WorldWideScience

Sample records for wind sensor coupled

  1. Hybrid Ocean Wind Sensor (HOWS) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposed Phase I effort will investigate and develop the necessary innovations to realize the Hybrid Ocean Wind Sensor system that will provide critical...

  2. Semiconductor Laser Lidar Wind Velocity Sensor for Turbine Control

    DEFF Research Database (Denmark)

    Rodrigo, Peter John; Hu, Qi; Pedersen, Christian

    2014-01-01

    A dual line-of-sight CW lidar that measures both wind speed and direction is presented . The wind lidar employs a semiconductor laser, which allows for inexpensive remote sensors geared towards enhanced control of wind turbines .......A dual line-of-sight CW lidar that measures both wind speed and direction is presented . The wind lidar employs a semiconductor laser, which allows for inexpensive remote sensors geared towards enhanced control of wind turbines ....

  3. Fiber optic coupled optical sensor

    Science.gov (United States)

    Fleming, Kevin J.

    2001-01-01

    A displacement sensor includes a first optical fiber for radiating light to a target, and a second optical fiber for receiving light from the target. The end of the first fiber is adjacent and not axially aligned with the second fiber end. A lens focuses light from the first fiber onto the target and light from the target onto the second fiber.

  4. Current limiting characteristics of transformer type SFCL with coupled secondary windings according to its winding direction

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Sung Hun [Dept. of Electrical Engineering, Soongsil University, Seoul (Korea, Republic of); Han, Tae Hee [Dept. of Aero Materials Engineering, Jungwon University, Goesan (Korea, Republic of)

    2017-06-15

    In this paper, the current limiting characteristics of the transformer type superconducting fault current limiter (SFCL) with the two coupled secondary windings due to its winding direction were analyzed. To analyze the dependence of transient fault current limiting characteristics on the winding direction of the additional secondary winding, the fault current limiting tests of the SFCL with an additional secondary winding, wound as subtractive polarity winding and additive polarity winding, were carried out. The time interval of quench occurrence between two superconducting elements comprising the transformer type SFCL with the additional secondary winding was confirmed to be affected by the winding direction of the additional secondary winding. In case of the subtractive polarity winding of the additional secondary winding, the time interval of the quench occurrence in two superconducting elements was shorter than the case of the additive polarity winding.

  5. Temperature Effects on the Wind Direction Measurement of 2D Solid Thermal Wind Sensors

    Science.gov (United States)

    Chen, Bei; Zhu, Yan-Qing; Yi, Zhenxiang; Qin, Ming; Huang, Qing-An

    2015-01-01

    For a two-dimensional solid silicon thermal wind sensor with symmetrical structure, the wind speed and direction information can be derived from the output voltages in two orthogonal directions, i.e., the north-south and east-west. However, the output voltages in these two directions will vary linearly with the ambient temperature. Therefore, in this paper, a temperature model to study the temperature effect on the wind direction measurement has been developed. A theoretical analysis has been presented first, and then Finite Element Method (FEM) simulations have been performed. It is found that due to symmetrical structure of the thermal wind sensor, the temperature effects on the output signals in the north-south and east-west directions are highly similar. As a result, the wind direction measurement of the thermal wind sensor is approximately independent of the ambient temperature. The experimental results fit the theoretical analysis and simulation results very well. PMID:26633398

  6. A Wind Energy Powered Wireless Temperature Sensor Node

    Directory of Open Access Journals (Sweden)

    Chuang Zhang

    2015-02-01

    Full Text Available A wireless temperature sensor node composed of a piezoelectric wind energy harvester, a temperature sensor, a microcontroller, a power management circuit and a wireless transmitting module was developed. The wind-induced vibration energy harvester with a cuboid chamber of 62 mm × 19.6 mm × 10 mm converts ambient wind energy into electrical energy to power the sensor node. A TMP102 temperature sensor and the MSP430 microcontroller are used to measure the temperature. The power management module consists of LTC3588-1 and LT3009 units. The measured temperature is transmitted by the nRF24l01 transceiver. Experimental results show that the critical wind speed of the harvester was about 5.4 m/s and the output power of the harvester was about 1.59 mW for the electrical load of 20 kΩ at wind speed of 11.2 m/s, which was sufficient to power the wireless sensor node to measure and transmit the temperature every 13 s. When the wind speed increased from 6 m/s to 11.5 m/s, the self-powered wireless sensor node worked normally.

  7. Observer Based Detection of Sensor Faults in Wind Turbines

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Stoustrup, Jakob; Nielsen, R.

    2009-01-01

    An observer based scheme is proposed to detect sensor faults in wind  turbines. In the example used for the proposed scheme the wind turbine  drive train is considered. A model of the drive train is used to  design the observer, and in this model the wind speed is an important  input, however......, if an unknown input observer the fault detection  scheme can be non dependent on the actual wind speed. The scheme  is validated on data from a more advanced and detailed simulation  model. The proposed scheme detects the sensor faults a few samples  after the beginning of the faults....

  8. Coupled Dynamic Modeling of Floating Wind Turbine Systems: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Wayman, E. N.; Sclavounos, P. D.; Butterfield, S.; Jonkman, J.; Musial, W.

    2006-03-01

    This article presents a collaborative research program that the Massachusetts Institute of Technology (MIT) and the National Renewable Energy Laboratory (NREL) have undertaken to develop innovative and cost-effective floating and mooring systems for offshore wind turbines in water depths of 10-200 m. Methods for the coupled structural, hydrodynamic, and aerodynamic analysis of floating wind turbine systems are presented in the frequency domain. This analysis was conducted by coupling the aerodynamics and structural dynamics code FAST [4] developed at NREL with the wave load and response simulation code WAMIT (Wave Analysis at MIT) [15] developed at MIT. Analysis tools were developed to consider coupled interactions between the wind turbine and the floating system. These include the gyroscopic loads of the wind turbine rotor on the tower and floater, the aerodynamic damping introduced by the wind turbine rotor, the hydrodynamic damping introduced by wave-body interactions, and the hydrodynamic forces caused by wave excitation. Analyses were conducted for two floater concepts coupled with the NREL 5-MW Offshore Baseline wind turbine in water depths of 10-200 m: the MIT/NREL Shallow Drafted Barge (SDB) and the MIT/NREL Tension Leg Platform (TLP). These concepts were chosen to represent two different methods of achieving stability to identify differences in performance and cost of the different stability methods. The static and dynamic analyses of these structures evaluate the systems' responses to wave excitation at a range of frequencies, the systems' natural frequencies, and the standard deviations of the systems' motions in each degree of freedom in various wind and wave environments. This article in various wind and wave environments. This article explores the effects of coupling the wind turbine with the floating platform, the effects of water depth, and the effects of wind speed on the systems' performance. An economic feasibility analysis of

  9. High Resolution Wind and SST Coupling: Impacts on Ekman Upwelling

    Science.gov (United States)

    Bourassa, M. A.; Hughes, P. J.

    2014-12-01

    Satellite observations have revealed a small-scale (air-sea coupling in regions of strong sea surface temperature (SST) fronts (e.g., currents, eddies, and tropical instability waves), where the surface wind and wind stress are altered by the underlying SST. Surface winds and wind stresses are persistently higher over the warm side of the SST front compared to the cool side, causing perturbations in the dynamically and thermodynamically curl and divergence fields. Capturing this small-scale SST-wind variability is important because it can significantly impact both local and remote (i.e., large scale) oceanic and atmospheric processes. The SST-wind relationship is not well represented in numerical weather prediction (NWP) and climate models, and the relative importance of the physical processes that are proposed to be responsible for this relationship is actively and vehemently debated. This study focuses on the physical mechanisms that are primarily responsible for the SST-induced changes in surface wind and wind stress, and on the physical implication on ocean forcing through Ekman pumping. This study shows that the baroclinic-related changes in Ekman pumping are significant (first-order) over a seasonal (2003 winter season) time scale and that the meso-scale impacts are quite important over larger spatial scales. These findings highlight the need to consider the small-scale SST-wind relationship even in coarser resolution model simulation, which may be feasible to parameterize because of the linear nature of the baroclinic-related effect.

  10. Pulse-coupled neural network sensor fusion

    Science.gov (United States)

    Johnson, John L.; Schamschula, Marius P.; Inguva, Ramarao; Caulfield, H. John

    1998-03-01

    Perception is assisted by sensed impressions of the outside world but not determined by them. The primary organ of perception is the brain and, in particular, the cortex. With that in mind, we have sought to see how a computer-modeled cortex--the PCNN or Pulse Coupled Neural Network--performs as a sensor fusing element. In essence, the PCNN is comprised of an array of integrate-and-fire neurons with one neuron for each input pixel. In such a system, the neurons corresponding to bright pixels reach firing threshold faster than the neurons corresponding to duller pixels. Thus, firing rate is proportional to brightness. In PCNNs, when a neuron fires it sends some of the resulting signal to its neighbors. This linking can cause a near-threshold neuron to fire earlier than it would have otherwise. This leads to synchronization of the pulses across large regions of the image. We can simplify the 3D PCNN output by integrating out the time dimension. Over a long enough time interval, the resulting 2D (x,y) pattern IS the input image. The PCNN has taken it apart and put it back together again. The shorter- term time integrals are interesting in themselves and will be commented upon in the paper. The main thrust of this paper is the use of multiple PCNNs mutually coupled in various ways to assemble a single 2D pattern or fused image. Results of experiments on PCNN image fusion and an evaluation of its advantages are our primary objectives.

  11. Autonomous Aerial Sensors for Wind Power Meteorology

    DEFF Research Database (Denmark)

    Giebel, Gregor; la Cour-Harbo, Anders; Bange, Jens

    2012-01-01

    measurements of the wake and wake structure are not easy to come by, especially offshore. Very few measurement masts exist to verify our knowledge of atmospheric physics, and most of them are situated in quite homogeneous and gentle terrain. Here, automated Unmanned Aerial Vehicles (UAVs) could be used...... built a lighter-than-air kite with a long tether and nano-synchronised sensors, Bergen University flies the SUMO, a pusher airplane of 580g total weight equipped with a 100Hz Pitot tube, Tübingen University in conjunction with the TU Braunschweig flies the Carolo, a 2m wide two prop model with a 5-hole...

  12. Different magnetospheric modes: solar wind driving and coupling efficiency

    Directory of Open Access Journals (Sweden)

    N. Partamies

    2009-11-01

    Full Text Available This study describes a systematic statistical comparison of isolated non-storm substorms, steady magnetospheric convection (SMC intervals and sawtooth events. The number of events is approximately the same in each group and the data are taken from about the same years to avoid biasing by different solar cycle phase. The very same superposed epoch analysis is performed for each event group to show the characteristics of ground-based indices (AL, PCN, PC potential, particle injection at the geostationary orbit and the solar wind and IMF parameters. We show that the monthly occurrence of sawtooth events and isolated non-stormtime substorms closely follows maxima of the geomagnetic activity at (or close to the equinoxes. The most strongly solar wind driven event type, sawtooth events, is the least efficient in coupling the solar wind energy to the auroral ionosphere, while SMC periods are associated with the highest coupling ratio (AL/EY. Furthermore, solar wind speed seems to play a key role in determining the type of activity in the magnetosphere. Slow solar wind is capable of maintaining steady convection. During fast solar wind streams the magnetosphere responds with loading–unloading cycles, represented by substorms during moderately active conditions and sawtooth events (or other storm-time activations during geomagnetically active conditions.

  13. Sensor comparison study for load alleviating wind turbine pitch control

    DEFF Research Database (Denmark)

    Kragh, Knud Abildgaard; Hansen, Morten Hartvig; Henriksen, Lars Christian

    2014-01-01

    of angle of attack and relative velocity at a radial position of the blades, and upstream inflow measurements from a spinner mounted light detection and ranging (LiDAR) sensor that enables preview of the incoming flow field. The results show that for stationary inflow conditions, the three different......As the size of wind turbines increases, the load alleviating capabilities of the turbine controller are becoming increasingly important. Load alleviating control schemes have traditionally been based on feedback from load sensor; however, recent developments of measurement technologies have enabled...... control on the basis of preview measurements of the inflow acquired using, e.g., light detection and ranging. The potential of alleviating load variations that are caused by mean wind speed changes through feed-forward control have been demonstrated through both experiments and simulations in several...

  14. Fully vs. Sequentially Coupled Loads Analysis of Offshore Wind Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Damiani, Rick; Wendt, Fabian; Musial, Walter; Finucane, Z.; Hulliger, L.; Chilka, S.; Dolan, D.; Cushing, J.; O' Connell, D.; Falk, S.

    2017-06-19

    The design and analysis methods for offshore wind turbines must consider the aerodynamic and hydrodynamic loads and response of the entire system (turbine, tower, substructure, and foundation) coupled to the turbine control system dynamics. Whereas a fully coupled (turbine and support structure) modeling approach is more rigorous, intellectual property concerns can preclude this approach. In fact, turbine control system algorithms and turbine properties are strictly guarded and often not shared. In many cases, a partially coupled analysis using separate tools and an exchange of reduced sets of data via sequential coupling may be necessary. In the sequentially coupled approach, the turbine and substructure designers will independently determine and exchange an abridged model of their respective subsystems to be used in their partners' dynamic simulations. Although the ability to achieve design optimization is sacrificed to some degree with a sequentially coupled analysis method, the central question here is whether this approach can deliver the required safety and how the differences in the results from the fully coupled method could affect the design. This work summarizes the scope and preliminary results of a study conducted for the Bureau of Safety and Environmental Enforcement aimed at quantifying differences between these approaches through aero-hydro-servo-elastic simulations of two offshore wind turbines on a monopile and jacket substructure.

  15. A quantitative analysis of coupled oscillations using mobile accelerometer sensors

    Science.gov (United States)

    Castro-Palacio, Juan Carlos; Velázquez-Abad, Luisberis; Giménez, Fernando; Monsoriu, Juan A.

    2013-05-01

    In this paper, smartphone acceleration sensors were used to perform a quantitative analysis of mechanical coupled oscillations. Symmetric and asymmetric normal modes were studied separately in the first two experiments. In the third, a coupled oscillation was studied as a combination of the normal modes. Results indicate that acceleration sensors of smartphones, which are very familiar to students, represent valuable measurement instruments for introductory and first-year physics courses.

  16. A quantitative analysis of coupled oscillations using mobile accelerometer sensors

    International Nuclear Information System (INIS)

    Castro-Palacio, Juan Carlos; Velázquez-Abad, Luisberis; Giménez, Fernando; Monsoriu, Juan A

    2013-01-01

    In this paper, smartphone acceleration sensors were used to perform a quantitative analysis of mechanical coupled oscillations. Symmetric and asymmetric normal modes were studied separately in the first two experiments. In the third, a coupled oscillation was studied as a combination of the normal modes. Results indicate that acceleration sensors of smartphones, which are very familiar to students, represent valuable measurement instruments for introductory and first-year physics courses. (paper)

  17. Output power control of two coupled wind generators

    Directory of Open Access Journals (Sweden)

    A Boukhelifa

    2016-09-01

    Full Text Available In this paper we are interested to the power control of two wind generators coupled to the network through power converters. Every energy chain conversion is composed of a wind turbine, a gearbox, a Double Fed Induction Generator (DFIG, two PWM converters and a DC bus. The power exchange and the DC voltage are controlled by the use of proportional integral correctors. For our study, initially we have modeled all the components of the one system energy conversion, and then we have simulated its behavior using Matlab/Simulink. In another part of this paper we present the analysis of the interaction and the powerflow between the two aerogenerators following a disturbance due to wind speed on every turbine. Also we have considered a connection fault to the DC bus. In each case the assessment of power brought into play is checked. Simulation tests are established.

  18. Coupled analysis of multi-impact energy harvesting from low-frequency wind induced vibrations

    Science.gov (United States)

    Zhu, Jin; Zhang, Wei

    2015-04-01

    Energy need from off-grid locations has been critical for effective real-time monitoring and control to ensure structural safety and reliability. To harvest energy from ambient environments, the piezoelectric-based energy-harvesting system has been proven very efficient to convert high frequency vibrations into usable electrical energy. However, due to the low frequency nature of the vibrations of civil infrastructures, such as those induced from vehicle impacts, wind, and waves, the application of a traditional piezoelectric-based energy-harvesting system is greatly restrained since the output power drops dramatically with the reduction of vibration frequencies. This paper focuses on the coupled analysis of a proposed piezoelectric multi-impact wind-energy-harvesting device that can effectively up-convert low frequency wind-induced vibrations into high frequency ones. The device consists of an H-shape beam and four bimorph piezoelectric cantilever beams. The H-shape beam, which can be easily triggered to vibrate at a low wind speed, is originated from the first Tacoma Narrows Bridge, which failed at wind speeds of 18.8 m s-1 in 1940. The multi-impact mechanism between the H-shape beam and the bimorph piezoelectric cantilever beams is incorporated to improve the harvesting performance at lower frequencies. During the multi-impact process, a series of sequential impacts between the H-shape beam and the cantilever beams can trigger high frequency vibrations of the cantilever beams and result in high output power with a considerably high efficiency. In the coupled analysis, the coupled structural, aerodynamic, and electrical equations are solved to obtain the dynamic response and the power output of the proposed harvesting device. A parametric study for several parameters in the coupled analysis framework is carried out including the external resistance, wind speed, and the configuration of the H-shape beam. The average harvested power for the piezoelectric cantilever

  19. Ceramic thermal wind sensor based on advanced direct chip attaching package

    International Nuclear Information System (INIS)

    Zhou Lin; Qin Ming; Chen Shengqi; Chen Bei

    2014-01-01

    An advanced direct chip attaching packaged two-dimensional ceramic thermal wind sensor is studied. The thermal wind sensor chip is fabricated by metal lift-off processes on the ceramic substrate. An advanced direct chip attaching (DCA) packaging is adopted and this new packaged method simplifies the processes of packaging further. Simulations of the advanced DCA packaged sensor based on computational fluid dynamics (CFD) model show the sensor can detect wind speed and direction effectively. The wind tunnel testing results show the advanced DCA packaged sensor can detect the wind direction from 0° to 360° and wind speed from 0 to 20 m/s with the error less than 0.5 m/s. The nonlinear fitting based least square method in Matlab is used to analyze the performance of the sensor. (semiconductor devices)

  20. Design and development of an experimental six component wind tunnel block balance using optical fibre sensors.

    CSIR Research Space (South Africa)

    De Ponte, JD

    2014-05-01

    Full Text Available In order to meet the increasingly stringent requirements for wind tunnel balances, as expressed by the wind tunnel testing community, balance design philosophy needs to be further expanded to include alternative sensor, material, design...

  1. Measurements of Coastal Winds and Temperature. Sensor Evaluation, Data Quality, and Wind Structures

    Energy Technology Data Exchange (ETDEWEB)

    Heggem, Tore

    1997-12-31

    The long Norwegian coastline has excellent sites for wind power production. This thesis contains a documentation of a measurement station for maritime meteorological data at the coast of Mid-Norway, and analysis of temperature and wind data. It discusses experience with different types of wind speed and wind direction sensors. Accurate air temperature measurements are essential to obtain information about the stability of the atmosphere, and a sensor based on separately calibrated thermistors is described. The quality of the calibrations and the measurements is discussed. A database built up from measurements from 1982 to 1995 has been available. The data acquisition systems and the programs used to read the data are described, as well as data control and gap-filling methods. Then basic statistics from the data like mean values and distributions are given. Quality control of the measurements with emphasis on shade effects from the masts and direction alignment is discussed. The concept of atmospheric stability is discussed. The temperature profile tends to change from unstable to slightly stable as maritime winds passes land. Temperature spectra based on two-year time series are presented. Finally, there is a discussion of long-term turbulence spectra calculated from 14 years of measurements. The lack of a gap in the one-hour region of the spectra is explained from the overweight of unstable atmospheric conditions in the dominating maritime wind. Examples of time series with regular 40-minute cycles, and corresponding effect spectra are given. The validity of local lapse rate as a criterion of atmospheric stability is discussed. 34 refs., 86 figs., 11 tabs.

  2. Coupling modeling and analysis of a wind energy converter

    Directory of Open Access Journals (Sweden)

    Jie-jie Li

    2016-06-01

    Full Text Available In this article, the numerical simulation of a 2.0-MW wind energy converter coupling is achieved by three-dimensional computer-aided design modeling technique and finite element method. The static performances and the buckling characteristics of the diaphragm coupling are investigated. The diaphragm coupling is divided into three substructures, namely, torque input end, the middle section, and the torque output end. Considering the assembly and contact conditions, the simulation analysis for stress responses of the diaphragm coupling is carried out. The buckling factor and buckling mode of the diaphragms are obtained, and the geometric parameters of the diaphragms are optimized according to their buckling characteristics. The relationship between the pretightening force of the bolts, which tighten the friction flange and the friction plate, and the sliding torque is given by an empirical formula. The reasonable ranges of the pretightening force and tighten torque of the bolts are recommended. The fatigue analysis of the diaphragms is completed, and the results show that the diaphragms are competent to the designed life of the diaphragm coupling.

  3. Self-Powered Wind Sensor System for Detecting Wind Speed and Direction Based on a Triboelectric Nanogenerator.

    Science.gov (United States)

    Wang, Jiyu; Ding, Wenbo; Pan, Lun; Wu, Changsheng; Yu, Hua; Yang, Lijun; Liao, Ruijin; Wang, Zhong Lin

    2018-04-02

    The development of the Internet of Things has brought new challenges to the corresponding distributed sensor systems. Self-powered sensors that can perceive and respond to environmental stimuli without an external power supply are highly desirable. In this paper, a self-powered wind sensor system based on an anemometer triboelectric nanogenerator (a-TENG, free-standing mode) and a wind vane triboelectric nanogenerator (v-TENG, single-electrode mode) is proposed for simultaneously detecting wind speed and direction. A soft friction mode is adopted instead of a typical rigid friction for largely enhancing the output performance of the TENG. The design parameters including size, unit central angle, and applied materials are optimized to enhance sensitivity, resolution, and wide measurement scale. The optimized a-TENG could deliver an open-circuit voltage of 88 V and short-circuit current of 6.3 μA, corresponding to a maximum power output of 0.47 mW (wind speed of 6.0 m/s), which is capable of driving electronics for data transmission and storage. The current peak value of the a-TENG signal is used for analyzing wind speed for less energy consumption. Moreover, the output characteristics of a v-TENG are further explored, with six actual operation situations, and the v-TENG delivers fast response to the incoming wind and accurately outputs the wind direction data. As a wind sensor system, wind speed ranging from 2.7 to 8.0 m/s can be well detected (consistent with a commercial sensor) and eight regular directions can be monitored. Therefore, the fabricated wind sensor system has great potential in wireless environmental monitoring applications.

  4. Research and analysis on response characteristics of bracket-line coupling system under wind load

    Science.gov (United States)

    Jiayu, Zhao; Qing, Sun

    2018-01-01

    In this paper, a three-dimensional finite element model of bracket-line coupling system is established based on ANSYS software. Using the wind velocity time series which is generated by MATLAB as a power input, by comparing and analyzing the influence of different wind speeds and different wind attack angles, it is found that when 0 degree wind acts on the structure, wires have a certain damping effect in the bracket-line coupling system and at the same wind speed, the 90 degree direction is the most unfavorable wind direction for the whole structure according to the three kinds of angle wind calculated at present. In the bracket-line coupling system, the bracket structure is more sensitive to the increase of wind speed while the conductors are more sensitive to the change of wind attack angle.

  5. FLEHAP: A Wind Powered Supply for Autonomous Sensor Nodes

    Directory of Open Access Journals (Sweden)

    Gregorio Boccalero

    2016-10-01

    Full Text Available The development of the Internet of Things infrastructure requires the deployment of millions of heterogeneous sensors embedded in the environment. The powering of these sensors cannot be done with wired connections, and the use of batteries is often impracticable. Energy harvesting is the common proposed solution, and many devices have been developed for this purpose, using light, mechanical vibrations, and temperature differences as energetic sources. In this paper we present a novel energy-harvester device able to capture the kinetic energy from a fluid in motion and transform it in electrical energy. This device, named FLEHAP (FLuttering Energy Harvester for Autonomous Powering, is based on an aeroelastic effect, named fluttering, in which a totally passive airfoil shows large and regular self-sustained motions (limit cycle oscillations even in extreme conditions (low Reynolds numbers, thanks to its peculiar mechanical configuration. This system shows, in some centimeter-sized configurations, an electrical conversion efficiency that exceeds 8% at low wind speed (3.5 m/s. By using a specialized electronic circuit, it is possible to store the electrical energy in a super capacitor, and so guarantee self-powering in such environmental conditions.

  6. How good are remote sensors at measuring extreme winds?

    NARCIS (Netherlands)

    Sathe, A.R.; Courtney, M.; Mann, J.; Wagner, R.

    2011-01-01

    This article describes some preliminary efforts within the SafeWind project, aimed to identify the possible added value of using wind lidars to detect extreme wind events. Exceptionally good performance is now regularly reported in the measurement of the mean wind speed with some wind lidars in flat

  7. Aerial sensor for wind turbines Design, implementation and demonstration of the technology

    DEFF Research Database (Denmark)

    Schmidt Paulsen, Uwe; Moñux, Oscar

    The EUDP‐2012 proposal, “Improved wind turbine efficiency using synchronized sensors” is a project which focuses on improving the efficiency of energy production, primarily for wind turbines, but as a spinoff, also traditional power plants. It builds on the experience and proven technology from...... three previous wind turbine projects: ‐ A wing mounted inflow sensor for wind turbines. This system has gone through multiple stages of development, and will be greatly enhanced by the synchronization technology from this project....

  8. Global Magnetospheric Simulations: coupling with ionospheric and solar wind models

    Science.gov (United States)

    Lapenta, Giovanni; Olshevskyi, Vyacheslav; Amaya, Jorge; Deca, Jan; Markidis, Stefano; Vapirev, Alexander

    2013-04-01

    We present results on the global fully kinetic model of the magnetosphere of the Earth. The simulations are based on the iPic3D code [1] that treats kinetically all plasma species solving implicitly the equations of motion for electrons and ions, coupled with the Maxwell equations. We present results of our simulations and discuss the coupling at the inner boundary near the Earth with models of the ionosphere and at the outer boundary with models of the arriving solar wind. The results are part of the activities of the Swiff FP7 project: www.swiff.eu [1] Stefano Markidis, Giovanni Lapenta, Rizwan-uddin, Multi-scale simulations of plasma with iPIC3D, Mathematics and Computers in Simulation, Volume 80, Issue 7, March 2010, Pages 1509-1519, ISSN 0378-4754, 10.1016/j.matcom.2009.08.038 [2] Giovanni Lapenta, Particle simulations of space weather, Journal of Computational Physics, Volume 231, Issue 3, 1 February 2012, Pages 795-821, ISSN 0021-9991, 10.1016/j.jcp.2011.03.035.

  9. Optical Tomography System: Charge-coupled Device Linear Image Sensors

    Directory of Open Access Journals (Sweden)

    M. Idroas

    2010-09-01

    Full Text Available This paper discussed an optical tomography system based on charge-coupled device (CCD linear image sensors. The developed system consists of a lighting system, a measurement section and a data acquisition system. Four CCD linear image sensors are configured around a flow pipe with an octagonal-shaped measurement section, for a four projections system. The four CCD linear image sensors consisting of 2048 pixels with a pixel size of 14 micron by 14 micron are used to produce a high-resolution system. A simple optical model is mapped into the system’s sensitivity matrix to relate the optical attenuation due to variations of optical density within the measurement section. A reconstructed tomographic image is produced based on the model using MATLAB software. The designed instrumentation system is calibrated and tested through different particle size measurements from different projections.

  10. Using wind speed from a blade-mounted flow sensor for power and load assessment on modern wind turbines

    Directory of Open Access Journals (Sweden)

    M. M. Pedersen

    2017-11-01

    Full Text Available In this paper an alternative method to evaluate power performance and loads on wind turbines using a blade-mounted flow sensor is investigated. The hypothesis is that the wind speed measured at the blades has a high correlation with the power and loads such that a power or load assessment can be performed from a few hours or days of measurements.In the present study a blade-mounted five-hole pitot tube is used as the flow sensor as an alternative to the conventional approach, where the reference wind speed is either measured at a nearby met mast or on the nacelle using lidar technology or cup anemometers. From the flow sensor measurements, an accurate estimate of the wind speed at the rotor plane can be obtained. This wind speed is disturbed by the presence of the wind turbine, and it is therefore different from the free-flow wind speed. However, the recorded wind speed has a high correlation with the actual power production as well as the flap-wise loads as it is measured close to the blade where the aerodynamic forces are acting.Conventional power curves are based on at least 180 h of 10 min mean values, but using the blade-mounted flow sensor both the observation average time and the overall assessment time can potentially be shortened. The basis for this hypothesis is that the sensor is able to provide more observations with higher accuracy, as the sensor follows the rotation of the rotor and because of the high correlation between the flow at the blades and the power production. This is the research question addressed in this paper.The method is first tested using aeroelastic simulations where the dependence of the radial position and effect of multiple blade-mounted flow sensors are also investigated. Next the method is evaluated on the basis of full-scale measurements on a pitch-regulated, variable-speed 3.6 MW wind turbine.It is concluded that the wind speed derived from the blade-mounted flow sensor is highly correlated with the

  11. Field Calibration of Wind Direction Sensor to the True North and Its Application to the Daegwanryung Wind Turbine Test Sites

    Directory of Open Access Journals (Sweden)

    Jeong Wan Lee

    2008-12-01

    Full Text Available This paper proposes a field calibration technique for aligning a wind direction sensor to the true north. The proposed technique uses the synchronized measurements of captured images by a camera, and the output voltage of a wind direction sensor. The true wind direction was evaluated through image processing techniques using the captured picture of the sensor with the least square sense. Then, the evaluated true value was compared with the measured output voltage of the sensor. This technique solves the discordance problem of the wind direction sensor in the process of installing meteorological mast. For this proposed technique, some uncertainty analyses are presented and the calibration accuracy is discussed. Finally, the proposed technique was applied to the real meteorological mast at the Daegwanryung test site, and the statistical analysis of the experimental testing estimated the values of stable misalignment and uncertainty level. In a strict sense, it is confirmed that the error range of the misalignment from the exact north could be expected to decrease within the credibility level.

  12. Automatic tracking of wake vortices using ground-wind sensor data

    Science.gov (United States)

    1977-01-03

    Algorithms for automatic tracking of wake vortices using ground-wind anemometer : data are developed. Methods of bad-data suppression, track initiation, and : track termination are included. An effective sensor-failure detection-and identification : ...

  13. Advanced Load Alleviation for Wind Turbines using Adaptive Trailing Edge Flaps: Sensoring and Control

    DEFF Research Database (Denmark)

    Andersen, Peter Bjørn

    The purpose of wind turbines and their predecessors the windmill, is to convert the energy in the wind to usable energy forms. Whereas windmills of the past focused on the conversion of wind power to torque for grinding, pumping and winching, modern wind turbines convert the wind energy into elec...... control. Active control is often considered costly but if the lifespan of the components can be increased it could be justifiable. This thesis covers various aspects of ‘smart control’ such as control theory, sensoring, optimization, experiments and numerical modeling....

  14. Power harvesting by electromagnetic coupling from wind-induced limit cycle oscillations

    Science.gov (United States)

    Boccalero, G.; Olivieri, S.; Mazzino, A.; Boragno, C.

    2017-09-01

    Recent developments of low-power microprocessors open to new applications such as wireless sensor networks (WSN) with the consequent problem of autonomous powering. For this purpose, a possible strategy is represented by energy harvesting from wind or other flows exploiting fluid-structure interactions. In this work, we present an updated picture of a flutter-based device characterized by fully passive dynamics and a simple constructive layout, where limit cycle oscillations are undergone by an elastically bounded wing. In this case, the conversion from mechanical to electrical energy is performed by means of an electromagnetic coupling between a pair of coils and magnets. A centimetric-size prototype is shown to harvest energy from low wind velocities (between 2 and 4 m s-1), reaching a power peak of 14 mW, representing a valuable amount for applications related to WSN. A mathematical description of the nonlinear dynamics is then provided by a quasi-steady phenomenological model, revealing satisfactory agreement with the experimental framework within a certain parametric range and representing a useful tool for future optimizations.

  15. Unknown input observer based detection of sensor faults in a wind turbine

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Stoustrup, Jakob

    2010-01-01

    In this paper an unknown input observer is designed to detect three different sensor fault scenarios in a specified bench mark model for fault detection and accommodation of wind turbines. In this paper a subset of faults is dealt with, it are faults in the rotor and generator speed sensors as we...

  16. Modeling, fabrication and plasma actuator coupling of flexible pressure sensors for flow separation detection and control in aeronautical applications

    International Nuclear Information System (INIS)

    Francioso, L; De Pascali, C; Siciliano, P; Pescini, E; De Giorgi, M G

    2016-01-01

    Preventing the flow separation could enhance the performance of propulsion systems and future civil aircraft. To this end, a fast detection of boundary layer separation is mandatory for a sustainable and successful application of active flow control devices, such as plasma actuators. The present work reports on the design, fabrication and functional tests of low-cost capacitive pressure sensors coupled with dielectric barrier discharge (DBD) plasma actuators to detect and then control flow separation. Finite element method (FEM) simulations were used to obtain information on the deflection and the stress distribution in different-shaped floating membranes. The sensor sensitivity as a function of the pressure load was also calculated by experimental tests. The results of the calibration of different capacitive pressure sensors are reported in this work, together with functional tests in a wind tunnel equipped with a curved wall plate on which a DBD plasma actuator was mounted to control the flow separation. The flow behavior was experimentally investigated by particle image velocimetry (PIV) measurements. Statistical and spectral analysis, applied to the output signals of the pressure sensor placed downstream of the profile leading edge, demonstrated that the sensor is able to discriminate different ionic wind velocity and turbulence conditions. The sensor sensitivity in the 0–100 Pa range was experimentally measured and it ranged between 0.0030 and 0.0046 pF Pa −1 for the best devices. (paper)

  17. Modeling, fabrication and plasma actuator coupling of flexible pressure sensors for flow separation detection and control in aeronautical applications

    Science.gov (United States)

    Francioso, L.; De Pascali, C.; Pescini, E.; De Giorgi, M. G.; Siciliano, P.

    2016-06-01

    Preventing the flow separation could enhance the performance of propulsion systems and future civil aircraft. To this end, a fast detection of boundary layer separation is mandatory for a sustainable and successful application of active flow control devices, such as plasma actuators. The present work reports on the design, fabrication and functional tests of low-cost capacitive pressure sensors coupled with dielectric barrier discharge (DBD) plasma actuators to detect and then control flow separation. Finite element method (FEM) simulations were used to obtain information on the deflection and the stress distribution in different-shaped floating membranes. The sensor sensitivity as a function of the pressure load was also calculated by experimental tests. The results of the calibration of different capacitive pressure sensors are reported in this work, together with functional tests in a wind tunnel equipped with a curved wall plate on which a DBD plasma actuator was mounted to control the flow separation. The flow behavior was experimentally investigated by particle image velocimetry (PIV) measurements. Statistical and spectral analysis, applied to the output signals of the pressure sensor placed downstream of the profile leading edge, demonstrated that the sensor is able to discriminate different ionic wind velocity and turbulence conditions. The sensor sensitivity in the 0-100 Pa range was experimentally measured and it ranged between 0.0030 and 0.0046 pF Pa-1 for the best devices.

  18. Simultaneous Fault Detection and Sensor Selection for Condition Monitoring of Wind Turbines

    Directory of Open Access Journals (Sweden)

    Wenna Zhang

    2016-04-01

    Full Text Available Data collected from the supervisory control and data acquisition (SCADA system are used widely in wind farms to obtain operation and performance information about wind turbines. The paper presents a three-way model by means of parallel factor analysis (PARAFAC for wind turbine fault detection and sensor selection, and evaluates the method with SCADA data obtained from an operational farm. The main characteristic of this new approach is that it can be used to simultaneously explore measurement sample profiles and sensors profiles to avoid discarding potentially relevant information for feature extraction. With K-means clustering method, the measurement data indicating normal, fault and alarm conditions of the wind turbines can be identified, and the sensor array can be optimised for effective condition monitoring.

  19. Advanced load alleviation for wind turbines using adaptive trailing edge flaps: Sensoring and control

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, Peter Bjoern

    2010-02-15

    The purpose of wind turbines and their predecessors the windmill, is to convert the energy in the wind to usable energy forms. Whereas windmills of the past focused on the conversion of wind power to torque for grinding, pumping and winching, modern wind turbines convert the wind energy into electric power. They do so through incorporation of generators, which convert mechanical torque into electricity. Wind turbines are designed to keep the overall cost per produced Kilo Watt hour as low as possible. One way of improving the performance and lifetime of the wind turbine is through active flow control. Active control is often considered costly but if the lifespan of the components can be increased it could be justifiable. This thesis covers various aspects of 'smart control' such as control theory, sensoring, optimization, experiments and numerical modeling. (author)

  20. Coupled Solar Wind-Magnetosphere-Ionosphere-Thermosphere System by QFT

    Science.gov (United States)

    Chen, Shao-Guang

    shoot to Sun from the center of Galaxy. The dynamic balance of forces on the solar surface plasma at once is broken and the plasma will upwards eject as the solar wind with redundant negative charge, at the same time, the solar surface remain a cavity as a sunspot whorl with the positive electric potential relative to around. The whorl caused by that the reaction of plasma eject front and upwards with the different velocity at different latitude of solar rotation, leads to the cavity around in the downwards and backwards helix movement. The solar rotation more slow, when the cavity is filled by around plasma in the reverse turn direction, the Jupiter at front had been produced a new cavity, so that we had observe the sunspot pair with different whorl directions and different magnetic polarity. Jupiter possess half mass of all planets in solar system, its action to stop net nuν _{0} flux is primary, so that Jupiter’s period of 11.8 sidereal years accord basically with the period of sunspot eruptions. The solar wind is essentially the plasma with additional electrons flux ejected from the solar surface: its additional electrons come from the ionosphere again eject into the ionosphere and leads to the direct connect between the solar wind and the ionosphere; its magnetism from its redundant negative charge and leads to the connect between the solar wind and the magnetosphere; it possess the high temperature of the solar surface and ejecting kinetic energy leads to the thermo-exchange connect between the solar wind and the thermosphere. Through the solar wind ejecting into and cross over the outside atmosphere carry out the electromagnetic, particles material and thermal exchanges, the Coupled Solar Wind-Magnetosphere-Ionosphere-Thermosphere System to be came into being. This conclusion is inferred only by QFT.

  1. Novel Sensor for Wind Tunnel Calibration and Characterization, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Advances in computational capabilities for modeling the performance of advanced flight vehicles depend on verification measurements made in ground-based wind...

  2. Feasibility Study of Micro-Wind Turbines for Powering Wireless Sensors on a Cable-Stayed Bridge

    Directory of Open Access Journals (Sweden)

    Billie F. Spencer

    2012-09-01

    Full Text Available In this study, the feasibility of using micro-wind turbines to power wireless sensors on a cable-stayed bridge is comprehensively investigated. To this end, the wind environment around a bridge onto which a turbine is installed is examined, as is the power consumption of a wireless sensor. Feasible alternators and rotors are then carefully selected to make an effective small wind generator (known as a micro-wind turbine. Using the three specially selected micro-wind turbines, a series of experiments was conducted to find the turbine best able to generate the largest amount of power. Finally, a horizontal-axis micro-wind turbine with a six-blade rotor was combined with a wireless sensor to validate experimentally its actual power-charging capability. It is demonstrated that the micro-wind turbine can generate sufficient electricity to power a wireless sensor under moderate wind conditions.

  3. Coupling Atmosphere and Waves for Coastal Wind Turbine Design

    DEFF Research Database (Denmark)

    Bolanos, Rodolfo; Larsén, Xiaoli Guo; Petersen, Ole S.

    2014-01-01

    a 50% variation in roughness and 20% in wind, with the better formulation for wind leading degraded predictions of roughness compared with observations. The large estimates of roughness when using a 3rd generation wave model are evident offshore, while a roughness formulation based on wave age produces...

  4. Development of sensor-less control strategies for grid connected PMSG based variable speed wind energy conversion system with improved power quality features

    Energy Technology Data Exchange (ETDEWEB)

    Chandra, A. [Quebec Univ., Montreal, PQ (Canada). Dept. of Electrical Engineering

    2010-07-01

    Interest in renewable energy sources has grown in recent years in response to concerns of increasing pollution levels and depleting fossil fuels. Among renewable energy sources, wind energy generation is the fastest growing technology and one of the most cost-effective and environmental friendly means to generate electricity from renewable sources. Modern wind turbines are ready to be deployed in large scale as a result of recent developments in wind power technology. Variable speed permanent magnet synchronous generators (PMSG) based wind energy conversion systems (WECS) are becoming more popular. The use of a permanent magnet reduces size, cost and weight of overall WECS. In addition, the absence of field winding and its excitation system avoids heat dissipation in the rotor winding, thereby improving overall efficiency of the WECS. This type of configuration is more appropriate for remote locations, particularly for off-shore wind application, where the geared doubly fed induction generator usually requires regular maintenance due to tearing-wearing in brushes, windings and gear box. This presentation discussed the development of sensor-less control strategies for grid connected PMSG based variable speed wind energy conversion system with improved power quality features. A novel adaptive network-based fuzzy inference system was used to estimate the speed and position of variable speed PMSG under fluctuating wind conditions. A novel control strategy was developed for the grid interfacing inverter incorporating power quality improvement features at point of common coupling.

  5. Design of multi-energy Helds coupling testing system of vertical axis wind power system

    Science.gov (United States)

    Chen, Q.; Yang, Z. X.; Li, G. S.; Song, L.; Ma, C.

    2016-08-01

    The conversion efficiency of wind energy is the focus of researches and concerns as one of the renewable energy. The present methods of enhancing the conversion efficiency are mostly improving the wind rotor structure, optimizing the generator parameters and energy storage controller and so on. Because the conversion process involves in energy conversion of multi-energy fields such as wind energy, mechanical energy and electrical energy, the coupling effect between them will influence the overall conversion efficiency. In this paper, using system integration analysis technology, a testing system based on multi-energy field coupling (MEFC) of vertical axis wind power system is proposed. When the maximum efficiency of wind rotor is satisfied, it can match to the generator function parameters according to the output performance of wind rotor. The voltage controller can transform the unstable electric power to the battery on the basis of optimizing the parameters such as charging times, charging voltage. Through the communication connection and regulation of the upper computer system (UCS), it can make the coupling parameters configure to an optimal state, and it improves the overall conversion efficiency. This method can test the whole wind turbine (WT) performance systematically and evaluate the design parameters effectively. It not only provides a testing method for system structure design and parameter optimization of wind rotor, generator and voltage controller, but also provides a new testing method for the whole performance optimization of vertical axis wind energy conversion system (WECS).

  6. Fully Coupled Three-Dimensional Dynamic Response of a Tension-Leg Platform Floating Wind Turbine in Waves and Wind

    DEFF Research Database (Denmark)

    Kumari Ramachandran, Gireesh Kumar Vasanta; Bredmose, Henrik; Sørensen, Jens Nørkær

    2014-01-01

    , which is a consequence of the wave-induced rotor dynamics. Loads and coupled responses are predicted for a set of load cases with different wave headings. Further, an advanced aero-elastic code, Flex5, is extended for the TLP wind turbine configuration and the response comparison with the simpler model......A dynamic model for a tension-leg platform (TLP) floating offshore wind turbine is proposed. The model includes three-dimensional wind and wave loads and the associated structural response. The total system is formulated using 17 degrees of freedom (DOF), 6 for the platform motions and 11...... for the wind turbine. Three-dimensional hydrodynamic loads have been formulated using a frequency-and direction-dependent spectrum. While wave loads are computed from the wave kinematics using Morison's equation, the aerodynamic loads are modeled by means of unsteady blade-element-momentum (BEM) theory...

  7. Bend-twist coupling potential of wind turbine blades

    DEFF Research Database (Denmark)

    Fedorov, Vladimir; Berggreen, Christian

    2014-01-01

    -twist coupling magnitude of up to 0.2 is feasible to achieve in the baseline blade structure made of glass-fiber reinforced plastics. Further, by substituting the glass-fibers with carbon-fibers the coupling effect can be increased to 0.4. Additionally, the effect of introduction of bend-twist coupling...

  8. Autonomous aerial sensors for wind power meteorology - A pre-project

    Energy Technology Data Exchange (ETDEWEB)

    Giebel, G. (ed.); Schmidt Paulsen, U.; Bange, J.; la Cour-Harbo, A.; Reuder, J.; Mayer, S.; van der Kroonenberg, A.; Moelgaard, J.

    2012-01-15

    Autonomous Aerial Sensors, i.e. meteorological sensors mounted on Unmanned Aerial Systems UAS, can characterise the atmospheric flow in and around wind farms. We instrumented three planes, a helicopter and a lighter-than-air LTA system to fly one week together in a well-instrumented wind farm, partly with nano-synchronised sensors (time stamped with about 100 ns global accuracy). Between bankruptcy of a partner, denied overflight rights at the main test location, denied Civil Aviation Authorities permits at the alternative location, stolen planes, and crashed UAS we managed to collect data at a wind farm in Lolland and on an atmospheric campaign in France. Planning of an offshore campaign using the developed techniques is underway. (Author)

  9. Coupling of the solar wind to measures of magnetic activity

    International Nuclear Information System (INIS)

    McPherron, R.L.; Fay, R.A.; Garrity, C.R.; Bargatze, L.F.; Baker, D.N.; Clauer, C.R.; Searls, C.

    1984-01-01

    The technique of linear prediction filtering has been used to generate empirical response functions relating the solar wind electric field to the most frequently used magnetic indices, AL, AU, Dst and ASYM. Two datasets, one from 1967-1968 and one from 1973-1974, provided the information needed to calculate the empirical response functions. These functions have been convolved with solar wind observations obtained during the IMS to predict the indices. These predictions are compared with the observed indices during two, three-day intervals studied extensively by participants in the CDAW-6 workshop. Differences between the observed and predicted indices are discussed in terms of the linear assumption and in terms of physical processes other than direct solar wind-magnetosphere interaction

  10. Sensor Development for In-Situ Thermospheric Neutral Wind Measurements

    National Research Council Canada - National Science Library

    Heelis, R

    2001-01-01

    .... The measurements depend upon the supersonic velocity of the spacecraft to determine a velocity vector from measurement of the kinetic energy of the gas along the sensor look direction and the angle...

  11. A Fault Diagnostic Method for Position Sensor of Switched Reluctance Wind Generator

    DEFF Research Database (Denmark)

    Wang, Chao; Liu, Xiao; Liu, Hui

    2016-01-01

    Fast and accurate fault diagnosis of the position sensor is of great significance to ensure the reliability as well as sensor fault tolerant operation of the Switched Reluctance Wind Generator (SRWG). This paper presents a fault diagnostic scheme for a SRWG based on the residual between the estim...... conditions. The results provide a feasible theoretical and technical basis for the effective condition monitoring and predictive maintenance of SRWG....

  12. A new oil debris sensor for online condition monitoring of wind turbine gearboxes

    DEFF Research Database (Denmark)

    Wang, Chao; Liu, Hui; Liu, Xiao

    2015-01-01

    Online Condition Monitoring (CM) is a key technology for the Operation and Maintenance (O&M) of wind turbines. Lubricating oil is the blood of the wind turbine gearbox. Metal debris in lubricating oil contains abundant information regarding the ageing and wear/damage of mechanical transmission...... systems. The health condition of the wind turbine gearboxes can be indicated by the quantity and size of the metal abrasive particles, which may provide very early warnings of faults/failures and benefit the condition based maintenance of the system. An improved inductive sensor probe is proposed...

  13. Fault isolation in parallel coupled wind turbine converters

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Thøgersen, Paul Bach; Stoustrup, Jakob

    2010-01-01

    Parallel converters in wind turbine give a number advantages, such as fault tolerance due to the redundant converters. However, it might be difficult to isolate gain faults in one of the converters if only a combined power measurement is available. In this paper a scheme using orthogonal power re...

  14. Temperature, Humidity, Wind and Pressure Sensors (THWAPS) Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Ritsche, MT

    2011-01-17

    The temperature, humidity, wind, and pressure system (THWAPS) provide surface reference values of these measurements for balloon-borne sounding system (SONDE) launches. The THWAPS is located adjacent to the SONDE launch site at the Southern Great Plains (SGP) Central Facility. The THWAPS system is a combination of calibration-quality instruments intended to provide accurate measurements of meteorological conditions near the surface. Although the primary use of the system is to provide accurate surface reference values of temperature, pressure, relative humidity (RH), and wind velocity for comparison with radiosonde readings, the system includes a data logger to record time series of the measured variables.

  15. Data-Driven Method for Wind Turbine Yaw Angle Sensor Zero-Point Shifting Fault Detection

    Directory of Open Access Journals (Sweden)

    Yan Pei

    2018-03-01

    Full Text Available Wind turbine yaw control plays an important role in increasing the wind turbine production and also in protecting the wind turbine. Accurate measurement of yaw angle is the basis of an effective wind turbine yaw controller. The accuracy of yaw angle measurement is affected significantly by the problem of zero-point shifting. Hence, it is essential to evaluate the zero-point shifting error on wind turbines on-line in order to improve the reliability of yaw angle measurement in real time. Particularly, qualitative evaluation of the zero-point shifting error could be useful for wind farm operators to realize prompt and cost-effective maintenance on yaw angle sensors. In the aim of qualitatively evaluating the zero-point shifting error, the yaw angle sensor zero-point shifting fault is firstly defined in this paper. A data-driven method is then proposed to detect the zero-point shifting fault based on Supervisory Control and Data Acquisition (SCADA data. The zero-point shifting fault is detected in the proposed method by analyzing the power performance under different yaw angles. The SCADA data are partitioned into different bins according to both wind speed and yaw angle in order to deeply evaluate the power performance. An indicator is proposed in this method for power performance evaluation under each yaw angle. The yaw angle with the largest indicator is considered as the yaw angle measurement error in our work. A zero-point shifting fault would trigger an alarm if the error is larger than a predefined threshold. Case studies from several actual wind farms proved the effectiveness of the proposed method in detecting zero-point shifting fault and also in improving the wind turbine performance. Results of the proposed method could be useful for wind farm operators to realize prompt adjustment if there exists a large error of yaw angle measurement.

  16. Real-time Wind Profile Estimation using Airborne Sensors

    NARCIS (Netherlands)

    In 't Veld, A.C.; De Jong, P.M.A.; Van Paassen, M.M.; Mulder, M.

    2011-01-01

    Wind is one of the major contributors to uncertainty in continuous descent approach operations. Especially when aircraft that are flying low or idle thrust approaches are issued a required time of arrival over the runway threshold, as is foreseen in some of the future ATC scenarios, the on-board

  17. Aeroelastically coupled blades for vertical axis wind turbines

    Science.gov (United States)

    Paquette, Joshua; Barone, Matthew F.

    2016-02-23

    Various technologies described herein pertain to a vertical axis wind turbine blade configured to rotate about a rotation axis. The vertical axis wind turbine blade includes at least an attachment segment, a rear swept segment, and optionally, a forward swept segment. The attachment segment is contiguous with the forward swept segment, and the forward swept segment is contiguous with the rear swept segment. The attachment segment includes a first portion of a centroid axis, the forward swept segment includes a second portion of the centroid axis, and the rear swept segment includes a third portion of the centroid axis. The second portion of the centroid axis is angularly displaced ahead of the first portion of the centroid axis and the third portion of the centroid axis is angularly displaced behind the first portion of the centroid axis in the direction of rotation about the rotation axis.

  18. A new oil debris sensor for online condition monitoring of wind turbine gearboxes

    DEFF Research Database (Denmark)

    Wang, Chao; Liu, Hui; Liu, Xiao

    2015-01-01

    systems. The health condition of the wind turbine gearboxes can be indicated by the quantity and size of the metal abrasive particles, which may provide very early warnings of faults/failures and benefit the condition based maintenance of the system. An improved inductive sensor probe is proposed...

  19. Calibration of an experimental six component wind tunnel block balance using optical fibre sensors

    CSIR Research Space (South Africa)

    de Ponte, JD

    2016-05-01

    Full Text Available Symposium on Strain-Gauge Balances, Mianyang, Sichuan China, 16-19 May 2016 Calibration of an Experimental Six Component Wind Tunnel Block Balance Using Optical Fibre Sensors J.D. de Ponte1, F.F. Pieterse2 1, 2University of Johannesburg, Auckland...

  20. Application of Surface Protective Coating to Enhance Environment-Withstanding Property of the MEMS 2D Wind Direction and Wind Speed Sensor

    Science.gov (United States)

    Shin, Kyu-Sik; Lee, Dae-Sung; Song, Sang-Woo; Jung, Jae Pil

    2017-01-01

    In this study, a microelectromechanical system (MEMS) two-dimensional (2D) wind direction and wind speed sensor consisting of a square heating source and four thermopiles was manufactured using the heat detection method. The heating source and thermopiles of the manufactured sensor must be exposed to air to detect wind speed and wind direction. Therefore, there are concerns that the sensor could be contaminated by deposition or adhesion of dust, sandy dust, snow, rain, and so forth, in the air, and that the membrane may be damaged by physical shock. Hence, there was a need to protect the heating source, thermopiles, and the membrane from environmental and physical shock. The upper protective coating to protect both the heating source and thermopiles and the lower protective coating to protect the membrane were formed by using high-molecular substances such as SU-8, Teflon and polyimide (PI). The sensor characteristics with the applied protective coatings were evaluated. PMID:28925942

  1. Application of Surface Protective Coating to Enhance Environment-Withstanding Property of the MEMS 2D Wind Direction and Wind Speed Sensor.

    Science.gov (United States)

    Shin, Kyu-Sik; Lee, Dae-Sung; Song, Sang-Woo; Jung, Jae Pil

    2017-09-19

    In this study, a microelectromechanical system (MEMS) two-dimensional (2D) wind direction and wind speed sensor consisting of a square heating source and four thermopiles was manufactured using the heat detection method. The heating source and thermopiles of the manufactured sensor must be exposed to air to detect wind speed and wind direction. Therefore, there are concerns that the sensor could be contaminated by deposition or adhesion of dust, sandy dust, snow, rain, and so forth, in the air, and that the membrane may be damaged by physical shock. Hence, there was a need to protect the heating source, thermopiles, and the membrane from environmental and physical shock. The upper protective coating to protect both the heating source and thermopiles and the lower protective coating to protect the membrane were formed by using high-molecular substances such as SU-8, Teflon and polyimide (PI). The sensor characteristics with the applied protective coatings were evaluated.

  2. GPS/INS Sensor Fusion Using GPS Wind up Model

    Science.gov (United States)

    Williamson, Walton R. (Inventor)

    2013-01-01

    A method of stabilizing an inertial navigation system (INS), includes the steps of: receiving data from an inertial navigation system; and receiving a finite number of carrier phase observables using at least one GPS receiver from a plurality of GPS satellites; calculating a phase wind up correction; correcting at least one of the finite number of carrier phase observables using the phase wind up correction; and calculating a corrected IMU attitude or velocity or position using the corrected at least one of the finite number of carrier phase observables; and performing a step selected from the steps consisting of recording, reporting, or providing the corrected IMU attitude or velocity or position to another process that uses the corrected IMU attitude or velocity or position. A GPS stabilized inertial navigation system apparatus is also described.

  3. Wind-generator influence to the power quality in the coupling point to the distribution network

    Directory of Open Access Journals (Sweden)

    Kostić Branka B.

    2011-01-01

    Full Text Available The paper presents the results of analysis of wind-generator and their influence to the power quality parameters in the coupling point to the distribution network. The specified results should be used as a starting point for distribution system operators (DSO for issuing permit for connecting renewable sources, mainly for wind-generators. As the case study, the results of measurements at the only one wind generator installed in Serbia, near town of Tutin, are used. The cases of wind-generator start and stop during low wind and consequently smaller value of the energy delivered to the network are particularly analyzed. Taking into consideration that law regulations in this field are not yet defined, EU standards and guidelines are used along with the newly adopted Technical recommendation No. 16 of Public Enterprise Electric Power Industry of Serbia.

  4. Optimizing investments in coupled offshore wind -electrolytic hydrogen storage systems in Denmark

    DEFF Research Database (Denmark)

    Hou, Peng; Enevoldsen, Peter; Eichman, Joshua

    2017-01-01

    , electrolyzers, and hydrogen fuel cells is explored. This research reveals the investment potential of coupling offshore wind farms with different hydrogen systems. The benefits in terms of a return on investment are demonstrated with data from the Danish electricity markets. This research also investigates......In response to electricity markets with growing levels of wind energy production and varying electricity prices, this research examines incentives for investments in integrated renewable energy power systems. A strategy for using optimization methods for a power system consisting of wind turbines...

  5. Fundamentals for remote structural health monitoring of wind turbine blades - a preproject. Annex A. Cost-benefit for embedded sensors in large wind turbine blades

    DEFF Research Database (Denmark)

    Hansen, L.G.; Lading, Lars

    2002-01-01

    This report contains the results of a cost-benefit analysis for the use of embed-ded sensors for damage detection in large wind turbine blades - structural health monitoring - (in connection with remote surveillance) of large wind turbine placedoff-shore. The total operating costs of a three......, the cost/benefit analysis has large uncertainties....

  6. Application of a Heat Flux Sensor in Wind Power Electronics

    Directory of Open Access Journals (Sweden)

    Elvira Baygildina

    2016-06-01

    Full Text Available This paper proposes and investigates the application of the gradient heat flux sensor (GHFS for measuring the local heat flux in power electronics. Thanks to its thinness, the sensor can be placed between the semiconductor module and the heat sink. The GHFS has high sensitivity and yields direct measurements without an interruption to the normal power device operation, which makes it attractive for power electronics applications. The development of systems for monitoring thermal loading and methods for online detection of degradation and failure of power electronic devices is a topical and crucial task. However, online condition monitoring (CM methods, which include heat flux sensors, have received little research attention so far. In the current research, an insulated-gate bipolar transistor (IGBT module-based test setup with the GHFS implemented on the base plate of one of the IGBTs is introduced. The heat flux experiments and the IGBT power losses obtained by simulations show similar results. The findings give clear evidence that the GHFS can provide an attractive condition monitoring method for the thermal loading of power devices.

  7. Coupled influences of topography and wind on wildland fire behaviour

    Science.gov (United States)

    Rodman Linn; Judith Winterkamp; Carleton Edminster; Jonah J. Colman; William S. Smith

    2007-01-01

    Ten simulations were performed with the HIGRAD/FIRETEC wildfire behaviour model in order to explore its utility in studying wildfire behaviour in inhomogeneous topography. The goal of these simulations is to explore the potential extent of the coupling between the fire, atmosphere, and topography. The ten simulations described in this paper include five different...

  8. Testing and Modeling of a 3-MW Wind Turbine Using Fully Coupled Simulation Codes (Poster)

    Energy Technology Data Exchange (ETDEWEB)

    LaCava, W.; Guo, Y.; Van Dam, J.; Bergua, R.; Casanovas, C.; Cugat, C.

    2012-06-01

    This poster describes the NREL/Alstom Wind testing and model verification of the Alstom 3-MW wind turbine located at NREL's National Wind Technology Center. NREL,in collaboration with ALSTOM Wind, is studying a 3-MW wind turbine installed at the National Wind Technology Center(NWTC). The project analyzes the turbine design using a state-of-the-art simulation code validated with detailed test data. This poster describes the testing and the model validation effort, and provides conclusions about the performance of the unique drive train configuration used in this wind turbine. The 3-MW machine has been operating at the NWTC since March 2011, and drive train measurements will be collected through the spring of 2012. The NWTC testing site has particularly turbulent wind patterns that allow for the measurement of large transient loads and the resulting turbine response. This poster describes the 3-MW turbine test project, the instrumentation installed, and the load cases captured. The design of a reliable wind turbine drive train increasingly relies on the use of advanced simulation to predict structural responses in a varying wind field. This poster presents a fully coupled, aero-elastic and dynamic model of the wind turbine. It also shows the methodology used to validate the model, including the use of measured tower modes, model-to-model comparisons of the power curve, and mainshaft bending predictions for various load cases. The drivetrain is designed to only transmit torque to the gearbox, eliminating non-torque moments that are known to cause gear misalignment. Preliminary results show that the drivetrain is able to divert bending loads in extreme loading cases, and that a significantly smaller bending moment is induced on the mainshaft compared to a three-point mounting design.

  9. Design, fabrication and characterization of the first AC-coupled silicon microstrip sensors in India

    CERN Document Server

    Aziz, T; Mohanty, G.B.; Patil, M.R.; Rao, K.K.; Rani, Y.R.; Rao, Y.P.P.; Behnamian, H.; Mersi, S.; Naseri, M.

