSH.

  1. An integrated modeling method for wind turbines

    Science.gov (United States)

    Fadaeinedjad, Roohollah

    To study the interaction of the electrical, mechanical, and aerodynamic aspects of a wind turbine, a detailed model that considers all these aspects must be used. A drawback of many studies in the area of wind turbine simulation is that either a very simple mechanical model is used with a detailed electrical model, or vice versa. Hence the interactions between electrical and mechanical aspects of wind turbine operation are not accurately taken into account. In this research, it will be shown that a combination of different simulation packages, namely TurbSim, FAST, and Simulink can be used to model the aerodynamic, mechanical, and electrical aspects of a wind turbine in detail. In this thesis, after a review of some wind turbine concepts and software tools, a simulation structure is proposed for studying wind turbines that integrates the mechanical and electrical components of a wind energy conversion device. Based on the simulation structure, a comprehensive model for a three-bladed variable speed wind turbine with doubly-fed induction generator is developed. Using the model, the impact of a voltage sag on the wind turbine tower vibration is investigated under various operating conditions such as power system short circuit level, mechanical parameters, and wind turbine operating conditions. It is shown how an electrical disturbance can cause more sustainable tower vibrations under high speed and turbulent wind conditions, which may disrupt the operation of pitch control system. A similar simulation structure is used to model a two-bladed fixed speed wind turbine with an induction generator. An extension of the concept is introduced by adding a diesel generator system. The model is utilized to study the impact of the aeroelastic aspects of wind turbine (i.e. tower shadow, wind shears, yaw error, turbulence, and mechanical vibrations) on the power quality of a stand-alone wind-diesel system. Furthermore, an IEEE standard flickermeter model is implemented in a

  2. Wind energy renewable energy and the environment

    CERN Document Server

    Nelson, Vaughn; Nelson, Vaughn

    2009-01-01

    Due to the mounting demand for energy and increasing population of the world, switching from nonrenewable fossil fuels to other energy sources is not an option-it is a necessity. Focusing on a cost-effective option for the generation of electricity, Wind Energy: Renewable Energy and the Environment covers all facets of wind energy and wind turbines. The book begins by outlining the history of wind energy, before providing reasons to shift from fossil fuels to renewable energy. After examining the characteristics of wind, such as shear, power potential, and turbulence, it discusses the measur

  3. Wind Energy

    International Nuclear Information System (INIS)

    Rodriguez D, J.M.

    1998-01-01

    The general theory of the wind energy conversion systems is presented. The availability of the wind resource in Colombia and the ranges of the speed of the wind in those which is possible economically to use the wind turbines are described. It is continued with a description of the principal technological characteristics of the wind turbines and are split into wind power and wind-powered pumps; and its use in large quantities grouped in wind farms or in autonomous systems. Finally, its costs and its environmental impact are presented

  4. The UA1 upgrade calorimeter trigger processor

    International Nuclear Information System (INIS)

    Bains, M.; Charleton, D.; Ellis, N.; Garvey, J.; Gregory, J.; Jimack, M.P.; Jovanovic, P.; Kenyon, I.R.; Baird, S.A.; Campbell, D.; Cawthraw, M.; Coughlan, J.; Flynn, P.; Galagedera, S.; Grayer, G.; Halsall, R.; Shah, T.P.; Stephens, R.; Biddulph, P.; Eisenhandler, E.; Fensome, I.F.; Landon, M.; Robinson, D.; Oliver, J.; Sumorok, K.

    1990-01-01

    The increased luminosity of the improved CERN Collider and the more subtle signals of second-generation collider physics demand increasingly sophisticated triggering. We have built a new first-level trigger processor designed to use the excellent granularity of the UA1 upgrade calorimeter. This device is entirely digital and handles events in 1.5 μs, thus introducing no dead time. Its most novel feature is fast two-dimensional electromagnetic cluster-finding with the possibility of demanding an isolated shower of limited penetration. The processor allows multiple combinations of triggers on electromagnetic showers, hadronic jets and energy sums, including a total-energy veto of multiple interactions and a full vector sum of missing transverse energy. This hard-wired processor is about five times more powerful than its predecessor, and makes extensive use of pipelining techniques. It was used extensively in the 1988 and 1989 runs of the CERN Collider. (orig.)

  5. Programmable DNA-Mediated Multitasking Processor.

    Science.gov (United States)

    Shu, Jian-Jun; Wang, Qi-Wen; Yong, Kian-Yan; Shao, Fangwei; Lee, Kee Jin

    2015-04-30

    Because of DNA appealing features as perfect material, including minuscule size, defined structural repeat and rigidity, programmable DNA-mediated processing is a promising computing paradigm, which employs DNAs as information storing and processing substrates to tackle the computational problems. The massive parallelism of DNA hybridization exhibits transcendent potential to improve multitasking capabilities and yield a tremendous speed-up over the conventional electronic processors with stepwise signal cascade. As an example of multitasking capability, we present an in vitro programmable DNA-mediated optimal route planning processor as a functional unit embedded in contemporary navigation systems. The novel programmable DNA-mediated processor has several advantages over the existing silicon-mediated methods, such as conducting massive data storage and simultaneous processing via much fewer materials than conventional silicon devices.

  6. Intrusion Detection Architecture Utilizing Graphics Processors

    Directory of Open Access Journals (Sweden)

    Branislav Madoš

    2012-12-01

    Full Text Available With the thriving technology and the great increase in the usage of computer networks, the risk of having these network to be under attacks have been increased. Number of techniques have been created and designed to help in detecting and/or preventing such attacks. One common technique is the use of Intrusion Detection Systems (IDS. Today, number of open sources and commercial IDS are available to match enterprises requirements. However, the performance of these systems is still the main concern. This paper examines perceptions of intrusion detection architecture implementation, resulting from the use of graphics processor. It discusses recent research activities, developments and problems of operating systems security. Some exploratory evidence is presented that shows capabilities of using graphical processors and intrusion detection systems. The focus is on how knowledge experienced throughout the graphics processor inclusion has played out in the design of intrusion detection architecture that is seen as an opportunity to strengthen research expertise.

  7. Embedded processor extensions for image processing

    Science.gov (United States)

    Thevenin, Mathieu; Paindavoine, Michel; Letellier, Laurent; Heyrman, Barthélémy

    2008-04-01

    The advent of camera phones marks a new phase in embedded camera sales. By late 2009, the total number of camera phones will exceed that of both conventional and digital cameras shipped since the invention of photography. Use in mobile phones of applications like visiophony, matrix code readers and biometrics requires a high degree of component flexibility that image processors (IPs) have not, to date, been able to provide. For all these reasons, programmable processor solutions have become essential. This paper presents several techniques geared to speeding up image processors. It demonstrates that a gain of twice is possible for the complete image acquisition chain and the enhancement pipeline downstream of the video sensor. Such results confirm the potential of these computing systems for supporting future applications.

  8. Wind Characteristics of Three Meteorological Stations in China

    Directory of Open Access Journals (Sweden)

    Yang Yang

    2015-01-01

    Full Text Available With rapid economic development of China, demand for energy is growing rapidly. Many experts have begun to pay attention on exploiting wind energy. Wind characteristics of three meteorological stations in China were analyzed to find out if or not it is possible to build a wind farm in this paper. First of all, studies about the wind characteristics and potential wind energy were summarized. Then ways of collecting and manipulating wind data were introduced. Wind-generation potential was assessed by the method of Weibull distribution. Wind shear exponent, extreme wind speed in 50 years, and turbulence intensity were calculated. The wind characteristics were summarized and assessment of wind-generation potential was given. At last, the wind was simulated with autoregressive method by Matlab software.

  9. Wind Turbines Adaptation to the Variability of the Wind Field

    Science.gov (United States)

    Ulianov, Yuriy; Martynenko, Gennadii; Misaylov, Vitaliy; Soliannikova, Iuliia

    2010-05-01

    WIND TURBINES ADAPTATION TO THE VARIABILITY OF THE WIND FIELD The subject of our scientific research is wind power turbines (WPT) with the horizontal axis which were now common in the world. Efficient wind turbines work is largely determined by non-stationarity of the wind field, expressed in its gustiness, the presence of vertical and horizontal shifts of wind speed and direction. At critical values of the wind parameters WPT has aerodynamic and mechanical overload, leading to breakdowns, premature wear and reduce the life of the wind turbine. To prevent accidents at the peak values of wind speed it is used the regulatory system of windwheels. WPT control systems provide a process orientation of the wind turbine rotor axis in the line of the mean wind. Wind turbines are also equipped with braking device used to protect against breakdowns when a significant increase in the wind. In general, all these methods of regulation are not always effective. Thus, in practice there may be situations when the wind speed is many times greater than the stated limit. For example, if there are microbursts in the atmospheric boundary layer, low-level wind shears caused by its gust front, storms, etc. It is required for a wind power turbine adaptation to intensive short-term wind impulses and considerable vertical wind shifts that the data about them shall be obtained ahead of time. To do this it is necessary to have the information on the real structure of the wind field in the area of the blade sweep for the minimum range against the wind that is determined by the mean speed and the system action time. The implementation of acoustic and laser traditional wind sounding systems is limited by ambient acoustic noise, by heavy rain, snowfall and by fog. There are free of these disadvantages the inclined radioacoustic sounding (IRASS) technique which works for a system of remote detection and control of wind gusts. IRASS technique is realized as low-potential Doppler pulse radar

  10. Software-defined reconfigurable microwave photonics processor.

    Science.gov (United States)

    Pérez, Daniel; Gasulla, Ivana; Capmany, José

    2015-06-01

    We propose, for the first time to our knowledge, a software-defined reconfigurable microwave photonics signal processor architecture that can be integrated on a chip and is capable of performing all the main functionalities by suitable programming of its control signals. The basic configuration is presented and a thorough end-to-end design model derived that accounts for the performance of the overall processor taking into consideration the impact and interdependencies of both its photonic and RF parts. We demonstrate the model versatility by applying it to several relevant application examples.

  11. Time Manager Software for a Flight Processor

    Science.gov (United States)

    Zoerne, Roger

    2012-01-01

    Data analysis is a process of inspecting, cleaning, transforming, and modeling data to highlight useful information and suggest conclusions. Accurate timestamps and a timeline of vehicle events are needed to analyze flight data. By moving the timekeeping to the flight processor, there is no longer a need for a redundant time source. If each flight processor is initially synchronized to GPS, they can freewheel and maintain a fairly accurate time throughout the flight with no additional GPS time messages received. How ever, additional GPS time messages will ensure an even greater accuracy. When a timestamp is required, a gettime function is called that immediately reads the time-base register.

  12. Parallel processor for fast event analysis

    International Nuclear Information System (INIS)

    Hensley, D.C.

    1983-01-01

    Current maximum data rates from the Spin Spectrometer of approx. 5000 events/s (up to 1.3 MBytes/s) and minimum analysis requiring at least 3000 operations/event require a CPU cycle time near 70 ns. In order to achieve an effective cycle time of 70 ns, a parallel processing device is proposed where up to 4 independent processors will be implemented in parallel. The individual processors are designed around the Am2910 Microsequencer, the AM29116 μP, and the Am29517 Multiplier. Satellite histogramming in a mass memory system will be managed by a commercial 16-bit μP system

  13. Study on Korean Pine Nut Processors

    OpenAIRE

    Kang, Hag Mo; Choi, Soo Im; Sato, Noriko; Kim, Hyun; 佐藤, 宣子

    2012-01-01

    In the results of survey on operating state of pine nut processors located in Gapyeong–gun, Gyeonggi–do and Hongcheon–gun, Gangwon–do, representative pine nut producing area, the total purchasing amount of pine nuts with a cone of Gapyeong–gun, Gyeonggi–do was 500~4,000 bags (1 bag is 80 kg), of which average amount per processor was 2000 bags. The price range per bag of pine nuts was 470~620 thousand won and the average price was 550 thousand won. Total purchase price of pine nuts with a con...

  14. Comparison of Processor Performance of SPECint2006 Benchmarks of some Intel Xeon Processors

    Directory of Open Access Journals (Sweden)

    Abdul Kareem PARCHUR

    2012-08-01

    Full Text Available High performance is a critical requirement to all microprocessors manufacturers. The present paper describes the comparison of performance in two main Intel Xeon series processors (Type A: Intel Xeon X5260, X5460, E5450 and L5320 and Type B: Intel Xeon X5140, 5130, 5120 and E5310. The microarchitecture of these processors is implemented using the basis of a new family of processors from Intel starting with the Pentium 4 processor. These processors can provide a performance boost for many key application areas in modern generation. The scaling of performance in two major series of Intel Xeon processors (Type A: Intel Xeon X5260, X5460, E5450 and L5320 and Type B: Intel Xeon X5140, 5130, 5120 and E5310 has been analyzed using the performance numbers of 12 CPU2006 integer benchmarks, performance numbers that exhibit significant differences in performance. The results and analysis can be used by performance engineers, scientists and developers to better understand the performance scaling in modern generation processors.

  15. Assessment of Wind Parameter Sensitivity on Ultimate and Fatigue Wind Turbine Loads: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, Amy N [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sethuraman, Latha [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Jonkman, Jason [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Quick, Julian [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-02-13

    Wind turbines are designed using a set of simulations to ascertain the structural loads that the turbine could encounter. While mean hub-height wind speed is considered to vary, other wind parameters such as turbulence spectra, sheer, veer, spatial coherence, and component correlation are fixed or conditional values that, in reality, could have different characteristics at different sites and have a significant effect on the resulting loads. This paper therefore seeks to assess the sensitivity of different wind parameters on the resulting ultimate and fatigue loads on the turbine during normal operational conditions. Eighteen different wind parameters are screened using an Elementary Effects approach with radial points. As expected, the results show a high sensitivity of the loads to the turbulence standard deviation in the primary wind direction, but the sensitivity to wind shear is often much greater. To a lesser extent, other wind parameters that drive loads include the coherence in the primary wind direction and veer.

  16. A New Approach for Offshore Wind Farm Energy Yields Calculation with Mixed Hub Height Wind Turbines

    DEFF Research Database (Denmark)

    Hou, Peng; Hu, Weihao; Soltani, Mohsen

    2016-01-01

    In this paper, a mathematical model for calculating the energy yields of offshore wind farm with mixed types of wind turbines is proposed. The Jensen model is selected as the base and developed to a three dimension wake model to estimate the energy yields. Since the wind turbines are with differe...... hub heights, the wind shear effect is also taken into consideration. The results show that the proposed wake model is effective in calculating the wind speed deficit. The calculation framework is applicable for energy yields calculation in offshore wind farms.......In this paper, a mathematical model for calculating the energy yields of offshore wind farm with mixed types of wind turbines is proposed. The Jensen model is selected as the base and developed to a three dimension wake model to estimate the energy yields. Since the wind turbines are with different...

  17. Assessment of Wind Parameter Sensitivity on Extreme and Fatigue Wind Turbine Loads

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, Amy N [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sethuraman, Latha [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Jonkman, Jason [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Quick, Julian [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-01-12

    Wind turbines are designed using a set of simulations to ascertain the structural loads that the turbine could encounter. While mean hub-height wind speed is considered to vary, other wind parameters such as turbulence spectra, sheer, veer, spatial coherence, and component correlation are fixed or conditional values that, in reality, could have different characteristics at different sites and have a significant effect on the resulting loads. This paper therefore seeks to assess the sensitivity of different wind parameters on the resulting ultimate and fatigue loads on the turbine during normal operational conditions. Eighteen different wind parameters are screened using an Elementary Effects approach with radial points. As expected, the results show a high sensitivity of the loads to the turbulence standard deviation in the primary wind direction, but the sensitivity to wind shear is often much greater. To a lesser extent, other wind parameters that drive loads include the coherence in the primary wind direction and veer.

  18. A post-processor for Gurmukhi OCR

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Abstract. A post-processing system for OCR of Gurmukhi script has been devel- oped. Statistical information of Punjabi language syllable combinations, corpora look-up and certain heuristics based on Punjabi grammar rules have been com- bined to design the post-processor. An improvement of 3% in recognition rate, ...

  19. Monotonicity in the limited processor sharing queue

    NARCIS (Netherlands)

    M. Nuyens; W. van der Weij (Wemke)

    2008-01-01

    htmlabstractWe study a processor sharing queue with a limited number of service positions and an infinite buffer. The occupied service positions share an underlying resource. We prove that for service times with a decreasing failure rate, the queue length is stochastically decreasing in the number

  20. Noise limitations in optical linear algebra processors.

    Science.gov (United States)

    Batsell, S G; Jong, T L; Walkup, J F; Krile, T F

    1990-05-10

    A general statistical noise model is presented for optical linear algebra processors. A statistical analysis which includes device noise, the multiplication process, and the addition operation is undertaken. We focus on those processes which are architecturally independent. Finally, experimental results which verify the analytical predictions are also presented.

  1. Report of the trigger processor subgroup

    International Nuclear Information System (INIS)

    Johnson, M.

    1993-01-01

    This is a summary report of a small group of people who met one afternoon to discuss trigger processors. The trigger processor group spent much of its time discussing new architecture's for high rate experiments. There was an attempt to differentiate between data driven architectures and the more conventional systems where triggers are divided into a series of levels. This was not too successful because most people felt that there were elements of the data driven architecture in almost all trigger systems -- particularly at the front end. There are, however, broad divisions that are present in almost every trigger system. The typical trigger levels are defined as: level 1 - This is the section of the trigger that is truly dead timeless. The data is pipelined with enough buffers so that no crossing (event in fixed target) is lost. A trigger decision is generated at every crossing (but delayed by the length of the pipeline); level 3 - Processor farm with one complete event per processor; level 2 - Everything in between

  2. A high-speed analog neural processor

    NARCIS (Netherlands)

    Masa, P.; Masa, Peter; Hoen, Klaas; Hoen, Klaas; Wallinga, Hans

    1994-01-01

    Targeted at high-energy physics research applications, our special-purpose analog neural processor can classify up to 70 dimensional vectors within 50 nanoseconds. The decision-making process of the implemented feedforward neural network enables this type of computation to tolerate weight

  3. A post-processor for Gurmukhi OCR

    Indian Academy of Sciences (India)

    /sadh/027/01/0099-0111 ... Statistical information of Punjabi language syllable combinations, corpora look-up and certain heuristics based on Punjabi grammar rules have been combined to design the post-processor. An improvement of 3% in ...

  4. Globe hosts launch of new processor

    CERN Multimedia

    2006-01-01

    Launch of the quadecore processor chip at the Globe. On 14 November, in a series of major media events around the world, the chip-maker Intel launched its new 'quadcore' processor. For the regions of Europe, the Middle East and Africa, the day-long launch event took place in CERN's Globe of Science and Innovation, with over 30 journalists in attendance, coming from as far away as Johannesburg and Dubai. CERN was a significant choice for the event: the first tests of this new generation of processor in Europe had been made at CERN over the preceding months, as part of CERN openlab, a research partnership with leading IT companies such as Intel, HP and Oracle. The event also provided the opportunity for the journalists to visit ATLAS and the CERN Computer Centre. The strategy of putting multiple processor cores on the same chip, which has been pursued by Intel and other chip-makers in the last few years, represents an important departure from the more traditional improvements in the sheer speed of such chips. ...

  5. Direct video acquisition by digital signal processors

    Science.gov (United States)

    de Sa, Luis A. S. V.; Silva, Vitor M.; Silvestre, Joao C.

    1992-08-01

    Almost any frame grabber system has a special controller circuit to transfer data from the video analog to digital converter (ADC) to the system memory. This controller which normally includes a locked phase loop (PLL) and several counters has to fulfill three main functions: the generation of a pixel clock synchronized with the incoming video signal the command of the ADC and memory addressing for the storage of the digitized video. This paper shows how a digital signal processor (DSP) can simplify the design of a video acquisition system by reading the video ADC and writing to its memory at video rates. An example is given with the TM5320C30 processor which supports simultaneous read and write operations on its two external buses. In the case of the CCJR 601 video format the processor runs at 27 MHz. Modern versions of the TMS32OC3O running at as fast as 40 MHz can acquire up to 1066 samples per line. Also the 32-bit wide buses of the processor allows colour acquisition using this technique. In order to build a so simple circuit the DSP needs to be synchronized to the incoming video signal which can be neatly done by using the TMS32OC3O internal timer as part of the PLL. By changing the programming of the internal timer any video format can be grabbed. In addition the DSP can be used as a powerful image

  6. Simplifying cochlear implant speech processor fitting

    NARCIS (Netherlands)

    Willeboer, C.

    2008-01-01

    Conventional fittings of the speech processor of a cochlear implant (CI) rely to a large extent on the implant recipient's subjective responses. For each of the 22 intracochlear electrodes the recipient has to indicate the threshold level (T-level) and comfortable loudness level (C-level) while

  7. Vector and parallel processors in computational science

    International Nuclear Information System (INIS)

    Duff, I.S.; Reid, J.K.

    1985-01-01

    This book presents the papers given at a conference which reviewed the new developments in parallel and vector processing. Topics considered at the conference included hardware (array processors, supercomputers), programming languages, software aids, numerical methods (e.g., Monte Carlo algorithms, iterative methods, finite elements, optimization), and applications (e.g., neutron transport theory, meteorology, image processing)

  8. ARTS III/Parallel Processor Design Study

    Science.gov (United States)

    1975-04-01

    It was the purpose of this design study to investigate the feasibility, suitability, and cost-effectiveness of augmenting the ARTS III failsafe/failsoft multiprocessor system with a form of parallel processor to accomodate a large growth in air traff...

  9. A post-processor for Gurmukhi OCR

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    The word dictionary is partitioned in order to reduce the search space besides preventing forced match to incorrect words. Word size and the envelop information of words are taken as the main partitioning features. In this paper we describe a post-processor for improving the recognition rate of an OCR of Gurmukhi script.

  10. Wind noise under a pine tree canopy.

    Science.gov (United States)

    Raspet, Richard; Webster, Jeremy

    2015-02-01

    It is well known that infrasonic wind noise levels are lower for arrays placed in forests and under vegetation than for those in open areas. In this research, the wind noise levels, turbulence spectra, and wind velocity profiles are measured in a pine forest. A prediction of the wind noise spectra from the measured meteorological parameters is developed based on recent research on wind noise above a flat plane. The resulting wind noise spectrum is the sum of the low frequency wind noise generated by the turbulence-shear interaction near and above the tops of the trees and higher frequency wind noise generated by the turbulence-turbulence interaction near the ground within the tree layer. The convection velocity of the low frequency wind noise corresponds to the wind speed above the trees while the measurements showed that the wind noise generated by the turbulence-turbulence interaction is near stationary and is generated by the slow moving turbulence adjacent to the ground. Comparison of the predicted wind noise spectrum with the measured wind noise spectrum shows good agreement for four measurement sets. The prediction can be applied to meteorological estimates to predict the wind noise under other pine forests.

  11. Performance evaluation of throughput computing workloads using multi-core processors and graphics processors

    Science.gov (United States)

    Dave, Gaurav P.; Sureshkumar, N.; Blessy Trencia Lincy, S. S.

    2017-11-01

    Current trend in processor manufacturing focuses on multi-core architectures rather than increasing the clock speed for performance improvement. Graphic processors have become as commodity hardware for providing fast co-processing in computer systems. Developments in IoT, social networking web applications, big data created huge demand for data processing activities and such kind of throughput intensive applications inherently contains data level parallelism which is more suited for SIMD architecture based GPU. This paper reviews the architectural aspects of multi/many core processors and graphics processors. Different case studies are taken to compare performance of throughput computing applications using shared memory programming in OpenMP and CUDA API based programming.

  12. Array processors based on Gaussian fraction-free method

    Energy Technology Data Exchange (ETDEWEB)

    Peng, S.; Sedukhin, S. [Aizu Univ., Aizuwakamatsu, Fukushima (Japan); Sedukhin, I.

    1998-03-01

    The design of algorithmic array processors for solving linear systems of equations using fraction-free Gaussian elimination method is presented. The design is based on a formal approach which constructs a family of planar array processors systematically. These array processors are synthesized and analyzed. It is shown that some array processors are optimal in the framework of linear allocation of computations and in terms of number of processing elements and computing time. (author)

  13. Fabrication Security and Trust of Domain-Specific ASIC Processors

    Science.gov (United States)

    2016-10-30

    1 Fabrication Security and Trust of Domain-Specific ASIC Processors Michael Vai, Karen Gettings, and Theodore Lyszczarz MIT Lincoln Laboratory...specific ASIC processor architecture, which we showed to be effective in protecting IP and mitigating the expense and inflexibility associated with using...practicality in ensuring the trust and security of the processor when it is fabricated. The result is a processor architecture that incorporates

  14. Data collection from FASTBUS to a DEC UNIBUS processor through the UNIBUS-Processor Interface

    International Nuclear Information System (INIS)

    Larwill, M.; Barsotti, E.; Lesny, D.; Pordes, R.

    1983-01-01

    This paper describes the use of the UNIBUS Processor Interface, an interface between FASTBUS and the Digital Equipment Corporation UNIBUS. The UPI was developed by Fermilab and the University of Illinois. Details of the use of this interface in a high energy physics experiment at Fermilab are given. The paper includes a discussion of the operation of the UPI on the UNIBUS of a VAX-11, and plans for using the UPI to perform data acquisition from FASTBUS to a VAX-11 Processor

  15. 21 CFR 892.1900 - Automatic radiographic film processor.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Automatic radiographic film processor. 892.1900 Section 892.1900 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... processor. (a) Identification. An automatic radiographic film processor is a device intended to be used to...

  16. 21 CFR 864.3875 - Automated tissue processor.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Automated tissue processor. 864.3875 Section 864.3875 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Automated tissue processor. (a) Identification. An automated tissue processor is an automated system used to...

  17. Wind Structure and Wind Loading

    DEFF Research Database (Denmark)

    Brorsen, Michael

    The purpose of this note is to provide a short description of wind, i.e. of the flow in the atmosphere of the Earth and the loading caused by wind on structures. The description comprises: causes to the generation of windhe interaction between wind and the surface of the Earthhe stochastic nature...... of windhe interaction between wind and structures, where it is shown that wind loading depends strongly on this interaction...

  18. Cache Energy Optimization Techniques For Modern Processors

    Energy Technology Data Exchange (ETDEWEB)

    Mittal, Sparsh [ORNL

    2013-01-01

    Modern multicore processors are employing large last-level caches, for example Intel's E7-8800 processor uses 24MB L3 cache. Further, with each CMOS technology generation, leakage energy has been dramatically increasing and hence, leakage energy is expected to become a major source of energy dissipation, especially in last-level caches (LLCs). The conventional schemes of cache energy saving either aim at saving dynamic energy or are based on properties specific to first-level caches, and thus these schemes have limited utility for last-level caches. Further, several other techniques require offline profiling or per-application tuning and hence are not suitable for product systems. In this book, we present novel cache leakage energy saving schemes for single-core and multicore systems; desktop, QoS, real-time and server systems. Also, we present cache energy saving techniques for caches designed with both conventional SRAM devices and emerging non-volatile devices such as STT-RAM (spin-torque transfer RAM). We present software-controlled, hardware-assisted techniques which use dynamic cache reconfiguration to configure the cache to the most energy efficient configuration while keeping the performance loss bounded. To profile and test a large number of potential configurations, we utilize low-overhead, micro-architecture components, which can be easily integrated into modern processor chips. We adopt a system-wide approach to save energy to ensure that cache reconfiguration does not increase energy consumption of other components of the processor. We have compared our techniques with state-of-the-art techniques and have found that our techniques outperform them in terms of energy efficiency and other relevant metrics. The techniques presented in this book have important applications in improving energy-efficiency of higher-end embedded, desktop, QoS, real-time, server processors and multitasking systems. This book is intended to be a valuable guide for both

  19. Multi-Core Processor Memory Contention Benchmark Analysis Case Study

    Science.gov (United States)

    Simon, Tyler; McGalliard, James

    2009-01-01

    Multi-core processors dominate current mainframe, server, and high performance computing (HPC) systems. This paper provides synthetic kernel and natural benchmark results from an HPC system at the NASA Goddard Space Flight Center that illustrate the performance impacts of multi-core (dual- and quad-core) vs. single core processor systems. Analysis of processor design, application source code, and synthetic and natural test results all indicate that multi-core processors can suffer from significant memory subsystem contention compared to similar single-core processors.

  20. Multiple core computer processor with globally-accessible local memories

    Science.gov (United States)

    Shalf, John; Donofrio, David; Oliker, Leonid

    2016-09-20

    A multi-core computer processor including a plurality of processor cores interconnected in a Network-on-Chip (NoC) architecture, a plurality of caches, each of the plurality of caches being associated with one and only one of the plurality of processor cores, and a plurality of memories, each of the plurality of memories being associated with a different set of at least one of the plurality of processor cores and each of the plurality of memories being configured to be visible in a global memory address space such that the plurality of memories are visible to two or more of the plurality of processor cores.

  1. Rotor equivalent wind speed for power curve measurement – comparative exercise for IEA Wind Annex 32

    DEFF Research Database (Denmark)

    Wagner, Rozenn; Cañadillas, B.; Clifton, A.

    2014-01-01

    A comparative exercise has been organised within the International Energy Agency (IEA) Wind Annex 32 in order to test the Rotor Equivalent Wind Speed (REWS) method under various conditions of wind shear and measurement techniques. Eight organisations from five countries participated in the exercise....... Each member of the group has derived both the power curve based on the wind speed at hub height and the power curve based on the REWS. This yielded results for different wind turbines, located in diverse types of terrain and where the wind speed profile was measured with different instruments (mast...... was the definition of the segment area used as weighting for the wind speeds measured at the various heights in the calculation of the REWS. This comparative exercise showed that the REWS method results in a significant difference compared to the standard method using the wind speed at hub height in conditions...

  2. Ssip-a processor interconnection simulator

    Energy Technology Data Exchange (ETDEWEB)

    Navaux, P.; Weber, R.; Prezzi, J.; Tazza, M.

    1982-01-01

    Recent growing interest in multiple processor architectures has given rise to the study of procesor-memory interconnections for the determination of better architectures. This paper concerns the development of the SSIP-sistema simulador de interconexao de processadores (processor interconnection simulating system) which allows the evaluation of different interconnection structures comparing its performance in order to provide parameters which would help the designer to define an architcture. A wide spectrum of systems may be evaluated, and their behaviour observed due to the features incorporated into the simulator program. The system modelling and the simulator program implementation are described. Some results that can be obtained are shown, along with the discussion of their usefulness. 12 references.

