Sample records for wind river canopy

  1. Testing a ground-based canopy model using the wind river canopy crane (United States)

    Robert Van Pelt; Malcolm P. North


    A ground-based canopy model that estimates the volume of occupied space in forest canopies was tested using the Wind River Canopy Crane. A total of 126 trees in a 0.25 ha area were measured from the ground and directly from a gondola suspended from the crane. The trees were located in a low elevation, old-growth forest in the southern Washington Cascades. The ground-...

  2. Wind noise under a pine tree canopy. (United States)

    Raspet, Richard; Webster, Jeremy


    It is well known that infrasonic wind noise levels are lower for arrays placed in forests and under vegetation than for those in open areas. In this research, the wind noise levels, turbulence spectra, and wind velocity profiles are measured in a pine forest. A prediction of the wind noise spectra from the measured meteorological parameters is developed based on recent research on wind noise above a flat plane. The resulting wind noise spectrum is the sum of the low frequency wind noise generated by the turbulence-shear interaction near and above the tops of the trees and higher frequency wind noise generated by the turbulence-turbulence interaction near the ground within the tree layer. The convection velocity of the low frequency wind noise corresponds to the wind speed above the trees while the measurements showed that the wind noise generated by the turbulence-turbulence interaction is near stationary and is generated by the slow moving turbulence adjacent to the ground. Comparison of the predicted wind noise spectrum with the measured wind noise spectrum shows good agreement for four measurement sets. The prediction can be applied to meteorological estimates to predict the wind noise under other pine forests.

  3. A canopy-type similarity model for wind farm optimization (United States)

    Markfort, Corey D.; Zhang, Wei; Porté-Agel, Fernando


    The atmospheric boundary layer (ABL) flow through and over wind farms has been found to be similar to canopy-type flows, with characteristic flow development and shear penetration length scales (Markfort et al., 2012). Wind farms capture momentum from the ABL both at the leading edge and from above. We examine this further with an analytical canopy-type model. Within the flow development region, momentum is advected into the wind farm and wake turbulence draws excess momentum in from between turbines. This spatial heterogeneity of momentum within the wind farm is characterized by large dispersive momentum fluxes. Once the flow within the farm is developed, the area-averaged velocity profile exhibits a characteristic inflection point near the top of the wind farm, similar to that of canopy-type flows. The inflected velocity profile is associated with the presence of a dominant characteristic turbulence scale, which may be responsible for a significant portion of the vertical momentum flux. Prediction of this scale is useful for determining the amount of available power for harvesting. The new model is tested with results from wind tunnel experiments, which were conducted to characterize the turbulent flow in and above model wind farms in aligned and staggered configurations. The model is useful for representing wind farms in regional scale models, for the optimization of wind farms considering wind turbine spacing and layout configuration, and for assessing the impacts of upwind wind farms on nearby wind resources. Markfort CD, W Zhang and F Porté-Agel. 2012. Turbulent flow and scalar transport through and over aligned and staggered wind farms. Journal of Turbulence. 13(1) N33: 1-36. doi:10.1080/14685248.2012.709635.

  4. An improved canopy wind model for predicting wind adjustment factors and wildland fire behavior (United States)

    W. J. Massman; J. M. Forthofer; M. A. Finney


    The ability to rapidly estimate wind speed beneath a forest canopy or near the ground surface in any vegetation is critical to practical wildland fire behavior models. The common metric of this wind speed is the "mid-flame" wind speed, UMF. However, the existing approach for estimating UMF has some significant shortcomings. These include the assumptions that...

  5. Assessing the vegetation canopy influences on wind flow using wind ...

    Indian Academy of Sciences (India)

    The effectiveness of vegetation in reducing wind ... Wind erosion; roughness length; shear velocity ratio; shear stress ratio; roughness density; wind tunnel. J. Earth .... flow direction induced by its kinematic viscosity. An increase in shear stress causes a proportional increase in the height-dependent change in wind velocity.

  6. Assessing the vegetation canopy influences on wind flow using wind ...

    Indian Academy of Sciences (India)

    Service. References. Brown S, Nickling W G and Gillies J A 2008 A wind tunnel examination of shear stress partitioning for an assortment of surface roughness distribution; J. Geophys. Res. 113. F02S06, doi: 10.1029/2007JF000790. Buckley R 1987 The effect of sparse vegetation on the transport of dune sand by wind; ...

  7. The 4-dimensional plant: effects of wind- induced canopy movement on light fluctuations and photosynthesis

    Directory of Open Access Journals (Sweden)

    Alexandra Jacquelyn Burgess


    Full Text Available Physical perturbation of a plant canopy brought about by wind is a ubiquitous phenomenon and yet its biological importance has often been overlooked. This is partly due to the complexity of the issue at hand: wind-induced movement (or mechanical excitation is a stochastic process which is difficult to measure and quantify; plant motion is dependent upon canopy architectural features which, until recently, were difficult to accurately represent and model in 3-dimensions; light patterning throughout a canopy is difficult to compute at high-resolutions, especially when confounded by other environmental variables. Recent studies have reinforced the expectation that canopy architecture is a strong determinant of productivity and yield; however, links between the architectural properties of the plant and its mechanical properties, particularly its response to wind, are relatively unknown. As a result, biologically relevant data relating canopy architecture, light dynamics and short-scale photosynthetic responses in the canopy setting are scarce. Here, we hypothesise that wind-induced movement will have large consequences for the photosynthetic productivity of our crops due to its influence on light patterning. To address this issue, in this study we combined high resolution 3D reconstructions of a plant canopy with a simple representation of canopy perturbation as a result of wind using solid body rotation in order to explore the potential effects on light patterning, interception and photosynthetic productivity. We looked at two different scenarios: firstly a constant distortion where a rice canopy was subject to a permanent distortion throughout the whole day; and secondly, a dynamic distortion, where the canopy was distorted in incremental steps between two extremes at set time points in the day. We find that mechanical canopy excitation substantially alters light dynamics; light distribution and modelled canopy carbon gain. We then discuss methods

  8. A prediction model for wind speed ratios at pedestrian level with simplified urban canopies (United States)

    Ikegaya, N.; Ikeda, Y.; Hagishima, A.; Razak, A. A.; Tanimoto, J.


    The purpose of this study is to review and improve prediction models for wind speed ratios at pedestrian level with simplified urban canopies. We adopted an extensive database of velocity fields under various conditions for arrays consisting of cubes, slender or flattened rectangles, and rectangles with varying roughness heights. Conclusions are summarized as follows: first, a new geometric parameter is introduced as a function of the plan area index and the aspect ratio so as to express the increase in virtual density that causes wind speed reduction. Second, the estimated wind speed ratios in the range 0.05 coefficients between the wind speeds averaged over the entire region, and the front or side region values are larger than 0.8. In contrast, in areas where the influence of roughness elements is significant, such as behind a building, the wind speeds are weakly correlated.

  9. Using epiphytic lichens to monitor nitrogen deposition near natural gas drilling operations in the Wind River Range, WY, USA (United States)

    Jill A. McMurray; Dave W. Roberts; Mark E. Fenn; Linda H. Geiser; Sarah Jovan


    Rapid expansion of natural gas drilling in Sublette County, WY (1999-present), has raised concerns about the potential ecological effects of enhanced atmospheric nitrogen (N) deposition to the Wind River Range (WRR) including the Class I BridgerWilderness. We sampled annual throughfall (TF) N deposition and lichen thalli N concentrations under forest canopies in four...

  10. Parametrizing Evaporative Resistance for Heterogeneous Sparse Canopies through Novel Wind Tunnel Experimentation (United States)

    Sloan, B.; Ebtehaj, A. M.; Guala, M.


    The understanding of heat and water vapor transfer from the land surface to the atmosphere by evapotranspiration (ET) is crucial for predicting the hydrologic water balance and climate forecasts used in water resources decision-making. However, the complex distribution of vegetation, soil and atmospheric conditions makes large-scale prognosis of evaporative fluxes difficult. Current ET models, such as Penman-Monteith and flux-gradient methods, are challenging to apply at the microscale due to ambiguity in determining resistance factors to momentum, heat and vapor transport for realistic landscapes. Recent research has made progress in modifying Monin-Obukhov similarity theory for dense plant canopies as well as providing clearer description of diffusive controls on evaporation at a smooth soil surface, which both aid in calculating more accurate resistance parameters. However, in nature, surfaces typically tend to be aerodynamically rough and vegetation is a mixture of sparse and dense canopies in non-uniform configurations. The goal of our work is to parameterize the resistances to evaporation based on spatial distributions of sparse plant canopies using novel wind tunnel experimentation at the St. Anthony Falls Laboratory (SAFL). The state-of-the-art SAFL wind tunnel was updated with a retractable soil box test section (shown in Figure 1), complete with a high-resolution scale and soil moisture/temperature sensors for recording evaporative fluxes and drying fronts. The existing capabilities of the tunnel were used to create incoming non-neutral stability conditions and measure 2-D velocity fields as well as momentum and heat flux profiles through PIV and hotwire anemometry, respectively. Model trees (h = 5 cm) were placed in structured and random configurations based on a probabilistic spacing that was derived from aerial imagery. The novel wind tunnel dataset provides the surface energy budget, turbulence statistics and spatial soil moisture data under varying

  11. Wind River Watershed Restoration: 1999 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Connolly, Patrick J.


    This document represents work conducted as part of the Wind River Watershed Restoration Project during its first year of funding through the Bonneville Power Administration (BPA). The project is a comprehensive effort involving public and private entities seeking to restore water quality and fishery resources in the basin through cooperative actions. Project elements include coordination, watershed assessment, restoration, monitoring, and education. Entities involved with implementing project components are the Underwood Conservation District (UCD), USDA Forest Service (USFS), U.S. Geological Survey--Columbia River Research Lab (USGS-CRRL), and WA Department of Fish & Wildlife (WDFW). Following categories given in the FY1999 Statement of Work, the broad categories, the related objectives, and the entities associated with each objective (lead entity in boldface) were as follows: Coordination--Objective 1: Coordinate the Wind River watershed Action Committee (AC) and Technical Advisory Committee (TAC) to develop a prioritized list of watershed enhancement projects. Monitoring--Objective 2: Monitor natural production of juvenile, smolt, and adult steelhead in the Wind River subbasin. Objective 3: Evaluate physical habitat conditions in the Wind River subbasin. Assessment--Objective 4: Assess watershed health using an ecosystem-based diagnostic model that will provide the technical basis to prioritize out-year restoration projects. Restoration--Objective 5: Reduce road related sediment sources by reducing road densities to less than 2 miles per square mile. Objective 6: Rehabilitate riparian corridors, flood plains, and channel morphology to reduce maximum water temperatures to less than 61 F, to increase bank stability to greater than 90%, to reduce bankfull width to depth ratios to less than 30, and to provide natural levels of pools and cover for fish. Objective 7: Maintain and evaluate passage for adult and juvenile steelhead at artificial barriers. Education

  12. Spatial Structure of Soil Macrofauna Diversity and Tree Canopy in Riparian Forest of Maroon River

    Directory of Open Access Journals (Sweden)

    Ehsan Sayad


    with a mean temperature of 24.5oc. Plant cover, mainly comprises Populus euphratica Olivie and Tamarix arceuthoides Bge and Lycium shawii Roemer & Schultes. Soil macrofauna were sampled using 175 sampling point along parallel transects (perpendicular to the river. The distance between transects was 100m. We considered distance between samples as 50 m. tree canopy were measured in 5* 5 plots. soil macrofauna were extracted from 50 cm×50 cm×10 cm soil monolith by hand-sorting procedure. All soil macrofauna were identified to family level. Evenness (Sheldon index, richness (Menhinich index and diversity (Shannon H’ index by using PAST version 1.39, were determined in each sample. Classical statistical parameters, i.e. mean, standard deviation, coefficient of variation, minimum and maximum, were calculated using SPSS17 software. For analysis of the relationship between Soil macrofauna diversity indices and tree canopy (Total canopy, Populous canopy, Tamarix canopy and Serim canopy we calculated the correlation among soil properties and macrofauna using the Pearson correlation coefficient. Next, to determining the spatial structure, we calculated the semivariances. Semivariance quantifies the spatial dependence of spatially ordered variable values. In order to gather information about the spatial connection between any two variables, and to compare the similarity of their spatial structure patterns, cross-variograms were constructed. Cross-variograms are plots of cross-semivariance against the lag distance. Results and Discussion: Soil macrofauna communities were dominated by earthworm, diplopods, coleoptera, gastropoda, araneae, and insect larvae. Correlation analysis of soil macrofauna and tree canopy indicated weak relationships between them. Weak, but significant relationships were found between macrofauna diversity, evenness, richness and total canopy, Populous canopy and Tamarix canopy (positive. Macrofauna indices and tree canopy(excepted Tamarix canopy were

  13. Automated lidar-derived canopy height estimates for the Upper Mississippi River System (United States)

    Hlavacek, Enrika


    Land cover/land use (LCU) classifications serve as important decision support products for researchers and land managers. The LCU classifications produced by the U.S. Geological Survey’s Upper Midwest Environmental Sciences Center (UMESC) include canopy height estimates that are assigned through manual aerial photography interpretation techniques. In an effort to improve upon these techniques, this project investigated the use of high-density lidar data for the Upper Mississippi River System to determine canopy height. An ArcGIS tool was developed to automatically derive height modifier information based on the extent of land cover features for forest classes. The measurement of canopy height included a calculation of the average height from lidar point cloud data as well as the inclusion of a local maximum filter to identify individual tree canopies. Results were compared to original manually interpreted height modifiers and to field survey data from U.S. Forest Service Forest Inventory and Analysis plots. This project demonstrated the effectiveness of utilizing lidar data to more efficiently assign height modifier attributes to LCU classifications produced by the UMESC.

  14. Spatiotemporal variation of macroinvertebrates in relation to canopy cover and other environmental factors in Eriora River, Niger Delta, Nigeria. (United States)

    Arimoro, Francis O; Obi-Iyeke, Grace E; Obukeni, Prince J O


    Canopy cover is well known to influence the distribution of macroinvertebrates in temperate streams. Very little is known about how this factor influences stream communities in Afrotropical streams. The effects and possible interactions of environmental factors and canopy cover on macroinvertebrate community structure (abundance, richness, and diversity) were examined in four stations in Eriora River, southern Nigeria bimonthly from May to November 2010. The river supported diverse macroinvertebrates in which the upstream sampling stations with dense canopy cover were dominated by Decapoda, Ephemeroptera, Odonata, Gastropoda, Trichoptera, and Coleoptera while Diptera and Coleoptera were the benthic organisms found predominant at downstream stations with less canopy cover. Some caddisfly species such as Agapetus agilis, Trichosetodes species and the stonefly Neoperla species were present upstream and were found to be potential bioindicators for a clean ecosystem. The blood worm Chironomus species and Tabanus sp. were abundant at the downstream of the river and are considered potential bioindicators for an organically degrading ecosystem. Some environmental factors varied temporally with significantly higher macroinvertebrate abundance and richness in May. We found out that canopy cover and environmental factors affected macroinvertebrates abundance, diversity, and richness and that the individual taxon had varying responses to these factors. These results help identify the mechanisms underlying the effects of canopy cover and other environmental factors on Afrotropical stream invertebrate communities.

  15. The impact of in-canopy wind profile formulations on heat flux estimation in an open orchard using the remote sensing-based two-source model

    Directory of Open Access Journals (Sweden)

    C. Cammalleri


    Full Text Available For open orchard and vineyard canopies containing significant fractions of exposed soil (>50%, typical of Mediterranean agricultural regions, the energy balance of the vegetation elements is strongly influenced by heat exchange with the bare soil/substrate. For these agricultural systems a "two-source" approach, where radiation and turbulent exchange between the soil and canopy elements are explicitly modelled, appears to be the only suitable methodology for reliably assessing energy fluxes. In strongly clumped canopies, the effective wind speed profile inside and below the canopy layer can strongly influence the partitioning of energy fluxes between the soil and vegetation components. To assess the impact of in-canopy wind profile on model flux estimates, an analysis of three different formulations is presented, including algorithms from Goudriaan (1977, Massman (1987 and Lalic et al. (2003. The in-canopy wind profile formulations are applied to the thermal-based two-source energy balance (TSEB model developed by Norman et al. (1995 and modified by Kustas and Norman (1999. High resolution airborne remote sensing images, collected over an agricultural area located in the western part of Sicily (Italy comprised primarily of vineyards, olive and citrus orchards, are used to derive all the input parameters needed to apply the TSEB. The images were acquired from June to October 2008 and include a relatively wide range of meteorological and soil moisture conditions. A preliminary sensitivity analysis of the three wind profile algorithms highlights the dependence of wind speed just above the soil/substrate to leaf area index and canopy height over the typical range of canopy properties encountered in these agricultural areas. It is found that differences among the models in wind just above the soil surface are most significant under sparse and medium fractional cover conditions (15–50%. The TSEB model heat flux estimates are compared with micro

  16. Tribal Wind Assessment by the Eastern Shoshone Tribe of the Wind River Reservation

    Energy Technology Data Exchange (ETDEWEB)

    Pete, Belvin; Perry, Jeremy W.; Stump, Raphaella Q.


    The Tribes, through its consultant and advisor, Distributed Generation Systems (Disgen) -Native American Program and Resources Division, of Lakewood CO, assessed and qualified, from a resource and economic perspective, a wind energy generation facility on tribal lands. The goal of this feasibility project is to provide wind monitoring and to engage in preproject planning activities designed to provide a preliminary evaluation of the technical, economic, social and environmental feasibility of developing a sustainable, integrated wind energy plan for the Eastern Shoshone and the Northern Arapahoe Tribes, who resides on the Wind River Indian Reservation. The specific deliverables of the feasibility study are: 1) Assessments of the wind resources on the Wind River Indian Reservation 2) Assessments of the potential environmental impacts of renewable development 3) Assessments of the transmission capacity and capability of a renewable energy project 4) Established an economic models for tribal considerations 5) Define economic, cultural and societal impacts on the Tribe

  17. Wind River Watershed Restoration 2004-2005 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Connolly, Patrick J.; Jezorek, Ian G. [U.S. Geological Survey


    During 2004, researchers from U.S. Geological Survey's Columbia River Research Laboratory (USGS-CRRL) collected temperature, flow, and habitat data to characterize physical habitat condition and variation within and among tributaries and mainstem sections in the Wind River subbasin. Juvenile salmonid population surveys were conducted within select study areas throughout the subbasin. We expanded our survey coverage of the mainstem Wind River to a reach in the vicinity of Carson National Fish Hatchery to assess effects of non-indigenous Chinook on native steelhead. These efforts add to a database of habitat and fish data collected in the Wind River since 1996. This research contributes to the Wind River Restoration Project, which includes active stream habitat restoration and monitoring of adult and juvenile steelhead populations. We maintained a network of 32 thermographs in the Wind River subbasin during 2004. Additionally, Underwood Conservation District provided us with data from seven thermographs that they maintained during 2004. Thermograph data are identifying areas with chronic high water temperatures and stream sections where high rates of warming are occurring. During 2004, water temperatures at 26 thermograph sites exceeded the 16 C limit for surface waters set by the Washington Department of Ecology. Water temperatures exceeded 20 C at five sites in the Trout Creek watershed. Our thermograph dataset includes information from as early as 1996 at some sites and has become a valuable long-term dataset, which will be crucial in determining bioenergetic relationships with habitat and life-histories. We have monitored salmonid populations throughout the Wind River subbasin by electrofishing and snorkeling. We electrofished four stream sections for population estimates during 2004. In these sections, and others where we simply collected fish without a population estimate, we tagged juvenile steelhead and Chinook salmon with Passive Integrated Transponder

  18. Wind River Watershed Restoration, 2005-2006 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Jezorek, Ian G.; Connolly, Patrick J.; Munz, Carrie [U.S. Geological Survey


    This report summarizes work completed by U.S. Geological Survey's Columbia River Research Laboratory (USGS-CRRL) in the Wind River subbasin during the period April 2005 through March 2006 under Bonneville Power Administration (BPA) contract 22095. During this period, we collected temperature, flow, and habitat data to characterize habitat condition and variation within and among tributaries and mainstem sections in the Wind River subbasin. We also conducted electrofishing and snorkeling surveys to determine juvenile salmonid populations within select study areas throughout the subbasin. Portions of this work were completed with additional funding from U.S. Fish and Wildlife Service (USFWS) and the Lower Columbia Fish Enhancement Group (LCFEG). A statement of work (SOW) was submitted to BPA in March 2005 that outlined work to be performed by USGS-CRRL. The SOW was organized by work elements, with each describing a research task. This report summarizes the progress completed under each work element.

  19. Wind River Watershed restoration: 1999 annual report; ANNUAL

    International Nuclear Information System (INIS)

    Connolly, Patrick J.


    This document represents work conducted as part of the Wind River Watershed Restoration Project during its first year of funding through the Bonneville Power Administration (BPA). The project is a comprehensive effort involving public and private entities seeking to restore water quality and fishery resources in the basin through cooperative actions. Project elements include coordination, watershed assessment, restoration, monitoring, and education. Entities involved with implementing project components are the Underwood Conservation District (UCD), USDA Forest Service (USFS), U.S. Geological Survey-Columbia River Research Lab (USGS-CRRL), and WA Department of Fish and Wildlife (WDFW). Following categories given in the FY1999 Statement of Work, the broad categories, the related objectives, and the entities associated with each objective (lead entity in boldface) were as follows: Coordination-Objective 1: Coordinate the Wind River watershed Action Committee (AC) and Technical Advisory Committee (TAC) to develop a prioritized list of watershed enhancement projects. Monitoring-Objective 2: Monitor natural production of juvenile, smolt, and adult steelhead in the Wind River subbasin. Objective 3: Evaluate physical habitat conditions in the Wind River subbasin. Assessment-Objective 4: Assess watershed health using an ecosystem-based diagnostic model that will provide the technical basis to prioritize out-year restoration projects. Restoration-Objective 5: Reduce road related sediment sources by reducing road densities to less than 2 miles per square mile. Objective 6: Rehabilitate riparian corridors, flood plains, and channel morphology to reduce maximum water temperatures to less than 61 F, to increase bank stability to greater than 90%, to reduce bankfull width to depth ratios to less than 30, and to provide natural levels of pools and cover for fish. Objective 7: Maintain and evaluate passage for adult and juvenile steelhead at artificial barriers. Education

  20. 75 FR 6020 - Electrical Interconnection of the Lower Snake River Wind Energy Project (United States)


    ... DEPARTMENT OF ENERGY Bonneville Power Administration Electrical Interconnection of the Lower Snake River Wind Energy Project AGENCY: Bonneville Power Administration (BPA), Department of Energy (DOE... would be generated from their proposed Lower Snake River Wind Energy Project (Wind Project) in Garfield...

  1. Wind River Watershed Restoration, 2006-2007 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Connolly, Patrick J.; Jezorek, Ian G.; Munz, Carrie S. [U.S. Geological Survey


    This report summarizes work completed by U.S. Geological Survey's Columbia River Research Laboratory (USGS-CRRL) in the Wind River subbasin during the period April 2006 through March 2007 under Bonneville Power Administration (BPA) contract 26922. During this period, we collected temperature, flow, and habitat data to characterize physical habitat condition and variation within and among tributaries and mainstem sections in the Wind River subbasin. We also conducted electrofishing and snorkeling surveys to determine juvenile salmonid populations within select study areas throughout the subbasin. Portions of this work were completed with additional funding from U.S. Fish and Wildlife Service (USFWS) and the Lower Columbia Fish Enhancement Group (LCFEG). Funding from USFWS was for work to contribute to a study of potential interactions between introduced Chinook salmon Oncorhynchus tshawytscha and wild steelhead O. mykiss. Funding from LCFEG was for work to evaluate the effects of nutrient enrichment in small streams. A statement of work (SOW) was submitted to BPA in March 2006 that outlined work to be performed by USGS-CRRL. The SOW was organized by work elements, with each describing a research task. This report summarizes the progress completed under each work element.

  2. Water Vapor, Temperature and Wind Profiles within Maize Canopy under in-Field Rainwater Harvesting with Wide and Narrow Runoff Strips

    Directory of Open Access Journals (Sweden)

    Weldemichael A. Tesfuhuney


    Full Text Available Micrometeorological measurements were used to evaluate heat and water vapor to describe the transpiration (Ev and soil evaporation (Es processes for wide and narrow runoff strips under in-field rainwater harvesting (IRWH system. The resulting sigmoid-shaped water vapor (ea in wide and narrow runoff strips varied in lower and upper parts of the maize canopy. In wide runoff strips, lapse conditions of ea extended from lowest measurement level (LP to the upper middle section (MU and inversion was apparent at the top of the canopy. The virtual potential temperature (θv profile showed no difference in middle section, but the lower and upper portion (UP had lower  in narrow, compared to wide, strips, and LP-UP changes of 0.6 K and 1.2 K were observed, respectively. The Ev and Es within the canopy increased the ea concentration as determined by the wind order of magnitude. The ea concentration reached peak at about 1.6 kPa at a range of wind speed value of 1.4–1.8 m∙s−1 and 2.0–2.4 m∙s−1 for wide and narrow treatments, respectively. The sparse maize canopy of the wide strips could supply more drying power of the air in response to atmospheric evaporative demand compared to narrow strips. This is due to the variation in air flow in wide and narrow runoff strips that change gradients in ea for evapotranspiration processes.

  3. Airborne geophysical survey, Wind River Basin area, Wyoming

    International Nuclear Information System (INIS)


    Results are reported of AEC-sponsored, high sensitivity, reconnaisance airborne gamma-ray survey of the Wind River Basin area, Wyoming. The objective of the survey was to define those areas showing surface indications of a generally higher uranium content (uraniferous provinces) and where detailed exploration for uranium would most likely be successful. For the data collection tasks, a TI high sensitivity gamma-ray system consisting of seven large-volume NaI detectors, two 400-channel analyzers, and ancillary geophysical and electronic equipment was used. Gamma-ray spectrometric data were processed to correct for variations in atmospheric and flight conditions and statistically evaluated to remove the effect of surface geologic variations. Data were then compared to regional geomorphic lineaments derived from ERTS-1 imagery. Aeromagnetic data were collected simultaneously with the airborne gamma-ray survey and interpreted in terms of regional structure. Ten major anomalous uranium areas and ten less strong anomalous areas were defined within the region surveyed. These anomalies and the known mining districts and uranium occurrences demonstrated good correlation with the ERTS lineaments. The basins were defined by the aeromagnetic data. It is suggested that gamma-ray spectrometer data be supplemented by both the ERTS and aeromagnetic data to best define the targets of greatest potential for further exploration. (U.S.)

  4. Wind River Watershed Project; 1998 Annual Report; Volume II

    International Nuclear Information System (INIS)

    Connolly, Patrick J.


    The authors report here their on-ground restoration actions. Part 1 describes work conducted by the Underwood Conservation District (UCD) on private lands. This work involves the Stabler Cut-Bank project. Part 2 describes work conducted by the U.S. Forest Service. The Stabler Cut-Bank Project is a cooperative stream restoration effort between Bonneville Power Administration (BPA), the UCD, private landowners, the U.S. Forest Service (USFS), and the U.S. Fish and Wildlife Service (USFWS). The Stabler site was identified by UCD during stream surveys conducted in 1996 as part of a USFWS funded project aimed at initiating water quality and habitat restoration efforts on private lands in the basin. In 1997 the Wind River Watershed Council selected the project as a top priority demonstration project. The landowners were approached by the UCD and a partnership developed. Due to their expertise in channel rehabilitation, the Forest Service was consulted for the design and assisted with the implementation of the project. A portion of the initial phase of the project was funded by USFWS. However, the majority of funding (approximately 80%) has been provided by BPA and it is anticipated that additional work that is planned for the site will be conducted with BPA funds

  5. Employment of satellite snowcover observations for improving seasonal runoff estimates. [Indus River and Wind River Range, Wyoming (United States)

    Rango, A.; Salomonson, V. V.; Foster, J. L.


    Low resolution meteorological satellite and high resolution earth resources satellite data were used to map snowcovered area over the upper Indus River and the Wind River Mountains of Wyoming, respectively. For the Indus River, early Spring snowcovered area was extracted and related to April through June streamflow from 1967-1971 using a regression equation. Composited results from two years of data over seven Wind River Mountain watersheds indicated that LANDSAT-1 snowcover observations, separated on the basis of watershed elevation, could also be related to runoff in significant regression equations. It appears that earth resources satellite data will be useful in assisting in the prediction of seasonal streamflow for various water resources applications, nonhazardous collection of snow data from restricted-access areas, and in hydrologic modeling of snowmelt runoff.


    Energy Technology Data Exchange (ETDEWEB)

    Robert Caldwell


    Vast quantities of natural gas are entrapped within various tight formations in the Rocky Mountain area. This report seeks to quantify what proportion of that resource can be considered recoverable under today's technological and economic conditions and discusses factors controlling recovery. The ultimate goal of this project is to encourage development of tight gas reserves by industry through reducing the technical and economic risks of locating, drilling and completing commercial tight gas wells. This report is the fourth in a series and focuses on the Wind River Basin located in west central Wyoming. The first three reports presented analyses of the tight gas reserves and resources in the Greater Green River Basin (Scotia, 1993), Piceance Basin (Scotia, 1995) and the Uinta Basin (Scotia, 1995). Since each report is a stand-alone document, duplication of language will exist where common aspects are discussed. This study, and the previous three, describe basin-centered gas deposits (Masters, 1979) which contain vast quantities of natural gas entrapped in low permeability (tight), overpressured sandstones occupying a central basin location. Such deposits are generally continuous and are not conventionally trapped by a structural or stratigraphic seal. Rather, the tight character of the reservoirs prevents rapid migration of the gas, and where rates of gas generation exceed rates of escape, an overpressured basin-centered gas deposit results (Spencer, 1987). Since the temperature is a primary controlling factor for the onset and rate of gas generation, these deposits exist in the deeper, central parts of a basin where temperatures generally exceed 200 F and drill depths exceed 8,000 feet. The abbreviation OPT (overpressured tight) is used when referring to sandstone reservoirs that comprise the basin-centered gas deposit. Because the gas resources trapped in this setting are so large, they represent an important source of future gas supply, prompting studies

  7. Wind River Watershed Restoration Project; Underwood Conservation District, Annual Report 2002-2003.

    Energy Technology Data Exchange (ETDEWEB)

    White, Jim


    The goal of the Wind River project is to preserve, protect and restore Wind River steelhead. In March, 1998, the National Marine Fisheries Service listed the steelhead of the lower Columbia as 'threatened' under the Endangered Species Act. In 1997, the Washington Department of Fish and Wildlife rated the status of the Wind River summer run steelhead as critical. Due to the status of this stock, the Wind River summer steelhead have the highest priority for recovery and restoration in the state of Washington's Lower Columbia Steelhead Conservation Initiative. The Wind River Project includes four cooperating agencies. Those are the Underwood Conservation District (UCD), United States Geological Service (USGS), US Forest Service (USFS), and Washington State Department of Fish & Wildlife (WDFW). Tasks include monitoring steelhead populations (USGS and WDFW), Coordinating a Watershed Committee and Technical Advisory Group (UCD), evaluating physical habitat conditions (USFS and UCD), assessing watershed health (all), reducing road sediments sources (USFS), rehabilitating riparian corridors, floodplains, and channel geometry (UCD, USFS), evaluate removal of Hemlock Dam (USFS), and promote local watershed stewardship (UCD, USFS). UCD's major efforts have included coordination of the Wind River Watershed Committee and Technical Advisory Committee (TAC), water temperature and water chemistry monitoring, riparian habitat improvement projects, and educational activities. Our coordination work enables the local Watershed Committee and TAC to function and provide essential input to Agencies, and our habitat improvement work focuses on riparian revegetation. Water chemistry and temperature data collection provide information for monitoring watershed conditions and fish habitat, and are comparable with data gathered in previous years. Water chemistry information collected on Trout Creek should, with 2 years data, determine whether pH levels make conditions

  8. InfraSound from wind turbines : observations from Castle River wind farm. Volume 1

    International Nuclear Information System (INIS)

    Edworthy, J.; Hepburn, H.


    Although infrasound has been discussed as a concern by groups opposed to wind farm facilities, there is very little information available about infrasound and wind turbines. This paper presented details of a project conducted by VisionQuest, the largest wind power producer in Canada. Three sensor types were used: precision sound analyzer, seismic geophones, and calibrated microphones to take measurements in low, medium and high winds. The project also measured infrasound when the wind farm was not operating. Acquisition geometry was presented, as well as details of apparent attenuations of wind noise. It was noted that high wind noise was a dominant factor and that there was little difference when the wind farm was not operational. It was suggested that turbines have no impact with high wind, since wind noise is not attenuated with distance. It was noted that increased geophone amplitudes indicate high wind coupled motion which is attenuated when the turbines are on. Results indicate that all frequencies showed attenuation with distance. Evidence showed that low frequency sound pressure levels were often lower when the turbines were switched on. Where turbines contributed to sound pressure levels, the magnitude of the contribution was below levels of concern to human health. Ambient sound pressure levels were much higher than contributions from wind turbines. It was concluded that wind itself generates infrasound. Wind turbines generate low levels of infrasound, detectable very close to facilities at low to medium wind speeds. Wind turbines may reduce ambient infrasound levels at high wind speeds by converting the energy from the wind into electricity. refs., tabs., figs

  9. Inclusion of routine wind and turbulence forecasts in the Savannah River Plant's emergency response capabilities

    International Nuclear Information System (INIS)

    Pendergast, M.M.; Gilhousen, D.B.


    The Savannah River Plant's emergency response computer system was improved by the implementation of automatic forecasts of wind and turbulence for periods up to 30 hours. The forecasts include wind direction, wind speed, and horizontal and vertical turbulence intensity at 10, 91, and 243 m above ground for the SRP area, and were obtained by using the Model Output Statistics (MOS) technique. A technique was developed and tested to use the 30-hour MOS forecasts of wind and turbulence issued twice daily from the National Weather Service at Suitland, Maryland, into SRP's emergency response program. The technique for combining MOS forecasts, persistence, and adjusted-MOS forecast is used to generate good forecasts any time of day. Wind speed and turbulence forecasts have been shown to produce smaller root mean square errors (RMSE) than forecasts of persistence for time periods over about two hours. For wind direction, the adjusted-MOS forecasts produce smaller RMSE than persistence for times greater than four hours

  10. Evaluating EO-based canopy water stress from seasonally detrended NDVI and SIWSI with modeled evapotranspiration in the Senegal River Basin

    DEFF Research Database (Denmark)

    Olsen, Jørgen L.; Stisen, Simon; Proud, Simon Richard


    the Shortwave Infrared Water Stress Index (SIWSI) as compared to Normalized Difference Vegetation Index (NDVI). We perform a spatio-temporal evaluation of NDVI and SIWSI using geostationary remote sensing imagery from the Spinning Enhanced Visible and Infrared Imager (SEVIRI). The indices and their seasonally...... detrended anomalies are evaluated using a gridded rainfall product (RFE2) and modeled actual evapotranspiration (ETa) for the Senegal River basin in 2008. Daily NDVI and SIWSI were found spatially highly correlated to ETa with r=0.73 for both indices, showing the importance of the north/south vegetation...... gradient in the river catchment. The hypothesis that short term evolution of index anomalies are related to canopy water status was tested by comparing 10-day averages of ETa with short term changes in daily NDVI and SIWSI anomalies, and moderate to strong coefficients of determination where found when...

  11. Ecological types of the eastern slope of the Wind River Range, Shoshone National Forest, Wyoming (United States)

    Aaron F. Wells; Janis L. Boettinger; Kent E. Houston; David W. Roberts


    This guide presents a classification of the Ecological Types of the eastern slope of the Wind River Range (WRR) on the Shoshone National Forest in west-central Wyoming. Ecological Types integrate vegetation and environmental characteristics, including climate, geology, landform, and soils, into a comprehensive ecosystem classification. The three objectives are: (1)...

  12. Evaluation of Mineral Deposits Along the Little Wind River, Riverton, WY, Processing Site

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, Sam [Navarro Research and Engineering, Oak Ridge, TN (United States); Dam, Wiliam [US Department of Energy, Washington, DC (United States). Office of Legacy Management


    In 2012, the U.S.Department of Energy (DOE) began reassessing the former Riverton, Wyoming, Processing Site area for potential contaminant sources impacting groundwater. A flood in 2010 along the Little Wind River resulted in increases in groundwater contamination (DOE 2013).This investigation is a small part of continued efforts by DOE and other stakeholders to update human health and ecological risk assessments, to make a comprehensive examination of all exposure pathways to ensure that the site remains protective through established institutional controls. During field inspections at the Riverton Site in 2013, a white evaporitic mineral deposit was identified along the bank of the Little Wind River within the discharge zone of the groundwater contamination plume. In December 2013, Savannah River National Laboratory (SRNL) personnel collected a sample for analysis by X-ray fluorescence (Figure 1 shows the type of material sampled). The sample had a uranium concentration of approximately 64 to 73 parts per million. Although the uranium in this mineral deposit is within the expected range for evaporatic minerals in the western United States (SRNL 2014), DOE determined that additional assessment of the mineral deposit was warranted. In response to the initial collection and analysis of a sample of the mineral deposit, DOE developed a work plan (Work Plan to Sample Mineral Deposits Along the Little Wind River, Riverton, Wyoming, Processing Site [DOE 2014]) to further define the extent of these mineral deposits and the concentration of the associated contaminants (Appendix A). The work plan addressed field reconnaissance, mapping, sampling, and the assessment of risk associated with the mineral deposits adjacent to the Little Wind River.

  13. Observations and Predictability of Gap Winds in the Salmon River Canyon of Central Idaho, USA

    Directory of Open Access Journals (Sweden)

    Natalie S. Wagenbrenner


    Full Text Available This work investigates gap winds in a steep, deep river canyon prone to wildland fire. The driving mechanisms and the potential for forecasting the gap winds are investigated. The onset and strength of the gap winds are found to be correlated to the formation of an along-gap pressure gradient linked to periodic development of a thermal trough in the Pacific Northwest, USA. Numerical simulations are performed using a reanalysis dataset to investigate the ability of numerical weather prediction (NWP to simulate the observed gap wind events, including the timing and flow characteristics within the canyon. The effects of model horizontal grid spacing and terrain representation are considered. The reanalysis simulations suggest that horizontal grid spacings used in operational NWP could be sufficient for simulating the gap flow events given the regional-scale depression in which the Salmon River Canyon is situated. The strength of the events, however, is under-predicted due, at least in part, to terrain smoothing in the model. Routine NWP, however, is found to have mixed results in terms of forecasting the gap wind events, primarily due to problems in simulating the regional sea level pressure system correctly.

  14. Wind River Watershed Restoration Project, Segment II, 2000-2002 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Bair, Brian; Olegario, Anthony; Powers, Paul


    This document represents work conducted as part of the Wind River Watershed Restoration Project during its second year of funding through the Bonneville Power Administration (BPA). The project is a comprehensive effort involving public and private entities seeking to restore water quality and fishery resources in the basin through cooperative actions. Project elements include coordination, watershed assessment, restoration, monitoring, and education. Entities involved with implementing project components are the Underwood Conservation District (UCD), USDA Forest Service (USFS), U.S. Geological Survey - Columbia River Research Lab (USGS-CRRL), and WA Department of Fish & Wildlife (WDFW).

  15. Mean and Turbulent Flow Statistics in a Trellised Agricultural Canopy (United States)

    Miller, Nathan E.; Stoll, Rob; Mahaffee, Walter F.; Pardyjak, Eric R.


    Flow physics is investigated in a two-dimensional trellised agricultural canopy to examine that architecture's unique signature on turbulent transport. Analysis of meteorological data from an Oregon vineyard demonstrates that the canopy strongly influences the flow by channelling the mean flow into the vine-row direction regardless of the above-canopy wind direction. Additionally, other flow statistics in the canopy sub-layer show a dependance on the difference between the above-canopy wind direction and the vine-row direction. This includes an increase in the canopy displacement height and a decrease in the canopy-top shear length scale as the above-canopy flow rotates from row-parallel towards row-orthogonal. Distinct wind-direction-based variations are also observed in the components of the stress tensor, turbulent kinetic energy budget, and the energy spectra. Although spectral results suggest that sonic anemometry is insufficient for resolving all of the important scales of motion within the canopy, the energy spectra peaks still exhibit dependencies on the canopy and the wind direction. These variations demonstrate that the trellised-canopy's effect on the flow during periods when the flow is row-aligned is similar to that seen by sparse canopies, and during periods when the flow is row-orthogonal, the effect is similar to that seen by dense canopies.

  16. Effect of winds and waves on salt intrusion in the Pearl River estuary (United States)

    Gong, Wenping; Lin, Zhongyuan; Chen, Yunzhen; Chen, Zhaoyun; Zhang, Heng


    Salt intrusion in the Pearl River estuary (PRE) is a dynamic process that is influenced by a range of factors and to date, few studies have examined the effects of winds and waves on salt intrusion in the PRE. We investigate these effects using the Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST) modeling system applied to the PRE. After careful validation, the model is used for a series of diagnostic simulations. It is revealed that the local wind considerably strengthens the salt intrusion by lowering the water level in the eastern part of the estuary and increasing the bottom landward flow. The remote wind increases the water mixing on the continental shelf, elevates the water level on the shelf and in the PRE and pumps saltier shelf water into the estuary by Ekman transport. Enhancement of the salt intrusion is comparable between the remote and local winds. Waves decrease the salt intrusion by increasing the water mixing. Sensitivity analysis shows that the axial down-estuary wind, is most efficient in driving increases in salt intrusion via wind straining effect.

  17. Effect of winds and waves on salt intrusion in the Pearl River estuary

    Directory of Open Access Journals (Sweden)

    W. Gong


    Full Text Available Salt intrusion in the Pearl River estuary (PRE is a dynamic process that is influenced by a range of factors and to date, few studies have examined the effects of winds and waves on salt intrusion in the PRE. We investigate these effects using the Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST modeling system applied to the PRE. After careful validation, the model is used for a series of diagnostic simulations. It is revealed that the local wind considerably strengthens the salt intrusion by lowering the water level in the eastern part of the estuary and increasing the bottom landward flow. The remote wind increases the water mixing on the continental shelf, elevates the water level on the shelf and in the PRE and pumps saltier shelf water into the estuary by Ekman transport. Enhancement of the salt intrusion is comparable between the remote and local winds. Waves decrease the salt intrusion by increasing the water mixing. Sensitivity analysis shows that the axial down-estuary wind, is most efficient in driving increases in salt intrusion via wind straining effect.

  18. Maps showing thermal maturity of Upper Cretaceous marine shales in the Wind River Basin, Wyoming (United States)

    Finn, Thomas M.; Pawlewicz, Mark J.


    The Wind River Basin is a large Laramide (Late Cretaceous through Eocene) structural and sedimentary basin that encompasses about 7,400 square miles in central Wyoming. The basin is bounded by the Washakie Range, Owl Creek, and southern Bighorn Mountains on the north, the Casper arch on the east and northeast, the Granite Mountains on the south, and the Wind River Range on the west. Important conventional and unconventional oil and gas resources have been discovered and produced from reservoirs ranging in age from Mississippian through Tertiary. It has been suggested that various Upper Cretaceous marine shales are the principal hydrocarbon source rocks for many of these accumulations. Numerous source rock studies of various Upper Cretaceous marine shales throughout the Rocky Mountain region have led to the conclusion that these rocks have generated, or are capable of generating, oil and (or) gas. With recent advances and success in horizontal drilling and multistage fracture stimulation there has been an increase in exploration and completion of wells in these marine shales in other Rocky Mountain Laramide basins that were traditionally thought of only as hydrocarbon source rocks. Important parameters that control hydrocarbon production from shales include: reservoir thickness, amount and type of organic matter, and thermal maturity. The purpose of this report is to present maps and a structural cross section showing levels of thermal maturity, based on vitrinite reflectance (Ro), for Upper Cretaceous marine shales in the Wind River Basin.

  19. Canopy effects on snow sublimation from a central Arizona Basin (United States)

    Svoma, Bohumil M.


    Guided by 30 m terrain and forest cover data, snow sublimation from the Salt River basin in the Southwest U.S. is simulated for years 2008 (wet year) and 2007 (dry year). Downscaled meteorological input correlates well (r 0.80) with independent observations at AmeriFlux sites. Additionally, model correlation and bias with eddy-covariance vapor flux observations is comparable to previous localized modeling efforts. Upon a 30% reduction in effective leaf area index, canopy sublimation decreases by 1.29 mm (27.0%) and 1.05 mm (23.0%) at the basin scale for the 2008 and 2007 simulations, respectively. Ground sublimation decreases 0.72 mm (4.75%) in 2008 and only 0.17 mm (1.5%) in 2007. Canopy snow-holding capacity and frequent unloading events at lower elevations limit the variability in canopy sublimation from wet year to dry year at the basin scale. The greater decrease in snowpack sublimation in the wet year is partly due to decreased longwave radiation from the canopy reduction over a more extensive snowpack than the dry year. This decrease overcomes the increased solar radiation and wind speed during winter. A second factor is that a greater extent of the snowpack persisted into spring in 2008 than 2007, and the large increase in shortwave flux upon canopy reduction increases melt rates, reducing duration. Only in heavily forested high elevations (>2900 m above sea level) in 2008 does the snowpack persist long enough into spring to result in increased ground sublimation upon canopy reduction. As forest cover change can occur rapidly, these results are critical from water resource and ecosystem function perspectives.

  20. Wintertime Local Wind Dynamics from Scanning Doppler Lidar and Air Quality in the Arve River Valley

    Directory of Open Access Journals (Sweden)

    Tiphaine Sabatier


    Full Text Available Air quality issues are frequent in urbanized valleys, particularly in wintertime when a temperature inversion forms and the air within the valley is stably stratified over several days. In addition to pollutant sources, local winds can have a significant impact on the spatial distribution and temporal evolution of pollutant concentrations. They can be very complex and difficult to represent in numerical weather prediction models, particularly under stable conditions. Better knowledge of these local winds from observations is also a prerequisite to improving air quality prediction capability. This paper analyses local winds during the Passy-2015 field experiment that took place in a section of the Arve river valley, near Chamonix–Mont-Blanc. This location is one of the worst places in France regarding air quality. The wind analysis, which is mainly based on scanning Doppler lidar data sampling a persistent temperature inversion episode, reveals features consistent with the higher pollutant concentrations observed in this section of the valley as well as their spatial heterogeneities. In particular, an elevated down-valley jet is observed at night in the northern half of the valley, which, combined with a weak daytime up-valley wind, leads to very poor ventilation of the lowest layers. A northeast–southwest gradient in ventilation is observed on a daily-average, and is consistent with the PM10 heterogeneities observed within the valley.

  1. Wind River watershed restoration, annual report November 2009 to October 2010. (United States)

    Connolly, P.J.; Jezorek, I.G.


    This report summarizes work completed by U.S. Geological Survey’s Columbia River Research Laboratory (USGS-CRRL) in the Wind River subbasin during the period November 2009 through October 2010 under Bonneville Power Administration (BPA) contract 46102. Long term research in the Wind River has focused on assessments of steelhead/rainbow trout Oncorhynchus mykiss populations, interactions with introduced populations of spring Chinook salmon O. tshawytscha and brook trout Salvelinus fontinalis, and influences of habitat variables and habitat restoration on fish productivity. During the period covered by this report, we collected water temperature data to characterize variation within and among tributaries and mainstem sections in the Trout Creek watershed, and assisted Washington Department of Fish and Wildlife (WDFW) with smolt trapping and tagging of smolt and parr steelhead with passive integrated transponder (PIT) tags. We also continued to maintain and test efficacy of a passive integrated transponder tag interrogation system (PTIS) in Trout Creek for assessing the adult steelhead runsize. A statement of work (SOW) was submitted to BPA in October 2009 that outlined work to be performed by USGS-CRRL. The SOW was organized by work elements, with each describing a research task. This report summarizes the progress completed under each work element.

  2. Wind River water restoration, Annual report November 2008 to October 2009. (United States)

    Connolly, P.J.; Jezorek, I.G.; Munz, C.S.


    This report summarizes work completed by U.S. Geological Survey’s Columbia River Research Laboratory (USGS-CRRL) in the Wind River subbasin during the period November 2008 through October 2009 under Bonneville Power Administration (BPA) contract 41038. Long term research in the Wind River has focused on assessments of steelhead/rainbow trout Oncorhynchus mykiss populations, interactions with introduced populations of spring Chinook salmon O. tshawytscha and brook trout Salvelinus fontinalis, and influences of habitat variables on fish productivity. During this period, we collected water temperature data to characterize variation within and among tributaries and mainstem sections in the Trout Creek watershed, and assisted Washington Department of Fish and Wildlife with smolt trapping and tagging of smolt and parr steelhead with passive integrated transponder (PIT) tags. We also continued to maintain and test efficacy of a passive integrated transponder tag interrogation system (PTIS) in Trout Creek for assessing the adult steelhead runsize. We continued to maintain and download PTIS setups in the fish ladder at Hemlock Dam. These PTISs contributed information on movement and rearing of steelhead parr and smolts. A statement of work (SOW) was submitted to BPA in October 2009 that outlined work to be performed by USGS-CRRL. The SOW was organized by work elements, with each describing a research task. This report summarizes the progress completed under each work element.

  3. Automated prediction of boundary layer winds and turbulence for the Savannah River Laboratory. Final report

    International Nuclear Information System (INIS)

    Gilhousen, D.B.


    Objective forecasts of many weather elements produced twice daily for about 230 US cities are made by applying the Model Output Statistics (MOS) technique (Glahn and Lowry, 1972). This technique relates by a statistical method the output of numerical models interpolated to a location (predictors) to a corresponding sample of observed local weather at that location (predictand). This study describes the development and testing of MOS wind forecasts for an instrumented TV tower located near the Savannah River Laboratory (SRL). If shown to be useful, these forecasts could serve as valuable guidance in case of a nuclear incident at the installation. This study introduces several new applications of the MOS technique. In addition to forecasts of wind speed and direction, forecasts of two turbulence parameters were developed and evaluated. These turbulence parameters were the standard deviations of both the azimuth and elevation of the wind. These quantities help to estimate the amount of plume and puff spread. Forecasts of all these elements were produced for several levels on the 335 m WJBF-TV tower. Tests were conducted to see if MOS forecasts of each element were capable of resolving differences between tower levels. MOS forecasts were compared to two other types of forecasts to determine their utility. Short range persistence forecasts served as one type of comparison since SRL uses the current observed winds in their diffusion models. Climatology forecasts served as the other comparison set


    International Nuclear Information System (INIS)

    Dr. Ronald C. Surdam


    A primary objective of the Institute for Energy Research (IER)-Santa Fe Snyder Corporation DOE Riverton Dome project is to test the validity of a new conceptual model and resultant exploration paradigm for so-called ''basin center'' gas accumulations. This paradigm and derivative exploration strategy suggest that the two most important elements crucial to the development of prospects in the deep, gas-saturated portions of Rocky Mountain Laramide Basins (RMLB) are (1) the determination and, if possible, three-dimensional evaluation of the pressure boundary between normal and anomalous pressure regimes (i.e., this boundary is typically expressed as a significant inversion in both sonic and seismic velocity-depth profiles) , and (2) the detection and delineation of porosity/permeability ''sweet spots'' (i.e., areas of enhanced storage capacity and deliverability) in potential reservoir targets below this boundary. There are other critical aspects in searching for basin center gas accumulations, but completion of these two tasks is essential to the successful exploration for the unconventional gas resources present in anomalously pressured rock/fluid systems in the Rocky Mountain Laramide Basins. The southern Wind River Basin, in particular the Riverton Dome and Emigrant areas, is a neat location for testing this exploration paradigm. Preliminary work within the Wind River Basin has demonstrated that there is a regionally prominent pressure surface boundary that can be detected by inversions in sonic velocity depth gradients in individual well log profiles and that can be seen as a velocity inversion on seismic lines. Also, the Wind River Basin in general-and the Riverton Dome area specially-is characterized by a significant number of anomalously pressured gas accumulations. Most importantly, Santa Fe Snyder Corporation has provided the study with sonic logs, two 3-D seismic studies (40 mi(sup 2) and 30 mi(sup 2)) and a variety of other necessary geological and

  5. Sedimentation and chemical quality of surface waters in the Wind River basin, Wyoming (United States)

    Colby, B.R.; Hembree, C.H.; Rainwater, F.H.


    This report gives results of an investigation by the U. S. Geological Survey of chemical quality of surface waters and sedimentation in the Wind River Basin, Wyo. The sedimentation study was begun in 1946 to determine the quantity of sediment that is transported by the streams in the basin; the probable sources of the sediment; the effect of large irrigation projects on sediment yield, particularly along Fivemile Creek; and the probable specific weight of the sediment when initially deposited in a reservoir. The study of the chemical quality of the water was begun in 1945 to obtain information on the sources, nature, and amounts of dissolved material that is transported by streams and on the suitability of the waters for different uses. Phases of geology and hydrology pertinent to the sedimentation and chemical quality were studied. Results of the investigation through September 30, 1952, and some special studies that were made during the 1953 and 1954 water years are reported. The rocks in the Wind River Basin are granite, schist, and gneiss of Precambrian age and a thick series of sedimentary strata that range in age from Cambrian to Recent. Rocks of Precambrian and Paleozoic age are confined to the mountains, rocks of Mesozoic age crop out along the flank of the Wind River and Owl Creek Mountains and in denuded anticlines in the floor of the basin, and rocks of Tertiary age cover the greater part of the floor of the basin. Deposits of debris from glaciers are in the mountains, and remnants of gravel-capped terraces of Pleistocene age are on the floor of the basin. The lateral extent and depth of alluvial deposits of Recent age along all the streams are highly variable. The climate of the floor of the basin is arid. The foothills probably receive a greater amount of intense rainfall than the areas at lower altitudes. Most precipitation in the Wind River Mountains falls as snow. The foothill sections, in general, are transitional zones between the cold, humid


    International Nuclear Information System (INIS)

    Dr. Ronald C. Surdam


    This project will provide a full demonstration of an entirely new package of exploration technologies that will result in the discovery and development of significant new gas reserves now trapped in unconventional low-permeability reservoirs. This demonstration includes the field application of these technologies, prospect definition and well siting, and a test of this new strategy through wildcat drilling. In addition this project includes a demonstration of a new stimulation technology that will improve completion success in these unconventional low permeability reservoirs which are sensitive to drilling and completion damage. The work includes two test wells to be drilled by Snyder Oil Company on the Shoshone/Arapahoe Tribal Lands in the Wind River Basin. This basin is a foreland basin whose petroleum systems include Paleozoic and Cretaceous source beds and reservoirs which were buried, folded by Laramide compressional folding, and subsequently uplifted asymmetrically. The anomalous pressure boundary is also asymmetric, following differential uplift trends

  7. Study of airborne gamma-ray spectrometer data procedures: Wind River Basin, Wyoming, Thermopolis Quadrangle

    International Nuclear Information System (INIS)


    This volume contains the following data from the Thermopolis Quadrangle, Wind River Basin, Wyoming: statistical summary tables; flight-line averages; geologic map units; geologic map with record locations; uranium mines and occurrences, uranium location map; eU symbol anomaly map; eU/eTh symbol anomaly map; eU/K symbol anomaly map; eTh symbol anomaly map; K symbol anomaly map; eU profile anomaly map; eU/eTh profile anomaly map; eU/K profile anomaly map; eTh profile anomaly map; K profile anomaly map; eTh/K profile anomaly map; preferred anomaly maps (4- and 7-point), combined 4- and 7-point preferred anomaly map; and stacked significance factor profiles

  8. Anatomy of an interrupted irrigation season: Micro-drought at the Wind River Indian Reservation

    Directory of Open Access Journals (Sweden)

    Shannon M. McNeeley

    Full Text Available Drought is a complex phenomenon manifested through interactions between biophysical and social factors. At the Wind River Indian Reservation (WRIR in west-central Wyoming, water shortages have become increasingly common since the turn of the 21st century. Here we discuss the 2015 water year as an exemplar year, which was characterized by wetter-than-normal conditions across the reservation and, according to the U.S. Drought Monitor, remained drought-free throughout the year. Yet parts of the reservation experienced harmful water shortages, or “micro-drought” conditions, during the growing season in 2015. In this assessment of the 2015 water year at the WRIR we: (1 describe the hydroclimatic and social processes under way that contributed to the 2015 water year micro-drought in the Little Wind Basin; (2 compare water availability conditions within and between other basins at the WRIR to illustrate how micro-droughts can result from social and environmental features unique to local systems; and (3 describe how a collaborative project is supporting drought preparedness at the WRIR. We combine a social science assessment with an analysis of the hydroclimate to deconstruct how shortages manifest at the WRIR. We provide insights from this study to help guide drought assessments at local scales. Keywords: Drought, Climate vulnerability, Drought preparedness, Indigenous adaptation, Co-production

  9. Uptake of small particles by tree canopies

    International Nuclear Information System (INIS)

    Belot, Y.; Camus, H.; Gauthier, D.; Caput, C.


    Most of the deposition data that are available to assess the radiological consequences of an accident have been acquired for low-growing vegetation and are inadapted to forest areas. Consequently, a programme was undertaken to study the deposition of particles on components of different trees and extrapolate the experimental data so obtained to large-scale canopies. The experiments were performed in a wind tunnel allowing canopy components to be exposed to a flow of suspended fluorescent particles of reasonably uniform size. Emphasis was put on particles in the 0.3-1.2 μm subrange, because most of the radioactive particles sampled at long distance from sources are comprised in this size interval. The uptake rates were determined for bare and leaf bearing twigs of several evergreen species (Picea abies, Pinus sylvestris and Quercus ilex), as a function of wind speed and particle size. The deposition rates obtained for the tree components were then used as input to a model that describes the uptake of particles by a large-scale canopy under specified conditions of weather and canopy structure. The model accounts for the diffusion of particles between different strata of the canopy, as well as deposition of particles on the canopy components. It calculates the rates of particle deposition to the horizontal surface of the canopy, and the repartition of the deposited particles within the canopy. Increases in wind speed cause increased deposition, but the effect is less important that it would have been for larger particles. The deposition is relatively insensitive to the size of particles within the subrange considered in this study. 13 refs., 2 figs., 1 tab

  10. The impacts of wind power integration on sub-daily variation in river flows downstream of hydroelectric dams. (United States)

    Kern, Jordan D; Patino-Echeverri, Dalia; Characklis, Gregory W


    Due to their operational flexibility, hydroelectric dams are ideal candidates to compensate for the intermittency and unpredictability of wind energy production. However, more coordinated use of wind and hydropower resources may exacerbate the impacts dams have on downstream environmental flows, that is, the timing and magnitude of water flows needed to sustain river ecosystems. In this paper, we examine the effects of increased (i.e., 5%, 15%, and 25%) wind market penetration on prices for electricity and reserves, and assess the potential for altered price dynamics to disrupt reservoir release schedules at a hydroelectric dam and cause more variable and unpredictable hourly flow patterns (measured in terms of the Richards-Baker Flashiness (RBF) index). Results show that the greatest potential for wind energy to impact downstream flows occurs at high (∼25%) wind market penetration, when the dam sells more reserves in order to exploit spikes in real-time electricity prices caused by negative wind forecast errors. Nonetheless, compared to the initial impacts of dam construction (and the dam's subsequent operation as a peaking resource under baseline conditions) the marginal effects of any increased wind market penetration on downstream flows are found to be relatively minor.

  11. Hydroeconomic Analysis of the Balance between Renewable Wind Energy, Hydropower, and Ecosystems Services in the Roanoke River Basin (United States)

    Fernandez, A.; Blumsack, S.; Reed, P.


    Hydropower can provide inexpensive, flexible fill-in power to compensate for intermittent renewable generation. Policies for hydropower dams maintain multiple services beyond electric generation, including environmental protection, flood control and recreation. We model the decision of a hydroelectric generator to shift some of its power production capacity away from the day-ahead energy market into a "wind-following" service that smoothes the intermittent production of wind turbines. Offering such a service imposes both private and social opportunity costs. Since fluctuations in wind energy output are not perfectly correlated with day-ahead energy prices, a wind-following service will necessarily affect generator revenues. Seasonal wind patterns produce conflicts with the goal of managing rivers for "ecosystem services" - the maintenance or enhancement of downstream ecosystems. We illustrate our decision model using the Kerr Dam in PJM's territory in North Carolina. We simulate the operation of Kerr Dam over a three-year period that features hydrologic variability from normal water years to extreme drought conditions. We use an optimization framework to estimate reservation prices for Kerr Dam offering wind-following services in the PJM market. Wind-following may be profitable for Kerr Dam at low capacity levels during some time periods if ecosystems services are neglected and if side payments, or reserves-type payments, are provided. Wind-following with ecosystem services yields revenue losses that typically cannot be recovered with reserves market payments. Water release patterns are inconsistent with ecosystem-services goals when Kerr Dam dedicates significant capacity to wind-following, particularly in drought years.

  12. The traditional symbolism of the Sun Dance Lodge among the Wind River Shoshoni

    Directory of Open Access Journals (Sweden)

    Åke Hultkrantz


    Full Text Available Of all the North American Indian religious ceremonies no one is as spectacular and as well-known as the Sun Dance of the Plains Indians. The information collected on the subject since the turn of the century is quite extensive. However, while there is a mass of materials on the outer features of the Dance, on behavioural and ritual aspects, there is very little information on its religious aspects, in particular the meaning of the ritual.The following account is an attempt to view the religious symbolism of the Wind River Shoshoni Sun Dance lodge in a "meaningful" perspective. Attention is paid not only to the ideology of the Dance as such but also and foremost to the concrete elements of the Sun Dance structure which together throw further light on this ideology. A particular place in the analysis will be devoted to a new scholarly interpretation according to which the Shoshoni Sun Dance serves as a revitalization cult.

  13. Estimation of in-canopy ammonia sources and sinks in a fertilized Zea mays field (United States)

    An analytical model was developed that describes the in-canopy vertical distribution of NH3 source and sinks and vertical fluxes in a fertilized agricultural setting using measured in-canopy concentration and wind speed profiles. This model was applied to quantify in-canopy air-s...

