WorldWideScience

Sample records for wind resources making

  1. Mongolia wind resource assessment project

    International Nuclear Information System (INIS)

    Elliott, D.; Chadraa, B.; Natsagdorj, L.

    1998-01-01

    The development of detailed, regional wind-resource distributions and other pertinent wind resource characteristics (e.g., assessment maps and reliable estimates of seasonal, diurnal, and directional) is an important step in planning and accelerating the deployment of wind energy systems. This paper summarizes the approach and methods being used to conduct a wind energy resource assessment of Mongolia. The primary goals of this project are to develop a comprehensive wind energy resource atlas of Mongolia and to establish a wind measurement program in specific regions of Mongolia to identify prospective sites for wind energy projects and to help validate some of the wind resource estimates. The Mongolian wind resource atlas will include detailed, computerized wind power maps and other valuable wind resource characteristic information for the different regions of Mongolia

  2. Terminology Guideline for Classifying Offshore Wind Energy Resources

    Energy Technology Data Exchange (ETDEWEB)

    Beiter, Philipp [National Renewable Energy Lab. (NREL), Golden, CO (United States); Musial, Walt [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-09-01

    The purpose of this guideline is to establish a clear and consistent vocabulary for conveying offshore wind resource potential and to interpret this vocabulary in terms that are familiar to the oil and gas (O&G) industry. This involves clarifying and refining existing definitions of offshore wind energy resource classes. The terminology developed in this guideline represents one of several possible sets of vocabulary that may differ with respect to their purpose, data availability, and comprehensiveness. It was customized to correspond with established offshore wind practices and existing renewable energy industry terminology (e.g. DOE 2013, Brown et al. 2015) while conforming to established fossil resource classification as best as possible. The developers of the guideline recognize the fundamental differences that exist between fossil and renewable energy resources with respect to availability, accessibility, lifetime, and quality. Any quantitative comparison between fossil and renewable energy resources, including offshore wind, is therefore limited. For instance, O&G resources are finite and there may be significant uncertainty associated with the amount of the resource. In contrast, aboveground renewable resources, such as offshore wind, do not generally deplete over time but can vary significantly subhourly, daily, seasonally, and annually. The intent of this guideline is to make these differences transparent and develop an offshore wind resource classification that conforms to established fossil resource classifications where possible. This guideline also provides methods to quantitatively compare certain offshore wind energy resources to O&G resource classes for specific applications. Finally, this guideline identifies areas where analogies to established O&G terminology may be inappropriate or subject to misinterpretation.

  3. Mexico Wind Resource Assessment Project

    Energy Technology Data Exchange (ETDEWEB)

    Schwartz, M.N.; Elliott, D.L.

    1995-05-01

    A preliminary wind energy resource assessment of Mexico that produced wind resource maps for both utility-scale and rural applications was undertaken as part of the Mexico-U.S. Renewable Energy Cooperation Program. This activity has provided valuable information needed to facilitate the commercialization of small wind turbines and windfarms in Mexico and to lay the groundwork for subsequent wind resource activities. A surface meteorological data set of hourly data in digital form was utilized to prepare a more detailed and accurate wind resource assessment of Mexico than otherwise would have been possible. Software was developed to perform the first ever detailed analysis of the wind characteristics data for over 150 stations in Mexico. The hourly data set was augmented with information from weather balloons (upper-air data), ship wind data from coastal areas, and summarized wind data from sources in Mexico. The various data were carefully evaluated for their usefulness in preparing the wind resource assessment. The preliminary assessment has identified many areas of good-to-excellent wind resource potential and shows that the wind resource in Mexico is considerably greater than shown in previous surveys.

  4. Wind Energy Resource Atlas of Armenia

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, D.; Schwartz, M.; Scott, G.; Haymes, S.; Heimiller, D.; George, R.

    2003-07-01

    This wind energy resource atlas identifies the wind characteristics and distribution of the wind resource in the country of Armenia. The detailed wind resource maps and other information contained in the atlas facilitate the identification of prospective areas for use of wind energy technologies for utility-scale power generation and off-grid wind energy applications. The maps portray the wind resource with high-resolution (1-km2) grids of wind power density at 50-m above ground. The wind maps were created at the National Renewable Energy Laboratory (NREL) using a computerized wind mapping system that uses Geographic Information System (GIS) software.

  5. Wind and solar resource data sets: Wind and solar resource data sets

    Energy Technology Data Exchange (ETDEWEB)

    Clifton, Andrew [National Renewable Energy Laboratory, Golden CO USA; Hodge, Bri-Mathias [National Renewable Energy Laboratory, Golden CO USA; Power Systems Engineering Center, National Renewable Energy Laboratory, Golden CO USA; Draxl, Caroline [National Renewable Energy Laboratory, Golden CO USA; National Wind Technology Center, National Renewable Energy Laboratory, Golden CO USA; Badger, Jake [Department of Wind Energy, Danish Technical University, Copenhagen Denmark; Habte, Aron [National Renewable Energy Laboratory, Golden CO USA; Power Systems Engineering Center, National Renewable Energy Laboratory, Golden CO USA

    2017-12-05

    The range of resource data sets spans from static cartography showing the mean annual wind speed or solar irradiance across a region to high temporal and high spatial resolution products that provide detailed information at a potential wind or solar energy facility. These data sets are used to support continental-scale, national, or regional renewable energy development; facilitate prospecting by developers; and enable grid integration studies. This review first provides an introduction to the wind and solar resource data sets, then provides an overview of the common methods used for their creation and validation. A brief history of wind and solar resource data sets is then presented, followed by areas for future research.

  6. Wind Energy Resource Atlas of Oaxaca

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, D.; Schwartz, M.; Scott, G.; Haymes, S.; Heimiller, D.; George, R.

    2003-08-01

    The Oaxaca Wind Resource Atlas, produced by the National Renewable Energy Laboratory's (NREL's) wind resource group, is the result of an extensive mapping study for the Mexican State of Oaxaca. This atlas identifies the wind characteristics and distribution of the wind resource in Oaxaca. The detailed wind resource maps and other information contained in the atlas facilitate the identification of prospective areas for use of wind energy technologies, both for utility-scale power generation and off-grid wind energy applications.

  7. Offshore wind resource estimation for wind energy

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Badger, Merete; Mouche, A.

    2010-01-01

    Satellite remote sensing from active and passive microwave instruments is used to estimate the offshore wind resource in the Northern European Seas in the EU-Norsewind project. The satellite data include 8 years of Envisat ASAR, 10 years of QuikSCAT, and 23 years of SSM/I. The satellite observati......Satellite remote sensing from active and passive microwave instruments is used to estimate the offshore wind resource in the Northern European Seas in the EU-Norsewind project. The satellite data include 8 years of Envisat ASAR, 10 years of QuikSCAT, and 23 years of SSM/I. The satellite...... observations are compared to selected offshore meteorological masts in the Baltic Sea and North Sea. The overall aim of the Norsewind project is a state-of-the-art wind atlas at 100 m height. The satellite winds are all valid at 10 m above sea level. Extrapolation to higher heights is a challenge. Mesoscale...... modeling of the winds at hub height will be compared to data from wind lidars observing at 100 m above sea level. Plans are also to compare mesoscale model results and satellite-based estimates of the offshore wind resource....

  8. Wind resource estimation and siting of wind turbines

    DEFF Research Database (Denmark)

    Lundtang Petersen, Erik; Mortensen, N.G.; Landberg, L.

    1994-01-01

    Detailed knowledge of the characteristics of the natural wind is necessary for the design, planning and operational aspect of wind energy systems. Here, we shall only be concerned with those meteorological aspects of wind energy planning that are termed wind resource estimation. The estimation...... of the wind resource ranges from the overall estimation of the mean energy content of the wind over a large area - called regional assessment - to the prediction of the average yearly energy production of a specific wind turbine at a specific location - called siting. A regional assessment will most often...... lead to a so-called wind atlas. A precise prediction of the wind speed at a given site is essential because for aerodynamic reasons the power output of a wind turbine is proportional to the third power of the wind speed, hence even small errors in prediction of wind speed may result in large deviations...

  9. Philippines Wind Energy Resource Atlas Development

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, D.

    2000-11-29

    This paper describes the creation of a comprehensive wind energy resource atlas for the Philippines. The atlas was created to facilitate the rapid identification of good wind resource areas and understanding of the salient wind characteristics. Detailed wind resource maps were generated for the entire country using an advanced wind mapping technique and innovative assessment methods recently developed at the National Renewable Energy Laboratory.

  10. Wind Energy Resource Atlas of the Philippines

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, D.; Schwartz, M.; George, R.; Haymes, S.; Heimiller, D.; Scott, G.; McCarthy, E.

    2001-03-06

    This report contains the results of a wind resource analysis and mapping study for the Philippine archipelago. The study's objective was to identify potential wind resource areas and quantify the value of those resources within those areas. The wind resource maps and other wind resource characteristic information will be used to identify prospective areas for wind-energy applications.

  11. Wind resource analysis. Annual report

    Energy Technology Data Exchange (ETDEWEB)

    Hardy, D. M.

    1978-12-01

    FY78 results of the Wind Resource Analyses task of the ERAB are described. Initial steps were taken to acquire modern atmosphere models of near-surface wind flow and primary data sets used in previous studies of national and regional wind resources. Because numerous assumptions are necessary to interpret available data in terms of wind energy potential, conclusions of previous studies differ considerably. These data analyses may be improved by future SERI research. State-of-the-art atmosphere models are a necessary component of the SERI wind resource analyses capacity. However, these methods also need to be tested and verified in diverse applications. The primary data sets and principal features of the models are discussed.

  12. Offshore Wind Energy Resource Assessment for Alaska

    Energy Technology Data Exchange (ETDEWEB)

    Doubrawa Moreira, Paula [National Renewable Energy Lab. (NREL), Golden, CO (United States); Scott, George N. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Musial, Walter D. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Kilcher, Levi F. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Draxl, Caroline [National Renewable Energy Lab. (NREL), Golden, CO (United States); Lantz, Eric J. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2018-01-02

    This report quantifies Alaska's offshore wind resource capacity while focusing on its unique nature. It is a supplement to the existing U.S. Offshore Wind Resource Assessment, which evaluated the offshore wind resource for all other U.S. states. Together, these reports provide the foundation for the nation's offshore wind value proposition. Both studies were developed by the National Renewable Energy Laboratory. The analysis presented herein represents the first quantitative evidence of the offshore wind energy potential of Alaska. The technical offshore wind resource area in Alaska is larger than the technical offshore resource area of all other coastal U.S. states combined. Despite the abundant wind resource available, significant challenges inhibit large-scale offshore wind deployment in Alaska, such as the remoteness of the resource, its distance from load centers, and the wealth of land available for onshore wind development. Throughout this report, the energy landscape of Alaska is reviewed and a resource assessment analysis is performed in terms of gross and technical offshore capacity and energy potential.

  13. Wind Resource Assessment of Gujarat (India)

    Energy Technology Data Exchange (ETDEWEB)

    Draxl, C.; Purkayastha, A.; Parker, Z.

    2014-07-01

    India is one of the largest wind energy markets in the world. In 1986 Gujarat was the first Indian state to install a wind power project. In February 2013, the installed wind capacity in Gujarat was 3,093 MW. Due to the uncertainty around existing wind energy assessments in India, this analysis uses the Weather Research and Forecasting (WRF) model to simulate the wind at current hub heights for one year to provide more precise estimates of wind resources in Gujarat. The WRF model allows for accurate simulations of winds near the surface and at heights important for wind energy purposes. While previous resource assessments published wind power density, we focus on average wind speeds, which can be converted to wind power densities by the user with methods of their choice. The wind resource estimates in this study show regions with average annual wind speeds of more than 8 m/s.

  14. A high resolution global wind atlas - improving estimation of world wind resources

    DEFF Research Database (Denmark)

    Badger, Jake; Ejsing Jørgensen, Hans

    2011-01-01

    to population centres, electrical transmission grids, terrain types, and protected land areas are important parts of the resource assessment downstream of the generation of wind climate statistics. Related to these issues of integration are the temporal characteristics and spatial correlation of the wind...... resources. These aspects will also be addressed by the Global Wind Atlas. The Global Wind Atlas, through a transparent methodology, will provide a unified, high resolution, and public domain dataset of wind energy resources for the whole world. The wind atlas data will be the most appropriate wind resource...

  15. Wind Resource Atlas of Oaxaca (CD-ROM)

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, D.; Schwartz, M.; Scott, G.; Haymes, S.; Heimiller, D.; George, R.

    2003-08-01

    The CD version of the Oaxaca Wind Resource Atlas, produced by the National Renewable Energy Laboratory's (NREL's) wind resource group, is the result of an extensive mapping study for the Mexican State of Oaxaca. This atlas identifies the wind characteristics and distribution of the wind resource in Oaxaca. The detailed wind resource maps and other information contained in the atlas facilitate the identification of prospective areas for use of wind energy technologies, both for utility-scale power generation and off-grid wind energy applications.

  16. Wind Energy Resource Atlas of Mongolia

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, D; Schwartz, M; Scott, G.; Haymes, S.; Heimiller, D.; George, R.

    2001-08-27

    The United States Department of Energy (DOE) and the United States Agency for International Development (USAID) sponsored a project to help accelerate the large-scale use of wind energy technologies in Mongolia through the development of a wind energy resource atlas of Mongolia. DOE's National Renewable Energy Laboratory (NREL) administered and conducted this project in collaboration with USAID and Mongolia. The Mongolian organizations participating in this project were the Scientific, Production, and Trade Corporation for Renewable Energy (REC) and the Institute of Meteorology and Hydrology (IMH). The primary goals of the project were to develop detailed wind resource maps for all regions of Mongolia for a comprehensive wind resource atlas, and to establish a wind-monitoring program to identify prospective sites for wind energy projects and help validate some of the wind resource estimates.

  17. European Wind Atlas and Wind Resource Research in Denmark

    DEFF Research Database (Denmark)

    Mortensen, Niels Gylling

    to estimate the actual wind climate at any specific site and height within this region. The Danish and European Wind Atlases are examples of how the wind atlas methodology can be employed to estimate the wind resource potential for a country or a sub-continent. Recently, the methodology has also been used...... - from wind measurements at prospective sites to wind tunnel simulations and advanced flow modelling. Among these approaches, the wind atlas methodology - developed at Ris0 National Laboratory over the last 25 years - has gained widespread recognition and is presently considered by many as the industry......-standard tool for wind resource assessment and siting of wind turbines. The PC-implementation of the methodology, the Wind Atlas Analysis and Application Program (WAsP), has been applied in more than 70 countries and territories world-wide. The wind atlas methodology is based on physical descriptions and models...

  18. Cost of wind energy: comparing distant wind resources to local resources in the midwestern United States.

    Science.gov (United States)

    Hoppock, David C; Patiño-Echeverri, Dalia

    2010-11-15

    The best wind sites in the United States are often located far from electricity demand centers and lack transmission access. Local sites that have lower quality wind resources but do not require as much power transmission capacity are an alternative to distant wind resources. In this paper, we explore the trade-offs between developing new wind generation at local sites and installing wind farms at remote sites. We first examine the general relationship between the high capital costs required for local wind development and the relatively lower capital costs required to install a wind farm capable of generating the same electrical output at a remote site,with the results representing the maximum amount an investor should be willing to pay for transmission access. We suggest that this analysis can be used as a first step in comparing potential wind resources to meet a state renewable portfolio standard (RPS). To illustrate, we compare the cost of local wind (∼50 km from the load) to the cost of distant wind requiring new transmission (∼550-750 km from the load) to meet the Illinois RPS. We find that local, lower capacity factor wind sites are the lowest cost option for meeting the Illinois RPS if new long distance transmission is required to access distant, higher capacity factor wind resources. If higher capacity wind sites can be connected to the existing grid at minimal cost, in many cases they will have lower costs.

  19. Climate Wind Power Resources

    Directory of Open Access Journals (Sweden)

    Nana M. Berdzenishvili

    2013-01-01

    Full Text Available Georgia as a whole is characterized by rather rich solar energy resources, which allows to construct alternative power stations in the close proximity to traditional power plants. In this case the use of solar energy is meant. Georgia is divided into 5 zones based on the assessment of wind power resources. The selection of these zones is based on the index of average annual wind speed in the examined area, V> 3 m / s and V> 5 m / s wind speed by the summing duration in the course of the year and V = 0. . . 2 m / s of passive wind by total and continuous duration of these indices per hour.

  20. Wind Resource Estimation using QuikSCAT Ocean Surface Winds

    DEFF Research Database (Denmark)

    Xu, Qing; Zhang, Guosheng; Cheng, Yongcun

    2011-01-01

    In this study, the offshore wind resources in the East China Sea and South China Sea were estimated from over ten years of QuikSCAT scatterometer wind products. Since the errors of these products are larger close to the coast due to the land contamination of radar backscatter signal...... and the complexity of air-sea interaction processes, an empirical relationship that adjusts QuikSCAT winds in coastal waters was first proposed based on vessel measurements. Then the shape and scale parameters of Weibull function are determined for wind resource estimation. The wind roses are also plotted. Results...

  1. Wind Energy Resource Assessment on Alaska Native Lands in Cordova Region of Prince William Sound

    Energy Technology Data Exchange (ETDEWEB)

    Whissel, John C. [Native Village of Eyak, Cordova, AK (United States); Piche, Matthew [Native Village of Eyak, Cordova, AK (United States)

    2015-06-29

    The Native Village of Eyak (NVE) has been monitoring wind resources around Cordova, Alaska in order to determine whether there is a role for wind energy to play in the city’s energy scheme, which is now supplies entirely by two run-of-the-river hydro plants and diesel generators. These data are reported in Appendices A and B. Because the hydro resources decline during winter months, and wind resources increase, wind is perhaps an ideal counterpart to round out Cordova’s renewable energy supply. The results of this effort suggests that this is the case, and that developing wind resources makes sense for our small, isolated community.

  2. Evaluation model of wind energy resources and utilization efficiency of wind farm

    Science.gov (United States)

    Ma, Jie

    2018-04-01

    Due to the large amount of abandoned winds in wind farms, the establishment of a wind farm evaluation model is particularly important for the future development of wind farms In this essay, consider the wind farm's wind energy situation, Wind Energy Resource Model (WERM) and Wind Energy Utilization Efficiency Model(WEUEM) are established to conduct a comprehensive assessment of the wind farm. Wind Energy Resource Model (WERM) contains average wind speed, average wind power density and turbulence intensity, which assessed wind energy resources together. Based on our model, combined with the actual measurement data of a wind farm, calculate the indicators using the model, and the results are in line with the actual situation. We can plan the future development of the wind farm based on this result. Thus, the proposed establishment approach of wind farm assessment model has application value.

  3. Multi-criteria decision making on strategic selection of wind farms

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Amy H.I. [Department of Industrial Engineering and System Management, Chung Hua University, Hsinchu (China); Chen, Hsing Hung [Faculty of Management and Administration, Macau University of Science and Technology, Taipa (Macau); Kang, He-Yau [Department of Industrial Engineering and Management, National Chin-Yi University of Technology, Taiping, Taichung (China)

    2009-01-15

    With maturity of advanced technologies and urgent requirement for maintaining a healthy environment with reasonable price, China is moving toward a trend of generating electricity from renewable wind resources. How to select a suitable wind farm becomes an important focus for stakeholders. This paper first briefly introduces wind farm and then develops its critical success criteria. A new multi-criteria decision-making (MCDM) model, based on the analytic hierarchy process (AHP) associated with benefits, opportunities, costs and risks (BOCR), is proposed to help select a suitable wind farm project. Multiple factors that affect the success of wind farm operations are analyzed by taking into account experts' opinions, and a performance ranking of the wind farms is generated. (author)

  4. Wind Resource Assessment – Østerild National Test Centre for Large Wind Turbines

    OpenAIRE

    Hansen, Brian Ohrbeck; Courtney, Michael; Mortensen, Niels Gylling

    2014-01-01

    This report presents a wind resource assessment for the seven test stands at the Østerild National Test Centre for Large Wind Turbines in Denmark. Calculations have been carried out mainly using wind data from three on-site wind lidars. The generalized wind climates applied in the wind resource calculations for the seven test stands are based on correlations between a short period of on-site wind data from the wind lidars with a long-term reference. The wind resource assessment for the seven ...

  5. Calculation of depleted wind resources near wind farms

    DEFF Research Database (Denmark)

    Nielsen, Morten

    2015-01-01

    Traditional wind resource maps include wind distribution, energy density and potential power production without wake effects. Adding wake effect to such maps is feasible by means of a new method based on Fourier transformation,and the extra computational work is comparable to that of the basic wind...

  6. Wind energy resource atlas. Volume 9. The Southwest Region

    Energy Technology Data Exchange (ETDEWEB)

    Simon, R.L.; Norman, G.T.; Elliott, D.L.; Barchet, W.R.; George, R.L.

    1980-11-01

    This atlas of the wind energy resource is composed of introductory and background information, a regional summary of the wind resource, and assessments of the wind resource in Nevada and California. Background on how the wind resource is assessed and on how the results of the assessment should be interpreted is presented. A description of the wind resource on a regional scale is then given. The results of the wind energy assessments for each state are assembled into an overview and summary of the various features of the regional wind energy resource. An introduction and outline to the descriptions of the wind resource given for each state are given. Assessments for individual states are presented as separate chapters. The state wind energy resources are described in greater detail than is the regional wind energy resource, and features of selected stations are discussed.

  7. Wind resource characterization in the Arabian Peninsula

    KAUST Repository

    Yip, Chak Man Andrew

    2015-12-28

    Wind energy is expected to contribute to alleviating the rise in energy demand in the Middle East that is driven by population growth and industrial development. However, variability and intermittency in the wind resource present significant challenges to grid integration of wind energy systems. These issues are rarely addressed in the literature of wind resource assessment in the Middle East due to sparse meteorological observations with varying record lengths. In this study, the wind field with consistent space–time resolution for over three decades at three hub heights (50m, 80m, 140m) over the whole Arabian Peninsula is constructed using the Modern Era Retrospective-Analysis for Research and Applications (MERRA) dataset. The wind resource is assessed at a higher spatial resolution with metrics of temporal variations in the wind than in prior studies. Previously unrecognized locations of interest with high wind abundance and low variability and intermittency have been identified in this study and confirmed by recent on-site observations. In particular, the western mountains of Saudi Arabia experience more abundant wind resource than most Red Sea coastal areas. The wind resource is more variable in coastal areas along the Arabian Gulf than their Red Sea counterparts at a similar latitude. Persistent wind is found along the coast of the Arabian Gulf.

  8. Wind conditions and resource assessment

    DEFF Research Database (Denmark)

    Lundtang Petersen, Erik; Troen, Ib

    2012-01-01

    The development of wind power as a competitive energy source requires resource assessment of increasing accuracy and detail (including not only the long-term ‘raw’ wind resource, but also turbulence, shear, and extremes), and in areas of increasing complexity. This in turn requires the use of the...

  9. Fort Carson Wind Resource Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Robichaud, R.

    2012-10-01

    This report focuses on the wind resource assessment, the estimated energy production of wind turbines, and economic potential of a wind turbine project on a ridge in the southeastern portion of the Fort Carson Army base.

  10. Wind and solar resource data sets

    DEFF Research Database (Denmark)

    Clifton, Andrew; Hodge, Bri-Mathias; Draxl, Caroline

    2017-01-01

    The range of resource data sets spans from static cartography showing the mean annual wind speed or solar irradiance across a region to high temporal and high spatial resolution products that provide detailed information at a potential wind or solar energy facility. These data sets are used...... to support continental-scale, national, or regional renewable energy development; facilitate prospecting by developers; and enable grid integration studies. This review first provides an introduction to the wind and solar resource data sets, then provides an overview of the common methods used...... for their creation and validation. A brief history of wind and solar resource data sets is then presented, followed by areas for future research. For further resources related to this article, please visit the WIREs website....

  11. Wind power production: from the characterisation of the wind resource to wind turbine technologies

    International Nuclear Information System (INIS)

    Beslin, Guy; Multon, Bernard

    2016-01-01

    Illustrated by graphs and tables, this article first describes the various factors and means related to the assessment of wind resource in the World, in Europe, and the factors which characterize a local wind resource. In this last respect, the authors indicate how local topography is taken into account to calculate wind speed, how time variations are taken into account (at the yearly, seasonal or daily level), the different methods used to model a local wind resource, how to assess the power recoverable by a wind turbine with horizontal axis (notion of Betz limit). In the second part, the authors present the different wind turbines, their benefits and drawbacks: vertical axis, horizontal axis (examples of a Danish-type wind turbine, of wind turbines designed for extreme conditions). Then, they address the technology of big wind turbines: evolution of technology and of commercial offer, aerodynamic characteristics of wind turbine and benefit of a varying speed (technological solutions, importance of the electric generator). They describe how to choose a wind turbine, how product lines are organised, how the power curve and energy capacity are determined. The issue of integration of wind energy into the power system is then addressed. The next part addressed the economy of wind energy production (annualized production cost, order of magnitude of wind electric power production cost). Future trends are discussed and offshore wind energy production is briefly addressed

  12. Assessing climate change impacts on the near-term stability of the wind energy resource over the United States.

    Science.gov (United States)

    Pryor, S C; Barthelmie, R J

    2011-05-17

    The energy sector comprises approximately two-thirds of global total greenhouse gas emissions. For this and other reasons, renewable energy resources including wind power are being increasingly harnessed to provide electricity generation potential with negligible emissions of carbon dioxide. The wind energy resource is naturally a function of the climate system because the "fuel" is the incident wind speed and thus is determined by the atmospheric circulation. Some recent articles have reported historical declines in measured near-surface wind speeds, leading some to question the continued viability of the wind energy industry. Here we briefly articulate the challenges inherent in accurately quantifying and attributing historical tendencies and making robust projections of likely future wind resources. We then analyze simulations from the current generation of regional climate models and show, at least for the next 50 years, the wind resource in the regions of greatest wind energy penetration will not move beyond the historical envelope of variability. Thus this work suggests that the wind energy industry can, and will, continue to make a contribution to electricity provision in these regions for at least the next several decades.

  13. NANA Wind Resource Assessment Program Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Jay Hermanson

    2010-09-23

    NANA Regional Corporation (NRC) of northwest Alaska is located in an area with abundant wind energy resources. In 2007, NRC was awarded grant DE-FG36-07GO17076 by the US Department of Energy's Tribal Energy Program for funding a Wind Resource Assessment Project (WRAP) for the NANA region. The NANA region, including Kotzebue Electric Association (KEA) and Alaska Village Electric Cooperative (AVEC) have been national leaders at developing, designing, building, and operating wind-diesel hybrid systems in Kotzebue (starting in 1996) and Selawik (2002). Promising sites for the development of new wind energy projects in the region have been identified by the WRAP, including Buckland, Deering, and the Kivalina/Red Dog Mine Port Area. Ambler, Shungnak, Kobuk, Kiana, Noorvik & Noatak were determined to have poor wind resources at sites in or very near each community. However, all five of these communities may have better wind resources atop hills or at sites with slightly higher elevations several miles away.

  14. Wind resource assessment and wind energy system cost analysis: Fort Huachuca, Arizona

    Energy Technology Data Exchange (ETDEWEB)

    Olsen, T.L. [Tim Olsen Consulting, Denver, CO (United States); McKenna, E. [National Renewable Energy Lab., Golden, CO (United States)

    1997-12-01

    The objective of this joint DOE and National Renewable Energy Laboratory (NREL) Strategic Environmental Research and Development Program (SERDP) project is to determine whether wind turbines can reduce costs by providing power to US military facilities in high wind areas. In support of this objective, one year of data on the wind resources at several Fort Huachuca sites was collected. The wind resource data were analyzed and used as input to an economic study for a wind energy installation at Fort Huachuca. The results of this wind energy feasibility study are presented in the report.

  15. Wind Tunnel Management and Resource Optimization: A Systems Modeling Approach

    Science.gov (United States)

    Jacobs, Derya, A.; Aasen, Curtis A.

    2000-01-01

    Time, money, and, personnel are becoming increasingly scarce resources within government agencies due to a reduction in funding and the desire to demonstrate responsible economic efficiency. The ability of an organization to plan and schedule resources effectively can provide the necessary leverage to improve productivity, provide continuous support to all projects, and insure flexibility in a rapidly changing environment. Without adequate internal controls the organization is forced to rely on external support, waste precious resources, and risk an inefficient response to change. Management systems must be developed and applied that strive to maximize the utility of existing resources in order to achieve the goal of "faster, cheaper, better". An area of concern within NASA Langley Research Center was the scheduling, planning, and resource management of the Wind Tunnel Enterprise operations. Nine wind tunnels make up the Enterprise. Prior to this research, these wind tunnel groups did not employ a rigorous or standardized management planning system. In addition, each wind tunnel unit operated from a position of autonomy, with little coordination of clients, resources, or project control. For operating and planning purposes, each wind tunnel operating unit must balance inputs from a variety of sources. Although each unit is managed by individual Facility Operations groups, other stakeholders influence wind tunnel operations. These groups include, for example, the various researchers and clients who use the facility, the Facility System Engineering Division (FSED) tasked with wind tunnel repair and upgrade, the Langley Research Center (LaRC) Fabrication (FAB) group which fabricates repair parts and provides test model upkeep, the NASA and LARC Strategic Plans, and unscheduled use of the facilities by important clients. Expanding these influences horizontally through nine wind tunnel operations and vertically along the NASA management structure greatly increases the

  16. Characterization of wind power resource and its intermittency

    Science.gov (United States)

    Gunturu, U. B.; Schlosser, C. A.

    2011-12-01

    Wind resource in the continental and offshore United States has been calculated and characterized using metrics that describe - apart from abundance - its availability, persistence and intermittency. The Modern Era Retrospective-Analysis for Research and Applications (MERRA) boundary layer flux data has been used to construct wind power density profiles at 50, 80, 100 and 120 m turbine hub heights. The wind power density estimates at 50 m are qualitatively similar to those in the US wind atlas developed by the National Renewable Energy Laboratory (NREL), but quantitatively a class less in some regions, but are within the limits of uncertainty. We also show that for long tailed distributions like those of the wind power density, the mean is an overestimation and median is a more robust metric for summary representation of wind power resource.Generally speaking, the largest and most available wind power density resources are found in off-shore regions of the Atlantic and Pacific coastline, and the largest on-shore resource potential lies in the central United States. However, the intermittency and widespread synchronicity of on-shore wind power density are substantial, and highlights areas where considerable back-up generation technologies will be required. Generation-duration curves are also presented for the independent systems operator (ISO) zones of the U.S. to highlight the regions with the largest capacity factor (MISO, ERCOT, and SWPP) as well as the periods and extent to which all ISOs contain no wind power and the potential benefits of aggregation on wind power intermittency in each region. The impact of raising the wind turbine hub height on metrics of abundance, persistence, variability and intermittency is analyzed. There is a general increase in availability and abundance of wind resource but there is also an increase in intermittency with respect to a 'usable wind power' crossing level in low resource regions. A similar perspective of wind resource for

  17. Wind Energy Resource Atlas of Sri Lanka and the Maldives

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, D.; Schwartz, M.; Scott, G.; Haymes, S.; Heimiller, D.; George, R.

    2003-08-01

    The Wind Energy Resource Atlas of Sri Lanka and the Maldives, produced by the National Renewable Energy Laboratory's (NREL's) wind resource group identifies the wind characteristics and distribution of the wind resource in Sri Lanka and the Maldives. The detailed wind resource maps and other information contained in the atlas facilitate the identification of prospective areas for use of wind energy technologies, both for utility-scale power generation and off-grid wind energy applications.

  18. Quantifying offshore wind resources from satellite wind maps: Study area the North Sea

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Barthelmie, Rebecca Jane; Christiansen, Merete B.

    2006-01-01

    Offshore wind resources are quantified from satellite synthetic aperture radar (SAR) and satellite scatterometer observations at local and regional scale respectively at the Horns Rev site in Denmark. The method for wind resource estimation from satellite observations interfaces with the wind atlas...... of the Horns Rev wind farm is quantified from satellite SAR images and compared with state-of-the-art wake model results with good agreement. It is a unique method using satellite observations to quantify the spatial extent of the wake behind large offshore wind farms. Copyright © 2006 John Wiley & Sons, Ltd....... analysis and application program (WAsP). An estimate of the wind resource at the new project site at Horns Rev is given based on satellite SAR observations. The comparison of offshore satellite scatterometer winds, global model data and in situ data shows good agreement. Furthermore, the wake effect...

  19. Wind class sampling of satellite SAR imagery for offshore wind resource mapping

    DEFF Research Database (Denmark)

    Badger, Merete; Badger, Jake; Nielsen, Morten

    2010-01-01

    developed for mesoscale modeling of wind resources. Its performance in connection with sampling of SAR scenes is tested against two sets of random SAR samples and meteorological observations at three sites in the North Sea during 2005–08. Predictions of the mean wind speed and the Weibull scale parameter......High-resolution wind fields retrieved from satellite synthetic aperture radar (SAR) imagery are combined for mapping of wind resources offshore where site measurements are costly and sparse. A new sampling strategy for the SAR scenes is introduced, based on a method for statistical......-dynamical downscaling of large-scale wind conditions using a set of wind classes that describe representative wind situations. One or more SAR scenes are then selected to represent each wind class and the classes are weighted according to their frequency of occurrence. The wind class methodology was originally...

  20. Assessment of Global Wind Energy Resource Utilization Potential

    Science.gov (United States)

    Ma, M.; He, B.; Guan, Y.; Zhang, H.; Song, S.

    2017-09-01

    Development of wind energy resource (WER) is a key to deal with climate change and energy structure adjustment. A crucial issue is to obtain the distribution and variability of WER, and mine the suitable location to exploit it. In this paper, a multicriteria evaluation (MCE) model is constructed by integrating resource richness and stability, utilization value and trend of resource, natural environment with weights. The global resource richness is assessed through wind power density (WPD) and multi-level wind speed. The utilizable value of resource is assessed by the frequency of effective wind. The resource stability is assessed by the coefficient of variation of WPD and the frequency of prevailing wind direction. Regression slope of long time series WPD is used to assess the trend of WER. All of the resource evaluation indicators are derived from the atmospheric reanalysis data ERA-Interim with spatial resolution 0.125°. The natural environment factors mainly refer to slope and land-use suitability, which are derived from multi-resolution terrain elevation data 2010 (GMTED 2010) and GlobalCover2009. Besides, the global WER utilization potential map is produced, which shows most high potential regions are located in north of Africa. Additionally, by verifying that 22.22 % and 48.8 9% operational wind farms fall on medium-high and high potential regions respectively, the result can provide a basis for the macroscopic siting of wind farm.

  1. Total, accessible and reserve wind energy resources in Bulgaria

    International Nuclear Information System (INIS)

    Ivanov, P.; Trifonova, L.

    1996-01-01

    The article is a part of the international project 'Bulgaria Country Study to Address Climate Change Inventory of the Greenhouse Gases Emission and Sinks Alternative Energy Balance and Technology Programs' sponsored by the Department of Energy, US. The 'total' average annual wind resources in Bulgaria determined on the basis wind velocity density for more than 100 meteorological stations are estimated on 125 000 TWh. For the whole territory the theoretical wind power potential is about 14200 GW. The 'accessible' wind resources are estimated on about 62000 TWh. The 'reserve' (or usable) wind resources are determined using 8 velocity intervals for WECS (Wind Energy Conversion Systems) operation, number and disposition of turbines, and the usable (3%) part of the territory. The annual reserve resources are estimated at about 21 - 33 TWh. The 'economically beneficial' wind resources (EBWR) are those part of the reserve resources which could be included in the country energy balance using specific technologies in specific time period. It is foreseen that at year 2010 the EBWR could reach 0.028 TWh. 7 refs., 2 tabs., 1 fig

  2. Estimating the Wind Resource in Uttarakhand: Comparison of Dynamic Downscaling with Doppler Lidar Wind Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Lundquist, J. K. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Pukayastha, A. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Martin, C. [Univ. of Colorado, Boulder, CO (United States); Newsom, R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-03-01

    Previous estimates of the wind resources in Uttarakhand, India, suggest minimal wind resources in this region. To explore whether or not the complex terrain in fact provides localized regions of wind resource, the authors of this study employed a dynamic down scaling method with the Weather Research and Forecasting model, providing detailed estimates of winds at approximately 1 km resolution in the finest nested simulation.