  3. Design of Processors with Reconfigurable Microarchitecture

    Directory of Open Access Journals (Sweden)

    Andrey Mokhov

    2014-01-01

    Full Text Available Energy becomes a dominating factor for a wide spectrum of computations: from intensive data processing in “big data” companies resulting in large electricity bills, to infrastructure monitoring with wireless sensors relying on energy harvesting. In this context it is essential for a computation system to be adaptable to the power supply and the service demand, which often vary dramatically during runtime. In this paper we present an approach to building processors with reconfigurable microarchitecture capable of changing the way they fetch and execute instructions depending on energy availability and application requirements. We show how to use Conditional Partial Order Graphs to formally specify the microarchitecture of such a processor, explore the design possibilities for its instruction set, and synthesise the instruction decoder using correct-by-construction techniques. The paper is focused on the design methodology, which is evaluated by implementing a power-proportional version of Intel 8051 microprocessor.

  4. Parallel processor programs in the Federal Government

    Science.gov (United States)

    Schneck, P. B.; Austin, D.; Squires, S. L.; Lehmann, J.; Mizell, D.; Wallgren, K.

    1985-01-01

    In 1982, a report dealing with the nation's research needs in high-speed computing called for increased access to supercomputing resources for the research community, research in computational mathematics, and increased research in the technology base needed for the next generation of supercomputers. Since that time a number of programs addressing future generations of computers, particularly parallel processors, have been started by U.S. government agencies. The present paper provides a description of the largest government programs in parallel processing. Established in fiscal year 1985 by the Institute for Defense Analyses for the National Security Agency, the Supercomputing Research Center will pursue research to advance the state of the art in supercomputing. Attention is also given to the DOE applied mathematical sciences research program, the NYU Ultracomputer project, the DARPA multiprocessor system architectures program, NSF research on multiprocessor systems, ONR activities in parallel computing, and NASA parallel processor projects.

  5. Network to transmit prioritized subtask pockets to dedicated processors

    Energy Technology Data Exchange (ETDEWEB)

    Neches, P.M.

    1989-03-21

    A multiprocessor system distributing a workload among individual processors and operating with low usage of executive software and inter-processor communication to provide an overall workload processing function divisible into parallel processing subtasks is described, comprising: at least one processor system providing tasks for processing in the form of task messages; means coupled to receive the task messages from the processor system and including means to transform the task messages into subtask request packets including information as to one or more appropriate recipients; processor modules, each having assigned responsibilities with respect to the workload and each including means to determine whether the subtask is appropriate therefor, means for executing an appropriate subtask and means for providing a responsive task result packet after executing the subtask, the task result packet competing for priority with task result packets from at least one other processor module and with the subtask request packets from the interface processor means; and means coupling the interface processor means to the processor modules and the processor modules to each other and including means for concurrently receiving the packets and for determining priority between contending packets and distributing each packet having priority concurrently to all processor modules.

  6. Testing and operating a multiprocessor chip with processor redundancy

    Science.gov (United States)

    Bellofatto, Ralph E; Douskey, Steven M; Haring, Rudolf A; McManus, Moyra K; Ohmacht, Martin; Schmunkamp, Dietmar; Sugavanam, Krishnan; Weatherford, Bryan J

    2014-10-21

    A system and method for improving the yield rate of a multiprocessor semiconductor chip that includes primary processor cores and one or more redundant processor cores. A first tester conducts a first test on one or more processor cores, and encodes results of the first test in an on-chip non-volatile memory. A second tester conducts a second test on the processor cores, and encodes results of the second test in an external non-volatile storage device. An override bit of a multiplexer is set if a processor core fails the second test. In response to the override bit, the multiplexer selects a physical-to-logical mapping of processor IDs according to one of: the encoded results in the memory device or the encoded results in the external storage device. On-chip logic configures the processor cores according to the selected physical-to-logical mapping.

  7. Multi-processor network implementations in Multibus II and VME

    International Nuclear Information System (INIS)

    Briegel, C.

    1992-01-01

    ACNET (Fermilab Accelerator Controls Network), a proprietary network protocol, is implemented in a multi-processor configuration for both Multibus II and VME. The implementations are contrasted by the bus protocol and software design goals. The Multibus II implementation provides for multiple processors running a duplicate set of tasks on each processor. For a network connected task, messages are distributed by a network round-robin scheduler. Further, messages can be stopped, continued, or re-routed for each task by user-callable commands. The VME implementation provides for multiple processors running one task across all processors. The process can either be fixed to a particular processor or dynamically allocated to an available processor depending on the scheduling algorithm of the multi-processing operating system. (author)

  8. Debugging in a multi-processor environment

    International Nuclear Information System (INIS)

    Spann, J.M.

    1981-01-01

    The Supervisory Control and Diagnostic System (SCDS) for the Mirror Fusion Test Facility (MFTF) consists of nine 32-bit minicomputers arranged in a tightly coupled distributed computer system utilizing a share memory as the data exchange medium. Debugging of more than one program in the multi-processor environment is a difficult process. This paper describes what new tools were developed and how the testing of software is performed in the SCDS for the MFTF project

  9. CoNNeCT Baseband Processor Module

    Science.gov (United States)

    Yamamoto, Clifford K; Jedrey, Thomas C.; Gutrich, Daniel G.; Goodpasture, Richard L.

    2011-01-01

    A document describes the CoNNeCT Baseband Processor Module (BPM) based on an updated processor, memory technology, and field-programmable gate arrays (FPGAs). The BPM was developed from a requirement to provide sufficient computing power and memory storage to conduct experiments for a Software Defined Radio (SDR) to be implemented. The flight SDR uses the AT697 SPARC processor with on-chip data and instruction cache. The non-volatile memory has been increased from a 20-Mbit EEPROM (electrically erasable programmable read only memory) to a 4-Gbit Flash, managed by the RTAX2000 Housekeeper, allowing more programs and FPGA bit-files to be stored. The volatile memory has been increased from a 20-Mbit SRAM (static random access memory) to a 1.25-Gbit SDRAM (synchronous dynamic random access memory), providing additional memory space for more complex operating systems and programs to be executed on the SPARC. All memory is EDAC (error detection and correction) protected, while the SPARC processor implements fault protection via TMR (triple modular redundancy) architecture. Further capability over prior BPM designs includes the addition of a second FPGA to implement features beyond the resources of a single FPGA. Both FPGAs are implemented with Xilinx Virtex-II and are interconnected by a 96-bit bus to facilitate data exchange. Dedicated 1.25- Gbit SDRAMs are wired to each Xilinx FPGA to accommodate high rate data buffering for SDR applications as well as independent SpaceWire interfaces. The RTAX2000 manages scrub and configuration of each Xilinx.

  10. Simplifying cochlear implant speech processor fitting

    OpenAIRE

    Willeboer, C.

    2008-01-01

    Conventional fittings of the speech processor of a cochlear implant (CI) rely to a large extent on the implant recipient's subjective responses. For each of the 22 intracochlear electrodes the recipient has to indicate the threshold level (T-level) and comfortable loudness level (C-level) while stimulated with pulse trains. Obtaining these behavioral measurements is a time-consuming task. It requires cooperation and considerable effort of the CI recipient. Especially in adults that have been ...

  11. Plasticity Approach to Shear Design

    DEFF Research Database (Denmark)

    Hoang, Cao Linh; Nielsen, Mogens Peter

    1998-01-01

    The paper presents some plastic models for shear design of reinforced concrete beams. Distinction is made between two shear failure modes, namely web crushing and crack sliding. The first mentioned mode is met in beams with large shear reinforcement degrees. The mode of crack sliding is met in non......-shear reinforced beams as well as in lightly shear reinforced beams. For such beams the shear strength is determined by the recently developed crack sliding model. This model is based upon the hypothesis that cracks can be transformed into yield lines, which have lower sliding resistance than yield lines formed...

  12. Intelligent trigger processor for the crystal box

    CERN Document Server

    Sanders, G H; Cooper, M D; Hart, G W; Hoffman, C M; Hogan, G E; Hughes, E B; Matis, H S; Rolfe, J; Sandberg, V D; Williams, R A; Wilson, S; Zeman, H

    1981-01-01

    A large solid angle angular modular NaI(Tl) detector with 432 phototubes and 88 trigger scintillators is being used to search simultaneously for three lepton flavor-changing decays of the muon. A beam of up to 10/sup 6/ muons stopping per second with a 6% duty factor would yield up to 1000 triggers per second from random triple coincidences. A reduction of the trigger rate to 10 Hz is required from a hardwired primary trigger processor. Further reduction to <1 Hz is achieved by a microprocessor-based secondary trigger processor. The primary trigger hardware imposes voter coincidence logic, stringent timing requirements, and a non-adjacency requirement in the trigger scintillators defined by hardwired circuits. Sophisticated geometric requirements are imposed by a PROM-based matrix logic, and energy and vector-momentum cuts are imposed by a hardwired processor using LSI flash ADC's and digital arithmetic logic. The secondary trigger employs four satellite microprocessors to do a sparse data scan, multiplex ...

  13. Sheared Electroconvective Instability

    Science.gov (United States)

    Kwak, Rhokyun; Pham, Van Sang; Lim, Kiang Meng; Han, Jongyoon

    2012-11-01

    Recently, ion concentration polarization (ICP) and related phenomena draw attention from physicists, due to its importance in understanding electrochemical systems. Researchers have been actively studying, but the complexity of this multiscale, multiphysics phenomenon has been limitation for gaining a detailed picture. Here, we consider electroconvective(EC) instability initiated by ICP under pressure-driven flow, a scenario often found in electrochemical desalinations. Combining scaling analysis, experiment, and numerical modeling, we reveal unique behaviors of sheared EC: unidirectional vortex structures, its size selection and vortex propagation. Selected by balancing the external pressure gradient and the electric body force, which generates Hagen-Poiseuille(HP) flow and vortical EC, the dimensionless EC thickness scales as (φ2 /UHP)1/3. The pressure-driven flow(or shear) suppresses unfavorably-directed vortices, and simultaneously pushes favorably-directed vortices with constant speed, which is linearly proportional to the total shear of HP flow. This is the first systematic characterization of sheared EC, which has significant implications on the optimization of electrodialysis and other electrochemical systems.

  14. Sheared solid materials

    Indian Academy of Sciences (India)

    cores eventually breaks the Peierls potential leading to slow relaxations in the stress and the free energy (aging). .... Figure 1 displays the stress–strain curves at constant shear rate ˙γ applied for t > 0 in units of µ0 and τ−1 ..... In particular, the slow structural relaxations evidently arise from migration of the free volume.

  15. Scaling of turbulence spectra measured in strong shear flow near the Earth’s surface

    DEFF Research Database (Denmark)

    Mikkelsen, Torben Krogh; Larsen, Søren Ejling; Ejsing Jørgensen, Hans

    2017-01-01

    Within the lowest kilometer of the Earth's atmosphere, in the so-called atmospheric boundary layer, winds are often gusty and turbulent. Nearest to the ground, the turbulence is predominately generated by mechanical wall-bounded wind shear, whereas at higher altitudes turbulent mixing of heat......) their generation; (2) the cascade of energy across the spectrum from large- to small-scale; and (3) the eventual decay of turbulence into heat owing to viscosity effects on the Kolmogorov microscale, in which the eddy size is only a fraction of a millimeter. This paper addresses atmospheric turbulence spectra...... in the lowest part of the atmospheric boundary layer—the so-called surface layer—where the wind shear is strong owing to the nonslip condition at the ground. Theoretical results dating back to Tchen's early work in 1953 'on the spectrum of energy in turbulent shear flow' led Tchen to predict a shear production...

  16. Merged ozone profiles from four MIPAS processors

    Science.gov (United States)

    Laeng, Alexandra; von Clarmann, Thomas; Stiller, Gabriele; Dinelli, Bianca Maria; Dudhia, Anu; Raspollini, Piera; Glatthor, Norbert; Grabowski, Udo; Sofieva, Viktoria; Froidevaux, Lucien; Walker, Kaley A.; Zehner, Claus

    2017-04-01

    The Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) was an infrared (IR) limb emission spectrometer on the Envisat platform. Currently, there are four MIPAS ozone data products, including the operational Level-2 ozone product processed at ESA, with the scientific prototype processor being operated at IFAC Florence, and three independent research products developed by the Istituto di Fisica Applicata Nello Carrara (ISAC-CNR)/University of Bologna, Oxford University, and the Karlsruhe Institute of Technology-Institute of Meteorology and Climate Research/Instituto de Astrofísica de Andalucía (KIT-IMK/IAA). Here we present a dataset of ozone vertical profiles obtained by merging ozone retrievals from four independent Level-2 MIPAS processors. We also discuss the advantages and the shortcomings of this merged product. As the four processors retrieve ozone in different parts of the spectra (microwindows), the source measurements can be considered as nearly independent with respect to measurement noise. Hence, the information content of the merged product is greater and the precision is better than those of any parent (source) dataset. The merging is performed on a profile per profile basis. Parent ozone profiles are weighted based on the corresponding error covariance matrices; the error correlations between different profile levels are taken into account. The intercorrelations between the processors' errors are evaluated statistically and are used in the merging. The height range of the merged product is 20-55 km, and error covariance matrices are provided as diagnostics. Validation of the merged dataset is performed by comparison with ozone profiles from ACE-FTS (Atmospheric Chemistry Experiment-Fourier Transform Spectrometer) and MLS (Microwave Limb Sounder). Even though the merging is not supposed to remove the biases of the parent datasets, around the ozone volume mixing ratio peak the merged product is found to have a smaller (up to 0.1 ppmv

  17. Flexible Micropost Arrays for Shear Stress Measurement

    Science.gov (United States)

    Wohl, Christopher J.; Palmieri, Frank L.; Hopkins, John W.; Jackson, Allen M.; Connell, John W.; Lin, Yi; Cisotto, Alexxandra A.

    2015-01-01

    Increased fuel costs, heightened environmental protection requirements, and noise abatement continue to place drag reduction at the forefront of aerospace research priorities. Unfortunately, shortfalls still exist in the fundamental understanding of boundary-layer airflow over aerodynamic surfaces, especially regarding drag arising from skin friction. For example, there is insufficient availability of instrumentation to adequately characterize complex flows with strong pressure gradients, heat transfer, wall mass flux, three-dimensionality, separation, shock waves, and transient phenomena. One example is the acoustic liner efficacy on aircraft engine nacelle walls. Active measurement of shear stress in boundary layer airflow would enable a better understanding of how aircraft structure and flight dynamics affect skin friction. Current shear stress measurement techniques suffer from reliability, complexity, and airflow disruption, thereby compromising resultant shear stress data. The state-of-the-art for shear stress sensing uses indirect or direct measurement techniques. Indirect measurements (e.g., hot-wire, heat flux gages, oil interferometry, laser Doppler anemometry, small scale pressure drag surfaces, i.e., fences) require intricate knowledge of the studied flow, restrictive instrument arrangements, large surface areas, flow disruption, or seeding material; with smaller, higher bandwidth probes under development. Direct measurements involve strain displacement of a sensor element and require no prior knowledge of the flow. Unfortunately, conventional "floating" recessed components for direct measurements are mm to cm in size. Whispering gallery mode devices and Fiber Bragg Gratings are examples of recent additions to this type of sensor with much smaller (?m) sensor components. Direct detection techniques are often single point measurements and difficult to calibrate and implement in wind tunnel experiments. In addition, the wiring, packaging, and installation

  18. Glass panel under shear loading: use of glass envelopes in building stabilization

    OpenAIRE

    Mocibob, Danijel; Lebet, Jean-Paul

    2009-01-01

    The latest trends in contemporary architecture are fully transparent pavilions: a single storey building free of any steel or concrete frame, where glass panels are used as unique vertical structural elements to support the roof and as wind bracing to stabilize and stiffen the building. In this application, individual glass panel is supported on two sides (roof and foundation) and subjected to in-plane shear force (lateral wind), out-of-plane distributed load (perpendicular wind) and in-plane...

  19. Glass panel under shear loading: use of glass envelopes in building stabilization

    OpenAIRE

    Mocibob, Danijel

    2008-01-01

    The latest trends in contemporary architecture are fully transparent pavilions: a single storey building free of any steel or concrete frame, where glass panels are used as unique vertical structural elements to support the roof and as wind bracing to stabilize and stiffen the building. In this application, individual glass panel is supported on two sides (roof and foundation) and subjected to in-plane shear force (lateral wind), out-of-plane distributed load (perpendicular wind) and in-plane...

  20. Experiments on sheet metal shearing

    OpenAIRE

    Gustafsson, Emil

    2013-01-01

    Within the sheet metal industry, different shear cutting technologies are commonly used in several processing steps, e.g. in cut to length lines, slitting lines, end cropping etc. Shearing has speed and cost advantages over competing cutting methods like laser and plasma cutting, but involves large forces on the equipment and large strains in the sheet material.Numerical models to predict forces and sheared edge geometry for different sheet metal grades and different shear parameter set-ups a...

  1. Wind power

    International Nuclear Information System (INIS)

    Gipe, P.

    2007-01-01

    This book is a translation of the edition published in the USA under the title of ''wind power: renewable energy for home, farm and business''. In the wake of mass blackouts and energy crises, wind power remains a largely untapped resource of renewable energy. It is a booming worldwide industry whose technology, under the collective wing of aficionados like author Paul Gipe, is coming of age. Wind Power guides us through the emergent, sometimes daunting discourse on wind technology, giving frank explanations of how to use wind technology wisely and sound advice on how to avoid common mistakes. Since the mid-1970's, Paul Gipe has played a part in nearly every aspect of wind energy development from installing small turbines to promoting wind energy worldwide. As an American proponent of renewable energy, Gipe has earned the acclaim and respect of European energy specialists for years, but his arguments have often fallen on deaf ears at home. Today, the topic of wind power is cropping up everywhere from the beaches of Cape Cod to the Oregon-Washington border, and one wind turbine is capable of producing enough electricity per year to run 200 average American households. Now, Paul Gipe is back to shed light on this increasingly important energy source with a revised edition of Wind Power. Over the course of his career, Paul Gipe has been a proponent, participant, observer, and critic of the wind industry. His experience with wind has given rise to two previous books on the subject, Wind Energy Basics and Wind Power for Home and Business, which have sold over 50,000 copies. Wind Power for Home and Business has become a staple for both homeowners and professionals interested in the subject, and now, with energy prices soaring, interest in wind power is hitting an all-time high. With chapters on output and economics, Wind Power discloses how much you can expect from each method of wind technology, both in terms of energy and financial savings. The book updated models

  2. Shear Behavior of Concrete Beams Reinforced with GFRP Shear Reinforcement

    Directory of Open Access Journals (Sweden)

    Heecheul Kim

    2015-01-01

    Full Text Available This paper presents the shear capacities of concrete beams reinforced with glass fiber reinforced polymer (GFRP plates as shear reinforcement. To examine the shear performance, we manufactured and tested a total of eight specimens. Test variables included the GFRP strip-width-to-spacing ratio and type of opening array. The specimen with a GFRP plate with a 3×2 opening array showed the highest shear strength. From the test results, the shear strength increased as the strip-width-to-strip-spacing ratio increased. Also, we used the experimental results to evaluate whether the shear strength equations of ACI 318-14 and ACI 440.1R can be applied to the design of GFRP shear reinforcement. In the results, the ACI 440 equation underestimated the experimental results more than that of ACI 318.

  3. Repetitive model predictive approach to individual pitch control of wind turbines

    DEFF Research Database (Denmark)

    Adegas, Fabiano Daher; Stoustrup, Jakob; Odgaard, Peter Fogh

    2011-01-01

    Wind turbines are inherently exposed to nonuniform wind fields with of wind shear, tower shadow, and possible wake contributions. Asymmetrical aerodynamic rotor loads are a consequence of such periodic, repetitive wind disturbances experienced by the blades. A controller may estimate and use this....... A simulation comparison betweeen the proposed controller and an industry-standard PID controller shows better mitigation of drive-train, blade and tower loads.......Wind turbines are inherently exposed to nonuniform wind fields with of wind shear, tower shadow, and possible wake contributions. Asymmetrical aerodynamic rotor loads are a consequence of such periodic, repetitive wind disturbances experienced by the blades. A controller may estimate and use...... this peculiar disturbance pattern to better attenuate loads and regulate power by controlling the blade pitch angles individually. A novel model predictive (MPC) approach for individual pitch control of wind turbines is proposed in this paper. A repetitive wind disturbance model is incorporated into the MPC...

  4. Gusts and Shear in an Idealized LES-modeled Hurricane

    Science.gov (United States)

    Worsnop, R.; Lundquist, J. K.; Bryan, G. H.; Damiani, R.; Musial, W.

    2016-12-01

    Tropical cyclone winds can cause extreme loading and damage to coastal structures such as buildings and energy infrastructure. Offshore wind energy development is underway along the US East Coast where hurricanes pose a substantial risk. Understanding wind gusts, gust factor, shear, and veer in the hurricane boundary layer (HBL) can help manufacturers assess risk and design wind turbines to better withstand these extreme wind conditions. Because of the paucity of observational data at low-levels (200 m and below), we use the Cloud Model Version I (CM1) large-eddy simulation numerical model to simulate high spatial- (10 m) and temporal- (0.1 s) resolution data. This unique dataset is used to answer the following questions: do severe mean wind speeds and gusts that exceed current design limits occur?; how does the gust factor vary with distance from the eye?; and lastly, how does wind direction vary horizontally and with height? We find that mean winds and gusts near the eyewall can exceed current turbine design thresholds of 50 m s-1 and 70 m s-1, respectively. Gust factors are greatest at the eye-eyewall interface just inward of the peak gust location and can exceed the 1.4 value used to convert a 50 m s-1 reference wind speed to a 50-year 3-second gust. Strong veer (15-30 degrees) across a 120 m-layer suggests that veer should be assessed against standard design prescriptions. Lastly, wind directions can shift 10-25 degrees in durations shorter than 10 minutes, which can challenge structures designed to endure winds from a consistent direction for periods longer than 10 minutes, including wind turbines.

  5. Shear-thinning Fluid

    Science.gov (United States)

    2001-01-01

    Whipped cream and the filling for pumpkin pie are two familiar materials that exhibit the shear-thinning effect seen in a range of industrial applications. It is thick enough to stand on its own atop a piece of pie, yet flows readily when pushed through a tube. This demonstrates the shear-thinning effect that was studied with the Critical Viscosity of Xenon Experiment (CVX-2) on the STS-107 Research 1 mission in 2002. CVX observed the behavior of xenon, a heavy inert gas used in flash lamps and ion rocket engines, at its critical point. The principal investigator was Dr. Robert Berg of the National Institutes of Standards and Technology in Gaithersburg, MD.

  6. Forflytning: shear og friktion

    DEFF Research Database (Denmark)

    2005-01-01

    friktion). Formålet med filmprojektet er: At give personalet i Apopleksiafsnittet viden om shear og friktion, så det motiveres til forebyggelse. Mål At udarbejde et enkelt undervisningsmateriale til bed-side-brug Projektbeskrivelse (resume) Patienter med apopleksi er særligt udsatte for tryksår, fordi de...... ofte er immobile, har svært ved at opretholde en god siddestilling eller ligger tungt i sengen som følger efter apopleksien Hvis personalet bruger forkert lejrings-og forflytningsteknik, udsættes patienterne for shear og friktion. Målgruppen i projektet er de personer, der omgås patienterne, dvs...

  7. Shear Roll Mill Reactivation

    Science.gov (United States)

    2012-09-13

    pneumatically operated paste dumper and belt conveyor system , the loss in weight feeder system , the hydraulically operated shear roll mill, the pellet...out feed belt conveyor , and the pack out system comprised of the metal detector, scale, and pack out empty and full drum roller conveyors . Page | 4...process equipment sprinkler protection systems , and the 5 psig steam supply serving the building heating and make-up air systems . It also included

  8. Electrostatic Solitary Waves in the Solar Wind: Evidence for Instability at Solar Wind Current Sheets

    Science.gov (United States)

    Malaspina, David M.; Newman, David L.; Wilson, Lynn Bruce; Goetz, Keith; Kellogg, Paul J.; Kerstin, Kris

    2013-01-01

    A strong spatial association between bipolar electrostatic solitary waves (ESWs) and magnetic current sheets (CSs) in the solar wind is reported here for the first time. This association requires that the plasma instabilities (e.g., Buneman, electron two stream) which generate ESWs are preferentially localized to solar wind CSs. Distributions of CS properties (including shear angle, thickness, solar wind speed, and vector magnetic field change) are examined for differences between CSs associated with ESWs and randomly chosen CSs. Possible mechanisms for producing ESW-generating instabilities at solar wind CSs are considered, including magnetic reconnection.

  9. Comparison of different methods for evaluation of wind turbine power production based on wind measurements

    Directory of Open Access Journals (Sweden)

    Bezrukovs Valerijs

    2016-01-01

    Full Text Available Investigations of the wind shear up to the height of 200 (m on the Latvian coast of the Baltic Sea have been carried out using a Pentalum SpiDAR laser measuring complex. Based on wind speeds measurements for three levels – 30, 40 and 50 (m, assessment of the operational efficiency of the wind turbines for heights 100, 140 and 180 (m have been performed. For comparison, this analysis involves five different approaches: the Rayleigh frequency distribution, three different Weibull frequency distributions and method based on approximation of the cubic wind speed. Results are compared with measurements on the corresponding heights.

  10. Modcomp MAX IV System Processors reference guide

    Energy Technology Data Exchange (ETDEWEB)

    Cummings, J.

    1990-10-01

    A user almost always faces a big problem when having to learn to use a new computer system. The information necessary to use the system is often scattered throughout many different manuals. The user also faces the problem of extracting the information really needed from each manual. Very few computer vendors supply a single Users Guide or even a manual to help the new user locate the necessary manuals. Modcomp is no exception to this, Modcomp MAX IV requires that the user be familiar with the system file usage which adds to the problem. At General Atomics there is an ever increasing need for new users to learn how to use the Modcomp computers. This paper was written to provide a condensed Users Reference Guide'' for Modcomp computer users. This manual should be of value not only to new users but any users that are not Modcomp computer systems experts. This Users Reference Guide'' is intended to provided the basic information for the use of the various Modcomp System Processors necessary to, create, compile, link-edit, and catalog a program. Only the information necessary to provide the user with a basic understanding of the Systems Processors is included. This document provides enough information for the majority of programmers to use the Modcomp computers without having to refer to any other manuals. A lot of emphasis has been placed on the file description and usage for each of the System Processors. This allows the user to understand how Modcomp MAX IV does things rather than just learning the system commands.

  11. Effects of Yaw Error on Wind Turbine Running Characteristics Based on the Equivalent Wind Speed Model

    Directory of Open Access Journals (Sweden)

    Shuting Wan

    2015-06-01

    Full Text Available Natural wind is stochastic, being characterized by its speed and direction which change randomly and frequently. Because of the certain lag in control systems and the yaw body itself, wind turbines cannot be accurately aligned toward the wind direction when the wind speed and wind direction change frequently. Thus, wind turbines often suffer from a series of engineering issues during operation, including frequent yaw, vibration overruns and downtime. This paper aims to study the effects of yaw error on wind turbine running characteristics at different wind speeds and control stages by establishing a wind turbine model, yaw error model and the equivalent wind speed model that includes the wind shear and tower shadow effects. Formulas for the relevant effect coefficients Tc, Sc and Pc were derived. The simulation results indicate that the effects of the aerodynamic torque, rotor speed and power output due to yaw error at different running stages are different and that the effect rules for each coefficient are not identical when the yaw error varies. These results may provide theoretical support for optimizing the yaw control strategies for each stage to increase the running stability of wind turbines and the utilization rate of wind energy.

  12. Optical linear algebra processors - Architectures and algorithms

    Science.gov (United States)

    Casasent, David

    1986-01-01

    Attention is given to the component design and optical configuration features of a generic optical linear algebra processor (OLAP) architecture, as well as the large number of OLAP architectures, number representations, algorithms and applications encountered in current literature. Number-representation issues associated with bipolar and complex-valued data representations, high-accuracy (including floating point) performance, and the base or radix to be employed, are discussed, together with case studies on a space-integrating frequency-multiplexed architecture and a hybrid space-integrating and time-integrating multichannel architecture.

  13. Guidance for Industry: Food Producers, Processors, and ...

    Science.gov (United States)

    ... สํานักงานอาหารและยาได้ตีพิมพ์เอกสารไว้สองฉบับประกอบคําแนะนําเรื่องความปลอดภัย ของอาหารชื่อ "Food Producers, Processors, and Transporters: Food ...

  14. Lattice gauge theory using parallel processors

    International Nuclear Information System (INIS)

    Lee, T.D.; Chou, K.C.; Zichichi, A.

    1987-01-01

    The book's contents include: Lattice Gauge Theory Lectures: Introduction and Current Fermion Simulations; Monte Carlo Algorithms for Lattice Gauge Theory; Specialized Computers for Lattice Gauge Theory; Lattice Gauge Theory at Finite Temperature: A Monte Carlo Study; Computational Method - An Elementary Introduction to the Langevin Equation, Present Status of Numerical Quantum Chromodynamics; Random Lattice Field Theory; The GF11 Processor and Compiler; and The APE Computer and First Physics Results; Columbia Supercomputer Project: Parallel Supercomputer for Lattice QCD; Statistical and Systematic Errors in Numerical Simulations; Monte Carlo Simulation for LGT and Programming Techniques on the Columbia Supercomputer; Food for Thought: Five Lectures on Lattice Gauge Theory

  15. The design of a graphics processor

    International Nuclear Information System (INIS)

    Holmes, M.; Thorne, A.R.

    1975-12-01

    The design of a graphics processor is described which takes into account known and anticipated user requirements, the availability of cheap minicomputers, the state of integrated circuit technology, and the overall need to minimise cost for a given performance. The main user needs are the ability to display large high resolution pictures, and to dynamically change the user's view in real time by means of fast coordinate processing hardware. The transformations that can be applied to 2D or 3D coordinates either singly or in combination are: translation, scaling, mirror imaging, rotation, and the ability to map the transformation origin on to any point on the screen. (author)

  16. Integral Fast Reactor fuel pin processor

    International Nuclear Information System (INIS)

    Levinskas, D.