  14. High-resolution visibility and air quality forecasting using multi-layer urban canopy model for highly urbanized Hong Kong and the Pearl River Delta (United States)

    Piu NG, Chak; HAO, Song; Fat LAM, Yun


    Visibility is a universally critical element which affects the public in many aspects, including economic activities, health of local citizens and safety of marine transportation and aviation. The Interagency Monitoring of Protected Visual Environments (IMPROVE) visibility equation, an empirical equation developed by USEPA, has been modified by various studies to fit into the application upon the Asian continent including Hong Kong and China. Often these studies focused on the improvement of the existing IMPROVE equation by modifying its particulate speciation using local observation data. In this study, we developed an Integrated Forecast System (IFS) to predict the next-day air quality and visibility using Weather Research and Forecasting model with Building Energy Parameterization and Building Energy Model (WRF-BEP+BEM) and Community Multi-scale Air Quality Model (CMAQ). Unlike the other studies, the core of this study is to include detailed urbanization impacts with calibrated "IMPROVE equation for PRD" into the modeling system for Hong Kong's environs. The ultra-high resolution land cover information (~1km x 1km) from Google images, was digitized into the Geographic Information System (GIS) for preparing the model-ready input for IFS. The NCEP FNL (Final) Operation Global Analysis (FNL) and the Global Forecasting System (GFS) datasets were tested for both hind-cast and forecast cases, in order to calibrate the input of urban parameters in the WRF-BEP+BEM model. The evaluation of model performance with sensitivity cases was performed on sea surface temperature (SST), surface temperature (T), wind speed/direction with the major pollutants (i.e., PM10, PM2.5, NOx, SO2 and O3) using local observation and will be presented/discussed in this paper. References: 1. Y. L. Lee, R. Sequeira, Visibility degradation across Hong Kong its components and their relative contribution. Atmospheric Environment 2001, 35, 5861-5872. doi:10.1016/S1352-2310(01)00395-8 2. R. Zhang, Q

  15. Empirical Study Of Wind Energy Potential In Calabar Cross River State Nigeria

    Directory of Open Access Journals (Sweden)



    Full Text Available Abstract This paper focuses on wind energy potentials in Calabar a coastal city. The wind speed data were collected from Margaret Ekpo International Airport Calabar NIMET. The Objective of this study is to examine whether the wind energy in Calabar can generate sufficient energy to supplement electricity generation for the Calabar region. The primary data obtained is monthly mean in the form of wind speed for a period of 5year 2008 - 2012. These was used to estimate the available wind energy potential in calabar. The results show that the annual wind is 1.3 ms indicating Calabar as a low wind speed region. The wind power density value of 3.11Wm2 indicates that Calabar wind can only be used for small stand-alone wind power systems such as battery charging and for powering street light and water pumps fig 1 2 3 amp 4. The weibull probability distribution scale parameters k are higher in values and variability than the shape parameter c for the monthly distribution. Calabar wind cannot be used to generate electricity because the wind speed data at 10m height doesnt exceed 2.5ms due to the standard cut in speed.

  16. Wild Steelhead and introduced spring Chinook Salmon in the Wind River, Washington: Overlapping populations and interactions (United States)

    Jezorek, I.G.; Connolly, P.J.


    We investigated interactions of introduced juvenile spring Chinook salmon Oncorhynchus tshawytscha with wild juvenile steelhead O. mykiss in the upper Wind River watershed (rkm 24.6 to rkm 43.8), Washington. Our objective was to determine if the presence of introduced spring Chinook salmon influenced populations of wild juvenile steelhead and if other biotic or abiotic factors influenced distribution and populations of these species. We snorkeled to assess distribution and abundance in one to six stream reaches per year during 2001 through 2007. Juvenile steelhead were found in each sampled reach each year, but juvenile Chinook salmon were not. The upstream extent of distribution of juvenile Chinook salmon varied from rkm 29.7 to 42.5. Our analyses suggest that juvenile Chinook salmon distribution was much influenced by flow during the spawning season. Low flow appeared to limit access of escaped adult Chinook salmon to upper stream reaches. Abundance of juvenile Chinook salmon was also influenced by base flow during the previous year, with base flow occurring post spawn in late August or early September. There were no relationships between juvenile Chinook salmon abundance and number of Chinook salmon spawners, magnitude of winter flow that might scour redds, or abundance of juvenile steelhead. Abundance of age-0 steelhead was influenced primarily by the number of steelhead spawners the previous year, and abundance of age-1 steelhead was influenced primarily by abundance of age-0 steelhead the previous year. Juvenile steelhead abundance did not show a relationship with base or peak flows, nor with number of escaped Chinook salmon adults during the previous year. We did not detect a negative influence of the relatively low abundance of progeny of escaped Chinook salmon on juvenile steelhead abundance. This low abundance of juvenile Chinook salmon was persistent throughout our study and is likely a result of hatchery management and habitat conditions. Should one or

  17. Changing Snow Cover and Stream Discharge in the Western United States - Wind River Range, Wyoming (United States)

    Hall, Dorothy K.; Foster, James L.; DiGirolamo, Nicolo E.; Barton, Jonathan S.; Riggs, George A.


    Earlier onset of springtime weather has been documented in the western United States over at least the last 50 years. Because the majority (>70%) of the water supply in the western U.S. comes from snowmelt, analysis of the declining spring snowpack has important implications for the management of water resources. We studied ten years of Moderate-Resolution Imaging Spectroradiometer (MODIS) snow-cover products, 40 years of stream discharge and meteorological station data and 30 years of snow-water equivalent (SWE) SNOw Telemetry (SNOTEL) data in the Wind River Range (WRR), Wyoming. Results show increasing air temperatures for.the 40-year study period. Discharge from streams in WRR drainage basins show lower annual discharge and earlier snowmelt in the decade of the 2000s than in the previous three decades. Changes in streamflow may be related to increasing air temperatures which are probably contributing to a reduction in snow cover, although no trend of either increasingly lower streamflow or earlier snowmelt was observed within the decade of the 2000s. And SWE on 1 April does not show an expected downward trend from 1980 to 2009. The extent of snow cover derived from the lowest-elevation zone of the WRR study area is strongly correlated (r=0.91) with stream discharge on 1 May during the decade of the 2000s. The strong relationship between snow cover and streamflow indicates that MODIS snow-cover maps can be used to improve management of water resources in the drought-prone western U.S.

  18. Canopy Chemistry (OTTER) (United States)

    National Aeronautics and Space Administration — ABSTRACT: Canopy characteristics: leaf chemistry, specific leaf area, LAI, PAR, IPAR, NPP, standing biomass--see also: Meteorology (OTTER) for associated...

  19. Thomas Gold's Intense Solar Wind; It's evidence in prehistoric petroglyphs recorded along rivers in North and South America (United States)

    Peratt, A. L.


    A past intense solar outburst and its effect on Earth circa 8,000 BCE was proposed by Gold who based his hypotheses on astronomical and geophysical evidence [1]. The discovery of high-current Z-pinch patterns in Neolithic petroglyphs provides evidence for this occurrence and insight into the origin and meaning of these ancient symbols produced by mankind. These correspond to mankind's visual observations of ancient aurora if the solar wind had increased between one and two orders of magnitude millennia ago [2]. Our data show identical MHD patterns from surveys along 300 km of the Orinoco River (Venezuela), the Chuluut River (Mongolia), the Columbia River (USA), Red Gorge (South Australia) and the Urubamba River (Peru). Three-dimensional, high-fidelity PIC simulations of intense Z-pinches replicate the carved data [3]. 1. T. Gold, Pontificiae Academiae Scientiarvm Scripta Varia, 25, 159, 1962. 2. A. L. Peratt. Trans. Plasma Sci. 35. 778. 2007. 3. A. L. Peratt and W. F. Yao, Physica Scripta, T130, August 2008.

  20. Retrospection of recent 30-year changes in the process of soil wind erosion in the Luanhe River Source Area of North China using Cesium-137

    Energy Technology Data Exchange (ETDEWEB)

    Chen Zhifan [State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, 19 Xin Jie Kou Wai St., Beijing 100875 (China) and College of Environment and Planning, Henan University, Kaifeng 475001 (China)], E-mail:; Zhao Ye [State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, 19 Xin Jie Kou Wai St., Beijing 100875 (China)], E-mail:; Qiao Jiejuan [State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, 19 Xin Jie Kou Wai St., Beijing 100875 (China); Zhang Qing [National Institute for Radiological Protection, Chinese Center for Disease Control and Protection, Beijing 100088 (China); Zhu Yuen [State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, 19 Xin Jie Kou Wai St., Beijing 100875 (China); Xu Cuihua [National Institute for Radiological Protection, Chinese Center for Disease Control and Protection, Beijing 100088 (China)


    The Luanhe River Source Area belongs to typical semi-arid, agro-pastoral ecotone of North China. It is very important for the prevention and treatment of soil erosion in North China to analyze and evaluate quantitatively the recent 30-year changes in the process of soil wind erosion in this area. Based on long field observations, soil samples from different depths in a representative wind-deposited soil profile in the Luanhe River Source Area were collected. Then the {sup 137}Cs activity of soil samples from different depths in the soil profile was determined using a GEM series HPGe (high-purity germanium) coaxial detector system (ADCAM-100), and their soil properties, such as the soil particle fraction and so on, were analyzed. According to the detected {sup 137}Cs activity of different depths, a continuous time sequence of the wind-deposited soil profile in the study area was established. Furthermore, through assumption on a soil relative wind erosion intensity index (SWEI), recent 30-year changes in the process of soil wind erosion in the Luanhe River Source Area were retrospected . The analysis results revealed that weaker soil wind erosion occurred in the study area from the 1970s to the early 1980s and from the late 1980s to the mid to late 1990s. Conversely, intense periods of soil wind erosion occurred in the mid-1980s and from the late 1990s to 2002.

  1. Snow Cover, Snowmelt Timing and Stream Power in the Wind River Range, Wyoming (United States)

    Hall, Dorothy K.; Foster, James L.; DiGirolamo, Nicolo E.; Riggs, George A.


    Earlier onset of springtime weather, including earlier snowmelt, has been documented in the western United States over at least the last 50 years. Because the majority (is greater than 70%) of the water supply in the western U.S. comes from snowmelt, analysis of the declining spring snowpack (and shrinking glaciers) has important implications for the management of streamflow. The amount of water in a snowpack influences stream discharge which can also influence erosion and sediment transport by changing stream power, or the rate at which a stream can do work, such as move sediment and erode the stream bed. The focus of this work is the Wind River Range (WRR) in west-central Wyoming. Ten years of Moderate-Resolution Imaging Spectroradiometer (MODIS) snow-cover, cloud-gap-filled (CGF) map products and 30 years of discharge and meteorological station data are studied. Streamflow data from streams in WRR drainage basins show lower annual discharge and earlier snowmelt in the decade of the 2000s than in the previous three decades, though no trend of either lower streamflow or earlier snowmelt was observed within the decade of the 2000s. Results show a statistically-significant trend at the 95% confidence level (or higher) of increasing weekly maximum air temperature (for three out of the five meteorological stations studied) in the decade of the 1970s, and also for the 40-year study period as a whole. The extent of snow-cover (percent of basin covered) derived from the lowest elevation zone (2500-3000 m) of the WRR, using MODIS CGF snow-cover maps, is strongly correlated with maximum monthly discharge on 30 April, where Spearman's Rank correlation, rs,=0.89 for the decade of the 2000s. We also investigated stream power for Bull Lake Creek above Bull Lake; and found a trend (significant at the 90% confidence level) toward reduced stream power from 1970 to 2009. Observed changes in streamflow and stream power may be related to increasing weekly maximum air temperature

  2. Importance of wind and river discharge in influencing nutrient dynamics and phytoplankton production in summer in the central Strait of Georgia

    DEFF Research Database (Denmark)

    Yin, K.D.; Goldblatt, R.H.; Harrison, P.J.


    A cruise was conducted during August 6-14, 1991 to investigate the dynamics of nutrients and phytoplankton production in the central Strait of Georgia, British Columbia, Canada, during a period when strong stratification resulted in nitrogen-limited primary productivity. High resolution vertical...... that summer phytoplankton productivity in the central Strait of Georgia is fueled by a supply of nutrients from the nitracline through vertical mixing induced by the interaction of winds, river discharge and tidal cycles. Of these 3 factors, winds are the most variable and therefore a summer with frequent...... profiles of salinity, temperature, fluorescence and nutrients (nitrate and phosphate) were taken daily along a transect. A wind event occurred on August 7 and a rapid increase in the Fraser River discharge took place from August 8 to 14. The wind event mixed the water column and nutrients increased...

  3. A Research Plan for Assessing the Power and Energy Capability of a River Network Under an Integrated Wind/Hydro-Electric Dispatchable Regime (United States)

    Banka, John Czeslaw

    The world strives for more clean and renewable energy, but the amount of dispatchable energy in river networks is not accurately known and difficult to assess. When wind is integrated with water, the dispatchable yield can be greatly increased, but the uncertainty of the wind further degrades predictability. This thesis demonstrates how simulating the flows is a river network integrated with wind over a long time domain yields a solution. Time-shifting the freshet and pumped storage will ameliorate the seasonal summer drought; the risk of ice jams and uncontrolled flooding is reduced. An artificial market eliminates the issue of surplus energy from wind at night. Furthermore, this thesis shows how the necessary infrastructure can be built to accomplish the goals of the intended research. While specific to Northern Ontario and sensitive to the lives of the Native peoples living there, it indicates where the research might be applicable elsewhere in the world.

  4. Study of momentum transfers within a vegetation canopy

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    reduces to the exponential canopy wind profile, exp {−n(1 − z/h)} and. • if Cd(z) is uniform throughout the canopy and if the effect of sheltering is ignored then ζ(h) reduces to CdLAI. Massman (1997) parameterized the surface drag coefficient Csurf = 2u2. ∗/u(h)2 from which the expo- nential power n can be expressed as n =.

  5. NLCD 2001 - Tree Canopy (United States)

    Minnesota Department of Natural Resources — The National Land Cover Database 2001 tree canopy layer for Minnesota (mapping zones 39-42, 50-51) was produced through a cooperative project conducted by the...

  6. Iron and nutrient content of wind-erodible sediment in the ephemeral river valleys of Namibia (United States)

    Dansie, A. P.; Wiggs, G. F. S.; Thomas, D. S. G.


    Research concerning the global distribution of aeolian dust sources has principally focussed on salt/clay pan and desiccated lacustrine emission areas. In southern Africa such sources are identified as Etosha Pan in northern Namibia and Makgadikgadi Pans in northern Botswana. Dust emitting from ephemeral river valleys, however, has been largely overlooked. Rivers are known nutrient transport pathways and the flooding regimes of ephemeral river valleys frequently replenish stores of fine sediment which, on drying, can become susceptible to aeolian erosion. Such airborne sediment may be nutrient rich and thus be significant for the fertilisation of marine waters once deposited. This study investigates the dust source sediments from three ephemeral river valleys in Namibia in terms of their particle size distribution and their concentrations of bioavailable N, P and Fe. We compare the nutrient content of these sediments from the ephemeral river valleys to those collected from Etosha and Makgadikgadi Pans and consider their relative ocean fertilising potential. Our results show that the ephemeral river valleys contain fine grained sediment similar in physical character to Etosha and Makgadikgadi Pans yet they have up to 43 times greater concentrations of bioavailable iron and enriched N and P macronutrients that are each important for ocean fertilisation. The known dust-emitting river valleys of Namibia may therefore be contributing a greater fertilisation role in the adjacent marine system than previously considered, and not-yet investigated. Given this finding a re-assessment of the potential role of ephemeral river valleys in providing nutrient-rich sediment into the aeolian and marine systems in other dryland areas is necessary.

  7. What Does a Multilayer Canopy Model Tell Us About Our Current Understanding of Snow-Canopy Unloading? (United States)

    McGowan, L. E.; Paw U, K. T.; Dahlke, H. E.


    In the Western U.S., future water resources depend on the forested mountain snowpack. The variations in and estimates of forest mountain snow volume are vital to projecting annual water availability; yet, snow forest processes are not fully known. Most snow models calculate snow-canopy unloading based on time, temperature, Leaf Area Index (LAI), and/or wind speed. While models crudely consider the canopy shape via LAI, current models typically do not consider the vertical canopy structure or varied energetics within multiple canopy layers. Vertical canopy structure influences the spatiotemporal distribution of snow, and therefore ultimately determines the degree and extent by which snow alters both the surface energy balance and water availability. Within the canopy both the snowpack and energetic exposures to the snowpack (wind, shortwave and longwave radiation, turbulent heat fluxes etc.) vary widely in the vertical. The water and energy balance in each layer is dependent on all other layers. For example, increased snow canopy content in the top of the canopy will reduce available shortwave radiation at the bottom and snow unloading in a mid-layer can cascade and remove snow from all the lower layers. We examined vertical interactions and structures of the forest canopy on the impact of unloading utilizing the Advanced Canopy-Atmosphere-Soil-Algorithm (ACASA), a multilayer soil-vegetation-atmosphere numerical model based on higher-order closure of turbulence equations. Our results demonstrate how a multilayer model can be used to elucidate the physical processes of snow unloading, and could help researchers better parameterize unloading in snow-hydrology models.

  8. Influence of Plastic Covering on the Microclimate in Vineyards in the São Francisco River Valley Region

    Directory of Open Access Journals (Sweden)

    Mário de Miranda Vilas Boas Ramos Leitão

    Full Text Available Abstract Data from field experiments conducted in table grape vineyards variety of Festival in Petrolina-PE in the period from September 19 to October 12, 2010 were used to evaluate the influence of plastic cover on microclimate conditions of vineyards in São Francisco River Valley region. Three treatments were studied: canopies without plastic cover (WC; with plastic cover positioned at 50 cm (PC50, and at 100 cm (PC100 above canopy. The results indicate that the plastic cover prevented the passage of about 40% of the global and net radiation, retained the relative humidity inside the canopy, generated an increase of air temperature and marked reduction in wind speed over the canopy of treatment PC50. However, treatment PC100 had a higher incidence of short wavelength and net radiation under canopy (on the berries than WC and PC50 treatments, resulting in more favorable weather conditions, providing about 40% greater productivity in this treatment. Therefore, the vineyard with plastic cover placed at 100 cm above canopy represents a more suitable alternative to the climatic conditions of the region of the São Francisco River Valley.

  9. Detailed measured sections, cross sections, and paleogeographic reconstructions of the upper cretaceous and lower tertiary nonmarine interval, Wind River Basin, Wyoming: Chapter 10 in Petroleum systems and geologic assessment of oil and gas resources in the Wind River Basin Province, Wyoming (United States)

    Johnson, Ronald C.


    Detailed measured sections and regional stratigraphic cross sections are used to reconstruct facies maps and interpret paleogeographic settings for the interval from the base of Upper Cretaceous Mesaverde Formation to top of lower member of the Paleocene Fort Union Formation in the Wind River Basin, Wyoming. The Mesaverde Formation spans the time during which the Upper Cretaceous seaway retreated eastward out of central Wyoming in Campanian time and the initial stages of the Lewis transgression in earliest Maastrichtian time. This retreat stalled for a considerable period of time during deposition of the lower part of the Mesaverde, creating a thick buildup of marginal marine sandstones and coaly coastal plain deposits across the western part of the basin. The Lewis sea transgressed into the northeast part of Wind River Basin, beginning in early Maastrichtian time during deposition of the Teapot Sandstone Member of the Mesaverde Formation. The Meeteetse Formation, which overlies the Teapot, was deposited in a poorly-drained coastal plain setting southwest of the Lewis seaway. The Lewis seaway, at maximum transgression, covered much of the northeast half of the Wind River Basin area but was clearly deflected around the present site of the Wind River Range, southwest of the basin, providing the first direct evidence of Laramide uplift on that range. Uplift of the Wind River Range continued during deposition of the overlying Maastrichtian Lance Formation. The Granite Mountains south of the basin also became a positive feature during this time. A rapidly subsiding trough during the Maastrichtian time formed near the presentday trough of the Wind River Basin in which more than 6,000 feet of Lance was deposited. The development of this trough appears to have begun before the adjacent Owl Creek Mountains to the north started to rise; however, a muddy facies in the upper part of Lance in the deep subsurface, just to the south, might be interpreted to indicate that the

  10. Smartphone based hemispherical photography for canopy structure measurement (United States)

    Wan, Xuefen; Cui, Jian; Jiang, Xueqin; Zhang, Jingwen; Yang, Yi; Zheng, Tao


    The canopy is the most direct and active interface layer of the interaction between plant and environment, and has important influence on energy exchange, biodiversity, ecosystem matter and climate change. The measurement about canopy structure of plant is an important foundation to analyze the pattern, process and operation mechanism of forest ecosystem. Through the study of canopy structure of plant, solar radiation, ambient wind speed, air temperature and humidity, soil evaporation, soil temperature and other forest environmental climate characteristics can be evaluated. Because of its accuracy and effectiveness, canopy structure measurement based on hemispherical photography has been widely studied. However, the traditional method of canopy structure hemispherical photogrammetry based on SLR camera and fisheye lens. This method is expensive and difficult to be used in some low-cost occasions. In recent years, smartphone technology has been developing rapidly. The smartphone not only has excellent image acquisition ability, but also has the considerable computational processing ability. In addition, the gyroscope and positioning function on the smartphone will also help to measure the structure of the canopy. In this paper, we present a smartphone based hemispherical photography system. The system consists of smart phones, low-cost fisheye lenses and PMMA adapters. We designed an Android based App to obtain the canopy hemisphere images through low-cost fisheye lenses and provide horizontal collimation information. In addition, the App will add the acquisition location tag obtained by GPS and auxiliary positioning method in hemisphere image information after the canopy structure hemisphere image acquisition. The system was tested in the urban forest after it was completed. The test results show that the smartphone based hemispherical photography system can effectively collect the high-resolution canopy structure image of the plant.

  11. The response of source-bordering aeolian dunefields to sediment-supply changes 1: Effects of wind variability and river-valley morphodynamics (United States)

    Sankey, Joel B.; Kasprak, Alan; Caster, Joshua; East, Amy; Fairley, Helen C.


    Source-bordering dunefields (SBDs), which are primarily built and maintained with river-derived sediment, are found in many large river valleys and are currently impacted by changes in sediment supply due to climate change, land use changes, and river regulation. Despite their importance, a physically based, applied approach for quantifying the response of SBDs to changes in sediment supply does not exist. To address this knowledge gap, here we develop an approach for quantifying the geomorphic responses to sediment-supply alteration based on the interpretation of dunefield morphodynamics from geomorphic change detection and wind characteristics. We use the approach to test hypotheses about the response of individual dunefields to variability in sediment supply at three SBDs along the Colorado River in Grand Canyon, Arizona, USA during the 11 years between 2002 and 2013 when several river floods rebuilt some river sandbars and channel margin deposits that serve as sediment source areas for the SBDs. We demonstrate that resupply of fluvially sourced aeolian sediment occurred at one of the SBDs, but not at the other two, and attribute this differential response to site-specific variability in geomorphology, wind, and sediment source areas. The approach we present is applied in a companion study to shorter time periods with high-resolution topographic data that bracket individual floods in order to infer the resupply of fluvially sourced aeolian sediment to SBDs by managed river flows. Such an applied methodology could also be useful for measuring sediment connectivity and anthropogenic alterations of connectivity in other coupled fluvial-aeolian environments.

  12. CMS: Mangrove Canopy Characteristics and Land Cover Change, Tanzania, 1990-2014 (United States)

    National Aeronautics and Space Administration — This data set provides canopy height, land cover change, and stand age estimates for mangrove forests in the Rufiji River Delta in Tanzania. The estimates were...

  13. Assessing the vegetation canopy influences on wind flow using wind ...

    Indian Academy of Sciences (India)

    Department of Forest Sciences, Research Institute of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea. Division of Forest Disaster Management, National Institute of Forest Science, 57 Hoigi-ro, Dongdaemun-gu, Seoul 02455, Republic of Korea.

  14. Estimating canopy fuel parameters for Atlantic Coastal Plain forest types.

    Energy Technology Data Exchange (ETDEWEB)

    Parresol, Bernard, R.


    Abstract It is necessary to quantify forest canopy characteristics to assess crown fire hazard, prioritize treatment areas, and design treatments to reduce crown fire potential. A number of fire behavior models such as FARSITE, FIRETEC, and NEXUS require as input four particular canopy fuel parameters: 1) canopy cover, 2) stand height, 3) crown base height, and 4) canopy bulk density. These canopy characteristics must be mapped across the landscape at high spatial resolution to accurately simulate crown fire. Currently no models exist to forecast these four canopy parameters for forests of the Atlantic Coastal Plain, a region that supports millions of acres of loblolly, longleaf, and slash pine forests as well as pine-broadleaf forests and mixed species broadleaf forests. Many forest cover types are recognized, too many to efficiently model. For expediency, forests of the Savannah River Site are categorized as belonging to 1 of 7 broad forest type groups, based on composition: 1) loblolly pine, 2) longleaf pine, 3) slash pine, 4) pine-hardwood, 5) hardwood-pine, 6) hardwoods, and 7) cypress-tupelo. These 7 broad forest types typify forests of the Atlantic Coastal Plain region, from Maryland to Florida.

  15. Biotic and abiotic influences on abundance and distribution of nonnative Chinook salmon and native ESA-listed steelhead in the Wind River, Washington (United States)

    Jezorek, Ian G.; Connolly, Patrick J.


    Biotic and abiotic factors influence fish populations and distributions. Concerns have been raised about the influence of hatchery fish on wild populations. Carson National Fish Hatchery produces spring Chinook salmon Oncorhynchus tshawytscha in the Wind River, Washington, and some spawn in the river. Managers were concerned that Chinook salmon could negatively affect wild steelhead O. mykiss and that a self-sustaining population of Chinook salmon may develop. Our objectives were to assess: 1) the distribution and populations of juvenile spring Chinook salmon and juvenile steelhead in the upper Wind River; 2) the influence of stream flow and of each population on the other; and 3) if Chinook salmon populations were self-sustaining. We snorkeled to determine distribution and abundance. Flow in the fall influenced upstream distribution and abundance of juvenile Chinook salmon. Juvenile Chinook salmon densities were consistently low (range 0.0 to 5.7 fish 100 m-2) and not influenced by number of spawners, winter flow magnitude, or steelhead abundance. Juvenile steelhead were distributed through the study section each year. Age-0 and age-1 steelhead densities (age-0 range: 0.04 to 37.0 fish 100 m-2; age-1 range: 0.02 to 6.21 fish 100 m-2) were consistently higher than for juvenile Chinook salmon. Steelhead spawner abundance positively influenced juvenile steelhead abundance. During this study, Chinook salmon in the Wind River appear to have had little effect on steelhead. Low juvenile Chinook salmon abundance and a lack of a spawner-to-juvenile relationship suggest Chinook salmon are not self-sustaining and potential for such a population is low under current conditions.

  16. Measurements of Horizontal Advection of Carbon Dioxide Within a Forest Canopy (United States)

    Schroeder, M.; Falk, M.; Paw U, K.


    We present methodology, data and analysis on the horizontal advection of Carbon Dioxide within the understory at the Wind River Canopy Crane AMERIFLUX site. The Crane is located in a Pacific Northwest Old-growth Forest with trees up to 500 years old and 65 meters tall. The forest structure is complex with seven gymnosperm and two angiosperm tree species in the 2.3 ha crane circle, large amounts of woody debris on the forest floor, and a diverse understory. Data presented was collected using a 3-dimensional CO2/H2O profile system using LiCor LI6262 and LI7000 closed-path InfraRed Gas Analyzers (IRGA) with a total of 15 intakes distributed on the tower and throughout the canopy. Additional data was acquired using permanent eddy covariance stations consisting of a Gill-Solent HS Research sonic anemometer and a LiCor LI6262 IRGA, which have been operated for over 4 years at a height of 2.5 meters to complement an identical system measuring total ecosystem exchange at a height of 70 meters. Supplementary micro-meteorological data was collected by a vertical profile of 8 stations. Advection of Carbon Dioxide was calculated using horizontal concentration differences and mean wind speed and direction for half-hour periods. The Net ecosystem carbon exchange (NEE) estimated by eddy-covariance ranges from a sink of 1.9 tC ha-1 yr-1 to a source of 0.5 tC ha-1 yr-1. The long-term understory eddy covariance data indicate the release of carbon from the soil to be as large as 11 tC ha-1 yr-1 with maximum values of 6 to 8 \\mu mol m-1 s-1. Preliminary data show that advection can account for 20% of Carbon Dioxide fluxes measured by eddy covariance.

  17. Canopy for VERAView Installation Guide

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ronald W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)


    With the addition of the 3D volume slicer widget, VERAView now relies on Mayavi and its dependents. Enthought's Canopy Python environment provides everything VERAView needs, and pre-built Canopy versions for Windows, Mac OSX, and Linux can be downloaded.

  18. Gainesville's urban forest canopy cover (United States)

    Francisco Escobedo; Jennifer A. Seitz; Wayne Zipperer


    Ecosystem benefits from trees are linked directly to the amount of healthy urban forest canopy cover. Urban forest cover is dynamic and changes over time due to factors such as urban development, windstorms, tree removals, and growth. The amount of a city's canopy cover depends on its land use, climate, and people's preferences. This fact sheet examines how...

  19. Momentum and particle transport in a nonhomogenous canopy (United States)

    Gould, Andrew W.

    Turbulent particle transport through the air plays an important role in the life cycle of many plant pathogens. In this study, data from a field experiment was analyzed to explore momentum and particle transport within a grape vineyard. The overall goal of these experiments was to understand how the architecture of a sparse agricultural canopy interacts with turbulent flow and ultimately determines the dispersion of airborne fungal plant pathogens. Turbulence in the vineyard canopy was measured using an array of four sonic anemometers deployed at heights z/H 0.4, 0.9, 1.45, and 1.95 where z is the height of the each sonic and H is the canopy height. In addition to turbulence measurements from the sonic anemometers, particle dispersion was measured using inert particles with the approximate size and density of powdery mildew spores and a roto-rod impaction trap array. Measurements from the sonic anemometers demonstrate that first and second order statistics of the wind field are dependent on wind direction orientation with respect to vineyard row direction. This dependence is a result of wind channeling which transfers energy between the velocity components when the wind direction is not aligned with the rows. Although the winds have a strong directional dependence, spectra analysis indicates that the structure of the turbulent flow is not fundamentally altered by the interaction between wind direction and row direction. Examination of a limited number of particle release events indicates that the wind turning and channeling observed in the momentum field impacts particle dispersion. For row-aligned flow, particle dispersion in the direction normal to the flow is decreased relative to the plume spread predicted by a standard Gaussian plume model. For flow that is not aligned with the row direction, the plume is found to rotate in the same manner as the momentum field.

  20. Stratigraphic cross sections of the Niobrara interval of the Cody Shale and associated rocks in the Wind River Basin, central Wyoming (United States)

    Finn, Thomas M.


    The Wind River Basin in Wyoming is one of many structural and sedimentary basins that formed in the Rocky Mountain foreland during the Laramide orogeny. The basin is nearly 200 miles long, 70 miles wide, and encompasses about 7,400 square miles in central Wyoming. The basin is bounded by the Washakie Range, Owl Creek uplift, and southern Bighorn Mountains on the north, the Casper arch on the east, the Granite Mountains on the south, and Wind River Range on the west.Many important conventional oil and gas fields producing from reservoirs ranging in age from Mississippian through Tertiary have been discovered in this basin. In addition, an extensive unconventional overpressured basin-centered gas accumulation has been identified in Cretaceous and Tertiary strata in the deeper parts of the basin. It has long been suggested that various Upper Cretaceous marine shales, including the Cody Shale, are the principal hydrocarbon source rocks for many of these accumulations. With recent advances and success in horizontal drilling and multistage fracture stimulation, there has been an increase in exploration and completion of wells in these marine shales in other Rocky Mountain Laramide basins that were traditionally thought of only as hydrocarbon source rocks.The two stratigraphic cross sections presented in this report were constructed as part of a project carried out by the U.S. Geological Survey to characterize and evaluate the undiscovered continuous (unconventional) oil and gas resources of the Niobrara interval of the Upper Cretaceous Cody Shale in the Wind River Basin in central Wyoming. The primary purpose of the cross sections is to show the stratigraphic relationship of the Niobrara equivalent strata and associated rocks in the lower part of the Cody Shale in the Wind River Basin. These two cross sections were constructed using borehole geophysical logs from 37 wells drilled for oil and gas exploration and production, and one surface section along East Sheep Creek

  1. Effect of Vertical Canopy Architecture on Transpiration, Thermoregulation and Carbon Assimilation

    Directory of Open Access Journals (Sweden)

    Tirtha Banerjee


    Full Text Available Quantifying the impact of natural and anthropogenic disturbances such as deforestation, forest fires and vegetation thinning among others on net ecosystem—atmosphere exchanges of carbon dioxide, water vapor and heat—is an important aspect in the context of modeling global carbon, water and energy cycles. The absence of canopy architectural variation in horizontal and vertical directions is a major source of uncertainty in current climate models attempting to address these issues. This manuscript demonstrates the importance of considering the vertical distribution of foliage density by coupling a leaf level plant biophysics model with analytical solutions of wind flow and light attenuation in a horizontally homogeneous canopy. It is demonstrated that plant physiological response in terms of carbon assimilation, transpiration and canopy surface temperature can be widely different for two canopies with the same leaf area index (LAI but different leaf area density distributions, under several conditions of wind speed, light availability, soil moisture availability and atmospheric evaporative demand.

  2. Wind erosion in semiarid landscapes: Predictive models and remote sensing methods for the influence of vegetation (United States)

    Musick, H. Brad


    The objectives of this research are: to develop and test predictive relations for the quantitative influence of vegetation canopy structure on wind erosion of semiarid rangeland soils, and to develop remote sensing methods for measuring the canopy structural parameters that determine sheltering against wind erosion. The influence of canopy structure on wind erosion will be investigated by means of wind-tunnel and field experiments using structural variables identified by the wind-tunnel and field experiments using model roughness elements to simulate plant canopies. The canopy structural variables identified by the wind-tunnel and field experiments as important in determining vegetative sheltering against wind erosion will then be measured at a number of naturally vegetated field sites and compared with estimates of these variables derived from analysis of remotely sensed data.

  3. Plant photomorphogenesis and canopy growth

    Energy Technology Data Exchange (ETDEWEB)

    Ballare, C.L.; Scopel, A.L. [Universidad de Buenos Aires (Argentina)


    An important motivation for studying photomorphogenesis is to understand the relationships among plant photophysiology in canopies, canopy productivity, and agronomic yield. This understanding is essential to optimize lighting systems used for plant farming in controlled environments (CE) and for the design of genetically engineered crop strains with altered photoresponses. This article provides an overview of some basic principles of plant photomorphogenesis in canopies and discusses their implications for (1) scaling up information on plant photophysiology from individual plants in CE to whole canopies in the field, and (2), designing lighting conditions to increase plant productivity in CE used for agronomic purposes [e.g. space farming in CE Life-Support-Systems]. We concentrate on the visible ({lambda} between 400 and 700 nm) and far red (FR; {lambda} > 700 nm) spectral regions, since the ultraviolet (UV; 280 to 400 nm) is covered by other authors in this volume.

  4. Cleat development in coals of the Upper Cretaceous Mesaverde Formation, Pilot Butte area, Wind River Reservation, Wyoming (United States)

    Johnson, R.C.; Clark, A.C.; Szmajter, R.J.


    The cleat system developed in low-rank (mean viltrinite reflectance of 0.43 to 0.5 percent) coal beds in the Upper Cretaceous Mesaverde Formation was studied in outcrop and in coreholes drilled for coalbed methane evaluation near Pilot Butte in the central part of the Wind River Reservation. Cleats are the principal permeability pathway for fluids in coal beds. As a result, coalbed gas cannot be economically produced without significant cleat development. Two drillholes about 800 ft (244 m) apart encountered Mesaverde coal beds at depths ranging from 307 to 818 ft (93.6 to 249.3 m). One of the coal beds penetrated while drilling, the lowest coal in the Mesaverde coaly interval, is well exposed about a mile south of the two drillholes and the cleat development in this coal bed on outcrop was compared with that of the same coal in the drillholes.The 3 in (7.62 cm) diameter core is less than ideal for this study because cleat spacing in low-rank coals such as these typically averages greater than 7.62 cm. Nonetheless, face cleats at spacing of from 0.25 to 2.5 cm was observed in many of the coal beds. Cleats were less well-developed in other coal beds and no cleats were observed in a few beds. As expected, butt cleats were somewhat less well-developed than the face cleats. Attempts to relate cleat spacing to gas content, bed thickness, and ash content were not successful. A 3.0 m by 1.8 m area of the upper surface of the coal bed exposed a mile south of the drillsites was cleaned off and studied in detail. Cleat development in this limited study area varied from well-developed face and butt cleats in some places to few or no cleats in others. Face cleats trended roughly perpendicular to the fold axis of the nearby Pilot Butte anticline. Cleats did not penetrate a 2.5 cm thick carbonaceous shale bed about 20 cm above the base of the coal bed indicating that thin carbonaceous shale beds will act a permeability barriers. Two types of face cleats were observed on outcrop


    Energy Technology Data Exchange (ETDEWEB)

    Werth, D.; (NOEMAIL), A.; Shine, G.


    Recent data sets for three meteorological phenomena with the potential to inflict damage on SRS facilities - tornadoes, straight winds, and heavy precipitation - are analyzed using appropriate statistical techniques to estimate occurrence probabilities for these events in the future. Summaries of the results for DOE-mandated return periods and comparisons to similar calculations performed in 1998 by Weber, et al., are given. Using tornado statistics for the states of Georgia and South Carolina, we calculated the probability per year of any location within a 2⁰ square area surrounding SRS being struck by a tornado (the ‘strike’ probability) and the probability that any point will experience winds above set thresholds. The strike probability was calculated to be 1.15E-3 (1 chance in 870) per year and wind speeds for DOE mandated return periods of 50,000 years, 125,000 years, and 1E+7 years (USDOE, 2012) were estimated to be 136 mph, 151 mph and 221 mph, respectively. In 1998 the strike probability for SRS was estimated to be 3.53 E-4 and the return period wind speeds were 148 mph every 50,000 years and 180 mph every 125,000 years. A 1E+7 year tornado wind speed was not calculated in 1998; however a 3E+6 year wind speed was 260 mph. The lower wind speeds resulting from this most recent analysis are largely due to new data since 1998, and to a lesser degree differences in the models used. By contrast, default tornado wind speeds taken from ANSI/ANS-2.3-2011 are somewhat higher: 161 mph for return periods of 50,000 years, 173 mph every 125,000 years, and 230 mph every 1E+7 years (ANS, 2011). Although the ANS model and the SRS models are very similar, the region defined in ANS 2.3 that encompasses the SRS also includes areas of the Great Plains and lower Midwest, regions with much higher occurrence frequencies of strong tornadoes. The SRS straight wind values associated with various return periods were calculated by fitting existing wind data to a Gumbel

  6. Forests and Their Canopies: Achievements and Horizons in Canopy Science. (United States)

    Nakamura, Akihiro; Kitching, Roger L; Cao, Min; Creedy, Thomas J; Fayle, Tom M; Freiberg, Martin; Hewitt, C N; Itioka, Takao; Koh, Lian Pin; Ma, Keping; Malhi, Yadvinder; Mitchell, Andrew; Novotny, Vojtech; Ozanne, Claire M P; Song, Liang; Wang, Han; Ashton, Louise A


    Forest canopies are dynamic interfaces between organisms and atmosphere, providing buffered microclimates and complex microhabitats. Canopies form vertically stratified ecosystems interconnected with other strata. Some forest biodiversity patterns and food webs have been documented and measurements of ecophysiology and biogeochemical cycling have allowed analyses of large-scale transfer of CO 2 , water, and trace gases between forests and the atmosphere. However, many knowledge gaps remain. With global research networks and databases, and new technologies and infrastructure, we envisage rapid advances in our understanding of the mechanisms that drive the spatial and temporal dynamics of forests and their canopies. Such understanding is vital for the successful management and conservation of global forests and the ecosystem services they provide to the world. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. Influence of a forest canopy on velocity and temperature profiles under synoptic conditions (United States)

    Pattantyus, A.; Hocut, C. M.; Wang, Y.; Creegan, E.; Krishnamurthy, R.; Otarola-Bust, S.; Leo, L. S.; Fernando, H. J. S.


    Numerous field campaigns have found the importance of surface conditions on boundary layer evolution. Specifically, soil properties were found to control surface fluxes of heat, moisture, and momentum that significantly modulated the atmospheric boundary layer (ABL) over flat and sparsely vegetated surfaces. There have been increasing numbers of studies related to canopy impacts on the boundary layer, such as CHATS, however few canopy studies over complex terrain have been performed with limited instrumentation. The recent Perdigão campaign greatly augmented the previous datasets available by instrumenting a unique, parallel ridge mountain in Perdigão, Portugal in unprecedented spatial and temporal resolution using traditional mast mounted sensors, instrumented aerial platforms, and remote sensing instrumentation. To aid the canopy studies, the Army Research Laboratory deployed sonic anemometers within the canopy transecting the ridges perpendicularly and placed five additional heavily instrumented meteorological masts on the northeast facing slope to investigate detailed slope flows. At each of these towers, there was an average of six levels of temperature, relative humidity, and wind sensors located above & below the canopy height which allowed a detailed study of the sub-canopy layer. In addition to the towers, two scanning Doppler LiDARs were oriented such that they performed synchronized dual Doppler virtual tower scans, extending from the canopy interface to several hundred meters above. Synoptically forced periods were analyzed to examine: the ABL structure of temperature, moisture, wind, and turbulent kinetic energy. Of particular interest are the shear layer at the canopy interface, recirculation events, as well as ejection and sweep events within the canopy and how these modify surface fluxes along the slopes.

  8. Diurnal Evolution and Annual Variability of Boundary Layer Height in the Columbia River Gorge through the `Eye' of Wind Profiling Radars (United States)

    Bianco, L.; Djalalova, I.; Konopleva-Akish, E.; Kenyon, J.; Olson, J. B.; Wilczak, J. M.


    The Second Wind Forecast Improvement Project (WFIP2) is a DoE- and NOAA-sponsored program whose goal is to improve the accuracy of numerical weather prediction (NWP) forecasts in complex terrain. WFIP2 consists of an 18-month (October 2015 - March 2017) field campaign held in the Columbia River basin, in the Pacific Northwest of the U.S. As part of WFIP2 a large suite of in-situ and remote sensing instrumentation has been deployed, including, among several others, a network of eight 915-MHz wind profiling radars (WPRs) equipped with radio acoustic sounding systems (RASSs), and many surface meteorological stations. The diurnal evolution and annual variability of boundary layer height in the area of WFIP2 will be investigated through the `eye' of WPRs, employing state-of-the-art automated algorithms, based on fuzzy logic and artificial intelligence. The results will be used to evaluate possible errors in NWP models in this area of complex terrain.

  9. Canopy spectral invariants for remote sensing and model applications

    NARCIS (Netherlands)

    Huang, D.; Knyazikhin, Y.; Dickinson, R.E.; Rautiainen, M.; Stenberg, P.; Disney, M.; Lewis, P.; Cescatti, A.; Tian, Y.; Verhoef, W.; Martonchik, J.V.; Myneni, R.B.


    The concept of canopy spectral invariants expresses the observation that simple algebraic combinations of leaf and canopy spectral transmittance and reflectance become wavelength independent and determine a small set of canopy structure specific variables. This set includes the canopy interceptance,

  10. Stomatal Conductance, Plant Hydraulics, and Multilayer Canopies: A New Paradigm for Earth System Models or Unnecessary Uncertainty (United States)

    Bonan, G. B.


    Soil moisture stress is a key regulator of canopy transpiration, the surface energy budget, and land-atmosphere coupling. Many land surface models used in Earth system models have an ad-hoc parameterization of soil moisture stress that decreases stomatal conductance with soil drying. Parameterization of soil moisture stress from more fundamental principles of plant hydrodynamics is a key research frontier for land surface models. While the biophysical and physiological foundations of such parameterizations are well-known, their best implementation in land surface models is less clear. Land surface models utilize a big-leaf canopy parameterization (or two big-leaves to represent the sunlit and shaded canopy) without vertical gradients in the canopy. However, there are strong biometeorological and physiological gradients in plant canopies. Are these gradients necessary to resolve? Here, I describe a vertically-resolved, multilayer canopy model that calculates leaf temperature and energy fluxes, photosynthesis, stomatal conductance, and leaf water potential at each level in the canopy. In this model, midday leaf water stress manifests in the upper canopy layers, which receive high amounts of solar radiation, have high leaf nitrogen and photosynthetic capacity, and have high stomatal conductance and transpiration rates (in the absence of leaf water stress). Lower levels in the canopy become water stressed in response to longer-term soil moisture drying. I examine the role of vertical gradients in the canopy microclimate (solar radiation, air temperature, vapor pressure, wind speed), structure (leaf area density), and physiology (leaf nitrogen, photosynthetic capacity, stomatal conductance) in determining above canopy fluxes and gradients of transpiration and leaf water potential within the canopy.

  11. Forests and their canopies: Archievements and horizons in canopy science

    Czech Academy of Sciences Publication Activity Database

    Nakamura, A.; Kitching, R. L.; Cao, M.; Creedy, T. J.; Fayle, Tom Maurice; Freiberg, M.; Hewitt, C. N.; Itioka, T.; Koh, L. P.; Ma, K.; Malhi, Y.; Mitchell, A.; Novotný, Vojtěch; Ozanne, C. M. P.; Song, L.; Wang, H.; Ashton, L. A.


    Roč. 32, č. 6 (2017), s. 438-451 ISSN 0169-5347 R&D Projects: GA ČR(CZ) GA16-09427S; GA ČR GB14-36098G EU Projects: European Commission(XE) 669609 - Diversity6continents Institutional support: RVO:60077344 Keywords : biodiversity * canopy * cranes Subject RIV: EH - Ecology, Behaviour OBOR OECD: Ecology Impact factor: 15.268, year: 2016

  12. On the wind speed reduction in the center of large clusters of wind turbines

    DEFF Research Database (Denmark)

    Frandsen, Sten Tronæs


    of the wind speed assuming the wind turbines effectively act as roughness elements. The model makes use of similarities to so-called canopy flows, where the surface drag and the drag on individual obstacles are added to form the total drag. Results are compared with existing models for reduction of efficiency...

  13. Influence of Canopy Density on Ground Vegetation in a Bottomland Hardwood Forest (United States)

    Sarah E. Billups


    We investigated the influence of canopy density on ground vegetation in naturally formed gap and non-gap habitats (environments) in a blackwater river floodplain. Tree seedlings were more important (relatively more abundant) in the non-gap habitat, and grass was more important in the gap habitat, but there were elevation x habitat interactions. Also, there was an...

  14. Seasonal diets of insectivorous birds using canopy gaps in a bottomland forest (United States)

    Christopher E. Moorman; Liessa T. Bowen; John C. Kilgo; Clyde E. Sorenson; James L. Hanula; Scott Horn; Mike D. Ulyshen


    Little is known about how insectivorous bird diets are influenced by arthropod availability and about how these relationships vary seasonally. We captured birds in forest-canopy gaps and adjacent mature forest during 2001 and 2002 at the Savannah River Site in Barnwell County, South Carolina, and flushed their crops to gather information about arthropods eaten during...

  15. Regeneration in bottomland forest canopy gaps 6 years after variable retention harvests to enhance wildlife habitat (United States)

    Daniel J. Twedt; Scott G. Somershoe


    To promote desired forest conditions that enhance wildlife habitat in bottomland forests, managers prescribed and implemented variable-retention harvest, a.k.a. wildlife forestry, in four stands on Tensas River National Wildlife Refuge, LA. These treatments created canopy openings (gaps) within which managers sought to regenerate shade-intolerant trees. Six years after...

  16. Comparison of weak-wind characteristics across different Surface Types in stable stratification (United States)

    Freundorfer, Anita; Rehberg, Ingo; Thomas, Christoph


    Atmospheric transport in weak winds and very stable conditions is often characterized by phenomena collectively referred to as submeso motions since their time and spatial scales exceed those of turbulence, but are smaller than synoptic motions. Evidence is mounting that submeso motions invalidate models for turbulent dispersion and diffusion since their physics are not captured by current similarity theories. Typical phenomena in the weak-wind stable boundary layer include meandering motions, quasi two-dimensional pancake-vortices or wavelike motions. These motions may be subject to non-local forcing and sensitive to small topographic undulations. The invalidity of Taylor's hypothesis of frozen turbulence for submeso motions requires the use of sensor networks to provide observations in both time and space domains simultaneously. We present the results from the series of Advanced Resolution Canopy Flow Observations (ARCFLO) experiments using a sensor network consisting of 12 sonic anemometers and 12 thermohygrometers. The objective of ARCFLO was to observe the flow and the turbulent and submeso transport at a high spatial and temporal resolution at 4 different sites in the Pacific Northwest, USA. These sites represented a variable degree of terrain complexity (flat to mountainous) and vegetation architecture (grass to forest, open to dense). In our study, a distinct weak-wind regime was identified for each site using the threshold velocity at which the friction velocity becomes dependent upon the mean horizontal wind speed. Here we used the scalar mean of the wind speed because the friction velocity showed a clearer dependence on the scalar mean compared to the vector mean of the wind velocity. It was found that the critical speed for the weak wind regime is higher in denser vegetation. For an open agricultural area (Botany and Plant Pathology Farm) we found a critical wind speed of v_crit= (0.24±0.05) ms-1 while for a very dense forest (Mary's River Douglas Fir

  17. Quantifying energy and mass transfer in crop canopies: sensors for measurement of temperature and air velocity (United States)

    Bugbee, B.; Monje, O.; Tanner, B.


    Here we report on the in situ performance of inexpensive, miniature sensors that have increased our ability to measure mass and energy fluxes from plant canopies in controlled environments: 1. Surface temperature. Canopy temperature measurements indicate changes in stomatal aperture and thus latent and sensible heat fluxes. Infrared transducers from two manufacturers (Exergen Corporation, Newton, MA; and Everest Interscience, Tucson, AZ, USA) have recently become available. Transducer accuracy matched that of a more expensive hand-held infrared thermometer. 2. Air velocity varies above and within plant canopies and is an important component in mass and energy transfer models. We tested commercially-available needle, heat-transfer anemometers (1 x 50 mm cylinder) that consist of a fine-wire thermocouple and a heater inside a hypodermic needle. The needle is heated and wind speed determined from the temperature rise above ambient. These sensors are particularly useful in measuring the low wind speeds found within plant canopies. 3. Accurate measurements of air temperature adjacent to plant leaves facilitates transport phenomena modeling. We quantified the effect of radiation and air velocity on temperature rise in thermocouples from 10 to 500 micrometers. At high radiation loads and low wind speeds, temperature errors were as large as 7 degrees C above air temperature.

  18. Seasonal variability of interception evaporation from the canopy of a mixed deciduous forest

    DEFF Research Database (Denmark)

    Herbst, Mathias; Rosier, Paul T.W.; McNeil, David D.


    . The gross rainfall was corrected for catch losses due to high turbulence. Reliable net rainfall data were obtained from a combined application of simple storage gauges and troughs connected to automatic tipping bucket gauges. The evaporation rates from the wet canopy were calculated with the Penman......-Monteith equation using the measured aerodynamic conductance to the momentum flux and, additionally, with the eddy covariance energy balance approach. Both methods agreed in the observation that the average wet canopy evaporation rate was slightly higher in the leafless period, due to higher wind speeds...

  19. Canopy Dynamics in Nanoscale Ionic Materials

    KAUST Repository

    Jespersen, Michael L.


    Nanoscale ionic materials (NIMS) are organic - inorganic hybrids in which a core nanostructure is functionalized with a covalently attached corona and an ionically tethered organic canopy. NIMS are engineered to be liquids under ambient conditions in the absence of solvent and are of interest for a variety of applications. We have used nuclear magnetic resonance (NMR) relaxation and pulse-field gradient (PFG) diffusion experiments to measure the canopy dynamics of NIMS prepared from 18-nm silica cores modified by an alkylsilane monolayer possessing terminal sulfonic acid functionality, paired with an amine-terminated ethylene oxide/propylene oxide block copolymer canopy. Carbon NMR studies show that the block copolymer canopy is mobile both in the bulk and in the NIMS and that the fast (ns) dynamics are insensitive to the presence of the silica nanoparticles. Canopy diffusion in the NIMS is slowed relative to the neat canopy, but not to the degree predicted from the diffusion of hard-sphere particles. Canopy diffusion is not restricted to the surface of the nanoparticles and shows unexpected behavior upon addition of excess canopy. Taken together, these data indicate that the liquid-like behavior in NIMS is due to rapid exchange of the block copolymer canopy between the ionically modified nanoparticles. © 2010 American Chemical Society.

  20. Estimating forest canopy fuel parameters using LIDAR data. (United States)

    Hans-Erik Andersen; Robert J. McGaughey; Stephen E. Reutebuch


    Fire researchers and resource managers are dependent upon accurate, spatially-explicit forest structure information to support the application of forest fire behavior models. In particular, reliable estimates of several critical forest canopy structure metrics, including canopy bulk density, canopy height, canopy fuel weight, and canopy base height, are required to...

  1. VitiCanopy: A Free Computer App to Estimate Canopy Vigor and Porosity for Grapevine. (United States)

    De Bei, Roberta; Fuentes, Sigfredo; Gilliham, Matthew; Tyerman, Steve; Edwards, Everard; Bianchini, Nicolò; Smith, Jason; Collins, Cassandra


    Leaf area index (LAI) and plant area index (PAI) are common and important biophysical parameters used to estimate agronomical variables such as canopy growth, light interception and water requirements of plants and trees. LAI can be either measured directly using destructive methods or indirectly using dedicated and expensive instrumentation, both of which require a high level of know-how to operate equipment, handle data and interpret results. Recently, a novel smartphone and tablet PC application, VitiCanopy, has been developed by a group of researchers from the University of Adelaide and the University of Melbourne, to estimate grapevine canopy size (LAI and PAI), canopy porosity, canopy cover and clumping index. VitiCanopy uses the front in-built camera and GPS capabilities of smartphones and tablet PCs to automatically implement image analysis algorithms on upward-looking digital images of canopies and calculates relevant canopy architecture parameters. Results from the use of VitiCanopy on grapevines correlated well with traditional methods to measure/estimate LAI and PAI. Like other indirect methods, VitiCanopy does not distinguish between leaf and non-leaf material but it was demonstrated that the non-leaf material could be extracted from the results, if needed, to increase accuracy. VitiCanopy is an accurate, user-friendly and free alternative to current techniques used by scientists and viticultural practitioners to assess the dynamics of LAI, PAI and canopy architecture in vineyards, and has the potential to be adapted for use on other plants.

  2. The impact of urban canopy meteorological forcing on summer photochemistry (United States)

    Huszár, Peter; Karlický, Jan; Belda, Michal; Halenka, Tomáš; Pišoft, Petr


    The regional climate model RegCM4.4, including the surface model CLM4.5, was offline coupled to the chemistry transport model CAMx version 6.30 in order to investigate the impact of the urban canopy induced meteorological changes on the longterm summer photochemistry over central Europe for the 2001-2005 period. First, the urban canopy impact on the meteorological conditions was calculated performing a reference experiment without urban landsurface considered and an experiment with urban surfaces modeled with the urban parameterization within the CLM4.5 model. In accordance with expectations, strong increases of urban surface temperatures (up to 2-3 K), decreases of wind speed (up to -1 ms-1) and increases of vertical turbulent diffusion coefficient (up to 60-70 m2s-1) were found. For the impact on chemistry, these three components were considered. Additionally, we accounted for the effect of temperature enhanced biogenic emission increase. Several experiments were performed by adding these effects one-by-one to the total impact: i.e., first, only the urban temperature impact was considered driving the chemistry model; secondly, the wind impact was added and so on. We found that the impact on biogenic emission account for minor changes in the concentrations of ozone (O3), oxides of nitrogen NOx = NO + NO2 and nitric acid (HNO3). On the other hand, the dominating component acting is the increased vertical mixing, resulting in up to 5 ppbv increase of urban ozone concentrations while causing -2 to -3 ppbv decreases and around 1 ppbv increases of NOx and HNO3 surface concentrations, respectively. The temperature impact alone results in reduction of ozone, increase in NO, decrease in NO2 and increases of HNO3. The wind impact leads, over urban areas, to ozone decreases, increases of NOx and a slight increase in HNO3. The overall impact is similar to the impact of increased vertical mixing alone. The Process Analysis (PA) technique implemented in CAMx was adopted to

  3. Landscape biogeochemistry reflected in shifting distributions of chemical traits in the Amazon forest canopy (United States)

    Asner, Gregory P.; Anderson, Christopher B.; Martin, Roberta E.; Tupayachi, Raul; Knapp, David E.; Sinca, Felipe


    Tropical forest functional diversity, which is a measure of the diversity of organismal interactions with the environment, is poorly understood despite its importance for linking evolutionary biology to ecosystem biogeochemistry. Functional diversity is reflected in functional traits such as the concentrations of different compounds in leaves or the density of leaf mass, which are related to plant activities such as plant defence, nutrient cycling, or growth. In the Amazonian lowlands, river movement and microtopography control nutrient mobility, which may influence functional trait distributions. Here we use airborne laser-guided imaging spectroscopy to develop maps of 16 forest canopy traits, throughout four large landscapes that harbour three common forest community types on the Madre de Dios and Tambopata rivers in southwestern Amazonia. Our maps, which are based on quantitative chemometric analysis of forest canopies with visible-to-near infrared (400-2,500 nm) spectroscopy, reveal substantial variation in canopy traits and their distributions within and among forested landscapes. Forest canopy trait distributions are arranged in a nested pattern, with location along rivers controlling trait variation between different landscapes, and microtopography controlling trait variation within landscapes. We suggest that processes of nutrient deposition and depletion drive increasing phosphorus limitation, and a corresponding increase in plant defence, in an eastward direction from the base of the Andes into the Amazon Basin.

  4. Economic and Technical Feasibility Study of Utility-Scale Wind Generation for the New York Buffalo River and South Buffalo Brownfield Opportunity Areas

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, J. O.; Mosey, G.


    Through the RE-Powering America's Land initiative, the economic and technical feasibility of utilizing contaminated lands in the Buffalo, New York, area for utility-scale wind development is explored. The study found that there is available land, electrical infrastructure, wind resource, and local interest to support a commercial wind project; however, economies of scale and local electrical markets may need further investigation before significant investment is made into developing a wind project at the Buffalo Reuse Authority site.

  5. Wind energy

    International Nuclear Information System (INIS)



    This chapter discusses the role wind energy may have in the energy future of the US. The topics discussed in the chapter include historical aspects of wind energy use, the wind energy resource, wind energy technology including intermediate-size and small wind turbines and intermittency of wind power, public attitudes toward wind power, and environmental, siting and land use issues

  6. Nondestructive, stereological estimation of canopy surface area

    DEFF Research Database (Denmark)

    Wulfsohn, Dvora-Laio; Sciortino, Marco; Aaslyng, Jesper M.


    a canopy using the smooth fractionator, (ii) sampling of leaves from the selected plants using the fractionator, and (iii) area estimation of the sampled leaves using point counting. We apply this procedure to estimate the total area of a chrysanthemum (Chrysanthemum morifolium L.) canopy and evaluate both...

  7. Leaf Wetness within a Lily Canopy

    NARCIS (Netherlands)

    Jacobs, A.F.G.; Heusinkveld, B.G.; Klok, E.J.


    A wetness duration experiment was carried out within a lily field situated adjacent to coastal dunes in the Netherlands. A within-canopy model was applied to simulate leaf wetness in three layers, with equal leaf area indices, within the canopy. This simulation model is an extension of an existing

  8. Use of the forest canopy by bats. (United States)

    L. Wunder; A.B. Carey


    Of the 15 species of bats in the Pacific Northwest, 11 are known to make regular use of the forest canopy for roosting, foraging, and reproduction. This paper reviews roosting requirements, foraging, and the importance of landscape-scale factors to canopy using species in the Northwest. Many northwest bats use several different types of tree roosts. Common roosting...


    Energy Technology Data Exchange (ETDEWEB)

    Paul La Pointe; Jan Hermanson; Robert Parney; Thorsten Eiben; Mike Dunleavy; Ken Steele; John Whitney; Darrell Eubanks; Roger Straub


    This report describes the results made in fulfillment of contract DE-FG26-00BC15190, ''3-D Reservoir and Stochastic Fracture Network Modeling for Enhanced Oil Recovery, Circle Ridge Phosphoria/Tensleep Reservoir, Wind River Reservation, Arapaho and Shoshone Tribes, Wyoming''. The goal of this project is to improve the recovery of oil from the Tensleep and Phosphoria Formations in Circle Ridge Oilfield, located on the Wind River Reservation in Wyoming, through an innovative integration of matrix characterization, structural reconstruction, and the characterization of the fracturing in the reservoir through the use of discrete fracture network models. Fields in which natural fractures dominate reservoir permeability, such as the Circle Ridge Field, often experience sub-optimal recovery when recovery processes are designed and implemented that do not take advantage of the fracture systems. For example, a conventional waterflood in a main structural block of the Field was implemented and later suspended due to unattractive results. It is estimated that somewhere less than 20% of the OOIP in the Circle Ridge Field have been recovered after more than 50 years' production. Marathon Oil Company identified the Circle Ridge Field as an attractive candidate for several advanced IOR processes that explicitly take advantage of the natural fracture system. These processes require knowledge of the distribution of matrix porosity, permeability and oil saturations; and understanding of where fracturing is likely to be well-developed or poorly developed; how the fracturing may compartmentalize the reservoir; and how smaller, relatively untested subthrust fault blocks may be connected to the main overthrust block. For this reason, the project focused on improving knowledge of the matrix properties, the fault block architecture and to develop a model that could be used to predict fracture intensity, orientation and fluid flow/connectivity properties. Knowledge

  10. The impact of modifying antenna size of photosystem II on canopy photosynthetic efficiency – development of a new canopy photosynthesis model scaling from metabolism to canopy level processes (United States)

    Canopy photosynthesis describes photosynthesis of an entire crop field and positively correlates with biomass production. Much effort in crop breeding has focused on improving canopy architecture and hence light distribution inside the canopy. Here, we develop a new integrated canopy photosynthesis ...