  3. Connecting Communities to Wind Resources

    Energy Technology Data Exchange (ETDEWEB)

    Baring-Gould, Edward I [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-08-18

    WINDExchange is the platform for the U.S. Department of Energy's (DOE's) Wind Energy Technologies Office to disseminate credible wind energy information on a national level. Stakeholder engagement and outreach activities are designed to enable well-informed decisions about appropriate wind energy deployment. WINDExchange focuses on wind energy outreach at the national level while managing and supporting similar regional efforts through the implementation of DOE Regional Resource Centers (RRCs). This fact sheet provides an overview of DOE's WINDExchange initiative and the RRCs. Examples of RRC activities are provided.

  4. Wind and solar energy resources on the 'Roof of the World'

    Science.gov (United States)

    Zandler, Harald; Morche, Thomas; Samimi, Cyrus

    2015-04-01

    The Eastern Pamirs of Tajikistan, often referred to as 'Roof of the World', are an arid high mountain plateau characterized by severe energy poverty that may have great potential for renewable energy resources due to the prevailing natural conditions. The lack of energetic infrastructure makes the region a prime target for decentralized integration of wind and solar power. However, up to date no scientific attempt to assess the regional potential of these resources has been carried out. In this context, it is particularly important to evaluate if wind and solar energy are able to provide enough power to generate thermal energy, as other thermal energy carriers are scarce or unavailable and the existing alternative, local harvest of dwarf shrubs, is unsustainable due to the slow regeneration in this environment. Therefore, this study examines the feasibility of using wind and solar energy as thermal energy sources. Financial frame conditions were set on a maximum amount of five million Euros. This sum provides a realistic scenario as it is based on the current budget of the KfW development bank to finance the modernization of the local hydropower plant in the regions only city, Murghab, with about 1500 households. The basis for resource assessment is data of four climate stations, erected for this purpose in 2012, where wind speed, wind direction, global radiation and temperature are measured at a half hourly interval. These measurements confirm the expectation of a large photovoltaic potential and high panel efficiency with up to 84 percent of extraterrestrial radiation reaching the surface and only 16 hours of temperatures above 25°C were measured in two years at the village stations on average. As these observations are only point measurements, radiation data and the ASTER GDEM was used to train a GIS based solar radiation model to spatially extrapolate incoming radiation. With mean validation errors ranging from 5% in July (minimum) to 15% in December (maximum

  5. Wind/solar resource in Texas

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, V.; Starcher, K.; Gaines, H. [West Texas A& M Univ., Canyon, TX (United States)

    1997-12-31

    Data are being collected at 17 sites to delineate a baseline for the wind and solar resource across Texas. Wind data are being collected at 10, 25, and 40 m (in some cases at 50 m) to determine wind shear and power at hub heights of large turbines. Many of the sites are located in areas of predicted terrain enhancement. The typical day in a month for power and wind turbine output was calculated for selected sites and combination of sites; distributed systems. Major result to date is that there is the possibility of load matching in South Texas during the summer months, even though the average values by month indicate a low wind potential.

  6. Wind power error estimation in resource assessments.

    Directory of Open Access Journals (Sweden)

    Osvaldo Rodríguez

    Full Text Available Estimating the power output is one of the elements that determine the techno-economic feasibility of a renewable project. At present, there is a need to develop reliable methods that achieve this goal, thereby contributing to wind power penetration. In this study, we propose a method for wind power error estimation based on the wind speed measurement error, probability density function, and wind turbine power curves. This method uses the actual wind speed data without prior statistical treatment based on 28 wind turbine power curves, which were fitted by Lagrange's method, to calculate the estimate wind power output and the corresponding error propagation. We found that wind speed percentage errors of 10% were propagated into the power output estimates, thereby yielding an error of 5%. The proposed error propagation complements the traditional power resource assessments. The wind power estimation error also allows us to estimate intervals for the power production leveled cost or the investment time return. The implementation of this method increases the reliability of techno-economic resource assessment studies.

  7. Wind power error estimation in resource assessments.

    Science.gov (United States)

    Rodríguez, Osvaldo; Del Río, Jesús A; Jaramillo, Oscar A; Martínez, Manuel

    2015-01-01

    Estimating the power output is one of the elements that determine the techno-economic feasibility of a renewable project. At present, there is a need to develop reliable methods that achieve this goal, thereby contributing to wind power penetration. In this study, we propose a method for wind power error estimation based on the wind speed measurement error, probability density function, and wind turbine power curves. This method uses the actual wind speed data without prior statistical treatment based on 28 wind turbine power curves, which were fitted by Lagrange's method, to calculate the estimate wind power output and the corresponding error propagation. We found that wind speed percentage errors of 10% were propagated into the power output estimates, thereby yielding an error of 5%. The proposed error propagation complements the traditional power resource assessments. The wind power estimation error also allows us to estimate intervals for the power production leveled cost or the investment time return. The implementation of this method increases the reliability of techno-economic resource assessment studies.

  8. Satellite SAR wind resource mapping in China (SAR-China)

    Energy Technology Data Exchange (ETDEWEB)

    Badger, M.

    2009-07-15

    The project 'Off-Shore Wind Energy Resource Assessment and Feasibility Study of Off-Shore Wind Farm Development in China' is funded by the EU-China Energy and Environment Programme (EEP) and runs for one year (August 2008 - August 2009). The project is lead by the China Meteorological Administration (CMA) and supported by SgurrEnergy Ltd. Risoe National Laboratory for Sustainable Energy at the Technical University of Denmark (Risoe DTU) has been commissioned to perform a satellite based wind resource analysis as part of the project. The objective of this analysis is to map the wind resource offshore at a high spatial resolution (1 km). The detailed wind resource maps will be used, in combination with other data sets, for an assessment of potential sites for offshore wind farm development along the coastline from Fujian to Shandong in China. (au)

  9. Asynchrony of wind and hydropower resources in Australia

    KAUST Repository

    Gunturu, Udaya

    2017-08-14

    Wind and hydropower together constitute nearly 80% of the renewable capacity in Australia and their resources are collocated. We show that wind and hydro generation capacity factors covary negatively at the interannual time scales. Thus, the technology diversity mitigates the variability of renewable power generation at the interannual scales. The asynchrony of wind and hydropower resources is explained by the differential impact of the two modes of the El Ni˜no Southern Oscillation – canonical and Modoki – on the wind and hydro resources. Also, the Modoki El Ni˜no and the Modoki La Ni˜na phases have greater impact. The seasonal impact patterns corroborate these results. As the proportion of wind power increases in Australia’s energy mix, this negative covariation has implications for storage capacity of excess wind generation at short time scales and for generation system adequacy at the longer time scales.

  10. Asynchrony of wind and hydropower resources in Australia

    KAUST Repository

    Gunturu, Udaya; Hallgren, Willow

    2017-01-01

    Wind and hydropower together constitute nearly 80% of the renewable capacity in Australia and their resources are collocated. We show that wind and hydro generation capacity factors covary negatively at the interannual time scales. Thus, the technology diversity mitigates the variability of renewable power generation at the interannual scales. The asynchrony of wind and hydropower resources is explained by the differential impact of the two modes of the El Ni˜no Southern Oscillation – canonical and Modoki – on the wind and hydro resources. Also, the Modoki El Ni˜no and the Modoki La Ni˜na phases have greater impact. The seasonal impact patterns corroborate these results. As the proportion of wind power increases in Australia’s energy mix, this negative covariation has implications for storage capacity of excess wind generation at short time scales and for generation system adequacy at the longer time scales.

  11. Asynchrony of wind and hydropower resources in Australia.

    Science.gov (United States)

    Gunturu, Udaya Bhaskar; Hallgren, Willow

    2017-08-18

    Wind and hydropower together constitute nearly 80% of the renewable capacity in Australia and their resources are collocated. We show that wind and hydro generation capacity factors covary negatively at the interannual time scales. Thus, the technology diversity mitigates the variability of renewable power generation at the interannual scales. The asynchrony of wind and hydropower resources is explained by the differential impact of the two modes of the El Ni˜no Southern Oscillation - canonical and Modoki - on the wind and hydro resources. Also, the Modoki El Ni˜no and the Modoki La Ni˜na phases have greater impact. The seasonal impact patterns corroborate these results. As the proportion of wind power increases in Australia's energy mix, this negative covariation has implications for storage capacity of excess wind generation at short time scales and for generation system adequacy at the longer time scales.

  12. The potential wind power resource in Australia: a new perspective.

    Science.gov (United States)

    Hallgren, Willow; Gunturu, Udaya Bhaskar; Schlosser, Adam

    2014-01-01

    Australia's wind resource is considered to be very good, and the utilization of this renewable energy resource is increasing rapidly: wind power installed capacity increased by 35% from 2006 to 2011 and is predicted to account for over 12% of Australia's electricity generation in 2030. Due to this growth in the utilization of the wind resource and the increasing importance of wind power in Australia's energy mix, this study sets out to analyze and interpret the nature of Australia's wind resources using robust metrics of the abundance, variability and intermittency of wind power density, and analyzes the variation of these characteristics with current and potential wind turbine hub heights. We also assess the extent to which wind intermittency, on hourly or greater timescales, can potentially be mitigated by the aggregation of geographically dispersed wind farms, and in so doing, lessen the severe impact on wind power economic viability of long lulls in wind and power generated. Our results suggest that over much of Australia, areas that have high wind intermittency coincide with large expanses in which the aggregation of turbine output does not mitigate variability. These areas are also geographically remote, some are disconnected from the east coast's electricity grid and large population centers, which are factors that could decrease the potential economic viability of wind farms in these locations. However, on the eastern seaboard, even though the wind resource is weaker, it is less variable, much closer to large population centers, and there exists more potential to mitigate it's intermittency through aggregation. This study forms a necessary precursor to the analysis of the impact of large-scale circulations and oscillations on the wind resource at the mesoscale.

  13. The Potential Wind Power Resource in Australia: A New Perspective

    Science.gov (United States)

    Hallgren, Willow; Gunturu, Udaya Bhaskar; Schlosser, Adam

    2014-01-01

    Australia’s wind resource is considered to be very good, and the utilization of this renewable energy resource is increasing rapidly: wind power installed capacity increased by 35% from 2006 to 2011 and is predicted to account for over 12% of Australia’s electricity generation in 2030. Due to this growth in the utilization of the wind resource and the increasing importance of wind power in Australia’s energy mix, this study sets out to analyze and interpret the nature of Australia’s wind resources using robust metrics of the abundance, variability and intermittency of wind power density, and analyzes the variation of these characteristics with current and potential wind turbine hub heights. We also assess the extent to which wind intermittency, on hourly or greater timescales, can potentially be mitigated by the aggregation of geographically dispersed wind farms, and in so doing, lessen the severe impact on wind power economic viability of long lulls in wind and power generated. Our results suggest that over much of Australia, areas that have high wind intermittency coincide with large expanses in which the aggregation of turbine output does not mitigate variability. These areas are also geographically remote, some are disconnected from the east coast’s electricity grid and large population centers, which are factors that could decrease the potential economic viability of wind farms in these locations. However, on the eastern seaboard, even though the wind resource is weaker, it is less variable, much closer to large population centers, and there exists more potential to mitigate it’s intermittency through aggregation. This study forms a necessary precursor to the analysis of the impact of large-scale circulations and oscillations on the wind resource at the mesoscale. PMID:24988222

  14. The potential wind power resource in Australia: a new perspective.

    Directory of Open Access Journals (Sweden)

    Willow Hallgren

    Full Text Available Australia's wind resource is considered to be very good, and the utilization of this renewable energy resource is increasing rapidly: wind power installed capacity increased by 35% from 2006 to 2011 and is predicted to account for over 12% of Australia's electricity generation in 2030. Due to this growth in the utilization of the wind resource and the increasing importance of wind power in Australia's energy mix, this study sets out to analyze and interpret the nature of Australia's wind resources using robust metrics of the abundance, variability and intermittency of wind power density, and analyzes the variation of these characteristics with current and potential wind turbine hub heights. We also assess the extent to which wind intermittency, on hourly or greater timescales, can potentially be mitigated by the aggregation of geographically dispersed wind farms, and in so doing, lessen the severe impact on wind power economic viability of long lulls in wind and power generated. Our results suggest that over much of Australia, areas that have high wind intermittency coincide with large expanses in which the aggregation of turbine output does not mitigate variability. These areas are also geographically remote, some are disconnected from the east coast's electricity grid and large population centers, which are factors that could decrease the potential economic viability of wind farms in these locations. However, on the eastern seaboard, even though the wind resource is weaker, it is less variable, much closer to large population centers, and there exists more potential to mitigate it's intermittency through aggregation. This study forms a necessary precursor to the analysis of the impact of large-scale circulations and oscillations on the wind resource at the mesoscale.

  15. Wind energy resource assessment in Madrid region

    Energy Technology Data Exchange (ETDEWEB)

    Migoya, Emilio; Crespo, Antonio; Jimenez, Angel; Garcia, Javier; Manuel, Fernando [Laboratorio de Mecanica de Fluidos, Departamento de Ingenieria Energetica y Fluidomecanica, Escuela Tecnica Superior Ingenieros Industriales (ETSII), Universidad Politecnica de Madrid (UPM), C/Jose Gutierrez Abascal, 2-28006, Madrid (Spain)

    2007-07-15

    The Comunidad Autonoma de Madrid (Autonomous Community of Madrid, in the following Madrid Region), is a region located at the geographical centre of the Iberian Peninsula. Its area is 8.028 km{sup 2}, and its population about five million people. The Department of Economy and Technological Innovation of the Madrid Region, together with some organizations dealing on energy saving and other research institutions have elaborated an Energy Plan for the 2004-12 period. As a part of this work, the Fluid Mechanics Laboratory of the Superior Technical School of Industrial Engineers of the Polytechnic University of Madrid has carried out the assessment of the wind energy resources [Crespo A, Migoya E, Gomez Elvira R. La energia eolica en Madrid. Potencialidad y prospectiva. Plan energetico de la Comunidad de Madrid, 2004-2012. Madrid: Comunidad Autonoma de Madrid; 2004]; using for this task the WAsP program (Wind Atlas Analysis and Application Program), and the own codes, UPMORO (code to study orography effects) and UPMPARK (code to study wake effects in wind parks). Different kinds of data have been collected about climate, topography, roughness of the land, environmentally protected areas, town and village distribution, population density, main facilities and electric power supply. The Spanish National Meteorological Institute has nine wind measurement stations in the region, but only four of them have good and reliable temporary wind data, with time measurement periods that are long enough to provide representative correlations among stations. The Observed Wind Climates of the valid meteorological stations have been made. The Wind Atlas and the resource grid have been calculated, especially in the high wind resource areas, selecting appropriate measurements stations and using criteria based on proximity, similarity and ruggedness index. Some areas cannot be used as a wind energy resource mainly because they have environmental regulation or, in some cases, are very close

  16. High-altitude wind resources in the Middle East

    KAUST Repository

    Yip, Chak Man Andrew; Gunturu, Udaya; Stenchikov, Georgiy L.

    2017-01-01

    In the Middle East, near-surface wind resources are intermittent. However, high-altitude wind resources are abundant, persistent, and readily available and may provide alternative energy resources in this fossil-fuel-dependent region. Using wind field data from the Modern-Era Retrospective Analysis for Research and Applications Version 2 (MERRA-2), this study identifies areas favorable to the deployment of airborne wind energy (AWE) systems in the Middle East and computes the optimal heights at which such systems would best operate. AWE potential is estimated using realistic AWE system specifications and assumptions about deployment scenarios and is compared with the near-surface wind generation potential with respect to diurnal and seasonal variability. The results show the potential utility of AWE in areas in the Middle East where the energy demand is high. In particular, Oman and Saudi Arabia have a high level of the potential power generation with low annual variability.

  17. High-altitude wind resources in the Middle East

    KAUST Repository

    Yip, Chak Man Andrew

    2017-08-23

    In the Middle East, near-surface wind resources are intermittent. However, high-altitude wind resources are abundant, persistent, and readily available and may provide alternative energy resources in this fossil-fuel-dependent region. Using wind field data from the Modern-Era Retrospective Analysis for Research and Applications Version 2 (MERRA-2), this study identifies areas favorable to the deployment of airborne wind energy (AWE) systems in the Middle East and computes the optimal heights at which such systems would best operate. AWE potential is estimated using realistic AWE system specifications and assumptions about deployment scenarios and is compared with the near-surface wind generation potential with respect to diurnal and seasonal variability. The results show the potential utility of AWE in areas in the Middle East where the energy demand is high. In particular, Oman and Saudi Arabia have a high level of the potential power generation with low annual variability.

  18. Comparison of SAR Wind Speed Retrieval Algorithms for Evaluating Offshore Wind Energy Resources

    DEFF Research Database (Denmark)

    Kozai, K.; Ohsawa, T.; Takeyama, Y.

    2010-01-01

    Envisat/ASAR-derived offshore wind speeds and energy densities based on 4 different SAR wind speed retrieval algorithms (CMOD4, CMOD-IFR2, CMOD5, CMOD5.N) are compared with observed wind speeds and energy densities for evaluating offshore wind energy resources. CMOD4 ignores effects of atmospheri...

  19. Improved Offshore Wind Resource Assessment in Global Climate Stabilization Scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Arent, D.; Sullivan, P.; Heimiller, D.; Lopez, A.; Eurek, K.; Badger, J.; Jorgensen, H. E.; Kelly, M.; Clarke, L.; Luckow, P.

    2012-10-01

    This paper introduces a technique for digesting geospatial wind-speed data into areally defined -- country-level, in this case -- wind resource supply curves. We combined gridded wind-vector data for ocean areas with bathymetry maps, country exclusive economic zones, wind turbine power curves, and other datasets and relevant parameters to build supply curves that estimate a country's offshore wind resource defined by resource quality, depth, and distance-from-shore. We include a single set of supply curves -- for a particular assumption set -- and study some implications of including it in a global energy model. We also discuss the importance of downscaling gridded wind vector data to capturing the full resource potential, especially over land areas with complex terrain. This paper includes motivation and background for a statistical downscaling methodology to account for terrain effects with a low computational burden. Finally, we use this forum to sketch a framework for building synthetic electric networks to estimate transmission accessibility of renewable resource sites in remote areas.

  20. 2016 Offshore Wind Energy Resource Assessment for the United States

    Energy Technology Data Exchange (ETDEWEB)

    Musial, Walt [National Renewable Energy Lab. (NREL), Golden, CO (United States); Heimiller, Donna [National Renewable Energy Lab. (NREL), Golden, CO (United States); Beiter, Philipp [National Renewable Energy Lab. (NREL), Golden, CO (United States); Scott, George [National Renewable Energy Lab. (NREL), Golden, CO (United States); Draxl, Caroline [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-09-01

    This report, the 2016 Offshore Wind Energy Resource Assessment for the United States, was developed by the National Renewable Energy Laboratory, and updates a previous national resource assessment study, and refines and reaffirms that the available wind resource is sufficient for offshore wind to be a large-scale contributor to the nation's electric energy supply.

  1. Where, when and how much wind is available? A provincial-scale wind resource assessment for China

    International Nuclear Information System (INIS)

    He, Gang; Kammen, Daniel M.

    2014-01-01

    China's wind installed capacity has grown at a remarkable rate, over 80% annually average growth since 2005, reaching 91.5 GW of capacity by end of 2013, accounting for over 27% of global capacity. This rapid growth has been the result of a domestic manufacturing base and favorable national policies. Further evolution will be greatly aided with a detailed wind resource assessment that incorporates spatial and temporal variability across China. We utilized 200 representative locations for which 10 years of hourly wind speed data exist to develop provincial capacity factors from 2001 to 2010, and to build analytic wind speed profiles. From these data and analysis we find that China's annual wind generation could reach 2000 TWh to 3500 TWh. Nationally this would correspond to an average capacity factor of 0.18. The diurnal and seasonal variation shows spring and winter has better wind resources than in the summer and fall. A highly interconnected and coordinated power system is needed to effectively exploit this large but variable resource. A full economic assessment of exploitable wind resources demands a larger, systems-level analysis of China's energy options, for which this work is a core requirement. - Highlights: • We assessed China's wind resources by utilizing 10 years of hourly wind speed data of 200 sites. • We built provincial scale wind speed profiles and develop provincial capacity factors for China. • We found that China's wind generation could reach 2000 TWh to 3500 TWh annually. • We observed similar temporal variation pattern of wind availability across China

  2. Wind energy resource atlas. Volume 7. The south central region

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, R.L.; Graves, L.F.; Sprankle, A.C.; Elliott, D.L.; Barchet, W.R.; George, R.L.

    1981-03-01

    This atlas of the south central region combines seven collections of wind resource data: one for the region, and one for each of the six states (Arkansas, Kansas, Louisiana, Missouri, Oklahoma, and Texas). At the state level, features of the climate, topography, and wind resource are discussed in greater detail than that provided in the regional discussion, and the data locations on which the assessment is based are mapped. Variations, over several time scales, in the wind resource at selected stations in each state are shown on graphs of monthly average and interannual wind speed and power, and hourly average wind speed for each season. Other graphs present speed, direction, and duration frequencies of the wind at these locations.

  3. A COPRAS-F base multi-criteria group decision making approach for site selection of wind farm

    Directory of Open Access Journals (Sweden)

    Nikhil Chandra Chatterjee

    2013-01-01

    Full Text Available Today global warming is on the rise and the natural resources are getting consumed at a faster rate. Power consumption has increased many folds to cater the human need. Thus renewable energy resources are the only option available at this juncture. Wind energy is one of the renewable energy. Location selection for wind farm takes an important role on power generation. However, the location selection is a complex multicriteria problem due to the criteria factors which are conflicting in nature as well as uncertain. The process becomes more complex when a group of decision makers are involved in decision making. In the present study, a COPRAS (COmplex PRoportional ASsessment based multi-criteria decision-making (MCDM methodology is done under fuzzy environment with the help of multiple decision makers. More specifically, this study is aimed to focus the applicability of COPRAS-F as a strategic decision making tools to handle the group decision-making problems.

  4. Wind resource characterization in the Arabian Peninsula

    KAUST Repository

    Yip, Chak Man Andrew; Gunturu, Udaya; Stenchikov, Georgiy L.

    2015-01-01

    Wind energy is expected to contribute to alleviating the rise in energy demand in the Middle East that is driven by population growth and industrial development. However, variability and intermittency in the wind resource present significant

  5. Planning and Development of Wind Farms: Wind Resource Assessment and Siting

    DEFF Research Database (Denmark)

    Mortensen, Niels Gylling

    These course notes are intended for the three-week course 45700 Planning and Development of Wind Farms given at the Technical University of Denmark. The purpose of the course notes is to give an introduction to wind resource assessment and siting issues using the WAsP suite of programs....

  6. Planning and Development of Wind Farms: Wind Resource Assessment and Siting

    DEFF Research Database (Denmark)

    Mortensen, Niels Gylling

    These course notes are intended for the three-week course 46200 Planning and Development of Wind Farms given at the Technical University of Denmark. The purpose of the course notes is to give an introduction to wind resource assessment and siting issues using the WAsP suite of programs....

  7. Wind deployment in the United States: states, resources, policy, and discourse.

    Science.gov (United States)

    Wilson, Elizabeth J; Stephens, Jennie C

    2009-12-15

    A transformation in the way the United States produces and uses energy is needed to achieve greenhouse gas reduction targets for climate change mitigation. Wind power is an important low-carbon technology and the most rapidly growing renewable energy technology in the U.S. Despite recent advances in wind deployment, significant state-by-state variation in wind power distribution cannot be explained solely by wind resource patterns nor by state policy. Other factors embedded within the state-level socio-political context also contribute to wind deployment patterns. We explore this socio-political context in four U.S. states by integrating multiple research methods. Through comparative state-level analysis of the energy system, energy policy, and public discourse as represented in the media, we examine variation in the context for wind deployment in Massachusetts, Minnesota, Montana, and Texas. Our results demonstrate that these states have different patterns of wind deployment, are engaged in different debates about wind power, and appear to frame the risks and benefits of wind power in different ways. This comparative assessment highlights the complex variation of the state-level socio-political context and contributes depth to our understanding of energy technology deployment processes, decision-making, and outcomes.

  8. Danish-Czech wind resource know-how transfer project. Interim report 2002

    Energy Technology Data Exchange (ETDEWEB)

    Rathmann, O.; Noergaerd, P.; Frandsen, S.

    2003-12-01

    The progress of the Danish-Czech Wind Resource Know-how Transfer Project is reported. The know-how transfer component of the project has consisted in performing a wind resource training workshop for about 13 individuals from the Czech Republic, ranging from scientists to wind farm project developers, and in donating modern software for evaluating wind resources. The project has also included a review of a Czech overview-study of wind speeds inside the country as well as a study of the electricity tariffs and their impact on wind energy utilization in the Czech Republic. A problematic existing Czech wind farm project, locked up in a no-production situation, was also addressed. However, this situation turned out to be related to problems with economy and owner-ship to a higher degree than to low wind resources and technical problems, and it was not possible for the project to point out a way out of this situation. (au)

  9. Wind energy: Overcoming inadequate wind and modeling uncertainties

    Energy Technology Data Exchange (ETDEWEB)

    Kane, Vivek

    2010-09-15

    'Green Energy' is the call of the day, and significance of Wind Energy can never be overemphasized. But the key question here is - What if the wind resources are inadequate? Studies reveal that the probability of finding favorable wind at a given place on land is only 15%. Moreover, there are inherent uncertainties associated with wind business. Can we overcome inadequate wind resources? Can we scientifically quantify uncertainty and model it to make business sense? This paper proposes a solution, by way of break-through Wind Technologies, combined with advanced tools for Financial Modeling, enabling vital business decisions.

  10. Danish-Czech wind resource know-how transfer project. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Rathmann, O.; Noergaerd, P.; Frandsen, S.

    2004-06-01

    The course of the Danish-Czech Wind Resource Know-how Transfer Project is reported. The know-how transfer component of the project has consisted in performing a wind resource training work-shop for about 13 individuals from the Czech Republic, ranging from scientists to wind farm project developers, and in donating modern software for evaluating wind resources. The project has also included a review of a Czech overview-study of wind speeds inside the country as well as an investigation of the electricity tariffs and their impact on wind energy utilization in the Czech Republic. A problematic existing Czech wind farm project, locked up in a no-production situation, was also addressed. Not until the purchase by a new owner-company, which initiated the necessary repair and maintenance, the wind farm resumed normal operation. As its last task, the present project assisted in consolidating future operation through a helping package consisting of a training course for the wind farm technicians and in a package of relevant spare parts. (au)

  11. The wind resource assessment program in Quebec Canada

    Energy Technology Data Exchange (ETDEWEB)

    Kahawita, R.; Bilodeau, L.; Gaudette, M.; Gratton, Y.; Noel, R.; Quach, T.T.

    1982-09-01

    This paper provides an overview of the wind resource assessment programme undertaken by the provincial power utility Hydro-Quebec, in Quebec, Canada. The methodology used in different phases of the project is enunciated and explained and the results discussed. Supplementary studies of airflow over complex terrain using numerical modelling are described and the results evaluated. Since the program is still far from completion, conclusive statements cannot, at this time, be made about the viability of the wind energy resource. However, tentative conclusions are that wind energy as an alternate source of energy for the province is likely to be commerciaally viable since two of the most important requirements viz, the presence of a good wind regime and the availability of suitable land are satisfied in many regions.

  12. Making space for wind farms: Practices of territorial stigmatisation in rural Denmark

    DEFF Research Database (Denmark)

    Rudolph, David Philipp; Kirkegaard, Julia Kirch

    of territorial stigmatisation are mobilised and aligned by developers and municipalities in order to make space for and legitimise large wind farm projects in rural areas. In doing so, the paper will illustrate how stigmatisation practices are embedded in discourses of rurality as ‘Outskirts......Whilst issues of siting wind farms have mostly revolved around their public acceptance resulting from an unequal distribution of local costs and benefits, the perceived fairness of the planning process and the disruption of places, the challenge of finding adequate locations and getting access...... community involvement and ownership of wind farms, access to diminishing spatial resources reflects a key concern for developers, while putting the role of private landowners at the core of successful projects. By drawing on case studies from rural Northern Denmark it will be demonstrated how narratives...

  13. Applicability of Synthetic Aperture Radar Wind Retrievals on Offshore Wind Resources Assessment in Hangzhou Bay, China

    DEFF Research Database (Denmark)

    Chang, Rui; Zhu, Rong; Badger, Merete

    2014-01-01

    In view of the high cost and sparse spatial resolution of offshore meteorological observations, ocean winds retrieved from satellites are valuable in offshore wind resource assessment as a supplement to in situ measurements. This study examines satellite synthetic aperture radar (SAR) images from...... ENVISAT advanced SAR (ASAR) for mapping wind resources with high spatial resolution. Around 181 collected pairs of wind data from SAR wind maps and from 13 meteorological stations in Hangzhou Bay are compared. The statistical results comparing in situ wind speed and SAR-based wind speed show a standard...... density functions are compared at one meteorological station. The SAR-based results appear not to estimate the mean wind speed, Weibull scale and shape parameters and wind power density from the full in situ data set so well due to the lower number of satellite samples. Distributions calculated from...

  14. Estimation of wind and solar resources in Mali

    Energy Technology Data Exchange (ETDEWEB)

    Badger, J.; Kamissoko, F.; Olander Rasmussen, M.; Larsen, Soeren; Guidon, N.; Boye Hansen, L.; Dewilde, L.; Alhousseini, M.; Noergaard, P.; Nygaard, I.

    2012-11-15

    The wind resource has been estimated for all of Mali at 7.5 km resolution using the KAMM/WAsP numerical wind atlas methodology. Three domains were used to cover entire country and three sets of wind classes used to capture change in large scale forcing over country. The final output includes generalized climate statistics for any location in Mali, giving wind direction and wind speed distribution. The modelled generalized climate statistics can be used directly in the WAsP software. The preliminary results show a wind resource, which is relatively low, but which under certain conditions may be economically feasible, i.e. at favourably exposed sites, giving enhanced winds, and where practical utilization is possible, given consideration to grid connection or replacement or augmentation of diesel-based electricity systems. The solar energy resource for Mali was assessed for the period between July 2008 and June 2011 using a remote sensing based estimate of the down-welling surface shortwave flux. The remote sensing estimates were adjusted on a month-by-month basis to account for seasonal differences between the remote sensing estimates and in situ data. Calibration was found to improve the coefficient of determination as well as decreasing the mean error both for the calibration and validation data. Compared to the results presented in the ''Renewable energy resources in Mali - preliminary mapping''-report that showed a tendency for underestimation compared to data from the NASA PPOWER/SSE database, the presented results show a very good agreement with the in situ data (after calibration) with no significant bias. Unfortunately, the NASA-database only contains data up until 2005, so a similar comparison could not be done for the time period analyzed in this study, although the agreement with the historic NASA data is still useful as reference. (LN)

  15. Wind resource assessment in heterogeneous terrain

    Science.gov (United States)

    Vanderwel, C.; Placidi, M.; Ganapathisubramani, B.

    2017-03-01

    High-resolution particle image velocimetry data obtained in rough-wall boundary layer experiments are re-analysed to examine the influence of surface roughness heterogeneities on wind resource. Two different types of heterogeneities are examined: (i) surfaces with repeating roughness units of the order of the boundary layer thickness (Placidi & Ganapathisubramani. 2015 J. Fluid Mech. 782, 541-566. (doi:10.1017/jfm.2015.552)) and (ii) surfaces with streamwise-aligned elevated strips that mimic adjacent hills and valleys (Vanderwel & Ganapathisubramani. 2015 J. Fluid Mech. 774, 1-12. (doi:10.1017/jfm.2015.228)). For the first case, the data show that the power extraction potential is highly dependent on the surface morphology with a variation of up to 20% in the available wind resource across the different surfaces examined. A strong correlation is shown to exist between the frontal and plan solidities of the rough surfaces and the equivalent wind speed, and hence the wind resource potential. These differences are also found in profiles of graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="RSTA20160109IM1"/> and graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="RSTA20160109IM2"/> (where U is the streamwise velocity), which act as proxies for thrust and power output. For the second case, the secondary flows that cause low- and high-momentum pathways when the spacing between adjacent hills is beyond a critical value result in significant variations in wind resource availability. Contour maps of graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="RSTA20160109IM3"/> and graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="RSTA20160109IM4"/> show a large difference in thrust and power potential (over 50%) between hills and valleys (at a fixed vertical height). These variations do not seem to be present when adjacent hills are close to each other (i.e. when the spacing is much less than the boundary layer thickness). The

  16. Wind energy resource atlas. Volume 8. The southern Rocky Mountain region

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, S.R.; Freeman, D.L.; Hadley, D.L.; Elliott, D.L.; Barchet, W.R.; George, R.L.

    1981-03-01

    The Southern Rocky Mountain atlas assimilates five collections of wind resource data: one for the region and one for each of the four states that compose the Southern Rocky Mountain region (Arizona, Colorado, New Mexico, and Utah). At the state level, features of the climate, topography and wind resource are discussed in greater detail than is provided in the regional discussion, and the data locations on which the assessment is based are mapped. Variations, over several time scales, in the wind resource at selected stations in each state are shown on graphs of monthly average and interannual wind speed and power, and hourly average wind speed for each season. Other graphs present speed, direction, and duration frequencies of the wind at these locations.

  17. Distributed Wind Resource Assessment: State of the Industry

    Energy Technology Data Exchange (ETDEWEB)

    Fields, Jason [National Renewable Energy Lab. (NREL), Golden, CO (United States); Tinnesand, Heidi [National Renewable Energy Lab. (NREL), Golden, CO (United States); Baring-Gould, Ian [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-06-01

    In support of the U.S. Department of Energy (DOE) Wind and Water Power Technologies Office (WWPTO) goals, researchers from DOE's National Renewable Energy Laboratory (NREL), National Wind Technology Center (NWTC) are investigating the Distributed Wind Resource Assessment (DWRA) process, which includes pre-construction energy estimation as well as turbine site suitability assessment. DWRA can have a direct impact on the Wind Program goals of maximizing stakeholder confidence in turbine performance and safety as well as reducing the levelized cost of energy (LCOE). One of the major components of the LCOE equation is annual energy production. DWRA improvements can maximize the annual energy production, thereby lowering the overall LCOE and improving stakeholder confidence in the distributed wind technology sector by providing more accurate predictions of power production. Over the long term, one of the most significant benefits of a more defined DWRA process could be new turbine designs, tuned to site-specific characteristics that will help the distributed wind industry follow a similar trajectory to the low-wind-speed designs in the utility-scale industry sector. By understanding the wind resource better, the industry could install larger rotors, capture more energy, and as a result, increase deployment while lowering the LCOE. a direct impact on the Wind Program goals of maximizing stakeholder confidence in turbine performance and safety as well as reducing the levelized cost of energy (LCOE). One of the major components of the LCOE equation is annual energy production. DWRA improvements can maximize the annual energy production, thereby lowering the overall LCOE and improving stakeholder confidence in the distributed wind technology sector by providing more accurate predictions of power production. Over the long term, one of the most significant benefits of a more defined DWRA process could be new turbine designs, tuned to site-specific characteristics that

  18. Monthly Wind Characteristics and Wind Energy in Rwanda

    African Journals Online (AJOL)

    user

    Abstract. Evaluating wind power potential for a site is indispensable before making any decision for the installation of wind energy infrastructures and planning for relating projects. This paper presents a branch of a composite analysis whose objective was to investigate the potential of wind energy resource in Rwanda.

  19. Could Crop Height Affect the Wind Resource at Agriculturally Productive Wind Farm Sites?

    Science.gov (United States)

    Vanderwende, Brian; Lundquist, Julie K.