    1993-01-01

    This report discusses the pin processor which receives metal alloy pins cast from recycled Integral Fast Reactor (IFR) fuel and prepares them for assembly into new IFR fuel elements. Either full length as-cast or precut pins are fed to the machine from a magazine, cut if necessary, and measured for length, weight, diameter and deviation from straightness. Accepted pins are loaded into cladding jackets located in a magazine, while rejects and cutting scraps are separated into trays. The magazines, trays, and the individual modules that perform the different machine functions are assembled and removed using remote manipulators and master-slaves

  17. Wind Effects on Retention Time in Highway Ponds

    DEFF Research Database (Denmark)

    Bentzen, Thomas Ruby; Larsen, Torben; Rasmussen, Michael R.

    2007-01-01

    is to evaluate the quality of long term simulations based on historical rain series of the pollutant discharges from roads and highways. The idea of this paper is to evaluate the effects of wind on the retention time and compare the retention time for the situation of a spatial uniform wind shear stress...

  18. Wind Effects on Retention Time in Highway Ponds

    DEFF Research Database (Denmark)

    Bentzen, Thomas Ruby; Larsen, Torben; Rasmussen, Michael R.

    2008-01-01

    is to evaluate the quality of long term simulations based on historical rain series of the pollutant discharges from roads and highways. The idea of this paper is to evaluate the effects of wind on the retention time and compare the retention time for the situation of a spatial uniform wind shear stress...

  19. A Real Time Digital Coincidence Processor for positron emission tomography

    International Nuclear Information System (INIS)

    Dent, H.M.; Jones, W.F.; Casey, M.E.

    1986-01-01

    A Real Time Digital Coincidence Processor has been developed for use in the Positron Emission Tomograph (PET) ECAT scanners manufactured by Computer Technology and Imaging, Inc. (CTI). The primary functions of the Coincidence Processor include: receive from the BGO detector modules serial data, which includes timing information and detector identification; process the received data to form coincidence detector pairs; and present the coincidence pair data to a Real Time Sorter. The primary design emphasis was placed on the Coincidence Processor being able to process the detector data into coincidence pairs at real time rates. This paper briefly describes the Coincidence Processor and some of the considerations that went into its design

  20. Implementation of quantum maps by programmable quantum processors

    International Nuclear Information System (INIS)

    Hillery, Mark; Ziman, Mario; Buzek, Vladimir

    2002-01-01

    A quantum processor is a device with a data register and a program register. The input to the program register determines the operation, which is a completely positive linear map, that will be performed on the state in the data register. We develop a mathematical description for these devices, and apply it to several different examples of processors. The problem of finding a processor that will be able to implement a given set of mappings is also examined, and it is shown that, while it is possible to design a finite processor to realize the phase-damping channel, it is not possible to do so for the amplitude-damping channel

  1. Special processor for in-core control systems

    International Nuclear Information System (INIS)

    Golovanov, M.N.; Duma, V.R.; Levin, G.L.; Mel'nikov, A.V.; Polikanin, A.V.; Filatov, V.P.

    1978-01-01

    The BUTs-20 special processor is discussed, designed to control the units of the in-core control equipment which are incorporated into the VECTOR communication channel, and to provide preliminary data processing prior to computer calculations. A set of instructions and flowsheet of the processor, organization of its communication with memories and other units of the system are given. The processor components: a control unit and an arithmetic logical unit are discussed. It is noted that the special processor permits more effective utilization of the computer time

  2. Effects of opening in shear walls of 30- storey building

    Directory of Open Access Journals (Sweden)

    Ruchi Sharma

    2015-03-01

    Full Text Available Tall towers and multi-storey buildings have fascinated mankind from the beginning of civilization, their construction being initially for defense and subsequently for ecclesiastical purposes. These tall buildings because of its height, is affected by lateral forces due to wind or earthquake actions tends to snap the building in shear and push it over in bending. In general, the rigidity (i.e. Resistance to lateral deflection and stability (i.e. Resistance to overturning moments requirement become more important. Shear walls (Structural walls contribute significant lateral stiffness, strength, and overall ductility and energy dissipation capacity. In many structural walls a regular pattern of openings has to be provided due to various functional requirements such as to accommodate doors, windows and service ducts. Such type of openings reduces the stiffness of the shear wall to some extent depending on the shape and size of the opening. In the present parametric study, efforts are made to investigate and critically assess the effects of various size of openings in shear walls on the responses and behaviors of multi-storey buildings. The 30 storey Prototype buildings with different types of openings in shear wall with and without incorporating the volume of shear wall reduced in the boundary elements are analyzed using software E-TABS using Response spectrum method (1893(Part-1-2002 and Time history method.

  3. Reconfigurable Very Long Instruction Word (VLIW) Processor

    Science.gov (United States)

    Velev, Miroslav N.

    2015-01-01

    Future NASA missions will depend on radiation-hardened, power-efficient processing systems-on-a-chip (SOCs) that consist of a range of processor cores custom tailored for space applications. Aries Design Automation, LLC, has developed a processing SOC that is optimized for software-defined radio (SDR) uses. The innovation implements the Institute of Electrical and Electronics Engineers (IEEE) RazorII voltage management technique, a microarchitectural mechanism that allows processor cores to self-monitor, self-analyze, and selfheal after timing errors, regardless of their cause (e.g., radiation; chip aging; variations in the voltage, frequency, temperature, or manufacturing process). This highly automated SOC can also execute legacy PowerPC 750 binary code instruction set architecture (ISA), which is used in the flight-control computers of many previous NASA space missions. In developing this innovation, Aries Design Automation has made significant contributions to the fields of formal verification of complex pipelined microprocessors and Boolean satisfiability (SAT) and has developed highly efficient electronic design automation tools that hold promise for future developments.

  4. Mitigation of Power System Oscillation Caused by Wind Power Fluctuation

    DEFF Research Database (Denmark)

    Su, Chi; Hu, Weihao; Chen, Zhe

    2013-01-01

    Wind power is increasingly integrated in modern power grids, which brings new challenges to the power system operation. Wind power is fluctuating because of the uncertain nature of wind, whereas wind shear and tower shadow effects also cause periodic fluctuations. These may lead to serious forced...... oscillation when the frequencies of the periodic fluctuations are close to the natural oscillation frequencies of the connected power system. By using modal analysis and time-domain simulations, this study studies the forced oscillation caused by the wind shear and tower shadow effects. Three forced...... oscillation mitigation controllers are proposed and compared. A model of direct-drive-full-convertor-based wind farm connected to the IEEE 10-machine 39-bus system is adopted as the test system. The calculations and simulations are conducted in DIgSILENT PowerFactory 14.0. Results are presented to show...

  5. Rotor equivalent wind speed for power curve measurement - comparative exercise for IEA Wind Annex 32

    Science.gov (United States)

    Wagner, R.; Cañadillas, B.; Clifton, A.; Feeney, S.; Nygaard, N.; Poodt, M.; St. Martin, C.; Tüxen, E.; Wagenaar, J. W.

    2014-06-01

    A comparative exercise has been organised within the International Energy Agency (IEA) Wind Annex 32 in order to test the Rotor Equivalent Wind Speed (REWS) method under various conditions of wind shear and measurement techniques. Eight organisations from five countries participated in the exercise. Each member of the group has derived both the power curve based on the wind speed at hub height and the power curve based on the REWS. This yielded results for different wind turbines, located in diverse types of terrain and where the wind speed profile was measured with different instruments (mast or various lidars). The participants carried out two preliminary steps in order to reach consensus on how to implement the REWS method. First, they all derived the REWS for one 10 minute wind speed profile. Secondly, they all derived the power curves for one dataset. The main point requiring consensus was the definition of the segment area used as weighting for the wind speeds measured at the various heights in the calculation of the REWS. This comparative exercise showed that the REWS method results in a significant difference compared to the standard method using the wind speed at hub height in conditions with large shear and low turbulence intensity.

  6. Improving Maryland’s Offshore Wind Energy Resource Estimate Using Doppler Wind Lidar Technology to Assess Microtmeteorology Controls

    Directory of Open Access Journals (Sweden)

    Pé Alexandra St.

    2016-01-01

    Compared to lidar measurements, power law extrapolation estimates and operational National Weather Service models underestimated hub-height wind speeds in the WEA. In addition, lidar observations suggest the frequent development of a low-level wind maximum (LLWM, with high turbinelayer wind shear and low turbulence intensity within a turbine’s rotor layer (40m-160m. Results elucidate the advantages of using Doppler wind lidar technology to improve offshore wind resource estimates and its ability to monitor under-sampled offshore meteorological controls impact on a potential turbine’s ability to produce power.

  7. Designing shear-thinning

    Science.gov (United States)

    Nelson, Arif Z.; Ewoldt, Randy H.

    2017-11-01

    Design in fluid mechanics often focuses on optimizing geometry (airfoils, surface textures, microfluid channels), but here we focus on designing fluids themselves. The dramatically shear-thinning ``yield-stress fluid'' is currently the most utilized non-Newtonian fluid phenomenon. These rheologically complex materials, which undergo a reversible transition from solid-like to liquid-like fluid flow, are utilized in pedestrian products such as paint and toothpaste, but also in emerging applications like direct-write 3D printing. We present a paradigm for yield-stress fluid design that considers constitutive model representation, material property databases, available predictive scaling laws, and the many ways to achieve a yield stress fluid, flipping the typical structure-to-rheology analysis to become the inverse: rheology-to-structure with multiple possible materials as solutions. We describe case studies of 3D printing inks and other flow scenarios where designed shear-thinning enables performance remarkably beyond that of Newtonian fluids. This work was supported by Wm. Wrigley Jr. Company and the National Science Foundation under Grant No. CMMI-1463203.

  8. Lipsi: Probably the Smallest Processor in the World

    DEFF Research Database (Denmark)

    Schoeberl, Martin

    2018-01-01

    , in dedicated hardware, usually as a state machine or a combination of communicating state machines, these functionalities may also be implemented by a small processor. In this paper, we present Lipsi, a very tiny processor to make it possible to implement classic finite state machine logic in software...

  9. Assessment of Processors and Marketers of Sheabutter ( Vitellaria ...

    African Journals Online (AJOL)

    The study examined the processing and marketing of Shea butter in Zuru Local Government Area of Kebbi State, Nigeria to identify the socioeconomic characteristics of Shea butter processors and marketers, the average cost and return of Shea butter processors and marketers and the determinant variables of profitability ...

  10. ACP/R3000 processors in data acquisition systems

    International Nuclear Information System (INIS)

    Deppe, J.; Areti, H.; Atac, R.

    1989-02-01

    We describe ACP/R3000 processor based data acquisition systems for high energy physics. This VME bus compatible processor board, with a computational power equivalent to 15 VAX 11/780s or better, contains 8 Mb of memory for event buffering and has a high speed secondary bus that allows data gathering from front end electronics. 2 refs., 3 figs

  11. Improving the performance of probabilistic programmable quantum processors

    International Nuclear Information System (INIS)

    Hillery, Mark; Ziman, Mario; Buzek, Vladimir

    2004-01-01

    We present a systematic analysis of how one can improve performance of probabilistic programmable quantum processors. We generalize a simple Vidal-Masanes-Cirac processor that realizes U(1) rotations on a qubit with the phase of the rotation encoded in a state of the program register. We show how the probability of success of the probabilistic processor can be enhanced by using the processor in loops. In addition we show that the same strategy can be utilized for a probabilistic implementation of nonunitary transformations on qubits. In addition, we show that an arbitrary SU(2) transformation of qubits can be encoded in program state of a universal programmable probabilistic quantum processor. The probability of success of this processor can be enhanced by a systematic correction of errors via conditional loops. Finally, we show that all our results can be generalized also for qudits. In particular, we show how to implement SU(N) rotations of qudits via programmable quantum processor and how the performance of the processor can be enhanced when it is used in loops

  12. Message Passing on a Time-predictable Multicore Processor

    DEFF Research Database (Denmark)

    Sørensen, Rasmus Bo; Puffitsch, Wolfgang; Schoeberl, Martin

    2015-01-01

    Real-time systems need time-predictable computing platforms. For a multicore processor to be time-predictable, communication between processor cores needs to be time-predictable as well. This paper presents a time-predictable message-passing library for such a platform. We show how to build up...

  13. Excavator-based processor operator productivity and cost analysis ...

    African Journals Online (AJOL)

    Operator impact on productivity and cost using similar processor machines was addressed in this case study. The study had two objectives: (1) determine the extent of operator productivity variation between six processor operators in a harvesting operation; and (2) determine potential cost implications associated with ...

  14. Biomass is beginning to threaten the wood-processors

    International Nuclear Information System (INIS)

    Beer, G.; Sobinkovic, B.

    2004-01-01

    In this issue an exploitation of biomass in Slovak Republic is analysed. Some new projects of constructing of the stoke-holds for biomass processing are published. The grants for biomass are ascending the prices of wood raw material, which is thus becoming less accessible for the wood-processors. An excessive wood export threatens the domestic processors

  15. Digital image processing software system using an array processor

    International Nuclear Information System (INIS)

    Sherwood, R.J.; Portnoff, M.R.; Journeay, C.H.; Twogood, R.E.

    1981-01-01

    A versatile array processor-based system for general-purpose image processing was developed. At the heart of this system is an extensive, flexible software package that incorporates the array processor for effective interactive image processing. The software system is described in detail, and its application to a diverse set of applications at LLNL is briefly discussed. 4 figures, 1 table

  16. Bank switched memory interface for an image processor

    International Nuclear Information System (INIS)

    Barron, M.; Downward, J.

    1980-09-01

    A commercially available image processor is interfaced to a PDP-11/45 through an 8K window of memory addresses. When the image processor was not in use it was desired to be able to use the 8K address space as real memory. The standard method of accomplishing this would have been to use UNIBUS switches to switch in either the physical 8K bank of memory or the image processor memory. This method has the disadvantage of being rather expensive. As a simple alternative, a device was built to selectively enable or disable either an 8K bank of memory or the image processor memory. To enable the image processor under program control, GEN is contracted in size, the memory is disabled, a device partition for the image processor is created above GEN, and the image processor memory is enabled. The process is reversed to restore memory to GEN. The hardware to enable/disable the image and computer memories is controlled using spare bits from a DR-11K output register. The image processor and physical memory can be switched in or out on line with no adverse affects on the system's operation

  17. Temporal Partitioning and Multi-Processor Scheduling for Reconfigurable Architectures

    DEFF Research Database (Denmark)

    Popp, Andreas; Le Moullec, Yannick; Koch, Peter

    This poster presentation outlines a proposed framework for handling mapping of signal processing applications to heterogeneous reconfigurable architectures. The methodology consists of an extension to traditional multi-processor scheduling by creating a separate HW track for generation of groups...... of tasks that are handled similarly to SW processes in a traditional multi-processor scheduling context....

  18. Evaluation of the Intel Sandy Bridge-EP server processor

    CERN Document Server

    Jarp, S; Leduc, J; Nowak, A; CERN. Geneva. IT Department

    2012-01-01

    In this paper we report on a set of benchmark results recently obtained by CERN openlab when comparing an 8-core “Sandy Bridge-EP” processor with Intel’s previous microarchitecture, the “Westmere-EP”. The Intel marketing names for these processors are “Xeon E5-2600 processor series” and “Xeon 5600 processor series”, respectively. Both processors are produced in a 32nm process, and both platforms are dual-socket servers. Multiple benchmarks were used to get a good understanding of the performance of the new processor. We used both industry-standard benchmarks, such as SPEC2006, and specific High Energy Physics benchmarks, representing both simulation of physics detectors and data analysis of physics events. Before summarizing the results we must stress the fact that benchmarking of modern processors is a very complex affair. One has to control (at least) the following features: processor frequency, overclocking via Turbo mode, the number of physical cores in use, the use of logical cores ...

  19. Recursive Matrix Inverse Update On An Optical Processor

    Science.gov (United States)

    Casasent, David P.; Baranoski, Edward J.

    1988-02-01

    A high accuracy optical linear algebraic processor (OLAP) using the digital multiplication by analog convolution (DMAC) algorithm is described for use in an efficient matrix inverse update algorithm with speed and accuracy advantages. The solution of the parameters in the algorithm are addressed and the advantages of optical over digital linear algebraic processors are advanced.

  20. Digital Signal Processor System for AC Power Drivers

    Directory of Open Access Journals (Sweden)

    Ovidiu Neamtu

    2009-10-01

    Full Text Available DSP (Digital Signal Processor is the bestsolution for motor control systems to make possible thedevelopment of advanced motor drive systems. The motorcontrol processor calculates the required motor windingvoltage magnitude and frequency to operate the motor atthe desired speed. A PWM (Pulse Width Modulationcircuit controls the on and off duty cycle of the powerinverter switches to vary the magnitude of the motorvoltages.

  1. Magnetorheological dampers in shear mode

    International Nuclear Information System (INIS)

    Wereley, N M; Cho, J U; Choi, Y T; Choi, S B

    2008-01-01

    In this study, three types of shear mode damper using magnetorheological (MR) fluids are theoretically analyzed: linear, rotary drum, and rotary disk dampers. The damping performance of these shear mode MR dampers is characterized in terms of the damping coefficient, which is the ratio of the equivalent viscous damping at field-on status to the damping at field-off status. For these three types of shear mode MR damper, the damping coefficient or dynamic range is derived using three different constitutive models: the Bingham–plastic, biviscous, and Herschel–Bulkley models. The impact of constitutive behavior on shear mode MR dampers is theoretically presented and compared

  2. Automated Sequence Processor: Something Old, Something New

    Science.gov (United States)

    Streiffert, Barbara; Schrock, Mitchell; Fisher, Forest; Himes, Terry

    2012-01-01

    High productivity required for operations teams to meet schedules Risk must be minimized. Scripting used to automate processes. Scripts perform essential operations functions. Automated Sequence Processor (ASP) was a grass-roots task built to automate the command uplink process System engineering task for ASP revitalization organized. ASP is a set of approximately 200 scripts written in Perl, C Shell, AWK and other scripting languages.. ASP processes/checks/packages non-interactive commands automatically.. Non-interactive commands are guaranteed to be safe and have been checked by hardware or software simulators.. ASP checks that commands are non-interactive.. ASP processes the commands through a command. simulator and then packages them if there are no errors.. ASP must be active 24 hours/day, 7 days/week..

  3. Efficient quantum walk on a quantum processor.

    Science.gov (United States)

    Qiang, Xiaogang; Loke, Thomas; Montanaro, Ashley; Aungskunsiri, Kanin; Zhou, Xiaoqi; O'Brien, Jeremy L; Wang, Jingbo B; Matthews, Jonathan C F

    2016-05-05

    The random walk formalism is used across a wide range of applications, from modelling share prices to predicting population genetics. Likewise, quantum walks have shown much potential as a framework for developing new quantum algorithms. Here we present explicit efficient quantum circuits for implementing continuous-time quantum walks on the circulant class of graphs. These circuits allow us to sample from the output probability distributions of quantum walks on circulant graphs efficiently. We also show that solving the same sampling problem for arbitrary circulant quantum circuits is intractable for a classical computer, assuming conjectures from computational complexity theory. This is a new link between continuous-time quantum walks and computational complexity theory and it indicates a family of tasks that could ultimately demonstrate quantum supremacy over classical computers. As a proof of principle, we experimentally implement the proposed quantum circuit on an example circulant graph using a two-qubit photonics quantum processor.

  4. Efficient quantum walk on a quantum processor

    Science.gov (United States)

    Qiang, Xiaogang; Loke, Thomas; Montanaro, Ashley; Aungskunsiri, Kanin; Zhou, Xiaoqi; O'Brien, Jeremy L.; Wang, Jingbo B.; Matthews, Jonathan C. F.

    2016-01-01

    The random walk formalism is used across a wide range of applications, from modelling share prices to predicting population genetics. Likewise, quantum walks have shown much potential as a framework for developing new quantum algorithms. Here we present explicit efficient quantum circuits for implementing continuous-time quantum walks on the circulant class of graphs. These circuits allow us to sample from the output probability distributions of quantum walks on circulant graphs efficiently. We also show that solving the same sampling problem for arbitrary circulant quantum circuits is intractable for a classical computer, assuming conjectures from computational complexity theory. This is a new link between continuous-time quantum walks and computational complexity theory and it indicates a family of tasks that could ultimately demonstrate quantum supremacy over classical computers. As a proof of principle, we experimentally implement the proposed quantum circuit on an example circulant graph using a two-qubit photonics quantum processor. PMID:27146471

  5. Aspects of computation on asynchronous parallel processors

    International Nuclear Information System (INIS)

    Wright, M.

    1989-01-01

    The increasing availability of asynchronous parallel processors has provided opportunities for original and useful work in scientific computing. However, the field of parallel computing is still in a highly volatile state, and researchers display a wide range of opinion about many fundamental questions such as models of parallelism, approaches for detecting and analyzing parallelism of algorithms, and tools that allow software developers and users to make effective use of diverse forms of complex hardware. This volume collects the work of researchers specializing in different aspects of parallel computing, who met to discuss the framework and the mechanics of numerical computing. The far-reaching impact of high-performance asynchronous systems is reflected in the wide variety of topics, which include scientific applications (e.g. linear algebra, lattice gauge simulation, ordinary and partial differential equations), models of parallelism, parallel language features, task scheduling, automatic parallelization techniques, tools for algorithm development in parallel environments, and system design issues

  6. Face feature processor on mobile service robot

    Science.gov (United States)

    Ahn, Ho Seok; Park, Myoung Soo; Na, Jin Hee; Choi, Jin Young

    2005-12-01

    In recent years, many mobile service robots have been developed. These robots are different from industrial robots. Service robots were confronted to unexpected changes in the human environment. So many capabilities were needed to service mobile robot, for example, the capability to recognize people's face and voice, the capability to understand people's conversation, and the capability to express the robot's thinking etc. This research considered face detection, face tracking and face recognition from continuous camera image. For face detection module, it used CBCH algorithm using openCV library from Intel Corporation. For face tracking module, it used the fuzzy controller to control the pan-tilt camera movement smoothly with face detection result. A PCA-FX, which adds class information to PCA, was used for face recognition module. These three procedures were called face feature processor, which were implemented on mobile service robot OMR to verify.

  7. Processor-in-memory-and-storage architecture

    Science.gov (United States)

    DeBenedictis, Erik

    2018-01-02

    A method and apparatus for performing reliable general-purpose computing. Each sub-core of a plurality of sub-cores of a processor core processes a same instruction at a same time. A code analyzer receives a plurality of residues that represents a code word corresponding to the same instruction and an indication of whether the code word is a memory address code or a data code from the plurality of sub-cores. The code analyzer determines whether the plurality of residues are consistent or inconsistent. The code analyzer and the plurality of sub-cores perform a set of operations based on whether the code word is a memory address code or a data code and a determination of whether the plurality of residues are consistent or inconsistent.

  8. Using machine learning to predict wind turbine power output

    International Nuclear Information System (INIS)

    Clifton, A; Kilcher, L; Lundquist, J K; Fleming, P

    2013-01-01

    Wind turbine power output is known to be a strong function of wind speed, but is also affected by turbulence and shear. In this work, new aerostructural simulations of a generic 1.5 MW turbine are used to rank atmospheric influences on power output. Most significant is the hub height wind speed, followed by hub height turbulence intensity and then wind speed shear across the rotor disk. These simulation data are used to train regression trees that predict the turbine response for any combination of wind speed, turbulence intensity, and wind shear that might be expected at a turbine site. For a randomly selected atmospheric condition, the accuracy of the regression tree power predictions is three times higher than that from the traditional power curve methodology. The regression tree method can also be applied to turbine test data and used to predict turbine performance at a new site. No new data are required in comparison to the data that are usually collected for a wind resource assessment. Implementing the method requires turbine manufacturers to create a turbine regression tree model from test site data. Such an approach could significantly reduce bias in power predictions that arise because of the different turbulence and shear at the new site, compared to the test site. (letter)

  9. Multiple Embedded Processors for Fault-Tolerant Computing

    Science.gov (United States)

    Bolotin, Gary; Watson, Robert; Katanyoutanant, Sunant; Burke, Gary; Wang, Mandy

    2005-01-01

    A fault-tolerant computer architecture has been conceived in an effort to reduce vulnerability to single-event upsets (spurious bit flips caused by impingement of energetic ionizing particles or photons). As in some prior fault-tolerant architectures, the redundancy needed for fault tolerance is obtained by use of multiple processors in one computer. Unlike prior architectures, the multiple processors are embedded in a single field-programmable gate array (FPGA). What makes this new approach practical is the recent commercial availability of FPGAs that are capable of having multiple embedded processors. A working prototype (see figure) consists of two embedded IBM PowerPC 405 processor cores and a comparator built on a Xilinx Virtex-II Pro FPGA. This relatively simple instantiation of the architecture implements an error-detection scheme. A planned future version, incorporating four processors and two comparators, would correct some errors in addition to detecting them.

  10. Acoustooptic linear algebra processors - Architectures, algorithms, and applications

    Science.gov (United States)

    Casasent, D.

    1984-01-01

    Architectures, algorithms, and applications for systolic processors are described with attention to the realization of parallel algorithms on various optical systolic array processors. Systolic processors for matrices with special structure and matrices of general structure, and the realization of matrix-vector, matrix-matrix, and triple-matrix products and such architectures are described. Parallel algorithms for direct and indirect solutions to systems of linear algebraic equations and their implementation on optical systolic processors are detailed with attention to the pipelining and flow of data and operations. Parallel algorithms and their optical realization for LU and QR matrix decomposition are specifically detailed. These represent the fundamental operations necessary in the implementation of least squares, eigenvalue, and SVD solutions. Specific applications (e.g., the solution of partial differential equations, adaptive noise cancellation, and optimal control) are described to typify the use of matrix processors in modern advanced signal processing.

  11. Simulation of a processor switching circuit with APLSV

    International Nuclear Information System (INIS)

    Dilcher, H.

    1979-01-01

    The report describes the simulation of a processor switching circuit with APL. Furthermore an APL function is represented to simulate a processor in an assembly like language. Both together serve as a tool for studying processor properties. By means of the programming function it is also possible to program other simulated processors. The processor is to be used in the processing of data in real time analysis that occur in high energy physics experiments. The data are already offered to the computer in digitalized form. A typical data rate is at 10 KB/ sec. The data are structured in blocks. The particular blocks are 1 KB wide and are independent from each other. Aprocessor has to decide, whether the block data belong to an event that is part of the backround noise and can therefore be forgotten, or whether the data should be saved for a later evaluation. (orig./WB) [de

  12. Experimental testing of the noise-canceling processor.

    Science.gov (United States)

    Collins, Michael D; Baer, Ralph N; Simpson, Harry J

    2011-09-01

    Signal-processing techniques for localizing an acoustic source buried in noise are tested in a tank experiment. Noise is generated using a discrete source, a bubble generator, and a sprinkler. The experiment has essential elements of a realistic scenario in matched-field processing, including complex source and noise time series in a waveguide with water, sediment, and multipath propagation. The noise-canceling processor is found to outperform the Bartlett processor and provide the correct source range for signal-to-noise ratios below -10 dB. The multivalued Bartlett processor is found to outperform the Bartlett processor but not the noise-canceling processor. © 2011 Acoustical Society of America

  13. APRON: A Cellular Processor Array Simulation and Hardware Design Tool

    Directory of Open Access Journals (Sweden)

    David R. W. Barr

    2009-01-01

    Full Text Available We present a software environment for the efficient simulation of cellular processor arrays (CPAs. This software (APRON is used to explore algorithms that are designed for massively parallel fine-grained processor arrays, topographic multilayer neural networks, vision chips with SIMD processor arrays, and related architectures. The software uses a highly optimised core combined with a flexible compiler to provide the user with tools for the design of new processor array hardware architectures and the emulation of existing devices. We present performance benchmarks for the software processor array implemented on standard commodity microprocessors. APRON can be configured to use additional processing hardware if necessary and can be used as a complete graphical user interface and development environment for new or existing CPA systems, allowing more users to develop algorithms for CPA systems.

  14. Integration of wind generation forecasts. Volume 2

    International Nuclear Information System (INIS)

    Ahlstrom, M.; Zavadil, B.; Jones, L.

    2005-01-01

    WindLogics is a company that specializes in atmospheric modelling, visualization and fine-scale forecasting systems for the wind power industry. A background of the organization was presented. The complexities of wind modelling were discussed. Issues concerning location and terrain, shear, diurnal and interannual variability were reviewed. It was suggested that wind power producers should aim to be mainstream, and that variability should be considered as intrinsic to fuel supply. Various utility operating impacts were outlined. Details of an Xcel NSP wind integration study were presented, as well as a studies conducted in New York state and Colorado. It was concluded that regulations and load following impacts with wind energy integration are modest. Overall impacts are dominated by costs incurred to accommodate wind generation variability and uncertainty in the day-ahead time frame. Cost impacts can be reduced with adjustments to operating strategies, improvements in wind forecasting and access to real-time markets. Details of WindLogic's wind energy forecast system were presented, as well as examples of day ahead and hour ahead forecasts and wind speed and power forecasts. Screenshots of control room integration, EMS integration and simulations were presented. Details of a utility-scale wind energy forecasting system funded by Xcel Renewable Development Fund (RDF) were also presented. The goal of the system was to optimize the way that wind forecast information is integrated into the control room environment. Project components were outlined. It was concluded that accurate day-ahead forecasting can lead to significant asset optimization. It was recommended that wind plants share data, and aim to resolve issues concerning grid codes and instrumentation. refs., tabs., figs

  15. Hydrodynamic shockwave tenderization effects using a cylinder processor on early deboned broiler breasts.

    Science.gov (United States)

    Claus, J R; Schilling, J K; Marriott, N G; Duncan, S E; Solomon, M B; Wang, H

    2001-07-01

    In separate experiments, chicken broiler breasts were deboned (45 min postmortem, 52 min, respectively) and either exposed to high pressure hydrodynamic shockwaves (HSW) 25 min after deboning (77 min postmortem) or after 24 h of storage (4°C) respectively, and compared to companion control breasts. HSW were produced in a cylindrical HSW processor with 40-g explosive. Warner-Bratzler shear (WBS) values of the HSW breasts treated at 77 min postmortem were not different than the controls. HSW treatment decreased (PL*a*b*) were not affected by the HSW. HSW treatment at 25 min after deboning (77 min postmortem) may require a higher pressure front or delayed treatment after postmortem aging to improve tenderness.