    2014-01-01

    This paper reports the design, fabrication and characterization of single-sided silicon microstrip sensors with integrated biasing resistors and coupling capacitors, produced for the first time in India. We have first developed a prototype sensor with different width and pitch combinations on a single 4-inch wafer. After finding test procedures for characterizing these AC coupled sensors, we have chosen an optimal width-pitch combination and also fine-tuned various process parameters in order to produce sensors with the desired specifications.

  10. Wind speed and direction measurement based on arc ultrasonic sensor array signal processing algorithm.

    Science.gov (United States)

    Li, Xinbo; Sun, Haixin; Gao, Wei; Shi, Yaowu; Liu, Guojun; Wu, Yue

    2016-11-01

    This article investigates a kind of method to measure the wind speed and the wind direction, which is based on arc ultrasonic sensor array and combined with array signal processing algorithm. In the proposed method, a new arc ultrasonic array structure is introduced and the array manifold is derived firstly. On this basis, the measurement of the wind speed and the wind direction is analyzed and discussed by means of the basic idea of the classic MUSIC (Multiple Signal Classification) algorithm, which achieves the measurements of the 360° wind direction with resolution of 1° and 0-60m/s wind speed with resolution of 0.1m/s. The implementation of the proposed method is elaborated through the theoretical derivation and corresponding discussion. Besides, the simulation experiments are presented to show the feasibility of the proposed method. The theoretical analysis and simulation results indicate that the proposed method has superiority on anti-noise performance and improves the wind measurement accuracy. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  11. Vehicle to wireless power transfer coupling coil alignment sensor

    Science.gov (United States)

    Miller, John M.; Chambon, Paul H.; Jones, Perry T.; White, Clifford P.

    2016-02-16

    A non-contacting position sensing apparatus includes at least one vehicle-mounted receiver coil that is configured to detect a net flux null when the vehicle is optimally aligned relative to the primary coil in the charging device. Each of the at least one vehicle-mounted receiver coil includes a clockwise winding loop and a counterclockwise winding loop that are substantially symmetrically configured and serially connected to each other. When the non-contacting position sensing apparatus is located directly above the primary coil of the charging device, the electromotive forces from the clockwise winding loop and the counterclockwise region cancel out to provide a zero electromotive force, i.e., a zero voltage reading across the coil that includes the clockwise winding loop and the counterclockwise winding loop.

  12. Coupled flap and edge wise blade motion due to a quadratic wind force definition

    International Nuclear Information System (INIS)

    Van der Male, P; Van Dalen, K N

    2014-01-01

    The wind force on turbine blades, consisting of a drag and lift component, depends nonlinearly on the relative wind velocity. This relative velocity comprises mean wind speed, wind speed fluctuations and the structural response velocity. The nonlinear wind excitation couples the flap wise and edge wise response of a turbine blade. To analyze this motion coupling, an isolated blade is modelled as a continuous cantilever beam and corresponding nonlinear expressions for the drag and lift force are defined. After reduction of the model on the basis of its principal modes, the nonlinear response up to the second order is derived with the help of a Volterra series expansion and the harmonic probing technique. This technique allows for response analysis in the frequency domain, via which the combined flap and edge wise responses can easily be visualized. As a specific case, the characteristics of the NREL5 turbine blades are adopted. For both non-operating and operating conditions, blade responses in a turbulent wave field, based on a Kaimal spectrum, are determined. The second-order responses are shown to cause additional motion coupling, and moreover, are proven not to be negligible straightforwardly

  13. Review of remote-sensor potential for wind-energy studies

    Energy Technology Data Exchange (ETDEWEB)

    Hooke, W.H.

    1981-03-01

    This report evaluates a number of remote-sensing systems such as radars, lidars, and acoustic echo sounders which are potential alternatives to the cup- and propeller anemometers routinely used in wind energy siting. The high costs and demanding operational requirements of these sensors currently preclude their use in the early stages of a multi-phase wind energy siting strategy such as that recently articulated by Hiester and Pennell (1981). Instead, these systems can be used most effectively in the lattermost stages of the siting process - what Hiester and Pennell (1981) refer to as the site development phase, necessary only for the siting of large wind-energy conversion systems (WECS) or WECS clusters. Even for this particular application only four techniques appear to be operational now; that is, if used properly, these techniques should provide the data sets currently considered adequate for wind-energy siting purposes. They are, in rough order of increasing expense and operating demands: optical transverse wind sensors; acoustic Doppler sounders; time-of-flight and continuous wave (CW) Doppler lidar; and frequency-modulated, continuous wave (FM-CW) Doppler radar.

  14. Generalized coupled wake boundary layer model: applications and comparisons with field and LES data for two wind farms

    NARCIS (Netherlands)

    Stevens, Richard Johannes Antonius Maria; Gayme, Dennice F.; Meneveau, Charles

    2016-01-01

    We describe a generalization of the coupled wake boundary layer (CWBL) model for wind farms that can be used to evaluate the performance of wind farms under arbitrary wind inflow directions, whereas the original CWBL model (Stevens et al., J. Renewable and Sustainable Energy 7, 023115 (2015))

  15. Fundamentals for remote structural health monitoring of wind turbine blades - a preproject. Annex A. Cost-benefit for embedded sensors in large wind turbine blades

    OpenAIRE

    Hansen, L.G.; Lading, Lars

    2002-01-01

    This report contains the results of a cost-benefit analysis for the use of embed-ded sensors for damage detection in large wind turbine blades - structural health monitoring - (in connection with remote surveillance) of large wind turbine placedoff-shore. The total operating costs of a three-bladed 2MW turbine placed offshore either without sensors or with sensors are compared. The price of a structural health monitoring system of a price of 100 000 DKK (per tur-bine) results in a break-event...

  16. Structural Monitoring of Wind Turbines using Sensors Connected via UTP Cable

    Directory of Open Access Journals (Sweden)

    Dumitru SPERMEZAN

    2017-12-01

    Full Text Available Unpredicted faults that may occur at the wind generators elements affect their economic operation. A promising approach that avoids these faults is the real-time vibrations monitoring. Data measured by the sensors can be transmitted to a monitoring station using wireless techniques, or optical fiber, or UTP cable. The last possibility is the cheapest, but it permits connecting the monitoring station at a limited distance with respect to the monitored turbine. The paper presents the components of the monitoring system and the experimental results related to the monitored wind turbine.

  17. Coupling analysis of wind turbine blades based on aeroelastics and aerodynsmics

    DEFF Research Database (Denmark)

    Wang, Xudong; Chen, Jin; Zhang, Shigiang

    2010-01-01

    The structural dynamic equations of blades were constructed for blades of wind turbines. The vibration velocity of blades and the relative flow velocity were calculated using the structural dynamics model. Based on the BEM (Blade Element Momentum) theory and traditional areodynamics, the coupling...

  18. Validation Study of Wave Breaking Influence in a Coupled Wave Model for Hurricane Wind Conditions

    Science.gov (United States)

    2008-08-27

    an essential modification to the Janssen (1991) input source term in the spirit of the notion of ’sheltering’ (e.g. Makin & Kudryavtsev , 2001...Ocean Waves, Cambridge University Press, Cambridge, 532pp. Makin, V.K. and V.N. Kudryavtsev , 2001: Coupled sea surface-atmosphere model. 1. Wind over

  19. Direct Torque Control in presence of Current sensor failure in Variable Speed Wind System: Effect analysis, detection and control reconfiguration

    Directory of Open Access Journals (Sweden)

    A. J. Arbi

    2008-03-01

    Full Text Available This paper presents a study of current sensor failure in a Direct Torque Control applied to a Double Fed Induction Generator based Variable Speed Wind System. The effect of scaling and offset current sensor errors is discussed through sensibility analysis. A control reconfiguration is then proposed to remedy this sensor failure. Simulation results emphasize the good performances of the proposed current sensor fault tolerant control

  20. Optimizing investments in coupled offshore wind -electrolytic hydrogen storage systems in Denmark

    Science.gov (United States)

    Hou, Peng; Enevoldsen, Peter; Eichman, Joshua; Hu, Weihao; Jacobson, Mark Z.; Chen, Zhe

    2017-08-01

    In response to electricity markets with growing levels of wind energy production and varying electricity prices, this research examines incentives for investments in integrated renewable energy power systems. A strategy for using optimization methods for a power system consisting of wind turbines, electrolyzers, and hydrogen fuel cells is explored. This research reveals the investment potential of coupling offshore wind farms with different hydrogen systems. The benefits in terms of a return on investment are demonstrated with data from the Danish electricity markets. This research also investigates the tradeoffs between selling the hydrogen directly to customers or using it as a storage medium to re-generate electricity at a time when it is more valuable. This research finds that the most beneficial configuration is to produce hydrogen at a time that complements the wind farm and sell the hydrogen directly to end users.

  1. Free flow wind speed from a blade-mounted flow sensor

    DEFF Research Database (Denmark)

    Pedersen, Mads Mølgaard; Larsen, Torben Juul; Aagaard Madsen, Helge

    2018-01-01

    This paper presents a method for obtaining the free-inflow velocities from a 3-D flow sensor mounted on the blade of a wind turbine. From its position on the rotating blade, e.g. one-third from the tip, a blade-mounted flow sensor (BMFS) is able to provide valuable information about the turbulent...... and procedures to estimate the induced velocities, i.e. the disturbance of the flow field caused by the wind turbine. These velocities are subtracted from the flow velocities measured by the BMFS to obtain the free-inflow velocities. Aeroelastic codes, like HAWC2, typically use a similar approach to calculate...... the induction, but they use it for the reversed process, i.e. they add the induction to the free inflow to get the flow velocities at the blades, which are required to calculate the resulting aerodynamic forces. The aerodynamic models included in the current method comprise models based on blade element...

  2. Deflection estimation of a wind turbine blade using FBG sensors embedded in the blade bonding line

    International Nuclear Information System (INIS)

    Kim, Sang-Woo; Kang, Woo-Ram; Jeong, Min-Soo; Lee, In; Kwon, Il-Bum

    2013-01-01

    Estimating the deflection of flexible composite wind turbine blades is very important to prevent the blades from hitting the tower. Several researchers have used fiber Bragg grating (FBG) sensors—a type of optical fiber sensor (OFS)—to monitor the structural behavior of the blades. They can be installed on the surface and/or embedded in the interior of composites. However, the typical installation positions of OFSs present several problems, including delamination of sensing probes and a higher risk of fiber breakage during installation. In this study, we proposed using the bonding line between the shear web and spar cap as a new installation position of embedded OFSs for estimating the deflection of the blades. Laboratory coupon tests were undertaken preliminarily to confirm the strain measuring capability of embedded FBG sensors in adhesive layers, and the obtained values were verified by comparison with results obtained by electrical strain gauges and finite element analysis. We performed static loading tests on a 100 kW composite wind turbine blade to evaluate its deflections using embedded FBG sensors positioned in the bonding line. The deflections were estimated by classical beam theory considering a rigid body rotation near the tip of the blade. The evaluated tip deflections closely matched those measured by a linear variable differential transformer. Therefore, we verified the capability of embedded FBG sensors for evaluating the deflections of wind turbine blades. In addition, we confirmed that the bonding line between the shear web and spar cap is a practical location to embed the FBG sensors. (paper)

  3. Application of a wireless sensor node to health monitoring of operational wind turbine blades

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Stuart G [Los Alamos National Laboratory; Farinholt, Kevin M [Los Alamos National Laboratory; Park, Gyuhae [Los Alamos National Laboratory; Farrar, Charles R [Los Alamos National Laboratory; Todd, Michael D [UCSD

    2009-01-01

    Structural health monitoring (SHM) is a developing field of research with a variety of applications including civil structures, industrial equipment, and energy infrastructure. An SHM system requires an integrated process of sensing, data interrogation and statistical assessment. The first and most important stage of any SHM system is the sensing system, which is traditionally composed of transducers and data acquisition hardware. However, such hardware is often heavy, bulky, and difficult to install in situ. Furthermore, physical access to the structure being monitored may be limited or restricted, as is the case for rotating wind turbine blades or unmanned aerial vehicles, requiring wireless transmission of sensor readings. This study applies a previously developed compact wireless sensor node to structural health monitoring of rotating small-scale wind turbine blades. The compact sensor node collects low-frequency structural vibration measurements to estimate natural frequencies and operational deflection shapes. The sensor node also has the capability to perform high-frequency impedance measurements to detect changes in local material properties or other physical characteristics. Operational measurements were collected using the wireless sensing system for both healthy and damaged blade conditions. Damage sensitive features were extracted from the collected data, and those features were used to classify the structural condition as healthy or damaged.

  4. Study of eddy current power loss from outer-winding coils of a magnetic position sensor

    International Nuclear Information System (INIS)

    Liu, C.-P.; Lin, T.-K.; Chang, Y.-H.; Yu, C.-S.; Wu, K.-T.; Wang, S.-J.; Ying, T.-F.; Huang, D.-R.

    2000-01-01

    The present analysis is concerned with eddy current power loss of a magnetic position sensor, which arises from a non-uniform flux linkage distribution between magnetic material and position sensor. In the paper, a magnetic position sensor system is simplified to be an outer-winding coil along the axial direction of a low carbon steel bar, and developed a numerical model to compute the electrical characteristics by an excited current source. According to the simulated and measured data in this proposed model from 2.52 to 11.37 Oes, eddy current power losses of conducting material have a variation of 6.1% and 9.77%, respectively. Finally, the phases of waveform of the induced output voltage will also be obtained in the conducting material, and have a variation of 3.68% obtained by using the current source in the proposed model

  5. Coupled simulations and comparison with multi-lidar measurements of the wind flow over a double-ridge

    DEFF Research Database (Denmark)

    Veiga Rodrigues, C.; Palma, J.M.L.M.; Vasiljevic, Nikola

    2016-01-01

    The wind flow over a double-ridge site has been numerically simulated with a nested model- chain coupling, down to horizontal resolutions of 40 m. The results were compared with field measurements attained using a triple-lidar instrument, the long-range WindScanner system, which allowed measureme......The wind flow over a double-ridge site has been numerically simulated with a nested model- chain coupling, down to horizontal resolutions of 40 m. The results were compared with field measurements attained using a triple-lidar instrument, the long-range WindScanner system, which allowed...

  6. The application of dimensional analysis to the problem of solar wind-magnetosphere energy coupling

    Science.gov (United States)

    Bargatze, L. F.; Mcpherron, R. L.; Baker, D. N.; Hones, E. W., Jr.

    1984-01-01

    The constraints imposed by dimensional analysis are used to find how the solar wind-magnetosphere energy transfer rate depends upon interplanetary parameters. The analyses assume that only magnetohydrodynamic processes are important in controlling the rate of energy transfer. The study utilizes ISEE-3 solar wind observations, the AE index, and UT from three 10-day intervals during the International Magnetospheric Study. Simple linear regression and histogram techniques are used to find the value of the magnetohydrodynamic coupling exponent, alpha, which is consistent with observations of magnetospheric response. Once alpha is estimated, the form of the solar wind energy transfer rate is obtained by substitution into an equation of the interplanetary variables whose exponents depend upon alpha.

  7. Unraveling Tropical Mountain Hydroclimatology by Coupling Autonomous Sensor Observations and Climate Modeling: Llanganuco Valley, Cordillera Blanca, Peru.

    Science.gov (United States)

    Hellstrom, R. A.; Fernandez, A.; Mark, B. G.; Covert, J. M.

    2015-12-01

    Northern Peru will face critical water resource issues in the near future as permanent ice retreats. Much of current global and regional climate research neglects the meteorological forcing of lapse rates and valley wind dynamics on critical components of the Peruvian Andes' water-cycle. In 2004 and 2005 we installed an autonomous sensor network (ASN) within the glacierized Llanganuco Valley, Cordillera Blanca (9°S), consisting of discrete, cost-effective, automatic temperature loggers located along the valley axis and anchored by two automatic weather stations. Comparisons of these embedded atmospheric measurements from the ASN and climate modeling (CM) by dynamical downscaling using the Weather Research and Forecasting (WRF) model elucidate distinct diurnal and seasonal characteristics of the mountain valley winds and lapse rates. Wind, temperature, humidity, and cloud simulations by WRF suggest that thermally driven valley winds converging with easterly flow aloft enhance late afternoon and evening cloud development which helps explain detected nocturnal precipitation maxima measured by the ASN. We attribute sustained evapotranspiration (ET), as estimated by the FAO-56 Penman-Monteith model, to an abundance of glacial melt-water during the dry season and strong pre-noon solar heating during the wet season. Furthermore, the extreme diurnal variability of along-valley-axis lapse rates and valley wind detected from ground observations and confirmed by dynamical downscaling demonstrate the importance of realistic scale parameterizations of the boundary layer to improve regional CM projections in mountainous regions. Our findings portray ET as an integral yet poorly represented process in Andean hydroclimatology. We show that coupling ASN and CM can improve understanding of multi-scale atmospheric and associated hydrological processes in mountain valleys.

  8. Brillouin Corrosion Expansion Sensors for Steel Reinforced Concrete Structures Using a Fiber Optic Coil Winding Method

    Directory of Open Access Journals (Sweden)

    Xingjun Lv

    2011-11-01

    Full Text Available In this paper, a novel kind of method to monitor corrosion expansion of steel rebars in steel reinforced concrete structures named fiber optic coil winding method is proposed, discussed and tested. It is based on the fiber optical Brillouin sensing technique. Firstly, a strain calibration experiment is designed and conducted to obtain the strain coefficient of single mode fiber optics. Results have shown that there is a good linear relationship between Brillouin frequency and applied strain. Then, three kinds of novel fiber optical Brillouin corrosion expansion sensors with different fiber optic coil winding packaging schemes are designed. Sensors were embedded into concrete specimens to monitor expansion strain caused by steel rebar corrosion, and their performance was studied in a designed electrochemical corrosion acceleration experiment. Experimental results have shown that expansion strain along the fiber optic coil winding area can be detected and measured by the three kinds of sensors with different measurement range during development the corrosion. With the assumption of uniform corrosion, diameters of corrosion steel rebars were obtained using calculated average strains. A maximum expansion strain of 6,738 με was monitored. Furthermore, the uniform corrosion analysis model was established and the evaluation formula to evaluate mass loss rate of steel rebar under a given corrosion rust expansion rate was derived. The research has shown that three kinds of Brillouin sensors can be used to monitor the steel rebar corrosion expansion of reinforced concrete structures with good sensitivity, accuracy and monitoring range, and can be applied to monitor different levels of corrosion. By means of this kind of monitoring technique, quantitative corrosion expansion monitoring can be carried out, with the virtues of long durability, real-time monitoring and quasi-distribution monitoring.

  9. Impact of wind waves on the air-sea fluxes: A coupled model

    Science.gov (United States)

    Kudryavtsev, V.; Chapron, B.; Makin, V.

    2014-02-01

    A revised wind-over-wave-coupling model is developed to provide a consistent description of the sea surface drag and heat/moister transfer coefficients, and associated wind velocity and temperature profiles. The spectral distribution of short wind waves in the decimeter to a few millimeters range of wavelengths is introduced based on the wave action balance equation constrained using the Yurovskaya et al. (2013) optical field wave measurements. The model is capable to reproduce fundamental statistical properties of the sea surface, such as the mean square slope and the spectral distribution of breaking crests length. The surface stress accounts for the effect of airflow separation due to wave breaking, which enables a better fit of simulated form drag to observations. The wave breaking controls the overall energy losses for the gravity waves, but also the generation of shorter waves including the parasitic capillaries, thus enhancing the form drag. Breaking wave contribution to the form drag increases rapidly at winds above 15 m/s where it exceeds the nonbreaking wave contribution. The overall impact of wind waves (breaking and nonbreaking) leads to a sheltering of the near-surface layer where the turbulent mixing is suppressed. Accordingly, the air temperature gradient in this sheltered layer increases to maintain the heat flux constant. The resulting deformation of the air temperature profile tends to lower the roughness scale for temperature compared to its value over the smooth surface.

  10. Measurement of temperature and pressure on the surface of a blunt cone using FBG sensor in hypersonic wind tunnel

    International Nuclear Information System (INIS)

    Guru Prasad, A S; Sharath, U; Asokan, S; Nagarjun, V; Hegde, G M

    2013-01-01

    Measurement of temperature and pressure exerted on the leeward surface of a blunt cone specimen has been demonstrated in the present work in a hypersonic wind tunnel using fiber Bragg grating (FBG) sensors. The experiments were conducted on a 30° apex-angle blunt cone with 51 mm base diameter at wind flow speeds of Mach 6.5 and 8.35 in a 300 mm hypersonic wind tunnel of Indian Institute of Science, Bangalore. A special pressure insensitive temperature sensor probe along with the conventional bare FBG sensors was used for explicit temperature and aerodynamic pressure measurement respectively on the leeward surface of the specimen. computational fluid dynamics (CFD) simulation of the flow field around the blunt cone specimen has also been carried out to obtain the temperature and pressure at conditions analogous to experiments. The results obtained from FBG sensors and the CFD simulations are found to be in good agreement with each other. (paper)

  11. Active Fault-Tolerant Control for Wind Turbine with Simultaneous Actuator and Sensor Faults

    Directory of Open Access Journals (Sweden)

    Lei Wang

    2017-01-01

    Full Text Available The purpose of this paper is to show a novel fault-tolerant tracking control (FTC strategy with robust fault estimation and compensating for simultaneous actuator sensor faults. Based on the framework of fault-tolerant control, developing an FTC design method for wind turbines is a challenge and, thus, they can tolerate simultaneous pitch actuator and pitch sensor faults having bounded first time derivatives. The paper’s key contribution is proposing a descriptor sliding mode method, in which for establishing a novel augmented descriptor system, with which we can estimate the state of system and reconstruct fault by designing descriptor sliding mode observer, the paper introduces an auxiliary descriptor state vector composed by a system state vector, actuator fault vector, and sensor fault vector. By the optimized method of LMI, the conditions for stability that estimated error dynamics are set up to promote the determination of the parameters designed. With this estimation, and designing a fault-tolerant controller, the system’s stability can be maintained. The effectiveness of the design strategy is verified by implementing the controller in the National Renewable Energy Laboratory’s 5-MW nonlinear, high-fidelity wind turbine model (FAST and simulating it in MATLAB/Simulink.

  12. On the Use of Coupled Wind, Wave, and Current Fields in the Simulation of Loads on Bottom-Supported Offshore Wind Turbines during Hurricanes: March 2012 - September 2015

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eungsoo [Univ. of Texas, Austin, TX (United States); Manuel, Lance [Univ. of Texas, Austin, TX (United States); Curcic, Milan [Univ. of Miami, Coral Gables, FL (United States); Chen, Shuyi S. [Univ. of Miami, Coral Gables, FL (United States); Phillips, Caleb [National Renewable Energy Lab. (NREL), Golden, CO (United States); Veers, Paul [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-06-01

    In the United States, potential offshore wind plant sites have been identified along the Atlantic seaboard and in the Gulf of Mexico. It is imperative that we define external conditions associated with hurricanes and severe winter storms and consider load cases for which wind turbines may need to be designed. We selected two hurricanes, Ike (2008) and Sandy (2012), and investigated the effect these tropical storms would have on bottom-supported offshore wind turbines that were hypothetically in or close to their path as they made landfall. For realistic turbine loads assessment, it is important that the coupled influences of the changing wind, wave, and current fields are simulated throughout the evolution of the hurricanes. We employed a coupled model--specifically, the University of Miami Coupled Model (UMCM)--that integrates atmospheric, wave, and ocean components to produce needed wind, wave, and current data. The wind data are used to generate appropriate vertical wind profiles and full wind velocity fields including turbulence; the current field over the water column is obtained by interpolated discrete output current data; and short-crested irregular second-order waves are simulated using output directional wave spectra from the coupled model. We studied two monopile-supported offshore wind turbines sited in 20 meters of water in the Gulf of Mexico to estimate loads during Hurricane Ike, and a jacket space-frame platform-supported offshore wind turbine sited in 50 meters of water in the mid-Atlantic region to estimate loads during Hurricane Sandy. In this report we discuss in detail how the simulated hurricane wind, wave, and current output data are used in turbine loads studies. In addition, important characteristics of the external conditions are studied, including the relative importance of swell versus wind seas, aerodynamic versus hydrodynamic forces, current velocity effects, yaw control options for the turbine, hydrodynamic drag versus inertia forces

  13. Unique gel-coupled acoustic sensor array monitors human voice and physiology

    Science.gov (United States)

    Scanlon, Michael

    2002-11-01

    The health and performance of soldiers, firefighters, and other first responders in strenuous and hazardous environments can be continuously and remotely monitored with body-worn acoustic sensors. The Army Research Laboratory's gel-coupled acoustic physiological monitoring sensor has acoustic impedance properties similar to the skin that facilitate the transmission of body sounds into the sensor pad, yet significantly repel ambient airborne noises due to an impedance mismatch. Acoustic signal processing detects physiological events such as heartbeats, breaths, wheezes, coughs, blood pressure, activity, motion, and voice for communication and automatic speech recognition. Acoustic sensors can be in a helmet or in a strap around the neck, chest, and wrist. Although the physiological sounds have high SNR, the acoustic sensor also responds to motion-induced artifacts that sometimes obscure meaningful physiology. A noise-canceling sensor array configuration helps remove motion noise by using two acoustic sensors on the front sides of the neck and 2 additional acoustic sensors on each wrist. The motion noise detected on all 4 sensors will be dissimilar and out of phase, yet the physiology on all 4 sensors is covariant. Pulse wave transit time between neck and wrist will indicate systolic blood pressure. Data from a firefighter experiment will be presented.

  14. Effect of Coupled Non linear Wave Kinematics and Soil Flexibility on the Design Loads of Offshore Wind Turbines

    DEFF Research Database (Denmark)

    Kim, Taeseong; Natarajan, Anand

    2013-01-01

    The design driving loads on offshore wind turbine monopile support structures at water depths of 35m, which are beyond current monopile installation depths, are derived based on fully coupled aerohydroelastic simulations of the wind turbine in normal operation and in storm conditions in the prese...

  15. Research on a new fiber-optic axial pressure sensor of transformer winding based on fiber Bragg grating

    Science.gov (United States)

    Liu, Yuan; Li, Lianqing; Zhao, Lin; Wang, Jiqiang; Liu, Tongyu

    2017-12-01

    Based on the principle of the fiber Bragg grating, a new type of fiber-optic pressure sensor for axial force measurement of transformer winding is designed, which is designed with the structure of bending plate beam, the optimization of the packaging process, and material of the sensor. Through the calibration experiment to calibrate the sensor, the field test results of the Taikai transformer factory show that the sensitivity of the sensor is 0.133 pm/kPa and the repeatability error is 2.7% FS. The data of the fiber-optic pressure sensor in different positions maintain consistent and repeatable, which can meet the requirement of the real-time monitoring of the axial force of transformer winding.

  16. A study on high speed coupling design for wind turbine using a finite element analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyoung Woo; Kang, Jong Hun [Dept. of Mechatronics Engineering, Jungwon University, Geosan (Korea, Republic of); Han, Jeong Young [Pusan Educational Center for Computer Aided Machine Design, Pusan University, Busan (Korea, Republic of)

    2016-08-15

    The purpose of this study is to design a high speed coupling for 3 MW wind turbines and evaluate its structural stability. A basic analysis was performed to assess the structural stability of two materials, SPS6 steel plate and a composite material (Glass7628, Glass/Epoxy), in relation to misalignment in the axial and radial directions. The entire model was analyzed for a high speed coupling based on the SPS6 steel plate, which was found to have higher stability among the two materials, and safety factors were estimated for various levels of power delivery. To test the proposed high speed coupling design, a performance test was carried out to verify the stability of the final product.

  17. Single tunable laser interrogation of slab-coupled optical sensors through resonance tuning.

    Science.gov (United States)

    Chadderdon, Spencer; Woodard, Leeland; Perry, Daniel; Selfridge, Richard H; Schultz, Stephen M

    2013-04-20

    This paper describes a method for tuning the resonant wavelengths of slab-coupled optical fiber sensors (SCOSs). This method allows multiple sensors to be interrogated simultaneously with a single tunable laser. The resonances are tuned by rotating a biaxial slab waveguide relative to an optical D-fiber. As the slab waveguide rotates, its effective index of refraction changes causing the coupling wavelengths of the slab waveguide and D-fiber to shift. A SCOS fabricated with potassium titanyl phosphate crystal as the slab waveguide is shown to have resonance tuning ranges of 6.67 and 22.24 nm, respectively, for TM and TE polarized modes.

  18. First thin AC-coupled silicon strip sensors on 8-inch wafers

    Energy Technology Data Exchange (ETDEWEB)

    Bergauer, T., E-mail: thomas.bergauer@oeaw.ac.at [Institute of High Energy Physics of the Austrian Academy of Sciences, Nikolsdorfer Gasse 18, 1050 Wien (Vienna) (Austria); Dragicevic, M.; König, A. [Institute of High Energy Physics of the Austrian Academy of Sciences, Nikolsdorfer Gasse 18, 1050 Wien (Vienna) (Austria); Hacker, J.; Bartl, U. [Infineon Technologies Austria AG, Siemensstrasse 2, 9500 Villach (Austria)

    2016-09-11

    The Institute of High Energy Physics (HEPHY) in Vienna and the semiconductor manufacturer Infineon Technologies Austria AG developed a production process for planar AC-coupled silicon strip sensors manufactured on 200 μm thick 8-inch p-type wafers. In late 2015, the first wafers were delivered featuring the world's largest AC-coupled silicon strip sensors. Detailed electrical measurements were carried out at HEPHY, where single strip and global parameters were measured. Mechanical studies were conducted and the long-term behavior was investigated using a climate chamber. Furthermore, the electrical properties of various test structures were investigated to validate the quality of the manufacturing process.

  19. Hafnium dioxide as a dielectric for highly-sensitive waveguide-coupled surface plasmon resonance sensors

    Directory of Open Access Journals (Sweden)

    Kunal Tiwari

    2016-04-01

    Full Text Available Hafnium dioxide has been recognized as an excellent dielectric for microelectronics. However, its usefulness for the surface plasmon based sensors has not yet been tested. Here we investigate its usefulness for waveguide-coupled bi-metallic surface plasmon resonance sensors. Several Ag/HfO2/Au multilayer structure sensors were fabricated and evaluated by optical measurements and computer simulations. The resulting data establish correlations between the growth parameters and sensor performance. The sensor sensitivity to refractive index of analytes is determined to be S n = ∂ θ SPR ∂ n ≥ 4 7 0 . The sensitivity data are supported by simulations, which also predict 314 nm for the evanescent field decay length in air.

  20. Coupled vibrations of rectangular buildings subjected to normally-incident random wind loads

    Science.gov (United States)

    Safak, E.; Foutch, D.A.

    1987-01-01

    A method for analyzing the three-directional coupled dynamic response of wind-excited buildings is presented. The method is based on a random vibration concept and is parallel to those currently used for analyzing alongwind response. Only the buildings with rectangular cross-section and normally-incident wind are considered. The alongwind pressures and their correlations are represented by the well-known expressions that are available in the literature. The acrosswind forces are assumed to be mainly due to vortex shedding. The torque acting on the building is taken as the sum of the torque due to random alongwind forces plus the torque due to asymmetric acrosswind forces. The study shows the following: (1) amplitude of acrosswind vibrations can be several times greater than that of alongwind vibrations; (2) torsional vibrations are significant if the building has large frontal width, and/or it is asymmetric, and/or its torsional natural frequency is low; (3) even a perfectly symmetric structure with normally incident wind can experience significant torsional vibrations due to the randomness of wind pressures. ?? 1987.

  1. Mesoscale atmosphere ocean coupling enhances the transfer of wind energy into the ocean

    Science.gov (United States)

    Byrne, D.; Münnich, M.; Frenger, I.; Gruber, N.

    2016-01-01

    Although it is well established that the large-scale wind drives much of the world's ocean circulation, the contribution of the wind energy input at mesoscales (10–200 km) remains poorly known. Here we use regional simulations with a coupled high-resolution atmosphere–ocean model of the South Atlantic, to show that mesoscale ocean features and, in particular, eddies can be energized by their thermodynamic interactions with the atmosphere. Owing to their sea-surface temperature anomalies affecting the wind field above them, the oceanic eddies in the presence of a large-scale wind gradient provide a mesoscale conduit for the transfer of energy into the ocean. Our simulations show that this pathway is responsible for up to 10% of the kinetic energy of the oceanic mesoscale eddy field in the South Atlantic. The conditions for this pathway to inject energy directly into the mesoscale prevail over much of the Southern Ocean north of the Polar Front. PMID:27292447

  2. Electromagnetic sensors for monitoring of scour and deposition processes at bridges and offshore wind turbines

    Science.gov (United States)

    Michalis, Panagiotis; Tarantino, Alessandro; Judd, Martin

    2014-05-01

    Recent increases in precipitation have resulted in severe and frequent flooding incidents. This has put hydraulic structures at high risk of failure due to scour, with severe consequences to public safety and significant economic losses. Foundation scour is the leading cause of bridge failures and one of the main climate change impacts to highway and railway infrastructure. Scour action is also being considered as a major risk for offshore wind farm developments as it leads to excessive excavation of the surrounding seabed. Bed level conditions at underwater foundations are very difficult to evaluate, considering that scour holes are often re-filled by deposited loose material which is easily eroded during smaller scale events. An ability to gather information concerning the evolution of scouring will enable the validation of models derived from laboratory-based studies and the assessment of different engineering designs. Several efforts have focused on the development of instrumentation techniques to measure scour processes at foundations. However, they are not being used routinely due to numerous technical and cost issues; therefore, scour continues to be inspected visually. This research project presents a new sensing technique, designed to measure scour depth variation and sediment deposition around the foundations of bridges and offshore wind turbines, and to provide an early warning of an impending structural failure. The monitoring system consists of a probe with integrated electromagnetic sensors, designed to detect the change in the surrounding medium around the foundation structure. The probe is linked to a wireless network to enable remote data acquisition. A developed prototype and a commercial sensor were evaluated to quantify their capabilities to detect scour and sediment deposition processes. Finite element modelling was performed to define the optimum geometric characteristics of the prototype scour sensor based on models with various permittivity

  3. Mode cross coupling observations with a rotation sensor

    Science.gov (United States)

    Nader-Nieto, M. F.; Igel, H.; Ferreira, A. M.; Al-Attar, D.

    2013-12-01

    The Earth's free oscillations induced by large earthquakes have been one of the most important ways to measure the Earth's internal structure and processes. They provide important large scale constraints on a variety of elastic parameters, attenuation and density of the Earth's deep interior. The potential of rotational seismic records for long period seismology was proven useful as a complement to traditional measurements in the study of the Earth's free oscillations. Thanks to the high resolution of the G-ring laser located at Geodetic Observatory Wettzell, Germany, we are now able to study the spectral energy generated by rotations in the low frequency range. On a SNREI Earth, a vertical component rotational sensor is primarily excited by horizontally polarised shear motions (SH waves, Love waves) with theoretically no sensitivity to compressional waves and conversions (P-SV) and Rayleigh waves. Consequently, in the context of the Earth's normal modes, this instrument detects mostly toroidal modes. Here, we present observations of spectral energy of both toroidal and spheroidal normal modes in the G-ring Laser records of one of the largest magnitude events recently recorded: Tohoku-Oki, Japan, 2011. In an attempt to determine the mechanisms responsible for spheroidal energy in the vertical axes rotational spectra, we first rule out instrumental effects as well as the effect of local heterogeneity. Second, we carry out a simulation of an ideal rotational sensor taking into account the effects of the Earth's daily rotation, its hydrostatic ellipticity and structural heterogeneity, finding a good fit to the data. Simulations considering each effect separately are performed in order to evaluate the sensitivity of rotational motions to global effects with respect to traditional translation measurements.

  4. Time Series Analysis and Forecasting for Wind Speeds Using Support Vector Regression Coupled with Artificial Intelligent Algorithms

    Directory of Open Access Journals (Sweden)

    Ping Jiang

    2015-01-01

    Full Text Available Wind speed/power has received increasing attention around the earth due to its renewable nature as well as environmental friendliness. With the global installed wind power capacity rapidly increasing, wind industry is growing into a large-scale business. Reliable short-term wind speed forecasts play a practical and crucial role in wind energy conversion systems, such as the dynamic control of wind turbines and power system scheduling. In this paper, an intelligent hybrid model for short-term wind speed prediction is examined; the model is based on cross correlation (CC analysis and a support vector regression (SVR model that is coupled with brainstorm optimization (BSO and cuckoo search (CS algorithms, which are successfully utilized for parameter determination. The proposed hybrid models were used to forecast short-term wind speeds collected from four wind turbines located on a wind farm in China. The forecasting results demonstrate that the intelligent hybrid models outperform single models for short-term wind speed forecasting, which mainly results from the superiority of BSO and CS for parameter optimization.

  5. Is tropospheric weather influenced by solar wind through atmospheric vertical coupling downward control?

    Science.gov (United States)

    Prikryl, Paul; Tsukijihara, Takumi; Iwao, Koki; Muldrew, Donald B.; Bruntz, Robert; Rušin, Vojto; Rybanský, Milan; Turňa, Maroš; Šťastný, Pavel; Pastirčák, Vladimír

    2017-04-01

    More than four decades have passed since a link between solar wind magnetic sector boundary structure and mid-latitude upper tropospheric vorticity was discovered (Wilcox et al., Science, 180, 185-186, 1973). The link has been later confirmed and various physical mechanisms proposed but apart from controversy, little attention has been drawn to these results. To further emphasize their importance we investigate the occurrence of mid-latitude severe weather in the context of solar wind coupling to the magnetosphere-ionosphere-atmosphere (MIA) system. It is observed that significant snowstorms, windstorms and heavy rain, particularly if caused by low pressure systems in winter, tend to follow arrivals of high-speed solar wind. Previously published statistical evidence that explosive extratropical cyclones in the northern hemisphere tend to occur after arrivals of high-speed solar wind streams from coronal holes (Prikryl et al., Ann. Geophys., 27, 1-30, 2009; Prikryl et al., J. Atmos. Sol.-Terr. Phys., 149, 219-231, 2016) is corroborated for the southern hemisphere. A physical mechanism to explain these observations is proposed. The leading edge of high-speed solar wind streams is a locus of large-amplitude magneto-hydrodynamic waves that modulate Joule heating and/or Lorentz forcing of the high-latitude lower thermosphere generating medium-scale atmospheric gravity waves that propagate upward and downward through the atmosphere. Simulations of gravity wave propagation in a model atmosphere using the Transfer Function Model (Mayr et al., Space Sci. Rev., 54, 297-375, 1990) show that propagating waves originating in the thermosphere can excite a spectrum of gravity waves in the lower atmosphere. In spite of significantly reduced amplitudes but subject to amplification upon reflection in the upper troposphere, these gravity waves can provide a lift of unstable air to release instabilities in the troposphere thus initiating convection to form cloud/precipitation bands

  6. Multifunctional TENG for Blue Energy Scavenging and Self-Powered Wind-Speed Sensor

    KAUST Repository

    Xi, Yi

    2017-02-17

    Triboelectric nanogenerator (TENG) has been considered to be a more effective technology to harvest various types of mechanic vibration energies such as wind energy, water energy in the blue energy, and so on. Considering the vast energy from the blue oceans, harvesting of the water energy has attracted huge attention. There are two major types of “mechanical” water energy, water wave energy in random direction and water flow kinetic energy. However, although the most reported TENG can be used to efficiently harvest one type of water energy, to simultaneously collect two or more types of such energy still remains challenging. In this work, two different freestanding, multifunctional TENGs are successfully developed that can be used to harvest three types of energies including water waves, air flowing, and water flowing. These two new TENGs designed in accordance with the same freestanding model yield the output voltages of 490 and ≈100 V with short circuit currents of 24 and 2.7 µA, respectively, when operated at a rotation frequency of 200 rpm and the movement frequency of 3 Hz. Moreover, the developed multifunctional TENG can also be explored as a self-powered speed sensor of wind by correlating the short-circuit current with the wind speed.

  7. Design Evaluation of Wind Turbine Spline Couplings Using an Analytical Model: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Y.; Keller, J.; Wallen, R.; Errichello, R.; Halse, C.; Lambert, S.

    2015-02-01

    Articulated splines are commonly used in the planetary stage of wind turbine gearboxes for transmitting the driving torque and improving load sharing. Direct measurement of spline loads and performance is extremely challenging because of limited accessibility. This paper presents an analytical model for the analysis of articulated spline coupling designs. For a given torque and shaft misalignment, this analytical model quickly yields insights into relationships between the spline design parameters and resulting loads; bending, contact, and shear stresses; and safety factors considering various heat treatment methods. Comparisons of this analytical model against previously published computational approaches are also presented.

  8. Characterisation of capacitively coupled HV/HR-CMOS sensor chips for the CLIC vertex detector

    CERN Document Server

    AUTHOR|(SzGeCERN)756402

    2017-01-01

    The capacitive coupling between an active sensor and a readout ASIC has been considered in the framework of the CLIC vertex detector study. The CLICpix Capacitively Coupled Pixel Detector (C3PD) is a High-Voltage CMOS sensor chip produced in a commercial 180 nm HV-CMOS process for this purpose. The sensor was designed to be connected to the CLICpix2 readout chip. It therefore matches the dimensions of the readout chip, featuring a matrix of 128 × 128 square pixels with 25 μm pitch. The sensor chip has been produced with the standard value for the substrate resistivity (∼ 20 Ωcm) and it has been characterised in standalone testing mode, before receiving and testing capacitively coupled assemblies. The standalone measurement results show a rise time of ∼ 20 ns for a power consumption of 5 μW/pixel. Production of the C3PD HV-CMOS sensor chip with higher substrate resistivity wafers (∼ 20, 80, 200 and 1000 Ωcm) is foreseen. The expected benefits of the higher substrate resistivity will be studied using...

  9. Analysis and optimisation of coupled winding in magnetic resonant wireless power transfer systems with orthogonal experiment results

    DEFF Research Database (Denmark)

    Yudi, Xiao; Xingkui, Mao; Mao, Lin

    2017-01-01

    The coupled magnetic resonant unit (CMRU) has great effect on the transmitting power capability and efficiency of magnetic resonant wireless power transfer system. The key objective i.e. the efficiency coefficient kQ is introduced in the design of CMRU or the coupled windings based on the mutual ...

  10. Analysis and optimization of coupled windings in magnetic resonant wireless power transfer systems with orthogonal experiment method

    DEFF Research Database (Denmark)

    Yudi, Xiao; Xingkui, Mao; Mao, Lin

    2017-01-01

    The coupled magnetic resonant unit (CMRU) has great effect on the transmitting power capability and efficiency of magnetic resonant wireless power transfer system. The key objective i.e. the efficiency coefficient kQ is introduced in the design of CMRU or the coupled windings based on the mutual ...

  11. Noise reduction by magnetostatic coupling in geomagnetic-field sensors

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Chong-Jun; Li, Min; Li, Jian-Wei [Department of Materials Physics and Chemistry, University of Science and Technology Beijing, Beijing 100083 (China); Ding, Lei [School of Materials and Chemical Engineering, Hainan University, Haikou 570228 (China); Teng, Jiao, E-mail: cjzhao.ustb@gmail.com [Department of Materials Physics and Chemistry, University of Science and Technology Beijing, Beijing 100083 (China); Yu, Guang-Hua [Department of Materials Physics and Chemistry, University of Science and Technology Beijing, Beijing 100083 (China)

    2014-11-15

    A new magnetoresistive (MR) thin film with a structure of “antiferromagnetic layer/pinned soft magnetic layer/non-magnetic MgO spacer layer/sensitive NiFe layer” was designed. The barber-pole MR elements with a Wheatstone bridge circuit were fabricated using photolithographic methods. The testing results show that, in comparison to the element with a typical structure of Ta/NiFe/Ta, the fabricated MR element shows significant reduction in the Barkhausen noise and the 1/f noise and good magnetic stability while maintaining high magnetic field sensitivity. This element with improved signals can be attributed to the magnetostatic coupling between the pinned soft magnetic layer and the sensitive NiFe layer, which can act as a small stabilizing field, leading to the coherent rotation of magnetic moment in the sensitive NiFe layer. - Highlights: • A new MR film with the structure of “IrMn/NiFe/MgO/NiFe” was designed. • The elements with a Wheatstone bridge circuit were fabricated using photolithography. • A reduced noisy and good magnetic stable signal was achieved. • The magnetostatic coupling can act as a small stabilizing field. • Coherent rotation of the magnetic moment happened in the sensing NiFe layer.

  12. Compact Printed Arrays with Embedded Coupling Mitigation for Energy-Efficient Wireless Sensor Networking

    Directory of Open Access Journals (Sweden)

    Constantine G. Kakoyiannis

    2010-01-01

    Full Text Available Wireless sensors emerged as narrowband, resource-constrained devices to provide monitoring services over a wide life span. Future applications of sensor networks are multimedia-driven and include sensor mobility. Thus, sensors must combine small size, large bandwidth, and diversity capabilities. Compact arrays, offering transmit/receive diversity, suffer from strong mutual coupling (MC, which causes lower antenna efficiency, loss of bandwidth, and signal correlation. An efficient technique to reduce coupling in compact arrays is described herein: a defect was inserted in the ground plane (GNDP area between each pair of elements. The defect disturbed the GNDP currents and offered multidecibel coupling suppression, bandwidth recovery, and reduction of in-band correlation. Minimal pattern distortion was estimated. Computational results were supported by measurements. The bandwidth of unloaded arrays degraded gracefully from 38% to 28% with decreasing interelement distance (0.25 to 0.10. Defect-loaded arrays exhibited active impedance bandwidths 37–45%, respectively. Measured coupling was reduced by 15–20 dB.

  13. A coupled near and far wake model for wind turbine aerodynamics

    DEFF Research Database (Denmark)

    Pirrung, Georg R.; Aagaard Madsen, Helge; Kim, Taeseong

    2016-01-01

    a radial coupling between the blade sections and provides a computation of tip loss effects that depends on the actual blade geometry and the respective operating point. Moreover, the coupling of the NWM with a BEM theory-based far wake model is presented. To avoid accounting for the near wake induction......In this paper, an aerodynamic model consisting of a lifting line-based trailed vorticity model and a blade element momentum (BEM) model is described. The focus is on the trailed vorticity model, which is based on the near wake model (NWM) by Beddoes and has been extended to include the effects...... model and full rotor computational fluid dynamics (CFD) to evaluate the steady-state results in different cases. The model is shown to deliver good results across the whole operation range of the NREL 5-MW reference wind turbine....

  14. Laser of optical fiber composed by two coupled cavities: application as optical fiber sensor

    International Nuclear Information System (INIS)

    Vazquez S, R.A.; Kuzin, E.A.; Ibarra E, B.; May A, M.; Shlyagin, M.; Marquez B, I.

    2004-01-01

    We show an optical fiber laser sensor which consist of two cavities coupled and three fiber Bragg gratings. We used one Bragg grating (called reference) and two Bragg gratings (called sensors), which have the lower reflection wavelength. The reference grating with the two sensors grating make two cavities: first one is the internal cavity which has 4230 m of length and the another one is the external cavity which has 4277 m of length. Measuring the laser beating frequency for a resonance cavity and moving the frequency peaks when the another cavity is put in resonance, we prove that the arrangement can be used as a two points sensor for determining the difference of temperature or stress between these two points. (Author)

  15. Sensitivity Enhancement of Biochemical Sensors Based on Er+3 Doped Microsphere Coupled to an External Mirror

    Directory of Open Access Journals (Sweden)

    Alireza BAHRAMPOUR

    2010-09-01

    Full Text Available In this paper we proposed an active optical sensor designed based on the Er+3-doped microsphere coupled to an external mirror. The microsphere-mirror coupling causes the degeneracy splitting of the resonance frequencies. Each of resonance frequencies splits in to two different resonance frequencies .The coupling coefficient changes as a result of altering the refractive index of surrounding medium. So, the presence of bio/chemical analytes can be detected by measuring the change of laser output power, laser frequency or the difference between frequencies of the red and blue shifted modes. In the presence of mirror at least one order of magnitude sensitivity enhancement is obtained relative to the active microsphere biochemical sensors.

  16. Virtual sensors for active noise control in acoustic-structural coupled enclosures using structural sensing: robust virtual sensor design.

    Science.gov (United States)

    Halim, Dunant; Cheng, Li; Su, Zhongqing

    2011-03-01

    The work was aimed to develop a robust virtual sensing design methodology for sensing and active control applications of vibro-acoustic systems. The proposed virtual sensor was designed to estimate a broadband acoustic interior sound pressure using structural sensors, with robustness against certain dynamic uncertainties occurring in an acoustic-structural coupled enclosure. A convex combination of Kalman sub-filters was used during the design, accommodating different sets of perturbed dynamic model of the vibro-acoustic enclosure. A minimax optimization problem was set up to determine an optimal convex combination of Kalman sub-filters, ensuring an optimal worst-case virtual sensing performance. The virtual sensing and active noise control performance was numerically investigated on a rectangular panel-cavity system. It was demonstrated that the proposed virtual sensor could accurately estimate the interior sound pressure, particularly the one dominated by cavity-controlled modes, by using a structural sensor. With such a virtual sensing technique, effective active noise control performance was also obtained even for the worst-case dynamics. © 2011 Acoustical Society of America

  17. Reduction of Cogging Torque in Dual Rotor Permanent Magnet Generator for Direct Coupled Wind Energy Systems

    Directory of Open Access Journals (Sweden)

    Sivachandran Paulsamy

    2014-01-01

    Full Text Available In wind energy systems employing permanent magnet generator, there is an imperative need to reduce the cogging torque for smooth and reliable cut in operation. In a permanent magnet generator, cogging torque is produced due to interaction of the rotor magnets with slots and teeth of the stator. This paper is a result of an ongoing research work that deals with various methods to reduce cogging torque in dual rotor radial flux permanent magnet generator (DRFPMG for direct coupled stand alone wind energy systems (SAWES. Three methods were applied to reduce the cogging torque in DRFPMG. The methods were changing slot opening width, changing magnet pole arc width and shifting of slot openings. A combination of these three methods was applied to reduce the cogging torque to a level suitable for direct coupled SAWES. Both determination and reduction of cogging torque were carried out by finite element analysis (FEA using MagNet Software. The cogging torque of DRFPMG has been reduced without major change in induced emf. A prototype of 1 kW, 120 rpm DRFPMG was fabricated and tested to validate the simulation results. The test results have good agreement with the simulation predictions.

  18. Reduction of cogging torque in dual rotor permanent magnet generator for direct coupled wind energy systems.

    Science.gov (United States)

    Paulsamy, Sivachandran

    2014-01-01

    In wind energy systems employing permanent magnet generator, there is an imperative need to reduce the cogging torque for smooth and reliable cut in operation. In a permanent magnet generator, cogging torque is produced due to interaction of the rotor magnets with slots and teeth of the stator. This paper is a result of an ongoing research work that deals with various methods to reduce cogging torque in dual rotor radial flux permanent magnet generator (DRFPMG) for direct coupled stand alone wind energy systems (SAWES). Three methods were applied to reduce the cogging torque in DRFPMG. The methods were changing slot opening width, changing magnet pole arc width and shifting of slot openings. A combination of these three methods was applied to reduce the cogging torque to a level suitable for direct coupled SAWES. Both determination and reduction of cogging torque were carried out by finite element analysis (FEA) using MagNet Software. The cogging torque of DRFPMG has been reduced without major change in induced emf. A prototype of 1 kW, 120 rpm DRFPMG was fabricated and tested to validate the simulation results. The test results have good agreement with the simulation predictions.

  19. The Solar Wind - Magnetosphere Energy Coupling Function and Open Magnetic Flux Estimation: Two Science Aspects of the SMILE Mission

    Science.gov (United States)

    Wang, C.; Dai, L.; Sun, T.; Han, J.

    2015-12-01

    The Solar wind Magnetosphere Ionosphere Link Explorer (SMILE) is a novel self-standing mission to observe solar wind - magnetosphere coupling via simultaneous in situ solar wind /magnetosheath plasma and magnetic field measurements, X-ray images of the magnetosphere, and UV images of global auroral distribution defining system - level consequences. The SMILE mission is jointly supported by ESA and CSA, and the launch date is expected to be in 2021. SMILE will address several key outstanding questions concerning how the solar wind interacts with the magnetospheres on a global level. Quantitatively estimating the energy input from the solar wind into the magnetosphere on a global scale is still an observational challenge. Using global MHD simulations, we derive a new solar wind - magnetosphere energy coupling function. The X-ray images of the magnetosphere from the SMILE mission will help estimate the energy transfer from the solar wind into the magnetosphere. A second aspect SMILE can address is the open magnetic flux, which is closely related to magnetic reconnections in the dayside magnetopause and magnetotail. In a similar way, we find that the open magnetic flux can be estimated through a combined parameter f, which is a function of the solar wind velocity, number density, the southern interplanetary magnetic field strength, and the ionospheric Pederson conductance. The UV auroral images from SMILE will be used to determine the open magnetic flux, which may serve as a key space weather forecast element in the future.

  20. WYSIWYG GEOPROCESSING: COUPLING SENSOR WEB AND GEOPROCESSING SERVICES IN VIRTUAL GLOBES

    Directory of Open Access Journals (Sweden)

    X. Zhai

    2012-08-01

    Full Text Available We propose to advance the scientific understanding and applications of geospatial data by coupling Sensor Web and Geoprocessing Services in Virtual Globes for higher-education teaching and research. The vision is the concept of "What You See is What You Get" geoprocessing, shortly known as WYSIWYG geoprocessing. Virtual Globes offer tremendous opportunities, such as providing a learning tool to help educational users and researchers digest global-scale geospatial information about the world, and acting as WYSIWYG platforms, where domain experts can see what their fingertips act in an interactive three-dimensional virtual environment. In the meantime, Sensor Web and Web Service technologies make a large amount of Earth observing sensors and geoprocessing functionalities easily accessible to educational users and researchers like their local resources. Coupling Sensor Web and geoprocessing Services in Virtual Globes will bring a virtual learning and research environment to the desktops of students and professors, empowering them with WYSIWYG geoprocessing capabilities. The implementation combines the visualization and communication power of Virtual Globes with the on-demand data collection and analysis functionalities of Sensor Web and geoprocessing services, to help students and researchers investigate various scientific problems in an environment with natural and intuitive user experiences. The work will contribute to the scientific and educational activities of geoinformatic communities in that they will have a platform that are easily accessible and help themselves perceive world space and perform live geoscientific processes.

  1. Analysis of transmission lines loaded with pairs of coupled resonant elements and application to sensors

    Energy Technology Data Exchange (ETDEWEB)

    Naqui, J.; Su, L., E-mail: lijuan.suri.su@gmail.com; Mata, J.; Martín, F., E-mail: Ferran.Martin@uab.es

    2015-06-01

    This paper is focused on the analysis of transmission lines loaded with pairs of magnetically coupled resonators. We have considered two different structures: (i) a microstrip line loaded with pairs of stepped impedance resonators (SIRs), and (ii) a coplanar waveguide (CPW) transmission line loaded with pairs of split ring resonators (SRRs). In both cases, the line exhibits a single resonance frequency (transmission zero) if the resonators are identical (symmetric structure with regard to the line axis), and this resonance is different to the one of the line loaded with a single resonator due to inter-resonator coupling. If the structures are asymmetric, inter-resonator coupling enhances the distance between the two split resonance frequencies that arise. In spite that the considered lines and loading resonators are very different and are described by different lumped element equivalent circuit models, the phenomenology associated to the effects of coupling is exactly the same, and the resonance frequencies are given by identical expressions. The reported lumped element circuit models of both structures are validated by comparing the circuit simulations with extracted parameters with both electromagnetic simulations and experimental data. These structures can be useful for the implementation of microwave sensors based on symmetry properties. - Highlights: • Magnetic-coupling between resonant elements affects transmission properties. • Inter-resonant coupling enhances the distance of two resonant frequencies. • The structures are useful for sensors and comparators, etc.

  2. Oriented coupling of major histocompatibility complex (MHC) to sensor surfaces using light assisted immobilisation technology

    DEFF Research Database (Denmark)

    Snabe, Torben; Røder, Gustav Andreas; Neves-Petersen, Maria Teresa

    2005-01-01

    histocompatibility complex (MHC class I) to a sensor surface is presented. The coupling was performed using light assisted immobilisation--a novel immobilisation technology which allows specific opening of particular disulphide bridges in proteins which then is used for covalent bonding to thiol-derivatised surfaces...... via a new disulphide bond. Light assisted immobilisation specifically targets the disulphide bridge in the MHC-I molecule alpha(3)-domain which ensures oriented linking of the complex with the peptide binding site exposed away from the sensor surface. Structural analysis reveals that a similar...

  3. Inspection and Reconstruction of Metal-Roof Deformation under Wind Pressure Based on Bend Sensors.

    Science.gov (United States)

    Yang, Liman; Cui, Langfu; Li, Yunhua; An, Chao

    2017-05-06

    Metal roof sheathings are widely employed in large-span buildings because of their light weight, high strength and corrosion resistance. However, their severe working environment may lead to deformation, leakage and wind-lift, etc. Thus, predicting these damages in advance and taking maintenance measures accordingly has become important to avoid economic losses and personal injuries. Conventionally, the health monitoring of metal roofs mainly relies on manual inspection, which unavoidably compromises the working efficiency and cannot diagnose and predict possible failures in time. Thus, we proposed a novel damage monitoring scheme implemented by laying bend sensors on vital points of metal roofs to precisely monitor the deformation in real time. A fast reconstruction model based on improved Levy-type solution is established to estimate the overall deflection distribution from the measured data. A standing seam metal roof under wind pressure is modeled as an elastic thin plate with a uniform load and symmetrical boundaries. The superposition method and Levy solution are adopted to obtain the analytical model that can converge quickly through simplifying an infinite series. The truncation error of this model is further analyzed. Simulation and experiments are carried out. They show that the proposed model is in reasonable agreement with the experimental results.

  4. Accurate Monitoring and Fault Detection in Wind Measuring Devices through Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Komal Saifullah Khan

    2014-11-01

    Full Text Available Many wind energy projects report poor performance as low as 60% of the predicted performance. The reason for this is poor resource assessment and the use of new untested technologies and systems in remote locations. Predictions about the potential of an area for wind energy projects (through simulated models may vary from the actual potential of the area. Hence, introducing accurate site assessment techniques will lead to accurate predictions of energy production from a particular area. We solve this problem by installing a Wireless Sensor Network (WSN to periodically analyze the data from anemometers installed in that area. After comparative analysis of the acquired data, the anemometers transmit their readings through a WSN to the sink node for analysis. The sink node uses an iterative algorithm which sequentially detects any faulty anemometer and passes the details of the fault to the central system or main station. We apply the proposed technique in simulation as well as in practical implementation and study its accuracy by comparing the simulation results with experimental results to analyze the variation in the results obtained from both simulation model and implemented model. Simulation results show that the algorithm indicates faulty anemometers with high accuracy and low false alarm rate when as many as 25% of the anemometers become faulty. Experimental analysis shows that anemometers incorporating this solution are better assessed and performance level of implemented projects is increased above 86% of the simulated models.

  5. Coupling a Mesoscale Numerical Weather Prediction Model with Large-Eddy Simulation for Realistic Wind Plant Aerodynamics Simulations (Poster)

    Energy Technology Data Exchange (ETDEWEB)

    Draxl, C.; Churchfield, M.; Mirocha, J.; Lee, S.; Lundquist, J.; Michalakes, J.; Moriarty, P.; Purkayastha, A.; Sprague, M.; Vanderwende, B.

    2014-06-01

    Wind plant aerodynamics are influenced by a combination of microscale and mesoscale phenomena. Incorporating mesoscale atmospheric forcing (e.g., diurnal cycles and frontal passages) into wind plant simulations can lead to a more accurate representation of microscale flows, aerodynamics, and wind turbine/plant performance. Our goal is to couple a numerical weather prediction model that can represent mesoscale flow [specifically the Weather Research and Forecasting model] with a microscale LES model (OpenFOAM) that can predict microscale turbulence and wake losses.

  6. Prediction and control of coupled-mode flutter in future wind turbine blades

    Science.gov (United States)

    Modarres-Sadeghi, Yahya; Currier, Todd; Caracoglia, Luca; Lackner, Matthew; Hollot, Christopher

    2017-11-01

    Coupled-mode flutter can be observed in future offshore wind turbine blades. We have shown this fact by considering various candidate blade designs, in all of which the blade's first torsional mode couples with one of its flapwise modes, resulting in coupled-mode flutter. We have shown how the ratio of these two natural frequencies can result in blades with a critical flutter speed even lower than their rated speed, especially for blades with low torsional natural frequencies. We have also shown how the stochastic nature of the system parameters (as an example, due to uncertainties in the manufacturing process) can significantly influence the onset of instability. We have proposed techniques to predict the onset of these instabilities and the resulting limit-cycle response, and strategies to control them, by either postponing the onset of instability, or lowering the magnitude of the limit-cycle response. The work is supported by the National Science Foundation, Award CBET-1437988 and Collaborative Awards CMMI-1462646 and CMMI-1462774.