    2016-03-01

    The collocation of cropland and wind turbines in the US Midwest region introduces complex meteorological interactions that could influence both agriculture and wind-power production. Crop management practices may affect the wind resource through alterations of land-surface properties. We use the weather research and forecasting (WRF) model to estimate the impact of crop height variations on the wind resource in the presence of a large turbine array. A hypothetical wind farm consisting of 121 1.8-MW turbines is represented using the WRF model wind-farm parametrization. We represent the impact of selecting soybeans rather than maize by altering the aerodynamic roughness length in a region approximately 65 times larger than that occupied by the turbine array. Roughness lengths of 0.1 and 0.25 m represent the mature soy crop and a mature maize crop, respectively. In all but the most stable atmospheric conditions, statistically significant hub-height wind-speed increases and rotor-layer wind-shear reductions result from switching from maize to soybeans. Based on simulations for the entire month of August 2013, wind-farm energy output increases by 14 %, which would yield a significant monetary gain. Further investigation is required to determine the optimal size, shape, and crop height of the roughness modification to maximize the economic benefit and minimize the cost of such crop-management practices. These considerations must be balanced by other influences on crop choice such as soil requirements and commodity prices.

  20. An Improved Global Wind Resource Estimate for Integrated Assessment Models: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Eurek, Kelly [National Renewable Energy Lab. (NREL), Golden, CO (United States); Sullivan, Patrick [National Renewable Energy Lab. (NREL), Golden, CO (United States); Gleason, Michael [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hettinger, Dylan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Heimiller, Donna [National Renewable Energy Lab. (NREL), Golden, CO (United States); Lopez, Anthony [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-02-01

    This paper summarizes initial steps to improving the robustness and accuracy of global renewable resource and techno-economic assessments for use in integrated assessment models. We outline a method to construct country-level wind resource supply curves, delineated by resource quality and other parameters. Using mesoscale reanalysis data, we generate estimates for wind quality, both terrestrial and offshore, across the globe. Because not all land or water area is suitable for development, appropriate database layers provide exclusions to reduce the total resource to its technical potential. We expand upon estimates from related studies by: using a globally consistent data source of uniquely detailed wind speed characterizations; assuming a non-constant coefficient of performance for adjusting power curves for altitude; categorizing the distance from resource sites to the electric power grid; and characterizing offshore exclusions on the basis of sea ice concentrations. The product, then, is technical potential by country, classified by resource quality as determined by net capacity factor. Additional classifications dimensions are available, including distance to transmission networks for terrestrial wind and distance to shore and water depth for offshore. We estimate the total global wind generation potential of 560 PWh for terrestrial wind with 90% of resource classified as low-to-mid quality, and 315 PWh for offshore wind with 67% classified as mid-to-high quality. These estimates are based on 3.5 MW composite wind turbines with 90 m hub heights, 0.95 availability, 90% array efficiency, and 5 MW/km2 deployment density in non-excluded areas. We compare the underlying technical assumption and results with other global assessments.

  1. French offshore wind power - Impact studies: how to make them

    International Nuclear Information System (INIS)

    Rap, C.

    2014-01-01

    The first public inquiries for the installation of wind farms off French coasts will take place in 2015 and impact studies appear to be key elements to back discussions and debates. These studies will have to assess the impact of the wind turbines on different aspects of the natural environment. For the landscape aspect, the visual perception of the wind farm from the coast and coastal villages will have to be studied. As for natural life, the impact on the fish resource will have to be assessed as well as the effects on bird, bat and sea mammal populations. The risk of accident with ships or planes will have to be considered. Some impacts will be positive or negative, permanent or temporary, direct or indirect. The final report will have to propose measures to mitigate negative impacts or even remedial measures if necessary to compensate for them. Impact studies imply to make a preliminary study of the environment prior the installation in order to draw the reference situation. (A.C.)

  2. Wind power in Scotland - a critique of recent resource assessments

    International Nuclear Information System (INIS)

    Twidell, J.W.

    1995-01-01

    A critical analysis of 4 recent UK official reports relating to the renewable energy resources of Scotland, particularly the large wind resource, and including institutional and economic factors. Key points are listed with comments for use in supporting wind power developments. (Author)

  3. Remapping of the Wind Energy Resource in the Midwestern United States: Preprint

    International Nuclear Information System (INIS)

    Schwartz, M.; Elliot, D.

    2001-01-01

    A recent increase in interest and development of wind energy in the Midwestern United States has focused the need for updating wind resource maps of this area. The wind resource assessment group at the National Renewable Energy Lab., a U.S. Department of Energy (DOE) laboratory, has produced updated high-resolution (1-km) wind resource maps for several states in this region. This abstract describes the computerized tools and methodology used by NREL to create the higher resolution maps

  4. Opportunities for wind resources in the future competitive California power market

    International Nuclear Information System (INIS)

    Sezgen, O.; Marnay, C.; Bretz, S.; Markel, R.; Wiser, R.

    1998-01-01

    The goal of this work is to evaluate the profitability of wind development in the future competitive California power market. The viability of possible wind sites is assessed using a geographic information system (GIS) to determine the cost of development and Elfin, an electric utility production costing and capacity expansion model, to estimate the possible revenues and profits of wind farms at the sites. This approach improves on a simple profitability calculation by using site specific development cost calculations and by taking the effect of time varying market prices on revenues into account. The first component of the work is the characterization of wind resources suitable for use in production costing and capacity expansion models such as Elfin that are capable of simulating competitive electricity markets. An improved representation of California wind resources is built, using information collected by the California Energy Commission in previous site evaluations, and by using a GIS approach to estimating development costs at 36 specific sites. These sites, which have been identified as favorable for wind development, are placed on Digital Elevation Models and development costs are calculated based on distances to roads and transmission lines. GIS is also used to develop the potential capacity at each site by making use of the physical characteristics of the terrain, such as ridge lengths. In the second part of the effort, using a previously developed algorithm for simulating competitive entry to the California electricity market, Elfin is used to gauge the viability of wind farms at the 36 sites. The results of this exercise are forecasts of profitable development levels at each site and the effects of these developments on the electricity system as a whole. Results suggest that by the year 2030, about 7.5 GW of potential wind capacity can be profitably developed assuming rising natural gas prices. This example demonstrates that an analysis based on a

  5. PREFACE: The Science of Making Torque from Wind 2014 (TORQUE 2014)

    Science.gov (United States)

    Mann, Jakob; Bak, Christian; Bechmann, Andreas; Bingöl, Ferhat; Dellwik, Ebba; Dimitrov, Nikolay; Giebel, Gregor; Hansen, Martin O. L.; Jensen, Dorte Juul; Larsen, Gunner; Aagaard Madsen, Helge; Natarajan, Anand; Rathmann, Ole; Sathe, Ameya; Nørkær Sørensen, Jens; Nørkær Sørensen, Niels

    2014-06-01

    The 186 papers in this volume constitute the proceedings of the fifth Science of Making Torque from Wind conference, which is organized by the European Academy of Wind Energy (EAWE, www.eawe.eu). The conference, also called Torque 2014, is held at the Technical University of Denmark (DTU) 17-20 June 2014. The EAWE conference series started in 2004 in Delft, the Netherlands. In 2007 it was held in Copenhagen, in 2010 in Heraklion, Greece, and then in 2012 in Oldenburg, Germany. The global yearly production of electrical energy by wind turbines has grown approximately by 25% annually over the last couple of decades and covers now 2-3% of the global electrical power consumption. In order to make a significant impact on one of the large challenges of our time, namely global warming, the growth has to continue for a decade or two yet. This in turn requires research and education in wind turbine aerodynamics and wind resources, the two topics which are the main subjects of this conference. Similar to the growth in electrical power production by wind is the growth in scientific papers about wind energy. Over the last decade the number of papers has also grown by about 25% annually, and many research based companies all over the world are founded. Hence, the wind energy research community is rapidly expanding and the Torque conference series offers a good opportunity to meet and exchange ideas. We hope that the Torque 2014 will heighten the quality of the wind energy research, while the participants will enjoy each others company in Copenhagen. Many people have been involved in producing the Torque 2014 proceedings. The work by more than two hundred reviewers ensuring the quality of the papers is greatly appreciated. The timely evaluation and coordination of the reviews would not have been possible without the work of sixteen ''section editors'' all from DTU Wind Energy: Christian Bak, Andreas Bechmann, Ferhat Bingöl, Ebba Dellwik, Nikolay Dimitrov, Gregor Giebel, Martin

  6. Nebraska wind resource assessment first year results

    Energy Technology Data Exchange (ETDEWEB)

    Hurley, P.J.F.; Vilhauer, R. [RLA Consulting, Inc., Bothell, WA (United States); Stooksbury, D. [Univ. of Nebraska, Lincoln, NE (United States)

    1996-12-31

    This paper presents the preliminary results from a wind resource assessment program in Nebraska sponsored by the Nebraska Power Association. During the first year the measured annual wind speed at 40 meters ranged from 6.5 - 7.5 m/s (14.6 - 16.8 mph) at eight stations across the state. The site selection process is discussed as well as an overview of the site characteristics at the monitoring locations. Results from the first year monitoring period including data recovery rate, directionality, average wind speeds, wind shear, and turbulence intensity are presented. Results from the eight sites are qualitatively compared with other midwest and west coast locations. 5 figs., 2 tabs.

  7. Wind resource modelling for micro-siting - Validation at a 60-MW wind farm site

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, J C; Gylling Mortensen, N [Risoe National Lab., Wind Energy and Atmospheric Physics Dept., Roskilde (Denmark); Said, U S [New and Renewable Energy Authority, Cairo (Egypt)

    1999-03-01

    This paper investigates and validates the applicability of the WAsP-model for layout optimization and micro-siting of wind turbines at a given site for a 60-MW wind farm at Zafarana at the Gulf of Suez in Egypt. Previous investigations show large gradients in the wind climate within the area. For the design and optimization of the wind farm it was found necessary to verify the WAsP extrapolation of wind atlas results from 2 existing meteorological masts located 5 and 10 km, respectively, from the wind farm site. On-site measurements at the 3.5 x 3.5 km{sup 2} wind farm site in combination with 7 years of near-site wind atlas measurements offer significant amounts of data for verification of wind conditions for micro-siting. Wind speeds, wind directions, turbulence intensities and guests in 47.5 m a.g.l. have been measured at 9 locations across the site. Additionally, one of the site masts is equipped as a reference mast, measuring both vertical profiles of wind speed and temperature as well as air pressure and temperature. The exercise is further facilitated by the fact that winds are highly uni-directional; the north direction accounting for 80-90% of the wind resource. The paper presents comparisons of 5 months of on-site measurements and modeled predictions from 2 existing meteorological masts located at distances of 5 and 10 km, respectively, from the wind farm site. Predictions based on terrain descriptions of the Wind Atlas for the Gulf of Suez 1991-95 showed over-predictions of wind speeds of 4-10%. With calibrated terrain descriptions, made based on measured data and a re-visit to critical parts of the terrain, the average prediction error of wind speeds was reduced to about 1%. These deviations are smaller than generally expected for such wind resource modeling, clearly documenting the validity of using WAsP modeling for micro-siting and layout optimization of the wind farm. (au)

  8. Wind Energy Resource Atlas. Volume 11. Hawaii and Pacific Islands Region

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, T.A.; Hori, A.M.; Elliott, D.L.; Barchet, W.R.; George, R.L.

    1981-02-01

    This atlas of the wind energy resource is composed of introductory and background information, and assessments of the wind resource in each division of the region. Background on how the wind resource is assessed and on how the results of the assessment should be inerpreted is presented. An introduction and outline to the descriptions of the wind resource for each division are provided. Assessments for individual divisions are presented as separate chapters. Much of the information in the division chapters is given in graphic or tabular form. The sequences for each chapter are similar, but some presentations used for Hawaii are inappropriate or impractical for presentation with the Pacific Islands. Hawaii chapter figure and tables are cited below and appropriate Pacific Islands figure and table numbers are included in brackets ().

  9. Wind resource assessment using the WAsP software (DTU Wind Energy E-0135)

    DEFF Research Database (Denmark)

    Mortensen, Niels Gylling

    These course notes are intended for the three-week course 46200 Planning and Development of Wind Farms given each year at the Technical University of Denmark. The purpose of the course notes is to give an introduction to wind resource assessment and siting issues using the WAsP suite of programs....

  10. Small scale wind power harnessing in Colombian oil industry facilities: Wind resource and technology issues

    Energy Technology Data Exchange (ETDEWEB)

    Giraldo, Mauricio; Nieto, Cesar; Escudero, Ana C.; Cobos, Juan C.; Delgado, Fernando

    2010-07-01

    Full text: Looking to improve its national and international standing, Colombia's national oil company, Ecopetrol, has set its goal on becoming involved on the production of energy from multiple sources, most importantly, on having an important percentage of its installed capacity from renewable sources. Part of this effort entices the evaluation of wind power potential on its facilities, including production, transportation and administrative, as well as identifying those technologies most suitable for the specific conditions of an equatorial country such as Colombia. Due to the lack of adequate site information, the first step consisted in superimposing national data to the facilities map of the company; this allowed for the selection of the first set of potential sites. From this set, the terminal at Covenas-Sucre was selected taking into account not only wind resource, but ease of access and power needs, as well as having a more or less representative wind potential in comparison to the rest of the country. A weather station was then installed to monitor wind variables. Measurements taken showed high variations in wind direction, and relatively low velocity profiles, making most commercially available wind turbines difficult to implement. In light of the above, a series of iterative steps were taken, first considering a range of individual Vertical Axis Wind Turbines (VAWT), given their capacity to adapt to changing wind directions. However, wind speed variations proved to be a challenge for individual VAWT's, i.e. Darriues turbines do not work well with low wind speeds, and Savonius turbines are not efficient of high wind speeds. As a result, a combined Darrieus- Savonius VAWT was selected given the capacity to adapt to both wind regimes, while at the same time modifying the size and shape of the blades in order to adapt to the lower average wind speeds present at the site. The resulting prototype is currently under construction and is scheduled to

  11. Monthly Wind Characteristics and Wind Energy in Rwanda | Sarari ...

    African Journals Online (AJOL)

    Evaluating wind power potential for a site is indispensable before making any ... objective was to investigate the potential of wind energy resource in Rwanda. ... fit to the distribution of the measured wind data varies from a location to another. ... (14); Eritrea (1); Ethiopia (30); Ghana (27); Kenya (29); Lesotho (1); Libya (2) ...

  12. Satellite based wind resource assessment over the South China Sea

    DEFF Research Database (Denmark)

    Badger, Merete; Astrup, Poul; Hasager, Charlotte Bay

    2014-01-01

    variations are clearly visible across the domain; for instance sheltering effects caused by the land masses. The satellite based wind resource maps have two shortcomings. One is the lack of information at the higher vertical levels where wind turbines operate. The other is the limited number of overlapping...... years of WRF data – specifically the parameters heat flux, air temperature, and friction velocity – are used to calculate a long-term correction for atmospheric stability effects. The stability correction is applied to the satellite based wind resource maps together with a vertical wind profile...... from satellite synthetic aperture radar (SAR) data are particularly suitable for offshore wind energy applications because they offer a spatial resolution up to 500 m and include coastal seas. In this presentation, satellite wind maps are used in combination with mast observations and numerical...

  13. Applicability of Synthetic Aperture Radar Wind Retrievals on Offshore Wind Resources Assessment in Hangzhou Bay, China

    Directory of Open Access Journals (Sweden)

    Rui Chang

    2014-05-01

    Full Text Available In view of the high cost and sparse spatial resolution of offshore meteorological observations, ocean winds retrieved from satellites are valuable in offshore wind resource assessment as a supplement to in situ measurements. This study examines satellite synthetic aperture radar (SAR images from ENVISAT advanced SAR (ASAR for mapping wind resources with high spatial resolution. Around 181 collected pairs of wind data from SAR wind maps and from 13 meteorological stations in Hangzhou Bay are compared. The statistical results comparing in situ wind speed and SAR-based wind speed show a standard deviation (SD of 1.99 m/s and correlation coefficient of R = 0.67. The model wind directions, which are used as input for the SAR wind speed retrieval, show a high correlation coefficient (R = 0.89 but a large standard deviation (SD = 42.3° compared to in situ observations. The Weibull probability density functions are compared at one meteorological station. The SAR-based results appear not to estimate the mean wind speed, Weibull scale and shape parameters and wind power density from the full in situ data set so well due to the lower number of satellite samples. Distributions calculated from the concurrent 81 SAR and in situ samples agree well.

  14. Analysis of the solar/wind resources in Southern Spain for optimal sizing of hybrid solar-wind power generation systems

    Science.gov (United States)

    Quesada-Ruiz, S.; Pozo-Vazquez, D.; Santos-Alamillos, F. J.; Lara-Fanego, V.; Ruiz-Arias, J. A.; Tovar-Pescador, J.

    2010-09-01

    A drawback common to the solar and wind energy systems is their unpredictable nature and dependence on weather and climate on a wide range of time scales. In addition, the variation of the energy output may not match with the time distribution of the load demand. This can partially be solved by the use of batteries for energy storage in stand-alone systems. The problem caused by the variable nature of the solar and wind resources can be partially overcome by the use of energy systems that uses both renewable resources in a combined manner, that is, hybrid wind-solar systems. Since both resources can show complementary characteristics in certain location, the independent use of solar or wind systems results in considerable over sizing of the batteries system compared to the use of hybrid solar-wind systems. Nevertheless, to the day, there is no single recognized method for properly sizing these hybrid wind-solar systems. In this work, we present a method for sizing wind-solar hybrid systems in southern Spain. The method is based on the analysis of the wind and solar resources on daily scale, particularly, its temporal complementary characteristics. The method aims to minimize the size of the energy storage systems, trying to provide the most reliable supply.

  15. Prediction of Wind Energy Resources (PoWER) Users Guide

    Science.gov (United States)

    2016-01-01

    ARL-TR-7573● JAN 2016 US Army Research Laboratory Prediction of Wind Energy Resources (PoWER) User’s Guide by David P Sauter...manufacturer’s or trade names does not constitute an official endorsement or approval of the use thereof. Destroy this report when it is no longer needed. Do...not return it to the originator. ARL-TR-7573 ● JAN 2016 US Army Research Laboratory Prediction of Wind Energy Resources (PoWER

  16. The value of co-locating energy storage with wind resources

    Energy Technology Data Exchange (ETDEWEB)

    Fox, C. [Victoria Univ., BC (Canada). Inst. for Integrated Energy Systems

    2010-07-01

    This PowerPoint presentation discussed the value of wind energy storage systems. The systems can be used to downsize transmission requirements and to minimize reliability and forecast uncertainty. Revenue factors in relation to wind power energy storage are determined by the amount of wind power produced each hour with the wind farm capacity and hourly electricity price. Case studies of a wind farm in Ontario over a period of 20 years were used to determine capacity and revenue factors as well as gross revenues. The maximum revenue factor was determined by multiplying the greatest wind energy output by the highest electricity prices. A hybrid wind farm energy storage system was designed to determine energy storage discharges and charges to and from the grid at pool prices. The method allowed for time-shifts in wind generation resources and downsized transmission requirements for remote resources. The mixed integer linear program model co-optimized revenues from the wind farm and the energy storage facility. Combined output was constrained to the transmission capacity. Transmission losses were neglected, and capital costs were considered. Future studies are needed to determine levelized electricity costs under different load growth scenarios. tabs., figs.

  17. Forecasting and decision-making in electricity markets with focus on wind energy

    DEFF Research Database (Denmark)

    Jónsson, Tryggvi

    This thesis deals with analysis, forecasting and decision making in liberalised electricity markets. Particular focus is on wind power, its interaction with the market and the daily decision making of wind power generators. Among recently emerged renewable energy generation technologies, wind power...... derivation of practically applicable tools for decision making highly relevant. The main characteristics of wind power differ fundamentally from those of conventional thermal power. Its effective generation capacity varies over time and is directly dependent on the weather. This dependency makes future...... has become the global leader in terms of installed capacity and advancement. This makes wind power an ideal candidate to analyse the impact of growing renewable energy generation capacity on the electricity markets. Furthermore, its present status of a significant supplier of electricity makes...

  18. Computer modelling of the UK wind energy resource: UK wind speed data package and user manual

    Energy Technology Data Exchange (ETDEWEB)

    Burch, S F; Ravenscroft, F

    1993-12-31

    A software package has been developed for IBM-PC or true compatibles. It is designed to provide easy access to the results of a programme of work to estimate the UK wind energy resource. Mean wind speed maps and quantitative resource estimates were obtained using the NOABL mesoscale (1 km resolution) numerical model for the prediction of wind flow over complex terrain. NOABL was used in conjunction with digitised terrain data and wind data from surface meteorological stations for a ten year period (1975-1984) to provide digital UK maps of mean wind speed at 10m, 25m and 45m above ground level. Also included in the derivation of these maps was the use of the Engineering Science Data Unit (ESDU) method to model the effect on wind speed of the abrupt change in surface roughness that occurs at the coast. With the wind speed software package, the user is able to obtain a display of the modelled wind speed at 10m, 25m and 45m above ground level for any location in the UK. The required co-ordinates are simply supplied by the user, and the package displays the selected wind speed. This user manual summarises the methodology used in the generation of these UK maps and shows computer generated plots of the 25m wind speeds in 200 x 200 km regions covering the whole UK. The uncertainties inherent in the derivation of these maps are also described, and notes given on their practical usage. The present study indicated that 23% of the UK land area had speeds over 6 m/s, with many hill sites having 10m speeds over 10 m/s. It is concluded that these `first order` resource estimates represent a substantial improvement over the presently available `zero order` estimates. (18 figures, 3 tables, 6 references). (author)

  19. Review of Methodologies for Offshore Wind Resource Assessment in European Seas

    DEFF Research Database (Denmark)

    Sempreviva, Anna Maria; Barthelmie, Rebecca Jane; Pryor, Sara

    2008-01-01

    promising wind farm sites and (ii) a site specific evaluation of wind climatology and vertical profiles of wind and atmospheric turbulence, in addition to an assessment of historical and possibly future changes due to climate non-stationarity. Phase (i) of the process can involve use of in situ observations......The wind resource offshore is generally larger than at geographically nearby onshore sites, which can offset the higher installation, operation and maintenance costs associated with offshore wind parks. Successful offshore wind energy development relies to some extent on accurate prediction of wind......) of the project often still requires in situ observations (which may or may not be supplemented with ground-based remote sensing technologies) and application of tools to provide a climatological context for the resulting measurements. Current methodologies for undertaking these aspects of the resource assessment...

  20. A CASE STUDY OF CHINA ́S WIND POWER RESOURCES

    Directory of Open Access Journals (Sweden)

    Xue Yanping

    2013-11-01

    Full Text Available At present, China is the largest energy producer and the second largest energy consumer in the world. With the increasing pressure to cut GHS emissions and to improve energy efficiency, China is now changing its traditional energy mix, mainly through consuming more renewable energy instead of fossil energy. This change has resulted in a policy adjustment which in turn boosts the utilization of the wind power resources. However, the development of the wind power resources in China is confronted with some significant challenges, such as greater installed electricity capacity than the electricity generation, greater electricity generation than the electricity transmission capacity and greater inland wind power generation than the offshore wind power generation. Therefore, the further development of China’s wind power electricity in the coming years depends largely on the ways these challenges will be addressed.

  1. Wind resource assessment and siting analysis in Italy

    International Nuclear Information System (INIS)

    Ricci, A.; Mizzoni, G.; Rossi, E.

    1992-01-01

    Recently, the wind power industry has matured; consequently, in many countries a lot of wind energy applications have been programmed. Many of them are already realized and running. As such, there is a direct necessity to identify a sizeable number of wind power plant sites. Choosing the right sites to match specific Wind Energy Conversion Systems (WECS) is also needed to harness this clean energy from the points of view of industrial viability and project financing. As a pre-requisite to install a wind turbine at a particular site, it is necessary to have knowledge of the theoretical available wind energy at the site, as well as, of the practicability of the design in matching the characteristics of the WECS. In this paper, ENEA (Italian National Agency for New Technology, Energy and Environment) wind siting and resource assessment activities, currently on-going in different regions in Italy, along with the present status and future prospects of the wind power industry

  2. Wind resources at turbine height from Envisat and Sentinel-1 SAR

    DEFF Research Database (Denmark)

    Badger, Merete; Hasager, Charlotte Bay; Pena Diaz, Alfredo

    for the standard output level of 10 m above the sea surface. This presentation demonstrates the effects of two recent improvements related to satellite-based wind resource mapping: 1) The number of satellite samples has increased dramatically since the launch of Sentinel-1A/B 2) A new method looks promising...... National Ice Center. Once the instantaneous wind maps are stored in our database, they can be organized as time series in order to calculate wind resources for any point location or area. Since the time series comprises data from both Envisat and Sentinel-1, a check of the data calibration against one....... To extrapolate the 10-m wind resource maps from SAR to higher levels within the atmospheric boundary layer, we estimate a wind profile for each grid cell in the maps. Simulations from the Weather Research and Forecasting (WRF) model are used to correct this profile for long-term atmospheric stability effects...

  3. Forecastability as a Design Criterion in Wind Resource Assessment: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, J.; Hodge, B. M.

    2014-04-01

    This paper proposes a methodology to include the wind power forecasting ability, or 'forecastability,' of a site as a design criterion in wind resource assessment and wind power plant design stages. The Unrestricted Wind Farm Layout Optimization (UWFLO) methodology is adopted to maximize the capacity factor of a wind power plant. The 1-hour-ahead persistence wind power forecasting method is used to characterize the forecastability of a potential wind power plant, thereby partially quantifying the integration cost. A trade-off between the maximum capacity factor and the forecastability is investigated.

  4. Potential for Development of Solar and Wind Resource in Bhutan

    Energy Technology Data Exchange (ETDEWEB)

    Gilman, P.; Cowlin, S.; Heimiller, D.

    2009-09-01

    With support from the U.S. Agency for International Development (USAID), the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) produced maps and data of the wind and solar resources in Bhutan. The solar resource data show that Bhutan has an adequate resource for flat-plate collectors, with annual average values of global horizontal solar radiation ranging from 4.0 to 5.5 kWh/m2-day (4.0 to 5.5 peak sun hours per day). The information provided in this report may be of use to energy planners in Bhutan involved in developing energy policy or planning wind and solar projects, and to energy analysts around the world interested in gaining an understanding of Bhutan's wind and solar energy potential.

  5. Development of distributed topographical forecasting model for wind resource assessment using artificial neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Narayana, P.B. [Green Life Energy Solutions LLP, Secunderabad (India); Rao, S.S. [National Institute of Technology. Dept. of Mechanical Engineering, Warangal (India); Reddy, K.H. [JNT Univ.. Dept. of Mechanical Engineering, Anantapur (India)

    2012-07-01

    Economics of wind power projects largely depend on the availability of wind power density. Wind resource assessment is a study estimating wind speeds and wind power densities in the region under consideration. The accuracy and reliability of data sets comprising of wind speeds and wind power densities at different heights per topographic region characterized by elevation or mean sea level, is important for wind power projects. Indian Wind Resource Assessment program conducted in 80's consisted of wind data measured by monitoring stations at different topographies in order to measure wind power density values at 25 and 50 meters above the ground level. In this paper, an attempt has been made to assess wind resource at a given location using artificial neural networks. Existing wind resource data has been used to train the neural networks. Location topography (characterized by longitude, latitude and mean sea level), air density, mean annual wind speed (MAWS) are used as inputs to the neural network. Mean annual wind power density (MAWPD) in watt/m{sup 2} is predicted for a new topographic location. Simple back propagation based neural network has been found to be sufficient for predicting these values with suitable accuracy. This model is closely linked to the problem of wind energy forecasting considering the variations of specific atmospheric variables with time horizons. This model will help the wind farm developers to have an initial estimation of the wind energy potential at a particular topography. (Author)

  6. A detailed and verified wind resource atlas for Denmark

    Energy Technology Data Exchange (ETDEWEB)

    Mortensen, N G; Landberg, L; Rathmann, O; Nielsen, M N [Risoe National Lab., Roskilde (Denmark); Nielsen, P [Energy and Environmental Data, Aalberg (Denmark)

    1999-03-01

    A detailed and reliable wind resource atlas covering the entire land area of Denmark has been established. Key words of the methodology are wind atlas analysis, interpolation of wind atlas data sets, automated generation of digital terrain descriptions and modelling of local wind climates. The atlas contains wind speed and direction distributions, as well as mean energy densities of the wind, for 12 sectors and four heights above ground level: 25, 45, 70 and 100 m. The spatial resolution is 200 meters in the horizontal. The atlas has been verified by comparison with actual wind turbine power productions from over 1200 turbines. More than 80% of these turbines were predicted to within 10%. The atlas will become available on CD-ROM and on the Internet. (au)

  7. Wind power in Eritrea, Africa: A preliminary resource assessment

    Energy Technology Data Exchange (ETDEWEB)

    Garbesi, K.; Rosen, K. [San Jose State Univ., CA (United States); Van Buskirk, R. [Dept. of Energy, Eritrea (Ethiopia)

    1997-12-31

    The authors preliminary assessment of Eritrean wind energy potential identified two promising regions: (1) the southeastern Red Sea coast and (2) the mountain passes that channel winds between the coastal lowlands and the interior highlands. The coastal site, near the port city of Aseb, has an exceptionally good resource, with estimated average annual wind speeds at 10-m height above 9 m/s at the airport and 7 m/s in the port. Furthermore, the southern 200 km of coastline has offshore WS{sub aa} > 6 m/s. This area has strong potential for development, having a local 20 MW grid and unmet demand for the fishing industry and development. Although the highland sites contain only marginal wind resources ({approximately} 5 m/s), they warrant further investigation because of their proximity to the capital city, Asmera, which has the largest unmet demand and a larger power grid (40 MW with an additional 80 MW planned) to absorb an intermittent source without storage.

  8. Development of Regional Wind Resource and Wind Plant Output Datasets for the Hawaiian Islands

    Energy Technology Data Exchange (ETDEWEB)

    Manobianco, J.; Alonge, C.; Frank, J.; Brower, M.

    2010-07-01

    In March 2009, AWS Truepower was engaged by the National Renewable Energy Laboratory (NREL) to develop a set of wind resource and plant output data for the Hawaiian Islands. The objective of this project was to expand the methods and techniques employed in the Eastern Wind Integration and Transmission Study (EWITS) to include the state of Hawaii.

  9. A comprehensive measure of the energy resource: Wind power potential (WPP)

    International Nuclear Information System (INIS)

    Zhang, Jie; Chowdhury, Souma; Messac, Achille

    2014-01-01

    Highlights: • A more comprehensive metric is developed to accurately assess the quality of wind resources at a site. • WPP exploits the joint distribution of wind speed and direction, and yields more credible estimates. • WPP investigates the effect of wind distribution on the optimal net power generation of a farm. • The results show that WPD and WPP follow different trends. - Abstract: Currently, the quality of available wind energy at a site is assessed using wind power density (WPD). This paper proposes to use a more comprehensive metric: the wind power potential (WPP). While the former accounts for only wind speed information, the latter exploits the joint distribution of wind speed and wind direction and yields more credible estimates. The WPP investigates the effect of wind velocity distribution on the optimal net power generation of a farm. A joint distribution of wind speed and direction is used to characterize the stochastic variation of wind conditions. Two joint distribution methods are adopted in this paper: bivariate normal distribution and anisotropic lognormal method. The net power generation for a particular farmland size and installed capacity is maximized for different distributions of wind speed and wind direction, using the Unrestricted Wind Farm Layout Optimization (UWFLO) framework. A response surface is constructed to represent the computed maximum wind farm capacity factor as a function of the parameters of the wind distribution. Two different response surface methods are adopted in this paper: (i) the adaptive hybrid functions (AHF), and (ii) the quadratic response surface method (QRSM). Toward this end, for any farm site, we can (i) estimate the parameters of the joint distribution using recorded wind data (for bivariate normal or anisotropic lognormal distributions) and (ii) predict the maximum capacity factor for a specified farm size and capacity using this response surface. The WPP metric is illustrated using recorded wind

  10. Wind Resource Assessment in Abadan Airport in Iran

    Directory of Open Access Journals (Sweden)

    Mojtaba Nedaei

    2012-11-01

    Full Text Available Renewable energies have potential for supplying of relatively clean and mostly local energy. Wind energy generation is expected to increase in the near future and has experienced dramatic growth over the past decade in many countries. Wind speed is the most important parameter in the design and study of wind energy conversion systems. Probability density functions such as Weibull and Rayleigh are often used in wind speed and wind energy analyses. This paper presents an assessment of wind energy at three heights during near two years based on Weibull distribution function in Abadan Airport. Extrapolation of the 10 m and 40 m data, using the power law, has been used to determine the wind speed at height of 80 m. According to the results wind speed at 80 m height in Abadan is ranged from 5.8 m/s in Nov to 8.5 m/s in Jun with average value of 7.15 m/s. In this study, different parameters such as Weibull parameters, diurnal and monthly wind speeds, cumulative distribution and turbulence intensity have been estimated and analyzed. In addition Energy production of different wind turbines at different heights was estimated. The results show that the studied site has good potential for Installation of large and commercial wind turbines at height of 80 m or higher. Keywords: Abadan, Iran, wind energy, wind resource, wind turbine, Weibull

  11. Satellite SAR wind resource mapping in China (SAR-China)

    DEFF Research Database (Denmark)

    Badger, Merete

    The project ‘Off-Shore Wind Energy Resource Assessment and Feasibility Study of Off-Shore Wind Farm Development in China’ is funded by the EU-China Energy and Environment Programme (EEP) and runs for one year (August 2008 - August 2009). The project is lead by the China Meteorological Administrat...

  12. Session: What can we learn from developed wind resource areas

    Energy Technology Data Exchange (ETDEWEB)

    Thelander, Carl; Erickson, Wally

    2004-09-01

    This session at the Wind Energy and Birds/Bats workshop was composed of two parts intended to examine what existing science tells us about wind turbine impacts at existing wind project sites. Part one dealt with the Altamont Wind Resource area, one of the older wind projects in the US, with a paper presented by Carl Thelander titled ''Bird Fatalities in the Altamont Pass Wind Resource Area: A Case Study, Part 1''. Questions addressed by the presenter included: how is avian habitat affected at Altamont and do birds avoid turbine sites; are birds being attracted to turbine strings; what factors contribute to direct impacts on birds by wind turbines at Altamont; how do use, behavior, avoidance and other factors affect risk to avian species, and particularly impacts those species listed as threatened, endangered, or of conservation concern, and other state listed species. The second part dealt with direct impacts to birds at new generation wind plants outside of California, examining such is sues as mortality, avoidance, direct habitat impacts from terrestrial wind projects, species and numbers killed per turbine rates/MW generated, impacts to listed threatened and endangered species, to USFWS Birds of Conservation Concern, and to state listed species. This session focused on newer wind project sites with a paper titled ''Bird Fatality and Risk at New Generation Wind Projects'' by Wally Erickson. Each paper was followed by a discussion/question and answer period.

  13. Wind speed forecasting in the central California wind resource area

    Energy Technology Data Exchange (ETDEWEB)

    McCarthy, E.F. [Wind Economics & Technology, Inc., Martinez, CA (United States)

    1997-12-31

    A wind speed forecasting program was implemented in the summer seasons of 1985 - 87 in the Central California Wind Resource Area (WRA). The forecasting program is designed to use either meteorological observations from the WRA and local upper air observations or upper air observations alone to predict the daily average windspeed at two locations. Forecasts are made each morning at 6 AM and are valid for a 24 hour period. Ease of use is a hallmark of the program as the daily forecast can be made using data entered into a programmable HP calculator. The forecasting program was the first step in a process to examine whether the electrical energy output of an entire wind power generation facility or defined subsections of the same facility could be predicted up to 24 hours in advance. Analysis of the results of the summer season program using standard forecast verification techniques show the program has skill over persistence and climatology.

  14. Wind energy prospecting: socio-economic value of a new wind resource assessment technique based on a NASA Earth science dataset

    Science.gov (United States)

    Vanvyve, E.; Magontier, P.; Vandenberghe, F. C.; Delle Monache, L.; Dickinson, K.