  16. Shear strength of non-shear reinforced concrete elements

    DEFF Research Database (Denmark)

    Hoang, Cao linh

    1997-01-01

    The report deals with the shear strength of statically indeterminate reinforced concrete beams without shear reinforcement. Solutions for a number of beams with different load and support conditions have been derived by means of the crack sliding model developed by Jin- Ping Zhang.This model is b...

  17. Wind energy availability above gaps in a forest

    DEFF Research Database (Denmark)

    Sogachev, Andrey; Mann, Jakob; Dellwik, Ebba

    2009-01-01

    installation strategies. The canopy-planetary boundary-layer model SCADIS is used to investigate the effect of forest gap size (within the diameter range of 3 - 75 tree heights, h) on wind energy related variables. A wind turbine was assumed with following features: the hub height and rotor diameter of 3.5h......There is a lack of data on availability of wind energy above a forest disturbed by clear-cuts, where a wind energy developer may find an opportunity to install a wind farm. Computational fluid dynamics (CFD) models can provide spatial patterns of wind and turbulence, and help to develop optimal...... and 3h, respectively; this provides the clearance between the rotor and ground of 2h which is similar to the value obtained by the rule of thumb. Spatial variations of wind energy production, the average wind speed shear and cumulative TKE inside the layer of 2h - 5h above the ground around the gaps...

  18. A Fully Automatic Burnt Area Mapping Processor Based on AVHRR Imagery—A TIMELINE Thematic Processor

    Directory of Open Access Journals (Sweden)

    Simon Plank

    2018-02-01

    Full Text Available The German Aerospace Center’s (DLR TIMELINE project (“Time Series Processing of Medium Resolution Earth Observation Data Assessing Long-Term Dynamics in our Natural Environment” aims to develop an operational processing and data management environment to process 30 years of National Oceanic and Atmospheric Administration (NOAA—Advanced Very High-Resolution Radiometer (AVHRR raw data into Level (L 1b, L2, and L3 products. This article presents the current status of the fully automated L3 burnt area mapping processor, which is based on multi-temporal datasets. The advantages of the proposed approach are (I the combined use of different indices to improve the classification result, (II the provision of a fully automated processor, (III the generation and usage of an up-to-date cloud-free pre-fire dataset, (IV classification with adaptive thresholding, and (V the assignment of five different probability levels to the burnt areas detected. The results of the AVHRR data-based burn scar mapping processor were validated with the Moderate Resolution Imaging Spectroradiometer (MODIS burnt area product MCD64 at four different European study sites. In addition, the accuracy of the AVHRR-based classification and that of the MCD64 itself were assessed by means of Landsat imagery.

  19. Launching applications on compute and service processors running under different operating systems in scalable network of processor boards with routers

    Science.gov (United States)

    Tomkins, James L [Albuquerque, NM; Camp, William J [Albuquerque, NM

    2009-03-17

    A multiple processor computing apparatus includes a physical interconnect structure that is flexibly configurable to support selective segregation of classified and unclassified users. The physical interconnect structure also permits easy physical scalability of the computing apparatus. The computing apparatus can include an emulator which permits applications from the same job to be launched on processors that use different operating systems.

  20. Wind energy

    CERN Document Server

    Woll, Kris

    2016-01-01

    Across the country, huge open spaces are covered in gently turning wind turbines. In Wind Energy, explore how these machines generate electricity, learn about the history of wind power, and discover the latest advances in the field. Easy-to-read text, vivid images, and helpful back matter give readers a clear look at this subject. Features include a table of contents, infographics, a glossary, additional resources, and an index. Aligned to Common Core Standards and correlated to state standards. Core Library is an imprint of Abdo Publishing, a division of ABDO.

  1. Agglomerate formation and growth mechanisms during melt agglomeration in a rotary processor.

    Science.gov (United States)

    Vilhelmsen, Thomas; Schaefer, Torben

    2005-11-04

    The purpose of this study was to investigate the effect of the binder particle size and the binder addition method on the mechanisms of agglomerate formation and growth during melt agglomeration in a laboratory scale rotary processor. Lactose monohydrate was agglomerated with molten polyethylene glycol (PEG) 3000 by adding the PEG either as solid particles from the size fraction 0-250, 250-500, or 500-750 microm or as droplets with a median size of 25, 48, or 69 microm. It was found that the PEG particle size, the PEG droplet size, and the massing time significantly influenced the agglomerate size and size distribution. Agglomerate formation and growth were found to occur primarily by distribution and coalescence for the PEG size fraction 0-250 microm and mainly by the immersion mechanism for the PEG size fractions 250-500 and 500-750 microm. When the PEG was sprayed upon the lactose, the mechanism of agglomerate formation was supposed to be a mixture of immersion and distribution, and the agglomerate growth was found to occur by coalescence regardless of the PEG mean droplet size. Compared to high shear mixers and conventional fluid bed granulators, the mechanisms of agglomerate formation and growth in the rotary processor resembled mostly those seen in the fluid bed granulator.

  2. Advanced control system for the Integral Fast Reactor fuel pin processor

    International Nuclear Information System (INIS)

    Lau, L.D.; Randall, P.F.; Benedict, R.W.; Levinskas, D.

    1993-01-01

    A computerized control system has been developed for the remotely-operated fuel pin processor used in the Integral Fast Reactor Program, Fuel Cycle Facility (FCF). The pin processor remotely shears cast EBR- reactor fuel pins to length, inspects them for diameter, straightness, length, and weight, and then inserts acceptable pins into new sodium-loaded stainless-steel fuel element jackets. Two main components comprise the control system: (1) a programmable logic controller (PLC), together with various input/output modules and associated relay ladder-logic associated computer software. The PLC system controls the remote operation of the machine as directed by the OCS, and also monitors the machine operation to make operational data available to the OCS. The OCS allows operator control of the machine, provides nearly real-time viewing of the operational data, allows on-line changes of machine operational parameters, and records the collected data for each acceptable pin on a central data archiving computer. The two main components of the control system provide the operator with various levels of control ranging from manual operation to completely automatic operation by means of a graphic touch screen interface

  3. Solar wind stream interfaces

    International Nuclear Information System (INIS)

    Gosling, J.T.; Asbridge, J.R.; Bame, S.J.; Feldman, W.C.

    1978-01-01

    Measurements aboard Imp 6, 7, and 8 reveal that approximately one third of all high-speed solar wind streams observed at 1 AU contain a sharp boundary (of thickness less than approx.4 x 10 4 km) near their leading edge, called a stream interface, which separates plasma of distinctly different properties and origins. Identified as discontinuities across which the density drops abruptly, the proton temperature increases abruptly, and the speed rises, stream interfaces are remarkably similar in character from one stream to the next. A superposed epoch analysis of plasma data has been performed for 23 discontinuous stream interfaces observed during the interval March 1971 through August 1974. Among the results of this analysis are the following: (1) a stream interface separates what was originally thick (i.e., dense) slow gas from what was originally thin (i.e., rare) fast gas; (2) the interface is the site of a discontinuous shear in the solar wind flow in a frame of reference corotating with the sun; (3) stream interfaces occur at speeds less than 450 km s - 1 and close to or at the maximum of the pressure ridge at the leading edges of high-speed streams; (4) a discontinuous rise by approx.40% in electron temperature occurs at the interface; and (5) discontinuous changes (usually rises) in alpha particle abundance and flow speed relative to the protons occur at the interface. Stream interfaces do not generally recur on successive solar rotations, even though the streams in which they are embedded often do. At distances beyond several astronomical units, stream interfaces should be bounded by forward-reverse shock pairs; three of four reverse shocks observed at 1 AU during 1971--1974 were preceded within approx.1 day by stream interfaces. Our observations suggest that many streams close to the sun are bounded on all sides by large radial velocity shears separating rapidly expanding plasma from more slowly expanding plasma

  4. World Wind

    Data.gov (United States)

    National Aeronautics and Space Administration — World Wind allows any user to zoom from satellite altitude into any place on Earth, leveraging high resolution LandSat imagery and SRTM elevation data to experience...

  5. A Piezoelectric Shear Stress Sensor

    Science.gov (United States)

    Kim, Taeyang; Saini, Aditya; Kim, Jinwook; Gopalarathnam, Ashok; Zhu, Yong; Palmieri, Frank L.; Wohl, Christopher J.; Jiang, Xiaoning

    2016-01-01

    In this paper, a piezoelectric sensor with a floating element was developed for shear stress measurement. The piezoelectric sensor was designed to detect the pure shear stress suppressing effects of normal stress generated from the vortex lift-up by applying opposite poling vectors to the: piezoelectric elements. The sensor was first calibrated in the lab by applying shear forces and it showed high sensitivity to shear stress (=91.3 +/- 2.1 pC/Pa) due to the high piezoelectric coefficients of PMN-33%PT (d31=-1330 pC/N). The sensor also showed almost no sensitivity to normal stress (less than 1.2 pC/Pa) because of the electromechanical symmetry of the device. The usable frequency range of the sensor is 0-800 Hz. Keywords: Piezoelectric sensor, shear stress, floating element, electromechanical symmetry

  6. First-level trigger processor for the ZEUS calorimeter

    International Nuclear Information System (INIS)

    Dawson, J.W.; Talaga, R.L.; Burr, G.W.; Laird, R.J.; Smith, W.; Lackey, J.

    1990-01-01

    The design of the first-level trigger processor for the Zeus calorimeter is discussed. This processor accepts data from the 13,000 photomultipliers of the calorimeter, which is topologically divided into 16 regions, and after regional preprocessing performs logical and numerical operations that cross regional boundaries. Because the crossing period at the HERA collider is 96 ns, it is necessary that first-level trigger decisions be made in pipelined hardware. One microsecond is allowed for the processor to perform the required logical and numerical operations, during which time the data from ten crossings would be resident in the processor while being clocked through the pipelined hardware. The circuitry is implemented in 100K emitter-coupled logic (ECL), advanced CMOS discrete devices and programmable gate arrays, and operates in a VME environment. All tables and registers are written/read from VME, and all diagnostic codes are executed from VME. Preprocessed data flows into the processor at a rate of 5.2 Gbyte/s, and processed data flows from the processor to the global first-level trigger at a rate of 70 Mbyte/s. The system allows for subsets of the logic to be configured by software and for various important variables to be histogrammed as they flow through the processor

  7. A dedicated line-processor as used at the SHF

    International Nuclear Information System (INIS)

    Bevan, A.V.; Hatley, R.W.; Price, D.R.; Rankin, P.

    1985-01-01

    A hardwired trigger processor was used at the SLAC Hybrid Facility to find evidence for charged tracks originating from the fiducial volume of a 40'' rapidcycling bubble chamber. Straight-line projections of these tracks in the plane perpendicular to the applied magnetic field were searched for using data from three sets of proportional wire chambers (PWC). This information was made directly available to the processor by means of a special digitizing card. The results memory of the processor simulated read-only memory in a 168/E processor and was accessible by it. The 168/E controlled the issuing of a trigger command to the bubble chamber flash tubes. The same design of digitizer card used by the line processor was incorporated into the 168/E, again as read only memory, which allowed it access to the raw data for continual monitoring of trigger integrity. The design logic of the trigger processor was verified by running real PWC data through a FORTRAN simulation of the hardware. This enabled the debugging to become highly automated since a step by step, computer controlled comparison of processor registers to simulation predictions could be made

  8. 78 FR 29364 - Exelon Corporation, Exelon Wind 1, LLC, Exelon Wind 2, LLC, Exelon Wind 3, LLC, Exelon Wind 4...

    Science.gov (United States)

    2013-05-20

    ...-005, QF07-257-004] Exelon Corporation, Exelon Wind 1, LLC, Exelon Wind 2, LLC, Exelon Wind 3, LLC, Exelon Wind 4, LLC, Exelon Wind 5, LLC, Exelon Wind 6, LLC, Exelon Wind 7, LLC, Exelon Wind 8, LLC, Exelon Wind 9, LLC, Exelon Wind 10, LLC, Exelon Wind 11, LLC, High Plains Wind Power, LLC v. Xcel Energy...

  9. Remotely measuring the wind using turbine-mounted lidars: Application to power performance testing

    DEFF Research Database (Denmark)

    Borraccino, Antoine

    of the wind field reconstruction methods. Two wind models were developed in this thesis. The first one employs lidar measurement at a single distance – but several heights –, accounts for shear through a power law profile, and estimates hub height wind speed, direction and the shear exponent. The second model...... combines the wind model with a simple one-dimensional induction model. The lidar inputs were line-of-sight velocity measurements taken at multiple distances close to the rotor, from 0.5 to 1.25 rotor diameters. Using the combined wind-induction model, hub height free stream wind characteristics...... uncertainties were also quantified. Further, the annual energy production (AEP) was computed for a range of annual mean wind speeds. At 8ms−1, the lidar-estimated AEP was within 1% to the one obtained with the cup anemometer. The combined wind-induction reconstruction technique represents a paradigm shift...

  10. Multi-MW wind turbine power curve measurements using remote sensing instruments – the first Høvsøre campaign

    DEFF Research Database (Denmark)

    Wagner, Rozenn; Courtney, Michael

    Power curve measurement for large wind turbines requires taking into account more parameters than only the wind speed at hub height. Based on results from aerodynamic simulations, an equivalent wind speed taking the wind shear into account was defined and found to reduce the scatter in the power...

  11. Ethernet-Enabled Power and Communication Module for Embedded Processors

    Science.gov (United States)

    Perotti, Jose; Oostdyk, Rebecca

    2010-01-01

    The power and communications module is a printed circuit board (PCB) that has the capability of providing power to an embedded processor and converting Ethernet packets into serial data to transfer to the processor. The purpose of the new design is to address the shortcomings of previous designs, including limited bandwidth and program memory, lack of control over packet processing, and lack of support for timing synchronization. The new design of the module creates a robust serial-to-Ethernet conversion that is powered using the existing Ethernet cable. This innovation has a small form factor that allows it to power processors and transducers with minimal space requirements.

  12. Interfacing a processor core in FPGA to an audio system

    OpenAIRE

    Mateos, José Ignacio

    2006-01-01

    The thesis project consists on developing an interface for a Nios II processor integrated in a board of Altera (UP3- 2C35F672C6 Cyclone II). The main goal is show how the Nios II processor can interact with the other components of the board.The Quartus II software has been used to create to vhdl code of the interfaces, compile it and download it into the board. The Nios II IDE tool is used to build the C/C++ files and download them into the processor. It has been prepared an application for t...

  13. Median and Morphological Specialized Processors for a Real-Time Image Data Processing

    Directory of Open Access Journals (Sweden)

    Kazimierz Wiatr

    2002-01-01

    Full Text Available This paper presents the considerations on selecting a multiprocessor MISD architecture for fast implementation of the vision image processing. Using the author′s earlier experience with real-time systems, implementing of specialized hardware processors based on the programmable FPGA systems has been proposed in the pipeline architecture. In particular, the following processors are presented: median filter and morphological processor. The structure of a universal reconfigurable processor developed has been proposed as well. Experimental results are presented as delays on LCA level implementation for median filter, morphological processor, convolution processor, look-up-table processor, logic processor and histogram processor. These times compare with delays in general purpose processor and DSP processor.

  14. Non-gyrotropic pressure anisotropy induced by velocity shear.

    Science.gov (United States)

    Tenerani, A.; Del Sarto, D.; Pegoraro, F.; Califano, F.

    2015-12-01

    We discuss how, in a collisionless magnetized plasma, a sheared velocity field may lead to the anisotropization of an initial Maxwellian state. By including the full pressure tensor dynamics in a fluid plasma model, we show, analytically and numerically, that a sheared velocity field makes an initial isotropic state anisotropic and non-gyrotropic [1], i.e., makes the plasma pressure tensor anisotropic also in the plane perpendicular to the magnetic field. The propagation of transverse magneto-elastic waves in the anisotropic plasma affects the process of formation of a non-gyrotropic pressure and can lead to its spatial filamentation. This plasma dynamics implies in particular that isotropic MHD equilibria cease to be equilibria in presence of a stationary sheared flow. Similarly, in the case of turbulence, where small-scale spatial inhomogeneities are naturally developed during the direct cascade, we may expect that isotropic turbulent states are not likely to exist whenever a full pressure tensor evolution is accounted for. These results may be relevant to understanding the agyrotropic pressure configurations which are well documented in solar wind measurements and possibly correlated to plasma flows (see e.g. Refs.[2,3]), and which have also been measured in Vlasov simulations of Alfvenic turbulence [4]. [1] D. Del Sarto, F. Pegoraro, F. Califano, "Pressure anisotropy and small spatial scales induced by a velocity shear", http://arxiv.org/abs/1507.04895 [2] H.F. Astudillo, E. Marsch, S. Livi, H. Rosenbauer, "TAUS measurements of non-gyrotropic distribution functions of solar wind alpha particles", AIP Conf. Proc. 328, 289 (1996). [3] A. Posner, M.W. Liemhon, T.H. Zurbuchen, "Upstream magnetospheric ion flux tube within a magnetic cloud: Wind/STICS", Geophys. Res. Lett. 30, (2003). [4] S. Servidio, F. Valentini, F. Califano, P. Veltri, "Local kinetic effects in Two-Dimensional Plasma Turbulence", Phys. Rev. Lett. 108, 045001 (2012).

  15. Multipurpose silicon photonics signal processor core.

    Science.gov (United States)

    Pérez, Daniel; Gasulla, Ivana; Crudgington, Lee; Thomson, David J; Khokhar, Ali Z; Li, Ke; Cao, Wei; Mashanovich, Goran Z; Capmany, José

    2017-09-21

    Integrated photonics changes the scaling laws of information and communication systems offering architectural choices that combine photonics with electronics to optimize performance, power, footprint, and cost. Application-specific photonic integrated circuits, where particular circuits/chips are designed to optimally perform particular functionalities, require a considerable number of design and fabrication iterations leading to long development times. A different approach inspired by electronic Field Programmable Gate Arrays is the programmable photonic processor, where a common hardware implemented by a two-dimensional photonic waveguide mesh realizes different functionalities through programming. Here, we report the demonstration of such reconfigurable waveguide mesh in silicon. We demonstrate over 20 different functionalities with a simple seven hexagonal cell structure, which can be applied to different fields including communications, chemical and biomedical sensing, signal processing, multiprocessor networks, and quantum information systems. Our work is an important step toward this paradigm.Integrated optical circuits today are typically designed for a few special functionalities and require complex design and development procedures. Here, the authors demonstrate a reconfigurable but simple silicon waveguide mesh with different functionalities.

  16. Preventing Precipitation in the ISS Urine Processor

    Science.gov (United States)

    Muirhead, Dean; Carter, Layne; Williamson, Jill; Chambers, Antja

    2017-01-01

    The ISS Urine Processor Assembly (UPA) was initially designed to achieve 85% recovery of water from pretreated urine on ISS. Pretreated urine is comprised of crew urine treated with flush water, an oxidant (chromium trioxide), and an inorganic acid (sulfuric acid) to control microbial growth and inhibit precipitation. Unfortunately, initial operation of the UPA on ISS resulted in the precipitation of calcium sulfate at 85% recovery. This occurred because the calcium concentration in the crew urine was elevated in microgravity due to bone loss. The higher calcium concentration precipitated with sulfate from the pretreatment acid, resulting in a failure of the UPA due to the accumulation of solids in the Distillation Assembly. Since this failure, the UPA has been limited to a reduced recovery of water from urine to prevent calcium sulfate from reaching the solubility limit. NASA personnel have worked to identify a solution that would allow the UPA to return to a nominal recovery rate of 85%. This effort has culminated with the development of a pretreatment based on phosphoric acid instead of sulfuric acid. By eliminating the sulfate associated with the pretreatment, the brine can be concentrated to a much higher concentration before calcium sulfate reach the solubility limit. This paper summarizes the development of this pretreatment and the testing performed to verify its implementation on ISS.

  17. Project Report: Automatic Sequence Processor Software Analysis

    Science.gov (United States)

    Benjamin, Brandon

    2011-01-01

    The Mission Planning and Sequencing (MPS) element of Multi-Mission Ground System and Services (MGSS) provides space missions with multi-purpose software to plan spacecraft activities, sequence spacecraft commands, and then integrate these products and execute them on spacecraft. Jet Propulsion Laboratory (JPL) is currently is flying many missions. The processes for building, integrating, and testing the multi-mission uplink software need to be improved to meet the needs of the missions and the operations teams that command the spacecraft. The Multi-Mission Sequencing Team is responsible for collecting and processing the observations, experiments and engineering activities that are to be performed on a selected spacecraft. The collection of these activities is called a sequence and ultimately a sequence becomes a sequence of spacecraft commands. The operations teams check the sequence to make sure that no constraints are violated. The workflow process involves sending a program start command, which activates the Automatic Sequence Processor (ASP). The ASP is currently a file-based system that is comprised of scripts written in perl, c-shell and awk. Once this start process is complete, the system checks for errors and aborts if there are any; otherwise the system converts the commands to binary, and then sends the resultant information to be radiated to the spacecraft.

  18. The ATLAS fast tracker processor design

    CERN Document Server

    Volpi, Guido; Albicocco, Pietro; Alison, John; Ancu, Lucian Stefan; Anderson, James; Andari, Nansi; Andreani, Alessandro; Andreazza, Attilio; Annovi, Alberto; Antonelli, Mario; Asbah, Needa; Atkinson, Markus; Baines, J; Barberio, Elisabetta; Beccherle, Roberto; Beretta, Matteo; Biesuz, Nicolo Vladi; Blair, R E; Bogdan, Mircea; Boveia, Antonio; Britzger, Daniel; Bryant, Partick; Burghgrave, Blake; Calderini, Giovanni; Camplani, Alessandra; Cavaliere, Viviana; Cavasinni, Vincenzo; Chakraborty, Dhiman; Chang, Philip; Cheng, Yangyang; Citraro, Saverio; Citterio, Mauro; Crescioli, Francesco; Dawe, Noel; Dell'Orso, Mauro; Donati, Simone; Dondero, Paolo; Drake, G; Gadomski, Szymon; Gatta, Mauro; Gentsos, Christos; Giannetti, Paola; Gkaitatzis, Stamatios; Gramling, Johanna; Howarth, James William; Iizawa, Tomoya; Ilic, Nikolina; Jiang, Zihao; Kaji, Toshiaki; Kasten, Michael; Kawaguchi, Yoshimasa; Kim, Young Kee; Kimura, Naoki; Klimkovich, Tatsiana; Kolb, Mathis; Kordas, K; Krizka, Karol; Kubota, T; Lanza, Agostino; Li, Ho Ling; Liberali, Valentino; Lisovyi, Mykhailo; Liu, Lulu; Love, Jeremy; Luciano, Pierluigi; Luongo, Carmela; Magalotti, Daniel; Maznas, Ioannis; Meroni, Chiara; Mitani, Takashi; Nasimi, Hikmat; Negri, Andrea; Neroutsos, Panos; Neubauer, Mark; Nikolaidis, Spiridon; Okumura, Y; Pandini, Carlo; Petridou, Chariclia; Piendibene, Marco; Proudfoot, James; Rados, Petar Kevin; Roda, Chiara; Rossi, Enrico; Sakurai, Yuki; Sampsonidis, Dimitrios; Saxon, James; Schmitt, Stefan; Schoening, Andre; Shochet, Mel; Shoijaii, Jafar; Soltveit, Hans Kristian; Sotiropoulou, Calliope-Louisa; Stabile, Alberto; Swiatlowski, Maximilian J; Tang, Fukun; Taylor, Pierre Thor Elliot; Testa, Marianna; Tompkins, Lauren; Vercesi, V; Wang, Rui; Watari, Ryutaro; Zhang, Jianhong; Zeng, Jian Cong; Zou, Rui; Bertolucci, Federico

    2015-01-01

    The extended use of tracking information at the trigger level in the LHC is crucial for the trigger and data acquisition (TDAQ) system to fulfill its task. Precise and fast tracking is important to identify specific decay products of the Higgs boson or new phenomena, as well as to distinguish the contributions coming from the many collisions that occur at every bunch crossing. However, track reconstruction is among the most demanding tasks performed by the TDAQ computing farm; in fact, complete reconstruction at full Level-1 trigger accept rate (100 kHz) is not possible. In order to overcome this limitation, the ATLAS experiment is planning the installation of a dedicated processor, the Fast Tracker (FTK), which is aimed at achieving this goal. The FTK is a pipeline of high performance electronics, based on custom and commercial devices, which is expected to reconstruct, with high resolution, the trajectories of charged-particle tracks with a transverse momentum above 1 GeV, using the ATLAS inner tracker info...

  19. Optical symbolic processor for expert system execution

    Science.gov (United States)

    Guha, Aloke

    1987-11-01

    The goal of this program is to develop a concept for an optical computer architecture for symbolic computing by defining a computation model of a high level language, examining the possible devices for the ultimate construction of a processor, and by defining required optical operations. This quarter we investigated the implementation alternatives for an optical shuffle exchange network (SEN). Work in previous quarter had led to the conclusion that the SEN was most appropriate optical interconnection network topology for the symbolic processing architecture (SPARO). A more detailed analysis was therefore conducted to examine implementation possibilities. It was determined that while the shuffle connection of the SEN was very feasible in optics using passive devices, a full-scale exchange switch which handles conflict resolution among competing messages is much more difficult. More emphasis was therefore given to the exchange switch design. The functionalities required for the exchange switch and its controls were analyzed. These functionalities were then assessed for optical implementation. It is clear that even the basic exchange switch, that is, an exchange without the controls for conflict resolution, delivery, etc..., is quite a difficult problem in optics. We have proposed a number of optical techniques that appear to be good candidates for realizing the basic exchange switch. A reasonable approach appears to be to evaluate these techniques.

  20. KIDNEY DISEASE VISUALIZED ON DIGITAL PROCESSOR

    Directory of Open Access Journals (Sweden)

    Rade R. Babić

    2013-09-01

    Full Text Available Radiological methods of examination in diagnosis of pathological conditions and diseases of urinary system are numerous and various, reliable and dominant. They became indispensable and without competition, among other diagnostic methods, using the digital techniques. The aim of this paper was to present the radiological image of pathological conditions and diseases of urinary system diagnosed by intravenous urography using digital techniques and to show the diagnostic possibilities and importance of digital techniques in diagnostic radiology. The paper analyzes pathological conditions and diseases of the kidney in a series of 3100 intravenous urographies (IVU performed at the Radiology Center, Clinical Center Niš, during the period 2009-2012. Radiographic examination was performed on X-ray device with a TV chain Schimadzu. IVU was performed according to the standard protocol. Contrast media: Ultravist 370®. X-ray images were digitally processed in Agfa CR-30 digital processor. The results are shown illustratively, by urographic images - anomalies, calculosis, hydronephrosis, tumors and other pathological conditions and diseases of the urinary system. This paper presents numerous and various pathological conditions and diseases of the urinary system. Among the valuable radiological examination methods IVU has maintained a leading position. The usage of digital techniques made IVU faster, easy and efficient method of examination, while the obtained urograms are of satisfactory quality and adequate contrast visualization of the urinary system.

  1. Slime mould processors, logic gates and sensors.

    Science.gov (United States)

    Adamatzky, A

    2015-07-28

    A heterotic, or hybrid, computation implies that two or more substrates of different physical nature are merged into a single device with indistinguishable parts. These hybrid devices then undertake coherent acts on programmable and sensible processing of information. We study the potential of heterotic computers using slime mould acting under the guidance of chemical, mechanical and optical stimuli. Plasmodium of acellular slime mould Physarum polycephalum is a gigantic single cell visible to the unaided eye. The cell shows a rich spectrum of behavioural morphological patterns in response to changing environmental conditions. Given data represented by chemical or physical stimuli, we can employ and modify the behaviour of the slime mould to make it solve a range of computing and sensing tasks. We overview results of laboratory experimental studies on prototyping of the slime mould morphological processors for approximation of Voronoi diagrams, planar shapes and solving mazes, and discuss logic gates implemented via collision of active growing zones and tactile responses of P. polycephalum. We also overview a range of electronic components--memristor, chemical, tactile and colour sensors-made of the slime mould. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  2. Scientific Computing Kernels on the Cell Processor

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Samuel W.; Shalf, John; Oliker, Leonid; Kamil, Shoaib; Husbands, Parry; Yelick, Katherine

    2007-04-04

    The slowing pace of commodity microprocessor performance improvements combined with ever-increasing chip power demands has become of utmost concern to computational scientists. As a result, the high performance computing community is examining alternative architectures that address the limitations of modern cache-based designs. In this work, we examine the potential of using the recently-released STI Cell processor as a building block for future high-end computing systems. Our work contains several novel contributions. First, we introduce a performance model for Cell and apply it to several key scientific computing kernels: dense matrix multiply, sparse matrix vector multiply, stencil computations, and 1D/2D FFTs. The difficulty of programming Cell, which requires assembly level intrinsics for the best performance, makes this model useful as an initial step in algorithm design and evaluation. Next, we validate the accuracy of our model by comparing results against published hardware results, as well as our own implementations on a 3.2GHz Cell blade. Additionally, we compare Cell performance to benchmarks run on leading superscalar (AMD Opteron), VLIW (Intel Itanium2), and vector (Cray X1E) architectures. Our work also explores several different mappings of the kernels and demonstrates a simple and effective programming model for Cell's unique architecture. Finally, we propose modest microarchitectural modifications that could significantly increase the efficiency of double-precision calculations. Overall results demonstrate the tremendous potential of the Cell architecture for scientific computations in terms of both raw performance and power efficiency.

  3. A CNN-Specific Integrated Processor

    Science.gov (United States)

    Malki, Suleyman; Spaanenburg, Lambert

    2009-12-01

    Integrated Processors (IP) are algorithm-specific cores that either by programming or by configuration can be re-used within many microelectronic systems. This paper looks at Cellular Neural Networks (CNN) to become realized as IP. First current digital implementations are reviewed, and the memoryprocessor bandwidth issues are analyzed. Then a generic view is taken on the structure of the network, and a new intra-communication protocol based on rotating wheels is proposed. It is shown that this provides for guaranteed high-performance with a minimal network interface. The resulting node is small and supports multi-level CNN designs, giving the system a 30-fold increase in capacity compared to classical designs. As it facilitates multiple operations on a single image, and single operations on multiple images, with minimal access to the external image memory, balancing the internal and external data transfer requirements optimizes the system operation. In conventional digital CNN designs, the treatment of boundary nodes requires additional logic to handle the CNN value propagation scheme. In the new architecture, only a slight modification of the existing cells is necessary to model the boundary effect. A typical prototype for visual pattern recognition will house 4096 CNN cells with a 2% overhead for making it an IP.