  7. Damage detection of rotating wind turbine blades using local flexibility method and long-gauge fiber Bragg grating sensors

    Science.gov (United States)

    Hsu, Ting-Yu; Shiao, Shen-Yuan; Liao, Wen-I.

    2018-01-01

    Wind turbines are a cost-effective alternative energy source; however, their blades are susceptible to damage. Therefore, damage detection of wind turbine blades is of great importance for condition monitoring of wind turbines. Many vibration-based structural damage detection techniques have been proposed in the last two decades. The local flexibility method, which can determine local stiffness variations of beam-like structures by using measured modal parameters, is one of the most promising vibration-based approaches. The local flexibility method does not require a finite element model of the structure. A few structural modal parameters identified from the ambient vibration signals both before and after damage are required for this method. In this study, we propose a damage detection approach for rotating wind turbine blades using the local flexibility method based on the dynamic macro-strain signals measured by long-gauge fiber Bragg grating (FBG)-based sensors. A small wind turbine structure was constructed and excited using a shaking table to generate vibration signals. The structure was designed to have natural frequencies as close as possible to those of a typical 1.5 MW wind turbine in real scale. The optical fiber signal of the rotating blades was transmitted to the data acquisition system through a rotary joint fixed inside the hollow shaft of the wind turbine. Reversible damage was simulated by aluminum plates attached to some sections of the wind turbine blades. The damaged locations of the rotating blades were successfully detected using the proposed approach, with the extent of damage somewhat over-estimated. Nevertheless, although the specimen of wind turbine blades cannot represent a real one, the results still manifest that FBG-based macro-strain measurement has potential to be employed to obtain the modal parameters of the rotating wind turbines and then locations of wind turbine segments with a change of rigidity can be estimated effectively by

  8. Magnetoelectric coupling of a magnetoelectric flux gate sensor in vibration noise circumstance

    Directory of Open Access Journals (Sweden)

    Zhaoqiang Chu

    2018-01-01

    Full Text Available A magnetoelectric (ME flux gate sensor (MEFGS consisting of piezoelectric PMN-PT single crystals and ferromagnetic amorphous alloy ribbon in a self-differential configuration is featured with the ability of weak magnetic anomaly detection. Here, we further investigated its ME coupling and magnetic field detection performance in vibration noise circumstance, including constant frequency, impact, and random vibration noise. Experimental results show that the ME coupling coefficient of MEFGS is as high as 5700 V/cm*Oe at resonant frequency, which is several orders magnitude higher than previously reported differential ME sensors. It was also found that under constant and impact vibration noise circumstance, the noise reduction and attenuation factor of MEFGS are over 17 and 85.7%, respectively. This work is important for practical application of MEFGS in real environment.

  9. Magnetoelectric coupling of a magnetoelectric flux gate sensor in vibration noise circumstance

    Science.gov (United States)

    Chu, Zhaoqiang; Shi, Huaduo; Gao, Xiangyu; Wu, Jingen; Dong, Shuxiang

    2018-01-01

    A magnetoelectric (ME) flux gate sensor (MEFGS) consisting of piezoelectric PMN-PT single crystals and ferromagnetic amorphous alloy ribbon in a self-differential configuration is featured with the ability of weak magnetic anomaly detection. Here, we further investigated its ME coupling and magnetic field detection performance in vibration noise circumstance, including constant frequency, impact, and random vibration noise. Experimental results show that the ME coupling coefficient of MEFGS is as high as 5700 V/cm*Oe at resonant frequency, which is several orders magnitude higher than previously reported differential ME sensors. It was also found that under constant and impact vibration noise circumstance, the noise reduction and attenuation factor of MEFGS are over 17 and 85.7%, respectively. This work is important for practical application of MEFGS in real environment.

  10. Investigation of Structural Behavior due to Bend-Twist Couplings in Wind Turbine Blades

    DEFF Research Database (Denmark)

    Fedorov, Vladimir; Dimitrov, Nikolay Krasimirov; Berggreen, Christian

    2010-01-01

    One of the problematic issues concerning the design of future large composite wind turbine blades is the prediction of bend-twist couplings and torsion behaviour. The current work is a continuation of a previous work [1,2], and it examines different finite element modelling approaches for predict...... in torsion with deviations in the range of 15 to 35%, when employing the section input for the off-set definition. However, the ANSYS model generated using matrix input for the off-set definition was found to perform adequately....... work attention was aimed specifically at shell element based FEA models for predicting torsional behaviour of the blade. Three models were developed in different codes: An ANSYS and ABAQUS model with standard section input and an ANSYS model with matrix input. All models employed the outer surface...

  11. MEMS Microphone Array Sensor for Air-Coupled Impact-Echo.

    Science.gov (United States)

    Groschup, Robin; Grosse, Christian U

    2015-06-25

    Impact-Echo (IE) is a nondestructive testing technique for plate like concrete structures. We propose a new sensor concept for air-coupled IE measurements. By using an array of MEMS (micro-electro-mechanical system) microphones, instead of a single receiver, several operational advantages compared to conventional sensing strategies in IE are achieved. The MEMS microphone array sensor is cost effective, less sensitive to undesired effects like acoustic noise and has an optimized sensitivity for signals that need to be extracted for IE data interpretation. The proposed sensing strategy is justified with findings from numerical simulations, showing that the IE resonance in plate like structures causes coherent surface displacements on the specimen under test in an area around the impact location. Therefore, by placing several MEMS microphones on a sensor array board, the IE resonance is easier to be identified in the recorded spectra than with single point microphones or contact type transducers. A comparative measurement between the array sensor, a conventional accelerometer and a measurement microphone clearly shows the suitability of MEMS type microphones and the advantages of using these microphones in an array arrangement for IE. The MEMS microphone array will make air-coupled IE measurements faster and more reliable.

  12. Robust fiber optic flexure sensor exploiting mode coupling in few-mode fiber

    Science.gov (United States)

    Nelsen, Bryan; Rudek, Florian; Taudt, Christopher; Baselt, Tobias; Hartmann, Peter

    2015-05-01

    Few-mode fiber (FMF) has become very popular for use in multiplexing telecommunications data over fiber optics. The simplicity of producing FMF and the relative robustness of the optical modes, coupled with the simplicity of reading out the information make this fiber a natural choice for communications. However, little work has been done to take advantage of this type of fiber for sensors. Here, we demonstrate the feasibility of using FMF properties as a mechanism for detecting flexure by exploiting mode coupling between modes when the cylindrical symmetry of the fiber is perturbed. The theoretical calculations shown here are used to understand the coupling between the lowest order linearly polarized mode (LP01) and the next higher mode (LP11x or LP11y) under the action of bending. Twisting is also evaluated as a means to detect flexure and was determined to be the most reliable and effective method when observing the LP21 mode. Experimental results of twisted fiber and observations of the LP21 mode are presented here. These types of fiber flexure sensors are practical in high voltage, high magnetic field, or high temperature medical or industrial environments where typical electronic flexure sensors would normally fail. Other types of flexure measurement systems that utilize fiber, such as Rayleigh back-scattering [1], are complicated and expensive and often provide a higher-than necessary sensitivity for the task at hand.

  13. Modelling and analysis of transient state during improved coupling procedure with the grid for DFIG based wind turbine generator

    Science.gov (United States)

    Kammoun, Soulaymen; Sallem, Souhir; Ben Ali Kammoun, Mohamed

    2017-11-01

    The aim of this study is to enhance DFIG based Wind Energy Conversion Systems (WECS) dynamics during grid coupling. In this paper, a system modelling and a starting/coupling procedure for this generator to the grid are proposed. The proposed non-linear system is a variable structure system (VSS) and has two different states, before and after coupling. So, two different state models are given to the system to analyse transient stability during the coupling. The given model represents well the transient state of the machine, through which, a behaviour assessment of the generator before, during and after connection is given based on simulation results. For this, a 300 kW DFIG based wind generation system model was simulated on the Matlab/SIMULINK environment. We judge the proposed procedure to be practical, smooth and stability improved.

  14. Fully Coupled Three-Dimensional Dynamic Response of a TLP Floating Wind Turbine in Waves and Wind

    DEFF Research Database (Denmark)

    Ramachandran, Gireesh Kumar V.R.; Bredmose, Henrik; Sørensen, Jens Nørkær

    2013-01-01

    A dynamic model for a tension-leg platform (TLP) floating offshore wind turbine is proposed. The model includes threedimensional wind and wave loads and the associated structural response. The total system is formulated using 17 degrees of freedom (DOF), 6 for the platform motions and 11 for the ......A dynamic model for a tension-leg platform (TLP) floating offshore wind turbine is proposed. The model includes threedimensional wind and wave loads and the associated structural response. The total system is formulated using 17 degrees of freedom (DOF), 6 for the platform motions and 11...... for the wind turbine. Three-dimensional hydrodynamic loads have been formulated using a frequency- and direction-dependent spectrum. While wave loads are computed from the wave kinematics using Morison’s equation, aerodynamic loads are modelled by means of unsteady Blade-Element-Momentum (BEM) theory......, including Glauert correction for high values of axial induction factor, dynamic stall, dynamic wake and dynamic yaw. The aerodynamic model takes into account the wind shear and turbulence effects. For a representative geographic location, platform responses are obtained for a set of wind and wave climatic...

  15. Analysis and optimisation of coupled winding in magnetic resonant wireless power transfer systems with orthogonal experiment results

    OpenAIRE

    Yudi, Xiao; Xingkui, Mao; Mao, Lin; Zhang, Zhe; Andersen, Michael A. E.

    2017-01-01

    The coupled magnetic resonant unit (CMRU) has great effect on the transmitting power capability and efficiency of magnetic resonant wireless power transfer system. The key objective i.e. the efficiency coefficient kQ is introduced in the design of CMRU or the coupled windings based on the mutual inductance model. Then the design method with orthogonal experiments and finite element method simulation is proposed to maximize the kQ due to low precise analytical model of AC resistance and induct...

  16. Analysis and optimization of coupled windings in magnetic resonant wireless power transfer systems with orthogonal experiment method

    OpenAIRE

    Yudi, Xiao; Xingkui, Mao; Mao, Lin; Zhang, Zhe; Andersen, Michael A. E.

    2017-01-01

    The coupled magnetic resonant unit (CMRU) has great effect on the transmitting power capability and efficiency of magnetic resonant wireless power transfer system. The key objective i.e. the efficiency coefficient kQ is introduced in the design of CMRU or the coupled windings based on the mutual inductance model. Then the design method with orthogonal experiments and finite element method simulation is proposed to maximize the kQ due to low precise analytical model of ACresistance and inducta...

  17. Coupling of voltage sensors to the channel pore: a comparative view

    Directory of Open Access Journals (Sweden)

    Vitya eVardanyan

    2012-07-01

    Full Text Available The activation of voltage-dependent ion channels is initiated by potential-induced conformational rearrangements in the voltage-sensor domains that propagates to the pore domain and finally opens the ion conduction pathway. In potassium channels voltage-sensors are covalently linked to the pore via S4-S5 linkers at the cytoplasmic site of the pore domain. Transformation of membrane electric energy into the mechanical work required for the opening or closing of the channel pore is achieved through an electromechanical coupling mechanism, which involves local interaction between residues in S4-S5 linker and pore-forming alpha helices.In this review we discuss present knowledge and open questions related to the electromechanical coupling mechanism in most intensively studied voltage-gated Shaker potassium channel and compare structure-functional aspects of coupling with those observed in distantly-related ion channels. We focus particularly on the role of electromechanical coupling in modulation of the constitutive conductance of ion channels.

  18. Electromagnetic Design of Feedhorn-Coupled Transition-Edge Sensors for Cosmic Microwave Background Polarimetery

    Science.gov (United States)

    Chuss, David T.

    2011-01-01

    Observations of the cosmic microwave background (CMB) provide a powerful tool for probing the evolution of the early universe. Specifically, precision measurement of the polarization of the CMB enables a direct test for cosmic inflation. A key technological element on the path to the measurement of this faint signal is the capability to produce large format arrays of background-limited detectors. We describe the electromagnetic design of feedhorn-coupled, TES-based sensors. Each linear orthogonal polarization from the feed horn is coupled to a superconducting microstrip line via a symmetric planar orthomode transducer (OMT). The symmetric OMT design allows for highly-symmetric beams with low cross-polarization over a wide bandwidth. In addition, this architecture enables a single microstrip filter to define the passband for each polarization. Care has been taken in the design to eliminate stray coupling paths to the absorbers. These detectors will be fielded in the Cosmology Large Angular Scale Surveyor (CLASS).

  19. Operation strategy for grid-tied DC-coupling power converter interface integrating wind/solar/battery

    Science.gov (United States)

    Jou, H. L.; Wu, J. C.; Lin, J. H.; Su, W. N.; Wu, T. S.; Lin, Y. T.

    2017-11-01

    The operation strategy for a small-capacity grid-tied DC-coupling power converter interface (GDPCI) integrating wind energy, solar energy and battery energy storage is proposed. The GDPCI is composed of a wind generator, a solar module set a battery bank, a boost DC-DC power converter (DDPC), a bidirectional DDPC power converter, an AC-DC power converter (ADPC) and a five-level DC-AC inverter (DAI). A solar module set, a wind generator and a battery bank are coupled to the common DC bus through the boost DDPC, the ADPC and the bidirectional DDPC, respectively. For verifying the performance of the GDPCI under different operation modes, computer simulation is carried out by PSIM.

  20. Extreme winds and waves for offshore turbines: Coupling atmosphere and wave modeling for design and operation in coastal zones

    DEFF Research Database (Denmark)

    Larsén, Xiaoli Guo; Bolanos, Rodolfo; Du, Jianting

    modeling for oshore wind farms. This modeling system consists of the atmospheric Weather Research and Forecasting (WRF) model, the wave model SWAN and an interface the Wave Boundary Layer Model WBLM, within the framework of coupled-ocean-atmosphere-wave-sediment transport modeling system COAWST...... (Hereinafter the WRF-WBLM-SWAN model). WBLM is implemented in SWAN, and it calculates stress and kinetic energy budgets in the lowest atmospheric layer where the wave-induced stress is introduced to the atmospheric modeling. WBLM ensures consistent calculation of stress for both the atmospheric and wave......, which can aect the choice of the off-shore wind turbine type. X-WiWa examined various methodologies for wave modeling. The offline coupling system using atmospheric data such as WRF or global reanalysis wind field to the MIKE 21 SW model has been improved with considerations of stability, air density...

  1. Using the coupled wake boundary layer model to evaluate the effect of turbulence intensity on wind farm performance

    NARCIS (Netherlands)

    Stevens, Richard Johannes Antonius Maria; Gayme, Dennice F.; Meneveau, Charles

    2015-01-01

    We use the recently introduced coupled wake boundary layer (CWBL) model to predict the e ect of turbulence intensity on the performance of a wind farm. The CWBL model combines a standard wake model with a \\top-down" approach to get improved predictions for the power output compared to a stand-alone

  2. Small wind turbine performance evaluation using field test data and a coupled aero-electro-mechanical model

    Science.gov (United States)

    Wallace, Brian D.

    A series of field tests and theoretical analyses were performed on various wind turbine rotor designs at two Penn State residential-scale wind-electric facilities. This work involved the prediction and experimental measurement of the electrical and aerodynamic performance of three wind turbines; a 3 kW rated Whisper 175, 2.4 kW rated Skystream 3.7, and the Penn State designed Carolus wind turbine. Both the Skystream and Whisper 175 wind turbines are OEM blades which were originally installed at the facilities. The Carolus rotor is a carbon-fiber composite 2-bladed machine, designed and assembled at Penn State, with the intent of replacing the Whisper 175 rotor at the off-grid system. Rotor aerodynamic performance is modeled using WT_Perf, a National Renewable Energy Laboratory developed Blade Element Momentum theory based performance prediction code. Steady-state power curves are predicted by coupling experimentally determined electrical characteristics with the aerodynamic performance of the rotor simulated with WT_Perf. A dynamometer test stand is used to establish the electromechanical efficiencies of the wind-electric system generator. Through the coupling of WT_Perf and dynamometer test results, an aero-electro-mechanical analysis procedure is developed and provides accurate predictions of wind system performance. The analysis of three different wind turbines gives a comprehensive assessment of the capability of the field test facilities and the accuracy of aero-electro-mechanical analysis procedures. Results from this study show that the Carolus and Whisper 175 rotors are running at higher tip-speed ratios than are optimum for power production. The aero-electro-mechanical analysis predicted the high operating tip-speed ratios of the rotors and was accurate at predicting output power for the systems. It is shown that the wind turbines operate at high tip-speeds because of a miss-match between the aerodynamic drive torque and the operating torque of the wind

  3. Using wind speed from a blade-mounted flow sensor for power and load assessment on modern wind turbines

    DEFF Research Database (Denmark)

    Pedersen, Mads M.; Larsen, Torben J.; Madsen, Helge Aa

    2017-01-01

    with the actual power production as well as the flap-wise loads as it is measured close to the blade where the aerodynamic forces are acting. Conventional power curves are based on at least 180 h of 10 min mean values, but using the blade-mounted flow sensor both the observation average time and the overall...... assessment time can potentially be shortened. The basis for this hypothesis is that the sensor is able to provide more observations with higher accuracy, as the sensor follows the rotation of the rotor and because of the high correlation between the flow at the blades and the power production...

  4. A Sensor Management Tool for Use with NASA World Wind Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The number of sensors that are deployed continues to increase for scientific, commercial and intelligence related applications. Quantities of sensor data are...

  5. A Sensor Management Tool for Use with NASA World Wind, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The number of sensors that are deployed continues to increase for scientific, commercial and intelligence related applications. Quantities of sensor data are...

  6. Numerical Stability and Accuracy of Temporally Coupled Multi-Physics Modules in Wind-Turbine CAE Tools

    Energy Technology Data Exchange (ETDEWEB)

    Gasmi, A.; Sprague, M. A.; Jonkman, J. M.; Jones, W. B.

    2013-02-01

    In this paper we examine the stability and accuracy of numerical algorithms for coupling time-dependent multi-physics modules relevant to computer-aided engineering (CAE) of wind turbines. This work is motivated by an in-progress major revision of FAST, the National Renewable Energy Laboratory's (NREL's) premier aero-elastic CAE simulation tool. We employ two simple examples as test systems, while algorithm descriptions are kept general. Coupled-system governing equations are framed in monolithic and partitioned representations as differential-algebraic equations. Explicit and implicit loose partition coupling is examined. In explicit coupling, partitions are advanced in time from known information. In implicit coupling, there is dependence on other-partition data at the next time step; coupling is accomplished through a predictor-corrector (PC) approach. Numerical time integration of coupled ordinary-differential equations (ODEs) is accomplished with one of three, fourth-order fixed-time-increment methods: Runge-Kutta (RK), Adams-Bashforth (AB), and Adams-Bashforth-Moulton (ABM). Through numerical experiments it is shown that explicit coupling can be dramatically less stable and less accurate than simulations performed with the monolithic system. However, PC implicit coupling restored stability and fourth-order accuracy for ABM; only second-order accuracy was achieved with RK integration. For systems without constraints, explicit time integration with AB and explicit loose coupling exhibited desired accuracy and stability.

  7. Obtaining high-resolution stage forecasts by coupling large-scale hydrologic models with sensor data

    Science.gov (United States)

    Fries, K. J.; Kerkez, B.

    2017-12-01

    We investigate how "big" quantities of distributed sensor data can be coupled with a large-scale hydrologic model, in particular the National Water Model (NWM), to obtain hyper-resolution forecasts. The recent launch of the NWM provides a great example of how growing computational capacity is enabling a new generation of massive hydrologic models. While the NWM spans an unprecedented spatial extent, there remain many questions about how to improve forecast at the street-level, the resolution at which many stakeholders make critical decisions. Further, the NWM runs on supercomputers, so water managers who may have access to their own high-resolution measurements may not readily be able to assimilate them into the model. To that end, we ask the question: how can the advances of the large-scale NWM be coupled with new local observations to enable hyper-resolution hydrologic forecasts? A methodology is proposed whereby the flow forecasts of the NWM are directly mapped to high-resolution stream levels using Dynamical System Identification. We apply the methodology across a sensor network of 182 gages in Iowa. Of these sites, approximately one third have shown to perform well in high-resolution flood forecasting when coupled with the outputs of the NWM. The quality of these forecasts is characterized using Principal Component Analysis and Random Forests to identify where the NWM may benefit from new sources of local observations. We also discuss how this approach can help municipalities identify where they should place low-cost sensors to most benefit from flood forecasts of the NWM.

  8. Coupled CFD/CSD Analysis of an Active-Twist Rotor in a Wind Tunnel with Experimental Validation

    Science.gov (United States)

    Massey, Steven J.; Kreshock, Andrew R.; Sekula, Martin K.

    2015-01-01

    An unsteady Reynolds averaged Navier-Stokes analysis loosely coupled with a comprehensive rotorcraft code is presented for a second-generation active-twist rotor. High fidelity Navier-Stokes results for three configurations: an isolated rotor, a rotor with fuselage, and a rotor with fuselage mounted in a wind tunnel, are compared to lifting-line theory based comprehensive rotorcraft code calculations and wind tunnel data. Results indicate that CFD/CSD predictions of flapwise bending moments are in good agreement with wind tunnel measurements for configurations with a fuselage, and that modeling the wind tunnel environment does not significantly enhance computed results. Actuated rotor results for the rotor with fuselage configuration are also validated for predictions of vibratory blade loads and fixed-system vibratory loads. Varying levels of agreement with wind tunnel measurements are observed for blade vibratory loads, depending on the load component (flap, lag, or torsion) and the harmonic being examined. Predicted trends in fixed-system vibratory loads are in good agreement with wind tunnel measurements.

  9. Coupling of electromagnetic and structural dynamics for a wind turbine generator

    International Nuclear Information System (INIS)

    Matzke, D; Rick, S; Schelenz, R; Jacobs, G; Hameyer, K; Hollas, S

    2016-01-01

    This contribution presents a model interface of a wind turbine generator to represent the reciprocal effects between the mechanical and the electromagnetic system. Therefore, a multi-body-simulation (MBS) model in Simpack is set up and coupled with a quasi-static electromagnetic (EM) model of the generator in Matlab/Simulink via co-simulation. Due to lack of data regarding the structural properties of the generator the modal properties of the MBS model are fitted with respect to results of an experimental modal analysis (EMA) on the reference generator. The used method and the results of this approach are presented in this paper. The MB S model and the interface are set up in such a way that the EM forces can be applied to the structure and the response of the structure can be fed back to the EM model. The results of this cosimulation clearly show an influence of the feedback of the mechanical response which is mainly damping in the torsional degree of freedom and effects due to eccentricity in radial direction. The accuracy of these results will be validated via test bench measurements and presented in future work. Furthermore it is suggested that the EM model should be adjusted in future works so that transient effects are represented. (paper)

  10. Coupling of electromagnetic and structural dynamics for a wind turbine generator

    Science.gov (United States)

    Matzke, D.; Rick, S.; Hollas, S.; Schelenz, R.; Jacobs, G.; Hameyer, K.

    2016-09-01

    This contribution presents a model interface of a wind turbine generator to represent the reciprocal effects between the mechanical and the electromagnetic system. Therefore, a multi-body-simulation (MBS) model in Simpack is set up and coupled with a quasi-static electromagnetic (EM) model of the generator in Matlab/Simulink via co-simulation. Due to lack of data regarding the structural properties of the generator the modal properties of the MBS model are fitted with respect to results of an experimental modal analysis (EMA) on the reference generator. The used method and the results of this approach are presented in this paper. The MB S model and the interface are set up in such a way that the EM forces can be applied to the structure and the response of the structure can be fed back to the EM model. The results of this cosimulation clearly show an influence of the feedback of the mechanical response which is mainly damping in the torsional degree of freedom and effects due to eccentricity in radial direction. The accuracy of these results will be validated via test bench measurements and presented in future work. Furthermore it is suggested that the EM model should be adjusted in future works so that transient effects are represented.

  11. Implementation of a new maximum power point tracking control strategy for small wind energy conversion systems without mechanical sensors

    International Nuclear Information System (INIS)

    Daili, Yacine; Gaubert, Jean-Paul; Rahmani, Lazhar

    2015-01-01

    Highlights: • A new maximum power point tracking algorithm for small wind turbines is proposed. • This algorithm resolves the problems of the classical perturb and observe method. • The proposed method has been tested under several wind speed profiles. • The validity of the new algorithm has been confirmed by the experimental results. - Abstract: This paper proposes a modified perturbation and observation maximum power point tracking algorithm for small wind energy conversion systems to overcome the problems of the conventional perturbation and observation technique, namely rapidity/efficiency trade-off and the divergence from peak power under a fast variation of the wind speed. Two modes of operation are used by this algorithm, the normal perturbation and observation mode and the predictive mode. The normal perturbation and observation mode with small step-size is switched under a slow wind speed variation to track the true maximum power point with fewer fluctuations in steady state. When a rapid change of wind speed is detected, the algorithm tracks the new maximum power point in two phases: in the first stage, the algorithm switches to the predictive mode in which the step-size is auto-adjusted according to the distance between the operating point and the estimated optimum point to move the operating point near to the maximum power point rapidly, and then the normal perturbation and observation mode is used to track the true peak power in the second stage. The dc-link voltage variation is used to detect rapid wind changes. The proposed algorithm does not require either knowledge of system parameters or of mechanical sensors. The experimental results confirm that the proposed algorithm has a better performance in terms of dynamic response and efficiency compared with the conventional perturbation and observation algorithm

  12. Silicon-Nitride-based Integrated Optofluidic Biochemical Sensors using a Coupled-Resonator Optical Waveguide

    Directory of Open Access Journals (Sweden)

    Jiawei eWANG

    2015-04-01

    Full Text Available Silicon nitride (SiN is a promising material platform for integrating photonic components and microfluidic channels on a chip for label-free, optical biochemical sensing applications in the visible to near-infrared wavelengths. The chip-scale SiN-based optofluidic sensors can be compact due to a relatively high refractive index contrast between SiN and the fluidic medium, and low-cost due to the complementary metal-oxide-semiconductor (CMOS-compatible fabrication process. Here, we demonstrate SiN-based integrated optofluidic biochemical sensors using a coupled-resonator optical waveguide (CROW in the visible wavelengths. The working principle is based on imaging in the far field the out-of-plane elastic-light-scattering patterns of the CROW sensor at a fixed probe wavelength. We correlate the imaged pattern with reference patterns at the CROW eigenstates. Our sensing algorithm maps the correlation coefficients of the imaged pattern with a library of calibrated correlation coefficients to extract a minute change in the cladding refractive index. Given a calibrated CROW, our sensing mechanism in the spatial domain only requires a fixed-wavelength laser in the visible wavelengths as a light source, with the probe wavelength located within the CROW transmission band, and a silicon digital charge-coupled device (CCD / CMOS camera for recording the light scattering patterns. This is in sharp contrast with the conventional optical microcavity-based sensing methods that impose a strict requirement of spectral alignment with a high-quality cavity resonance using a wavelength-tunable laser. Our experimental results using a SiN CROW sensor with eight coupled microrings in the 680nm wavelength reveal a cladding refractive index change of ~1.3 × 10^-4 refractive index unit (RIU, with an average sensitivity of ~281 ± 271 RIU-1 and a noise-equivalent detection limit (NEDL of 1.8 ×10^-8 RIU ~ 1.0 ×10^-4 RIU across the CROW bandwidth of ~1 nm.

  13. Control con dos sensores para energías eólica y solar; Control with two sensors for energies wind and solar

    Directory of Open Access Journals (Sweden)

    Alfredo G M Gámez López

    2011-02-01

    Full Text Available En el artículo se realiza un análisis de dos sensores que se aplican en energías renovables (eólica y solar,obteniéndose una ley de control óptima. Para las fuentes energéticas elegidas se proponen técnicas de altafrecuencia de conmutación y eficiencia. Para la validación de los resultados se emplean técnicas desimulación digital In this article we make an analysis of two sensors applied in renewable energies (wind and solar,obtaining an ideal law of control. For the chosen energetic sources there appear technologies of highfrequency of commutation and of high efficiency. Technologies of digital simulation validate the results.

  14. Theoretical modeling of a coupled plasmon waveguide resonance sensor based on multimode optical fiber

    Science.gov (United States)

    Liu, Kun; Xue, Meng; Jiang, Junfeng; Wang, Tao; Chang, Pengxiang; Liu, Tiegen

    2018-03-01

    A coupled plasmon waveguide resonance (CPWR) sensor based on metal/dielectric-coated step index multimode optical fiber is proposed. Theoretical simulations using the four-layer Fresnel equations based on a bi-dimensional optical fiber model were implemented on four structures: Ag-ZnO, Au-ZnO, Ag-TiO2 and Au-TiO2. By controlling the thickness of dielectric layer, we managed to manipulate the CPWR resonance wavelengths. When a CPWR resonance dip is in the short wavelength region, it is insensitive to the change of surrounding refractive index (SRI) and can be used as a reference to improve the sensing accuracy of surface plasmon resonance (SPR) mode. With the increase of the thickness of the dielectric layer, the CPWR resonance dips shift to longer wavelength and the corresponding sensitivities increase. When the 1st CPWR resonance wavelength is near 1550 nm and SRI is around 1.333, the sensitivities of four structures reach 1360.61 nm/RIU, 1375.76 nm/RIU, 1048.48 nm/RIU and 1015.15 nm/RIU, respectively. The values are close to that of the conventional SPR optical fiber sensor while the spectral bandwidths of the optical fiber CPWR sensors are narrower.

  15. Enhancing detection sensitivity of piezoelectric plate sensor by increasing transverse electromechanical coupling constant

    Science.gov (United States)

    Wu, Wei; Shih, Wan Y.; Shih, Wei-Heng

    2013-08-01

    In this study, we examined how the materials' properties of a lead magnesium niobate-lead titanate solid solution, [Pb(Mg1/3Nb2/3)O3]0.63[PbTiO3]0.37 (PMN-PT) piezoelectric plate sensor (PEPS) affected the enhancement of the relative detection resonance frequency shift, -Δf/f of the sensor, where f and Δf were the resonance frequency and resonance frequency shift of the sensor, respectively. Specifically, the electromechanical coupling constant, -k31, of the PMN-PT PEPS was varied by changing the grain size of the piezoelectric layer as well as by applying a bias direct current electric field. Detection of streptavidin at the same concentration was carried out with biotin covalently immobilized on the surface of PEPS. It is shown that the -Δf/f of the same streptavidin detection was increased by more than 2-fold when the -k31 increased from 0.285 to 0.391.

  16. Design and Study of a Low-Cost Laboratory Model Digital Wind Power Meter

    Science.gov (United States)

    Radhakrishnan, Rugmini; Karthika, S.

    2010-01-01

    A vane-type low-cost laboratory model anemometer cum power meter is designed and constructed for measuring low wind energy created from accelerating fluids. The constructed anemometer is a device which records the electrical power obtained by the conversion of wind power using a wind sensor coupled to a DC motor. It is designed for its…

  17. Ensemble downscaling in coupled solar wind-magnetosphere modeling for space weather forecasting.

    Science.gov (United States)

    Owens, M J; Horbury, T S; Wicks, R T; McGregor, S L; Savani, N P; Xiong, M

    2014-06-01

    Advanced forecasting of space weather requires simulation of the whole Sun-to-Earth system, which necessitates driving magnetospheric models with the outputs from solar wind models. This presents a fundamental difficulty, as the magnetosphere is sensitive to both large-scale solar wind structures, which can be captured by solar wind models, and small-scale solar wind "noise," which is far below typical solar wind model resolution and results primarily from stochastic processes. Following similar approaches in terrestrial climate modeling, we propose statistical "downscaling" of solar wind model results prior to their use as input to a magnetospheric model. As magnetospheric response can be highly nonlinear, this is preferable to downscaling the results of magnetospheric modeling. To demonstrate the benefit of this approach, we first approximate solar wind model output by smoothing solar wind observations with an 8 h filter, then add small-scale structure back in through the addition of random noise with the observed spectral characteristics. Here we use a very simple parameterization of noise based upon the observed probability distribution functions of solar wind parameters, but more sophisticated methods will be developed in the future. An ensemble of results from the simple downscaling scheme are tested using a model-independent method and shown to add value to the magnetospheric forecast, both improving the best estimate and quantifying the uncertainty. We suggest a number of features desirable in an operational solar wind downscaling scheme. Solar wind models must be downscaled in order to drive magnetospheric models Ensemble downscaling is more effective than deterministic downscaling The magnetosphere responds nonlinearly to small-scale solar wind fluctuations.

  18. A Sensor Management Tool for Use with NASA World Wind, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Information about the world and its local environments is becoming increasingly available due to the development and deployment of sensors. Deployed sensors include...

  19. A mathematical model for source separation of MMG signals recorded with a coupled microphone-accelerometer sensor pair.

    Science.gov (United States)

    Silva, Jorge; Chau, Tom

    2005-09-01

    Recent advances in sensor technology for muscle activity monitoring have resulted in the development of a coupled microphone-accelerometer sensor pair for physiological acousti signal recording. This sensor can be used to eliminate interfering sources in practical settings where the contamination of an acoustic signal by ambient noise confounds detection but cannot be easily removed [e.g., mechanomyography (MMG), swallowing sounds, respiration, and heart sounds]. This paper presents a mathematical model for the coupled microphone-accelerometer vibration sensor pair, specifically applied to muscle activity monitoring (i.e., MMG) and noise discrimination in externally powered prostheses for below-elbow amputees. While the model provides a simple and reliable source separation technique for MMG signals, it can also be easily adapted to other aplications where the recording of low-frequency (< 1 kHz) physiological vibration signals is required.

  20. Impulse Based Substructuring for Coupling Offshore Structures and Wind Turbines in Aero-Elastic Simulations

    NARCIS (Netherlands)

    Van der Valk, P.L.C.; Rixen, D.J.

    2012-01-01

    In order to achieve the goal of 20% renewable energy in 2020, as set by the European Union, large offshore wind farms are either under construction or in development through-out Europe. As many of the "easy" locations are already under development, offshore wind farms are moving further offshore

  1. Swell impact on wind stress and atmospheric mixing in a regional coupled atmosphere-wave model

    DEFF Research Database (Denmark)

    Wu, Lichuan; Rutgersson, Anna; Sahlée, Erik

    2016-01-01

    Over the ocean, the atmospheric turbulence can be significantly affected by swell waves. Change in the atmospheric turbulence affects the wind stress and atmospheric mixing over swell waves. In this study, the influence of swell on atmospheric mixing and wind stress is introduced into an atmosphere......-neutral and unstable stratification conditions is introduced by changing the roughness length. Five year simulation results indicate that adding the swell influence on atmospheric mixing has limited influence, only slightly increasing the near-surface wind speed; in contrast, adding the swell influence on wind stress....... The influence varies with wave characteristics for different sea basins. Swell occurs infrequently in the studied area, and one could expect more influence in high-swell-frequency areas (i.e., low-latitude ocean). We conclude that the influence of swell on atmospheric mixing and wind stress should be considered...

  2. Wireless Power Supply via Coupled Magnetic Resonance for on-line Monitoring Wireless Sensor of High-voltage Electrical Equipment

    DEFF Research Database (Denmark)

    Xingkui, Mao; Qisheng, Huang; Yudi, Xiao

    2016-01-01

    On-line monitoring of high-voltage electrical equipment (HV-EE) aiming to detect faults effectively has become crucial to avoid serious accidents. Moreover, highly reliable power supplies are the key component for the wireless sensors equipped in such on-line monitoring systems. Therefore......, in this paper, the wireless power supply via coupled magnetic resonance (MR-WPS) is proposed for powering the wireless sensor and the associated wireless sensor solution is also proposed. The key specifications of the MR-WPS working in switchgear cabinet with a harsh operation environment are analyzed...

  3. Quasiparticle Diffusion in Al Films Coupled to Tungsten Transition Edge Sensors

    Science.gov (United States)

    Yen, J. J.; Young, B. A.; Cabrera, B.; Brink, P. L.; Cherry, M.; Moffatt, R.; Pyle, M.; Redl, P.; Tomada, A.; Tortorici, E. C.

    2014-08-01

    We report recent results obtained from several W/Al test devices on Si wafers fabricated specifically to better understand energy collection in phonon sensors used for the Cryogenic Dark Matter Search (CDMS) experiment. The devices under study consist of three different lengths of 250 m-wide by 300 nm-thick Al absorber films, coupled to 250 m x 250 m (40 nm thick) W-TESs at each end of the Al film. An Fe source was used to excite a NaCl reflector producing 2.6 keV Cl X-rays that were absorbed in our test device after passing through a collimator. The impinging X-rays broke Cooper pairs in the Al film, producing quasiparticles that we detected after they propagated into the W-TESs. We studied the diffusion of these quasiparticles in the Al, trapping effects in the Al film, and energy transmission at the Al/W interfaces.

  4. Hardware implementation of adaptive filtering using charge-coupled devices. [For perimeter security sensors

    Energy Technology Data Exchange (ETDEWEB)

    Donohoe, G.W.

    1977-01-01

    Sandia Laboratories' Digital Systems Division/1734, as part of its work on the Base and Installation Security Systems (BISS) program has been making use of adaptive digital filters to improve the signal-to-noise ratio of perimeter sensor signals. In particular, the Widrow-Hoff least-mean-squares algorithm has been used extensively. This non-recursive linear predictor has been successful in extracting aperiodic signals from periodic noise. The adaptive filter generates a predictor signal which is subtracted from the input signal to produce an error signal. The value of this error is fed back to the filter to improve the quality of the next prediction. Implementation of the Widrow adaptive filter using a Charge-Coupled Device tapped analog delay line, analog voltage multipliers and operational amplifiers is described. The resulting filter adapts to signals with frequency components as high as several megahertz.

  5. Precise measurements of neutral gas temperature using Fiber Bragg Grating sensor in Argon capacitively coupled plasmas

    Science.gov (United States)

    Han, Daoman; Liu, Zigeng; Liu, Yongxin; Peng, Wei; Wang, Younian

    2016-09-01

    Neutral gas temperature was measured using Fiber Bragg Grating sensor (FBGs) in capacitively coupled argon plasmas. Thermometry is based on the thermal equilibrium between the sensor and neutral gases, which is found to become faster with increasing pressure. It is also observed that the neutral gas temperature is higher than the room temperature by 10 120 °depending on the experiental conditions, and gas temperature shows significant non-uniformity in space. In addition, radial profiles of neutral temperature at different pressures, resemble these of ion density, obtained by a floating double probe. Specifically, at low pressure, neutral gas temperature and ion density peak at the center of the reactor, while the peak appears at the edge of the electrode at higher pressure. The neutral gas heating is mainly caused by the elastic collisions of Ar + with neutral gas atoms in the sheath region after Ar + gaining a certain energy. This work was supported by the National Natural Science Foundation of China (NSFC) (Grants No. 11335004, 11405018, and 61137005).

  6. Coupling of an aeroacoustic model and a parabolic equation code for long range wind turbine noise propagation

    Science.gov (United States)

    Cotté, B.

    2018-05-01

    This study proposes to couple a source model based on Amiet's theory and a parabolic equation code in order to model wind turbine noise emission and propagation in an inhomogeneous atmosphere. Two broadband noise generation mechanisms are considered, namely trailing edge noise and turbulent inflow noise. The effects of wind shear and atmospheric turbulence are taken into account using the Monin-Obukhov similarity theory. The coupling approach, based on the backpropagation method to preserve the directivity of the aeroacoustic sources, is validated by comparison with an analytical solution for the propagation over a finite impedance ground in a homogeneous atmosphere. The influence of refraction effects is then analyzed for different directions of propagation. The spectrum modification related to the ground effect and the presence of a shadow zone for upwind receivers are emphasized. The validity of the point source approximation that is often used in wind turbine noise propagation models is finally assessed. This approximation exaggerates the interference dips in the spectra, and is not able to correctly predict the amplitude modulation.

  7. The effect of winding and core support material on the thermal gain dependence of a fluxgate magnetometer sensor

    Science.gov (United States)

    Miles, David M.; Mann, Ian R.; Kale, Andy; Milling, David K.; Narod, Barry B.; Bennest, John R.; Barona, David; Unsworth, Martyn J.

    2017-10-01

    Fluxgate magnetometers are an important tool in geophysics and space physics but are typically sensitive to variations in sensor temperature. Changes in instrumental gain with temperature, thermal gain dependence, are thought to be predominantly due to changes in the geometry of the wire coils that sense the magnetic field and/or provide magnetic feedback. Scientific fluxgate magnetometers typically employ some form of temperature compensation and support and constrain wire sense coils with bobbins constructed from materials such as MACOR machinable ceramic (Corning Inc.) which are selected for their ultra-low thermal deformation rather than for robustness, cost, or ease of manufacturing. We present laboratory results comparing the performance of six geometrically and electrically matched fluxgate sensors in which the material used to support the windings and for the base of the sensor is varied. We use a novel, low-cost thermal calibration procedure based on a controlled sinusoidal magnetic source and quantitative spectral analysis to measure the thermal gain dependence of fluxgate magnetometer sensors at the ppm°C-1 level in a typical magnetically noisy university laboratory environment. We compare the thermal gain dependence of sensors built from MACOR, polyetheretherketone (PEEK) engineering plastic (virgin, 30 % glass filled and 30 % carbon filled), and acetal to examine the trade between the thermal properties of the material, the impact on the thermal gain dependence of the fluxgate, and the cost and ease of manufacture. We find that thermal gain dependence of the sensor varies as one half of the material properties of the bobbin supporting the wire sense coils rather than being directly related as has been historically thought. An experimental sensor constructed from 30 % glass-filled PEEK (21.6 ppm°C-1) had a thermal gain dependence within 5 ppm°C-1 of a traditional sensor constructed from MACOR ceramic (8.1 ppm°C-1). If a modest increase in thermal

  8. The effect of winding and core support material on the thermal gain dependence of a fluxgate magnetometer sensor

    Directory of Open Access Journals (Sweden)

    D. M. Miles

    2017-10-01

    Full Text Available Fluxgate magnetometers are an important tool in geophysics and space physics but are typically sensitive to variations in sensor temperature. Changes in instrumental gain with temperature, thermal gain dependence, are thought to be predominantly due to changes in the geometry of the wire coils that sense the magnetic field and/or provide magnetic feedback. Scientific fluxgate magnetometers typically employ some form of temperature compensation and support and constrain wire sense coils with bobbins constructed from materials such as MACOR machinable ceramic (Corning Inc. which are selected for their ultra-low thermal deformation rather than for robustness, cost, or ease of manufacturing. We present laboratory results comparing the performance of six geometrically and electrically matched fluxgate sensors in which the material used to support the windings and for the base of the sensor is varied. We use a novel, low-cost thermal calibration procedure based on a controlled sinusoidal magnetic source and quantitative spectral analysis to measure the thermal gain dependence of fluxgate magnetometer sensors at the ppm°C−1 level in a typical magnetically noisy university laboratory environment. We compare the thermal gain dependence of sensors built from MACOR, polyetheretherketone (PEEK engineering plastic (virgin, 30 % glass filled and 30 % carbon filled, and acetal to examine the trade between the thermal properties of the material, the impact on the thermal gain dependence of the fluxgate, and the cost and ease of manufacture. We find that thermal gain dependence of the sensor varies as one half of the material properties of the bobbin supporting the wire sense coils rather than being directly related as has been historically thought. An experimental sensor constructed from 30 % glass-filled PEEK (21.6 ppm°C−1 had a thermal gain dependence within 5 ppm°C−1 of a traditional sensor constructed from MACOR ceramic (8.1

  9. Enhanced air dispersion modelling at a typical Chinese nuclear power plant site: Coupling RIMPUFF with two advanced diagnostic wind models.

    Science.gov (United States)

    Liu, Yun; Li, Hong; Sun, Sida; Fang, Sheng

    2017-09-01

    An enhanced air dispersion modelling scheme is proposed to cope with the building layout and complex terrain of a typical Chinese nuclear power plant (NPP) site. In this modelling, the California Meteorological Model (CALMET) and the Stationary Wind Fit and Turbulence (SWIFT) are coupled with the Risø Mesoscale PUFF model (RIMPUFF) for refined wind field calculation. The near-field diffusion coefficient correction scheme of the Atmospheric Relative Concentrations in the Building Wakes Computer Code (ARCON96) is adopted to characterize dispersion in building arrays. The proposed method is evaluated by a wind tunnel experiment that replicates the typical Chinese NPP site. For both wind speed/direction and air concentration, the enhanced modelling predictions agree well with the observations. The fraction of the predictions within a factor of 2 and 5 of observations exceeds 55% and 82% respectively in the building area and the complex terrain area. This demonstrates the feasibility of the new enhanced modelling for typical Chinese NPP sites. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Effect of phase coupling on surface amplitude distribution of wind waves

    Digital Repository Service at National Institute of Oceanography (India)

    Varkey, M.J.

    Nonlinear features of wind generated surface waves are considered here to be caused by nonrandomness (non-Uniform) in the phase spectrum. Nonrandomness in recorded waves, if present, would be generally obscured within the error level of observations...

  11. A robust static decoupling algorithm for 3-axis force sensors based on coupling error model and ε-SVR.

    Science.gov (United States)

    Ma, Junqing; Song, Aiguo; Xiao, Jing

    2012-10-29

    Coupling errors are major threats to the accuracy of 3-axis force sensors. Design of decoupling algorithms is a challenging topic due to the uncertainty of coupling errors. The conventional nonlinear decoupling algorithms by a standard Neural Network (NN) are sometimes unstable due to overfitting. In order to avoid overfitting and minimize the negative effect of random noises and gross errors in calibration data, we propose a novel nonlinear static decoupling algorithm based on the establishment of a coupling error model. Instead of regarding the whole system as a black box in conventional algorithm, the coupling error model is designed by the principle of coupling errors, in which the nonlinear relationships between forces and coupling errors in each dimension are calculated separately. Six separate Support Vector Regressions (SVRs) are employed for their ability to perform adaptive, nonlinear data fitting. The decoupling performance of the proposed algorithm is compared with the conventional method by utilizing obtained data from the static calibration experiment of a 3-axis force sensor. Experimental results show that the proposed decoupling algorithm gives more robust performance with high efficiency and decoupling accuracy, and can thus be potentially applied to the decoupling application of 3-axis force sensors.

  12. Compact 3D Wind Sensor for Unmanned Aerial Vehicles, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Accurate wide-area mapping of three-dimensional (3D) wind vectors plays an important role in our ability to understand climate processes, predict weather patterns...

  13. Development of a High Energy Amplifier for an Airborne Coherent Wind Turbulence Lidar Sensor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The capacity of coherent LIDAR systems to produce a continuous, real-time, 3D scan of wind velocities via detection of backscatter of atmospheric aerosols in...

  14. Direct Embedding of Fiber-Optical Load Sensors into Wind Turbine Blades

    DEFF Research Database (Denmark)

    Glavind, Lars; Buggy, Stephen; Olesen, Ib S.

    Long Period Gratings were embedded into the adhesive utilized in the matrix of a wind turbine blade. The LPGs were subsequently subjected to temperature-testing in order to assess their performance, which illustrates good embedding capabilities....

  15. The formation of rings and gaps in magnetically coupled disk-wind systems: ambipolar diffusion and reconnection

    Science.gov (United States)

    Suriano, Scott S.; Li, Zhi-Yun; Krasnopolsky, Ruben; Shang, Hsien

    2018-03-01

    Radial substructures in circumstellar disks are now routinely observed by ALMA. There is also growing evidence that disk winds drive accretion in such disks. We show through 2D (axisymmetric) simulations that rings and gaps develop naturally in magnetically coupled disk-wind systems on the scale of tens of au, where ambipolar diffusion (AD) is the dominant non-ideal MHD effect. In simulations where the magnetic field and matter are moderately coupled, the disk remains relatively laminar with the radial electric current steepened by AD into a thin layer near the midplane. The toroidal magnetic field sharply reverses polarity in this layer, generating a large magnetic torque that drives fast accretion, which drags the poloidal field into a highly pinched radial configuration. The reconnection of this pinched field creates magnetic loops where the net poloidal magnetic flux (and thus the accretion rate) is reduced, yielding dense rings. Neighbouring regions with stronger poloidal magnetic fields accrete faster, forming gaps. In better magnetically coupled simulations, the so-called `avalanche accretion streams' develop continuously near the disk surface, rendering the disk-wind system more chaotic. Nevertheless, prominent rings and gaps are still produced, at least in part, by reconnection, which again enables the segregation of the poloidal field and the disk material similar to the more diffusive disks. However, the reconnection is now driven by the non-linear growth of MRI channel flows. The formation of rings and gaps in rapidly accreting yet laminar disks has interesting implications for dust settling and trapping, grain growth, and planet formation.

  16. Comparing the effect of low wind spead parameterization on heat fluxes in atmosphere only and coupled ocean-atmosphere simulations

    Science.gov (United States)

    Torres, Olivier; Braconnot, Pascale; Marti, Olivier

    2017-04-01

    The turbulent fluxes across the ocean/atmosphere interface represent one of the principal driving forces of the global atmospheric and oceanic circulation. Representation of these fluxes presents a challenge due to the small scale acting turbulent processes compared to the resolved scales of the models. Beyond this subgrid parameterization issue, a comprehensive understanding of the impact of air-sea interactions on the system is still lacking. We are developing a methodology to investigate how differences in the parameterizations affect the water supply of the atmospheric column in the tropics, the ocean heat content and the equator-pole redistribution of heat and water by the oceanic and atmospheric circulation. We focus on the representation of the latent heat fluxes in the tropics. We investigate how the representation of the heat transfer coefficient in weak winds affect the climate response considering both atmosphere only and ocean-atmosphere coupled simulations with the IPSL climate model. We compare simulations where the only difference is the activation of a function that increases latent heat fluxes during periods of weak wind. This allows us to isolate the behavior of the Pacific warmpool region where low winds occurs frequently. Although the heat transfer coefficients are very similar for a given parameterization between atmosphere only and ocean-atmosphere coupled simulation the surface heat fluxes are very different. We analyze in detail the ocean feedbacks and the role of the latent heat fluxes by looking at the energy transport carried out by the atmosphere considering the divergent part of the moist static energy. Differences appear between the coupled and uncoupled models due to the role of the ocean which dampens a large part of the disturbance caused by the modification of parameterization.

  17. Design of Large Wind Turbines using Fluid-Structure Coupling Technique

    DEFF Research Database (Denmark)

    Sessarego, Matias

    Aerodynamic and structural dynamic performance analysis of modern wind turbines are routinely carried out in the wind energy field using computational tools known as aero-elastic codes. Most aero-elastic codes use the blade element momentum (BEM) technique to model the rotor aerodynamics and a mo......Aerodynamic and structural dynamic performance analysis of modern wind turbines are routinely carried out in the wind energy field using computational tools known as aero-elastic codes. Most aero-elastic codes use the blade element momentum (BEM) technique to model the rotor aerodynamics...... and a modal, multi-body, or finite-element approach to model the turbine structural dynamics. A novel aeroelastic code has been developed called MIRAS-FLEX. MIRAS-FLEX is an improvement on standard aero-elastic codes because it uses a more advanced aerodynamic model than BEM. MIRAS-FLEX combines the three......-dimensional viscous-inviscid interactive method, MIRAS, with the dynamics model used in the aero-elastic code FLEX5. Following the development of MIRAS-FLEX, a surrogate optimization methodology using MIRAS alone has been developed for the aerodynamic design of wind-turbine rotors. Designing a rotor using...

  18. Highly sensitive digital optical sensor with large measurement range based on the dual-microring resonator with waveguide-coupled feedback

    International Nuclear Information System (INIS)

    Xiang Xing-Ye; Wang Kui-Ru; Yuan Jin-Hui; Jin Bo-Yuan; Sang Xin-Zhu; Yu Chong-Xiu

    2014-01-01

    We propose a novel high-performance digital optical sensor based on the Mach—Zehnder interferential effect and the dual-microring resonators with the waveguide-coupled feedback. The simulation results show that the sensitivity of the sensor can be orders of magnitude higher than that of a conventional sensor, and high quality factor is not critical in it. Moreover, by optimizing the length of the feedback waveguide to be equal to the perimeter of the ring, the measurement range of the proposed sensor is twice as much as that of the conventional sensor in the weak coupling case

  19. Design and standalone characterisation of a capacitively coupled HV-CMOS sensor chip for the CLIC vertex detector

    Science.gov (United States)

    Kremastiotis, I.; Ballabriga, R.; Campbell, M.; Dannheim, D.; Fiergolski, A.; Hynds, D.; Kulis, S.; Peric, I.

    2017-09-01

    The concept of capacitive coupling between sensors and readout chips is under study for the vertex detector at the proposed high-energy CLIC electron positron collider. The CLICpix Capacitively Coupled Pixel Detector (C3PD) is an active High-Voltage CMOS sensor, designed to be capacitively coupled to the CLICpix2 readout chip. The chip is implemented in a commercial 180 nm HV-CMOS process and contains a matrix of 128×128 square pixels with 25μm pitch. First prototypes have been produced with a standard resistivity of ~20 Ωcm for the substrate and tested in standalone mode. The results show a rise time of ~20 ns, charge gain of 190 mV/ke- and ~40 e- RMS noise for a power consumption of 4.8μW/pixel. The main design aspects, as well as standalone measurement results, are presented.

  20. Development of a Fast Fluid-Structure Coupling Technique for Wind Turbine Computations

    DEFF Research Database (Denmark)

    Sessarego, Matias; Ramos García, Néstor; Shen, Wen Zhong

    2015-01-01

    used in the aero-elastic code FLEX5. The new code, MIRASFLEX, in general shows good agreement with the standard aero-elastic codes FLEX5 and FAST for various test cases. The structural model in MIRAS-FLEX acts to reduce the aerodynamic load computed by MIRAS, particularly near the tip and at high wind...

  1. Implementation and Performance of a GPS/INS Tightly Coupled Assisted PLL Architecture Using MEMS Inertial Sensors

    Directory of Open Access Journals (Sweden)

    Youssef Tawk

    2014-02-01

    Full Text Available The use of global navigation satellite system receivers for navigation still presents many challenges in urban canyon and indoor environments, where satellite availability is typically reduced and received signals are attenuated. To improve the navigation performance in such environments, several enhancement methods can be implemented. For instance, external aid provided through coupling with other sensors has proven to contribute substantially to enhancing navigation performance and robustness. Within this context, coupling a very simple GPS receiver with an Inertial Navigation System (INS based on low-cost micro-electro-mechanical systems (MEMS inertial sensors is considered in this paper. In particular, we propose a GPS/INS Tightly Coupled Assisted PLL (TCAPLL architecture, and present most of the associated challenges that need to be addressed when dealing with very-low-performance MEMS inertial sensors. In addition, we propose a data monitoring system in charge of checking the quality of the measurement flow in the architecture. The implementation of the TCAPLL is discussed in detail, and its performance under different scenarios is assessed. Finally, the architecture is evaluated through a test campaign using a vehicle that is driven in urban environments, with the purpose of highlighting the pros and cons of combining MEMS inertial sensors with GPS over GPS alone.

  2. Simulation of wind-induced snow transport in alpine terrain using a fully coupled snowpack/atmosphere model

    Science.gov (United States)

    Vionnet, V.; Martin, E.; Masson, V.; Guyomarc'h, G.; Naaim-Bouvet, F.; Prokop, A.; Durand, Y.; Lac, C.

    2013-06-01

    In alpine regions, wind-induced snow transport strongly influences the spatio-temporal evolution of the snow cover throughout the winter season. To gain understanding on the complex processes that drive the redistribution of snow, a new numerical model is developed. It couples directly the detailed snowpack model Crocus with the atmospheric model Meso-NH. Meso-NH/Crocus simulates snow transport in saltation and in turbulent suspension and includes the sublimation of suspended snow particles. A detailed representation of the first meters of the atmosphere allows a fine reproduction of the erosion and deposition process. The coupled model is evaluated against data collected around the experimental site of Col du Lac Blanc (2720 m a.s.l., French Alps). For this purpose, a blowing snow event without concurrent snowfall has been selected and simulated. Results show that the model captures the main structures of atmospheric flow in alpine terrain, the vertical profile of wind speed and the snow particles fluxes near the surface. However, the horizontal resolution of 50 m is found to be insufficient to simulate the location of areas of snow erosion and deposition observed by terrestrial laser scanning. When activated, the sublimation of suspended snow particles causes a reduction in deposition of 5.3%. Total sublimation (surface + blowing snow) is three times higher than surface sublimation in a simulation neglecting blowing snow sublimation.

  3. Coupling the Weather Research and Forecasting (WRF) model and Large Eddy Simulations with Actuator Disk Model: predictions of wind farm power production

    Science.gov (United States)

    Garcia Cartagena, Edgardo Javier; Santoni, Christian; Ciri, Umberto; Iungo, Giacomo Valerio; Leonardi, Stefano

    2015-11-01

    A large-scale wind farm operating under realistic atmospheric conditions is studied by coupling a meso-scale and micro-scale models. For this purpose, the Weather Research and Forecasting model (WRF) is coupled with an in-house LES solver for wind farms. The code is based on a finite difference scheme, with a Runge-Kutta, fractional step and the Actuator Disk Model. The WRF model has been configured using seven one-way nested domains where the child domain has a mesh size one third of its parent domain. A horizontal resolution of 70 m is used in the innermost domain. A section from the smallest and finest nested domain, 7.5 diameters upwind of the wind farm is used as inlet boundary condition for the LES code. The wind farm consists in six-turbines aligned with the mean wind direction and streamwise spacing of 10 rotor diameters, (D), and 2.75D in the spanwise direction. Three simulations were performed by varying the velocity fluctuations at the inlet: random perturbations, precursor simulation, and recycling perturbation method. Results are compared with a simulation on the same wind farm with an ideal uniform wind speed to assess the importance of the time varying incoming wind velocity. Numerical simulations were performed at TACC (Grant CTS070066). This work was supported by NSF, (Grant IIA-1243482 WINDINSPIRE).

  4. Improved Relay Node Placement Algorithm for Wireless Sensor Networks Application in Wind Farm

    DEFF Research Database (Denmark)

    Chen, Qinyin; Hu, Y.; Chen, Zhe

    2013-01-01

    -tolerance. Each wind turbine has a potentially large number of data points needing to be monitored and collected, as farms continue to increase in scale; distances between turbines can reach several hundred meters. Optimal placement of relays in a large farm requires an efficient algorithmic solution. A relay...

  5. Maximum power point tracking-based control algorithm for PMSG wind generation system without mechanical sensors

    International Nuclear Information System (INIS)

    Hong, Chih-Ming; Chen, Chiung-Hsing; Tu, Chia-Sheng

    2013-01-01

    Highlights: ► This paper presents MPPT based control for optimal wind energy capture using RBFN. ► MPSO is adopted to adjust the learning rates to improve the learning capability. ► This technique can maintain the system stability and reach the desired performance. ► The EMF in the rotating reference frame is utilized in order to estimate speed. - Abstract: This paper presents maximum-power-point-tracking (MPPT) based control algorithms for optimal wind energy capture using radial basis function network (RBFN) and a proposed torque observer MPPT algorithm. The design of a high-performance on-line training RBFN using back-propagation learning algorithm with modified particle swarm optimization (MPSO) regulating controller for the sensorless control of a permanent magnet synchronous generator (PMSG). The MPSO is adopted in this study to adapt the learning rates in the back-propagation process of the RBFN to improve the learning capability. The PMSG is controlled by the loss-minimization control with MPPT below the base speed, which corresponds to low and high wind speed, and the maximum energy can be captured from the wind. Then the observed disturbance torque is feed-forward to increase the robustness of the PMSG system

  6. Luminescent photonic crystal cavities for fiber-optic sensors, coupled dissimilar cavities and optofluidics

    Science.gov (United States)

    Dündar, Mehmet A.; Wang, Bowen; Siahaan, Timothy; Voorbraak, Joost A. M.; Speijcken, Noud W. L.; Nötzel, Richard; van der Hoek, Marinus J.; He, Sailing; Fiore, Andrea; Van der Heijden, Rob W.

    2012-06-01

    Photonic crystal (PhC) cavities made in broadband luminescent material offer attractive possibilities for flexible active devices. The luminescence enables the cavity to operate as an autonomous entity. New applications of this property are demonstrated for cavities made in the InGaAsP underetched semiconductor membrane with embedded InAs Quantum Dots that emit in the range of 1400-1600 nm. Planar photonic crystal membrane nanocavities were released from the parent chip by mechanical nanomanipulation. The released cavity particle could be bonded on an arbitrary surface, which was exploited to make a novel fiber-optic tip sensor with a PhC cavity attached to the tip. A single mode from a short cavity is shown to couple simultaneously to at least three cavity modes of a long cavity, as concluded from level anticrossing data when the small cavity was photothermally tuned. Reconfigurable and movable cavities were created by locally varying the infiltration status by liquid oil near a PhC waveguide or defect cavity. Liquid was displaced locally on a micron scale using capillary force effects or laser-induced evaporation and condensation phenomena.