    2012-12-01

    Wind energy is amongst the fastest growing sources of renewable energy in the U.S. and could supply up to 20 % of the U.S power production by 2030. An accurate and reliable wind resource assessment for prospective wind farm sites is a challenging task, yet is crucial for evaluating the long-term profitability and feasibility of a potential development. We have developed an accurate and computationally efficient wind resource assessment technique for prospective wind farm sites, which incorporates innovative statistical techniques and the new NASA Earth science dataset MERRA. This technique produces a wind resource estimate that is more accurate than that obtained by the wind energy industry's standard technique, while providing a reliable quantification of its uncertainty. The focus now is on evaluating the socio-economic value of this new technique upon using the industry's standard technique. Would it yield lower financing costs? Could it result in lower electricity prices? Are there further down-the-line positive consequences, e.g. job creation, time saved, greenhouse gas decrease? Ultimately, we expect our results will inform efforts to refine and disseminate the new technique to support the development of the U.S. renewable energy infrastructure. In order to address the above questions, we are carrying out a cost-benefit analysis based on the net present worth of the technique. We will describe this approach, including the cash-flow process of wind farm financing, how the wind resource assessment factors in, and will present current results for various hypothetical candidate wind farm sites.

  15. 46200 Planning and Development of Wind Farms: Wind resource assessment using the WAsP software

    DEFF Research Database (Denmark)

    Mortensen, Niels Gylling

    These course notes are intended for the three-week course 46200 Planning and Development of Wind Farms given each year at the Technical University of Denmark. The purpose of the course notes is to give an introduction to wind resource assessment and siting issues using the WAsP suite of programs....

  16. Computer modelling of the UK wind energy resource: final overview report

    Energy Technology Data Exchange (ETDEWEB)

    Burch, S F; Ravenscroft, F

    1993-12-31

    This report describes the results of a programme of work to estimate the UK wind energy resource. Mean wind speed maps and quantitative resource estimates were obtained using the NOABL mesoscale (1 km resolution) numerical model for the prediction of wind flow over complex terrain. NOABL was used in conjunction with digitised terrain data and wind data from surface meteorological stations for a ten year period (1975-1984) to provide digital UK maps of mean wind speed at 10m, 25m and 45m above ground level. Also included in the derivation of these maps was the use of the Engineering Science Data Unit (ESDU) method to model the effect on wind speed of the abrupt change in surface roughness that occurs at the coast. Existing isovent maps, based on standard meteorological data which take no account of terrain effects, indicate that 10m annual mean wind speeds vary between about 4.5 and 7 m/s over the UK with only a few coastal areas over 6 m/s. The present study indicated that 23% of the UK land area had speeds over 6 m/s, with many hill sites having 10m speeds over 10 m/s. It is concluded that these `first order` resource estimates represent a substantial improvement over the presently available `zero order` estimates. (20 figures, 7 tables, 10 references). (author)

  17. Wind Resource and Feasibility Assessment Report for the Lummi Reservation

    Energy Technology Data Exchange (ETDEWEB)

    DNV Renewables (USA) Inc.; J.C. Brennan & Associates, Inc.; Hamer Environmental L.P.

    2012-08-31

    This report summarizes the wind resource on the Lummi Indian Reservation (Washington State) and presents the methodology, assumptions, and final results of the wind energy development feasibility assessment, which included an assessment of biological impacts and noise impacts.

  18. PREFACE: The Science of Making Torque from Wind 2012

    Science.gov (United States)

    2014-12-01

    The European Academy of Wind Energy (eawe) was pleased to announce its 4th scientific conference The Science of Making Torque from Wind. Predecessors have successfully been arranged in Delft, The Netherlands (2004), Lyngby, Denmark (2007) and Heraklion, Greece (2010). During the years the Torque Conference has established itself as Europe's leading scientific wind energy conference. The 2012 edition had been organized in the same tradition. More than 300 experts from academia and industry discussed the latest results and developments in fundamental and applied wind energy research, making this Science of Making Torque from Wind conference the largest one to that date. The seven keynote lectures provided the delegates with a unique overview on the state-of-the-art of science and technology. In over twenty sessions the participants discussed the most recent results in wind energy research. From numerical models to sophisticated experiments, from flow optimizations to structural designs, the numerous presentations covered a huge spectrum of ongoing scientific activities. The proceedings of the Torque 2012 combine the 110 papers that have passed the review process. We would like to thank all those who have been involved in organizing the conference and putting together these proceedings, including keynote speakers, session chairs and the enormous amount of reviewers involved. We are especially grateful to Gijs van Kuik for his untiring support. We also deeply appreciate the logistical support and technical services of the University of Oldenburg and the financial support of the State of Lower Saxony. At IOP we would like to thank Anete Ashton for her continuous encouraging support. We are looking forward to all future Torque Conferences, offering an excellent platform for the exchange of the latest and greatest scientific developments in the field of wind energy. Oldenburg, Germany, October 2014 Elke Seidel, Detlev Heinemann, Martin Kühn, Joachim Peinke and Stephan

  19. Wind blade spar cap and method of making

    Science.gov (United States)

    Mohamed, Mansour H [Raleigh, NC

    2008-05-27

    A wind blade spar cap for strengthening a wind blade including an integral, unitary three-dimensional woven material having a first end and a second end, corresponding to a root end of the blade and a tip end of the blade, wherein the material tapers in width from the first to the second end while maintaining a constant thickness and decreasing weight therebetween, the cap being capable of being affixed to the blade for providing increased strength with controlled variation in weight from the root end to the tip end based upon the tapered width of the material thereof. The present inventions also include the method of making the wind blade spar cap and a wind blade including the wind blade spar cap.

  20. Multidimensional optimal droop control for wind resources in DC microgrids

    Science.gov (United States)

    Bunker, Kaitlyn J.

    Two important and upcoming technologies, microgrids and electricity generation from wind resources, are increasingly being combined. Various control strategies can be implemented, and droop control provides a simple option without requiring communication between microgrid components. Eliminating the single source of potential failure around the communication system is especially important in remote, islanded microgrids, which are considered in this work. However, traditional droop control does not allow the microgrid to utilize much of the power available from the wind. This dissertation presents a novel droop control strategy, which implements a droop surface in higher dimension than the traditional strategy. The droop control relationship then depends on two variables: the dc microgrid bus voltage, and the wind speed at the current time. An approach for optimizing this droop control surface in order to meet a given objective, for example utilizing all of the power available from a wind resource, is proposed and demonstrated. Various cases are used to test the proposed optimal high dimension droop control method, and demonstrate its function. First, the use of linear multidimensional droop control without optimization is demonstrated through simulation. Next, an optimal high dimension droop control surface is implemented with a simple dc microgrid containing two sources and one load. Various cases for changing load and wind speed are investigated using simulation and hardware-in-the-loop techniques. Optimal multidimensional droop control is demonstrated with a wind resource in a full dc microgrid example, containing an energy storage device as well as multiple sources and loads. Finally, the optimal high dimension droop control method is applied with a solar resource, and using a load model developed for a military patrol base application. The operation of the proposed control is again investigated using simulation and hardware-in-the-loop techniques.

  1. Wind as a utility-grade supply resource: A planning framework for the Pacific Northwest

    International Nuclear Information System (INIS)

    Johnson, M.S.; Litchfield, J.

    1993-12-01

    Many areas throughout the United States possess favorable wind resources that, as yet, remain undeveloped. This paper provides valuable information on the type of information developers can provide, utility interpretation of the information in regard to electric energy and capacity attributes, and wind resource characteristics of interest to utilities. The paper also reviews key utility planning contexts within which prospective wind resources may be evaluated

  2. Wind Resource Variations Over Selected Sites in the West African Sub-Region

    International Nuclear Information System (INIS)

    Iheonu, E. E.; Akingbade, F.O A.; Ocholi, M.

    2002-01-01

    The analysis of wind characteristics and wind resource potentials at 4 locations in the West African sub-region is presented, applying data obtained at the Ibadan central station of the International Institute of Tropical Agriculture (IITA-Ibadan, Nigeria). The study has shown that the annual variations of wind speed have coefficient of variability between 10 and 15% but the available wind power at the studied locations is generally poor with values ranging between 2 and 10 Wm2 at the standard meteorological height of 10 m. Cotonou (Lat. 6.4 0 N, Long. 2.3 0 E) Benin Republic has however been distinguished from the other three locations in Nigeria, as the most promising site for wind resource development and utilization in the sub-region. With appropriate choice of wind turbine characteristics and design efficiency, establishing wind farms at the Cotonou location for electrical energy production could be feasible

  3. Management of moderate wind energy coastal resources

    International Nuclear Information System (INIS)

    Karamanis, D.

    2011-01-01

    Research highlights: → Life cycle analysis reveals the viability of moderate wind fields utilization. → Wind turbine is the greenest electricity generator at a touristic site. → Wind parks should be collective applications of small hotel-apartments owners. -- Abstract: The feasibility of wind energy utilization at moderate wind fields was investigated for a typical touristic coastal site in Western Greece. Initially, the wind speed and direction as well as its availability, duration and diurnal variation were assessed. For an analysis period of eight years, the mean wind speed at ten meters was determined as 3.8 m s -1 with a small variation in monthly average wind speeds between 3.0 (January) and 4.4 m s -1 (October). The mean wind power density was less than 200 W m -2 at 10 m indicating the limiting suitability of the site for the usual renewable energy applications. However, life cycle analysis for wind turbine generators with lower cut-in, cut-out, and rated speeds revealed that the energy yield ratio can reach a value of six for a service life of 20 years while the energy pay-back period can be 3 years with 33 kt CO 2 -e of avoided greenhouse emissions. Therefore, the recent technological turbine improvements make wind power viable even at moderate wind fields. Moreover, the study of electricity supply of typical small hotel-apartments in the region of Western Greece indicated that the installation of 300 wind turbine generators in these moderate wind fields would cover the total consumption during the open touristic period with profits during the rest of the year. According to these results, wind turbine generators are the 'greenest' way of generating electricity in touristic coastal sites, even of moderate wind speeds.

  4. Avian use of Norris Hill Wind Resource Area, Montana

    Energy Technology Data Exchange (ETDEWEB)

    Harmata, A.; Podruzny, K.; Zelenak, J. [Montana State Univ., Bozeman, MT (United States). Biology Dept.

    1998-07-01

    This document presents results of a study of avian use and mortality in and near a proposed wind resource area in southwestern Montana. Data collected in autumn 1995 through summer 1996 represented preconstruction condition; it was compiled, analyzed, and presented in a format such that comparison with post-construction data would be possible. The primary emphasis of the study was recording avian migration in and near the wind resource area using state-of-the-art marine surveillance radar. Avian use and mortality were investigated during the breeding season by employing traditional avian sampling methods, radiotelemetry, radar, and direct visual observation. 61 figs., 34 tabs.

  5. Global assessment of onshore wind power resources considering the distance to urban areas

    International Nuclear Information System (INIS)

    Silva Herran, Diego; Dai, Hancheng; Fujimori, Shinichiro; Masui, Toshihiko

    2016-01-01

    This study assessed global onshore wind power resources considering the distance to urban areas in terms of transmission losses and costs, and visibility (landscape impact) restrictions. Including this factor decreased the economic potential considerably depending on the level of supply cost considered (at least 37% and 16% for an economic potential below 10 and 14 US cents/kWh, respectively). Its importance compared to other factors was secondary below 15 US cents/kWh. At higher costs it was secondary only to land use, and was more important than economic and technical factors. The impact of this factor was mixed across all regions of the world, given the heterogeneity of wind resources in remote and proximal areas. Regions where available resources decreased the most included the European Union, Japan, Southeast Asia, the Middle East, and Africa. The supply cost chosen to evaluate the economic potential and uncertainties influencing the estimation of distance to the closest urban area are critical for the assessment. Neglecting the restrictions associated with integration into energy systems and social acceptability resulted in an overestimation of global onshore wind resources. These outcomes are fundamental for global climate policies because they help to clarify the limits of wind energy resource availability. - Highlights: • Global onshore wind resources were assessed including the distance to urban areas. • We evaluate the impact of transmission losses and cost, and visibility restrictions. • The distance to urban areas' impact was considerable, depending on the supply cost. • This factor's importance was secondary to economic, land use, and technical factors. • Neglecting this factor resulted in an overestimation of global wind resources.

  6. Wind Energy Based Electric Vehicle Charging Stations Sitting. A GIS/Wind Resource Assessment Approach

    Directory of Open Access Journals (Sweden)

    George Xydis

    2015-11-01

    Full Text Available The transportation sector is severely correlated with major problems in environment, citizens’ health, climate and economy. Issues such as traffic, fuel cost and parking space have make life more difficult, especially in the dense urban environment. Thus, there is a great need for the development of the electric vehicle (EV sector. The number of cars in cities has increased so much that the current transportation system (roads, parking places, traffic lights, etc. cannot accommodate them properly. The increasing number of vehicles does not affect only humans but also the environment, through air and noise pollution. According to EPA, the 39.2% of total gas emissions in 2007 was caused by transportation activities. Studies have shown that the pollutants are not only gathered in the major roads and/or highways but can travel depending on the meteorological conditions leading to generic pollution. The promotion of EVs and the charging stations are both equally required to be further developed in order EVs to move out of the cities and finally confront the range problem. In this work, a wind resource and a GIS analysis optimizes in a wider area the sitting of wind based charging stations and proposes an optimizing methodology.

  7. A GIS wind resource map with tabular printout of monthly and annual wind speeds for 2,000 towns in Iowa

    Energy Technology Data Exchange (ETDEWEB)

    Brower, M.C. [Brower & Company, Andover, MA (United States); Factor, T. [Iowa Wind Energy Institute, Fairfield, IA (United States)

    1997-12-31

    The Iowa Wind Energy Institute, under a grant from the Iowa Energy Center, undertook in 1994 to map wind resources in Iowa. Fifty-meter met towers were erected at 13 locations across the state deemed promising for utility-scale wind farm development. Two years of summarized wind speed, direction, and temperature data were used to create wind resource maps incorporating effects of elevation, relative exposure, terrain roughness, and ground cover. Maps were produced predicting long-term mean monthly and annual wind speeds on a one-kilometer grid. The estimated absolute standard error in the predicted annual average wind speeds at unobstructed locations is 9 percent. The relative standard error between points on the annual map is estimated to be 3 percent. These maps and tabular data for 2,000 cities and towns in Iowa are now available on the Iowa Energy Center`s web site (http.//www.energy.iastate.edu).

  8. Offshore Wind Resources Assessment from Multiple Satellite Data and WRF Modeling over South China Sea

    Directory of Open Access Journals (Sweden)

    Rui Chang

    2015-01-01

    Full Text Available Using accurate inputs of wind speed is crucial in wind resource assessment, as predicted power is proportional to the wind speed cubed. This study outlines a methodology for combining multiple ocean satellite winds and winds from WRF simulations in order to acquire the accurate reconstructed offshore winds which can be used for offshore wind resource assessment. First, wind speeds retrieved from Synthetic Aperture Radar (SAR and Scatterometer ASCAT images were validated against in situ measurements from seven coastal meteorological stations in South China Sea (SCS. The wind roses from the Navy Operational Global Atmospheric Prediction System (NOGAPS and ASCAT agree well with these observations from the corresponding in situ measurements. The statistical results comparing in situ wind speed and SAR-based (ASCAT-based wind speed for the whole co-located samples show a standard deviation (SD of 2.09 m/s (1.83 m/s and correlation coefficient of R 0.75 (0.80. When the offshore winds (i.e., winds directed from land to sea are excluded, the comparison results for wind speeds show an improvement of SD and R, indicating that the satellite data are more credible over the open ocean. Meanwhile, the validation of satellite winds against the same co-located mast observations shows a satisfactory level of accuracy which was similar for SAR and ASCAT winds. These satellite winds are then assimilated into the Weather Research and Forecasting (WRF Model by WRF Data Assimilation (WRFDA system. Finally, the wind resource statistics at 100 m height based on the reconstructed winds have been achieved over the study area, which fully combines the offshore wind information from multiple satellite data and numerical model. The findings presented here may be useful in future wind resource assessment based on satellite data.

  9. What needs to be done to make wind power a thriving business

    International Nuclear Information System (INIS)

    Gallagher, F.

    2004-01-01

    The use of wind power around the world is growing at a rate of about 30 per cent per year with over 40,000 MW of installed capacity. Canada has 434 MW of installed capacity, of which half has been installed since 2002. The author claims that the reason for this slower start compared to other countries is due to the abundance of low cost hydrocarbons and water resources and little incentives for renewable energy resources. The federal government has recently implemented its Wind Power Production Incentive (WPPI) to help develop this valuable renewable resource. A series of provincial incentives are also in place. The author states that wind energy has the potential to supply about 30 per cent of Canada's electricity supply. The Canadian Wind Energy Association (CanWEA) has set a goal to develop 10,000 MW of electricity by 2010. CanWEA expects that 30,000 MW are achievable by 2020 despite the challenges facing this growing industry. Some of the barriers that impede progress revolve around interconnection challenges, transmission, and access to markets. Until these factors are addressed and a permanent industrial complex of wind energy has been established, higher costs for wind power should be expected. These challenges may affect the market success in the near term, but wind power is expected to be a major contributor to Canada's energy supply in the long term. tabs., figs

  10. 76 FR 36532 - Iberdrola Renewables, Inc., PacifiCorp, NextEra Energy Resources, LLC, Invenergy Wind North...

    Science.gov (United States)

    2011-06-22

    ... Renewables, Inc., PacifiCorp, NextEra Energy Resources, LLC, Invenergy Wind North America LLC, Horizon Wind...), Iberdrola Renewables, Inc., PacifiCorp, NextEra Energy Resources, LLC, Invenergy Wind North America LLC, and Horizon Wind Energy LLC (Complainants) filed a formal complaint against Bonneville Power Administration...

  11. Offshore Wind Resource, Cost, and Economic Potential in the State of Maine

    Energy Technology Data Exchange (ETDEWEB)

    Musial, Walter D. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2018-02-12

    This report provides information for decision-makers about floating offshore wind technologies in the state of Maine. It summarizes research efforts performed at the National Renewable Energy Laboratory between 2015 and 2017 to analyze the resource potential, cost of offshore wind, and economic potential of offshore wind from four primary reports: Musial et al. (2016); Beiter et al. (2016, 2017); and Mone et al. (unpublished). From Musial et al. (2016), Maine's technical offshore wind resource potential ranked seventh in the nation overall with more than 411 terawatt-hours/year of offshore resource generating potential. Although 90% of this wind resource is greater than 9.0-meters-per-second average velocity, most of the resource is over deep water, where floating wind technology is needed. Levelized cost of energy and levelized avoided cost of energy were computed to estimate the unsubsidized 'economic potential' for Maine in the year 2027 (Beiter et al. 2016, 2017). The studies found that Maine may have 65 gigawatts of economic potential by 2027, the highest of any U.S. state. Bottom-line costs for the Aqua Ventus project, which is part of the U.S. Department of Energy's Advanced Technology Demonstration project, were released from a proprietary report written by NREL in 2016 for the University of Maine (Mone et al. unpublished). The report findings were that economies of scale and new technology advancements lowered the cost from $300/megawatt-hour (MWh) for the two-turbine 12-megawatt (MW) Aqua Ventus 1 project, to $126/MWh for the commercial-scale, 498-MW Aqua Ventus-2 project. Further cost reductions to $77/MWh were found when new technology advancements were applied for the 1,000-MW Aqua Ventus-3 project in 2030. No new analysis was conducted for this report.

  12. Externalities in utility resource selection: A means to formally recognize the envionmental benefits of wind farms

    International Nuclear Information System (INIS)

    Birner, S.

    1992-01-01

    Wind can only make its full contribution to the minimization of the total cost of energy services if it is valued for all the costs that it avoids, including avoided environmental costs. Means of incorporating environmental costs, or externalities, into utility planning decisions are described. Externalities are defined as uncompensated costs or benefits of an action borne by a party other than the one causing the costs. A simple example of the use of externalities in utility resource selection is presented, comparing costs of a coal-fired power plant and a wind farm. Externalities of wind farms are analyzed and found to be very low. An examination of some aspects of legislation in the USA and Canada shows a trend for utility commissions and other regulatory bodies to determine that including externalitites lies within their mandate. By formally recognizing and accounting for the environmental benefits of wind farms, it is seen that externalities can have a significant effect on utility demand for wind energy. A review of USA state actions regarding externalities is appended. 10 refs

  13. Wind and Solar Energy Resource Assessment for Navy Installations in the Midwestern US

    Science.gov (United States)

    Darmenova, K.; Apling, D.; Higgins, G. J.; Carnes, J.; Smith, C.

    2012-12-01

    A stable supply of energy is critical for sustainable economic development and the ever-increasing demand for energy resources drives the need for alternative weather-driven renewable energy solutions such as solar and wind-generated power. Recognizing the importance of energy as a strategic resource, the Department of the Navy has focused on energy efficient solutions aiming to increase tactical and shore energy security and reduce greenhouse gas emissions. Implementing alternative energy solutions will alleviate the Navy installations demands on the National power grid, however transitioning to renewable energy sources is a complex multi-stage process that involves initial investment in resource assessment and feasibility of building solar and wind power systems in Navy's facilities. This study focuses on the wind and solar energy resource assessment for Navy installations in the Midwestern US. We use the dynamically downscaled datasets at 12 km resolution over the Continental US generated with the Weather Research and Forecasting (WRF) model to derive the wind climatology in terms of wind speed, direction, and wind power at 20 m above the surface for 65 Navy facilities. In addition, we derived the transmissivity of the atmosphere, diffuse radiation fraction, cloud cover and seasonal energy potential for a zenith facing surface with unobstructed horizon for each installation location based on the results of a broadband radiative transfer model and our cloud database based on 17-years of GOES data. Our analysis was incorporated in a GIS framework in combination with additional infrastructure data that enabled a synergistic resource assessment based on the combination of climatological and engineering factors.

  14. Atlas de Recursos Eólicos del Estado de Oaxaca (The Spanish version of Wind Energy Resource Atlas of Oaxaca)

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, D.; Schwartz, M.; Scott, G.; Haymes, S.; Heimiller, D.; George, R.

    2004-04-01

    The Oaxaca Wind Resource Atlas, produced by the National Renewable Energy Laboratory's (NREL's) wind resource group, is the result of an extensive mapping study for the Mexican State of Oaxaca. This atlas identifies the wind characteristics and distribution of the wind resource in Oaxaca. The detailed wind resource maps and other information contained in the atlas facilitate the identification of prospective areas for use of wind energy technologies, both for utility-scale power generation and off-grid wind energy applications.

  15. Analysis of the potential for hydrogen production in the province of Cordoba, Argentina, from wind resources

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, C.R.; Santa Cruz, R.; Aisa, S. [Universidad Empresarial Siglo 21, Monsenor Pablo Cabrera s/n calle, 5000 Cordoba (Argentina); Riso, M.; Jimenez Yob, G.; Ottogalli, R. [Subsecretaria de Infraestructuras y Programas, Ministerio de Obras y Servicios Publicos del Gobierno de la Provincia de Cordoba, Av. Poeta Lugones 12, 2do. Piso, 5000 Cordoba (Argentina); Jeandrevin, G. [Instituto Universitario Aeronautico, Avenida Fuerza Aerea km 6 1/2, 5022 Cordoba (Argentina); Leiva, E.P.M. [INFIQC, Unidad de Matematica y Fisica, Facultad de Ciencias Quimicas, Universidad Nacional de Cordoba, Haya de la Torre s/n, 5010 Cordoba (Argentina)

    2010-06-15

    The potential for hydrogen production from wind resources in the province of Cordoba, second consumer of fossil fuels for transportation in Argentina, is analyzed. Three aspects of the problem are considered: the evaluation of the hydrogen resource from wind power, the analysis of the production costs via electrolysis and the annual requirements of wind energy to generate hydrogen to fuel the vehicular transport of the province. Different scenarios were considered, including pure hydrogen as well as the so-called CNG plus, where hydrogen is mixed with compressed natural gas in a 20% V/V dilution of the former. The potential for hydrogen production from wind resources is analyzed for each department of the province, excluding those regions not suited for wind farms. The analysis takes into account the efficiency of the electrolyzer and the capacity factor of the wind power system. It is concluded that the automotive transportation could be supplied by hydrogen stemming from wind resources via electrolysis. (author)

  16. A methodology for the prediction of offshore wind energy resources

    Energy Technology Data Exchange (ETDEWEB)

    Watson, S J; Watson, G M [Rutherford Appleton Lab., Oxfordshire (United Kingdom); Holt, R.J. [Univ. of East Anglia, Climatic Research Unit, Norwich (United Kingdom)] Barthelmie, R.J. [Risoe National Lab., Dept. of Wind Energy and Atmospheric Physics, Roskilde (Denmark); Zuylen, E.J. van [Ecofys Energy and Environment, Utrecht (Netherlands)] Cleijne, J.W. [Kema Sustainable, Arnhem (Netherlands)

    1999-03-01

    There are increasing constraints on the development of wind power on land. Recently, there has been a move to develop wind power offshore, though the amount of measured wind speed data at potential offshore wind farm sites is sparse. We present a novel methodology for the prediction of offshore wind power resources which is being applied to European Union waters. The first stage is to calculate the geostrophic wind from long-term pressure fields over the sea area of interest. Secondly, the geostrophic wind is transformed to the sea level using WA{sup s}P, taking account of near shore topography. Finally, these values are corrected for land/sea climatology (stability) effects using an analytical Coastal discontinuity Model (CDM). These values are further refined using high resolution offshore data at selected sites. The final values are validated against existing offshore datasets. Preliminary results are presented of the geostrophic wind speed validation in European Union waters. (au)

  17. Computer modelling of the UK wind energy resource. Phase 2. Application of the methodology

    Energy Technology Data Exchange (ETDEWEB)

    Burch, S F; Makari, M; Newton, K; Ravenscroft, F; Whittaker, J

    1993-12-31

    This report presents the results of the second phase of a programme to estimate the UK wind energy resource. The overall objective of the programme is to provide quantitative resource estimates using a mesoscale (resolution about 1km) numerical model for the prediction of wind flow over complex terrain, in conjunction with digitised terrain data and wind data from surface meteorological stations. A network of suitable meteorological stations has been established and long term wind data obtained. Digitised terrain data for the whole UK were obtained, and wind flow modelling using the NOABL computer program has been performed. Maps of extractable wind power have been derived for various assumptions about wind turbine characteristics. Validation of the methodology indicates that the results are internally consistent, and in good agreement with available comparison data. Existing isovent maps, based on standard meteorological data which take no account of terrain effects, indicate that 10m annual mean wind speeds vary between about 4.5 and 7 m/s over the UK with only a few coastal areas over 6 m/s. The present study indicates that 28% of the UK land area had speeds over 6 m/s, with many hill sites having 10m speeds over 10 m/s. It is concluded that these `first order` resource estimates represent a substantial improvement over the presently available `zero order` estimates. The results will be useful for broad resource studies and initial site screening. Detailed resource evaluation for local sites will require more detailed local modelling or ideally long term field measurements. (12 figures, 14 tables, 21 references). (Author)

  18. Rooftop wind resource assessment using a three-dimensional ultrasonic anemometer

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, D.C.; Whale, J.; Livingston, P.O.; Chan, D. [Murdoch Univ., Murdoch, WA (Australia)

    2008-07-01

    Building integrated wind turbines (BUWTs) are designed for the built environment and can be located on or next to buildings. In general, these types of urban wind turbines are less than 20 kW in rated capacity, and have the potential to contribute to the energy needs of the building and reduce overall emissions. There are currently over 32 manufacturers and 57 different urban wind turbine products available in Europe alone. The first rooftop wind system in Australia was installed in 2006. To data, 5 systems have been installed and there are plans for up to 20 more. The main problems associated with these types of systems are due to poor wind resources at the location or improper site selection for the turbine. This paper reported on a research study into initiating best practice guidelines for rooftop wind systems. There is a concern that environmentally conscious homeowners or businesses will install rooftop wind systems in support of sustainability, but without adequate consideration of safety, structural building integrity or turbine performance. The potential consequence of such projects could be the failure of the project due to underperforming turbines, noise, and vibration; or the development of a negative reputation for wind energy and the renewable energy industry. This study included 2 primary initiatives, notably a computer simulated modeling exercise and an onsite rooftop wind monitoring station. This paper focused on the methodology and justification for developing the monitoring station. An ultrasonic 3D anemometer was used to collect data and to develop a 3D wind profile. The wind regime on the rooftop in the complex terrain of the built environment was highly dynamic, turbulent, and included a strong vertical component. It was concluded that site selection for turbines must be determined by a proper feasibility study involving accurate data. Although the initial phase of the project to predict the resource and deploy the monitoring station has been

  19. SAR-Based Wind Resource Statistics in the Baltic Sea

    Directory of Open Access Journals (Sweden)

    Alfredo Peña

    2011-01-01

    Full Text Available Ocean winds in the Baltic Sea are expected to power many wind farms in the coming years. This study examines satellite Synthetic Aperture Radar (SAR images from Envisat ASAR for mapping wind resources with high spatial resolution. Around 900 collocated pairs of wind speed from SAR wind maps and from 10 meteorological masts, established specifically for wind energy in the study area, are compared. The statistical results comparing in situ wind speed and SAR-based wind speed show a root mean square error of 1.17 m s−1, bias of −0.25 m s−1, standard deviation of 1.88 m s−1 and correlation coefficient of R2 0.783. Wind directions from a global atmospheric model, interpolated in time and space, are used as input to the geophysical model function CMOD-5 for SAR wind retrieval. Wind directions compared to mast observations show a root mean square error of 6.29° with a bias of 7.75°, standard deviation of 20.11° and R2 of 0.950. The scale and shape parameters, A and k, respectively, from the Weibull probability density function are compared at only one available mast and the results deviate ~2% for A but ~16% for k. Maps of A and k, and wind power density based on more than 1000 satellite images show wind power density values to range from 300 to 800 W m−2 for the 14 existing and 42 planned wind farms.

  20. State of the art on wind resource estimation

    Energy Technology Data Exchange (ETDEWEB)

    Maribo Pedersen, B.

    1998-12-31

    With the increasing number of wind resource estimation studies carried out for regions, countries and even larger areas all over the world, the IEA finds that the time has come to stop and take stock of the various methods used in these studies. The IEA would therefore like to propose an Experts Meeting on wind resource estimation. The Experts Meeting should describe the models and databases used in the various studies. It should shed light on the strengths and shortcomings of the models and answer questions like: where and under what circumstances should a specific model be used? what is the expected accuracy of the estimate of the model? and what is the applicability? When addressing databases the main goal will be to identify the content and scope of these. Further, the quality, availability and reliability of the databases must also be recognised. In the various studies of wind resources the models and databases have been combined in different ways. A final goal of the Experts Meeting is to see whether it is possible to develop systems of methods which would depend on the available input. These systems of methods should be able to address the simple case (level 0) of a region with barely no data, to the complex case of a region with all available measurements: surface observations, radio soundings, satellite observations and so on. The outcome of the meeting should be an inventory of available models as well as databases and a map of already studied regions. (au)

  1. Evaluation of the climate change impact on wind resources in Taiwan Strait

    International Nuclear Information System (INIS)

    Chang, Tsang-Jung; Chen, Chun-Lung; Tu, Yi-Long; Yeh, Hung-Te; Wu, Yu-Ting

    2015-01-01

    Highlights: • We propose a new statistical downscaling framework to evaluate the climate change impact on wind resources in Taiwan Strait. • The statistical model relates Weibull distribution parameters to output of a GCM model and regression coefficients. • Validation of the simulated wind speed distribution presents an acceptable agreement with meteorological data. • Three chosen GCMs show the same tendency that the eastern half of Taiwan Strait stores higher wind resources. - Abstract: A new statistical downscaling framework is proposed to evaluate the climate change impact on wind resources in Taiwan Strait. In this framework, a two-parameter Weibull distribution function is used to estimate the wind energy density distribution in the strait. An empirically statistical downscaling model that relates the Weibull parameters to output of a General Circulation Model (GCM) and regression coefficients is adopted. The regression coefficients are calculated using wind speed results obtained from a past climate (1981–2000) simulation reconstructed by a Weather Research and Forecasting (WRF) model. These WRF-reconstructed wind speed results are validated with data collected at a weather station on an islet inside the strait. The comparison shows that the probability distributions of the monthly wind speeds obtained from WRF-reconstructed and measured wind speed data are in acceptable agreement, with small discrepancies of 10.3% and 7.9% for the shape and scale parameters of the Weibull distribution, respectively. The statistical downscaling framework with output from three chosen GCMs (i.e., ECHAM5, CM2.1 and CGCM2.3.2) is applied to evaluate the wind energy density distribution in Taiwan Strait for three future climate periods of 2011–2040, 2041–2070, and 2071–2100. The results show that the wind energy density distributions in the future climate periods are higher in the eastern half of Taiwan Strait, but reduce slightly by 3% compared with that in the

  2. Wind Energy Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Laurie, Carol

    2017-02-01

    This book takes readers inside the places where daily discoveries shape the next generation of wind power systems. Energy Department laboratory facilities span the United States and offer wind research capabilities to meet industry needs. The facilities described in this book make it possible for industry players to increase reliability, improve efficiency, and reduce the cost of wind energy -- one discovery at a time. Whether you require blade testing or resource characterization, grid integration or high-performance computing, Department of Energy laboratory facilities offer a variety of capabilities to meet your wind research needs.

  3. Stochastic Prediction of Wind Generating Resources Using the Enhanced Ensemble Model for Jeju Island’s Wind Farms in South Korea

    OpenAIRE

    Deockho Kim; Jin Hur

    2017-01-01

    Due to the intermittency of wind power generation, it is very hard to manage its system operation and planning. In order to incorporate higher wind power penetrations into power systems that maintain secure and economic power system operation, an accurate and efficient estimation of wind power outputs is needed. In this paper, we propose the stochastic prediction of wind generating resources using an enhanced ensemble model for Jeju Island’s wind farms in South Korea. When selecting the poten...

  4. Evaluation of offshore wind resources by scale of development

    DEFF Research Database (Denmark)

    Möller, Bernd; Hong, Lixuan; Lonsing, Reinhard

    -economic model operating in a geographical information systems (GIS) environment, which describes resources, costs and area constraints in a spatially explicit way, the relation between project size, location, costs and ownership is analysed. Two scenarios are presented, which describe a state......Offshore wind energy has developed rapidly in terms of turbine and project size, and currently undergoes a significant up-scaling to turbines and parks at greater distance to shore and deeper waters. Expectations to the positive effect of economies of scale on power production costs, however, have...... can be explained by deeper water, higher distance to shore, bottlenecks in supply or higher raw material costs. The present paper addresses the scale of offshore wind parks for Denmark and invites to reconsider the technological and institutional choices made. Based on a continuous resource...

  5. Evaluation of offshore wind resources by scale of development

    DEFF Research Database (Denmark)

    Möller, Bernd; Hong, Lixuan; Lonsing, Reinhard

    2012-01-01

    -economic model operating in a geographical information systems (GIS) environment, which describes resources, costs and area constraints in a spatially explicit way, the relation between project size, location, costs and ownership is analysed. Two scenarios are presented, which describe a state......Offshore wind energy has developed rapidly in terms of turbine and project size, and currently undergoes a significant up-scaling to turbines and parks at greater distance to shore and deeper waters. Expectations to the positive effect of economies of scale on power production costs, however, have...... can be explained by deeper water, higher distance to shore, bottlenecks in supply or higher raw material costs. The present paper addresses the scale of offshore wind parks for Denmark and invites to reconsider the technological and institutional choices made. Based on a continuous resource...