  4. A CNN-Specific Integrated Processor

    Directory of Open Access Journals (Sweden)

    Suleyman Malki

    2009-01-01

    Full Text Available Integrated Processors (IP are algorithm-specific cores that either by programming or by configuration can be re-used within many microelectronic systems. This paper looks at Cellular Neural Networks (CNN to become realized as IP. First current digital implementations are reviewed, and the memoryprocessor bandwidth issues are analyzed. Then a generic view is taken on the structure of the network, and a new intra-communication protocol based on rotating wheels is proposed. It is shown that this provides for guaranteed high-performance with a minimal network interface. The resulting node is small and supports multi-level CNN designs, giving the system a 30-fold increase in capacity compared to classical designs. As it facilitates multiple operations on a single image, and single operations on multiple images, with minimal access to the external image memory, balancing the internal and external data transfer requirements optimizes the system operation. In conventional digital CNN designs, the treatment of boundary nodes requires additional logic to handle the CNN value propagation scheme. In the new architecture, only a slight modification of the existing cells is necessary to model the boundary effect. A typical prototype for visual pattern recognition will house 4096 CNN cells with a 2% overhead for making it an IP.

  5. Wind Field Reconstruction from Nacelle-Mounted Lidars Short Range Measurements

    OpenAIRE

    Borraccino, Antoine; Schlipf, David; Haizmann, Florian; Wagner, Rozenn

    2017-01-01

    Profiling nacelle lidars probe the wind at several heights and several distances upstream of the rotor. The development of such lidar systems is relatively recent, and it is still unclear how to condense the lidar raw measurements into useful wind field characteristics such as speed, direction, vertical and longitudinal gradients (wind shear). In this paper, we demonstrate an innovative method to estimate wind field characteristics using nacelle lidar measurements taken within the induction z...

  6. Improving Interlaminar Shear Strength

    Science.gov (United States)

    Jackson, Justin

    2015-01-01

    To achieve NASA's mission of space exploration, innovative manufacturing processes are being applied to the fabrication of complex propulsion elements.1 Use of fiber-reinforced, polymeric composite tanks are known to reduce weight while increasing performance of propulsion vehicles. Maximizing the performance of these materials is needed to reduce the hardware weight to result in increased performance in support of NASA's missions. NASA has partnered with the Mississippi State University (MSU) to utilize a unique scalable approach of locally improving the critical properties needed for composite structures. MSU is responsible for the primary development of the concept with material and engineering support provided by NASA. The all-composite tank shown in figure 1 is fabricated using a prepreg system of IM7 carbon fiber/CYCOM 5320-1 epoxy resin. This is a resin system developed for out-of-autoclave applications. This new technology is needed to support the fabrication of large, all composite structures and is currently being evaluated on a joint project with Boeing for the Space Launch System (SLS) program. In initial efforts to form an all composite pressure vessel using this prepreg system, a 60% decrease in properties was observed in scarf joint regions. Inspection of these areas identified interlaminar failure in the adjacent laminated structure as the main failure mechanism. This project seeks to improve the interlaminar shear strength (ILSS) within the prepreg layup by locally modifying the interply region shown in figure 2.2

  7. Fifty years of shear zones

    Science.gov (United States)

    Graham, Rodney

    2017-04-01

    We are here, of course, because 1967 saw the publication of John Ramsay's famous book. Two years later a memorable field trip from Imperial College to the Outer Hebrides saw John on a bleak headland on the coast of North Uist where a relatively undeformed metadolerite within Lewisian (Precambrian) gneisses contained ductile shear zones with metamorphic fabrics in amphibolite facies. One particular outcrop was very special - a shear zone cutting otherwise completely isotropic, undeformed metadolerite, with an incremental foliation starting to develop at 45° to the deformation zone, and increasing in intensity as it approached the shear direction. Here was proof of the process of simple shear under ductile metamorphic conditions - the principles of simple shear outlined in John Ramsay's 1967 book clearly visible in nature, and verified by Ramsay's mathematical proofs in the eventual paper (Ramsay and Graham, 1970). Later work on the Lewisian on the mainland of Scotland, in South Harris, in Africa, and elsewhere applied Ramsay's simple shear principles more liberally, more imprecisely and on larger scale than at Caisteal Odair, but in retrospect it documented what seems now to be the generality of mid and lower crustal deformation. Deep seismic reflection data show us that on passive margins hyper-stretched continental crust (whether or not cloaked by Seaward Dipping Reflectors) seems to have collapsed onto the mantle. Crustal faults mostly sole out at or above the mantle - so the Moho is a detachment- an 'outer marginal detachment', if you like, and, of course, it must be a ductile shear. On non-volcanic margins this shear zone forms the first formed ocean floor before true sea floor spreading gets going to create real oceanic crust. Gianreto Manatschal, Marcel Lemoine and others realised that the serpentinites described in parts of the Alps are exposed remnants of this ductile shear zone. Associated ophicalcite breccias tell of sea floor exposure, while high

  8. WIND TURBINES FOR WIND POWER INSTALLATIONS

    Directory of Open Access Journals (Sweden)

    Barladean A.S.

    2008-04-01

    Full Text Available The problem of wind turbine choice for wind power stations is examined in this paper. It is shown by comparison of parameters and characteristics of wind turbines, that for existing modes and speeds of wind in territory of Republic of Moldova it is necessary to use multi-blade small speed rotation wind turbines of fan class.

  9. High-Performance Linear Algebra Processor using FPGA

    National Research Council Canada - National Science Library

    Johnson, J

    2004-01-01

    With recent advances in FPGA (Field Programmable Gate Array) technology it is now feasible to use these devices to build special purpose processors for floating point intensive applications that arise in scientific computing...

  10. Complexity of scheduling multiprocessor tasks with prespecified processor allocations

    NARCIS (Netherlands)

    Hoogeveen, J.A.; van de Velde, S.L.; van de Velde, S.L.; Veltman, Bart

    1995-01-01

    We investigate the computational complexity of scheduling multiprocessor tasks with prespecified processor allocations. We consider two criteria: minimizing schedule length and minimizing the sum of the task completion times. In addition, we investigate the complexity of problems when precedence

  11. A Shared Memory Module for Asynchronous Arrays of Processors

    Directory of Open Access Journals (Sweden)

    Meeuwsen MichaelJ

    2007-01-01

    Full Text Available A shared memory module connecting multiple independently clocked processors is presented. The memory module itself is independently clocked, supports hardware address generation, mutual exclusion, and multiple addressing modes. The architecture supports independent address generation and data generation/consumption by different processors which increases efficiency and simplifies programming for many embedded and DSP tasks. Simultaneous access by different processors is arbitrated using a least-recently-serviced priority scheme. Simulations show high throughputs over a variety of memory loads. A standard cell implementation shares an 8 K-word SRAM among four processors, and can support a 64 K-word SRAM with no additional changes. It cycles at 555 MHz and occupies 1.2 mm2 in 0.18 μm CMOS.

  12. Fault Mitigation Schemes for Future Spaceflight Multicore Processors

    Science.gov (United States)

    Some, Rafi; Gostelow, Kim P.; Lai, John; Reder, Leonard; Alexander, James; Clement, Brad

    2012-01-01

    The goal of this work is to achieve fail-operational and graceful-degradation behavior in realistic flight mission scenarios, of multicore processors such as Mars Entry-Descent-Landing (EDL) and Primitive Body proximity operations.

  13. Nanofilm processors controlled by electrolyte flows of femtoliter volume.

    Science.gov (United States)

    Nolte, Marius; Knoll, Meinhard

    2013-06-25

    Nanofilm processors are a new kind of smart system based on the lateral self-oxidation of nanoscale aluminum films. The time dependency of these devices is controlled by electrolyte flows of femtoliter volume which can be modulated by different mechanisms. In this paper, we provide a deeper investigation of the electrolyte transport in the nanofilm processor and the different possibilities to control the aluminum oxidation velocity. A method for the in situ investigation of the acidic characteristic of the channel electrolyte is demonstrated. The obtained results form a set of instruments for constructing more complex electrolyte circuits and should allow the creation of nanofilm processors of arbitrary time dependence. Because the nanofilm processor combines different functional blocks and can operate in a self-sustained manner, without requiring batteries, this smart system may serve as a basis for many potential applications.

  14. Reconfigurable VLIW Processor for Software Defined Radio, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We will design and formally verify a VLIW processor that is radiation-hardened, and where the VLIW instructions consist of predicated RISC instructions from the...

  15. Assembly processor program converts symbolic programming language to machine language

    Science.gov (United States)

    Pelto, E. V.

    1967-01-01

    Assembly processor program converts symbolic programming language to machine language. This program translates symbolic codes into computer understandable instructions, assigns locations in storage for successive instructions, and computer locations from symbolic addresses.

  16. Reconfigurable VLIW Processor for Software Defined Radio Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We will design and formally verify a VLIW processor that is radiation-hardened, and where the VLIW instructions consist of predicated RISC instructions from the...

  17. 2009 Survey of Gulf of Mexico Dockside Seafood Processors

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This survey gathered and analyze economic data from seafood processors throughout the states in the Gulf region. The survey sought to collect financial variables...

  18. Particle simulation on a distributed memory highly parallel processor

    International Nuclear Information System (INIS)

    Sato, Hiroyuki; Ikesaka, Morio

    1990-01-01

    This paper describes parallel molecular dynamics simulation of atoms governed by local force interaction. The space in the model is divided into cubic subspaces and mapped to the processor array of the CAP-256, a distributed memory, highly parallel processor developed at Fujitsu Labs. We developed a new technique to avoid redundant calculation of forces between atoms in different processors. Experiments showed the communication overhead was less than 5%, and the idle time due to load imbalance was less than 11% for two model problems which contain 11,532 and 46,128 argon atoms. From the software simulation, the CAP-II which is under development is estimated to be about 45 times faster than CAP-256 and will be able to run the same problem about 40 times faster than Fujitsu's M-380 mainframe when 256 processors are used. (author)

  19. Radiation Tolerant Software Defined Video Processor, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — MaXentric's is proposing a radiation tolerant Software Define Video Processor, codenamed SDVP, for the problem of advanced motion imaging in the space environment....

  20. Parametric Study of Rockbolt Shear Behaviour by Double Shear Test

    Science.gov (United States)

    Li, L.; Hagan, P. C.; Saydam, S.; Hebblewhite, B.; Li, Y.

    2016-12-01

    Failure of rockbolts as a result of shear or bending loads can often be found in underground excavations. The response of rock anchorage systems has been studied in shear, both by laboratory tests as well as numerical modelling in this study. A double shear test was developed to examine the shear behaviour of a bolt installed across two joints at different angles. To investigate the influence of various parameters in the double shear test, a numerical model of a fully grouted rockbolt installed in concrete was constructed and analysed using FLAC3D code. A number of parameters were considered including concrete strength, inclination between rockbolt and joints and rockbolt diameter. The numerical model considered three material types (steel, grout and concrete) and three interfaces (concrete-concrete, grout-concrete and grout-rockbolt). The main conclusions drawn from the study were that the level of bolt resistance to shear was influenced by rock strength, inclination angle, and diameter of the rockbolt. The numerical simulation of the bolt/grout interaction and deformational behaviour was found to be in close agreement with earlier experimental test results.

  1. Wind turbine

    Science.gov (United States)

    Cheney, Jr., Marvin C.

    1982-01-01

    A wind turbine of the type having an airfoil blade (15) mounted on a flexible beam (20) and a pitch governor (55) which selectively, torsionally twists the flexible beam in response to wind turbine speed thereby setting blade pitch, is provided with a limiter (85) which restricts unwanted pitch change at operating speeds due to torsional creep of the flexible beam. The limiter allows twisting of the beam by the governor under excessive wind velocity conditions to orient the blades in stall pitch positions, thereby preventing overspeed operation of the turbine. In the preferred embodiment, the pitch governor comprises a pendulum (65,70) which responds to changing rotor speed by pivotal movement, the limiter comprising a resilient member (90) which engages an end of the pendulum to restrict further movement thereof, and in turn restrict beam creep and unwanted blade pitch misadjustment.

  2. Joint Experiment on Scalable Parallel Processors (JESPP) Parallel Data Management

    Science.gov (United States)

    2006-05-01

    thousand entities to a WAN including multiple Beowulf clusters and hundreds of processors simulating hundreds of thousands of entities. An...support larger simulations on Beowulf clusters ISI implemented a distributed logger. Data is logged locally on each processor running a simulator...development and execution effort (Lucas, 2003). Common SPPs include the IBM SP, SGI Origin, Cray T3E, and the “ Beowulf ” Linux clusters. Traditionally

  3. GA103: A microprogrammable processor for online filtering

    International Nuclear Information System (INIS)

    Calzas, A.; Danon, G.; Bouquet, B.

    1981-01-01

    GA 103 is a 16 bit microprogrammable processor which emulates the PDP 11 instruction set. It is based on the Am 2900 slices. It allows user-implemented microinstructions and addition of hardwired processors. It will perform on-line filtering tasks in the NA 14 experiment at CERN, based on the reconstruction of transverse momentum of photons detected in a lead glass calorimeter. (orig.)

  4. On the Distribution of Control in Asynchronous Processor Architectures

    OpenAIRE

    Rebello, Vinod

    1997-01-01

    The effective performance of computer systems is to a large measure determined by the synergy between the processor architecture, the instruction set and the compiler. In the past, the sequencing of information within processor architectures has normally been synchronous: controlled centrally by a clock. However, this global signal could possibly limit the future gains in performance that can potentially be achieved through improvements in implementation technology. T...

  5. Fast parallel computation of polynomials using few processors

    DEFF Research Database (Denmark)

    Valiant, Leslie; Skyum, Sven

    1981-01-01

    It is shown that any multivariate polynomial that can be computed sequentially in C steps and has degree d can be computed in parallel in 0((log d) (log C + log d)) steps using only (Cd)0(1) processors.......It is shown that any multivariate polynomial that can be computed sequentially in C steps and has degree d can be computed in parallel in 0((log d) (log C + log d)) steps using only (Cd)0(1) processors....

  6. Fast Parallel Computation of Polynomials Using Few Processors

    DEFF Research Database (Denmark)

    Valiant, Leslie G.; Skyum, Sven; Berkowitz, S.

    1983-01-01

    It is shown that any multivariate polynomial of degree $d$ that can be computed sequentially in $C$ steps can be computed in parallel in $O((\\log d)(\\log C + \\log d))$ steps using only $(Cd)^{O(1)} $ processors.......It is shown that any multivariate polynomial of degree $d$ that can be computed sequentially in $C$ steps can be computed in parallel in $O((\\log d)(\\log C + \\log d))$ steps using only $(Cd)^{O(1)} $ processors....

  7. UA1 upgrade first-level calorimeter trigger processor

    International Nuclear Information System (INIS)

    Bains, N.; Charlton, D.; Ellis, N.; Garvey, J.; Gregory, J.; Jimack, M.P.; Jovanovic, P.; Kenyon, I.R.; Baird, S.A.; Campbell, D.; Cawthraw, M.; Coughlan, J.; Flynn, P.; Galagedera, S.; Grayer, G.; Halsall, R.; Shah, T.P.; Stephens, R.; Eisenhandler, E.; Fensome, I.; Landon, M.

    1989-01-01

    A new first-level trigger processor has been built for the UA1 experiment on the Cern SppS Collider. The processor exploits the fine granularity of the new UA1 uranium-TMP calorimeter to improve the selectivity of the trigger. The new electron trigger has improved hadron jet rejection, achieved by requiring low energy deposition around the electromagnetic cluster. A missing transverse energy trigger and a total energy trigger have also been implemented. (orig.)

  8. High-Speed General Purpose Genetic Algorithm Processor.

    Science.gov (United States)

    Hoseini Alinodehi, Seyed Pourya; Moshfe, Sajjad; Saber Zaeimian, Masoumeh; Khoei, Abdollah; Hadidi, Khairollah

    2016-07-01

    In this paper, an ultrafast steady-state genetic algorithm processor (GAP) is presented. Due to the heavy computational load of genetic algorithms (GAs), they usually take a long time to find optimum solutions. Hardware implementation is a significant approach to overcome the problem by speeding up the GAs procedure. Hence, we designed a digital CMOS implementation of GA in [Formula: see text] process. The proposed processor is not bounded to a specific application. Indeed, it is a general-purpose processor, which is capable of performing optimization in any possible application. Utilizing speed-boosting techniques, such as pipeline scheme, parallel coarse-grained processing, parallel fitness computation, parallel selection of parents, dual-population scheme, and support for pipelined fitness computation, the proposed processor significantly reduces the processing time. Furthermore, by relying on a built-in discard operator the proposed hardware may be used in constrained problems that are very common in control applications. In the proposed design, a large search space is achievable through the bit string length extension of individuals in the genetic population by connecting the 32-bit GAPs. In addition, the proposed processor supports parallel processing, in which the GAs procedure can be run on several connected processors simultaneously.

  9. PixonVision real-time video processor

    Science.gov (United States)

    Puetter, R. C.; Hier, R. G.

    2007-09-01

    PixonImaging LLC and DigiVision, Inc. have developed a real-time video processor, the PixonVision PV-200, based on the patented Pixon method for image deblurring and denoising, and DigiVision's spatially adaptive contrast enhancement processor, the DV1000. The PV-200 can process NTSC and PAL video in real time with a latency of 1 field (1/60 th of a second), remove the effects of aerosol scattering from haze, mist, smoke, and dust, improve spatial resolution by up to 2x, decrease noise by up to 6x, and increase local contrast by up to 8x. A newer version of the processor, the PV-300, is now in prototype form and can handle high definition video. Both the PV-200 and PV-300 are FPGA-based processors, which could be spun into ASICs if desired. Obvious applications of these processors include applications in the DOD (tanks, aircraft, and ships), homeland security, intelligence, surveillance, and law enforcement. If developed into an ASIC, these processors will be suitable for a variety of portable applications, including gun sights, night vision goggles, binoculars, and guided munitions. This paper presents a variety of examples of PV-200 processing, including examples appropriate to border security, battlefield applications, port security, and surveillance from unmanned aerial vehicles.

  10. A UNIX-based prototype biomedical virtual image processor

    International Nuclear Information System (INIS)

    Fahy, J.B.; Kim, Y.

    1987-01-01

    The authors have developed a multiprocess virtual image processor for the IBM PC/AT, in order to maximize image processing software portability for biomedical applications. An interprocess communication scheme, based on two-way metacode exchange, has been developed and verified for this purpose. Application programs call a device-independent image processing library, which transfers commands over a shared data bridge to one or more Autonomous Virtual Image Processors (AVIP). Each AVIP runs as a separate process in the UNIX operating system, and implements the device-independent functions on the image processor to which it corresponds. Application programs can control multiple image processors at a time, change the image processor configuration used at any time, and are completely portable among image processors for which an AVIP has been implemented. Run-time speeds have been found to be acceptable for higher level functions, although rather slow for lower level functions, owing to the overhead associated with sending commands and data over the shared data bridge

  11. Review of trigger and on-line processors at SLAC

    International Nuclear Information System (INIS)

    Lankford, A.J.

    1984-07-01

    The role of trigger and on-line processors in reducing data rates to manageable proportions in e + e - physics experiments is defined not by high physics or background rates, but by the large event sizes of the general-purpose detectors employed. The rate of e + e - annihilation is low, and backgrounds are not high; yet the number of physics processes which can be studied is vast and varied. This paper begins by briefly describing the role of trigger processors in the e + e - context. The usual flow of the trigger decision process is illustrated with selected examples of SLAC trigger processing. The features are mentioned of triggering at the SLC and the trigger processing plans of the two SLC detectors: The Mark II and the SLD. The most common on-line processors at SLAC, the BADC, the SLAC Scanner Processor, the SLAC FASTBUS Controller, and the VAX CAMAC Channel, are discussed. Uses of the 168/E, 3081/E, and FASTBUS VAX processors are mentioned. The manner in which these processors are interfaced and the function they serve on line is described. Finally, the accelerator control system for the SLC is outlined. This paper is a survey in nature, and hence, relies heavily upon references to previous publications for detailed description of work mentioned here. 27 references, 9 figures, 1 table

  12. Reconfigurable signal processor designs for advanced digital array radar systems

    Science.gov (United States)

    Suarez, Hernan; Zhang, Yan (Rockee); Yu, Xining

    2017-05-01

    The new challenges originated from Digital Array Radar (DAR) demands a new generation of reconfigurable backend processor in the system. The new FPGA devices can support much higher speed, more bandwidth and processing capabilities for the need of digital Line Replaceable Unit (LRU). This study focuses on using the latest Altera and Xilinx devices in an adaptive beamforming processor. The field reprogrammable RF devices from Analog Devices are used as analog front end transceivers. Different from other existing Software-Defined Radio transceivers on the market, this processor is designed for distributed adaptive beamforming in a networked environment. The following aspects of the novel radar processor will be presented: (1) A new system-on-chip architecture based on Altera's devices and adaptive processing module, especially for the adaptive beamforming and pulse compression, will be introduced, (2) Successful implementation of generation 2 serial RapidIO data links on FPGA, which supports VITA-49 radio packet format for large distributed DAR processing. (3) Demonstration of the feasibility and capabilities of the processor in a Micro-TCA based, SRIO switching backplane to support multichannel beamforming in real-time. (4) Application of this processor in ongoing radar system development projects, including OU's dual-polarized digital array radar, the planned new cylindrical array radars, and future airborne radars.

  13. 7 CFR 160.50 - Reports to be made by accredited processors.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Reports to be made by accredited processors. 160.50... made by accredited processors. Each accredited processor shall furnish the Administrator such reports... processor to keep such records as may be necessary for him to submit correct reports, or failure by the...

  14. SEDflume - High Shear Stress Flume

    Data.gov (United States)

    Federal Laboratory Consortium — The U.S. Army Corps of Engineers High Shear Stress flume (SEDflume) is designed for estimating erosion rates of fine-grained and mixed fine/coarse grained sediments...

  15. Pattern-Recognition Processor Using Holographic Photopolymer

    Science.gov (United States)

    Chao, Tien-Hsin; Cammack, Kevin

    2006-01-01

    proposed joint-transform optical correlator (JTOC) would be capable of operating as a real-time pattern-recognition processor. The key correlation-filter reading/writing medium of this JTOC would be an updateable holographic photopolymer. The high-resolution, high-speed characteristics of this photopolymer would enable pattern-recognition processing to occur at a speed three orders of magnitude greater than that of state-of-the-art digital pattern-recognition processors. There are many potential applications in biometric personal identification (e.g., using images of fingerprints and faces) and nondestructive industrial inspection. In order to appreciate the advantages of the proposed JTOC, it is necessary to understand the principle of operation of a conventional JTOC. In a conventional JTOC (shown in the upper part of the figure), a collimated laser beam passes through two side-by-side spatial light modulators (SLMs). One SLM displays a real-time input image to be recognized. The other SLM displays a reference image from a digital memory. A Fourier-transform lens is placed at its focal distance from the SLM plane, and a charge-coupled device (CCD) image detector is placed at the back focal plane of the lens for use as a square-law recorder. Processing takes place in two stages. In the first stage, the CCD records the interference pattern between the Fourier transforms of the input and reference images, and the pattern is then digitized and saved in a buffer memory. In the second stage, the reference SLM is turned off and the interference pattern is fed back to the input SLM. The interference pattern thus becomes Fourier-transformed, yielding at the CCD an image representing the joint-transform correlation between the input and reference images. This image contains a sharp correlation peak when the input and reference images are matched. The drawbacks of a conventional JTOC are the following: The CCD has low spatial resolution and is not an ideal square

  16. The Serial Link Processor for the Fast TracKer (FTK) processor at ATLAS

    CERN Document Server

    Biesuz, Nicolo Vladi; The ATLAS collaboration; Luciano, Pierluigi; Magalotti, Daniel; Rossi, Enrico

    2015-01-01

    The Associative Memory (AM) system of the Fast Tracker (FTK) processor has been designed to perform pattern matching using the hit information of the ATLAS experiment silicon tracker. The AM is the heart of FTK and is mainly based on the use of ASICs (AM chips) designed on purpose to execute pattern matching with a high degree of parallelism. It finds track candidates at low resolution that are seeds for a full resolution track fitting. To solve the very challenging data traffic problems inside FTK, multiple board and chip designs have been performed. The currently proposed solution is named the “Serial Link Processor” and is based on an extremely powerful network of 2 Gb/s serial links. This paper reports on the design of the Serial Link Processor consisting of two types of boards, the Local Associative Memory Board (LAMB), a mezzanine where the AM chips are mounted, and the Associative Memory Board (AMB), a 9U VME board which holds and exercises four LAMBs. We report on the performance of the intermedia...

  17. The Serial Link Processor for the Fast TracKer (FTK) processor at ATLAS

    CERN Document Server

    Biesuz, Nicolo Vladi; The ATLAS collaboration; Luciano, Pierluigi; Magalotti, Daniel; Rossi, Enrico

    2015-01-01

    The Associative Memory (AM) system of the Fast Tracker (FTK) processor has been designed to perform pattern matching using the hit information of the ATLAS experiment silicon tracker. The AM is the heart of FTK and is mainly based on the use of ASICs (AM chips) designed to execute pattern matching with a high degree of parallelism. The AM system finds track candidates at low resolution that are seeds for a full resolution track fitting. To solve the very challenging data traffic problems inside FTK, multiple board and chip designs have been performed. The currently proposed solution is named the “Serial Link Processor” and is based on an extremely powerful network of 828 2 Gbit/s serial links for a total in/out bandwidth of 56 Gb/s. This paper reports on the design of the Serial Link Processor consisting of two types of boards, the Local Associative Memory Board (LAMB), a mezzanine where the AM chips are mounted, and the Associative Memory Board (AMB), a 9U VME board which holds and exercises four LAMBs. ...

  18. The Serial Link Processor for the Fast TracKer (FTK) processor at ATLAS

    CERN Document Server

    Andreani, A; The ATLAS collaboration; Beccherle, R; Beretta, M; Cipriani, R; Citraro, S; Citterio, M; Colombo, A; Crescioli, F; Dimas, D; Donati, S; Giannetti, P; Kordas, K; Lanza, A; Liberali, V; Luciano, P; Magalotti, D; Neroutsos, P; Nikolaidis, S; Piendibene, M; Sakellariou, A; Shojaii, S; Sotiropoulou, C-L; Stabile, A

    2014-01-01

    The Associative Memory (AM) system of the FTK processor has been designed to perform pattern matching using the hit information of the ATLAS silicon tracker. The AM is the heart of the FTK and it finds track candidates at low resolution that are seeds for a full resolution track fitting. To solve the very challenging data traffic problems inside the FTK, multiple designs and tests have been performed. The currently proposed solution is named the “Serial Link Processor” and is based on an extremely powerful network of 2 Gb/s serial links. This paper reports on the design of the Serial Link Processor consisting of the AM chip, an ASIC designed and optimized to perform pattern matching, and two types of boards, the Local Associative Memory Board (LAMB), a mezzanine where the AM chips are mounted, and the Associative Memory Board (AMB), a 9U VME board which holds and exercises four LAMBs. Special relevance will be given to the AMchip design that includes two custom cells optimized for low consumption. We repo...

  19. Multi Resonance Shear Mode Transducers

    Science.gov (United States)

    2016-11-21

    engineering in the single crystal lead magnesium niobate-lead titanate (PMNT) system has uncovered a very unique piezoelectric shear mode. Contrary to...ABSTRACT Crystallographic engineering of single crystal relaxor-based ferroelectrics was used to design broadband, compact, high power, low frequency...utilize the d36 shear piezoelectric coefficient, which has advantages for compact low frequency sonar transducers. The d36 cut is unique in that large

  20. Shear Alfven waves in tokamaks

    International Nuclear Information System (INIS)

    Kieras, C.E.

    1982-12-01

    Shear Alfven waves in an axisymmetric tokamak are examined within the framework of the linearized ideal MHD equations. Properties of the shear Alfven continuous spectrum are studied both analytically and numerically. Implications of these results in regards to low frequency rf heating of toroidally confined plasmas are discussed. The structure of the spatial singularities associated with these waves is determined. A reduced set of ideal MHD equations is derived to describe these waves in a very low beta plasma

  1. Nebraska wind resource assessment first year results

    Energy Technology Data Exchange (ETDEWEB)

    Hurley, P.J.F.; Vilhauer, R. [RLA Consulting, Inc., Bothell, WA (United States); Stooksbury, D. [Univ. of Nebraska, Lincoln, NE (United States)

    1996-12-31

    This paper presents the preliminary results from a wind resource assessment program in Nebraska sponsored by the Nebraska Power Association. During the first year the measured annual wind speed at 40 meters ranged from 6.5 - 7.5 m/s (14.6 - 16.8 mph) at eight stations across the state. The site selection process is discussed as well as an overview of the site characteristics at the monitoring locations. Results from the first year monitoring period including data recovery rate, directionality, average wind speeds, wind shear, and turbulence intensity are presented. Results from the eight sites are qualitatively compared with other midwest and west coast locations. 5 figs., 2 tabs.

  2. Wind power

    International Nuclear Information System (INIS)

    2006-06-01

    This road-map proposes by the Group Total aims to inform the public on the wind power. It presents the principles, the technology takes off, its applications and technology focus, the global market trends and the outlooks and Total commitments in the domain. (A.L.B.)

  3. Wind energy

    International Nuclear Information System (INIS)

    Portilla S, L.A.