  11. Microwave Propagation Through Cultural Vegetation Canopies (United States)

    Tavakoli, Ahad

    The need to understand the interaction of microwaves with vegetation canopies has markedly increased in recent years. This is due to advances made in remote sensing science, microwave technology, and signal processing circuits. One class of the earth's vegetation cover is man-made canopies, such as agricultural fields, orchards, and artificial forests. Contrary to natural vegetation terrain, location, spacing, and density of plants in a man-made vegetation canopy are deterministic quantities. As a result, the semi-deterministic nature of cultural vegetation canopies violate the random assumption of the radiative transfer theory and leads to experimented results that are in variance with model calculations. Hence, an alternative approach is needed to model the interaction of microwaves with such canopies. This thesis examines the propagation behavior through a canopy of corn plants. The corn canopy was selected as a representative of cultural vegetation canopies that are planted in parallel rows with an approximately fixed spacing between adjacent plants. Several experimental measurements were conducted to determine the transmission properties of a corn canopy in the 1-10 GHz range. The measurements which included horizontal propagation through the canopy as well as propagation at oblique incidence, were performed for defoliated canopies and for canopies with leaves. Through experimental observations and model development, the propagation behavior was found to be strongly dependent on the wavelength and the path length. At a wavelength in the neighborhood of 20 cm, for example, it was found that scattering by the stalks was coherent in nature for waves propagating horizontally through the canopy, which necessitated the development of a coherent-field model that uses Bragg scattering to account for the observed interference pattern in the transmitted beam. As the wavelength is made shorter, the semi-random spacing between plants becomes significant relative to the

  12. Bone Canopies in Pediatric Renal Osteodystrophy

    DEFF Research Database (Denmark)

    Pereira, Renata C; Levin Andersen, Thomas; Friedman, Peter A


    Pediatric renal osteodystrophy (ROD) is characterized by changes in bone turnover, mineralization, and volume that are brought about by alterations in bone resorption and formation. The resorptive and formative surfaces on the cancellous bone are separated from the marrow cavity by canopies...... consisting of a layer of flat osteoblastic cells. These canopies have been suggested to play a key role in the recruitment of osteoprogenitors during the process of bone remodeling. This study was performed to address the characteristics of the canopies above bone formation and resorption sites...... and their association with biochemical and bone histomorphometric parameters in 106 pediatric chronic kidney disease (CKD) patients (stage 2-5) across the spectrum of ROD. Canopies in CKD patients often appeared as thickened multilayered canopies, similar to previous reports in patients with primary hyperparathyroidism...

  13. [Characteristics of canopy plant substratum in a low land humid tropical forest (Upper Orinoco, Venezuela)]. (United States)

    Hernández-Rosas, José Ibrahin


    By international agreement (Austria-Venezuela) a tower crane was installed near Surumoni river, Upper Orinoco, for canopy research in a tropical rain forest. From the 1.5 ha crane-accessible area of the forest, an experimental plot was selected for assessment of the canopy plants' aerial substrates and to determine their relationship with spatial distribution, presence or absence of vascular plants, and some of the strategies used in their ecological space. In the middle and lower canopy strata myrmecophytic associations appear, where the conformation of the aerial substrates determines the establishment and maintenance of these associations. The high content of nutrients of these aerial substrata represents a reservoir for the forest, where the mirmecophytic activity is determining. A higher fertility of aerial substrates of the ants gardens can be related to a higher number of vascular epiphytes present in these gardens.

  14. Mechanistic Processes Controlling Persistent Changes of Forest Canopy Structure After 2005 Amazon Drought (United States)

    Shi, Mingjie; Liu, Junjie; Zhao, Maosheng; Yu, Yifan; Saatchi, Sassan


    The long-term impact of Amazonian drought on canopy structure has been observed in ground and remote sensing measurements. However, it is still unclear whether it is caused by biotic (e.g., plant structure damage) or environmental (e.g., water deficiency) factors. We used the Community Land Model version 4.5 (CLM4.5) and radar backscatter observations from SeaWinds Scatterometer on board QuikSCAT (QSCAT) satellite to investigate the relative role of biotic and environmental factors in controlling the forest canopy disturbance and recovery processes after the 2005 Amazonian drought. We validated the CLM4.5 simulation of the drought impact and the recovery of leaf carbon (C) pool, an indicator of canopy structure, over southwestern Amazonia with QSCAT backscatter observations, which are sensitive to canopy structure change. We found that the leaf C pool simulated by CLM4.5 recovered to the 2000-2009 mean level (343 g C m-2) in 3 years after a sharp decrease in 2005, consistent with the QSCAT observed slow recovery. Through sensitivity experiments, we found that the slow C recovery was primarily due to biotic factors represented by the canopy damage and reduction of plant C pools. The recovery of soil water and the coupling between water and C pools, which is an environmental factor, only contributes 24% to the leaf C recovery. The results showed (1) the strength of scatterometer backscatter measurements in capturing canopy damage over tropical forests and in validating C cycle models and (2) the biotic factors play the dominant role in regulating the drought induced disturbance and persistent canopy changes in CLM4.5.

  15. VEGNET - a novel terrestrial laser scanner for daily monitoring of forest canopy dynamics (United States)

    Griebel, A.; Arndt, S. K.; Newnham, G.; Culvenor, D.; Bennett, L. T.


    Leaf area index (LAI) or plant area index (PAI) are commonly used to represent canopy structure and dynamics, but daily estimation of these variables using traditional ground-based methods is impractical and prone to multiple errors during data acquisition and processing. Existing terrestrial laser scanners can provide accurate representation of forest canopy structure, but the sensors are expensive, data processing is complex, and measurements are typically confined to a single event, which severely limits their utility in the interpretation of canopy trends indicated by remotely sensed data. We tested a novel, low-cost terrestrial laser scanner for its capacity to provide reliable and successive assessments of canopy PAI in an evergreen eucalypt forest. Daily scans were made by three scanners at one forest site over a three-year period, providing mostly consecutive estimates of PAI, and of vertical structure profiles (as Plant Area Volume Density, PAVD). Data filtering, involving objective statistical methods to identify outliers, indicated that scan quality was adversely affected by moist weather and moderate wind speeds (>4 m s-1), suggesting limited utility in some forest environments. We found strong agreement between lidar-derived PAI estimates, and those from monthly hemispherical images (±0.1 PAI); with both methods indicating mostly stable PAI over multiple seasons. The PAVD profiles from the laser scanner indicated that leaf flush in the upper canopy concomitantly balanced leaf loss from the middle canopy in summer, which was consistent with measured summer peaks in litter fall. This clearly illustrated the advantages of three-dimensional lidar data over traditional two-dimensional PAI estimates in monitoring tree phenology, and in interpreting changes in canopy reflectance as detected by air- and space-borne remotely sensed data.

  16. Climatic, biological, and land cover controls on the exchange of gas-phase semivolatile chemical pollutants between forest canopies and the atmosphere. (United States)

    Nizzetto, Luca; Perlinger, Judith A


    An ecophysiological model of a structured broadleaved forest canopy was coupled to a chemical fate model of the air-canopy exchange of gaseous semivolatile chemicals to dynamically assess the short-term (hours) and medium term (days to season) air-canopy exchange and the influence of biological, climatic, and land cover drivers on the dynamics of the air-canopy exchange and on the canopy storage for airborne semivolatile pollutants. The chemical fate model accounts for effects of short-term variations in air temperature, wind speed, stomatal opening, and leaf energy balance, all as a function of layer in the canopy. Simulations showed the potential occurrence of intense short/medium term re-emission of pollutants having log K(OA) up to 10.7 from the canopy as a result of environmental forcing. In addition, relatively small interannual variations in seasonally averaged air temperature, canopy biomass, and precipitation can produce relevant changes in the canopy storage capacity for the chemicals. It was estimated that possible climate change related variability in environmental parameters (e.g., an increase of 2 °C in seasonally averaged air temperature in combination with a 10% reduction in canopy biomass due to, e.g., disturbance or acclimatization) may cause a reduction in canopy storage capacity of up to 15-25%, favoring re-emission and potential for long-range atmospheric transport. On the other hand, an increase of 300% in yearly precipitation can increase canopy sequestration by 2-7% for the less hydrophobic compounds.

  17. [Photosynthetic rate, transpiration rate, and water use efficiency of cotton canopy in oasis edge of Linze]. (United States)

    Xie, Ting-Ting; Su, Pei-Xi; Gao, Song


    The measurement system of Li-8100 carbon flux and the modified assimilation chamber were used to study the photosynthetic characteristics of cotton (Gossypium hirsutum L.) canopy in the oasis edge region in middle reach of Heihe River Basin, mid Hexi Corridor of Gansu. At the experimental site, soil respiration and evaporation rates were significantly higher in late June than in early August, and the diurnal variation of canopy photosynthetic rate showed single-peak type. The photosynthetic rate was significantly higher (P water use efficiency in late June and early August was (15.67 +/- 1.77) mmol CO2 x mol(-1) H2O and (23.08 +/- 5.54) mmol CO2 x mol(-1) H2O, respectively, but the difference was not significant (P > 0.05). Both in late June and in early August, the canopy photosynthetic rate was positively correlated with air temperature, PAR, and soil moisture content, suggesting that there was no midday depression of photosynthesis in the two periods. In August, the canopy photosynthetic rate and transpiration rate decreased significantly, because of the lower soil moisture content and leaf senescence, but the canopy water use efficiency had no significant decrease.

  18. Sensitivity of stand transpiration to wind velocity in a mixed broadleaved deciduous forest (United States)

    Dohyoung Kim; Ram Oren; A. Christopher Oishi; Cheng-I Hsieh; Nathan Phillips; Kimberly A. Novick; Paul C. Stoy


    Wind velocity (U) within and above forest canopies can alter the coupling between the vapor-saturated sub-stomatal airspace and the drier atmosphere aloft, thereby influencing transpiration rates. In practice, however, the actual increase in transpiration with increasing U depends on the aerodynamic resistance (RA) to vapor transfer compared to canopy resistance to...

  19. Relationship Between Satellite-Derived Snow Cover and Snowmelt-Runoff Timing and Stream Power in the Wind River Range, Wyoming (United States)

    Hall, Dorothy K.; Foster, James L.; DiGirolamo, Nicolo E.; Riggs, George A.


    Earlier onset of springtime weather including earlier snowmelt has been documented in the western United States over at least the last 50 years. Because the majority (>70%) of the water supply in the western U.S. comes from snowmelt, analysis of the declining spring snowpack (and shrinking glaciers) has important implications for streamflow management. The amount of water in a snowpack influences stream discharge which can also influence erosion and sediment transport by changing stream power, or the rate at which a stream can do work such as move sediment and erode the stream bed. The focus of this work is the Wind River Range (WRR) in west-central Wyoming. Ten years of Moderate-Resolution Imaging Spectroradiometer (MODIS) snow-cover, cloud- gap-filled (CGF) map products and 30 years of discharge and meteorological station data are studied. Streamflow data from six streams in the WRR drainage basins show lower annual discharge and earlier snowmelt in the decade of the 2000s than in the previous three decades, though no trend of either lower streamflow or earlier snowmelt was observed using MODIS snow-cover maps within the decade of the 2000s. Results show a statistically-significant trend at the 95% confidence level (or higher) of increasing weekly maximum air temperature (for three out of the five meteorological stations studied) in the decade of the 1970s, and also for the 40-year study period. MODIS-derived snow cover (percent of basin covered) measured on 30 April explains over 89% of the variance in discharge for maximum monthly streamflow in the decade of the 2000s using Spearman rank correlation analysis. We also investigated stream power for Bull Lake Creek Above Bull Lake from 1970 to 2009; a statistically-significant end toward reduced stream power was found (significant at the 90% confidence level). Observed changes in streamflow and stream power may be related to increasing weekly maximum air temperature measured during the 40-year study period. The

  20. VitiCanopy: A Free Computer App to Estimate Canopy Vigor and Porosity for Grapevine

    Directory of Open Access Journals (Sweden)

    Roberta De Bei


    Full Text Available Leaf area index (LAI and plant area index (PAI are common and important biophysical parameters used to estimate agronomical variables such as canopy growth, light interception and water requirements of plants and trees. LAI can be either measured directly using destructive methods or indirectly using dedicated and expensive instrumentation, both of which require a high level of know-how to operate equipment, handle data and interpret results. Recently, a novel smartphone and tablet PC application, VitiCanopy, has been developed by a group of researchers from the University of Adelaide and the University of Melbourne, to estimate grapevine canopy size (LAI and PAI, canopy porosity, canopy cover and clumping index. VitiCanopy uses the front in-built camera and GPS capabilities of smartphones and tablet PCs to automatically implement image analysis algorithms on upward-looking digital images of canopies and calculates relevant canopy architecture parameters. Results from the use of VitiCanopy on grapevines correlated well with traditional methods to measure/estimate LAI and PAI. Like other indirect methods, VitiCanopy does not distinguish between leaf and non-leaf material but it was demonstrated that the non-leaf material could be extracted from the results, if needed, to increase accuracy. VitiCanopy is an accurate, user-friendly and free alternative to current techniques used by scientists and viticultural practitioners to assess the dynamics of LAI, PAI and canopy architecture in vineyards, and has the potential to be adapted for use on other plants.

  1. Quantifying the influence of geometrical details on urban canopy flow simulations (United States)

    Hwang, Yunjae; Sousa, Jorge; Gorle, Catherine


    Computational Fluid Dynamics (CFD) methods are frequently used to investigate urban canopy flows. Since it is not possible to represent the full complexity of these flows in a single deterministic simulation, there is a need to quantify the uncertainty in the results. In previous work, we have investigated uncertainties related to the inflow boundary conditions and the turbulence model. The results indicated that additional uncertainties are likely non-negligible, and that uncertainty in the representation of the urban canopy geometry could be an important factor. The objective of this study is to explore methods to quantify geometrical uncertainties in urban canopy CFD simulations. We consider a model of Stanford University's Science and Engineering Quad, and investigate the effect of the geometry by gradually introducing features with smaller dimensions into the model, and by introducing momentum sinks to represent the presence of vegetation. The geometrical changes result in some considerable differences, such as higher wind amplification factors near the buildings around the quad. Since such differences can affect design decisions related to e.g. pedestrian wind comfort or wind loading, future work will focus on establishing a more formal framework to quantify these uncertainties.

  2. BOREAS HYD-03 Canopy Density Data (United States)

    National Aeronautics and Space Administration — The BOREAS HYD-03 team collected several data sets related to the hydrology of forested areas. This data set contains measurements of canopy density (closure) from a...

  3. BOREAS TE-18 Geosail Canopy Reflectance Model (United States)

    National Aeronautics and Space Administration — The GEOSAIL model was created by combining the SAIL (Scattering from Arbitrarily Inclined Leaves) model with the Jasinski geometric model to simulate canopy spectral...

  4. Wind Power in Georgia

    Energy Technology Data Exchange (ETDEWEB)



    Georgia has good wind power potential. Preliminary analyses show that the technical wind power potential in Georgia is good. Meteorological data shows that Georgia has four main areas in Georgia with annual average wind speeds of over 6 m/s and two main areas with 5-6 m/s at 80m. The most promising areas are the high mountain zone of the Great Caucasus, The Kura river valley, The South-Georgian highland and the Southern part of the Georgian Black Sea coast. Czech company Wind Energy Invest has recently signed a Memorandum of Understanding with Georgian authorities for development of the first wind farm in Georgia, a 50MW wind park in Paravani, Southern Georgia, to be completed in 2014. Annual generation is estimated to 170.00 GWh and the investment estimated to 101 million US$. Wind power is suited to balance hydropower in the Georgian electricity sector Electricity generation in Georgia is dominated by hydro power, constituting 88% of total generation in 2009. Limited storage capacity and significant spring and summer peaks in river flows result in an uneven annual generation profile and winter time shortages that are covered by three gas power plants. Wind power is a carbon-free energy source well suited to balance hydropower, as it is available (often strongest) in the winter and can be exported when there is a surplus. Another advantage with wind power is the lead time for the projects; the time from site selection to operation for a wind power park (approximately 2.5 years) is much shorter than for hydro power (often 6-8 years). There is no support system or scheme for renewable sources in Georgia, so wind power has to compete directly with other energy sources and is in most cases more expensive to build than hydro power. In a country and region with rapidly increasing energy demands, the factors described above nevertheless indicate that there is a commercial niche and a role to play for Georgian wind power. Skra: An example of a wind power development

  5. Forest Canopy Height Estimation from Calipso Lidar Measurement

    Directory of Open Access Journals (Sweden)

    Lu Xiaomei


    Canopy penetration depths at two wavelengths indicate moderately strong relationships for estimating the canopy height. Results show that the CALIOP-derived canopy heights were highly correlated with the ICESat/GLAS-derived values with a mean RMSE of 3.4 m and correlation coefficient (R of 0.89. Our findings present a relationship between the penetration difference and canopy height, which can be used as another metrics for canopy height estimation, except the full waveforms.

  6. Measuring sub-canopy evaporation in a forested wetland using an ensemble of methods (United States)

    Allen, S. T.; Edwards, B.; Reba, M. L.; Keim, R.


    Evaporation from the sub-canopy water surface is an integral but understudied component of the water balance in forested wetlands. Previous studies have used eddy covariance, energy balance approaches, and water-table fluctuations to assess whole-system evapotranspiration. However, partitioning evaporation from transpiration is necessary for modeling the system because of different controls over each process. Sub-canopy evaporation is a physically controlled process driven by relatively small gradients in residual energy transmitted through the canopy. The low-energy sub-canopy environment is characterized by a spatiotemporally varying light environment due to sunflecks, small and often inverse temperature and vapor gradients, and a high capacity for heat storage in flood water, which each present challenges to common evapotranspiration measurement techniques. Previous studies have examined wetland surface evaporation rates with small lysimeter experiments, but this approach does not encapsulate micrometeorological processes occurring at the scale of natural wetlands. In this study, we examine a one year time series of in situ sub-canopy flux measurements from a seasonally flooded cypress-tupelo swamp in southeast Louisiana. Our objective is to apply these data towards modeling sub-canopy energy flux responses to intra-annual hydrologic, phenologic, and climatic cycles. To assess and mitigate potential errors due to the inherent measurement challenges of this environment, we utilized multiple measurement approaches including eddy covariance, Bowen ratio energy balance (with both air to air gradients and water surface to air gradients) and direct measurement using a floating evaporation pan. Preliminary results show that Bowen ratio energy balance measurements are useful for constraining evaporation measurements when low wind speed conditions create a non-ideal setting for eddy covariance. However, Bowen ratios were often highly erratic due to the weak temperature

  7. Estimating canopy bulk density and canopy base height for interior western US conifer stands (United States)

    Seth A. Ex; Frederick W. Smith; Tara L. Keyser; Stephanie A. Rebain


    Crown fire hazard is often quantified using effective canopy bulk density (CBD) and canopy base height (CBH). When CBD and CBH are estimated using nonlocal crown fuel biomass allometries and uniform crown fuel distribution assumptions, as is common practice, values may differ from estimates made using local allometries and nonuniform...

  8. Remote sensing of sagebrush canopy nitrogen (United States)

    Mitchell, Jessica J.; Glenn, Nancy F.; Sankey, Temuulen T.; Derryberry, DeWayne R.; Germino, Matthew J.


    This paper presents a combination of techniques suitable for remotely sensing foliar Nitrogen (N) in semiarid shrublands – a capability that would significantly improve our limited understanding of vegetation functionality in dryland ecosystems. The ability to estimate foliar N distributions across arid and semi-arid environments could help answer process-driven questions related to topics such as controls on canopy photosynthesis, the influence of N on carbon cycling behavior, nutrient pulse dynamics, and post-fire recovery. Our study determined that further exploration into estimating sagebrush canopy N concentrations from an airborne platform is warranted, despite remote sensing challenges inherent to open canopy systems. Hyperspectral data transformed using standard derivative analysis were capable of quantifying sagebrush canopy N concentrations using partial least squares (PLS) regression with an R2 value of 0.72 and an R2 predicted value of 0.42 (n = 35). Subsetting the dataset to minimize the influence of bare ground (n = 19) increased R2 to 0.95 (R2 predicted = 0.56). Ground-based estimates of canopy N using leaf mass per unit area measurements (LMA) yielded consistently better model fits than ground-based estimates of canopy N using cover and height measurements. The LMA approach is likely a method that could be extended to other semiarid shrublands. Overall, the results of this study are encouraging for future landscape scale N estimates and represent an important step in addressing the confounding influence of bare ground, which we found to be a major influence on predictions of sagebrush canopy N from an airborne platform.

  9. Surface-atmosphere interactions with coupled within-canopy aerodynamic resistance and canopy reflection. (United States)

    Timmermans, J.; van der Tol, C.; Verhoef, W.; Su, Z.


    Models that describe the exchange of CO2 and H2O between the surface and atmosphere use bulk-parametrization of the within-canopy aerodynamic resistance and leaf area density (eq. LAI). This bulk parametrization is based on the Monin-Obukhov Similarity (MOS) theory. The MOS theory however breaks down for sparse canopies and it cannot couple profiles in the leaf density to profiles in the within-canopy aerodynamic resistance. The objective of this research is to create a simple model that is able to couple the within-canopy aerodynamic resistance and canopy reflection for different levels in the canopy. This model should be able to represent the canopy using as fewer parameters as possible, in order to facilitate inversion of remote sensing imagery. A virtual canopy was simulated using an L-systems approach, Lindenmayer 1968. The L-system approach was chosen because it describes the canopy with fractals. It therefore needs very little inputs to simulate a virtual canopy. A vertical profile of leaf density was calculated for 60 levels from this virtual canopy. The within-canopy aerodynamic resistance was modeled from the vertical leaf density profile using foliage drag coefficient, Massman 1997. A modified version of the SCOPE (Soil Canopy Observations and Photosynthesis) model was used to calculate the H2O and CO2 fluxes using the vertical profiles of leaf density and within-canopy aerodynamic resistance. The simulated fluxes are compared with field measurements over a vineyard and a forested area. The field measurements in both areas are acquired using the same setup: a basic flux tower in addition with an eddy-covariance setup. We present in this article the methodology and the results, as a proof of concept. references Massman, W.J., An Analytical One-Dimensional Model of Momentum Transfer by vegetation of arbitrary structure, Boundary-Layer Meteorology, 1997, 83, 407-421 Lindenmayer, A., Mathematical Models for Cellular Interactions in Development, Journal of

  10. The importance of volumetric canopy morphology when modelling drag around riparian vegetation (United States)

    Boothroyd, Richard; Hardy, Richard; Warburton, Jeff; Marjoribanks, Timothy


    Riparian vegetation has a significant impact on the hydraulic functioning of river systems. The bulk of past work concerned with modelling the influence of vegetation on flow has considered vegetation to be morphologically simple, and has generally neglected the complexity and porosity of natural plants, defined herein as the volumetric canopy morphology. However, the volumetric canopy morphology can influence the mean and turbulent properties of the flow, producing spatially heterogeneous downstream velocity fields. By explicitly accounting for this in a computational fluid dynamics (CFD) model, and representing the plant as a porous blockage, complex flow structures and drag can be modelled. For a riparian species, Hebe odora, good agreement with flume measurements are found. Plant shear layer turbulence is shown to be dominated by Kelvin-Helmholtz and Görtler-type vortices, generated through shear instability. Porous representations of the plants, that allow for flow to pass through the plant canopy interior, are compared against fully impermeable plant representations. Penetration of fluid through the canopy in the porous case resembles 'bleed-flow', and this results in a plant wake region that significantly differs from the impermeable case, which is characteristic of wake flow around a traditional bluff body. These results demonstrate the significant effect that the volumetric canopy morphology and porosity of natural plants has on the three-dimensional flow and in-stream drag, and enables a re-evaluation of vegetative flow resistance. The modelled results allow a species dependent Manning's n to be calculated, and this presents an opportunity to move away from the conventional methods of representing vegetation in hydraulic models, in favour of a more physically determined approach. Given the importance of vegetation in river corridor management, and the increasing application of UAV imagery to map riparian vegetation, the numerical scheme developed here

  11. Elements of a dynamic systems model of canopy photosynthesis. (United States)

    Zhu, Xin-Guang; Song, Qingfeng; Ort, Donald R


    Improving photosynthesis throughout the full canopy rather than photosynthesis of only the top leaves of the canopy is central to improving crop yields. Many canopy photosynthesis models have been developed from physiological and ecological perspectives, however most do not consider heterogeneities of microclimatic factors inside a canopy, canopy dynamics and associated energetics, or competition among different plants, and most models lack a direct linkage to molecular processes. Here we described the rationale, elements, and approaches necessary to build a dynamic systems model of canopy photosynthesis. A systems model should integrate metabolic processes including photosynthesis, respiration, nitrogen metabolism, resource re-mobilization and photosynthate partitioning with canopy level light, CO(2), water vapor distributions and heat exchange processes. In so doing a systems-based canopy photosynthesis model will enable studies of molecular ecology and dramatically improve our insight into engineering crops for improved canopy photosynthetic CO(2) uptake, resource use efficiencies and yields. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Wind Energy

    International Nuclear Information System (INIS)

    Rodriguez D, J.M.


    The general theory of the wind energy conversion systems is presented. The availability of the wind resource in Colombia and the ranges of the speed of the wind in those which is possible economically to use the wind turbines are described. It is continued with a description of the principal technological characteristics of the wind turbines and are split into wind power and wind-powered pumps; and its use in large quantities grouped in wind farms or in autonomous systems. Finally, its costs and its environmental impact are presented

  13. Modeling Coherent Structures in Canopy Flows (United States)

    Luhar, Mitul


    It is well known that flows over vegetation canopies are characterized by the presence of energetic coherent structures. Since the mean profile over dense canopies exhibits an inflection point, the emergence of such structures is often attributed to a Kelvin-Helmholtz instability. However, though stability analyses provide useful mechanistic insights into canopy flows, they are limited in their ability to generate predictions for spectra and coherent structure. The present effort seeks to address this limitation by extending the resolvent formulation (McKeon and Sharma, 2010, J. Fluid Mech.) to canopy flows. Under the resolvent formulation, the turbulent velocity field is expressed as a superposition of propagating modes, identified via a gain-based (singular value) decomposition of the Navier-Stokes equations. A key advantage of this approach is that it reconciles multiple mechanisms that lead to high amplification in turbulent flows, including modal instability, transient growth, and critical-layer phenomena. Further, individual high-gain modes can be combined to generate more complete models for coherent structure and velocity spectra. Preliminary resolvent-based model predictions for canopy flows agree well with existing experiments and simulations.

  14. BOREAS TE-9 NSA Canopy Biochemistry (United States)

    Hall, Forrest G. (Editor); Curd, Shelaine (Editor); Margolis, Hank; Charest, Martin; Sy, Mikailou


    The BOREAS TE-9 team collected several data sets related to chemical and photosynthetic properties of leaves. This data set contains canopy biochemistry data collected in 1994 in the NSA at the YJP, OJR, OBS, UBS, and OA sites, including biochemistry lignin, nitrogen, cellulose, starch, and fiber concentrations. These data were collected to study the spatial and temporal changes in the canopy biochemistry of boreal forest cover types and how a high-resolution radiative transfer model in the mid-infrared could be applied in an effort to obtain better estimates of canopy biochemical properties using remote sensing. The data are available in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  15. Analytical Modelling of Canopy Interception Loss from a Juvenile Lodgepole Pine (Pinus contorta var. latifolia) Stand (United States)

    Carlyle-Moses, D. E.; Lishman, C. E.


    In the central interior of British Columbia (BC), Canada, the mountain pine beetle (Dendroctonus ponderosae Hopkins) (MPB) has severely affected the majority of pine species in the region, especially lodgepole pine (Pinus contorta Douglas ex Louden var. latifolia Engelm. ex S. Watson). The loss of mature lodgepole pine stands, including those lost to salvage logging, has resulted in an increase in the number of juvenile pine stands in the interior of BC through planting and natural regrowth. With this change from mature forests to juvenile forests at such a large spatial scale, the water balance of impacted areas may be altered, although the magnitude of such change is uncertain. Previous studies of rainfall partitioning by lodgepole pine and lodgepole pine dominated canopies have focused on mature stands. Thus, rainfall, throughfall and stemflow were measured and canopy interception loss was derived during the growing season of 2010 in a juvenile lodgepole pine dominated stand located approximately 60 km NNW of Kamloops, BC at 51°12'49" N 120°23'43" W, 1290 m above mean sea level. Scaling up from measurements for nine trees, throughfall, stemflow and canopy interception loss accounted for 87.7, 1.8 and 10.5 percent of the 252.9 mm of rain that fell over 38 events during the study period, respectively. The reformulated versions of the Gash and Liu analytical interception loss models estimated cumulative canopy interception loss at 24.7 and 24.6 mm, respectively, compared with the observed 26.5 mm; an underestimate of 1.8 and 1.9 mm or 6.8 and 7.2% of the observed value, respectively. Our results suggest that canopy interception loss is reduced in juvenile stands compared to their mature counterparts and that this reduction is due to the decreased storage capacity offered by these younger canopies. Evaporation during rainfall from juvenile canopies is still appreciable and may be a consequence of the increased proportion of the canopy exposed to wind during events.

  16. Regeneration in bottomland forest canopy gaps six years after variable retention harvests to enhance wildlife habitat (United States)

    Twedt, Daniel J.; Somershoe, Scott G.; Guldin, James M.


    To promote desired forest conditions that enhance wildlife habitat in bottomland forests, managers prescribed and implemented variable-retention harvest, a.k.a. wildlife forestry, in four stands on Tensas River National Wildlife Refuge, LA. These treatments created canopy openings (gaps) within which managers sought to regenerate shade-intolerant trees. Six years after prescribed harvests, we assessed regeneration in 41 canopy gaps and 4 large (>0.5-ha) patch cut openings that resulted from treatments and in 21 natural canopy gaps on 2 unharvested control stands. Mean gap area of anthropogenic gaps (582 m²) was greater than that of natural gaps (262 m²). Sweetgum (Liquidambar styraciflua) and red oaks (Quercus nigra, Q. nuttallii, and Q. phellos) were common in anthropogenic gaps, whereas elms (Ulmus spp.) and sugarberry (Celtis laevigata) were numerous in natural gaps. We recommend harvest prescriptions include gaps with diameter >25 m, because the proportion of shade-intolerant regeneration increased with gap area up to 500 m². The proportion of shade-intolerant definitive gap fillers (individuals likely to occupy the canopy) increased with gap area: 35 percent in natural gaps, 54 percent in anthropogenic gaps, and 84 percent in patch cuts. Sweetgum, green ash (Fraxinus pennsylvanica), and red oaks were common definitive gap fillers.

  17. Seedling Canopy Reflectance Spectra, 1992-1993 (ACCP) (United States)

    National Aeronautics and Space Administration — ABSTRACT: The reflectance spectra of Douglas-fir and bigleaf maple seedling canopies were measured. Canopies varied in fertilizer treatment and leaf area density...

  18. West Coast Canopy-Forming Kelp, 1989-2014 (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data include the general extents of canopy-forming kelp surveys from 1989 to 2014 and a compilation of existing data sets delineating canopy-forming kelp beds...

  19. Wireless sensor networks for canopy temperature sensing and irrigation management (United States)

    For researchers, canopy temperature measurements have proven useful in characterizing crop water stress and developing protocols for irrigation management. Today, there is heightened interest in using remote canopy temperature measurements for real-time irrigation scheduling. However, without the us...


    Directory of Open Access Journals (Sweden)

    Thiago Yamada


    Full Text Available ABSTRACT It is well-known that conducting experimental research aiming the characterization of canopy structure of forests can be a difficult and costly task and, generally, requires an expert to extract, in loco, relevant information. Aiming at easing studies related to canopy structures, several techniques have been proposed in the literature and, among them, various are based on canopy digital image analysis. The research work described in this paper empirically compares two techniques that measure the integrity of the canopy structure of a forest fragment; one of them is based on central parts of canopy cover images and, the other, on canopy closure images. For the experiments, 22 central parts of canopy cover images and 22 canopy closure images were used. The images were captured along two transects: T1 (located in the conserved area and T2 (located in the naturally disturbance area. The canopy digital images were computationally processed and analyzed using the MATLAB platform for the canopy cover images and the Gap Light Analyzer (GLA, for the canopy closure images. The results obtained using these two techniques showed that canopy cover images and, among the employed algorithms, the Jseg, characterize the canopy integrity best. It is worth mentioning that part of the analysis can be automatically conducted, as a quick and precise process, with low material costs involved.

  1. Wind energy availability above gaps in a forest

    DEFF Research Database (Denmark)

    Sogachev, Andrey; Mann, Jakob; Dellwik, Ebba


    installation strategies. The canopy-planetary boundary-layer model SCADIS is used to investigate the effect of forest gap size (within the diameter range of 3 - 75 tree heights, h) on wind energy related variables. A wind turbine was assumed with following features: the hub height and rotor diameter of 3.5h......There is a lack of data on availability of wind energy above a forest disturbed by clear-cuts, where a wind energy developer may find an opportunity to install a wind farm. Computational fluid dynamics (CFD) models can provide spatial patterns of wind and turbulence, and help to develop optimal...... and 3h, respectively; this provides the clearance between the rotor and ground of 2h which is similar to the value obtained by the rule of thumb. Spatial variations of wind energy production, the average wind speed shear and cumulative TKE inside the layer of 2h - 5h above the ground around the gaps...

  2. Deploying Fourier Coefficients to Unravel Soybean Canopy Diversity


    Jubery, Talukder Z.; Shook, Johnathon; Parmley, Kyle; Zhang, Jiaoping; Naik, Hsiang S.; Higgins, Race; Sarkar, Soumik; Singh, Arti; Singh, Asheesh K.; Ganapathysubramanian, Baskar


    Soybean canopy outline is an important trait used to understand light interception ability, canopy closure rates, row spacing response, which in turn affects crop growth and yield, and directly impacts weed species germination and emergence. In this manuscript, we utilize a methodology that constructs geometric measures of the soybean canopy outline from digital images of canopies, allowing visualization of the genetic diversity as well as a rigorous quantification of shape parameters. Our ch...

  3. Scaling leaf measurements to estimate cotton canopy gas exchange (United States)

    Diurnal leaf and canopy gas exchange of well watered field grown cotton were measured. Leaf measurements were made with a portable photosynthesis system and canopy measurements with open Canopy Evapo-Transpiration and Assimilation (CETA) systems. Leaf level measurements were arithmetically scaled to...

  4. Wind Structure and Wind Loading

    DEFF Research Database (Denmark)

    Brorsen, Michael

    The purpose of this note is to provide a short description of wind, i.e. of the flow in the atmosphere of the Earth and the loading caused by wind on structures. The description comprises: causes to the generation of windhe interaction between wind and the surface of the Earthhe stochastic nature...... of windhe interaction between wind and structures, where it is shown that wind loading depends strongly on this interaction...

  5. Turbulence structure in a diabatically heated forest canopy composed of fractal Pythagoras trees (United States)

    Schröttle, Josef; Dörnbrack, Andreas


    We investigate the turbulent flow through a heterogeneous forest canopy by high-resolution numerical modeling. For this purpose, a novel approach to model individual trees is implemented in our large-eddy simulation (LES). A group of sixteen fractal Pythagoras trees is placed in the computational domain and the tree elements are numerically treated as immersed boundaries. Our objective is to resolve the multiscale flow response starting at the diameter of individual tree elements up to the depth of the atmospheric surface layer. A reference run, conducted for the forest flow under neutral thermal stratification, produces physically meaningful turbulence statistics. Our numerical results agree quantitatively with data obtained from former field-scale LESs and wind tunnel experiments. Furthermore, the numerical simulations resolve vortex shedding behind individual branches and trunks as well as the integral response of the turbulent flow through the heterogeneous forest canopy. A focus is the investigation of the turbulence structure of the flow under stable thermal stratification and in response to the heating of the fractal tree crowns. For the stratified flows, statistical quantities, e.g. turbulent kinetic energy and vorticity, are presented and the turbulent exchange processes of momentum and heat are considered in detail. The onset and formation of coherent structures such as elevated shear layers above the diabatically heated forest canopy are analyzed. For the stably stratified flow, temperature ramps above the forest canopy were simulated in agreement with previous observations. Thermally driven vortices with a typical diameter of the canopy height were simulated when the tree crowns were diabatically heated. The impact of the coherent flow structures on the heat flux is investigated.

  6. Using Canopy Reflectance and Crop Stress Index to Enhance Wheat Yield Prediction (United States)

    Asadi, S.; Zare, H.; Paymard, P.; Lashkari, A.; Salehnia, N.; Bannayan, M.


    Canopy reflectance can be useful indicator of crop health status. Canopy stress index (CSI) is usually expressed as canopy temperature minus air temperature, and this value is higher and a positive number in a well irrigated wheat field. Three main environmental variables constructing CSI are: plant canopy temperature (Tc), air temperature (Ta) and atmospheric vapor pressure deficiency (VPD). CSI is effected by biological and environmental factors such as soil water status, wind speed, evapotranspiration, conduction systems, plant metabolism, air temperature, relative humidity, etc. which all influence on final yield. This paper aims to investigate the relation of CSI calculated by Landsat images and wheat yield. So, eighteen wheat fields were selected for two years (2009 and 2010) and 5 Landsat images (TM and ETM+) from April to Jun were used to monitor field status in each year. Tc was calculated by applying single-channel method and VPD was computed from Tc, air temperature and humidity. Each single Landsat bands and CSI were defined as the descriptor variables. Relation between wheat yield and the descriptors was assessed by means of linear correlation. The results of stepwise correlation depicted that band 1 (blue) and 3 (red) had the most correlations to yield until grain filling stage. This reflects the importance of photosynthesis rate which absorb blue and red wavelength during mentioned period. This two bands also could capture yield changes (r2=0.77). However, during grain filling period CSI was the only descriptor determining yield volatility (r2=0.85). Low temperature is one of the key factors which increase remobilization of carbohydrate to grain. Therefore, grain yield in the canopy which has less temperature in compared to air temperature would be higher than others.

  7. Microtopographic controls on lowland Amazonian canopy diversity from imaging spectroscopy. (United States)

    Féret, Jean-Baptiste; Asner, Gregory P

    Microtopographic variation is ubiquitous throughout lowland Amazonia, and it may impart patterns of species richness and abundance, and perhaps community compositional changes. To date, no studies have determined the degree to which lowland microtopography influences forest canopy diversity. We developed the first high-resolution maps of forest canopy diversity in Amazonia, focusing on four landscapes on two river systems in Peru. Spectroscopic images were acquired using the Carnegie Airborne Observatory combined with a new method based on spectral species to map α- and β-diversity. We analyzed spatial patterns in diversity with respect to floodplain and terrace (terra firme) surfaces and in upriver and downriver locations with contrasting landscape morphologies. We found slightly lower average α-diversity in floodplains, but with greater variance than in terrace communities caused by the floodplain mix of swamp forests, anoxic low-diversity ecosystems, and high-diversity areas. β-diversity estimated with the Bray-Curtis dissimilarity (BC) was strongly related to microtopography, with floodplains showing higher internal compositional dissimilarity than terraces. Throughout all landscapes, remotely mapped BC within terrace environments ranged from 0.25 to 0.43, but these values increased 30–77% on floodplains. Upriver landscapes characterized by higher terraces showed more distinct community turnover than did their downstream counterparts. We conclude that microtopography strongly influences β-diversity throughout the study landscapes, but terrain is weakly associated with variation in α-diversity. We uncover the importance of microtopography in determining species composition in lowland Amazonia and highlight the value of imaging spectroscopy for biodiversity research and conservation.

  8. Canopy arthropod responses to experimental canopy opening and debris deposition in a tropical rainforest subject to hurricanes (United States)

    Timothy D. Schowalter; Michael R. Willig; Steven J. Presley


    We analyzed responses of canopy arthropods on seven representative early and late successional overstory and understory tree species to a canopy trimming experiment designed to separate effects of canopy opening and debris pulse (resulting from hurricane disturbance) in a tropical rainforest ecosystem at the Luquillo Experimental Forest Long-Term Ecological Research (...

  9. Building capacity for providing canopy cover and canopy height at FIA plot locations using high-resolution imagery and leaf-off LiDAR (United States)

    Rachel Riemann; Jarlath O' Neil-Dunne; Greg C. Liknes


    Tree canopy cover and canopy height information are essential for estimating volume, biomass, and carbon; defining forest cover; and characterizing wildlife habitat. The amount of tree canopy cover also influences water quality and quantity in both rural and urban settings. Tree canopy cover and canopy height are currently collected at FIA plots either in the field or...

  10. Influence of tides and winds on fishing techniques and strategies in the Mamanguape River Estuary, Paraíba State, NE Brazil. (United States)

    Bezerra, Dandara M M; Nascimento, Douglas M; Ferreira, Emmanoela N; Rocha, Pollyana D; Mourão, José S


    This work was carried out in two small fishing communities, Barra de Mamanguape and Tramataia, Northeastern Brazil. The aim was to study these traditional fishermen's knowledge and perception about tide and wind classifications, as well as their fishing strategies and techniques. Our research methodology involved various techniques: free interviews and semi-structured ones, guided tours and direct observations. The results obtained show the fishermen's classification of the tides according to the phases of the moon: 'breaking tide', 'flushing tide', 'dead tide' and 'big tide' designated technically these last as neap tide and spring tide, respectively. Wind is also an essential factor for the fishermen to make successful catches, and they classify it according to direction: North, South, East, Southeast, Southwest, Northeast and Northwest. The data show that fishermen's knowledge can also be useful in devising plans for management and conservation studies for this estuary.

  11. Biophysical information in asymmetric and symmetric diurnal bidirectional canopy reflectance (United States)

    Vanderbilt, Vern C.; Caldwell, William F.; Pettigrew, Rita E.; Ustin, Susan L.; Martens, Scott N.; Rousseau, Robert A.; Berger, Kevin M.; Ganapol, B. D.; Kasischke, Eric S.; Clark, Jenny A.


    The authors present a theory for partitioning the information content in diurnal bidirectional reflectance measurements in order to detect differences potentially related to biophysical variables. The theory, which divides the canopy reflectance into asymmetric and symmetric functions of solar azimuth angle, attributes asymmetric variation to diurnal changes in the canopy biphysical properties. The symmetric function is attributed to the effects of sunlight interacting with a hypothetical average canopy which would display the average diurnal properties of the actual canopy. The authors analyzed radiometer data collected diurnally in the Thematic Mapper wavelength bands from two walnut canopies that received differing irrigation treatments. The reflectance of the canopies varied with sun and view angles and across seven bands in the visible, near-infrared, and middle infrared wavelength regions. Although one of the canopies was permanently water stressed and the other was stressed in mid-afternoon each day, no water stress signature was unambiguously evident in the reflectance data.

  12. The roles of dimensionality, canopies and complexity in ecosystem monitoring.

    Directory of Open Access Journals (Sweden)

    Christopher H R Goatley

    Full Text Available Canopies are common among autotrophs, increasing their access to light and thereby increasing competitive abilities. If viewed from above canopies may conceal objects beneath them creating a 'canopy effect'. Due to complexities in collecting 3-dimensional data, most ecosystem monitoring programmes reduce dimensionality when sampling, resorting to planar views. The resultant 'canopy effects' may bias data interpretation, particularly following disturbances. Canopy effects are especially relevant on coral reefs where coral cover is often used to evaluate and communicate ecosystem health. We show that canopies hide benthic components including massive corals and algal turfs, and as planar views are almost ubiquitously used to monitor disturbances, the loss of vulnerable canopy-forming corals may bias findings by presenting pre-existing benthic components as an altered system. Our reliance on planar views in monitoring ecosystems, especially coral cover on reefs, needs to be reassessed if we are to better understand the ecological consequences of ever more frequent disturbances.

  13. A parameterization of momentum roughness length and displacement height for a wide range of canopy densities

    Directory of Open Access Journals (Sweden)

    A. Verhoef


    Full Text Available Values of the momentum roughness length, z0, and displacement height, d, derived from wind profiles and momentum flux measurements, are selected from the literature for a variety of sparse canopies. These include savannah, tiger-bush and several row crops. A quality assessment of these data, conducted using criteria such as available fetch, height of wind speed measurement and homogeneity of the experimental site, reduced the initial total of fourteen sites to eight. These datapoints, combined with values carried forward from earlier studies on the parameterization of z0 and d, led to a maximum number of 16 and 24 datapoints available for d and z0, respectively. The data are compared with estimates of roughness length and displacement height as predicted from a detailed drag partition model, R92 (Raupach, 1992, and a simplified version of this model, R94 (Raupach, 1994. A key parameter in these models is the roughness density or frontal area index, λ. Both the comprehensive and the simplified model give accurate predictions of measured z0 and d values, but the optimal model coefficients are significantly different from the ones originally proposed in R92 and R94. The original model coefficients are based predominantly on measured aerodynamic parameters of relatively closed canopies and they were fitted `by eye'. In this paper, best-fit coefficients are found from a least squares minimization using the z0 and d values of selected good-quality data for sparse canopies and for the added, mainly closed canopies. According to a statistical analysis, based on the coefficient of determination (r2, the number of observations and the number of fitted model coefficients, the simplified model, R94, is deemed to be the most appropriate for future z0 and d predictions. A CR value of 0.35 and a cd1 value of about 20 are found to be appropriate for a large range of canopies varying in density from closed to very sparse. In this case, 99% of the total variance

  14. Coalescence of fog droplets: Differential fog water deposition on wet and dry forest canopies (United States)

    Tobón, C.; Barrero, J.


    The Páramo ecosystem is a high-altitude (2800 - 4500 masl), natural ecosystems which comprises approximately 42000 km2, extending across the Andes from north of Peru, Ecuador, Colombia and western part of Venezuela. Andean páramos are widely considered to be prime suppliers of large volumes of high-quality water for large cities and for hydropower production. As páramos tend to be subjected to persistent fog incidence, fog interception by the vegetation is a common process in these ecosystems, representing not only an extra input of water to the ecosystem but also to suppress evaporation. In this process, small drops of water, transported by the wind, are captured by the surfaces of the vegetation, acting as physical obstacles to the flow of fog. These drops condense in the exposed surfaces and drip towards the ground or evaporate from the surfaces. The quantification of the magnitude of these processes is important for the quantification of the water balance of river basins where these types of ecosystems exist. Although the great hydrological importance of fog in montane tropical ecosystems little is known about its physical principles related to the interception of fog by physical barriers as vegetation, notably the differential behaviour of a wet and dry vegetation in the efficiency of capturing water from the fog. To characterize and quantify this efficiency of páramo vegetation in capturing water from the fog, during wet and dry canopy conditions, an experimental design was set up at the Páramo de Chingaza (Colombia) where paired samples of espeletia branches (dry and wet) were exposed to different fog events, and at the same time Juvik cylinders were exposed by the side of the experimental site, to measured fog inputs. Cylinders were also paired (wet and dry) at the beginning of the experiments. Results indicated that exposed wet and dry samples have a significant difference on the magnitude of water intercepted from the fog, being, in average, the wet

  15. Night-time airflow in a forest canopy near a mountain crest

    Czech Academy of Sciences Publication Activity Database

    Sedlák, Pavel; Aubinet, M.; Heinesch, B.; Janouš, Dalibor; Pavelka, Marian; Potužníková, Kateřina; Yernaux, M.


    Roč. 150, č. 5 (2010), s. 736-744 ISSN 0168-1923 R&D Projects: GA AV ČR IAA300420803; GA AV ČR KJB3087301 Grant - others:CarboEurope Integrated Project(XE) GOCE-CT-2003-505572 Institutional research plan: CEZ:AV0Z30420517; CEZ:AV0Z60870520 Keywords : Spruce forest * Canopy layer * Slope * Drainage flow * Wind profile Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 3.228, year: 2010

  16. Integrating canopy and large-scale effects in the convective boundary-layer dynamics during the CHATS experiment (United States)

    Shapkalijevski, Metodija M.; Ouwersloot, Huug G.; Moene, Arnold F.; Vilà-Guerau de Arrellano, Jordi


    By characterizing the dynamics of a convective boundary layer above a relatively sparse and uniform orchard canopy, we investigated the impact of the roughness-sublayer (RSL) representation on the predicted diurnal variability of surface fluxes and state variables. Our approach combined numerical experiments, using an atmospheric mixed-layer model including a land-surface-vegetation representation, and measurements from the Canopy Horizontal Array Turbulence Study (CHATS) field experiment near Dixon, California. The RSL is parameterized using an additional factor in the standard Monin-Obukhov similarity theory flux-profile relationships that takes into account the canopy influence on the atmospheric flow. We selected a representative case characterized by southerly wind conditions to ensure well-developed RSL over the orchard canopy. We then investigated the sensitivity of the diurnal variability of the boundary-layer dynamics to the changes in the RSL key scales, the canopy adjustment length scale, Lc, and the β = u*/|U| ratio at the top of the canopy due to their stability and dependence on canopy structure. We found that the inclusion of the RSL parameterization resulted in improved prediction of the diurnal evolution of the near-surface mean quantities (e.g. up to 50 % for the wind velocity) and transfer (drag) coefficients. We found relatively insignificant effects on the modelled surface fluxes (e.g. up to 5 % for the friction velocity, while 3 % for the sensible and latent heat), which is due to the compensating effect between the mean gradients and the drag coefficients, both of which are largely affected by the RSL parameterization. When varying Lc (from 10 to 20 m) and β (from 0.25 to 0.4 m), based on observational evidence, the predicted friction velocity is found to vary by up to 25 % and the modelled surface-energy fluxes (sensible heat, SH, and latent heat of evaporation, LE) vary up to 2 and 9 %. Consequently, the boundary-layer height varies up to

  17. Modelling the canopy development of bambara groundnut

    DEFF Research Database (Denmark)

    Karunaratne, A.S.; Azam-Ali, S.N.; Al-Shareef, I.


    Canopy development of bambara groundnut (Vigna subterranea (L.) Verdc) is affected by temperature stress, drought stress and photoperiod. The quantification of these documented effects by means of a suitable crop model, BAMGRO is presented in this paper. Data on canopy development from five growth...... chamber, four glasshouse and three field experiments were analyzed to calibrate and validate the BAMGRO model to produce simulations for temperature stress, drought stress and photoperiodic effect on two contrasting landraces; Uniswa Red (Swaziland) and S19-3 (Namibia). The daily initiation rate of new...... leaves is calculated by means of a Gaussian function and is altered by temperature stress, drought stress, photoperiod and plant density. The rate in dead leaf number is dependent upon the maximum senescence fraction which can be explained by physiological maturity, mutual shading, temperature stress...

  18. Cockpit canopy shattering using exploding wire techniques

    International Nuclear Information System (INIS)

    Novac, B M; Smith, I R; Downs, P R; Marston, P; Fahey, D


    This paper presents the principal experimental results provided by a preliminary investigation into the possibility of using exploding wire (EW) techniques to shatter the plastic cockpit canopy of a modern jet aircraft. The data provided forms the basis for a qualitative understanding of the physics of interaction between the plasma produced by an EW and the surrounding elasto-plastic material in which the wire is embedded. To optimize the shock-wave 'clean cutting' effect, the significance of the material, the dimensions of the exploding wire and the amplitude of the current and voltage pulses are all considered. This leads to important conclusions concerning both the characteristics of the EW and the optimum arrangement of the electrical circuit, with the single most important optimization factor being the peak electrical power input to the EW, rather than the dissipated Joule energy. A full-scale system relevant to an actual cockpit canopy shattering is outlined and relevant results are presented and discussed

  19. Seagrass canopy photosynthetic response is a function of canopy density and light environment: a model for Amphibolis griffithii.

    Directory of Open Access Journals (Sweden)

    John D Hedley

    Full Text Available A three-dimensional computer model of canopies of the seagrass Amphibolis griffithii was used to investigate the consequences of variations in canopy structure and benthic light environment on leaf-level photosynthetic saturation state. The model was constructed using empirical data of plant morphometrics from a previously conducted shading experiment and validated well to in-situ data on light attenuation in canopies of different densities. Using published values of the leaf-level saturating irradiance for photosynthesis, results show that the interaction of canopy density and canopy-scale photosynthetic response is complex and non-linear, due to the combination of self-shading and the non-linearity of photosynthesis versus irradiance (P-I curves near saturating irradiance. Therefore studies of light limitation in seagrasses should consider variation in canopy structure and density. Based on empirical work, we propose a number of possible measures for canopy scale photosynthetic response that can be plotted to yield isoclines in the space of canopy density and light environment. These plots can be used to interpret the significance of canopy changes induced as a response to decreases in the benthic light environment: in some cases canopy thinning can lead to an equivalent leaf level light environment, in others physiological changes may also be required but these alone may be inadequate for canopy survival. By providing insight to these processes the methods developed here could be a valuable management tool for seagrass conservation during dredging or other coastal developments.

  20. The Canopy Horizontal Array Turbulence Study (CHATS): Influence of canopy density and atmospheric stability on turbulent exchange (United States)

    Patton, E. G.


    Understanding the micrometeorology within and above forest canopies is of great interest for many environmental applications such as weather and climate forecasting as well as for vegetation-atmosphere scalar exchanges. Within a canopy, both the ground and the vegetation can act as scalar sources/sinks, where the distribution of canopy sources/sinks depends on the amount and state of the canopy foliage. For deciduous trees, the foliage evolves across a seasonal cycle from bare limbs in winter (no photosynthesis and an open canopy) to rapid growth in spring (increasing photosynthesis and canopy density), to maturity in summer (more constant photosynthesis and canopy density), to senescence and leaf-drop in fall (decreasing photosynthesis and canopy density). Thus a broad spectrum of different conditions occurs through the year, thereby imposing height and seasonal dependence on dynamical and scalar fluxes. The Canopy Horizontal Array Turbulence Study (CHATS) took place in 2007 focusing on a 10 m tall deciduous walnut orchard in Dixon, California (USA). High spatial resolution micrometeorological measurements were deployed aiming to establish the influence of seasonality (prior to, and follwing leaf-out) on canopy exchange. This talk will discuss the sensitivity of velocity, temperature and humidity fields within and above the deciduous walnut orchard at CHATS to the canopy evolution and atmospheric stability.

  1. Network wind power over the Pacific Northwest

    Energy Technology Data Exchange (ETDEWEB)

    Hewson, E W; Baker, R W; Barber, D A; Peterson, B


    Since 1975 the Bonneville Power Administration (BPA) has been sponsoring wind power research at Oregon State University. A feasibility study that initially concentrated on the wind power potential in the Columbia River Gorge has expanded to the BPA service area which covers Washington, Oregon, Idaho, western Montana and northern Nevada. Previous BPA reports have documented the progress of this research.

  2. Improved Windshield and Canopy Protection Development Program (United States)


    canopy shots, i.e., 8" from the beam, 12" from the forward arch. The Impact resulted in a penetration with a football -shaped plug blown Inward...i7;«MpiWW.,i«iS,i»f.«.^^^ CVJ Cte / teä <%1 ^ u- o ro O in H UJ o to o L HH Hh o «^ o = —I ro O \\ N__ o a. CM X UJ

  3. Wind power

    International Nuclear Information System (INIS)

    Gipe, P.


    This book is a translation of the edition published in the USA under the title of ''wind power: renewable energy for home, farm and business''. In the wake of mass blackouts and energy crises, wind power remains a largely untapped resource of renewable energy. It is a booming worldwide industry whose technology, under the collective wing of aficionados like author Paul Gipe, is coming of age. Wind Power guides us through the emergent, sometimes daunting discourse on wind technology, giving frank explanations of how to use wind technology wisely and sound advice on how to avoid common mistakes. Since the mid-1970's, Paul Gipe has played a part in nearly every aspect of wind energy development from installing small turbines to promoting wind energy worldwide. As an American proponent of renewable energy, Gipe has earned the acclaim and respect of European energy specialists for years, but his arguments have often fallen on deaf ears at home. Today, the topic of wind power is cropping up everywhere from the beaches of Cape Cod to the Oregon-Washington border, and one wind turbine is capable of producing enough electricity per year to run 200 average American households. Now, Paul Gipe is back to shed light on this increasingly important energy source with a revised edition of Wind Power. Over the course of his career, Paul Gipe has been a proponent, participant, observer, and critic of the wind industry. His experience with wind has given rise to two previous books on the subject, Wind Energy Basics and Wind Power for Home and Business, which have sold over 50,000 copies. Wind Power for Home and Business has become a staple for both homeowners and professionals interested in the subject, and now, with energy prices soaring, interest in wind power is hitting an all-time high. With chapters on output and economics, Wind Power discloses how much you can expect from each method of wind technology, both in terms of energy and financial savings. The book updated models

  4. The wave-driven current in coastal canopies (United States)

    Abdolahpour, Maryam; Hambleton, Magnus; Ghisalberti, Marco


    Wave-driven flows over canopies of aquatic vegetation (such as seagrass) are characterized by the generation of a strong, shoreward mean current near the top of the canopy. This shoreward drift, which is observed to be up to 75% of the RMS above-canopy orbital velocity, can have a significant impact on residence times within coastal canopies. There have been limited observations of this current and an accurate formulation of its magnitude is still lacking. Accordingly, this study aims to develop a practical relationship to describe the strength of this current as a function of both wave and canopy characteristics. A simple model for the Lagrangian drift velocity indicates that the magnitude of the wave-driven current increases with the above-canopy oscillatory velocity, the vertical orbital excursion at the top of the canopy, and the canopy density. An extensive laboratory study, using both rigid and (dynamically scaled) flexible model vegetation, was carried out to evaluate the proposed model. Experimental results reveal a strong agreement between predicted and measured current velocities over a wide and realistic range of canopy and wave conditions. The validity of this model is also confirmed through available field measurements. Characterization of this wave-induced mean current will allow an enhanced capacity for predicting residence time, and thus key ecological processes, in coastal canopies.

  5. Canopy soil bacterial communities altered by severing host tree limbs

    Directory of Open Access Journals (Sweden)

    Cody R. Dangerfield


    Full Text Available Trees of temperate rainforests host a large biomass of epiphytic plants, which are associated with soils formed in the forest canopy. Falling of epiphytic material results in the transfer of carbon and nutrients from the canopy to the forest floor. This study provides the first characterization of bacterial communities in canopy soils enabled by high-depth environmental sequencing of 16S rRNA genes. Canopy soil included many of the same major taxonomic groups of Bacteria that are also found in ground soil, but canopy bacterial communities were lower in diversity and contained different operational taxonomic units. A field experiment was conducted with epiphytic material from six Acer macrophyllum trees in Olympic National Park, Washington, USA to document changes in the bacterial communities of soils associated with epiphytic material that falls to the forest floor. Bacterial diversity and composition of canopy soil was highly similar, but not identical, to adjacent ground soil two years after transfer to the forest floor, indicating that canopy bacteria are almost, but not completely, replaced by ground soil bacteria. Furthermore, soil associated with epiphytic material on branches that were severed from the host tree and suspended in the canopy contained altered bacterial communities that were distinct from those in canopy material moved to the forest floor. Therefore, the unique nature of canopy soil bacteria is determined in part by the host tree and not only by the physical environmental conditions associated with the canopy. Connection to the living tree appears to be a key feature of the canopy habitat. These results represent an initial survey of bacterial diversity of the canopy and provide a foundation upon which future studies can more fully investigate the ecological and evolutionary dynamics of these communities.

  6. Impact of Canopy Coupling on Canopy Average Stomatal Conductance Across Seven Tree Species in Northern Wisconsin (United States)

    Ewers, B. E.; Mackay, D. S.; Samanta, S.; Ahl, D. E.; Burrows, S. S.; Gower, S. T.


    Land use changes over the last century in northern Wisconsin have resulted in a heterogeneous landscape composed of the following four main forest types: northern hardwoods, northern conifer, aspen/fir, and forested wetland. Based on sap flux measurements, aspen/fir has twice the canopy transpiration of northern hardwoods. In addition, daily transpiration was only explained by daily average vapor pressure deficit across the cover types. The objective of this study was to determine if canopy average stomatal conductance could be used to explain the species effects on tree transpiration. Our first hypothesis is that across all of the species, stomatal conductance will respond to vapor pressure deficit so as to maintain a minimum leaf water potential to prevent catostrophic cavitiation. The consequence of this hypothesis is that among species and individuals there is a proportionality between high stomatal conductance and the sensitivity of stomatal conductance to vapor pressure deficit. Our second hypothesis is that species that do not follow the proportionality deviate because the canopies are decoupled from the atmosphere. To test our two hypotheses we calculated canopy average stomatal conductance from sap flux measurements using an inversion of the Penman-Monteith equation. We estimated the canopy coupling using a leaf energy budget model that requires leaf transpiration and canopy aerodynamic conductance. We optimized the parameters of the aerodynamic conductance model using a Monte Carlo technique across six parameters. We determined the optimal model for each species by selecting parameter sets that resulted in the proportionality of our first hypothesis. We then tested the optimal energy budget models of each species by comparing leaf temperature and leaf width predicted by the models to measurements of each tree species. In red pine, sugar maple, and trembling aspen trees under high canopy coupling conditions, we found the hypothesized proportionality

  7. An inter-model comparison of urban canopy effects on climate (United States)

    Halenka, Tomas; Karlicky, Jan; Huszar, Peter; Belda, Michal; Bardachova, Tatsiana


    appear in all simulations. Further, winter boundary layer increase by 100-200 m, together with wind reduction, is visible in all simulations. The spatial distribution of the night-time temperature response of models to urban canopy forcing is rather similar in each set-up, showing temperature increases up to 3°C in summer. In general, much lower increase are modeled for day-time conditions, which can be even slightly negative due to dominance of shadowing in urban canyons, especially in the morning hours. The winter temperature response, driven mainly by anthropogenic heat (AH) is strong in urban schemes where the building-street energy exchange is more resolved and is smaller, where AH is simply prescribed as additive flux to the sensible heat. Somewhat larger differences between the models are encountered for the response of wind and the height of planetary boundary layer (ZPBL), with dominant increases from a few 10 m up to 250 m depending on the model. The comparison of observation of diurnal temperature amplitude from ECAD data with model results and hourly data from Prague with model hourly values show improvement when urban effects are considered. Larger spread encountered for wind and turbulence (as ZPBL) should be considered when choices of urban canopy schemes are made, especially in connection with modeling transport of pollutants within/from cities. Another conclusion is that choosing more complex urban schemes does not necessary improves model performance and using simpler and computationally less demanding (e.g. single layer) urban schemes, is often sufficient.

  8. Estimating FPAR of maize canopy using airborne discrete-return LiDAR data. (United States)

    Luo, Shezhou; Wang, Cheng; Xi, Xiaohuan; Pan, Feifei


    The fraction of absorbed photosynthetically active radiation (FPAR) is a key parameter for ecosystem modeling, crop growth monitoring and yield prediction. Ground-based FPAR measurements are time consuming and labor intensive. Remote sensing provides an alternative method to obtain repeated, rapid and inexpensive estimates of FPAR over large areas. LiDAR is an active remote sensing technology and can be used to extract accurate canopy structure parameters. A method to estimating FPAR of maize from airborne discrete-return LiDAR data was developed and tested in this study. The raw LiDAR point clouds were processed to separate ground returns from vegetation returns using a filter method over a maize field in the Heihe River Basin, northwest China. The fractional cover (fCover) of maize canopy was computed using the ratio of canopy return counts or intensity sums to the total of returns or intensities. FPAR estimation models were established based on linear regression analysis between the LiDAR-derived fCover and the field-measured FPAR (R(2) = 0.90, RMSE = 0.032, p LiDAR-predicted FPARs and results show that the LiDAR-predicted FPAR has a high accuracy (R(2) = 0.89, RMSE = 0.034). In summary, this study suggests that the airborne discrete-return LiDAR data could be adopted to accurately estimate FPAR of maize.