  7. Nanoscale photonic crystal sensor arrays on monolithic substrates using side-coupled resonant cavity arrays.

    Science.gov (United States)

    Yang, Daquan; Tian, Huiping; Ji, Yuefeng

    2011-10-10

    We present nanoscale photonic crystal sensor arrays (NPhCSAs) on monolithic substrates. The NPhCSAs can be used as an opto-fluidic architecture for performing highly parallel, label-free detection of biochemical interactions in aqueous environments. The architecture consists of arrays of lattice-shifted resonant cavities side-coupled to a single PhC waveguide. Each resonant cavity has slightly different cavity spacing and is shown to independently shift its resonant peak (a single and narrow drop) in response to the changes in refractive index. The extinction ratio of well-defined single drop exceeds 20 dB. With three-dimensional finite-difference time-domain (3D-FDTD) technique, we demonstrate that the refractive index sensitivity of 115.60 nm/RIU (refractive index unit) is achieved and a refractive index detection limit is approximately of 8.65×10-5 for this device. In addition, the sensitivity can be adjusted from 84.39 nm/RIU to 161.25 nm/RIU by changing the number of functionalized holes.

  8. Response of Mercury's Magnetosphere to Solar Wind Forcing: Results of Global MHD Simulations with Coupled Planetary Interior

    Science.gov (United States)

    Jia, Xianzhe; Slavin, James; Poh, Gangkai; Toth, Gabor; Gombosi, Tamas

    2016-04-01

    As the innermost planet, Mercury arguably undergoes the most direct space weathering interactions due to its weak intrinsic magnetic field and its close proximity to the Sun. It has long been suggested that two processes, i.e., erosion of the dayside magnetosphere due to intense magnetopause reconnection and the shielding effect of the induction currents generated at the conducting core, compete against each other in governing the large-scale structure of Mercury's magnetosphere. An outstanding question concerning Mercury's space weather is which of the two processes is more important. To address this question, we have developed a global MHD model in which Mercury's interior is electromagnetically coupled to the surrounding space environment. As demonstrated in Jia et al. (2015), the new modeling capability allows for self-consistently characterizing the dynamical response of the Mercury system to time-varying external conditions. To assess the relative importance of induction and magnetopause reconnection in controlling the magnetospheric configuration, especially under strong solar driving conditions, we have carried out multiple global simulations that adopt a wide range of solar wind dynamic pressure and IMF conditions. We find that, while the magnetopause standoff distance decreases with increasing solar wind pressure, just as expected, its dependence on the solar wind pressure follows closely a power-law relationship with an index of ~ -1/6, rather than a steeper power-law falling-off expected for the case with only induction present. This result suggests that for the range of solar wind conditions examined, the two competing processes, namely induction and reconnection, appear to play equally important roles in determining the global configuration of Mercury's magnetosphere, consistent with the finding obtained by Slavin et al. (2014) based on MESSENGER observations. We also find that the magnetic perturbations produced by the magnetospheric current systems

  9. In-Situ Cure Monitoring of Wind Turbine Blades by Using Fiber Bragg Grating Sensors and Fresnel Reflection Measurement

    Directory of Open Access Journals (Sweden)

    Umesh Sampath

    2015-07-01

    Full Text Available A fiber-optic cure monitoring system is proposed to measure curing status of composite structure such as a large scale wind turbine blade. The monitoring is based on the measurement of Fresnel reflectivity at the optical fiber/epoxy resin interface. The refractive index of epoxy resin varies throughout curing stages, changing the Fresnel reflectivity. The curing status is decided by monitoring the reflected intensity variation. The usage of fiber Bragg grating (FBG sensor helps to separate the temperature-induced cross effects. A Gaussian curve fitting algorithm was applied to FBG spectra which were distorted in curing procedure. The substantial measurement errors could be minimized by locating the centroids of the Gaussian curve-fitted spectra. From the experiments performed in various isothermal conditions, the proposed system successfully identified the onset of gelation and the completion of curing of epoxy resins.

  10. Ion Kinetics in the Solar Wind: Coupling Global Expansion to Local Microphysics

    Czech Academy of Sciences Publication Activity Database

    Matteini, L.; Hellinger, Petr; Landi, S.; Trávníček, Pavel M.; Velli, M.

    2012-01-01

    Roč. 172, 1-4 (2012), s. 373-396 ISSN 0038-6308 Grant - others:ESA(XE) PECS 98068; AVO(CZ) IAA300420702 Program:IA Institutional research plan: CEZ:AV0Z10030501; CEZ:AV0Z30420517 Keywords : solar wind * ion kinetics * numerical simulations Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 5.519, year: 2012

  11. Flight and wind-tunnel calibrations of a flush airdata sensor at high angles of attack and sideslip and at supersonic Mach numbers

    Science.gov (United States)

    Moes, Timothy R.; Whitmore, Stephen A.; Jordan, Frank L., Jr.

    1993-01-01

    A nonintrusive airdata-sensing system was calibrated in flight and wind-tunnel experiments to an angle of attack of 70 deg and to angles of sideslip of +/- 15 deg. Flight-calibration data have also been obtained to Mach 1.2. The sensor, known as the flush airdata sensor, was installed on the nosecap of an F-18 aircraft for flight tests and on a full-scale F-18 forebody for wind-tunnel tests. Flight tests occurred at the NASA Dryden Flight Research Facility, Edwards, California, using the F-18 High Alpha Research Vehicle. Wind-tunnel tests were conducted in the 30- by 60-ft wind tunnel at the NASA LaRC, Hampton, Virginia. The sensor consisted of 23 flush-mounted pressure ports arranged in concentric circles and located within 1.75 in. of the tip of the nosecap. An overdetermined mathematical model was used to relate the pressure measurements to the local airdata quantities. The mathematical model was based on potential flow over a sphere and was empirically adjusted based on flight and wind-tunnel data. For quasi-steady maneuvering, the mathematical model worked well throughout the subsonic, transonic, and low supersonic flight regimes. The model also worked well throughout the angle-of-attack and sideslip regions studied.

  12. Structural health monitoring method for wind turbine trailing edge: Crack growth detection using Fibre Bragg Grating sensor embedded in composite materials

    DEFF Research Database (Denmark)

    Pereira, Gilmar Ferreira; Mikkelsen, Lars Pilgaard; McGugan, Malcolm

    2015-01-01

    In this article a novel method to assess a crack growing/damage event in composite material using Fibre Bragg Grating (FBG) sensors embedded in a host material and its application into a composite material structure, Wind Turbine Trailing Edge, is presented. A Structure-Material-FBG model...... was developed, which simulates the FBG sensor output response, when embedded in a host material, during a crack growing/damage event. This Structure-Material-FBG model provides a tool to analyse the application of this monitoring technique in other locations/structures, by predicting the sensor output...... adhesive, were instrumented with one array of FBG sensors embedded into the host material, and digital image correlation technique was used to determine the presence of the specific phenomena caused by the crack, and to correlate with the FBG sensor....

  13. Autonomous Aerial Sensors for Wind Power Meteorology - A Pre-Project

    DEFF Research Database (Denmark)

    Giebel, Gregor; Schmidt Paulsen, Uwe; Bange, Jens

    , partly with nano-synchronised sensors (time stamped with about 100 ns global accuracy). Between bankruptcy of a partner, denied overflight rights at the main test location, denied Civil Aviation Authorities permits at the alternative location, stolen planes, and crashed UAS we managed to collect data...

  14. Deformable trailing edge flaps for modern megawatt wind turbine controllers using strain gauge sensors

    DEFF Research Database (Denmark)

    Andersen, Peter Bjørn; Henriksen, Lars Christian; Gaunaa, Mac

    2010-01-01

    . By enabling the trailing edge to move independently and quickly along the spanwise position of the blade, local small flutuations in the aerodynamic forces can be alleviated by deformation of the airfoil flap. Strain gauges are used as input for the flap controller, and the effect of placing strain gauges......The present work contains a deformable trailing edge flap controller integrated in a numerically simulated modern, variablespeed, pitch-regulated megawatt (MW)-size wind turbine. The aeroservoelastic multi-body code HAWC2 acts as a component in the control loop design. At the core of the proposed...... edge flaps on a wind turbine blade rather than a conclusive control design with traditional issues like stability and robustness fully investigated. Recent works have shown that the fatigue load reduction by use of trailing edge flaps may be greater than for traditional pitch control methods...

  15. On the design of a MEMS piezoelectric accelerometer coupled to the middle ear as an implantable sensor for hearing devices.

    Science.gov (United States)

    Gesing, A L; Alves, F D P; Paul, S; Cordioli, J A

    2018-03-02

    The presence of external elements is a major limitation of current hearing aids and cochlear implants, as they lead to discomfort and inconvenience. Totally implantable hearing devices have been proposed as a solution to mitigate these constraints, which has led to challenges in designing implantable sensors. This work presents a feasibility analysis of a MEMS piezoelectric accelerometer coupled to the ossicular chain as an alternative sensor. The main requirements of the sensor include small size, low internal noise, low power consumption, and large bandwidth. Different designs of MEMS piezoelectric accelerometers were modeled using Finite Element (FE) method, as well as optimized for high net charge sensitivity. The best design, a 2 × 2 mm 2 annular configuration with a 500 nm thick Aluminum Nitride (AlN) layer was selected for fabrication. The prototype was characterized, and its charge sensitivity and spectral acceleration noise were found to be with good agreement to the FE model predictions. Weak coupling between a middle ear FE model and the prototype was considered, resulting in equivalent input noise (EIN) lower than 60 dB sound pressure level between 600 Hz and 10 kHz. These results are an encouraging proof of concept for the development of MEMS piezoelectric accelerometers as implantable sensors for hearing devices.

  16. Energy-efficient pulse-coupled synchronization strategy design for wireless sensor networks through reduced idle listening.

    Science.gov (United States)

    Wang, Yongqiang; Núñez, Felipe; Doyle, Francis J

    2012-06-20

    Synchronization is crucial to wireless sensor networks due to their decentralized structure. We propose an energy-efficient pulse-coupled synchronization strategy to achieve this goal. The basic idea is to reduce idle listening by intentionally introducing a large refractory period in the sensors' cooperation. The large refractory period greatly reduces idle listening in each oscillation period, and is analytically proven to have no influence on the time to synchronization. Hence, it significantly reduces the total energy consumption in a synchronization process. A topology control approach tailored for pulse-coupled synchronization is given to guarantee a k -edge strongly connected interaction topology, which is tolerant to communication-link failures. The topology control approach is totally decentralized and needs no information exchange among sensors, and it is applicable to dynamic network topologies as well. This facilitates a completely decentralized implementation of the synchronization strategy. The strategy is applicable to mobile sensor networks, too. QualNet case studies confirm the effectiveness of the synchronization strategy.

  17. Sensors

    CERN Document Server

    Pigorsch, Enrico

    1997-01-01

    This is the 5th edition of the Metra Martech Directory "EUROPEAN CENTRES OF EXPERTISE - SENSORS." The entries represent a survey of European sensors development. The new edition contains 425 detailed profiles of companies and research institutions in 22 countries. This is reflected in the diversity of sensors development programmes described, from sensors for physical parameters to biosensors and intelligent sensor systems. We do not claim that all European organisations developing sensors are included, but this is a good cross section from an invited list of participants. If you see gaps or omissions, or would like your organisation to be included, please send details. The data base invites the formation of effective joint ventures by identifying and providing access to specific areas in which organisations offer collaboration. This issue is recognised to be of great importance and most entrants include details of collaboration offered and sought. We hope the directory on Sensors will help you to find the ri...

  18. Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, H. [PBI-Dansensor A/S (Denmark); Toft Soerensen, O. [Risoe National Lab., Materials Research Dept. (Denmark)

    1999-10-01

    A new type of ceramic oxygen sensors based on semiconducting oxides was developed in this project. The advantage of these sensors compared to standard ZrO{sub 2} sensors is that they do not require a reference gas and that they can be produced in small sizes. The sensor design and the techniques developed for production of these sensors are judged suitable by the participating industry for a niche production of a new generation of oxygen sensors. Materials research on new oxygen ion conducting conductors both for applications in oxygen sensors and in fuel was also performed in this project and finally a new process was developed for fabrication of ceramic tubes by dip-coating. (EHS)

  19. Study of the solar wind coupling to the time difference horizontal geomagnetic field

    Directory of Open Access Journals (Sweden)

    P. Wintoft

    2005-07-01

    Full Text Available The local ground geomagnetic field fluctuations (Δ B are dominated by high frequencies and 83% of the power is located at periods of 32 min or less. By forming 10-min root-mean-square (RMS of Δ B a major part of this variation is captured. Using measured geomagnetic induced currents (GIC, from a power grid transformer in Southern Sweden, it is shown that the 10-min standard deviation GIC may be computed from a linear model using the RMS Δ X and Δ Y at Brorfelde (BFE: 11.67° E, 55.63° N, Denmark, and Uppsala (UPS: 17.35° E, 59.90° N, Sweden, with a correlation of 0.926±0.015. From recurrent neural network models, that are driven by solar wind data, it is shown that the log RMS Δ X and Δ Y at the two locations may be predicted up to 30 min in advance with a correlation close to 0.8: 0.78±0.02 for both directions at BFE; 0.81±0.02 and 0.80±0.02 in the X- and Y-directions, respectively, at UPS. The most important inputs to the models are the 10-min averages of the solar wind magnetic field component Bz and velocity V, and the 10-min standard deviation of the proton number density σn. The average proton number density n has no influence.

    Keywords. Magnetospheric physics (Solar wind - magnetosphere interactions – Geomagnetism and paleomagnetism (Rapid time variations

  20. Ion Kinetics in the Solar Wind: Coupling Global Expansion to Local Microphysics

    Czech Academy of Sciences Publication Activity Database

    Matteini, L.; Hellinger, Petr; Landi, S.; Trávníček, Pavel M.; Velli, M.

    2012-01-01

    Roč. 172, 1-4 (2012), s. 373-396 ISSN 0038-6308 R&D Projects: GA AV ČR IAA300420702 Grant - others:ESA(XE) PECS 98068 Institutional research plan: CEZ:AV0Z30420517; CEZ:AV0Z10030501 Keywords : Solar wind * Ion kinetics * Numerical simulations Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 5.519, year: 2012 http://link.springer.com/article/10.1007%2Fs11214-011-9774-z#

  1. Three-dimensional viscous-inviscid coupling method for wind turbine computations

    DEFF Research Database (Denmark)

    Ramos García, Néstor; Sørensen, Jens Nørkær; Shen, Wen Zhong

    2016-01-01

    role in the predictions of blade aerodynamics and wake dynamics, especially at high angles of attack just before and after boundary layer separation takes place. The present code is validated in detail against the well-known MEXICO experiment and a set of non-rotating cases. Copyright © 2014 John Wiley......In this paper, a computational model for predicting the aerodynamic behavior of wind turbine wakes and blades subjected to unsteady motions and viscous effects is presented. The model is based on a three-dimensional panel method using a surface distribution of quadrilateral sources and doublets...

  2. Estimating stream discharge from a Himalayan Glacier using coupled satellite sensor data

    Science.gov (United States)

    Child, S. F.; Stearns, L. A.; van der Veen, C. J.; Haritashya, U. K.; Tarpanelli, A.

    2015-12-01

    The 4th IPCC report highlighted our limited understanding of Himalayan glacier behavior and contribution to the region's hydrology. Seasonal snow and glacier melt in the Himalayas are important sources of water, but estimates greatly differ about the actual contribution of melted glacier ice to stream discharge. A more comprehensive understanding of the contribution of glaciers to stream discharge is needed because streams being fed by glaciers affect the livelihoods of a large part of the world's population. Most of the streams in the Himalayas are unmonitored because in situ measurements are logistically difficult and costly. This necessitates the use of remote sensing platforms to obtain estimates of river discharge for validating hydrological models. In this study, we estimate stream discharge using cost-effective methods via repeat satellite imagery from Landsat-8 and SENTINEL-1A sensors. The methodology is based on previous studies, which show that ratio values from optical satellite bands correlate well with measured stream discharge. While similar, our methodology relies on significantly higher resolution imagery (30 m) and utilizes bands that are in the blue and near-infrared spectrum as opposed to previous studies using 250 m resolution imagery and spectral bands only in the near-infrared. Higher resolution imagery is necessary for streams where the source is a glacier's terminus because the width of the stream is often only 10s of meters. We validate our methodology using two rivers in the state of Kansas, where stream gauges are plentiful. We then apply our method to the Bhagirathi River, in the North-Central Himalayas, which is fed by the Gangotri Glacier and has a well monitored stream gauge. The analysis will later be used to couple river discharge and glacier flow and mass balance through an integrated hydrologic model in the Bhagirathi Basin.

  3. The WindSat Spaceborne Polarimetric Microwave Radiometer: Sensor Description and Early Orbit Performance

    Science.gov (United States)

    2004-11-01

    Sensor Description and Early Orbit Performance Peter W. Gaiser, Senior Member, IEEE, Karen M. St. Germain, Senior Member, IEEE, Elizabeth M. Twarog , Gene...Integrated Pro- gram Office. P. W. Gaiser, K. M. St. Germain, E. M. Twarog , W. Purdy, D. Spencer, G. Golba, J. Cleveland, L. Choy, and R. M. Bevilacqua...Radio Frequencies (CORF). Elizabeth M. Twarog received the B.S. degree from the University of Massa- chusetts, Amherst, in 1992, and the M.S. and Ph.D

  4. Model of the saltation transport by Discrete Element Method coupled with wind interaction

    Directory of Open Access Journals (Sweden)

    Oger Luc

    2017-01-01

    Full Text Available We study the Aeolian saltation transport problem by analysing the collision of incident energetic beads with granular packing. We investigate the collision process for the case where the incident bead and those from the packing have identical mechanical properties. We analyse the features of the consecutive collision process. We used a molecular dynamics method known as DEM (soft Discrete Element Method with 20000 particles (2D. The grains were displayed randomly in a box (250X60. A few incident disks are launched with a constant velocity and angle with high random position to initiate the flow. A wind velocity profile is applied on the flowing zone of the saltation. The velocity profile is obtained by the calculi of the counter-flow due to the local packing fraction induced by the granular flow. We analyse the evolution of the upper surface of the disk packing. In the beginning, the saltation process can be seen as the classical “splash function” in which one bead hits a fully static dense packing. Then, the quasi-fluidized upper layer of the packing creates a completely different behaviour of the “animated splash function”. The dilation of the upper surface due to the previous collisions is responsible for a need of less input energy for launching new ejected disks. This phenomenon permits to maintain a constant granular flow with a “small” wind velocity on the surface of the disk bed.

  5. Structural Health Monitoring of Wind Turbine Blades: Acoustic Source Localization Using Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Omar Mabrok Bouzid

    2015-01-01

    Full Text Available Structural health monitoring (SHM is important for reducing the maintenance and operation cost of safety-critical components and systems in offshore wind turbines. This paper proposes an in situ wireless SHM system based on an acoustic emission (AE technique. By using this technique a number of challenges are introduced due to high sampling rate requirements, limitations in the communication bandwidth, memory space, and power resources. To overcome these challenges, this paper focused on two elements: (1 the use of an in situ wireless SHM technique in conjunction with the utilization of low sampling rates; (2 localization of acoustic sources which could emulate impact damage or audible cracks caused by different objects, such as tools, bird strikes, or strong hail, all of which represent abrupt AE events and could affect the structural health of a monitored wind turbine blade. The localization process is performed using features extracted from aliased AE signals based on a developed constraint localization model. To validate the performance of these elements, the proposed system was tested by testing the localization of the emulated AE sources acquired in the field.

  6. Combining global and multi-scale features in a description of the solar wind-magnetosphere coupling

    Directory of Open Access Journals (Sweden)

    A. Y. Ukhorskiy

    2003-09-01

    Full Text Available The solar wind-magnetosphere coupling during substorms exhibits dynamical features in a wide range of spatial and temporal scales. The goal of our work is to combine the global and multi-scale description of magnetospheric dynamics in a unified data-derived model. For this purpose we use deterministic methods of nonlinear dynamics, together with a probabilistic approach of statistical physics. In this paper we discuss the mathematical aspects of such a combined analysis. In particular we introduce a new method of embedding analysis based on the notion of a mean-field dimension. For a given level of averaging in the system the mean-filed dimension determines the minimum dimension of the embedding space in which the averaged dynamical system approximates the actual dynamics with the given accuracy. This new technique is first tested on a number of well-known autonomous and open dynamical systems with and without noise contamination. Then, the dimension analysis is carried out for the correlated solar wind-magnetosphere database using vBS time series as the input and AL index as the output of the system. It is found that the minimum embedding dimension of vBS - AL time series is a function of the level of ensemble averaging and the specified accuracy of the method. To extract the global component from the observed time series the ensemble averaging is carried out over the range of scales populated by a high dimensional multi-scale constituent. The wider the range of scales which are smoothed away, the smaller the mean-field dimension of the system. The method also yields a probability density function in the reconstructed phase space which provides the basis for the probabilistic modeling of the multi-scale dynamical features, and is also used to visualize the global portion of the solar wind-magnetosphere coupling. The structure of its input-output phase portrait reveals the existence of two energy levels in the system with non

  7. Combining global and multi-scale features in a description of the solar wind-magnetosphere coupling

    Directory of Open Access Journals (Sweden)

    A. Y. Ukhorskiy

    Full Text Available The solar wind-magnetosphere coupling during substorms exhibits dynamical features in a wide range of spatial and temporal scales. The goal of our work is to combine the global and multi-scale description of magnetospheric dynamics in a unified data-derived model. For this purpose we use deterministic methods of nonlinear dynamics, together with a probabilistic approach of statistical physics. In this paper we discuss the mathematical aspects of such a combined analysis. In particular we introduce a new method of embedding analysis based on the notion of a mean-field dimension. For a given level of averaging in the system the mean-filed dimension determines the minimum dimension of the embedding space in which the averaged dynamical system approximates the actual dynamics with the given accuracy. This new technique is first tested on a number of well-known autonomous and open dynamical systems with and without noise contamination. Then, the dimension analysis is carried out for the correlated solar wind-magnetosphere database using vBS time series as the input and AL index as the output of the system. It is found that the minimum embedding dimension of vBS - AL time series is a function of the level of ensemble averaging and the specified accuracy of the method. To extract the global component from the observed time series the ensemble averaging is carried out over the range of scales populated by a high dimensional multi-scale constituent. The wider the range of scales which are smoothed away, the smaller the mean-field dimension of the system. The method also yields a probability density function in the reconstructed phase space which provides the basis for the probabilistic modeling of the multi-scale dynamical features, and is also used to visualize the global portion of the solar wind-magnetosphere coupling. The structure of its input-output phase portrait reveals the existence of two energy

  8. Continuous-output terminal-shock-position sensor for mixed-compression inlets evaluated in wind tunnel tests of YF-12 aircraft inlet

    Science.gov (United States)

    Dustin, M. O.; Cole, G. L.; Neiner, G. H.

    1974-01-01

    An electronic sensor was built to measure the position of the terminal shock in a supersonic inlet. The sensor uses several static-pressure taps in the inlet wall. The sensor output is continuously proportional to shock position. When the sensor was installed in a YF-12 aircraft flight inlet during wind tunnel tests, it indicated shock position within + or - 5 percent of the total distance covered by the static-pressure-tap region. The maximum error caused by an angle of attack change of 4 deg was less than 25 percent. In the region of normal inlet operation, the angle of attack error is negligible. Frequency-response tests show the amplitude ratio is constant out to 60 Hz, and decreases to about 50 percent at 100 Hz, with a phase lag of 50 deg.

  9. An evaluation of the WindEye wind lidar

    DEFF Research Database (Denmark)

    Dellwik, Ebba; Sjöholm, Mikael; Mann, Jakob

    Prevision of the wind field by remote sensing wind lidars has the potential to improve the performance of wind turbines. The functionality of a WindEye lidar developed by Windar Photonics A/S (Denmark) for the wind energy market was tested in a two months long field experiment. The WindEye sensor...... with a high accuracy during the whole campaign....

  10. Simulation of wind-induced snow transport and sublimation in alpine terrain using a fully coupled snowpack/atmosphere model

    Science.gov (United States)

    Vionnet, V.; Martin, E.; Masson, V.; Guyomarc'h, G.; Naaim-Bouvet, F.; Prokop, A.; Durand, Y.; Lac, C.

    2014-03-01

    In alpine regions, wind-induced snow transport strongly influences the spatio-temporal evolution of the snow cover throughout the winter season. To gain understanding on the complex processes that drive the redistribution of snow, a new numerical model is developed. It directly couples the detailed snowpack model Crocus with the atmospheric model Meso-NH. Meso-NH/Crocus simulates snow transport in saltation and in turbulent suspension and includes the sublimation of suspended snow particles. The coupled model is evaluated against data collected around the experimental site of Col du Lac Blanc (2720 m a.s.l., French Alps). First, 1-D simulations show that a detailed representation of the first metres of the atmosphere is required to reproduce strong gradients of blowing snow concentration and compute mass exchange between the snowpack and the atmosphere. Secondly, 3-D simulations of a blowing snow event without concurrent snowfall have been carried out. Results show that the model captures the main structures of atmospheric flow in alpine terrain. However, at 50 m grid spacing, the model reproduces only the patterns of snow erosion and deposition at the ridge scale and misses smaller scale patterns observed by terrestrial laser scanning. When activated, the sublimation of suspended snow particles causes a reduction of deposited snow mass of 5.3% over the calculation domain. Total sublimation (surface + blowing snow) is three times higher than surface sublimation in a simulation neglecting blowing snow sublimation.

  11. Development and verification of a new wind speed forecasting system using an ensemble Kalman filter data assimilation technique in a fully coupled hydrologic and atmospheric model

    Science.gov (United States)

    Williams, John L.; Maxwell, Reed M.; Monache, Luca Delle

    2013-12-01

    Wind power is rapidly gaining prominence as a major source of renewable energy. Harnessing this promising energy source is challenging because of the chaotic nature of wind and its inherently intermittent nature. Accurate forecasting tools are critical to support the integration of wind energy into power grids and to maximize its impact on renewable energy portfolios. We have adapted the Data Assimilation Research Testbed (DART), a community software facility which includes the ensemble Kalman filter (EnKF) algorithm, to expand our capability to use observational data to improve forecasts produced with a fully coupled hydrologic and atmospheric modeling system, the ParFlow (PF) hydrologic model and the Weather Research and Forecasting (WRF) mesoscale atmospheric model, coupled via mass and energy fluxes across the land surface, and resulting in the PF.WRF model. Numerous studies have shown that soil moisture distribution and land surface vegetative processes profoundly influence atmospheric boundary layer development and weather processes on local and regional scales. We have used the PF.WRF model to explore the connections between the land surface and the atmosphere in terms of land surface energy flux partitioning and coupled variable fields including hydraulic conductivity, soil moisture, and wind speed and demonstrated that reductions in uncertainty in these coupled fields realized through assimilation of soil moisture observations propagate through the hydrologic and atmospheric system. The sensitivities found in this study will enable further studies to optimize observation strategies to maximize the utility of the PF.WRF-DART forecasting system.

  12. Analysis of Harmonic Coupling and Stability in Back-to-Back Converter Systems for Wind Turbines using Harmonic State Space (HSS)

    DEFF Research Database (Denmark)

    Kwon, Jun Bum; Wang, Xiongfei; Bak, Claus Leth

    2015-01-01

    Understanding about harmonic propagation in wind turbine converter is fundamental to research the influence of these on a large network harmonic distortion. Therefore, the analysis of wind turbine converter harmonic spectrum as well as the influence of converter operating point into the network...... method. The modeling and analysis results are remarkable that this model can include non-linear component and also show different operating points and harmonic coupling point, where this means each wind power converter can show the different impedance characteristics. The developed model can easily...... is urgently important issues in harmonic studies on wind farm. However, the conventional modeling procedure and simplified model for controller design are not enough to analyze such complicated systems. Besides, they have many limitations in terms of including a non-linear component, different operating...

  13. Impacts of the Mesoscale Ocean-Atmosphere Coupling on the Peru-Chile Ocean Dynamics: The Current-Induced Wind Stress Modulation

    Science.gov (United States)

    Oerder, V.; Colas, F.; Echevin, V.; Masson, S.; Lemarié, F.

    2018-02-01

    The ocean dynamical responses to the surface current-wind stress interaction at the oceanic mesoscale are investigated in the South-East Pacific using a high-resolution regional ocean-atmosphere coupled model. Two simulations are compared: one includes the surface current in the wind stress computation while the other does not. In the coastal region, absolute wind velocities are different between the two simulations but the wind stress remains very similar. As a consequence, the mean regional oceanic circulation is almost unchanged. On the contrary, the mesoscale activity is strongly reduced when taking into account the effect of the surface current on the wind stress. This is caused by a weakening of the eddy kinetic energy generation near the coast by the wind work and to intensified offshore eddy damping. We show that, above coherent eddies, the current-stress interaction generates eddy damping through Ekman pumping and eddy kinetic energy dissipation through wind work. This alters significantly the coherent eddy vertical structures compared with the control simulation, weakening the temperature and vorticity anomalies and increasing strongly the vertical velocity anomalies associated to eddies.

  14. InfraSound from wind turbines : observations from Castle River wind farm. Volume 1

    International Nuclear Information System (INIS)

    Edworthy, J.; Hepburn, H.

    2005-01-01

    Although infrasound has been discussed as a concern by groups opposed to wind farm facilities, there is very little information available about infrasound and wind turbines. This paper presented details of a project conducted by VisionQuest, the largest wind power producer in Canada. Three sensor types were used: precision sound analyzer, seismic geophones, and calibrated microphones to take measurements in low, medium and high winds. The project also measured infrasound when the wind farm was not operating. Acquisition geometry was presented, as well as details of apparent attenuations of wind noise. It was noted that high wind noise was a dominant factor and that there was little difference when the wind farm was not operational. It was suggested that turbines have no impact with high wind, since wind noise is not attenuated with distance. It was noted that increased geophone amplitudes indicate high wind coupled motion which is attenuated when the turbines are on. Results indicate that all frequencies showed attenuation with distance. Evidence showed that low frequency sound pressure levels were often lower when the turbines were switched on. Where turbines contributed to sound pressure levels, the magnitude of the contribution was below levels of concern to human health. Ambient sound pressure levels were much higher than contributions from wind turbines. It was concluded that wind itself generates infrasound. Wind turbines generate low levels of infrasound, detectable very close to facilities at low to medium wind speeds. Wind turbines may reduce ambient infrasound levels at high wind speeds by converting the energy from the wind into electricity. refs., tabs., figs

  15. Polymer optical fiber compound parabolic concentrator tip for enhanced coupling efficiency for fluorescence based glucose sensors

    DEFF Research Database (Denmark)

    Hassan, Hafeez Ul; Nielsen, Kristian; Aasmul, Søren

    2015-01-01

    We demonstrate that the light excitation and capturing efficiency of fluorescence based fiber-optical sensors can be significantly increased by using a CPC (Compound Parabolic Concentrator) tip instead of the standard plane-cut tip. We use Zemax modelling to find the optimum CPC tip profile...... and fiber length of a polymer optical fiber diabetes sensor for continuous monitoring of glucose levels. We experimentally verify the improved performance of the CPC tipped sensor and the predicted production tolerances. Due to physical size requirements when the sensor has to be inserted into the body...... a non-optimal fiber length of 35 mm is chosen. For this length an average improvement in efficiency of a factor of 1.7 is experimentally demonstrated and critically compared to the predicted ideal factor of 3 in terms of parameters that should be improved through production optimization....

  16. Fiber Optic Microcantilever Sensor Coupled with Reactive Polymers for Vapor Phase Detection of Ammonia, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Luna Innovations proposes to adapt its current aqueous-based, fiber-optic microcantilever sensor technology for real-time, monitoring of ammonia in air. Phase I...

  17. Polymer optical fiber compound parabolic concentrator tip for enhanced coupling efficiency for fluorescence based glucose sensors.

    Science.gov (United States)

    Hassan, Hafeez Ul; Nielsen, Kristian; Aasmul, Soren; Bang, Ole

    2015-12-01

    We demonstrate that the light excitation and capturing efficiency of fluorescence based fiber-optical sensors can be significantly increased by using a CPC (Compound Parabolic Concentrator) tip instead of the standard plane-cut tip. We use Zemax modelling to find the optimum CPC tip profile and fiber length of a polymer optical fiber diabetes sensor for continuous monitoring of glucose levels. We experimentally verify the improved performance of the CPC tipped sensor and the predicted production tolerances. Due to physical size requirements when the sensor has to be inserted into the body a non-optimal fiber length of 35 mm is chosen. For this length an average improvement in efficiency of a factor of 1.7 is experimentally demonstrated and critically compared to the predicted ideal factor of 3 in terms of parameters that should be improved through production optimization.

  18. Long-period gratings for selective monitoring of loads on a wind turbine blade.

    Science.gov (United States)

    Glavind, L; Buggy, S; Canning, J; Gao, S; Cook, K; Luo, Y; Peng, G D; Skipper, B F; Kristensen, M

    2014-06-20

    An optical fiber sensor based on long-period gratings (LPG) for selective measurements of flap- and edge-wise bending of a wind turbine blade is presented. Two consecutive LPGs separated by 40 mm interfere to improve resolution and reduce noise in a D-shaped fiber. The mode profile of the device was characterized experimentally to provide a model describing the mode couplings. The sensor was tested on a wind turbine blade.

  19. Front-illuminated full-frame charge-coupled-device image sensor achieves 85% peak quantum efficiency

    Science.gov (United States)

    Ciccarelli, Antonio S.; Davis, William V.; Des Jardin, William; Doan, Hung; Meisenzahl, Eric J.; Pace, Laurel J.; Putnam, Gloria G.; Shepherd, Joseph E.; Stevens, Eric G.; Summa, Joseph R.; Wetzel, Keith

    2002-04-01

    A high sensitivity front-illuminated charge-coupled device (CCD) technology has been developed by combining the transparent gate technology introduced by Kodak in 1999 with the microlens technology usually employed on interline CCDs. In this new architecture, the microlens is used to focus the incoming light onto the more transparent of the two electrodes. The new sensors offer significant increases in quantum efficiency while maintaining the performance advantages of front-illuminated full-frame CCDs including 3 pA/cm2 typical dark current at 25 degree(s)C, and 55 ke full well in a 6.8 micrometers pixel.

  20. Spatially Modeling the Impact of Terrain on Wind Speed and Dry Particle Deposition Across Lake Perris in Southern California to Determine In Situ Sensor Placement

    Science.gov (United States)

    Brooks, A. N.

    2014-12-01

    While developed countries have implemented engineering techniques and sanitation technologies to keep water resources clean from runoff and ground contamination, air pollution and its contribution of harmful contaminants to our water resources has yet to be fully understood and managed. Due to the large spatial and temporal extent and subsequent computational intensity required to understand atmospheric deposition as a pollutant source, a geographic information system (GIS) was utilized. This project developed a multi-step workflow to better define the placement of in situ sensors on Lake Perris in Southern California. Utilizing a variety of technologies including ArcGIS 10.1 with 3D and Spatial Analyst extensions and WindNinja, the impact of terrain on wind speed and direction was simulated and the spatial distribution of contaminant deposition across Lake Perris was calculated as flux. Specifically, the flux of particulate matter (PM10) at the air - water interface of a lake surface was quantified by season for the year of 2009. Integrated Surface Hourly (ISH) wind speed and direction data and ground station air quality measurements from the California Air Resources Board were processed and integrated for use within ModelBuilder. Results indicate that surface areas nearest Alessandro Island and the dam of Lake Perris should be avoided when placing in situ sensors. Furthermore, the location of sensor placement is dependent on seasonal fluctuations of PM10 which can be modeled using the techniques used in this study.

  1. Cross-correlation and cross-wavelet analyses of the solar wind IMF Bz and auroral electrojet index AE coupling during HILDCAAs

    Science.gov (United States)

    Marques de Souza, Adriane; Echer, Ezequiel; José Alves Bolzan, Mauricio; Hajra, Rajkumar

    2018-02-01

    Solar-wind-geomagnetic activity coupling during high-intensity long-duration continuous AE (auroral electrojet) activities (HILDCAAs) is investigated in this work. The 1 min AE index and the interplanetary magnetic field (IMF) Bz component in the geocentric solar magnetospheric (GSM) coordinate system were used in this study. We have considered HILDCAA events occurring between 1995 and 2011. Cross-wavelet and cross-correlation analyses results show that the coupling between the solar wind and the magnetosphere during HILDCAAs occurs mainly in the period ≤ 8 h. These periods are similar to the periods observed in the interplanetary Alfvén waves embedded in the high-speed solar wind streams (HSSs). This result is consistent with the fact that most of the HILDCAA events under present study are related to HSSs. Furthermore, the classical correlation analysis indicates that the correlation between IMF Bz and AE may be classified as moderate (0.4-0.7) and that more than 80 % of the HILDCAAs exhibit a lag of 20-30 min between IMF Bz and AE. This result corroborates with Tsurutani et al. (1990) where the lag was found to be close to 20-25 min. These results enable us to conclude that the main mechanism for solar-wind-magnetosphere coupling during HILDCAAs is the magnetic reconnection between the fluctuating, negative component of IMF Bz and Earth's magnetopause fields at periods lower than 8 h and with a lag of about 20-30 min.

  2. Target Tracking with Sensor Navigation Using Coupled RSS and AoA Measurements

    Directory of Open Access Journals (Sweden)

    Slavisa Tomic

    2017-11-01

    Full Text Available This work addresses the problem of tracking a signal-emitting mobile target in wireless sensor networks (WSNs with navigated mobile sensors. The sensors are properly equipped to acquire received signal strength (RSS and angle of arrival (AoA measurements from the received signal, while the target transmit power is assumed not known. We start by showing how to linearize the highly non-linear measurement model. Then, by employing a Bayesian approach, we combine the linearized observation model with prior knowledge extracted from the state transition model. Based on the maximum a posteriori (MAP principle and the Kalman filtering (KF framework, we propose new MAP and KF algorithms, respectively. We also propose a simple and efficient mobile sensor navigation procedure, which allows us to further enhance the estimation accuracy of our algorithms with a reduced number of sensors. Model flaws, which result in imperfect knowledge about the path loss exponent (PLE and the true mobile sensors’ locations, are taken into consideration. We have carried out an extensive simulation study, and our results confirm the superiority of the proposed algorithms, as well as the effectiveness of the proposed navigation routine.

  3. An NFC on Two-Coil WPT Link for Implantable Biomedical Sensors under Ultra-Weak Coupling

    Directory of Open Access Journals (Sweden)

    Chen Gong

    2017-06-01

    Full Text Available The inductive link is widely used in implantable biomedical sensor systems to achieve near-field communication (NFC and wireless power transfer (WPT. However, it is tough to achieve reliable NFC on an inductive WPT link when the coupling coefficient is ultra-low (0.01 typically, since the NFC signal (especially for the uplink from the in-body part to the out-body part could be too weak to be detected. Traditional load shift keying (LSK requires strong coupling to pass the load modulation information to the power source. Instead of using LSK, we propose a dual-carrier NFC scheme for the weak-coupled inductive link; using binary phase shift keying (BPSK modulation, its downlink data are modulated on the power carrier (2 MHz, while its uplink data are modulated on another carrier (125 kHz. The two carriers are transferred through the same coil pair. To overcome the strong interference of the power carrier, dedicated circuits are introduced. In addition, to minimize the power transfer efficiency decrease caused by adding NFC, we optimize the inductive link circuit parameters and approach the receiver sensitivity limit. In the prototype experiments, even though the coupling coefficient is as low as 0.008, the in-body transmitter costs only 0.61 mW power carrying 10 kbps of data, and achieves a 1 × 10 - 7 bit error rate under the strong interference of WPT. This dual-carrier NFC scheme could be useful for small-sized implantable biomedical sensor applications.

  4. Position sensor without any mechanical contact

    International Nuclear Information System (INIS)

    Ambier, Jean.

    1976-01-01

    The invention concerns a system for detecting, without any mechanical contact, the position of a mobile element according to a pre-determined path. The sensor includes a primary winding fed by an AC source and a secondary winding inductively coupled with the primary winding and subdivided into elementary coils, spaced out along this path and electrically inter-connected in couples. The mobile element has a magnetic part capable of modifying the inductive coupling between the windings, a secondary coil couple delivering a differential signal of zero values for all positions of the mobile element generating the same inductive coupling of each coil of the couple to the said primary winding. The main patent describes a system making it possible to detect the position of the rods in a nuclear reactor. The need was felt to improved the measuring accuracy of the sensor and to have a rigid front signal for easy electronic processing. The purpose of this invention is to improve the standard sensor to this end and it is characterised by the fact that the primary winding is subdivided into the same number of elementary coils as the secondary winding and that a primary coil is associated to each secondary coil, the two associated coils being coiled one on the other. The saving in space enables the coils to be brought closer together and affords an increase in measurement accuracy. A magnetic screen isolates each pair of coils and channels the leakage flux, the screen sharing in the localisation of the magnetic field under each pair of coils to achieve a sudden variation and a rigid front of the signal during the displacement of the mobile element [fr

  5. Sensor-coupled fractal gene regulatory networks for locomotion control of a modular snake robot

    DEFF Research Database (Denmark)

    Zahadat, Payam; Christensen, David Johan; Katebi, Serajeddin

    2013-01-01

    In this paper we study fractal gene regulatory network (FGRN) controllers based on sensory information. The FGRN controllers are evolved to control a snake robot consisting of seven simulated ATRON modules. Each module contains three tilt sensors which represent the direction of gravity in the co......In this paper we study fractal gene regulatory network (FGRN) controllers based on sensory information. The FGRN controllers are evolved to control a snake robot consisting of seven simulated ATRON modules. Each module contains three tilt sensors which represent the direction of gravity...

  6. arXiv Signal coupling to embedded pitch adapters in silicon sensors

    CERN Document Server

    Artuso, M.; Bezshyiko, I.; Blusk, S.; Bruendler, R.; Bugiel, S.; Dasgupta, R.; Dendek, A.; Dey, B.; Ely, S.; Lionetto, F.; Petruzzo, M.; Polyakov, I.; Rudolph, M.; Schindler, H.; Steinkamp, O.; Stone, S.

    2018-01-01

    We have examined the effects of embedded pitch adapters on signal formation in n-substrate silicon microstrip sensors with data from beam tests and simulation. According to simulation, the presence of the pitch adapter metal layer changes the electric field inside the sensor, resulting in slowed signal formation on the nearby strips and a pick-up effect on the pitch adapter. This can result in an inefficiency to detect particles passing through the pitch adapter region. All these effects have been observed in the beam test data.

  7. Resonant characteristics and sensitivity dependency on the contact surface in QCM-micropillar-based system of coupled resonator sensors

    International Nuclear Information System (INIS)

    Kashan, M A M; Kalavally, V; Ramakrishnan, N; Lee, H W

    2016-01-01

    We report the characteristics and sensitivity dependence over the contact surface in coupled resonating sensors (CRSs) made of high aspect ratio resonant micropillars attached to a quartz crystal microbalance (QCM). Through experiments and simulation, we observed that when the pillars of resonant heights were placed in maximum displacement regions the resonance frequency of the QCM increased following the coupled resonance characteristics, as the pillar offered elastic loading to the QCM surface. However, the same pillars when placed in relatively lower displacement regions, in spite of their resonant dimension, offered inertial loading and resulted in a decrease in QCM resonance frequency, as the displacement amplitude was insufficient to couple the vibrations from the QCM to the pillars. Accordingly, we discovered that the coupled resonance characteristics not only depend on the resonant structure dimensions but also on the contact regions in the acoustic device. Further analysis revealed that acoustic pressure at the contact surface also influences the resonance frequency characteristics and sensitivity of the CRS. To demonstrate the significance of the present finding for sensing applications, humidity sensing is considered as the example measurand. When a sensing medium made of resonant SU-8 pillars was placed in a maximum displacement region on a QCM surface, the sensitivity increased by 14 times in comparison to a resonant sensing medium placed in a lower displacement region of a QCM surface. (paper)

  8. Resonant characteristics and sensitivity dependency on the contact surface in QCM-micropillar-based system of coupled resonator sensors

    Science.gov (United States)

    Kashan, M. A. M.; Kalavally, V.; Lee, H. W.; Ramakrishnan, N.

    2016-05-01

    We report the characteristics and sensitivity dependence over the contact surface in coupled resonating sensors (CRSs) made of high aspect ratio resonant micropillars attached to a quartz crystal microbalance (QCM). Through experiments and simulation, we observed that when the pillars of resonant heights were placed in maximum displacement regions the resonance frequency of the QCM increased following the coupled resonance characteristics, as the pillar offered elastic loading to the QCM surface. However, the same pillars when placed in relatively lower displacement regions, in spite of their resonant dimension, offered inertial loading and resulted in a decrease in QCM resonance frequency, as the displacement amplitude was insufficient to couple the vibrations from the QCM to the pillars. Accordingly, we discovered that the coupled resonance characteristics not only depend on the resonant structure dimensions but also on the contact regions in the acoustic device. Further analysis revealed that acoustic pressure at the contact surface also influences the resonance frequency characteristics and sensitivity of the CRS. To demonstrate the significance of the present finding for sensing applications, humidity sensing is considered as the example measurand. When a sensing medium made of resonant SU-8 pillars was placed in a maximum displacement region on a QCM surface, the sensitivity increased by 14 times in comparison to a resonant sensing medium placed in a lower displacement region of a QCM surface.

  9. Diagnostic study of coupled solar wind-magnetosphere-ionosphere dynamics in D-region ionosphere via VLF signal propagation characteristic

    Science.gov (United States)

    Nwankwo, Victor U. J.; Chakrabarti, Sandip Kumar

    2016-07-01

    Geomagnetic disturbances and storms are known to produce significant global disturbances in the ionosphere, including the middle atmosphere and troposphere. There is little understanding about the mechanism and dynamics that drive these processes in lower ionosphere. The ionosphere is also thought to be sensitive to seismic events, and it is believed that it exhibits precursory characteristics as reported in studies via characteristic anomalies in VLF signal. However, distinguishing or separating seismically induced ionospheric fluctuations from those of other origins (e.g., Solar activity, planetary and tidal waves, stratospheric warming etc.) remain vital to robust conclusion, and challenging too. The unique propagation characteristic of VLF radio signal makes it an ideal tool for the study and diagnosis of variability of D-region ionosphere. In this work, we present the analysis of solar wind-magnetosphere-ionosphere coupling dynamics in D-region ionosphere using VLF signal characteristics, and performed an investigation of previously reported 'ionospheric precursors' to understand the true origins of measured anomalies.

  10. A HPC “Cyber Wind Facility” Incorporating Fully-Coupled CFD/CSD for Turbine-Platform-Wake Interactions with the Atmosphere and Ocean

    Energy Technology Data Exchange (ETDEWEB)

    Brasseur, James G. [Univ. of Colorado, Boulder, CO (United States)

    2017-05-09

    The central aims of the DOE-supported “Cyber Wind Facility” project center on the recognition that wind turbines over land and ocean generate power from atmospheric winds that are inherently turbulent and strongly varying, both spatially over the rotor disk and in temporally as the rotating blades pass through atmospheric eddies embedded within the mean wind. The daytime unstable atmospheric boundary layer (ABL) is particularly variable in space time as solar heating generates buoyancy-driven motions that interact with strong mean shear in the ABL “surface layer,” the lowest 200 - 300 m where wind turbines reside in farms. With the “Cyber Wind Facility” (CWF) program we initiate a research and technology direction in which “cyber data” are generated from “computational experiments” within a “facility” akin to a wind tunnel, but with true space-time atmospheric turbulence that drive utility-scale wind turbines at full-scale Reynolds numbers. With DOE support we generated the key “modules” within a computational framework to create a first generation Cyber Wind Facility (CWF) for single wind turbines in the daytime ABL---both over land where the ABL globally unstable and over water with closer-to-neutral atmospheric conditions but with time response strongly affected by wave-induced forcing of the wind turbine platform (here a buoy configuration). The CWF program has significantly improved the accuracy of actuator line models, evaluated with the Cyber Wind Facility in full blade-boundary-layer-resolved mode. The application of the CWF made in this program showed the existence of important ramp-like response events that likely contribute to bearing fatigue failure on the main shaft and that the advanced ALM method developed here captures the primary nonsteady response characteristics. Long-time analysis uncovered distinctive key dynamics that explain primary mechanisms that underlie potentially deleterious load transients. We also showed

  11. Investigating the use of multi-point coupling for single-sensor bearing estimation in one direction

    Science.gov (United States)

    Woolard, Americo G.; Phoenix, Austin A.; Tarazaga, Pablo A.

    2018-04-01

    Bearing estimation of radially propagating symmetric waves in solid structures typically requires a minimum of two sensors. As a test specimen, this research investigates the use of multi-point coupling to provide directional inference using a single-sensor. By this provision, the number of sensors required for localization can be reduced. A finite-element model of a beam is constructed with a symmetrically placed bipod that has asymmetric joint-stiffness properties. Impulse loading is applied at different points along the beam, and measurements are taken from the apex of the bipod. A technique is developed to determine the direction-of-arrival of the propagating wave. The accuracy when using the bipod with the developed technique is compared against results gathered without the bipod and measuring from an asymmetric location along the beam. The results show 92% accuracy when the bipod is used, compared to 75% when measuring without the bipod from an asymmetric location. A geometry investigation finds the best accuracy results when one leg of the bipod has a low stiffness and a large diameter relative to the other leg.

  12. Medium-Throughput Screen of Microbially Produced Serotonin via a G-Protein-Coupled Receptor-Based Sensor.

    Science.gov (United States)

    Ehrenworth, Amy M; Claiborne, Tauris; Peralta-Yahya, Pamela

    2017-10-17

    Chemical biosensors, for which chemical detection triggers a fluorescent signal, have the potential to accelerate the screening of noncolorimetric chemicals produced by microbes, enabling the high-throughput engineering of enzymes and metabolic pathways. Here, we engineer a G-protein-coupled receptor (GPCR)-based sensor to detect serotonin produced by a producer microbe in the producer microbe's supernatant. Detecting a chemical in the producer microbe's supernatant is nontrivial because of the number of other metabolites and proteins present that could interfere with sensor performance. We validate the two-cell screening system for medium-throughput applications, opening the door to the rapid engineering of microbes for the increased production of serotonin. We focus on serotonin detection as serotonin levels limit the microbial production of hydroxystrictosidine, a modified alkaloid that could accelerate the semisynthesis of camptothecin-derived anticancer pharmaceuticals. This work shows the ease of generating GPCR-based chemical sensors and their ability to detect specific chemicals in complex aqueous solutions, such as microbial spent medium. In addition, this work sets the stage for the rapid engineering of serotonin-producing microbes.

  13. Fundamentals for remote structural health monitoring of wind turbine blades - a preproject. Annex B. Sensors and non-destructive testing methods for damage detection in wind turbine blades

    DEFF Research Database (Denmark)

    Lading, Lars; McGugan, Malcolm; Sendrup, P.

    2002-01-01

    This annex provides a description of the sensor schemes and the non-destructive testing (NDT) methods that have been investigated in this project. Acoustic emission and fibre optic sensors are described in some detail whereas only the key features ofwell-established NDT methods are presented...

  14. Aeroservoelastic Wind-Tunnel Tests of a Free-Flying, Joined-Wing SensorCraft Model for Gust Load Alleviation

    Science.gov (United States)

    Scott, Robert C.; Castelluccio, Mark A.; Coulson, David A.; Heeg, Jennifer

    2011-01-01

    A team comprised of the Air Force Research Laboratory (AFRL), Boeing, and the NASA Langley Research Center conducted three aeroservoelastic wind-tunnel tests in the Transonic Dynamics Tunnel to demonstrate active control technologies relevant to large, exible vehicles. In the first of these three tests, a full-span, aeroelastically scaled, wind-tunnel model of a joined-wing SensorCraft vehicle was mounted to a force balance to acquire a basic aerodynamic data set. In the second and third tests, the same wind-tunnel model was mated to a new, two-degree-of-freedom, beam mount. This mount allowed the full-span model to translate vertically and pitch. Trimmed flight at -10% static margin and gust load alleviation were successfully demonstrated. The rigid body degrees of freedom required that the model be own in the wind tunnel using an active control system. This risky mode of testing necessitated that a model arrestment system be integrated into the new mount. The safe and successful completion of these free-flying tests required the development and integration of custom hardware and software. This paper describes the many systems, software, and procedures that were developed as part of this effort. The balance and free ying wind-tunnel tests will be summarized. The design of the trim and gust load alleviation control laws along with the associated results will also be discussed.

  15. A bidirectionally coupled magnetoelastic model and its validation using a Galfenol unimorph sensor

    International Nuclear Information System (INIS)

    Mudivarthi, C; Flatau, A B; Datta, S; Atulasimha, J

    2008-01-01

    This paper describes a bidirectionally coupled magnetoelastic model, BCMEM. BCMEM is a 3D nonlinear finite element-based model comprising magnetic and elastic boundary value problems (BVPs) that are bidirectionally coupled through stress and field dependent coupling variables—magnetostriction and magnetization. The coupling variables are calculated using an energy-based magnetomechanical model. The BVPs are solved iteratively using the finite element method with values of coupling variables updated every iteration to account for the bidirectional coupling. Such an approach is effective in incorporating the apparent variation in modulus of elasticity (the ΔE effect) and permeability with changing stress and magnetic field, as well as modeling their effects on stress and field distributions. Thus, BCMEM allows the prediction of both nonlinear sensing and actuating behaviors of magnetostrictive materials. Moreover, the use of the finite element method provides the model with the ability to incorporate demagnetizing fields due to shape anisotropy and hence the capability to predict the response of magnetostrictive materials in complex 3D structures. The model predictions of magnetic flux density and bending strain for an aluminum–Galfenol unimorph cantilever structure showed good correlation when compared against experimental results obtained from both magnetically unbiased and biased single-crystal Galfenol (Fe 84 Ga 16 ) active layers

  16. Electromagnetic Bridge Energy Harvester Utilizing Bridge’s Vibrations and Ambient Wind for Wireless Sensor Node Application

    Directory of Open Access Journals (Sweden)

    Farid Ullah Khan

    2018-01-01

    Full Text Available This paper presents novel electromagnetic bridge energy harvesters (BEHs utilizing bridge vibrations and ambient wind surges to power wireless sensor nodes used for bridges’ health monitoring. The developed BEHs are cantilever-type and are comprised of a wound coil, permanent magnet, an airfoil, cantilever beam, and a support. Harvesters are characterized in-lab under different vibration levels and are subjected to variable speed air surges. The harvesters exhibit multiresonant frequencies; prototype I has resonant frequencies of 3.6, 14.9, and 17.6 Hz. However, 7.6, 33, and 45 Hz are the resonant frequencies for prototype II. Under vibration testing, prototype I produced a maximum voltage of 206 mV and an optimum power of 354.51 μW at a frequency of 3.6 Hz and 0.4g acceleration. However, at a frequency of 7.6 Hz and 0.6g acceleration, prototype II showed the capability of generating a maximum voltage of 430 mV and an optimum power of 2214.32 μW. Moreover, when BEHs are characterized under variable speed air surges, prototype I generated a load voltage of 19 mV and a power of 7.84 μW at an air speed of 9 m/s; however, 22 mV and 9.14 μW load voltage and power, respectively, are developed by prototype II at 6 m/s air speed.

  17. Large-eddy simulation of turbulent winds during the Fukushima Daiichi Nuclear Power Plant accident by coupling with a meso-scale meteorological simulation model

    Science.gov (United States)

    Nakayama, H.; Takemi, T.; Nagai, H.

    2015-06-01

    A significant amount of radioactive material was accidentally discharged into the atmosphere from the Fukushima Dai-ichi Nuclear Power Plant from 12 March 2011, which produced high contaminated areas over a wide region in Japan. In conducting regional-scale atmospheric dispersion simulations, the computer-based nuclear emergency response system WSPEEDI-II developed by Japan Atomic Energy Agency was used. Because this system is driven by a meso-scale meteorological (MM) model, it is difficult to reproduce small-scale wind fluctuations due to the effects of local terrain variability and buildings within a nuclear facility that are not explicitly represented in MM models. In this study, we propose a computational approach to couple an LES-based CFD model with a MM model for detailed simulations of turbulent winds with buoyancy effects under real meteorological conditions using turbulent inflow technique. Compared to the simple measurement data, especially, the 10 min averaged wind directions of the LES differ by more than 30 degrees during some period of time. However, distribution patterns of wind speeds, directions, and potential temperature are similar to the MM data. This implies that our coupling technique has potential performance to provide detailed data on contaminated area in the nuclear accidents.

  18. An investigation of viscous-mediated coupling of crickets cercal hair sensors using a scaled up model

    Science.gov (United States)

    Alagirisamy, Pasupathy S.; Jeronimidis, George; Le Moàl, Valerie

    2009-08-01

    Viscous coupling between filiform hair sensors of insects and arthropods has gained considerable interest recently. Study of viscous coupling between hairs at micro scale with current technologies is proving difficult and hence the hair system has been physically scaled up by a factor of 100. For instance, a typical filiform hair of 10 μm diameter and 1000 μm length has been physically scaled up to 1 mm in diameter and 100mm in length. At the base, a rotational spring with a bonded strain gauge provides the restoring force and measures the angle of deflection of the model hair. These model hairs were used in a glycerol-filled aquarium where the velocity of flow and the fluid properties were determined by imposing the Reynolds numbers compatible with biological system. Experiments have been conducted by varying the separation distance and the relative position between the moveable model hairs, of different lengths and between the movable and rigid hairs of different lengths for the steady velocity flow with Reynolds numbers of 0.02 and 0.05. In this study, the viscous coupling between hairs has been characterised. The effect of the distance from the physical boundaries, such as tank walls has also been quantified (wall effect). The purpose of this investigation is to provide relevant information for the design of MEMS systems mimicking the cricket's hair array.

  19. Development of Aeroservoelastic Analytical Models and Gust Load Alleviation Control Laws of a SensorCraft Wind-Tunnel Model Using Measured Data

    Science.gov (United States)

    Silva, Walter A.; Vartio, Eric; Shimko, Anthony; Kvaternik, Raymond G.; Eure, Kenneth W.; Scott,Robert C.

    2007-01-01

    Aeroservoelastic (ASE) analytical models of a SensorCraft wind-tunnel model are generated using measured data. The data was acquired during the ASE wind-tunnel test of the HiLDA (High Lift-to-Drag Active) Wing model, tested in the NASA Langley Transonic Dynamics Tunnel (TDT) in late 2004. Two time-domain system identification techniques are applied to the development of the ASE analytical models: impulse response (IR) method and the Generalized Predictive Control (GPC) method. Using measured control surface inputs (frequency sweeps) and associated sensor responses, the IR method is used to extract corresponding input/output impulse response pairs. These impulse responses are then transformed into state-space models for use in ASE analyses. Similarly, the GPC method transforms measured random control surface inputs and associated sensor responses into an AutoRegressive with eXogenous input (ARX) model. The ARX model is then used to develop the gust load alleviation (GLA) control law. For the IR method, comparison of measured with simulated responses are presented to investigate the accuracy of the ASE analytical models developed. For the GPC method, comparison of simulated open-loop and closed-loop (GLA) time histories are presented.

  20. Development of Meandering Winding Magnetometer (MWM (Register Trademark)) Eddy Current Sensors for the Health Monitoring, Modeling and Damage Detection of High Temperature Composite Materials

    Science.gov (United States)

    Russell, Richard; Washabaugh, Andy; Sheiretov, Yanko; Martin, Christopher; Goldfine, Neil

    2011-01-01

    The increased use of high-temperature composite materials in modern and next generation aircraft and spacecraft have led to the need for improved nondestructive evaluation and health monitoring techniques. Such technologies are desirable to improve quality control, damage detection, stress evaluation and temperature measurement capabilities. Novel eddy current sensors and sensor arrays, such as Meandering Winding Magnetometers (MWMs) have provided alternate or complimentary techniques to ultrasound and thermography for both nondestructive evaluation (NDE) and structural health monitoring (SHM). This includes imaging of composite material quality, damage detection and .the monitoring of fiber temperatures and multidirectional stresses. Historically, implementation of MWM technology for the inspection of the Space Shuttle Orbiter Reinforced Carbon-Carbon Composite (RCC) leading edge panels was developed by JENTEK Sensors and was subsequently transitioned by NASA as an operational pre and post flight in-situ inspection at the Kennedy Space Center. A manual scanner, which conformed'automatically to the curvature of the RCC panels was developed and used as a secondary technique if a defect was found during an infrared thermography screening, During a recent proof of concept study on composite overwrapped pressure vessels (COPV's), three different MWM sensors were tested at three orientations to demonstrate the ability of the technology to measure stresses at various fiber orientations and depths. These results showed excellent correlation with actual surface strain gage measurements. Recent advancements of this technology have been made applying MWM sensor technology for scanning COPVs for mechanical damage. This presentation will outline the recent advance in the MWM.technology and the development of MWM techniques for NDE and SHM of carbon wraped composite overwrapped pressure vessels (COPVs) including the measurement of internal stresses via a surface mounted sensor

  1. Cosmic Microwave Background Polarization Detector with High Efficiency, Broad Bandwidth, and Highly Symmetric Coupling to Transition Edge Sensor Bolometers

    Science.gov (United States)

    Stevenson, T.; Benford, D.; Bennett, C.; Cao, N.; Chuss, D.; Denis, K.; Hsieh, W.; Kogut, A.; Moseley, S.; Panek, J.; Schneider, G.; Travers, D.; U-Yen, K.; Voellmer, G.; Wollack, E.