    1995-01-01

    The wind energy or eolic energy is a consequence of solar energy, the one which is absorbed by the atmosphere and is transformed into energy of movement of large bulks of air. In this process the atmosphere acts as the filter to the solar radiation and demotes the ultraviolet beams that result fatal to life in the Earth. The ionosphere is the most external cap and this is ionized by means of absorption process of ultraviolet radiation arising to the Sun. The atmosphere also acts as a trap to the infrared radiation, it that results from the continual process of energetic degradation. In this way, the interaction between Earth - Atmospheres, is behaved as a great greenhouse, maintaining the constant temperatures, including in the dark nights. Processes as the natural convection (that occur by the thermodynamic phenomenon), equatorial calmness, trade winds and against trade winds and global distribution of the air currents are described. The other hand, techniques as the transformation of the wind into energy and its parameters also are shown

  4. Wind Energy Japan

    Energy Technology Data Exchange (ETDEWEB)

    Komatsubara, Kazuyo [Embassy of the Kingdom of the Netherlands, Tokyo (Japan)

    2012-06-15

    An overview is given of wind energy in Japan: Background; Wind Energy in Japan; Japanese Wind Energy Industry; Government Supports; Useful Links; Major Japanese Companies; Profiles of Major Japanese Companies; Major Wind Energy Projects in Japan.

  5. Shear viscosity of an ordering latex suspension

    NARCIS (Netherlands)

    van der Vorst, A.M.; van der Vorst, B.; van den Ende, Henricus T.M.; Aelmans, N.J.J.; Mellema, J.

    1997-01-01

    The shear viscosity of a latex which is ordered at rest is studied as a function of the shear rate and volume fraction. At low shear rates and for moderate to high volume fractions, the flow curves show dynamic yield behavior which disappears below a volume fraction of 8%. At high shear rates, the

  6. Experimental observation of shear thickening oscillation

    DEFF Research Database (Denmark)

    Nagahiro, Shin-ichiro; Nakanishi, Hiizu; Mitarai, Namiko

    2013-01-01

    We report experimental observations of the shear thickening oscillation, i.e. the spontaneous macroscopic oscillation in the shear flow of severe shear thickening fluid. Using a density-matched starch-water mixture, in the cylindrical shear flow of a few centimeters flow width, we observed...

  7. Effect of atmospheric turbulence on wind turbine wakes: An LES study

    Science.gov (United States)

    Wu, Y. T.; Porté-Agel, F.

    2012-04-01

    A comprehensive numerical study of atmospheric turbulence effect on wind-turbine wakes is presented. Large-eddy simulations of neutrally-stratified boundary layers developed over different flat surfaces (forest, farmland, grass, and snow) are performed to investigate the structure of turbine wakes in cases where the incident flows to the wind turbine have the same mean velocity at the hub height but different mean wind shears and turbulence intensity levels. The simulation results show that the different wind shears and turbulence intensity levels of the incoming flow lead to considerable influence on the spatial distribution of the mean velocity deficit, turbulence intensity, and turbulent shear stress in the wake region downstream of the turbine. In general, the recovery of the turbine-induced wake (velocity deficit) is faster and the turbulence intensity level is higher and has its maximum closer to the turbine for wakes of turbines over rougher terrain. In order to isolate the effect of turbulence intensity from that of wind shear, simulations have also been performed with synthetic inflow velocity fields that have the same mean wind shear but different turbulence intensity levels. We find that the effect of the inflow turbulence intensity on the wake recovery and turbulence levels is stronger than that of the mean shear.

  8. THOR Fields and Wave Processor - FWP

    Science.gov (United States)

    Soucek, Jan; Rothkaehl, Hanna; Ahlen, Lennart; Balikhin, Michael; Carr, Christopher; Dekkali, Moustapha; Khotyaintsev, Yuri; Lan, Radek; Magnes, Werner; Morawski, Marek; Nakamura, Rumi; Uhlir, Ludek; Yearby, Keith; Winkler, Marek; Zaslavsky, Arnaud

    2017-04-01

    If selected, Turbulence Heating ObserveR (THOR) will become the first spacecraft mission dedicated to the study of plasma turbulence. The Fields and Waves Processor (FWP) is an integrated electronics unit for all electromagnetic field measurements performed by THOR. FWP will interface with all THOR fields sensors: electric field antennas of the EFI instrument, the MAG fluxgate magnetometer, and search-coil magnetometer (SCM), and perform signal digitization and on-board data processing. FWP box will house multiple data acquisition sub-units and signal analyzers all sharing a common power supply and data processing unit and thus a single data and power interface to the spacecraft. Integrating all the electromagnetic field measurements in a single unit will improve the consistency of field measurement and accuracy of time synchronization. The scientific value of highly sensitive electric and magnetic field measurements in space has been demonstrated by Cluster (among other spacecraft) and THOR instrumentation will further improve on this heritage. Large dynamic range of the instruments will be complemented by a thorough electromagnetic cleanliness program, which will prevent perturbation of field measurements by interference from payload and platform subsystems. Taking advantage of the capabilities of modern electronics and the large telemetry bandwidth of THOR, FWP will provide multi-component electromagnetic field waveforms and spectral data products at a high time resolution. Fully synchronized sampling of many signals will allow to resolve wave phase information and estimate wavelength via interferometric correlations between EFI probes. FWP will also implement a plasma resonance sounder and a digital plasma quasi-thermal noise analyzer designed to provide high cadence measurements of plasma density and temperature complementary to data from particle instruments. FWP will rapidly transmit information about magnetic field vector and spacecraft potential to the

  9. Wind Loads on Structures

    DEFF Research Database (Denmark)

    Dyrbye, Claes; Hansen, Svend Ole

    Wind loads have to be taken into account when designing civil engineering structures. The wind load on structures can be systematised by means of the wind load chain: wind climate (global), terrain (wind at low height), aerodynamic response (wind load to pressure), mechanical response (wind...... pressure to structural response) and design criteria. Starting with an introduction of the wind load chain, the book moves on to meteorological considerations, atmospheric boundary layer, static wind load, dynamic wind load and scaling laws used in wind-tunnel tests. The dynamic wind load covers vibrations...... induced by wind turbulence, vortex shedding, flutter and galloping. The book gives a comprehensive treatment of wind effects on structures and it will be useful for consulting engineers designing wind-sensitive structures. It will also be valuable for students of civil engineering as textbook...

  10. Application and improvement of Raupach's shear stress partitioning model

    Science.gov (United States)

    Walter, B. A.; Lehning, M.; Gromke, C.

    2012-12-01

    Aeolian processes such as the entrainment, transport and redeposition of sand, soil or snow are able to significantly reshape the earth's surface. In times of increasing desertification and land degradation, often driven by wind erosion, investigations of aeolian processes become more and more important in environmental sciences. The reliable prediction of the sheltering effect of vegetation canopies against sediment erosion, for instance, is a clear practical application of such investigations to identify suitable and sustainable counteractive measures against wind erosion. This study presents an application and improvement of a theoretical model presented by Raupach (Boundary-Layer Meteorology, 1992, Vol.60, 375-395 and Journal of Geophysical Research, 1993, Vol.98, 3023-3029) which allows for quantifying the sheltering effect of vegetation against sediment erosion. The model predicts the shear stress ratios τS'/τ and τS''/τ. Here, τS is the part of the total shear stress τ that acts on the ground beneath the plants. The spatial peak τS'' of the surface shear stress is responsible for the onset of particle entrainment whereas the spatial mean τS' can be used to quantify particle mass fluxes. The precise and accurate prediction of these quantities is essential when modeling wind erosion. Measurements of the surface shear stress distributions τS(x,y) on the ground beneath live vegetation canopies (plant species: lolium perenne) were performed in a controlled wind tunnel environment to determine the model parameters and to evaluate the model performance. Rigid, non-porous wooden blocks instead of the plants were additionally tested for the purpose of comparison, since previous wind tunnel studies used exclusively artificial plant imitations for their experiments on shear stress partitioning. The model constant c, which is needed to determine the total stress τ for a canopy of interest and which remained rather unspecified to date, was found to be c ≈ 0

  11. Wind Tunnel Modeling Of Wind Flow Over Complex Terrain

    Science.gov (United States)

    Banks, D.; Cochran, B.

    2010-12-01

    , vortex shedding, and local turbulence intensity and wind shear values. To achieve accurate results, attention must of course be paid to issues such as ensuring Reynolds number independence, avoiding blockage issues, and properly matching the velocity power spectrum, but once this is done, the laws of fluid mechanics take care of the rest. There will not be an overproduction of turbulent kinetic energy at the top of escarpments, or unacceptable dissipation of inlet turbulence levels. Modern atmospheric boundary layer wind tunnels are also often used to provide validation data for evaluating the performance of CFD model in complex flow environments. Present day computers have further increased the quality and quantity of data that can be economically obtained in a timely manner, for example through wind speed measurement using a computer controlled 3-D measurement positioning system Given this accuracy and widespread acceptance, it is perhaps surprising that ours was the only wind tunnel model in the Bolund blind experiment, an indication of how seldom physical modelling is used when estimating terrain effect for wind farms. In demonstrating how the Bolund test was modeled, this presentation will provide background on wind tunnel testing, including the governing scaling parameters. And we’ll see how our results compared to the full scale tests.

  12. Digital signal processor for silicon audio playback devices; Silicon audio saisei kikiyo digital signal processor

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    The digital audio signal processor (DSP) TC9446F series has been developed silicon audio playback devices with a memory medium of, e.g., flash memory, DVD players, and AV devices, e.g., TV sets. It corresponds to AAC (advanced audio coding) (2ch) and MP3 (MPEG1 Layer3), as the audio compressing techniques being used for transmitting music through an internet. It also corresponds to compressed types, e.g., Dolby Digital, DTS (digital theater system) and MPEG2 audio, being adopted for, e.g., DVDs. It can carry a built-in audio signal processing program, e.g., Dolby ProLogic, equalizer, sound field controlling, and 3D sound. TC9446XB has been lined up anew. It adopts an FBGA (fine pitch ball grid array) package for portable audio devices. (translated by NEDO)

  13. Energy Storage System with Voltage Equalization Strategy for Wind Energy Conversion

    OpenAIRE

    Tsai, Cheng-Tao

    2012-01-01

    In this paper, an energy storage system with voltage equalization strategy for wind energy conversion is presented. The proposed energy storage system provides a voltage equalization strategy for series-connected lead-acid batteries to increase their total storage capacity and lifecycle. In order to draw the maximum power from the wind energy, a perturbation-and-observation method and digital signal processor (DSP) are incorporated to implement maximum power point tracking (MPPT) algorithm an...

  14. [Improving speech comprehension using a new cochlear implant speech processor].

    Science.gov (United States)

    Müller-Deile, J; Kortmann, T; Hoppe, U; Hessel, H; Morsnowski, A

    2009-06-01

    The aim of this multicenter clinical field study was to assess the benefits of the new Freedom 24 sound processor for cochlear implant (CI) users implanted with the Nucleus 24 cochlear implant system. The study included 48 postlingually profoundly deaf experienced CI users who demonstrated speech comprehension performance with their current speech processor on the Oldenburg sentence test (OLSA) in quiet conditions of at least 80% correct scores and who were able to perform adaptive speech threshold testing using the OLSA in noisy conditions. Following baseline measures of speech comprehension performance with their current speech processor, subjects were upgraded to the Freedom 24 speech processor. After a take-home trial period of at least 2 weeks, subject performance was evaluated by measuring the speech reception threshold with the Freiburg multisyllabic word test and speech intelligibility with the Freiburg monosyllabic word test at 50 dB and 70 dB in the sound field. The results demonstrated highly significant benefits for speech comprehension with the new speech processor. Significant benefits for speech comprehension were also demonstrated with the new speech processor when tested in competing background noise.In contrast, use of the Abbreviated Profile of Hearing Aid Benefit (APHAB) did not prove to be a suitably sensitive assessment tool for comparative subjective self-assessment of hearing benefits with each processor. Use of the preprocessing algorithm known as adaptive dynamic range optimization (ADRO) in the Freedom 24 led to additional improvements over the standard upgrade map for speech comprehension in quiet and showed equivalent performance in noise. Through use of the preprocessing beam-forming algorithm BEAM, subjects demonstrated a highly significant improved signal-to-noise ratio for speech comprehension thresholds (i.e., signal-to-noise ratio for 50% speech comprehension scores) when tested with an adaptive procedure using the Oldenburg

  15. Focusing of Shear Shock Waves

    Science.gov (United States)

    Giammarinaro, Bruno; Espíndola, David; Coulouvrat, François; Pinton, Gianmarco

    2018-01-01

    Focusing is a ubiquitous way to transform waves. Recently, a new type of shock wave has been observed experimentally with high-frame-rate ultrasound: shear shock waves in soft solids. These strongly nonlinear waves are characterized by a high Mach number, because the shear wave velocity is much slower, by 3 orders of magnitude, than the longitudinal wave velocity. Furthermore, these waves have a unique cubic nonlinearity which generates only odd harmonics. Unlike longitudinal waves for which only compressional shocks are possible, shear waves exhibit cubic nonlinearities which can generate positive and negative shocks. Here we present the experimental observation of shear shock wave focusing, generated by the vertical motion of a solid cylinder section embedded in a soft gelatin-graphite phantom to induce linearly vertically polarized motion. Raw ultrasound data from high-frame-rate (7692 images per second) acquisitions in combination with algorithms that are tuned to detect small displacements (approximately 1 μ m ) are used to generate quantitative movies of gel motion. The features of shear shock wave focusing are analyzed by comparing experimental observations with numerical simulations of a retarded-time elastodynamic equation with cubic nonlinearities and empirical attenuation laws for soft solids.

  16. Stellar winds

    International Nuclear Information System (INIS)

    Weymann, R.J.

    1978-01-01

    It is known that a steady outflow of material at comparable rates of mass loss but vastly different speeds is now known to be ubiquitous phenomenon among both the luminous hot stars and the luminous but cool red giants. The flows are probably massive enough in both cases to give rise to significant effects on stellar evolution and the mass balance between stars and the interstellar medium. The possible mechanisms for these phenomena as well as the methods of observation used are described. In particular, the mass-loss processes in stars other than the sun that also involve a steady flow of matter are considered. The evidence for their existence is described, and then the question of whether the process thought to produce the solar wind is also responsible for producing these stellar winds is explored

  17. A programmable systolic trigger processor for FERA bus data

    International Nuclear Information System (INIS)

    Appelquist, G.; Hovander, B.; Sellden, B.; Bohm, C.

    1993-01-01

    A generic CAMAC trigger processor module for fast processing of large amounts of ADC data, has been designed. This module has been realised using complex programmable gate arrays (LCAs from XILINX). The gate arrays have been connected to memories and multipliers in such a way that different gate array configurations can cover a wide range of module applications. Using the module, it is possible to construct complex trigger processors. The module uses both the fast ECL FERA bus and the CAMAC bus for inputs and outputs. The latter, however is primarily used for setup and control but may also be used for data output. Large numbers of ADCs can be served by a hierarchical arrangement of trigger processor modules, processing ADC data with pipe-line arithmetics producing the final result at the apex of the pyramid. The trigger decision will be transmitted to the data acquisition system via a logic signal while numeric results may be extracted by the CAMAC controller. The trigger processor was originally developed for the proposed neutral particle search experiment at CERN, NUMASS. There it was designed to serve as a second level trigger processor. It was required to correct all ADC raw data for efficiency and pedestal, calculate the total calorimeter energy, obtain the optimal time of flight data and calculate the particle mass. A suitable mass-cut would then deliver the trigger decision. More complex triggers were also considered. (orig.)

  18. Quality assurance in the use of automatic processor equipment

    International Nuclear Information System (INIS)

    Cheung, Kyung Mo; Cheung, Hwan

    1986-01-01

    In recent years the concept of quality assurance in radiology has become as popular as the apple pie. Unfortunately, however, the concept means different things to different people. Furthermore, the methods proposed are very many and diversified. The present article will focus on the quality assurance in the use of the automatic processor equipment. With automatic film processors, there are many factors which can cause a reduction in image quality, but they center on the following: (1) chemical solutions, (2) mechanical parts of the equipment, and (3) faults in processing and its management, which are discussed in some detail. Quality assurance helps to ensure satisfactory performance of the automatic processor equipment for high image quality. The following record keeping is required: - For equipment quality control: 1) daily maintenance record, 2) weekly maintenance record. 3) monthly main tenancy record, and 4) ph value record based on tests with litmus paper. - Training of the personal is required in the following subjects: 1) safety in processing operation, 2) management of the automatic processor equipment (a manual will be used), 3) acquisition and absorption of latest information on the automatic processor equipment system. - The procedures described above are considered necessary for efficient processing operations which will give high and uniform image quality

  19. A programmable systolic trigger processor for FERA bus data

    International Nuclear Information System (INIS)

    Appelquist, G.; Hovander, B.; Sellden, B.; Bohm, C.

    1992-09-01

    A generic CAMAC based trigger processor module for fast processing of large amounts of ADC data, has been designed. This module has been realised using complex programmable gate arrays (LCAs from XILINX). The gate arrays have been connected to memories and multipliers in such a way that different gate array configurations can cover a wide range of module applications. Using this module, it is possible to construct complex trigger processors. The module uses both the fast ECL FERA bus and the CAMAC bus for inputs and outputs. The latter, however, is primarily used for set-up and control but may also be used for data output. Large numbers of ADCs can be served by a hierarchical arrangement of trigger processor modules, processing ADC data with pipe-line arithmetics producing the final result at the apex of the pyramid. The trigger decision will be transmitted to the data acquisition system via a logic signal while numeric results may be extracted by the CAMAC controller. The trigger processor was originally developed for the proposed neutral particle search experiment at CERN, NUMASS. There it was designed to serve as a second level trigger processor. It was required to correct all ADC raw data for efficiency and pedestal, calculate the total calorimeter energy, obtain the optimal time of flight data and calculate the particle mass. A suitable mass cut would then deliver the trigger decision. More complex triggers were also considered. (au)

  20. Wind conditions for wind turbine design

    Energy Technology Data Exchange (ETDEWEB)

    Maribo Pedersen, B.

    1999-04-01

    Delegates from Europe and USA attended the meeting and discussed general aspects of wind conditions for wind turbine design. The subjects and the presented papers covered a very broad range of aspects of wind conditions and related influence on the wind turbine. (EHS)

  1. Surface shear stress dependence of gas transfer velocity parameterizations using DNS

    Science.gov (United States)

    Fredriksson, S. T.; Arneborg, L.; Nilsson, H.; Handler, R. A.

    2016-10-01

    Air-water gas-exchange is studied in direct numerical simulations (DNS) of free-surface flows driven by natural convection and weak winds. The wind is modeled as a constant surface-shear-stress and the gas-transfer is modeled via a passive scalar. The simulations are characterized via a Richardson number Ri=Bν/u*4 where B, ν, and u* are the buoyancy flux, kinematic viscosity, and friction velocity respectively. The simulations comprise 0water gas-exchange, (ii) determine, for a given buoyancy flux, the wind speed at which gas transfer becomes primarily shear driven, and (iii) find an expression for the gas-transfer velocity for flows driven by both convection and shear. The evaluated gas transfer-velocity parametrizations are based on either the rate of turbulent kinetic energy dissipation, the surface flow-divergence, the surface heat-flux, or the wind-speed. The parametrizations based on dissipation or divergence show an unfavorable Ri dependence for flows with combined forcing whereas the parametrization based on heat-flux only shows a limited Ri dependence. The two parametrizations based on wind speed give reasonable estimates for the transfer-velocity, depending however on the surface heat-flux. The transition from convection- to shear-dominated gas-transfer-velocity is shown to be at Ri≈0.004. Furthermore, the gas-transfer is shown to be well represented by two different approaches: (i) additive forcing expressed as kg,sum =AShearu*|Ri/Ric+1| 1/4Sc-n where Ric=|AShear/ABuoy|4, and (ii) either buoyancy or shear dominated expressed as, kg=ABuoy|Bν| 1/4Sc-n, Ri>Ric or kg=AShearu*Sc-n, Riwater surface-characteristics.

  2. Calculating wind profiles above a pine forest

    International Nuclear Information System (INIS)

    Murphy, C.E.; Dexter, A.H.

    1978-01-01

    A major part of the environmental transport work at the Savannah River Laboratory (SRL) involves the dispersion of airborne pollutants (aerosols and gases). A major part of the Savannah River Plant (SRP) site is covered with pine forests. Because forests are ''rough'' surfaces which increase turbulence and surface shear stress and, hence, alter the dispersion patterns, the nature of the wind profiles above the forests is being investigated. Two methods for determining the surface shear caused by the atmospheric wind field over a pine plantation were compared. Friction velocity [the square root of the ratio of shearing stress over the density of air; U/sub */ = (stress/density)1/2] calculated by eddy correlation was compared with friction velocity calculated from wind profiles. Data from the first five meters above the pine forest were compared. The data indicated that there was no significant difference in the mean friction velocity measured by each method. However, there were large differences in individual values calculated by the two methods for many of the measurement periods. An attempt was made to reconcile the differences in the measured values, but no satisfactory method was found

  3. Squirming through shear thinning fluids

    Science.gov (United States)

    Datt, Charu; Zhu, Lailai; Elfring, Gwynn J.; Pak, On Shun

    2015-11-01

    Many microorganisms find themselves surrounded by fluids which are non-Newtonian in nature; human spermatozoa in female reproductive tract and motile bacteria in mucosa of animals are common examples. These biological fluids can display shear-thinning rheology whose effects on the locomotion of microorganisms remain largely unexplored. Here we study the self-propulsion of a squirmer in shear-thinning fluids described by the Carreau-Yasuda model. The squirmer undergoes surface distortions and utilizes apparent slip-velocities around its surface to swim through a fluid medium. In this talk, we will discuss how the nonlinear rheological properties of a shear-thinning fluid affect the propulsion of a swimmer compared with swimming in Newtonian fluids.

  4. Shear Brillouin light scattering microscope.

    Science.gov (United States)

    Kim, Moonseok; Besner, Sebastien; Ramier, Antoine; Kwok, Sheldon J J; An, Jeesoo; Scarcelli, Giuliano; Yun, Seok Hyun

    2016-01-11

    Brillouin spectroscopy has been used to characterize shear acoustic phonons in materials. However, conventional instruments had slow acquisition times over 10 min per 1 mW of input optical power, and they required two objective lenses to form a 90° scattering geometry necessary for polarization coupling by shear phonons. Here, we demonstrate a confocal Brillouin microscope capable of detecting both shear and longitudinal phonons with improved speeds and with a single objective lens. Brillouin scattering spectra were measured from polycarbonate, fused quartz, and borosilicate in 1-10 s at an optical power level of 10 mW. The elastic constants, phonon mean free path and the ratio of the Pockels coefficients were determined at microscopic resolution.

  5. SHEAR ACCELERATION IN EXPANDING FLOWS

    Energy Technology Data Exchange (ETDEWEB)

    Rieger, F. M. [ZAH, Institut für Theoretische Astrophysik, Universität Heidelberg, Philosophenweg 12, D-69120 Heidelberg (Germany); Duffy, P., E-mail: frank.rieger@mpi-hd.mpg.de, E-mail: peter.duffy@ucd.ie [University College Dublin, Belfield, Dublin 4 (Ireland)

    2016-12-10

    Shear flows are naturally expected to occur in astrophysical environments and potential sites of continuous non-thermal Fermi-type particle acceleration. Here we investigate the efficiency of expanding relativistic outflows to facilitate the acceleration of energetic charged particles to higher energies. To this end, the gradual shear acceleration coefficient is derived based on an analytical treatment. The results are applied to the context of the relativistic jets from active galactic nuclei. The inferred acceleration timescale is investigated for a variety of conical flow profiles (i.e., power law, Gaussian, Fermi–Dirac) and compared to the relevant radiative and non-radiative loss timescales. The results exemplify that relativistic shear flows are capable of boosting cosmic-rays to extreme energies. Efficient electron acceleration, on the other hand, requires weak magnetic fields and may thus be accompanied by a delayed onset of particle energization and affect the overall jet appearance (e.g., core, ridge line, and limb-brightening).

  6. Structural Aspects of Railway Truss Bridges Affecting Transverse Shear Forces in Steel-Concrete Composite Decks

    Directory of Open Access Journals (Sweden)

    Siekierski Wojciech

    2015-03-01

    Full Text Available At the steel-concrete interface, the horizontal shear forces that are transverse to cross beams occur due to joint action of the steel-concrete composite deck and the truss girders. Numerical analysis showed that values of the forces are big in comparison to the longitudinal shear forces. In both cases extreme force values occur near side edges of a slab. The paper studies possibilities of reduction of these shear forces by structural alterations of the following: rigidity of a concrete slab, arrangement of a wind bracing, arrangement of concrete slab expansion joints. An existing railway truss bridge span has been analysed. Numerical analysis shows that it is possible to reduce the values of shear forces transverse to cross beams. It may reach 20% near the side edges of slabs and 23% in the centre of slab width.

  7. Air permeability for a concrete shear wall after a damaging seismic load simulation cycle

    International Nuclear Information System (INIS)

    Girrens, S.P.; Farrar, C.R.

    1991-01-01

    A study was initiated to estimate air leakage, driven by wind-generated pressure gradients, from a seismically damaged concrete structure. This paper describes an experiment performed to measure the air permeability in a reinforced concrete shear wall, both before and after simulated seismic loading. Static load-cycle testing was used to simulate earthquake loading. Permeability measurements were made by pressurizing one side of the shear wall above atmospheric conditions and recording the transient-pressure decay. Air permeability measurements made on the shear wall before loading fell within the range of values for concrete permeability published in the literature. As long as the structure exhibited linear load-displacement response, no variation in the air permeability was detected. However, experimental results indicate that the air permeability in the shear wall increased by a factor of 40 after the wall had been damaged (cracked)

  8. Shear rheology of extended nanoparticles

    Science.gov (United States)

    Petersen, Matt K.; Lane, J. Matthew D.; Grest, Gary S.

    2010-07-01

    Nonequilibrium molecular-dynamics simulations are presented for the shear rheology of suspensions of extended “jack”-shaped nanoparticles in an explicit solvent. The shear viscosity is measured for two jack-shaped nanoparticle suspensions for volume fractions from 0.01 to 0.15 and compared to spherical nanoparticles of the same mass. Large differences, in some cases, orders of magnitude, are observed for both the equilibrium viscosity and diffusion constant as the shape of the nanoparticle is varied. The source of enhanced viscosity is the very large effective volume swept out by these extended nanoparticles which allows them to become highly entangled even at low volume fraction.

  9. Stepping motor control processor reference manual. Volume I

    Energy Technology Data Exchange (ETDEWEB)

    Holloway, F.W.; VanArsdall, P.J.; Suski, G.J.; Gant, R.G.; Rash, M.

    1980-06-06

    This manual is intended to serve several purposes. The first goal is to describe the capabilities and operation of the SMC processor package from an operator or user point of view. Secondly, the manual will describe in some detail the basic hardware elements and how they can be used effectively to implement a step motor control system. Practical information on the use, installation and checkout of the hardware set is presented in the following sections along with programming suggestions. Available related system software is described in this manual for reference and as an aid in understanding the system architecture. Section two presents an overview and operations manual of the SMC processor describing its composition and functional capabilities. Section three contains hardware descriptions in some detail for the LLL-designed hardware used in the SMC processor. Basic theory of operation and important features are explained.

  10. Safety-Critical Java on a Time-predictable Processor

    DEFF Research Database (Denmark)

    Korsholm, Stephan Erbs; Schoeberl, Martin; Puffitsch, Wolfgang

    2015-01-01

    For real-time systems the whole execution stack needs to be time-predictable and analyzable for the worst-case execution time (WCET). This paper presents a time-predictable platform for safety-critical Java. The platform consists of (1) the Patmos processor, which is a time-predictable processor......; (2) a C compiler for Patmos with support for WCET analysis; (3) the HVM, which is a Java-to-C compiler; (4) the HVM-SCJ implementation which supports SCJ Level 0, 1, and 2 (for both single and multicore platforms); and (5) a WCET analysis tool. We show that real-time Java programs translated to C...... and compiled to a Patmos binary can be analyzed by the AbsInt aiT WCET analysis tool. To the best of our knowledge the presented system is the second WCET analyzable real-time Java system; and the first one on top of a RISC processor....

  11. Safety-critical Java on a time-predictable processor

    DEFF Research Database (Denmark)

    Korsholm, Stephan E.; Schoeberl, Martin; Puffitsch, Wolfgang

    2015-01-01

    For real-time systems the whole execution stack needs to be time-predictable and analyzable for the worst-case execution time (WCET). This paper presents a time-predictable platform for safety-critical Java. The platform consists of (1) the Patmos processor, which is a time-predictable processor......; (2) a C compiler for Patmos with support for WCET analysis; (3) the HVM, which is a Java-to-C compiler; (4) the HVM-SCJ implementation which supports SCJ Level 0, 1, and 2 (for both single and multicore platforms); and (5) a WCET analysis tool. We show that real-time Java programs translated to C...... and compiled to a Patmos binary can be analyzed by the AbsInt aiT WCET analysis tool. To the best of our knowledge the presented system is the second WCET analyzable real-time Java system; and the first one on top of a RISC processor....

  12. Processor farming in two-level analysis of historical bridge

    Science.gov (United States)

    Krejčí, T.; Kruis, J.; Koudelka, T.; Šejnoha, M.

    2017-11-01

    This contribution presents a processor farming method in connection with a multi-scale analysis. In this method, each macro-scopic integration point or each finite element is connected with a certain meso-scopic problem represented by an appropriate representative volume element (RVE). The solution of a meso-scale problem provides then effective parameters needed on the macro-scale. Such an analysis is suitable for parallel computing because the meso-scale problems can be distributed among many processors. The application of the processor farming method to a real world masonry structure is illustrated by an analysis of Charles bridge in Prague. The three-dimensional numerical model simulates the coupled heat and moisture transfer of one half of arch No. 3. and it is a part of a complex hygro-thermo-mechanical analysis which has been developed to determine the influence of climatic loading on the current state of the bridge.

  13. First Results of an “Artificial Retina” Processor Prototype

    International Nuclear Information System (INIS)

    Cenci, Riccardo; Bedeschi, Franco; Marino, Pietro; Morello, Michael J.; Ninci, Daniele; Piucci, Alessio; Punzi, Giovanni; Ristori, Luciano; Spinella, Franco; Stracka, Simone; Tonelli, Diego; Walsh, John

    2016-01-01

    We report on the performance of a specialized processor capable of reconstructing charged particle tracks in a realistic LHC silicon tracker detector, at the same speed of the readout and with sub-microsecond latency. The processor is based on an innovative pattern-recognition algorithm, called “artificial retina algorithm”, inspired from the vision system of mammals. A prototype of the processor has been designed, simulated, and implemented on Tel62 boards equipped with high-bandwidth Altera Stratix III FPGA devices. The prototype is the first step towards a real-time track reconstruction device aimed at processing complex events of high-luminosity LHC experiments at 40 MHz crossing rate

  14. A Josephson systolic array processor for multiplication/addition operations

    International Nuclear Information System (INIS)

    Morisue, M.; Li, F.Q.; Tobita, M.; Kaneko, S.