  9. Turbulent water vapor exchanges and two source energy balance model estimated fluxes of heterogeneous vineyard canopies (United States)

    Los, S.; Hipps, L.; Alfieri, J. G.; Prueger, J. H.; Kustas, W. P.


    Agriculture in semi-arid regions is globally facing increasing stress on water resources. Hence, knowledge of water used in irrigated crops is essential for water resource management. However, quantifying spatial and temporal distribution of evapotranspiration (ET) has proven difficult because of the inherent complexities involved. Understanding of the complex biophysical relationships that govern ET is incomplete, particularly for heterogeneous vegetation. The USDA-ARS is developing a remotely-sensed ET modeling system that utilizes a two-source energy balance (TSEB) model capable of simulating turbulent water and energy exchange from measurements of radiometric land surface temperature. The modeling system has been tested over a number of vegetated surfaces and is currently being validated for vineyard sites in the Central Valley of California through the Grape Remote sensing Atmospheric Profiling & Evapotranspiration eXperiment (GRAPEX). The highly variable, elevated canopy structure and semi-arid climatic conditions of these sites give the opportunity to gain knowledge of both turbulent exchange processes and the TSEB model's ability to simulate turbulent fluxes for heterogeneous vegetation. Analyzed are fast-response (20 Hz) 3-D velocity, temperature, and humidity measurements gathered over 4 years at two vineyard sites. These data were collected at a height of 5 m, within the surface layer but above the canopy, and at 1.5 m, below the canopy top. Power spectra and cross-spectra are used to study behavior of turbulent water vapor exchanges and coupling between the canopy layer and surface layer under various atmospheric conditions. Frequent light winds and unstable daytime conditions, combined with the complicated canopy structure, often induce intermittent and episodic turbulence transport. This resulted in a modal behavior alternating between periods of more continuous canopy venting and periods where water vapor fluxes are dominated by transient, low

  10. Radiation Distribution Within a Canopy Profile Calculated by a Multiple-Layer Canopy Scattering Model (United States)

    Qualls, R. J.; Zhao, W.


    Remote sensing technology has tremendous potential for use in natural resource studies, agriculture, water and land use management because of the spatial information contained in remote sensing images and because of the ease and/or frequency of acquiring vast amounts of surface information. However, the quantitative application of remotely sensed data is restricted by several problems. One of them is that the entities a remote sensor views are not single targets. For example, measurement show that the skin temperature of many crops can exhibit more than a 10° C difference between the leaves at the bottom and those at the top of the canopy, in addition to the usually large difference between leaves and soil substrate. Directional radiometric surface temperatures measured from above a crop represent neither the skin temperature of the crop nor the surface temperature of the soil substrate but a complex aggregate of all elements viewed. When a remote sensing device views a vegetated surface from different view angles, different combinations of canopy and soil elements at different temperatures will be seen, producing different values of "remotely sensed surface temperature." As the first step in a series of models to be developed to simulate energy balance, sensible and latent heat fluxes, and temperature profiles within a vegetation canopy, a multiple-layer canopy scattering model to estimate short wave radiation distribution within a wheat canopy was developed. This model incorporates processes of radiation penetration through gaps between leaves, and radiation absorption, reflection and transmission in leaf layers. It is able to simulate the multiple scattering processes that occur among different canopy layers, and determine the vertical distributions of upwelling, downwelling, and reflected short wave radiation within the canopy, and at the soil surface. One of the primary advantages of this model, in contrast to other models, is that the multiple scattering

  11. Large-Eddy Simulation of Coherent Flow Structures within a Cubical Canopy (United States)

    Inagaki, Atsushi; Castillo, Marieta Cristina L.; Yamashita, Yoshimi; Kanda, Manabu; Takimoto, Hiroshi


    Instantaneous flow structures "within" a cubical canopy are investigated via large-eddy simulation. The main topics of interest are, (1) large-scale coherent flow structures within a cubical canopy, (2) how the structures are coupled with the turbulent organized structures (TOS) above them, and (3) the classification and quantification of representative instantaneous flow patterns within a street canyon in relation to the coherent structures. We use a large numerical domain (2,560 m × 2,560 m × 1,710 m) with a fine spatial resolution (2.5 m), thereby simulating a complete daytime atmospheric boundary layer (ABL), as well as explicitly resolving a regular array of cubes (40 m in height) at the surface. A typical urban ABL is numerically modelled. In this situation, the constant heat supply from roof and floor surfaces sustains a convective mixed layer as a whole, but strong wind shear near the canopy top maintains the surface layer nearly neutral. The results reveal large coherent structures in both the velocity and temperature fields "within" the canopy layer. These structures are much larger than the cubes, and their shapes and locations are shown to be closely related to the TOS above them. We classify the instantaneous flow patterns in a cavity, specifically focusing on two characteristic flow patterns: flushing and cavity-eddy events. Flushing indicates a strong upward motion, while a cavity eddy is characterized by a dominant vortical motion within a single cavity. Flushing is clearly correlated with the TOS above, occurring frequently beneath low-momentum streaks. The instantaneous momentum and heat transport within and above a cavity due to flushing and cavity-eddy events are also quantified.

  12. Computing energy budget within a crop canopy from Penmann's ...

    Indian Academy of Sciences (India)

    R. Narasimhan, Krishtel eMaging Solutions

    iological profiles of the canopy are stated and will be used in simultaneity with the basic equations mentioned above. 3.1 Net radiation. The extinction of net radiation within the canopy can be described by Beer's law: Rn = Rn(h) exp. [. − αrLAI(z/h). ] ,. (10) where h is the height of canopy from the soil sur- face. The extinction ...

  13. Specular, diffuse and polarized imagery of an oat canopy (United States)

    Vanderbilt, Vern C.; De Venecia, Kurt J.


    Light, polarized by specular reflection, has been found to be an important part of the light scattered by several measured plant canopies. The authors investigate for one canopy the relative importance of specularly reflected sunlight, specularly reflected light from other sources including skylight, and diffusely upwelling light. Polarization images are used to gain increased understanding of the radiation transfer process in a plant canopy. Analysis of the results suggests that properly analyzed polarized remotely sensed data, acquired under specific atmospheric conditions by a specially designed sensor, potentially provide measures of physiological and morphological states of plants in a canopy.

  14. Mechanistic study of aerosol dry deposition on vegetated canopies

    International Nuclear Information System (INIS)

    Petroff, A.


    The dry deposition of aerosols onto vegetated canopies is modelled through a mechanistic approach. The interaction between aerosols and vegetation is first formulated by using a set of parameters, which are defined at the local scale of one surface. The overall deposition is then deduced at the canopy scale through an up-scaling procedure based on the statistic distribution parameters. This model takes into account the canopy structural and morphological properties, and the main characteristics of the turbulent flow. Deposition mechanisms considered are Brownian diffusion, interception, initial and turbulent impaction, initially with coniferous branches and then with entire canopies of different roughness, such as grass, crop field and forest. (author)

  15. Modeling directional thermal radiance from a forest canopy

    International Nuclear Information System (INIS)

    McGuire, M.J.; Balick, L.K.; Smith, J.A.; Hutchison, B.A.


    Recent advances in remote sensing technology have increased interest in utilizing the thermal-infared region to gain additional information about surface features such as vegetation canopies. Studies have shown that sensor view angle, canopy structure, and percentage of canopy coverage can affect the response of a thermal sensor. These studies have been primarily of agricultural regions and there have been relatively few examples describing the thermal characteristics of forested regions. This paper describes an extension of an existing thermal vegetation canopy radiance model which has been modified to partially account for the geometrically rough structure of a forest canopy. Fourier series expansion of a canopy height profile is used to calculate improved view factors which partially account for the directional variations in canopy thermal radiance transfers. The original and updated radiance model predictions are compared with experimental data obtained over a deciduous (oak-hickory) forest site. The experimental observations are also used to document azimuthal and nadir directional radiance variations. Maximum angular variations in measured canopy temperatures were 4–6°C (azimuth) and 2.5°C (nadir). Maximum angular variations in simulated temperatures using the modified rough surface model was 4°C. The rough surface model appeared to be sensitive to large gaps in the canopy height profile, which influenced the resultant predicted temperature. (author)

  16. The cultural analysis in the environmental impact studies. Jepirachi wind pilot project and connecting road between the Aburra valley and Cauca River

    International Nuclear Information System (INIS)

    Ruiz, Aura Luz; Carmona, Sergio Ivan


    This article is synthesis of the investigation to choose I in environment title of Master and Development of the National University of Host Colombia Medellin, on the speech, the social images and representations that emerge in the Studies from environmental Impact -EIA- from the cultural systems from communities affected by the implantation and operation. From two macro projects, that are part of the Plans of national Development, regional and local in Colombia: one, the Project Pilot of Generation of Aeolian Energy Jepirachi, in Colombian the Guajira discharge that affects indigenous communities of several establishments Wayuu in the sector of Average Moon. The other, the project of Road Connection between Valleys of the Aburra River - and the Cauca River, which it affects communities that inhabit an axis of rural transition - urban, whose cultural composition is diverse in its origin, mobility and interactions. It was left from two hypotheses: one, is that the analysis made in the cultural dimension of the EIA, is insufficient lo identify, lo evaluate and to handle the impacts on the cultural systems; second, front lo the treatment of the cultural systems is the existence of fundamental differences. There is cultural systems in Colombia which status is recognized greater and category than to others. The analysis of the speech allowed to obtain a diagnosis on semantic the rhetorical structure and - formal and textual cohesion, coherence, correlations and associations in the EIA and to identify the social images and representations that emerge on the populations taken part by the projects. Finally conclusions. That consider they leave to the debate on the cultural analyses that have been made in the EIA ,their emptiness and limitations and the different courses open that can take futures works from investigation

  17. Radar return from a continuous vegetation canopy (United States)

    Bush, T. F.; Ulaby, F. T.


    The radar backscatter coefficient, sigma deg, of alfalfa was investigated as a function of both radar parameters and the physical characteristics of the alfalfa canopy. Measurements were acquired with an 8-18 GHz FM-CW mobile radar over an angular range of 0 - 70 deg as measured from nadir. The experimental data indicates that the excursions of sigma deg at nadir cover a range of nearly 18 dB during one complete growing cycle. An empirical model for sigma deg was developed which accounts for its variability in terms of soil moisture, plant moisture and plant height.

  18. Evaporation from rain-wetted forest in relation to canopy wetness, canopy cover, and net radiation

    NARCIS (Netherlands)

    Klaassen, W.


    Evaporation from wet canopies is commonly calculated using E-PM, the Penman-Monteith equation with zero surface resistance. However, several observations show a lower evaporation from rain-wetted forest. Possible causes for the difference between E-PM and experiments are evaluated to provide rules

  19. Influence of tides and winds on fishing techniques and strategies in the Mamanguape River Estuary, Paraíba State, NE Brazil

    Directory of Open Access Journals (Sweden)

    Dandara M.M. Bezerra


    Full Text Available This work was carried out in two small fishing communities, Barra de Mamanguape and Tramataia, Northeastern Brazil. The aim was to study these traditional fishermen's knowledge and perception about tide and wind classifications, as well as their fishing strategies and techniques. Our research methodology involved various techniques: free interviews and semi-structured ones, guided tours and direct observations. The results obtained show the fishermen's classification of the tides according to the phases of the moon: 'breaking tide', 'flushing tide', 'dead tide' and 'big tide' designated technically these last as neap tide and spring tide, respectively. Wind is also an essential factor for the fishermen to make successful catches, and they classify it according to direction: North, South, East, Southeast, Southwest, Northeast and Northwest. The data show that fishermen's knowledge can also be useful in devising plans for management and conservation studies for this estuary.Este trabalho foi desenvolvido junto a duas comunidades de pescadores artesanais: Barra de Mamanguape e Tramataia, Nordeste do Brasil. O objetivo foi estudar o conhecimento e a percepção dos pescadores artesanais sobre a classificação das marés e dos ventos bem como as técnicas e estratégias de pesca. A metodologia empregada envolveu várias técnicas: entrevistas livres, entrevistas semiestruturadas, turnês guiadas e observação direta. Os resultados obtidos junto aos pescadores mostraram a classificação das marés de acordo com as fases lunares em: 'maré de quebramento', 'maré de lançamento', 'maré morta' e 'maré grande', designadas tecnicamente estas últimas como maré de quadratura e maré de sizígia, respectivamente. O vento é também um fator essencial no sucesso da pescaria, eles o classificam de acordo com a direção: Norte, Sul, Leste, Sudeste, Sudoeste, Nordeste, Noroeste. Os dados obtidos nesta pesquisa mostraram que o conhecimento dos pescadores

  20. Multispectral processing of ERTS-A (LANDSAT) data for uranium exploration in the Wind River Basin, Wyoming: a visible region ratio to enhance surface alteration associated with roll-type uraium deposits. Final report, June 1974--July 1975

    International Nuclear Information System (INIS)

    Salmon, B.C.; Pillars, W.W.


    The purpose of this report is to document possible detection capabilities of the LANDSAT multispectral scanner data for use in exploration for uranium roll-type deposits. Spectral reflectivity, mineralogy, iron content, and color paramenters were measured for twenty natural surface samples collected from a semiarid region. The relationships of these properties to LANDSAT response-weighted reflectances and to reflectance ratios are discussed. It was found that the single ratio technique of multispectral processing is likely to be sensitive enough to separate hematitic stain, but not limonitic. A combination of the LANDSAT R/sub 5,4/ and R/sub 7,6/ ratios, and a processing technique sensitive to vegetative cover is recommended for detecting areas of limonitic stain. Digital level slicing of LANDSAT R/sub 5,4/ over the Wind River Basin, after geometric correction, resulted in adequate enhancement of Triassic redbeds and lighter red materials, but not for limonitic areas. No recommendations for prospects in the area were made. Information pertaining to techniques of evaluating laboratory reflectance spectra for remote sensing applications, ratio processing, and planimetric correction of LANDSAT data is presented qualitatively

  1. Fluxes of trichloroacetic acid through a conifer forest canopy

    International Nuclear Information System (INIS)

    Stidson, R.T.; Heal, K.V.; Dickey, C.A.; Cape, J.N.; Heal, M.R.


    Controlled-dosing experiments with conifer seedlings have demonstrated an above-ground route of uptake for trichloroacetic acid (TCA) from aqueous solution into the canopy, in addition to uptake from the soil. The aim of this work was to investigate the loss of TCA to the canopy in a mature conifer forest exposed only to environmental concentrations of TCA by analysing above- and below-canopy fluxes of TCA and within-canopy instantaneous reservoir of TCA. Concentrations and fluxes of TCA were quantified for one year in dry deposition, rainwater, cloudwater, throughfall, stemflow and litterfall in a 37-year-old Sitka spruce and larch plantation in SW Scotland. Above-canopy TCA deposition was dominated by rainfall (86%), compared with cloudwater (13%) and dry deposition (1%). On average only 66% of the TCA deposition passed through the canopy in throughfall and stemflow (95% and 5%, respectively), compared with 47% of the wet precipitation depth. Consequently, throughfall concentration of TCA was, on average, ∼1.4 x rainwater concentration. There was no significant difference in below-canopy fluxes between Sitka spruce and larch, or at a forest-edge site. Annual TCA deposited from the canopy in litterfall was only ∼1-2% of above-canopy deposition. On average, ∼800 μg m -2 of deposited TCA was lost to the canopy per year, compared with estimates of above-ground TCA storage of ∼400 and ∼300 μg m -2 for Sitka spruce and larch, respectively. Taking into account likely uncertainties in these values (∼±50%), these data yield an estimate for the half-life of within-canopy elimination of TCA in the range 50-200 days, assuming steady-state conditions and that all TCA lost to the canopy is transferred into the canopy material, rather than degraded externally. The observations provide strong indication that an above-ground route is important for uptake of TCA specifically of atmospheric origin into mature forest canopies, as has been shown for seedlings (in

  2. Wind system documentation

    Energy Technology Data Exchange (ETDEWEB)

    Froggatt, J.R.; Tatum, C.P.


    Atmospheric transport and diffusion models have been developed by the Environmental Technology Section (ETS) of the Savannah River Technology Center to calculate the location and concentration of toxic or radioactive materials during an accidental release at the Savannah River Site (SRS). The output from these models has been used to support initial on-site and off-site emergency response activities such as protective action decision making and field monitoring coordination. These atmospheric transport and diffusion models have been incorporated into an automated computer-based system called the (Weather Information and Display) System and linked to real-time meteorological and radiological monitoring instruments to provide timely information for these emergency response activities (Hunter, 1990). This report documents various aspects of the WIND system.

  3. Characterizing tree canopy temperature heterogeneity using an unmanned aircraft-borne thermal imager (United States)

    Messinger, M.; Powell, R.; Silman, M.; Wright, M.; Nicholson, W.


    Leaf temperature (Tleaf) is an important control on many physiological processes such as photosynthesis and respiration, is a key variable for characterizing canopy energy fluxes, and is a valuable metric for identifying plant water stress or disease. Traditional methods of Tleaf measurement involve either the use of thermocouples, a time and labor-intensive method that samples sparsely in space, or the use of air temperature (Tair) as a proxy measure, which can introduce inaccuracies due to near constant canopy-atmosphere energy flux. Thermal infrared (TIR) imagery provides an efficient means of collecting Tleaf for large areas. Existing satellite and aircraft-based TIR imagery is, however, limited by low spatial and/or temporal resolution, while crane-mounted camera systems have strictly limited spatial extents. Unmanned aerial systems (UAS) offer new opportunities to acquire high spatial and temporal resolution imagery on demand. Here, we demonstrate the feasibility of collecting tree canopy Tleaf data using a small multirotor UAS fitted with a high spatial resolution TIR imager. The goals of this pilot study were to a) characterize basic patterns of within crown Tleaf for 4 study species and b) identify trends in Tleaf between species with varying leaf morphologies and canopy structures. TIR imagery was acquired for individual tree crowns of 4 species common to the North Carolina Piedmont ecoregion (Quercus phellos, Pinus strobus, Liriodendron tulipifera, Magnolia grandiflora) in an urban park environment. Due to significantly above-average summer precipitation, we assumed that none of the sampled trees was limited by soil water availability. We flew the TIR imaging system over 3-4 individuals of each of the 4 target species on 3 separate days. Imagery of all individuals was collected within the same 2-hour period in the afternoon on all days. There was low wind and partly cloudy skies during imaging. Tair, relative humidity, and wind speed were recorded at

  4. Hierarchical Canopy Dynamics of Electrolyte-Doped Nanoscale Ionic Materials

    KAUST Repository

    Jespersen, Michael L.


    Nanoscale ionic materials (NIMs) are organic-inorganic hybrids prepared from ionically functionalized nanoparticles (NP) neutralized by oligomeric polymer counterions. NIMs are designed to behave as liquids under ambient conditions in the absence of solvent and have no volatile organic content, making them useful for a number of applications. We have used nuclear magnetic resonance relaxation and pulsed-field gradient NMR to probe local and collective canopy dynamics in NIMs based on 18-nm silica NPs with a covalently bound anionic corona, neutralized by amine-terminated ethylene oxide/propylene oxide block copolymers. The NMR relaxation studies show that the nanosecond-scale canopy dynamics depend on the degree of neutralization, the canopy radius of gyration, and crowding at the ionically modified NP surface. Two canopy populations are observed in the diffusion experiments, demonstrating that one fraction of the canopy is bound to the NP surface on the time scale (milliseconds) of the diffusion experiment and is surrounded by a more mobile layer of canopy that is unable to access the surface due to molecular crowding. The introduction of electrolyte ions (Na+ or Mg2+) screens the canopy-corona electrostatic interactions, resulting in a reduced bulk viscosity and faster canopy exchange. The magnitude of the screening effect depends upon ion concentration and valence, providing a simple route for tuning the macroscopic properties of NIMs. © 2013 American Chemical Society.

  5. Water stress effects on spatially referenced cotton crop canopy properties (United States)

    rop canopy temperature is known to be affected by water stress. Canopy reflectance can also be impacted as leaf orientation and color respond to the stress. As sensor systems are investigated for real-time management of irrigation and nitrogen, it is essential to understand how the data from the sen...

  6. Biodiversity Meets the Atmosphere: A Global View of Forest Canopies (United States)

    C. M. P. Ozanne; D. Anhuf; S. L. Boulter; M. Keller; R. L. Kitching; C. Korner; F. C. Meinzer; A. W. Mitchell; T. Nakashizuka; P. L. Silva Dias; N. E. Stork; S. J. Wright; M Yoshimura


    The forest canopy is the functional interface between 90% of Earth’s terrestrial biomass and the atmosphere. Multidisciplinary research in the canopy has expanded concepts of global species richness, physiological processes, and the provision of ecosystem services. Trees respond in a species-specific manner to elevated carbon dioxide levels, while climate change...

  7. Soil carbon estimation from eucalyptus grandis using canopy spectra

    African Journals Online (AJOL)

    Mapping soil fertility parameters, such as soil carbon (C), is fundamentally important for forest management and research related to forest growth and climate change. This study seeks to establish the link between Eucalyptus grandis canopy spectra and soil carbon using raw and continuum-removed spectra. Canopy-level ...

  8. Summertime canopy albedo is sensitive to forest thinning

    NARCIS (Netherlands)

    Otto, J.; Berveiller, D.; Bréon, F.M.; Delpierre, N.; Geppert, G.; Granier, A.; Jans, W.W.P.; Knohl, A.; Moors, E.J.


    Despite an emerging body of literature linking canopy albedo to forest management, understanding of the process is still fragmented. We combined a stand-level forest gap model with a canopy radiation transfer model and satellite-derived model parameters to quantify the effects of forest thinning,

  9. The fauna and flora of a kelp bed canopy

    African Journals Online (AJOL)

    The fauna and flora of the canopy of a kelp bed off. Oudekraal, on the Cape Peninsula, is surveyed. Four species of epiphytic algae occur in the kelp canopy, three restricted to. Ecklonia maxima and the fourth to Laminaria pal/ida. Epiphyte biomass is equivalent to 4 - 9% of host standing crop amongst E. maxima, but less ...

  10. Forest canopy BRDF simulation using Monte Carlo method

    NARCIS (Netherlands)

    Huang, J.; Wu, B.; Zeng, Y.; Tian, Y.


    Monte Carlo method is a random statistic method, which has been widely used to simulate the Bidirectional Reflectance Distribution Function (BRDF) of vegetation canopy in the field of visible remote sensing. The random process between photons and forest canopy was designed using Monte Carlo method.

  11. Crop canopy BRDF simulation and analysis using Monte Carlo method

    NARCIS (Netherlands)

    Huang, J.; Wu, B.; Tian, Y.; Zeng, Y.


    This author designs the random process between photons and crop canopy. A Monte Carlo model has been developed to simulate the Bi-directional Reflectance Distribution Function (BRDF) of crop canopy. Comparing Monte Carlo model to MCRM model, this paper analyzes the variations of different LAD and

  12. Synthesis and Experiments of Inherently Balanced Umbrella Canopy Designs

    NARCIS (Netherlands)

    van der Wijk, V.; Kiper, G.; Yasir, A.


    This paper shows how umbrella canopies and umbrella canopy-like mechanisms can be designed inherently balanced. Inherently balanced means that the center of mass of the moving parts remains stationary at a single point for any position of the mechanism simply because of the specific design of the

  13. Thermal IR exitance model of a plant canopy (United States)

    Kimes, D. S.; Smith, J. A.; Link, L. E.


    A thermal IR exitance model of a plant canopy based on a mathematical abstraction of three horizontal layers of vegetation was developed. Canopy geometry within each layer is quantitatively described by the foliage and branch orientation distributions and number density. Given this geometric information for each layer and the driving meteorological variables, a system of energy budget equations was determined and solved for average layer temperatures. These estimated layer temperatures, together with the angular distributions of radiating elements, were used to calculate the emitted thermal IR radiation as a function of view angle above the canopy. The model was applied to a lodgepole pine (Pinus contorta) canopy over a diurnal cycle. Simulated vs measured radiometric average temperatures of the midcanopy layer corresponded with 2 C. Simulation results suggested that canopy geometry can significantly influence the effective radiant temperature recorded at varying sensor view angles.

  14. Wind energy

    CERN Document Server

    Woll, Kris


    Across the country, huge open spaces are covered in gently turning wind turbines. In Wind Energy, explore how these machines generate electricity, learn about the history of wind power, and discover the latest advances in the field. Easy-to-read text, vivid images, and helpful back matter give readers a clear look at this subject. Features include a table of contents, infographics, a glossary, additional resources, and an index. Aligned to Common Core Standards and correlated to state standards. Core Library is an imprint of Abdo Publishing, a division of ABDO.

  15. A high performance finite element model for wind farm modeling in forested areas (United States)

    Owen, Herbert; Avila, Matias; Folch, Arnau; Cosculluela, Luis; Prieto, Luis


    Wind energy has grown significantly during the past decade and is expected to continue growing in the fight against climate change. In the search for new land where the impact of the wind turbines is small several wind farms are currently being installed in forested areas. In order to optimize the distribution of the wind turbines within the wind farm the Reynolds Averaged Navier Stokes equations are solved over the domain of interest using either commercial or in house codes. The existence of a canopy alters the Atmospheric Boundary Layer wind profile close to the ground. Therefore in order to obtain a more accurate representation of the flow in forested areas modification to both the Navier Stokes and turbulence variables equations need to be introduced. Several existing canopy models have been tested in an academic problem showing that the one proposed by Sogachev et. al gives the best results. This model has been implemented in an in house CFD solver named Alya. It is a high performance unstructured finite element code that has been designed from scratch to be able to run in the world's biggest supercomputers. Its scalabililty has recently been tested up to 100000 processors in both American and European supercomputers. During the past three years the code has been tuned and tested for wind energy problems. Recent efforts have focused on the canopy model following industry needs. In this work we shall benchmark our results in a wind farm that is currently being designed by Scottish Power and Iberdrola in Scotland. This is a very interesting real case with extensive experimental data from five different masts with anemometers at several heights. It is used to benchmark both the wind profiles and the speed up obtained between different masts. Sixteen different wind directions are simulated. The numerical model provides very satisfactory results for both the masts that are affected by the canopy and those that are not influenced by it.

  16. Deploying Fourier Coefficients to Unravel Soybean Canopy Diversity. (United States)

    Jubery, Talukder Z; Shook, Johnathon; Parmley, Kyle; Zhang, Jiaoping; Naik, Hsiang S; Higgins, Race; Sarkar, Soumik; Singh, Arti; Singh, Asheesh K; Ganapathysubramanian, Baskar


    Soybean canopy outline is an important trait used to understand light interception ability, canopy closure rates, row spacing response, which in turn affects crop growth and yield, and directly impacts weed species germination and emergence. In this manuscript, we utilize a methodology that constructs geometric measures of the soybean canopy outline from digital images of canopies, allowing visualization of the genetic diversity as well as a rigorous quantification of shape parameters. Our choice of data analysis approach is partially dictated by the need to efficiently store and analyze large datasets, especially in the context of planned high-throughput phenotyping experiments to capture time evolution of canopy outline which will produce very large datasets. Using the Elliptical Fourier Transformation (EFT) and Fourier Descriptors (EFD), canopy outlines of 446 soybean plant introduction (PI) lines from 25 different countries exhibiting a wide variety of maturity, seed weight, and stem termination were investigated in a field experiment planted as a randomized complete block design with up to four replications. Canopy outlines were extracted from digital images, and subsequently chain coded, and expanded into a shape spectrum by obtaining the Fourier coefficients/descriptors. These coefficients successfully reconstruct the canopy outline, and were used to measure traditional morphometric traits. Highest phenotypic diversity was observed for roundness, while solidity showed the lowest diversity across all countries. Some PI lines had extraordinary shape diversity in solidity. For interpretation and visualization of the complexity in shape, Principal Component Analysis (PCA) was performed on the EFD. PI lines were grouped in terms of origins, maturity index, seed weight, and stem termination index. No significant pattern or similarity was observed among the groups; although interestingly when genetic marker data was used for the PCA, patterns similar to canopy

  17. Deploying Fourier Coefficients to Unravel Soybean Canopy Diversity (United States)

    Jubery, Talukder Z.; Shook, Johnathon; Parmley, Kyle; Zhang, Jiaoping; Naik, Hsiang S.; Higgins, Race; Sarkar, Soumik; Singh, Arti; Singh, Asheesh K.; Ganapathysubramanian, Baskar


    Soybean canopy outline is an important trait used to understand light interception ability, canopy closure rates, row spacing response, which in turn affects crop growth and yield, and directly impacts weed species germination and emergence. In this manuscript, we utilize a methodology that constructs geometric measures of the soybean canopy outline from digital images of canopies, allowing visualization of the genetic diversity as well as a rigorous quantification of shape parameters. Our choice of data analysis approach is partially dictated by the need to efficiently store and analyze large datasets, especially in the context of planned high-throughput phenotyping experiments to capture time evolution of canopy outline which will produce very large datasets. Using the Elliptical Fourier Transformation (EFT) and Fourier Descriptors (EFD), canopy outlines of 446 soybean plant introduction (PI) lines from 25 different countries exhibiting a wide variety of maturity, seed weight, and stem termination were investigated in a field experiment planted as a randomized complete block design with up to four replications. Canopy outlines were extracted from digital images, and subsequently chain coded, and expanded into a shape spectrum by obtaining the Fourier coefficients/descriptors. These coefficients successfully reconstruct the canopy outline, and were used to measure traditional morphometric traits. Highest phenotypic diversity was observed for roundness, while solidity showed the lowest diversity across all countries. Some PI lines had extraordinary shape diversity in solidity. For interpretation and visualization of the complexity in shape, Principal Component Analysis (PCA) was performed on the EFD. PI lines were grouped in terms of origins, maturity index, seed weight, and stem termination index. No significant pattern or similarity was observed among the groups; although interestingly when genetic marker data was used for the PCA, patterns similar to canopy

  18. A methodology for investigating interdependencies between measured throughfall, meteorological variables and canopy structure on a small catchment. (United States)

    Maurer, Thomas; Gustavos Trujillo Siliézar, Carlos; Oeser, Anne; Pohle, Ina; Hinz, Christoph


    In evolving initial landscapes, vegetation development depends on a variety of feedback effects. One of the less understood feedback loops is the interaction between throughfall and plant canopy development. The amount of throughfall is governed by the characteristics of the vegetation canopy, whereas vegetation pattern evolution may in turn depend on the spatio-temporal distribution of throughfall. Meteorological factors that may influence throughfall, while at the same time interacting with the canopy, are e.g. wind speed, wind direction and rainfall intensity. Our objective is to investigate how throughfall, vegetation canopy and meteorological variables interact in an exemplary eco-hydrological system in its initial development phase, in which the canopy is very heterogeneous and rapidly changing. For that purpose, we developed a methodological approach combining field methods, raster image analysis and multivariate statistics. The research area for this study is the Hühnerwasser ('Chicken Creek') catchment in Lower Lusatia, Brandenburg, Germany, where after eight years of succession, the spatial distribution of plant species is highly heterogeneous, leading to increasingly differentiated throughfall patterns. The constructed 6-ha catchment offers ideal conditions for our study due to the rapidly changing vegetation structure and the availability of complementary monitoring data. Throughfall data were obtained by 50 tipping bucket rain gauges arranged in two transects and connected via a wireless sensor network that cover the predominant vegetation types on the catchment (locust copses, dense sallow thorn bushes and reeds, base herbaceous and medium-rise small-reed vegetation, and open areas covered by moss and lichens). The spatial configuration of the vegetation canopy for each measurement site was described via digital image analysis of hemispheric photographs of the canopy using the ArcGIS Spatial Analyst, GapLight and ImageJ software. Meteorological data

  19. Impacts of differing aerodynamic resistance formulae on modeled energy exchange at the above-canopy/within-canopy/soil interface (United States)

    Application of the Two-Source Energy Balance (TSEB) Model using land surface temperature (LST) requires aerodynamic resistance parameterizations for the flux exchange above the canopy layer, within the canopy air space and at the soil/substrate surface. There are a number of aerodynamic resistance f...

  20. The impact of modifying photosystem antenna size on canopy photosynthetic efficiency-Development of a new canopy photosynthesis model scaling from metabolism to canopy level processes. (United States)

    Song, Qingfeng; Wang, Yu; Qu, Mingnan; Ort, Donald R; Zhu, Xin-Guang


    Canopy photosynthesis (A c ) describes photosynthesis of an entire crop field and the daily and seasonal integrals of A c positively correlate with daily and seasonal biomass production. Much effort in crop breeding has focused on improving canopy architecture and hence light distribution inside the canopy. Here, we develop a new integrated canopy photosynthesis model including canopy architecture, a ray tracing algorithm, and C 3 photosynthetic metabolism to explore the option of manipulating leaf chlorophyll concentration ([Chl]) for greater A c and nitrogen use efficiency (NUE). Model simulation results show that (a) efficiency of photosystem II increased when [Chl] was decreased by decreasing antenna size and (b) the light received by leaves at the bottom layers increased when [Chl] throughout the canopy was decreased. Furthermore, the modelling revealed a modest ~3% increase in A c and an ~14% in NUE was accompanied when [Chl] reduced by 60%. However, if the leaf nitrogen conserved by this decrease in leaf [Chl] were to be optimally allocated to other components of photosynthesis, both A c and NUE can be increased by over 30%. Optimizing [Chl] coupled with strategic reinvestment of conserved nitrogen is shown to have the potential to support substantial increases in A c , biomass production, and crop yields. © 2017 The Authors Plant, Cell & Environment Published by John Wiley & Sons Ltd.

  1. Momentum and scalar transport within a vegetation canopy following atmospheric stability and seasonal canopy changes: the CHATS experiment (United States)

    Dupont, S.; Patton, E. G.


    Momentum and scalar (heat and water vapor) transfer between a walnut canopy and the overlying atmosphere are investigated for two seasonal periods (before and after leaf-out), and for five thermal stability regimes (free and forced convection, near-neutral condition, transition to stable, and stable). Quadrant and octant analyses of momentum and scalar fluxes followed by space-time autocorrelations of observations from the Canopy Horizontal Array Turbulence Study's (CHATS) thirty meter tower help characterize the motions exchanging momentum, heat, and moisture between the canopy layers and aloft. During sufficiently windy conditions, i.e. in forced convection, near-neutral and transition to stable regimes, momentum and scalars are generally transported by sweep and ejection motions associated with the well-known canopy-top "shear-driven" coherent eddy structures. During extreme stability conditions (both unstable and stable), the role of these "shear-driven" structures in transporting scalars decreases, inducing notable dissimilarity between momentum and scalar transport. In unstable conditions, "shear-driven" coherent structures are progressively replaced by "buo-yantly-driven" structures, known as thermal plumes; which appear very efficient at transporting scalars, especially upward thermal plumes above the canopy. Within the canopy, downward thermal plumes become more efficient at transporting scalars than upward thermal plumes if scalar sources are located in the upper canopy. We explain these features by suggesting that: (i) downward plumes within the canopy correspond to large downward plumes coming from above, and (ii) upward plumes within the canopy are local small plumes induced by canopy heat sources where passive scalars are first injected if there sources are at the same location as heat sources. Above the canopy, these small upward thermal plumes aggregate to form larger scale upward thermal plumes. Furthermore, scalar quantities carried by downward

  2. Momentum and scalar transport within a vegetation canopy following atmospheric stability and seasonal canopy changes: the CHATS experiment

    Directory of Open Access Journals (Sweden)

    S. Dupont


    Full Text Available Momentum and scalar (heat and water vapor transfer between a walnut canopy and the overlying atmosphere are investigated for two seasonal periods (before and after leaf-out, and for five thermal stability regimes (free and forced convection, near-neutral condition, transition to stable, and stable. Quadrant and octant analyses of momentum and scalar fluxes followed by space-time autocorrelations of observations from the Canopy Horizontal Array Turbulence Study's (CHATS thirty meter tower help characterize the motions exchanging momentum, heat, and moisture between the canopy layers and aloft.

    During sufficiently windy conditions, i.e. in forced convection, near-neutral and transition to stable regimes, momentum and scalars are generally transported by sweep and ejection motions associated with the well-known canopy-top "shear-driven" coherent eddy structures. During extreme stability conditions (both unstable and stable, the role of these "shear-driven" structures in transporting scalars decreases, inducing notable dissimilarity between momentum and scalar transport.

    In unstable conditions, "shear-driven" coherent structures are progressively replaced by "buo-yantly-driven" structures, known as thermal plumes; which appear very efficient at transporting scalars, especially upward thermal plumes above the canopy. Within the canopy, downward thermal plumes become more efficient at transporting scalars than upward thermal plumes if scalar sources are located in the upper canopy. We explain these features by suggesting that: (i downward plumes within the canopy correspond to large downward plumes coming from above, and (ii upward plumes within the canopy are local small plumes induced by canopy heat sources where passive scalars are first injected if there sources are at the same location as heat sources. Above the canopy, these small upward thermal plumes aggregate to form larger scale upward thermal plumes. Furthermore, scalar

  3. World Wind (United States)

    National Aeronautics and Space Administration — World Wind allows any user to zoom from satellite altitude into any place on Earth, leveraging high resolution LandSat imagery and SRTM elevation data to experience...

  4. Forest canopy temperatures: dynamics, controls, and relationships with ecosystem fluxes (United States)

    Still, C. J.; Griffith, D.; Kim, Y.; Law, B. E.; Hanson, C. V.; Kwon, H.; Schulze, M.; Detto, M.; Pau, S.


    Temperature strongly affects enzymatic reactions, ecosystem biogeochemistry, and species distributions. Although most focus is on air temperature, the radiative or skin temperature of plants is more relevant. Canopy skin temperature dynamics reflect biophysical, physiological, and anatomical characteristics and interactions with the environment, and can be used to examine forest responses to stresses like droughts and heat waves. Thermal infrared (TIR) imaging allows for extensive temporal and spatial sampling of canopy temperatures, particularly compared to spot measurements using thermocouples. We present results of TIR imaging of forest canopies at eddy covariance flux tower sites in the US Pacific Northwest and in Panama. These forests range from an old-growth temperate rainforest to a second growth semi-arid pine forest to a semi-deciduous tropical forest. Canopy temperature regimes at these sites are highly variable. Canopy temperatures at all forest sites displayed frequent departures from air temperature, particularly during clear sky conditions, with elevated canopy temperatures during the day and depressed canopy temperatures at night compared to air temperature. Comparison of canopy temperatures to fluxes of carbon dioxide, water vapor, and energy reveals stronger relationships than those found with air temperature. Daytime growing season net ecosystem exchange at the pine forest site is better explained by canopy temperature (r2 = 0.61) than air temperature (r2 = 0.52). At the semi-deciduous tropical forest, canopy photosynthesis is highly correlated with canopy temperature (r2 = 0.51), with a distinct optimum temperature for photosynthesis ( 31 °C) that agrees with leaf-level measurements. During the peak of one heat wave at an old-growth temperate rainforest, hourly averaged air temperature exceeded 35 °C, 10 °C above average. Peak hourly canopy temperature approached 40 °C, and leaf-to-air vapor pressure deficit exceeded 6 kPa. These extreme

  5. 78 FR 29364 - Exelon Corporation, Exelon Wind 1, LLC, Exelon Wind 2, LLC, Exelon Wind 3, LLC, Exelon Wind 4... (United States)


    ...-005, QF07-257-004] Exelon Corporation, Exelon Wind 1, LLC, Exelon Wind 2, LLC, Exelon Wind 3, LLC, Exelon Wind 4, LLC, Exelon Wind 5, LLC, Exelon Wind 6, LLC, Exelon Wind 7, LLC, Exelon Wind 8, LLC, Exelon Wind 9, LLC, Exelon Wind 10, LLC, Exelon Wind 11, LLC, High Plains Wind Power, LLC v. Xcel Energy...

  6. Medium term ecohydrological response of peatland bryophytes to canopy disturbance (United States)

    Leonard, Rhoswen; Kettridge, Nick; Krause, Stefan; Devito, Kevin; Granath, Gustaf; Petrone, Richard; Mandoza, Carl; Waddington, James Micheal


    Canopy disturbance in northern forested peatlands is widespread. Canopy changes impact the ecohydrological function of moss and peat, which provide the principal carbon store within these carbon rich ecosystems. Different mosses have contrasting contributions to carbon and water fluxes (e.g. Sphagnum fuscum and Pleurozium schreberi) and are strongly influenced by canopy cover. As a result, changes in canopy cover lead to long-term shifts in species composition and associated ecohydrological function. Despite this, the medium-term response to such disturbance, the associated lag in this transition to a new ecohydrological and biogeochemical regime, is not understood. Here we investigate this medium term ecohydrological response to canopy removal using a randomised plot design within a north Albertan peatland. We show no significant ecohydrological change in treatment plots four years after canopy removal. Notably, Pleurozium schreberi and Sphagnum fuscum remained within respective plots post treatment and there was no significant difference in plot resistance to evapotranspiration or carbon exchange. Our results show that canopy removal alone has little impact on bryophyte ecohydrology in the short/medium term. This resistance to disturbance contrasts strongly with dramatic short-term changes observed within mineral soils suggesting that concurrent shifts in the large scale hydrology induced within such disturbances are necessary to cause rapid ecohydrological transitions. Understanding this lagged response is critical to determine the decadal response of carbon and water fluxes in response to disturbance and the rate at which important medium term ecohydrological feedbacks are invoked.

  7. Ambient noise in large rivers (L). (United States)

    Vračar, Miodrag S; Mijić, Miomir


    This paper presents the results of hydroacoustic noise research in three large European rivers: the Danube, the Sava, and the Tisa. Noise in these rivers was observed during a period of ten years, which includes all annual variation in hydrological and meteorological conditions (flow rate, speed of flow, wind speed, etc.). Noise spectra are characterized by wide maximums at frequencies between 20 and 30 Hz, and relatively constant slope toward higher frequencies. Spectral level of noise changes in time in relatively wide limits. At low frequencies, below 100 Hz, the dynamics of noise level is correlated with the dynamics of water flow and speed. At higher frequencies, noise spectra are mostly influenced by human activities on river and on riverbanks. The influence of wind on noise in rivers is complex due to the annual variation of river surface. The influence of wind is less pronounced than in oceans, seas, and lakes. © 2011 Acoustical Society of America

  8. Wood properties and trunk allometry of co-occurring rainforest canopy trees in a cyclone-prone environment. (United States)

    Read, Jennifer; Evans, Robert; Sanson, Gordon D; Kerr, Stuart; Jaffré, Tanguy


    New Caledonia commonly experiences cyclones, so trees there are expected to have enhanced wood traits and trunk allometry that confer resistance to wind damage. We ask whether there is evidence of a trade-off between these traits and growth rate among species. Wood traits, including density, microfibril angle (MFA), and modulus of elasticity (MOE), ratio of tree height to stem diameter, and growth rate were investigated in mature trees of 15 co-occurring canopy species in a New Caledonian rainforest. In contrast to some studies, wood density did not correlate negatively with growth increment. Among angiosperms, wood density and MOE correlated positively with diameter-adjusted tree height, and MOE correlated positively with stem-diameter growth increment. Tall slender trees achieved high stiffness with high efficiency with respect to wood density, in part by low MFA, and with a higher diameter growth increment but a lower buckling safety factor. However, some tree species of a similar niche differed in whole-tree resistance to wind damage and achieved wood stiffness in different ways. There was no evidence of a growth-safety trade-off in these trees. In forests that regularly experience cyclones, there may be stronger selection for high wood density and/or stiffness in fast-growing trees of the upper canopy, with the potential growth trade-off amortized by access to the upper canopy and by other plant traits. Furthermore, decreasing wood density does not necessarily decrease resistance to wind damage, resistance being influenced by other characteristics including cell-level traits (e.g., MFA) and whole-plant architecture.


    Directory of Open Access Journals (Sweden)

    Barladean A.S.


    Full Text Available The problem of wind turbine choice for wind power stations is examined in this paper. It is shown by comparison of parameters and characteristics of wind turbines, that for existing modes and speeds of wind in territory of Republic of Moldova it is necessary to use multi-blade small speed rotation wind turbines of fan class.

  10. Wind turbine (United States)

    Cheney, Jr., Marvin C.


    A wind turbine of the type having an airfoil blade (15) mounted on a flexible beam (20) and a pitch governor (55) which selectively, torsionally twists the flexible beam in response to wind turbine speed thereby setting blade pitch, is provided with a limiter (85) which restricts unwanted pitch change at operating speeds due to torsional creep of the flexible beam. The limiter allows twisting of the beam by the governor under excessive wind velocity conditions to orient the blades in stall pitch positions, thereby preventing overspeed operation of the turbine. In the preferred embodiment, the pitch governor comprises a pendulum (65,70) which responds to changing rotor speed by pivotal movement, the limiter comprising a resilient member (90) which engages an end of the pendulum to restrict further movement thereof, and in turn restrict beam creep and unwanted blade pitch misadjustment.

  11. Canopy openings and white-tailed deer influence the understory vegetation in mixed oak woodlots (United States)

    Todd W. Bowersox; Gerald L. Storm; Walter M. Tzilkowski


    Effects of canopy opening and white-tailed deer on ground level vegetation are being assessed in south-central Pennsylvania. Herbaceous plants and woody seedlings are being monitored in three unevenaged, mixed oak woodlots at Gettysburg National Military Park. Canopy opening levels on 0.20 ha treatment units were closed (~100% canopy), small (50-60% canopy) and large (...

  12. Shift of fleshy fruited species along elevation: temperature, canopy coverage, phylogeny and origin. (United States)

    Yu, Shunli; Katz, Ofir; Fang, Weiwei; Li, Danfeng; Sang, Weiguo; Liu, Canran


    Plant communities differ in their fruit type spectra, especially in the proportions of fleshy and non-fleshy fruit types. However, which abiotic and biotic factors drive this variability along elevation gradient and what drives the evolution of fruit type diversity still are puzzling. We analyzed the variations in proportions and richness of fleshy-fruited species and their correlations to various abiotic and biotic variables along elevation gradients in three mountains in the Beijing region, northeast China. Fleshy-fruited species, which are characterized by high fruit water contents, were found in great proportion and richness at relatively low elevations, where soil water content is low compared to high elevations. High temperatures in low elevations increase water availability for plants. Plants that grow in the shaded low-elevation thick-canopy forests are less exposed to evapotranspiration and thus possess water surpluses that can be invested in fleshy fruits. Such an investment in fleshy fruits is beneficial for these species because it makes the fruits more attractive to frugivores that act as seed dispersers in the close-canopied environments, where dispersion by wind is less effective. A hypothesis is proposed that plant internal water surpluses are the prerequisite conditions that permit evolution of fleshy fruits to occur.

  13. SAFARI 2000 Canopy Structural Measurements, Kalahari Transect, Wet Season 2001 (United States)

    National Aeronautics and Space Administration — ABSTRACT: This data set contains leaf area index (LAI), leaf inclination angle, and canopy dimension data from study sites along the Kalahari Transect in southwest...

  14. SNF NS001-TMS Canopy Reflectance 1983-84 (United States)

    National Aeronautics and Space Administration — Canopy spectral reflectance data collected from the NASA C-130-mounted NS001 Thematic Mapper Simulator (TMS) over the Superior National Forest, MN on 13JUL1983,...

  15. Leaf Aging of Amazonian Canopy Trees: Insights to Tropical Ecological Processes and Satellited Detected Canopy Dynamics (United States)

    Chavana-Bryant, C.; Malhi, Y.; Gerard, F.


    Leaf aging is a fundamental driver of changes in leaf traits, thereby, regulating ecosystem processes and remotely-sensed canopy dynamics. Leaf age is particularly important for carbon-rich tropical evergreen forests, as leaf demography (leaf age distribution) has been proposed as a major driver of seasonal productivity in these forests. We explore leaf reflectance as a tool to monitor leaf age and develop a novel spectra-based (PLSR) model to predict age using data from a phenological study of 1,072 leaves from 12 lowland Amazonian canopy tree species in southern Peru. Our results demonstrate monotonic decreases in LWC and Pmass and increase in LMA with age across species; Nmass and Cmassshowed monotonic but species-specific age responses. Spectrally, we observed large age-related variation across species, with the most age-sensitive spectral domains found to be: green peak (550nm), red edge (680-750 nm), NIR (700-850 nm), and around the main water absorption features (~1450 and ~1940 nm). A spectra-based model was more accurate in predicting leaf age (R2= 0.86; %RMSE= 33) compared to trait-based models using single (R2=0.07 to 0.73; %RMSE=7 to 38) and multiple predictors (step-wise analysis; R2=0.76; %RMSE=28). Spectral and trait-based models established a physiochemical basis for the spectral age model. The relative importance of the traits modifying the leaf spectra of aging leaves was: LWC>LMA>Nmass>Pmass,&Cmass. Vegetation indices (VIs), including NDVI, EVI2, NDWI and PRI were all age-dependent. This study highlights the importance of leaf age as a mediator of leaf traits, provides evidence of age-related leaf reflectance changes that have important impacts on VIs used to monitor canopy dynamics and productivity, and proposes a new approach to predicting and monitoring leaf age with important implications for remote sensing.

  16. Isoprene emission from tropical forest canopy leaves (United States)

    Keller, Michael; Lerdau, Manuel


    We screened 51 species of trees and vines for isoprene emission by using a tower crane to gain access to the top of the canopy in a semideciduous forest in the Republic of Panama. Of the species screened, 15 emitted isoprene at rates greater than 0.8 nmol m-2 s-1. We measured the influence of light and temperature on emissions. The species-dependent emission rates at 303 K and 1000 μmol m-2 s-1 of incident photosynthetically active radiation ranged from 9 to 43 nmol m-2 s-1 with coefficients of variation of about 20%. Isoprene emission showed a hyperbolic response to light intensity and an exponential response to temperature. We modified an existing algorithm developed for temperate plants to fit the temperature response of these tropical species. We suggest a new algorithm to fit the light response of isoprene emission. The new and modified algorithms are compared to the algorithms developed for temperate plants that are used in global models of isoprene emission. Both sets of algorithms also are compared to additional validation data collected in Panama and to published data on isoprene emission from a tropical dry forest in Puerto Rico. Our comparisons suggest that algorithms developed for temperate plants can significantly underestimate isoprene emissions from tropical forests at high-light and high-temperature levels.

  17. Convection regime between canopy and air in a greenhouse


    Atarassi,Roberto Terumi; Folegatti,Marcos Vinicius; Brasil,René Porfírio Camponez do


    The use of covering materials in protected environments modifies the air movement close to the crop canopy compared to external environment, which changes the heat and mass transfer between canopy and air. Several researches have been made in greenhouses to estimate mass and heat flux using dimensionless numbers to characterize the type of convection (forced, free or mixed). The knowledge of which one is dominant allows simplifications and specific approaches. The dominant convection regime b...

  18. Quantitative detection of settled coal dust over green canopy (United States)

    Brook, Anna; Sahar, Nir


    of a forthcoming environmental hazard are of key interest when considering the effects of pollution. According to the most basic distribution dynamics, dust consists of suspended particulate matter in a fine state of subdivision that are raised and carried by wind. In this context, it is increasingly important to first, understand the distribution dynamics of pollutants, and subsequently develop dedicated tools and measures to control and monitor pollutants in the free environment. The earliest effect of settled polluted dust particles is not always reflected through poor conditions of vegetation or soils, or any visible damages. In most of the cases, it has a quite long accumulation process that graduates from a polluted condition to long-term environmental and health related hazard. Although conducted experiments with pollutant analog powders under controlled conditions have tended to con- firm the findings from field studies (Brook, 2014; Brook and Ben-Dor 2016; Brook, 2016), a major criticism of all these experiments is their short duration. The resulting conclusion is that it is difficult, if not impossible, to determine the implications of long-term exposure to realistic concentrations of pollutants from such short-term studies. In general, the task of unmixing is to decompose the reflectance spectrum into a set of endmembers or principal combined spectra and their corresponding abundances (Bioucas-Dias et al., 2012). This study suggests that the sensitivity of sparse unmixing techniques provides an ideal approach to extract and identify coal dust settled over/upon green vegetation canopy using in situ spectral data collected by portable spectrometer. The optimal NMF algorithms, such as ALS and LPG, are assumed to be the simplest methods that achieve the minimum error. The suggested practical approach includes the following stages: 1. In situ spectral measurements, 2. Near-real-time spectral data analysis, 3. Estimated concentration of coal dust reported as mg

  19. Spatial variability of leaf wetness duration in different crop canopies (United States)

    Sentelhas, Paulo C.; Gillespie, Terry J.; Batzer, Jean C.; Gleason, Mark L.; Monteiro, José Eduardo B. A.; Pezzopane, José Ricardo M.; Pedro, Mário J.


    The spatial variability of leaf wetness duration (LWD) was evaluated in four different height-structure crop canopies: apple, coffee, maize, and grape. LWD measurements were made using painted flat plate, printed-circuit wetness sensors deployed in different positions above and inside the crops, with inclination angles ranging from 30 to 45°. For apple trees, the sensors were installed in 12 east-west positions: 4 at each of the top (3.3 m), middle (2.1 m), and bottom (1.1 m) levels. For young coffee plants (80 cm tall), four sensors were installed close to the leaves at heights of 20, 40, 60, and 80 cm. For the maize and grape crops, LWD sensors were installed in two positions, one just below the canopy top and another inside the canopy. Adjacent to each experiment, LWD was measured above nearby mowed turfgrass with the same kind of flat plate sensor, deployed at 30 cm and between 30 and 45°. We found average LWD varied by canopy position for apple and maize (Pcoffee plants, average LWD did not differ between the top and inside the canopy. The comparison by geometric mean regression analysis between crop and turfgrass LWD measurements showed that sensors at 30 cm over turfgrass provided quite accurate estimates of LWD at the top of the crops, despite large differences in crop height and structure, but poorer estimates for wetness within leaf canopies.

  20. Forest canopy gap distributions in the southern Peruvian Amazon.

    Directory of Open Access Journals (Sweden)

    Gregory P Asner

    Full Text Available Canopy gaps express the time-integrated effects of tree failure and mortality as well as regrowth and succession in tropical forests. Quantifying the size and spatial distribution of canopy gaps is requisite to modeling forest functional processes ranging from carbon fluxes to species interactions and biological diversity. Using high-resolution airborne Light Detection and Ranging (LiDAR, we mapped and analyzed 5,877,937 static canopy gaps throughout 125,581 ha of lowland Amazonian forest in Peru. Our LiDAR sampling covered a wide range of forest physiognomies across contrasting geologic and topographic conditions, and on depositional floodplain and erosional terra firme substrates. We used the scaling exponent of the Zeta distribution (λ as a metric to quantify and compare the negative relationship between canopy gap frequency and size across sites. Despite variable canopy height and forest type, values of λ were highly conservative (λ mean  = 1.83, s  = 0.09, and little variation was observed regionally among geologic substrates and forest types, or at the landscape level comparing depositional-floodplain and erosional terra firme landscapes. λ-values less than 2.0 indicate that these forests are subjected to large gaps that reset carbon stocks when they occur. Consistency of λ-values strongly suggests similarity in the mechanisms of canopy failure across a diverse array of lowland forests in southwestern Amazonia.

  1. The canopy spiders (Araneae of the floodplain forest in Leipzig

    Directory of Open Access Journals (Sweden)

    Otto, Stefan


    Full Text Available The canopy spiders of the floodplain forest in Leipzig have become a focus of ecological studies in recent years. In 2006 we sampled 30 tree canopies in the ‘Burgaue’ nature reserve with pyrethrum knock-down fogging, recording 502 adult spiders belonging to 48 species and 11 families. Based on these data and the results of a previous fogging study, the studied spider community was dominated by forest and forest-edge species with a preference for the shrub and canopy strata as well as by spiders of the web spider feeding guild. The community structure was typical for arboreal spider communities from northern temperate forests but very different from communities in the tropics. Species richness and evenness were similar to the old growth near-primary Białowieża Forest in Poland. The checklist of 96 canopy spider species of the floodplain forest of Leipzig includes 54 additions to the spider fauna of Leipzig and vicinity by recent canopy studies and eight first canopy records for Leipzig from our field work. The theridiid Dipoena torva (Thorell, 1875 was recorded for the first time in Saxony. The floodplain forest of Leipzig sustains a large and species-rich arboreal spider community and is thus a valuable habitat for a large proportion of endangered species (12%.

  2. Predicting tropical plant physiology from leaf and canopy spectroscopy. (United States)

    Doughty, Christopher E; Asner, Gregory P; Martin, Roberta E


    A broad regional understanding of tropical forest leaf photosynthesis has long been a goal for tropical forest ecologists, but it has remained elusive due to difficult canopy access and high species diversity. Here we develop an empirical model to predict sunlit, light-saturated, tropical leaf photosynthesis using leaf and simulated canopy spectra. To develop this model, we used partial least squares (PLS) analysis on three tropical forest datasets (159 species), two in Hawaii and one at the biosphere 2 laboratory (B2L). For each species, we measured light-saturated photosynthesis (A), light and CO(2) saturated photosynthesis (A(max)), respiration (R), leaf transmittance and reflectance spectra (400-2,500 nm), leaf nitrogen, chlorophyll a and b, carotenoids, and leaf mass per area (LMA). The model best predicted A [r(2) = 0.74, root mean square error (RMSE) = 2.9 μmol m(-2) s(-1))] followed by R (r(2) = 0.48), and A(max) (r(2) = 0.47). We combined leaf reflectance and transmittance with a canopy radiative transfer model to simulate top-of-canopy reflectance and found that canopy spectra are a better predictor of A (RMSE = 2.5 ± 0.07 μmol m(-2) s(-1)) than are leaf spectra. The results indicate the potential for this technique to be used with high-fidelity imaging spectrometers to remotely sense tropical forest canopy photosynthesis.

  3. Plant canopy light absorption model with application to wheat (United States)

    Chance, J. E.; Lemaster, E. W.


    A light absorption model (LAM) for vegetative plant canopies has been derived from the Suits reflectance model. From the LAM the absorption of light in the photosynthetically active region of the spectrum (400-700 nm) has been calculated for a Penjamo wheat crop for several situations including (a) the percent absorption of the incident radiation by a canopy of LAI 3.1 having a four-layer structure, (b) the percent absorption of light by the individual layers within a four-layer canopy and by the underlying soil, (c) the percent absorption of light by each vegetative canopy layer for variable sun angle, and (d) the cumulative solar energy absorbed by the developing wheat canopy as it progresses from a single layer through its growth stages to a three-layer canopy. This calculation is also presented as a function of the leaf area index and is shown to be in agreement with experimental data reported by Kanemasu on Plainsman V wheat.


    Directory of Open Access Journals (Sweden)

    Gianfranco Pergher


    Full Text Available A field study was performed to analyse how deposition efficiency from an axial-fan sprayer was affected by the canopy structure of vines trained to the High Cordon, Low Cordon and Casarsa systems, at beginning of flowering and beginning of berry touch growth stages. An empirical calibration method, providing a dose rate adjustment roughly proportional to canopy height, was used. The canopy structure was assessed using the Point Quadrat method, and determining the leaf area index (LAI and the leaf layer index (LLI. Spray deposits were measured by colorimetry, using a water soluble dye (Tartrazine as a tracer. Correlation between deposits and canopy parameters were analysed and discussed. Foliar deposits per unit leaf area were relatively constant, suggesting that empirical calibration can reduce deposit variability associated with different training systems and growth stages. Total foliar deposition ranged from 33.6% and 82.3% of total spray volume, and increased proportionally with the LLI up to LLI<4. Deposits on bunches significantly decreased with the LLI in the grape zone. The results suggest that sprayer efficiency is improved by a regular, symmetrical canopy, with few leaf layers in the grape zone as in Low Cordon. However, a LLI<3 over the whole canopy and >40% gaps in the foliage both reduced total deposition, and may increase the risk for larger drift losses.

  5. Wind power

    International Nuclear Information System (INIS)


    This road-map proposes by the Group Total aims to inform the public on the wind power. It presents the principles, the technology takes off, its applications and technology focus, the global market trends and the outlooks and Total commitments in the domain. (A.L.B.)

  6. Wind energy

    International Nuclear Information System (INIS)

    Portilla S, L.A.


    The wind energy or eolic energy is a consequence of solar energy, the one which is absorbed by the atmosphere and is transformed into energy of movement of large bulks of air. In this process the atmosphere acts as the filter to the solar radiation and demotes the ultraviolet beams that result fatal to life in the Earth. The ionosphere is the most external cap and this is ionized by means of absorption process of ultraviolet radiation arising to the Sun. The atmosphere also acts as a trap to the infrared radiation, it that results from the continual process of energetic degradation. In this way, the interaction between Earth - Atmospheres, is behaved as a great greenhouse, maintaining the constant temperatures, including in the dark nights. Processes as the natural convection (that occur by the thermodynamic phenomenon), equatorial calmness, trade winds and against trade winds and global distribution of the air currents are described. The other hand, techniques as the transformation of the wind into energy and its parameters also are shown

  7. Wind Energy Japan

    Energy Technology Data Exchange (ETDEWEB)

    Komatsubara, Kazuyo [Embassy of the Kingdom of the Netherlands, Tokyo (Japan)


    An overview is given of wind energy in Japan: Background; Wind Energy in Japan; Japanese Wind Energy Industry; Government Supports; Useful Links; Major Japanese Companies; Profiles of Major Japanese Companies; Major Wind Energy Projects in Japan.

  8. Seasonal diets of insectivorous birds using canopy gaps in a bottomland forest.

    Energy Technology Data Exchange (ETDEWEB)

    Moorman, Christopher, E.; Bowen, Liessa, T.; Kilgo, John, C.; Sorenson, Clyde E.; Hanula, James L.; Horn, Scott; Ulyshen, Mike D.


    ABSTRACT. Little is known about how insectivorous bird diets are influenced by arthropod availability and about how these relationships vary seasonally. We captured birds in forest-canopy gaps and adjacent mature forest during 2001 and 2002 at the Savannah River Site in Barnwell County, South Carolina, and flushed their crops to gather information about arthropods eaten during four periods: spring migration, breeding, postbreeding, and fall migration. Arthropod availability for foliage- and ground-gleaning birds was examined by leaf clipping and pitfall trapping. Coleopterans and Hemipterans were used by foliage- and ground-gleaners more than expected during all periods, whereas arthropods in the orders Araneae and Hymenoptera were used as, or less than, expected based on availability during all periods. Ground-gleaning birds used Homopterans and Lepidopterans in proportions higher than availability during all periods. Arthropod use by birds was consistent from spring through all migration, with no apparent seasonal shift in diet. Based on concurrent studies, heavily used orders of arthropods were equally abundant or slightly less abundant in canopy gaps than in the surrounding mature forest, but bird species were most frequently detected in gaps. Such results suggest that preferential feeding on arthropods by foliage-gleaning birds in p p habitats reduced arthropod densities or, alternatively, that bird use of gap and forest habitat was not determined y food resources. The abundance of arthropods across the stand may have allowed birds to remain in the densely vegetated gaps where thick cover provides protection from predators.