    2008-04-01

    We describe a prototype detector system designed for precise measurements of Cosmic Microwave Background polarization. The design combines a quasi-optical polarization modulator, a metal feedhorn, a superconducting planar microwave circuit, and a pair of transition-edge sensor (TES) bolometers operating at <100 mK. The circular feedhorn produces highly symmetric beams with very low cross-polarization. The planar circuit preserves symmetry in coupling to bolometers measuring orthogonal polarizations. We implement the circuit with superconducting niobium transmission lines. Three-dimensional interfaces between the planar circuit and waveguides leading to feedhorn and backshort have been carefully designed with electromagnetic simulations. Power is thermalized in resistors and conducted to bolometers via normal electrons. Our system is designed for a 29 43 GHz signal band. We have tested individual circuit elements in this frequency range. Fabrication of a full single-pixel system is underway.

  2. Coupled determination of gravimetric and elastic effects on two resonant chemical sensors: love wave and microcantilever platforms.

    Science.gov (United States)

    Fadel, Ludivine; Zimmermann, Céline; Dufour, Isabelle; Déjous, Corinne; Rebière, Dominique; Pistré, Jacques

    2005-02-01

    The objective of this paper is to couple theoretical and experimental results from microcantilevers and Love-wave acoustic devices in order to identify and separate mass loading effects from elastic effects. This is important in the perspective of sensing applications. For that, a thin-film polymer is deposited on both resonant platforms. It is demonstrated that microcantilevers are essentially mass sensitive. They allow one to determine the polymer layer thickness, which is validated by optical profilometry measurements. Then, taking into account this thickness, theoretical modeling and experimental measurements with Love-wave devices permit one to estimate an equivalent elastic shear modulus of the thin-film polymer at high frequency. Results are interesting if one is to fully understand and optimize (bio)chemical sensor responses.

  3. All-Weather Sounding of Moisture and Temperature From Microwave Sensors Using a Coupled Surface/Atmosphere Inversion Algorithm

    Science.gov (United States)

    Boukabara, S. A.; Garrett, K.

    2014-12-01

    A one-dimensional variational retrieval system has been developed, capable of producing temperature and water vapor profiles in clear, cloudy and precipitating conditions. The algorithm, known as the Microwave Integrated Retrieval System (MiRS), is currently running operationally at the National Oceanic and Atmospheric Administration (NOAA) National Environmental Satellite Data and Information Service (NESDIS), and is applied to a variety of data from the AMSU-A/MHS sensors on board the NOAA-18, NOAA-19, and MetOp-A/B polar satellite platforms, as well as SSMI/S on board both DMSP F-16 and F18, and from the NPP ATMS sensor. MiRS inverts microwave brightness temperatures into atmospheric temperature and water vapor profiles, along with hydrometeors and surface parameters, simultaneously. This atmosphere/surface coupled inversion allows for more accurate retrievals in the lower tropospheric layers by accounting for the surface emissivity impact on the measurements. It also allows the inversion of the soundings in all-weather conditions thanks to the incorporation of the hydrometeors parameters in the inverted state vector as well as to the inclusion of the emissivity in the same state vector, which is accounted for dynamically for the highly variable surface conditions found under precipitating atmospheres. The inversion is constrained in precipitating conditions by the inclusion of covariances for hydrometeors, to take advantage of the natural correlations that exist between temperature and water vapor with liquid and ice cloud along with rain water. In this study, we present a full assessment of temperature and water vapor retrieval performances in all-weather conditions and over all surface types (ocean, sea-ice, land, and snow) using matchups with radiosonde as well as Numerical Weather Prediction and other satellite retrieval algorithms as references. An emphasis is placed on retrievals in cloudy and precipitating atmospheres, including extreme weather events

  4. Towards Sensor-Actuator Coupling in an Automated Order Picking System by Detecting Sealed Seams on Pouch Packed Goods

    Directory of Open Access Journals (Sweden)

    Frank Weichert

    2014-10-01

    Full Text Available In this paper, a novel concept of coupling the actuators of an automated order picking system for pouch packed goods with an embedded CCD camera sensor by means of image processing and machine learning is presented. The picking system mechanically combines the conveyance and singularization of a still-connected chain of pouch packed goods in a single machinery. The proposed algorithms perform a per-frame processing of the captured images in real-time to detect the sealed seams of the ongoing pouches. The detections are used to deduce cutting decisions in order to control the system’s actuators, namely the drive pulley for conveyance and the cutting device for the separation. Within this context, two controlling strategies are presented as well which specify the interaction of the sensor and the actuators. The detection is carried out by two different marker detection strategies: enhanced Template Matching as a heuristic and Support Vector Machines as a supervised classification based concept. Depending on the employed marker, detection rates of almost 100% with a calculation time of less than 40 ms are possible. From a logistic point of view, sealed seam widths of 20 mm prove feasible.

  5. Oxygen-Dependent Globin Coupled Sensor Signaling Modulates Motility and Virulence of the Plant Pathogen Pectobacterium carotovorum.

    Science.gov (United States)

    Burns, Justin L; Jariwala, Parth B; Rivera, Shannon; Fontaine, Benjamin M; Briggs, Laura; Weinert, Emily E

    2017-08-18

    Bacterial pathogens utilize numerous signals to identify the presence of their host and coordinate changes in gene expression that allow for infection. Within plant pathogens, these signals typically include small molecules and/or proteins from their plant hosts and bacterial quorum sensing molecules to ensure sufficient bacterial cell density for successful infection. In addition, bacteria use environmental signals to identify conditions when the host defenses are weakened and potentially to signal entry into an appropriate host/niche for infection. A globin coupled sensor protein (GCS), termed PccGCS, within the soft rot bacterium Pectobacterium carotovorum ssp. carotovorum WPP14 has been identified as an O 2 sensor and demonstrated to alter virulence factor excretion and control motility, with deletion of PccGCS resulting in decreased rotting of a potato host. Using small molecules that modulate bacterial growth and quorum sensing, PccGCS signaling also has been shown to modulate quorum sensing pathways, resulting in the PccGCS deletion strain being more sensitive to plant-derived phenolic acids, which can function as quorum sensing inhibitors, and exhibiting increased N-acylhomoserine lactone (AHL) production. These findings highlight a role for GCS proteins in controlling key O 2 -dependent phenotypes of pathogenic bacteria and suggest that modulating GCS signaling to limit P. carotovorum motility may provide a means to decrease rotting of plant hosts.

  6. Doppler Lidar for Wind Measurements on Venus

    Science.gov (United States)

    Singh, Upendra N.; Emmitt, George D.; Yu, Jirong; Kavaya, Michael J.

    2010-01-01

    NASA Langley Research Center has a long history of developing 2-micron laser transmitter for wind sensing. With support from NASA Laser Risk Reduction Program (LRRP) and Instrument Incubator Program (IIP), NASA Langley Research Center has developed a state-of-the-art compact lidar transceiver for a pulsed coherent Doppler lidar system for wind measurement. The transmitter portion of the transceiver employs the high-pulse-energy, Ho:Tm:LuLiF, partially conductively cooled laser technology developed at NASA Langley. The transceiver is capable of 250 mJ pulses at 10 Hz. It is very similar to the technology envisioned for coherent Doppler lidar wind measurements from Earth and Mars orbit. The transceiver is coupled to the large optics and data acquisition system in the NASA Langley VALIDAR mobile trailer. The large optics consists of a 15-cm off-axis beam expanding telescope, and a full-hemispheric scanner. Vertical and horizontal vector winds are measured, as well as relative backscatter. The data acquisition system employs frequency domain velocity estimation and pulse accumulation. It permits real-time display of the processed winds and archival of all data. This lidar system was recently deployed at Howard University facility in Beltsville, Mary-land, along with other wind lidar systems. Coherent Doppler wind lidar ground-based wind measurements and comparisons with other sensors will be presented. A simulation and data product for wind measurement at Venus will be presented.

  7. Tilted Bragg grating multipoint sensor based on wavelength-gated cladding-modes coupling.

    Science.gov (United States)

    Caucheteur, Christophe; Mégret, Patrice; Cusano, Andrea

    2009-07-10

    In recent years, tilted fiber Bragg gratings (TFBGs) have been demonstrated to be a promising technological platform for sensing applications such as the measurement of axial strain, bending, vibration, and refractive index. However, complex spectral measurements combined with the difficulty of using TFBGs in a quasi-distributed sensors network limit the practical exploitation of this assessed technology. To address this issue, we propose a hybrid configuration involving uniform and TFBGs working in reflection, which makes the demodulation technique easier and allows multipoint sensing. This configuration provides a narrowband reflection signal that is modulated by the wavelength selective losses associated with some TFBG's cladding-modes resonances. We report here the operating principle of the proposed device. An experimental validation is presented for refractive-index sensing purposes.

  8. Polar summer mesospheric extreme horizontal drift speeds during interplanetary corotating interaction regions (CIRs) and high-speed solar wind streams: Coupling between the solar wind and the mesosphere

    Science.gov (United States)

    Lee, Young-Sook; Kirkwood, Sheila; Kwak, Young-Sil; Kim, Kyung-Chan; Shepherd, Gordon G.

    2014-05-01

    We report the observation of echo extreme horizontal drift speed (EEHS, ≥ 300 m s-1) during polar mesospheric (80-90 km) summer echoes (PMSEs) by the VHF (52 MHz) radar at Esrange, Sweden, in years of 2006 and 2008. The EEHS occur in PMSEs as correlated with high-speed solar wind streams (HSSs), observed at least once in 12-17% of all hours of observation for the two summers. The EEHS rate peaks occur either during high solar wind speed in the early part of the PMSE season or during the arrival of interplanetary corotating interaction regions (CIRs) followed by peaks in PMSE occurrence rate after 1-4 days, in the latter part of the 2006 summer. The cause of EEHS rate peaks is likely under the competition between the interval of the CIR and HSS passage over the magnetosphere. A candidate process in producing EEHS is suggested to be localized strong electric field, which is caused by solar wind energy transfer from the interaction of CIR and HSS with the magnetosphere in a sequential manner. We suggest that EEHS are created by strong electric field, estimated as > 10-30 V m-1 at 85 km altitude, exceeding the mesospheric breakdown threshold field.

  9. Performance evaluation of one-dimensional fiber-optic radiation sensor for measuring high energy electron beam using a charge-coupled device

    International Nuclear Information System (INIS)

    Cho, Dong Hyun; Jang, Kyoung Won; Yoo, Wook Jae; Chung, Soon Cheol; Tack, Gye Rae; Eom, Gwang Moon; Lee, Bongsoo; Cho, Hyosung; Kim, Sin

    2008-01-01

    In this study, we have fabricated one-dimensional fiber-optic radiation sensor array for high energy electron beam therapy dosimetry. Fiber-optic radiation sensor comprises an organic scintillator as a sensing volume, optical fiber as a light guider and photo-detector as a light measuring device. Usually, photomultiplier tube or photodiode is used as a photo-detector however we have tried to use a charge-coupled device as a scintillating light measuring system for one-dimensional fiber-optic radiation sensor array. This system can take an image of the proximal ends of one-dimensional fiber-optic sensor array and can measure light intensities of individual image of optical fibers simultaneously using simple imaging software. Charge-coupled device as a light measuring detector has many advantages which are easy in multi-dimensional measurements, high spatial resolution and relatively low cost. We have measured one-dimensional electron beam distributions in a PMMA phantom with different energies and field sizes of electron beam using a fiber-optic sensor and a charge-coupled device. Also, the percentage depth dose curves for high energy electron beams are obtained. (author)

  10. Interaction between surface wind and ocean circulation in the Carolina Capes in a coupled low-order model

    Energy Technology Data Exchange (ETDEWEB)

    Xie, L.; Pietrafesa, L.J.; Raman, S.

    1997-03-18

    Interactions between surface winds and ocean currents over an east-coast continental shelf are studied using a simple mathematical model. The model physics include cross-shelf advection of sea surface temperature (SST) by Ekman drift, upwelling due to Ekman transport divergence, differential heating of the low-level atmosphere by a cross-shelf SST gradient, and the Coriolis effect. Additionally, the effects of diabatic cooling of surface waters due to air-sea heat exchange and of the vertical density stratification on the thickness of the upper ocean Ekman layer are considered. The model results are qualitatively consistent with observed wind-driven coastal ocean circulation and surface wind signatures induced by SST. This simple model also demonstrates that two-way air-sea interaction plays a significant role in the subtidal frequency variability of coastal ocean circulation and mesoscale variability of surface wind fields over coastal waters.

  11. Seismic Coupling of Short-Period Wind Noise Through Mars’ Regolith for NASA’s InSight Lander

    OpenAIRE

    Teanby, N. A.; Stevanović, J.; Wookey, J.; Murdoch, Naomi; Hurley, J.; Myhill, R.; Bowles, N. E.; Calcutt, S. B.; Pike, William T.

    2017-01-01

    NASA’s InSight lander will deploy a tripod-mounted seismometer package onto the surface of Mars in late 2018. Mars is expected to have lower seismic activity than the Earth, so minimisation of environmental seismic noise will be critical for maximising observations of seismicity and scientific return from the mission. Therefore, the seismometers will be protected by a Wind and Thermal Shield (WTS), also mounted on a tripod. Nevertheless, wind impinging on the WTS will cause vibration noise, w...

  12. Laser of optical fiber composed by two coupled cavities: application as optical fiber sensor; Laser de fibra optica compuesto por dos cavidades acopladas: aplicacion como sensor de fibra optica

    Energy Technology Data Exchange (ETDEWEB)

    Vazquez S, R.A.; Kuzin, E.A.; Ibarra E, B. [Instituto Nacional de Astrofisica, Optica y Electronica (INAOE), A.P. 51 y 216, 72000 Puebla (Mexico); May A, M. [Universidad Autonoma del Carmen (UNACAR) Av. 56 No. 4 por Av. Concordia, Campeche (Mexico); Shlyagin, M.; Marquez B, I. [Centro de Investigacion Cientifica y de Ensenanza Superior de Ensenada (CICESE), 22860 Ensenada, Baja California (Mexico)]. e-mail: ravsa100@hotmail.com

    2004-07-01

    We show an optical fiber laser sensor which consist of two cavities coupled and three fiber Bragg gratings. We used one Bragg grating (called reference) and two Bragg gratings (called sensors), which have the lower reflection wavelength. The reference grating with the two sensors grating make two cavities: first one is the internal cavity which has 4230 m of length and the another one is the external cavity which has 4277 m of length. Measuring the laser beating frequency for a resonance cavity and moving the frequency peaks when the another cavity is put in resonance, we prove that the arrangement can be used as a two points sensor for determining the difference of temperature or stress between these two points. (Author)

  13. Offshore code comparison collaboration continuation (OC4), phase I - Results of coupled simulations of an offshore wind turbine with jacket support structure

    DEFF Research Database (Denmark)

    Popko, Wojciech; Vorpahl, Fabian; Zuga, Adam

    2012-01-01

    In this paper, the exemplary results of the IEA Wind Task 30 "Offshore Code Comparison Collaboration Continuation" (OC4) Project - Phase I, focused on the coupled simulation of an offshore wind turbine (OWT) with a jacket support structure, are presented. The focus of this task has been...... the verification of OWT modeling codes through code-to-code comparisons. The discrepancies between the results are shown and the sources of the differences are discussed. The importance of the local dynamics of the structure is depicted in the simulation results. Furthermore, attention is given to aspects...... such as the buoyancy calculation and methods of accounting for additional masses (such as hydrodynamic added mass). Finally, recommendations concerning the modeling of the jacket are given. Copyright © 2012 by the International Society of Offshore and Polar Engineers (ISOPE)....

  14. Smart Sensor System for Structural Condition Monitoring of Wind Turbines: 30 May 2002--30 April 2006

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, M. J.; Sundaresan, M. J.

    2006-08-01

    This report describes the efforts of the University of Cincinnati, North Carolina A&T State University, and NREL to develop a structural neural system for structural health monitoring of wind turbine blades.

  15. Diode laser lidar wind velocity sensor using a liquid-crystal retarder for non-mechanical beam-steering

    DEFF Research Database (Denmark)

    Rodrigo, Peter John; Iversen, Theis Faber Quist; Hu, Qi

    2014-01-01

    the lidar probe beam in two different lines-of-sight (LOS) with a 60° angular separation. Dual-LOS beam-steering isimplemented optically with no moving parts by means of a controllableliquid-crystal retarder (LCR). The LCR switches the polarization betweentwo orthogonal linear states of the lidar beam so......We extend the functionality of a low-cost CW diode lasercoherent lidar from radial wind speed (scalar) sensing to wind velocity(vector) measurements. Both speed and horizontal direction of the wind at~80 m remote distance are derived from two successive radial speedestimates by alternately steering...... it either transmits throughor reflects off a polarization splitter. The room-temperature switching timebetween the two LOS is measured to be in the order of 100μs in one switchdirection but 16 ms in the opposite transition. Radial wind speedmeasurement (at 33 Hz rate) while the lidar beam is repeatedly...

  16. The Ongoing Addition of Infrasound Sensors and the Flexette Wind-Noise Reducing System to Global Seismic Network Stations Operated by Project IDA

    Science.gov (United States)

    Ebeling, C. W.; Coon, C.

    2017-12-01

    Infrasound sensors are now being installed at Global Seismic Network (GSN) stations meeting certain infrastructure criteria. Manufactured by Hyperion Technology Group, Inc., these instruments (model IFS-3312) have a nominal sensitivity of 140 mV/Pa (at 1 Hz), a full-scale range of ±100 Pa, and a dynamic range of 120 dB. Low power consumption (750 mW at 12 VDC) and small size (153 mm x 178 mm) ease incorporation into the mix of existing GSN instrumentation. The accompanying flexible rosette ("Flexette") acoustic wind-noise reducing system, designed by Project IDA (International Deployment of Accelerometers-IDA), optimally includes 24 inlets, 4 secondary manifolds, and a single primary manifold. Each secondary manifold is connected to 6 inlets and to the primary manifold by 10-ft air hoses, thus eliminating stresses and the greater potential for leaks associated with the use of pipe. While the main design goal was to maximize the reduction of acoustic wind-noise over the widest range of wind speeds possible, consideration of additional criteria resulted in a Flexette base design easily tailored to meet individual station constraints and restrictions, made up of inexpensive (total cost Management Center (IRIS-DMC).

  17. Confined surface plasmon sensors based on strongly coupled disk-in-volcano arrays.

    Science.gov (United States)

    Ai, Bin; Wang, Limin; Möhwald, Helmuth; Yu, Ye; Zhang, Gang

    2015-02-14

    Disk-in-volcano arrays are reported to greatly enhance the sensing performance due to strong coupling in the nanogaps between the nanovolcanos and nanodisks. The designed structure, which is composed of a nanovolcano array film and a disk in each cavity, is fabricated by a simple and efficient colloidal lithography method. By tuning structural parameters, the disk-in-volcano arrays show greatly enhanced resonances in the nanogaps formed by the disks and the inner wall of the volcanos. Therefore they respond to the surrounding environment with a sensitivity as high as 977 nm per RIU and with excellent linear dependence on the refraction index. Moreover, through mastering the fabrication process, biological sensing can be easily confined to the cavities of the nanovolcanos. The local responsivity has the advantages of maximum surface plasmon energy density in the nanogaps, reducing the sensing background and saving expensive reagents. The disk-in-volcano arrays also possess great potential in applications of optical and electrical trapping and single-molecule analysis, because they enable establishment of electric fields across the gaps.

  18. CCD [charge-coupled device] sensors in synchrotron x-ray detectors

    International Nuclear Information System (INIS)

    Strauss, M.G.; Naday, I.; Sherman, I.S.; Kraimer, M.R.; Westbrook, E.M.; Zaluzec, N.J.

    1987-01-01

    The intense photon flux from advanced synchrotron light sources, such as the 7-GeV synchrotron being designed at Argonne, require integrating-type detectors. Charge-coupled devices (CCDs) are well suited as synchrotron x-ray detectors. When irradiated indirectly via a phosphor followed by reducing optics, diffraction patterns of 100 cm 2 can be imaged on a 2 cm 2 CCD. With a conversion efficiency of ∼1 CCD electron/x-ray photon, a peak saturation capacity of >10 6 x rays can be obtained. A programmable CCD controller operating at a clock frequency of 20 MHz has been developed. The readout rate is 5 x 10 6 pixels/s and the shift rate in the parallel registers is 10 6 lines/s. The test detector was evaluated in two experiments. In protein crystallography diffraction patterns have been obtained from a lysozyme crystal using a conventional rotating anode x-ray generator. Based on these results we expect to obtain at a synchrotron diffraction images at the rate of ∼1 frame/s or a complete 3-dimensional data set from a single crystal in ∼2 min. 16 refs., 16 figs., 2 tabs

  19. Concept design and coupled dynamic response analysis on 6-MW spar-type floating offshore wind turbine

    Science.gov (United States)

    Meng, Long; Zhou, Tao; He, Yan-ping; Zhao, Yong-sheng; Liu, Ya-dong

    2017-10-01

    Tower, Spar platform and mooring system are designed in the project based on a given 6-MW wind turbine. Under wind-induced only, wave-induced only and combined wind and wave induced loads, dynamic response is analyzed for a 6-MW Spar-type floating offshore wind turbine (FOWT) under operating conditions and parked conditions respectively. Comparison with a platform-fixed system (land-based system) of a 6-MW wind turbine is carried out as well. Results demonstrate that the maximal out-of-plane deflection of the blade of a Spar-type system is 3.1% larger than that of a land-based system; the maximum response value of the nacelle acceleration is 215% larger for all the designed load cases being considered; the ultimate tower base fore-aft bending moment of the Spar-type system is 92% larger than that of the land-based system in all of the Design Load Cases (DLCs) being considered; the fluctuations of the mooring tension is mainly wave-induced, and the safety factor of the mooring tension is adequate for the 6-MW FOWT. The results can provide relevant modifications to the initial design for the Spar-type system, the detailed design and model basin test of the 6-MW Spar-type system.

  20. A novel inter-fibre light coupling sensor probe using plastic optical fibre for ethanol concentration monitoring at initial production rate

    Science.gov (United States)

    Memon, Sanober F.; Lewis, Elfed; Pembroke, J. Tony; Chowdhry, Bhawani S.

    2017-04-01

    A novel, low cost and highly sensitive optical fibre probe sensor for concentration measurement of ethanol solvent (C2H5OH) corresponding to bio-ethanol production rate by an algae is reported. The principle of operation of the sensor is based on inter-fibre light coupling through an evanescent field interaction to couple the light between two multimode fibres mounted parallel to each other at a minimum possible separation i.e. measurement in the broadband spectrum including visible and near infra-red. The wavelength dependency of this sensor design was also investigated by post processing analysis of real time data and hence the optimum wavelength range determined. The proposed sensor has shown significant response in the range of 0.005 - 0.1 %v/v (%volume/volume or volume concentration) which depicts the high sensitivity for monitoring very minute changes in concentration corresponding refractive index changes of the solution. Numerically, sensor has shown the sensitivity of 21945 intensity counts/%v/v or 109.7 counts per every 0.0050 %v/v.

  1. DIRECT POWER CONTROL OF A DFIG BASED WIND TURBINS UNDER UNBALANCED GRID VOLTAGE WITHOUT ROTOR POSITION SENSOR

    Directory of Open Access Journals (Sweden)

    ali izanlo

    2017-05-01

    Full Text Available In this paper, the behavior of a doubly fed induction generator (DFIG is proposed under unbalanced grid voltage and without using a rotor position sensor. There are two main methods that are been used for the detection of rotor position: using shaft sensor and sensorless algorithm. In this paper the shaft sensor is eliminated and a position sensorless algorithm is used for estimating the rotor position. Sensorless operation is more desirable than using shaft sensor, because the shaft sensor has several disadvantages related to the cost, cabling, robustness and maintenance. Also, during network unbalance, three selectable control targets are identified for the rotor side converter (RSC, i.e., obtaining sinusoidal and symmetrical stator currents, mitigation of active and reactive powers ripples and the cancellation of electromagnetic torque oscillations. The effectiveness of the proposed control strategy is confirmed by the simulation results from a 2-MW DFIG system. It is concluded that the sensorless algorithm is able to produce accurate results similar to the case of that used from shaft sensor and it can be used in the practical applications.

  2. Arctic wind energy

    International Nuclear Information System (INIS)

    Peltola, E.; Holttinen, H.; Marjaniemi, M.; Tammelin, B.

    1998-01-01

    Arctic wind energy research was aimed at adapting existing wind technologies to suit the arctic climatic conditions in Lapland. Project research work included meteorological measurements, instrument development, development of a blade heating system for wind turbines, load measurements and modelling of ice induced loads on wind turbines, together with the development of operation and maintenance practices in arctic conditions. As a result the basis now exists for technically feasible and economically viable wind energy production in Lapland. New and marketable products, such as blade heating systems for wind turbines and meteorological sensors for arctic conditions, with substantial export potential, have also been developed. (orig.)

  3. Arctic wind energy

    Energy Technology Data Exchange (ETDEWEB)

    Peltola, E. [Kemijoki Oy (Finland); Holttinen, H.; Marjaniemi, M. [VTT Energy, Espoo (Finland); Tammelin, B. [Finnish Meteorological Institute, Helsinki (Finland)

    1998-12-31

    Arctic wind energy research was aimed at adapting existing wind technologies to suit the arctic climatic conditions in Lapland. Project research work included meteorological measurements, instrument development, development of a blade heating system for wind turbines, load measurements and modelling of ice induced loads on wind turbines, together with the development of operation and maintenance practices in arctic conditions. As a result the basis now exists for technically feasible and economically viable wind energy production in Lapland. New and marketable products, such as blade heating systems for wind turbines and meteorological sensors for arctic conditions, with substantial export potential, have also been developed. (orig.)

  4. Position Sensor Integral with a Linear Actuator

    Science.gov (United States)

    Howard, David E.; Alhorn, Dean C.

    2004-01-01

    A noncontact position sensor has been designed for use with a specific two-dimensional linear electromagnetic actuator. To minimize the bulk and weight added by the sensor, the sensor has been made an integral part of the actuator: that is to say, parts of the actuator structure and circuitry are used for sensing as well as for varying position. The actuator (see Figure 1) includes a C-shaped permanent magnet and an armature that is approximately centered in the magnet gap. The intended function of the actuator is to cause the permanent magnet to translate to, and/or remain at, commanded x and y coordinates, relative to the armature. In addition, some incidental relative motion along the z axis is tolerated but not controlled. The sensor is required to measure the x and y displacements from a nominal central position and to be relatively insensitive to z displacement. The armature contains two sets of electromagnet windings oriented perpendicularly to each other and electrically excited in such a manner as to generate forces in the x,y plane to produce the required motion. Small sensor excitation coils are mounted on the pole tips of the permanent magnet. These coils are excited with a sine wave at a frequency of 20 kHz. This excitation is transformer-coupled to the armature windings. The geometric arrangement of the excitation coils and armature windings is such that the amplitudes of the 20-kHz voltages induced in the armature windings vary nearly linearly with x and y displacements and do not vary significantly with small z displacements. Because the frequency of 20 kHz is much greater than the maximum frequency characteristic of the actuation signals applied to the armature windings, there is no appreciable interference between actuator and sensor functions of the armature windings.

  5. Detection of gear cracks in a complex gearbox of wind turbines using supervised bounded component analysis of vibration signals collected from multi-channel sensors

    Science.gov (United States)

    Li, Zhixiong; Yan, Xinping; Wang, Xuping; Peng, Zhongxiao

    2016-06-01

    In the complex gear transmission systems, in wind turbines a crack is one of the most common failure modes and can be fatal to the wind turbine power systems. A single sensor may suffer with issues relating to its installation position and direction, resulting in the collection of weak dynamic responses of the cracked gear. A multi-channel sensor system is hence applied in the signal acquisition and the blind source separation (BSS) technologies are employed to optimally process the information collected from multiple sensors. However, literature review finds that most of the BSS based fault detectors did not address the dependence/correlation between different moving components in the gear systems; particularly, the popular used independent component analysis (ICA) assumes mutual independence of different vibration sources. The fault detection performance may be significantly influenced by the dependence/correlation between vibration sources. In order to address this issue, this paper presents a new method based on the supervised order tracking bounded component analysis (SOTBCA) for gear crack detection in wind turbines. The bounded component analysis (BCA) is a state of art technology for dependent source separation and is applied limitedly to communication signals. To make it applicable for vibration analysis, in this work, the order tracking has been appropriately incorporated into the BCA framework to eliminate the noise and disturbance signal components. Then an autoregressive (AR) model built with prior knowledge about the crack fault is employed to supervise the reconstruction of the crack vibration source signature. The SOTBCA only outputs one source signal that has the closest distance with the AR model. Owing to the dependence tolerance ability of the BCA framework, interfering vibration sources that are dependent/correlated with the crack vibration source could be recognized by the SOTBCA, and hence, only useful fault information could be preserved in

  6. Wind Turbine Diagnosis under Variable Speed Conditions Using a Single Sensor Based on the Synchrosqueezing Transform Method.

    Science.gov (United States)

    Guo, Yanjie; Chen, Xuefeng; Wang, Shibin; Sun, Ruobin; Zhao, Zhibin

    2017-05-18

    The gearbox is one of the key components in wind turbines. Gearbox fault signals are usually nonstationary and highly contaminated with noise. The presence of amplitude-modulated and frequency-modulated (AM-FM) characteristics compound the difficulty of precise fault diagnosis of wind turbines, therefore, it is crucial to develop an effective fault diagnosis method for such equipment. This paper presents an improved diagnosis method for wind turbines via the combination of synchrosqueezing transform and local mean decomposition. Compared to the conventional time-frequency analysis techniques, the improved method which is performed in non-real-time can effectively reduce the noise pollution of the signals and preserve the signal characteristics, and hence is suitable for the analysis of nonstationary signals with high noise. This method is further validated by simulated signals and practical vibration data measured from a 1.5 MW wind turbine. The results confirm that the proposed method can simultaneously control the noise and increase the accuracy of time-frequency representation.

  7. Quantifying the Role of Atmospheric Forcing in Ice Edge Retreat and Advance Including Wind-Wave Coupling

    Science.gov (United States)

    2015-09-30

    C. Furthermore, melt ponds on the floes had frozen over and snow covered the floes and many meltponds, increasing the albedo and certainly...marine X-band radar Leeds, CIRES/NOAA local fetch, l precip structure, sea state Satellite ( MODIS ) NOAA, NASA large-scale...conditions likely to be encountered and desired (high winds, snow , darkness, fog, significant swell) will take time, and may on frequent occasions not be

  8. Seismic Coupling of Short-Period Wind Noise Through Mars' Regolith for NASA's InSight Lander

    Science.gov (United States)

    Teanby, N. A.; Stevanović, J.; Wookey, J.; Murdoch, N.; Hurley, J.; Myhill, R.; Bowles, N. E.; Calcutt, S. B.; Pike, W. T.

    2017-10-01

    NASA's InSight lander will deploy a tripod-mounted seismometer package onto the surface of Mars in late 2018. Mars is expected to have lower seismic activity than the Earth, so minimisation of environmental seismic noise will be critical for maximising observations of seismicity and scientific return from the mission. Therefore, the seismometers will be protected by a Wind and Thermal Shield (WTS), also mounted on a tripod. Nevertheless, wind impinging on the WTS will cause vibration noise, which will be transmitted to the seismometers through the regolith (soil). Here we use a 1:1-scale model of the seismometer and WTS, combined with field testing at two analogue sites in Iceland, to determine the transfer coefficient between the two tripods and quantify the proportion of WTS vibration noise transmitted through the regolith to the seismometers. The analogue sites had median grain sizes in the range 0.3-1.0 mm, surface densities of 1.3-1.8 g cm^{-3}, and an effective regolith Young's modulus of 2.5^{+1.9}_{-1.4} MPa. At a seismic frequency of 5 Hz the measured transfer coefficients had values of 0.02-0.04 for the vertical component and 0.01-0.02 for the horizontal component. These values are 3-6 times lower than predicted by elastic theory and imply that at short periods the regolith displays significant anelastic behaviour. This will result in reduced short-period wind noise and increased signal-to-noise. We predict the noise induced by turbulent aerodynamic lift on the WTS at 5 Hz to be ˜2×10^{-10} ms^{-2} Hz^{-1/2} with a factor of 10 uncertainty. This is at least an order of magnitude lower than the InSight short-period seismometer noise floor of 10^{-8} ms^{-2} Hz^{-1/2}.

  9. An MCDA and GIS coupling conceptual model to be used in a circular decision process by stakeholders involved in large wind farm projects

    Energy Technology Data Exchange (ETDEWEB)

    Vazquez, M. [Quebec Univ., Rimouski, PQ (Canada). Laboratoire de Recherche en Energie Eolienne; Quebec Univ., Montreal, PQ (Canada). GEIGER; Waaub, J.P. [Quebec Univ., Montreal, PQ (Canada). GEIGER; Ilinca, A. [Quebec Univ., Rimouski, PQ (Canada). Laboratoire de Recherche en Energie Eolienne

    2010-07-01

    This poster presentation described an MCDA and geographic information system (GIS) coupling conceptual model designed for use in stakeholder decision-making processes for large wind farm projects. The model was comprised of 4 modules and 4 stakeholder categories that considered the environment and communities involved in the project. The integrated modelling approach was designed to ensure a transparent decision-making process. The modules included: (1) an MCDA module, (2) a local expertise and scientific knowledge module, (3) a stakeholder involvement module, and (4) a participatory GIS module. The model can be used to structure issues during consultation procedures, as well as to conduct preference analyses and to identify indicators. Examples of stakeholder weighting were included. tabs., figs.

  10. Solar wind interaction with Mars Upper atmosphere: Results from the one-way coupling between the Multi-fluid MHD model and the M-TGCM model

    Science.gov (United States)

    Dong, C.; Bougher, S. W.; Ma, Y.; Toth, G.; Nagy, A. F.; Brain, D. A.; Najib, D.

    2012-12-01

    The study of the solar wind interaction with Mars upper atmosphere/ionosphere has triggered great interest in recent years. Among the large number of topics in this research area, the investigation of ion escape rates has become increasingly important due to its potential impact on the long-term evolution of Mars atmosphere (e.g., loss of water) over its history. In the present work, we adopt the 3D Mars neutral atmosphere profiles from the well-regarded Mars Thermospheric Global Circulation Model (M-TGCM) and one-way couple it with the 3D BATS-R-US Mars multi-fluid MHD model that solves separate momentum equations for each ion species. The M-TGCM model takes into account the effects of the solar cycle (solar minimum: F10.7=70 and solar maximum: F10.7=200 with equinox condition: Ls=0), allowing us to investigate the effects of the solar cycle on the Mars upper atmosphere ion escape by using a one-way coupling, i.e., the M-TGCM model outputs are used as inputs for the multi-fluid MHD model. A case for solar maximum with extremely high solar wind parameters is also investigated to estimate how high the escape flux can be for such an extreme case. Moreover, the ion escape flux along a satellite trajectory will be studied. This has the potential to provide predictions of ion escape rates for comparison to future data to be returned by the MAVEN mission (2012-2016). In order to make the code run more efficiently, we adopt a more appropriate grid structure compared to the one used previously. This new grid structure will benefit us to investigate the effects of some dynamic events (such as CME and dust storm) on the ion escape flux.

  11. Effect of Coupled Non linear Wave Kinematics and Soil Flexibility on the Design Loads of Offshore Wind Turbines

    DEFF Research Database (Denmark)

    Kim, Taeseong; Natarajan, Anand

    2013-01-01

    in the presence of flexible soil conditions. The impact of moving to 35m water depths on monopile sub structure loads is quantified using irregular non linear wave kinematics interactions with the reduced natural frequencies of the sub structure resulting from soil flexibility. The wave kinematics is modeled...... without the need for geometric stretching methods. The effect of the nonlinear wave interaction sum frequencies on the support structure is investigated when the structural natural frequencies are reduced due to soil flexibility. The impact of the wave sum frequencies during the occurrence of extreme...... in soil properties and adequate damping in the support structure during wind/wave misalignment, without which monopile sub structural loading is highly amplified at 35m water depths compared to the design conditions at 20 m depths....

  12. Integrated thin film Si fluorescence sensor coupled with a GaN microLED for microfluidic point-of-care testing

    Science.gov (United States)

    Robbins, Hannah; Sumitomo, Keiko; Tsujimura, Noriyuki; Kamei, Toshihiro

    2018-02-01

    An integrated fluorescence sensor consisting of a SiO2/Ta2O5 multilayer optical interference filter and hydrogenated amorphous silicon (a-Si:H) pin photodiode was coupled with a GaN microLED to construct a compact fluorescence detection module for point-of-care microfluidic biochemical analysis. The combination of the small size of the GaN microLED and asymmetric microlens resulted in a focal spot diameter of the excitation light of approximately 200 µm. The limit of detection of the sensor was as high as 36 nM for fluorescein solution flowing in a 100 µm deep microfluidic channel because of the lack of directionality of the LED light. Nevertheless, we used the GaN microLED coupled with the a-Si:H fluorescence sensor to successfully detect fluorescence from a streptavidin R-phycoerythrin conjugate that bound to biotinylated antibody-coated microbeads trapped by the barrier in the microfluidic channel.

  13. On the coupled use of eddy covariance, sap flow sensors and remote sensing information for Evapotranspiration estimates in a typical heterogeneous Mediterranean ecosystem.

    Science.gov (United States)

    Corona, R.; Montaldo, N.

    2017-12-01

    Mediterranean ecosystems are typically heterogeneous, with contrasting plant functional types (PFT, woody vegetation and grass) that compete for water use. Due to the complexity of these ecosystems there is still uncertainty on the estimate of the evapotranspiration (ET). Micrometerological measurements (e.g. eddy covariance method based, EC ) are widely used for ET estimate, but in heterogeneous systems one of the main assumption (surface homogeneity) is not preserved and the method may become less robust. In this sense, the coupled use of sap flow sensors for tree transpiration estimate, surface temperature sensors, remote sensing information for land surface characterization allow to estimate the ET components and the energy balances of the three main land surface components (woody vegetation, grass and bare soil), overtaking the EC method uncertainties. The experimental site of Orroli, in Sardinia (Italy), is a typical Mediterranean heterogeneous ecosystem, monitored from the University of Cagliari since 2003. With the intent to perform an intensive field campaign for the ET estimation, we verified the potentiality of coupling eddy covariance (EC) method, infrared sensors and thermal dissipation methods (i.e. sap flow technique) for tree transpiration estimate. As a first step 3 commercial sap flux sensors were installed in a wild olive clump where the skin temperature of one tree in the clump was monitored with an infrared transducer. Then, other 54 handmade sensors were installed in 14 clumps in the EC footprint. Measurements of diameter were recorded in all the clumps and the sapwood depth was derived from measurements in several trees. The field ET estimation from the 4 commercial sensors was obtained assuming 4 different relationship between the monitored sap flux and the diameter of the species in the footprint. Instead for the 54 handmade sensors a scaling procedure was applied based on the allometric relationships between sapwood area, diameter and

  14. Coupled sensor/platform control design for low-level chemical detection with position-adaptive micro-UAVs

    Science.gov (United States)

    Goodwin, Thomas; Carr, Ryan; Mitra, Atindra K.; Selmic, Rastko R.

    2009-05-01

    We discuss the development of Position-Adaptive Sensors [1] for purposes for detecting embedded chemical substances in challenging environments. This concept is a generalization of patented Position-Adaptive Radar Concepts developed at AFRL for challenging conditions such as urban environments. For purposes of investigating the detection of chemical substances using multiple MAV (Micro-UAV) platforms, we have designed and implemented an experimental testbed with sample structures such as wooden carts that contain controlled leakage points. Under this general concept, some of the members of a MAV swarm can serve as external position-adaptive "transmitters" by blowing air over the cart and some of the members of a MAV swarm can serve as external position-adaptive "receivers" that are equipped with chemical or biological (chem/bio) sensors that function as "electronic noses". The objective can be defined as improving the particle count of chem/bio concentrations that impinge on a MAV-based position-adaptive sensor that surrounds a chemical repository, such as a cart, via the development of intelligent position-adaptive control algorithms. The overall effect is to improve the detection and false-alarm statistics of the overall system. Within the major sections of this paper, we discuss a number of different aspects of developing our initial MAV-Based Sensor Testbed. This testbed includes blowers to simulate position-adaptive excitations and a MAV from Draganfly Innovations Inc. with stable design modifications to accommodate our chem/bio sensor boom design. We include details with respect to several critical phases of the development effort including development of the wireless sensor network and experimental apparatus, development of the stable sensor boom for the MAV, integration of chem/bio sensors and sensor node onto the MAV and boom, development of position-adaptive control algorithms and initial tests at IDCAST (Institute for the Development and

  15. Use of a Parallel Plate Transmission Line to Calibrate a Fiber-Optic Coupled Magnetic Field Sensor.

    Science.gov (United States)

    1980-01-01

    field of the transmission line was IN*eu APACHE RPG4?MP9n s H&&..5 AM .&& D of TMa monitored with an EG&G D-dot sensor (HSD-2A) Pdawm&PmI...m/mV) = H = field in which sensor/ trasmitter is immesed. 1.37 A/m, which is 11 percent greater than calculated. Since the transfer impedance of the

  16. An Autonomous Waist-Mounted Pedestrian Dead Reckoning System by Coupling Low-Cost MEMS Inertial Sensors and GPS Receiver for 3D Urban Navigation

    Directory of Open Access Journals (Sweden)

    Jin-feng Li

    2014-03-01

    Full Text Available Global positioning system (GPS offers a perfect solution to the 3-dimension(3D navigation. However, the GPS-only solution can’t provide continuous and accurate position information in the unfavourable environments, such as urban canyons, indoor buildings, dense foliages due to signal blockage, interference, or jamming etc. A pedestrian dead reckoning (PDR system integrating the self-contained inertial sensors with GPS receiver is proposed to provide a seamless outdoor/indoor 3D pedestrian navigation. The MEM sensor module attached to the user’s waist is composed of a 3-axis accelerometer, a 3-axis gyroscope, a 3-axis digital compass and a barometric pressure sensor, which doesn’t rely on any infrastructure. The positioning algorithm implements a loosely coupled GPS/PDR integration. The sensor data are fused via a complementary filter to reduce the integral drift and magnetic disturbance for accurate heading. The four key components of the PDR algorithm: step detection, stride length estimation, heading and position determination are described in detail and implemented by the microcontroller. The step is detected using the accelerometer signals by the combination of three approaches: sliding window, peak detection and zero-crossing. The step length is estimated using a simple linear relationship with the step frequency. By coupling the step length, azimuth and height, 3D navigation is achieved. The performance of the proposed system is carefully verified through several field outdoor and indoor walking tests. The positioning errors are below 3% of the total traveled distance. The main error source comes from the orientation estimation. The results indicate that the proposed system is effective in accurate tracking.

  17. Effect of Surface Plasmon Coupling to Optical Cavity Modes on the Field Enhancement and Spectral Response of Dimer-Based sensors

    KAUST Repository

    Alrasheed, Salma

    2017-09-05

    We present a theoretical approach to narrow the plasmon linewidth and enhance the near-field intensity at a plasmonic dimer gap (hot spot) through coupling the electric localized surface plasmon (LSP) resonance of a silver hemispherical dimer with the resonant modes of a Fabry-Perot (FP) cavity. The strong coupling is demonstrated by the large anticrossing in the reflection spectra and a Rabi splitting of 76 meV. Up to 2-fold enhancement increase can be achieved compared to that without using the cavity. Such high field enhancement has potential applications in optics, including sensors and high resolution imaging devices. In addition, the resonance splitting allows for greater flexibility in using the same array at different wavelengths. We then further propose a practical design to realize such a device and include dimers of different shapes and materials.

  18. Trace gas sensing using quantum cascade lasers and a fiber-coupled optoacoustic sensor: Application to formaldehyde

    International Nuclear Information System (INIS)

    Elia, A; Lugara, P M; Scamarcio, G; Spagnolo, V; Di Franco, C

    2010-01-01

    We will report here on the design and realization of an optoacoustic sensor for the detection of formaldehyde. The sensor consists of a commercial QCL and a resonant PA cell. Two different cell configurations have been investigated: a 'standard' H cell and an innovative T-cell with an optical fiber directly inserted into. Two different type of sound detector have been employed: electret microphones and optical MEMS-based microphone. As possible applications, we will describe the results obtained in the detection of formaldehyde (CH 2 O), a gas of great interest for industrial processes and environmental monitoring.

  19. Estimated Drag Coefficients and Wind Structure of Hurricane Frances

    Science.gov (United States)

    Zedler, S. E.; Niiler, P. P.; Stammer, D.; Terrill, E.

    2006-12-01

    As part of the Coupled Boundary Layers Air Sea Transfer (CBLAST) experiment, an array of drifters and floats was deployed from an aircraft just ahead of Hurricane Frances during it's passage to the northwest side of the Caribbean Island chain in August, 2004. The ocean and surface air conditions prior to, during, and after Hurricane Frances were documented by multiple sensors. Two independent estimates of the surface wind field suggest different storm structures. NOAA H*WINDS, an objectively analyzed product using a combination of data collected at the reconnaissance flight level, GPS profilers (dropwindsondes), satellites, and other data, suggest a 40km radius of maximum wind. A product based on the radial momentum equation balance using \\ital{in-situ} surface pressure data and wind direction measurements from the CBLAST drifter array suggests that the radius of maximum winds was 15km. We used a regional version of the MITGCM model with closed boundaries and realistic temperature and salinity fields which was forced with these wind field products to determine which wind field leads to circulation and SST structures that are most consistent with observed sea surface temperature fields and float profile data. Best estimates of the surface wind structure are then used to estimate the appropriate drag coefficient corresponding to the maximum velocity. Our results are compared with those obtained previously.

  20. Transitions between states of magnetotail–ionosphere coupling and the role of solar wind dynamic pressure: the 25 July 2004 interplanetary CME case

    Directory of Open Access Journals (Sweden)

    P. E. Sandholt

    2015-04-01

    Full Text Available In a case study, we investigate transitions between fundamental magnetosphere–ionosphere (M-I coupling modes during storm-time conditions (SYM-H between −100 and −160 nT driven by an interplanetary coronal mass ejection (ICME. We combine observations from the near tail, at geostationary altitude (GOES-10, and electrojet activities across the auroral oval at postnoon-to-dusk and midnight. After an interval of strong westward electrojet (WEJ activity, a 3 h long state of attenuated/quenched WEJ activity was initiated by abrupt drops in the solar wind density and dynamic pressure. The attenuated substorm activity consisted of brief phases of magnetic field perturbation and electron flux decrease at GOES-10 near midnight and moderately strong conjugate events of WEJ enhancements at the southern boundary of the oval, as well as a series of very strong eastward electrojet (EEJ events at dusk, during a phase of enhanced ring current evolution, i.e., enhanced SYM-H deflection within −120 to −150 nT. Each of these M-I coupling events was preceded by poleward boundary intensifications and auroral streamers at higher oval latitudes. We identify this mode of attenuated substorm activity as being due to a magnetotail state characterized by bursty reconnection and bursty bulk flows/dipolarization fronts (multiple current wedgelets with associated injection dynamo in the near tail, in their braking phase. The latter process is associated with activations of the Bostrøm type II (meridional current system. A transition to the next state of M-I coupling, when a full substorm expansion took place, was triggered by an abrupt increase of the ICME dynamic pressure from 1 to 5 nPa. The brief field deflection events at GOES-10 were then replaced by a 20 min long interval of extreme field stretching (Bz approaching 5 nT and Bx ≈ 100 nT followed by a major dipolarization (Δ Bz ≈ 100 nT. In the ionosphere the latter stage appeared as a "full-size" stepwise

  1. High-speed imaging at high x-ray energy: CdTe sensors coupled to charge-integrating pixel array detectors

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Julian; Tate, Mark W.; Shanks, Katherine S.; Philipp, Hugh T.; Weiss, Joel T.; Purohit, Prafull [Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY 14853 (United States); Chamberlain, Darol [Cornell High Energy Synchrotron Source (CHESS), Cornell University, Ithaca, NY 14853 (United States); Gruner, Sol M., E-mail: smg26@cornell.edu [Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY 14853 (United States); Cornell High Energy Synchrotron Source (CHESS), Cornell University, Ithaca, NY 14853 (United States)

    2016-07-27

    Pixel Array Detectors (PADs) consist of an x-ray sensor layer bonded pixel-by-pixel to an underlying readout chip. This approach allows both the sensor and the custom pixel electronics to be tailored independently to best match the x-ray imaging requirements. Here we describe the hybridization of CdTe sensors to two different charge-integrating readout chips, the Keck PAD and the Mixed-Mode PAD (MM-PAD), both developed previously in our laboratory. The charge-integrating architecture of each of these PADs extends the instantaneous counting rate by many orders of magnitude beyond that obtainable with photon counting architectures. The Keck PAD chip consists of rapid, 8-frame, in-pixel storage elements with framing periods <150 ns. The second detector, the MM-PAD, has an extended dynamic range by utilizing an in-pixel overflow counter coupled with charge removal circuitry activated at each overflow. This allows the recording of signals from the single-photon level to tens of millions of x-rays/pixel/frame while framing at 1 kHz. Both detector chips consist of a 128×128 pixel array with (150 µm){sup 2} pixels.

  2. High-speed imaging at high x-ray energy: CdTe sensors coupled to charge-integrating pixel array detectors

    International Nuclear Information System (INIS)

    Becker, Julian; Tate, Mark W.; Shanks, Katherine S.; Philipp, Hugh T.; Weiss, Joel T.; Purohit, Prafull; Chamberlain, Darol; Gruner, Sol M.

    2016-01-01

    Pixel Array Detectors (PADs) consist of an x-ray sensor layer bonded pixel-by-pixel to an underlying readout chip. This approach allows both the sensor and the custom pixel electronics to be tailored independently to best match the x-ray imaging requirements. Here we describe the hybridization of CdTe sensors to two different charge-integrating readout chips, the Keck PAD and the Mixed-Mode PAD (MM-PAD), both developed previously in our laboratory. The charge-integrating architecture of each of these PADs extends the instantaneous counting rate by many orders of magnitude beyond that obtainable with photon counting architectures. The Keck PAD chip consists of rapid, 8-frame, in-pixel storage elements with framing periods <150 ns. The second detector, the MM-PAD, has an extended dynamic range by utilizing an in-pixel overflow counter coupled with charge removal circuitry activated at each overflow. This allows the recording of signals from the single-photon level to tens of millions of x-rays/pixel/frame while framing at 1 kHz. Both detector chips consist of a 128×128 pixel array with (150 µm) 2 pixels.

  3. Mukilteo water sensor time series - Field work coupling measurements of carbon chemistry and distribution of free-living organisms

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To estimate the carbon chemistry conditions experienced by free-living organisms, we will conduct coupled biological/carbon chemistry sampling for key zooplankton...

  4. "Turn-off" fluorescent sensor based on double quantum dots coupled with chemometrics for highly sensitive and specific recognition of 53 famous green teas.

    Science.gov (United States)

    Hu, Ou; Xu, Lu; Fu, Haiyan; Yang, Tianming; Fan, Yao; Lan, Wei; Tang, Hebing; Wu, Yu; Ma, Lixia; Wu, Di; Wang, Yuan; Xiao, Zuobing; She, Yuanbin

    2018-05-30

    Fluorescent "turn-off" sensors based on double quantum dots (QDs) has attracted increasing attention in the detection of many materials due to their properties such as more useful information, higher fluorescence efficiency and stability compared with the fluorescent "turn-off" sensors based on single QDs. In this work, highly sensitive and specific method for recognition of 53 different famous green teas was developed based on the fluorescent "turn-off" model with water-soluble ZnCdSe-CdTe double QDs. The fluorescence of the two QDs can be quenched by different teas with varying degrees, which results in the differences in positions and intensities of two peaks. By the combination of classic partial least square discriminant analysis (PLSDA), all the green teas can be discriminated with high sensitivity, specificity and a satisfactory recognition rate of 100% for training set and 100% for prediction set, respectively. The fluorescent "turn-off" sensors based on the single QDs (either ZnCdSe QDs or CdTe QDs) coupled with PLSDA were also employed to recognize the 53 famous green teas with unsatisfactory results. Therefore, the fluorescent "turn-off" sensors based on the double QDs is more appropriate for the large-class-number classification (LCNC) of green teas. Herein, we have demonstrated, for the first time, that so many kinds of famous green teas can be discriminated by the "turn-off" model of double QDs combined with chemometrics, which has largely extended the capability of traditional fluorescence and chemometrics, as well as exhibits great potential to perform LCNC in other practical applications. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Method and apparatus for controlling pitch and flap angles of a wind turbine

    Science.gov (United States)

    Deering, Kenneth J [Seattle, WA; Wohlwend, Keith P [Issaquah, WA

    2009-05-12

    A wind turbine with improved response to wind conditions is provided. Blade flap angle motion is accompanied by a change in pitch angle by an amount defining a pitch/flap coupling ratio. The coupling ratio is non-constant as a function of a flap angle and is preferably a substantially continuous, non-linear function of flap angle. The non-constant coupling ratio can be provided by mechanical systems such as a series of linkages or by configuring electronic or other control systems and/or angle sensors. A link with a movable proximal end advantageously is part of the mechanical system. The system can provide relatively large coupling ratios and relatively large rates of coupling ratio changes especially for near-feather pitches and low flap angles.

  6. Key Technologies and Applications of Satellite and Sensor Web-coupled Real-time Dynamic Web Geographic Information System

    Directory of Open Access Journals (Sweden)

    CHEN Nengcheng

    2017-10-01

    Full Text Available The geo-spatial information service has failed to reflect the live status of spot and meet the needs of integrated monitoring and real-time information for a long time. To tackle the problems in observation sharing and integrated management of space-borne, air-borne, and ground-based platforms and efficient service of spatio-temporal information, an observation sharing model was proposed. The key technologies in real-time dynamic geographical information system (GIS including maximum spatio-temporal coverage-based optimal layout of earth-observation sensor Web, task-driven and feedback-based control, real-time access of streaming observations, dynamic simulation, warning and decision support were detailed. An real-time dynamic Web geographical information system (WebGIS named GeoSensor and its applications in sensing and management of spatio-temporal information of Yangtze River basin including navigation, flood prevention, and power generation were also introduced.

  7. Aircraft Aerodynamic Parameter Detection Using Micro Hot-Film Flow Sensor Array and BP Neural Network Identification

    Directory of Open Access Journals (Sweden)

    Ruiyi Que

    2012-08-01

    Full Text Available Air speed, angle of sideslip and angle of attack are fundamental aerodynamic parameters for controlling most aircraft. For small aircraft for which conventional detecting devices are too bulky and heavy to be utilized, a novel and practical methodology by which the aerodynamic parameters are inferred using a micro hot-film flow sensor array mounted on the surface of the wing is proposed. A back-propagation neural network is used to model the coupling relationship between readings of the sensor array and aerodynamic parameters. Two different sensor arrangements are tested in wind tunnel experiments and dependence of the system performance on the sensor arrangement is analyzed.

  8. Aircraft aerodynamic parameter detection using micro hot-film flow sensor array and BP neural network identification.

    Science.gov (United States)

    Que, Ruiyi; Zhu, Rong

    2012-01-01

    Air speed, angle of sideslip and angle of attack are fundamental aerodynamic parameters for controlling most aircraft. For small aircraft for which conventional detecting devices are too bulky and heavy to be utilized, a novel and practical methodology by which the aerodynamic parameters are inferred using a micro hot-film flow sensor array mounted on the surface of the wing is proposed. A back-propagation neural network is used to model the coupling relationship between readings of the sensor array and aerodynamic parameters. Two different sensor arrangements are tested in wind tunnel experiments and dependence of the system performance on the sensor arrangement is analyzed.

  9. Wind energy

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This chapter discusses the role wind energy may have in the energy future of the US. The topics discussed in the chapter include historical aspects of wind energy use, the wind energy resource, wind energy technology including intermediate-size and small wind turbines and intermittency of wind power, public attitudes toward wind power, and environmental, siting and land use issues

  10. Coupling hydrodynamics with comoving frame radiative transfer. II. Stellar wind stratification in the high-mass X-ray binary Vela X-1

    Science.gov (United States)

    Sander, A. A. C.; Fürst, F.; Kretschmar, P.; Oskinova, L. M.; Todt, H.; Hainich, R.; Shenar, T.; Hamann, W.-R.

    2018-02-01

    Context. Vela X-1, a prototypical high-mass X-ray binary (HMXB), hosts a neutron star (NS) in a close orbit around an early-B supergiant donor star. Accretion of the donor star's wind onto the NS powers its strong X-ray luminosity. To understand the physics of HMXBs, detailed knowledge about the donor star winds is required. Aims: To gain a realistic picture of the donor star in Vela X-1, we constructed a hydrodynamically consistent atmosphere model describing the wind stratification while properly reproducing the observed donor spectrum. To investigate how X-ray illumination affects the stellar wind, we calculated additional models for different X-ray luminosity regimes. Methods: We used the recently updated version of the Potsdam Wolf-Rayet code to consistently solve the hydrodynamic equation together with the statistical equations and the radiative transfer. Results: The wind flow in Vela X-1 is driven by ions from various elements, with Fe III and S III leading in the outer wind. The model-predicted mass-loss rate is in line with earlier empirical studies. The mass-loss rate is almost unaffected by the presence of the accreting NS in the wind. The terminal wind velocity is confirmed at v∞≈ 600 km s-1. On the other hand, the wind velocity in the inner region where the NS is located is only ≈100 km s-1, which is not expected on the basis of a standard β-velocity law. In models with an enhanced level of X-rays, the velocity field in the outer wind can be altered. If the X-ray flux is too high, the acceleration breaks down because the ionization increases. Conclusions: Accounting for radiation hydrodynamics, our Vela X-1 donor atmosphere model reveals a low wind speed at the NS location, and it provides quantitative information on wind driving in this important HMXB.

  11. Chromatic X-ray imaging with a fine pitch CdTe sensor coupled to a large area photon counting pixel ASIC

    Science.gov (United States)

    Bellazzini, R.; Spandre, G.; Brez, A.; Minuti, M.; Pinchera, M.; Mozzo, P.

    2013-02-01

    An innovative X-ray imaging sensor based on Chromatic Photon Counting technology with intrinsic digital characteristics is presented. The system counts individually the incident X-ray photons and selects them according to their energy to produce two color images per exposure. The energy selection occurs in real time and at radiographic imaging speed (GHz global counting rate). Photon counting, color mode and a very fine spatial resolution (more than 10 LP/mm at MTF50) allow to obtain a high ratio between image quality and absorbed dose. The individual building block of the imaging system is a two-side buttable semiconductor radiation detector made of a thin pixellated CdTe crystal coupled to a large area VLSI CMOS pixel ASIC. Modules with 1, 2, 4, and 8 block units have been built. The largest module has 25 × 2.5 cm2 sensitive area. Results and images obtained from testing different modules are presented.

  12. A Online NIR Sensor for the Pilot-Scale Extraction Process in Fructus Aurantii Coupled with Single and Ensemble Methods

    Directory of Open Access Journals (Sweden)

    Xiaoning Pan

    2015-04-01

    Full Text Available Model performance of the partial least squares method (PLS alone and bagging-PLS was investigated in online near-infrared (NIR sensor monitoring of pilot-scale extraction process in Fructus aurantii. High-performance liquid chromatography (HPLC was used as a reference method to identify the active pharmaceutical ingredients: naringin, hesperidin and neohesperidin. Several preprocessing methods and synergy interval partial least squares (SiPLS and moving window partial least squares (MWPLS variable selection methods were compared. Single quantification models (PLS and ensemble methods combined with partial least squares (bagging-PLS were developed for quantitative analysis of naringin, hesperidin and neohesperidin. SiPLS was compared to SiPLS combined with bagging-PLS. Final results showed the root mean square error of prediction (RMSEP of bagging-PLS to be lower than that of PLS regression alone. For this reason, an ensemble method of online NIR sensor is here proposed as a means of monitoring the pilot-scale extraction process in Fructus aurantii, which may also constitute a suitable strategy for online NIR monitoring of CHM.