  6. Wind resource in metropolitan France: assessment methods, variability and trends

    International Nuclear Information System (INIS)

    Jourdier, Benedicte

    2015-01-01

    France has one of the largest wind potentials in Europe, yet far from being fully exploited. The wind resource and energy yield assessment is a key step before building a wind farm, aiming at predicting the future electricity production. Any over-estimation in the assessment process puts in jeopardy the project's profitability. This has been the case in the recent years, when wind farm managers have noticed that they produced less than expected. The under-production problem leads to questioning both the validity of the assessment methods and the inter-annual wind variability. This thesis tackles these two issues. In a first part are investigated the errors linked to the assessment methods, especially in two steps: the vertical extrapolation of wind measurements and the statistical modelling of wind-speed data by a Weibull distribution. The second part investigates the inter-annual to decadal variability of wind speeds, in order to understand how this variability may have contributed to the under-production and so that it is better taken into account in the future. (author) [fr

  7. Application of an atmospheric CFD code to wind resource assessment in complex terrain

    International Nuclear Information System (INIS)

    Laporte, Laurent

    2008-01-01

    This thesis is organized in two parts. The first part presents the use of the atmospheric CFD code Mercure Saturne to estimate the wind resource in complex terrain. A measurement campaign was led by EDF to obtain data for validation. A methodology was developed using meso-scale profiles as boundary conditions. Clustering of meteorological situations was used to reduce the number of simulations needed to calculate the wind resource. The validation of the code on the Askervein hill, the methodology and comparisons with measurements from the complex site are presented. The second part presents the modeling of wakes with the Mercure Saturne code. Forces, generated by the blades on the wind, are modeled by source terms, calculated by the BEM method. Two comparisons are proposed to validate the method: the first compares the numerical model with wind tunnel measurements from a small wind turbine, the second with measurements made on porous disks in an atmospheric boundary layer wind tunnel (author) [fr

  8. Small Wind Electric Systems An Alaska Consumer's Guide

    International Nuclear Information System (INIS)

    O'Dell, K.

    2001-01-01

    The Alaska Consumer's Guide for Small Wind Electric Systems provides consumers with enough information to help them determine if a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include: how to make your home more energy efficient, how to choose the right size turbine, the parts of a wind electric system, determining if there is enough wind resource on your site, choosing the best site for your turbine, connecting your system to the utility grid, and if it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a state wind resource map and a list of state incentives and state contacts for more information

  9. Small Wind Electric Systems: A Vermont Consumer's Guide

    International Nuclear Information System (INIS)

    O'Dell, K.

    2001-01-01

    The Vermont Consumer's Guide for Small Wind Electric Systems provides consumers with enough information to help them determine if a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include: how to make your home more energy efficient, how to choose the right size turbine, the parts of a wind electric system, determining if there is enough wind resource on your site, choosing the best site for your turbine, connecting your system to the utility grid, and if it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a state wind resource map and a list of state incentives and state contacts for more information

  10. Analysis of available wind resources and their suitability for hydrogen production in the Sacramento area

    International Nuclear Information System (INIS)

    Bartholomy, O.J.

    2004-01-01

    This paper looks at the technical, economic, environmental and regulatory barriers to the production of hydrogen from local wind resources in Sacramento, CA. Both central and distributed hydrogen generation are compared. The technical analysis uses 6 years of hourly wind data from Solano County to define the diurnal and seasonal wind resource. The impacts of a fluctuating power source on the electrolyzer are examined as well as the grid or hydrogen distribution and storage infrastructure constraints for implementation. An economic analysis comparing the price of hydrogen produced from the local wind resource is done with sensitivity analyses for capital and operating costs of both wind turbines and electrolyzers. In addition, the economic analysis includes considerations of increased demand for wind electricity by California utilities attempting to meet their Renewable Portfolio Standards. The environmental analysis compares the emissions reductions of CO 2 and criteria pollutants for different energy usage scenarios. These include comparing electricity and transportation emissions rates to optimize the use of wind energy and natural gas, as well as comparison of SULEV hybrid vehicles with FCV's and H 2 ICE's. Finally, an examination of the existing regulatory structure and policies that could prevent or encourage the use of wind to produce hydrogen in Sacramento is also included. (author)

  11. Combining the VAS 3D interpolation method and Wind Atlas methodology to produce a high-resolution wind resource map for the Czech Republic

    Czech Academy of Sciences Publication Activity Database

    Hanslian, David; Hošek, Jiří

    2015-01-01

    Roč. 77, May (2015), s. 291-299 ISSN 0960-1481 Institutional support: RVO:68378289 Keywords : wind resource map * wind field modelling * wind measurements * wind climatology * Czech Republic * WAsP Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 3.404, year: 2015 http://www.sciencedirect.com/science/article/pii/S0960148114008398#

  12. Bird Mortaility at the Altamont Pass Wind Resource Area: March 1998--September 2001

    Energy Technology Data Exchange (ETDEWEB)

    Smallwood, K. S.; Thelander, C. G.

    2005-09-01

    Over the past 15 years, research has shown that wind turbines in the Altamont Pass Wind Resource Area (APWRA) kill many birds, including raptors, which are protected by the Migratory Bird Treaty Act (MBTA), the Bald and Golden Eagle Protection Act, and/or state and federal Endangered Species Acts. Early research in the APWRA on avian mortality mainly attempted to identify the extent of the problem. In 1998, however, the National Renewable Energy Laboratory (NREL) initiated research to address the causal relationships between wind turbines and bird mortality. NREL funded a project by BioResource Consultants to perform this research directed at identifying and addressing the causes of mortality of various bird species from wind turbines in the APWRA.With 580 megawatts (MW) of installed wind turbine generating capacity in the APWRA, wind turbines there provide up to 1 billion kilowatt-hours (kWh) of emissions-free electricity annually. By identifying and implementing new methods and technologies to reduce or resolve bird mortality in the APWRA, power producers may be able to increase wind turbine electricity production at the site and apply similar mortality-reduction methods at other sites around the state and country.

  13. Results from utility wind resource assessment programs in Nebraska, Colorado, and Arizona

    Energy Technology Data Exchange (ETDEWEB)

    Drapeau, C.L. [Global Energy Concepts, Inc., Bothell, WA (United States)

    1997-12-31

    Global Energy Concepts (GEC) has been retained by utilities in Colorado, Nebraska, and Arizona to site, install, and operate 21 wind monitoring stations as part of the Utility Wind Resource Assessment Program (U*WRAP). Preliminary results indicate wind speed averages at 40 meters (132 ft) of 6.5 - 7.4 m/s (14.5-16.5 mph) in Nebraska and 7.6 - 8.9 m/s (17.0-19.9 mph) in Colorado. The Arizona stations are not yet operational. This paper presents the history and current status of the 21 monitoring stations as well as preliminary data results. Information on wind speeds, wind direction, turbulence intensity, wind shear, frequency distribution, and data recovery rates are provided.

  14. Resource Sharing in the Logistics of the Offshore Wind Farm Installation Process based on a Simulation Study

    Directory of Open Access Journals (Sweden)

    Thies Beinke

    2017-06-01

    Full Text Available This present contribution examines by means of a discrete event and agent-based simulation the potential of a joint use of resources in the installation phase of offshore wind energy. To this end, wind farm projects to be installed simultaneously are being examined, the impact of weather restrictions on the processes of loading, transport and installation are also taken into consideration, and both the wind farm specific resource allocation and the approach of a resource pool or resource sharing, respectively, are being implemented. This study is motivated by the large number of wind farms that will be installed in the future and by the potential savings that might be realized through resource sharing. While, so far, the main driver of the resource sharing approach has been the end consumer market, it has been applied in more and more areas, even in relatively conservative industries such as logistics. After the presentation of the backgrounds and of the underlying methodology, and the description of the prior art in this context, the network of the offshore wind energy installation phase will be described. This is the basis for the subsequent determination of the savings potential of a shared resource utilization, which is determined by the performance indicators such as the total installation time and degree of utilization of the resources. The results of the simulation show that weather restrictions have a significant effect on the installation times and the usage times of the resources as well as on their degree of utilization. In addition, the resource sharing approach, has been identified to have significant savings potential for the offshore wind energy installation.

  15. Tidal influence on offshore wind fields and resource predictions[Efficient Development of Offshore Windfarms

    Energy Technology Data Exchange (ETDEWEB)

    Khan, D. [Entec UK Ltd., Doherty Innovation Centre, Penicuik (United Kingdom); Infield, D. [Loughborough Univ., Centre for Renewable Energy Systems Tecnology, Loughborough (United Kingdom)

    2002-03-01

    The rise and fall of the sea surface due to tides effectively moves an offshore wind turbine hub through the wind shear profile. This effect is quantified using measured data from 3 offshore UK sites. Statistical evidence of the influence of tide on mean wind speed and turbulence is presented. The implications of this effect for predicting offshore wind resource are outlined. (au)

  16. Southward shift of the global wind energy resource under high carbon dioxide emissions

    Science.gov (United States)

    Karnauskas, Kristopher B.; Lundquist, Julie K.; Zhang, Lei

    2018-01-01

    The use of wind energy resource is an integral part of many nations' strategies towards realizing the carbon emissions reduction targets set forth in the Paris Agreement, and global installed wind power cumulative capacity has grown on average by 22% per year since 2006. However, assessments of wind energy resource are usually based on today's climate, rather than taking into account that anthropogenic greenhouse gas emissions continue to modify the global atmospheric circulation. Here, we apply an industry wind turbine power curve to simulations of high and low future emissions scenarios in an ensemble of ten fully coupled global climate models to investigate large-scale changes in wind power across the globe. Our calculations reveal decreases in wind power across the Northern Hemisphere mid-latitudes and increases across the tropics and Southern Hemisphere, with substantial regional variations. The changes across the northern mid-latitudes are robust responses over time in both emissions scenarios, whereas the Southern Hemisphere changes appear critically sensitive to each individual emissions scenario. In addition, we find that established features of climate change can explain these patterns: polar amplification is implicated in the northern mid-latitude decrease in wind power, and enhanced land-sea thermal gradients account for the tropical and southern subtropical increases.

  17. Small Wind Electric Systems: A New Mexico Consumer's Guide

    International Nuclear Information System (INIS)

    O'Dell, K.

    2001-01-01

    The New Mexico Consumer's Guide for Small Wind Electric Systems provides consumers with enough information to help them determine if a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include: how to make your home more energy efficient, how to choose the right size turbine, the parts of a wind electric system, determining if there is enough wind resource on your site, choosing the best site for your turbine, connecting your system to the utility grid, and if it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a state wind resource map and a list of state incentives and state contacts for more information

  18. Small Wind Electric Systems: A South Dakota Consumer's Guide

    International Nuclear Information System (INIS)

    O'Dell, K.

    2001-01-01

    The South Dakota Consumer's Guide for Small Wind Electric Systems provides consumers with enough information to help them determine if a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include: how to make your home more energy efficient, how to choose the right size turbine, the parts of a wind electric system, determining if there is enough wind resource on your site, choosing the best site for your turbine, connecting your system to the utility grid, and if it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a state wind resource map and a list of state incentives and state contacts for more information

  19. Human resources challenges for wind energy

    Energy Technology Data Exchange (ETDEWEB)

    Cottingham, C. [Electricity Sector Council, Ottawa, ON (Canada)

    2006-07-01

    The potential role of the Electricity Sector Council in wind power workforce development was reviewed. Canada is a major exporter of electricity, and production of electricity in the country has grown by 10 per cent in the last 10 years. The electric industry has become increasingly interested in the development of renewable and sustainable energy sources in order to reduce the environmental impacts of electricity production and use, as well to address potential supply shortages. However, total labour force growth in Canada is expected to drop to 0.5 per cent by 2010, and is expected to keep falling. Engineering and science enrolments in post-secondary institutions are declining. Many immigrants to Canada choose to settle in metropolitan areas, and only 4 in 10 immigrants are able to achieve validation of their credentials in the Canadian education system. One-third of Canadian employees are expected to retire in the next 8 years. The wind energy sector is the fastest growing energy source sector in Canada, and there are limited training facilities available. Competency profiles for roles in the industry are not clearly defined. Many provinces have very little development to support or sustain educational services for wind power training. This presentation suggested that the wind energy sector should prepare for the anticipated workforce shortage by planning training programs and building partnerships in workforce development. Investments in wind power research and development should have contract provisions regarding labour and skills development. Retiring electricity workers may provide a source of labour support. Sector councils provide a neutral forum for employers, educators, and employees, with a focus on human resource development for specific industry sectors. The councils represent an estimated 45 to 50 per cent of the labour market, and have significant federal funding. The Electricity Sector Council offers advanced career and workforce training; youth

  20. Characterization of the Wind Power Resource in Europe and its Intermittency

    Science.gov (United States)

    Cosseron, Alexandra; Gunturu, Bhaskar; Schlosser, Adam

    2013-04-01

    Thanks to incentives from the European Union and recent events, the political situation in Europe has never been so favorable towards renewables. As one of the most mature technologies among them, wind power has been chosen to be assessed over Europe, with a special care given to intermittency and variability quantifications. The goal of this study is to construct and analyze the availability and variability of the wind potential across Europe using the methodology developed in Gunturu and Schlosser (2011). The Modern Era Retrospective-Analysis for Research and Applications (MERRA) boundary flux data was used to construct wind profiles at 50, 80, 100 and 120 meters height over a domain spreading from Iceland to the western end of Ukraine. Comparisons and contrasts with previous works have asserted the reliability of the data and computations used in the analysis. It must be emphasized though that the data set used in this study has a thirty-year length, a time resolution of an hour and is a reconstruction of the atmospheric state by assimilating observational data from different platforms into a global model. Various metrics, such as coefficients of variation, inter-quartile ranges, capacity factors and wind episode lengths, have been introduced to assess magnitude and variability of wind power. Then, unconventional variables have been designed to further study the availability and reliability of this resource. Thus, to study the correlation between wind episodes across Europe, parameters called antiCoincidence and antiNullCoincidence have been built. Pragmatically, the seven closest grid points in each direction at every grid point have been studied to assess whether they had wind when the considered point had or had not. The analysis of these variables leads to the conclusion that wind-proponents' favorite statement, "wind always blows somewhere", may not be so true. All of these metrics have finally allowed a better understanding of wind power features over

  1. Analysis the Transient Process of Wind Power Resources when there are Voltage Sags in Distribution Grid

    Science.gov (United States)

    Nhu Y, Do

    2018-03-01

    Vietnam has many advantages of wind power resources. Time by time there are more and more capacity as well as number of wind power project in Vietnam. Corresponding to the increase of wind power emitted into national grid, It is necessary to research and analyze in order to ensure the safety and reliability of win power connection. In national distribution grid, voltage sag occurs regularly, it can strongly influence on the operation of wind power. The most serious consequence is the disconnection. The paper presents the analysis of distribution grid's transient process when voltage is sagged. Base on the analysis, the solutions will be recommended to improve the reliability and effective operation of wind power resources.

  2. Practical Robust Optimization Method for Unit Commitment of a System with Integrated Wind Resource

    Directory of Open Access Journals (Sweden)

    Yuanchao Yang

    2017-01-01

    Full Text Available Unit commitment, one of the significant tasks in power system operations, faces new challenges as the system uncertainty increases dramatically due to the integration of time-varying resources, such as wind. To address these challenges, we propose the formulation and solution of a generalized unit commitment problem for a system with integrated wind resources. Given the prespecified interval information acquired from real central wind forecasting system for uncertainty representation of nodal wind injections with their correlation information, the proposed unit commitment problem solution is computationally tractable and robust against all uncertain wind power injection realizations. We provide a solution approach to tackle this problem with complex mathematical basics and illustrate the capabilities of the proposed mixed integer solution approach on the large-scale power system of the Northwest China Grid. The numerical results demonstrate that the approach is realistic and not overly conservative in terms of the resulting dispatch cost outcomes.

  3. Wind energy in Vietnam: Resource assessment, development status and future implications

    International Nuclear Information System (INIS)

    Nguyen, Khanh Q.

    2007-01-01

    The aim of this study is to estimate the technical potential of wind energy in Vietnam and discuss strategies for promoting the market penetration of wind energy in the country. For the wind resource assessment, a geographical information system (GIS)- assisted approach has been developed. It is found that Vietnam has a good potential for wind energy. About 31,000 km 2 of land area can be available for wind development in which 865 km 2 equivalents to a wind power of 3572 MW has a generation cost less than 6 US cents/kWh. The study also proves that wind energy could be a good solution for about 300,000 rural non-electrified households. While wind energy brings about ecological, economic and social benefits, it is only modestly exploited in Vietnam, where the main barrier is the lack of political impetus and a proper framework for promoting renewable energy. The priority task therefore is to set a target for renewable energy development and to find instruments to achieve such a target. The main instruments proposed here are setting feed-in tariff and providing investment incentives

  4. When Oil and Wind Turbine Companies Make Green Sense Together

    DEFF Research Database (Denmark)

    Backer, Lise

    2009-01-01

    strengthen their relationships with companies such as Vestas – that are born green. This is so since companies that are born green have strong green ecocentric business beliefs that can function as important engines in shared green sense‐making with companies that are not born green and have more hesitant......In this article I contribute to descriptive green business research on how processes of eco‐effective greening business unfold in practical reality. I look into the case of the increasing interaction between the multinational oil company Shell and the world's largest wind turbine company Vestas. I...... draw on descriptive organizational sense‐making theory and analyse to this end the shared green sense‐making of Shell and Vestas on off‐shore wind energy business. The article concludes that greening companies such as Shell – that are not born green – might be considerably advanced if these companies...

  5. State of the Art and Trends in Wind Resource Assessment

    Directory of Open Access Journals (Sweden)

    Oliver Probst

    2010-06-01

    Full Text Available Given the significant rise of the utilization of wind energy the accurate assessment of the wind potential is becoming increasingly important. Direct applications of wind assessment techniques include the creation of wind maps on a local scale (typically 5 20 km and the micrositing of wind turbines, the estimation of vertical wind speed variations, prospecting on a regional scale (>100 km, estimation of the long-term wind resource at a given site, and forecasting. The measurement of wind speed and direction still widely relies on cup anemometers, though sonic anemometers are becoming increasingly popular. Moreover, remote sensing by Doppler techniques using the backscattering of either sonic beams (SODAR or light (LIDAR allowing for vertical profiling well beyond hub height are quickly moving into the mainstream. Local wind maps are based on the predicted modification of the regional wind flow pattern by the local atmospheric boundary layer which in turn depends on both topographic and roughness features and the measured wind rose obtained from one or several measurement towers within the boundaries of the planned development site. Initial models were based on linearized versions of the Navier-Stokes equations, whereas more recently full CFD models have been applied to wind farm micrositing. Linear models tend to perform well for terrain slopes lower than about 25% and have the advantage of short execution times. Long-term performance is frequently estimated from correlations with nearby reference stations with concurrent information and continuous time series over a period of at least 10 years. Simple methods consider only point-to-point linear correlations; more advanced methods like multiple regression techniques and methods based on the theory of distributions will be discussed. Both for early prospecting in regions where only scarce or unreliable reference information is available, wind flow modeling on a larger scale (mesoscale is becoming

  6. Smoothing out the volatility of South Africa’s wind and solar energy resources

    CSIR Research Space (South Africa)

    Mushwana, Crescent

    2015-10-01

    Full Text Available In the past, renewables were mainly driven by the US, Europe and China, but South Africa is slowly picking up. This presentation discusses South Africa's wind and solar resources as alternative energy resources....

  7. Study on optimized decision-making model of offshore wind power projects investment

    Science.gov (United States)

    Zhao, Tian; Yang, Shangdong; Gao, Guowei; Ma, Li

    2018-02-01

    China’s offshore wind energy is of great potential and plays an important role in promoting China’s energy structure adjustment. However, the current development of offshore wind power in China is inadequate, and is much less developed than that of onshore wind power. On the basis of considering all kinds of risks faced by offshore wind power development, an optimized model of offshore wind power investment decision is established in this paper by proposing the risk-benefit assessment method. To prove the practicability of this method in improving the selection of wind power projects, python programming is used to simulate the investment analysis of a large number of projects. Therefore, the paper is dedicated to provide decision-making support for the sound development of offshore wind power industry.

  8. Small Wind Electric Systems: A U.S. Consumer's Guide

    International Nuclear Information System (INIS)

    O'Dell, K.

    2001-01-01

    The U.S. Consumer's Guide for Small Wind Electric systems provides consumers with enough information to help them determine if a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include: how to make your home more energy efficient, how to choose the right size turbine, the parts of a wind electric system, determining if there is enough wind resource on your site, choosing the best site for your turbine, connecting your system to the utility grid, and if it's possible to become independent of the utility grid using wind energy

  9. Assembling markets for wind power. An inquiry into the making of market devices

    Energy Technology Data Exchange (ETDEWEB)

    Pallesen, T.

    2013-04-15

    This project studies the making of a market for wind power in France. Markets for wind power, as well as markets for other renewable energies, are often referred to as 'political markets: On the one hand, wind power has the potential to reduce CO{sub 2}-emissions and thus stall the effects of electricity generation on climate change; and on the other hand, as an economic good, wind power is said to suffer from 'disabilities', such as high costs, fluctuating and unpredictable generation, etc. Therefore, because of its performance as a good, it is argued that the survival of wind power in the market is premised on different instruments, some of which I will refer to as 'prosthetic devices'. This thesis inquires into two such prosthetic devices: The feed-in tariff and the wind power development zones (ZDE) as they are negotiated and practiced in France, and the ways in which they affect the making of markets for wind power. In this thesis, it is argued that while the two devices frame the price of wind power and the location of turbines, they also affect and address questions of costs, profitability, and efficiency; and as such, they may be investigated as market devices. (Author)

  10. On the Wind Energy Resource and Its Trend in the East China Sea

    Directory of Open Access Journals (Sweden)

    Adekunle Ayodotun Osinowo

    2017-01-01

    Full Text Available This study utilizes a 30-year (1980–2009 10 m wind field dataset obtained from the European Center for Medium Range Weather Forecast to investigate the wind energy potential in the East China Sea (ECS by using Weibull shape and scale parameters. The region generally showed good wind characteristics. The calculated annual mean of the wind power resource revealed the potential of the region for large-scale grid-connected wind turbine applications. Furthermore, the spatiotemporal variations showed strong trends in wind power in regions surrounding Taiwan Island. These regions were evaluated with high wind potential and were rated as excellent locations for installation of large wind turbines for electrical energy generation. Nonsignificant and negative trends dominated the ECS and the rest of the regions; therefore, these locations were found to be suitable for small wind applications. The wind power density exhibited an insignificant trend in the ECS throughout the study period. The trend was strongest during spring and weakest during autumn.

  11. Avian Monitoring and Risk Assessment at the San Gorgonio Wind Resource Area

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, R.; Tom, J.; Neumann, N.; Erickson, W. P.; Strickland, M. D.; Bourassa, M.; Bay, K. J.; Sernka, K. J.

    2005-08-01

    The primary objective of this study at the San Gorgonio Wind Resource Area was to estimate and compare bird utilization, fatality rates, and the risk index among factors including bird taxonomic groups, wind turbine and reference areas, wind turbine sizes and types, and geographic locations. The key questions addressed to meet this objective include: (1) Are there any differences in the level of bird activity, called ''utilization rate'' or ''use'', with the operating wind plant and within the surrounding undeveloped areas (reference area)?; (2) Are there any differences in the rate of bird fatalities (or avian fatality) within the operating wind plant or the surrounding undeveloped areas (reference area)?; (3) Does bird use, fatality rates, or bird risk index vary according to the geographic location, type and size of wind turbine, and/or type of bird within the operating wind plant and surrounding undeveloped areas (reference area)?; and (4) How do raptor fatality rates at San Gorgonio compare to other wind projects with comparable data?

  12. Small Wind Electric Systems: A Kansas Consumer's Guide

    International Nuclear Information System (INIS)

    O'Dell, K.

    2001-01-01

    The Kansas Consumer's Guide for Small Wind Electric Systems provides consumers with enough information to help them determine if a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include: how to make your home more energy efficient, how to choose the right size turbine, the parts of a wind electric system, determining if there is enough wind resource on your site, choosing the best site for your turbine, connecting your system to the utility grid, and if it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of state incentives and state contacts for more information

  13. 2015 Key Wind Program and National Laboratory Accomplishments

    Energy Technology Data Exchange (ETDEWEB)

    Office of Energy Efficiency and Renewable Energy

    2015-12-01

    The U.S. Department of Energy (DOE) Wind Program is committed to helping the nation secure cost-competitive sources of renewable energy through the development and deployment of innovative wind power technologies. By investing in improvements to wind plant design, technology development, and operation as well as developing tools to identify the highest quality wind resources, the Wind Program serves as a leader in making wind energy technologies more competitive with traditional sources of energy and a larger part of our nation’s renewable energy portfolio.

  14. Offshore Wind Resources Assessment from Multiple Satellite Data and WRF Modeling over South China Sea

    DEFF Research Database (Denmark)

    Chang, Rui; Rong, Zhu; Badger, Merete

    2015-01-01

    offshore winds which can be used for offshore wind resource assessment. First, wind speeds retrieved from Synthetic Aperture Radar (SAR) and Scatterometer ASCAT images were validated against in situ measurements from seven coastal meteorological stations in South China Sea (SCS). The wind roses from...... (SD) of 2.09 m/s (1.83 m/s) and correlation coefficient of R 0.75 (0.80). When the offshore winds (i.e., winds directed from land to sea) are excluded, the comparison results for wind speeds show an improvement of SD and R, indicating that the satellite data are more credible over the open ocean...

  15. Financing wind projects

    International Nuclear Information System (INIS)

    Manson, J.

    2006-01-01

    This presentation reviewed some of the partnership opportunities available from GE Energy. GE Energy's ecomagination commitment has promised to double research investment, make customers true partners and reduce greenhouse gases (GHGs). GE Energy's renewable energy team provides a broad range of financial products, and has recently funded 30 wind farms and 2 large solar projects. The company has a diverse portfolio of technology providers and wind regimes, and is increasing their investment in technology. GE Energy recognizes that the wind industry is growing rapidly and has received increased regulatory support that is backed by strong policy and public support. It is expected that Canada will have 3006 wind projects either planned or under construction by 2007. According to GE Energy, successful wind financing is dependent on the location of the site and its wind resources, as well as on the wind developer's power sales agreement. The success of a wind project is also determined by clear financing goals. Site-specific data is needed to determine the quality of wind resource, and off-site data can also be used to provide validation. Proximity to load centres will help to minimize capital costs. Power sales agreements should be based on the project's realistic net capacity factor as well as on the cost of the turbines. The economics of many wind farms is driven by the size of the turbines used. Public consultations are also needed to ensure the success of wind power projects. It was concluded that a good partner will have staying power in the wind power industry, and will understand the time-lines and needs that are peculiar to wind energy developers. refs., tabs., figs

  16. Improved diagnostic model for estimating wind energy

    Energy Technology Data Exchange (ETDEWEB)

    Endlich, R.M.; Lee, J.D.

    1983-03-01

    Because wind data are available only at scattered locations, a quantitative method is needed to estimate the wind resource at specific sites where wind energy generation may be economically feasible. This report describes a computer model that makes such estimates. The model uses standard weather reports and terrain heights in deriving wind estimates; the method of computation has been changed from what has been used previously. The performance of the current model is compared with that of the earlier version at three sites; estimates of wind energy at four new sites are also presented.

  17. Wind Resource Assessment in Complex Terrain with a High-Resolution Numerical Weather Prediction Model

    Science.gov (United States)

    Gruber, Karin; Serafin, Stefano; Grubišić, Vanda; Dorninger, Manfred; Zauner, Rudolf; Fink, Martin

    2014-05-01

    A crucial step in planning new wind farms is the estimation of the amount of wind energy that can be harvested in possible target sites. Wind resource assessment traditionally entails deployment of masts equipped for wind speed measurements at several heights for a reasonably long period of time. Simplified linear models of atmospheric flow are then used for a spatial extrapolation of point measurements to a wide area. While linear models have been successfully applied in the wind resource assessment in plains and offshore, their reliability in complex terrain is generally poor. This represents a major limitation to wind resource assessment in Austria, where high-altitude locations are being considered for new plant sites, given the higher frequency of sustained winds at such sites. The limitations of linear models stem from two key assumptions in their formulation, the neutral stratification and attached boundary-layer flow, both of which often break down in complex terrain. Consequently, an accurate modeling of near-surface flow over mountains requires the adoption of a NWP model with high horizontal and vertical resolution. This study explores the wind potential of a site in Styria in the North-Eastern Alps. The WRF model is used for simulations with a maximum horizontal resolution of 800 m. Three nested computational domains are defined, with the innermost one encompassing a stretch of the relatively broad Enns Valley, flanked by the main crest of the Alps in the south and the Nördliche Kalkalpen of similar height in the north. In addition to the simulation results, we use data from fourteen 10-m wind measurement sites (of which 7 are located within valleys and 5 near mountain tops) and from 2 masts with anemometers at several heights (at hillside locations) in an area of 1600 km2 around the target site. The potential for wind energy production is assessed using the mean wind speed and turbulence intensity at hub height. The capacity factor is also evaluated

  18. Remotely sensed data fusion for offshore wind energy resource mapping; Fusion de donnees satellitaires pour la cartographie du potentiel eolien offshore

    Energy Technology Data Exchange (ETDEWEB)

    Ben Ticha, M.B

    2007-11-15

    Wind energy is a component of an energy policy contributing to a sustainable development. Last years, offshore wind parks have been installed offshore. These parks benefit from higher wind speeds and lower turbulence than onshore. To sit a wind park, it is necessary to have a mapping of wind resource. These maps are needed at high spatial resolution to show wind energy resource variations at the scale of a wind park. Wind resource mapping is achieved through the description of the spatial variations of statistical parameters characterizing wind climatology. For a precise estimation of these statistical parameters, high temporal resolution wind speed and direction measurements are needed. However, presently, there is no data source allying high spatial resolution and high temporal resolution. We propose a data fusion method taking advantage of the high spatial resolution of some remote sensing instruments (synthetic aperture radars) and the high temporal resolution of other remote sensing instruments (scatterometers). The data fusion method is applied to a case study and the results quality is assessed. The results show the pertinence of data fusion for the mapping of wind energy resource offshore. (author)

  19. Wind Power Meteorology

    DEFF Research Database (Denmark)

    Lundtang Petersen, Erik; Mortensen, Niels Gylling; Landberg, Lars

    Wind power meteorology has evolved as an applied science, firmly founded on boundary-layer meteorology, but with strong links to climatology and geography. It concerns itself with three main areas: siting of wind turbines, regional wind resource assessment, and short-term prediction of the wind...... resource. The history, status and perspectives of wind power meteorology are presented, with emphasis on physical considerations and on its practical application. Following a global view of the wind resource, the elements of boundary layer meteorology which are most important for wind energy are reviewed......: wind profiles and shear, turbulence and gust, and extreme winds. The data used in wind power meteorology stem mainly from three sources: onsite wind measurements, the synoptic networks, and the re-analysis projects. Wind climate analysis, wind resource estimation and siting further require a detailed...

  20. Estimating near-shore wind resources

    DEFF Research Database (Denmark)

    Floors, Rogier Ralph; Hahmann, Andrea N.; Peña, Alfredo

    An evaluation and sensitivity study using the WRF mesoscale model to estimate the wind in a coastal area is performed using a unique data set consisting of scanning, profiling and floating lidars. The ability of the WRF model to represent the wind speed was evaluated by running the model for a four...... grid spacings were performed for each of the two schemes. An evaluation of the wind profile using vertical profilers revealed small differences in modelled mean wind speed between the different set-ups, with the YSU scheme predicting slightly higher mean wind speeds. Larger differences between...... the different simulations were observed when comparing the root-mean-square error (RMSE) between modelled and measured wind, with the ERA interim-based simulations having the lowest errors. The simulations with finer horizontal grid spacing had a larger MSE. Horizontal transects of mean wind speed across...

  1. Stochastic Prediction of Wind Generating Resources Using the Enhanced Ensemble Model for Jeju Island’s Wind Farms in South Korea

    Directory of Open Access Journals (Sweden)

    Deockho Kim

    2017-05-01

    Full Text Available Due to the intermittency of wind power generation, it is very hard to manage its system operation and planning. In order to incorporate higher wind power penetrations into power systems that maintain secure and economic power system operation, an accurate and efficient estimation of wind power outputs is needed. In this paper, we propose the stochastic prediction of wind generating resources using an enhanced ensemble model for Jeju Island’s wind farms in South Korea. When selecting the potential sites of wind farms, wind speed data at points of interest are not always available. We apply the Kriging method, which is one of spatial interpolation, to estimate wind speed at potential sites. We also consider a wind profile power law to correct wind speed along the turbine height and terrain characteristics. After that, we used estimated wind speed data to calculate wind power output and select the best wind farm sites using a Weibull distribution. Probability density function (PDF or cumulative density function (CDF is used to estimate the probability of wind speed. The wind speed data is classified along the manufacturer’s power curve data. Therefore, the probability of wind speed is also given in accordance with classified values. The average wind power output is estimated in the form of a confidence interval. The empirical data of meteorological towers from Jeju Island in Korea is used to interpolate the wind speed data spatially at potential sites. Finally, we propose the best wind farm site among the four potential wind farm sites.

  2. Decision making and risk analysis during the development of wind energy projects

    International Nuclear Information System (INIS)

    Vanhaesebroeck, M.

    2004-11-01

    This study aims at determining a methodology or criteria which can be used as decision making tools for the development of wind power projects and for the objective profitability comparison between several projects. In the first part, the different steps of the development of a wind power project in France are described. For each step, the cost of the studies, the related approaches and the main risks of abandonment are precised. The potential time drifts in the planning of the project are identified on the basis of the experience feedback of the first years of wind power development in France. In the second part, the possibilities of using classical investment choice techniques are analyzed. The characteristics having more impact on the project profitability are identified. In the third part, the sequential models with increasing information are used to evaluate a project, whatever its level of development. Finally, a concrete case is considered to see how these models can be used as decision making tools during key steps of wind farms development. (J.S.)

  3. COMPLEX MAPPING OF ENERGY RESOURCES FOR ALLOCATION OF SOLAR AND WIND ENERGY OBJECTS

    Directory of Open Access Journals (Sweden)

    B. A. Novakovskiy

    2016-01-01

    Full Text Available The paper presents developed methodology of solar and wind energy resources complex mapping at the regional level, taking into account the environmental and socio-economic factors affecting the placement of renewable energy facilities. Methodology provides a reasonable search and allocation of areas, the most promising for the placement of wind and solar power plants.

  4. Public attitudes of wind energy in Texas: Local communities in close proximity to wind farms and their effect on decision-making

    International Nuclear Information System (INIS)

    Swofford, Jeffrey; Slattery, Michael

    2010-01-01

    Wind energy is now recognized as an important energy resource throughout the world. Within the United States, the state of Texas currently has the largest wind energy capacity with 8797 total megawatts and an additional 660 MW under construction. With this rapid growth, it is important to achieve a better understanding of how wind energy is being perceived by the public. This paper explores three research strands: (i) describing the environmental attitudes of a population in close proximity to a wind farm development, (ii) determining the influence that proximity has on wind energy attitudes, and (iii) determining if the Not-In-My-Backyard (Nimby) phenomenon is appropriate for explaining human perceptions of wind energy. A survey questionnaire was developed to explore perceptions of wind energy in the region as well as general attitudes about energy and the environment. Results regarding general wind energy attitudes signify overall public support for wind energy. In addition, those living closest to the wind farm indicate the lowest levels of support, while those living farthest away indicate much stronger support. Findings support the view that the use of Nimby does not adequately explain the attitudes of local wind farm opposition. Alternative explanations and planning implications are discussed with a focus on public participation and education.

  5. Hualapai Wind Project Feasibility Report

    Energy Technology Data Exchange (ETDEWEB)

    Davidson, Kevin [Hualapai Tribe; Randall, Mark [Daystar Consulting; Isham, Tom [Power Engineers; Horna, Marion J [MJH Power Consulting LLC; Koronkiewicz, T [SWCA Environmental, Inc.; Simon, Rich [V-Bar, LLC; Matthew, Rojas [Squire Sanders Dempsey; MacCourt, Doug C. [Ater Wynne, LLP; Burpo, Rob [First American Financial Advisors, Inc.