  9. Influence of tall vegetation canopy on turbulence kinetic energy budget in the stable boundary layer (United States)

    Babić, Karmen; Rotach, Mathias W.


    While a considerable amount of research has been done on turbulence kinetic energy (TKE) budget studies in the surface layer over horizontally homogeneous and flat (HHF) surfaces, little research focused on budgets above heterogeneous and rough surfaces. Only few studies have investigated TKE budgets above fetch-limited forest focusing on statically neutral conditions, while studies in the stable boundary layer (SBL) are still scarce in the literature. Therefore, we present turbulence characteristics above tall, deciduous forest in the wintertime SBL and make a comparison with a well-known results of HHF terrain. Turbulence measurements performed at five levels above the canopy height (approximately h = 18 m) allowed the investigation of combined influence of the roughness sublayer (RSL) found above tall vegetation and the internal boundary layer (IBL) on the TKE budget terms. Each term of the TKE budget is investigated within the framework of local similarity theory. Kolomogorov's similarity hypothesis assumes local isotropy within the inertial subrange. Testing the local isotropy hypothesis more thoroughly resulted in a ratio of the horizontal spectral densities (Sv/Su) approaching the 4/3, while the ratio of the vertical to the longitudinal spectral density (Sw/Su) was less than 1 for all levels indicating an anisotropic turbulence above the canopy. As a consequence, estimated values of TKE dissipation rate (ɛ) for the vertical component (ɛw) were smaller (underestimated) compared to the ɛ estimates obtained from the horizontal velocity components. This finding has a direct influence on the applicability of classical Kansas spectral models valid for HHF terrain as well as on the budget of wind variances. Additionally, the dimensionless wind shear function associated with "Kolmogorov turbulence" (existence of a well-defined inertial subrange with -5/3 slopes) was found to depart from linear prediction suggesting that the stability is a stronger determinant of

  10. River engineering

    NARCIS (Netherlands)

    De Vries, M.


    One dimension models - basic eauations, analytical models, numberical models. One dimensional models -suspended load, roughness and resistance of river beds. Solving river problems - tools, flood mitigation, bank protection.

  11. Isotopic characteristics of canopies in simulated leaf assemblages (United States)

    Graham, Heather V.; Patzkowsky, Mark E.; Wing, Scott L.; Parker, Geoffrey G.; Fogel, Marilyn L.; Freeman, Katherine H.


    The geologic history of closed-canopy forests is of great interest to paleoecologists and paleoclimatologists alike. Closed canopies have pronounced effects on local, continental and global rainfall and temperature patterns. Although evidence for canopy closure is difficult to reconstruct from the fossil record, the characteristic isotope gradients of the ;canopy effect; could be preserved in leaves and proxy biomarkers. To assess this, we employed new carbon isotopic data for leaves collected in diverse light environments within a deciduous, temperate forest (Maryland, USA) and for leaves from a perennially closed canopy, moist tropical forest (Bosque Protector San Lorenzo, Panamá). In the tropical forest, leaf carbon isotope values range 10‰, with higher δ13Cleaf values occurring both in upper reaches of the canopy, and with higher light exposure and lower humidity. Leaf fractionation (Δleaf) varied negatively with height and light and positively with humidity. Vertical 13C enrichment in leaves largely reflects changes in Δleaf, and does not trend with δ13C of CO2 within the canopy. At the site in Maryland, leaves express a more modest δ13C range (∼6‰), with a clear trend that follows both light and leaf height. Using a model we simulate leaf assemblage isotope patterns from canopy data binned by elevation. The re-sampling (bootstrap) model determined both the mean and range of carbon isotope values for simulated leaf assemblages ranging in size from 10 to over 1000 leaves. For the tropical forest data, the canopy's isotope range is captured with 50 or more randomly sampled leaves. Thus, with a sufficient number of fossil leaves it is possible to distinguish isotopic gradients in an ancient closed canopy forest from those in an open forest. For very large leaf assemblages, mean isotopic values approximate the δ13C of carbon contributed by leaves to soil and are similar to observed δ13Clitter values at forested sites within Panamá, including the

  12. Seasonal variation in the atmospheric deposition of inorganic constituents and canopy interactions in a Japanese cedar forest

    International Nuclear Information System (INIS)

    Sase, Hiroyuki; Takahashi, Akiomi; Sato, Masahiko; Kobayashi, Hiroyasu; Nakata, Makoto; Totsuka, Tsumugu


    The seasonal changes in throughfall (TF) and stemflow (SF) chemistry and the canopy interactions of K + and N compounds were studied in a Japanese cedar forest near the Sea of Japan. The fluxes of most ions, including non-sea-salt SO 4 2- , from TF, SF, and rainfall showed distinct seasonal trends, increasing from autumn to winter, owing to the seasonal west wind, while the fluxes of NH 4 + and K + ions from TF + SF might have a large effect of canopy interactions. The contact angle (CA) of water droplets on leaves decreased with leaf aging, suggesting that surface wettability increases with leaf age. The K + concentration in TF was negatively correlated with the CA of 1-year-old leaves, while the NH 4 + concentration was positively correlated with the CA. The net fluxes of NH 4 + and NO 3 - from TF were positively correlated with the CA. The increase in wettability may accelerate leaching of K + or uptake of NH 4 + . - Leaf surface properties may contribute to the ion transport process of the forest canopy

  13. Boreal forest BVOC exchange: emissions versus in-canopy sinks (United States)

    Zhou, Putian; Ganzeveld, Laurens; Taipale, Ditte; Rannik, Üllar; Rantala, Pekka; Petteri Rissanen, Matti; Chen, Dean; Boy, Michael


    A multilayer gas dry deposition model has been developed and implemented into a one-dimensional chemical transport model SOSAA (model to Simulate the concentrations of Organic vapours, Sulphuric Acid and Aerosols) to calculate the dry deposition velocities for all the gas species included in the chemistry scheme. The new model was used to analyse in-canopy sources and sinks, including gas emissions, chemical production and loss, dry deposition, and turbulent transport of 12 featured biogenic volatile organic compounds (BVOCs) or groups of BVOCs (e.g. monoterpenes, isoprene+2-methyl-3-buten-2-ol (MBO), sesquiterpenes, and oxidation products of mono- and sesquiterpenes) in July 2010 at the boreal forest site SMEAR II (Station for Measuring Ecosystem-Atmosphere Relations). According to the significance of modelled monthly-averaged individual source and sink terms inside the canopy, the selected BVOCs were classified into five categories: 1. Most of emitted gases are transported out of the canopy (monoterpenes, isoprene + MBO). 2. Chemical reactions remove a significant portion of emitted gases (sesquiterpenes). 3. Bidirectional fluxes occur since both emission and dry deposition are crucial for the in-canopy concentration tendency (acetaldehyde, methanol, acetone, formaldehyde). 4. Gases removed by deposition inside the canopy are compensated for by the gases transported from above the canopy (acetol, pinic acid, β-caryophyllene's oxidation product BCSOZOH). 5. The chemical production is comparable to the sink by deposition (isoprene's oxidation products ISOP34OOH and ISOP34NO3). Most of the simulated sources and sinks were located above about 0.2 hc (canopy height) for oxidation products and above about 0.4 hc for emitted species except formaldehyde. In addition, soil deposition (including deposition onto understorey vegetation) contributed 11-61 % to the overall in-canopy deposition. The emission sources peaked at about 0.8-0.9 hc, which was higher than 0.6 hc

  14. The Effect of Local Atmospheric Circulations on Daytime Carbon Dioxide Flux Measurements over a Pinus elliottii Canopy (United States)

    Loescher, H. W.; Starr, G.; Martin, T. A.; Binford, M.; Gholz, H. L.


    The daytime net ecosystem exchange of CO2 (NEE) was measured in an even-aged slash pine plantation in northern Florida from 1999 to 2001 using the eddy covariance technique. In August 2000, two clear-cuts were formed approximately 1 km west of the study site. A statistical approach was used to determine whether the clear-cuts induced changes in CO2 concentration, wind direction, horizontal and vertical wind speeds, and temperature, as measured by instruments above the plantation canopy and, in turn, whether any such changes affected daytime NEE. The NEE estimates were first transformed so that mean responses to incident radiation and vapor pressure deficit were removed using empirically derived functions for each 30-min period. Prior to the clear-cuts, there were significant interactive effects of CO2 concentration and some wind statistics on NEE at the tower when wind was flowing from the direction of the future clear-cuts. Even in this relatively homogenous forest, with flat topography, the CO2 source strength differed with wind direction prior to the clear-cuts. After the clear-cuts, additional two- and three-way interactive effects became significant during flows from the direction of the clear-cuts. There was also a 16.6% reduction in the integrated measure of daytime NEE over 487 days after the clear-cuts. The results herein suggest that the development of local circulations over the clear-cuts contributed to low-frequency effects on the NEE.

  15. Verification of a One-Dimensional Model of CO2 Atmospheric Transport Inside and Above a Forest Canopy Using Observations at the Norunda Research Station (United States)

    Kovalets, Ivan; Avila, Rodolfo; Mölder, Meelis; Kovalets, Sophia; Lindroth, Anders


    A model of CO2 atmospheric transport in vegetated canopies is tested against measurements of the flow, as well as CO2 concentrations at the Norunda research station located inside a mixed pine-spruce forest. We present the results of simulations of wind-speed profiles and CO2 concentrations inside and above the forest canopy with a one-dimensional model of profiles of the turbulent diffusion coefficient above the canopy accounting for the influence of the roughness sub-layer on turbulent mixing according to Harman and Finnigan (Boundary-Layer Meteorol 129:323-351, 2008; hereafter HF08). Different modelling approaches are used to define the turbulent exchange coefficients for momentum and concentration inside the canopy: (1) the modified HF08 theory—numerical solution of the momentum and concentration equations with a non-constant distribution of leaf area per unit volume; (2) empirical parametrization of the turbulent diffusion coefficient using empirical data concerning the vertical profiles of the Lagrangian time scale and root-mean-square deviation of the vertical velocity component. For neutral, daytime conditions, the second-order turbulence model is also used. The flexibility of the empirical model enables the best fit of the simulated CO2 concentrations inside the canopy to the observations, with the results of simulations for daytime conditions inside the canopy layer only successful provided the respiration fluxes are properly considered. The application of the developed model for radiocarbon atmospheric transport released in the form of ^{14}CO2 is presented and discussed.

  16. Wind Loads on Structures

    DEFF Research Database (Denmark)

    Dyrbye, Claes; Hansen, Svend Ole

    Wind loads have to be taken into account when designing civil engineering structures. The wind load on structures can be systematised by means of the wind load chain: wind climate (global), terrain (wind at low height), aerodynamic response (wind load to pressure), mechanical response (wind...... pressure to structural response) and design criteria. Starting with an introduction of the wind load chain, the book moves on to meteorological considerations, atmospheric boundary layer, static wind load, dynamic wind load and scaling laws used in wind-tunnel tests. The dynamic wind load covers vibrations...... induced by wind turbulence, vortex shedding, flutter and galloping. The book gives a comprehensive treatment of wind effects on structures and it will be useful for consulting engineers designing wind-sensitive structures. It will also be valuable for students of civil engineering as textbook...

  17. Morphological Response of Eight Quercus Species to Simulated Wind Load. (United States)

    Wu, Tonggui; Zhang, Peng; Zhang, Lei; Wang, Geoff G; Yu, Mukui

    Leaf shape, including leaf size, leaf dissection index (LDI), and venation distribution, strongly impacts leaf physiology and the forces of momentum exerted on leaves or the canopy under windy conditions. Yet, little has been known about how leaf shape affects the morphological response of trees to wind load. We studied eight Quercus species, with different leaf shapes, to determine the morphological response to simulated wind load. Quercus trees with long elliptical leaves, were significantly affected by wind load (Pwind load, such as bigger leaf thickness, larger stem diameter, allocation to root biomass, and smaller stem height (Pwind can reduce drag and increase the mechanical strength of the tree. Leaf dissection index (LDI), an important index of leaf shape, was correlated with morphological response to wind load (Pwind load.

  18. Remote Sensing Measures Restoration Successes, but Canopy Heights Lag in Restoring Floodplain Vegetation

    Directory of Open Access Journals (Sweden)

    Samantha K. Dawson


    Full Text Available Wetlands worldwide are becoming increasingly degraded, and this has motivated many attempts to manage and restore wetland ecosystems. Restoration actions require a large resource investment, so it is critical to measure the outcomes of these management actions. We evaluated the restoration of floodplain wetland vegetation across a chronosequence of land uses, using remote sensing analyses. We compared the Landsat-based fractional cover of restoration areas with river red gum and lignum reference communities, which functioned as a fixed target for restoration, over three time periods: (i before agricultural land use (1987–1997; (ii during the peak of agricultural development (2004–2007; and (iii post-restoration of flooding (2010–2015. We also developed LiDAR-derived canopy height models (CHMs for comparison over the second and third time periods. Inundation was crucial for restoration, with many fields showing little sign of similarity to target vegetation until after inundation, even if agricultural land uses had ceased. Fields cleared or cultivated for only one year had greater restoration success compared to areas cultivated for three or more years. Canopy height increased most in the fields that were cleared and cultivated for a short duration, in contrast to those cultivated for >12 years, which showed few signs of recovery. Restoration was most successful in fields with a short development duration after the intervention, but resulting dense monotypic stands of river cooba require future monitoring and possibly intervention to prevent sustained dominance. Fields with intensive land use histories may need to be managed as alternative, drier flood-dependent vegetation communities, such as black box (Eucalyptus largiflorens grasslands. Remotely-sensed data provided a powerful measurement technique for tracking restoration success over a large floodplain.

  19. Wind born(e) landscapes: the role of wind erosion in agricultural land management and nature development

    NARCIS (Netherlands)

    Riksen, M.J.P.M.


    Wind has played an important role in the geological development of the north-western Europe. Various aeolian deposits such as inland dunes, river dunes, cover sands, drift sands and coastal dunes, form the base of large areas in our present landscape. The role of wind erosion in today's north-west

  20. How neighbor canopy architecture affects target plant performance

    Energy Technology Data Exchange (ETDEWEB)

    Tremmel, D.C.; Bazzaz, F.A. (Harvard Univ., Cambridge, MA (United States))


    Plant competition occurs through the negative effects that individual plants have on resource availability to neighboring individuals. Therefore competition experiments need to examine how different species change resource availability to their neighbors, and how different species respond to these changes-allocationally, architecturally, and physiologically-through time. In a greenhouse study we used a model system of annuals to examine how canopies of species having differing morphologies differed in their architectures and light-interception abilities, and how different species performed when grown in these canopies. Abutilon theophrasti, Datura stramonium, and Polygonum pensylvanicum were grown as [open quotes]targets[close quotes]. Plants were grown in pots, with one target plant and four neighbor plants. Detailed measurements of neighbor canopy structure and target plant canopy architecture were made at five harvests. Species with different morphologies showed large differences in canopy structure, particularly when grass and forb species were compared. Setaria, a grass, had a more open canopy than the other species (all forbs), and was a consistently weak competitor. Overall, however, the relative effects of different neighbors on target biomass varied with target species. Target biomass was poorly correlated with neighbor biomass and leaf area, but was highly correlated with a measure of target light-interception ability that took into account both target leaf deployment and neighbor light interception. Despite clear differences among neighbor species in canopy structure and effect on light penetration, the results suggest no broad generalizations about the effects of different species as neighbors. Knowledge of morphological, physiological, and life history characteristics of both the target and neighbor species may be necessary to explain the results of their competition. 53 refs., 4 figs., 4 tabs.

  1. Quantitative detection of settled dust over green canopy (United States)

    Brook, Anna


    The main task of environmental and geoscience applications are efficient and accurate quantitative classification of earth surfaces and spatial phenomena. In the past decade, there has been a significant interest in employing hyperspectral unmixing in order to retrieve accurate quantitative information latent in hyperspectral imagery data. Recently, the ground-truth and laboratory measured spectral signatures promoted by advanced algorithms are proposed as a new path toward solving the unmixing problem of hyperspectral imagery in semi-supervised fashion. This paper suggests that the sensitivity of sparse unmixing techniques provides an ideal approach to extract and identify dust settled over/upon green vegetation canopy using hyperspectral airborne data. Atmospheric dust transports a variety of chemicals, some of which pose a risk to the ecosystem and human health (Kaskaoutis, et al., 2008). Many studies deal with the impact of dust on particulate matter (PM) and atmospheric pollution. Considering the potential impact of industrial pollutants, one of the most important considerations is the fact that suspended PM can have both a physical and a chemical impact on plants, soils, and water bodies. Not only can the particles covering surfaces cause physical distortion, but particles of diverse origin and different chemistries can also serve as chemical stressors and cause irreversible damage. Sediment dust load in an indoor environment can be spectrally assessed using reflectance spectroscopy (Chudnovsky and Ben-Dor, 2009). Small amounts of particulate pollution that may carry a signature of a forthcoming environmental hazard are of key interest when considering the effects of pollution. According to the most basic distribution dynamics, dust consists of suspended particulate matter in a fine state of subdivision that are raised and carried by wind. In this context, it is increasingly important to first, understand the distribution dynamics of pollutants, and

  2. Stellar winds

    International Nuclear Information System (INIS)

    Weymann, R.J.


    It is known that a steady outflow of material at comparable rates of mass loss but vastly different speeds is now known to be ubiquitous phenomenon among both the luminous hot stars and the luminous but cool red giants. The flows are probably massive enough in both cases to give rise to significant effects on stellar evolution and the mass balance between stars and the interstellar medium. The possible mechanisms for these phenomena as well as the methods of observation used are described. In particular, the mass-loss processes in stars other than the sun that also involve a steady flow of matter are considered. The evidence for their existence is described, and then the question of whether the process thought to produce the solar wind is also responsible for producing these stellar winds is explored

  3. A comparison between wet canopy evaporation estimated by stable isotope ratios of water and canopy interception measured by water balance (United States)

    Murakami, Shigeki; Hattori, Shohei; Uemura, Ryu


    Some papers proved that canopy interception is proportional to rainfall not only on a rain event basis but also on an hourly basis (e.g. Murakami, 2006, J. Hydrol.; Saito et al., 2013, J. Hydrol.). However, theoretically, evaporation does not depend on rainfall amount. These results are enigmatic and we need to reevaluate wet canopy evaporation. We measured gross rainfall and net rainfall in a plastic Christmas tree stand with a height of 165 cm placed on a 180-cm square tray as described in Murakami and Toba (2013, Hydrol. Res. Lett.). The measurement was conducted outside under natural rainfall. We also estimated wet canopy evaporation using stable isotope ratios of water. During a rain event, we manually sampled gross and net rainwater on an hourly basis. Evaporation was calculated using the difference between the δ18O (or δ2H) values in gross and net rainfall using isotope fractionation factor. Total gross rainfall in a target rain event in October, 2014, was 28.0 mm and net rainfall (discharge from the tray) was 22.7 mm, i.e. canopy interception was 5.3 mm (18.9% of gross rainfall). The δ18O (or δ2H) value in net rainfall was higher than that in gross rainfall because of fractionation by evaporation on wet canopy surface. Hourly evaporation calculated by the values of δ18O varied from 2% to 24% of gross rainfall, and the weighted average by hourly gross rainfall was 5.2% of gross rainfall. Further, we estimated rainfall interception using a tank model (Yoshida et al., 1993) assuming constant evaporation rate, i.e. 20% of gross rainfall. Total net rainfall calculated by the model was 23.1 mm, i.e. calculated canopy interception was 4.9 mm (17.5% of gross rainfall). Then, keeping the parameters of the model, we simulated net rainfall using hourly surface evaporation obtained by the δ18O values. Calculated net rainfall was 25.6 mm, i.e. wet canopy evaporation was only 2.4 mm (8.6% of gross rainfall). So far, possible explanation of the discrepancy between

  4. Under the canopy of nuclear parasol

    International Nuclear Information System (INIS)

    Kuznetsov, V.V.


    Information on ecological, medical-biologcal and social consequences of the nuclear weapon proliferation in USA is presented. Environmental contamination connected with radioactive wastes from the Rocky Flats plant, Savannah River plant, Hanford Reservation, Pantex plant is considered. Expenditures for decontamination of the territories, where nuclear weapon production plants are located, as well as for payment of compensations are discussed. Hazard of atomic submarines for the World humanity and the personnel (psychological) is analyzed. Policy of the USA government concerning these problems is shown

  5. Wind conditions for wind turbine design

    Energy Technology Data Exchange (ETDEWEB)

    Maribo Pedersen, B.


    Delegates from Europe and USA attended the meeting and discussed general aspects of wind conditions for wind turbine design. The subjects and the presented papers covered a very broad range of aspects of wind conditions and related influence on the wind turbine. (EHS)

  6. High-Resolution Vertical Profile Measurements for Carbon Dioxide and Water Vapour Concentrations Within and Above Crop Canopies (United States)

    Ney, Patrizia; Graf, Alexander


    We present a portable elevator-based facility for measuring CO2, water vapour, temperature and wind-speed profiles between the soil surface and the atmospheric surface layer above crop canopies. The end of a tube connected to a closed-path gas analyzer is continuously moved up and down over the profile range (in our case, approximately 2 m) while concentrations are logged at a frequency of 20 s^{-1}. Using campaign measurements in winter wheat, winter barley and a catch crop mixture (spring 2015 to autumn 2016) during different stages of crop development and different times of the day, we demonstrate a simple approach to correct for time lags, and the resulting profiles of 30-min mean mole fractions of CO2 and H2O over height increments of 0.025 m. The profiles clearly show the effects of soil respiration and photosynthetic carbon assimilation, varying both during the diurnal cycle and during the growing season. Profiles of temperature and wind speed are based on a ventilated finewire thermocouple and a hot-wire anemometer, respectively. Measurements over bare soil and a short plant canopy were analyzed in the framework of Monin-Obukhov similarity theory to check the validity of the measurements and raw-data-processing approach. Derived fluxes of CO2, latent and sensible heat and momentum show good agreement with eddy-covariance measurements.

  7. Simulations of tropical rainforest albedo: is canopy wetness important?

    Directory of Open Access Journals (Sweden)

    Silvia N.M. Yanagi

    Full Text Available Accurate information on surface albedo is essential for climate modelling, especially for regions such as Amazonia, where the response of the regional atmospheric circulation to the changes on surface albedo is strong. Previous studies have indicated that models are still unable to correctly reproduce details of the seasonal variation of surface albedo. Therefore, it was investigated the role of canopy wetness on the simulated albedo of a tropical rainforest by modifying the IBIS canopy radiation transfer code to incorporate the effects of canopy wetness on the vegetation reflectance. In this study, simulations were run using three versions of the land surface/ecosystem model IBIS: the standard version, the same version recalibrated to fit the data of albedo on tropical rainforests and a modified version that incorporates the effects of canopy wetness on surface albedo, for three sites in the Amazon forest at hourly and monthly scales. The results demonstrated that, at the hourly time scale, the incorporation of canopy wetness on the calculations of radiative transfer substantially improves the simulations results, whereas at the monthly scale these changes do not substantially modify the simulated albedo.

  8. Eo-1 Hyperion Measures Canopy Drought Stress In Amazonia (United States)

    Asner, Gregory P.; Nepstad, Daniel; Cardinot, Gina; Moutinho, Paulo; Harris, Thomas; Ray, David


    The central, south and southeast portions of the Amazon Basin experience a period of decreased cloud cover and precipitation from June through November. There are likely important effects of seasonal and interannual rainfall variation on forest leaf area index, canopy water stress, productivity and regional carbon cycling in the Amazon. While both ground and spaceborne studies of precipitation continue to improve, there has been almost no progress made in observing forest canopy responses to rainfall variability in the humid tropics. This shortfall stems from the large stature of the vegetation and great spatial extent of tropical forests, both of which strongly impede field studies of forest responses to water availability. Those few studies employing satellite measures of canopy responses to seasonal and interannual drought (e.g., Bohlman et al. 1998, Asner et al. 2000) have been limited by the spectral resolution and sampling available from Landsat and AVHRR sensors. We report on a study combining the first landscape-level, managed drought experiment in Amazon tropical forest with the first spaceborne imaging spectrometer observations of this experimental area. Using extensive field data on rainfall inputs, soil water content, and both leaf and canopy responses, we test the hypothesis that spectroscopic signatures unique to hyperspectral observations can be used to quantify relative differences in canopy stress resulting from water availability.

  9. Performance of an Ultrasonic Ranging Sensor in Apple Tree Canopies (United States)

    Escolà, Alexandre; Planas, Santiago; Rosell, Joan Ramon; Pomar, Jesús; Camp, Ferran; Solanelles, Francesc; Gracia, Felip; Llorens, Jordi; Gil, Emilio


    Electronic canopy characterization is an important issue in tree crop management. Ultrasonic and optical sensors are the most used for this purpose. The objective of this work was to assess the performance of an ultrasonic sensor under laboratory and field conditions in order to provide reliable estimations of distance measurements to apple tree canopies. To this purpose, a methodology has been designed to analyze sensor performance in relation to foliage ranging and to interferences with adjacent sensors when working simultaneously. Results show that the average error in distance measurement using the ultrasonic sensor in laboratory conditions is ±0.53 cm. However, the increase of variability in field conditions reduces the accuracy of this kind of sensors when estimating distances to canopies. The average error in such situations is ±5.11 cm. When analyzing interferences of adjacent sensors 30 cm apart, the average error is ±17.46 cm. When sensors are separated 60 cm, the average error is ±9.29 cm. The ultrasonic sensor tested has been proven to be suitable to estimate distances to the canopy in field conditions when sensors are 60 cm apart or more and could, therefore, be used in a system to estimate structural canopy parameters in precision horticulture. PMID:22163749

  10. Early-season wind erosion influenced by soil-incorporated green manure in the Pacific Northwest (United States)

    Management strategies are sought to minimize wind erosion of irrigated agricultural soils along the Columbia River of the Inland Pacific Northwest, particularly during the early season (March-April) when high winds coincide with sowing of vegetable crops. Early-season wind erosion potential from soi...

  11. The MODIS Vegetation Canopy Water Content product (United States)

    Ustin, S. L.; Riano, D.; Trombetti, M.


    Vegetation water stress drives wildfire behavior and risk, having important implications for biogeochemical cycling in natural ecosystems, agriculture, and forestry. Water stress limits plant transpiration and carbon gain. The regulation of photosynthesis creates close linkages between the carbon, water, and energy cycles and through metabolism to the nitrogen cycle. We generated systematic weekly CWC estimated for the USA from 2000-2006. MODIS measures the sunlit reflectance of the vegetation in the visible, near-infrared, and shortwave infrared. Radiative transfer models, such as PROSPECT-SAILH, determine how sunlight interacts with plant and soil materials. These models can be applied over a range of scales and ecosystem types. Artificial Neural Networks (ANN) were used to optimize the inversion of these models to determine vegetation water content. We carried out multi-scale validation of the product using field data, airborne and satellite cross-calibration. An Algorithm Theoretical Basis Document (ATBD) of the product is under evaluation by NASA. The CWC product inputs are 1) The MODIS Terra/Aqua surface reflectance product (MOD09A1/MYD09A1) 2) The MODIS land cover map product (MOD12Q1) reclassified to grassland, shrub-land and forest canopies; 3) An ANN trained with PROSPECT-SAILH; 4) A calibration file for each land cover type. The output is an ENVI file with the CWC values. The code is written in Matlab environment and is being adapted to read not only the 8 day MODIS composites, but also daily surface reflectance data. We plan to incorporate the cloud and snow mask and generate as output a geotiff file. Vegetation water content estimates will help predicting linkages between biogeochemical cycles, which will enable further understanding of feedbacks to atmospheric concentrations of greenhouse gases. It will also serve to estimate primary productivity of the biosphere; monitor/assess natural vegetation health related to drought, pollution or diseases

  12. Wind Technologies & Evolving Opportunities (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Robichaud, R.


    This presentation covers opportunities for wind technology; wind energy market trends; an overview of the National Wind Technology Center near Boulder, Colorado; wind energy price and cost trends; wind turbine technology improvements; and wind resource characterization improvements.

  13. Sunfleck dynamics and canopy structure in a Phaseolus vulgaris L. canopy (United States)

    Barradas, Victor L.; Jones, Hamlyn G.; Clark, Jerry A.

    Photosynthetic photon flux density (PPFD) fluctuations were quantified in crops of beans (Phaseolus vulgaris L.) in the field as the canopy developed between July and October. Two different methods were used to select sunflecks and shadeflecks. Four ranges of zenith angles (60-70°, 50-60°, 40-50° and 30-40°) were selected for analysing PPFD fluctuations. At the base of the canopy, sunflecks contributed 18%, 53%, 10% and 4% during the 1st, 3rd, 5th and 7th week of growth, respectively. At a height of 20 cm above the soil surface, the respective contributions were 28% and 21% during the 6th and 7th weeks. Sunfleck lengths of 0-5 s were the most frequent, with the greatest number being found with smaller zenith angles. The proportion of short duration sunflecks increased as the growth period advanced. The number of long sunflecks decreased with time, with very few longer than 100 s by the 5th and 7th weeks. The distributions of sunfleck irradiance were similar to normal distributions and irradiance ranged in μmol m-2 s-1 from 600-900, 800-1500 and 1000-1600 respectively at zenith angles of 50-60°, 40-50° and 30-40°. A multiple regression showed that short sunflecks (100 s) depended on zenith angle and Ls. Shadefleck distributions were similar to those for sunflecks but there were fewer of the shortest examples and more of the longest. The best statistical distribution to describe sunflecks and shadeflecks was the gamma distribution, which could provide the basis for the future development of a good model for sunfleck and shadefleck distributions.

  14. The Atmospheric Chemistry and Canopy Exchange Simulation System (ACCESS: model description and application to a temperate deciduous forest canopy

    Directory of Open Access Journals (Sweden)

    R. D. Saylor


    Full Text Available Forest canopies are primary emission sources of biogenic volatile organic compounds (BVOCs and have the potential to significantly influence the formation and distribution of secondary organic aerosol (SOA mass. Biogenically-derived SOA formed as a result of emissions from the widespread forests across the globe may affect air quality in populated areas, degrade atmospheric visibility, and affect climate through direct and indirect forcings. In an effort to better understand the formation of SOA mass from forest emissions, a 1-D column model of the multiphase physical and chemical processes occurring within and just above a vegetative canopy is being developed. An initial, gas-phase-only version of this model, the Atmospheric Chemistry and Canopy Exchange Simulation System (ACCESS, includes processes accounting for the emission of BVOCs from the canopy, turbulent vertical transport within and above the canopy and throughout the height of the planetary boundary layer (PBL, near-explicit representation of chemical transformations, mixing with the background atmosphere and bi-directional exchange between the atmosphere and canopy and the atmosphere and forest floor. The model formulation of ACCESS is described in detail and results are presented for an initial application of the modeling system to Walker Branch Watershed, an isoprene-emission-dominated forest canopy in the southeastern United States which has been the focal point for previous chemical and micrometeorological studies. Model results of isoprene profiles and fluxes are found to be consistent with previous measurements made at the simulated site and with other measurements made in and above mixed deciduous forests in the southeastern United States. Sensitivity experiments are presented which explore how canopy concentrations and fluxes of gas-phase precursors of SOA are affected by background anthropogenic nitrogen oxides (NOx. Results from these experiments suggest that the

  15. Experimental relations between airborne and ground measured wheat canopy temperatures (United States)

    Millard, J. P.; Reginato, R. J.; Idso, S. B.; Jackson, R. D.; Goettelman, R. C.; Leroy, M. J.


    Experiments using ground-based measurements of canopy temperatures have shown that plant temperatures are good indicators of plant water stress, and thus are useful for assessing water requirements and predicting yields. An intensive 23-day airborne- and ground-measurement program was conducted in Phoenix, Arizona in 1977 to compare airborne-acquired wheat canopy temperatures with simultaneous ground measurements. For canopies that covered at least 85 percent of the soil surface, airborne measurements differed from ground measurements of plant temperature by less than 2 C. Regardless of the amount of plant cover, the airborne measurements were virtually identical to ground-nadir measurements, and thus represent a combination of plant temperature and solid background temperature.


    Energy Technology Data Exchange (ETDEWEB)

    MacTaggart, David [School of Mathematics and Statistics University of Glasgow, Glasgow G12 8QW (United Kingdom); Guglielmino, Salvo L.; Zuccarello, Francesca [Dipartimento di Fisica e Astronomia—Sezione Astrofisica, Università di Catania, via S. Sofia 78, I-95123 Catania (Italy)


    Penumbrae are the manifestation of magnetoconvection in highly inclined (to the vertical direction) magnetic field. The penumbra of a sunspot tends to form, initially, along the arc of the umbra antipodal to the main region of flux emergence. The question of how highly inclined magnetic field can concentrate along the antipodal curves of umbrae, at least initially, remains to be answered. Previous observational studies have suggested the existence of some form of overlying magnetic canopy that acts as the progenitor for penumbrae. We propose that such overlying magnetic canopies are a consequence of how the magnetic field emerges into the atmosphere and are, therefore, part of the emerging region. We show, through simulations of twisted flux tube emergence, that canopies of highly inclined magnetic field form preferentially at the required locations above the photosphere.

  17. Wind Power Meteorology

    DEFF Research Database (Denmark)

    Lundtang Petersen, Erik; Mortensen, Niels Gylling; Landberg, Lars

    Wind power meteorology has evolved as an applied science, firmly founded on boundary-layer meteorology, but with strong links to climatology and geography. It concerns itself with three main areas: siting of wind turbines, regional wind resource assessment, and short-term prediction of the wind...... resource. The history, status and perspectives of wind power meteorology are presented, with emphasis on physical considerations and on its practical application. Following a global view of the wind resource, the elements of boundary layer meteorology which are most important for wind energy are reviewed......: wind profiles and shear, turbulence and gust, and extreme winds. The data used in wind power meteorology stem mainly from three sources: onsite wind measurements, the synoptic networks, and the re-analysis projects. Wind climate analysis, wind resource estimation and siting further require a detailed...

  18. Experimental canopy removal enhances diversity of vernal pond amphibians. (United States)

    Skelly, David K; Bolden, Susan R; Freidenburg, L Kealoha


    Vernal ponds are often treated as protected environments receiving special regulation and management. Within the landscapes where they are found, forest vegetation frequently dominates surrounding uplands and can grow to overtop and shade pond basins. Two bodies of research offer differing views of the role of forest canopy for vernal pond systems. Studies of landscape conversion suggest that removing forest overstory within uplands can cause local extinctions of amphibians by altering terrestrial habitat or hindering movement. Studies of canopy above pond basins imply an opposite relationship; encroachment of overstory vegetation can be associated with local extinctions potentially via changes in light, thermal, and food resource environments. Unresolved uncertainties about the role of forest canopy reveal significant gaps in our understanding of wetland species distributions and dynamics. Any misunderstanding of canopy influences is simultaneously important to managers because current practices emphasize promoting or conserving vegetation growth particularly within buffers immediately adjacent to ponds. We evaluated this apparent contradiction by conducting a landscape-scale, long-term experiment using 14 natural vernal ponds. Tree felling at six manipulated ponds was limited in spatial scope but was nevertheless effective in increasing water temperature. Compared with eight control ponds, manipulated ponds maintained more amphibian species during five years post-manipulation. There was little evidence that any species was negatively influenced, and the reproductive effort of species for which we estimated egg inputs maintained pretreatment population densities in manipulated compared with control ponds. Overall, our experiment shows that a carefully circumscribed reduction of overhead forest canopy can enhance the capacity of vernal ponds to support wildlife diversity and suggests a scale dependence of canopy influences on amphibians. These findings have

  19. Effect of canopy architectural variation on transpiration and thermoregulation (United States)

    Linn, R.; Banerjee, T.


    One of the major scientific questions identified by the NGEE - Tropics campaign is the effect of disturbances such as forest fires, vegetation thinning and land use change on carbon, water and energy fluxes. Answers to such questions can help develop effective forest management strategies and shape policies to mitigate damages under natural and anthropogenic climate change. The absence of horizontal and vertical variation of forest canopy structure in current models is a major source of uncertainty in answering these questions. The current work addresses this issue through a bottom up process based modeling approach to systematically investigate the effect of forest canopy architectural variation on plant physiological response as well as canopy level fluxes. A plant biophysics formulation is used which is based on the following principles: (1) a model for the biochemical demand for CO2 as prescribed by photosynthesis models. This model can differentiate between photosynthesis under light-limited and nutrient-limited scenarios. (2) A Fickian mass transfer model including transfer through the laminar boundary layer on leaves that may be subjected to forced or free convection depending upon the mean velocity and the radiation load; (3) an optimal leaf water use strategy that maximizes net carbon gain for a given transpiration rate to describe the stomatal aperture variation; (4) a leaf-level energy balance to accommodate evaporative cooling. Such leaf level processes are coupled to solutions of atmospheric flow through vegetation canopies. In the first test case, different scenarios of top heavy and bottom heavy (vertical) foliage distributions are investigated within a one-dimensional framework where no horizontal heterogeneity of canopy structure is considered. In another test case, different spatial distributions (both horizontal and vertical) of canopy geometry (land use) are considered, where flow solutions using large eddy simulations (LES) are coupled to the

  20. Prospecting for Wind (United States)

    Swapp, Andy; Schreuders, Paul; Reeve, Edward


    Many people use wind to help meet their needs. Over the years, people have been able to harness or capture the wind in many different ways. More recently, people have seen the rebirth of electricity-generating wind turbines. Thus, the age-old argument about technology being either good or bad can also be applied to the wind. The wind can be a…

  1. Careers in Wind Energy (United States)

    Liming, Drew; Hamilton, James


    As a common form of renewable energy, wind power is generating more than just electricity. It is increasingly generating jobs for workers in many different occupations. Many workers are employed on wind farms: areas where groups of wind turbines produce electricity from wind power. Wind farms are frequently located in the midwestern, western, and…

  2. Relationships Between Canopy Openness, Snow Cover and Ground Temperature. (United States)

    Mattson, L.


    Red pine stands, which have undergone varying degrees of thinning and site preparation, are examined with a view to identifying the relationships which exist between canopy openness, snow cover and ground temperature. More specifically, eight red pine stands, which have been intentionally harvested at varying densities within the National Petawawa Research Forest, have been heavily instrumented for detailed measurements of canopy openness, snow cover characteristics, above and subsurface temperature profiles as well as micro-meteorological conditions. Results allow for the specification of relationships between the effect of thinning and site preparation on the soils thermal regime which, in turn, impacts upon the natural regeneration of the pine.

  3. Effects of atmospheric VPD, plant canopies, and low-water years on leaf stomatal conductance and photosynthetic water use efficiency in fifteen potential crop species for use in arid environments (United States)

    Lue, A.; Jasoni, R. L.; Arnone, J.


    When evaluating the potential for growing alternative crop species in arid environments, high vapor pressure deficits (VPDs) that could potentially inhibit crop productivity by limiting stomatal conductance and CO2 uptake must be considered. The objective of this study was to quantify the effects of VPD and irrigation levels on leaf stomatal conductance (gs) and photosynthetic water use efficiency (PWUE) for a range of alternative crop species for aridland agriculture. We evaluated fifteen alternative crops in a field trial in the northern Nevada Walker River Basin. Plots of each species were subjected to two irrigation treatments, 4 and 2 acre-feet per growing season, to simulate normal-year and dry-year irrigation levels. We quantified gs and photosynthesis (A) under decreasing relative humidity (RH) (increasing VPDs) in 10% increments, from about 75% to 2%. About seventeen leaves per species were measured throughout the 2010 growing season over eleven days of samplings. Canopy air temperature and RH were logged in experimental plots to calculate diel and seasonal patterns in canopy VPD. Volumetric water content was also collected to quantify the effects of irrigation treatments on soil moisture and leaf gas exchange. Species varied in their gs and PWUE responses to increasing VPD. Stomatal conductance (gs) of leaves of all species generally increased initially as RH was lowered but then decreased at differing rates as RH dropped further. Average gs (across all measurement VPDs), maximum gs, maximum PWUE, and corresponding VPDs differed among species and between irrigation treatments. Some species (Medicago sativa, Leymus racemosus) showed higher gs across the range of measurement VPDs than other species (Bothrichloa ischaemum, Sorghastrum nutans), while some species exhibited maximum gs and maximum PWUE at higher VPDs (Erograstis tef, Calamovilfa longifolia) than other species (Leymus cinereus, Sorghastrum nutans). These results suggest that some species may

  4. The long-term changes in summer-time photochemistry due to urban canopy induced meteorological forcing (United States)

    Huszar, Peter; Karlicky, Jan; Bardachova, Tatsiana; Belda, Michal; Halenka, Tomas


    Urban surfaces are clearly distinguished from rural ones and represent a specific forcing on meteorological conditions resulting in higher temperatures (urban heat island - UHI), reduced wind speed, enhanced turbulence, reduced humidity etc. It is straightforward to expect that these effects have further impact on the chemistry over these surfaces. This study intends to evaluate the summertime changes in ozone photo-chemistry due to urban canopy meteorological effects using the regional climate model RegCM4 coupled to the CAMx chemistry transport model. Experiments cover the 2001-2010 period focusing on central Europe. In all experiments, emission are kept the same and only the individual elements of meteorological forcing are varied. The most important ones are considered: changes of temperature, horizontal wind and turbulence. The surface ozone response to the inclusion of urban induced temperature increase is, over urban centers, is rather negative. Decreased wind speeds further contribute to ozone reduction due to suppressed transport of NOx to the surrounding rural areas, which in turn, increases the titration. The enhanced vertical mixing however have a leading impact on ozone levels: stronger vertical eddy transport removes NOx from urban environment and thus supports ozone formation. The combined effect of the individual ones is an increase of ozone. As each of the urban induced meteorological effects (changes of temperature, wind, turbulence) have a clear daily cycle, we examined the daily cycle of the impact on ozone and its precursors as well, and, it is shown that different mechanism become important throughout the day.

  5. Exploring Relationships between Canopy Architecture, Light Distribution, and Photosynthesis in Contrasting Rice Genotypes Using 3D Canopy Reconstruction

    Directory of Open Access Journals (Sweden)

    Alexandra J. Burgess


    Full Text Available The arrangement of leaf material is critical in determining the light environment, and subsequently the photosynthetic productivity of complex crop canopies. However, links between specific canopy architectural traits and photosynthetic productivity across a wide genetic background are poorly understood for field grown crops. The architecture of five genetically diverse rice varieties—four parental founders of a multi-parent advanced generation intercross (MAGIC population plus a high yielding Philippine variety (IR64—was captured at two different growth stages using a method for digital plant reconstruction based on stereocameras. Ray tracing was employed to explore the effects of canopy architecture on the resulting light environment in high-resolution, whilst gas exchange measurements were combined with an empirical model of photosynthesis to calculate an estimated carbon gain and total light interception. To further test the impact of different dynamic light patterns on photosynthetic properties, an empirical model of photosynthetic acclimation was employed to predict the optimal light-saturated photosynthesis rate (Pmax throughout canopy depth, hypothesizing that light is the sole determinant of productivity in these conditions. First, we show that a plant type with steeper leaf angles allows more efficient penetration of light into lower canopy layers and this, in turn, leads to a greater photosynthetic potential. Second the predicted optimal Pmax responds in a manner that is consistent with fractional interception and leaf area index across this germplasm. However, measured Pmax, especially in lower layers, was consistently higher than the optimal Pmax indicating factors other than light determine photosynthesis profiles. Lastly, varieties with more upright architecture exhibit higher maximum quantum yield of photosynthesis indicating a canopy-level impact on photosynthetic efficiency.

  6. Estimation of leaf area index for cotton canopies using the LI-COR LAI-2000 plant canopy analyzer

    International Nuclear Information System (INIS)

    Hicks, S.K.; Lascano, R.J.


    Measurement of leaf area index (LAI) is useful for understanding cotton (Gossypium hirsutum L.) growth, water use, and canopy light interception. Destructive measurement is time consuming and labor intensive. Our objective was to evaluate sampling procedures using the Li-Cor (Lincoln, NE) LAI 2000 plant canopy analyzer (PCA) for nondestructive estimation of cotton LAI on the southern High Plains of Texas. We evaluated shading as a way to allow PCA measurements in direct sunlight and the influence of solar direction when using this procedure. We also evaluated a test of canopy homogeneity (information required for setting PCA field of view), determined the number of below-canopy measurements required, examined the influence of leaf wilting on PCA LAI determinations, and tested an alternative method (masking the sensor's two outer rings) for calculating LAI from PCA measurements. The best agreement between PCA and destructively measured LAI values was obtained when PCA observations were made either during uniformly overcast conditions or around solar noon using the shading method. Heterogeneous canopies with large gaps between rows required both a restricted (45 degrees) azimuthal field of view and averaging the LAI values for two transects, made with the field of view parallel and then perpendicular to the row direction. This method agreed well (r2 = 0.84) with destructively measured LAI in the range of 0.5 to 3.5 and did not deviate from a 1:1 relationship. The PCA underestimated LAI by greater than or equal 20% when measurements were made on canopies wilted due to water stress. Masking the PCA sensor's outer rings did not improve the relationship between estimated and measured LAI in the range of LAI sampled

  7. LBA-ECO LC-15 Aerodynamic Roughness Maps of Vegetation Canopies, Amazon Basin: 2000 (United States)

    National Aeronautics and Space Administration — This data set, LBA-ECO LC-15 Aerodynamic Roughness Maps of Vegetation Canopies, Amazon Basin: 2000, provides physical roughness maps of vegetation canopies in the...

  8. Tree Canopy Cover for the Circumpolar Taiga-Tundra Ecotone: 2000-2005 (United States)

    National Aeronautics and Space Administration — This data set provides a map of selected areas with defined tree canopy cover over the circumpolar taiga-tundra ecotone (TTE). Canopy cover was derived from the...

  9. The third RAdiation transfer Model Intercomparison (RAMI) exercise: Documenting progress in canopy reflectance models

    NARCIS (Netherlands)

    Widlowski, J.L.; Taberner, M.; Pinty, B.; Bruniquel-Pinel, V.; Disney, M.I.; Fernandes, R.; Gastellu-Etchegorry, J.P.; Gobron, N.; Kuusk, A.; Lavergne, T.; LeBlanc, S.; Lewis, P.E.; Martin, E.; Mõttus, M.; North, P.R.J.; Qin, W.; Robustelli, M.; Rochdi, N.; Ruiloba, R.; Thompson, R.; Verhoef, W.; Verstraete, M.M.; Xie, D.


    [1] The Radiation Transfer Model Intercomparison ( RAMI) initiative benchmarks canopy reflectance models under well-controlled experimental conditions. Launched for the first time in 1999, this triennial community exercise encourages the systematic evaluation of canopy reflectance models on a

  10. Tree Canopy Cover for the Circumpolar Taiga-Tundra Ecotone: 2000-2005 (United States)

    National Aeronautics and Space Administration — ABSTRACT: This data set provides a map of selected areas with defined tree canopy cover over the circumpolar taiga-tundra ecotone (TTE). Canopy cover was derived...

  11. Anywhere the Wind Blows does Really Matter (United States)

    Montaldo, Nicola; Oren, Ram


    The variation of net ecosystem carbon exchange (NEE) has been explained at coarse scales with variation of forcing variables among climate regions and associated biomes, at the intermediate, mesoscale, with differences among dominating vegetation types and conditions, and at the misoscale with heterogeneity of the eddy covariance footprint properties. Wind is rarely considered in analysis of surface fluxes for its effects on periodic budgets of water and carbon. In many regions conditions change frequently between maritime and continental depending on wind velocity (VW) and direction. In these regions, water and carbon fluxes may respond to mesoscale weather patterns extending maritime influences far inland. Using eddy-covariance data from Sardinia, we show that daytime net carbon exchange (NEE) of a mixed pasture-woodland (grass-wild olive) ecosystem (Detto et al., 2006; Montaldo et al., 2008) increased with VW, especially during summer-dry conditions. As VW increased, the air, humidified over sea, remains relatively moist and cool to a greater distance inland, reaching only ~50 km during slow Saharan Sirocco wind but >160 km during mostly Mistral wind (4 m/s) from Continental Europe. A 30% lower vapor pressure deficit (D) associated with high VW (average 2 kPa at 4 m/s), allowed a 50% higher canopy stomatal conductance (gc) and, thus, photosynthesis. However, because gc and D have opposite effects on evapotranspiration (Ee), Ee was unaffected by VW. Thus, higher NEE during summertime Mistral reflects increased ecosystem water-use efficiency (We) and a departure from a costly carbon-water tradeoff. Yet many regions often experience high velocity winds, attention is typically focused on the capacity of strong winds to fan regional fires, threatening human habitation and natural habitats, and reducing Carbon storage (C), NEE and latent heat flux. However, depending on their origin, high velocity winds can bring continental air to the coast (e.g., Santa Ana winds

  12. Influence of wind loading




    Each wind load is determined by a probabilistic-statistical method based on the concept of “equivalent static wind load”, on the assumption that structural frames and components/cladding behave elastically in strong wind.

  13. Tower Winds - Cape Kennedy (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Digitized data taken from Wind Gust Charts. Record contains hourly wind directions and speed with a peak wind recorded at the end of each day. Sorted by: station,...

  14. Wind energy program overview

    International Nuclear Information System (INIS)


    This overview emphasizes the amount of electric power that could be provided by wind power rather than traditional fossil fuels. New wind power markets, advances in technology, technology transfer, and wind resources are some topics covered in this publication

  15. Charles River (United States)

    Information on the efforts of the US EPA, the Commonwealth of Massachusetts, the municipalities within the Charles River Watershed and nongovernmental organizations to improve the water quality of the Charles River.

  16. Antecedent Rivers

    Indian Academy of Sciences (India)

    Figure 3). These rivers seem to have maintained ... the river cuts a deep can- yon with practically vertical walls (valley slopes). ... furiously at work, cutting channel beds, eroding slopes, and denuding watersheds. This ever-youthfulness of the.

  17. A comparison of ground-based methods for estimating canopy closure for use in phenology research


    Smith, AM; Ramsay, PM


    Abstract Climate change is influencing tree phenology, causing earlier and more prolonged canopy closure in temperate forests. Canopy closure is closely associated with understorey light, so shifts in its timing have wide-reaching consequences for ecological processes in the understorey. Widespread monitoring of forest canopies through time is needed to understand changes in light availability during spring in particular. Canopy openness, derived from hemispherical photography, has frequently...

  18. Application of Lidar remote sensing to the estimation of forest canopy and stand structure (United States)

    Lefsky, Michael Andrew

    A new remote sensing instrument, SLICER (Scanning Lidar Imager of Canopies by Echo Recovery), has been applied to the problem of remote sensing the canopy and stand structure of two groups of deciduous forests, Tulip Poplar-Oak stands in the vicinity of Annapolis, MD. and bottomland hardwood stands near Williamston, NC. The ability of the SLICER instrument to remotely sense the vertical distribution of canopy structure (Canopy Height Profile), bulk canopy transmittance, and several indices of canopy height has been successfully validated using twelve stands with coincident field and SLICER estimates of canopy structure. Principal components analysis has been applied to canopy height profiles from both field sites, and three significant factors were identified, each closely related to the amount of foliage in a recognizable layer of the forest, either understory, midstory, or overstory. The distribution of canopy structure to these layers is significantly correlated with the size and number of stems supporting them. The same layered structure was shown to apply to both field and SLICER remotely sensed canopy height profiles, and to apply to SLICER remotely sensed canopy profiles from both the bottomland hardwood stands in the coastal plain of North Carolina, and to mesic Tulip-Poplars stands in the upland coastal plain of Maryland. Linear regressions have demonstrated that canopy and stand structure are correlated to both a statistically significant and useful degree. Stand age and stem density is more highly correlated to stand height, while stand basal area and aboveground biomass are more closely related to a new measure of canopy structure, the quadratic mean canopy height. A geometric model of canopy structure has been shown to explain the differing relationships between canopy structure and stand basal area for stands of Eastern Deciduous Forest and Douglas Fir Forest.

  19. Modelling Wind for Wind Farm Layout Optimization Using Joint Distribution of Wind Speed and Wind Direction


    Ju Feng; Wen Zhong Shen


    Reliable wind modelling is of crucial importance for wind farm development. The common practice of using sector-wise Weibull distributions has been found inappropriate for wind farm layout optimization. In this study, we propose a simple and easily implementable method to construct joint distributions of wind speed and wind direction, which is based on the parameters of sector-wise Weibull distributions and interpolations between direction sectors. It is applied to the wind measurement data a...

  20. Denmark Wind Energy Programme

    DEFF Research Database (Denmark)

    Shen, Wen Zhong


    In this paper, a summary of some ongoing wind energy projects in Denmark is given. The research topics comprise computational model development, wind turbine design, low noise airfoil and blade design, control device development, wake modelling, and wind farm layout optimization.......In this paper, a summary of some ongoing wind energy projects in Denmark is given. The research topics comprise computational model development, wind turbine design, low noise airfoil and blade design, control device development, wake modelling, and wind farm layout optimization....

  1. Superconducting Wind Turbine Generators


    Yunying Pan; Danhzen Gu


    Wind energy is well known as a renewable energy because its clean and less polluted characteristic, which is the foundation of development modern wind electricity. To find more efficient wind turbine is the focus of scientists around the world. Compared from conventional wind turbines, superconducting wind turbine generators have advantages at zero resistance, smaller size and lighter weight. Superconducting wind turbine will inevitably become the main trends in this area. This paper intends ...

  2. Wind turbines, is it just wind?

    International Nuclear Information System (INIS)

    Boiteux, M.


    The author first outlines that wind energy is not only random, but almost absent in extreme situations when it would be needed (for example and notably, very cold weather without wind). He suggests the association of a gas turbine to each wind turbine, so that the gas turbine will replace non operating wind turbines. He notices that wind turbines are not proximity energy as they were said to be, and that profitability in fact requires tens of grouped giant wind turbines. He also outlines the high cost of construction of grids for the connection of these wind turbines. Thus, he states that wind energy is far from being profitable in the present conditions of electricity tariffs in France

  3. Gaseous elemental mercury (GEM) fluxes over canopy of two typical subtropical forests in south China (United States)

    Yu, Qian; Luo, Yao; Wang, Shuxiao; Wang, Zhiqi; Hao, Jiming; Duan, Lei


    Mercury (Hg) exchange between forests and the atmosphere plays an important role in global Hg cycling. The present estimate of global emission of Hg from natural source has large uncertainty, partly due to the lack of chronical and valid field data, particularly for terrestrial surfaces in China, the most important contributor to global atmospheric Hg. In this study, the micrometeorological method (MM) was used to continuously observe gaseous elemental mercury (GEM) fluxes over forest canopy at a mildly polluted site (Qianyanzhou, QYZ) and a moderately polluted site (Huitong, HT, near a large Hg mine) in subtropical south China for a full year from January to December in 2014. The GEM flux measurements over forest canopy in QYZ and HT showed net emission with annual average values of 6.67 and 0.30 ng m-2 h-1, respectively. Daily variations of GEM fluxes showed an increasing emission with the increasing air temperature and solar radiation in the daytime to a peak at 13:00, and decreasing emission thereafter, even as a GEM sink or balance at night. High temperature and low air Hg concentration resulted in the high Hg emission in summer. Low temperature in winter and Hg absorption by plant in spring resulted in low Hg emission, or even adsorption in the two seasons. GEM fluxes were positively correlated with air temperature, soil temperature, wind speed, and solar radiation, while it is negatively correlated with air humidity and atmospheric GEM concentration. The lower emission fluxes of GEM at the moderately polluted site (HT) when compared with that in the mildly polluted site (QYZ) may result from a much higher adsorption fluxes at night in spite of a similar or higher emission fluxes during daytime. This shows that the higher atmospheric GEM concentration at HT restricted the forest GEM emission. Great attention should be paid to forests as a crucial increasing Hg emission source with the decreasing atmospheric GEM concentration in polluted areas because of Hg

  4. Contested Rivers

    DEFF Research Database (Denmark)

    Gorm Hansen, Louise Lyngfeldt

    explores translocal connections through ethnographic fieldwork at a global water conference and preliminary fieldwork at chosen locations on China's Nu River. The Nu River is one of the last undammed rivers in Asia and runs through China close to the Chinese-Burmese border, then flows into the Andaman Sea...

  5. Floristic Composition, Tree Canopy Structure and Regeneration in a ...

    African Journals Online (AJOL)

    Floristic composition, plant species diversity, tree canopy structure and regeneration were assessed in a degraded tropical humid rainforest in Nigeria using a systematic line transect sampling technique for plot demarcation. All plants in a plot were identified and classified into families while the diameters and heights of ...

  6. A New Mechanism of Canopy Effect in Unsaturated Freezing Soils

    Directory of Open Access Journals (Sweden)

    Teng Jidong


    Full Text Available Canopy effect refers to the phenomenon where moisture accumulates underneath an impervious cover. Field observation reveals that canopy effect can take place in relatively dry soils where the groundwater table is deep and can lead to full saturation of the soil immediately underneath the impervious cover. On the other hand, numerical analysis based on existing theories of heat and mass transfer in unsaturated soils can only reproduce a minor amount of moisture accumulation due to an impervious cover, particularly when the groundwater table is relatively deep. In attempt to explain the observed canopy effect in field, this paper proposes a new mechanism of moisture accumulation in unsaturated freezing soils: vapour transfer in such a soil is accelerated by the process of vapour-ice desublimation. A new approach for modelling moisture and heat movements is proposed, in which the phase change of evaporation, condensation and de-sublimation of vapor flow are taken into account. The computed results show that the proposed model can indeed reproduce the unusual moisture accumulation observed in relatively dry soils. The results also demonstrate that soil freezing fed by vapour transfer can result in a water content close to full saturation. Since vapour transfer is seldom considered in geotechnical design, the canopy effect deserves more attention during construction and earth works in cold and arid regions.

  7. Canopy management, leaf fall and litter quality of dominant tree ...

    African Journals Online (AJOL)

    Small-scale farmers in the banana-coffee agro-zone of Central Uganda plant and maintain trees to provide a range of benefits. However, the impact of trees on soil fertility and crop yields is small. On many farms, trees exist in infinite numbers, compositions, with no proper spacing, sequencing and canopy management ...

  8. Tree canopies facilitate invasion of communal savanna rangelands ...

    African Journals Online (AJOL)

    canopy micro-sites is most likely explained by either seed dispersal patterns imposed by avian dispersal agents and/or micro-site variation. An assessment of population size class structure of Lantana in the communal lands suggested that the ...

  9. Estimates of forest canopy height and aboveground biomass using ICESat. (United States)

    Michael A. Lefsky; David J. Harding; Michael Keller; Warren B. Cohen; Claudia C. Carabajal; Fernando Del Bom; Maria O. Hunter; Raimundo Jr. de Oliveira


    Exchange of carbon between forests and the atmosphere is a vital component of the global carbon cycle. Satellite laser altimetry has a unique capability for estimating forest canopy height, which has a direct and increasingly well understood relationship to aboveground carbon storage. While the Geoscience Laser Altimeter System (GLAS) onboard the Ice, Cloud and land...

  10. Incorporating Plant Phenology Dynamics in a Biophysical Canopy Model (United States)

    Barata, Raquel A.; Drewry, Darren


    The Multi-Layer Canopy Model (MLCan) is a vegetation model created to capture plant responses to environmental change. Themodel vertically resolves carbon uptake, water vapor and energy exchange at each canopy level by coupling photosynthesis, stomatal conductance and leaf energy balance. The model is forced by incoming shortwave and longwave radiation, as well as near-surface meteorological conditions. The original formulation of MLCan utilized canopy structural traits derived from observations. This project aims to incorporate a plant phenology scheme within MLCan allowing these structural traits to vary dynamically. In the plant phenology scheme implemented here, plant growth is dependent on environmental conditions such as air temperature and soil moisture. The scheme includes functionality that models plant germination, growth, and senescence. These growth stages dictate the variation in six different vegetative carbon pools: storage, leaves, stem, coarse roots, fine roots, and reproductive. The magnitudes of these carbon pools determine land surface parameters such as leaf area index, canopy height, rooting depth and root water uptake capacity. Coupling this phenology scheme with MLCan allows for a more flexible representation of the structure and function of vegetation as it responds to changing environmental conditions.

  11. Amazonian functional diversity from forest canopy chemical assembly. (United States)

    Asner, Gregory P; Martin, Roberta E; Tupayachi, Raul; Anderson, Christopher B; Sinca, Felipe; Carranza-Jiménez, Loreli; Martinez, Paola


    Patterns of tropical forest functional diversity express processes of ecological assembly at multiple geographic scales and aid in predicting ecological responses to environmental change. Tree canopy chemistry underpins forest functional diversity, but the interactive role of phylogeny and environment in determining the chemical traits of tropical trees is poorly known. Collecting and analyzing foliage in 2,420 canopy tree species across 19 forests in the western Amazon, we discovered (i) systematic, community-scale shifts in average canopy chemical traits along gradients of elevation and soil fertility; (ii) strong phylogenetic partitioning of structural and defense chemicals within communities independent of variation in environmental conditions; and (iii) strong environmental control on foliar phosphorus and calcium, the two rock-derived elements limiting CO2 uptake in tropical forests. These findings indicate that the chemical diversity of western Amazonian forests occurs in a regionally nested mosaic driven by long-term chemical trait adjustment of communities to large-scale environmental filters, particularly soils and climate, and is supported by phylogenetic divergence of traits essential to foliar survival under varying environmental conditions. Geographically nested patterns of forest canopy chemical traits will play a role in determining the response and functional rearrangement of western Amazonian ecosystems to changing land use and climate.

  12. Computing energy budget within a crop canopy from Penmann's ...

    Indian Academy of Sciences (India)

    R. Narasimhan, Krishtel eMaging Solutions

    Computing energy budget within a crop canopy from. Penmann's formulae. Mahendra Mohan∗ and K K Srivastava∗∗. ∗Radio and Atmospheric Science Division, National Physical Laboratory, New Delhi 110012, India. ∗∗Department of Chemical Engineering, Institute of Technology, Banaras Hindu University, Varanasi.

  13. Computing energy budget within a crop canopy from Penmann's ...

    Indian Academy of Sciences (India)

    layer model, is rede-fined as a function of micrometeorological and physiological profiles of crop canopy. The sources and sinks of sensible and latent heat uxes are assumed to lie on a fictitious plane called zero-displacement plane. Algorithms ...