  13. “Turn-off” fluorescent data array sensor based on double quantum dots coupled with chemometrics for highly sensitive and selective detection of multicomponent pesticides

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Yao; Liu, Li; Sun, Donglei; Lan, Hanyue [The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, College of Pharmacy, South-Central University for Nationalities, Wuhan 430074 (China); Fu, Haiyan, E-mail: fuhaiyan@mail.scuec.edu.cn [The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, College of Pharmacy, South-Central University for Nationalities, Wuhan 430074 (China); Yang, Tianming, E-mail: tmyang@mail.scuec.edu.cn [The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, College of Pharmacy, South-Central University for Nationalities, Wuhan 430074 (China); She, Yuanbin, E-mail: sheyb@zjut.edu.cn [State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032 (China); Ni, Chuang [The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, College of Pharmacy, South-Central University for Nationalities, Wuhan 430074 (China)

    2016-04-15

    As a popular detection model, the fluorescence “turn-off” sensor based on quantum dots (QDs) has already been successfully employed in the detections of many materials, especially in the researches on the interactions between pesticides. However, the previous studies are mainly focused on simple single track or the comparison based on similar concentration of drugs. In this work, a new detection method based on the fluorescence “turn-off” model with water-soluble ZnCdSe and CdSe QDs simultaneously as the fluorescent probes is established to detect various pesticides. The fluorescence of the two QDs can be quenched by different pesticides with varying degrees, which leads to the differences in positions and intensities of two peaks. By combining with chemometrics methods, all the pesticides can be qualitative and quantitative respectively even in real samples with the limit of detection was 2 × 10{sup −8} mol L{sup −1} and a recognition rate of 100%. This work is, to the best of our knowledge, the first report on the detection of pesticides based on the fluorescence quenching phenomenon of double quantum dots combined with chemometrics methods. What's more, the excellent selectivity of the system has been verified in different mediums such as mixed ion disruption, waste water, tea and water extraction liquid drugs. - Highlights: • A new model based on double QDs is established for pesticide residues detection. • The fluorescent data array sensor is coupled with chmometrics methods. • The sensor can be highly sensitive and selective detection in actual samples.

  14. ESPRIT-Like Two-Dimensional DOA Estimation for Monostatic MIMO Radar with Electromagnetic Vector Received Sensors under the Condition of Gain and Phase Uncertainties and Mutual Coupling

    Directory of Open Access Journals (Sweden)

    Dong Zhang

    2017-10-01

    Full Text Available In this paper, we focus on the problem of two-dimensional direction of arrival (2D-DOA estimation for monostatic MIMO Radar with electromagnetic vector received sensors (MIMO-EMVSs under the condition of gain and phase uncertainties (GPU and mutual coupling (MC. GPU would spoil the invariance property of the EMVSs in MIMO-EMVSs, thus the effective ESPRIT algorithm unable to be used directly. Then we put forward a C-SPD ESPRIT-like algorithm. It estimates the 2D-DOA and polarization station angle (PSA based on the instrumental sensors method (ISM. The C-SPD ESPRIT-like algorithm can obtain good angle estimation accuracy without knowing the GPU. Furthermore, it can be applied to arbitrary array configuration and has low complexity for avoiding the angle searching procedure. When MC and GPU exist together between the elements of EMVSs, in order to make our algorithm feasible, we derive a class of separated electromagnetic vector receiver and give the S-SPD ESPRIT-like algorithm. It can solve the problem of GPU and MC efficiently. And the array configuration can be arbitrary. The effectiveness of our proposed algorithms is verified by the simulation result.

  15. ESPRIT-Like Two-Dimensional DOA Estimation for Monostatic MIMO Radar with Electromagnetic Vector Received Sensors under the Condition of Gain and Phase Uncertainties and Mutual Coupling.

    Science.gov (United States)

    Zhang, Dong; Zhang, Yongshun; Zheng, Guimei; Feng, Cunqian; Tang, Jun

    2017-10-26

    In this paper, we focus on the problem of two-dimensional direction of arrival (2D-DOA) estimation for monostatic MIMO Radar with electromagnetic vector received sensors (MIMO-EMVSs) under the condition of gain and phase uncertainties (GPU) and mutual coupling (MC). GPU would spoil the invariance property of the EMVSs in MIMO-EMVSs, thus the effective ESPRIT algorithm unable to be used directly. Then we put forward a C-SPD ESPRIT-like algorithm. It estimates the 2D-DOA and polarization station angle (PSA) based on the instrumental sensors method (ISM). The C-SPD ESPRIT-like algorithm can obtain good angle estimation accuracy without knowing the GPU. Furthermore, it can be applied to arbitrary array configuration and has low complexity for avoiding the angle searching procedure. When MC and GPU exist together between the elements of EMVSs, in order to make our algorithm feasible, we derive a class of separated electromagnetic vector receiver and give the S-SPD ESPRIT-like algorithm. It can solve the problem of GPU and MC efficiently. And the array configuration can be arbitrary. The effectiveness of our proposed algorithms is verified by the simulation result.

  16. Fundamentals for remote structural health monitoring of wind turbine blades - a pre-project. Annex B - Sensors and non-destructive testing methods for damage detection in wind turbine blades

    Energy Technology Data Exchange (ETDEWEB)

    Lading, L.; McGugan, M.; Sendrup, P.; Rheinlaender, J.; Rusborg, J.

    2002-05-01

    This annex provides a description of the sensor schemes and the non-destructive testing (NDT) methods that have been investigated in this project. Acoustic emission and fibre optic sensors are described in some detail whereas only the key features of well-established NDT methods are presented. Estimates of the cost of different sensor systems are given and the advantages and disadvantages of the different schemes is discussed. (au)

  17. Equivalent models of wind farms by using aggregated wind turbines and equivalent winds

    International Nuclear Information System (INIS)

    Fernandez, L.M.; Garcia, C.A.; Saenz, J.R.; Jurado, F.

    2009-01-01

    As a result of the increasing wind farms penetration on power systems, the wind farms begin to influence power system, and therefore the modeling of wind farms has become an interesting research topic. In this paper, new equivalent models of wind farms equipped with wind turbines based on squirrel-cage induction generators and doubly-fed induction generators are proposed to represent the collective behavior on large power systems simulations, instead of using a complete model of wind farms where all the wind turbines are modeled. The models proposed here are based on aggregating wind turbines into an equivalent wind turbine which receives an equivalent wind of the ones incident on the aggregated wind turbines. The equivalent wind turbine presents re-scaled power capacity and the same complete model as the individual wind turbines, which supposes the main feature of the present equivalent models. Two equivalent winds are evaluated in this work: (1) the average wind from the ones incident on the aggregated wind turbines with similar winds, and (2) an equivalent incoming wind derived from the power curve and the wind incident on each wind turbine. The effectiveness of the equivalent models to represent the collective response of the wind farm at the point of common coupling to grid is demonstrated by comparison with the wind farm response obtained from the detailed model during power system dynamic simulations, such as wind fluctuations and a grid disturbance. The present models can be used for grid integration studies of large power system with an important reduction of the model order and the computation time

  18. OW ASCAT Ocean Surface Winds

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Advanced Scatterometer (ASCAT) sensor onboard the EUMETSAT MetOp polar-orbiting satellite provides ocean surface wind observations by means of radar...

  19. Wind Measurement LIDAR, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Systems & Processes Engineering Corporation (SPEC) proposes a Wind Measurement LIDAR whose sensor assembly is composed of SPEC Gen IV LIDAR seeker, with 12.8...

  20. Micrometer-Scale Magnetic-Resonance-Coupled Radio-Frequency Identification and Transceivers for Wireless Sensors in Cells

    Science.gov (United States)

    Hu, Xiaolin; Aggarwal, Kamal; Yang, Mimi X.; Parizi, Kokab B.; Xu, Xiaoqing; Akin, Demir; Poon, Ada S. Y.; Wong, H.-S. Philip

    2017-07-01

    We report the design, analysis, and characterization of a three-inductor radio-frequency identification (RFID) and transceiver system for potential applications in individual cell tracking and monitoring. The RFID diameter is 22 μ m and can be naturally internalized by living cells. Using magnetic resonance coupling, the system shows resonance shifts when the RFID is present and also when the RFID loading capacitance changes. It operates at 60 GHz with a high signal magnitude up to -50 dB and a sensitivity of 0.2. This miniaturized RFID with a high signal magnitude is a promising step toward continuous, real-time monitoring of activities at cellular levels.

  1. Multifuctional integrated sensors (MFISES).

    Energy Technology Data Exchange (ETDEWEB)

    Homeijer, Brian D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Roozeboom, Clifton [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-10-01

    Many emerging IoT applications require sensing of multiple physical and environmental parameters for: completeness of information, measurement validation, unexpected demands, improved performance. For example, a typical outdoor weather station measures temperature, humidity, barometric pressure, light intensity, rainfall, wind speed and direction. Existing sensor technologies do not directly address the demand for cost, size, and power reduction in multi-paramater sensing applications. Industry sensor manufacturers have developed integrated sensor systems for inertial measurements that combine accelerometers, gyroscopes, and magnetometers, but do not address environmental sensing functionality. In existing research literature, a technology gap exists between the functionality of MEMS sensors and the real world applications of the sensors systems.

  2. OSOAA: A Vector Radiative Transfer Model of Coupled Atmosphere-Ocean System for a Rough Sea Surface Application to the Estimates of the Directional Variations of the Water Leaving Reflectance to Better Process Multi-angular Satellite Sensors Data Over the Ocean

    Science.gov (United States)

    Chami, Malik; LaFrance, Bruno; Fougnie, Bertrand; Chowdhary, Jacek; Harmel, Tristan; Waquet, Fabien

    2015-01-01

    In this study, we present a radiative transfer model, so-called OSOAA, that is able to predict the radiance and degree of polarization within the coupled atmosphere-ocean system in the presence of a rough sea surface. The OSOAA model solves the radiative transfer equation using the successive orders of scattering method. Comparisons with another operational radiative transfer model showed a satisfactory agreement within 0.8%. The OSOAA model has been designed with a graphical user interface to make it user friendly for the community. The radiance and degree of polarization are provided at any level, from the top of atmosphere to the ocean bottom. An application of the OSOAA model is carried out to quantify the directional variations of the water leaving reflectance and degree of polarization for phytoplankton and mineral-like dominated waters. The difference between the water leaving reflectance at a given geometry and that obtained for the nadir direction could reach 40%, thus questioning the Lambertian assumption of the sea surface that is used by inverse satellite algorithms dedicated to multi-angular sensors. It is shown as well that the directional features of the water leaving reflectance are weakly dependent on wind speed. The quantification of the directional variations of the water leaving reflectance obtained in this study should help to correctly exploit the satellite data that will be acquired by the current or forthcoming multi-angular satellite sensors.

  3. A novel, fast and efficient single-sensor automatic sleep-stage classification based on complementary cross-frequency coupling estimates.

    Science.gov (United States)

    Dimitriadis, Stavros I; Salis, Christos; Linden, David

    2018-04-01

    Limitations of the manual scoring of polysomnograms, which include data from electroencephalogram (EEG), electro-oculogram (EOG), electrocardiogram (ECG) and electromyogram (EMG) channels have long been recognized. Manual staging is resource intensive and time consuming, and thus considerable effort must be spent to ensure inter-rater reliability. As a result, there is a great interest in techniques based on signal processing and machine learning for a completely Automatic Sleep Stage Classification (ASSC). In this paper, we present a single-EEG-sensor ASSC technique based on the dynamic reconfiguration of different aspects of cross-frequency coupling (CFC) estimated between predefined frequency pairs over 5 s epoch lengths. The proposed analytic scheme is demonstrated using the PhysioNet Sleep European Data Format (EDF) Database with repeat recordings from 20 healthy young adults. We validate our methodology in a second sleep dataset. We achieved very high classification sensitivity, specificity and accuracy of 96.2 ± 2.2%, 94.2 ± 2.3%, and 94.4 ± 2.2% across 20 folds, respectively, and also a high mean F1 score (92%, range 90-94%) when a multi-class Naive Bayes classifier was applied. High classification performance has been achieved also in the second sleep dataset. Our method outperformed the accuracy of previous studies not only on different datasets but also on the same database. Single-sensor ASSC makes the entire methodology appropriate for longitudinal monitoring using wearable EEG in real-world and laboratory-oriented environments. Crown Copyright © 2018. Published by Elsevier B.V. All rights reserved.

  4. A comparative study of high-resolution cone beam computed tomography and charge-coupled device sensors for detecting caries.

    Science.gov (United States)

    Young, S M; Lee, J T; Hodges, R J; Chang, T-L; Elashoff, D A; White, S C

    2009-10-01

    Conventional radiographic imaging of teeth underestimates the presence of caries. The objective of this study was to compare the efficacy of high-resolution cone beam CT (CBCT) images and conventional charge-coupled device (CCD) images for detecting proximal and occlusal caries. Non-restored, extracted human permanent premolar and molar teeth were mounted and then imaged with a 3DX Accuitomo and a CCD. We selected 92 occlusal and 100 proximal surfaces for raters to score. Of these, 36 and 25, respectively, had lesions extending into dentin. Using a five-step confidence scale, eight practising dentists evaluated the images for the presence of caries in dentin using both modalities. Actual presence and extent of caries was established with microCT imaging. For proximal surface lesions extending into dentin, the average sensitivity score using 3DX images (0.61) was almost twice that of CCD images (0.33) and the difference was significant. The specificity values for both systems were high and not significantly different from each other. For occlusal surfaces, raters detected significantly more lesions in the enamel or dentin when using the 3DX images than when using CCD images. However, the raters also had significantly lower average specificity scores for the 3DX images compared with the CCD images for lesions at both depths. Practising dentists were able to improve their detection of proximal-surface caries extending into the dentin, but not occlusal caries, using 3DX high-resolution cone beam CT images compared with CCD images.

  5. Sensing the wind profile

    DEFF Research Database (Denmark)

    Pena Diaz, Alfredo

    This thesis consists of two parts. The first is a synopsis of the theoretical progress of the study that is based on a number of journal papers. The papers, which constitute the second part of the report, aim to analyze, measure, and model the wind prole in and beyond the surface layer by combining...... measurements are averaged for several stability conditions and compare well with the surface-layer wind profile. At Høvsøre, it is sufficient to scale the wind speed with the surface friction velocity, whereas at Horns Rev a new scaling is added, due to the variant roughness length. This new scaling is coupled...

  6. Wind Energy

    International Nuclear Information System (INIS)

    Rodriguez D, J.M.

    1998-01-01

    The general theory of the wind energy conversion systems is presented. The availability of the wind resource in Colombia and the ranges of the speed of the wind in those which is possible economically to use the wind turbines are described. It is continued with a description of the principal technological characteristics of the wind turbines and are split into wind power and wind-powered pumps; and its use in large quantities grouped in wind farms or in autonomous systems. Finally, its costs and its environmental impact are presented

  7. A novel angular acceleration sensor based on the electromagnetic induction principle and investigation of its calibration tests.

    Science.gov (United States)

    Zhao, Hao; Feng, Hao

    2013-08-12

    An angular acceleration sensor can be used for the dynamic analysis of human and joint motions. In this paper, an angular acceleration sensor with novel structure based on the principle of electromagnetic induction is designed. The method involves the construction of a constant magnetic field by the excitation windings of sensor, and the cup-shaped rotor that cut the magnetic field. The output windings of the sensor generate an electromotive force, which is directly proportional to the angular acceleration through the electromagnetic coupling when the rotor has rotational angular acceleration. The mechanical structure and the magnetic working circuit of the sensor are described. The output properties and the mathematical model including the transfer function and state-space model of the sensor are established. The asymptotical stability of the sensor when it is working is verified by the Lyapunov Theorem. An angular acceleration calibration device based on the torsional pendulum principle is designed. The method involves the coaxial connection of the angular acceleration sensor, torsion pendulum and a high-precision angle sensor, and then an initial external force is applied to the torsion pendulum to produce a periodic damping angle oscillation. The angular acceleration sensor and the angle sensor will generate two corresponding electrical signals. The sensitivity coefficient of the angular acceleration sensor can be obtained after processing these two-channel signals. The experiment results show that the sensitivity coefficient of the sensor is about 17.29 mv/Krad·s2. Finally, the errors existing in the practical applications of the sensor are discussed and the corresponding improvement measures are proposed to provide effective technical support for the practical promotion of the novel sensor.

  8. Acoustic and geophysical measurement of infrasound from turbines at wind farms

    Energy Technology Data Exchange (ETDEWEB)

    Hepburn, H.G. [Hepburn Exploration Inc., Canmore, AB (Canada)

    2005-07-01

    An experiment was conducted at the Castle River Wind Farm in southern Alberta to measure and characterize infrasound from the turbines. The wind farm contains one 600 MW turbine and fifty-nine 660 MW wind turbines. Three types of sensors were used to measure both the low and high frequency acoustic energy and geophysical sound levels. These included low frequency geophones, acoustic microphones and a precision sound analyzer. Data was recorded for low, medium and high wind states, with the entire wind turbine array operating, and with the entire wind farm stopped. Downwind telemetry measurements were recorded for 30 continuous 50 metre offsets, up to a distance of 1450 metres from the wind farm. The objective of the project was to characterize the ambient noise levels and sound emitted by the turbines. Measurements were taken for wind speed and direction, atmospheric pressure, atmospheric temperature and turbine related data. Visual observations included atmospheric conditions, extraneous sources of noise such as aircraft, trains, motor vehicle traffic, highway noise, bird song, crickets and the rotational state of the turbines. It was concluded that for studying low frequency sound, the linear dB scale should be used instead of the dBA scale. Measurements of frequencies down to 6.3 Hz, showed that infrasound emission from the Castle River Wind Farm is not a significant concern. Lower frequencies down to about 2.5 Hz also confirmed that infrasound emissions are not significantly above the ambient noise levels. Any infrasound emissions were strongly coupled to the ground and were attenuated quickly. Time domain measurements showed that at all wind speeds and for frequencies up to 270 Hz, wind noise was actually attenuated when the wind farm is in operation. The noise levels were higher when the turbines were not turning. This finding was confirmed through spectral analysis. 12 refs., 2 tabs., 46 figs.

  9. Surface Wind and Upper-Ocean Variability Associated with the Madden-Julian Oscillation Simulated by the Coupled Ocean-Atmosphere Mesoscale Prediction System

    Science.gov (United States)

    2013-07-01

    temperature is observed during the suppressed phase of the MJO because of the weak winds and large shortwave radiation (Weller and Anderson 1996...western PacificOceans (e.g.,Weller andAnderson 1996; Soloviev and Lukas 1997; Bellenger and Duvel 2009). The diurnal cycle of the solar radiation ...the difference in surface shortwave radiation caused by the small-scale cloud variability, which cannot be resolved by the atmospheric model. Also

  10. Sensing the wind profile

    Energy Technology Data Exchange (ETDEWEB)

    Pena, A.

    2009-03-15

    This thesis consists of two parts. The first is a synopsis of the theoretical progress of the study that is based on a number of journal papers. The papers, which constitute the second part of the report, aim to analyze, measure, and model the wind prole in and beyond the surface layer by combining observations from cup anemometers with lidars. The lidar is necessary to extend the measurements on masts at the Horns Rev offshore wind farm and over at land at Hoevsoere, Denmark. Both sensing techniques show a high degree of agreement for wind speed measurements performed at either sites. The wind speed measurements are averaged for several stability conditions and compare well with the surface-layer wind profile. At Hoevsoere, it is sufficient to scale the wind speed with the surface friction velocity, whereas at Horns Rev a new scaling is added, due to the variant roughness length. This new scaling is coupled to wind prole models derived for flow over the sea and tested against the wind proles up to 160 m at Horns Rev. The models, which account for the boundary-layer height in stable conditions, show better agreement with the measurements than compared to the traditional theory. Mixing-length parameterizations for the neutral wind prole compare well with length-scale measurements up to 300 m at Hoevsoere and 950 m at Leipzig. The mixing-length-derived wind proles strongly deviate from the logarithmic wind prole, but agree better with the wind speed measurements. The length-scale measurements are compared to the length scale derived from a spectral analysis performed up to 160 m at Hoevsoere showing high agreement. Mixing-length parameterizations are corrected to account for stability and used to derive wind prole models. These compared better to wind speed measurements up to 300 m at Hoevsoere than the surface-layer wind prole. The boundary-layer height is derived in nearneutral and stable conditions based on turbulent momentum uxes only and in unstable conditions

  11. Point Coupled Displacement Sensor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Real-time displacement measurement techniques are needed to acquire aerodynamic and structural system characteristics in flight. This proposal describes the...

  12. Wind Turbines Adaptation to the Variability of the Wind Field

    Science.gov (United States)

    Ulianov, Yuriy; Martynenko, Gennadii; Misaylov, Vitaliy; Soliannikova, Iuliia

    2010-05-01

    including combined RF-acoustic antenna installed coaxially with the gondola of the wind power turbine. The work of the technique is synchronized with rotation of blades to eliminate their shielding action. Dangerous in terms of dynamic strength is the wind load pulse, the rise time which is comparable with the period of the natural frequency of the wind turbine elements (blade, tower, rotor, etc.). The amplitude decay of resonant vibrations at critical values of the speed of rotation can be realized through the use of mechanical elastic supports with nonlinear artificial dampers. They have a high coefficient of resistance, but may cause self-excited oscillations. We propose the way to deal with raised vibration of wind turbine elements at the expense of short-term increase of damping in the range of critical rotary axis speeds or during impulsive effects of wind loadings (wind gusts). This is possible through the use of non-linear electromagnetic dampers or active magnetic bearings. Their feature is the possibility of varying the mechanical stiffness and damping properties by changing the electrical parameters of electromagnets. The controlling of these parameters is carried out by the control system (CS) with the information feedback on the spatial-temporal structure of the wind field obtained from IRASS. In the composition of the CS can also be included the rotational speed sensor of the WPT rotor. This approach to the adaptation of wind turbines will allow to reduce vibration and to perform early compensation of the load on their components, which arise under the wind gusts. In addition, corrections about the wind field obtained with IRASS, would increase the mean power of WPT.

  13. Wind Structure and Wind Loading

    DEFF Research Database (Denmark)

    Brorsen, Michael

    The purpose of this note is to provide a short description of wind, i.e. of the flow in the atmosphere of the Earth and the loading caused by wind on structures. The description comprises: causes to the generation of windhe interaction between wind and the surface of the Earthhe stochastic nature...... of windhe interaction between wind and structures, where it is shown that wind loading depends strongly on this interaction...

  14. Reconfigurable Sensor Monitoring System

    Science.gov (United States)

    Alhorn, Dean C. (Inventor); Dutton, Kenneth R. (Inventor); Howard, David E. (Inventor); Smith, Dennis A. (Inventor)

    2017-01-01

    A reconfigurable sensor monitoring system includes software tunable filters, each of which is programmable to condition one type of analog signal. A processor coupled to the software tunable filters receives each type of analog signal so-conditioned.

  15. Organic magnetic field sensor

    Science.gov (United States)

    McCamey, Dane; Boehme, Christoph

    2017-01-24

    An organic, spin-dependent magnetic field sensor (10) includes an active stack (12) having an organic material with a spin-dependence. The sensor (10) also includes a back electrical contact (14) electrically coupled to a back of the active stack (12) and a front electrical contact (16) electrically coupled to a front of the active stack (12). A magnetic field generator (18) is oriented so as to provide an oscillating magnetic field which penetrates the active stack (12).

  16. Energy modeling and economic optimization of a hybrid wind/photovoltaic system coupled with the grid and associated to an accumulator

    International Nuclear Information System (INIS)

    Gergaud, Olivier

    2002-01-01

    This thesis deals of the production of photovoltaic and wind electricity connected to the grid and having a storage. The principal interests of such a system are the clean production on the place of consumption, the mutualization of resources and energy storage, and the security of supply. Models are developed and compared successfully with reality thanks to an experimental device instrumented completion (2 kWp PV, 2 x 750 Wp wind generators, 15 kWh lead-acid battery). We obtain then a model that proves both accurate enough to distinguish energy transfers and fast enough to enable optimizing the sizing and handling of the system's energy transfers. Having energy, economic models and tools of dimensioning and management, we carried out a study of optimization based on simple cases of systems multi-production. To tackle this difficult problem, we then placed ourselves within the framework of a producer-consumer whose conditions weather with the site of production as its own consumption are supposed to be known, therefore deterministic. The problems were then the search for strategies of management of flows of energy and the fundamental characteristics of the elements of the installation optimal allowing the minimization of the energy cost. (author) [fr

  17. Detection of influenza viruses by coupling multiplex reverse-transcription loop-mediated isothermal amplification with cascade invasive reaction using nanoparticles as a sensor

    Directory of Open Access Journals (Sweden)

    Ge Y

    2017-04-01

    Full Text Available Yiyue Ge,1 Qiang Zhou,2 Kangchen Zhao,1 Ying Chi,1 Bin Liu,3 Xiaoyan Min,4 Zhiyang Shi,1 Bingjie Zou,2 Lunbiao Cui1 1Institute of Pathogenic Microbiology, Key Laboratories of Enteric Pathogenic Microbiology (Ministry of Health, Jiangsu Provincial Center for Disease Control and Prevention, 2Department of Pharmacology, Jinling Hospital, Medical School of Nanjing University, 3Department of Biomedical Engineering, Nanjing Medical University, 4Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China Abstract: Influenza virus infections represent a worldwide public health and economic problem due to the significant morbidity and mortality caused by seasonal epidemics and pandemics. Sensitive and convenient methodologies for detection of influenza viruses are essential for further disease control. Loop-mediated isothermal amplification (LAMP is the most commonly used method of nucleic acid isothermal amplification. However, with regard to multiplex LAMP, differentiating the ladder-like LAMP products derived from multiple targets is still challenging today. The requirement of specialized instruments has further hindered the on-site application of multiplex LAMP. We have developed an integrated assay coupling multiplex reverse transcription LAMP with cascade invasive reaction using nanoparticles (mRT-LAMP-CIRN as a sensor for the detection of three subtypes of influenza viruses: A/H1N1pdm09, A/H3 and influenza B. The analytic sensitivities of the mRT-LAMP-CIRN assay were 101 copies of RNA for both A/H1N1pdm09 and A/H3, and 102 copies of RNA for influenza B. This assay demonstrated highly specific detection of target viruses and could differentiate them from other genetically or clinically related viruses. Clinical specimen analysis showed the mRT-LAMP-CIRN assay had an overall sensitivity and specificity of 98.3% and 100%, respectively. In summary, the mRT-LAMP-CIRN assay is

  18. Bioinspired Sensor Systems

    Directory of Open Access Journals (Sweden)

    Manel del Valle

    2011-10-01

    Full Text Available This editorial summarizes and classifies the contributions presented by different authors to the special issue of the journal Sensors dedicated to Bioinspired Sensor Systems. From the coupling of sensor arrays or networks, plus computer processing abilities, new applications to mimic or to complement human senses are arising in the context of ambient intelligence. Principles used, and illustrative study cases have been presented permitting readers to grasp the current status of the field.

  19. Experimental Evaluation of Turning Vane Designs for High-speed and Coupled Fan-drive Corners of 0.1-scale Model of NASA Lewis Research Center's Proposed Altitude Wind Tunnel

    Science.gov (United States)

    Gelder, Thomas F.; Moore, Royce D.; Shyne, Rickey J.; Boldman, Donald R.

    1987-01-01

    Two turning vane designs were experimentally evaluated for the fan-drive corner (corner 2) coupled to an upstream diffuser and the high-speed corner (corner 1) of the 0.1 scale model of NASA Lewis Research Center's proposed Altitude Wind Tunnel. For corner 2 both a controlled-diffusion vane design (vane A4) and a circular-arc vane design (vane B) were studied. The corner 2 total pressure loss coefficient was about 0.12 with either vane design. This was about 25 percent less loss than when corner 2 was tested alone. Although the vane A4 design has the advantage of 20 percent fewer vanes than the vane B design, its vane shape is more complex. The effects of simulated inlet flow distortion on the overall losses for corner 1 or 2 were small.

  20. Method and apparatus for wind turbine braking

    Science.gov (United States)

    Barbu, Corneliu [Laguna Hills, CA; Teichmann, Ralph [Nishkayuna, NY; Avagliano, Aaron [Houston, TX; Kammer, Leonardo Cesar [Niskayuna, NY; Pierce, Kirk Gee [Simpsonville, SC; Pesetsky, David Samuel [Greenville, SC; Gauchel, Peter [Muenster, DE

    2009-02-10

    A method for braking a wind turbine including at least one rotor blade coupled to a rotor. The method includes selectively controlling an angle of pitch of the at least one rotor blade with respect to a wind direction based on a design parameter of a component of the wind turbine to facilitate reducing a force induced into the wind turbine component as a result of braking.

  1. A Proposal Of Simulation Model Of A Wind-Steering System For Sailing Yachts, Based On Single-Stage Servo-Pendulum Coupled With Main Rudder

    Directory of Open Access Journals (Sweden)

    Piętak Andrzej

    2015-04-01

    Full Text Available The aim of this study was to investigate possible application of fast design prototyping methods for wind-steering systems used in offshore sailing yachts. The development of such methods would help to speed up the construction work and reduce the scope of necessary experimental research, prior to implementation of the system. In the present work, based on an analysis of existing designs of windvane systems, a preliminary selection of the system configuration has been undertaken, in terms of a compromise between efficiency, performance, and design complexity. Construction design of a single-stage, servo – pendulum system, has been developed by using the Autodesk Inventor design package. Next, based on the design data, a simulation model of the system, has been produced by using Matlab - Simulink software and SimMechanics library. The model was further verified in terms of kinematics mapping with the use of Matlab visualization tools.

  2. Design of Wind Turbine Vibration Monitoring System

    Directory of Open Access Journals (Sweden)

    Shoubin Wang

    2013-04-01

    Full Text Available In order to ensure safety of wind turbine operation and to reduce the occurrence of faults as well as to improve the reliability of wind turbine operation, a vibration monitoring for wind turbine is developed. In this paper, it analyses the enlargement of all the parts of the structure and the working mechanism, the research method of wind turbine operation vibration is introduced, with the focus being the use of the sensor principle. Finally the hardware design and software of this system is introduced and the main function of this system is described, which realizes condition monitoring of the work state of wind turbines.

  3. Wind turbine storage systems

    International Nuclear Information System (INIS)

    Ibrahim, H.; Ilinca, A.; Perron, J.

    2005-01-01

    Electric power is often produced in locations far from the point of utilization which creates a challenge in stabilizing power grids, particularly since electricity cannot be stored. The production of decentralized electricity by renewable energy sources offers a greater security of supply while protecting the environment. Wind power holds the greatest promise in terms of environmental protection, competitiveness and possible applications. It is known that wind energy production is not always in phase with power needs because of the uncertainty of wind. For that reason, energy storage is the key for the widespread integration of wind energy into the power grids. This paper proposed various energy storage methods that can be used in combination with decentralized wind energy production where an imbalance exists between electricity production and consumption. Energy storage can play an essential role in bringing value to wind energy, particularly if electricity is to be delivered during peak hours. Various types of energy storage are already in use or are being developed. This paper identified the main characteristics of various electricity storage techniques and their applications. They include stationary or embarked storage for long or short term applications. A comparison of characteristics made it possible to determine which types of electricity storage are best suited for wind energy. These include gravity energy; thermal energy; compressed air energy; coupled storage with natural gas; coupled storage with liquefied gas; hydrogen storage for fuel cells; chemical energy storage; storage in REDOX batteries; storage by superconductive inductance; storage in supercondensers; and, storage as kinetic energy. 21 refs., 21 figs

  4. Extrapolating Satellite Winds to Turbine Operating Heights

    DEFF Research Database (Denmark)

    Badger, Merete; Pena Diaz, Alfredo; Hahmann, Andrea N.

    2016-01-01

    Ocean wind retrievals from satellite sensors are typically performed for the standard level of 10 m. This restricts their full exploitation for wind energy planning, which requires wind information at much higher levels where wind turbines operate. A new method is presented for the vertical...... extrapolation of satellitebased wind maps. Winds near the sea surface are obtained from satellite data and used together with an adaptation of the Monin–Obukhov similarity theory to estimate the wind speed at higher levels. The thermal stratification of the atmosphere is taken into account through a long...... effects and also, to some extent, for the limited number of satellite samples. The satellite-based and NWP-simulated wind profiles are almost equally accurate with respect to those from the mast. However, the satellite-based maps have a higher spatial resolution, which is particularly important...

  5. Bringing satellite winds to hub-height

    DEFF Research Database (Denmark)

    Badger, Merete; Pena Diaz, Alfredo; Bredesen, Rolv Erlend

    2012-01-01

    Satellite observations of the ocean surface can provide detailed information about the spatial wind variability over large areas. This is very valuable for the mapping of wind resources offshore where other measurements are costly and sparse. Satellite sensors operating at microwave frequencies...... measure the amount of radar backscatter from the sea surface, which is a function of the instant wind speed, wind direction, and satellite viewing geometry. A major limitation related to wind retrievals from satellite observations is that existing empirical model functions relate the radar backscatter...... to wind speed at the height 10 m only. The extrapolation of satellite wind fields to higher heights, which are more relevant for wind energy, remains a challenge which cannot be addressed by means of satellite data alone. As part of the EU-NORSEWInD project (2008-12), a hybrid method has been developed...

  6. Wind power

    International Nuclear Information System (INIS)

    Gipe, P.

    2007-01-01

    This book is a translation of the edition published in the USA under the title of ''wind power: renewable energy for home, farm and business''. In the wake of mass blackouts and energy crises, wind power remains a largely untapped resource of renewable energy. It is a booming worldwide industry whose technology, under the collective wing of aficionados like author Paul Gipe, is coming of age. Wind Power guides us through the emergent, sometimes daunting discourse on wind technology, giving frank explanations of how to use wind technology wisely and sound advice on how to avoid common mistakes. Since the mid-1970's, Paul Gipe has played a part in nearly every aspect of wind energy development from installing small turbines to promoting wind energy worldwide. As an American proponent of renewable energy, Gipe has earned the acclaim and respect of European energy specialists for years, but his arguments have often fallen on deaf ears at home. Today, the topic of wind power is cropping up everywhere from the beaches of Cape Cod to the Oregon-Washington border, and one wind turbine is capable of producing enough electricity per year to run 200 average American households. Now, Paul Gipe is back to shed light on this increasingly important energy source with a revised edition of Wind Power. Over the course of his career, Paul Gipe has been a proponent, participant, observer, and critic of the wind industry. His experience with wind has given rise to two previous books on the subject, Wind Energy Basics and Wind Power for Home and Business, which have sold over 50,000 copies. Wind Power for Home and Business has become a staple for both homeowners and professionals interested in the subject, and now, with energy prices soaring, interest in wind power is hitting an all-time high. With chapters on output and economics, Wind Power discloses how much you can expect from each method of wind technology, both in terms of energy and financial savings. The book updated models

  7. Detailed dayside auroral morphology as a function of local time for southeast IMF orientation: implications for solar wind-magnetosphere coupling

    Directory of Open Access Journals (Sweden)

    P. E. Sandholt

    2004-11-01

    Full Text Available In two case studies we elaborate on spatial and temporal structures of the dayside aurora within 08:00-16:00 magnetic local time (MLT and discuss the relationship of this structure to solar wind-magnetosphere interconnection topology and the different stages of evolution of open field lines in the Dungey convection cycle. The detailed 2-D auroral morphology is obtained from continuous ground observations at Ny Ålesund (76° magnetic latitude (MLAT, Svalbard during two days when the interplanetary magnetic field (IMF is directed southeast (By>0; Bz<0. The auroral activity consists of the successive activations of the following forms: (i latitudinally separated, sunward moving, arcs/bands of dayside boundary plasma sheet (BPS origin, in the prenoon (08:00-11:00 MLT and postnoon (12:00-16:00 MLT sectors, within 70-75° MLAT, (ii poleward moving auroral forms (PMAFs emanating from the pre- and postnoon brightening events, and (iii a specific activity appearing in the 07:00-10:00 MLT/75-80° MLAT during the prevailing IMF By>0 conditions. The pre- and postnoon activations are separated by a region of strongly attenuated auroral activity/intensity within the 11:00-12:00 MLT sector, often referred to as the midday gap aurora. The latter aurora is attributed to the presence of component reconnection at the subsolar magnetopause where the stagnant magnetosheath flow lead to field-aligned currents (FACs which are of only moderate intensity. The much more active and intense aurorae in the prenoon (07:00-11:00 MLT and postnoon (12:00-16:00 MLT sectors originate in magnetopause reconnection events that are initiated well away from the subsolar point. The high-latitude auroral activity in the prenoon sector (feature iii is found to be accompanied by a convection channel at the polar cap boundary. The associated ground magnetic deflection (DPY is a Svalgaard-Mansurov effect. The convection channel is attributed to effective momentum transfer from the

  8. Wind Power Plant Voltage Control Optimization with Embedded Application of Wind Turbines and Statcom

    DEFF Research Database (Denmark)

    Wu, Qiuwei; Solanas, Jose Ignacio Busca; Zhao, Haoran

    2017-01-01

    Increasing wind power penetration and the size of wind power plants (WPPs) brings challenges to the operation and control of power systems. Most of WPPs are located far from load centers and the short circuit ratio at the point of common coupling (PCC) is low. The fluctuations of wind power...

  9. Roughness Effects on Wind-Turbine Wake Dynamics in a Boundary-Layer Wind Tunnel

    DEFF Research Database (Denmark)

    Barlas, Emre; Buckingham, Sophia; van Beeck, Jeroen

    2016-01-01

    Increasing demand in wind energy has resulted in increasingly clustered wind farms, and raised the interest in wake research dramatically in the last couple of years. To this end, the present work employs an experimental approach with scaled three-bladed wind-turbine models in a large boundary-la...

  10. Modular sensor network node

    Science.gov (United States)

    Davis, Jesse Harper Zehring [Berkeley, CA; Stark, Jr., Douglas Paul; Kershaw, Christopher Patrick [Hayward, CA; Kyker, Ronald Dean [Livermore, CA

    2008-06-10

    A distributed wireless sensor network node is disclosed. The wireless sensor network node includes a plurality of sensor modules coupled to a system bus and configured to sense a parameter. The parameter may be an object, an event or any other parameter. The node collects data representative of the parameter. The node also includes a communication module coupled to the system bus and configured to allow the node to communicate with other nodes. The node also includes a processing module coupled to the system bus and adapted to receive the data from the sensor module and operable to analyze the data. The node also includes a power module connected to the system bus and operable to generate a regulated voltage.

  11. Robust Kalman filter design for predictive wind shear detection

    Science.gov (United States)

    Stratton, Alexander D.; Stengel, Robert F.

    1991-01-01

    Severe, low-altitude wind shear is a threat to aviation safety. Airborne sensors under development measure the radial component of wind along a line directly in front of an aircraft. In this paper, optimal estimation theory is used to define a detection algorithm to warn of hazardous wind shear from these sensors. To achieve robustness, a wind shear detection algorithm must distinguish threatening wind shear from less hazardous gustiness, despite variations in wind shear structure. This paper presents statistical analysis methods to refine wind shear detection algorithm robustness. Computational methods predict the ability to warn of severe wind shear and avoid false warning. Comparative capability of the detection algorithm as a function of its design parameters is determined, identifying designs that provide robust detection of severe wind shear.

  12. Wind Speed Measurement by Paper Anemometer

    Science.gov (United States)

    Zhong, Juhua; Cheng, Zhongqi; Guan, Wenchuan

    2011-01-01

    A simple wind speed measurement device, a paper anemometer, is fabricated based on the theory of standing waves. In providing the working profile of the paper anemometer, an experimental device is established, which consists of an anemometer sensor, a sound sensor, a microphone, paper strips, a paper cup, and sonic acquisition software. It shows…

  13. MITRE sensor layer prototype

    Science.gov (United States)

    Duff, Francis; McGarry, Donald; Zasada, David; Foote, Scott

    2009-05-01

    The MITRE Sensor Layer Prototype is an initial design effort to enable every sensor to help create new capabilities through collaborative data sharing. By making both upstream (raw) and downstream (processed) sensor data visible, users can access the specific level, type, and quantities of data needed to create new data products that were never anticipated by the original designers of the individual sensors. The major characteristic that sets sensor data services apart from typical enterprise services is the volume (on the order of multiple terabytes) of raw data that can be generated by most sensors. Traditional tightly coupled processing approaches extract pre-determined information from the incoming raw sensor data, format it, and send it to predetermined users. The community is rapidly reaching the conclusion that tightly coupled sensor processing loses too much potentially critical information.1 Hence upstream (raw and partially processed) data must be extracted, rapidly archived, and advertised to the enterprise for unanticipated uses. The authors believe layered sensing net-centric integration can be achieved through a standardize-encapsulate-syndicateaggregate- manipulate-process paradigm. The Sensor Layer Prototype's technical approach focuses on implementing this proof of concept framework to make sensor data visible, accessible and useful to the enterprise. To achieve this, a "raw" data tap between physical transducers associated with sensor arrays and the embedded sensor signal processing hardware and software has been exploited. Second, we encapsulate and expose both raw and partially processed data to the enterprise within the context of a service-oriented architecture. Third, we advertise the presence of multiple types, and multiple layers of data through geographic-enabled Really Simple Syndication (GeoRSS) services. These GeoRSS feeds are aggregated, manipulated, and filtered by a feed aggregator. After filtering these feeds to bring just the type

  14. Effects of hydrogen sulfide on the heme coordination structure and catalytic activity of the globin-coupled oxygen sensor AfGcHK

    Czech Academy of Sciences Publication Activity Database

    Fojtíková, V.; Bartošová, M.; Man, Petr; Stráňava, M.; Shimizu, T.; Martínková, M.

    2016-01-01

    Roč. 29, č. 4 (2016), s. 715-729 ISSN 0966-0844 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:61388971 Keywords : Hydrogen sulfide * Heme-based oxygen sensor * Autophosphorylation Subject RIV: CE - Biochemistry Impact factor: 2.183, year: 2016

  15. Solar wind interaction with Mars' upper atmosphere: Results from 3-D studies using one-way coupling between the Multi-fluid MHD, the M-GITM and the AMPS models

    Science.gov (United States)

    Dong, C.; Bougher, S. W.; Ma, Y.; Toth, G.; Lee, Y.; Nagy, A. F.; Tenishev, V.; Pawlowski, D. J.; Meng, X.; Combi, M. R.

    2013-12-01

    The study of the solar wind interaction with Mars upper atmosphere/ionosphere has triggered a great of interest in recent years. Among the large number of topics in this research area, the investigation of ion escape fluxes has become increasingly important due to its potential impact on the long-term evolution of Mars atmosphere (e.g., loss of water) over its history. In the present work, we adopt the 3-D Mars cold neutral atmosphere profiles (0~300 km) from the newly developed and validated Mars Global Ionosphere Thermosphere Model (M-GITM) and the 3-D hot oxygen profiles (100km~5RM) from the exosphere Monte Carlo model Adaptive Mesh Particle Simulator (AMPS). We apply these 3-D model outputs fields into the 3-D BATS-R-US Mars multi-fluid MHD model (100km~20RM) that can better simulate the interplay between Mars upper atmosphere and solar wind by considering the dynamics of individual ion species. The multi-fluid model solves separate continuity, momentum and energy equations for each ion species (H+, O+, O2+, CO2+). The M-GITM model together with the AMPS exosphere model take into account the effects of solar cycle and seasonal variations on both cold and hot neutral atmospheres, allowing us to investigate the corresponding effects on the Mars upper atmosphere ion escape by using a one-way coupling approach, i.e., both the M-GITM and AMPS model outputs are used as the inputs for the multi-fluid model and M-GITM is used as input into the AMPS exosphere model. The calculations are carried out for selected cases with different nominal solar wind, solar cycle and crustal field orientation conditions. This work has the potential to provide predictions of ion escape rates for comparison to future data to be returned by the MAVEN primary mission (2014-2016) and thereby improve our understanding of present day escape processes. Acknowledgments: The work presented here was supported by NASA grants NNH10CC04C, NNX09AL26G, NSF grant ATM-0535811.

  16. Low-noise Magnetic Sensors

    KAUST Repository

    Kosel, Jurgen

    2014-03-27

    Magnetic sensors are disclosed, as well as methods for fabricating and using the same. In some embodiments, an EMR effect sensor includes a semiconductor layer. In some embodiments, the EMR effect sensor may include a conductive layer substantially coupled to the semiconductor layer. In some embodiments, the EMR effect sensor may include a voltage lead coupled to the conductive layer. In some embodiments, the voltage lead may be configured to provide a voltage for measurement by a voltage measurement circuit. In some embodiments, the EMR effect sensor may include a second voltage lead coupled to the semiconductor layer. In some embodiments, the second voltage lead may be configured to provide a voltage for measurement by a voltage measurement circuit. Embodiments of a Hall effect sensor having the same or similar structure are also disclosed.

  17. Basic DTU Wind Energy controller

    DEFF Research Database (Denmark)

    Hansen, Morten Hartvig; Henriksen, Lars Christian

    This report contains a description and documentation, including source code, of the basic DTU Wind Energy controller applicable for pitch-regulated, variable speed wind turbines. The controller features both partial and full load operation capabilities as well as switching mechanisms ensuring...... smooth switching between the two modes of operation. The partial and full load controllers are both based on classical proportional-integral control theory as well as additional filters such as an optional drive train damper and a notch filter mitigating the influence of rotor speed dependent variations...... in the feedback. The controller relies on generator speed as the primary feedback sensor. Additionally, the reference generator power is used as a feedback term to smoothen the switching between partial and full load operation. Optionally, a low-pass filtered wind speed measurement can be used for wind speed...

  18. Wind-stilling in the light of wind speed measurements: the Czech experience

    Czech Academy of Sciences Publication Activity Database

    Brázdil, Rudolf; Valík, A.; Zahradníček, Pavel; Řezníčková, Ladislava; Tolasz, R.; Možný, M.

    2018-01-01

    Roč. 74 (2018), s. 131-143 ISSN 0936-577X R&D Projects: GA MŠk(CZ) LO1415; GA ČR(CZ) GA15-11805S Institutional support: RVO:86652079 Keywords : universal anemograph * vaisala wind-speed sensors * wind speed * homogenisation * wind stilling * Czech Republic Subject RIV: DG - Athmosphere Sciences, Meteorology OBOR OECD: Meteorology and atmospheric sciences Impact factor: 1.578, year: 2016

  19. Wind energy

    CERN Document Server

    Woll, Kris

    2016-01-01

    Across the country, huge open spaces are covered in gently turning wind turbines. In Wind Energy, explore how these machines generate electricity, learn about the history of wind power, and discover the latest advances in the field. Easy-to-read text, vivid images, and helpful back matter give readers a clear look at this subject. Features include a table of contents, infographics, a glossary, additional resources, and an index. Aligned to Common Core Standards and correlated to state standards. Core Library is an imprint of Abdo Publishing, a division of ABDO.

  20. Characterization of NCPA Infrasound Sensors

    Science.gov (United States)

    Hart, D. M.; Jones, K. R.; Sauter, A.

    2011-12-01

    By adding NCPA (National Center for Physical Acoustics) Infrasound sensors to the eastern-half of the Transportable Array, the scientific community has gained another powerful tool for studying natural processes. In an effort to characterize the sensors, including the effect of the wind filter and acoustical porting, researchers at Sandia National Labs (SNL) FACT Site and IRIS PASSCAL have performed a series of tests that resulted in good agreement with the NCPA-provided response (20mV/Pa +-10%, .007Hz high-pass corner frequency). Through independent testing and verification we have gained confidence in the sensor's linearity over the pressure range tested, a measure of power usage, and a measure of the dynamic range the sensors are capable of delivering, indicating the instruments can measure signals well below the Bowman (2005) Acoustic Low Noise Model up to 8Hz. Researchers at the SNL Fact site have the capabilities not only to test the NCPA sensor in an acoustic pressure chamber, but also to test the equivalent of the entire infrasound system used in the TA stations: NCPA sensor, tubing, and wind reduction design (a PVC filter buried in a bag of pumice stone). SNL tests with this fully-ported infrasound system characterize the full system response. We found that the tubing used to port the sensor to the external wind reduction device adds a measurable 15Hz resonance to the response and influences the high-frequency roll-off point. At PASSCAL, we have performed an acceptance test on more than 350 NCPA sensors, and in the process, have collected statistics on their relative gains. The standard deviation of the relative gain for all measured sensors is 5.32%. For 59 repeated tests of the two NCPA sensors used as references, the standard deviation is .15%, which suggests that acceptance testing can be used to constrain the gain of individual NCPA sensors much tighter than the population deviation.

  1. Wind Turbine Controller to Mitigate Structural Loads on a Floating Wind Turbine Platform

    Energy Technology Data Exchange (ETDEWEB)

    Fleming, Paul A.; Peiffer, Antoine; Schlipf, David

    2016-06-24

    This paper summarizes the control design work that was performed to optimize the controller of a wind turbine on the WindFloat structure. The WindFloat is a semi-submersible floating platform designed to be a support structure for a multi-megawatt power-generating wind turbine. A controller developed for a bottom-fixed wind turbine configuration was modified for use when the turbine is mounted on the WindFloat platform. This results in an efficient platform heel resonance mitigation scheme. In addition several control modules, designed with a coupled linear model, were added to the fixed-bottom baseline controller. The approach was tested in a fully coupled nonlinear aero-hydroelastic simulation tool in which wind and wave disturbances were modeled. This testing yielded significant improvements in platform global performance and tower-base-bending loading.

  2. World Wind

    Data.gov (United States)

    National Aeronautics and Space Administration — World Wind allows any user to zoom from satellite altitude into any place on Earth, leveraging high resolution LandSat imagery and SRTM elevation data to experience...

  3. Coastal Ohio Wind Project

    Energy Technology Data Exchange (ETDEWEB)

    Gorsevski, Peter [Bowling Green State Univ., OH (United States); Afjeh, Abdollah [Univ. of Toledo, OH (United States); Jamali, Mohsin [Univ. of Toledo, OH (United States); Bingman, Verner [Bowling Green State Univ., OH (United States)

    2014-04-04

    to collect additional monitoring parameters such as passage rates, flight paths, flight directions, and flight altitudes of nocturnal migrating species. Our work focused on the design and development of custom built marine radar that used t-bar and parabolic dish antennas. The marine radar used in the project was Furuno (XANK250) which was coupled with a XIR3000B digitizing card from Russell Technologies for collection of the radar data. The radar data was processed by open source radR processing software using different computational techniques and methods. Additional data from thermal IR imaging cameras were collected to detect heat emitted from objects and provide information on movements of birds and bats, data which we used for different animal flight behavior analysis. Lastly, the data from the acoustic recorders were used to provide the number of bird calls for assessing patterns and peak passage rates during migration. The development of the geospatial database included collection of different data sources that are used to support offshore wind turbine development. Many different data sets were collected and organized using initial version of web-based repository software tools that can accommodate distribution of rectified pertinent data sets such as the lake depth, lake bottom engineering parameters, extent of ice, navigation pathways, wind speed, important bird habitats, fish efforts and other layers that are relevant for supporting robust offshore wind turbine developments. Additional geospatial products developed during the project included few different prototypes for offshore wind farm suitability which can involve different stakeholders and participants for solving complex planning problems and building consensus. Some of the prototypes include spatial decision support system (SDSS) for collaborative decision making, a web-based Participatory Geographic Information System (PGIS) framework for evaluating importance of different decision alternatives

  4. 78 FR 29364 - Exelon Corporation, Exelon Wind 1, LLC, Exelon Wind 2, LLC, Exelon Wind 3, LLC, Exelon Wind 4...

    Science.gov (United States)

    2013-05-20

    ...-005, QF07-257-004] Exelon Corporation, Exelon Wind 1, LLC, Exelon Wind 2, LLC, Exelon Wind 3, LLC, Exelon Wind 4, LLC, Exelon Wind 5, LLC, Exelon Wind 6, LLC, Exelon Wind 7, LLC, Exelon Wind 8, LLC, Exelon Wind 9, LLC, Exelon Wind 10, LLC, Exelon Wind 11, LLC, High Plains Wind Power, LLC v. Xcel Energy...

  5. SimWIND: A geospatial infrastructure model for optimizing wind power generation and transmission

    International Nuclear Information System (INIS)

    Phillips, Benjamin R.; Middleton, Richard S.

    2012-01-01

    Wind is a clean, enduring energy resource with the capacity to satisfy 20% or more of U.S. electricity demand. Presently, wind potential is limited by a paucity of electrical transmission lines and/or capacity between promising wind resources and primary load centers. We present the model SimWIND to address this shortfall. SimWIND is an integrated optimization model for the geospatial arrangement and cost minimization of wind-power generation–transmission–delivery infrastructure. Given a set of possible wind-farm sites, the model simultaneously determines (1) where and how much power to generate and (2) where to build new transmission infrastructure and with what capacity in order to minimize the cost for delivering a targeted amount of power to load. Costs and routing of transmission lines consider geographic and social constraints as well as electricity losses. We apply our model to the Electric Reliability Council of Texas (ERCOT) Interconnection, considering scenarios that deliver up to 20 GW of new wind power. We show that SimWIND could potentially reduce ERCOT's projected ∼$5B transmission network upgrade line length and associated costs by 50%. These results suggest that SimWIND's coupled generation–transmission–delivery modeling approach could play a critical role in enhancing planning efforts and reducing costs for wind energy integration. - Highlights: ► Wind power is limited by transmission capacity between resources and demands. ► SimWIND is a coupled generation-transmission-delivery model for wind infrastructure. ► The model minimizes costs considering realistic transmission routing and networking. ► We show that SimWIND could save 50% of $5B costs for expanding the Texas grid. ► Results suggest SimWIND may play a critical role in enhancings wind planning efforts.

  6. Non-Contact Linear Actuator Position Sensor Having a PID-Compensating Controller

    Science.gov (United States)

    Alhorn, Dean C. (Inventor); Howard, David E. (Inventor)

    2001-01-01

    A position sensor or controller generates a response signal in existing armature windings of an actuator and detects the response signal to determine the position of the armature. To generate the response signal, the actuator includes a sensor excitation winding near the armature. Two sensor excitation windings can be provided, above and below the armature, to cancel out z components and thus allow for a variable gap. The sensor excitation winding or windings are supplied with an excitation signal to induce the response signal in the armature windings. The response signal is derived by differentially amplifying and frequency filtering a raw output of the armature windings. The response signal is demodulated to determine position. If a position controller rather than a mere sensor is desired, the position signal can be buffered, PID compensated, amplified, and fed back to the armature windings.

  7. Multi-life-stage monitoring system based on fibre bragg grating sensors for more reliable wind turbine rotor blades: Experimental and numerical analysis of deformation and failure in composite materials

    DEFF Research Database (Denmark)

    Pereira, Gilmar Ferreira

    , design and optimisation of offshore wind turbines. The MareWint main scientific objective is to optimise the design of offshore wind turbines, maximise reliability, and minimise maintenance costs. Integrated within the innovative rotor blades work-package, this PhD project is focused on damage analysis...... and structural health monitoring of wind turbine blades. The work presented sets the required framework to develop a monitoring system based on fibre Bragg gratings (FBG), which can be applied to the different life stages of a wind turbine blade. In this concept, the different measured physical parameters......, and supported/validated by numerical models, software tools, signal post-processing, and experimental validation. The damage in the wind turbine rotor blade is analysed from a material perspective (fibre reinforced polymers) and used as a design property, meaning that damage is accepted in an operational wind...

  8. Coupling atmospheric and ocean wave models for storm simulation

    DEFF Research Database (Denmark)

    Du, Jianting

    is found to have similar spatial patterns as the Advanced Synthetic Aperture Radar (ASAR) radar backscatter; both show features of the bathymetry. Analysis of the wind field from the non-coupled and WBLM coupled experiments show that the wind-wave coupling is important in strong wind conditions, varying......This thesis studies the wind-wave interactions through the coupling between the atmospheric model and ocean surface wave models. Special attention is put on storm simulations in the North Sea for wind energy applications in the coastal zones. The two aspects, namely storm conditions and coastal...... areas, are challenging for the wind-wave coupling system because: in storm cases, the wave field is constantly modified by the fast varying wind field; in coastal zones, the wave field is strongly influenced by the bathymetry and currents. Both conditions have complex, unsteady sea state varying...

  9. Ocean Surface Wind Speed of Hurricane Helene Observed by SAR

    DEFF Research Database (Denmark)

    Xu, Qing; Cheng, Yongcun; Li, Xiaofeng

    2011-01-01

    The hurricanes can be detected by many remote sensors, but synthetic aperture radar (SAR) can yield high-resolution (sub-kilometer) and low-level wind information that cannot be seen below the cloud by other sensors. In this paper, an assessment of SAR capability of monitoring high......-resolution hurricane was conducted. A case study was carried out to retrieve ocean surface wind field from C-band RADARSAT-1 SAR image which captured the structure of hurricane Helene over the Atlantic Ocean on 20 September, 2006. With wind direction from the outputs of U.S. Navy Operational Global Atmospheric...... CIWRAP models have been tested to extract wind speed from SAR data. The SAR retrieved ocean surface winds were compared to the aircraft wind speed observations from stepped frequency microwave radiometer (SFMR). The results show the capability of hurricane wind monitoring by SAR....

  10. WIND TURBINES FOR WIND POWER INSTALLATIONS

    Directory of Open Access Journals (Sweden)

    Barladean A.S.

    2008-04-01

    Full Text Available The problem of wind turbine choice for wind power stations is examined in this paper. It is shown by comparison of parameters and characteristics of wind turbines, that for existing modes and speeds of wind in territory of Republic of Moldova it is necessary to use multi-blade small speed rotation wind turbines of fan class.

  11. ESPC Coupled Global Prediction System

    Science.gov (United States)

    2015-09-30

    through an improvement to the sea ice albedo . Fig. 3: 2-m Temperature bias (deg C) of 120-h forecasts for the month of May 2014 for the Arctic...forecast system (NAVGEM) and ocean- sea ice forecast system (HYCOM/CICE) have never been coupled at high resolution. The coupled processes will be...winds and currents across the interface. The sea - ice component of this project requires modification of CICE versions 4 and 5 to run in the coupled

  12. Wind turbine

    Science.gov (United States)

    Cheney, Jr., Marvin C.

    1982-01-01

    A wind turbine of the type having an airfoil blade (15) mounted on a flexible beam (20) and a pitch governor (55) which selectively, torsionally twists the flexible beam in response to wind turbine speed thereby setting blade pitch, is provided with a limiter (85) which restricts unwanted pitch change at operating speeds due to torsional creep of the flexible beam. The limiter allows twisting of the beam by the governor under excessive wind velocity conditions to orient the blades in stall pitch positions, thereby preventing overspeed operation of the turbine. In the preferred embodiment, the pitch governor comprises a pendulum (65,70) which responds to changing rotor speed by pivotal movement, the limiter comprising a resilient member (90) which engages an end of the pendulum to restrict further movement thereof, and in turn restrict beam creep and unwanted blade pitch misadjustment.

  13. Systematic Wind Farm Measurement Data Filtering Tool for Wake Model Calibration

    DEFF Research Database (Denmark)

    Rethore, Pierre-Elouan Mikael; Johansen, Nicholas Alan; Frandsen, Sten Tronæs

    A set of systematic methods for characterizing the sensors of a wind farm and using these sensors to filter more accurately large volumes of measurement data is proposed. These methods are based on the experience accumulated while processing datasets from two large offshore wind farms in Denmark....... Both wake model developers and wind farm operators seeking to determine how the wind farm operates under specific conditions can find these methods valuable. The methods are general and can be applied successfully to any wind farm by taking into consideration the specific aspects of each wind farm....

  14. Wind Stress Variability Directly Measured at a Tidal Inlet from a Mobile Vessel

    Science.gov (United States)

    Ortiz-Suslow, D. G.; Haus, B. K.; Laxague, N.; Williams, N. J.; Graber, H. C.

    2014-12-01

    Tidal inlets are characterized by a dynamic coupling of waves, currents, wind, and topography and to better understand these processes the Riverine and Estuarine Transport (RIVET) experiment was conducted during the month of May 2012 at New River Inlet, North Carolina. As a part of that effort, the Surface Physics Experimental Catamaran (SPEC) was outfitted with a suite of concurrently sampled atmospheric and oceanographic sensors. These included a meteorological mast capable of measuring the air-sea momentum flux, paired subsurface ADV's, a downward looking ADCP, and a bow-mounted wave-staff array. Using a mobile platform enabled capturing the fine-scale dynamical features across this highly sheared zone, without compromising spatial or temporal resolution. The SPEC was deployed, in part, to make direct wind stress measurements and the eddy covariance method was used to calculate the 10 m neutral drag coefficients from the observed wind shear velocities. In general, for any given wind speed, measured drag coefficients were about 2.5 times greater than those derived from bulk relations (e.g. Smith, 1988). Observations of the wind stress angle show significant wind stress steering, up to about 70o off the mean wind direction, within 2 km off-shore of the inlet mouth. The causes for the departure of these observations from conventional open ocean results remains under investigation, although it is highly likely that these findings highlight processes unique to coastal waters that are not regarded in the well-established algorithms (e.g. depth-limited wave breaking and wave-current interactions). Preliminary results from the second installment in the RIVET campaign, which took place at the Mouth of the Columbia River during the spring of 2013, will also be shown.