    1991-01-01

    A novel Josephson systolic array processor to perform multiplication/addition operations is proposed. The systolic array processor proposed here consists of a set of three kinds of interconnected cells of which main circuits are made by using SQUID gates. A multiplication of 2 bits by 2 bits is performed in the single cell at a time and an addition of three data with two bits is simultaneously performed in an another type of cell. Furthermore, information in this system flows between cells in a pipeline fashion so that a high performance can be achieved. In this paper the principle of Josephson systolic array processor is described in detail and the simulation results are illustrated for the multiplication/addition of (4 bits x 4 bits + 8 bits). The results show that these operations can be executed in 330ps

  15. Embedded Processor Based Automatic Temperature Control of VLSI Chips

    Directory of Open Access Journals (Sweden)

    Narasimha Murthy Yayavaram

    2009-01-01

    Full Text Available This paper presents embedded processor based automatic temperature control of VLSI chips, using temperature sensor LM35 and ARM processor LPC2378. Due to the very high packing density, VLSI chips get heated very soon and if not cooled properly, the performance is very much affected. In the present work, the sensor which is kept very near proximity to the IC will sense the temperature and the speed of the fan arranged near to the IC is controlled based on the PWM signal generated by the ARM processor. A buzzer is also provided with the hardware, to indicate either the failure of the fan or overheating of the IC. The entire process is achieved by developing a suitable embedded C program.

  16. Optimal partitioning of random programs across two processors

    Science.gov (United States)

    Nicol, David M.

    1989-01-01

    The optimal partitioning of random-distributed programs is discussed. It is concluded that the optimal partitioning of a homogeneous random program over a homogeneous distributed system either assigns all modules to a single processor, or distributes the modules as evenly as possible among all processors. The analysis rests heavily on the approximation which equates the expected maximum of a set of independent random variables with the set's maximum expectation. The results are strengthened by providing an approximation-free proof of this result for two processors under general conditions on the module execution time distribution. It is also shown that use of this approximation causes two of the previous central results to be false.

  17. Token-Aware Completion Functions for Elastic Processor Verification

    Directory of Open Access Journals (Sweden)

    Sudarshan K. Srinivasan

    2009-01-01

    Full Text Available We develop a formal verification procedure to check that elastic pipelined processor designs correctly implement their instruction set architecture (ISA specifications. The notion of correctness we use is based on refinement. Refinement proofs are based on refinement maps, which—in the context of this problem—are functions that map elastic processor states to states of the ISA specification model. Data flow in elastic architectures is complicated by the insertion of any number of buffers in any place in the design, making it hard to construct refinement maps for elastic systems in a systematic manner. We introduce token-aware completion functions, which incorporate a mechanism to track the flow of data in elastic pipelines, as a highly automated and systematic approach to construct refinement maps. We demonstrate the efficiency of the overall verification procedure based on token-aware completion functions using six elastic pipelined processor models based on the DLX architecture.

  18. Modal Processor Effects Inspired by Hammond Tonewheel Organs

    Directory of Open Access Journals (Sweden)

    Kurt James Werner

    2016-06-01

    Full Text Available In this design study, we introduce a novel class of digital audio effects that extend the recently introduced modal processor approach to artificial reverberation and effects processing. These pitch and distortion processing effects mimic the design and sonics of a classic additive-synthesis-based electromechanical musical instrument, the Hammond tonewheel organ. As a reverb effect, the modal processor simulates a room response as the sum of resonant filter responses. This architecture provides precise, interactive control over the frequency, damping, and complex amplitude of each mode. Into this framework, we introduce two types of processing effects: pitch effects inspired by the Hammond organ’s equal tempered “tonewheels”, “drawbar” tone controls, vibrato/chorus circuit, and distortion effects inspired by the pseudo-sinusoidal shape of its tonewheels and electromagnetic pickup distortion. The result is an effects processor that imprints the Hammond organ’s sonics onto any audio input.

  19. Stepping motor control processor reference manual. Volume I

    International Nuclear Information System (INIS)

    Holloway, F.W.; VanArsdall, P.J.; Suski, G.J.; Gant, R.G.; Rash, M.

    1980-01-01

    This manual is intended to serve several purposes. The first goal is to describe the capabilities and operation of the SMC processor package from an operator or user point of view. Secondly, the manual will describe in some detail the basic hardware elements and how they can be used effectively to implement a step motor control system. Practical information on the use, installation and checkout of the hardware set is presented in the following sections along with programming suggestions. Available related system software is described in this manual for reference and as an aid in understanding the system architecture. Section two presents an overview and operations manual of the SMC processor describing its composition and functional capabilities. Section three contains hardware descriptions in some detail for the LLL-designed hardware used in the SMC processor. Basic theory of operation and important features are explained

  20. An intercomparison of Canadian external dosimetry processors for radiation protection

    International Nuclear Information System (INIS)

    1989-10-01

    The five Canadian external dosimetry processors have participated in a two-stage intercomparison. The first stage involved dosimeters to known radiation fields under controlled laboratory conditions. The second stage involved exposing dosimeters to radiation fields in power reactor working environments. The results for each stage indicated the dose reported by each processor relative to an independently determined dose and relative to the others. The results of the intercomparisons confirm the original supposition: namely that the average differences in reported dose among five processors are much less than the uncertainty limits recommended by the ICRP. This report provides a description of the experimental methods as well as a discussion of the results for each stage. The report also includes a set of recommendations

  1. The ATLAS Level-1 Central Trigger Processor (CTP)

    CERN Document Server

    Spiwoks, Ralf; Ellis, Nick; Farthouat, P; Gällnö, P; Haller, J; Krasznahorkay, A; Maeno, T; Pauly, T; Pessoa-Lima, H; Resurreccion-Arcas, I; Schuler, G; De Seixas, J M; Torga-Teixeira, R; Wengler, T

    2005-01-01

    The ATLAS Level-1 Central Trigger Processor (CTP) combines information from calorimeter and muon trigger processors and makes the final Level-1 Accept (L1A) decision on the basis of lists of selection criteria (trigger menus). In addition to the event-selection decision, the CTP also provides trigger summary information to the Level-2 trigger and the data acquisition system. It further provides accumulated and bunch-by-bunch scaler data for monitoring of the trigger, detector and beam conditions. The CTP is presented and results are shown from tests with the calorimeter adn muon trigger processors connected to detectors in a particle beam, as well as from stand-alone full-system tests in the laboratory which were used to validate the CTP.

  2. Shear strength of non-shear reinforced concrete elements

    DEFF Research Database (Denmark)

    Hoang, Cao linh

    1997-01-01

    . The position of the crack in which sliding takes place is determined by the crack sliding model developed by Jin-Ping Zhang. The theoretical calculations are compared with test results reported in the literature. A good agreement has been found.A simplified method to calculate the shear capacity of T...

  3. Wind Technologies & Evolving Opportunities (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Robichaud, R.

    2014-07-01

    This presentation covers opportunities for wind technology; wind energy market trends; an overview of the National Wind Technology Center near Boulder, Colorado; wind energy price and cost trends; wind turbine technology improvements; and wind resource characterization improvements.

  4. The Brazier effect in wind turbine blades and its influence on design

    DEFF Research Database (Denmark)

    Jensen, Find Mølholt; Weaver, P.M.; Cecchini, L.S.

    2012-01-01

    Critical failure was observed in the shear web of a wind turbine blade during a full-scale testing. This failure occurred immediately before the ultimate failure and was partly caused by buckling and non-linear cross-sectional strain. Experimental values had been used to compare and validate both...... numerical and semi-analytical results in the analysis of the shear webs in the reinforced wind turbine blade. Only elastic material behaviour was analysed, and attention was primarily focused on the Brazier effect. The complex, geometrically non-linear and elastic stress–strain behaviour of the shear webs...

  5. An ultra-low-power programmable analog bionic ear processor.

    Science.gov (United States)

    Sarpeshkar, Rahul; Salthouse, Christopher; Sit, Ji-Jon; Baker, Michael W; Zhak, Serhii M; Lu, Timothy K T; Turicchia, Lorenzo; Balster, Stephanie

    2005-04-01

    We report a programmable analog bionic ear (cochlear implant) processor in a 1.5-microm BiCMOS technology with a power consumption of 211 microW and 77-dB dynamic range of operation. The 9.58 mm x 9.23 mm processor chip runs on a 2.8 V supply and has a power consumption that is lower than state-of-the-art analog-to-digital (A/D)-then-DSP designs by a factor of 25. It is suitable for use in fully implanted cochlear-implant systems of the future which require decades of operation on a 100-mAh rechargeable battery with a finite number of charge-discharge cycles. It may also be used as an ultra-low-power spectrum-analysis front end in portable speech-recognition systems. The power consumption of the processor includes the 100 microW power consumption of a JFET-buffered electret microphone and an associated on-chip microphone front end. An automatic gain control circuit compresses the 77-dB input dynamic range into a narrower internal dynamic range (IDR) of 57 dB at which each of the 16 spectral channels of the processor operate. The output bits of the processor are scanned and reported off chip in a format suitable for continuous-interleaved-sampling stimulation of electrodes. Power-supply-immune biasing circuits ensure robust operation of the processor in the high-RF-noise environment typical of cochlear implant systems.

  6. Satellite on-board real-time SAR processor prototype

    Science.gov (United States)

    Bergeron, Alain; Doucet, Michel; Harnisch, Bernd; Suess, Martin; Marchese, Linda; Bourqui, Pascal; Desnoyers, Nicholas; Legros, Mathieu; Guillot, Ludovic; Mercier, Luc; Châteauneuf, François

    2017-11-01

    A Compact Real-Time Optronic SAR Processor has been successfully developed and tested up to a Technology Readiness Level of 4 (TRL4), the breadboard validation in a laboratory environment. SAR, or Synthetic Aperture Radar, is an active system allowing day and night imaging independent of the cloud coverage of the planet. The SAR raw data is a set of complex data for range and azimuth, which cannot be compressed. Specifically, for planetary missions and unmanned aerial vehicle (UAV) systems with limited communication data rates this is a clear disadvantage. SAR images are typically processed electronically applying dedicated Fourier transformations. This, however, can also be performed optically in real-time. Originally the first SAR images were optically processed. The optical Fourier processor architecture provides inherent parallel computing capabilities allowing real-time SAR data processing and thus the ability for compression and strongly reduced communication bandwidth requirements for the satellite. SAR signal return data are in general complex data. Both amplitude and phase must be combined optically in the SAR processor for each range and azimuth pixel. Amplitude and phase are generated by dedicated spatial light modulators and superimposed by an optical relay set-up. The spatial light modulators display the full complex raw data information over a two-dimensional format, one for the azimuth and one for the range. Since the entire signal history is displayed at once, the processor operates in parallel yielding real-time performances, i.e. without resulting bottleneck. Processing of both azimuth and range information is performed in a single pass. This paper focuses on the onboard capabilities of the compact optical SAR processor prototype that allows in-orbit processing of SAR images. Examples of processed ENVISAT ASAR images are presented. Various SAR processor parameters such as processing capabilities, image quality (point target analysis), weight and

  7. Benchmarking NWP Kernels on Multi- and Many-core Processors

    Science.gov (United States)

    Michalakes, J.; Vachharajani, M.

    2008-12-01

    Increased computing power for weather, climate, and atmospheric science has provided direct benefits for defense, agriculture, the economy, the environment, and public welfare and convenience. Today, very large clusters with many thousands of processors are allowing scientists to move forward with simulations of unprecedented size. But time-critical applications such as real-time forecasting or climate prediction need strong scaling: faster nodes and processors, not more of them. Moreover, the need for good cost- performance has never been greater, both in terms of performance per watt and per dollar. For these reasons, the new generations of multi- and many-core processors being mass produced for commercial IT and "graphical computing" (video games) are being scrutinized for their ability to exploit the abundant fine- grain parallelism in atmospheric models. We present results of our work to date identifying key computational kernels within the dynamics and physics of a large community NWP model, the Weather Research and Forecast (WRF) model. We benchmark and optimize these kernels on several different multi- and many-core processors. The goals are to (1) characterize and model performance of the kernels in terms of computational intensity, data parallelism, memory bandwidth pressure, memory footprint, etc. (2) enumerate and classify effective strategies for coding and optimizing for these new processors, (3) assess difficulties and opportunities for tool or higher-level language support, and (4) establish a continuing set of kernel benchmarks that can be used to measure and compare effectiveness of current and future designs of multi- and many-core processors for weather and climate applications.

  8. Alternative methods of estimating hub-height wind speed for small wind turbine performance evaluation

    Science.gov (United States)

    Ziter, Brett

    Current industry standards for evaluating wind turbine power performance require erecting a meteorological mast on site to obtain reference measurements of hub-height wind speed. New considerations for small wind turbines (SWTs) offer the alternative of using an anemometer extending from a lower elevation on the turbine tower. In either case, SWT owners face questions and impracticalities when applying this standard in-situ. Alternative methods of predicting hub-height wind speed for SWT performance evaluation have been assessed experimentally using a Bergey XL.1 SWT collocated with a meteorological mast. Findings indicate that vertical extrapolation can increase the accuracy of tower-mounted anemometry for predicting hub-height wind speed. It is recommended to use concurrent wind speed measurements from anemometers at two elevations to develop site-specific wind shear parameters. Three-dimensional wind speed data from a sonic anemometer were used alongside a theoretical model to determine the optimal location for the topmost anemometer but results were inconclusive.

  9. Scaling of turbulence spectra measured in strong shear flow near the Earth’s surface

    Science.gov (United States)

    Mikkelsen, T.; Larsen, S. E.; Jørgensen, H. E.; Astrup, P.; Larsén, X. G.

    2017-12-01

    Within the lowest kilometer of the Earth’s atmosphere, in the so-called atmospheric boundary layer, winds are often gusty and turbulent. Nearest to the ground, the turbulence is predominately generated by mechanical wall-bounded wind shear, whereas at higher altitudes turbulent mixing of heat and moisture also play a role. The variance (square of the standard deviation) of the fluctuation around the mean wind speed is a measure of the kinetic energy content of the turbulence. This kinetic energy can be resolved into the spectral distributions, or spectra, as functions of eddy size, wavenumber, or frequency. Spectra are derived from Fourier transforms of wind records as functions of space or time corresponding to wavenumber and frequency spectra, respectively. Atmospheric spectra often exhibit different subranges that can be distinguished and scaled by the physical parameters responsible for: (1) their generation; (2) the cascade of energy across the spectrum from large- to small-scale; and (3) the eventual decay of turbulence into heat owing to viscosity effects on the Kolmogorov microscale, in which the eddy size is only a fraction of a millimeter. This paper addresses atmospheric turbulence spectra in the lowest part of the atmospheric boundary layer—the so-called surface layer—where the wind shear is strong owing to the nonslip condition at the ground. Theoretical results dating back to Tchen’s early work in 1953 ‘on the spectrum of energy in turbulent shear flow’ led Tchen to predict a shear production subrange with a distinct inverse-linear power law for turbulence in a strongly sheared high-Reynolds number wall-bounded flow, as is encountered in the lowest sheared part of the atmospheric boundary layer, also known as the eddy surface layer. This paper presents observations of spectra measured in a meteorological mast at Høvsøre, Denmark, that support Tchen’s prediction of a shear production subrange following a distinct power law of degree

  10. Wavelength-encoded OCDMA system using opto-VLSI processors

    Science.gov (United States)

    Aljada, Muhsen; Alameh, Kamal

    2007-07-01

    We propose and experimentally demonstrate a 2.5 Gbits/sper user wavelength-encoded optical code-division multiple-access encoder-decoder structure based on opto-VLSI processing. Each encoder and decoder is constructed using a single 1D opto-very-large-scale-integrated (VLSI) processor in conjunction with a fiber Bragg grating (FBG) array of different Bragg wavelengths. The FBG array spectrally and temporally slices the broadband input pulse into several components and the opto-VLSI processor generates codewords using digital phase holograms. System performance is measured in terms of the autocorrelation and cross-correlation functions as well as the eye diagram.

  11. A fast processor for di-lepton triggers

    CERN Document Server

    Kostarakis, P; Barsotti, E; Conetti, S; Cox, B; Enagonio, J; Haldeman, M; Haynes, W; Katsanevas, S; Kerns, C; Lebrun, P; Smith, H; Soszyniski, T; Stoffel, J; Treptow, K; Turkot, F; Wagner, R

    1981-01-01

    As a new application of the Fermilab ECL-CAMAC logic modules a fast trigger processor was developed for Fermilab experiment E-537, aiming to measure the higher mass di-muon production by antiprotons. The processor matches the hit information received from drift chambers and scintillation counters, to find candidate muon tracks and determine their directions and momenta. The tracks are then paired to compute an invariant mass: when the computed mass falls within the desired range, the event is accepted. The process is accomplished in times of 5 to 10 microseconds, while achieving a trigger rate reduction of up to a factor of ten. (5 refs).

  12. Matrix preconditioning: a robust operation for optical linear algebra processors.

    Science.gov (United States)

    Ghosh, A; Paparao, P

    1987-07-15

    Analog electrooptical processors are best suited for applications demanding high computational throughput with tolerance for inaccuracies. Matrix preconditioning is one such application. Matrix preconditioning is a preprocessing step for reducing the condition number of a matrix and is used extensively with gradient algorithms for increasing the rate of convergence and improving the accuracy of the solution. In this paper, we describe a simple parallel algorithm for matrix preconditioning, which can be implemented efficiently on a pipelined optical linear algebra processor. From the results of our numerical experiments we show that the efficacy of the preconditioning algorithm is affected very little by the errors of the optical system.

  13. Advanced Avionics and Processor Systems for Space and Lunar Exploration

    Science.gov (United States)

    Keys, Andrew S.; Adams, James H.; Ray, Robert E.; Johnson, Michael A.; Cressler, John D.

    2009-01-01

    NASA's newly named Advanced Avionics and Processor Systems (AAPS) project, formerly known as the Radiation Hardened Electronics for Space Environments (RHESE) project, endeavors to mature and develop the avionic and processor technologies required to fulfill NASA's goals for future space and lunar exploration. Over the past year, multiple advancements have been made within each of the individual AAPS technology development tasks that will facilitate the success of the Constellation program elements. This paper provides a brief review of the project's recent technology advancements, discusses their application to Constellation projects, and addresses the project's plans for the coming year.

  14. Use of emulating processors in high energy physics

    International Nuclear Information System (INIS)

    Kunz, P.F.

    1981-01-01

    The needs for data processing in high energy physics is growing at a rate that exceeds the data processing capabilities of traditional computers. The use of emulating processors is one method to fill this growing gap. This paper will analyze the data processing requirements from the point of view of program development and data production. Needs in both off-line and on-line environments will be considered. It will be shown that emulating processors fulfill most of the requirements at a reasonable cost. (Auth.)

  15. Ring-array processor distribution topology for optical interconnects

    Science.gov (United States)

    Li, Yao; Ha, Berlin; Wang, Ting; Wang, Sunyu; Katz, A.; Lu, X. J.; Kanterakis, E.

    1992-01-01

    The existing linear and rectangular processor distribution topologies for optical interconnects, although promising in many respects, cannot solve problems such as clock skews, the lack of supporting elements for efficient optical implementation, etc. The use of a ring-array processor distribution topology, however, can overcome these problems. Here, a study of the ring-array topology is conducted with an aim of implementing various fast clock rate, high-performance, compact optical networks for digital electronic multiprocessor computers. Practical design issues are addressed. Some proof-of-principle experimental results are included.

  16. Parallel Processor for 3D Recovery from Optical Flow

    Directory of Open Access Journals (Sweden)

    Jose Hugo Barron-Zambrano

    2009-01-01

    Full Text Available 3D recovery from motion has received a major effort in computer vision systems in the recent years. The main problem lies in the number of operations and memory accesses to be performed by the majority of the existing techniques when translated to hardware or software implementations. This paper proposes a parallel processor for 3D recovery from optical flow. Its main feature is the maximum reuse of data and the low number of clock cycles to calculate the optical flow, along with the precision with which 3D recovery is achieved. The results of the proposed architecture as well as those from processor synthesis are presented.

  17. Embedded Data Processor and Portable Computer Technology testbeds

    Science.gov (United States)

    Alena, Richard; Liu, Yuan-Kwei; Goforth, Andre; Fernquist, Alan R.

    1993-01-01

    Attention is given to current activities in the Embedded Data Processor and Portable Computer Technology testbed configurations that are part of the Advanced Data Systems Architectures Testbed at the Information Sciences Division at NASA Ames Research Center. The Embedded Data Processor Testbed evaluates advanced microprocessors for potential use in mission and payload applications within the Space Station Freedom Program. The Portable Computer Technology (PCT) Testbed integrates and demonstrates advanced portable computing devices and data system architectures. The PCT Testbed uses both commercial and custom-developed devices to demonstrate the feasibility of functional expansion and networking for portable computers in flight missions.

  18. Digital control card based on digital signal processor

    International Nuclear Information System (INIS)

    Hou Shigang; Yin Zhiguo; Xia Le

    2008-01-01

    A digital control card based on digital signal processor was developed. Two Freescale DSP-56303 processors were utilized to achieve 3 channels proportional- integral-differential regulations. The card offers high flexibility for 100 MeV cyclotron RF system development. It was used as feedback controller in low level radio frequency control prototype, with the feedback gain parameters continuously adjustable. By using high precision analog to digital converter with 500 kHz sampling rate, a regulation bandwidth of 20 kHz was achieved. (authors)

  19. Graphics processor efficiency for realization of rapid tabular computations

    International Nuclear Information System (INIS)

    Dudnik, V.A.; Kudryavtsev, V.I.; Us, S.A.; Shestakov, M.V.

    2016-01-01

    Capabilities of graphics processing units (GPU) and central processing units (CPU) have been investigated for realization of fast-calculation algorithms with the use of tabulated functions. The realization of tabulated functions is exemplified by the GPU/CPU architecture-based processors. Comparison is made between the operating efficiencies of GPU and CPU, employed for tabular calculations at different conditions of use. Recommendations are formulated for the use of graphical and central processors to speed up scientific and engineering computations through the use of tabulated functions

  20. FASTBUS Standard Routines implementation for Fermilab embedded processor boards

    International Nuclear Information System (INIS)

    Pangburn, J.; Patrick, J.; Kent, S.; Oleynik, G.; Pordes, R.; Votava, M.; Heyes, G.; Watson, W.A. III

    1992-10-01

    In collaboration with CEBAF, Fermilab's Online Support Department and the CDF experiment have produced a new implementation of the IEEE FASTBUS Standard Routines for two embedded processor FASTBUS boards: the Fermilab Smart Crate Controller (FSCC) and the FASTBUS Readout Controller (FRC). Features of this implementation include: portability (to other embedded processor boards), remote source-level debugging, high speed, optional generation of very high-speed code for readout applications, and built-in Sun RPC support for execution of FASTBUS transactions and lists over the network

  1. Reconfigurable lattice mesh designs for programmable photonic processors.

    Science.gov (United States)

    Pérez, Daniel; Gasulla, Ivana; Capmany, José; Soref, Richard A

    2016-05-30

    We propose and analyse two novel mesh design geometries for the implementation of tunable optical cores in programmable photonic processors. These geometries are the hexagonal and the triangular lattice. They are compared here to a previously proposed square mesh topology in terms of a series of figures of merit that account for metrics that are relevant to on-chip integration of the mesh. We find that that the hexagonal mesh is the most suitable option of the three considered for the implementation of the reconfigurable optical core in the programmable processor.

  2. Post-silicon and runtime verification for modern processors

    CERN Document Server

    Wagner, Ilya

    2010-01-01

    The purpose of this book is to survey the state of the art and evolving directions in post-silicon and runtime verification. The authors start by giving an overview of the state of the art in verification, particularly current post-silicon methodologies in use in the industry, both for the domain of processor pipeline design and for memory subsystems. They then dive into the presentation of several new post-silicon verification solutions aimed at boosting the verification coverage of modern processors, dedicating several chapters to this topic. The presentation of runtime verification solution

  3. Global synchronization of parallel processors using clock pulse width modulation

    Science.gov (United States)

    Chen, Dong; Ellavsky, Matthew R.; Franke, Ross L.; Gara, Alan; Gooding, Thomas M.; Haring, Rudolf A.; Jeanson, Mark J.; Kopcsay, Gerard V.; Liebsch, Thomas A.; Littrell, Daniel; Ohmacht, Martin; Reed, Don D.; Schenck, Brandon E.; Swetz, Richard A.

    2013-04-02

    A circuit generates a global clock signal with a pulse width modification to synchronize processors in a parallel computing system. The circuit may include a hardware module and a clock splitter. The hardware module may generate a clock signal and performs a pulse width modification on the clock signal. The pulse width modification changes a pulse width within a clock period in the clock signal. The clock splitter may distribute the pulse width modified clock signal to a plurality of processors in the parallel computing system.

  4. A VAX-FPS Loosely-Coupled Array of Processors

    International Nuclear Information System (INIS)

    Grosdidier, G.

    1987-03-01

    The main features of a VAX-FPS Loosely-Coupled Array of Processors (LCAP) set-up and the implementation of a High Energy Physics tracking program for off-line purposes will be described. This LCAP consists of a VAX 11/750 host and two FPS 64 bit attached processors. Before analyzing the performances of this LCAP, its characteristics will be outlined, especially from a user's point of vue, and will be briefly compared to those of the IBM-FPS LCAP

  5. REVIEW: Optical logic elements for high-throughput optical processors

    Science.gov (United States)

    Fedorov, V. B.

    1990-12-01

    An analysis is made of the current state and problems as well as prospects of the development of optical logic elements and threshold light amplifiers for high-throughput computing. An analysis is made of the specific case of a variant of an optical processor capable of 1013-1014 arithmetic operations per second under conditions of pipelined processing of two-dimensional arrays of multidigit binary operands. The basic requirements which must be satisfied by parameters and characteristics of optical logic elements in such a processor are identified.

  6. The associative memory system for the FTK processor at ATLAS

    CERN Document Server

    Magalotti, D; The ATLAS collaboration; Donati, S; Luciano, P; Piendibene, M; Giannetti, P; Lanza, A; Verzellesi, G; Sakellariou, Andreas; Billereau, W; Combe, J M

    2014-01-01

    In high energy physics experiments, the most interesting processes are very rare and hidden in an extremely large level of background. As the experiment complexity, accelerator backgrounds, and instantaneous luminosity increase, more effective and accurate data selection techniques are needed. The Fast TracKer processor (FTK) is a real time tracking processor designed for the ATLAS trigger upgrade. The FTK core is the Associative Memory system. It provides massive computing power to minimize the processing time of complex tracking algorithms executed online. This paper reports on the results and performance of a new prototype of Associative Memory system.

  7. Language processor construction: The case for YOOCC and TROOPER

    Energy Technology Data Exchange (ETDEWEB)

    Avotins, J.; Maughan, G.; Mingins, C. [Monash Univ., Caulfield East (Australia)

    1995-12-31

    Enhancing the ISE Eiffel Parse library enabled as to develop YOOCC (Yes! An OO Compiler Compiler) and TROOPER (Truly Reusable OO Parser for Eiffel Re-engineering) written entirely in Eiffel. It is concluded that not only do these tools allow typical users to develop processors without being concerned with the intricacies behind processor construction, but they significantly contribute towards bringing the ISE Eiffel Parse libraries to their full realisation. We demonstrate this by applying YOOCC and TroopeR to a diverse range of realistic domains.

  8. Wavelength-encoded OCDMA system using opto-VLSI processors.

    Science.gov (United States)

    Aljada, Muhsen; Alameh, Kamal

    2007-07-01

    We propose and experimentally demonstrate a 2.5 Gbits/sper user wavelength-encoded optical code-division multiple-access encoder-decoder structure based on opto-VLSI processing. Each encoder and decoder is constructed using a single 1D opto-very-large-scale-integrated (VLSI) processor in conjunction with a fiber Bragg grating (FBG) array of different Bragg wavelengths. The FBG array spectrally and temporally slices the broadband input pulse into several components and the opto-VLSI processor generates codewords using digital phase holograms. System performance is measured in terms of the autocorrelation and cross-correlation functions as well as the eye diagram.

  9. OLYMPUS system and development of its pre-processor

    International Nuclear Information System (INIS)

    Okamoto, Masao; Takeda, Tatsuoki; Tanaka, Masatoshi; Asai, Kiyoshi; Nakano, Koh.

    1977-08-01

    The OLYMPUS SYSTEM developed by K. V. Roverts et al. was converted and introduced in computer system FACOM 230/75 of the JAERI Computing Center. A pre-processor was also developed for the OLYMPUS SYSTEM. The OLYMPUS SYSTEM is very useful for development, standardization and exchange of programs in thermonuclear fusion research and plasma physics. The pre-processor developed by the present authors is not only essential for the JAERI OLYMPUS SYSTEM, but also useful in manipulation, creation and correction of program files. (auth.)

  10. The Danish real-time SAR processor: first results

    DEFF Research Database (Denmark)

    Dall, Jørgen; Jørgensen, Jørn Hjelm; Netterstrøm, Anders

    1993-01-01

    . The processor is capable of focusing the entire swath of the raw SAR data into full resolution, and depending on the choice made by the on-board operator, either a high resolution one-look zoom image or a spatially multilooked overview image is displayed. After a brief design review, the paper addresses various......A real-time processor (RTP) for the Danish airborne Synthetic Aperture Radar (SAR) has been designed and constructed at the Electromagnetics Institute. The implementation was completed in mid 1992, and since then the RTP has been operated successfully on several test and demonstration flights...

  11. Advancements in Wind Energy Metrology – UPWIND 1A2.3

    DEFF Research Database (Denmark)

    Angelou, Nikolas; Bingöl, Ferhat; Courtney, Michael

    of wind turbines. These measurements document the meandering wake pattern. The second part of the overview considers power performance measurements. A new investigation on the influence of wind shear points to a revision of the definition of a power curve. A new measurement method has been developed which...