  14. Amblyomma tapirellum (Dunn, 1933) collected from tropical forest canopy

    NARCIS (Netherlands)

    Loaiza, J.R.; Miller, M.J.; Bermingham, E.; Sanjur, O.I.; Jansen, P.A.; Rovira, J.R.; Alvarez, E.; Rodriguez, E.; Davis, P.; Dutari, L.C.; Pecor, J.; Foley, D.; Radtke, M.; Pongsiri, M.J.


    Free-ranging ticks are widely known to be restricted to the ground level of vegetation. Here, we document the capture of the tick species Amblyomma tapirellum in light traps placed in the forest canopy of Barro Colorado Island, central Panama. A total of forty eight adults and three nymphs were

  15. Tree diversity and canopy cover in cocoa systems in Ghana

    DEFF Research Database (Denmark)

    Asare, Richard; Ræbild, Anders


    Cocoa (Theobroma cacao L.) growing systems in Ghana and West Africa consist of diverse tree species and densities.This study was conducted to determine factors that influence tree species configurations and how tree characteristics affect canopy cover in cocoa farms. Eighty-six farmers...

  16. Mapping forest canopy disturbance in the Upper Great Lakes, USA (United States)

    James D. Garner; Mark D. Nelson; Brian G. Tavernia; Charles H. (Hobie) Perry; Ian W. Housman


    A map of forest canopy disturbance was generated for Michigan, Wisconsin, and most of Minnesota using 42 Landsat time series stacks (LTSS) and a vegetation change tracker (VCTw) algorithm. Corresponding winter imagery was used to reduce commission errors of forest disturbance by identifying areas of persistent snow cover. The resulting disturbance age map was classed...

  17. Los Angeles 1-Million tree canopy cover assessment (United States)

    Gregory E. McPherson; James R. Simpson; Qingfu Xiao; Wu Chunxia


    The Million Trees LA initiative intends to chart a course for sustainable growth through planting and stewardship of trees. The purpose of this study was to measure Los Angeles's existing tree canopy cover (TCC), determine if space exists for 1 million additional trees, and estimate future benefits from the planting. High resolution QuickBird remote sensing data,...

  18. A Soil Temperature Model for Closed Canopied Forest Stands (United States)

    James M. Vose; Wayne T. Swank


    A microcomputer-based soil temperature model was developed to predict temperature at the litter-soil interface and soil temperatures at three depths (0.10 m, 0.20 m, and 1.25 m) under closed forest canopies. Comparisons of predicted and measured soil temperatures indicated good model performance under most conditions. When generalized parameters describing soil...

  19. Effect of forest canopy on GPS-based movement data (United States)

    Nicholas J. DeCesare; John R. Squires; Jay A. Kolbe


    The advancing role of Global Positioning System (GPS) technology in ecology has made studies of animal movement possible for larger and more vagile species. A simple field test revealed that lengths of GPS-based movement data were strongly biased (Pof forest canopy. Global Positioning System error added an average of 27.5% additional...

  20. Improving canopy sensor algorithms with soil and weather information (United States)

    Nitrogen (N) need to support corn (Zea mays L.) production can be highly variable within fields. Canopy reflectance sensing for assessing crop N health has been implemented on many farmers’ fields to side-dress or top-dress variable-rate N application, but at times farmers report the performance of ...

  1. Base Cation Leaching From the Canopy of a Rubber ( Hevea ...

    African Journals Online (AJOL)

    Base cations are essential to the sustainability of forest ecosystems. They are important for neutralizing the acidifying effects of atmospheric deposition. There is the need for in-depth understanding of base cation depletion and leaching from forest canopy. This is important particularly due to the increasing acidification and ...

  2. Blue Oak Canopy Effect on Seasonal Forage Production and Quality (United States)

    William E. Frost; Neil K. McDougald; Montague W. Demment


    Forage production and forage quality were measured seasonally beneath the canopy of blue oak (Quercus douglasii) and in open grassland at the San Joaquin Experimental Range. At the March and peak standing crop sampling dates forage production was significantly greater (p=.05) beneath blue oak compared to open grassland. At most sampling dates, the...

  3. Advanced structural wind engineering

    CERN Document Server

    Kareem, Ahsan


    This book serves as a textbook for advanced courses as it introduces state-of-the-art information and the latest research results on diverse problems in the structural wind engineering field. The topics include wind climates, design wind speed estimation, bluff body aerodynamics and applications, wind-induced building responses, wind, gust factor approach, wind loads on components and cladding, debris impacts, wind loading codes and standards, computational tools and computational fluid dynamics techniques, habitability to building vibrations, damping in buildings, and suppression of wind-induced vibrations. Graduate students and expert engineers will find the book especially interesting and relevant to their research and work.

  4. Wind for Schools (Poster)

    Energy Technology Data Exchange (ETDEWEB)

    Baring-Gould, I.


    As the United States dramatically expands wind energy deployment, the industry is challenged with developing a skilled workforce and addressing public resistance. Wind Powering America's Wind for Schools project addresses these issues by developing Wind Application Centers (WACs) at universities; WAC students assist in implementing school wind turbines and participate in wind courses, by installing small wind turbines at community "host" schools, by implementing teacher training with interactive curricula at each host school. This poster provides an overview of the first two years of the Wind for Schools project, primarily supporting activities in Colorado, Kansas, Nebraska, South Dakota, Montana, and Idaho.

  5. A LiDAR method of canopy structure retrieval for wind modeling of heterogeneous forests

    DEFF Research Database (Denmark)

    Boudreault, Louis-Etienne; Bechmann, Andreas; Taryainen, Lasse


    and this information is required for each grid point in the three-dimensional computational domain. By using raw data from aerial LiDAR scans together with the Beer-Lambert law, we propose and test a method to calculate and grid highly variable and realistic frontal area density input. An extensive comparison...

  6. Examining conifer canopy structural complexity across forest ages and elevations with LiDAR data (United States)

    Van R. Kane; Jonathan D. Bakker; Robert J. McGaughey; James A. Lutz; Rolf F. Gersonde; Jerry F. Franklin


    LiDAR measurements of canopy structure can be used to classify forest stands into structural stages to study spatial patterns of canopy structure, identify habitat, or plan management actions. A key assumption in this process is that differences in canopy structure based on forest age and elevation are consistent with predictions from models of stand development. Three...

  7. Comparison of LiDAR- and photointerpretation-based estimates of canopy cover (United States)

    Demetrios Gatziolis


    An evaluation of the agreement between photointerpretation- and LiDARbased estimates of canopy cover was performed using 397 90 x 90 m reference areas in Oregon. It was determined that at low canopy cover levels LiDAR estimates tend to exceed those from photointerpretation and that this tendency reverses at high canopy cover levels. Characteristics of the airborne...

  8. Evaporation and the sub-canopy energy environment in a flooded forest (United States)

    The combination of canopy cover and a free water surface makes the sub-canopy environment of flooded forested wetlands unlike other aquatic or terrestrial systems. The sub-canopy vapor flux and energy budget are not well understood in wetlands, but they importantly control water level and understory...

  9. Parameterizing Urban Canopy Layer transport in an Lagrangian Particle Dispersion Model (United States)

    Stöckl, Stefan; Rotach, Mathias W.


    The percentage of people living in urban areas is rising worldwide, crossed 50% in 2007 and is even higher in developed countries. High population density and numerous sources of air pollution in close proximity can lead to health issues. Therefore it is important to understand the nature of urban pollutant dispersion. In the last decades this field has experienced considerable progress, however the influence of large roughness elements is complex and has as of yet not been completely described. Hence, this work studied urban particle dispersion close to source and ground. It used an existing, steady state, three-dimensional Lagrangian particle dispersion model, which includes Roughness Sublayer parameterizations of turbulence and flow. The model is valid for convective and neutral to stable conditions and uses the kernel method for concentration calculation. As most Lagrangian models, its lower boundary is the zero-plane displacement, which means that roughly the lower two-thirds of the mean building height are not included in the model. This missing layer roughly coincides with the Urban Canopy Layer. An earlier work "traps" particles hitting the lower model boundary for a recirculation period, which is calculated under the assumption of a vortex in skimming flow, before "releasing" them again. The authors hypothesize that improving the lower boundary condition by including Urban Canopy Layer transport could improve model predictions. This was tested herein by not only trapping the particles, but also advecting them with a mean, parameterized flow in the Urban Canopy Layer. Now the model calculates the trapping period based on either recirculation due to vortex motion in skimming flow regimes or vertical velocity if no vortex forms, depending on incidence angle of the wind on a randomly chosen street canyon. The influence of this modification, as well as the model's sensitivity to parameterization constants, was investigated. To reach this goal, the model was

  10. PIV Measurements of Atmospheric Turbulence and Pollen Dispersal Above a Corn Canopy (United States)

    Zhu, W.; van Hout, R.; Luznik, L.; Katz, J.


    Dispersal of pollen grains by wind and gravity (Anemophilous) is one of the oldest means of plant fertilization available in nature. Recently, the growth of genetically modified foods has raised questions on the range of pollen dispersal in order to limit cross-fertilization between organically grown and transgenic crops. The distance that a pollen grain can travel once released from the anther is determined, among others, by the aerodynamic parameters of the pollen and the characteristics of turbulence in the atmosphere in which it is released. Turbulence characteristics of the flow above a pollinating corn field were measured using Particle Image Velocimetry (PIV). The measurements were performed on the eastern shore of the Chesapeake Bay, in Maryland, during July 2003. Two PIV systems were used simultaneously, each with an overall sample area of 18x18 cm. The spacing between samples was about equal to the field of view. The PIV instrumentation, including CCD cameras, power supply and laser sheets forming optics were mounted on a measurement platform, consisting of a hydraulic telescopic arm that could be extended up to 10m. The whole system could be rotated in order to align it with the flow. The flow was seeded with smoke generated about 30m upstream of the sample areas. Measurements were carried out at several elevations, from just below canopy height up to 1m above canopy. The local meteorological conditions around the test site were monitored by other sensors including sonic anemometers, Rotorod pollen counters and temperature sensors. Each processed PIV image provides an instantaneous velocity distribution containing 64x64 vectors with a vector spacing of ~3mm. The pollen grains (~100mm) can be clearly distinguished from the smoke particles (~1mm) based on their size difference. The acquired PIV data enables calculation of the mean flow and turbulence characteristics including Reynolds stresses, spectra, turbulent kinetic energy and dissipation rate. Data

  11. Simulation of Canopy Leaf Inclination Angle in Rice

    Directory of Open Access Journals (Sweden)

    Xiao-cui ZHANG


    Full Text Available A leaf inclination angle distribution model, which is applicable to simulate leaf inclination angle distribution in six heights of layered canopy at different growth stages, was established by component factors affecting plant type in rice. The accuracy of the simulation results was validated by measured values from a field experiment. The coefficient of determination (R2 and the root mean square error (RMSE between the simulated and measured values were 0.9472 and 3.93%, respectively. The simulation results showed that the distribution of leaf inclination angles differed among the three plant types. The leaf inclination angles were larger in the compact variety Liangyoupeijiu with erect leaves than in the loose variety Shanyou 63 with droopy leaves and the intermediate variety Liangyou Y06. The leaf inclination angles were distributed in the lower range in Shanyou 63, which matched up with field measurements. The distribution of leaf inclination angles in the same variety changed throughout the seven growth stages. The leaf inclination angles enlarged gradually from transplanting to booting. During the post-booting period, the leaf inclination angle increased in Shanyou 63 and Liangyou Y06, but changed little in Liangyoupeijiu. At every growth stage of each variety, canopy leaf inclination angle distribution on the six heights of canopy layers was variable. As canopy height increased, the layered leaf area index (LAI decreased in all the three plant types. However, while the leaf inclination angles showed little change in Liangyoupeijiu, they became larger in Shanyou 63 but smaller in Liangyou Y06. The simulation results used in the constructed model were very similar to the actual measurement values. The model provides a method for estimating canopy leaf inclination angle distribution in rice production.

  12. Avian response to microclimate in canopy gaps in a bottomland hardwood forest.

    Energy Technology Data Exchange (ETDEWEB)

    Champlin, Tracey B.; Kilgo, John C.; Gumpertz, Marcia L.; Moorman, Christopher E.


    Abstract - Microclimate may infl uence use of early successional habitat by birds. We assessed the relationships between avian habitat use and microclimate (temperature, light intensity, and relative humidity) in experimentally created canopy gaps in a bottomland hardwood forest on the Savannah River Site, SC. Gaps were 2- to 3-year-old group-selection timber harvest openings of three sizes (0.13, 0.26, 0.50 ha). Our study was conducted from spring through fall, encompassing four bird-use periods (spring migration, breeding, post-breeding, and fall migration), in 2002 and 2003. We used mist netting and simultaneously recorded microclimate variables to determine the influence of microclimate on bird habitat use. Microclimate was strongly affected by net location within canopy gaps in both years. Temperature generally was higher on the west side of gaps, light intensity was greater in gap centers, and relative humidity was higher on the east side of gaps. However, we found few relationships between bird captures and the microclimate variables. Bird captures were inversely correlated with temperature during the breeding and postbreeding periods in 2002 and positively correlated with temperature during spring 2003. Captures were high where humidity was high during post-breeding 2002, and captures were low where humidity was high during spring 2003. We conclude that variations in the local microclimate had minor infl uence on avian habitat use within gaps. Instead, habitat selection in relatively mild regions like the southeastern US is based primarily on vegetation structure, while other factors, including microclimate, are less important.

  13. Travelling waves above the canopy of aquatic vegetation (United States)

    Lyubimov, D.; Lyubimova, T.; Baidina, D.


    When fluid moves over a saturated porous medium with high permeability and porosity, the flow partially involves the fluid in porous medium, however, because of the great resistance force there arises sharp drop of tangential velocity. This leads to the development of instability similar to the Kelvin-Helmholtz instability on discontinuity surface of the tangential velocities of homogeneous fluids. Analogy becomes even more complete if we take into account the deformability of porous medium under the influence of pressure changes. Intensive vortices above the canopy of aquatic vegetation can lead to the coherent oscillations of vegetation, such traveling waves are called monami [1]. In the present paper we investigate stability of steady flow over a saturated porous medium. The importance of this problem is related to the applications to the dynamics of pollutants in the bottom layer of vegetation: the accumulation at low flow and salvo emissions with increasing velocity. We consider a two-layer system consisting of a layer of a viscous incompressible fluid and porous layer saturated with the same fluid located underneath. The lower boundary of the system is assumed to be rigid, the upper boundary - free and non-deformable. Weak slope of the river is taken into account. The problem is solved within the framework of single approach in which a two-layer system is described by a single system of equations for saturated porous medium and the presence of two layers is modeled by introducing variable permeability and porosity, depending on vertical coordinate. The flow in a saturated porous medium is described by the Brinkman model. Solution of the problem for steady flow shows that the velocity profile has two inflection points, which leads to the instability. The neutral curves are obtained for different values of the ratio d of porous layer thickness to full thickness. It is found that the dependence of critical Reynolds number on d is non-monotonic and the wave

  14. Developing Rivers

    Directory of Open Access Journals (Sweden)

    Abhik Chakraborty


    Full Text Available This article explores the reasons behind the continuation of contentious dam projects in Japanese river basins. Though the River Law of the country was reformed in 1997, and subsequent sociopolitical developments raised hopes that river governance would progress toward a more environment-oriented and bottom-up model, basin governance in Japan remains primarily based on a utilitarian vision that sees rivers as waterways. This article reviews the Achilles heel of the 1997 River Law by examining some most contentious river valley projects, and concludes that a myth of vulnerability to flooding, short-sightedness of river engineers, and bureaucratic inertia combine to place basin governance in a time warp: as projects planned during postwar reconstruction and economic growth continue to be top priorities in policymaking circles while concerns over environment remain largely unaddressed.

  15. Estimating canopy bulk density and canopy base height for conifer stands in the interior Western United States using the Forest Vegetation Simulator Fire and Fuels Extension. (United States)

    Seth Ex; Frederick Smith; Tara Keyser; Stephanie Rebain


    The Forest Vegetation Simulator Fire and Fuels Extension (FFE-FVS) is often used to estimate canopy bulk density (CBD) and canopy base height (CBH), which are key indicators of crown fire hazard for conifer stands in the Western United States. Estimated CBD from FFE-FVS is calculated as the maximum 4 m running mean bulk density of predefined 0.3 m thick canopy layers (...

  16. Tersail - A numerical model for combined analysis of vegetation canopy bidirectional reflectance and thermal emissions (United States)

    Hope, Allen S.; Coward, Samuel N.; Petzold, Donald E.


    A modification of the Tergra model (Soer, 1977) is presented, which incorporates the scattering from arbitrarily inclined leaves canopy reflectance model (Verhoef and Bunnik, 1981) for the calculation of albedo and canopy resistance. The combined model, known as Tersail, is capable of simulating the relationship between the bidirectional reflectance and the thermal response of a canopy. The accuracy of the model is tested using data over wheat canopies in Phoenix, Arizona, showing that the model is a good simulator of canopy temperatures under a variety of conditions.

  17. Wind engineering in Africa

    NARCIS (Netherlands)

    Wisse, J.A.; Stigter, C.J.


    The International Association for Wind Engineering (IAWE) has very few contacts in Africa, the second-largest continent. This paper reviews important wind-related African issues. They all require data on wind climate, which are very sparse in Africa. Wind engineering in Africa can assist in

  18. Wind energy; Energie eolienne

    Energy Technology Data Exchange (ETDEWEB)

    Vachey, C.


    This public information paper presents the wind energy resource in the Languedoc Roussillon region, explains how a wind turbine works, the different types of utilization and the cost of the wind energy. The environmental impacts of the wind energy, on the noise and the landscape, are also discussed. (A.L.B.)

  19. Large eddy simulation of the atmospheric boundary layer above a forest canopy (United States)

    Alam, Jahrul


    A goal of this talk is to discuss large eddy simulation (LES) of atmospheric turbulence within and above a canopy/roughness sublayer, where coherent turbulence resembles a turbulent mixing layer. The proposed LES does not resolve the near wall region. Instead, a near surface canopy stress model has been combined with a wall adapting local eddy viscosity model. The canopy stress is represented as a three-dimensional time dependent momentum sink, where the total kinematic drag of the canopy is adjusted based on the measurements in a forest canopy. This LES has been employed to analyze turbulence structures in the canopy/roughness sublayer. Results indicate that turbulence is more efficient at transporting momentum and scalars in the roughness sublayer. The LES result has been compared with the turbulence profile measured over a forest canopy to predict the turbulence statistics in the inertial sublayer above the canopy. Turbulence statistics between the inertial sublayer, the canopy sublayer, and the rough-wall boundary layer have been compared to characterize whether turbulence in the canopy sublayer resembles a turbulent mixing layer or a boundary layer. The canopy turbulence is found dominated by energetic eddies much larger in scale than the individual roughness elements. Financial support from the National Science and Research Council (NSERC), Canada is acknowledged.

  20. Chlorophyll Can Be Reduced in Crop Canopies with Little Penalty to Photosynthesis1[OPEN (United States)

    Drewry, Darren T.; VanLoocke, Andy; Cho, Young B.


    The hypothesis that reducing chlorophyll content (Chl) can increase canopy photosynthesis in soybeans was tested using an advanced model of canopy photosynthesis. The relationship among leaf Chl, leaf optical properties, and photosynthetic biochemical capacity was measured in 67 soybean (Glycine max) accessions showing large variation in leaf Chl. These relationships were integrated into a biophysical model of canopy-scale photosynthesis to simulate the intercanopy light environment and carbon assimilation capacity of canopies with wild type, a Chl-deficient mutant (Y11y11), and 67 other mutants spanning the extremes of Chl to quantify the impact of variation in leaf-level Chl on canopy-scale photosynthetic assimilation and identify possible opportunities for improving canopy photosynthesis through Chl reduction. These simulations demonstrate that canopy photosynthesis should not increase with Chl reduction due to increases in leaf reflectance and nonoptimal distribution of canopy nitrogen. However, similar rates of canopy photosynthesis can be maintained with a 9% savings in leaf nitrogen resulting from decreased Chl. Additionally, analysis of these simulations indicate that the inability of Chl reductions to increase photosynthesis arises primarily from the connection between Chl and leaf reflectance and secondarily from the mismatch between the vertical distribution of leaf nitrogen and the light absorption profile. These simulations suggest that future work should explore the possibility of using reduced Chl to improve canopy performance by adapting the distribution of the “saved” nitrogen within the canopy to take greater advantage of the more deeply penetrating light. PMID:29061904

  1. Offshore Wind Farms

    DEFF Research Database (Denmark)

    Lundtang Petersen, Erik; Hasager, Charlotte Bay; Courtney, Michael


    The technology behind constructing wind farms offshore began to develop in 1991 when the Vindeby wind farm was installed off the Danish coast (11 Bonus 450 kW turbines). Resource assessment, grid connection, and wind farm operation are significant challenges for offshore wind power just...... concern are the problems associated with locating the turbines close together in a wind farm and the problems of placing several large wind farms in a confined area. The environmental impacts of offshore wind farms are also treated, but not the supply chain, that is, the harbors, the installation vessels...

  2. Application of two-stream model to solar radiation of rice canopy

    International Nuclear Information System (INIS)

    Kawakata, T.


    The amount of solar radiation absorbed by a crop canopy is correlated with crop production, and thus it is necessary to estimate both transmission and reflection around the canopy for crop growth models. The 'forward and backward streams' representation of radiation has been refined to account for both transmission and reflection in the crop canopy. However, this model has not been applied to a rice canopy through the growing period. The purpose of this study is to examine whether the two-stream model is applicable to the rice canopy, and to investigate the parameters of the model. The values for both transmittance below the rice canopy and reflectance above it that were derived from the two-stream model represent the observed values throughout the growing period. The inclination factor of leaves (F), which is used in the two-stream model, was almost equivalent to the extinction coefficient of transmittance in the case of the rice canopy

  3. Canopy water balance of windward and leeward Hawaiian cloud forests on Haleakalā, Maui, Hawai'i (United States)

    Giambelluca, Thomas W.; DeLay, John K.; Nullet, Michael A.; Scholl, Martha A.; Gingerich, Stephen B.


    The contribution of intercepted cloud water to precipitation at windward and leeward cloud forest sites on the slopes of Haleakalā, Maui was assessed using two approaches. Canopy water balance estimates based on meteorological monitoring were compared with interpretations of fog screen measurements collected over a 2-year period at each location. The annual incident rainfall was 973 mm at the leeward site (Auwahi) and 2550 mm at the windward site (Waikamoi). At the leeward, dry forest site, throughfall was less than rainfall (87%), and, at the windward, wet forest site, throughfall exceeded rainfall (122%). Cloud water interception estimated from canopy water balance was 166 mm year−1 at Auwahi and 1212 mm year−1 at Waikamoi. Annual fog screen measurements of cloud water flux, corrected for wind-blown rainfall, were 132 and 3017 mm for the dry and wet sites respectively. Event totals of cloud water flux based on fog screen measurements were poorly correlated with event cloud water interception totals derived from the canopy water balance. Hence, the use of fixed planar fog screens to estimate cloud water interception is not recommended. At the wet windward site, cloud water interception made up 32% of the total precipitation, adding to the already substantial amount of rainfall. At the leeward dry site, cloud water interception was 15% of the total precipitation. Vegetation at the dry site, where trees are more exposed and isolated, was more efficient at intercepting the available cloud water than at the rainy site, but events were less frequent, shorter in duration and lower in intensity. A large proportion of intercepted cloud water, 74% and 83%, respectively for the two sites, was estimated to become throughfall, thus adding significantly to soil water at both sites

  4. Modeling of leachable 137Cs in throughfall and stemflow for Japanese forest canopies after Fukushima Daiichi Nuclear Power Plant accident

    International Nuclear Information System (INIS)

    Loffredo, Nicolas; Onda, Yuichi; Kawamori, Ayumi; Kato, Hiroaki


    The Fukushima accident dispersed significant amounts of radioactive cesium (Cs) in the landscape. Our research investigated, from June 2011 to November 2013, the mobility of leachable Cs in forests canopies. In particular, 137 Cs and 134 Cs activity concentrations were measured in rainfall, throughfall, and stemflow in broad-leaf and cedar forests in an area located 40 km from the power plant. Leachable 137 Cs loss was modeled by a double exponential (DE) model. This model could not reproduce the variation in activity concentration observed. In order to refine the DE model, the main physical measurable parameters (rainfall intensity, wind velocity, and snowfall occurrence) were assessed, and rainfall was identified as the dominant factor controlling observed variation. A corrective factor was then developed to incorporate rainfall intensity in an improved DE model. With the original DE model, we estimated total 137 Cs loss by leaching from canopies to be 72 ± 4%, 67 ± 4%, and 48 ± 2% of the total plume deposition under mature cedar, young cedar, and broad-leaf forests, respectively. In contrast, with the improved DE model, the total 137 Cs loss by leaching was estimated to be 34 ± 2%, 34 ± 2%, and 16 ± 1% of the total plume deposition under mature cedar, young cedar, and broad-leaf forests, respectively. The improved DE model corresponds better to observed data in literature. Understanding 137 Cs and 134 Cs forest dynamics is important for forecasting future contamination of forest soils around the FDNPP. It also provides a basis for understanding forest transfers in future potential nuclear disasters. - Highlights: • A double exponential model was used to model leachable cesium loss from canopies. • The model could not reproduce variation observed. • Rainfall was identified as the dominant factor controlling the variation. • A rainfall parameter was used to develop an improved double exponential model. • The improved model gives a better estimation

  5. Examining the utility of satellite-based wind sheltering estimates for lake hydrodynamic modeling (United States)

    Van Den Hoek, Jamon; Read, Jordan S.; Winslow, Luke A.; Montesano, Paul; Markfort, Corey D.


    Satellite-based measurements of vegetation canopy structure have been in common use for the last decade but have never been used to estimate canopy's impact on wind sheltering of individual lakes. Wind sheltering is caused by slower winds in the wake of topography and shoreline obstacles (e.g. forest canopy) and influences heat loss and the flux of wind-driven mixing energy into lakes, which control lake temperatures and indirectly structure lake ecosystem processes, including carbon cycling and thermal habitat partitioning. Lakeshore wind sheltering has often been parameterized by lake surface area but such empirical relationships are only based on forested lakeshores and overlook the contributions of local land cover and terrain to wind sheltering. This study is the first to examine the utility of satellite imagery-derived broad-scale estimates of wind sheltering across a diversity of land covers. Using 30 m spatial resolution ASTER GDEM2 elevation data, the mean sheltering height, hs, being the combination of local topographic rise and canopy height above the lake surface, is calculated within 100 m-wide buffers surrounding 76,000 lakes in the U.S. state of Wisconsin. Uncertainty of GDEM2-derived hs was compared to SRTM-, high-resolution G-LiHT lidar-, and ICESat-derived estimates of hs, respective influences of land cover type and buffer width on hsare examined; and the effect of including satellite-based hs on the accuracy of a statewide lake hydrodynamic model was discussed. Though GDEM2 hs uncertainty was comparable to or better than other satellite-based measures of hs, its higher spatial resolution and broader spatial coverage allowed more lakes to be included in modeling efforts. GDEM2 was shown to offer superior utility for estimating hs compared to other satellite-derived data, but was limited by its consistent underestimation of hs, inability to detect within-buffer hs variability, and differing accuracy across land cover types. Nonetheless

  6. Wind power. [electricity generation (United States)

    Savino, J. M.


    A historical background on windmill use, the nature of wind, wind conversion system technology and requirements, the economics of wind power and comparisons with alternative systems, data needs, technology development needs, and an implementation plan for wind energy are presented. Considerable progress took place during the 1950's. Most of the modern windmills feature a wind turbine electricity generator located directly at the top of their rotor towers.

  7. Relationships between NDVI, canopy structure, and photosynthesis in three California vegetation types

    International Nuclear Information System (INIS)

    Gamon, J.A.; Field, C.B.; Goulden, M.L.; Griffin, K.L.; Hartley, A.E.; Joel, G.; Penuelas, J.; Valentini, R.


    In a range of plant species from three Californian vegetation types, we examined the widely used ''normalized difference vegetation index'' (NDVI) and ''simple ratio'' (SR) as indicators of canopy structure, light absorption, and photosynthetic activity. These indices, which are derived from canopy reflectance in the red and near-infrared wavebands, highlighted phenological differences between evergreen and deciduous canopies. They were poor indicators of total canopy biomass due to the varying abundance of non-green standing biomass in these vegetation types. However, in sparse canopies (leaf area index (LAI) apprxeq 0-2), NDVI was a sensitive indicator of canopy structure and chemical content (green biomass, green leaf area index, chlorophyll content, and foliar nitrogen content). At higher canopy green LAI values ( gt 2; typical of dense shrubs and trees), NDVI was relatively insensitive to changes in canopy structure. Compared to SR, NDVI was better correlated with indicators of canopy structure and chemical content, but was equivalent to the logarithm of SR. In agreement with theoretical expectations, both NDVI and SR exhibited near-linear correlations with fractional PAR intercepted by green leaves over a wide range of canopy densities. Maximum daily photosynthetic rates were positively correlated with NDVI and SR in annual grassland and semideciduous shrubs where canopy development and photosynthetic activity were in synchrony. The indices were also correlated with peak springtime canopy photosynthetic rates in evergreens. However, over most of the year, these indices were poor predictors of photosynthetic performance in evergreen species due to seasonal reductions in photosynthetic radiation-use efficiency that occurred without substantial declines in canopy greenness. Our results support the use of these vegetation indices as remote indicators of PAR absorption, and thus potential photosynthetic activity, even in

  8. Winter radiation extinction and reflection in a boreal pine canopy: measurements and modelling

    International Nuclear Information System (INIS)

    Pomeroy, J.W.; Dion, K.


    Predicting the rate of snow melt and intercepted snow sublimation in boreal forests requires an understanding of the effects of snow-covered conifers on the exchange of radiant energy. This study examined the amount of intercepted snow on a jack pine canopy in the boreal forest of central Saskatchewan and the shortwave and net radiation exchange with this canopy, to determine the effect of intercepted snow and canopy structure on shortwave radiation reflection and extinction and net radiation attenuation in a boreal forest. The study focused on clear sky conditions, which are common during winter in the continental boreal forest. Intercepted snow was found to have no influence on the clear-sky albedo of the canopy, the extinction of short wave radiation by the canopy or ratio of net radiation at the canopy top to that at the surface snow cover. Because of the low albedo of the snow-covered canopy, net radiation at the canopy top remains positive and a large potential source of energy for sublimation. The canopy albedo declines somewhat as the extinction efficiency of the underlying canopy increases. The extinction efficiency of short wave radiation in the canopy depends on solar angle because of the approximately horizontal orientation of pine branches. For low solar angles above the horizon, the extinction efficiency is quite low and short wave transmissivity through the canopy is relatively high. As the solar angle increases, extinction increases up to angles of about 50°, and then declines. Extinction of short wave radiation in the canopy strongly influences the attenuation of net radiation by the canopy. Short wave radiation that is extinguished by branches is radiated as long wave, partly downwards to the snow cover. The ratio of net radiation at the canopy top to that at the snow cover surface increases with the extinction of short wave radiation and is negative for low extinction efficiencies. For the pine canopy examined, the daily mean net radiation at

  9. Winter Radiation Extinction and Reflection in a Boreal Pine Canopy: Measurements and Modelling (United States)

    Pomeroy, J. W.; Dion, K.


    Predicting the rate of snowmelt and intercepted snow sublimation in boreal forests requires an understanding of the effects of snow-covered conifers on the exchange of radiant energy. This study examined the amount of intercepted snow on a jack pine canopy in the boreal forest of central Saskatchewan and the shortwave and net radiation exchange with this canopy, to determine the effect of intercepted snow and canopy structure on shortwave radiation reflection and extinction and net radiation attenuation in a boreal forest. The study focused on clear sky conditions, which are common during winter in the continental boreal forest. Intercepted snow was found to have no influence on the clear-sky albedo of the canopy, the extinction of short wave radiation by the canopy or ratio of net radiation at the canopy top to that at the surface snow cover. Because of the low albedo of the snow-covered canopy, net radiation at the canopy top remains positive and a large potential source of energy for sublimation. The canopy albedo declines somewhat as the extinction efficiency of the underlying canopy increases. The extinction efficiency of short wave radiation in the canopy depends on solar angle because of the approximately horizontal orientation of pine branches. For low solar angles above the horizon, the extinction efficiency is quite low and short wave transmissivity through the canopy is relatively high. As the solar angle increases, extinction increases up to angles of about 50̂, and then declines. Extinction of short wave radiation in the canopy strongly influences the attenuation of net radiation by the canopy. Short wave radiation that is extinguished by branches is radiated as long wave, partly downwards to the snow cover. The ratio of net radiation at the canopy top to that at the snow cover surface increases with the extinction of short wave radiation and is negative for low extinction efficiencies. For the pine canopy examined, the daily mean net radiation at the

  10. Canopy Measurements with a Small Unmanned Aerial System (United States)

    Peschel, J.


    This work discusses the use of a small unmanned aerial system (UAS) for the remote placement of wireless environmental sensors in tree canopies. Remote presence applications occur when one or more humans use a robot to project themselves into an environment in order to complete an inaccessible or time-critical mission. The more difficult problem of physical object manipulation goes one step further by incorporating physical-based interaction, in additional to visualization. Forested environments present especially unique challenges for small UAS versus similar domains (e.g., disaster response, inspection of critical infrastructure) due to the navigation and interaction required with dense tree canopies. This work describes two field investigations that inform: i) the type of physical object manipulation and visualization necessary for sensor placement (ventral, frontal, dorsal), ii) the necessary display form (hybrid) for piloting and sensor placement, and iii) visual feedback mechanisms useful for handling human-robot team role conflicts.

  11. Strengthening the Ubuntu social canopy after the Afrophobic attacks

    Directory of Open Access Journals (Sweden)

    Zorodzai Dube


    Full Text Available In view of the aftermath of the Afrophobic attacks in South Africa, this study regards Paul�s emphasis concerning common humanity and morality as a possible lacuna towards strengthening Ubuntu. Paul taught that both the Jews and the Gentiles have their common ancestor � Adam, and that good morality is a better identity marker than ethnicity. In view of the aftermath of the Afrophobic attacks in South Africa, this study suggests that similar arguments can be used to amend the Ubuntu social canopy.Intradisciplinary and/or interdisciplinary implications: This study is interdisciplinary in nature in that it uses perspectives from social sciences to seek solutions towards a more inclusive communityKeywords: Afrophobia; Xenophobia; Ubuntu; Social Canopy; Christ-like Anthropology

  12. Understanding Snow Depth Variability with Respect to the Canopy in Multiple Climates Using Airborne LiDAR (United States)

    Currier, W. R.; Giulia, M.; Pflug, J. M.; Jonas, T.; Jessica, L.


    Snow depth within a typical hydrologic model grid cell (150 m or 1 km) can vary from 0.5 meters to 6 meters, or more. This variability is driven by the meteorological conditions throughout the winter as well as the forest architecture. To better understand this variability, we used airborne LiDAR from Olympic National Park, WA, Yosemite National Park, CA, Jemez Caldera, NM, and Niwot Ridge, CO to determine unique spatial patterns of snow depth in forested regions. Specifically, we compared snow depth distributions along north facing forest edges and south facing forest edges to those in the open or directly under the canopy. When categorizing the north facing and south facing edges based on distance from the canopy, distances relative to tree height, and distances relative to the fraction of the sky that is visible (sky view factor) we found unique snow depth patterns for each of these regions. In all regions besides Olympic National Park, WA, north facing edges contained more snow than open areas, forested areas, or along the south facing edges. These snow distributions were relatively consistent regardless of the metric used to define the forest edge and the size of the domain (150 m through 1 km). The absence of the forest edge effect in Olympic National Park was attributed to the meteorological data and climate conditions, which showed significantly less incoming shortwave radiation and more incoming longwave radiation. Furthermore, this study evaluated the effect that wind speed and direction have on the spatial distribution of snow depth.

  13. River nomads

    DEFF Research Database (Denmark)


    River nomads is a movie about people on the move. The documentary film explores the lifestyle of a group of nomadic fishermen whose mobility has been the recipe of success and troubles. Engaged in trade and travel, twice a year the river nomads form impressive convoys of majestic pirogues and set...... and liberated lifestyle and the breath-taking landscapes and vistas offered by the Niger River. River Nomads is also a personal account of the Kebbawa’s way of life and their current struggles as nomadic folk living in a world divided by borders and ruled by bureaucrats....

  14. Variation in crown light utilization characteristics among tropical canopy trees. (United States)

    Kitajima, Kaoru; Mulkey, Stephen S; Wright, S Joseph


    Light extinction through crowns of canopy trees determines light availability at lower levels within forests. The goal of this paper is the exploration of foliage distribution and light extinction in crowns of five canopy tree species in relation to their shoot architecture, leaf traits (mean leaf angle, life span, photosynthetic characteristics) and successional status (from pioneers to persistent). Light extinction was examined at three hierarchical levels of foliage organization, the whole crown, the outermost canopy and the individual shoots, in a tropical moist forest with direct canopy access with a tower crane. Photon flux density and cumulative leaf area index (LAI) were measured at intervals of 0.25-1 m along multiple vertical transects through three to five mature tree crowns of each species to estimate light extinction coefficients (K). Cecropia longipes, a pioneer species with the shortest leaf life span, had crown LAI <0.5. Among the remaining four species, crown LAI ranged from 2 to 8, and species with orthotropic terminal shoots exhibited lower light extinction coefficients (0.35) than those with plagiotropic shoots (0.53-0.80). Within each type, later successional species exhibited greater maximum LAI and total light extinction. A dense layer of leaves at the outermost crown of a late successional species resulted in an average light extinction of 61% within 0.5 m from the surface. In late successional species, leaf position within individual shoots does not predict the light availability at the individual leaf surface, which may explain their slow decline of photosynthetic capacity with leaf age and weak differentiation of sun and shade leaves. Later-successional tree crowns, especially those with orthotropic branches, exhibit lower light extinction coefficients, but greater total LAI and total light extinction, which contribute to their efficient use of light and competitive dominance.

  15. New River controversy

    Energy Technology Data Exchange (ETDEWEB)

    Schoenbaum, T.J.


    The New River for more than 100 million years has made its way, beginning from a source in the mountains of North Carolina and winding northward through Virginia and West Virginia. Today there are dams in its path, to be sure; but between its wellspring in North Carolina and the point at which it crosses into Virginia, it has never suffered the ignominy of impoundment. Not long ago, however, the freedom of the New was almost sacrificed to help satisfy the appetite of a society hungry for electric energy. In 1965, Appalachian Power Company announced its intention to construct in North Carolina the Blue Ridge Project, a pumped-storage facility for generating electricity that would have required damming the river and flooding thousands of acres of its valley. Supporting Appalachian's plans were the national AFL-CIO, the Federal Power Commission, and the governors of Virginia and West Virginia. And though Blue Ridge would have consumed four units of power for every three it produced, destroying in the process unappraisable archeological treasures and displacing hundreds of families - all to provide peak-load electricity to cities far from the serene river that was to yield the energy - construction of the dams was approved time and time again. The threat of Blue Ridge, which loomed for more than eleven years, was finally eliminated by the efforts of one of the most diverse-environmental coalitions ever established. The State of North Carolina, the people of the New River Valley, and conservation groups and newspaper editors from across the country banded together to fight the project in the courts, in Congress, in the media - always against overwhelming odds. The author tells the fascinating story of the tactics and maneuvers employed by those struggling to preserve the river, while also pointing beyond the New to an effective strategy of environmental action.

  16. Measurement of rainfall distribution on a small catchment for the evaluation of canopy interception effects (United States)

    Maurer, Thomas; Schapp, Andrea; Büchner, Steffen; Menzel, Hannes; Hinz, Christoph


    temporally aggregated using a VBA script in order to characterize interception for various types of precipitation events on different time scales. First results from the measurement period 17th July - 3rd September 2013 widely exhibit a good accordance with reference data from on-site weather stations for sites on open ground, while canopy sites show more heterogeneous values, either due to interception or due to canopy collection effects. However, it was found that the explanation of the differences between comparable sites requires an additional inclusion of other relevant parameters, e.g. wind speed and direction, screening effects, and specific canopy characteristics. Moreover, extreme precipitation events sometimes seemed to lead to incorrect measurements either by the sensor and / or node, which required supplementary quality controls of equipment and data. Results from future long-term measurements on the "Hühnerwasser" catchment will be used to identify possible plant-soil feedback mechanisms and to parameterize models that simulate the behavior of initial eco-hydrological systems.

  17. Modelling bulk canopy resistance from climatic variables for evapotranspiration estimation (United States)

    Perez, P. J.; Martinez-Cob, A.; Lecina, S.; Castellvi, F.; Villalobos, F. J.


    Evapotranspiration is a component of the hydrological cycle whose accurate computation is needed for an adequate management of water resources. In particular, a high level of accuracy in crop evapotranspiration estimation can represent an important saving of economical and water resources at planning and management of irrigated areas. In the evapotranspiration process, bulk canopy resistance (r_c) is a primary factor and its correct modelling remains an important problem in the Penman-Monteith (PM) method, not only for tall crops but also for medium height and short crops under water stress. In this work, an alternative approach for modelling canopy resistance is presented against th PM method with constant canopy resistance. Variable r_c values are computed as function of a climatic resistance and compared with other two models, Katerji and Perrier and Todorovic. Hourly evapotranspiration values (ET_o) over grass were obtained with a weighing lysimeter and an eddy covariance system at the Ebro and Guadalquivir valleys (Spain) respectively. The main objective is to evaluate whether the use of variable rather than fixed r_c values, would improve the ET_o estimates obtained by applying the PM equation under the semiarid conditions of the two sites, where evaporative demand is high particularly during summer.

  18. Thermal constraints on foraging of tropical canopy ants. (United States)

    Spicer, Michelle Elise; Stark, Alyssa Y; Adams, Benjamin J; Kneale, Riley; Kaspari, Michael; Yanoviak, Stephen P


    Small cursorial ectotherms risk overheating when foraging in the tropical forest canopy, where the surfaces of unshaded tree branches commonly exceed 50 °C. We quantified the heating and subsequent cooling rates of 11 common canopy ant species from Panama and tested the hypothesis that ant workers stop foraging at temperatures consistent with the prevention of overheating. We created hot experimental "sunflecks" on existing foraging trails of four ant species from different clades and spanning a broad range of body size, heating rate, and critical thermal maxima (CT max ). Different ant species exhibited very different heating rates in the lab, and these differences did not follow trends predicted by body size alone. Experiments with ant models showed that heating rates are strongly affected by color in addition to body size. Foraging workers of all species showed strong responses to heating and consistently abandoned focal sites between 36 and 44 °C. Atta colombica and Azteca trigona workers resumed foraging shortly after heat was removed, but Cephalotes atratus and Dolichoderus bispinosus workers continued to avoid the heated patch even after >5 min of cooling. Large foraging ants (C. atratus) responded slowly to developing thermal extremes, whereas small ants (A. trigona) evacuated sunflecks relatively quickly, and at lower estimated body temperatures than when revisiting previously heated patches. The results of this study provide the first field-based insight into how foraging ants respond behaviorally to the heterogeneous thermal landscape of the tropical forest canopy.

  19. Assessing canopy performance using carbonyl sulfide (COS) measurements. (United States)

    Yang, Fulin; Qubaja, Rafat; Tatarinov, Fyodor; Rotenberg, Eyal; Yakir, Dan


    Carbonyl sulfide (COS) is a tracer of ecosystem photosynthesis that can advance carbon cycle research from leaf to global scales; however, a range of newly reported caveats related to sink/source strength of various ecosystem components hinder its application. Using comprehensive eddy-covariance and chamber measurements, we systematically measure ecosystem contributions from leaf, stem, soil and litter and were able to close the ecosystem COS budget. The relative contributions of non-photosynthetic components to the overall canopy-scale flux are relatively small (~4% during peak activity season) and can be independently estimated based on their responses to temperature and humidity. Converting COS to photosynthetic CO 2 fluxes based on the leaf relative uptake of COS/CO 2 , faces challenges due to observed daily and seasonal changes. Yet, this ratio converges around a constant value (~1.6), and the variations, dominated by light intensity, were found unimportant on a flux-weighted daily time-scale, indicating a mean ratio of daytime gross-to-net primary productivity of ~2 in our ecosystem. The seasonal changes in the leaf relative uptake ratio may indicate a reduction in mesophyll conductance in winter, and COS-derived canopy conductance permitted canopy temperature estimate consistent with radiative skin temperature. These results support the feasibility of using COS as a powerful and much-needed means of assessing ecosystem function and its response to change. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  20. Quantitative comparison of canopy conductance models using a Bayesian approach (United States)

    Samanta, S.; Clayton, M. K.; Mackay, D. S.; Kruger, E. L.; Ewers, B. E.


    A quantitative model comparison methodology based on deviance information criterion, a Bayesian measure of the trade-off between model complexity and goodness of fit, is developed and demonstrated by comparing semiempirical transpiration models. This methodology accounts for parameter and prediction uncertainties associated with such models and facilitates objective selection of the simplest model, out of available alternatives, which does not significantly compromise the ability to accurately model observations. We use this methodology to compare various Jarvis canopy conductance model configurations, embedded within a larger transpiration model, against canopy transpiration measured by sap flux. The results indicate that descriptions of the dependence of stomatal conductance on vapor pressure deficit, photosynthetic radiation, and temperature, as well as the gradual variation in canopy conductance through the season are essential in the transpiration model. Use of soil moisture was moderately significant, but only when used with a hyperbolic vapor pressure deficit relationship. Subtle differences in model quality could be clearly associated with small structural changes through the use of this methodology. The results also indicate that increments in model complexity are not always accompanied by improvements in model quality and that such improvements are conditional on model structure. Possible application of this methodology to compare complex semiempirical models of natural systems in general is also discussed.

  1. Height increment of understorey Norway spruces under different tree canopies

    Directory of Open Access Journals (Sweden)

    Olavi Laiho


    Full Text Available Background Stands having advance regeneration of spruce are logical places to start continuous cover forestry (CCF in fertile and mesic boreal forests. However, the development of advance regeneration is poorly known. Methods This study used regression analysis to model the height increment of spruce understorey as a function of seedling height, site characteristics and canopy structure. Results An admixture of pine and birch in the main canopy improves the height increment of understorey. When the stand basal area is 20 m2ha-1 height increment is twice as fast under pine and birch canopies, as compared to spruce. Height increment of understorey spruce increases with increasing seedling height. Between-stand and within-stand residual variation in the height increment of understorey spruces is high. The increment of 1/6 fastest-growing seedlings is at least 50% greater than the average. Conclusions The results of this study help forest managers to regulate the density and species composition of the stand, so as to obtain a sufficient height development of the understorey. In pure and almost pure spruce stands, the stand basal area should be low for a good height increment of the understorey.

  2. Morphology of the Zambezi River plume in the Sofala Bank ...

    African Journals Online (AJOL)

    In this paper, hydrographic data collected in the vicinity of the Zambezi River plume between 2004-2007 is discussed alongside historical data to infer the plume morphology. The sampling plan called for 73 CTD stations that were interspersed with sampling of shrimp recruitment. Satellite-derived wind speed and river ...

  3. Three Rivers: Protecting the Yukon's Great Boreal Wilderness (United States)

    Juri Peepre


    The Three Rivers Project in the Yukon, Canada, aims to protect a magnificent but little known 30,000 km2 (11,583 miles2) wilderness in the Peel watershed, using the tools of science, visual art, literature, and community engagement. After completing ecological inventories, conservation values maps, and community trips on the Wind, Snake, and Bonnet Plume rivers, the...

  4. Climatic wind tunnel for wind engineering tasks

    Czech Academy of Sciences Publication Activity Database

    Kuznetsov, Sergeii; Pospíšil, Stanislav; Král, Radomil


    Roč. 112, 2-B (2015), s. 303-316 ISSN 1897-628X R&D Projects: GA ČR(CZ) GA14-12892S Keywords : climatic tunnel * wind tunnel * atmospheric boundary layer * flow resistance * wind tunnel contraction Subject RIV: JM - Building Engineering

  5. Wind Atlas for Egypt

    DEFF Research Database (Denmark)

    Mortensen, Niels Gylling; Said Said, Usama; Badger, Jake


    The results of a comprehensive, 8-year wind resource assessment programme in Egypt are presented. The objective has been to provide reliable and accurate wind atlas data sets for evaluating the potential wind power output from large electricityproducing wind turbine installations. The regional wind...... climates of Egypt have been determined by two independent methods: a traditional wind atlas based on observations from more than 30 stations all over Egypt, and a numerical wind atlas based on long-term reanalysis data and a mesoscale model (KAMM). The mean absolute error comparing the two methods is about...... 10% for two large-scale KAMM domains covering all of Egypt, and typically about 5% for several smaller-scale regional domains. The numerical wind atlas covers all of Egypt, whereas the meteorological stations are concentrated in six regions. The Wind Atlas for Egypt represents a significant step...

  6. Wind Atlas for Egypt

    DEFF Research Database (Denmark)

    The results of a comprehensive, 8-year wind resource assessment programme in Egypt are presented. The objective has been to provide reliable and accurate wind atlas data sets for evaluating the potential wind power output from large electricityproducing wind turbine installations. The regional wind...... climates of Egypt have been determined by two independent methods: a traditional wind atlas based on observations from more than 30 stations all over Egypt, and a numerical wind atlas based on long-term reanalysis data and a mesoscale model (KAMM). The mean absolute error comparing the two methods is about...... 10% for two large-scale KAMM domains covering all of Egypt, and typically about 5% for several smaller-scale regional domains. The numerical wind atlas covers all of Egypt, whereas the meteorological stations are concentrated in six regions. The Wind Atlas for Egypt represents a significant step...

  7. A canopy trimming experiment in Puerto Rico: the response of litter invertebrate communities to canopy loss and debris deposition in a tropical forest subject to hurricanes (United States)

    Barbara A. Richardson; Michael J. Richardson; Grizelle Gonzalez; Aaron B. Shiels; Diane S. Srivastava


    Hurricanes cause canopy removal and deposition of pulses of litter to the forest floor. A Canopy Trimming Experiment (CTE) was designed to decouple these two factors, and to investigate the separate abiotic and biotic consequences of hurricane-type damage and monitor recovery processes. As part of this experiment, effects on forest floor invertebrate communities were...

  8. Extreme wind estimate for Hornsea wind farm

    DEFF Research Database (Denmark)

    Larsén, Xiaoli Guo

    The purpose of this study is to provide estimation of the 50-year winds of 10 min and 1-s gust value at hub height of 100 m, as well as the design parameter shear exponent for the Hornsea offshore wind farm. The turbulence intensity required for estimating the gust value is estimated using two ap....... The greatest sector-wise extreme winds are from west to northwest. Different data, different periods and different methods have provided a range of values of the 50-year wind and accordingly the gust values, as summarized in Table 15.......The purpose of this study is to provide estimation of the 50-year winds of 10 min and 1-s gust value at hub height of 100 m, as well as the design parameter shear exponent for the Hornsea offshore wind farm. The turbulence intensity required for estimating the gust value is estimated using two...... approaches. One is through the measurements from the wind Doppler lidar, WindCube, which implies serious uncertainty, and the other one is through similarity theory for the atmospheric surface layer where the hub height is likely to belong to during strong storms. The turbulence intensity for storm wind...

  9. Groundwater decline and tree change in floodplain landscapes: Identifying non-linear threshold responses in canopy condition

    Directory of Open Access Journals (Sweden)

    J. Kath


    Full Text Available Groundwater decline is widespread, yet its implications for natural systems are poorly understood. Previous research has revealed links between groundwater depth and tree condition; however, critical thresholds which might indicate ecological ‘tipping points’ associated with rapid and potentially irreversible change have been difficult to quantify. This study collated data for two dominant floodplain species, Eucalyptus camaldulensis (river red gum and E. populnea (poplar box from 118 sites in eastern Australia where significant groundwater decline has occurred. Boosted regression trees, quantile regression and Threshold Indicator Taxa Analysis were used to investigate the relationship between tree condition and groundwater depth. Distinct non-linear responses were found, with groundwater depth thresholds identified in the range from 12.1 m to 22.6 m for E. camaldulensis and 12.6 m to 26.6 m for E. populnea beyond which canopy condition declined abruptly. Non-linear threshold responses in canopy condition in these species may be linked to rooting depth, with chronic groundwater decline decoupling trees from deep soil moisture resources. The quantification of groundwater depth thresholds is likely to be critical for management aimed at conserving groundwater dependent biodiversity. Identifying thresholds will be important in regions where water extraction and drying climates may contribute to further groundwater decline.

  10. Complex terrain and wind lidars

    Energy Technology Data Exchange (ETDEWEB)

    Bingoel, F.


    This thesis includes the results of a PhD study about complex terrain and wind lidars. The study mostly focuses on hilly and forested areas. Lidars have been used in combination with cups, sonics and vanes, to reach the desired vertical measurement heights. Several experiments are performed in complex terrain sites and the measurements are compared with two different flow models; a linearised flow model LINCOM and specialised forest model SCADIS. In respect to the lidar performance in complex terrain, the results showed that horizontal wind speed errors measured by a conically scanning lidar can be of the order of 3-4% in moderately-complex terrain and up to 10% in complex terrain. The findings were based on experiments involving collocated lidars and meteorological masts, together with flow calculations over the same terrains. The lidar performance was also simulated with the commercial software WAsP Engineering 2.0 and was well predicted except for some sectors where the terrain is particularly steep. Subsequently, two experiments were performed in forested areas; where the measurements are recorded at a location deep-in forest and at the forest edge. Both sites were modelled with flow models and the comparison of the measurement data with the flow model outputs showed that the mean wind speed calculated by LINCOM model was only reliable between 1 and 2 tree height (h) above canopy. The SCADIS model reported better correlation with the measurements in forest up to approx6h. At the forest edge, LINCOM model was used by allocating a slope half-in half out of the forest based on the suggestions of previous studies. The optimum slope angle was reported as 17 deg.. Thus, a suggestion was made to use WAsP Engineering 2.0 for forest edge modelling with known limitations and the applied method. The SCADIS model worked better than the LINCOM model at the forest edge but the model reported closer results to the measurements at upwind than the downwind and this should be

  11. Offshore wind energy developments

    DEFF Research Database (Denmark)

    Stolpe, Mathias; Buhl, Thomas; Sumer, B. Mutlu


    This chapter will give a brief overview of a few of the activities within offshore wind energy research, specifically 1) Support structure optimization, 2) Blade coatings for wind turbines; 3) Scour protection of foundations, 4) Offshore HVDC and 5) Offshore wind services.......This chapter will give a brief overview of a few of the activities within offshore wind energy research, specifically 1) Support structure optimization, 2) Blade coatings for wind turbines; 3) Scour protection of foundations, 4) Offshore HVDC and 5) Offshore wind services....

  12. Wind energy information guide

    Energy Technology Data Exchange (ETDEWEB)



    This book is divided into nine chapters. Chapters 1--8 provide background and annotated references on wind energy research, development, and commercialization. Chapter 9 lists additional sources of printed information and relevant organizations. Four indices provide alphabetical access to authors, organizations, computer models and design tools, and subjects. A list of abbreviations and acronyms is also included. Chapter topics include: introduction; economics of using wind energy; wind energy resources; wind turbine design, development, and testing; applications; environmental issues of wind power; institutional issues; and wind energy systems development.

  13. Wind Power Career Chat

    Energy Technology Data Exchange (ETDEWEB)


    This document will teach students about careers in the wind energy industry. Wind energy, both land-based and offshore, is expected to provide thousands of new jobs in the next several decades. Wind energy companies are growing rapidly to meet America's demand for clean, renewable, and domestic energy. These companies need skilled professionals. Wind power careers will require educated people from a variety of areas. Trained and qualified workers manufacture, construct, operate, and manage wind energy facilities. The nation will also need skilled researchers, scientists, and engineers to plan and develop the next generation of wind energy technologies.

  14. Arctic wind energy

    International Nuclear Information System (INIS)

    Peltola, E.; Holttinen, H.; Marjaniemi, M.; Tammelin, B.


    Arctic wind energy research was aimed at adapting existing wind technologies to suit the arctic climatic conditions in Lapland. Project research work included meteorological measurements, instrument development, development of a blade heating system for wind turbines, load measurements and modelling of ice induced loads on wind turbines, together with the development of operation and maintenance practices in arctic conditions. As a result the basis now exists for technically feasible and economically viable wind energy production in Lapland. New and marketable products, such as blade heating systems for wind turbines and meteorological sensors for arctic conditions, with substantial export potential, have also been developed. (orig.)

  15. Arctic wind energy

    Energy Technology Data Exchange (ETDEWEB)

    Peltola, E. [Kemijoki Oy (Finland); Holttinen, H.; Marjaniemi, M. [VTT Energy, Espoo (Finland); Tammelin, B. [Finnish Meteorological Institute, Helsinki (Finland)


    Arctic wind energy research was aimed at adapting existing wind technologies to suit the arctic climatic conditions in Lapland. Project research work included meteorological measurements, instrument development, development of a blade heating system for wind turbines, load measurements and modelling of ice induced loads on wind turbines, together with the development of operation and maintenance practices in arctic conditions. As a result the basis now exists for technically feasible and economically viable wind energy production in Lapland. New and marketable products, such as blade heating systems for wind turbines and meteorological sensors for arctic conditions, with substantial export potential, have also been developed. (orig.)

  16. Wind power today

    Energy Technology Data Exchange (ETDEWEB)



    This publication highlights initiatives of the US DOE`s Wind Energy Program. 1997 yearly activities are also very briefly summarized. The first article describes a 6-megawatt wind power plant installed in Vermont. Another article summarizes technical advances in wind turbine technology, and describes next-generation utility and small wind turbines in the planning stages. A village power project in Alaska using three 50-kilowatt turbines is described. Very brief summaries of the Federal Wind Energy Program and the National Wind Technology Center are also included in the publication.

  17. A LIDAR-Based Tree Canopy Characterization under Simulated Uneven Road Condition: Advance in Tree Orchard Canopy Profile Measurement

    Directory of Open Access Journals (Sweden)

    Yue Shen


    Full Text Available In real outdoor canopy profile detection, the accuracy of a LIDAR scanner to measure canopy structure is affected by a potentially uneven road condition. The level of error associated with attitude angles from undulations in the ground surface can be reduced by developing appropriate correction algorithm. This paper proposes an offline attitude angle offset correction algorithm based on a 3D affine coordinate transformation. The validity of the correction algorithm is verified by conducting an indoor experiment. The experiment was conducted on an especially designed canopy profile measurement platform. During the experiment, an artificial tree and a tree-shaped carved board were continuously scanned at constant laser scanner travel speed and detection distances under simulated bumpy road conditions. Acquired LIDAR laser scanner raw data was processed offline by exceptionally developed MATLAB program. The obtained results before and after correction method show that the single attitude angle offset correction method is able to correct the distorted data points in tree-shaped carved board profile measurement, with a relative error of 5%, while the compound attitude angle offset correction method is effective to reduce the error associated with compound attitude angle deviation from the ideal scanner pose, with relative error of 7%.

  18. Modeling canopy-induced turbulence in the Earth system: a unified parameterization of turbulent exchange within plant canopies and the roughness sublayer (CLM-ml v0) (United States)

    Bonan, Gordon B.; Patton, Edward G.; Harman, Ian N.; Oleson, Keith W.; Finnigan, John J.; Lu, Yaqiong; Burakowski, Elizabeth A.


    Land surface models used in climate models neglect the roughness sublayer and parameterize within-canopy turbulence in an ad hoc manner. We implemented a roughness sublayer turbulence parameterization in a multilayer canopy model (CLM-ml v0) to test if this theory provides a tractable parameterization extending from the ground through the canopy and the roughness sublayer. We compared the canopy model with the Community Land Model (CLM4.5) at seven forest, two grassland, and three cropland AmeriFlux sites over a range of canopy heights, leaf area indexes, and climates. CLM4.5 has pronounced biases during summer months at forest sites in midday latent heat flux, sensible heat flux, gross primary production, nighttime friction velocity, and the radiative temperature diurnal range. The new canopy model reduces these biases by introducing new physics. Advances in modeling stomatal conductance and canopy physiology beyond what is in CLM4.5 substantially improve model performance at the forest sites. The signature of the roughness sublayer is most evident in nighttime friction velocity and the diurnal cycle of radiative temperature, but is also seen in sensible heat flux. Within-canopy temperature profiles are markedly different compared with profiles obtained using Monin-Obukhov similarity theory, and the roughness sublayer produces cooler daytime and warmer nighttime temperatures. The herbaceous sites also show model improvements, but the improvements are related less systematically to the roughness sublayer parameterization in these canopies. The multilayer canopy with the roughness sublayer turbulence improves simulations compared with CLM4.5 while also advancing the theoretical basis for surface flux parameterizations.

  19. Study of momentum transfers within a vegetation canopy

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    man (1987) compared several wind profile models against observed data. Massman (1997) again used Albini's model of wind profile (1981) to develop one dimensional analytical model of momentum transfer and para- meterized the surface drag coefficient to estimate d/h and z0/h as functions of foliage structure and.

  20. Hyperspectral indices for leaf and pixel chlorophyll estimation in open-canopy tree (United States)

    Zhao, Jin; Chen, Xi; Japper, Guli; Chang, Huaitian; Ma, Zhongguo; Duan, Yuanbin


    In this paper, the goal is to found indices best for Cab estimation with leaves and heperion pixels. There are several indices chosen, which showed best results for Cab estimation at both leaf and canopy levels in other studies. Forty-eight typical leaves were sampled in middle and lower reach of the Tarim River, Xinjiang, China. Leaf reflectance and Chlorophyll of leaves collected. Result demonstrated that Indices such as red edge and derivative indices R750/R710, R740/R720, (R734-R747)/(R715+R720), Blog(1/R737), D715/D705,(R734-R747)/(R715+R726), (R694-R680)/(R732-R760) were shown to be the good indicators for Cab estimation at leaf. Hyperion data were acquired for Aqike section in the middle reaches of the Tarim River in Nine 28, 2006. Field data were collected at same day to coincide with the Hyperion, including Chlorophyll of each tree, LAI, green vegetation cover. LAI derived from scanopy 2006. Inventory field plots were 120m×120m quadrants, and Chlorophyll of pixel is deduced from field data of 360 trees. Generally good results are found for Cab estimation at pixel level with indices such as, (R734-R747)/(R715+R726), Blog(1/R737), (R694-R680)/(R732-R760), TCARI, TCARI/OSAVI, MCARI/OSAVI and so on. It was found that (R734-R747)/(R715+R720), Blog(1/R737), D715/D705, (R734-R747)/(R715+R726), (R694-R680)/(R732-R760),R740/R720 were successfully test on leaves and piexls. On the other hand, the "modified" indices (TCARI, MCAVI, TCARI/OSAVI, MCARI/OSAVI) already give good results at the piexl level.