    2012-12-20

    The Hualapai Department of Planning and Economic Development, with funding assistance from the U.S. Department of Energy, Tribal Energy Program, with the aid of six consultants has completed the four key prerequisites as follows: 1. Identify the site area for development and its suitability for construction. 2. Determine the wind resource potential for the identified site area. 3. Determine the electrical transmission and interconnection feasibility to get the electrical power produced to the marketplace. 4. Complete an initial permitting and environmental assessment to determine the feasibility for getting the project permitted. Those studies indicated a suitable wind resource and favorable conditions for permitting and construction. The permitting and environmental study did not reveal any fatal flaws. A review of the best power sale opportunities indicate southern California has the highest potential for obtaining a PPA that may make the project viable. Based on these results, the recommendation is for the Hualapai Tribal Nation to move forward with attracting a qualified wind developer to work with the Tribe to move the project into the second phase - determining the reality factors for developing a wind project. a qualified developer will bid to a utility or negotiate a PPA to make the project viable for financing.

  6. Climate change impacts on wind energy resources in northern Europe

    International Nuclear Information System (INIS)

    Pryor, S.C.; Barthelmie, R.J.; Kjellstroem, E.

    2005-01-01

    Energy is a fundamental human need. Heat, light and transport for individuals combined with the needs of industry have created a demand for energy which for the last 100-200 years has been met largely through consumption of fossil fuels leading to altered atmospheric composition and modification of the global climate. These effects will be realised on local scales affecting not just temperature and precipitation but also wind, radiation and other parameters. Annual mean wind speeds and wind energy density over northern Europe were significantly higher at the end of twentieth century than during the middle portion of that century, with the majority of the change being focused on the winter season. To address questions regarding possible future wind climates we employ dynamical and empirical downscaling techniques that seek to take coarse resolution output from General Circulation Models (GCM), run to provide scenarios of future climate, and develop higher resolution regional wind climates. Analyses of the wind climate during the historical record indicate that both the dynamical approach and the empirical approach are capable of generating accurate, robust and quantitative assessments of the wind climate and energy density in northern Europe, and hence that they may be of great utility to those seeking financing for, or risk management of, wind farms in the face of climate uncertainty. The synthesis of application of these downscaling tools to climate projections for northern Europe is that there is no evidence of major changes in the wind energy resource. However, more research is required to quantify the uncertainties in developing these projections and to reduce those uncertainties. Further work should also be conducted to assess the validity of these downscaling approaches in other geographical locations. (BA)

  7. A multi-state model for wind farms considering operational outage probability

    DEFF Research Database (Denmark)

    Cheng, Lin; Liu, Manjun; Sun, Yuanzhang

    2013-01-01

    As one of the most important renewable energy resources, wind power has drawn much attention in recent years. The stochastic characteristics of wind speed lead to generation output uncertainties of wind energy conversion system (WECS) and affect power system reliability, especially at high wind...... as well as solving a series of reliability-centered decision-making problems of power system scheduling and maintenance arrangements....

  8. Controllable and affordable utility-scale electricity from intermittent wind resources and compressed air energy storage (CAES)

    International Nuclear Information System (INIS)

    Cavallo, Alfred

    2007-01-01

    World wind energy resources are substantial, and in many areas, such as the US and northern Europe, could in theory supply all of the electricity demand. However, the remote or challenging location (i.e. offshore) and especially the intermittent character of the wind resources present formidable barriers to utilization on the scale required by a modern industrial economy. All of these technical challenges can be overcome. Long distance transmission is well understood, while offshore wind technology is being developed rapidly. Intermittent wind power can be transformed to a controllable power source with hybrid wind/compressed air energy storage (CAES) systems. The cost of electricity from such hybrid systems (including transmission) is affordable, and comparable to what users in some modern industrial economies already pay for electricity. This approach to intermittent energy integration has many advantages compared to the current strategy of forcing utilities to cope with supply uncertainty and transmission costs. Above all, it places intermittent wind on an equal technical footing with every other generation technology, including nuclear power, its most important long-term competitor

  9. A wind turbine evaluation model under a multi-criteria decision making environment

    International Nuclear Information System (INIS)

    Lee, Amy H.I.; Hung, Meng-Chan; Kang, He-Yau; Pearn, W.L.

    2012-01-01

    Highlights: ► This paper proposes an evaluation model to select suitable turbines in a wind farm. ► Interpretive structural modeling is used to know the relationship among factors. ► Fuzzy analytic network process is used to calculate the priorities of turbines. ► The results can be references for selecting the most appropriate wind turbines. - Abstract: Due to the impacts of fossil and nuclear energy on the security, economics, and environment in the world, the demand of alternative energy resources is expanding consistently and tremendously in recent years. Wind energy production, with its safe and environmental characteristics, has become the fastest growing renewable energy source in the world. The construction of new wind farms and the installation of new wind turbines are important processes in order to provide a long-term energy production. In this research, a comprehensive evaluation model, which incorporates interpretive structural modeling (ISM) and fuzzy analytic network process (FANP), is constructed to select suitable turbines when developing a wind farm. A case study is carried out in Taiwan in evaluating the expected performance of several potential types of wind turbines, and experts in a wind farm are invited to contribute their expertise in determining the importance of the factors of the wind turbine evaluation and in rating the performance of the turbines with respect to each factor. The most suitable turbines for installation can finally be generated after the calculations. The results can be references for decision makers in selecting the most appropriate wind turbines.

  10. A COPRAS-F base multi-criteria group decision making approach for site selection of wind farm

    OpenAIRE

    Nikhil Chandra Chatterjee; Goutam Kumar Bose

    2013-01-01

    Today global warming is on the rise and the natural resources are getting consumed at a faster rate. Power consumption has increased many folds to cater the human need. Thus renewable energy resources are the only option available at this juncture. Wind energy is one of the renewable energy. Location selection for wind farm takes an important role on power generation. However, the location selection is a complex multicriteria problem due to the criteria factors which are conflicting in nature...

  11. Demand side resource operation on the Irish power system with high wind power penetration

    DEFF Research Database (Denmark)

    Keane, A.; Tuohy, A.; Meibom, Peter

    2011-01-01

    part of the power system plant mix and contribute to the flexible operation of a power system. A model for demand side resources is proposed here that captures its key characteristics for commitment and dispatch calculations. The model is tested on the all island Irish power system, and the operation...... of the functions of conventional peaking plant. Demand side resources are also shown to be capable of improving the reliability of the system, with reserve capability identified as a key requirement in this respect....... of the model is simulated over one year in both a stochastic and deterministic mode, to illustrate the impact of wind and load uncertainty. The results illustrate that demand side resources can contribute to the efficient, flexible operation of systems with high penetrations of wind by replacing some...

  12. Scenarios of hydrogen production from wind power

    Energy Technology Data Exchange (ETDEWEB)

    Klaric, Mario

    2010-09-15

    Since almost total amount of hydrogen is currently being produced from natural gas, other ways of cleaner and 'more renewable' production should be made feasible in order to make benchmarks for total 'hydrogen economy'. Hydrogen production from wind power combined with electrolysis imposes as one possible framework for new economy development. In this paper various wind-to-hydrogen scenarios were calculated. Cash flows of asset based project financing were used as decision making tool. Most important parameters were identified and strategies for further research and development and resource allocation are suggested.

  13. The effect of pitch angle on the performance of a vertical-axis wind turbine

    NARCIS (Netherlands)

    Rezaeiha, A.; Kalkman, I.M.; Blocken, B.; Borg, R.P.; Gauci, P.; Staines, C.S.

    2016-01-01

    Wind energy is a highly promising resource to approach a sustainable built environment. Vertical axis wind turbines (VAWT) offer the advantage of omni-directional operation over horizontal axis wind turbines (HAWT). This makes them ideal for utilization in urban environments which are characterized

  14. Wind Atlas of Aegean Sea with SAR data

    DEFF Research Database (Denmark)

    Bingöl, Ferhat; Hasager, Charlotte Bay; Badger, Merete

    2013-01-01

    The Global Wind Atlas project is established to create a “free-to-use” wind atlas of the whole globe. The modelling chain of the project includes micro-scale models and new reanalysis datasets. Local measurements are planed to be use for test and validation. Unfortunately, it is not always possible...... to find long term offshore measurement to make wind statistics. The main reason is the cost of setup and maintenance of an offshore mast. One of the regions which has high potential in wind resources but so far is without any long term offshore measurement is the Aegean sea. Recent developments...... in satellite radar technologies made it possible to use Synthetic Aperture Radars (SAR) for wind speed and direction measurements at offshore locations. In this study, a new technique of making wind atlases is applied to the region of Aegean Sea is presented. The method has been tested and validated...

  15. A Transmission-Cost-Based Model to Estimate the Amount of Market-Integrable Wind Resources

    DEFF Research Database (Denmark)

    Morales González, Juan Miguel; Pinson, Pierre; Madsen, Henrik

    2012-01-01

    are made to share the expenses in transmission derived from their integration, they may see the doors of electricity markets closed for not being competitive enough. This paper presents a model to decide the amount of wind resources that are economically exploitable at a given location from a transmission......In the pursuit of the large-scale integration of wind power production, it is imperative to evaluate plausible frictions among the stochastic nature of wind generation, electricity markets, and the investments in transmission required to accommodate larger amounts of wind. If wind producers......-cost perspective. This model accounts for the uncertain character of wind by using a modeling framework based on stochastic optimization, simulates market barriers by means of a bi-level structure, and considers the financial risk of investments in transmission through the conditional value-at-risk. The major...

  16. The influence of waves on the offshore wind resource

    Energy Technology Data Exchange (ETDEWEB)

    Lange, B [Risoe National Lab., Roskilde (Denmark); Hoejstrup, J [NEG Micon, Randers (Denmark)

    1999-03-01

    With the growing interest in offshore wind resources, it has become increasingly important to establish and refine models for the interaction between wind and waves in order to obtain accurate models for the sea surface roughness. The simple Charnock relation that has been applied for open sea conditions does not work well in the shallow water near-coastal areas that are important for offshore wind energy. A model for the surface roughness of the sea has been developed based on this concept, using an expression for the Charnock constant as a function of wave age, and then relating the wave `age` to the distance to the nearest upwind coastline. The data used in developing these models originated partly from analysis of data from the Vindeby site, partly from previously published results. The scatter in the data material was considerable and consequently there is a need to test these models further by analysing data from sites exhibiting varying distances to the coast. Results from such analysis of recent data are presented for sites with distances to the coast varying from 10 km to several hundreds of km. The model shows a good agreement also with this data. (au)

  17. PREFACE: The Science of Making Torque from Wind

    Science.gov (United States)

    Sørensen, Jens N.; Hansen, Martin O. L.; Hansen, Kurt S.

    2007-06-01

    conference to bring together scientists and engineers working in the fields of aerodynamics, aeroelasticity, aeroacoustics, aeroelastic control, wind conditions and wind farms. The first conference entitled `The Science of making Torque from Wind' was organized by DUWIND and held at Delft University, 19-21 April 2004. Owing to the great success of this conference where more than 60 papers were presented, we decided to follow it with a similar conference at the Technical University of Denmark (DTU) in Lyngby. It is our hope that others will take up the idea and continue this series of conferences. An explicit objective of the conference is to meet the high standards applied in several other branches of science and technology. The EAWE has the responsibility for the scientific quality of the content. All papers presented at the conference have had an abstract review as well as a full paper review by at least two reviewers. Out of the approximately 120 submitted abstracts, 86 papers were finally approved to be presented at the conference. It is expected that many of the papers will subsequently be published in scientific journals. Toward that end, the editors of Wind Energy and Journal of Solar Energy Engineering have expressed their interest in letting the most promising papers be subjected to a second review, for the purpose of having them published as journal papers. The EWEA staff is thanked for organizing the PR on the conference and the EAWE board members for valuable help in the reviewing process and for delivering session chairmen. Staff members at the Department of Mechanical Engineering at DTU and Risø were responsible for the organization. Special thanks go to DTU for providing lecture and meeting rooms, and to LM Glasfiber, Vestas Wind Systems and Siemens Wind Power for financial support. Jens Nørkær Sørensen, Conference Chairman 21 June 2007

  18. Climate change implications for wind power resources in the Northwest United States

    International Nuclear Information System (INIS)

    Sailor, David J.; Smith, Michael; Hart, Melissa

    2008-01-01

    Using statistically downscaled output from four general circulation models (GCMs), we have investigated scenarios of climate change impacts on wind power generation potential in a five-state region within the Northwest United States (Idaho, Montana, Oregon, Washington, and Wyoming). All GCM simulations were extracted from the standardized set of runs created for the Intergovernmental Panel on Climate Change (IPCC). Analysis of model runs for the 20th century (20c3m) simulations revealed that the direct output of wind statistics from these models is of relatively poor quality compared with observations at airport weather stations within each state. When the GCM output was statistically downscaled, the resulting estimates of current climate wind statistics are substantially better. Furthermore, in looking at the GCM wind statistics for two IPCC future climate scenarios from the Special Report on Emissions Scenarios (SRES A1B and A2), there was significant disagreement in the direct model output from the four GCMs. When statistical downscaling was applied to the future climate simulations, a more coherent story unfolded related to the likely impact of climate change on the region's wind power resource. Specifically, the results suggest that summertime wind speeds in the Northwest may decrease by 5-10%, while wintertime wind speeds may decrease by relatively little, or possibly increase slightly. When these wind statistics are projected to typical turbine hub heights and nominal wind turbine power curves are applied, the impact of the climate change scenarios on wind power may be as high as a 40% reduction in summertime generation potential. (author)

  19. Impacts of climate change on wind energy resources in France: a regionalization study

    International Nuclear Information System (INIS)

    Najac, J.

    2008-11-01

    In this work, we study the impact of climate change on surface winds in France and draw conclusions concerning wind energy resources. Because of their coarse spatial resolution, climate models cannot properly reproduce the spatial variability of surface winds. Thus, 2 down-scaling methods are developed in order to regionalize an ensemble of climate scenarios: a statistical method based on weather typing and a statistic-dynamical method that resorts to high resolution mesoscale modelling. By 2050, significant but relatively small changes are depicted with, in particular, a decrease of the wind speed in the southern and an increase in the northern regions of France. The use of other down-scaling methods enables us to study several uncertainty sources: it appears that most of the uncertainty is due to the climate models. (author)

  20. 77 FR 2286 - Iberdrola Renewables, Inc., PacifiCorp, NextEra Energy Resources, LLC, Invenergy Wind North...

    Science.gov (United States)

    2012-01-17

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. EL11-44-000] Iberdrola Renewables, Inc., PacifiCorp, NextEra Energy Resources, LLC, Invenergy Wind North America LLC, Horizon Wind Energy LLC v. Bonneville Power Administration; Notice of Designation of Certain Commission Personnel as...

  1. Assessment of Offshore Wind Energy Resources for the United States

    Energy Technology Data Exchange (ETDEWEB)

    Schwartz, M.; Heimiller, D.; Haymes, S.; Musial, W.

    2010-06-01

    This report summarizes the offshore wind resource potential for the contiguous United States and Hawaii as of May 2009. The development of this assessment has evolved over multiple stages as new regional meso-scale assessments became available, new validation data was obtained, and better modeling capabilities were implemented. It is expected that further updates to the current assessment will be made in future reports.

  2. Grid Integration of Offshore Wind | Wind | NREL

    Science.gov (United States)

    Grid Integration of Offshore Wind Grid Integration of Offshore Wind Much can be learned from the existing land-based integration research for handling the variability and uncertainty of the wind resource Arklow Bank offshore wind park consists of seven GE Wind 3.6-MW wind turbines. Integration and

  3. An Integrated Multi-Criteria Decision Making Model for Evaluating Wind Farm Performance

    Directory of Open Access Journals (Sweden)

    Mei-Sung Kang

    2011-11-01

    Full Text Available The demands for alternative energy resources have been increasing exponentially in the 21st century due to continuous industrial development, depletion of fossil fuels and emerging environmental consciousness. Renewable energy sources, including wind energy, hydropower energy, geothermal energy, solar energy, biomass energy and ocean power, have received increasing attention as alternative means of meeting global energy demands. After Japan's Fukushima nuclear plant disaster in March 2011, more and more countries are having doubt about the safety of nuclear plants. As a result, safe and renewable energy sources are attracting even more attention these days. Wind energy production, with its relatively safer and positive environmental characteristics, has evolved in the past few decades from a marginal activity into a multi-billion dollar industry. In this research, a comprehensive evaluation model is constructed to select a suitable location for developing a wind farm. The model incorporates interpretive structural modeling (ISM, benefits, opportunities, costs and risks (BOCR and fuzzy analytic network process (FANP. Experts in the field are invited to contribute their expertise in evaluating the importance of the factors and various aspects of the wind farm evaluation problem, and the most suitable wind farm can finally be generated from the model. A case study is carried out in Taiwan in evaluating the expected performance of several potential wind farms, and a recommendation is provided for selecting the most appropriate wind farm for construction.

  4. Analysis of the balancing of the wind and solar energy resources in Andalusia (Southern Spain)

    Science.gov (United States)

    Santos-Alamillos, F. J.; Pozo-Vazquez, D.; Lara-Fanego, V.; Ruiz-Arias, J. A.; Hernandez-Alvaro, J.; Tova-Pescador, J.

    2010-09-01

    A higher penetration of the renewable energy in the electric system in the future will be conditioned to a reduction of the uncertainty of the yield. A way to obtain this goal is to analyze the balancing between the productions of different sources of renewable energy, trying to combine these productions. In this work we analyze, from a meteorological point of view, the balancing between wind and solar energy resources in Andalusia (southern Iberian Peninsula). To this end, wind speed and global radiation data corresponding to an one year integration of the Weather Research and Forecasting (WRF) Numerical Weather Prediction (NWP) model were analyzed. Two method of analysis were used: a point correlation analysis and a Canonical Correlation Analysis (CCA). Results from these analyses allow obtaining, eventually, areas of local and distributed balancing between the wind and solar energy resources. The analysis was carried out separately for the different seasons of the year. Results showed, overall, a considerable balancing effect between the wind and solar resources in the mountain areas of the interior of the region, along the coast of the central part of the region and, specially, in the coastal area near the Gibraltar strait. Nevertheless, considerable differences were found between the seasons of the year, which may lead to compensating effects. Autumn proved to be the season with the most significant results.

  5. Integrating GIS with fuzzy multi-criteria decision making for suitable wind farm locations

    Energy Technology Data Exchange (ETDEWEB)

    Iyappan, L.; Pandian, P.K. [Tagore Engineering College. Dept. of Civil Engineering, Tamil Nadu (India)

    2012-07-01

    Wind Energy is spatial in nature and the degree of potential wind farm locations are fuzzy i.e., the boundaries among highly, moderate and least suitable is not clear cut. The study area of this research covers entire taluk of Tirumangalam, Madurai District (India). In this study, to help wind energy companies, policy-makers and investors in evaluating potential wind farm locations in the Tirumangalam Taluk (Tamil Nadu, India), an adaptation of a Geographical Information System (GIS) and Fuzzy Multi-criteria Decision Making(FMDM) approach is attended. The entire processes were completed by using open source GIS software (Quantum GIS and GRASS GIS) with help of freely available data. The software tool takes inputs such as wind power density, Slope, Transmission lines, environmental factors, and economic factors to provide an in-depth analysis for suitable location options. (Author)

  6. Large-scale wind energy application. Transporting wind energy over long distances using an HVDC transmission line, in combination with hydro energy or biomass energy

    International Nuclear Information System (INIS)

    Coelingh, J.P.; Van Wijk, A.J.M.; Betcke, J.W.H.; Geuzendam, C.; Gilijamse, W.; Westra, C.A.; Curvers, A.P.W.M.; Beurskens, H.J.M.

    1995-08-01

    The main objective of the study on the title subject is to assess the long-term prospects for large-scale application of wind energy, in combination with hydro energy in Norway and in combination with biomass energy in Scotland. These countries have high wind resource areas, however they are located far away from load centres. The development of new transmission technologies as High Voltage Direct Current (HVDC) transmission lines, in combination with highly suitable places for wind energy in Norway and Scotland, forms the driving force behind this study. The following two cases are being considered: (1) a large-scale wind farm (1,000 MW) in Norway from which electricity is transmitted to The Netherlands by using an HVDC transmission line, in combination with hydro energy. Hydro energy already makes a large contribution to the energy supply of Norway. Wind farms can contribute to the electricity production and save hydro energy generated electricity and make the export of electricity profitable; and (2) a large-scale wind farm (1,000 MW) in Scotland from which electricity is transmitted to The Netherlands by using an HVDC transmission line, in combination with biomass energy. Scotland has a large potential for biomass production such as energy crops and forestry. Poplars and willows cultivated on set-aside land can be gasified and fed into modern combined-cycle plants to generate electricity. In Scotland the usable potential of wind energy may be limited in the short and medium term by the capacity of the grid. New connections can overcome this constraint and allow wind energy to be treated as a European Union resource rather than as a national resource. Thus, the concept of this study is to look at the possibilities of making a 1,000 MW link from The Netherlands to Norway or to Scotland, in order to supply electricity at competitive costs generated with renewable energy sources. 16 figs., 24 tabs., 80 refs

  7. Database on wind characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, K.S. [The Technical Univ. of Denmark (Denmark); Courtney, M.S. [Risoe National Lab., (Denmark)

    1999-08-01

    The organisations that participated in the project consists of five research organisations: MIUU (Sweden), ECN (The Netherlands), CRES (Greece), DTU (Denmark), Risoe (Denmark) and one wind turbine manufacturer: Vestas Wind System A/S (Denmark). The overall goal was to build a database consisting of a large number of wind speed time series and create tools for efficiently searching through the data to select interesting data. The project resulted in a database located at DTU, Denmark with online access through the Internet. The database contains more than 50.000 hours of measured wind speed measurements. A wide range of wind climates and terrain types are represented with significant amounts of time series. Data have been chosen selectively with a deliberate over-representation of high wind and complex terrain cases. This makes the database ideal for wind turbine design needs but completely unsuitable for resource studies. Diversity has also been an important aim and this is realised with data from a large range of terrain types; everything from offshore to mountain, from Norway to Greece. (EHS)

  8. Growth curves and sustained commissioning modelling of renewable energy: Investigating resource constraints for wind energy

    International Nuclear Information System (INIS)

    Davidsson, Simon; Grandell, Leena; Wachtmeister, Henrik; Höök, Mikael

    2014-01-01

    Several recent studies have proposed fast transitions to energy systems based on renewable energy technology. Many of them dismiss potential physical constraints and issues with natural resource supply, and do not consider the growth rates of the individual technologies needed or how the energy systems are to be sustained over longer time frames. A case study is presented modelling potential growth rates of the wind energy required to reach installed capacities proposed in other studies, taking into account the expected service life of wind turbines. A sustained commissioning model is proposed as a theoretical foundation for analysing reasonable growth patterns for technologies that can be sustained in the future. The annual installation and related resource requirements to reach proposed wind capacity are quantified and it is concluded that these factors should be considered when assessing the feasibility, and even the sustainability, of fast energy transitions. Even a sustained commissioning scenario would require significant resource flows, for the transition as well as for sustaining the system, indefinitely. Recent studies that claim there are no potential natural resource barriers or other physical constraints to fast transitions to renewable energy appear inadequate in ruling out these concerns. - Highlights: • Growth rates and service life is important when evaluating energy transitions. • A sustained commissioning model is suggested for analysing renewable energy. • Natural resource requirements for renewable energy are connected to growth rates. • Arguments by recent studies ruling out physical constraints appear inadequate

  9. A 100% renewable electricity generation system for New Zealand utilising hydro, wind, geothermal and biomass resources

    International Nuclear Information System (INIS)

    Mason, I.G.; Page, S.C.; Williamson, A.G.

    2010-01-01

    The New Zealand electricity generation system is dominated by hydro generation at approximately 60% of installed capacity between 2005 and 2007, augmented with approximately 32% fossil-fuelled generation, plus minor contributions from geothermal, wind and biomass resources. In order to explore the potential for a 100% renewable electricity generation system with substantially increased levels of wind penetration, fossil-fuelled electricity production was removed from an historic 3-year data set, and replaced by modelled electricity production from wind, geothermal and additional peaking options. Generation mixes comprising 53-60% hydro, 22-25% wind, 12-14% geothermal, 1% biomass and 0-12% additional peaking generation were found to be feasible on an energy and power basis, whilst maintaining net hydro storage. Wind capacity credits ranged from 47% to 105% depending upon the incorporation of demand management, and the manner of operation of the hydro system. Wind spillage was minimised, however, a degree of residual spillage was considered to be an inevitable part of incorporating non-dispatchable generation into a stand-alone grid system. Load shifting was shown to have considerable advantages over installation of new peaking plant. Application of the approach applied in this research to countries with different energy resource mixes is discussed, and options for further research are outlined.

  10. Temporal and spatial complementarity of wind and solar resources in Lower Silesia (Poland)

    Science.gov (United States)

    Jurasz, Jakub; Wdowikowski, Marcin; Kaźmierczak, Bartosz; Dąbek, Paweł

    2017-11-01

    This paper investigates the concept of temporal and spatial complementarity of wind and solar resources in Lower Silesia (south-wester Poland). For the purpose of our research we have used hourly load and energy yield from photovoltaics and wind turbines covering period 2010-2014. In order to assess the spatial complementarity we have divided the considered voivodeship into 74 squared regions with maximal area of 400 km2. The obtained results indicate an existence of temporal complementarity on a monthly time scale and a positive correlation between load and wind generation patterns (also on a monthly time scale). The temporal complementarity for hourly time series in relatively low but has potential to smooth the energy generation curves.

  11. Demand side resource operation on the Irish power system with high wind power penetration

    International Nuclear Information System (INIS)

    Keane, A.; Tuohy, A.; Meibom, P.; Denny, E.; Flynn, D.; Mullane, A.; O'Malley, M.

    2011-01-01

    The utilisation of demand side resources is set to increase over the coming years with the advent of advanced metering infrastructure, home area networks and the promotion of increased energy efficiency. Demand side resources are proposed as an energy resource that, through aggregation, can form part of the power system plant mix and contribute to the flexible operation of a power system. A model for demand side resources is proposed here that captures its key characteristics for commitment and dispatch calculations. The model is tested on the all island Irish power system, and the operation of the model is simulated over one year in both a stochastic and deterministic mode, to illustrate the impact of wind and load uncertainty. The results illustrate that demand side resources can contribute to the efficient, flexible operation of systems with high penetrations of wind by replacing some of the functions of conventional peaking plant. Demand side resources are also shown to be capable of improving the reliability of the system, with reserve capability identified as a key requirement in this respect. - Highlights: → Demand side resource model presented for use in unit commitment and dispatch calculations. → Benefits of demand side aggregation demonstrated specifically as a peaking unit and provider of reserve. → Potential to displace or defer construction of conventional peaking units.

  12. Small Wind Electric Systems: A North Carolina Consumer's Guide

    Energy Technology Data Exchange (ETDEWEB)

    2005-03-01

    Small Wind Electric Systems: A North Carolina Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  13. Offshore wind resources at Danish measurement sites

    Energy Technology Data Exchange (ETDEWEB)

    Barthelmie, R J; Courtney, M S; Lange, B; Nielsen, M; Sempreviva, A M [Risoe National Lab., Dept. of Wind Energy and Atmospheric Physics, Roskilde (Denmark); Svenson, J; Olsen, F [SEAS, Haslev (Denmark); Christensen, T [Elsamprojekt, Fredericia (Denmark)

    1999-03-01

    In order to characterise wind and turbulence characteristics at prospective offshore wind energy sites, meteorological observations from a number of purpose-built offshore monitoring sites have been analyzed and compared with long wind speed time series. New analyses have been conducted on the data sets focussing on meteorology, turbulence, extreme winds and wind and wave interactions. Relationships between wind speed, turbulence and fetch are highly complex. Minimum turbulence intensity offshore is associated with wind speeds of about 12 m/s. At lower wind speeds, stability effects are important while at higher winds speeds wind and wave interactions appear to dominate. On average, turbulence intensity offshore at 48 m height is approximately 0.08 if no coastal effects are present. However, the effect of the coastal discontinuity persists in wind speed and turbulence characteristics for considerable distances offshore. The majority of the adjustment of appears to occur within 20 km of the coast. (au)

  14. Combined wind, hydropower and photovoltaic systems for generation of electric power and control of water resources

    International Nuclear Information System (INIS)

    Abid, M.; Karimov, K.S.; Akhmedov, K.M.

    2011-01-01

    In this paper the present day energy consumption and potentialities of utilization of wind- and hydropower resources in some Central and Southern Asian Republics, in particular, in the Republic of Tajikistan, Kyrgyzstan and Pakistan are presented. The maximum consumption of electric power is observed in winter time when hydropower is the minimum, but wind power is the maximum. At the same time water is needed mostly in summer time for irrigation and in winter time for generation of electric power. This results in conflicts between countries that utilize water mostly for irrigation and those which use water for generation of electric power. It is proposed that the utilization of water with the supplement of wind and solar energy will facilitate the proper and efficient management of water resources in Central Asia. In the future in Tajikistan, wind power systems with a capacity of 30-100 MW and more will be installed, providing power balance of the country in winter; hence saving water in reservoirs, especially in drought years. This will provide the integration of electricity generated by wind, hydroelectric power and photovoltaic system in the unified energy system of the country. (author)

  15. SAT-WIND project. Final report[Winds from satellites for offshore and coastal wind energy mapping and wind-indexing

    Energy Technology Data Exchange (ETDEWEB)

    Hasager, C.B.; Astrup, P.; Nielsen, M. (and others)

    2007-04-15

    The SAT-WIND project 'Winds from satellites for offshore and coastal wind energy mapping and wind-indexing' was a research project funded by STVF/DSF in the years 2003 to 2006 (Sagsnr. 2058-03-0006). The goal of the project was to verify the applicability of satellite wind maps derived from passive microwave, altimeter, scatterometer and imaging Synthetic Aperture Radar (SAR) technologies for wind energy tools for wind resources and wind-indexing. The study area was the Danish Seas including the North Sea, interior seas and the Baltic Sea. The report describes technical details on the satellite data sources including: 1) passive microwave (SSM/I, AMSR-E), 2) passive microwave polarimetric (WindSat), 3) scatterometer (ERS, QuikSCAT, Midori-2 and NSCAT), 4) altimeter (ERS, Topex, Poseidon, GFO-1, Jason-1), 5) SAR (ERS, Envisat). The SAR wind maps were treated in S-WAsP developed by Risoe National Laboratory in cooperation with GRAS A/S in the innovative project SAT-WIND-SMV (Sagsnr. 2104-05-0084) in the years 2005 and 2006 in parallel with SAT-WIND. The results from the SAT-WIND project are presented. These include ocean wind statistics, offshore wind resource estimates and comparison results for wind-indexing. (au)

  16. SAT-WIND project. Final report[Winds from satellites for offshore and coastal wind energy mapping and wind-indexing

    Energy Technology Data Exchange (ETDEWEB)

    Hasager, C B; Astrup, P; Nielsen, M [and others

    2007-04-15

    The SAT-WIND project 'Winds from satellites for offshore and coastal wind energy mapping and wind-indexing' was a research project funded by STVF/DSF in the years 2003 to 2006 (Sagsnr. 2058-03-0006). The goal of the project was to verify the applicability of satellite wind maps derived from passive microwave, altimeter, scatterometer and imaging Synthetic Aperture Radar (SAR) technologies for wind energy tools for wind resources and wind-indexing. The study area was the Danish Seas including the North Sea, interior seas and the Baltic Sea. The report describes technical details on the satellite data sources including: 1) passive microwave (SSM/I, AMSR-E), 2) passive microwave polarimetric (WindSat), 3) scatterometer (ERS, QuikSCAT, Midori-2 and NSCAT), 4) altimeter (ERS, Topex, Poseidon, GFO-1, Jason-1), 5) SAR (ERS, Envisat). The SAR wind maps were treated in S-WAsP developed by Risoe National Laboratory in cooperation with GRAS A/S in the innovative project SAT-WIND-SMV (Sagsnr. 2104-05-0084) in the years 2005 and 2006 in parallel with SAT-WIND. The results from the SAT-WIND project are presented. These include ocean wind statistics, offshore wind resource estimates and comparison results for wind-indexing. (au)

  17. Wind resource assessment handbook: Fundamentals for conducting a successful monitoring program

    International Nuclear Information System (INIS)

    Bailey, B.H.; McDonald, S.L.; Bernadett, D.W.; Markus, M.J.; Elsholz, K.V.

    1997-01-01

    This handbook presents industry-accepted guidelines for planning and conducting a wind resource measurement program to support a wind energy feasibility initiative. These guidelines, which are detailed and highly technical, emphasize the tasks of selecting, installing, and operating wind measurement equipment, as well as collecting and analyzing the associated data, once one or more measurement sites are located. The handbook's scope encompasses state-of-the-art measurement and analysis techniques at multiple heights on tall towers (e.g., 40 m) for a measurement duration of at least one year. These guidelines do not represent every possible method of conducting a quality wind measurement program, but they address the most important elements based on field-proven experience. The intended audience for this handbook is any organization or individual who desires the planning framework and detailed procedures for conducting a formally structured wind measurement program. Personnel from the management level to field technicians will find this material applicable. The organizational aspects of a measurement program, including the setting of clear program objectives and designing commensurate measurement and quality assurance plans, all of which are essential to ensuring the program's successful outcome, are emphasized. Considerable attention is also given to the details of actually conducting the measurement program in its many aspects, from selecting instrumentation that meets minimum performance standards to analyzing and reporting on the collected data. 5 figs., 15 tabs

  18. U.S. Department of Energy Regional Resource Centers Report: State of the Wind Industry in the Regions

    Energy Technology Data Exchange (ETDEWEB)

    Baranowski, Ruth [National Renewable Energy Lab. (NREL), Golden, CO (United St; Oteri, Frank [National Renewable Energy Lab. (NREL), Golden, CO (United St; Baring-Gould, Ian [National Renewable Energy Lab. (NREL), Golden, CO (United St; Tegen, Suzanne [National Renewable Energy Lab. (NREL), Golden, CO (United St

    2016-03-01

    The wind industry and the U.S. Department of Energy (DOE) are addressing technical challenges to increasing wind energy's contribution to the national grid (such as reducing turbine costs and increasing energy production and reliability), and they recognize that public acceptance issues can be challenges for wind energy deployment. Wind project development decisions are best made using unbiased information about the benefits and impacts of wind energy. In 2014, DOE established six wind Regional Resource Centers (RRCs) to provide information about wind energy, focusing on regional qualities. This document summarizes the status and drivers for U.S. wind energy development on regional and state levels. It is intended to be a companion to DOE's 2014 Distributed Wind Market Report, 2014 Wind Technologies Market Report, and 2014 Offshore Wind Market and Economic Analysis that provide assessments of the national wind markets for each of these technologies.

  19. A Novel Wind Speed Forecasting Model for Wind Farms of Northwest China

    Science.gov (United States)

    Wang, Jian-Zhou; Wang, Yun

    2017-01-01

    Wind resources are becoming increasingly significant due to their clean and renewable characteristics, and the integration of wind power into existing electricity systems is imminent. To maintain a stable power supply system that takes into account the stochastic nature of wind speed, accurate wind speed forecasting is pivotal. However, no single model can be applied to all cases. Recent studies show that wind speed forecasting errors are approximately 25% to 40% in Chinese wind farms. Presently, hybrid wind speed forecasting models are widely used and have been verified to perform better than conventional single forecasting models, not only in short-term wind speed forecasting but also in long-term forecasting. In this paper, a hybrid forecasting model is developed, the Similar Coefficient Sum (SCS) and Hermite Interpolation are exploited to process the original wind speed data, and the SVM model whose parameters are tuned by an artificial intelligence model is built to make forecast. The results of case studies show that the MAPE value of the hybrid model varies from 22.96% to 28.87 %, and the MAE value varies from 0.47 m/s to 1.30 m/s. Generally, Sign test, Wilcoxon's Signed-Rank test, and Morgan-Granger-Newbold test tell us that the proposed model is different from the compared models.

  20. Meteorological aspects of siting large wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Hiester, T.R.; Pennell, W.T.