  12. Accuracy requirements of optical linear algebra processors in adaptive optics imaging systems

    Science.gov (United States)

    Downie, John D.; Goodman, Joseph W.

    1989-10-01

    The accuracy requirements of optical processors in adaptive optics systems are determined by estimating the required accuracy in a general optical linear algebra processor (OLAP) that results in a smaller average residual aberration than that achieved with a conventional electronic digital processor with some specific computation speed. Special attention is given to an error analysis of a general OLAP with regard to the residual aberration that is created in an adaptive mirror system by the inaccuracies of the processor, and to the effect of computational speed of an electronic processor on the correction. Results are presented on the ability of an OLAP to compete with a digital processor in various situations.

  13. Meniscal shear stress for punching

    NARCIS (Netherlands)

    Tuijthof, Gabrielle J. M.; Meulman, Hubert N.; Herder, Just L.; van Dijk, C. Niek

    2009-01-01

    Aim: Experimental determination of the shear stress for punching meniscal tissue. Methods: Meniscectomy (surgical treatment of a lesion of one of the menisci) is the most frequently performed arthroscopic procedure. The performance of a meniscectomy is not optimal with the currently available

  14. In vivo shear stress response.

    Science.gov (United States)

    Egginton, Stuart

    2011-12-01

    EC (endothelial cell) responses to shear stress generated by vascular perfusion play an important role in circulatory homoeostasis, whereas abnormal responses are implicated in vascular diseases such as hypertension and atherosclerosis. ECs subjected to high shear stress in vitro alter their morphology, function and gene expression. The molecular basis for mechanotransduction of a shear stress signal, and the identity of the sensing mechanisms, remain unclear with many candidates under investigation. Translating these findings in vivo has proved difficult. The role of VEGF (vascular endothelial growth factor) flow-dependent nitric oxide release in remodelling skeletal muscle microcirculation is established for elevated (activity, dilatation) and reduced (overload, ischaemia) shear stress, although their temporal relationship to angiogenesis varies. It is clear that growth factor levels may offer only a permissive environment, and alteration of receptor levels may be a viable therapeutic target. Angiogenesis in vivo appears to be a graded phenomenon, and capillary regression on withdrawal of stimulus may be rapid. Combinations of physiological angiogenic stimuli appear not to be additive.

  15. Prospecting for Wind

    Science.gov (United States)

    Swapp, Andy; Schreuders, Paul; Reeve, Edward

    2011-01-01

    Many people use wind to help meet their needs. Over the years, people have been able to harness or capture the wind in many different ways. More recently, people have seen the rebirth of electricity-generating wind turbines. Thus, the age-old argument about technology being either good or bad can also be applied to the wind. The wind can be a…

  16. Careers in Wind Energy

    Science.gov (United States)

    Liming, Drew; Hamilton, James

    2011-01-01

    As a common form of renewable energy, wind power is generating more than just electricity. It is increasingly generating jobs for workers in many different occupations. Many workers are employed on wind farms: areas where groups of wind turbines produce electricity from wind power. Wind farms are frequently located in the midwestern, western, and…

  17. DESDynI Quad First Stage Processor - A Four Channel Digitizer and Digital Beam Forming Processor

    Science.gov (United States)

    Chuang, Chung-Lun; Shaffer, Scott; Smythe, Robert; Niamsuwan, Noppasin; Li, Samuel; Liao, Eric; Lim, Chester; Morfopolous, Arin; Veilleux, Louise

    2013-01-01

    The proposed Deformation, Eco-Systems, and Dynamics of Ice Radar (DESDynI-R) L-band SAR instrument employs multiple digital channels to optimize resolution while keeping a large swath on a single pass. High-speed digitization with very fine synchronization and digital beam forming are necessary in order to facilitate this new technique. The Quad First Stage Processor (qFSP) was developed to achieve both the processing performance as well as the digitizing fidelity in order to accomplish this sweeping SAR technique. The qFSP utilizes high precision and high-speed analog to digital converters (ADCs), each with a finely adjustable clock distribution network to digitize the channels at the fidelity necessary to allow for digital beam forming. The Xilinx produced FX130T Virtex 5 part handles the processing to digitally calibrate each channel as well as filter and beam form the receive signals. Demonstrating the digital processing required for digital beam forming and digital calibration is instrumental to the viability of the proposed DESDynI instrument. The qFSP development brings this implementation to Technology Readiness Level (TRL) 6. This paper will detail the design and development of the prototype qFSP as well as the preliminary results from hardware tests.

  18. The Trigger Processor and Trigger Processor Algorithms for the ATLAS New Small Wheel Upgrade

    CERN Document Server

    Lazovich, Tomo; The ATLAS collaboration

    2015-01-01

    The ATLAS New Small Wheel (NSW) is an upgrade to the ATLAS muon endcap detectors that will be installed during the next long shutdown of the LHC. Comprising both MicroMegas (MMs) and small-strip Thin Gap Chambers (sTGCs), this system will drastically improve the performance of the muon system in a high cavern background environment. The NSW trigger, in particular, will significantly reduce the rate of fake triggers coming from track segments in the endcap not originating from the interaction point. We will present an overview of the trigger, the proposed sTGC and MM trigger algorithms, and the hardware implementation of the trigger. In particular, we will discuss both the heart of the trigger, an ATCA system with FPGA-based trigger processors (using the same hardware platform for both MM and sTGC triggers), as well as the full trigger electronics chain, including dedicated cards for transmission of data via GBT optical links. Finally, we will detail the challenges of ensuring that the trigger electronics can ...

  19. Wind profiler observations of a monsoon low-level jet over a tropical Indian station

    Directory of Open Access Journals (Sweden)

    M. C. R. Kalapureddy

    2007-11-01

    Full Text Available Three-year high-resolution wind observations of the wind profiler have been utilized to characterize the diurnal and seasonal features of the monsoon Low-Level Jet (LLJ over a tropical station, Gadanki (13.5° N, 79.2° E, with a focus on the diurnal variability of low-level winds. The Boreal summer monsoon winds show a conspicuously strong westerly LLJ with average wind speed exceeding 20 m s−1. The L-band wind profiler measurements have shown an advantage of better height and time resolutions over the conventional radiosonde method for diurnal wind measurements. An interesting diurnal oscillation of LLJ core has been observed. It is varying in the height range of 1.8±0.6 km with the maximum and minimum intensity noticed during the early morning and afternoon hours, respectively. The jet core (wind maxima height is observed to coincide with the inversion height. Strong wind shears are normally located beneath the LLJ core. The sole wind profiler observations are capable of identifying the monsoon phases, such as onset, break and active spells, etc. The mutual influence between the LLJ and the boundary layer has been discussed. One notices that the observed LLJ diurnal structures depend on the local convective activity, wind shears and turbulence activity associated with boundary layer winds. The day-to-day change in the LLJ structure depends on the latitudinal position of the LLJ core.

  20. Global composites of surface wind speeds in tropical cyclones based on a 12 year scatterometer database

    Science.gov (United States)

    Klotz, Bradley W.; Jiang, Haiyan

    2016-10-01

    A 12 year global database of rain-corrected satellite scatterometer surface winds for tropical cyclones (TCs) is used to produce composites of TC surface wind speed distributions relative to vertical wind shear and storm motion directions in each TC-prone basin and various TC intensity stages. These composites corroborate ideas presented in earlier studies, where maxima are located right of motion in the Earth-relative framework. The entire TC surface wind asymmetry is down motion left for all basins and for lower strength TCs after removing the motion vector. Relative to the shear direction, the motion-removed composites indicate that the surface wind asymmetry is located down shear left for the outer region of all TCs, but for the inner-core region it varies from left of shear to down shear right for different basin and TC intensity groups. Quantification of the surface wind asymmetric structure in further stratifications is a necessary next step for this scatterometer data set.

  1. Shelter effect on a row of coal piles to prevent wind erosion

    Energy Technology Data Exchange (ETDEWEB)

    Borges, A.R.; Viergas, D.X.

    1988-08-01

    The shelter effect of porous wind breakers over a row of coal piles was studied in a wind tunnel. Two sets of tests are described, one performed in two dimensional configuration in which the shelter effect of several barriers with different heights and porosities is evaluated. The effect of wind direction is considered using a tridimensional model. Wall shear stress measurements performed with a hot film sensor allowed the characterization of the transport properties of fine particles of coal. By integration of the local wind properties the rates of pollutant emission were determined leading to the conclusion of an effective shelter action of the porous wind breakers.

  2. A post-processor for the PEST code

    International Nuclear Information System (INIS)

    Priesche, S.; Manickam, J.; Johnson, J.L.

    1992-01-01

    A new post-processor has been developed for use with output from the PEST tokamak stability code. It allows us to use quantities calculated by PEST and take better advantage of the physical picture of the plasma instability which they can provide. This will improve comparison with experimentally measured quantities as well as facilitate understanding of theoretical studies

  3. PVM Enhancement for Beowulf Multiple-Processor Nodes

    Science.gov (United States)

    Springer, Paul

    2006-01-01

    A recent version of the Parallel Virtual Machine (PVM) computer program has been enhanced to enable use of multiple processors in a single node of a Beowulf system (a cluster of personal computers that runs the Linux operating system). A previous version of PVM had been enhanced by addition of a software port, denoted BEOLIN, that enables the incorporation of a Beowulf system into a larger parallel processing system administered by PVM, as though the Beowulf system were a single computer in the larger system. BEOLIN spawns tasks on (that is, automatically assigns tasks to) individual nodes within the cluster. However, BEOLIN does not enable the use of multiple processors in a single node. The present enhancement adds support for a parameter in the PVM command line that enables the user to specify which Internet Protocol host address the code should use in communicating with other Beowulf nodes. This enhancement also provides for the case in which each node in a Beowulf system contains multiple processors. In this case, by making multiple references to a single node, the user can cause the software to spawn multiple tasks on the multiple processors in that node.

  4. The Operational Semantics of a Java Secure Processor

    NARCIS (Netherlands)

    Hartel, Pieter H.; Butler, M.J.; Levy, M.; Alves-Foss, J.

    1999-01-01

    A formal specification of a Java Secure Processor is presented, which is mechanically checked for type consistency, well formedness and operational conservativity. The specification is executable and it is used to animate and study the behaviour of sample Java programs. The purpose of the semantics

  5. 50 CFR 648.6 - Dealer/processor permits.

    Science.gov (United States)

    2010-10-01

    ... of incorporation if the business is a corporation, and a copy of the partnership agreement and the names and addresses of all partners, if the business is a partnership, name of at-sea processor vessel... the fishing year to an applicant, unless the applicant fails to submit a completed application. An...

  6. Optical linear algebra processors - Noise and error-source modeling

    Science.gov (United States)

    Casasent, D.; Ghosh, A.

    1985-01-01

    The modeling of system and component noise and error sources in optical linear algebra processors (OLAPs) are considered, with attention to the frequency-multiplexed OLAP. General expressions are obtained for the output produced as a function of various component errors and noise. A digital simulator for this model is discussed.

  7. Optical linear algebra processors: noise and error-source modeling.

    Science.gov (United States)

    Casasent, D; Ghosh, A

    1985-06-01

    The modeling of system and component noise and error sources in optical linear algebra processors (OLAP's) are considered, with attention to the frequency-multiplexed OLAP. General expressions are obtained for the output produced as a function of various component errors and noise. A digital simulator for this model is discussed.

  8. Timing organization of a real-time multicore processor

    DEFF Research Database (Denmark)

    Schoeberl, Martin; Sparsø, Jens

    2017-01-01

    Real-time systems need a time-predictable computing platform. Computation, communication, and access to shared resources needs to be time-predictable. We use time division multiplexing to statically schedule all computation and communication resources, such as access to main memory or message pas......-predictable multicore processor where we can statically analyze the worst-case execution time of tasks....

  9. Decimal Engine for Energy-Efficient Multicore Processors

    DEFF Research Database (Denmark)

    Nannarelli, Alberto

    2014-01-01

    Prior work demonstrated the use of specialized processors, or accelerators, be energy-efficient for binary floatingpoint (BFP) division and square root, and for decimal floatingpoint (DFP) operations. In the dark silicon era, where not all the circuits on the die can be powered simultaneously, we...

  10. Support for RESTOR, EMIST, and CHREC Space Processor

    Science.gov (United States)

    Shea, Bradley Franklin

    2014-01-01

    The goal of this project was to provide support for three different projects including RESTOR, CHREC Space Processor, and EMIST. LabVIEW software was written to verify tags in an excel spreadsheet, testing preparation was accomplished for CHREC, and full payload integration was completed for EMIST. All of these projects will contribute to advanced exploration in space and provide valuable experience.

  11. Processor operated correlator with applications to laser Doppler signals

    DEFF Research Database (Denmark)

    Bisgaard, C.; Johnsen, B.; Hassager, Ole

    1984-01-01

    A 64-channel correlator is designed with application to the processing of laser Doppler anemometry signals in the range 200 Hz to 250 kHz. The correlator is processor operated to enable the consecutive sampling of 448 correlation functions at a rate up to 500 Hz. Software is described to identify...

  12. Efficient Multicriteria Protein Structure Comparison on Modern Processor Architectures

    Science.gov (United States)

    Manolakos, Elias S.

    2015-01-01

    Fast increasing computational demand for all-to-all protein structures comparison (PSC) is a result of three confounding factors: rapidly expanding structural proteomics databases, high computational complexity of pairwise protein comparison algorithms, and the trend in the domain towards using multiple criteria for protein structures comparison (MCPSC) and combining results. We have developed a software framework that exploits many-core and multicore CPUs to implement efficient parallel MCPSC in modern processors based on three popular PSC methods, namely, TMalign, CE, and USM. We evaluate and compare the performance and efficiency of the two parallel MCPSC implementations using Intel's experimental many-core Single-Chip Cloud Computer (SCC) as well as Intel's Core i7 multicore processor. We show that the 48-core SCC is more efficient than the latest generation Core i7, achieving a speedup factor of 42 (efficiency of 0.9), making many-core processors an exciting emerging technology for large-scale structural proteomics. We compare and contrast the performance of the two processors on several datasets and also show that MCPSC outperforms its component methods in grouping related domains, achieving a high F-measure of 0.91 on the benchmark CK34 dataset. The software implementation for protein structure comparison using the three methods and combined MCPSC, along with the developed underlying rckskel algorithmic skeletons library, is available via GitHub. PMID:26605332

  13. Using a Multicore Processor for Rover Autonomous Science

    Science.gov (United States)

    Bornstein, Benjamin; Estlin, Tara; Clement, Bradley; Springer, Paul

    2011-01-01

    Multicore processing promises to be a critical component of future spacecraft. It provides immense increases in onboard processing power and provides an environment for directly supporting fault-tolerant computing. This paper discusses using a state-of-the-art multicore processor to efficiently perform image analysis onboard a Mars rover in support of autonomous science activities.

  14. Writing Teaching and the Word Processor. A Computer Discussion Paper.

    Science.gov (United States)

    Walshe, R. D., Ed.

    Designed for use by elementary school teachers, this discussion paper discusses the use of the word processor in the teaching of writing. The paper examines both the positive and negative aspects of computer use. After comparing the writing process with the problem solving process, the newsletter provides articles relating teachers' experiences…

  15. Integrated approach to optimization of an ultrasonic processor

    NARCIS (Netherlands)

    Moholkar, V.S.; Warmoeskerken, Marinus

    2003-01-01

    In an ultrasonic processor, the input electrical energy undergoes many transformations before getting converted into the cavitation energy, which is dissipated in the medium to bring out the physical/chemical change. An investigation of the influence of free and dissolved gas content of the system

  16. Digital signal array processor for NSLS booster power supply upgrade

    International Nuclear Information System (INIS)

    Olsen, R.; Dabrowski, J.; Murray, J.

    1993-01-01

    The booster at the NSLS is being upgraded from 0.75 to 2 pulses per second. To accomplish this, new power supplied for the dipole, quadrupole, and sextupole have been installed. This paper will outline the design and function of the digital signal processor used as the primary control element in the power supply control system

  17. An optimal speech processor for efficient human speech ...

    Indian Academy of Sciences (India)

    Our experimental findings suggest that the auditory filterbank in human ear functions as a near-optimal speech processor for achieving efficient speech communication between humans. Keywords. Human speech communication; articulatory gestures; auditory filterbank; mutual information. 1. Introduction. Speech is one of ...

  18. Hardware Synchronization for Embedded Multi-Core Processors

    DEFF Research Database (Denmark)

    Stoif, Christian; Schoeberl, Martin; Liccardi, Benito

    2011-01-01

    -core systems, using an FPGA-development board with two hard PowerPC processor cores. Best- and worst-case results, together with intensive benchmarking of all synchronization primitives implemented, show the expected superiority of the hardware solutions. It is also shown that dual-ported memory outperforms...

  19. Random access quantum information processors using multimode circuit quantum electrodynamics.

    Science.gov (United States)

    Naik, R K; Leung, N; Chakram, S; Groszkowski, Peter; Lu, Y; Earnest, N; McKay, D C; Koch, Jens; Schuster, D I

    2017-12-04

    Qubit connectivity is an important property of a quantum processor, with an ideal processor having random access-the ability of arbitrary qubit pairs to interact directly. This a challenge with superconducting circuits, as state-of-the-art architectures rely on only nearest-neighbor coupling. Here, we implement a random access superconducting quantum information processor, demonstrating universal operations on a nine-qubit memory, with a Josephson junction transmon circuit serving as the central processor. The quantum memory uses the eigenmodes of a linear array of coupled superconducting resonators. We selectively stimulate vacuum Rabi oscillations between the transmon and individual eigenmodes through parametric flux modulation of the transmon frequency. Utilizing these oscillations, we perform a universal set of quantum gates on 38 arbitrary pairs of modes and prepare multimode entangled states, all using only two control lines. We thus achieve hardware-efficient random access multi-qubit control in an architecture compatible with long-lived microwave cavity-based quantum memories.

  20. Processors' training needs on modern shea butter processing ...

    African Journals Online (AJOL)

    The need for continual production of high quality shea butter in Nigeria through the use of modern processing technologies necessitated this study. The study was carried out to ascertain training needs of shea butter processors on modern processing technologies in North Central Agro-ecological zone of Nigeria. Primary ...

  1. State-based Communication on Time-predictable Multicore Processors

    DEFF Research Database (Denmark)

    Sørensen, Rasmus Bo; Schoeberl, Martin; Sparsø, Jens

    2016-01-01

    of tasks on other cores. Assuming a specific time-predictable multicore processor, we evaluate how the read and write primitives of the five algorithms contribute to the worst-case execution time of the communicating tasks. Each of the five algorithms has specific capabilities that make them suitable...

  2. Experiences with Compiler Support for Processors with Exposed Pipelines

    DEFF Research Database (Denmark)

    Jensen, Nicklas Bo; Schleuniger, Pascal; Hindborg, Andreas Erik

    2015-01-01

    Field programmable gate arrays, FPGAs, have become an attractive implementation technology for a broad range of computing systems. We recently proposed a processor architecture, Tinuso, which achieves high performance by moving complexity from hardware to the compiler tool chain. This means...

  3. Maintenance document Dieka PreProcessor for Extrusion

    NARCIS (Netherlands)

    Valkering, Kasper

    2000-01-01

    This is the maintenance document belonging to the Dieka-PreProcessor. The first version of the preprocessor was written by Wenhua Cao. The preprocessor was revised and expanded by Kasper Valkering. It acts as the interface between Pro/Engineer and Dieka, and makes it possible to draw and mesh

  4. Processing PHARUS Data with the Generic SAR Processor

    NARCIS (Netherlands)

    Otten, M.P.G.

    1996-01-01

    The Generic SAR Processor (GSP) is a SAR processing environment created to process airborne and spaceborne SAR data with a maximum amount of flexibility, while at the same time providing a user friendly and powerful environment for handling and analyzing SAR, including polarimetric calibiation.

  5. Real-time trajectory optimization on parallel processors

    Science.gov (United States)

    Psiaki, Mark L.

    1993-01-01

    A parallel algorithm has been developed for rapidly solving trajectory optimization problems. The goal of the work has been to develop an algorithm that is suitable to do real-time, on-line optimal guidance through repeated solution of a trajectory optimization problem. The algorithm has been developed on an INTEL iPSC/860 message passing parallel processor. It uses a zero-order-hold discretization of a continuous-time problem and solves the resulting nonlinear programming problem using a custom-designed augmented Lagrangian nonlinear programming algorithm. The algorithm achieves parallelism of function, derivative, and search direction calculations through the principle of domain decomposition applied along the time axis. It has been encoded and tested on 3 example problems, the Goddard problem, the acceleration-limited, planar minimum-time to the origin problem, and a National Aerospace Plane minimum-fuel ascent guidance problem. Execution times as fast as 118 sec of wall clock time have been achieved for a 128-stage Goddard problem solved on 32 processors. A 32-stage minimum-time problem has been solved in 151 sec on 32 processors. A 32-stage National Aerospace Plane problem required 2 hours when solved on 32 processors. A speed-up factor of 7.2 has been achieved by using 32-nodes instead of 1-node to solve a 64-stage Goddard problem.

  6. The study of image processing of parallel digital signal processor

    International Nuclear Information System (INIS)

    Liu Jie

    2000-01-01

    The author analyzes the basic characteristic of parallel DSP (digital signal processor) TMS320C80 and proposes related optimized image algorithm and the parallel processing method based on parallel DSP. The realtime for many image processing can be achieved in this way

  7. Evaluation of the Intel Westmere-EP server processor

    CERN Document Server

    Jarp, S; Leduc, J; Nowak, A; CERN. Geneva. IT Department

    2010-01-01

    In this paper we report on a set of benchmark results recently obtained by CERN openlab when comparing the 6-core “Westmere-EP” processor with Intel’s previous generation of the same microarchitecture, the “Nehalem-EP”. The former is produced in a new 32nm process, the latter in 45nm. Both platforms are dual-socket servers. Multiple benchmarks were used to get a good understanding of the performance of the new processor. We used both industry-standard benchmarks, such as SPEC2006, and specific High Energy Physics benchmarks, representing both simulation of physics detectors and data analysis of physics events. Before summarizing the results we must stress the fact that benchmarking of modern processors is a very complex affair. One has to control (at least) the following features: processor frequency, overclocking via Turbo mode, the number of physical cores in use, the use of logical cores via Simultaneous Multi-Threading (SMT), the cache sizes available, the memory configuration installed, as well...

  8. Evaluation of the Intel Nehalem-EX server processor

    CERN Document Server

    Jarp, S; Leduc, J; Nowak, A; CERN. Geneva. IT Department

    2010-01-01

    In this paper we report on a set of benchmark results recently obtained by the CERN openlab by comparing the 4-socket, 32-core Intel Xeon X7560 server with the previous generation 4-socket server, based on the Xeon X7460 processor. The Xeon X7560 processor represents a major change in many respects, especially the memory sub-system, so it was important to make multiple comparisons. In most benchmarks the two 4-socket servers were compared. It should be underlined that both servers represent the “top of the line” in terms of frequency. However, in some cases, it was important to compare systems that integrated the latest processor features, such as QPI links, Symmetric multithreading and over-clocking via Turbo mode, and in such situations the X7560 server was compared to a dual socket L5520 based system with an identical frequency of 2.26 GHz. Before summarizing the results we must stress the fact that benchmarking of modern processors is a very complex affair. One has to control (at least) the following ...

  9. Elementary function calculation programs for the central processor-6

    International Nuclear Information System (INIS)

    Dobrolyubov, L.V.; Ovcharenko, G.A.; Potapova, V.A.

    1976-01-01

    Subprograms of elementary functions calculations are given for the central processor (CP AS-6). A procedure is described to obtain calculated formulae which represent the elementary functions as a polynomial. Standard programs for random numbers are considered. All the programs described are based upon the algorithms of respective programs for BESM computer

  10. Detailed algorithmic description of a processor: a recipe for ...

    African Journals Online (AJOL)

    The objective of this work is to design a processor with which a simple developed compiler could generate the code of a simple programming language. The work was motivated by the fact that every programming language always has a compiler that generates object codes from its source language. It should be noted that ...

  11. The hardware track finder processor in CMS at CERN

    CERN Document Server

    Kluge, A

    1997-01-01

    The work covers the design of the Track Finder Processor in the high energy experiment CMS (Compact Muon Solenoid, planned for 2005) at CERN/Geneva. The task of this processor is to identify muons and measure their transverse momentum. The track finder processor makes it possible to determine the physical relevance of each high energetic collision and to forward only interesting data to the data an alysis units. Data of more than two hundred thousand detector cells are used to determine the location of muons and measure their transverse momentum. Each 25 ns a new data set is generated. Measurem ent of location and transverse momentum of the muons can be terminated within 350 ns by using an ASIC (Application Specific Integrated Circuit). A pipeline architecture processes new data sets with th e required data rate of 40 MHz to ensure dead time free operation. In the framework of this study specifications and the overall concept of the track finder processor were worked out in detail. Simul ations were performed...

  12. FPGA Based Intelligent Co-operative Processor in Memory Architecture

    DEFF Research Database (Denmark)

    Ahmed, Zaki; Sotudeh, Reza; Hussain, Dil Muhammad Akbar

    2011-01-01

    In a continuing effort to improve computer system performance, Processor-In-Memory (PIM) architecture has emerged as an alternative solution. PIM architecture incorporates computational units and control logic directly on the memory to provide immediate access to the data. To exploit the potentia...

  13. Digital signal processor and processing method for GPS receivers

    Science.gov (United States)

    Thomas, Jr., Jess B. (Inventor)

    1989-01-01

    A digital signal processor and processing method therefor for use in receivers of the NAVSTAR/GLOBAL POSITIONING SYSTEM (GPS) employs a digital carrier down-converter, digital code correlator and digital tracking processor. The digital carrier down-converter and code correlator consists of an all-digital, minimum bit implementation that utilizes digital chip and phase advancers, providing exceptional control and accuracy in feedback phase and in feedback delay. Roundoff and commensurability errors can be reduced to extremely small values (e.g., less than 100 nanochips and 100 nanocycles roundoff errors and 0.1 millichip and 1 millicycle commensurability errors). The digital tracking processor bases the fast feedback for phase and for group delay in the C/A, P.sub.1, and P.sub.2 channels on the L.sub.1 C/A carrier phase thereby maintaining lock at lower signal-to-noise ratios, reducing errors in feedback delays, reducing the frequency of cycle slips and in some cases obviating the need for quadrature processing in the P channels. Simple and reliable methods are employed for data bit synchronization, data bit removal and cycle counting. Improved precision in averaged output delay values is provided by carrier-aided data-compression techniques. The signal processor employs purely digital operations in the sense that exactly the same carrier phase and group delay measurements are obtained, to the last decimal place, every time the same sampled data (i.e., exactly the same bits) are processed.

  14. Assessment of food safety practices among cassava processors in ...

    African Journals Online (AJOL)

    Food safety assessment is an effective means of discovering knowledge and data gaps that limit effective risk analysis and at the same time providing information to develop public policies on food safety management. The study assessed the cassava food safety practices among cassava processors in selected rural ...

  15. Automotive Fuel Processor Development and Demonstration with Fuel Cell Systems

    Energy Technology Data Exchange (ETDEWEB)

    Nuvera Fuel Cells

    2005-04-15

    The potential for fuel cell systems to improve energy efficiency and reduce emissions over conventional power systems has generated significant interest in fuel cell technologies. While fuel cells are being investigated for use in many applications such as stationary power generation and small portable devices, transportation applications present some unique challenges for fuel cell technology. Due to their lower operating temperature and non-brittle materials, most transportation work is focusing on fuel cells using proton exchange membrane (PEM) technology. Since PEM fuel cells are fueled by hydrogen, major obstacles to their widespread use are the lack of an available hydrogen fueling infrastructure and hydrogen's relatively low energy storage density, which leads to a much lower driving range than conventional vehicles. One potential solution to the hydrogen infrastructure and storage density issues is to convert a conventional fuel such as gasoline into hydrogen onboard the vehicle using a fuel processor. Figure 2 shows that gasoline stores roughly 7 times more energy per volume than pressurized hydrogen gas at 700 bar and 4 times more than liquid hydrogen. If integrated properly, the fuel processor/fuel cell system would also be more efficient than traditional engines and would give a fuel economy benefit while hydrogen storage and distribution issues are being investigated. Widespread implementation of fuel processor/fuel cell systems requires improvements in several aspects of the technology, including size, startup time, transient response time, and cost. In addition, the ability to operate on a number of hydrocarbon fuels that are available through the existing infrastructure is a key enabler for commercializing these systems. In this program, Nuvera Fuel Cells collaborated with the Department of Energy (DOE) to develop efficient, low-emission, multi-fuel processors for transportation applications. Nuvera's focus was on (1) developing fuel

  16. Influence of wind loading

    OpenAIRE

    MAVLONOV RAVSHANBEK ABDUJABBOROVICH; VAKKASOV KHAYRULLO SAYFULLAHANOVICH

    2015-01-01

    Each wind load is determined by a probabilistic-statistical method based on the concept of “equivalent static wind load”, on the assumption that structural frames and components/cladding behave elastically in strong wind.

  17. Tower Winds - Cape Kennedy

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Digitized data taken from Wind Gust Charts. Record contains hourly wind directions and speed with a peak wind recorded at the end of each day. Sorted by: station,...

  18. Wind energy program overview

    International Nuclear Information System (INIS)

    1992-02-01

    This overview emphasizes the amount of electric power that could be provided by wind power rather than traditional fossil fuels. New wind power markets, advances in technology, technology transfer, and wind resources are some topics covered in this publication

  19. Rapid-Prototyping of Application Specific Signal Processors (RASSP) Education and Facilitation

    National Research Council Canada - National Science Library

    Gadient, Anthony

    2000-01-01

    The Rapid-Prototyping of Application Specific Signal Processors (RASSP) program was a major DARPA/Tri-Service initiative to reinvent the process by which embedded digital signal processors were developed...

  20. Tokenless Biometric Electronic Transactions Using an Audio Signature to Identify the Transaction Processor

    National Research Council Canada - National Science Library

    Hoffman, Ned

    2002-01-01

    ... for conducting an electronic transaction by the user. A stored audio signature is associated with a transaction processor entity, which the transaction processor entity is responsible for conducting the electronic transaction...