  1. Evolution of wind towards wind turbine

    NARCIS (Netherlands)

    Giyanani, A.H.; Bierbooms, W.A.A.M.; Van Bussel, G.J.W.


    Remote sensing of the atmospheric variables with the use of LiDAR is a relatively new technology field for wind resource assessment in wind energy. The validation of LiDAR measurements and comparisons is of high importance for further applications of the data.

  2. Investigation of radioactive cesium transportation from forest canopy to floor by litterfall, stemflow and throughfall in northern Fukushima (United States)

    Endo, I.; Ohte, N.; Iseda, K.; Tanoi, K.; Hirose, A.; Kobayashi, N. I.; Murakami, M.; Tokuchi, N.; Ohashi, M.


    After the Fukushima Daiichi nuclear power plant accident due to Great East Japan Earthquake in March 11th 2011, large areas of forest have been highly contaminated by the radioactive nuclides. Most of the deposited radioactive material to the canopy is then washed out with rainfall or leaf fall due to the tree phenology. There have been studies showing that the amount of 137Cs transportation differs among litter components and water pathways, and was affected by seasonal variations. Thus, to evaluate the amount of 137Cs flux from canopy to forest floor, continuous monitoring of each component (litterfall, throughfall and stemflow) is required. We investigated the annual transfer of 137Cs from the forest canopy to the floor by litterfall, throughfall and stemflow at two different forest types in northern Fukushima after two years from the accident. Seasonal variations in 137Cs transportation and differences between forests types were also determined. Forest sites were set in the upstream part of Kami-Oguni River catchment at Date city, which locates approximately 50km northwest from the Fukushima Dai-ichi Nuclear Power Plant. The study sites consisted of two deciduous (Mixed deciduous-1, Mixed deciduous-2) and one cedar (Cedar plantation) stands. The cumulative 137Cs transportation from the forest canopy to the floor was 6.6 kBq m-2 year-1 for the Mixed deciduous-1, 3.9 kBq m-2 year-1 for the Mixed deciduous-2 and 11.0 kBq m-2 year-1 for the Cedar plantation. 137Cs transportation with litterfall increased in the defoliation period which correlated with the increased amount of litterfall. 137Cs transportation with throughfall and stemflow increased in the rainy season. 137Cs flux by litterfall was higher in Cedar plantation compared with that of mixed deciduous forests, while the opposite result was obtained for stemflow. The ratio of annual 137Cs flux and the estimated 137Cs amount deposited in the forests will be discussed.

  3. Disentangling factors that control the vulnerability of forests to catastrophic wind damage (United States)

    Dracup, E.; Taylor, A.; MacLean, D.; Boulanger, Y.


    Wind is an important driver of forest dynamics along North America's north-eastern coastal forests, but also damages many commercially managed forests which society relies as an important source of wood fiber. Although the influence of wind on north-eastern forests is well recognized, knowledge of factors predisposing trees to wind damage is less known, especially in the context of large, powerful wind storm events. This is of particular concern as climate change is expected to alter the frequency and severity of strong wind storms affecting this region. On 29 September 2003, Hurricane Juan made landfall over Nova Scotia, Canada as a Category 2 hurricane with sustained winds of 158 km/h, and gusts of up to 185 km/h. Hurricane Juan variously damaged a swath of over 600,000 ha of forest. The damaged forest area was surveyed using aerial photography and LandSAT imagery and categorized according to level of wind damage sustained (none, low, moderate, severe) at a resolution of 15 x 15 m square cells. We used Random Forest to analyze and compare level of wind damage in each cell with a myriad of abiotic (exposure, depth to water table, soil composition, etc.) and biotic (tree species composition, canopy closure, canopy height, etc.) factors known or expected to predispose trees to windthrow. From our analysis, we identified topographic exposure, precipitation, and maximum gust speed as the top predictors of windthrow during Hurricane Juan. To our surprise, forest stand factors, such as tree species composition and height, had minimal effects on level of windthrow. These results can be used to construct predictive risk maps which can help society to assess the vulnerability of forests to future wind storm events.

  4. Microclimate in the vertical profile of wheat, rape and maize canopies

    Directory of Open Access Journals (Sweden)

    Zdeněk Krédl


    Full Text Available The differences of air temperature and relative air humidity in wheat, rape and maize canopies at three heights (ground level, effective canopy height and 2 meters above the soil surface, and their comparison with the temperature values of the nearest standard climatological station at the height of 2 meters were studied. The microclimatic data were obtained at the field trial station of the Mendel University in Brno in the Žabčice municipality (South Moravia in the canopies of winter wheat, winter rape and maize and from the standard climatological station located immediately next to the canopies. It was found, that wheat, rape and maize canopies microclimate differed significantly from those of their surrounding environments. The temperature was usually lower in the ground level and effective height in the wheat and rape stands, air humidity was usually higher in these crops. On the other hand, maize canopies had diverse air temperature values during the studied period.

  5. The theoretical relationship between foliage temperature and canopy resistance in sparse crops (United States)

    Shuttleworth, W. James; Gurney, Robert J.


    One-dimensional, sparse-crop interaction theory is reformulated to allow calculation of the canopy resistance from measurements of foliage temperature. A submodel is introduced to describe eddy diffusion within the canopy which provides a simple, empirical simulation of the reported behavior obtained from a second-order closure model. The sensitivity of the calculated canopy resistance to the parameters and formulas assumed in the model is investigated. The calculation is shown to exhibit a significant but acceptable sensitivity to extreme changes in canopy aerodynamics, and to changes in the surface resistance of the substrate beneath the canopy at high and intermediate values of leaf area index. In very sparse crops changes in the surface resistance of the substrate are shown to contaminate the calculated canopy resistance, tending to amplify the apparent response to changes in water availability. The theory is developed to allow the use of a measurement of substrate temperature as an option to mitigate this contamination.

  6. Abundance of green tree frogs and insects in artificial canopy gaps in a bottomland hardwood forest.

    Energy Technology Data Exchange (ETDEWEB)

    Horn, Scott; Hanula, James L.; Ulyshen, Michael D.; Kilgo, John C.


    Horn, Scott, James L. Hanula, Michael D. Ulyshen, and John C. Kilgo. 2005. Abundance of green tree frogs and insects in artificial canopy gaps in a bottomland hardwood forest. Am. Midl. Nat. 153:321-326. Abstract: We found more green tree frogs (Hyla cinerea) in canopy gaps than in closed canopy forest. Of the 331 green tree frogs observed, 88% were in canopy gaps. Likewise, higher numbers and biomasses of insects were captured in the open gap habitat. Flies were the most commonly collected insect group accounting for 54% of the total capture. These data suggest that one reason green tree frogs were more abundant in canopy gaps was the increased availability of prey and that small canopy gaps provide early successional habitats that are beneficial to green tree frog populations.

  7. Wind Tunnel Measurements at LM Wind Power

    DEFF Research Database (Denmark)

    Bertagnolio, Franck


    The optimization of airfoil profiles specifically designed for wind turbine application was initiated in the late 80’s [67, 68, 30, 15]. The first attempts to reduce airfoil noise for wind turbines made use of airfoil trailing edge serration. Themodification of airfoil shapes targeted at noise...... reduction is more recent. An important effort was produced in this direction within the SIROCCO project. This latter work involved measurements on full size wind turbines and showed that trailing edge serration may proved a viable solution for mitigating wind turbine noise though it has not been implemented...... on commercial wind turbine yet. It should be mentioned here that the attenuation of turbulent inflow noise using wavy leading edge has recently been investigated [55], but this technique has still to be further validated for practical applications. In this paper, it is proposed to optimize an airfoil which...

  8. The Effect of Wind Forcing on Modeling Coastal Circulation at a Marine Renewable Test Site

    Directory of Open Access Journals (Sweden)

    Lei Ren


    Full Text Available The hydrodynamic circulation in estuaries is primarily driven by tides, river inflows and surface winds. While tidal and river data can be quite easily obtained for input to hydrodynamic models, sourcing accurate surface wind data is problematic. Inaccurate wind data can lead to inaccuracies in the surface currents computed by three-dimensional hydrodynamic models. In this research, a high-resolution wind model was coupled with a three-dimensional hydrodynamic model of Galway Bay, a semi-enclosed estuary on the west coast of Ireland, to investigate the effect of wind forcing on model accuracy. Two wind-forcing conditions were investigated: (1 using wind data measured onshore on the NUI Galway campus (NUIG and (2 using offshore wind data provided by a high resolution wind model (HR. A scenario with no wind forcing (NW was also assessed. The onshore wind data varied with time but the speed and direction were applied across the full model domain. The modeled offshore wind fields varied with both time and space. The effect of wind forcing on modeled hydrodynamics was assessed via comparison of modeled surface currents with surface current measurements obtained from a High-Frequency (HF radar Coastal Ocean Dynamics Applications Radar (CODAR observation system. Results indicated that winds were most significant in simulating the north-south surface velocity component. The model using high resolution temporally- and spatially-varying wind data achieved better agreement with the CODAR surface currents than the model using the onshore wind measurements and the model without any wind forcing.

  9. An evaluation of the WindEye wind lidar

    DEFF Research Database (Denmark)

    Dellwik, Ebba; Sjöholm, Mikael; Mann, Jakob

    Prevision of the wind field by remote sensing wind lidars has the potential to improve the performance of wind turbines. The functionality of a WindEye lidar developed by Windar Photonics A/S (Denmark) for the wind energy market was tested in a two months long field experiment. The WindEye sensor...... with a high accuracy during the whole campaign....

  10. Wind electric power generation

    International Nuclear Information System (INIS)

    Koch, M.K.; Wind, L.; Canter, B.; Moeller, T.


    The monthly statistics of wind electric power generation in Denmark are compiled from information given by the owners of the private wind turbines. For each wind turbine the name of the site and of the type of turbine is given, and the power generation data are given for the month in question together with the total production in 1999 and 2000. Also the data of operation start are given. On the map of Denmark the sites of the wind turbines are marked. (CLS)

  11. The Irish Wind Atlas

    Energy Technology Data Exchange (ETDEWEB)

    Watson, R. [Univ. College Dublin, Dept. of Electronic and Electrical Engineering, Dublin (Ireland); Landberg, L. [Risoe National Lab., Meteorology and Wind Energy Dept., Roskilde (Denmark)


    The development work on the Irish Wind Atlas is nearing completion. The Irish Wind Atlas is an updated improved version of the Irish section of the European Wind Atlas. A map of the irish wind resource based on a WA{sup s}P analysis of the measured data and station description of 27 measuring stations is presented. The results of previously presented WA{sup s}P/KAMM runs show good agreement with these results. (au)

  12. Turbulence and wind turbines

    DEFF Research Database (Denmark)

    Brand, Arno J.; Peinke, Joachim; Mann, Jakob


    The nature of turbulent flow towards, near and behind a wind turbine, the effect of turbulence on the electricity production and the mechanical loading of individual and clustered wind turbines, and some future issues are discussed.......The nature of turbulent flow towards, near and behind a wind turbine, the effect of turbulence on the electricity production and the mechanical loading of individual and clustered wind turbines, and some future issues are discussed....

  13. Wind Energy Resource Assessment on Alaska Native Lands in Cordova Region of Prince William Sound

    Energy Technology Data Exchange (ETDEWEB)

    Whissel, John C. [Native Village of Eyak, Cordova, AK (United States); Piche, Matthew [Native Village of Eyak, Cordova, AK (United States)


    The Native Village of Eyak (NVE) has been monitoring wind resources around Cordova, Alaska in order to determine whether there is a role for wind energy to play in the city’s energy scheme, which is now supplies entirely by two run-of-the-river hydro plants and diesel generators. These data are reported in Appendices A and B. Because the hydro resources decline during winter months, and wind resources increase, wind is perhaps an ideal counterpart to round out Cordova’s renewable energy supply. The results of this effort suggests that this is the case, and that developing wind resources makes sense for our small, isolated community.

  14. Footprint Evaluation for Flux and Concentration Measurements for an Urban-Like Canopy with Coupled Lagrangian Stochastic and Large-Eddy Simulation Models (United States)

    Hellsten, Antti; Luukkonen, Sofia-M.; Steinfeld, Gerald; Kanani-Sühring, Farah; Markkanen, Tiina; Järvi, Leena; Lento, Juha; Vesala, Timo; Raasch, Siegfried


    A footprint algorithm, based on a Lagrangian stochastic (LS) model embedded into a parallelized large-eddy simulation (LES) model, is used for the evaluation of flux and concentration footprints of passive scalars in flow in and above an urban-like canopy layer of a neutrally stratified 440 m deep boundary layer. The urban-like canopy layer is realized by an aligned array of cuboids whose height H is 40 m. The canopy flow involves strong small-scale inhomogeneities although it is homogeneous at the large scale. The source height is 1 m (0.025 H) above the ground in the street canyons, roughly mimicking traffic emissions. Footprints are evaluated for four heights from 0.25 H to 2.5 H, and for up to eight different horizontal sensor positions per measurement height, comprising sensor positions inside as well as outside of the street canyon that extend perpendicular to the mean wind direction. The LES-LS footprints are compared with footprints estimated by a conventional model (Kormann and Meixner, in Boundary-Layer Meteorol 99:207-224, 2001). It becomes evident that the local heterogeneity of the flow has a considerable impact on flux and concentration footprints. As expected, footprints for measurements within and right above the canopy layer show complex and completely different footprint shapes compared to the ellipsoidal shape obtained from conventional footprint models that assume horizontal homogeneity of the turbulent flow as well as the sources of passive scalars. Our results show the importance of street-canyon flow and turbulence for the vertical mixing of scalar concentration.

  15. Impact of Vertical Canopy Position on Leaf Spectral Properties and Traits across Multiple Species

    Directory of Open Access Journals (Sweden)

    Tawanda W. Gara


    Full Text Available Understanding the vertical pattern of leaf traits across plant canopies provide critical information on plant physiology, ecosystem functioning and structure and vegetation response to climate change. However, the impact of vertical canopy position on leaf spectral properties and subsequently leaf traits across the entire spectrum for multiple species is poorly understood. In this study, we examined the ability of leaf optical properties to track variability in leaf traits across the vertical canopy profile using Partial Least Square Discriminatory Analysis (PLS-DA. Leaf spectral measurements together with leaf traits (nitrogen, carbon, chlorophyll, equivalent water thickness and specific leaf area were studied at three vertical canopy positions along the plant stem: lower, middle and upper. We observed that foliar nitrogen (N, chlorophyll (Cab, carbon (C, and equivalent water thickness (EWT were higher in the upper canopy leaves compared with lower shaded leaves, while specific leaf area (SLA increased from upper to lower canopy leaves. We found that leaf spectral reflectance significantly (P ≤ 0.05 shifted to longer wavelengths in the ‘red edge’ spectrum (685–701 nm in the order of lower > middle > upper for the pooled dataset. We report that spectral bands that are influential in the discrimination of leaf samples into the three groups of canopy position, based on the PLS-DA variable importance projection (VIP score, match with wavelength regions of foliar traits observed to vary across the canopy vertical profile. This observation demonstrated that both leaf traits and leaf reflectance co-vary across the vertical canopy profile in multiple species. We conclude that canopy vertical position has a significant impact on leaf spectral properties of an individual plant’s traits, and this finding holds for multiple species. These findings have important implications on field sampling protocols, upscaling leaf traits to canopy level

  16. Co-optimal distribution of leaf nitrogen and hydraulic conductance in plant canopies. (United States)

    Peltoniemi, Mikko S; Duursma, Remko A; Medlyn, Belinda E


    Leaf properties vary significantly within plant canopies, due to the strong gradient in light availability through the canopy, and the need for plants to use resources efficiently. At high light, photosynthesis is maximized when leaves have a high nitrogen content and water supply, whereas at low light leaves have a lower requirement for both nitrogen and water. Studies of the distribution of leaf nitrogen (N) within canopies have shown that, if water supply is ignored, the optimal distribution is that where N is proportional to light, but that the gradient of N in real canopies is shallower than the optimal distribution. We extend this work by considering the optimal co-allocation of nitrogen and water supply within plant canopies. We developed a simple 'toy' two-leaf canopy model and optimized the distribution of N and hydraulic conductance (K) between the two leaves. We asked whether hydraulic constraints to water supply can explain shallow N gradients in canopies. We found that the optimal N distribution within plant canopies is proportional to the light distribution only if hydraulic conductance, K, is also optimally distributed. The optimal distribution of K is that where K and N are both proportional to incident light, such that optimal K is highest to the upper canopy. If the plant is constrained in its ability to construct higher K to sun-exposed leaves, the optimal N distribution does not follow the gradient in light within canopies, but instead follows a shallower gradient. We therefore hypothesize that measured deviations from the predicted optimal distribution of N could be explained by constraints on the distribution of K within canopies. Further empirical research is required on the extent to which plants can construct optimal K distributions, and whether shallow within-canopy N distributions can be explained by sub-optimal K distributions.

  17. Wind Power Now! (United States)

    Inglis, David Rittenhouse


    The government promotes and heavily subsidizes research in nuclear power plants. Federal development of wind power is slow in comparison even though much research with large wind-electric machines has already been conducted. Unless wind power programs are accelerated it will not become a major energy alternative to nuclear power. (MR)

  18. Power from the Wind (United States)

    Roman, Harry T.


    Wind energy is the fastest-growing renewable energy source in the world. Over the last 20 years, the wind industry has done a very good job of engineering machines, improving materials, and economies of production, and making this energy source a reality. Like all renewable energy forms, wind energy's successful application is site specific. Also,…

  19. Extreme winds in Denmark

    DEFF Research Database (Denmark)

    Kristensen, L.; Rathmann, O.; Hansen, S.O.


    Wind-speed data from four sites in Denmark have been analyzed in order to obtain estimates of the basic wind velocity, defined as the 50-year wind speed (ten minute averages) under standard conditions, i.e. 10 meter over a homogeneous terrain with the roughness length 0.05 m. The sites are Skjern...

  20. Extreme winds in Denmark

    DEFF Research Database (Denmark)

    Kristensen, L.; Rathmann, Ole; Hansen, S.O.


    Wind-speed data from four sites in Denmark have been analyzed in order to obtain estimates of the basic wind velocity which is defined as the 50-year wind speed under standard conditions, i.e. ten-minute averages at the height 10 m over a uniform terrainwith the roughness length 0.05 m. The sites...

  1. Modelling Wind for Wind Farm Layout Optimization Using Joint Distribution of Wind Speed and Wind Direction

    DEFF Research Database (Denmark)

    Feng, Ju; Shen, Wen Zhong


    Reliable wind modelling is of crucial importance for wind farm development. The common practice of using sector-wise Weibull distributions has been found inappropriate for wind farm layout optimization. In this study, we propose a simple and easily implementable method to construct joint distribu......Reliable wind modelling is of crucial importance for wind farm development. The common practice of using sector-wise Weibull distributions has been found inappropriate for wind farm layout optimization. In this study, we propose a simple and easily implementable method to construct joint...... quite well in terms of the coefficient of determination R-2. Then, the best of these joint distributions is used in the layout optimization of the Horns Rev 1 wind farm and the choice of bin sizes for wind speed and wind direction is also investigated. It is found that the choice of bin size for wind...... direction is especially critical for layout optimization and the recommended choice of bin sizes for wind speed and wind direction is finally presented....

  2. Wind and Yaw correlation

    DEFF Research Database (Denmark)

    Federici, Paolo; Kock, Carsten Weber

    The report describes measurements carried out on a given turbine and period. The measurements are carried out in accordance to Ref. [1]. A comparison between wind speed and wind direction on the met mast and nacelle wind speed and yaw direction is made in accordance to Ref. [2] and the results...... are presented on graphs and in a table....

  3. Wind power soars

    Energy Technology Data Exchange (ETDEWEB)

    Flavin, C. [Worldwatch Inst., Washington, DC (United States)


    Opinions on the world market for wind power are presented in this paper. Some data for global wind power generating capacity are provided. European and other markets are discussed individually. Estimated potential for wind power is given for a number of countries. 3 figs.

  4. Wind power outlook 2006

    Energy Technology Data Exchange (ETDEWEB)



    This annual brochure provides the American Wind Energy Association's up-to-date assessment of the wind industry in the United States. This 2006 general assessment shows positive signs of growth, use and acceptance of wind energy as a vital component of the U.S. energy mix.

  5. Wind and Yaw correlation

    DEFF Research Database (Denmark)

    Federici, Paolo; Kock, Carsten Weber

    The report describes measurements carried out on a given turbine and period. The measurements are carried out in accordance to Ref. [1]. A comparison between wind speed and wind direction on the met mast and nacelle wind speed and yaw direction is made in accordance to Ref. [2] and the results...

  6. Wind: French revolutions

    International Nuclear Information System (INIS)

    Jones, C.


    Despite having the second best wind resources in Europe after the UK, the wind industry in France lags behind its European counterparts with just 6 W of installed wind capacity per person. The electricity market in France is dominated by the state-owned Electricite de France (EdF) and its nuclear power stations. However, smaller renewable generators are now in theory allowed access to the market and France has transposed the EU renewables directive into national law. The French governement has set a target of generating 10,000 MW of renewable capacity by 2010. The announcement of an increased feed-in tariff and the introduction of 'development zones' (ZDEs) which could allow fast-tracking of planning for wind projects are also expected to boost wind projects. But grid access and adminstrative burdens remain major barriers. In addition, French politicians and local authorities remain committed to nuclear, though encouraged by the European Commission, wind is beginning to gain acceptance; some 325 wind farms (representing 1557 MW of capacity) were approved between February 2004 and January 2005. France is now regarded by the international wind energy sector as a target market. One of France's leading independent wind developers and its only listed wind company, Theolia, is expected to be one of the major beneficiaries of the acceleration of activity in France, though other companies are keen to maximise the opportunities for wind. France currently has only one indigenous manufacturer of wind turbines, but foreign suppliers are winning orders

  7. Denmark Wind Energy Programme

    DEFF Research Database (Denmark)

    Shen, Wen Zhong


    In this chapter, a summary of some ongoing wind energy projects in Denmark is given. The research topics comprise computational model development, wind turbine (WT) design, low-noise airfoil and blade design, control device development, wake modelling and wind farm layout optimization....

  8. Wind energy in Mediterranean Basin

    International Nuclear Information System (INIS)

    Gaudiosi, G.


    In its examination of wind energy potential in the Mediterranean Basin, this paper provides brief notes on the Basin's geography; indicates power production and demand; describes the area's wind characteristics and wind monitoring activities; illustrates wind velocity distributions; estimates local wind power production potential; reviews the Basin's wind energy marketing situation and each bordering country's wind energy programs; surveys installed wind energy farms; and assesses national research and commercialization efforts

  9. Making direct use of canopy profiles in vegetation - atmosphere coupling (United States)

    Ryder, James; Polcher, Jan; Peylin, Philippe; Ottlé, Catherine; Chen, Yiying; van Gorsel, Eva; Haverd, Vanessa; McGrath, Matthew; Naudts, Kim; Otto, Juliane; Valade, Aude; Luyssaert, Sebastiaan


    Most coupled land-surface regional models use the 'big-leaf' approach for simulating the sensible and latent heat fluxes of different vegetation types. However, there has been a progression in the types of questions being asked of these models, such as the consequences of land-use change or the behaviour of BVOCs and aerosol. In addition, recent years has seen growth in the availability of in-canopy datasets across a broaded range of species, with which to calibrate these simulations. Hence, there is now an argument for transferring some of the techniques and processes previously used in local, site-based land surface models to the land surface components of models which operate on a regional or even global scale. We describe here the development and evaluation of a vertical canopy energy budget model (Ryder, J et al., 2014) that can be coupled to an atmospheric model such as LMDz. Significantly, the model preserves the implicit coupling of the land-surface to atmosphere interface, which means that run-time efficiences are preserved. This is acheived by means of an interface based on the approach of Polcher et al. (1998) and Best et al. (2004), but newly developed for a canopy column. The model makes use of techniques from site-based models, such as the calculation of vertical turbulence statistics using a second-order closure model (Massman & Weil, 1999), and the distribution of long-wave and short-wave radiation over the profile, the latter using an innovate multilayer albedo scheme (McGrath et al., in prep.). Complete profiles of atmospheric temperature and specific humidity are now calculated, in order to simulate sensible and latent heat fluxes, as well as the leaf temperature at each level in the model. The model is shown to perform stably, and reproduces well flux measurements at an initial test site, across a time period of several days, or over the course of a year. Further applications of the model might be to simulate mixed canopies, the light

  10. Improving urban wind flow predictions through data assimilation (United States)

    Sousa, Jorge; Gorle, Catherine


    Computational fluid dynamic is fundamentally important to several aspects in the design of sustainable and resilient urban environments. The prediction of the flow pattern for example can help to determine pedestrian wind comfort, air quality, optimal building ventilation strategies, and wind loading on buildings. However, the significant variability and uncertainty in the boundary conditions poses a challenge when interpreting results as a basis for design decisions. To improve our understanding of the uncertainties in the models and develop better predictive tools, we started a pilot field measurement campaign on Stanford University's campus combined with a detailed numerical prediction of the wind flow. The experimental data is being used to investigate the potential use of data assimilation and inverse techniques to better characterize the uncertainty in the results and improve the confidence in current wind flow predictions. We consider the incoming wind direction and magnitude as unknown parameters and perform a set of Reynolds-averaged Navier-Stokes simulations to build a polynomial chaos expansion response surface at each sensor location. We subsequently use an inverse ensemble Kalman filter to retrieve an estimate for the probabilistic density function of the inflow parameters. Once these distributions are obtained, the forward analysis is repeated to obtain predictions for the flow field in the entire urban canopy and the results are compared with the experimental data. We would like to acknowledge high-performance computing support from Yellowstone (ark:/85065/d7wd3xhc) provided by NCAR.

  11. Tree Death Not Resulting in Gap Creation: An Investigation of Canopy Dynamics of Northern Temperate Deciduous Forests

    Directory of Open Access Journals (Sweden)

    Jean-Francois Senécal


    Full Text Available Several decades of research have shown that canopy gaps drive tree renewal processes in the temperate deciduous forest biome. In the literature, canopy gaps are usually defined as canopy openings that are created by partial or total tree death of one or more canopy trees. In this study, we investigate linkages between tree damage mechanisms and the formation or not of new canopy gaps in northern temperate deciduous forests. We studied height loss processes in unmanaged and managed forests recovering from partial cutting with multi-temporal airborne Lidar data. The Lidar dataset was used to detect areas where canopy height reduction occurred, which were then field-studied to identify the tree damage mechanisms implicated. We also sampled the density of leaf material along transects to characterize canopy structure. We used the dataset of the canopy height reduction areas in a multi-model inference analysis to determine whether canopy structures or tree damage mechanisms most influenced the creation of new canopy gaps within canopy height reduction areas. According to our model, new canopy gaps are created mainly when canopy damage enlarges existing gaps or when height is reduced over areas without an already established dense sub-canopy tree layer.

  12. What is the most prominent factor limiting photosynthesis in different layers of a greenhouse cucumber canopy? (United States)

    Chen, Tsu-Wei; Henke, Michael; de Visser, Pieter H B; Buck-Sorlin, Gerhard; Wiechers, Dirk; Kahlen, Katrin; Stützel, Hartmut


    Maximizing photosynthesis at the canopy level is important for enhancing crop yield, and this requires insights into the limiting factors of photosynthesis. Using greenhouse cucumber (Cucumis sativus) as an example, this study provides a novel approach to quantify different components of photosynthetic limitations at the leaf level and to upscale these limitations to different canopy layers and the whole plant. A static virtual three-dimensional canopy structure was constructed using digitized plant data in GroIMP. Light interception of the leaves was simulated by a ray-tracer and used to compute leaf photosynthesis. Different components of photosynthetic limitations, namely stomatal (S(L)), mesophyll (M(L)), biochemical (B(L)) and light (L(L)) limitations, were calculated by a quantitative limitation analysis of photosynthesis under different light regimes. In the virtual cucumber canopy, B(L) and L(L) were the most prominent factors limiting whole-plant photosynthesis. Diffusional limitations (S(L) + M(L)) contributed Photosynthesis in the lower canopy was more limited by the biochemical capacity, and the upper canopy was more sensitive to light than other canopy parts. Although leaves in the upper canopy received more light, their photosynthesis was more light restricted than in the leaves of the lower canopy, especially when the light condition above the canopy was poor. An increase in whole-plant photosynthesis under diffuse light did not result from an improvement of light use efficiency but from an increase in light interception. Diffuse light increased the photosynthesis of leaves that were directly shaded by other leaves in the canopy by up to 55%. Based on the results, maintaining biochemical capacity of the middle-lower canopy and increasing the leaf area of the upper canopy would be promising strategies to improve canopy photosynthesis in a high-wire cucumber cropping system. Further analyses using the approach described in this study can be expected to

  13. Vertical stratification of beetles (Coleoptera) and flies (Diptera) in temperate forest canopies. (United States)

    Maguire, Dorothy Y; Robert, Katleen; Brochu, Kristen; Larrivée, Maxim; Buddle, Christopher M; Wheeler, Terry A


    Forest canopies support high arthropod biodiversity, but in temperate canopies, little is known about the spatial distribution of these arthropods. This is an important first step toward understanding ecological roles of insects in temperate canopies. The objective of this study was to assess differences in the species composition of two dominant and diverse taxa (Diptera and Coleoptera) along a vertical gradient in temperate deciduous forest canopies. Five sugar maple trees from each of three deciduous forest sites in southern Quebec were sampled using a combination of window and trunk traps placed in three vertical strata (understory, mid-canopy, and upper-canopy) for three sampling periods throughout the summer. Coleoptera species richness and abundance did not differ between canopy heights, but more specimens and species of Diptera were collected in the upper-canopy. Community composition of Coleoptera and Diptera varied significantly by trap height. Window traps collected more specimens and species of Coleoptera than trunk traps, although both trap types should be used to maximize representation of the entire Coleoptera community. There were no differences in abundance, diversity, or composition of Diptera collected between trap types. Our data confirm the relevance of sampling all strata in a forest when studying canopy arthropod biodiversity.

  14. Interception storage capacities of tropical rainforest canopy trees (United States)

    Herwitz, Stanley R.


    The rainwater interception storage capacities of mature canopy trees in a tropical rainforest site in northeast Queensland, Australia, were approximated using a combination of field and laboratory measurements. The above-ground vegetative surfaces of five selected species (three flaky-barked; two smooth-barked) were saturated under laboratory conditions in order to establish their maximum interception storage capacities. Average leaf surface interception storages ranged from 112 to 161 ml m -2. The interception storages of bark ranged from 0.51 to 0.97 ml cm -3. These standardized interception storages were applied to estimates of leaf surface area and bark volume for 51 mature canopy trees representing the selected species in the field site. The average whole tree interception storage capacities of the five species ranged from 110 to 5281 per tree and 2.2 to 8.3 mm per unit projected crown area. The highly significant interspecific differences in interception storage capacity suggest that both floristic and demographic data are needed in order to accurately calculate a forest-wide interception storage capacity for species-rich tropical rainforest vegetation. Species with large woody surface areas and small projected crown areas are capable of storing the greatest depth equivalents of rainwater under heavy rainfall conditions. In the case of both the flaky-barked and the smooth-barked species, bark accounted for > 50% of the total interception storage capacity under still-air conditions, and > 80% under turbulent air conditions. The emphasis in past interception studies on the role of leaf surfaces in determining the interception storage capacity of a vegetative cover must be modified for tropical rainforests to include the storage capacity provided by the bark tissue on canopy trees.

  15. Effects of Crop Canopies on Rain Splash Detachment (United States)

    Ma, Bo; Yu, Xiaoling; Ma, Fan; Li, Zhanbin; Wu, Faqi


    Crops are one of the main factors affecting soil erosion in sloping fields. To determine the characteristics of splash erosion under crop canopies, corn, soybean, millet, and winter wheat were collected, and the relationship among splash erosion, rainfall intensity, and throughfall intensity under different crop canopies was analyzed through artificial rainfall experiments. The results showed that, the mean splash detachment rate on the ground surface was 390.12 g/m2·h, which was lower by 67.81% than that on bare land. The inhibiting effects of crops on splash erosion increased as the crops grew, and the ability of the four crops to inhibit splash erosion was in the order of winter wheat>corn>soybeans>millet. An increase in rainfall intensity could significantly enhance the occurrence of splash erosion, but the ability of crops to inhibit splash erosion was 13% greater in cases of higher rainfall intensity. The throughfall intensity under crop canopies was positively related to the splash detachment rate, and this relationship was more significant when the rainfall intensity was 40 mm/h. Splash erosion tended to occur intensively in the central row of croplands as the crop grew, and the non-uniformity of splash erosion was substantial, with splash erosion occurring mainly between the rows and in the region directly under the leaf margin. This study has provided a theoretical basis for describing the erosion mechanisms of cropland and for assisting soil erosion prediction as well as irrigation and fertilizer management in cultivated fields. PMID:24992386

  16. Canopy assemblages of ants in a New Guinea rain forest

    Czech Academy of Sciences Publication Activity Database

    Janda, Milan; Konečná, M.


    Roč. 27, č. 1 (2011), s. 83-91 ISSN 0266-4674 R&D Projects: GA AV ČR KJB612230701; GA MŠk LC06073; GA MŠk ME09082; GA ČR GD206/08/H044; GA ČR GA206/09/0115; GA ČR GAP505/10/0673 Institutional research plan: CEZ:AV0Z50070508 Keywords : bait traps * canopy * dominance Subject RIV: EH - Ecology, Behaviour Impact factor: 1.401, year: 2011

  17. Modeling canopy CO2 exchange in the European Russian Arctic

    DEFF Research Database (Denmark)

    Kiepe, Isabell; Friborg, Thomas; Herbst, Mathias


    In this study, we use the coupled photosynthesis-stomatal conductance model of Collatz et al. (1991) to simulate the current canopy carbon dioxide exchange of a heterogeneous tundra ecosystem in European Russia. For the parameterization, we used data obtained from in situ leaf level measurements...... in combination with meteorological data from 2008. The modeled CO2 fluxes were compared with net ecosystem exchange (NEE), measured by the eddy covariance technique during the snow-free period in 2008. The findings from this study indicated that the main state parameters of the exchange processes were leaf area...

  18. NW Iberia Shelf Dynamics. Study of the Douro River Plume.

    Directory of Open Access Journals (Sweden)

    Isabel Iglesias


    Full Text Available River plumes are one of the most important mechanisms that transport the terrestrial materials to the coast and the ocean. Some examples of those materials are pollutants, essential nutrients, which enhance the phytoplankton productivity or sediments, which settle on the seabed producing modifications on the bathymetry affecting the navigation channels. The mixing between the riverine and the oceanic waters can induce instabilities, which might generate bulges, filaments, and buoyant currents over the continental shelf. Offshore, the buoyant riverine water could form a front with the oceanic waters often related with the occurrence of current-jets, eddies and strong mixing. The study and modelling of the river plumes is a key factor for the complete understanding of sediment transport mechanisms and patterns, and of coastal physics and dynamic processes. On this study the Douro River plume will be simulated. The Douro River is located on the north-west Iberian coast and its daily averaged freshwater discharge can range values from 0 to 13000 m3/s. This variability impacts the formation of the river plumes and its dispersion along the continental shelf. This study builds on the long-term objective of generate a Douro River plume forecasting system as part of the RAIA and projects. Satellite imagery was analyzed showing that the river Douro is one of the main sources of suspended particles, dissolved material and chlorophyll in the NW Iberian Shelf. The Regional Oceanic Modeling System (ROMS model was selected to reproduce scenarios of plume generation, retention and dispersion. Whit this model, three types of simulations were performed: (i schematic winds simulations with prescribed river flow, wind speed and direction; (ii multi-year climatological simulation, with river flow and temperature change for each month; (iii extreme case simulation, based on the Entre-os-Rios accident situation. The schematic wind case-studies suggest that the

  19. Offshore wind resource estimation for wind energy

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Badger, Merete; Mouche, A.


    Satellite remote sensing from active and passive microwave instruments is used to estimate the offshore wind resource in the Northern European Seas in the EU-Norsewind project. The satellite data include 8 years of Envisat ASAR, 10 years of QuikSCAT, and 23 years of SSM/I. The satellite observati......Satellite remote sensing from active and passive microwave instruments is used to estimate the offshore wind resource in the Northern European Seas in the EU-Norsewind project. The satellite data include 8 years of Envisat ASAR, 10 years of QuikSCAT, and 23 years of SSM/I. The satellite...... observations are compared to selected offshore meteorological masts in the Baltic Sea and North Sea. The overall aim of the Norsewind project is a state-of-the-art wind atlas at 100 m height. The satellite winds are all valid at 10 m above sea level. Extrapolation to higher heights is a challenge. Mesoscale...... modeling of the winds at hub height will be compared to data from wind lidars observing at 100 m above sea level. Plans are also to compare mesoscale model results and satellite-based estimates of the offshore wind resource....

  20. River Piracy

    Indian Academy of Sciences (India)

    . There is allusion to the disappearance of the river in Van. Parva of the Mahabharat, and also in the Siddhant Shiromani. Great Betrayal. The Aravali continued to rise. The newly formed Yamuna was forced to migrate progressively eastward.

  1. Potentials of wind power

    International Nuclear Information System (INIS)

    Bezrukikh, P.P.; Bezrukikh, P.P.


    The ecological advantages of the wind power facilities (WPF) are considered. The possibilities of small WPF, generating the capacity from 40 W up to 10 kW, are discussed. The basic technical data on the national and foreign small WPF are presented. The combined wind power systems are considered. Special attention is paid to the most perspective wind-diesel systems, which provide for all possible versions of the electro-power supply. Useful recommendations and information on the wind power engineering are given for those, who decided to build up a wind facility [ru

  2. Visualization of wind farms

    International Nuclear Information System (INIS)

    Pahlke, T.


    With the increasing number of wind energy installations the visual impact of single wind turbines or wind parks is a growing problem for landscape preservation, leading to resistance of local authorities and nearby residents against wind energy projects. To increase acceptance and to form a basis for planning considerations, it is necessary to develop instruments for the visualization of planned wind parks, showing their integration in the landscape. Photorealistic montages and computer animation including video sequences may be helpful in 'getting the picture'. (orig.)

  3. Mapping Wind Energy Controversies

    DEFF Research Database (Denmark)

    Munk, Anders Kristian

    As part the Wind2050 project funded by the Danish Council for Strategic Research we have mapped controversies on wind energy as they unfold online. Specifically we have collected two purpose built datasets, a web corpus containing information from 758 wind energy websites in 6 different countries......, and a smaller social media corpus containing information from 14 Danish wind energy pages on Facebook. These datasets have been analyzed to answer questions like: How do wind proponents and opponents organize online? Who are the central actors? And what are their matters of concern? The purpose of this report...

  4. Wind energy applications guide

    Energy Technology Data Exchange (ETDEWEB)



    The brochure is an introduction to various wind power applications for locations with underdeveloped transmission systems, from remote water pumping to village electrification. It includes an introductory section on wind energy, including wind power basics and system components and then provides examples of applications, including water pumping, stand-alone systems for home and business, systems for community centers, schools, and health clinics, and examples in the industrial area. There is also a page of contacts, plus two specific example applications for a wind-diesel system for a remote station in Antarctica and one on wind-diesel village electrification in Russia.

  5. Wind energy systems

    International Nuclear Information System (INIS)

    Richardson, R.D.; McNerney, G.M.


    Wind energy has matured to a level of development where it is ready to become a generally accepted utility generation technology. A brief discussion of this development is presented, and the operating and design principles are discussed. Alternative designs for wind turbines and the tradeoffs that must be considered are briefly compared. Development of a wind energy system and the impacts on the utility network including frequency stability, voltage stability, and power quality are discussed. The assessment of wind power station economics and the key economic factors that determine the economic viability of a wind power plant are presented

  6. Fault Tolerant Wind Farm Control

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Stoustrup, Jakob


    In the recent years the wind turbine industry has focused on optimizing the cost of energy. One of the important factors in this is to increase reliability of the wind turbines. Advanced fault detection, isolation and accommodation are important tools in this process. Clearly most faults are dealt...... with best at a wind turbine control level. However, some faults are better dealt with at the wind farm control level, if the wind turbine is located in a wind farm. In this paper a benchmark model for fault detection and isolation, and fault tolerant control of wind turbines implemented at the wind farm...... control level is presented. The benchmark model includes a small wind farm of nine wind turbines, based on simple models of the wind turbines as well as the wind and interactions between wind turbines in the wind farm. The model includes wind and power references scenarios as well as three relevant fault...

  7. Wind Tunnel Measurements at LM Wind Power

    DEFF Research Database (Denmark)

    Bertagnolio, Franck


    This section presents the results obtained during the experimental campaign that was conducted in the wind tunnel at LM Wind Power in Lunderskov from August 16th to 26th, 2010. The goal of this study is to validate the so-called TNO trailing edge noise model through measurements of the boundary...... layer turbulence characteristics and the far-field noise generated by the acoustic scattering of the turbulent boundary layer vorticies as they convect past the trailing edge. This campaign was conducted with a NACA0015 airfoil section that was placed in the wind tunnel section. It is equipped with high...

  8. Wind energy in Europe

    International Nuclear Information System (INIS)

    Evans, L.C.


    Wind energy should be an important part of the energy supply mix, both at home and abroad, to provide cleaner air and a more stable fuel supply. Not only can wind energy contribute to solving complex global issues, it also can provide a large market for American technological leadership. Even though utilities are paying more attention to wind in a number of states, there are no plans for major installations of wind power plants in the United States. At the same time, European nations have developed aggressive wind energy development programs, including both ambitious research and development efforts and market incentives. Many countries recognize the importance of the clean energy provided by wind technology and are taking steps to promote their fledgling domestic industries. The emphasis on market incentives is starting to pay off. In 1991, European utilities and developers installed nearly twice as much wind capacity as Americans did. In 1992 the gap will be even greater. This article reviews aggressive incentives offered by European governments to boost their domestic wind industries at home and abroad in this almost $1 billion per year market. By offering substantial incentives - considerably more than the American Wind Energy Association (AWEA) is proposing - European nations are ensuring dramatic near-term wind energy development and are taking a major step toward dominating the international wind industry of the 21st century

  9. Kansas Wind Energy Consortium

    Energy Technology Data Exchange (ETDEWEB)

    Gruenbacher, Don [Kansas State Univ., Manhattan, KS (United States)


    This project addresses both fundamental and applied research problems that will help with problems defined by the DOE “20% Wind by 2030 Report”. In particular, this work focuses on increasing the capacity of small or community wind generation capabilities that would be operated in a distributed generation approach. A consortium (KWEC – Kansas Wind Energy Consortium) of researchers from Kansas State University and Wichita State University aims to dramatically increase the penetration of wind energy via distributed wind power generation. We believe distributed generation through wind power will play a critical role in the ability to reach and extend the renewable energy production targets set by the Department of Energy. KWEC aims to find technical and economic solutions to enable widespread implementation of distributed renewable energy resources that would apply to wind.

  10. Wind Turbine Technologies

    DEFF Research Database (Denmark)

    Hansen, Anca Daniela


    The wind turbine technology is a very complex technology involving multidisciplinary and broad technical disciplines such as aerodynamics, mechanics, structure dynamics, meteorology as well as electrical engineering addressing the generation, transmission, and integration of wind turbines...... into the power system. Wind turbine technology has matured over the years and become the most promising and reliable renewable energy technology today. It has moved very fast, since the early 1980s, from wind turbines of a few kilowatts to today’s multimegawatt-sized wind turbines [13]. Besides their size......, the design of wind turbines has changed from being convention driven to being optimized driven within the operating regime and market environment. Wind turbine designs have progressed from fixed speed, passive controlled and with drive trains with gearboxes, to become variable speed, active controlled...

  11. Wind tower service lift (United States)

    Oliphant, David; Quilter, Jared; Andersen, Todd; Conroy, Thomas


    An apparatus used for maintaining a wind tower structure wherein the wind tower structure may have a plurality of legs and may be configured to support a wind turbine above the ground in a better position to interface with winds. The lift structure may be configured for carrying objects and have a guide system and drive system for mechanically communicating with a primary cable, rail or other first elongate member attached to the wind tower structure. The drive system and guide system may transmit forces that move the lift relative to the cable and thereby relative to the wind tower structure. A control interface may be included for controlling the amount and direction of the power into the guide system and drive system thereby causing the guide system and drive system to move the lift relative to said first elongate member such that said lift moves relative to said wind tower structure.

  12. Turning to the wind (United States)

    Sorensen, B.


    Consideration is given the economic and technological aspects of both free-stream (horizontal-axis) and cross-wind (vertical-axis) wind energy conversion systems, with attention to operational devices ranging in rotor diameter from 10 to 40 m and in output from 22 to 630 kW. After a historical survey of wind turbine design and applications development, the near-term technical feasibility and economic attractiveness of combined wind/fossil-fueled generator and wind/hydroelectric systems are assessed. Also presented are estimates of wind energy potential extraction in the U.S. and Denmark, the industrial requirements of large-scale implementation, energy storage possibilities such as pumped hydro and flywheels, and cost comparisons of electrical generation by large and small wind systems, coal-fired plants, and light-water fission reactors.

  13. Wind power takes over

    International Nuclear Information System (INIS)


    All over the industrialized world concentrated efforts are being made to make wind turbines cover some of the energy demand in the coming years. There is still a long way to go, however, towards a 'green revolution' as far as energy is concerned, for it is quite futile to use wind power for electric heating. The article deals with some of the advantages and disadvantages of developing wind power. In Norway, for instance, environmentalists fear that wind power plants along the coast may have serious consequences for the stocks of white-tailed eagle and golden eagle. An other factor that delays the large-scale application of wind power in Norway is the low price of electricity. Some experts, however, maintain that wind power may already compete with new hydroelectric power of intermediate cost. The investment costs are expected to go down with one third by 2020, when wind power may be the most competitive energy source to utilize

  14. Wind energy conversion system (United States)

    Longrigg, Paul


    The wind energy conversion system includes a wind machine having a propeller connected to a generator of electric power, the propeller rotating the generator in response to force of an incident wind. The generator converts the power of the wind to electric power for use by an electric load. Circuitry for varying the duty factor of the generator output power is connected between the generator and the load to thereby alter a loading of the generator and the propeller by the electric load. Wind speed is sensed electro-optically to provide data of wind speed upwind of the propeller, to thereby permit tip speed ratio circuitry to operate the power control circuitry and thereby optimize the tip speed ratio by varying the loading of the propeller. Accordingly, the efficiency of the wind energy conversion system is maximized.

  15. Modeling radiative transfer in tropical rainforest canopies: sensitivity of simulated albedo to canopy architectural and optical parameters

    Directory of Open Access Journals (Sweden)

    Sílvia N. M. Yanagi


    Full Text Available This study evaluates the sensitivity of the surface albedo simulated by the Integrated Biosphere Simulator (IBIS to a set of Amazonian tropical rainforest canopy architectural and optical parameters. The parameters tested in this study are the orientation and reflectance of the leaves of upper and lower canopies in the visible (VIS and near-infrared (NIR spectral bands. The results are evaluated against albedo measurements taken above the K34 site at the INPA (Instituto Nacional de Pesquisas da Amazônia Cuieiras Biological Reserve. The sensitivity analysis indicates a strong response to the upper canopy leaves orientation (x up and to the reflectivity in the near-infrared spectral band (rNIR,up, a smaller sensitivity to the reflectivity in the visible spectral band (rVIS,up and no sensitivity at all to the lower canopy parameters, which is consistent with the canopy structure. The combination of parameters that minimized the Root Mean Square Error and mean relative error are Xup = 0.86, rVIS,up = 0.062 and rNIR,up = 0.275. The parameterizations performed resulted in successful simulations of tropical rainforest albedo by IBIS, indicating its potential to simulate the canopy radiative transfer for narrow spectral bands and permitting close comparison with remote sensing products.Este estudo avalia a sensibilidade do albedo da superfície pelo Simulador Integrado da Biosfera (IBIS a um conjunto de parâmetros que representam algumas propriedades arquitetônicas e óticas do dossel da floresta tropical Amazônica. Os parâmetros testados neste estudo são a orientação e refletância das folhas do dossel superior e inferior nas bandas espectrais do visível (VIS e infravermelho próximo (NIR. Os resultados são avaliados contra observações feitas no sítio K34 pertencente ao Instituto Nacional de Pesquisas da Amazônia (INPA na Reserva Biológica de Cuieiras. A análise de sensibilidade indica uma forte resposta aos parâmetros de orienta

  16. Organized turbulent motions in a hedgerow vineyard: effect of evolving canopy structure (United States)

    Vendrame, Nadia; Tezza, Luca; Tha Paw U, Kyaw; Pitacco, Andrea


    Vegetation-atmosphere exchanges are determined by functional and structural properties of the plants together with environmental forcing. However, a fundamental aspect is the interaction of the canopy with the lower atmosphere. The vegetation deeply alters the composition and physical properties of the air flow, exchanging energy, matter and momentum with it. These processes take place in the bottom part of the atmospheric boundary layer where turbulence is the main mechanism transporting within-canopy air towards the mid- and upper atmospheric boundary layer and vice versa. Canopy turbulence is highly influenced by vegetation drag elements, determining the vertical profile of turbulent moments within the canopy. Canopies organized in rows, like vineyards, show peculiar turbulent transport dynamics. In addition, the morphological structure (phenology) of the vineyard is greatly variable seasonally, shifting from an empty canopy during vine dormancy to dense foliage in summer. The understanding of the canopy ventilation regime is related to several practical applications in vineyard management. For example, within-canopy turbulent motion is very important to predict small particles dispersion, like fungal spores, and minimize infection studying the effect on leaf wetness duration. Our study aims to follow the continuous evolution of turbulence characteristics and canopy structure during the growing season of a hedgerow vineyard, from bud break to fully developed canopy. The field experiment was conducted in a flat extensive vineyard in North-Eastern Italy, using a vertical array of five synchronous sonic anemometers within and above the canopy. Turbulent flow organization was greatly influenced by canopy structure. Turbulent coherent structures involved in momentum transport have been investigated using the classical quadrant analysis and a novel approach to identify dominant temporal scales. Momentum transport in the canopy was dominated by downward gusts showing

  17. Weak Environmental Controls of Tropical Forest Canopy Height in the Guiana Shield

    Directory of Open Access Journals (Sweden)

    Youven Goulamoussène


    Full Text Available Canopy height is a key variable in tropical forest functioning and for regional carbon inventories. We investigate the spatial structure of the canopy height of a tropical forest, its relationship with environmental physical covariates, and the implication for tropical forest height variation mapping. Making use of high-resolution maps of LiDAR-derived Digital Canopy Model (DCM and environmental covariates from a Digital Elevation Model (DEM acquired over 30,000 ha of tropical forest in French Guiana, we first show that forest canopy height is spatially correlated up to 2500 m. Forest canopy height is significantly associated with environmental variables, but the degree of correlation varies strongly with pixel resolution. On the whole, bottomland forests generally have lower canopy heights than hillslope or hilltop forests. However, this global picture is very noisy at local scale likely because of the endogenous gap-phase forest dynamic processes. Forest canopy height has been predictively mapped across a pixel resolution going from 6 m to 384 m mimicking a low resolution case of 3 points·km − 2 . Results of canopy height mapping indicated that the error for spatial model with environment effects decrease from 8.7 m to 0.91 m, depending of the pixel resolution. Results suggest that, outside the calibration plots, the contribution of environment in shaping the global canopy height distribution is quite limited. This prevents accurate canopy height mapping based only on environmental information, and suggests that precise canopy height maps, for local management purposes, can only be obtained with direct LiDAR monitoring.

  18. Ecology of invasive Melilotus albus on Alaskan glacial river floodplains (United States)

    Conn, Jeff S.; Werdin-Pfisterer, Nancy R.; Beattie, Katherine L.; Densmore, Roseann V.


    Melilotus albus (white sweetclover) has invaded Alaskan glacial river floodplains. We measured cover and density of plant species and environmental variables along transects perpendicular to the Nenana, Matanuska, and Stikine Rivers to study interactions between M. albus and other plant species and to characterize the environment where it establishes. Melilotus albus was a pioneer species on recently disturbed sites and did not persist into closed canopy forests. The relationships between M. albus cover and density and other species were site-specific.Melilotus albus was negatively correlated with native species Elaeagnus commutata at the Nenana River, but not at the Matanuska River. Melilotus albus was positively correlated with the exotic species Crepis tectorumand Taraxacum officinale at the Matanuska River and T. officinale on the upper Stikine River. However, the high density of M. albus at a lower Stikine River site was negatively correlated with T. officinale and several native species including Lathyrus japonicus var. maritimus and Salix alaxensis. Glacial river floodplains in Alaska are highly disturbed and are corridors for exotic plant species movement. Melilotus albus at moderate to low densities may facilitate establishment of exotic species, but at high densities can reduce the cover and density of both exotic and native species.

  19. Validation of Simplified Urban-Canopy Aerodynamic Parametrizations Using a Numerical Simulation of an Actual Downtown Area (United States)

    Ramirez, N.; Afshari, Afshin; Norford, L.


    A steady-state Reynolds-averaged Navier-Stoke computational fluid dynamics (CFD) investigation of boundary-layer flow over a major portion of downtown Abu Dhabi is conducted. The results are used to derive the shear stress and characterize the logarithmic region for eight sub-domains, where the sub-domains overlap and are overlaid in the streamwise direction. They are characterized by a high frontal area index initially, which decreases significantly beyond the fifth sub-domain. The plan area index is relatively stable throughout the domain. For each sub-domain, the estimated local roughness length and displacement height derived from CFD results are compared to prevalent empirical formulations. We further validate and tune a mixing-length model proposed by Coceal and Belcher (Q J R Meteorol Soc 130:1349-1372, 2004). Finally, the in-canopy wind-speed attenuation is analysed as a function of fetch. It is shown that, while there is some room for improvement in Macdonald's empirical formulations (Boundary-Layer Meteorol 97:25-45, 2000), Coceal and Belcher's mixing model in combination with the resolution method of Di Sabatino et al. (Boundary-Layer Meteorol 127:131-151, 2008) can provide a robust estimation of the average wind speed in the logarithmic region. Within the roughness sublayer, a properly parametrized Cionco exponential model is shown to be quite accurate.

  20. Second wind in the offshore wind industry

    International Nuclear Information System (INIS)

    Philippe, Edouard; Neyme, Eric; Deboos, Christophe; Villageois, Jean-Remy; Gouverneur, Philippe; Gerard, Bernard; Fournier, Eric; Petrus, Raymond; Lemarquis, David; Dener, Marc; Bivaud, Jean-Pierre; Lemaire, Etienne; Nielsen, Steffen; Lafon, Xavier; Lagandre, Pierre; Nadai, Alain; Pinot de Villechenon, Edouard; Westhues, Markus; Herpers, Frederick; Bisiaux, Christophe; Sperlich, Miriam; Bales, Vincent; Vandenbroeck, Jan; His, Stephane; Derrey, Thierry; Barakat, Georges; Dakyo, Brayima; Carme, Laurent; Petit, Frederic; Ytournel, Sophie; Westhues, Markus; Diller, Armin; Premont, Antoine de; Ruer, Jacques; Lanoe, Frederic; Declercq, Jan; Holmager, Morten; Fidelin, Daniel; Guillet, Jerome; Dudziak, Gregory; Lapierre, Anne; Couturier, Ludovic; Audineau, Jean-Pierre; Rouaix, Eric; De Roeck, Yann-Herve; Quesnel, Louis; Duguet, Benjamin


    After several keynote addresses, this publication contains contributions and Power Point presentations proposed during this conference on the development of offshore wind energy. The successive sessions addressed the following issues: the offshore mass production of electricity (examples of Denmark and Belgium, laying and protecting offshore cables), the space, economic and environmental planning (the Danish experience, the role of the Coastal area integrated management, importance of the public debate, so on), the logistics of port infrastructures (simulation tools, example of Bremerhaven, issues related to project management), innovation at the core of industrial strategies (high power wind turbines, the 6 MW Alstom turbine, chain value and innovation in offshore wind energy, the Vertiwing innovating project of a floating wind turbine, a bench test in Charleston, foundations, gravity base structures, the British experience, the Danish experience), the economic and organisational conditions for development, the validation and certification of technologies

  1. Diurnal Solar Energy Conversion and Photoprotection in Rice Canopies. (United States)

    Meacham, Katherine; Sirault, Xavier; Quick, W Paul; von Caemmerer, Susanne; Furbank, Robert


    Genetic improvement of photosynthetic performance of cereal crops and increasing the efficiency with which solar radiation is converted into biomass has recently become a major focus for crop physiologists and breeders. The pulse amplitude modulated chlorophyll fluorescence technique (PAM) allows quantitative leaf level monitoring of the utilization of energy for photochemical light conversion and photoprotection in natural environments, potentially over the entire crop lifecycle. Here, the diurnal relationship between electron transport rate (ETR) and irradiance was measured in five cultivars of rice (Oryza sativa) in canopy conditions with PAM fluorescence under natural solar radiation. This relationship differed substantially from that observed for conventional short term light response curves measured under controlled actinic light with the same leaves. This difference was characterized by a reduced curvature factor when curve fitting was used to model this diurnal response. The engagement of photoprotective processes in chloroplast electron transport in leaves under canopy solar radiation was shown to be a major contributor to this difference. Genotypic variation in the irradiance at which energy flux into photoprotective dissipation became greater than ETR was observed. Cultivars capable of higher ETR at midrange light intensities were shown to produce greater leaf area over time, estimated by noninvasive imaging. © 2017 American Society of Plant Biologists. All Rights Reserved.

  2. Spatial variation in atmospheric nitrogen deposition on low canopy vegetation

    International Nuclear Information System (INIS)

    Verhagen, Rene; Diggelen, Rudy van


    Current knowledge about the spatial variation of atmospheric nitrogen deposition on a local scale is limited, especially for vegetation with a low canopy. We measured nitrogen deposition on artificial vegetation at variable distances of local nitrogen emitting sources in three nature reserves in the Netherlands, differing in the intensity of agricultural practices in the surroundings. In the nature reserve located in the most intensive agricultural region nitrogen deposition decreased with increasing distance to the local farms, until at a distance of 1500 m from the local nitrogen emitting sources the background level of 15 kg N ha -1 yr -1 was reached. No such trend was observed in the other two reserves. Interception was considerably lower than in woodlands and hence affected areas were larger. The results are discussed in relation to the prospects for the conservation or restoration of endangered vegetation types of nutrient-poor soil conditions. - Areas with low canopy vegetation are affected over much larger distances by nitrogen deposition than woodlands

  3. Phylogenetic Structure of Foliar Spectral Traits in Tropical Forest Canopies

    Directory of Open Access Journals (Sweden)

    Kelly M. McManus


    Full Text Available The Spectranomics approach to tropical forest remote sensing has established a link between foliar reflectance spectra and the phylogenetic composition of tropical canopy tree communities vis-à-vis the taxonomic organization of biochemical trait variation. However, a direct relationship between phylogenetic affiliation and foliar reflectance spectra of species has not been established. We sought to develop this relationship by quantifying the extent to which underlying patterns of phylogenetic structure drive interspecific variation among foliar reflectance spectra within three Neotropical canopy tree communities with varying levels of soil fertility. We interpreted the resulting spectral patterns of phylogenetic signal in the context of foliar biochemical traits that may contribute to the spectral-phylogenetic link. We utilized a multi-model ensemble to elucidate trait-spectral relationships, and quantified phylogenetic signal for spectral wavelengths and traits using Pagel’s lambda statistic. Foliar reflectance spectra showed evidence of phylogenetic influence primarily within the visible and shortwave infrared spectral regions. These regions were also selected by the multi-model ensemble as those most important to the quantitative prediction of several foliar biochemical traits. Patterns of phylogenetic organization of spectra and traits varied across sites and with soil fertility, indicative of the complex interactions between the environmental and phylogenetic controls underlying patterns of biodiversity.

  4. [Study on spectral reflectance characteristics of hemp canopies]. (United States)

    Tian, Yi-Chen; Jia, Kun; Wu, Bing-Fang; Li, Qiang-Zi


    Hemp (Cannabis sativa L.) is a special economic crop and widely used in many field. It is significative for the government to master the information about planting acreage and spatial distribution of hemp for hemp industrial policy decision in China. Remote sensing offers a potential way of monitoring large area for the cultivation of hemp. However, very little study on the spectral properties of hemp is available in the scientific literature. In the present study, the spectral reflectance characteristics of hemp canopy were systematically analyzed based on the spectral data acquired with ASD FieldSpec portable spectrometer. The wavebands and its spectral resolution for discriminating hemp from other plants were identified using difference analysis. The major differences in canopy reflectance of hemp and other plants were observed near 530, 552, 734, 992, 1 213, 1 580 and 2 199 nm, and the maximal difference is near 734 nm. The spectral resolution should be 30 nm or less in visible and near infrared regions, and 50 nm or less in middle infrared regions.

  5. Mapping Wild Leek through the Forest Canopy Using a UAV

    Directory of Open Access Journals (Sweden)

    Marie-Bé Leduc


    Full Text Available Wild leek, an endangered plant species of Eastern North America, grows on forest floors and greens up to approximately three weeks before the trees it is typically found under, temporarily allowing it to be observed through the canopy by remote sensing instruments. This paper explores the accuracy with which wild leek can be mapped with a low-flying UAV. Nadir video imagery was obtained using a commercial UAV during the spring of 2017 in Gatineau Park, Quebec. Point clouds were generated from the video frames with the Structure-from-Motion framework, and a multiscale curvature classification was used to separate points on the ground, where wild leek grows, from above-ground points belonging to the forest canopy. Five-cm resolution orthomosaics were created from the ground points, and a threshold value of 0.350 for the green chromatic coordinate (GCC was applied to delineate wild leek from wood, leaves, and other plants on the forest floor, with an F1-score of 0.69 and 0.76 for two different areas. The GCC index was most effective in delineating bigger patches, and therefore often misclassified patches smaller than 30 cm in diameter. Although short flight times and long data processing times are presently technical challenges to upscaling, the low cost and high accuracy of UAV imagery provides a promising method for monitoring the spatial distribution of this endangered species.