  15. Optimization of wind speed on dispersion of pollutants using ...

    Indian Academy of Sciences (India)

    https://www.ias.ac.in/article/fulltext/sadh/040/05/1657-1666. Keywords. Receptor model; dispersion model; wind velocity; optimization; coupled model. ... The current research work proposed a coupled receptor-dispersion model to reduce the difference between predicted concentrations through optimized wind velocity used ...

  16. "Turn-off" fluorescent data array sensor based on double quantum dots coupled with chemometrics for highly sensitive and selective detection of multicomponent pesticides.

    Science.gov (United States)

    Fan, Yao; Liu, Li; Sun, Donglei; Lan, Hanyue; Fu, Haiyan; Yang, Tianming; She, Yuanbin; Ni, Chuang

    2016-04-15

    As a popular detection model, the fluorescence "turn-off" sensor based on quantum dots (QDs) has already been successfully employed in the detections of many materials, especially in the researches on the interactions between pesticides. However, the previous studies are mainly focused on simple single track or the comparison based on similar concentration of drugs. In this work, a new detection method based on the fluorescence "turn-off" model with water-soluble ZnCdSe and CdSe QDs simultaneously as the fluorescent probes is established to detect various pesticides. The fluorescence of the two QDs can be quenched by different pesticides with varying degrees, which leads to the differences in positions and intensities of two peaks. By combining with chemometrics methods, all the pesticides can be qualitative and quantitative respectively even in real samples with the limit of detection was 2 × 10(-8) mol L(-1) and a recognition rate of 100%. This work is, to the best of our knowledge, the first report on the detection of pesticides based on the fluorescence quenching phenomenon of double quantum dots combined with chemometrics methods. What's more, the excellent selectivity of the system has been verified in different mediums such as mixed ion disruption, waste water, tea and water extraction liquid drugs. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Autonomous Aerial Sensors for Wind Power Meteorology

    DEFF Research Database (Denmark)

    Giebel, Gregor; la Cour-Harbo, Anders; Bange, Jens

    2011-01-01

    of the Funjet, a pusher airplane of 580g total weight, now equipped with a Pitot tube, Tübingen University in conjunction with the Technical University of Braunschweig flies the Carolo, a 2m wide two prop model with a 5-hole pitot tube on the nose, and Aalborg University will use a helicopter for their part...

  18. Autonomous Aerial Sensors for Wind Power Meteorology

    DEFF Research Database (Denmark)

    Giebel, Gregor; Schmidt Paulsen, Uwe; Reuder, Joachim

    2011-01-01

    of them are situated in quite homogeneous and gentle terrain. Here, automated Unmanned Aerial Vehicles (UAVs) could be used as either an extension of current masts or to build a network of very high 'masts' in a region of complex terrain or coastal flow conditions. In comparison to a multitude of masts...

  19. Fault Diagnosis and Fault Tolerant Control with Application on a Wind Turbine Low Speed Shaft Encoder

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Sardi, Hector Eloy Sanchez; Escobet, Teressa

    2015-01-01

    In recent years, individual pitch control has been developed for wind turbines, with the purpose of reducing blade and tower loads. Such algorithms depend on reliable sensor information. The azimuth angle sensor, which positions the wind turbine rotor in its rotation, is quite important. This sen......In recent years, individual pitch control has been developed for wind turbines, with the purpose of reducing blade and tower loads. Such algorithms depend on reliable sensor information. The azimuth angle sensor, which positions the wind turbine rotor in its rotation, is quite important....... This sensor has to be correct as blade pitch actions should be different at different azimuth angle as the wind speed varies within the rotor field due to different phenomena. A scheme detecting faults in this sensor has previously been designed for the application of a high end fault diagnosis and fault...

  20. Wind power

    International Nuclear Information System (INIS)

    2006-06-01

    This road-map proposes by the Group Total aims to inform the public on the wind power. It presents the principles, the technology takes off, its applications and technology focus, the global market trends and the outlooks and Total commitments in the domain. (A.L.B.)

  1. Wind energy

    International Nuclear Information System (INIS)

    Portilla S, L.A.

    1995-01-01

    The wind energy or eolic energy is a consequence of solar energy, the one which is absorbed by the atmosphere and is transformed into energy of movement of large bulks of air. In this process the atmosphere acts as the filter to the solar radiation and demotes the ultraviolet beams that result fatal to life in the Earth. The ionosphere is the most external cap and this is ionized by means of absorption process of ultraviolet radiation arising to the Sun. The atmosphere also acts as a trap to the infrared radiation, it that results from the continual process of energetic degradation. In this way, the interaction between Earth - Atmospheres, is behaved as a great greenhouse, maintaining the constant temperatures, including in the dark nights. Processes as the natural convection (that occur by the thermodynamic phenomenon), equatorial calmness, trade winds and against trade winds and global distribution of the air currents are described. The other hand, techniques as the transformation of the wind into energy and its parameters also are shown

  2. Wind Energy Japan

    Energy Technology Data Exchange (ETDEWEB)

    Komatsubara, Kazuyo [Embassy of the Kingdom of the Netherlands, Tokyo (Japan)

    2012-06-15

    An overview is given of wind energy in Japan: Background; Wind Energy in Japan; Japanese Wind Energy Industry; Government Supports; Useful Links; Major Japanese Companies; Profiles of Major Japanese Companies; Major Wind Energy Projects in Japan.

  3. Thermal microphotonic sensor and sensor array

    Science.gov (United States)

    Watts, Michael R [Albuquerque, NM; Shaw, Michael J [Tijeras, NM; Nielson, Gregory N [Albuquerque, NM; Lentine, Anthony L [Albuquerque, NM

    2010-02-23

    A thermal microphotonic sensor is disclosed for detecting infrared radiation using heat generated by the infrared radiation to shift the resonant frequency of an optical resonator (e.g. a ring resonator) to which the heat is coupled. The shift in the resonant frequency can be determined from light in an optical waveguide which is evanescently coupled to the optical resonator. An infrared absorber can be provided on the optical waveguide either as a coating or as a plate to aid in absorption of the infrared radiation. In some cases, a vertical resonant cavity can be formed about the infrared absorber to further increase the absorption of the infrared radiation. The sensor can be formed as a single device, or as an array for imaging the infrared radiation.

  4. Systems and methods for an integrated electrical sub-system powered by wind energy

    Science.gov (United States)

    Liu, Yan [Ballston Lake, NY; Garces, Luis Jose [Niskayuna, NY

    2008-06-24

    Various embodiments relate to systems and methods related to an integrated electrically-powered sub-system and wind power system including a wind power source, an electrically-powered sub-system coupled to and at least partially powered by the wind power source, the electrically-powered sub-system being coupled to the wind power source through power converters, and a supervisory controller coupled to the wind power source and the electrically-powered sub-system to monitor and manage the integrated electrically-powered sub-system and wind power system.

  5. Ambient Sensors

    NARCIS (Netherlands)

    Börner, Dirk; Specht, Marcus

    2014-01-01

    This software sketches comprise two custom-built ambient sensors, i.e. a noise and a movement sensor. Both sensors measure an ambient value and process the values to a color gradient (green > yellow > red). The sensors were built using the Processing 1.5.1 development environment. Available under

  6. Lidar Wind Profiler for the NextGen Airportal Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The development of a standoff sensor that can measure 3D components of wind velocity in the vicinity of an airport has the potential to improve airport throughput,...

  7. Dynamic behavior of parked wind turbine at extreme wind speed

    DEFF Research Database (Denmark)

    Totsuka, Yoshitaka; Imamura, Hiroshi; Yde, Anders

    2016-01-01

    In wind turbine design process, a series of load analysis is generally performed to determine ultimate and fatigue loads under various design load cases (DLCs) which is specified in IEC 61400. These design load scenario covers not only normal operating condition but also startup, shutdown, parked...... of standstill and idling is analyzed by time domain simulations using two different coupled aero-hydro-servo-elastic codes. Trend in modern wind turbines is development of bigger, lighter and more flexible rotors where vibration issues may cause aero-elastic instabilities which have a serious impact...

  8. Fault diagnosis and condition monitoring of wind turbines

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Poulsen, Niels Kjølstad; Mirzaei, Mahmood

    2017-01-01

    This paper describes a model-free method for the fault diagnosis and condition monitoring of rotor systems in wind turbines. Both fault diagnosis and monitoring can be achieved without using a model for the wind turbine, applied controller, or wind profiles. The method is based on measurements from...... standard sensors on modern wind turbines, including moment sensors and rotor angle sensors. This approach will allow the method to be applied to existing wind turbines without any modifications. The method is based on the detection of asymmetries in the rotor system caused by changes or faults in the rotor...... system. A multiblade coordinate transformation is used directly on the measured flap-wise and edge-wise moments followed by signal modulation. Changes or faults in the rotor system will result in unique signatures in the set of modulation signals. These signatures are described through the amplitudes...

  9. Wind Farm Structures’ Impact on Harmonic Emission and Grid Interaction

    DEFF Research Database (Denmark)

    Kocewiak, Lukasz Hubert; Hjerrild, Jesper; Bak, Claus Leth

    The impact of a wind farm’s internal structures on harmonic emission at the point of common coupling and on the whole system frequency characteristic is investigated in this paper. The largest wind farms in the world, Horns Rev 2 Offshore Wind Farm and Polish Karnice Onshore Wind Farm......, are thoroughly analyzed. Different wind farm configurations are taken into consideration in order to entirely describe phenomena associated with harmonics. Some aspects of wind farm modelling for harmonic studies are also presented in this paper. The simulation results are compared with measurement data in order...

  10. Harmonic Analysis of Offshore Wind Farms with Full Converter Wind Turbines

    DEFF Research Database (Denmark)

    Kocewiak, Lukasz Hubert; Hjerrild, Jesper; Bak, Claus Leth

    2009-01-01

    This paper presents the harmonic analysis of offshore wind farm (OWF) models with full converters represented as harmonic sources and measurement data on the point of common coupling (PCC) during normal operation. The model describes a wind farm (WF) with full rated converters installed connected...

  11. Verification of aero-elastic offshore wind turbine design codes under IEA Wind Task XXIII

    DEFF Research Database (Denmark)

    Vorpahl, Fabian; Strobel, Michael; Jonkman, Jason M.

    2014-01-01

    This work presents the results of a benchmark study on aero-servo-hydro-elastic codes for offshore wind turbine dynamic simulation. The codes verified herein account for the coupled dynamic systems including the wind inflow, aerodynamics, elasticity and controls of the turbine, along with the inc...

  12. Coastal Ohio Wind Project for Reduced Barriers to Deployment of Offshore Wind Energy

    Energy Technology Data Exchange (ETDEWEB)

    Gorsevski, Peter; Afjeh, Abdollah; Jamali, Mohsin; Carroll, Michael

    2014-04-09

    The Coastal Ohio Wind Project was created to establish the viability of wind turbines on the coastal and offshore regions of Northern Ohio. The project’s main goal was to improve operational unit strategies used for environmental impact assessment of offshore turbines on lake wildlife by optimizing and fusing data from the multi-instrument surveillance system and providing an engineering analysis of potential design/operational alternatives for offshore wind turbines. The project also developed a general economic model for offshore WTG deployment to quantify potential revenue losses due to wind turbine shutdown related to ice and avian issues. In a previous phase of this project (Award Number: DE-FG36-06GO86096), we developed a surveillance system that was used to collect different parameters such as passage rates, flight paths, flight directions, and flight altitudes of nocturnal migrating species, movements of birds and bats, and bird calls for assessing patterns and peak passage rates during migration. To derive such parameters we used thermal IR imaging cameras, acoustic recorders, and marine radar Furuno (XANK250), which was coupled with a XIR3000B digitizing card from Russell Technologies and open source radR processing software. The integration yielded a development of different computational techniques and methods, which we further developed and optimized as a combined surveillance system. To accomplish this task we implemented marine radar calibration, optimization of processing parameters, and fusion of the multi-sensor data in order to make inferences about the potential avian targets. The main goal of the data fusion from the multi-sensor environment was aimed at reduction of uncertainties while providing acceptable confidence levels with detailed information about the migration patterns. Another component comprised of an assessment of wind resources in a near lake environment and an investigation of the effectiveness of ice coating materials to

  13. Temperature sensor based on ladder-level assisted thermal coupling and thermal-enhanced luminescence in NaYF4: Nd³⁺.

    Science.gov (United States)

    Tian, Xiuna; Wei, Xiantao; Chen, Yonghu; Duan, Changkui; Yin, Min

    2014-12-01

    NaYF4: Nd³⁺ microprisms were synthesized by a hydrothermal method. The bands of near-infrared (NIR) luminescence originating from the 4F3/2, 4F5/2 and 4F7/2 levels of Nd³⁺ ions in NaYF4: Nd³⁺ microcrystals were measured under 574.8 nm excitation at various temperatures from 323 to 673 K. The fluorescence intensity ratios (FIRs) between any two of the three bands change monotonically with temperature and agree with the prediction assuming thermal couplings. A large relative temperature sensitivity of 1.12% K⁻¹ at 500K is reached with the FIR of 4F7/2 to 4F3/2 levels. In addition, anti-Stokes fluorescence from 4F5/2 level (740 nm) and 4F5/2,7/2 levels (740 nm and 803 nm) of Nd³⁺ ions was studied meticulously under 793.8 nm and 864.2 nm excitations, respectively. The intensities were shown to be greatly enhanced as temperature increases, and the 740 nm band from 4F7/2 level at 458 K increases in intensity by 170 fold relative to that at 298 K under the 793.8 nm excitation.

  14. iHWG-μNIR: a miniaturised near-infrared gas sensor based on substrate-integrated hollow waveguides coupled to a micro-NIR-spectrophotometer.

    Science.gov (United States)

    Rohwedder, J J R; Pasquini, C; Fortes, P R; Raimundo, I M; Wilk, A; Mizaikoff, B

    2014-07-21

    A miniaturised gas analyser is described and evaluated based on the use of a substrate-integrated hollow waveguide (iHWG) coupled to a microsized near-infrared spectrophotometer comprising a linear variable filter and an array of InGaAs detectors. This gas sensing system was applied to analyse surrogate samples of natural fuel gas containing methane, ethane, propane and butane, quantified by using multivariate regression models based on partial least square (PLS) algorithms and Savitzky-Golay 1(st) derivative data preprocessing. The external validation of the obtained models reveals root mean square errors of prediction of 0.37, 0.36, 0.67 and 0.37% (v/v), for methane, ethane, propane and butane, respectively. The developed sensing system provides particularly rapid response times upon composition changes of the gaseous sample (approximately 2 s) due the minute volume of the iHWG-based measurement cell. The sensing system developed in this study is fully portable with a hand-held sized analyser footprint, and thus ideally suited for field analysis. Last but not least, the obtained results corroborate the potential of NIR-iHWG analysers for monitoring the quality of natural gas and petrochemical gaseous products.

  15. Wind Loads on Structures

    DEFF Research Database (Denmark)

    Dyrbye, Claes; Hansen, Svend Ole

    Wind loads have to be taken into account when designing civil engineering structures. The wind load on structures can be systematised by means of the wind load chain: wind climate (global), terrain (wind at low height), aerodynamic response (wind load to pressure), mechanical response (wind...... pressure to structural response) and design criteria. Starting with an introduction of the wind load chain, the book moves on to meteorological considerations, atmospheric boundary layer, static wind load, dynamic wind load and scaling laws used in wind-tunnel tests. The dynamic wind load covers vibrations...... induced by wind turbulence, vortex shedding, flutter and galloping. The book gives a comprehensive treatment of wind effects on structures and it will be useful for consulting engineers designing wind-sensitive structures. It will also be valuable for students of civil engineering as textbook...

  16. Active load control techniques for wind turbines.

    Energy Technology Data Exchange (ETDEWEB)

    van Dam, C.P. (University of California, Davis, CA); Berg, Dale E.; Johnson, Scott J. (University of California, Davis, CA)

    2008-07-01

    This report provides an overview on the current state of wind turbine control and introduces a number of active techniques that could be potentially used for control of wind turbine blades. The focus is on research regarding active flow control (AFC) as it applies to wind turbine performance and loads. The techniques and concepts described here are often described as 'smart structures' or 'smart rotor control'. This field is rapidly growing and there are numerous concepts currently being investigated around the world; some concepts already are focused on the wind energy industry and others are intended for use in other fields, but have the potential for wind turbine control. An AFC system can be broken into three categories: controls and sensors, actuators and devices, and the flow phenomena. This report focuses on the research involved with the actuators and devices and the generated flow phenomena caused by each device.

  17. Wind Profiling from a New Compact, Pulsed, 2-Micron, Coherent-Detection Doppler Lidar Transceiver during Wind Measurement Intercomparison

    Science.gov (United States)

    Singh, Upendra N.; Koch, Grady J.; Kavaya, Michael J.; Yu, Jirong; Beyon, Jeffrey Y.; Demoz, B.; Veneable, D.

    2009-01-01

    NASA Langley Research Center has a long history of developing 2-micron laser transmitter for wind sensing. With support from NASA Laser Risk Reduction Program (LRRP) and Instrument Incubator Program (IIP), NASA Langley Research Center has developed a state-of-the-art compact lidar transceiver for a pulsed coherent Doppler lidar system for wind measurement. This lidar system was recently deployed at Howard University facility in Beltsville, Maryland, along with other wind lidar systems. Coherent Doppler wind lidar ground-based wind measurements and comparisons with other lidars and other sensors will be presented.

  18. Load alleviation of wind turbines by yaw misalignment

    DEFF Research Database (Denmark)

    Kragh, Knud Abildgaard; Hansen, Morten Hartvig

    2014-01-01

    Vertical wind shear is one of the dominating causes of load variations on the blades of a horizontal axis wind turbine. To alleviate the varying loads, wind turbine control systems have been augmented with sensors and actuators for individual pitch control. However, the loads caused by a vertical...... wind shear can also be affected through yaw misalignment. Recent studies of yaw control have been focused on improving the yaw alignment to increase the power capture at below rated wind speeds. In this study, the potential of alleviating blade load variations induced by the wind shear through yaw...... be applied without power loss for wind speeds above rated wind speed. In deterministic inflow, it is shown that the range of the steady-state blade load variations can be reduced by up to 70%. For turbulent inflows, it is shown that the potential blade fatigue load reductions depend on the turbulence level...

  19. A fibre optic displacement sensor

    OpenAIRE

    Sohlström, Hans; Holm, Ulf

    1982-01-01

    Fibre optics is beginning to find use for sensing purposes. Fibre optic sensors have many interesting features, e.g., their immunity to interference from electromagnetic fields. The paper briefly discusses different sensor principles. A displacement sensor using multimode, step index fibres is desccribed. Measurement data showing a resolution of 0.05 nm/sqrt(Hz) in a 150 µm linear range is given. In this sensor, the light coupling between two fibre ends varies with the position of a movable ...

  20. Stellar winds

    International Nuclear Information System (INIS)

    Weymann, R.J.

    1978-01-01

    It is known that a steady outflow of material at comparable rates of mass loss but vastly different speeds is now known to be ubiquitous phenomenon among both the luminous hot stars and the luminous but cool red giants. The flows are probably massive enough in both cases to give rise to significant effects on stellar evolution and the mass balance between stars and the interstellar medium. The possible mechanisms for these phenomena as well as the methods of observation used are described. In particular, the mass-loss processes in stars other than the sun that also involve a steady flow of matter are considered. The evidence for their existence is described, and then the question of whether the process thought to produce the solar wind is also responsible for producing these stellar winds is explored

  1. Lidar-Enhanced Wind Turbine Control: Past, Present, and Future

    Energy Technology Data Exchange (ETDEWEB)

    Scholbrock, Andrew; Fleming, Paul; Schlipf, David; Wright, Alan; Johnson, Kathryn; Wang, Na

    2016-08-01

    The main challenges in harvesting energy from the wind arise from the unknown incoming turbulent wind field. Balancing the competing interests of reduction in structural loads and increasing energy production is the goal of a wind turbine controller to reduce the cost of producing wind energy. Conventional wind turbines use feedback methods to optimize these goals, reacting to wind disturbances after they have already impacted the wind turbine. Lidar sensors offer a means to provide additional inputs to a wind turbine controller, enabling new techniques to improve control methods, allowing a controller to actuate a wind turbine in anticipation of an incoming wind disturbance. This paper will look at the development of lidar-enhanced controls and how they have been used for various turbine load reductions with pitch actuation, as well as increased energy production with improved yaw control. Ongoing work will also be discussed to show that combining pitch and torque control using feedforward nonlinear model predictive control can lead to both reduced loads and increased energy production. Future work is also proposed on extending individual wind turbine controls to the wind plant level and determining how lidars can be used for control methods to further lower the cost of wind energy by minimizing wake impacts in a wind farm.

  2. Development of a Wind Plant Large-Eddy Simulation with Measurement-Driven Atmospheric Inflow: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Quon, Eliot; Churchfield, Matthew; Cheung, Lawrence; Kern, Stefan

    2017-02-01

    This paper details the development of an aeroelastic wind plant model with large-eddy simulation (LES). The chosen LES solver is the Simulator for Wind Farm Applications (SOWFA) based on the OpenFOAM framework, coupled to NREL's comprehensive aeroelastic analysis tool, FAST. An atmospheric boundary layer (ABL) precursor simulation was constructed based on assessments of meteorological tower, lidar, and radar data over a 3-hour window. This precursor was tuned to the specific atmospheric conditions that occurred both prior to and during the measurement campaign, enabling capture of a night-to-day transition in the turbulent ABL. In the absence of height-varying temperature measurements, spatially averaged radar data were sufficient to characterize the atmospheric stability of the wind plant in terms of the shear profile, and near-ground temperature sensors provided a reasonable estimate of the ground heating rate describing the morning transition. A full aeroelastic simulation was then performed for a subset of turbines within the wind plant, driven by the precursor. Analysis of two turbines within the array, one directly waked by the other, demonstrated good agreement with measured time-averaged loads.

  3. Wind conditions for wind turbine design

    Energy Technology Data Exchange (ETDEWEB)

    Maribo Pedersen, B.

    1999-04-01

    Delegates from Europe and USA attended the meeting and discussed general aspects of wind conditions for wind turbine design. The subjects and the presented papers covered a very broad range of aspects of wind conditions and related influence on the wind turbine. (EHS)

  4. Wind turbine/generator set and method of making same

    Science.gov (United States)

    Bevington, Christopher M.; Bywaters, Garrett L.; Coleman, Clint C.; Costin, Daniel P.; Danforth, William L.; Lynch, Jonathan A.; Rolland, Robert H.

    2013-06-04

    A wind turbine comprising an electrical generator that includes a rotor assembly. A wind rotor that includes a wind rotor hub is directly coupled to the rotor assembly via a simplified connection. The wind rotor and generator rotor assembly are rotatably mounted on a central spindle via a bearing assembly. The wind rotor hub includes an opening having a diameter larger than the outside diameter of the central spindle adjacent the bearing assembly so as to allow access to the bearing assembly from a cavity inside the wind rotor hub. The spindle is attached to a turret supported by a tower. Each of the spindle, turret and tower has an interior cavity that permits personnel to traverse therethrough to the cavity of the wind rotor hub. The wind turbine further includes a frictional braking system for slowing, stopping or keeping stopped the rotation of the wind rotor and rotor assembly.

  5. Configuration study of large wind parks

    Energy Technology Data Exchange (ETDEWEB)

    Lundberg, Stefan

    2003-07-01

    In this thesis, layouts of various large-scale wind parks, using both AC as well as DC, are investigated. Loss modelling of the wind park components as well as calculations of the energy capture of the turbines using various electrical systems are performed, and the energy production cost of the various park configurations is determined. The most interesting candidate for a DC transmission based wind park was investigated more in detail, the series DC wind park. Finally, the power quality impact in the PCC (point of common coupling) was studied. It was found that from an energy capture point of view, the difference in energy production between various wind turbine systems is very small. Of all the investigated wind park configurations, the wind park with the series connected DC wind turbines seems to have the best potential to give the lowest energy production cost, if the transmission distance is longer then 10-20 km. Regarding the series DC wind park it was found that it is the most difficult one to control. However, a control algorithm for the series park and its turbines was derived and successfully tested. Still, several more details regarding the control of the series wind park has to be dealt with.

  6. Lessons from wind policy in Portugal

    Energy Technology Data Exchange (ETDEWEB)

    Peña, Ivonne; L. Azevedo, Inês; Marcelino Ferreira, Luís António Fialho

    2017-04-01

    Wind capacity and generation grew rapidly in several European countries, such as Portugal. Wind power adoption in Portugal began in the early 2000s, incentivized by a continuous feed-in tariff policy mechanism, coupled with public tenders for connection licenses in 2001, 2002, and 2005. These policies led to an enormous success in terms of having a large share of renewables providing electricity services: wind alone accounts today for ~23.5% of electricity demand in Portugal. We explain the reasons wind power became a key part of Portugal's strategy to comply with European Commission climate and energy goals, and provide a detailed review of the wind feed-in tariff mechanism. We describe the actors involved in wind power production growth. We estimate the environmental and energy dependency gains achieved through wind power generation, and highlight the correlation between wind electricity generation and electricity exports. Finally, we compare the Portuguese wind policies with others countries' policy designs and discuss the relevance of a feed-in tariff reform for subsequent wind power additions.

  7. Improvement of Wind Farm Performance by Means of Spinner Anemometry

    DEFF Research Database (Denmark)

    Friis Pedersen, Troels; Demurtas, Giorgio; Gottschall, Julia

    powerful microprocessor and heating was added to the sonic sensor arms plus a range of smaller redesigns. Software was revised with an improved internal calibration procedure. The improved system was tested on a 2MW wind turbine at Tjæreborg wind farm. Measurements on this turbine includes calibration of K...

  8. Communication Network Architectures for Smart-Wind Power Farms

    Directory of Open Access Journals (Sweden)

    Mohamed A. Ahmed

    2014-06-01

    Full Text Available Developments in the wind power industry have enabled a new generation of wind turbines with longer blades, taller towers, higher efficiency, and lower maintenance costs due to the maturity of related technologies. Nevertheless, wind turbines are still blind machines because the control center is responsible for managing and controlling individual wind turbines that are turned on or off according to demand for electricity. In this paper, we propose a communication network architecture for smart-wind power farms (Smart-WPFs. The proposed architecture is designed for wind turbines to communicate directly and share sensing data in order to maximize power generation, WPF availability, and turbine efficiency. We also designed a sensor data frame structure to carry sensing data from different wind turbine parts such as the rotor, transformer, nacelle, etc. The data frame includes a logical node ID (LNID, sensor node ID (SNID, sensor type (ST, and sensor data based on the International Electrotechnical Commission (IEC 61400-25 standard. We present an analytical model that describes upstream traffic between the wind turbines and the control center. Using a queueing theory approach, the upstream traffic is evaluated in view of bandwidth utilization and average queuing delay. The performance of the proposed network architectures are evaluated by using analytical and simulation models.

  9. Coupled transfers; Transferts couples

    Energy Technology Data Exchange (ETDEWEB)

    Nicolas, X.; Lauriat, G.; Jimenez-Rondan, J. [Universite de Marne-la-Vallee, Lab. d' Etudes des Transferts d' Energie et de Matiere (LETEM), 77 (France); Bouali, H.; Mezrhab, A. [Faculte des Sciences, Dept. de Physique, Lab. de Mecanique et Energetique, Oujda (Morocco); Abid, C. [Ecole Polytechnique Universitaire de Marseille, IUSTI UMR 6595, 13 Marseille (France); Stoian, M.; Rebay, M.; Lachi, M.; Padet, J. [Faculte des Sciences, Lab. de Thermomecanique, UTAP, 51 - Reims (France); Mladin, E.C. [Universitaire Polytechnique Bucarest, Faculte de Genie Mecanique, Bucarest (Romania); Mezrhab, A. [Faculte des Sciences, Lab. de Mecanique et Energetique, Dept. de Physique, Oujda (Morocco); Abid, C.; Papini, F. [Ecole Polytechnique, IUSTI, 13 - Marseille (France); Lorrette, C.; Goyheneche, J.M.; Boechat, C.; Pailler, R. [Laboratoire des Composites ThermoStructuraux, UMR 5801, 33 - Pessac (France); Ben Salah, M.; Askri, F.; Jemni, A.; Ben Nasrallah, S. [Ecole Nationale d' Ingenieurs de Monastir, Lab. d' Etudes des Systemes Thermiques et Energetiques (Tunisia); Grine, A.; Desmons, J.Y.; Harmand, S. [Laboratoire de Mecanique et d' Energetique, 59 - Valenciennes (France); Radenac, E.; Gressier, J.; Millan, P. [ONERA, 31 - Toulouse (France); Giovannini, A. [Institut de Mecanique des Fluides de Toulouse, 31 (France)

    2005-07-01

    This session about coupled transfers gathers 30 articles dealing with: numerical study of coupled heat transfers inside an alveolar wall; natural convection/radiant heat transfer coupling inside a plugged and ventilated chimney; finite-volume modeling of the convection-conduction coupling in non-stationary regime; numerical study of the natural convection/radiant heat transfer coupling inside a partitioned cavity; modeling of the thermal conductivity of textile reinforced composites: finite element homogenization on a full periodical pattern; application of the control volume method based on non-structured finite elements to the problems of axisymmetrical radiant heat transfers in any geometries; modeling of convective transfers in transient regime on a flat plate; a conservative method for the non-stationary coupling of aero-thermal engineering codes; measurement of coupled heat transfers (forced convection/radiant transfer) inside an horizontal duct; numerical simulation of the combustion of a water-oil emulsion droplet; numerical simulation study of heat and mass transfers inside a reactor for nano-powders synthesis; reduction of a combustion and heat transfer model of a direct injection diesel engine; modeling of heat transfers inside a knocking operated spark ignition engine; heat loss inside an internal combustion engine, thermodynamical and flamelet model, composition effects of CH{sub 4}H{sub 2} mixtures; experimental study and modeling of the evolution of a flame on a solid fuel; heat transfer for laminar subsonic jet of oxygen plasma impacting an obstacle; hydrogen transport through a A-Si:H layer submitted to an hydrogen plasma: temperature effects; thermal modeling of the CO{sub 2} laser welding of a magnesium alloy; radiant heat transfer inside a 3-D environment: application of the finite volume method in association with the CK model; optimization of the infrared baking of two types of powder paints; optimization of the emission power of an infrared

  10. Wind Technologies & Evolving Opportunities (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Robichaud, R.

    2014-07-01

    This presentation covers opportunities for wind technology; wind energy market trends; an overview of the National Wind Technology Center near Boulder, Colorado; wind energy price and cost trends; wind turbine technology improvements; and wind resource characterization improvements.

  11. Wind effects on collectors. Final report, October 1, 1978--October 1, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Hewitt, H.C. Jr.; Griggs, E.I.

    1979-11-01

    Consideration was given to modeling wind speed data and to a scheme for correlating data between two separate stations. A sensor system was developed to measure the effect of wind on collector performance. The specifications for the sensor are presented, and a discussion of the calibration of the sensor is given. Four experiments were performed to determine wind flow patterns around buildings. The velocity profile over an actual collector was also measured as a function of free stream velocity. A mathematical model for a solar collector and three experimental efforts to measure the effect of wind on collector performance are reported. (MHR)

  12. Crack Monitoring of Operational Wind Turbine Foundations.

    Science.gov (United States)

    Perry, Marcus; McAlorum, Jack; Fusiek, Grzegorz; Niewczas, Pawel; McKeeman, Iain; Rubert, Tim

    2017-08-21

    The degradation of onshore, reinforced-concrete wind turbine foundations is usually assessed via above-ground inspections, or through lengthy excavation campaigns that suspend wind power generation. Foundation cracks can and do occur below ground level, and while sustained measurements of crack behaviour could be used to quantify the risk of water ingress and reinforcement corrosion, these cracks have not yet been monitored during turbine operation. Here, we outline the design, fabrication and field installation of subterranean fibre-optic sensors for monitoring the opening and lateral displacements of foundation cracks during wind turbine operation. We detail methods for in situ sensor characterisation, verify sensor responses against theoretical tower strains derived from wind speed data, and then show that measured crack displacements correlate with monitored tower strains. Our results show that foundation crack opening displacements respond linearly to tower strain and do not change by more than ±5 μ m. Lateral crack displacements were found to be negligible. We anticipate that the work outlined here will provide a starting point for real-time, long-term and dynamic analyses of crack displacements in future. Our findings could furthermore inform the development of cost-effective monitoring systems for ageing wind turbine foundations.

  13. Lake Michigan Wind Assessment Analysis, 2012 and 2013

    Directory of Open Access Journals (Sweden)

    Charles R Standridge

    2017-03-01

    Full Text Available A study was conducted to address the wind energy potential over Lake Michigan to support a commercial wind farm.  Lake Michigan is an inland sea in the upper mid-western United States.  A laser wind sensor mounted on a floating platform was located at the mid-lake plateau in 2012 and about 10.5 kilometers from the eastern shoreline near Muskegon Michigan in 2013.  Range gate heights for the laser wind sensor were centered at 75, 90, 105, 125, 150, and 175 meters.  Wind speed and direction were measured once each second and aggregated into 10 minute averages.  The two sample t-test and the paired-t method were used to perform the analysis.  Average wind speed stopped increasing between 105 m and 150 m depending on location.  Thus, the collected data is inconsistent with the idea that average wind speed increases with height. This result implies that measuring wind speed at wind turbine hub height is essential as opposed to using the wind energy power law to project the wind speed from lower heights.  Average speed at the mid-lake plateau is no more that 10% greater than at the location near Muskegon.  Thus, it may be possible to harvest much of the available wind energy at a lower height and closer to the shoreline than previously thought.  At both locations, the predominate wind direction is from the south-southwest.  The ability of the laser wind sensor to measure wind speed appears to be affected by a lack of particulate matter at greater heights.   Keywords: wind assessment, Lake Michigan, LIDAR wind sensor, statistical analysis. Article History: Received June 15th 2016; Received in revised form January 16th 2017; Accepted February 2nd 2017 Available online How to Cite This Article: Standridge, C., Zeitler, D., Clark, A., Spoelma, T., Nordman, E., Boezaart, T.A., Edmonson, J.,  Howe, G., Meadows, G., Cotel, A. and Marsik, F. (2017 Lake Michigan Wind Assessment Analysis, 2012 and 2013. Int. Journal of Renewable Energy Development

  14. Wind Power Meteorology

    DEFF Research Database (Denmark)

    Lundtang Petersen, Erik; Mortensen, Niels Gylling; Landberg, Lars

    Wind power meteorology has evolved as an applied science, firmly founded on boundary-layer meteorology, but with strong links to climatology and geography. It concerns itself with three main areas: siting of wind turbines, regional wind resource assessment, and short-term prediction of the wind...... resource. The history, status and perspectives of wind power meteorology are presented, with emphasis on physical considerations and on its practical application. Following a global view of the wind resource, the elements of boundary layer meteorology which are most important for wind energy are reviewed......: wind profiles and shear, turbulence and gust, and extreme winds. The data used in wind power meteorology stem mainly from three sources: onsite wind measurements, the synoptic networks, and the re-analysis projects. Wind climate analysis, wind resource estimation and siting further require a detailed...

  15. Metamaterial Sensors

    Directory of Open Access Journals (Sweden)

    Jing Jing Yang

    2013-01-01

    Full Text Available Metamaterials have attracted a great deal of attention due to their intriguing properties, as well as the large potential applications for designing functional devices. In this paper, we review the current status of metamaterial sensors, with an emphasis on the evanescent wave amplification and the accompanying local field enhancement characteristics. Examples of the sensors are given to illustrate the principle and the performance of the metamaterial sensor. The paper concludes with an optimistic outlook regarding the future of metamaterial sensor.

  16. Sensor Buoy System for Monitoring Renewable Marine Energy Resources.

    Science.gov (United States)

    García, Emilio; Quiles, Eduardo; Correcher, Antonio; Morant, Francisco

    2018-03-22

    In this paper we present a multi-sensor floating system designed to monitor marine energy parameters, in order to sample wind, wave, and marine current energy resources. For this purpose, a set of dedicated sensors to measure the height and period of the waves, wind, and marine current intensity and direction have been selected and installed in the system. The floating device incorporates wind and marine current turbines for renewable energy self-consumption and to carry out complementary studies on the stability of such a system. The feasibility, safety, sensor communications, and buoy stability of the floating device have been successfully checked in real operating conditions.

  17. Coordinate Mastering Using Optical Coupling

    Science.gov (United States)

    Bieman, Leonard H.

    1989-01-01

    For a multi-sensor machine vision system, relating each sensor's measurement to a master gage coordinate system has been a difficult task. This is especially true for sheet metal gaging in the automotive industry where sensors may be separated by four or five meters. The current approach used to establish this master coordinate system, which is difficult at best, has been the following. First, the part is placed in the gage. The exact location, that is being measured by each sensor, is marked on the part. Then the marked part is transported to a coordinate measuring machine (CMM), where the location of each of the marked points is measured. These CMM measurements establish a master coordinate system. The procedure just described has major drawbacks including: the accuracy of marking the exact location being measured; the sensors orientation must be known with respect to the master coordinate system; and deformation of the sheet metal part when it is transported to the CMM. The mastering process can be significantly improved by optical coupling a theodolite pair with each machine vision sensor. This optical coupling is established by locating a target in a position that can be accurately measured by both a sensor and the theodolite system. First, the theodolite system is calibrated in gage coordinates by sighting on reference points placed on the machine vision gage. Then, for each sensor, the target location is measured by both the sensor and theodolite pair at three or more positions (or alternately one target may have three or more points that can be measured). From this data, the transforms from sensor coordinates to gage coordinates can be calculated. This report will present the configuration and calculations for coordinate mastering using optical coupling.

  18. Prospecting for Wind

    Science.gov (United States)

    Swapp, Andy; Schreuders, Paul; Reeve, Edward

    2011-01-01

    Many people use wind to help meet their needs. Over the years, people have been able to harness or capture the wind in many different ways. More recently, people have seen the rebirth of electricity-generating wind turbines. Thus, the age-old argument about technology being either good or bad can also be applied to the wind. The wind can be a…

  19. Careers in Wind Energy

    Science.gov (United States)

    Liming, Drew; Hamilton, James

    2011-01-01

    As a common form of renewable energy, wind power is generating more than just electricity. It is increasingly generating jobs for workers in many different occupations. Many workers are employed on wind farms: areas where groups of wind turbines produce electricity from wind power. Wind farms are frequently located in the midwestern, western, and…

  20. Lake Michigan Offshore Wind Feasibility Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Boezaart, Arnold [GVSU; Edmonson, James [GVSU; Standridge, Charles [GVSU; Pervez, Nahid [GVSU; Desai, Neel [University of Michigan; Williams, Bruce [University of Delaware; Clark, Aaron [GVSU; Zeitler, David [GVSU; Kendall, Scott [GVSU; Biddanda, Bopi [GVSU; Steinman, Alan [GVSU; Klatt, Brian [Michigan State University; Gehring, J. L. [Michigan State University; Walter, K. [Michigan State University; Nordman, Erik E. [GVSU

    2014-06-30

    The purpose of this project was to conduct the first comprehensive offshore wind assessment over Lake Michigan and to advance the body of knowledge needed to support future commercial wind energy development on the Great Lakes. The project involved evaluation and selection of emerging wind measurement technology and the permitting, installation and operation of the first mid-lake wind assessment meteorological (MET) facilities in Michigan’s Great Lakes. In addition, the project provided the first opportunity to deploy and field test floating LIDAR and Laser Wind Sensor (LWS) technology, and important research related equipment key to the sitting and permitting of future offshore wind energy development in accordance with public participation guidelines established by the Michigan Great Lakes Wind Council (GLOW). The project created opportunities for public dialogue and community education about offshore wind resource management and continued the dialogue to foster Great Lake wind resource utilization consistent with the focus of the GLOW Council. The technology proved to be effective, affordable, mobile, and the methods of data measurement accurate. The public benefited from a substantial increase in knowledge of the wind resources over Lake Michigan and gained insights about the potential environmental impacts of offshore wind turbine placements in the future. The unique first ever hub height wind resource assessment using LWS technology over water and development of related research data along with the permitting, sitting, and deployment of the WindSentinel MET buoy has captured public attention and has helped to increase awareness of the potential of future offshore wind energy development on the Great Lakes. Specifically, this project supported the acquisition and operation of a WindSentinel (WS) MET wind assessment buoy, and associated research for 549 days over multiple years at three locations on Lake Michigan. Four research objectives were defined for the

  1. Study of the effect of wind speed on evaporation from soil through integrated modeling of the atmospheric boundary layer and shallow subsurface

    Science.gov (United States)

    Davarzani, Hossein; Smits, Kathleen; Tolene, Ryan M; Illangasekare, Tissa

    2014-01-01

    In an effort to develop methods based on integrating the subsurface to the atmospheric boundary layer to estimate evaporation, we developed a model based on the coupling of Navier-Stokes free flow and Darcy flow in porous medium. The model was tested using experimental data to study the effect of wind speed on evaporation. The model consists of the coupled equations of mass conservation for two-phase flow in porous medium with single-phase flow in the free-flow domain under nonisothermal, nonequilibrium phase change conditions. In this model, the evaporation rate and soil surface temperature and relative humidity at the interface come directly from the integrated model output. To experimentally validate numerical results, we developed a unique test system consisting of a wind tunnel interfaced with a soil tank instrumented with a network of sensors to measure soil-water variables. Results demonstrated that, by using this coupling approach, it is possible to predict the different stages of the drying process with good accuracy. Increasing the wind speed increases the first stage evaporation rate and decreases the transition time between two evaporative stages (soil water flow to vapor diffusion controlled) at low velocity values; then, at high wind speeds the evaporation rate becomes less dependent on the wind speed. On the contrary, the impact of wind speed on second stage evaporation (diffusion-dominant stage) is not significant. We found that the thermal and solute dispersion in free-flow systems has a significant influence on drying processes from porous media and should be taken into account. PMID:25309005

  2. Study of the effect of wind speed on evaporation from soil through integrated modeling of the atmospheric boundary layer and shallow subsurface.

    Science.gov (United States)

    Davarzani, Hossein; Smits, Kathleen; Tolene, Ryan M; Illangasekare, Tissa

    2014-01-01

    In an effort to develop methods based on integrating the subsurface to the atmospheric boundary layer to estimate evaporation, we developed a model based on the coupling of Navier-Stokes free flow and Darcy flow in porous medium. The model was tested using experimental data to study the effect of wind speed on evaporation. The model consists of the coupled equations of mass conservation for two-phase flow in porous medium with single-phase flow in the free-flow domain under nonisothermal, nonequilibrium phase change conditions. In this model, the evaporation rate and soil surface temperature and relative humidity at the interface come directly from the integrated model output. To experimentally validate numerical results, we developed a unique test system consisting of a wind tunnel interfaced with a soil tank instrumented with a network of sensors to measure soil-water variables. Results demonstrated that, by using this coupling approach, it is possible to predict the different stages of the drying process with good accuracy. Increasing the wind speed increases the first stage evaporation rate and decreases the transition time between two evaporative stages (soil water flow to vapor diffusion controlled) at low velocity values; then, at high wind speeds the evaporation rate becomes less dependent on the wind speed. On the contrary, the impact of wind speed on second stage evaporation (diffusion-dominant stage) is not significant. We found that the thermal and solute dispersion in free-flow systems has a significant influence on drying processes from porous media and should be taken into account.

  3. Transition Marshall Space Flight Center Wind Profiler Splicing Algorithm to Launch Services Program Upper Winds Tool

    Science.gov (United States)

    Bauman, William H., III

    2014-01-01

    NASAs LSP customers and the future SLS program rely on observations of upper-level winds for steering, loads, and trajectory calculations for the launch vehicles flight. On the day of launch, the 45th Weather Squadron (45 WS) Launch Weather Officers (LWOs) monitor the upper-level winds and provide forecasts to the launch team via the AMU-developed LSP Upper Winds tool for launches at Kennedy Space Center (KSC) and Cape Canaveral Air Force Station. This tool displays wind speed and direction profiles from rawinsondes released during launch operations, the 45th Space Wing 915-MHz Doppler Radar Wind Profilers (DRWPs) and KSC 50-MHz DRWP, and output from numerical weather prediction models.The goal of this task was to splice the wind speed and direction profiles from the 45th Space Wing (45 SW) 915-MHz Doppler radar Wind Profilers (DRWPs) and KSC 50-MHz DRWP at altitudes where the wind profiles overlap to create a smooth profile. In the first version of the LSP Upper Winds tool, the top of the 915-MHz DRWP wind profile and the bottom of the 50-MHz DRWP were not spliced, sometimes creating a discontinuity in the profile. The Marshall Space Flight Center (MSFC) Natural Environments Branch (NE) created algorithms to splice the wind profiles from the two sensors to generate an archive of vertically complete wind profiles for the SLS program. The AMU worked with MSFC NE personnel to implement these algorithms in the LSP Upper Winds tool to provide a continuous spliced wind profile.The AMU transitioned the MSFC NE algorithms to interpolate and fill data gaps in the data, implement a Gaussian weighting function to produce 50-m altitude intervals in each sensor, and splice the data together from both DRWPs. They did so by porting the MSFC NE code written with MATLAB software into Microsoft Excel Visual Basic for Applications (VBA). After testing the new algorithms in stand-alone VBA modules, the AMU replaced the existing VBA code in the LSP Upper Winds tool with the new

  4. Optimization of Wind Turbine Operation by Use of Spinner Anemometer

    DEFF Research Database (Denmark)

    Friis Pedersen, Troels; Sørensen, Niels N.; Vita, Luca

    A prototype spinner anemometer was developed from a standard scientific sonic anemometer with specially designed 1D sonic sensors. A model spinner anemometer was tested in wind tunnel with two sensor head configurations. The tests showed that the sonic sensors responded with a high influence factor...... that the calculations were almost insensitive to rotation and to wind speeds. For all flow angles up to 60º the azimuth variation was a pure sinus. The shape of the responses was found to be described with a simple function that over one revolution decreases the average value with a cosine to the flow angle...

  5. Frequency based Wind Turbine Gearbox Fault Detection applied to a 750 kW Wind Turbine

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Nejad, Amir R.

    2014-01-01

    turbines. One of the critical components in modern wind turbines is the gearbox. Failures in the gearbox are costly both due to the cost of the gearbox itself, but also due to lost power generation during repair of it. Wind turbine gearboxes are consequently monitored by condition monitoring systems...... operating in parallel with the control system, and also uses additional sensors measuring different accelerations and noises, etc. In this paper gearbox data from high fidelity gearbox model of a 750 kW wind turbine gearbox, simulated with and without faults are used to shown the potential of frequency...

  6. Wind structure during mid-latitude storms and its application in Wind Energy

    DEFF Research Database (Denmark)

    Larsén, Xiaoli Guo; Du, Jianting; Bolanos, Rodolfo

    2015-01-01

    . The numerical modeling is done through an atmosphere-wave coupled system, where the atmospheric model is the Weather Research and Forecasting (WRF) model and the wave model is the Simulating WAves Nearshore (SWAN) model. Measurements from offshore stations, Horns Rev and the FINO platform, as well as satellite......: the mean wind and turbulence structures, as well as gust. This study aims at improving the understanding and modeling for the challenging wind and wave conditions during storms in the coastal offshore zones where a large number of wind farms are being planned in the near future in Europe, especially...... in Denmark. The extreme wind and wave conditions in the coastal area for wind energy application are important but have rarely been studied in the literature. Our experiments are done to the Danish coasts where the mid-latitude depression systems are causes of the extreme wind and wave conditions...

  7. Influence of wind loading

    OpenAIRE

    MAVLONOV RAVSHANBEK ABDUJABBOROVICH; VAKKASOV KHAYRULLO SAYFULLAHANOVICH

    2015-01-01

    Each wind load is determined by a probabilistic-statistical method based on the concept of “equivalent static wind load”, on the assumption that structural frames and components/cladding behave elastically in strong wind.

  8. Tower Winds - Cape Kennedy

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Digitized data taken from Wind Gust Charts. Record contains hourly wind directions and speed with a peak wind recorded at the end of each day. Sorted by: station,...

  9. Wind energy program overview

    International Nuclear Information System (INIS)

    1992-02-01

    This overview emphasizes the amount of electric power that could be provided by wind power rather than traditional fossil fuels. New wind power markets, advances in technology, technology transfer, and wind resources are some topics covered in this publication

  10. Passive Acoustic Detection of Wind Turbine In-Flow Conditions for Active Control and Optimization

    Energy Technology Data Exchange (ETDEWEB)

    Murray, Nathan E.

    2012-03-12

    Wind is a significant source of energy; however, the human capability to produce electrical energy still has many hurdles to overcome. One of these is the unpredictability of the winds in the atmospheric boundary layer (ABL). The ABL is highly turbulent in both stable and unstable conditions (based on the vertical temperature profile) and the resulting fluctuations can have a dramatic impact on wind turbine operation. Any method by which these fluctuations could be observed, estimated, or predicted could provide a benefit to the wind energy industry as a whole. Based on the fundamental coupling of velocity fluctuations to pressure fluctuations in the nearly incompressible flow in the ABL, This work hypothesizes that a ground-based array of infrasonic pressure transducers could be employed to estimate the vertical wind profile over a height relevant for wind turbines. To analyze this hypothesis, experiments and field deployments were conducted. Wind tunnel experiments were performed for a thick turbulent boundary layer over a neutral or heated surface. Surface pressure and velocity probe measurements were acquired simultaneously. Two field deployments yielded surface pressure data from a 49 element array. The second deployment at the Reese Technology Center in Lubbock, TX, also included data from a smaller aperture, 96-element array and a 200-meter tall meteorological tower. Analysis of the data successfully demonstrated the ability to estimate the vertical velocity profile using coherence data from the pressure array. Also, dynamical systems analysis methods were successful in identifying and tracking a gust type event. In addition to the passive acoustic profiling method, this program also investigated a rapid response Doppler SODAR system, the optimization of wind turbine blades for enhanced power with reduced aeroacoustic noise production, and the implementation of a wireless health monitoring system for the wind turbine blades. Each of these other objectives

  11. Aeolus -A Mission to Study the Thermal and Wind Environment of Mars

    Science.gov (United States)

    Colaprete, Anthony

    2017-01-01

    Aeolus is a small satellite mission to observe surface and atmospheric forcing and general circulation of Mars, by measuring surface energy balance, atmospheric temperatures, aerosols and clouds, and winds. Critically, Aeolus will make these measurements at all local times of day, providing information on both seasonal and diurnal variability. To date, direct measurements of Martian wind speeds have only been possible at the surface, only during daylight hours, and over small areas limited by rover traverse capabilities. From orbit, thermal measurements (e.g., estimates from assumed geostrophic balance) as well as images of dust storms and dune migration have provided inputs to derive current data sets on Martian winds. However, Mars General Circulation models demonstrate that wind speeds derived from these indirect measurements may be in error by 50 to 100%. For this reason, direct wind velocity measurements have been deemed "High Priority" by MEPAG (Mars Exploration Program Analysis Group); measuring wind speeds and corresponding thermal data is vital to understanding the climate of Mars. Aeolus will carry four Spatial Heterodyne Spectrometers (SHS), coupled to two orthogonal viewing telescopes. These high-resolution near-infrared spectrometers will measure CO2 (daytime absorption) and O2 (day and night emission) lines in the Martian atmosphere. Doppler shifts in these lines can be measured during Martian day and night, resolving wind speeds down to 5 m/s. Orthogonal views allow the spectrometers to capture wind vectors over all observation locations. Aeolus will also carry the atmospheric limb-viewing Thermal Limb Sounder (TLS) to measure atmospheric temperatures, water ice clouds, and dust abundances across all altitudes where winds are measured. Finally, the Surface Radiometric Sensor Package (SuRSeP), a nadir viewing radiometer, will measure the total reflected solar and emitted thermal radiance, surface temperature, and water cloud and dust total column

  12. Reliability of wind turbine blades: An overview of materials testing

    DEFF Research Database (Denmark)

    Holmes, John W.; Sørensen, Bent F.; Brøndsted, Povl

    2007-01-01

    The structural reliability of wind turbine components can have a profound impact on both the profitability and reputation of a wind turbine manufacturer or supplier of wind turbine components. The issue of reliability is of critical concern when large wind farm co-operatives are considered......, and when wind turbines are located in remote regions where the cost of inspections and repairs can be very high. From a structural viewpoint, wind turbine blades are subjected to very complex loading histories with coupled deformation modes. The long-term reliability of wind turbine blades requires...... an understanding of how damage develops in composite structures, composite materials and adhesives. Designing reliable wind turbine blades also requires the further development of laboratory scale and full scale test methods to evaluate the structural response and durability of new materials under various loading...

  13. Modelling Wind for Wind Farm Layout Optimization Using Joint Distribution of Wind Speed and Wind Direction

    OpenAIRE

    Ju Feng; Wen Zhong Shen

    2015-01-01

    Reliable wind modelling is of crucial importance for wind farm development. The common practice of using sector-wise Weibull distributions has been found inappropriate for wind farm layout optimization. In this study, we propose a simple and easily implementable method to construct joint distributions of wind speed and wind direction, which is based on the parameters of sector-wise Weibull distributions and interpolations between direction sectors. It is applied to the wind measurement data a...

  14. Denmark Wind Energy Programme

    DEFF Research Database (Denmark)

    Shen, Wen Zhong

    2014-01-01

    In this paper, a summary of some ongoing wind energy projects in Denmark is given. The research topics comprise computational model development, wind turbine design, low noise airfoil and blade design, control device development, wake modelling, and wind farm layout optimization.......In this paper, a summary of some ongoing wind energy projects in Denmark is given. The research topics comprise computational model development, wind turbine design, low noise airfoil and blade design, control device development, wake modelling, and wind farm layout optimization....

  15. Superconducting Wind Turbine Generators

    OpenAIRE

    Yunying Pan; Danhzen Gu

    2016-01-01

    Wind energy is well known as a renewable energy because its clean and less polluted characteristic, which is the foundation of development modern wind electricity. To find more efficient wind turbine is the focus of scientists around the world. Compared from conventional wind turbines, superconducting wind turbine generators have advantages at zero resistance, smaller size and lighter weight. Superconducting wind turbine will inevitably become the main trends in this area. This paper intends ...

  16. Methods and apparatus for cooling wind turbine generators

    Science.gov (United States)

    Salamah, Samir A [Niskayuna, NY; Gadre, Aniruddha Dattatraya [Rexford, NY; Garg, Jivtesh [Schenectady, NY; Bagepalli, Bharat Sampathkumaran [Niskayuna, NY; Jansen, Patrick Lee [Alplaus, NY; Carl, Jr., Ralph James

    2008-10-28

    A wind turbine generator includes a stator having a core and a plurality of stator windings circumferentially spaced about a generator longitudinal axis. A rotor is rotatable about the generator longitudinal axis, and the rotor includes a plurality of magnetic elements coupled to the rotor and cooperating with the stator windings. The magnetic elements are configured to generate a magnetic field and the stator windings are configured to interact with the magnetic field to generate a voltage in the stator windings. A heat pipe assembly thermally engaging one of the stator and the rotor to dissipate heat generated in the stator or rotor.

  17. Active control: Wind turbine model

    Energy Technology Data Exchange (ETDEWEB)

    Bindner, Henrik

    1999-07-01

    This report is a part of the reporting of the work done in the project `Active Control of Wind Turbines`. This project aim is to develop a simulation model for design of control systems for turbines with pitch control and to use that model to design controllers. This report describes the model developed for controller design and analysis. Emphasis has been put on establishment of simple models describing the dynamic behavior of the wind turbine in adequate details for controller design. This has been done with extensive use of measurements as the basis for selection of model complexity and model validation as well as parameter estimation. The model includes a simple model of the structure of the turbine including tower and flapwise blade bending, a detailed model of the gear box and induction generator, a linearized aerodynamic model including modelling of induction lag and actuator and sensor models. The models are all formulated as linear differential equations. The models are validated through comparisons with measurements performed on a Vestas WD 34 400 kW wind turbine. It is shown from a control point of view simple linear models can be used to describe the dynamic behavior of a pitch controlled wind turbine. The model and the measurements corresponds well in the relevant frequency range. The developed model is therefore applicable for controller design. (au) EFP-91. 18 ills., 22 refs.

  18. Wind turbines, is it just wind?

    International Nuclear Information System (INIS)

    Boiteux, M.

    2012-01-01

    The author first outlines that wind energy is not only random, but almost absent in extreme situations when it would be needed (for example and notably, very cold weather without wind). He suggests the association of a gas turbine to each wind turbine, so that the gas turbine will replace non operating wind turbines. He notices that wind turbines are not proximity energy as they were said to be, and that profitability in fact requires tens of grouped giant wind turbines. He also outlines the high cost of construction of grids for the connection of these wind turbines. Thus, he states that wind energy is far from being profitable in the present conditions of electricity tariffs in France

  19. Wind energy harvesting with a piezoelectric harvester

    International Nuclear Information System (INIS)

    Wu, Nan; Wang, Quan; Xie, Xiangdong

    2013-01-01

    An energy harvester comprising a cantilever attached to piezoelectric patches and a proof mass is developed for wind energy harvesting, from a cross wind-induced vibration of the cantilever, by the electromechanical coupling effect of piezoelectric materials. The vibration of the cantilever under the cross wind is induced by the air pressure owing to a vortex shedding phenomenon that occurs on the leeward side of the cantilever. To describe the energy harvesting process, a theoretical model considering the cross wind-induced vibration on the piezoelectric coupled cantilever energy harvester is developed, to calculate the charge and the voltage from the harvester. The influences of the length and location of the piezoelectric patches as well as the proof mass on the generated electric power are investigated. Results show that the total generated electric power can be as high as 2 W when the resonant frequency of the cantilever harvester is close to the vortex shedding frequency. Moreover, a value of total generated electric power up to 1.02 W can be practically realized for a cross wind with a variable wind velocity of 9–10 m s −1 by a harvester with a length of 1.2 m. This research facilitates an effective and compact wind energy harvesting device. (paper)

  20. Advanced structural wind engineering

    CERN Document Server

    Kareem, Ahsan

    2013-01-01

    This book serves as a textbook for advanced courses as it introduces state-of-the-art information and the latest research results on diverse problems in the structural wind engineering field. The topics include wind climates, design wind speed estimation, bluff body aerodynamics and applications, wind-induced building responses, wind, gust factor approach, wind loads on components and cladding, debris impacts, wind loading codes and standards, computational tools and computational fluid dynamics techniques, habitability to building vibrations, damping in buildings, and suppression of wind-induced vibrations. Graduate students and expert engineers will find the book especially interesting and relevant to their research and work.

  1. Wind for Schools (Poster)

    Energy Technology Data Exchange (ETDEWEB)

    Baring-Gould, I.

    2010-05-01

    As the United States dramatically expands wind energy deployment, the industry is challenged with developing a skilled workforce and addressing public resistance. Wind Powering America's Wind for Schools project addresses these issues by developing Wind Application Centers (WACs) at universities; WAC students assist in implementing school wind turbines and participate in wind courses, by installing small wind turbines at community "host" schools, by implementing teacher training with interactive curricula at each host school. This poster provides an overview of the first two years of the Wind for Schools project, primarily supporting activities in Colorado, Kansas, Nebraska, South Dakota, Montana, and Idaho.

  2. Frequency Based Fault Detection in Wind Turbines

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Stoustrup, Jakob

    2014-01-01

    In order to obtain lower cost of energy for wind turbines fault detection and accommodation is important. Expensive condition monitoring systems are often used to monitor the condition of rotating and vibrating system parts. One example is the gearbox in a wind turbine. This system is operated...... in parallel to the control system, using different computers and additional often expensive sensors. In this paper a simple filter based algorithm is proposed to detect changes in a resonance frequency in a system, exemplified with faults resulting in changes in the resonance frequency in the wind turbine...... turbine fault detection and fault tolerant control benchmark model, in which one of the included faults results in a change in the gear box resonance frequency. This evaluation shows the potential of the proposed scheme to monitor the condition of wind turbine gear boxes in the existing control system....