    1981-01-01

    This report, which focuses on the meteorological aspects of siting large wind turbines (turbines with a rated output exceeding 100 kW), has four main goals. The first is to outline the elements of a siting strategy that will identify the most favorable wind energy sites in a region and that will provide sufficient wind data to make responsible economic evaluations of the site wind resource possible. The second is to critique and summarize siting techniques that were studied in the Department of Energy (DOE) Wind Energy Program. The third goal is to educate utility technical personnel, engineering consultants, and meteorological consultants (who may have not yet undertaken wind energy consulting) on meteorological phenomena relevant to wind turbine siting in order to enhance dialogues between these groups. The fourth goal is to minimize the chances of failure of early siting programs due to insufficient understanding of wind behavior.

  1. A Joint Evaluation of the Wind and Wave Energy Resources Close to the Greek Islands

    Directory of Open Access Journals (Sweden)

    Daniel Ganea

    2017-06-01

    Full Text Available The objective of this work is to analyze the wind and wave energy potential in the proximity of the Greek islands. Thus, by evaluating the synergy between wind and waves, a more comprehensive picture of the renewable energy resources in the target area is provided. In this study, two different data sources are considered. The first data set is provided by the European Centre for Medium-Range Weather Forecasts (ECMWF through the ERA-Interim project and covers an 11-year period, while the second data set is Archiving, Validation and Interpretation of Satellite Oceanographic data (AVISO and covers six years of information. Using these data, parameters such as wind speed, significant wave height (SWH and mean wave period (MWP are analyzed. The following marine areas are targeted: Ionian Sea, Aegean Sea, Sea of Crete, Libyan Sea and Levantine Sea, near the coastal environment of the Greek islands. Initially, 26 reference points were considered. For a more detailed analysis, the number of reference points was narrowed down to 10 that were considered more relevant. Since in the island environments the resources are in general rather limited, the proposed work provides some outcomes concerning the wind and wave energy potential and the synergy between these two natural resources in the vicinity of the Greek islands. From the analysis performed, it can be noticed that the most energetic wind conditions are encountered west of Cios Island, followed by the regions east of Tinos and northeast of Crete. In these locations, the annual average values of the wind power density (Pwind are in the range of 286–298.6 W/m2. Regarding the wave power density (Pwave, the most energetic locations can be found in the vicinity of Crete, north, south and southeast of the island. There, the wave energy potential is in the range of 2.88–2.99 kW/m.

  2. 78 FR 15718 - Iberdrola Renewables, Inc. PacifiCorp NextEra Energy Resources, LLC Invenergy Wind North America...

    Science.gov (United States)

    2013-03-12

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. EL11-44-006] Iberdrola Renewables, Inc. PacifiCorp NextEra Energy Resources, LLC Invenergy Wind North America LLC Horizon Wind Energy LLC v. Bonneville Power Administration; Notice of Filing Take notice that on March 1, 2013...

  3. Assessment of wind resources and annual energy production of wind farms

    DEFF Research Database (Denmark)

    the last 17 years. In Denmark the plan is to increase to 50% share of total electricity consumption in 2020 compared to 26% in 2011. In EU this was 6.3% in 2011. In EU new installed wind power was 9 GW and 0.8 GW, onshore and offshore, respectively, in 2011. The total capacity in Europe is 96 GW......Wind energy provides a significant share of EU’s renewable energy source. It is anticipated in the European Commission (EC), the International Energy Agency (IEA), and the European Wind Energy Association (EWEA) that wind energy expands further. Wind energy has had an annual growth of 15.6% during...

  4. Wind Resource Assessment and Requested Wind Turbine Recommendations

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Ken [Municipal Civil Corporation, Gas City, IN (United States); Wolar, John [Municipal Civil Corporation, Gas City, IN (United States)

    2012-10-22

    Alternate Energy Solutions, Inc. (“AESWR”) was engaged by the Town of Brookston (“Brookston”) to assemble, erect and maintain one 60 m XHD meteorological tower manufactured by NRG Systems, Inc.; for monitoring, recording and evaluating collected wind data. It is the opinion of AESWR staff that study results support the development of a wind turbine project at the Bol Family Farm provided: a) additional land is leased for the project; b) project construction costs are controlled; and c) a prudent power purchase agreement is negotiated with a power take-off entity. We believe that a project having an aggregate nameplate rating sized from 6.0 MW to 20 MW would be appropriate for this location. We recommend 100-125 acres of land per installed MW be used as a general rule for acquiring wind energy land lease agreements, total land lease holdings to be acquired would then approach 750 acres to 2,500 acres.

  5. The role of energy storage in accessing remote wind resources in the Midwest

    International Nuclear Information System (INIS)

    Lamy, Julian; Azevedo, Inês L.; Jaramillo, Paulina

    2014-01-01

    Replacing current generation with wind energy would help reduce the emissions associated with fossil fuel electricity generation. However, integrating wind into the electricity grid is not without cost. Wind power output is highly variable and average capacity factors from wind farms are often much lower than conventional generators. Further, the best wind resources with highest capacity factors are often located far away from load centers and accessing them therefore requires transmission investments. Energy storage capacity could be an alternative to some of the required transmission investment, thereby reducing capital costs for accessing remote wind farms. This work focuses on the trade-offs between energy storage and transmission. In a case study of a 200 MW wind farm in North Dakota to deliver power to Illinois, we estimate the size of transmission and energy storage capacity that yields the lowest average cost of generating and delivering electricity ($/MW h) from this farm. We find that transmission costs must be at least $600/MW-km and energy storage must cost at most $100/kW h in order for this application of energy storage to be economical. - Highlights: • We evaluate the break-even cost of energy storage to replace transmission. • We focus on a wind farm in North Dakota that must deliver power to Illinois. • Energy storage capital costs must be less than $100/kW h. • Transmission capital costs must be greater than $600/MW-km

  6. Endurance Wind Power : practical insights into small wind

    International Nuclear Information System (INIS)

    Hicks, D.

    2008-01-01

    This presentation discussed practical issues related to purchasing and installing small wind turbines in Canada. Wind power capacity can be estimated by looking at provincial wind maps as well as by seeking wind data at local airports. Wind resources are typically measured at heights of between 20 meters and 50 m. The height of a wind turbine tower can significantly increase the turbine's wind generating capacity. Turbine rotors should always be placed 30 feet higher than obstacles within 500 feet. Many provinces have now mandated utilities to accept renewable energy resources from grid-connected wind energy plants. Net billing systems are used to determine the billing relationship between power-producing consumers and the utilities who will buy the excess power and sell it to other consumers. Utilities are not yet mandated to purchase excess power, and it is likely that federal and provincial legislation will be needed to ensure that net billing systems continue to grow. Many Canadian municipalities have no ordinances related to wind turbine placements. Consumers interested in purchasing small wind turbines should ensure that the turbine has been certified by an accredited test facility and has an adequate safety system. The noise of the turbine as well as its power performance in relation to the purchaser's needs must also be considered. It was concluded that small wind turbines can provide a means for electricity consumers to reduce their carbon footprint and hedge against the inflationary costs of fossil-fuelled energy resources. tabs., figs

  7. Analytical group decision making in natural resources: methodology and application

    Science.gov (United States)

    Daniel L. Schmoldt; David L. Peterson

    2000-01-01

    Group decision making is becoming increasingly important in natural resource management and associated scientific applications, because multiple values are treated coincidentally in time and space, multiple resource specialists are needed, and multiple stakeholders must be included in the decision process. Decades of social science research on decision making in groups...

  8. Intermittent Smoothing Approaches for Wind Power Output: A Review

    Directory of Open Access Journals (Sweden)

    Muhammad Jabir

    2017-10-01

    Full Text Available Wind energy is one of the most common types of renewable energy resource. Due to its sustainability and environmental benefits, it is an emerging source for electric power generation. Rapid and random changes of wind speed makes it an irregular and inconsistent power source when connected to the grid, causing different technical problems in protection, power quality and generation dispatch control. Due to these problems, effective intermittent smoothing approaches for wind power output are crucially needed to minimize such problems. This paper reviews various intermittent smoothing approaches used in smoothing the output power fluctuations caused by wind energy. Problems associated with the inclusion of wind energy resources to grid are also briefly reviewed. From this review, it has been found that battery energy storage system is the most suitable and effective smoothing approach, provided that an effective control strategy is available for optimal utilization of battery energy system. This paper further demonstrates different control strategies built for battery energy storage system to obtain the smooth output wind power.

  9. A Comparison of Wind Flow Models for Wind Resource Assessment in Wind Energy Applications

    Directory of Open Access Journals (Sweden)

    Mathieu Landry

    2012-10-01

    Full Text Available The objective of this work was to assess the accuracy of various coupled mesoscale-microscale wind flow modeling methodologies for wind energy applications. This is achieved by examining and comparing mean wind speeds from several wind flow modeling methodologies with observational measurements from several 50 m met towers distributed across the study area. At the mesoscale level, with a 5 km resolution, two scenarios are examined based on the Mesoscale Compressible Community Model (MC2 model: the Canadian Wind Energy Atlas (CWEA scenario, which is based on standard input data, and the CWEA High Definition (CWEAHD scenario where high resolution land cover input data is used. A downscaling of the obtained mesoscale wind climate to the microscale level is then performed, where two linear microscale models, i.e., MsMicro and the Wind Atlas Analysis and Application Program (WAsP, are evaluated following three downscaling scenarios: CWEA-WAsP, CWEA-MsMicro and CWEAHD-MsMicro. Results show that, for the territory studied, with a modeling approach based on the MC2 and MsMicro models, also known as Wind Energy Simulation Toolkit (WEST, the use of high resolution land cover and topography data at the mesoscale level helps reduce modeling errors for both the mesoscale and microscale models, albeit only marginally. At the microscale level, results show that the MC2-WAsP modeling approach gave substantially better results than both MC2 and MsMicro modeling approaches due to tweaked meso-micro coupling.

  10. Wind Ressources in Complex Terrain investigated with Synchronized Lidar Measurements

    Science.gov (United States)

    Mann, J.; Menke, R.; Vasiljevic, N.

    2017-12-01

    The Perdigao experiment was performed by a number of European and American universities in Portugal 2017, and it is probably the largest field campaign focussing on wind energy ressources in complex terrain ever conducted. 186 sonic anemometers on 50 masts, 20 scanning wind lidars and a host of other instruments were deployed. The experiment is a part of an effort to make a new European wind atlas. In this presentation we investigate whether scanning the wind speed over ridges in this complex terrain with multiple Doppler lidars can lead to an efficient mapping of the wind resources at relevant positions. We do that by having pairs of Doppler lidars scanning 80 m above the ridges in Perdigao. We compare wind resources obtained from the lidars and from the mast-mounted sonic anemometers at 80 m on two 100 m masts, one on each of the two ridges. In addition, the scanning lidar measurements are also compared to profiling lidars on the ridges. We take into account the fact that the profiling lidars may be biased due to the curvature of the streamlines over the instrument, see Bingol et al, Meteorolog. Z. vol. 18, pp. 189-195 (2009). We also investigate the impact of interruptions of the lidar measurements on the estimated wind resource. We calculate the relative differences of wind along the ridge from the lidar measurements and compare those to the same obtained from various micro-scale models. A particular subject investigated is how stability affects the wind resources. We often observe internal gravity waves with the scanning lidars during the night and we quantify how these affect the relative wind speed on the ridges.

  11. Anholt offshore wind farm winds investigated from satellite images

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Badger, Merete; Volker, Patrick

    , i.e. before the wind farm was constructed. Based on these data the wind resource is estimated. Concurrent Sentinel-1 SAR data and available SCADA and lidar data, kindly provided by DONG Energy and partners, for the period January 2013 to June 2015 account for ~70 images, while ~300 images...... are available for Sentinel-1 from July 2015 to February 2017. The Sentinel-1 wind maps are investigated for wind farm wake effects. Furthermore the results on wind resources and wakes are compared to the SCADA and model results from WRF, Park, Fuga and RANS models....

  12. Off-shore Wind Atlas of the Central Aegean Sea: A simple comparison of NCEP/NCAR RE-analysis data, QuickSCAT and ENVISAT Synthetic Aperture Radar (SAR) by use of Wind Atlas Method

    DEFF Research Database (Denmark)

    Bingöl, Ferhat; Hasager, Charlotte Bay; Karagali, Ioanna

    2012-01-01

    model results). Unfortunately all of these methods are still under development and do not provide data acceptable for bankable wind assessment reports. On the other hand, they give good indications of the geographical distribution of the wind resources and that is very useful for decision making...... to high costs, but with the new developments in floating turbine design, it seems that offshore wind parks in deep waters will also be a possibility in the future. Whether on-shore or offshore, the first step of a site assessment is to estimate the wind resources. Usually well-known conventional methods...... are used to produce estimates of wind resources by means of at least one year data from a single or multiple points on the terrain. This criterion is dicult to satisfy in offshore locations where measurements are costly and sparse. Therefore other methods are required (e.g satellite imagery or reanalysis...

  13. Assessing risk to birds from industrial wind energy development via paired resource selection models.

    Science.gov (United States)

    Miller, Tricia A; Brooks, Robert P; Lanzone, Michael; Brandes, David; Cooper, Jeff; O'Malley, Kieran; Maisonneuve, Charles; Tremblay, Junior; Duerr, Adam; Katzner, Todd

    2014-06-01

    When wildlife habitat overlaps with industrial development animals may be harmed. Because wildlife and people select resources to maximize biological fitness and economic return, respectively, we estimated risk, the probability of eagles encountering and being affected by turbines, by overlaying models of resource selection for each entity. This conceptual framework can be applied across multiple spatial scales to understand and mitigate impacts of industry on wildlife. We estimated risk to Golden Eagles (Aquila chrysaetos) from wind energy development in 3 topographically distinct regions of the central Appalachian Mountains of Pennsylvania (United States) based on models of resource selection of wind facilities (n = 43) and of northbound migrating eagles (n = 30). Risk to eagles from wind energy was greatest in the Ridge and Valley region; all 24 eagles that passed through that region used the highest risk landscapes at least once during low altitude flight. In contrast, only half of the birds that entered the Allegheny Plateau region used highest risk landscapes and none did in the Allegheny Mountains. Likewise, in the Allegheny Mountains, the majority of wind turbines (56%) were situated in poor eagle habitat; thus, risk to eagles is lower there than in the Ridge and Valley, where only 1% of turbines are in poor eagle habitat. Risk within individual facilities was extremely variable; on average, facilities had 11% (SD 23; range = 0-100%) of turbines in highest risk landscapes and 26% (SD 30; range = 0-85%) of turbines in the lowest risk landscapes. Our results provide a mechanism for relocating high-risk turbines, and they show the feasibility of this novel and highly adaptable framework for managing risk of harm to wildlife from industrial development. © 2014 Society for Conservation Biology.

  14. Avian Monitoring and Risk Assessment at the Tehachapi Pass Wind Resource Area; Period of Performance: October 2, 1996--May 27, 1998

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, R.; Neumann, N.; Tom, J.; Erickson, W. P.; Strickland, M. D.; Bourassa, M.; Bay, K. J.; Sernka, K. J.

    2004-09-01

    Observations of dead raptors at the Altamont Pass Wind Resource Area triggered concerns on the parts of regulatory agencies, environmental/conservation groups, wildlife resource agencies, and wind and electric utility industries about possible impacts to birds from wind energy development. Bird fatality rates observed at most wind projects are not currently considered significant to individual bird species populations. Although many bird species have observed fatalities, raptors have received the most attention. The primary objective of this study was to estimate and compare bird utilization, fatality rates, and collision risk indices among factors such as bird taxonomic groups, turbine types, and turbine locations within the operating wind plant in the Tehachapi Pass WRA, in south-central California between October 1996 and May 1998.

  15. Wind energy

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This chapter discusses the role wind energy may have in the energy future of the US. The topics discussed in the chapter include historical aspects of wind energy use, the wind energy resource, wind energy technology including intermediate-size and small wind turbines and intermittency of wind power, public attitudes toward wind power, and environmental, siting and land use issues

  16. Analysis of Ideal Towers for Tall Wind Applications

    Energy Technology Data Exchange (ETDEWEB)

    Dykes, Katherine L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Damiani, Rick R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Roberts, Joseph O [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Lantz, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-01-12

    Innovation in wind turbine tower design is of significant interest for future development of wind power plants. First, wind turbine towers account for a large portion of overall capital expenditures for wind power projects. Second, for low wind-resource regions of the world, the use of low-cost tall-tower technology has the potential to open new markets for development. This study investigates the relative potential of various tower configurations in terms of mass and cost. For different market applications and hub heights, idealized tall towers are designed and compared. The results show that innovation in wind turbine controls makes reaching higher hub heights with current technology economically viable. At the same time, new technologies hold promise for reducing tower costs as these technologies mature and hub heights reach twice the current average.

  17. Determining the impact of wind on system costs via the temporal patterns of load and wind generation

    International Nuclear Information System (INIS)

    Davis, Clay D.; Gotham, Douglas J.; Preckel, Paul V.; Liu, Andrew L.

    2013-01-01

    Ambitious targets have been set for expanding electricity generation from renewable sources, including wind. Expanding wind power impacts needs for other electricity generating resources. As states plan for increasing levels of wind generation in their portfolio of generation resources it is important to consider how this intermittent resource impacts the need for other generation resources. A case study for Indiana estimates the value of wind capacity and demonstrates how to optimize its level and the levels of other generation resources. Changes are driven by temporal patterns of wind power output and load. System wide impacts are calculated for energy, capacity, and costs under multiple wind expansion scenarios which highlight the geographic characteristics of a systems portfolio of wind generation. The impacts of carbon prices, as proposed in the Bingaman Bill, are considered. Finally, calculations showing the effect increasing levels of wind generation will have on end use Indiana retail rates are included. - Highlights: • We estimate the value of wind capacity. • We determine wind generation's impact on the optimal mix of non-wind generation. • Optimal levels of wind and non-wind generation are determined. • We consider the impact of a carbon price on the optimal mix of resources. • The impact of additional wind capacity on Indiana residential rates is calculated

  18. Wind energy: A way of improving life standards and making possible the development of those in need

    International Nuclear Information System (INIS)

    Estevan, E.; Mattio, H.

    1991-01-01

    This presentation is based on a video showing the implementation and utilization of wind pumps in Argentina. The re is a large potential for wind energy systems in Argentina. Although the conditions are very favourable, the use of wind energy is not really taking off. One of the reasons is the availability of other energy sources. Secondly there is a lack of political will. A brief overview is given of wind and water resources in Argentina. Also attention is paid to the history and present status of the use of wind energy, and the institutional aspects. Finally information is presented on the Yala Laubat project, which is part of the program for the application of non-conventional energy in rural villages

  19. The Use of Reanalysis Data for Wind Resource Assessment at the National Renewable Energy Laboratory

    International Nuclear Information System (INIS)

    Elliott, D.; Schwartz, M.; George, R.

    1999-01-01

    An important component of the National Renewable Energy Laboratory wind resource assessment methodology is the use of available upper-air data to construct detailed vertical profiles for a study region. Currently, the most useful upper-air data for this type of analysis are archived observations from approximately 1800 rawinsonde and pilot balloon stations worldwide. However, significant uncertainty exists in the accuracy of the constructed profiles for many regions. The United States Reanalysis Data Set, recently created by the National Center for Atmospheric Research and the National Centers for Environmental Prediction, has the potential to improve the quality of the vertical profiles. The initial evaluation of the usefulness of the Reanalysis data for wind resource assessment consisted of contrasting reanalysis-derived vertical profiles of the wind characteristics to those generated from upper-air observations for comparable locations. The results indicate that, while reanalysis data can be substituted for upper-air observation data in the assessment methodology for areas of the world where observation data are limited, enough discrepancies with observation data have been noticed to warrant further studies

  20. Application of Spatial Models in Making Location Decisions of Wind Power Plant in Poland

    Science.gov (United States)

    Płuciennik, Monika; Hełdak, Maria; Szczepański, Jakub; Patrzałek, Ciechosław

    2017-10-01

    In this paper,we explore the process of making decisions on the location of wind power plants in Poland in connection with a gradually increasing consumption of energy from renewable sources and the increase of impact problems of such facilities. The location of new wind power plants attracts much attention, and both positive and negative publicity. Visualisations can be of assistance when choosing the most advantageous location for a plant, as three-dimensional variants of the facility to be constructed can be prepared. This work involves terrestrial laser scanning of an existing wind power plant and 3D modelling followed by. The model could be subsequently used in visualisation of real terrain, with special purpose in local land development plan. This paper shows a spatial model of a wind power plant as a new element of a capital investment process in Poland. Next, we incorporate the model into an undeveloped site, intended for building a wind farm, subject to the requirements for location of power plants.

  1. Wind resource and plant output data sets for wind integration studies

    Energy Technology Data Exchange (ETDEWEB)

    Frank, Jaclyn D.; Manobianco, John; Alonge, Charles J.; Brower, Michael C. [AWS Truepower, Albany, NY (United States)

    2010-07-01

    One of the first step towards understanding the impact of increasing penetrations of wind is developing data sets of wind power output over large regions. To facilitate the development of these data sets, AWS Truepower (AWST) generated wind speeds over multiple years (2-3) using the Mesoscale Atmospheric Simulation System (MASS). These simulations were performed with high spatial resolution (1-2 km) to capture the wind flows over each area of interest. Output was saved in 10-minute interval to capture variations in wind speed so that plant output could be analyzed against utility load and system operations. This paper will describe the methodology of mesoscale modeling, site selection, conversion to power, and downscaling to high frequency output. Additionally, the generation of synthetic forecasts will be discussed. The validation results from recent studies in the eastern United States and Hawaii will be highlighted. (orig.)

  2. Assessment of Off-shore Wind Energy Resource in China using QuikSCAT Satellite data and SAR Satellite Images

    DEFF Research Database (Denmark)

    Xiuzhi, Zhang; Yanbo, Shen; Jingwei, Xu

    2010-01-01

    From August 2008 to August 2009, the project ‘Off-Shore Wind Energy Resource Assessment and Feasibility Study of Off-Shore Wind Farm Development in China’ was carried out by China Meteorological Administration (CMA), which was funded by the EU-China Energy and Environment Programme (EEP). As one ...

  3. SOCIAL AND ECONOMIC IMPACTS OF WIND POWER IN CORELATION WITH THE FINANCIAL CRISES

    Directory of Open Access Journals (Sweden)

    Cucos Alina Florentina

    2011-12-01

    Full Text Available Given the present day and age we live in, it is vital that the world considers the various natural resources available to us and how to best make use of them. Furthermore, it is imperative nowadays to look at the many environmentally friendly energy sources which will reduce the ill effects of global warming and provide a host of economic and social benefits too. One such beneficial resource is wind and the consequent conversion of wind energy into electricity. In fact, the advantages of wind energy are so immense that even the government has begun promoting it. Since generating electricity from wind doesn't emit any green house gases or produce any particulate emissions, it massively reduces the rate of global climate change, and at the same time doesn't contaminate our water resources such as lakes and reservoir.Wind energy provides security and stability in the national consumer energy market. By reducing a nations dependency on foreign fossil fuels, such as coal and natural gas, spikes in fossil fuel costs or other supply disruptions will not have as much of an adverse impact on the national economy. Also the price of wind energy is relatively stable because there are no fuel costs, which is a major operating expense for most coal and gas fired electric generation facilities. Although wind farms occupy large swaths of land, wind turbine towers themselves take up less space, only a few meters at their base. This leaves space to utilize the land around the turbine tower for several other purposes, such as ranching or agriculture. The application of advanced technologies has succeeded in making the conversion of wind energy much more resourceful and well-organized. Furthermore, wind is a proven clean, free and renewable form of energy that preserves our natural resources. Wind energy conserves water resources as wind farms virtually require no cooling, as opposed to natural gas, coal and nuclear power plants that require a tremendous amount of

  4. Wind energy resources assessment for Yanbo, Saudi Arabia

    International Nuclear Information System (INIS)

    Rehman, Shafiqur

    2004-01-01

    The paper presents long term wind data analysis in terms of annual, seasonal and diurnal variations at Yanbo, which is located on the west coast of Saudi Arabia. The wind speed and wind direction hourly data for a period of 14 years between 1970 and 1983 is used in the analysis. The analysis showed that the seasonal and diurnal pattern of wind speed matches the electricity load pattern of the location. Higher winds of the order of 5.0 m/s and more were observed during the summer months of the year and noon hours (09:00 to 16:00 h) of the day. The wind duration availability is discussed as the percent of hours during which the wind remained in certain wind speed intervals or bins. Wind energy calculations were performed using wind machines of sizes 150, 250, 600, 800, 1000, 1300, 1500, 2300 and 2500 kW rated power. Wind speed is found to remain above 3.5 m/s for 69% of the time during the year at 40, 50, 60, and 80 m above ground level. The energy production analysis showed higher production from wind machines of smaller sizes than the bigger ones for a wind farm of 30 MW installed capacity. Similarly, higher capacity factors were obtained for smaller wind machines compared to larger ones

  5. Satellite winds as a tool for offshore wind resource assessment: The Great Lakes Wind Atlas

    DEFF Research Database (Denmark)

    Doubrawa, Paula; Barthelmie, Rebecca Jane; Pryor, Sara C.

    2015-01-01

    and combine all scenes into one wind speed map. QuikSCAT winds undergo a seasonal correction due to lack of data during the cold season that is based on its ratio relative to buoy time series. All processing steps reduce the biases of the individual maps relative to the buoy observed wind climates. The remote...

  6. Jet stream wind power as a renewable energy resource: little power, big impacts

    Directory of Open Access Journals (Sweden)

    L. M. Miller

    2011-11-01

    Full Text Available Jet streams are regions of sustained high wind speeds in the upper atmosphere and are seen by some as a substantial renewable energy resource. However, jet streams are nearly geostrophic flow, that is, they result from the balance between the pressure gradient and Coriolis force in the near absence of friction. Therefore, jet stream motion is associated with very small generation rates of kinetic energy to maintain the high wind velocities, and it is this generation rate that will ultimately limit the potential use of jet streams as a renewable energy resource. Here we estimate the maximum limit of jet stream wind power by considering extraction of kinetic energy as a term in the free energy balance of kinetic energy that describes the generation, depletion, and extraction of kinetic energy. We use this balance as the basis to quantify the maximum limit of how much kinetic energy can be extracted sustainably from the jet streams of the global atmosphere as well as the potential climatic impacts of its use. We first use a simple thought experiment of geostrophic flow to demonstrate why the high wind velocities of the jet streams are not associated with a high potential for renewable energy generation. We then use an atmospheric general circulation model to estimate that the maximum sustainable extraction from jet streams of the global atmosphere is about 7.5 TW. This estimate is about 200-times less than previous estimates and is due to the fact that the common expression for instantaneous wind power 12 ρv3 merely characterizes the transport of kinetic energy by the flow, but not the generation rate of kinetic energy. We also find that when maximum wind power is extracted from the jet streams, it results in significant

  7. FY 1998 Report on development of large-scale wind power generation systems. Feasibility study on development of new technologies for wind power generation, and study on local wind resource prediction model; 1998 nendo ogata furyoku hatsuden system kaihatsu seika hokokusho. Furyoku hatsuden shingijutsu kaihatsu kanosei chosa (kyokusho fukyo yosoku shuho ni kansuru chosa)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Described herein are the FY 1998 results of the study on local wind resource prediction model. The local wind resource prediction models developed so far apply the solutions based on the existing linear models (WASP and AVENU) for relatively flat terrain. These models are studied for their applicability limits. The study covers wind direction and speed patterns of the surface wind and upper winds at 3 sites in Hokkaido, Fukushima Pref. and Shizuoka Pref. The surface winds are found to be correlated with the upper winds both for wind direction and wind speed in almost all cases. Next, wind resources simulations are carried out for each of the classified weather patterns using the existing models, and the prediction errors are studied. The results show that the prediction accuracy of the existing linear models is highly dependent on inputs of observed data, and that the accuracy tends to decrease for the situations where the upper and surface wind conditions greatly differ from each other, as in the case of a land and sea breeze of thermal origin. It is also confirmed that prediction accuracy is lower on complex terrain than on flat terrain. (NEDO)

  8. The Energy Commission's notice to the Minister of Natural Resources regarding the place of wind energy in Quebec's energy portfolio

    International Nuclear Information System (INIS)

    Dumais, A.; Frayne, A.; Tanguay, F.

    1998-01-01

    In December 1997 Quebec's Minister of Natural Resources requested that the Energy Commission advise him on the quota given to wind energy in the future energy development plans of Hydro-Quebec. The Commission's report to the Minister includes 18 recommendations. Among these is a recommendation that an assessment of wind resources be conducted as soon as possible to identify suitable sites for the installation of wind turbines. A provincial program for the development of wind energy is also recommended, to be initiated by the year 2002, and that it should proceed over the next nine years to reach a target production capacity of 450 MW by the year 2011. This production would come from the yearly installation of 60 to 70 wind turbines of 750 kV. The Commission also recommended that in the initial years costs for this wind energy not exceed that of the Le Nordais project, i.e. 5.8 cents per kWh. Any additional costs incurred in the generation of wind electricity over conventional hydro power should be assumed by the Quebec Government. Conversely, in instances where the wind power is sold to consumers outside of the province, Hydro-Quebec should pay for the full cost of this power. 8 tabs., 1 appendix

  9. Analysis of Ideal Towers for Tall Wind Applications: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Dykes, Katherine L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Damiani, Rick R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Roberts, Joseph O [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Lantz, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-02-27

    Innovation in wind turbine tower design is of significant interest for future development of wind power plants. First, wind turbine towers account for a large portion of overall capital expenditures for wind power projects. Second, for low wind-resource regions of the world, the use of low-cost tall-tower technology has the potential to open new markets for development. This study investigates the relative potential of various tower configurations in terms of mass and cost. For different market applications and hub heights, idealized tall towers are designed and compared. The results show that innovation in wind turbine controls makes reaching higher hub heights with current technology economically viable. At the same time, new technologies hold promise for reducing tower costs as these technologies mature and hub heights reach twice the current average.

  10. Wind power

    International Nuclear Information System (INIS)

    Gipe, P.

    2007-01-01

    This book is a translation of the edition published in the USA under the title of ''wind power: renewable energy for home, farm and business''. In the wake of mass blackouts and energy crises, wind power remains a largely untapped resource of renewable energy. It is a booming worldwide industry whose technology, under the collective wing of aficionados like author Paul Gipe, is coming of age. Wind Power guides us through the emergent, sometimes daunting discourse on wind technology, giving frank explanations of how to use wind technology wisely and sound advice on how to avoid common mistakes. Since the mid-1970's, Paul Gipe has played a part in nearly every aspect of wind energy development from installing small turbines to promoting wind energy worldwide. As an American proponent of renewable energy, Gipe has earned the acclaim and respect of European energy specialists for years, but his arguments have often fallen on deaf ears at home. Today, the topic of wind power is cropping up everywhere from the beaches of Cape Cod to the Oregon-Washington border, and one wind turbine is capable of producing enough electricity per year to run 200 average American households. Now, Paul Gipe is back to shed light on this increasingly important energy source with a revised edition of Wind Power. Over the course of his career, Paul Gipe has been a proponent, participant, observer, and critic of the wind industry. His experience with wind has given rise to two previous books on the subject, Wind Energy Basics and Wind Power for Home and Business, which have sold over 50,000 copies. Wind Power for Home and Business has become a staple for both homeowners and professionals interested in the subject, and now, with energy prices soaring, interest in wind power is hitting an all-time high. With chapters on output and economics, Wind Power discloses how much you can expect from each method of wind technology, both in terms of energy and financial savings. The book updated models

  11. Emergy-based sustainability evaluation of wind power generation systems

    International Nuclear Information System (INIS)

    Yang, Jin; Chen, Bin

    2016-01-01

    Highlights: • Emergy is used to quantify the sustainability level of wind farms. • A GHG-based indicator is incorporated into emergetic accounting. • Possible pathways to achieve sustainable wind farm management are analyzed. - Abstract: With large-scale commercialization of wind technology, one must investigate economical and sustainable wind resource utilization. In this paper, emergy analysis is used to quantify the environmental pressure, renewability, economic efficiency, and sustainability of a typical wind power system, considering the lifetime stages from extraction and processing of raw materials and resources to the final product (electricity) via material transportation, construction and operation. Possible pathways to achieve sustainable management of wind energy supply chain were also analyzed based on scenario analysis. Results show that wind power is a promising means of substituting traditional fossil fuel-based power generation systems, with the lowest transformity of 4.49 × 10"4 sej/J, smaller environmental loading ratio of 5.84, and lower greenhouse gas emission intensity of 0.56 kg/kWh. To shed light on potential pathways to achieve sustainable and low-carbon wind energy supply chain management and make informed choices, a sensitivity analysis was done by establishing scenarios from the perspectives of material recycling and technical development. Results suggest that using new materials of lower energy intensity or recycled materials in upstream wind turbine manufacturing and construction materials are the most effective measures.

  12. Wind: new wind markets

    International Nuclear Information System (INIS)

    Cameron, A.

    2005-01-01

    The June 2005 edition of 'Wind Force 12' suggests that wind could generate 12% of global electricity requirements by 2020. But what moves a potential market into an emerging one? Geographical factors include a good wind resource, plenty of open space and the ability to get the generated electricity to end-users. A country's political framework is equally important, with fixed price systems, renewable quota systems and political will all playing a part. Some potential wind markets around the world are thought to have the conditions necessary to become key players in the wind industry. The emerging markets in countries such as Australia, Brazil, Canada, France, Japan and the Philippines are highlighted as examples

  13. Reading Makes Cents Resource Review

    Directory of Open Access Journals (Sweden)

    Lacie Ashby

    2011-12-01

    Full Text Available In today’s economy, it is more crucial than ever to focus our educational efforts on increasing financial literacy. Many young people are unskilled in managing their personal finances, yet this critical life skill will greatly affect their future economic well-being. Reading Makes Cents, developed by Penn State University, is an excellent resource to address this need. A reviewed and recommended curriculum by National 4-H, this complete, easy to use curriculum targets youth in grades 3-5 with a combination of financial literacy and reading. The curriculum explores basic money concepts such as spending, saving, and sharing money. Lessons incorporate hands-on activities and children’s literature to reinforce lesson objectives. With evaluation questions and family activities included, Reading Makes Cents is a perfect guide for educators to easily pick up and teach.

  14. Towards realistic design of wind dams: An innovative approach to enhance wind potential

    International Nuclear Information System (INIS)

    Tajeddin, Alireza; Fazelpour, Farivar

    2016-01-01

    Highlights: • An innovative methodology to increase the wind potential. • Introducing new generation of wind dams and underground wind farms. • Reducing the environmental impacts of employing conventional wind farms. • An efficient method to employ low wind speeds. - Abstract: In an attempt to discover alternative energy sources to fossil fuels which are being depleted on the increase, Renewable Energy Sources (RES) have gained considerable attention in recent years. RESs are also represented as clean sources; emitting comparatively lower Greenhouse Gases (GHGs) emissions; thus, they are climate friendly. Among RESs, wind energy is one of the most abundant and increasingly cost-competitive energy resources, and it is becoming the fastest growing source of electricity in the world. Regarding the improvement of wind power, one of the key aspects that must be considered is achieving enhanced reliability and efficiency at once. In this paper, we introduced and applied an innovative method to make wind dam which is a new approach to wind farms’ site selection for production of electricity. The proposed method enhances the wind potential by means of a natural or artificial barrier such as a hill, and is supported by analytical expressions and Computational Fluid Dynamics (CFD) models. A systematic case study has been designed at a site near the city of Tehran, Iran, and an analytical method has been applied that includes meteorological data analysis, CFD modeling along with energy power and economic assessment.

  15. Reliability benefits of dispersed wind resource development

    International Nuclear Information System (INIS)

    Milligan, M.; Artig, R.