  6. Spatial Heterogeneity of the Forest Canopy Scales with the Heterogeneity of an Understory Shrub Based on Fractal Analysis

    Directory of Open Access Journals (Sweden)

    Catherine K. Denny


    Full Text Available Spatial heterogeneity of vegetation is an important landscape characteristic, but is difficult to assess due to scale-dependence. Here we examine how spatial patterns in the forest canopy affect those of understory plants, using the shrub Canada buffaloberry (Shepherdia canadensis (L. Nutt. as a focal species. Evergreen and deciduous forest canopy and buffaloberry shrub presence were measured with line-intercept sampling along ten 2-km transects in the Rocky Mountain foothills of west-central Alberta, Canada. Relationships between overstory canopy and understory buffaloberry presence were assessed for scales ranging from 2 m to 502 m. Fractal dimensions of both canopy and buffaloberry were estimated and then related using box-counting methods to evaluate spatial heterogeneity based on patch distribution and abundance. Effects of canopy presence on buffaloberry were scale-dependent, with shrub presence negatively related to evergreen canopy cover and positively related to deciduous cover. The effect of evergreen canopy was significant at a local scale between 2 m and 42 m, while that of deciduous canopy was significant at a meso-scale between 150 m and 358 m. Fractal analysis indicated that buffaloberry heterogeneity positively scaled with evergreen canopy heterogeneity, but was unrelated to that of deciduous canopy. This study demonstrates that evergreen canopy cover is a determinant of buffaloberry heterogeneity, highlighting the importance of spatial scale and canopy composition in understanding canopy-understory relationships.

  7. Up-scaling of water use efficiency from leaf to canopy as based on leaf gas exchange relationships and the modeled in-canopy light distribution

    DEFF Research Database (Denmark)

    Linderson, Maj-Lena; Mikkelsen, Teis Nørgaard; Ibrom, Andreas


    WUE estimates based on the turbulent fluxes observed and to be dependent on VDP and light intensity alone, its thus being independent of other environmental factors. Accordingly, canopy WUE can be estimated on the basis of the up-scaled WUE relationships, provided incident PAR and VPD within......The aim of this study was to evaluate the extent to which water use efficiency (WUE) at leaf scale can be used to assess WUE at canopy scale, leaf WUE being assumed to be a constant function of vapor pressure deficit and to thus not be dependent upon other environmental factors or varying leaf...... that WUE can be up-scaled from leaf to canopy on the basis of WUEnormleaf and the PAR distribution within the canopy. The up-scaling conducted was based on this WUEnormleaf – PAR relationship, the lightdistribution being assessed using the MAESTRA model, parameterized in accordance with measurements...

  8. Forest canopy water fluxes can be estimated using canopy structure metrics derived from airborne light detection and ranging (LiDAR)

    DEFF Research Database (Denmark)

    Schumacher, Johannes; Christiansen, Jesper Riis


    -species broadleaf/coniferous and mixed forests) in Denmark were used to develop empirical models to estimate TF on a monthly, seasonal, and annual basis. This new approach offers the opportunity to greatly improve predictions of TF on catchment wide scales. Overall, results show that TF can be estimated by Pr......Forests contribute to improve water quality, affect drinking water resources, and therefore influence water supply on a regional level. The forest canopy structure affects the retention of precipitation (Pr) in the canopy and hence the amount of water transferred to the forest floor termed canopy...... and a canopy density metric derived from LiDAR data. In all three types of TF data sets Pr was the variable explaining the majority of the variance in TF. The proportion of explained variance adhering to the LiDAR variable increased from 1.7% for the monthly data set to 12.2% and 19.5% for seasonal and annual...

  9. Observability of wind power

    International Nuclear Information System (INIS)

    Gonot, J.P.; Fraisse, J.L.


    The total installed capacity of wind power grows from a few hundred MW at the beginning of 2005 to 3400 MW at the end of 2008. With such a trend, a total capacity of 7000 MW could be reached by 2010. The natural variability of wind power and the difficulty of its predictability require a change in the traditional way of managing supply/demand balance, day-ahead margins and the control of electrical flows. As a consequence, RTE operators should be informed quickly and reliably of the real time output power of wind farms and of its evolvement some hours or days ahead to ensure the reliability of the French electrical power system. French specificities are that wind farms are largely spread over the territory, that 95 % of wind farms have an output power below 10 MW and that they are connected to the distribution network. In this context, new tools were necessary to acquire as soon as possible data concerning wind power. In two years long, RTE set up an observatory of wind production 'IPES system' enable to get an access to the technical characteristics of the whole wind farms, to observe in real time 75 % of the wind generation and to implement a forecast model related to wind generation. (authors)

  10. Financing wind projects

    International Nuclear Information System (INIS)

    Manson, J.


    This presentation reviewed some of the partnership opportunities available from GE Energy. GE Energy's ecomagination commitment has promised to double research investment, make customers true partners and reduce greenhouse gases (GHGs). GE Energy's renewable energy team provides a broad range of financial products, and has recently funded 30 wind farms and 2 large solar projects. The company has a diverse portfolio of technology providers and wind regimes, and is increasing their investment in technology. GE Energy recognizes that the wind industry is growing rapidly and has received increased regulatory support that is backed by strong policy and public support. It is expected that Canada will have 3006 wind projects either planned or under construction by 2007. According to GE Energy, successful wind financing is dependent on the location of the site and its wind resources, as well as on the wind developer's power sales agreement. The success of a wind project is also determined by clear financing goals. Site-specific data is needed to determine the quality of wind resource, and off-site data can also be used to provide validation. Proximity to load centres will help to minimize capital costs. Power sales agreements should be based on the project's realistic net capacity factor as well as on the cost of the turbines. The economics of many wind farms is driven by the size of the turbines used. Public consultations are also needed to ensure the success of wind power projects. It was concluded that a good partner will have staying power in the wind power industry, and will understand the time-lines and needs that are peculiar to wind energy developers. refs., tabs., figs

  11. Piracy in the high trees: ectomycorrhizal fungi from an aerial 'canopy soil' microhabitat. (United States)

    Orlovich, David A; Draffin, Suzy J; Daly, Robert A; Stephenson, Steven L


    The mantle of dead organic material ("canopy soil") associated with the mats of vascular and nonvascular epiphytes found on the branches of trees in the temperate rainforests along the southwestern coast of the South Island of New Zealand were examined for evidence of ectomycorrhizal fungi. DNA sequencing and cluster analysis were used to identify the taxa of fungi present in 74 root tips collected from the canopy soil microhabitat of three old growth Nothofagus menziesii trees in the South West New Zealand World Heritage Area. A diverse assemblage of ectomycorrhizal fungi was found to infect an extensive network of adventitious canopy roots of Nothofagus menziesii in this forest, including 14 phylotypes from nine genera of putative ectomycorrhizal fungi. Seven of the genera identified previously were known to form ectomycorrhizas with terrestrial roots of Nothofagus: Cortinarius, Russula, Cenococcum, Thelephora/Tomentella, Lactarius and Laccaria; two, Clavulina and Leotia, previously have not been reported forming ectomycorrhizas with Nothofagus. Canopy ectomycorrhizas provide an unexpected means for increased host nutrition that may have functional significance in some forest ecosystems. Presumably, canopy ectomycorrhizas on host adventitious roots circumvent the tree-ground-soil nutrient cycle by accessing a wider range of nutrients directly in the canopy than would be possible for non-mycorrhizal or arbuscular mycorrhizal canopy roots. In this system, both host and epiphytes would seem to be in competition for the same pool of nutrients in canopy soil.

  12. Vines and canopy contact: a route for snake predation on parrot nests. (United States)



    Ornithologists have hypothesized that some tropical forest birds avoid snake predation by nesting in isolated trees that do not have vines and canopy contact with neighbouring trees. Here we review two complementary studies that support this hypothesis by demonstrating (1) that an abundance of vines and an interlocking canopy characterized Jamaican Black-billed Parrot...

  13. The fauna and flora of a kelp bed canopy | Allen | African Zoology

    African Journals Online (AJOL)

    The fauna and flora of the canopy of a kelp bed off Oudekraal, on the Cape Peninsula, Is surveyed. Four species of epiphytic algae occur In the kelp canopy, three restricted to Ecklonia maxima and the fourth to Laminaria pallida. Epiphyte biomass is equivalent to 4-9% of host standing crop amongst E. maxima, but less than ...

  14. Comparing alternative tree canopy cover estimates derived from digital aerial photography and field-based assessments (United States)

    Tracey S. Frescino; Gretchen G. Moisen


    A spatially-explicit representation of live tree canopy cover, such as the National Land Cover Dataset (NLCD) percent tree canopy cover layer, is a valuable tool for many applications, such as defining forest land, delineating wildlife habitat, estimating carbon, and modeling fire risk and behavior. These layers are generated by predictive models wherein their accuracy...

  15. Modeling cotton (Gossypium spp) leaves and canopy using computer aided geometric design (CAGD) (United States)

    The goal of this research is to develop a geometrically accurate model of cotton crop canopies for exploring changes in canopy microenvironment and physiological function with leaf structure. We develop an accurate representation of the leaves, including changes in three-dimensional folding and orie...

  16. Estimating Canopy Structure in an Amazon Forest from Laser Range Finder and IKONOS Satellite Observations (United States)

    Gregory P. Asner; Michael Palace; Michael Keller; Rodrigo Pereira Jr.; Jose N. M. Silva; Johan C. Zweede


    Canopy structural data can be used for biomass estimation and studies of carbon cycling, disturbance, energy balance, and hydrological processes in tropical forest ecosystems. Scarce information on canopy dimensions reflects the difficulties associated with measuring crown height, width, depth, and area in tall, humid tropical forests. New field and spaceborne...

  17. High-Resolution Forest Canopy Height Estimation in an African Blue Carbon Ecosystem (United States)

    Lagomasino, David; Fatoyinbo, Temilola; Lee, Seung-Kuk; Simard, Marc


    Mangrove forests are one of the most productive and carbon dense ecosystems that are only found at tidally inundated coastal areas. Forest canopy height is an important measure for modeling carbon and biomass dynamics, as well as land cover change. By taking advantage of the flat terrain and dense canopy cover, the present study derived digital surface models (DSMs) using stereophotogrammetric techniques on high-resolution spaceborne imagery (HRSI) for southern Mozambique. A mean-weighted ground surface elevation factor was subtracted from the HRSI DSM to accurately estimate the canopy height in mangrove forests in southern Mozambique. The mean and H100 tree height measured in both the field and with the digital canopy model provided the most accurate results with a vertical error of 1.18-1.84 m, respectively. Distinct patterns were identified in the HRSI canopy height map that could not be discerned from coarse shuttle radar topography mission canopy maps even though the mode and distribution of canopy heights were similar over the same area. Through further investigation, HRSI DSMs have the potential of providing a new type of three-dimensional dataset that could serve as calibration/validation data for other DSMs generated from spaceborne datasets with much larger global coverage. HSRI DSMs could be used in lieu of Lidar acquisitions for canopy height and forest biomass estimation, and be combined with passive optical data to improve land cover classifications.

  18. Leaf-on canopy closure in broadleaf deciduous forests predicted during winter (United States)

    Twedt, Daniel J.; Ayala, Andrea J.; Shickel, Madeline R.


    Forest canopy influences light transmittance, which in turn affects tree regeneration and survival, thereby having an impact on forest composition and habitat conditions for wildlife. Because leaf area is the primary impediment to light penetration, quantitative estimates of canopy closure are normally made during summer. Studies of forest structure and wildlife habitat that occur during winter, when deciduous trees have shed their leaves, may inaccurately estimate canopy closure. We estimated percent canopy closure during both summer (leaf-on) and winter (leaf-off) in broadleaf deciduous forests in Mississippi and Louisiana using gap light analysis of hemispherical photographs that were obtained during repeat visits to the same locations within bottomland and mesic upland hardwood forests and hardwood plantation forests. We used mixed-model linear regression to predict leaf-on canopy closure from measurements of leaf-off canopy closure, basal area, stem density, and tree height. Competing predictive models all included leaf-off canopy closure (relative importance = 0.93), whereas basal area and stem density, more traditional predictors of canopy closure, had relative model importance of ≤ 0.51.

  19. Secondary production of Gammarus pulex Linnaeus in small temperate streams that differ in riparian canopy cover

    NARCIS (Netherlands)

    Franken, R.J.M.; Gardeniers, J.J.P.; Peeters, E.T.H.M.


    Variation in the amount of riparian canopy cover affects bioenergetic processes in streams. Effects of canopy opening on environmental parameters including water temperature and the quality and quantity of food resources (leaf litter and/or associated biofilm) are likely to influence detritivore

  20. Influences of Herbivory and Canopy Opening Size on Forest Regeneration in a Southern Bottomland Hardwood Forest (United States)

    Steven B. Castleberry; W. Mark Ford; Carl V. Miller; Winston P. Smith


    We examined the effects of white-tailed deer (Odocoileus virginianus) browsing and canopy opening size on relative abundance and diversity of woody and herbaceous regeneration in various sized forest openings in a southern, bottomland hardwood forest over three growing seasons (1995-1997). We created 36 canopy openings (gaps), ranging from 7 to 40m...

  1. Relationships between soil-based management zones and canopy sensing for corn nitrogen management (United States)

    Integrating soil-based management zones (MZ) with crop-based active canopy sensors to direct spatially variable nitrogen (N) applications has been proposed for improving N fertilizer management of corn (Zea mays L.). Analyses are needed to evaluate relationships between canopy sensing and soil-based...

  2. Integrating soil information into canopy sensor algorithms for improved corn nitrogen rate recommendation (United States)

    Crop canopy sensors have proven effective at determining site-specific nitrogen (N) needs, but several Midwest states use different algorithms to predict site-specific N need. The objective of this research was to determine if soil information can be used to improve the Missouri canopy sensor algori...

  3. 30 CFR 75.1710 - Canopies or cabs; diesel-powered and electric face equipment. (United States)


    ...-powered and electric face equipment, including shuttle cars, be provided with substantially constructed... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Canopies or cabs; diesel-powered and electric... Miscellaneous § 75.1710 Canopies or cabs; diesel-powered and electric face equipment. In any coal mine where the...

  4. Trait estimation in herbaceous plant assemblages from in situ canopy spectra

    NARCIS (Netherlands)

    Roelofsen, H.D.; Bodegom, van P.M.; Kooistra, L.; Witte, J.M.


    Estimating plant traits in herbaceous plant assemblages from spectral reflectance data requires aggregation of small scale trait variations to a canopy mean value that is ecologically meaningful and corresponds to the trait content that affects the canopy spectral signal. We investigated estimation

  5. Towards Automated Characterization of Canopy Layering in Mixed Temperate Forests Using Airborne Laser Scanning

    Directory of Open Access Journals (Sweden)

    Reik Leiterer


    Full Text Available Canopy layers form essential structural components, affecting stand productivity and wildlife habitats. Airborne laser scanning (ALS provides horizontal and vertical information on canopy structure simultaneously. Existing approaches to assess canopy layering often require prior information about stand characteristics or rely on pre-defined height thresholds. We developed a multi-scale method using ALS data with point densities >10 pts/m2 to determine the number and vertical extent of canopy layers (canopylayer, canopylength, seasonal variations in the topmost canopy layer (canopytype, as well as small-scale heterogeneities in the canopy (canopyheterogeneity. We first tested and developed the method on a small forest patch (800 ha and afterwards tested transferability and robustness of the method on a larger patch (180,000 ha. We validated the approach using an extensive set of ground data, achieving overall accuracies >77% for canopytype and canopyheterogeneity, and >62% for canopylayer and canopylength. We conclude that our method provides a robust characterization of canopy layering supporting automated canopy structure monitoring.

  6. Ground-Based Robotic Sensing of an Agricultural Sub-Canopy Environment (United States)

    Burns, A.; Peschel, J.


    Airborne remote sensing is a useful method for measuring agricultural crop parameters over large areas; however, the approach becomes limited to above-canopy characterization as a crop matures due to reduced visual access of the sub-canopy environment. During the growth cycle of an agricultural crop, such as soybeans, the micrometeorology of the sub-canopy environment can significantly impact pod development and reduced yields may result. Larger-scale environmental conditions aside, the physical structure and configuration of the sub-canopy matrix will logically influence local climate conditions for a single plant; understanding the state and development of the sub-canopy could inform crop models and improve best practices but there are currently no low-cost methods to quantify the sub-canopy environment at a high spatial and temporal resolution over an entire growth cycle. This work describes the modification of a small tactical and semi-autonomous, ground-based robotic platform with sensors capable of mapping the physical structure of an agricultural row crop sub-canopy; a soybean crop is used as a case study. Point cloud data representing the sub-canopy structure are stored in LAS format and can be used for modeling and visualization in standard GIS software packages.

  7. A polar grid estimator of forest canopy structure metrics using airborne laser scanning data (United States)

    Nicholas R. Vaughn; Greg P. Asner; Christian P. Giardina


    The structure of a forest canopy is the key determinant of light transmission, use and understory availability. Airborne light detection and ranging (LiDAR) has been used successfully to measure multiple canopy structural properties, thereby greatly reducing the fieldwork required to map spatial variation in structure. However, lidar metrics to date do not reflect the...

  8. Regeneration in canopy gaps of tierra-firme forest in the Peruvian Amazon

    DEFF Research Database (Denmark)

    Karsten, Rune Juelsborg; Jovanovic, Milos; Meilby, Henrik


    the regeneration dynamics of logging gaps with naturally occuring canopy gaps. In the concession of Consorcio Forestal Amazonico in the region of Ucayali in the Peruvian Amazon, a total of 210 circular sample plots were established in 35 gaps in unmanaged natural forest and 35 canopy gaps in forest managed...

  9. Analyzing transient closed chamber effects on canopy gas exchange for optimizing flux calculation timing

    NARCIS (Netherlands)

    Langensiepen, M.; Kupisch, M.; Wijk, van M.T.; Ewert, F.


    Transient type canopy chambers are still the only currently available practical solution for rapid screening of gas-exchange in agricultural fields. The technique has been criticized for its effect on canopy microclimate during measurement which affects the transport regime and regulation of plant

  10. Three-dimensional canopy fuel loading predicted using upward and downward sensing LiDAR systems (United States)

    Nicholas S. Skowronski; Kenneth L. Clark; Matthew Duveneck; John. Hom


    We calibrated upward sensing profiling and downward sensing scanning LiDAR systems to estimates of canopy fuel loading developed from field plots and allometric equations, and then used the LiDAR datasets to predict canopy bulk density (CBD) and crown fuel weight (CFW) in wildfire prone stands in the New Jersey Pinelands. LiDAR-derived height profiles were also...

  11. Tree canopy types constrain plant distributions in ponderosa pine-Gambel oak forests, northern Arizona (United States)

    Scott R. Abella


    Trees in many forests affect the soils and plants below their canopies. In current high-density southwestern ponderosa pine (Pinus ponderosa) forests, managers have opportunities to enhance multiple ecosystem values by manipulating tree density, distribution, and canopy cover through tree thinning. I performed a study in northern Arizona ponderosa...

  12. Calculating wind profiles above a pine forest

    International Nuclear Information System (INIS)

    Murphy, C.E.; Dexter, A.H.


    A major part of the environmental transport work at the Savannah River Laboratory (SRL) involves the dispersion of airborne pollutants (aerosols and gases). A major part of the Savannah River Plant (SRP) site is covered with pine forests. Because forests are ''rough'' surfaces which increase turbulence and surface shear stress and, hence, alter the dispersion patterns, the nature of the wind profiles above the forests is being investigated. Two methods for determining the surface shear caused by the atmospheric wind field over a pine plantation were compared. Friction velocity [the square root of the ratio of shearing stress over the density of air; U/sub */ = (stress/density)1/2] calculated by eddy correlation was compared with friction velocity calculated from wind profiles. Data from the first five meters above the pine forest were compared. The data indicated that there was no significant difference in the mean friction velocity measured by each method. However, there were large differences in individual values calculated by the two methods for many of the measurement periods. An attempt was made to reconcile the differences in the measured values, but no satisfactory method was found

  13. Spectral measurements at different spatial scales in potato: relating leaf, plant and canopy nitrogen status (United States)

    Jongschaap, Raymond E. E.; Booij, Remmie


    Chlorophyll contents in vegetation depend on soil nitrogen availability and on crop nitrogen uptake, which are important management factors in arable farming. Crop nitrogen uptake is important, as nitrogen is needed for chlorophyll formation, which is important for photosynthesis, i.e. the conversion of absorbed radiance into plant biomass. The objective of this study was to estimate leaf and canopy nitrogen contents by near and remote sensing observations and to link observations at leaf, plant and canopy level. A theoretical base is presented for scaling-up leaf optical properties to whole plants and crops, by linking different optical recording techniques at leaf, plant and canopy levels through the integration of vertical nitrogen distribution. Field data come from potato experiments in The Netherlands in 1997 and 1998, comprising two potato varieties: Eersteling and Bintje, receiving similar nitrogen treatments (0, 100, 200 and 300 kg N ha -1) in varying application schemes to create differences in canopy nitrogen status during the growing season. Ten standard destructive field samplings were performed to follow leaf area index and crop dry weight evolution. Samples were analysed for inorganic nitrogen and total nitrogen contents. At sampling dates, spectral measurements were taken both at leaf level and at canopy level. At leaf level, an exponential relation between SPAD-502 readings and leaf organic nitrogen contents with a high correlation factor of 0.91 was found. At canopy level, an exponential relation between canopy organic nitrogen contents and red edge position ( λrep, nm) derived from reflectance measurements was found with a good correlation of 0.82. Spectral measurements (SPAD-502) at leaf level of a few square mm were related to canopy reflectance measurements (CropScan™) of approximately 0.44 m 2. Statistical regression techniques were used to optimise theoretical vertical nitrogen profiles that allowed scaling-up leaf chlorophyll measurements

  14. Mapping canopy gaps in an indigenous subtropical coastal forest using high resolution WorldView-2 data

    CSIR Research Space (South Africa)

    Malahlela, O


    Full Text Available Invasive species usually colonize canopy gaps in tropical and sub-tropical forests, which results in loss of native species. Therefore, an understanding of the location and distribution of canopy gaps will assist in predicting the occurrence...

  15. Hyperspectral data mining to identify relevant canopy spectral features for estimating durum wheat growth, nitrogen status, and yield (United States)

    Modern hyperspectral sensors permit reflectance measurements of crop canopies in hundreds of narrow spectral wavebands. While these sensors describe plant canopy reflectance in greater detail than multispectral sensors, they also suffer from issues with data redundancy and spectral autocorrelation. ...

  16. Field intercomparison of channel master ADCP with RiverSonde Radar for measuring river discharge (United States)

    Spain, P.; Marsden, R.; Barrick, D.; Teague, C.; Ruhl, C.


    The RiverSonde radar makes non-contact measurement of a horizontal swath of surface velocity across a river section. This radar, which has worked successfully at several rivers in the Western USA, has shown encouraging correlation with simultaneous measurements of average currents at one level recorded by an acoustic travel-time system. This work reports a field study intercomparing data sets from a 600 kHz Channel Master ADCP with the RiverSonde radar. The primary goal was to begin to explore the robustness of the radar data as a reliable index of discharge. This site Is at Three Mile Slough in Northern California, USA. The larger intent of the work is to examine variability in space and time of the radar's surface currents compared with subsurface flows across the river section. Here we examine data from a couple of periods with strong winds. ?? 2005 IEEE.

  17. Explaining the convector effect in canopy turbulence by means of large-eddy simulation (United States)

    Banerjee, Tirtha; De Roo, Frederik; Mauder, Matthias


    Semi-arid forests are found to sustain a massive sensible heat flux in spite of having a low surface to air temperature difference by lowering the aerodynamic resistance to heat transfer (rH) - a property called the canopy convector effect (CCE). In this work large-eddy simulations are used to demonstrate that the CCE appears more generally in canopy turbulence. It is indeed a generic feature of canopy turbulence: rH of a canopy is found to reduce with increasing unstable stratification, which effectively increases the aerodynamic roughness for the same physical roughness of the canopy. This relation offers a sufficient condition to construct a general description of the CCE. In addition, we review existing parameterizations for rH from the evapotranspiration literature and test to what extent they are able to capture the CCE, thereby exploring the possibility of an improved parameterization.

  18. Variation of directional reflectance factors with structural changes of a developing alfalfa canopy (United States)

    Kirchner, J. A.; Kimes, D. S.; Mcmurtrey, J. E., III


    Directional reflectance factors of an alfalfa canopy were determined and related to canopy structure, agronomic variables, and irradiance conditions at four periods during a cutting cycle. Nadir and off-nadir reflectance factors decreased with increasing biomass in Thematic Mapper band 3(0.63-0.69 micrometer) and increased with increasing biomass in band 4(0.76-0.90 micrometer). The sensor view angle had less impact on perceived reflectance as the alfalfa progressed from an erectophile canopy of stems after harvest to a near planophile canopy of leaves at maturity. Studies of directional reflectance are needed for testing and upgrading vegetation canopy models and to aid in the complex interpretation problems presented by aircraft scanners and pointable satellites where illumination and viewing geometries may vary widely. Distinct changes in the patterns of radiance observed by a sensor as structural and biomass changes occur are keys to monitoring the growth and condition of crops.

  19. Offshore Wind Power Data

    DEFF Research Database (Denmark)

    Cutululis, Nicolaos Antonio; Litong-Palima, Marisciel; Zeni, Lorenzo


    Wind power development scenarios are critical when trying to assess the impact of the demonstration at national and European level. The work described in this report had several objectives. The main objective was to prepare and deliver the proper input necessary for assessing the impact of Demo 4...... – Storm management at national and European level. For that, detailed scenarios for offshore wind power development by 2020 and 2030 were required. The aggregation level that is suitable for the analysis to be done is at wind farm level. Therefore, the scenarios for offshore wind power development offer...... details about the wind farms such as: capacity and coordinates. Since the focus is on the impact of storm fronts passage in Northen Europe, the offshore wind power scenarios were estimated only for the countries at North and Baltic Sea. The sources used are public sources, mentioned in the reference list...

  20. Wind farm economics

    International Nuclear Information System (INIS)

    Milborrow, D.J.


    The economics of wind energy are changing rapidly, with improvements in machine performance and increases in size both contributing to reduce costs. These trends are examined and future costs assessed. Although the United Kingdom has regions of high wind speed, these are often in difficult terrain and construction costs are often higher than elsewhere in Europe. Nevertheless, wind energy costs are converging with those of the conventional thermal sources. At present, bank loan periods for wind projects are shorter than for thermal plant, which means that energy prices are higher. Ways of overcoming this problem are explored. It is important, also, to examine the value of wind energy. It is argued that wind energy has a higher value than energy from centralized plant, since it is fed into the low-voltage distribution network. (Author)

  1. Wind power in France

    International Nuclear Information System (INIS)

    Tuille, F.; Courtel, J.


    After 3 years of steady decreasing, wind power has resumed growth in 2014 in France and the preliminary figures of 2015 confirm this trend. About 1100 MW were installed in 2014 which was almost twice as much as it was installed the year before. This renaissance is mostly due to the implementation of Brottes' law that eases the installations of wind farms by suppressing the wind power development areas (that were interfering with regional wind power schemes) and by suppressing the minimum number of 5 turbines for any new wind farms. Another important incentive measure was the announcement in January 2015 of a new financial support scheme in replacement of the policy of guaranteed purchase price for the electricity produced. In 2014 the total wind power produced in mainland France reached 17 TW which represented 3.1% of the production of electricity. (A.C.)

  2. Extreme winds in Denmark

    DEFF Research Database (Denmark)

    Kristensen, L.; Rathmann, O.; Hansen, S.O.


    ), Kegnaes (7 yr), Sprogo (20 yr), and Tystofte (16 yr). The measured data are wind speed, wind direction, temperature and pressure. The wind records are cleaned for terrain effects by means of WASP (Mortensew ct al., Technical Report I-666 (EN), Riso National Laboratory, 1993. Vol. 2. User's Guide......): assuming geostrophic balance, all the wind-velocity data are transformed to friction velocity u(*) and direction at standard conditions by means of the geostrophic drag law for neutral stratification. The basic wind velocity in 30 degrees sectors are obtained through ranking of the largest values...... of the friction velocity pressure pu(*)(2)/2 taken once every two months. The main conclusion is that the basic wind velocity is significantly larger at the west coast of Jutland (25 +/- 1 m/s) than at any of the other sites (22 +/- 1 m/s). These results are in agreement with those obtained by Jensen and Franck...

  3. Wind turbine state estimation

    DEFF Research Database (Denmark)

    Knudsen, Torben


    the results using full-scale wind turbine data. The previously developed methods were based on extended Kalman filtering. This method has several drawback compared to unscented Kalman filtering which has therefore been developed. The unscented Kalman filter was first tested on linear and non-linear test cases......Dynamic inflow is an effect which is normally not included in the models used for wind turbine control design. Therefore, potential improvement from including this effect exists. The objective in this project is to improve the methods previously developed for this and especially to verify...... which was successful. Then the estimation of a wind turbine state including dynamic inflow was tested on a simulated NREL 5MW turbine was performed. This worked perfectly with wind speeds from low to nominal wind speed as the output prediction errors where white. In high wind where the pitch actuator...

  4. Noise from wind turbines

    International Nuclear Information System (INIS)

    Andersen, B.; Jakobsen, J.


    Based on a previous project concerning the calculation of the amount of noise emanating from wind turbine arrays, this one examines the subject further by investigating whether there could be significant differences in the amount of noise made by individual wind turbines in an array, and whether the noise is transmitted in varying directions - so that when it is carried in the same direction as the wind blows it would appear to be louder. The aim was also to determine whether the previously used method of calculation lacked precision. It was found that differences in noise niveaux related to individual wind turbines were insignificant and that noise was not so loud when it was not borne in the direction of the wind. It was necessary to change the method of calculation as reckoning should include the influence of the terrain, wind velocity and distance. The measuring and calculation methods are exemplified and the resulting measurements are presented in detail. (AB)

  5. Wind turbine pitch optimization

    DEFF Research Database (Denmark)

    Biegel, Benjamin; Juelsgaard, Morten; Stoustrup, Jakob


    We consider a static wind model for a three-bladed, horizontal-axis, pitch-controlled wind turbine. When placed in a wind field, the turbine experiences several mechanical loads, which generate power but also create structural fatigue. We address the problem of finding blade pitch profiles......% compared to any constant pitch profile while sacrificing at most 7% of the maximum attainable output power. Using iterative learning, we show that very similar performance can be achieved by using only load measurements, with no knowledge of the wind field or wind turbine model....... for maximizing power production while simultaneously minimizing fatigue loads. In this paper, we show how this problem can be approximately solved using convex optimization. When there is full knowledge of the wind field, numerical simulations show that force and torque RMS variation can be reduced by over 96...

  6. SERI Wind Energy Program

    Energy Technology Data Exchange (ETDEWEB)

    Noun, R. J.


    The SERI Wind Energy Program manages the areas or innovative research, wind systems analysis, and environmental compatibility for the U.S. Department of Energy. Since 1978, SERI wind program staff have conducted in-house aerodynamic and engineering analyses of novel concepts for wind energy conversion and have managed over 20 subcontracts to determine technical feasibility; the most promising of these concepts is the passive blade cyclic pitch control project. In the area of systems analysis, the SERI program has analyzed the impact of intermittent generation on the reliability of electric utility systems using standard utility planning models. SERI has also conducted methodology assessments. Environmental issues related to television interference and acoustic noise from large wind turbines have been addressed. SERI has identified the causes, effects, and potential control of acoustic noise emissions from large wind turbines.

  7. Wind Energy Systems

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Ma, Ke


    Wind power now represents a major and growing source of renewable energy. Large wind turbines (with capacities of up to 6-8 MW) are widely installed in power distribution networks. Increasing numbers of onshore and offshore wind farms, acting as power plants, are connected directly to power...... transmission networks at the scale of hundreds of megawatts. As its level of grid penetration has begun to increase dramatically, wind power is starting to have a significant impact on the operation of the modern grid system. Advanced power electronics technologies are being introduced to improve...... the characteristics of the wind turbines, and make them more suitable for integration into the power grid. Meanwhile, there are some emerging challenges that still need to be addressed. This paper provides an overview and discusses some trends in the power electronics technologies used for wind power generation...

  8. Danish Wind Power

    DEFF Research Database (Denmark)

    Lund, Henrik; Hvelplund, Frede; Østergaard, Poul Alberg

    In a normal wind year, Danish wind turbines generate the equivalent of approx. 20 percent of the Danish electricity demand. This paper argues that only approx. 1 percent of the wind power production is exported. The rest is used to meet domestic Danish electricity demands. The cost of wind power......, a study made by the Danish think tank CEPOS claimed the opposite, i.e. that most of the Danish wind power has been exported in recent years. However, this claim is based on an incorrect interpretation of statistics and a lack of understanding of how the international electricity markets operate...... is paid solely by the electricity consumers and the net influence on consumer prices was as low as 1-3 percent on average in the period 2004-2008. In 2008, the net influence even decreased the average consumer price, although only slightly. In Denmark, 20 percent wind power is integrated by using both...

  9. Wind Turbines Wake Aerodynamics

    DEFF Research Database (Denmark)

    Vermeer, L.; Sørensen, Jens Nørkær; Crespo, A.


    The aerodynamics of horizontal axis wind turbine wakes is studied. The contents is directed towards the physics of power extraction by wind turbines and reviews both the near and the far wake region. For the near wake, the survey is restricted to uniform, steady and parallel flow conditions......, thereby excluding wind shear, wind speed and rotor setting changes and yawed conditions. The emphasis is put on measurements in controlled conditions.For the far wake, the survey focusses on both single turbines and wind farm effects, and the experimental and numerical work are reviewed; the main interest...... is to study how the far wake decays downstream, in order to estimate the effect produced in downstream turbines.The article is further restricted to horizontal axis wind turbines and excludes all other types of turbines....

  10. 77 FR 29633 - Alta Wind VII, LLC, Alta Wind IX, LLC, Alta Wind X, LLC, Alta Wind XI, LLC, Alta Wind XII, LLC... (United States)


    ..., Alta Wind XIV, LLC, Alta Wind XV, LLC, Alta Windpower Development, LLC, TGP Development Company, LLC... XIII, LLC, Alta Wind XIV, LLC, Alta Wind XV, LLC, Alta Windpower Development, LLC, and TGP Development...

  11. Contested Rivers

    DEFF Research Database (Denmark)

    Gorm Hansen, Louise Lyngfeldt

    policy making, decision drivers and framing of large hydropower projects in China. Hydropower is a complex and interesting field to explore as the consequences go beyond the immediate locality and interacts with local as well as the global contexts. Inspired by Tsing (2003) and Zhan (2008) the paper...... explores translocal connections through ethnographic fieldwork at a global water conference and preliminary fieldwork at chosen locations on China's Nu River. The Nu River is one of the last undammed rivers in Asia and runs through China close to the Chinese-Burmese border, then flows into the Andaman Sea...... after running through the Thai-Burmese border. In 2003, a cascade of up to 13 dams were approved by the Chinese government, however, as of yet no dams have been built due to a prolonged controversy between Chinese government officials, Chinese and international environmental NGOs, the media, social...

  12. Enabling Wind Power Nationwide

    Energy Technology Data Exchange (ETDEWEB)

    Jose Zayas, Michael Derby, Patrick Gilman and Shreyas Ananthan,


    Leveraging this experience, the U.S. Department of Energy’s (DOE’s) Wind and Water Power Technologies Office has evaluated the potential for wind power to generate electricity in all 50 states. This report analyzes and quantifies the geographic expansion that could be enabled by accessing higher above ground heights for wind turbines and considers the means by which this new potential could be responsibly developed.

  13. Wind and Yaw correlation

    DEFF Research Database (Denmark)

    Kock, Carsten Weber; Vesth, Allan

    The report describes measurements carried out on a given wind turbine. A comparison between wind speed on the metmast and Nacelle Windspeed are made and the results are presented on graphs and in a table. The data used for the comparison are identical with the data used for the Risø-I-3246(EN......) power curve report. The measurements are carried out in accordance to Ref. [1] and the wind and yaw correlation is analyzed in accordance to Ref. [2]....

  14. Do Small Canopy Gaps Created by Japanese Black Bears Facilitate Fruiting of Fleshy-Fruited Plants?

    Directory of Open Access Journals (Sweden)

    Kazuaki Takahashi

    Full Text Available Japanese black bears often break branches when climbing trees and feeding on fruit in canopies, thereby creating small canopy gaps. However, the role of black bear-created canopy gaps has not been evaluated in the context of multiple forest dynamics. Our hypothesis was that small canopy gaps created by black bears improve light conditions, which facilitates fruiting of adult fleshy-fruited plants located beneath the gaps, and also that this chain interaction depends on interactions among the size of gaps, improved light conditions, forest layers, and life form of plants. The rPPFD, size of black bear-created canopy gaps, and fruiting/non-fruiting of fleshy-fruited plants were investigated in five forest layers beneath black-bear-created canopy gaps and closed canopies of Mongolian oak (Quercus crispula. We found that light conditions improved beneath black bear-disturbed trees with canopy gaps of large size, and the effect of improvement of light conditions was reduced with descending forest layers. Fruiting of fleshy-fruited plants, especially woody lianas and trees, was facilitated by the improvement of light conditions accompanied by an increase in the size of black-bear-created gaps. Data from this study revealed that canopy disturbance by black bears was key for improving light conditions and accelerating fruiting of fleshy-fruited trees and woody lianas in the canopy layers in particular. Therefore, our hypothesis was mostly supported. Our results provide evidence that Japanese black bears have high potential as ecosystem engineers that increase the availability of resources (light and fruit in this study to other species by causing physical state changes in biotic materials (branches of Q. crispula in this study.

  15. Do Small Canopy Gaps Created by Japanese Black Bears Facilitate Fruiting of Fleshy-Fruited Plants? (United States)

    Takahashi, Kazuaki; Takahashi, Kaori; Washitani, Izumi


    Japanese black bears often break branches when climbing trees and feeding on fruit in canopies, thereby creating small canopy gaps. However, the role of black bear-created canopy gaps has not been evaluated in the context of multiple forest dynamics. Our hypothesis was that small canopy gaps created by black bears improve light conditions, which facilitates fruiting of adult fleshy-fruited plants located beneath the gaps, and also that this chain interaction depends on interactions among the size of gaps, improved light conditions, forest layers, and life form of plants. The rPPFD, size of black bear-created canopy gaps, and fruiting/non-fruiting of fleshy-fruited plants were investigated in five forest layers beneath black-bear-created canopy gaps and closed canopies of Mongolian oak (Quercus crispula). We found that light conditions improved beneath black bear-disturbed trees with canopy gaps of large size, and the effect of improvement of light conditions was reduced with descending forest layers. Fruiting of fleshy-fruited plants, especially woody lianas and trees, was facilitated by the improvement of light conditions accompanied by an increase in the size of black-bear-created gaps. Data from this study revealed that canopy disturbance by black bears was key for improving light conditions and accelerating fruiting of fleshy-fruited trees and woody lianas in the canopy layers in particular. Therefore, our hypothesis was mostly supported. Our results provide evidence that Japanese black bears have high potential as ecosystem engineers that increase the availability of resources (light and fruit in this study) to other species by causing physical state changes in biotic materials (branches of Q. crispula in this study).

  16. Canopy tree species drive local heterogeneity in soil nitrogen availability in a lowland tropical forest (United States)

    Osborne, B. B.; Nasto, M.; Asner, G. P.; Balzotti, C.; Cleveland, C. C.; Taylor, P.; Townsend, A. R.; Porder, S.


    The high phylogenetic and functional diversity of tree species in lowland tropical forests make field-based investigations of organismal influences on soil nutrient cycling challenging. Here, we used remotely-detected canopy nitrogen (N) data from the Carnegie Airborne Observatory to identify and characterize ¼ ha plots of a mature forest with either high or low canopy N on the Osa Peninsula in Costa Rica. Specifically we were interested in mechanisms by which foliar N might influence soil N, or the reverse. A non-dimensional scaling analysis suggested that high and low canopy N plots differ in their emergent (≥40 cm DBH) tree communities, though there were few putative N fixers in any of the plots. We found litterfall mass was similar beneath all canopies. However, mean DOC solubility of litter was 0.40% of dry biomass in low canopy N plots compared to 0.26% in high N plots. Additionally, litter leachate C:N was twice as high in litter from the low canopy N plots (61±1.4) compared with litter from the high N plots (30±1.4). We found strong positive correlations between canopy N and concentrations of soil KCl-extractable soil NO3- and net nitrification and net N mineralization rates (N=5; P<0.0001 in all cases). Under high canopy N, mean NO3-N concentrations were roughly an order of magnitude higher than beneath low N canopies (2.7±0.39 and 0.19±0.05, respectively). We hypothesize that differences in litter chemistry lead to differences in leachate quality that promote high soil N under canopies with high foliar N. Our findings suggest that remote sensing of foliar characteristics may offer an effective way to study spatial patterns in soil biogeochemistry in diverse tropical forests.

  17. Waveform- and Terrestrial Lidar Assessment of the Usual (Structural) Suspects in a Forest Canopy (United States)

    van Aardt, J. A.; Romanczyk, P.; Kelbe, D.; van Leeuwen, M.; Cawse-Nicholson, K.; Gough, C. M.; Kampe, T. U.


    Forest inventory has evolved from standard stem diameter-height relationships, to coarse canopy metrics, to more involved ecologically-meaningful variables, such as leaf area index (LAI) and even canopy radiative transfer as a function of canopy gaps, leaf clumping, and leaf angle distributions. Accurate and precise measurement of the latter set of variables presents a challenge to the ecological and modeling communities; however, relatively novel remote sensing modalities, e.g., waveform lidar (wlidar) and terrestrial lidar systems (TLS), have the potential to adress this challenge. Research teams at Rochester Institute of Technology (RIT) and the Virginia Commonwealth University (VCU) have been collaborating with the National Ecological Observation Network (NEON) to assess vegetation canopy structure and variation at the University of Michigan Biological Research Station and the NEON Northeast domain (Harvard Forest, MA). Airborne small-footprint wlidar data, in-situ TLS data, and first-principles, physics-based simulation tools are being used to study (i) the impact of vegetation canopy geometric elements on wlidar signals (twigs and petioles have been deemed negligible), (ii) the analysis of airborne wlidar data for top-down assessment of canopy metrics such as LAI, and (iii) our ability to extract "bottom-up" canopy structure from TLS using scans registered to each other using a novel marker-free registration approach (e.g., basal area: R2=0.82, RMSE=7.43 m2/ha). Such studies indicate that we can potentially assess radiative transfer through vegetation canopies remotely using a vertically-stratified approach with wlidar, and augment such an approach via rapid-scan TLS technology to gain a better understanding of fine-scale variation in canopy structure. This in turn is key to quantifying and modeling radiative transfer based on understanding of forest canopy structural change as a function of ecosystem development, climate, and anthropogenic drivers.

  18. Coherence Effects in L-Band Active and Passive Remote Sensing of Quasi-Periodic Corn Canopies (United States)

    Utku, Cuneyt; Lang, Roger H.


    Due to their highly random nature, vegetation canopies can be modeled using the incoherent transport theory for active and passive remote sensing applications. Agricultural vegetation canopies however are generally more structured than natural vegetation. The inherent row structure in agricultural canopies induces coherence effects disregarded by the transport theory. The objective of this study is to demonstrate, via Monte-Carlo simulations, these coherence effects on L-band scattering and thermal emission from corn canopies consisting of only stalks.

  19. Effect of smoke on subcanopy shaded light, canopy temperature, and carbon dioxide uptake in an Amazon rainforest


    Doughty, C. E.; Flanner, M. G.; Goulden, M. L.


    Daytime Net Ecosystem CO2 uptake (NEE) in an Amazon forest has been shown to increase significantly during smoky periods associated with biomass burning. We investigated whether the increase in CO2 uptake is caused by increased irradiance in the lower canopy, which results from increased above-canopy diffuse light, or by decreased canopy temperature, which results from decreased above-canopy net radiation. We used Sun photometers measuring aerosol optical depth to find nonsmoky (Aerosol Optic...

  20. Tree canopy composition in the tropical mountain rainforest of los Tuxtlas, Mexico

    Directory of Open Access Journals (Sweden)

    Mario Vázquez-Torres


    Full Text Available We studied the arboreal composition of the tropical mountain rainforest’s upper canopy in the San Martín Pajapán volcano, Tatahuicapan, Veracruz, México (18°26’ N; 94°17’ W. Two forest stands were studied, one in an exposed position and one protected. The Shannon index of diversity and the Jaccard index of affinity were calculated to calculate affinities between plots and between stands of different environmental exposures. The average Shannon value was 3.391 +0.121 for the exposed zone and 3.511 +0.53 for the protected zone. There is a greater species number and tree density in the exposed stand. This difference might be caused be different orientation to dominant winds. The diversity index value is high is similar between the stands, despite the important difference in species composition. Rev. Biol. Trop. 56 (3: 1571-1579. Epub 2008 September 30.El objetivo de este trabajo fue conocer la composición arbórea del bosque tropical lluvioso en el volcán de San Martín Pajapán. Se comparan dos áreas en diferente exposición: expuesta a los vientos dominates y protegida de los vientos. El valor medio del índice de diversidad de Shannon es de 3.391 +0.121 para la zona expuesta y 3.511 +0.53 para la protegida. El número de especies y la densidad de árboles por hectárea es mayor en la zona expuesta y la composición de especies es muy diferente entre las parcelas.

  1. Short-term gas dispersion in idealised urban canopy in street parallel with flow direction

    Directory of Open Access Journals (Sweden)

    Chaloupecká Hana


    Full Text Available Chemical attacks (e.g. Syria 2014-15 chlorine, 2013 sarine or Iraq 2006-7 chlorine as well as chemical plant disasters (e.g. Spain 2015 nitric oxide, ferric chloride; Texas 2014 methyl mercaptan threaten mankind. In these crisis situations, gas clouds are released. Dispersion of gas clouds is the issue of interest investigated in this paper. The paper describes wind tunnel experiments of dispersion from ground level point gas source. The source is situated in a model of an idealised urban canopy. The short duration releases of passive contaminant ethane are created by an electromagnetic valve. The gas cloud concentrations are measured in individual places at the height of the human breathing zone within a street parallel with flow direction by Fast-response Ionisation Detector. The simulations of the gas release for each measurement position are repeated many times under the same experimental set up to obtain representative datasets. These datasets are analysed to compute puff characteristics (arrival, leaving time and duration. The results indicate that the mean value of the dimensionless arrival time can be described as a growing linear function of the dimensionless coordinate in the street parallel with flow direction where the gas source is situated. The same might be stated about the dimensionless leaving time as well as the dimensionless duration, however these fits are worse. Utilising a linear function, we might also estimate some other statistical characteristics from datasets than the datasets means (medians, trimeans. The datasets of the dimensionless arrival time, the dimensionless leaving time and the dimensionless duration can be fitted by the generalized extreme value distribution (GEV in all sampling positions except one.

  2. Wind power prediction models (United States)

    Levy, R.; Mcginness, H.


    Investigations were performed to predict the power available from the wind at the Goldstone, California, antenna site complex. The background for power prediction was derived from a statistical evaluation of available wind speed data records at this location and at nearby locations similarly situated within the Mojave desert. In addition to a model for power prediction over relatively long periods of time, an interim simulation model that produces sample wind speeds is described. The interim model furnishes uncorrelated sample speeds at hourly intervals that reproduce the statistical wind distribution at Goldstone. A stochastic simulation model to provide speed samples representative of both the statistical speed distributions and correlations is also discussed.

  3. Wind on the moors

    International Nuclear Information System (INIS)

    Martin, S.


    A local town councillor describes the setting up of a wind farm in the south Pennines which plans to sell electricity to the local electricity suppliers. The Coal Clough wind farm will generate sufficient electricity to meet the average demand of 7,500 households and will be managed by a consortium known as Wind Resources Limited linking the construction company and the utilities aiming to buy the electricity produced. While wind power offers many environmental advantages over other means of power generation, local opposition was strong on the basis of the noise produced and clearly visible structures in an area designated as being of outstanding natural beauty. (UK)

  4. Vertical axis wind turbine

    International Nuclear Information System (INIS)

    Obretenov, V.; Tsalov, T.; Chakarov, T.


    In recent years, the interest in wind turbines with vertical axis noticeably increased. They have some important advantages: low cost, relatively simple structure, reliable packaging system of wind aggregate long period during which require no maintenance, low noise, independence of wind direction, etc.. The relatively low efficiency, however, makes them applicable mainly for small facilities. The work presents a methodology and software for approximately aerodynamic design of wind turbines of this type, and also analyzed the possibility of improving the efficiency of their workflow

  5. Microsystem Aeromechanics Wind Tunnel (United States)

    Federal Laboratory Consortium — The Microsystem Aeromechanics Wind Tunnel advances the study of fundamental flow physics relevant to micro air vehicle (MAV) flight and assesses vehicle performance...

  6. Winds of change

    International Nuclear Information System (INIS)

    Palmer, C.; Short, L.


    The British countryside is oversubscribed with multiple and often irreconcilable demands. The siting of wind turbines is but one facet of this situation. While the problems of these demands are widely recognised, there is little understanding or agreement on how to resolve them. The 1996 Future Landscape: New Partnerships was an attempt to address this challenge. The use of wind energy as a case study initiated a partnership between contemporary artists and the wind energy industry. It became clear that artists have an important role to play in creating new ways of seeing that will establish wind turbines as new icons for a sustainable future. (Author)

  7. Could wind replace nuclear?

    International Nuclear Information System (INIS)


    This article aims at assessing the situation produced by a total replacement of nuclear energy by wind energy, while facing consumption demand at any moment, notably in December. The authors indicate the evolution of the French energy mix during December 2016, and the evolution of the rate between wind energy production and the sum of nuclear and wind energy production during the same month, and then give briefly some elements regarding necessary investments in wind energy to wholly replace nuclear energy. According to them, such a replacement would be ruinous

  8. Climate Wind Power Resources

    Directory of Open Access Journals (Sweden)

    Nana M. Berdzenishvili


    Full Text Available Georgia as a whole is characterized by rather rich solar energy resources, which allows to construct alternative power stations in the close proximity to traditional power plants. In this case the use of solar energy is meant. Georgia is divided into 5 zones based on the assessment of wind power resources. The selection of these zones is based on the index of average annual wind speed in the examined area, V> 3 m / s and V> 5 m / s wind speed by the summing duration in the course of the year and V = 0. . . 2 m / s of passive wind by total and continuous duration of these indices per hour.

  9. Wind Energy Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Laurie, Carol


    This book takes readers inside the places where daily discoveries shape the next generation of wind power systems. Energy Department laboratory facilities span the United States and offer wind research capabilities to meet industry needs. The facilities described in this book make it possible for industry players to increase reliability, improve efficiency, and reduce the cost of wind energy -- one discovery at a time. Whether you require blade testing or resource characterization, grid integration or high-performance computing, Department of Energy laboratory facilities offer a variety of capabilities to meet your wind research needs.

  10. Vertical axis wind turbines (United States)

    Krivcov, Vladimir [Miass, RU; Krivospitski, Vladimir [Miass, RU; Maksimov, Vasili [Miass, RU; Halstead, Richard [Rohnert Park, CA; Grahov, Jurij [Miass, RU


    A vertical axis wind turbine is described. The wind turbine can include a top ring, a middle ring and a lower ring, wherein a plurality of vertical airfoils are disposed between the rings. For example, three vertical airfoils can be attached between the upper ring and the middle ring. In addition, three more vertical airfoils can be attached between the lower ring and the middle ring. When wind contacts the vertically arranged airfoils the rings begin to spin. By connecting the rings to a center pole which spins an alternator, electricity can be generated from wind.

  11. Coastal river plumes: Collisions and coalescence (United States)

    Warrick, Jonathan; Farnsworth, Katherine L


    Plumes of buoyant river water spread in the ocean from river mouths, and these plumes influence water quality, sediment dispersal, primary productivity, and circulation along the world’s coasts. Most investigations of river plumes have focused on large rivers in a coastal region, for which the physical spreading of the plume is assumed to be independent from the influence of other buoyant plumes. Here we provide new understanding of the spreading patterns of multiple plumes interacting along simplified coastal settings by investigating: (i) the relative likelihood of plume-to-plume interactions at different settings using geophysical scaling, (ii) the diversity of plume frontal collision types and the effects of these collisions on spreading patterns of plume waters using a two-dimensional hydrodynamic model, and (iii) the fundamental differences in plume spreading patterns between coasts with single and multiple rivers using a three-dimensional hydrodynamic model. Geophysical scaling suggests that coastal margins with numerous small rivers (watershed areas  100,000 km2). When two plume fronts meet, several types of collision attributes were found, including refection, subduction and occlusion. We found that the relative differences in pre-collision plume densities and thicknesses strongly influenced the resulting collision types. The three-dimensional spreading of buoyant plumes was found to be influenced by the presence of additional rivers for all modeled scenarios, including those with and without Coriolis and wind. Combined, these results suggest that plume-to-plume interactions are common phenomena for coastal regions offshore of the world’s smaller rivers and for coastal settings with multiple river mouths in close proximity, and that the spreading and fate of river waters in these settings will be strongly influenced by these interactions. We conclude that new investigations are needed to characterize how plumes interact offshore of river mouths to

  12. Germination and establishment of Tillandsia eizii (Bromeliaceae) in the canopy of an oak forest in Chiapas, Mexico

    NARCIS (Netherlands)

    Toledo-Aceves, T.; Wolf, J.H.D.


    We assessed the effectiveness of repopulating the inner canopy and middle canopy of oak trees with seeds and seedlings of the epiphytic bromeliad Tillandsia eizii. Canopy germination was 4.7 percent, considerably lower than in vitro (92%). Of the tree-germinated seedlings, only 1.5 percent survived

  13. Estimating foliar biochemistry from hyperspectral data in mixed forest canopy

    DEFF Research Database (Denmark)

    Huber Gharib, Silvia; Kneubühler, Mathias; Psomas, Achilleas


    data to estimate the foliar concentration of nitrogen, carbon and water in three mixed forest canopies in Switzerland. With multiple linear regression models, continuum-removed and normalized HyMap spectra were related to foliar biochemistry on an individual tree level. The six spectral wavebands used...... in the regression models were selected using both an enumerative branch-and-bound (B&B) and a forward search algorithm. The models estimated foliar concentrations with adjusted R2 values between 0.47 and 0.63, based on the best-sampled study site. Regression models composed of wavebands selected by the B......&B algorithm always performed better than those developed with forward search. When extrapolating nitrogen concentrations from one to another study site, regression models solely based on causal wavebands (known from literature) mostly outperformed models based on all wavebands. The study demonstrates...

  14. Parasite-induced fruit mimicry in a tropical canopy ant. (United States)

    Yanoviak, S P; Kaspari, M; Dudley, R; Poinar, G


    Some parasites modify characteristics of intermediate hosts to facilitate their consumption by subsequent hosts, but examples of parasite-mediated mimicry are rare. Here we report dramatic changes in the appearance and behavior of nematode-parasitized ants such that they resemble ripe fruits in the tropical rain forest canopy. Unlike healthy ants, which are completely black, infected ants have bright red, berry-like gasters full of parasite eggs. The infected gasters are held in a conspicuous elevated position as the ants are walking, and they are easily detached from living ants, which also exhibit reduced defensive responses. This combination of changes presumably makes the infected ants attractive to frugivorous birds, which ingest the red gasters and pass the parasite eggs in their feces. The feces are collected by ants and fed to the developing brood, thus completing the cycle. This is the first documentation of parasites causing apparent fruit mimicry in an animal host to complete their life cycle.

  15. Canopy Level Chlorophyll Fluorescence and the PRI in a Cornfield (United States)

    Middleton, Elizabeth M.; Cheng, Yen-Ben; Corp, Lawrence A.; Campbell, Petya K. E.; Huemmrich, K. Fred; Zhang, Qingyuan; Kustas, William P.


    Two bio-indicators, the Photochemical Reflectance Index (PRI) and solar-induced red and far-red Chlorophyll Fluorescence (SIF), were derived from directional hyperspectral observations and studied in a cornfield on two contrasting days in the growing season. Both red and far-red SIF exhibited higher values on the day when the canopy in the early senescent stage, but only the far-red SIF showed sensitivity to viewing geometry. Consequently, the red/far-red SIF ratio varied greatly among azimuth positions while the largest values were obtained for the "hotspot" at both growth stages. This ratio was lower (approx.0.88 +/- 0.4) in early July than in August when the ratio approached equivalence (near approx.1). In concert, the PRI exhibited stronger responses to both zenith and azimuth angles and different values on the two growth stages. The potential of using these indices to monitor photosynthetic activities needs further investigation

  16. Bayesian analysis for uncertainty estimation of a canopy transpiration model (United States)

    Samanta, S.; Mackay, D. S.; Clayton, M. K.; Kruger, E. L.; Ewers, B. E.


    A Bayesian approach was used to fit a conceptual transpiration model to half-hourly transpiration rates for a sugar maple (Acer saccharum) stand collected over a 5-month period and probabilistically estimate its parameter and prediction uncertainties. The model used the Penman-Monteith equation with the Jarvis model for canopy conductance. This deterministic model was extended by adding a normally distributed error term. This extension enabled using Markov chain Monte Carlo simulations to sample the posterior parameter distributions. The residuals revealed approximate conformance to the assumption of normally distributed errors. However, minor systematic structures in the residuals at fine timescales suggested model changes that would potentially improve the modeling of transpiration. Results also indicated considerable uncertainties in the parameter and transpiration estimates. This simple methodology of uncertainty analysis would facilitate the deductive step during the development cycle of deterministic conceptual models by accounting for these uncertainties while drawing inferences from data.

  17. Characteristics of Atmospheric River Families in California's Russian River Basin (United States)

    Fish, M. A.; Wilson, A. M.; Ralph, F. M.


    Previous studies have shown the importance of antecedent conditions and storm duration on atmospheric river (AR) impacts in California's Russian River basin. This study concludes that successive ARs, or families of ARs, produce an enhanced streamflow response compared to individual storms. This amplifies the impacts of these storms, which contribute to 50% of the annual precipitation in the Russian River basin. Using the Modern Era Retrospective - analysis for Research and Applications 2 dataset and 228 AR events from November 2004 - April 2017 affecting Bodega Bay, CA (BBY), this study identified favorable characteristics for families vs single ARs and their associated impacts. It was found that 111 AR events ( 50%) occurred within 5 days of one another with 44 events ( 40%) occurring within 24 hours. Using the winter of 2017, which had a multitude of successive ARs in Northern California, this study evaluates the applicability of family composites using case study comparisons. The results of this study show large divergences of family composites from the overall AR pattern, depending on the time interval between events. A composite of all AR events show Bodega Bay generally south of the jet exit region, SW-NE tilt of 500mb heights and a more northerly subtropical high. ARs occurring on the same day have faster southerly winds, a weaker low off the coast and a southerly moisture plume extending along the CA coast. Comparatively ARs that occur the following day, feature a more zonal pattern with faster winds north of BBY, a deeper low off the coast and a moisture plume southwest of the Russian River watershed.

  18. Wind Power Today: (2002) Wind Energy Research Highlights

    Energy Technology Data Exchange (ETDEWEB)


    Wind Power Today is an annual publication that provides an overview of the wind research conducted under the U.S. Department of Energy's Wind and Hydropower Technologies Program. The purpose of Wind Power Today is to show how DOE supports wind turbine research and deployment in hopes of furthering the advancement of wind technologies that produce clean, low-cost, reliable energy. Content objectives include: educate readers about the advantages and potential for widespread deployment of wind energy; explain the program's objectives and goals; describe the program's accomplishments in research and application; examine the barriers to widespread deployment; describe the benefits of continued research and development; facilitate technology transfer; and attract cooperative wind energy projects with industry. This 2002 edition of Wind Power Today also includes discussions about wind industry growth in 2002, how DOE is taking advantage of low wind speed regions through advancing technology, and distributed applications for small wind turbines.

  19. Estimating Canopy Nitrogen Concentration in Sugarcane Using Field Imaging Spectroscopy

    Directory of Open Access Journals (Sweden)

    Marc Souris


    Full Text Available The retrieval of nutrient concentration in sugarcane through hyperspectral remote sensing is widely known to be affected by canopy architecture. The goal of this research was to develop an estimation model that could explain the nitrogen variations in sugarcane with combined cultivars. Reflectance spectra were measured over the sugarcane canopy using a field spectroradiometer. The models were calibrated by a vegetation index and multiple linear regression. The original reflectance was transformed into a First-Derivative Spectrum (FDS and two absorption features. The results indicated that the sensitive spectral wavelengths for quantifying nitrogen content existed mainly in the visible, red edge and far near-infrared regions of the electromagnetic spectrum. Normalized Differential Index (NDI based on FDS(750/700 and Ratio Spectral Index (RVI based on FDS(724/700 are best suited for characterizing the nitrogen concentration. The modified estimation model, generated by the Stepwise Multiple Linear Regression (SMLR technique from FDS centered at 410, 426, 720, 754, and 1,216 nm, yielded the highest correlation coefficient value of 0.86 and Root Mean Square Error of the Estimate (RMSE value of 0.033%N (n = 90 with nitrogen concentration in sugarcane. The results of this research demonstrated that the estimation model developed by SMLR yielded a higher correlation coefficient with nitrogen content than the model computed by narrow vegetation indices. The strong correlation between measured and estimated nitrogen concentration indicated that the methods proposed in this study could be used for the reliable diagnosis of nitrogen quantity in sugarcane. Finally, the success of the field spectroscopy used for estimating the nutrient quality of sugarcane allowed an additional experiment using the polar orbiting hyperspectral data for the timely determination of crop nutrient status in rangelands without any requirement of prior

  20. Marsh canopy structure changes and the Deepwater Horizon oil spill (United States)

    Ramsey, Elijah W.; Rangoonwala, Amina; Jones, Cathleen E.


    Marsh canopy structure was mapped yearly from 2009 to 2012 in the Barataria Bay, Louisiana coastal region that was impacted by the 2010 Deepwater Horizon (DWH) oil spill. Based on the previously demonstrated capability of NASA's UAVSAR polarimetric synthetic aperture radar (PolSAR) image data to map Spartina alterniflora marsh canopy structure, structure maps combining the leaf area index (LAI) and leaf angle distribution (LAD, orientation) were constructed for yearly intervals that were directly relatable to the 2010 LAI-LAD classification. The yearly LAI-LAD and LAI difference maps were used to investigate causes for the previously revealed dramatic change in marsh structure from prespill (2009) to postspill (2010, spill cessation), and the occurrence of structure features that exhibited abnormal spatial and temporal patterns. Water level and salinity records showed that freshwater releases used to keep the oil offshore did not cause the rapid growth from 2009 to 2010 in marsh surrounding the inner Bay. Photointerpretation of optical image data determined that interior marsh patches exhibiting rapid change were caused by burns and burn recovery, and that the pattern of 2010 to 2011 LAI decreases in backshore marsh and extending along some tidal channels into the interior marsh were not associated with burns. Instead, the majority of 2010 to 2011 shoreline features aligned with vectors displaying the severity of 2010 shoreline oiling from the DWH spill. Although the association is not conclusive of a causal oil impact, the coexistent pattern is a significant discovery. PolSAR marsh structure mapping provided a unique perspective of marsh biophysical status that enhanced detection of change and monitoring of trends important to management effectiveness.