  3. Smart sensors

    Science.gov (United States)

    Corsi, Carlo

    2006-08-01

    The term "Smart Sensors" refer to sensors which contain both sensing and signal processing capabilities with objectives ranging from simple viewing to sophisticated remote sensing, surveillance, search/track, weapon guidance, robotics, perceptronics and intelligence applications. In a broad sense, they include any sensor systems covering the whole electromagnetic spectrum: this paper deals specifically with a new class of smart sensors in infrared spectral bands whose developments started some years ago, when it was recognized that the rapid advances of "very large scale integration" (VLSI) processor technology and mosaic infrared detector array technology could be combined to develop new generations of infrared smart sensor systems with much improved performance. So, sophisticated signal processing operations have been developed for these new systems by integrating microcomputers and other VLSI signal processors within or next to the sensor arrays on the same focal plane avoiding complex computing located far away from the sensors. Recently this approach is achieving higher goals by a new and revolutionary sensors concept which introduce inside the sensor some of the basic function of living eyes, such as dynamic stare, dishomogenity compensation, spatial and temporal filtering. New objectives and requirements of these new focal plane processors are presented for this type of new infrared smart sensor systems. This paper is concerned with the processing techniques for only the front end of the focal plane processing, namely, the enhancement of target-to-noise ratio by background clutter suppression and the improvement in target detection by "smart" and pattern correlation threshold.

  4. SSMI wind speed measurements over the Southern Hemisphere oceans

    Science.gov (United States)

    Halpern, David

    1993-01-01

    The Special Sensor Microwave Imager (SSMI) carried by the USAF Defense Meteorological Satellite Program spacecraft correlates the intensity of microwave radiation emitted at the ocean surface with the 10-m height wind speed. The 4-year mean global features of the SSMI data were similar to the climatological-mean annual wind speed estimated from ship reports. Time series of area-weighted 60 deg S - zero deg monthly mean wind speeds indicated that the South Indian Ocean had the largest wind speeds throughout the year.

  5. Fault tolerant control of wind turbines using unknown input observers

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Stoustrup, Jakob

    2012-01-01

    This paper presents a scheme for accommodating faults in the rotor and generator speed sensors in a wind turbine. These measured values are important both for the wind turbine controller as well as the supervisory control of the wind turbine. The scheme is based on unknown input observers, which...... are also used to detect and isolate these faults. The scheme is tested on a known benchmark for FDI and FTC of wind turbines. Tests on this benchmark model show a clear potential of the proposed scheme....

  6. Point Coupled Displacement Sensor, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Real-time displacement measurement techniques are needed to acquire aerodynamic and structural system characteristics in flight. This proposal describes the...

  7. Wind Tunnel Experiments: Influence of Erosion and Deposition on Wind-Packing of New Snow

    Directory of Open Access Journals (Sweden)

    Christian G. Sommer

    2018-01-01

    Full Text Available Wind sometimes creates a hard, wind-packed layer at the surface of a snowpack. The formation of such wind crusts was observed during wind tunnel experiments with combined SnowMicroPen and Microsoft Kinect sensors. The former provides the hardness of new and wind-packed snow and the latter spatial snow depth data in the test section. Previous experiments had shown that saltation is necessary but not sufficient for wind-packing. The combination of hardness and snow depth data now allows to study the case with saltation in more detail. The Kinect data requires complex processing but with the appropriate corrections, snow depth changes can be measured with an accuracy of about 1 mm. The Kinect is therefore well suited to quantify erosion and deposition. We found that no hardening occurred during erosion and that a wind crust may or may not form when snow is deposited. Deposition is more efficient at hardening snow in wind-exposed than in wind-sheltered areas. The snow hardness increased more on the windward side of artificial obstacles placed in the wind tunnel. Similarly, the snow was harder in positions with a low Sx parameter. Sx describes how wind-sheltered (high Sx or wind-exposed (low Sx a position is and was calculated based on the Kinect data. The correlation between Sx and snow hardness was −0.63. We also found a negative correlation of −0.4 between the snow hardness and the deposition rate. Slowly deposited snow is harder than a rapidly growing accumulation. Sx and the deposition rate together explain about half of the observed variability of snow hardness.

  8. Simulating the Reiner Gamma Lunar Swirl: Solar Wind Standoff Works!

    Science.gov (United States)

    Deca, Jan; Divin, Andrey; Lue, Charles; Ahmadi, Tara; Horányi, Mihály

    2017-04-01

    Discovered by early astronomers during the Renaissance, the Reiner Gamma formation is a prominent lunar surface feature. Observations have shown that the tadpole-shaped albedo marking, or swirl, is co-located with one of the strongest crustal magnetic anomalies on the Moon. The region therefore presents an ideal test case to constrain the kinetic solar wind interaction with lunar magnetic anomalies and its possible consequences for lunar swirl formation. All known swirls have been associated with magnetic anomalies, but the opposite does not hold. The evolutionary scenario of the lunar albedo markings has been under debate since the Apollo era. By coupling fully kinetic simulations with a surface vector mapping model based on Kaguya and Lunar Prospector magnetic field measurements, we show that solar wind standoff is the dominant process to have formed the lunar swirls. It is an ion-electron kinetic interaction mechanism that locally prevents weathering by solar wind ions and the subsequent formation of nanophase iron. The correlation between the surface weathering process and the surface reflectance is optimal when evaluating the proton energy flux, rather than the proton density or number flux. This is an important result to characterise the primary process for surface darkening. In addition, the simulated proton reflection rate is for the first time directly compared with in-orbit flux measurements from the SARA:SWIM ion sensor onboard the Chandrayaan-1 spacecraft. The agreement is found excellent. Understanding the relation between the lunar surface albedo features and the co-located magnetic anomaly is essential for our interpretation of the Moon's geological history, space weathering, and to evaluate future lunar exploration opportunities. This work was supported in part by NASA's Solar System Exploration Research Virtual Institute (SSERVI): Institute for Modeling Plasmas, Atmosphere, and Cosmic Dust (IMPACT). The work by C.L. was supported by NASA grant NNX

  9. Guard Cell and Tropomyosin Inspired Chemical Sensor

    Directory of Open Access Journals (Sweden)

    Jacquelyn K.S. Nagel

    2013-10-01

    Full Text Available Sensors are an integral part of many engineered products and systems. Biological inspiration has the potential to improve current sensor designs as well as inspire innovative ones. This paper presents the design of an innovative, biologically-inspired chemical sensor that performs “up-front” processing through mechanical means. Inspiration from the physiology (function of the guard cell coupled with the morphology (form and physiology of tropomyosin resulted in two concept variants for the chemical sensor. Applications of the sensor design include environmental monitoring of harmful gases, and a non-invasive approach to detect illnesses including diabetes, liver disease, and cancer on the breath.

  10. Advanced Offshore Wind Energy - Atlantic Consortium

    Energy Technology Data Exchange (ETDEWEB)

    Kempton, Willett

    2015-11-04

    This project developed relationships among the lead institution, U of Delaware, wind industry participants from 11 companies, and two other universities in the region. The participating regional universities were University of Maryland and Old Dominion University. Research was carried out in six major areas: Analysis and documentation of extreme oceanic wind events & their impact on design parameters, calibration of corrosivity estimates measured on a coastal turbine, measurment and modeling of tower structures, measurement and modeling of the tribology of major drive components, and gearbox conditioning monitoring using acoustic sensors. The project also had several educational goals, including establishing a course in wind energy and training graduate students. Going beyond these goals, three new courses were developed, a graduate certificate program in wind power was developed and approved, and an exchange program in wind energy was established with Danish Technical University. Related to the installation of a Gamesa G90 turbine on campus and a Gamesa-UD research program established in part due to this award, several additional research projects have been carried out based on mutual industry-university interests, and funded by turbine revenues. This award and the Gamesa partnership have jointly led to seven graduate students receiving full safety and climb training, to become “research climbers” as part of their wind power training, and contributing to on-turbine research. As a result of the educational program, already six graduate students have taken jobs in the US wind industry.

  11. Sensor web

    Science.gov (United States)

    Delin, Kevin A. (Inventor); Jackson, Shannon P. (Inventor)

    2011-01-01

    A Sensor Web formed of a number of different sensor pods. Each of the sensor pods include a clock which is synchronized with a master clock so that all of the sensor pods in the Web have a synchronized clock. The synchronization is carried out by first using a coarse synchronization which takes less power, and subsequently carrying out a fine synchronization to make a fine sync of all the pods on the Web. After the synchronization, the pods ping their neighbors to determine which pods are listening and responded, and then only listen during time slots corresponding to those pods which respond.

  12. Gas Sensor

    KAUST Repository

    Luebke, Ryan

    2015-01-22

    A gas sensor using a metal organic framework material can be fully integrated with related circuitry on a single substrate. In an on-chip application, the gas sensor can result in an area-efficient fully integrated gas sensor solution. In one aspect, a gas sensor can include a first gas sensing region including a first pair of electrodes, and a first gas sensitive material proximate to the first pair of electrodes, wherein the first gas sensitive material includes a first metal organic framework material.

  13. Development of semiconductor laser based Doppler lidars for wind-sensing applications

    DEFF Research Database (Denmark)

    Rodrigo, Peter John; Hu, Qi; Pedersen, Christian

    2015-01-01

    We summarize the progress we have made in the development of semiconductor laser (SL) based Doppler lidar systems for remote wind speed and direction measurements. The SL emitter used in our wind-sensing lidar is an integrated diode laser with a tapered (semiconductor) amplifier. The laser source...... based wind sensors have a strong potential in a number of applications such as wind turbine control, wind resource assessment, and micrometeorology (e.g. as alternative to the construction of meteorological towers with anemometers and wind vanes)....

  14. Wind engineering in Africa

    NARCIS (Netherlands)

    Wisse, J.A.; Stigter, C.J.

    2007-01-01

    The International Association for Wind Engineering (IAWE) has very few contacts in Africa, the second-largest continent. This paper reviews important wind-related African issues. They all require data on wind climate, which are very sparse in Africa. Wind engineering in Africa can assist in

  15. Wind energy; Energie eolienne

    Energy Technology Data Exchange (ETDEWEB)

    Vachey, C.

    2000-05-01

    This public information paper presents the wind energy resource in the Languedoc Roussillon region, explains how a wind turbine works, the different types of utilization and the cost of the wind energy. The environmental impacts of the wind energy, on the noise and the landscape, are also discussed. (A.L.B.)

  16. Multiparametric methane sensor for environmental monitoring

    Science.gov (United States)

    Borecki, M.; Duk, M.; Kociubiński, A.; Korwin-Pawlowski, M. L.

    2016-12-01

    Today, methane sensors find applications mostly in safety alarm installations, gas parameters detection and air pollution classification. Such sensors and sensors elements exists for industry and home use. Under development area of methane sensors application is dedicated to ground gases monitoring. Proper monitoring of soil gases requires reliable and maintenance-free semi-constant and longtime examination at relatively low cost of equipment. The sensors for soil monitoring have to work on soil probe. Therefore, sensor is exposed to environment conditions, as a wide range of temperatures and a full scale of humidity changes, as well as rain, snow and wind, that are not specified for classical methane sensors. Development of such sensor is presented in this paper. The presented sensor construction consists of five commercial non dispersive infra-red (NDIR) methane sensing units, a set of temperature and humidity sensing units, a gas chamber equipped with a micro-fan, automated gas valves and also a microcontroller that controls the measuring procedure. The electronics part of sensor was installed into customized 3D printed housing equipped with self-developed gas valves. The main development of proposed sensor is on the side of experimental evaluation of construction reliability and results of data processing included safety procedures and function for hardware error correction. Redundant methane sensor units are used providing measurement error correction as well as improved measurement accuracy. The humidity and temperature sensors are used for internal compensation of methane measurements as well as for cutting-off the sensor from the environment when the conditions exceed allowable parameters. Results obtained during environment sensing prove that the gas concentration readings are not sensitive to gas chamber vertical or horizontal position. It is important as vertical sensor installation on soil probe is simpler that horizontal one. Data acquired during six

  17. Comparing satellite SAR and wind farm wake models

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Vincent, P.; Husson, R.

    2015-01-01

    . These extend several tens of kilometres downwind e.g. 70 km. Other SAR wind maps show near-field fine scale details of wake behind rows of turbines. The satellite SAR wind farm wake cases are modelled by different wind farm wake models including the PARK microscale model, the Weather Research and Forecasting...... (WRF) model in high resolution and WRF with coupled microscale parametrization....

  18. Offshore Wind Farms

    DEFF Research Database (Denmark)

    Lundtang Petersen, Erik; Hasager, Charlotte Bay; Courtney, Michael

    2015-01-01

    The technology behind constructing wind farms offshore began to develop in 1991 when the Vindeby wind farm was installed off the Danish coast (11 Bonus 450 kW turbines). Resource assessment, grid connection, and wind farm operation are significant challenges for offshore wind power just...... concern are the problems associated with locating the turbines close together in a wind farm and the problems of placing several large wind farms in a confined area. The environmental impacts of offshore wind farms are also treated, but not the supply chain, that is, the harbors, the installation vessels...

  19. Wind turbine power curve prediction with consideration of rotational augmentation effects

    Science.gov (United States)

    Tang, X.; Huang, X.; Sun, S.; Peng, R.

    2016-11-01

    Wind turbine power curve expresses the relationship between the rotor power and the hub wind speed. Wind turbine power curve prediction is of vital importance for power control and wind energy management. To predict power curve, the Blade Element Moment (BEM) method is used in both academic and industrial communities. Due to the limited range of angles of attack measured in wind tunnel testing and the three-dimensional (3D) rotational augmentation effects in rotating turbines, wind turbine power curve prediction remains a challenge especially at high wind speeds. This paper presents an investigation of considering the rotational augmentation effects using characterized lift and drag coefficients from 3D computational fluid dynamics (CFD) simulations coupled in the BEM method. A Matlab code was developed to implement the numerical calculation. The predicted power outputs were compared with the NREL Phase VI wind turbine measurements. The results demonstrate that the coupled method improves the wind turbine power curve prediction.

  20. Flicker Mitigation of Grid Connected Wind Turbines Using STATCOM

    DEFF Research Database (Denmark)

    Sun, Tao; Chen, Zhe; Blaabjerg, Frede

    2004-01-01

    to the point of common coupling (PCC) to relieve the flicker produced by grid connected wind turbines and the corresponding control scheme is described in detail. Simulation results show that STATCOM is an effective measure to mitigate the flicker level during continuous operation of grid connected wind...

  1. Stochastic dynamic stiffness of surface footing for offshore wind turbines

    DEFF Research Database (Denmark)

    Vahdatirad, Mohammadjavad; Andersen, Lars Vabbersgaard; Ibsen, Lars Bo

    2014-01-01

    Highlights •This study concerns the stochastic dynamic stiffness of foundations for large offshore wind turbines. •A simple model of wind turbine structure with equivalent coupled springs at the base is utilized. •The level of uncertainties is quantified through a sensitivity analysis. •Estimatio...... of rare events of first natural frequency applying subset simulation is discussed....

  2. Latin America wind market assessment. Forecast 2013-2022

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-10-15

    Wind Power Activities by Country: Developers/Owners, Wind Plant Sizes, Wind Turbines Deployed, Commissioning Dates, Market Share, and Capacity Forecasts Latin American markets are a subject of intense interest from the global wind industry. Wind plant construction across Latin America is modest compared to the more established markets like the United States, Europe, and China, but it is an emerging market that is taking off at a rapid pace. The region has become the hottest alternative growth market for the wind energy industry at a time when growth rates in other markets are flat due to a variety of policy and macroeconomic challenges. Globalization is driving sustainable economic growth in most Latin American countries, resulting in greater energy demand. Wind is increasingly viewed as a valuable and essential answer to increasing electricity generation across most markets in Latin America. Strong wind resources, coupled with today's sophisticated wind turbines, are providing cost-effective generation that is competitive with fossil fuel generation. Most Latin American countries also rely heavily on hydroelectricity, which balances well with variable wind generation. Navigant Research forecasts that if most wind plants under construction with planned commissioning go online as scheduled, annual wind power installations in Latin America will grow from nearly 2.2 GW in 2013 to 4.3 GW by 2022. This Navigant Research report provides a comprehensive view of the wind energy market dynamics at play in Latin America. It offers a country-by-country analysis, outlining the key energy policies and development opportunities and barriers and identifying which companies own operational wind plants and which wind turbine vendors supplied those projects. Market forecasts for wind power installations, capacity, and market share in Latin America, segmented by country and company, extend through 2022. The report also offers an especially close analysis of Brazil and Mexico

  3. Wind power. [electricity generation

    Science.gov (United States)

    Savino, J. M.

    1975-01-01

    A historical background on windmill use, the nature of wind, wind conversion system technology and requirements, the economics of wind power and comparisons with alternative systems, data needs, technology development needs, and an implementation plan for wind energy are presented. Considerable progress took place during the 1950's. Most of the modern windmills feature a wind turbine electricity generator located directly at the top of their rotor towers.

  4. Chemical sensors

    International Nuclear Information System (INIS)

    Hubbard, C.W.; Gordon, R.L.

    1987-05-01

    The revolution in analytical chemistry promised by recent developments in the field of chemical sensors has potential for significant positive impact on both research and production activities conducted by and for the Department of Energy. Analyses which were, in the past, performed only with a roomful of expensive equipment can now be performed with miniature solid-state electronic devices or small optical probes. Progress in the development of chemical sensors has been rapid, and the field is currently growing at a great rate. In accordance, Pacific Northwest Laboratory initiated a survey of recent literature so that contributors to active programs in research on analytical methods could be made aware of principles and applications of this new technology. This report presents the results of that survey. The sensors discussed here are divided into three types: micro solid-state devices, optical sensors, and piezoelectric crystal devices. The report is divided into three corresponding sections. The first section, ''Micro Solid-State Devices,'' discusses the design, operation, and application of electronic sensors that are produced in much the same way as standard solid-state electronic devices. The second section, ''Optrodes,'' covers the design and operation of chemical sensors that use fiber optics to detect chemically induced changes in optical properties. The final section, ''Piezoelectric Crystal Detectors,'' discusses two types of chemical sensors that depend on the changes in the properties of an oscillating piezoelectric crystal to detect the presence of certain materials. Advantages and disadvantages of each type of sensor are summarized in each section

  5. Passive A-band Wind Sounder (PAWS) for measuring tropospheric wind velocity profile

    Science.gov (United States)

    Miecznik, Grzegorz; Pierce, Robert; Huang, Pei; Slaymaker, Philip A.; Kaptchen, Paul; Roark, Shane; Johnson, Brian R.; Heath, Donald F.

    2007-09-01

    The Passive A-Band Wind Sounder (PAWS) was funded through NASA's Instrument Incubator Program (IIP) to determine the feasibility of measuring tropospheric wind speed profiles from Doppler shifts in absorption O II A-band. It is being pursued as a low-cost and low-risk alternative capable of providing better wind data than is currently available. The instrument concept is adapted from the Wind Imaging Interferometer (WINDII) sensor on the Upper Atmosphere Research Satellite. The operational concept for PAWS is to view an atmospheric limb over an altitude range from the surface to 20 km with a Doppler interferometer in a sun-synchronous low-earth orbit. Two orthogonal views of the same sampling volume will be used to resolve horizontal winds from measured line-of-sight winds. A breadboard instrument was developed to demonstrate the measurement approach and to optimize the design parameters for the subsequent engineering unit and future flight sensor. The breadboard instrument consists of a telescope, collimator, filter assembly, and Michelson interferometer. The instrument design is guided by a retrieval model, which helps to optimize key parameters, spectral filter and optical path difference in particular.

  6. The detection of wind turbine shaft misalignment using temperature monitoring

    OpenAIRE

    Tonks, Oliver; Wang, Qing

    2016-01-01

    Temperature is a parameter increasingly monitored in wind turbine systems. This paper details a potential temperature monitoring technique for use on shaft couplings. Such condition monitoring methods aid fault detection in other areas of wind turbines. However, application to shaft couplings has not previously been widely researched. A novel temperature measurement technique is outlined, using an infra-red thermometer which can be applied to online condition monitoring. The method was va...

  7. Operation and Equivalent Loads of Wind Turbines in Large Wind Farms

    Science.gov (United States)

    Andersen, Soren Juhl; Sorensen, Jens Norkaer; Mikkelsen, Robert Flemming

    2017-11-01

    Wind farms continue to grow in size and as the technology matures, the design of wind farms move towards including dynamic effects besides merely annual power production estimates. The unsteady operation of wind turbines in large wind farms has been modelled with EllipSys3D(Michelsen, 1992, and Sørensen, 1995) for a number of different scenarios using a fully coupled large eddy simulations(LES) and aero-elastic framework. The turbines are represented in the flow fields using the actuator line method(Sørensen and Shen, 2002), where the aerodynamic forces and deflections are derived from an aero-elastic code, Flex5(Øye, 1996). The simulations constitute a database of full turbine operation in terms of both production and loads for various wind speeds, turbulence intensities, and turbine spacings. The operating conditions are examined in terms of averaged power production and thrust force, as well as 10min equivalent flapwise bending, yaw, and tilt moment loads. The analyses focus on how the performance and loads change throughout a given farm as well as comparing how various input parameters affect the operation and loads of the wind turbines during different scenarios. COMWIND(Grant 2104-09- 067216/DSF), Nordic Consortium on Optimization and Control of Wind Farms, Eurotech Greentech Wind project, Winds2Loads, and CCA LES. Ressources Granted on SNIC and JESS. The Vestas NM80 turbine has been used.

  8. Offshore code comparison collaboration continuation within IEA Wind Task 30: Phase II results regarding a floating semisubmersible wind system

    DEFF Research Database (Denmark)

    Robertson, Amy; Jonkman, Jason M.; Vorpahl, Fabian

    2014-01-01

    Offshore wind turbines are designed and analyzed using comprehensive simulation tools (or codes) that account for the coupled dynamics of the wind inflow, aerodynamics, elasticity, and controls of the turbine, along with the incident waves, sea current, hydrodynamics, mooring dynamics, and founda...

  9. Satellite based wind resource assessment over the South China Sea

    DEFF Research Database (Denmark)

    Badger, Merete; Astrup, Poul; Hasager, Charlotte Bay

    2014-01-01

    years of WRF data – specifically the parameters heat flux, air temperature, and friction velocity – are used to calculate a long-term correction for atmospheric stability effects. The stability correction is applied to the satellite based wind resource maps together with a vertical wind profile...... from satellite synthetic aperture radar (SAR) data are particularly suitable for offshore wind energy applications because they offer a spatial resolution up to 500 m and include coastal seas. In this presentation, satellite wind maps are used in combination with mast observations and numerical...... modeling to develop procedures and best practices for satellite based wind resource assessment offshore. All existing satellite images from the Envisat Advanced SAR sensor by the European Space Agency (2002-12) have been collected over a domain in the South China Sea. Wind speed is first retrieved from...

  10. SSMI Wind Speed Climatology of the Time of Monsoon Wind Offset in the Western Arabian Sea

    Science.gov (United States)

    Halpern, David

    2000-01-01

    Forecasting the time of onset of monsoon wind in the western Arabian Sea, which is believed to precede the onset of rainfall along the west coast of India, is an important unsolved problem. Prior to measurements of the surface wind field by satellite, there was an absence of suitable surface wind observations. NASA scatterometer (NSCAT) surface wind vectors revealed that the time of the 1997 onset of 12 m/s southwest monsoon wind speeds in the western Arabian Sea preceded the onset of monsoon rainfall in Goa, India, by 3 - 4 days. Wind speed and direction data were necessary to establish a dynamical mechanism between times of onset of 12 m/s wind speed off Somalia and rainfall in Goa. Except for NSCAT, no satellite scatterometer wind product recorded adequately sampled 2-day 1deg x 1deg averaged wind vectors, which are the required space and time scales, to examine the wind-rain relationship in other years. However, the greater-than-95% steadiness of summer monsoon winds allows an opportunity to use satellite measurements of surface wind speed. The Special Sensor Microwave Imager (SSMI) recorded surface wind speed with adequate sampling to produce a 1-day, 1deg x 1deg data product during 1988 - 1998. SSMI data had been uniformly processed throughout the period. Times of onset of 12 m/s wind speed off Somalia determined with the SSMI data set were 21 May 1988, 24 May 1989, 17 May 1990, 28 May 1991, 8 June 1992, 28 May 1993, 30 May 1994, 7 June 1995, 29 May 1996, 12 June 1997, and 15 May 1998. Uncertainty of the 1992 and 1996 times of onset were increased because of the absence of SSMI data on 6 and 7 June 1992 and on 30 May 1996. Correlations of timing of monsoon wind onset with El Nino will be described. Variability of the time difference between times of onset of 12 m/s wind speed and Goa rainfall will be discussed. At the time of submission of the abstract, the Goa rainfall data have not arrived from the India Meteorological Department.

  11. Development of magnetic jxB sensor

    International Nuclear Information System (INIS)

    Kasai, Satoshi; Ishitsuka, Etsuo

    2001-12-01

    The improved mechanical sensor, i.e. magnetic jxB sensor (a mechanical sensor and a part of the steady state hybrid-type magnetic sensor) has been designed. The basic structure of the sensor is similar to the previously developed sensor (old sensor) in EDA phase. In this design, the neutron resistant materials are selected for the load cell (strain gauge and sensor beam) and sensing coil/frame. In order to reduce temperature drift of the sensor signal, four strain gauges with the same electrical property and geometrical size are bonded on the sensor beam by using Al 2 O 3 plasma spraying process, i.e., a couple of strain gauges is bonded on one side of the beam and another couple of gauges is bonded on the other side. These four strain gauges form an electrical bridge circuit. The zero-level drift of the output of the load cell used in the magnetic jxB sensor was reduced to about 1/20 compared with the old sensor. The temperature dependence of the output of the load cell is small. The linearity of the output of the load cell against weight was obtained. A non-linearity was observed in the sensitivity of the magnetic jxB sensor. The deviation of sensitivity from the fitting line was less than 7% in the high magnetic field region. The neutron irradiation effect on sensitivity of the sensor was investigated. The sensitivity of the sensor was gradually decreased by ∼30% at neutron fluence of (1.8-2.8)x10 23 n/m 2 in the high magnetic field. During irradiation, the non-linearity was observed in the sensitivity. (author)

  12. Climatic wind tunnel for wind engineering tasks

    Czech Academy of Sciences Publication Activity Database

    Kuznetsov, Sergeii; Pospíšil, Stanislav; Král, Radomil

    2015-01-01

    Roč. 112, 2-B (2015), s. 303-316 ISSN 1897-628X R&D Projects: GA ČR(CZ) GA14-12892S Keywords : climatic tunnel * wind tunnel * atmospheric boundary layer * flow resistance * wind tunnel contraction Subject RIV: JM - Building Engineering https://suw.biblos.pk.edu.pl/resources/i5/i6/i6/i7/i6/r56676/KuznetsovS_ClimaticWind.pdf

  13. Mesoscale to microscale wind farm flow modeling and evaluation: Mesoscale to Microscale Wind Farm Models

    Energy Technology Data Exchange (ETDEWEB)

    Sanz Rodrigo, Javier [National Renewable Energy Centre (CENER), Sarriguren Spain; Chávez Arroyo, Roberto Aurelio [National Renewable Energy Centre (CENER), Sarriguren Spain; Moriarty, Patrick [National Renewable Energy Laboratory (NREL), Golden CO USA; Churchfield, Matthew [National Renewable Energy Laboratory (NREL), Golden CO USA; Kosović, Branko [National Center for Atmospheric Research (NCAR), Boulder CO USA; Réthoré, Pierre-Elouan [Technical University of Denmark (DTU), Roskilde Denmark; Hansen, Kurt Schaldemose [Technical University of Denmark (DTU), Lyngby Denmark; Hahmann, Andrea [Technical University of Denmark (DTU), Roskilde Denmark; Mirocha, Jeffrey D. [Lawrence Livermore National Laboratory, Livermore CA USA; Rife, Daran [DNV GL, San Diego CA USA

    2016-08-31

    The increasing size of wind turbines, with rotors already spanning more than 150 m diameter and hub heights above 100 m, requires proper modeling of the atmospheric boundary layer (ABL) from the surface to the free atmosphere. Furthermore, large wind farm arrays create their own boundary layer structure with unique physics. This poses significant challenges to traditional wind engineering models that rely on surface-layer theories and engineering wind farm models to simulate the flow in and around wind farms. However, adopting an ABL approach offers the opportunity to better integrate wind farm design tools and meteorological models. The challenge is how to build the bridge between atmospheric and wind engineering model communities and how to establish a comprehensive evaluation process that identifies relevant physical phenomena for wind energy applications with modeling and experimental requirements. A framework for model verification, validation, and uncertainty quantification is established to guide this process by a systematic evaluation of the modeling system at increasing levels of complexity. In terms of atmospheric physics, 'building the bridge' means developing models for the so-called 'terra incognita,' a term used to designate the turbulent scales that transition from mesoscale to microscale. This range of scales within atmospheric research deals with the transition from parameterized to resolved turbulence and the improvement of surface boundary-layer parameterizations. The coupling of meteorological and wind engineering flow models and the definition of a formal model evaluation methodology, is a strong area of research for the next generation of wind conditions assessment and wind farm and wind turbine design tools. Some fundamental challenges are identified in order to guide future research in this area.

  14. Wind Atlas for Egypt

    DEFF Research Database (Denmark)

    Mortensen, Niels Gylling; Said Said, Usama; Badger, Jake

    2006-01-01

    The results of a comprehensive, 8-year wind resource assessment programme in Egypt are presented. The objective has been to provide reliable and accurate wind atlas data sets for evaluating the potential wind power output from large electricityproducing wind turbine installations. The regional wind...... climates of Egypt have been determined by two independent methods: a traditional wind atlas based on observations from more than 30 stations all over Egypt, and a numerical wind atlas based on long-term reanalysis data and a mesoscale model (KAMM). The mean absolute error comparing the two methods is about...... 10% for two large-scale KAMM domains covering all of Egypt, and typically about 5% for several smaller-scale regional domains. The numerical wind atlas covers all of Egypt, whereas the meteorological stations are concentrated in six regions. The Wind Atlas for Egypt represents a significant step...

  15. Wind Atlas for Egypt

    DEFF Research Database (Denmark)

    The results of a comprehensive, 8-year wind resource assessment programme in Egypt are presented. The objective has been to provide reliable and accurate wind atlas data sets for evaluating the potential wind power output from large electricityproducing wind turbine installations. The regional wind...... climates of Egypt have been determined by two independent methods: a traditional wind atlas based on observations from more than 30 stations all over Egypt, and a numerical wind atlas based on long-term reanalysis data and a mesoscale model (KAMM). The mean absolute error comparing the two methods is about...... 10% for two large-scale KAMM domains covering all of Egypt, and typically about 5% for several smaller-scale regional domains. The numerical wind atlas covers all of Egypt, whereas the meteorological stations are concentrated in six regions. The Wind Atlas for Egypt represents a significant step...

  16. Load attenuating passively adaptive wind turbine blade

    Science.gov (United States)

    Veers, Paul S.; Lobitz, Donald W.

    2003-01-07

    A method and apparatus for improving wind turbine performance by alleviating loads and controlling the rotor. The invention employs the use of a passively adaptive blade that senses the wind velocity or rotational speed, and accordingly modifies its aerodynamic configuration. The invention exploits the load mitigation prospects of a blade that twists toward feather as it bends. The invention includes passively adaptive wind turbine rotors or blades with currently preferred power control features. The apparatus is a composite fiber horizontal axis wind-turbine blade, in which a substantial majority of fibers in the blade skin are inclined at angles of between 15 and 30 degrees to the axis of the blade, to produces passive adaptive aeroelastic tailoring (bend-twist coupling) to alleviate loading without unduly jeopardizing performance.

  17. A century of wind tunnels since Eiffel

    Science.gov (United States)

    Chanetz, Bruno

    2017-08-01

    Fly higher, faster, preserve the life of test pilots and passengers, many challenges faced by man since the dawn of the twentieth century, with aviation pioneers. Contemporary of the first aerial exploits, wind tunnels, artificially recreating conditions encountered during the flight, have powerfully contributed to the progress of aeronautics. But the use of wind tunnels is not limited to aviation. The research for better performance, coupled with concern for energy saving, encourages manufacturers of ground vehicles to perform aerodynamic tests. Buildings and bridge structures are also concerned. This article deals principally with the wind tunnels built at ONERA during the last century. Somme wind tunnels outside ONERA, even outside France, are also evocated when their characteristics do not exist at ONERA.

  18. Extreme wind estimate for Hornsea wind farm

    DEFF Research Database (Denmark)

    Larsén, Xiaoli Guo

    The purpose of this study is to provide estimation of the 50-year winds of 10 min and 1-s gust value at hub height of 100 m, as well as the design parameter shear exponent for the Hornsea offshore wind farm. The turbulence intensity required for estimating the gust value is estimated using two ap....... The greatest sector-wise extreme winds are from west to northwest. Different data, different periods and different methods have provided a range of values of the 50-year wind and accordingly the gust values, as summarized in Table 15.......The purpose of this study is to provide estimation of the 50-year winds of 10 min and 1-s gust value at hub height of 100 m, as well as the design parameter shear exponent for the Hornsea offshore wind farm. The turbulence intensity required for estimating the gust value is estimated using two...... approaches. One is through the measurements from the wind Doppler lidar, WindCube, which implies serious uncertainty, and the other one is through similarity theory for the atmospheric surface layer where the hub height is likely to belong to during strong storms. The turbulence intensity for storm wind...

  19. Automotive sensors

    Science.gov (United States)

    Marek, Jiri; Illing, Matthias

    2003-01-01

    Sensors are an essential component of most electronic systems in the car. They deliver input parameters for comfort features, engine and emission control as well as for the active and passive safety systems. New technologies such as silicon micromachining play an important role for the introduction of these sensors in all vehicle classes. The importance and use of these sensor technologies in today"s automotive applications will be shown in this article. Finally an outlook on important current developments and new functions in the car will be given.

  20. Piezoceramic Sensors

    CERN Document Server

    Sharapov, Valeriy

    2011-01-01

    This book presents the latest and complete information about various types of piezosensors. A sensor is a converter of the measured physical size to an electric signal. Piezoelectric transducers and sensors are based on piezoelectric effects. They have proven to be versatile tools for the measurement of various processes. They are used for quality assurance, process control and for research and development in many different industries. In each area of application specific requirements to the parameters of transducers and sensors are developed. This book presents the fundamentals, technical des

  1. Offshore wind energy developments

    DEFF Research Database (Denmark)

    Stolpe, Mathias; Buhl, Thomas; Sumer, B. Mutlu

    2014-01-01

    This chapter will give a brief overview of a few of the activities within offshore wind energy research, specifically 1) Support structure optimization, 2) Blade coatings for wind turbines; 3) Scour protection of foundations, 4) Offshore HVDC and 5) Offshore wind services.......This chapter will give a brief overview of a few of the activities within offshore wind energy research, specifically 1) Support structure optimization, 2) Blade coatings for wind turbines; 3) Scour protection of foundations, 4) Offshore HVDC and 5) Offshore wind services....

  2. Wind energy information guide

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-04-01

    This book is divided into nine chapters. Chapters 1--8 provide background and annotated references on wind energy research, development, and commercialization. Chapter 9 lists additional sources of printed information and relevant organizations. Four indices provide alphabetical access to authors, organizations, computer models and design tools, and subjects. A list of abbreviations and acronyms is also included. Chapter topics include: introduction; economics of using wind energy; wind energy resources; wind turbine design, development, and testing; applications; environmental issues of wind power; institutional issues; and wind energy systems development.

  3. Wind Power Career Chat

    Energy Technology Data Exchange (ETDEWEB)

    2011-01-01

    This document will teach students about careers in the wind energy industry. Wind energy, both land-based and offshore, is expected to provide thousands of new jobs in the next several decades. Wind energy companies are growing rapidly to meet America's demand for clean, renewable, and domestic energy. These companies need skilled professionals. Wind power careers will require educated people from a variety of areas. Trained and qualified workers manufacture, construct, operate, and manage wind energy facilities. The nation will also need skilled researchers, scientists, and engineers to plan and develop the next generation of wind energy technologies.

  4. Wind power today

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-04-01

    This publication highlights initiatives of the US DOE`s Wind Energy Program. 1997 yearly activities are also very briefly summarized. The first article describes a 6-megawatt wind power plant installed in Vermont. Another article summarizes technical advances in wind turbine technology, and describes next-generation utility and small wind turbines in the planning stages. A village power project in Alaska using three 50-kilowatt turbines is described. Very brief summaries of the Federal Wind Energy Program and the National Wind Technology Center are also included in the publication.

  5. Ephemeral Electric Potential and Electric Field Sensor

    Science.gov (United States)

    Generazio, Edward R. (Inventor)

    2017-01-01

    Systems, methods, and devices of the various embodiments provide for the minimization of the effects of intrinsic and extrinsic leakage electrical currents enabling true measurements of electric potentials and electric fields. In an embodiment, an ephemeral electric potential and electric field sensor system may have at least one electric field sensor and a rotator coupled to the electric field sensor and be configured to rotate the electric field sensor at a quasi-static frequency. In an embodiment, ephemeral electric potential and electric field measurements may be taken by rotating at least one electric field sensor at a quasi-static frequency, receiving electrical potential measurements from the electric field sensor when the electric field sensor is rotating at the quasi-static frequency, and generating and outputting images based at least in part on the received electrical potential measurements.

  6. Modeling and investigation of Gulf El-Zayt wind farm for stability studying during extreme

    Directory of Open Access Journals (Sweden)

    Omar Noureldeen

    2014-03-01

    Full Text Available This paper investigates the impact of extreme gust wind as a case of wind speed variation on a wind farm interconnected electrical grid. The impact of extreme gust wind speed variation on active and reactive power of the wind farms is studied for variable speed wind farm equipped with Doubly Fed Induction Generators (DFIGs. A simulation model of the under implementation 120 MW wind farm at Gulf El-Zayt region, Red Sea, Egypt, is simulated as a case study. A detailed model of extreme gust wind speed variation is implemented and simulated, using MATLAB/Simulink toolbox, based on International Electrotechnical Commission IEC 61400-1 and climate characteristic of Gulf El-Zayt site. The simulation results show the influence of different extreme gust wind speed variations on the fluctuation of active power and reactive power at the Point of Common Coupling (PCC of the studied wind farm.

  7. Wind Speed Preview Measurement and Estimation for Feedforward Control of Wind Turbines

    Science.gov (United States)

    Simley, Eric J.

    the turbine are unknown, a Kalman filter-based wind speed estimator is developed that relies on turbine sensor outputs. Using simulated lidar measurements in conjunction with wind speed estimator outputs based on aeroelastic simulations of the NREL 5-MW turbine model, it is shown how the optimal prefilter can adapt to varying degrees of measurement quality.

  8. Radiation sensors

    International Nuclear Information System (INIS)

    Wykes, J.S.; Adsley, I.

    1981-01-01

    Radiation detectors, suitable for use in industrial environments, eg coal mines are claimed. At least two scintillation crystals are mounted on a resilient support material, preferably silicone rubber. The sensors are both robust and compact. (U.K.)

  9. Mammalian mesocarnivore visitation at tortoise burrows in a wind farm

    Science.gov (United States)

    Agha, Mickey; Smith, Amanda L.; Lovich, Jeffrey E.; Delaney, David F.; Ennen, Joshua R.; Briggs, Jessica R.; Fleckenstein, Leo J.; Tennant, Laura A.; Puffer, Shellie R.; Walde, Andrew D.; Arundel, Terry; Price, Steven J.; Todd, Brian D.

    2017-01-01

    There is little information on predator–prey interactions in wind energy landscapes in North America, especially among terrestrial vertebrates. Here, we evaluated how proximity to roads and wind turbines affect mesocarnivore visitation with desert tortoises (Gopherus agassizii) and their burrows in a wind energy landscape. In 2013, we placed motion-sensor cameras facing the entrances of 46 active desert tortoise burrows in a 5.2-km2 wind energy facility near Palm Springs, California, USA. Cameras recorded images of 35 species of reptiles, mammals, and birds. Counts for 4 species of mesocarnivores at desert tortoise burrows increased closer to dirt roads, and decreased closer to wind turbines. Our results suggest that anthropogenic infrastructure associated with wind energy facilities could influence the general behavior of mammalian predators and their prey. Further investigation of proximate mechanisms that underlie road and wind turbine effects (i.e., ground vibrations, sound emission, and traffic volume) and on wind energy facility spatial designs (i.e., road and wind turbine configuration) could prove useful for better understanding wildlife responses to wind energy development. © 2017 The Wildlife Society.

  10. Single Nanoparticle Plasmonic Sensors

    Directory of Open Access Journals (Sweden)

    Manish Sriram

    2015-10-01

    Full Text Available The adoption of plasmonic nanomaterials in optical sensors, coupled with the advances in detection techniques, has opened the way for biosensing with single plasmonic particles. Single nanoparticle sensors offer the potential to analyse biochemical interactions at a single-molecule level, thereby allowing us to capture even more information than ensemble measurements. We introduce the concepts behind single nanoparticle sensing and how the localised surface plasmon resonances of these nanoparticles are dependent upon their materials, shape and size. Then we outline the different synthetic approaches, like citrate reduction, seed-mediated and seedless growth, that enable the synthesis of gold and silver nanospheres, nanorods, nanostars, nanoprisms and other nanostructures with tunable sizes. Further, we go into the aspects related to purification and functionalisation of nanoparticles, prior to the fabrication of sensing surfaces. Finally, the recent developments in single nanoparticle detection, spectroscopy and sensing applications are discussed.

  11. Synthetic thermosphere winds based on CHAMP neutral and plasma density measurements

    NARCIS (Netherlands)

    Gasperini, F; Forbes, J. M.; Doornbos, E.N.; Bruinsma, S. L.

    2016-01-01

    Meridional winds in the thermosphere are key to understanding latitudinal coupling and thermosphere-ionosphere coupling, and yet global measurements of this wind component are scarce. In this work, neutral and electron densities measured by the Challenging Minisatellite Payload (CHAMP) satellite

  12. A Method for Modeling of Floating Vertical Axis Wind Turbine

    DEFF Research Database (Denmark)

    Wang, Kai; Hansen, Martin Otto Laver; Moan, Torgeir

    2013-01-01

    It is of interest to investigate the potential advantages of floating vertical axis wind turbine (FVAWT) due to its economical installation and maintenance. A novel 5MW vertical axis wind turbine concept with a Darrieus rotor mounted on a semi-submersible support structure is proposed in this paper....... In order to assess the technical and economic feasibility of this novel concept, a comprehensive simulation tool for modeling of the floating vertical axis wind turbine is needed. This work presents the development of a coupled method for modeling of the dynamics of a floating vertical axis wind turbine...

  13. Flicker Mitigation of Grid Connected Wind Turbines Using STATCOM

    DEFF Research Database (Denmark)

    Sun, Tao; Chen, Zhe; Blaabjerg, Frede

    2004-01-01

    Grid connected wind turbines may produce flicker during continuous operation. In this paper flicker emission of grid connected wind turbines with doubly fed induction generators is investigated during continuous operation. A STATCOM using PWM voltage source converter (VSC) is connected in shunt...... to the point of common coupling (PCC) to relieve the flicker produced by grid connected wind turbines and the corresponding control scheme is described in detail. Simulation results show that STATCOM is an effective measure to mitigate the flicker level during continuous operation of grid connected wind...

  14. Internal combustion engine ignition apparatus having a primary winding module

    Energy Technology Data Exchange (ETDEWEB)

    Huntzinger, D.A.; Welsh, T.E. Jr.; Boyer, J.A.

    1990-02-27

    This patent describes a primary winding ignition module that is adapted to be mounted on an internal combustion engine and which is adapted to be magnetically coupled to many separate spark developing units associated with the cylinders of the engine. It comprises: an elongated support, many spaced tubular embers carried by the support, a primary coil winding located in each tubular member having a bore, and conductor means carried by the support connected respectively to opposite ends of a respective primary winding for energizing a respective primary winding. The bores adapted to receive portions of the secondary spark developing units when the module is mounted on an engine.

  15. Simulation of the Impact of New Ocean Surface Wind Measurements on H*Wind Analyses

    Science.gov (United States)

    Miller, Timothy; Atlas, Robert; Black, Peter; Chen, Shuyi; Hood, Robbie; Johnson, James; Jones, Linwood; Ruf, Chris; Uhlhorn, Eric

    2008-01-01

    The H*Wind analysis, a product of the Hurricane Research Division of NOAA's Atlantic Oceanographic and Meteorological Laboratory, brings together wind measurements from a variety of observation platforms into an objective analysis of the distribution of surface wind speeds in a tropical cyclone. This product is designed to improve understanding of the extent and strength of the wind field, and to improve the assessment of hurricane intensity. See http://www.aoml.noaa.gov/hrd/data sub/wind.html. The Hurricane Imaging Radiometer (HIRAD) is a new passive microwave remote sensor for hurricane observations that is currently under development by NASA Marshall Space Flight Center, NOAA Hurricane Research Division, the University of Central Florida and the University of Michigan. HIRAD is being designed to enhance the current real-time airborne ocean surface winds observation capabilities of NOAA and USAF Weather Squadron hurricane hunter aircraft using the operational airbome Stepped Frequency Microwave Radiometer (SFMR). Unlike SFMR, which measures wind speed and rain rate along the ground track directly beneath the aircraft, HIRAD will provide images of the surface wind and rain field over a wide swath (approximately 3 x the aircraft altitude, or approximately 2 km from space). The instrument is described in a separate paper presented at this conference. The present paper describes a set of Observing System Simulation Experiments (OSSEs) in which measurements from the new instrument as well as those from existing instruments (air, surface, and space-based) are simulated from the output of a numerical model from the University of Miami, and those results are used to construct H*Wind analyses. Evaluations will be presented on the relative impact of HIRAD and other instruments on H*Wind analyses, including the use of HIRAD from 2 aircraft altitudes and from a space-based platform.

  16. Evolution of wind towards wind turbine

    NARCIS (Netherlands)

    Giyanani, A.H.; Bierbooms, W.A.A.M.; Van Bussel, G.J.W.

    2015-01-01

    Remote sensing of the atmospheric variables with the use of LiDAR is a relatively new technology field for wind resource assessment in wind energy. The validation of LiDAR measurements and comparisons is of high importance for further applications of the data.

  17. A Remotely Deployable Wind Sonic Anemometer

    Directory of Open Access Journals (Sweden)

    Muhammad Awais

    2017-12-01

    Full Text Available Communication and computing shape up base for explosion of Internet of Things (IoT era. Humans can efficiently control the devices around their environment as per requirements because of IoT, the communication between different devices brings more flexibility in surrounding. Useful data is also gathered from some of these devices to create Big Data; where, further analysis assist in making life easier by developing good business models corresponding to user needs, enhance scientific research, formulating weather prediction or monitoring systems and contributing in other relative fields as well. Thus, in this research a remotely deployable IoT enabled Wind Sonic Anemometer has been designed and deployed to calculate average wind speed, direction, and gust. The proposed design is remotely deployable, user-friendly, power efficient and cost-effective because of opted modules i.e., ultrasonic sensors, GSM module, and solar panel. The testbed was also deployed at the roof of Computer & Information Systems Engineering (CIS department, NED UET. Further, its calibration has been carried out by using long short-term memory (LSTM, a deep learning technique; where ground truth data has been gathered from mechanical wind speed sensor (NRG-40 H deployed at top of Industrial & Manufacturing (IM department of NED UET. The obtained results are satisfactory and the performance of designed sensor is also good under various weather conditions.

  18. Active current control in wind power plants during grid faults

    DEFF Research Database (Denmark)

    Martinez, Jorge; Kjær, Phillip C.; Rodriguez, Pedro

    2010-01-01

    Modern wind power plants are required and designed to ride through faults in electrical networks, subject to fault clearing. Wind turbine fault current contribution is required from most countries with a high amount of wind power penetration. In order to comply with such grid code requirements......, wind turbines usually have solutions that enable the turbines to control the generation of reactive power during faults. This paper addresses the importance of using an optimal injection of active current during faults in order to fulfil these grid codes. This is of relevant importance for severe...... faults, causing low voltages at the point of common coupling. As a consequence, a new wind turbine current controller for operation during faults is proposed. It is shown that to achieve the maximum transfer of reactive current at the point of common coupling, a strategy for optimal setting of the active...

  19. Wind Tunnel Measurements at LM Wind Power

    DEFF Research Database (Denmark)

    Bertagnolio, Franck

    2012-01-01

    The optimization of airfoil profiles specifically designed for wind turbine application was initiated in the late 80’s [67, 68, 30, 15]. The first attempts to reduce airfoil noise for wind turbines made use of airfoil trailing edge serration. Themodification of airfoil shapes targeted at noise...... reduction is more recent. An important effort was produced in this direction within the SIROCCO project. This latter work involved measurements on full size wind turbines and showed that trailing edge serration may proved a viable solution for mitigating wind turbine noise though it has not been implemented...... on commercial wind turbine yet. It should be mentioned here that the attenuation of turbulent inflow noise using wavy leading edge has recently been investigated [55], but this technique has still to be further validated for practical applications. In this paper, it is proposed to optimize an airfoil which...

  20. Dynamic responses of a wind turbine drivetrain under turbulent wind and voltage disturbance conditions

    Directory of Open Access Journals (Sweden)

    Chengwu Li

    2016-05-01

    Full Text Available Wind energy is known as one of the most efficient clean renewable energy sources and has attracted extensive research interests in both academic and industry fields. In this study, the effects of turbulent wind and voltage disturbance on a wind turbine drivetrain are analyzed, and a wind turbine drivetrain dynamic model combined with the electric model of a doubly fed induction generator is established. The proposed model is able to account for the dynamic interaction between turbulent wind, voltage disturbance, and mechanical system. Also, the effects of time-varying meshing stiffness, transmission error, and bearing stiffness are included in the mechanical part of the coupled dynamic model. From the resultant model, system modes are computed. In addition, by considering the actual control strategies in the simulation process, the effects of turbulent wind and voltage disturbance on the geared rotor system are analyzed. The computational results show that the turbulent wind and voltage disturbance can cause adverse effects on the wind turbine drivetrain, especially the gearbox. A series of parametric studies are also performed to understand the influences of generator and gearbox parameters on the drivetrain system dynamics. Finally, the appropriate generator parameters having a positive effect on the gearbox in alleviating the extreme loads and the modeling approach for investigating the transient performance of generator are discussed.

  1. Wind electric power generation

    International Nuclear Information System (INIS)

    Koch, M.K.; Wind, L.; Canter, B.; Moeller, T.

    2001-01-01

    The monthly statistics of wind electric power generation in Denmark are compiled from information given by the owners of the private wind turbines. For each wind turbine the name of the site and of the type of turbine is given, and the power generation data are given for the month in question together with the total production in 1999 and 2000. Also the data of operation start are given. On the map of Denmark the sites of the wind turbines are marked. (CLS)

  2. The Irish Wind Atlas

    Energy Technology Data Exchange (ETDEWEB)

    Watson, R. [Univ. College Dublin, Dept. of Electronic and Electrical Engineering, Dublin (Ireland); Landberg, L. [Risoe National Lab., Meteorology and Wind Energy Dept., Roskilde (Denmark)

    1999-03-01

    The development work on the Irish Wind Atlas is nearing completion. The Irish Wind Atlas is an updated improved version of the Irish section of the European Wind Atlas. A map of the irish wind resource based on a WA{sup s}P analysis of the measured data and station description of 27 measuring stations is presented. The results of previously presented WA{sup s}P/KAMM runs show good agreement with these results. (au)

  3. Turbulence and wind turbines

    DEFF Research Database (Denmark)

    Brand, Arno J.; Peinke, Joachim; Mann, Jakob

    2011-01-01

    The nature of turbulent flow towards, near and behind a wind turbine, the effect of turbulence on the electricity production and the mechanical loading of individual and clustered wind turbines, and some future issues are discussed.......The nature of turbulent flow towards, near and behind a wind turbine, the effect of turbulence on the electricity production and the mechanical loading of individual and clustered wind turbines, and some future issues are discussed....

  4. Infrasound emission generated by wind turbines

    Science.gov (United States)

    Ceranna, Lars; Pilger, Christoph

    2014-05-01

    Aerodynamic noise emissions from the continuously growing number of wind turbines in Germany are creating increasing problems for infrasound recording systems. Such systems are equipped with highly sensitive micro pressure sensors, which are accurately measuring acoustic signals in a frequency range inaudible to humans. At infrasound station IGADE, north of Bremen, a constantly increasing background noise has been observed throughout the years since its installation in 2005. The spectral peaks are reflecting well the blade passing harmonics, which vary with prevailing wind speeds. Overall, a decrease is noted for the infrasound array's detection capability. This aspect is particularly important for the other two sites of the German infrasound stations I26DE in the Bavarian Forest and I27DE in Antarctica, because plans for installing wind turbines near these locations are being under discussion. These stations are part of the International Monitoring System (IMS) verifying compliance with the Comprehensive Nuclear-Test-Ban Treaty (CTBT), and have to meet stringent specifications with respect to infrasonic background noise. Therefore data obtained during a field experiment with mobile micro-barometer stations for measuring the infrasonic pressure level of a single horizontal-axis wind turbine have been revisited. The results of this experiment successfully validate a theoretical model which estimates the generated sound pressure level of wind turbines and makes it possible to specify the minimum allowable distance between wind turbines and infrasound stations for undisturbed recording. Since the theoretical model also takes wind turbine design parameters into account, suitable locations for planned infrasound stations outside the determined disturbance range can be found, which will be presented; and vice versa, the model calculations' results for fixing the minimum distance for wind turbines planned for installation in the vicinity of an existing infrasound array.

  5. Fundamentals for remote condition monitoring of offshore wind turbines

    DEFF Research Database (Denmark)

    McGugan, Malcolm; Larsen, Gunner Chr.; Sørensen, Bent F.

    In the future, large wind turbines will be placed offshore in considerable numbers. Since access will be difficult and costly, it is preferable to use monitoring systems to reduce the reliance on manual inspection. The motivation for the effort reported here is to create the fundamental basis...... necessary for the use of sensors as a structural health monitoring system for wind turbine blades. This includes creating knowledge that will allow sensor signals to be used for remotely identifying the presence and position of any damage, the damage type and severity, and a structural condition assessment...... mobile sensors), fibre optics (including a new microbend transducer design and various Bragg-grating based applications), wireless approaches involving both battery and energy harvesting options, and inertia sensor based system identification approaches able to deal with linear periodic systems...

  6. Wind Power Now!

    Science.gov (United States)

    Inglis, David Rittenhouse

    1975-01-01

    The government promotes and heavily subsidizes research in nuclear power plants. Federal development of wind power is slow in comparison even though much research with large wind-electric machines has already been conducted. Unless wind power programs are accelerated it will not become a major energy alternative to nuclear power. (MR)

  7. Power from the Wind

    Science.gov (United States)

    Roman, Harry T.

    2004-01-01

    Wind energy is the fastest-growing renewable energy source in the world. Over the last 20 years, the wind industry has done a very good job of engineering machines, improving materials, and economies of production, and making this energy source a reality. Like all renewable energy forms, wind energy's successful application is site specific. Also,…

  8. Extreme winds in Denmark

    DEFF Research Database (Denmark)

    Kristensen, L.; Rathmann, O.; Hansen, S.O.

    1999-01-01

    Wind-speed data from four sites in Denmark have been analyzed in order to obtain estimates of the basic wind velocity, defined as the 50-year wind speed (ten minute averages) under standard conditions, i.e. 10 meter over a homogeneous terrain with the roughness length 0.05 m. The sites are Skjern...

  9. Extreme winds in Denmark

    DEFF Research Database (Denmark)

    Kristensen, L.; Rathmann, Ole; Hansen, S.O.

    1999-01-01

    Wind-speed data from four sites in Denmark have been analyzed in order to obtain estimates of the basic wind velocity which is defined as the 50-year wind speed under standard conditions, i.e. ten-minute averages at the height 10 m over a uniform terrainwith the roughness length 0.05 m. The sites...

  10. Modelling Wind for Wind Farm Layout Optimization Using Joint Distribution of Wind Speed and Wind Direction

    DEFF Research Database (Denmark)

    Feng, Ju; Shen, Wen Zhong

    2015-01-01

    Reliable wind modelling is of crucial importance for wind farm development. The common practice of using sector-wise Weibull distributions has been found inappropriate for wind farm layout optimization. In this study, we propose a simple and easily implementable method to construct joint distribu......Reliable wind modelling is of crucial importance for wind farm development. The common practice of using sector-wise Weibull distributions has been found inappropriate for wind farm layout optimization. In this study, we propose a simple and easily implementable method to construct joint...... quite well in terms of the coefficient of determination R-2. Then, the best of these joint distributions is used in the layout optimization of the Horns Rev 1 wind farm and the choice of bin sizes for wind speed and wind direction is also investigated. It is found that the choice of bin size for wind...... direction is especially critical for layout optimization and the recommended choice of bin sizes for wind speed and wind direction is finally presented....

  11. Wind and Yaw correlation

    DEFF Research Database (Denmark)

    Federici, Paolo; Kock, Carsten Weber

    The report describes measurements carried out on a given turbine and period. The measurements are carried out in accordance to Ref. [1]. A comparison between wind speed and wind direction on the met mast and nacelle wind speed and yaw direction is made in accordance to Ref. [2] and the results...... are presented on graphs and in a table....

  12. Wind power soars

    Energy Technology Data Exchange (ETDEWEB)

    Flavin, C. [Worldwatch Inst., Washington, DC (United States)

    1996-12-31

    Opinions on the world market for wind power are presented in this paper. Some data for global wind power generating capacity are provided. European and other markets are discussed individually. Estimated potential for wind power is given for a number of countries. 3 figs.

  13. Wind power outlook 2006

    Energy Technology Data Exchange (ETDEWEB)

    anon.

    2006-04-15

    This annual brochure provides the American Wind Energy Association's up-to-date assessment of the wind industry in the United States. This 2006 general assessment shows positive signs of growth, use and acceptance of wind energy as a vital component of the U.S. energy mix.

  14. Wind and Yaw correlation

    DEFF Research Database (Denmark)

    Federici, Paolo; Kock, Carsten Weber

    The report describes measurements carried out on a given turbine and period. The measurements are carried out in accordance to Ref. [1]. A comparison between wind speed and wind direction on the met mast and nacelle wind speed and yaw direction is made in accordance to Ref. [2] and the results...

  15. Wind: French revolutions

    International Nuclear Information System (INIS)

    Jones, C.

    2006-01-01

    Despite having the second best wind resources in Europe after the UK, the wind industry in France lags behind its European counterparts with just 6 W of installed wind capacity per person. The electricity market in France is dominated by the state-owned Electricite de France (EdF) and its nuclear power stations. However, smaller renewable generators are now in theory allowed access to the market and France has transposed the EU renewables directive into national law. The French governement has set a target of generating 10,000 MW of renewable capacity by 2010. The announcement of an increased feed-in tariff and the introduction of 'development zones' (ZDEs) which could allow fast-tracking of planning for wind projects are also expected to boost wind projects. But grid access and adminstrative burdens remain major barriers. In addition, French politicians and local authorities remain committed to nuclear, though encouraged by the European Commission, wind is beginning to gain acceptance; some 325 wind farms (representing 1557 MW of capacity) were approved between February 2004 and January 2005. France is now regarded by the international wind energy sector as a target market. One of France's leading independent wind developers and its only listed wind company, Theolia, is expected to be one of the major beneficiaries of the acceleration of activity in France, though other companies are keen to maximise the opportunities for wind. France currently has only one indigenous manufacturer of wind turbines, but foreign suppliers are winning orders

  16. Denmark Wind Energy Programme

    DEFF Research Database (Denmark)

    Shen, Wen Zhong

    2015-01-01

    In this chapter, a summary of some ongoing wind energy projects in Denmark is given. The research topics comprise computational model development, wind turbine (WT) design, low-noise airfoil and blade design, control device development, wake modelling and wind farm layout optimization....

  17. Wind energy in Mediterranean Basin

    International Nuclear Information System (INIS)

    Gaudiosi, G.

    1991-01-01

    In its examination of wind energy potential in the Mediterranean Basin, this paper provides brief notes on the Basin's geography; indicates power production and demand; describes the area's wind characteristics and wind monitoring activities; illustrates wind velocity distributions; estimates local wind power production potential; reviews the Basin's wind energy marketing situation and each bordering country's wind energy programs; surveys installed wind energy farms; and assesses national research and commercialization efforts

  18. Optimal Wind Corrected Flight Path Planning for Autonomous Micro Air Vehicles

    National Research Council Canada - National Science Library

    Zollars, Michael D

    2007-01-01

    ...) fixed sensor on a target in the presence of a constant wind. Autonomous flight is quickly becoming the future of air power and over the past several years, the size and weight of autonomous vehicles has decreased dramatically...

  19. Lidar Wind Profiler for the NextGen Airportal, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The development of a standoff sensor that can measure 3D components of wind velocity in the vicinity of an airport has the potential to improve airport throughput,...

  20. Optimization of wind speed on dispersion of pollutants using ...

    Indian Academy of Sciences (India)

    These differences are attributed and possible erroneous results can be viewed through coupled receptor-dispersion model analysis. The current research work proposed a coupled receptor-dispersion model to reduce the difference between predicted concentrations through optimized wind velocity used in dispersion ...