    1998-05-01

    Generating capacity that is available during the utility peak period is worth more than off-peak capacity. Wind power from a single location might not be available during enough of the peak period to provide sufficient value. However, if the wind power plant is developed over geographically disperse locations, the timing and availability of wind power from these multiple sources could provide a better match with the utility's peak load than a single site. There are other issues that arise when considering disperse wind plant development. Singular development can result in economies of scale and might reduce the costs of obtaining multiple permits and multiple interconnections. However, disperse development can result in cost efficiencies if interconnection can be accomplished at lower voltages or at locations closer to load centers. Several wind plants are in various stages of planning or development in the US. Although some of these are small-scale demonstration projects, significant wind capacity has been developed in Minnesota, with additional developments planned in Wyoming, Iowa and Texas. As these and other projects are planned and developed, there is a need to perform analysis of the value of geographically disperse sites on the reliability of the overall wind plant.This paper uses a production-cost/reliability model to analyze the reliability of several wind sites in the state of Minnesota. The analysis finds that the use of a model with traditional reliability measures does not produce consistent, robust results. An approach based on fuzzy set theory is applied in this paper, with improved results. Using such a model, the authors find that system reliability can be optimized with a mix of disperse wind sites

  16. Risk Decision Making Model for Reservoir Floodwater resources Utilization

    Science.gov (United States)

    Huang, X.

    2017-12-01

    Floodwater resources utilization(FRU) can alleviate the shortage of water resources, but there are risks. In order to safely and efficiently utilize the floodwater resources, it is necessary to study the risk of reservoir FRU. In this paper, the risk rate of exceeding the design flood water level and the risk rate of exceeding safety discharge are estimated. Based on the principle of the minimum risk and the maximum benefit of FRU, a multi-objective risk decision making model for FRU is constructed. Probability theory and mathematical statistics method is selected to calculate the risk rate; C-D production function method and emergy analysis method is selected to calculate the risk benefit; the risk loss is related to flood inundation area and unit area loss; the multi-objective decision making problem of the model is solved by the constraint method. Taking the Shilianghe reservoir in Jiangsu Province as an example, the optimal equilibrium solution of FRU of the Shilianghe reservoir is found by using the risk decision making model, and the validity and applicability of the model are verified.

  17. Joint Evaluation of the Wave and Offshore Wind Energy Resources in the Developing Countries

    Directory of Open Access Journals (Sweden)

    Eugen Rusu

    2017-11-01

    Full Text Available The objective of the present work is to assess the global wind and wave resources in the vicinity of some developing countries by evaluating 16-year of data (2001–2016, coming from the European Centre for Medium range Weather Forecast (ECMWF. Until now, not much work has been done to evaluate and use the renewable energy sources from these marine environments. This is because most of the attention was focused on more promising areas, such as the European coasts, which are more advanced in terms of technical and economical aspects. A general perspective of the current energy market from the selected target areas is first presented, indicating at the same time the progresses that have been reported in the field of the renewable energy. Besides the spatial and seasonal variations of the marine resources considered, the results also indicate the energy potential of these coastal environments as well as the performances of some offshore wind turbines, which may operate in these regions.

  18. A GIS-assisted approach to wide-area wind resource assessment and site selection for the state of Colorado

    Energy Technology Data Exchange (ETDEWEB)

    Brower, M.C. [Brower & Company, Andover, MA (United States); Hurley, P. [RLA Consulting, Bothell, WA (United States); Simon, R. [Consulting Meteorologist, Mill Valley, CA (United States)

    1996-12-31

    This paper describes the methodology and results of a wide-area wind resource assessment and site selection in Colorado. This was the first phase in a three-part assessment and monitoring program conducted for the State of Colorado Office of Energy Conservation and several collaborating utilities. The objective of this phase was to identify up to 20 candidate sites for evaluation and possible long-term monitoring. This was accomplished using a geographic information system (GIS), which takes into account such factors as topography, existing wind resource data, locations of transmission lines, land cover, and land use. The resulting list of sites recommended for evaluation in Phase 2 of the study includes locations throughout Colorado, but most are in the eastern plains. The GIS wind siting model may be modified and updated in the future as additional information becomes available. 3 figs., 1 tab.

  19. Wind resource assessment: A three year experience

    Energy Technology Data Exchange (ETDEWEB)

    Al-Abbadi, N.M.; Alawaji, S.H.; Eugenio, N.N. [Energy Research Institute (ERI), Riyadh (Saudi Arabia)

    1997-12-31

    This paper presents the results of data collected from three different sites located in the central, northern and eastern region of Saudi Arabia. Each site is geographically and climatologically different from the others. Statistical moments and frequency distributions were generated for the wind speed and direction parameters to analyse the wind energy characteristics and its availability. The results of these statistical operations present the wind power and energy density estimates of the three sites. The data analysis presented a prospect of wind energy conversion and utilization. The annual extractable energy density is 488, 890, 599 kWh/m{sup 2} for the central, northern and eastern sites respectively. Also, the paper demonstrates the lessons learned from operating wind assessment stations installed in remote areas having different environmental characteristics.

  20. Customer Decision Support Systems: Resources for Student Decision Making

    Directory of Open Access Journals (Sweden)

    Cara Okleshen Peters, Ph.D.

    2005-07-01

    Full Text Available This paper highlights the potential of customer decision support systems (CDSS to assist students in education-related decision making. Faculty can use these resources to more effectively advise students on various elements of college life, while students can employ them to more actively participate in their own learning and improve their academic experience. This conceptual paper summarizes consumer decision support systems (CDSS concepts and presents exemplar websites students could utilize to support their education-related decision making. Finally, the authors discuss the potential benefits and drawbacks such resources engender from a student perspective and conclude with directions for future research.

  1. Evolution of wind towards wind turbine

    NARCIS (Netherlands)

    Giyanani, A.H.; Bierbooms, W.A.A.M.; Van Bussel, G.J.W.

    2015-01-01

    Remote sensing of the atmospheric variables with the use of LiDAR is a relatively new technology field for wind resource assessment in wind energy. The validation of LiDAR measurements and comparisons is of high importance for further applications of the data.

  2. Lake Michigan Offshore Wind Feasibility Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Boezaart, Arnold [GVSU; Edmonson, James [GVSU; Standridge, Charles [GVSU; Pervez, Nahid [GVSU; Desai, Neel [University of Michigan; Williams, Bruce [University of Delaware; Clark, Aaron [GVSU; Zeitler, David [GVSU; Kendall, Scott [GVSU; Biddanda, Bopi [GVSU; Steinman, Alan [GVSU; Klatt, Brian [Michigan State University; Gehring, J. L. [Michigan State University; Walter, K. [Michigan State University; Nordman, Erik E. [GVSU

    2014-06-30

    project including to: 1) test and validate floating LIDAR technology; 2) collect and access offshore wind data; 3) detect and measure bird and bat activity over Lake Michigan; 4) conduct an over water sound propagation study; 5) prepare and offer a college course on offshore energy, and; 6) collect other environmental, bathometric, and atmospheric data. Desk-top research was performed to select anchorage sites and to secure permits to deploy the buoy. The project also collected and analyzed data essential to wind industry investment decision-making including: deploying highly mobile floating equipment to gather offshore wind data; correlating offshore wind data with conventional on-shore MET tower data; and performing studies that can contribute to the advancement and deployment of offshore wind technologies. Related activities included: • Siting, permitting, and deploying an offshore floating MET facility; • Validating the accuracy of floating LWS using near shoreline cup anemometer MET instruments; • Assessment of laser pulse technology (LIDAR) capability to establish hub height measurement of wind conditions at multiple locations on Lake Michigan; • Utilizing an extended-season (9-10 month) strategy to collect hub height wind data and weather conditions on Lake Michigan; • Investigation of technology best suited for wireless data transmission from distant offshore structures; • Conducting field-validated sound propagation study for a hypothetical offshore wind farm from shoreline locations; • Identifying the presence or absence of bird and bat species near wind assessment facilities; • Identifying the presence or absence of benthic and pelagic species near wind assessment facilities; All proposed project activities were completed with the following major findings: • Floating Laser Wind Sensors are capable of high quality measurement and recordings of wind resources. The WindSentinel presented no significant operational or statistical limitations in

  3. Wind power, network congestion and hydro resource utilisation in the Norwegian power market

    International Nuclear Information System (INIS)

    Foersund, Finn; Singh, Balbir; Jensen, Trond; Larsen, Cato

    2005-01-01

    Capacity constraints in electricity networks can have important impacts on utilization of new renewable energy (RE) capacity and incumbent generation resources. Neglect of such impacts in development of RE resources can result in crowding-out of incumbent generation. This trade-off is particularly problematic if the incumbent generation also consists of renewable sources, such as hydropower in the Norwegian electricity system. This paper presents a numerical analysis of the current wind-power development plans in North Norway and their impacts on utilization of hydropower. Policy simulations in paper are conducted using a dynamic partial equilibrium model that is calibrated to reflect the structure of the Nordic power market. The paper draws conclusion and policy implications for integration of RE resources in the Norwegian power market. (Author)

  4. Wind Energy

    International Nuclear Information System (INIS)

    Rodriguez D, J.M.

    1998-01-01

    The general theory of the wind energy conversion systems is presented. The availability of the wind resource in Colombia and the ranges of the speed of the wind in those which is possible economically to use the wind turbines are described. It is continued with a description of the principal technological characteristics of the wind turbines and are split into wind power and wind-powered pumps; and its use in large quantities grouped in wind farms or in autonomous systems. Finally, its costs and its environmental impact are presented

  5. Distributed and organized decision making under resource boundedness

    International Nuclear Information System (INIS)

    Sawaragi, Tetsuo

    1994-01-01

    The coming bottleneck to be overcome in the era of the distributed and open-architectured environment will be the establishment of the rational design and coordination of the total system where multiple decision makers, problem solvers and automated machinery components coexist interacting with each other. In such an environment, they are not achieving some absolute standard of performance with unlimited amounts of resources nor with simple algorithms, but is doing as well as possible given what resources one has. In this article, we focus on the potentials of decision theory as a tool for tackling with the limited rationality under resource boundedness. First, the bottlenecks for establishing the organized and distributed decision making are summarized, and the importance of the formalization of decision activities of intelligent agents is stressed to establish an efficient and effective cooperation by distributed and organized decision making and/or problem solving. Some of the practical systems developed based on such a principle are reviewed briefly with respect to the real-time man-machine collaboration and the cooperative computational framework for the intelligent mobile robots. (author)

  6. Use of Bayesian networks classifiers for long-term mean wind turbine energy output estimation at a potential wind energy conversion site

    Energy Technology Data Exchange (ETDEWEB)

    Carta, Jose A. [Department of Mechanical Engineering, University of Las Palmas de Gran Canaria, Campus de Tafira s/n, 35017 Las Palmas de Gran Canaria, Canary Islands (Spain); Velazquez, Sergio [Department of Electronics and Automatics Engineering, University of Las Palmas de Gran Canaria, Campus de Tafira s/n, 35017 Las Palmas de Gran Canaria, Canary Islands (Spain); Matias, J.M. [Department of Statistics, University of Vigo, Lagoas Marcosende, 36200 Vigo (Spain)

    2011-02-15

    Due to the interannual variability of wind speed a feasibility analysis for the installation of a Wind Energy Conversion System at a particular site requires estimation of the long-term mean wind turbine energy output. A method is proposed in this paper which, based on probabilistic Bayesian networks (BNs), enables estimation of the long-term mean wind speed histogram for a site where few measurements of the wind resource are available. For this purpose, the proposed method allows the use of multiple reference stations with a long history of wind speed and wind direction measurements. That is to say, the model that is proposed in this paper is able to involve and make use of regional information about the wind resource. With the estimated long-term wind speed histogram and the power curve of a wind turbine it is possible to use the method of bins to determine the long-term mean energy output for that wind turbine. The intelligent system employed, the knowledgebase of which is a joint probability function of all the model variables, uses efficient calculation techniques for conditional probabilities to perform the reasoning. This enables automatic model learning and inference to be performed efficiently based on the available evidence. The proposed model is applied in this paper to wind speeds and wind directions recorded at four weather stations located in the Canary Islands (Spain). Ten years of mean hourly wind speed and direction data are available for these stations. One of the conclusions reached is that the BN with three reference stations gave fewer errors between the real and estimated long-term mean wind turbine energy output than when using two measure-correlate-predict algorithms which were evaluated and which use a linear regression between the candidate station and one reference station. (author)

  7. Use of Bayesian networks classifiers for long-term mean wind turbine energy output estimation at a potential wind energy conversion site

    International Nuclear Information System (INIS)

    Carta, Jose A.; Velazquez, Sergio; Matias, J.M.

    2011-01-01

    Due to the interannual variability of wind speed a feasibility analysis for the installation of a Wind Energy Conversion System at a particular site requires estimation of the long-term mean wind turbine energy output. A method is proposed in this paper which, based on probabilistic Bayesian networks (BNs), enables estimation of the long-term mean wind speed histogram for a site where few measurements of the wind resource are available. For this purpose, the proposed method allows the use of multiple reference stations with a long history of wind speed and wind direction measurements. That is to say, the model that is proposed in this paper is able to involve and make use of regional information about the wind resource. With the estimated long-term wind speed histogram and the power curve of a wind turbine it is possible to use the method of bins to determine the long-term mean energy output for that wind turbine. The intelligent system employed, the knowledgebase of which is a joint probability function of all the model variables, uses efficient calculation techniques for conditional probabilities to perform the reasoning. This enables automatic model learning and inference to be performed efficiently based on the available evidence. The proposed model is applied in this paper to wind speeds and wind directions recorded at four weather stations located in the Canary Islands (Spain). Ten years of mean hourly wind speed and direction data are available for these stations. One of the conclusions reached is that the BN with three reference stations gave fewer errors between the real and estimated long-term mean wind turbine energy output than when using two measure-correlate-predict algorithms which were evaluated and which use a linear regression between the candidate station and one reference station.

  8. Improved Formulation for the Optimization of Wind Turbine Placement in a Wind Farm

    Directory of Open Access Journals (Sweden)

    Zong Woo Geem

    2013-01-01

    Full Text Available As an alternative to fossil fuels, wind can be considered because it is a renewable and greenhouse gas-free natural resource. When wind power is generated by wind turbines in a wind farm, the optimal placement of turbines is critical because different layouts produce different efficiencies. The objective of the wind turbine placement problem is to maximize the generated power while minimizing the cost in installing the turbines. This study proposes an efficient optimization formulation for the optimal layout of wind turbine placements under the resources (e.g., number of turbines or budget limit by introducing corresponding constraints. The proposed formulation gave users more conveniences in considering resources and budget bounds. After performing the optimization, results were compared using two different methods (branch and bound method and genetic algorithm and two different objective functions.

  9. How Students Combine Resources to Make Conceptual Breakthroughs

    Science.gov (United States)

    Richards, A. J.; Jones, Darrick C.; Etkina, Eugenia

    2018-04-01

    We use the framework of cognitive resources to investigate how students construct understanding of a complex physics topic, namely, a photovoltaic cell. By observing students as they learn about how a solar cell functions, we identified over 60 distinct resources that learners may activate while thinking about photovoltaic cells. We classify these resources into three main types: phenomenological primitives, conceptual resources, and epistemological resources. Furthermore, we found a pattern that suggests that when students make conceptual breakthroughs they may be more likely to activate combinations of resources of different types in concert, especially if a resource from each of the three categories is used. This pattern suggests that physics instructors should encourage students to activate multiple types of prior knowledge during the learning process. This can result from instructors deliberately and explicitly connecting new knowledge to students' prior experience both in and outside the formal physics classroom, as well as allowing students to reflect metacognitively on how the new knowledge fits into their existing understanding of the natural world.

  10. Wind turbine/generator set and method of making same

    Science.gov (United States)

    Bevington, Christopher M.; Bywaters, Garrett L.; Coleman, Clint C.; Costin, Daniel P.; Danforth, William L.; Lynch, Jonathan A.; Rolland, Robert H.

    2013-06-04

    A wind turbine comprising an electrical generator that includes a rotor assembly. A wind rotor that includes a wind rotor hub is directly coupled to the rotor assembly via a simplified connection. The wind rotor and generator rotor assembly are rotatably mounted on a central spindle via a bearing assembly. The wind rotor hub includes an opening having a diameter larger than the outside diameter of the central spindle adjacent the bearing assembly so as to allow access to the bearing assembly from a cavity inside the wind rotor hub. The spindle is attached to a turret supported by a tower. Each of the spindle, turret and tower has an interior cavity that permits personnel to traverse therethrough to the cavity of the wind rotor hub. The wind turbine further includes a frictional braking system for slowing, stopping or keeping stopped the rotation of the wind rotor and rotor assembly.

  11. Group decision-making techniques for natural resource management applications

    Science.gov (United States)

    Coughlan, Beth A.K.; Armour, Carl L.

    1992-01-01

    This report is an introduction to decision analysis and problem-solving techniques for professionals in natural resource management. Although these managers are often called upon to make complex decisions, their training in the natural sciences seldom provides exposure to the decision-making tools developed in management science. Our purpose is to being to fill this gap. We present a general analysis of the pitfalls of group problem solving, and suggestions for improved interactions followed by the specific techniques. Selected techniques are illustrated. The material is easy to understand and apply without previous training or excessive study and is applicable to natural resource management issues.

  12. The Wind Integration National Dataset (WIND) toolkit (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Caroline Draxl: NREL

    2014-01-01

    Regional wind integration studies require detailed wind power output data at many locations to perform simulations of how the power system will operate under high penetration scenarios. The wind datasets that serve as inputs into the study must realistically reflect the ramping characteristics, spatial and temporal correlations, and capacity factors of the simulated wind plants, as well as being time synchronized with available load profiles.As described in this presentation, the WIND Toolkit fulfills these requirements by providing a state-of-the-art national (US) wind resource, power production and forecast dataset.

  13. Grid converters for photovoltaic and wind power systems

    CERN Document Server

    Teodorescu, Remus; Rodríguez, Pedro

    2011-01-01

    "Grid Converters for Photovoltaic and Wind Power Systems provides a comprehensive description of the control of grid converters for photovoltaic and wind power systems. The authors present a range of control methods for meeting the latest application, power quality and power conversion requirements and standards, as well as looking towards potential future control functions. Practical examples, exercises, and an accompanying website with simulation models using Matlab and Simulink environments, and PSIM software make this text a pragmatic resource for electrical engineers as well as students taking related courses"--

  14. Offshore wind power resource assessment using Oceansat-2 scatterometer data at a regional scale

    International Nuclear Information System (INIS)

    Gadad, Sanjeev; Deka, Paresh Chandra

    2016-01-01

    Highlights: • Accuracy assessment of Oceansat-2 scatterometer (OSCAT) winds by the in situ real-time ship observations for study area. • OSCAT data for two years (2011 and 2012) were used to evaluate the offshore wind power potential for the Karnataka state. • Wind speed and power atlases are developed to study the spatial distribution over study area. • 9,091 MW potential was estimated using 5 MW wind turbine in the Monopile region. • Recommend development of 10% of the estimated potential, 116% of energy deficit for 2012–13 can be met. - Abstract: In the offshore region the scarcity of in situ wind data in space proves to be a major setback for wind power potential assessments. Satellite data effectively overcomes this setback by providing continuous and total spatial coverage. The study intends to assess the offshore wind power resource of the Karnataka state, which is located on the west coast of India. Oceansat-2 scatterometer (OSCAT) wind data and GIS based methodology were adopted in the study. The OSCAT data accuracy was assessed using INCOIS Realtime All Weather Station (IRAWS) data. Wind speed maps at 10 m, 90 m and wind power density maps using OSCAT data were developed to understand the spatial distribution of winds over the study area. Bathymetric map was developed based on the available foundation types and demarking various exclusion zones to help in minimizing conflicts. The wind power generation capacity estimation performed using REpower 5 MW turbine, based on the water depth classes was found to be 9,091 MW in Monopile (0–35 m), 11,709 MW in Jacket (35–50 m), 23,689 MW in Advanced Jacket (50–100 m) and 117,681 MW in Floating (100–1000 m) foundation technology. In Indian scenario major thrust for wind farm development in Monopile region is required. Therefore as first phase of development, if 10% of the estimated potential in the region can be developed then, 116% of energy deficit for FY 2011–12 could be met. Also, up to 79

  15. Worldwide wind/diesel hybrid power system study: Potential applications and technical issues

    Energy Technology Data Exchange (ETDEWEB)

    King, W.R.; Johnson, B.L. III (Science Applications International Corp., McLean, VA (USA))

    1991-04-01

    The world market potential for wind/diesel hybrid technology is a function of the need for electric power, the availability of sufficient wind resource to support wind/diesel power, and the existence of buyers with the financial means to invest in the technology. This study includes data related to each of these three factors. This study does not address market penetration, which would require analysis of application specific wind/diesel economics. Buyer purchase criteria, which are vital to assessing market penetration, are discussed only generally. Countries were screened for a country-specific market analysis based on indicators of need and wind resource. Both developed countries and less developed countries'' (LDCs) were screened for wind/diesel market potential. Based on the results of the screening, ten countries showing high market potential were selected for more extensive market analyses. These analyses provide country-specific market data to guide wind/diesel technology developers in making design decisions that will lead to a competitive product. Section 4 presents the country-specific data developed for these analyses, including more extensive wind resource characterization, application-specific market opportunities, business conditions, and energy market characterizations. An attempt was made to identify the potential buyers with ability to pay for wind/diesel technology required to meet the application-specific market opportunities identified for each country. Additionally, the country-specific data are extended to corollary opportunities in countries not covered by the study. Section 2 gives recommendations for wind/diesel research based on the findings of the study. 86 refs.

  16. Worldwide wind/diesel hybrid power system study: Potential applications and technical issues

    Science.gov (United States)

    King, W. R.; Johnson, B. L., III

    1991-04-01

    The world market potential for wind/diesel hybrid technology is a function of the need for electric power, the availability of sufficient wind resource to support wind/diesel power, and the existence of buyers with the financial means to invest in the technology. This study includes data related to each of these three factors. This study does not address market penetration, which would require analysis of application specific wind/diesel economics. Buyer purchase criteria, which are vital to assessing market penetration, are discussed only generally. Countries were screened for a country-specific market analysis based on indicators of need and wind resource. Both developed countries and less developed countries (LDCs) were screened for wind/diesel market potential. Based on the results of the screening, ten countries showing high market potential were selected for more extensive market analyses. These analyses provide country-specific market data to guide wind/diesel technology developers in making design decisions that will lead to a competitive product. Section 4 presents the country-specific data developed for these analyses, including more extensive wind resource characterization, application-specific market opportunities, business conditions, and energy market characterizations. An attempt was made to identify the potential buyers with ability to pay for wind/diesel technology required to meet the application-specific market opportunities identified for each country. Additionally, the country-specific data are extended to corollary opportunities in countries not covered by the study. Section 2 gives recommendations for wind/diesel research based on the findings of the study.

  17. Assessment of wind energy potential in China

    Institute of Scientific and Technical Information of China (English)

    Zhu Rong; Zhang De; Wang Yuedong; Xing Xuhuang; Li Zechun

    2009-01-01

    China wind atlas was made by numerical simulation and the wind energy potential in China was calculated. The model system for wind energy resource assessment was set up based on Canadian Wind Energy Simulating Toolkit (WEST) and the simulating method was as follows. First, the weather classes were obtained depend on meteorological data of 30 years. Then, driven by the initial meteorological field produced by each weather class, the meso-scale model ran for the distribution of wind energy resources according each weather class condition one by one. Finally, averaging all the modeling output weighted by the occurrence frequency of each weather class, the annual mean distribution of wind energy resources was worked out. Compared the simulated wind energy potential with other results from several ac-tivities and studies for wind energy resource assessment, it is found that the simulated wind energy potential in mainland of China is 3 times that from the second and the third investigations for wind energy resources by CMA, and is similar to the wind energy potential obtained by NREL in Solar and Wind Energy Resource Assessment (SWERA) project. The simulated offshore wind energy potential of China seems smaller than the true value. According to the simulated results of CMA and considering lots of limited factors to wind energy development, the final conclusion can be obtained that the wind energy availability in China is 700~1 200 GW, in which 600~1 000 GW is in mainland and 100~200 GW is on offshore, and wind power will become the important part of energy composition in future.

  18. Small Wind Site Assessment Guidelines

    Energy Technology Data Exchange (ETDEWEB)

    Olsen, Tim [Advanced Energy Systems LLC, Eugene, OR (United States); Preus, Robert [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-09-01

    Site assessment for small wind energy systems is one of the key factors in the successful installation, operation, and performance of a small wind turbine. A proper site assessment is a difficult process that includes wind resource assessment and the evaluation of site characteristics. These guidelines address many of the relevant parts of a site assessment with an emphasis on wind resource assessment, using methods other than on-site data collection and creating a small wind site assessment report.

  19. Metocean Data Needs Assessment for U.S. Offshore Wind Energy

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, Bruce H. [AWS Truepower LLC., Albany, NY (United States); Filippelli, Matthew [AWS Truepower LLC., Albany, NY (United States); Baker, Matthew [AWS Truepower LLC., Albany, NY (United States)

    2015-01-01

    A potential barrier to developing offshore wind energy in the United States is the general lack of accurate information in most offshore areas about the wind resource characteristics and external metocean design conditions at the heights and depths relevant to wind turbines and their associated structures and components. Knowledge of these conditions enables specification of the appropriate design basis for wind turbine structures and components so they can withstand the loads expected over a project’s lifetime. Human safety, vessel navigation, and project construction and maintenance activities are equally tied to the metocean environment. Currently, metocean data is sparse in potential development areas and even when available, does not include the detail or quality required to make informed decisions.

  20. Accurate Short-Term Power Forecasting of Wind Turbines: The Case of Jeju Island’s Wind Farm

    OpenAIRE

    BeomJun Park; Jin Hur

    2017-01-01

    Short-term wind power forecasting is a technique which tells system operators how much wind power can be expected at a specific time. Due to the increasing penetration of wind generating resources into the power grids, short-term wind power forecasting is becoming an important issue for grid integration analysis. The high reliability of wind power forecasting can contribute to the successful integration of wind generating resources into the power grids. To guarantee the reliability of forecas...

  1. A statistical investigation of wind characteristics and wind energy potential based on the Weibull and Rayleigh models in Rwanda

    Energy Technology Data Exchange (ETDEWEB)

    Safari, Bonfils; Gasore, Jimmy [Department of Physics, National University of Rwanda, P.O. Box 117, Huye, South Province (Rwanda)

    2010-12-15

    A wind energy system converts the kinetic energy of the wind into mechanical or electrical energy that can be harnessed for practical uses and transform the economy of rural areas where access to water and electricity is very restricted and industry is almost nonexistent in most of the developing countries like Rwanda. Assessing wind power potential for a location is an imperative requirement before making a decision for the installation of windmills or a wind electric generator and evaluating plans for relating projects. The aim of the present study was to evaluate the potential of wind resource in Rwanda and to constitute a database for the users of the wind power. A time series of hourly daily measured wind speed and wind direction for the period between 1974 and 1993 on five main Rwandan meteorological stations was provided by the National Meteorology Department. Statistical methods applying Weibull and Rayleigh distribution were presented to evaluate the wind speed characteristics and the wind power potential at a height of 10 m above ground level using hourly monthly average data. Those characteristics were extrapolated for higher levels in altitude. The results give a global picture of the distribution of the wind potential in different locations of Rwanda. (author)

  2. Wind farm project economics : value of wind

    Energy Technology Data Exchange (ETDEWEB)

    Bills-Everett, T. [Mainstream Renewable Power, Toronto, ON (Canada)

    2010-07-01

    This PowerPoint presentation discussed methods of increasing the value of wind power projects. Appropriate turbine selection and layout is needed to ensure that wind resources are fully developed. Construction costs have a significant impact on project costs. The world turbine price index has not significantly fluctuated since 2006. Operating costs, and the value of wind power projects, are linked with OPEX fluctuations. Wind power projects can significantly reduce greenhouse gas (GHG) emissions. An increase in wind power capacity will reduce the overall cost of energy produced from wind power. Countries can use wind power as part of a renewable energy portfolio designed to reduce risks related to diminishing petroleum supplies. Wind power will help to ensure a global transition to renewable energy use. tabs., figs.

  3. Aeroelastic Stability Investigations for Large-scale Vertical Axis Wind Turbines

    International Nuclear Information System (INIS)

    2 P O Box 5800, Albuquerque, NM, 87185 (United States))" data-affiliation=" (Senior Member of Technical Staff, Analytical Structural Dynamics Sandia National Laboratories2 P O Box 5800, Albuquerque, NM, 87185 (United States))" >Owens, B C; 2 P O Box 5800, Albuquerque, NM, 87185 (United States))" data-affiliation=" (Principal Member of Technical Staff, Wind Energy Technologies Sandia National Laboratories2 P O Box 5800, Albuquerque, NM, 87185 (United States))" >Griffith, D T

    2014-01-01

    The availability of offshore wind resources in coastal regions, along with a high concentration of load centers in these areas, makes offshore wind energy an attractive opportunity for clean renewable electricity production. High infrastructure costs such as the offshore support structure and operation and maintenance costs for offshore wind technology, however, are significant obstacles that need to be overcome to make offshore wind a more cost-effective option. A vertical-axis wind turbine (VAWT) rotor configuration offers a potential transformative technology solution that significantly lowers cost of energy for offshore wind due to its inherent advantages for the offshore market. However, several potential challenges exist for VAWTs and this paper addresses one of them with an initial investigation of dynamic aeroelastic stability for large-scale, multi-megawatt VAWTs. The aeroelastic formulation and solution method from the BLade Aeroelastic STability Tool (BLAST) for HAWT blades was employed to extend the analysis capability of a newly developed structural dynamics design tool for VAWTs. This investigation considers the effect of configuration geometry, material system choice, and number of blades on the aeroelastic stability of a VAWT, and provides an initial scoping for potential aeroelastic instabilities in large-scale VAWT designs

  4. Aeroelastic Stability Investigations for Large-scale Vertical Axis Wind Turbines

    Science.gov (United States)

    Owens, B. C.; Griffith, D. T.

    2014-06-01

    The availability of offshore wind resources in coastal regions, along with a high concentration of load centers in these areas, makes offshore wind energy an attractive opportunity for clean renewable electricity production. High infrastructure costs such as the offshore support structure and operation and maintenance costs for offshore wind technology, however, are significant obstacles that need to be overcome to make offshore wind a more cost-effective option. A vertical-axis wind turbine (VAWT) rotor configuration offers a potential transformative technology solution that significantly lowers cost of energy for offshore wind due to its inherent advantages for the offshore market. However, several potential challenges exist for VAWTs and this paper addresses one of them with an initial investigation of dynamic aeroelastic stability for large-scale, multi-megawatt VAWTs. The aeroelastic formulation and solution method from the BLade Aeroelastic STability Tool (BLAST) for HAWT blades was employed to extend the analysis capability of a newly developed structural dynamics design tool for VAWTs. This investigation considers the effect of configuration geometry, material system choice, and number of blades on the aeroelastic stability of a VAWT, and provides an initial scoping for potential aeroelastic instabilities in large-scale VAWT designs.

  5. Analytical group decision making in natural resources: Methodology and application

    Science.gov (United States)

    Schmoldt, D.L.; Peterson, D.L.

    2000-01-01

    Group decision making is becoming increasingly important in natural resource management and associated scientific applications, because multiple values are treated coincidentally in time and space, multiple resource specialists are needed, and multiple stakeholders must be included in the decision process. Decades of social science research on decision making in groups have provided insights into the impediments to effective group processes and on techniques that can be applied in a group context. Nevertheless, little integration and few applications of these results have occurred in resource management decision processes, where formal groups are integral, either directly or indirectly. A group decision-making methodology is introduced as an effective approach for temporary, formal groups (e.g., workshops). It combines the following three components: (1) brainstorming to generate ideas; (2) the analytic hierarchy process to produce judgments, manage conflict, enable consensus, and plan for implementation; and (3) a discussion template (straw document). Resulting numerical assessments of alternative decision priorities can be analyzed statistically to indicate where group member agreement occurs and where priority values are significantly different. An application of this group process to fire research program development in a workshop setting indicates that the process helps focus group deliberations; mitigates groupthink, nondecision, and social loafing pitfalls; encourages individual interaction; identifies irrational judgments; and provides a large amount of useful quantitative information about group preferences. This approach can help facilitate scientific assessments and other decision-making processes in resource management.

  6. Climatic wind tunnel for wind engineering tasks

    Czech Academy of Sciences Publication Activity Database

    Kuznetsov, Sergeii; Pospíšil, Stanislav; Král, Radomil

    2015-01-01

    Roč. 112, 2-B (2015), s. 303-316 ISSN 1897-628X R&D Projects: GA ČR(CZ) GA14-12892S Keywords : climatic tunnel * wind tunnel * atmospheric boundary layer * flow resistance * wind tunnel contraction Subject RIV: JM - Building Engineering https://suw.biblos.pk.edu.pl/resources/i5/i6/i6/i7/i6/r56676/KuznetsovS_ClimaticWind.pdf

  7. EnviroAtlas - Annual average potential wind energy resource by 12-digit HUC for the Conterminous United States

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset shows the annual average potential wind energy resource in kilowatt hours per square kilometer per day for each 12-digit Hydrologic Unit...

  8. Sharing wind power forecasts in electricity markets: A numerical analysis

    DEFF Research Database (Denmark)

    Exizidis, Lazaros; Pinson, Pierre; Kazempour, Jalal

    2016-01-01

    In an electricity pool with significant share of wind power, all generators including conventional and wind power units are generally scheduled in a day-ahead market based on wind power forecasts. Then, a real-time market is cleared given the updated wind power forecast and fixed day......-ahead decisions to adjust power imbalances. This sequential market-clearing process may cope with serious operational challenges such as severe power shortage in real-time due to erroneous wind power forecasts in day-ahead market. To overcome such situations, several solutions can be considered such as adding...... flexible resources to the system. In this paper, we address another potential solution based on information sharing in which market players share their own wind power forecasts with others in day-ahead market. This solution may improve the functioning of sequential market-clearing process through making...

  9. Tribal Wind Assessment by the Eastern Shoshone Tribe of the Wind River Reservation

    Energy Technology Data Exchange (ETDEWEB)

    Pete, Belvin; Perry, Jeremy W.; Stump, Raphaella Q.

    2009-08-28

    The Tribes, through its consultant and advisor, Distributed Generation Systems (Disgen) -Native American Program and Resources Division, of Lakewood CO, assessed and qualified, from a resource and economic perspective, a wind energy generation facility on tribal lands. The goal of this feasibility project is to provide wind monitoring and to engage in preproject planning activities designed to provide a preliminary evaluation of the technical, economic, social and environmental feasibility of developing a sustainable, integrated wind energy plan for the Eastern Shoshone and the Northern Arapahoe Tribes, who resides on the Wind River Indian Reservation. The specific deliverables of the feasibility study are: 1) Assessments of the wind resources on the Wind River Indian Reservation 2) Assessments of the potential environmental impacts of renewable development 3) Assessments of the transmission capacity and capability of a renewable energy project 4) Established an economic models for tribal considerations 5) Define economic, cultural and societal impacts on the Tribe

  10. Carolina Offshore Wind Integration Case Study: Phases I and II Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Fallon, Christopher [Duke Energy Business Services, LLC, Charlotte, NC (United States); Piper, Orvane [Duke Energy Business Services, LLC, Charlotte, NC (United States); Hazelip, William [Duke Energy Business Services, LLC, Charlotte, NC (United States); Zhao, Yishan [Duke Energy Business Services, LLC, Charlotte, NC (United States); Salvador, Lisa [Duke Energy Business Services, LLC, Charlotte, NC (United States); Pruitt, Tom [Duke Energy Business Services, LLC, Charlotte, NC (United States); Peterson, Jeffrey [Duke Energy Business Services, LLC, Charlotte, NC (United States); Ashby, Rebecca [Duke Energy Business Services, LLC, Charlotte, NC (United States); Pierce, Bob [Duke Energy Business Services, LLC, Charlotte, NC (United States); Burner, Bob [Duke Energy Business Services, LLC, Charlotte, NC (United States); Daniel, John [ABB, Inc., Cary, NC (United States); Zhu, Jinxiang [ABB, Inc., Cary, NC (United States); Moore, Maria [ABB, Inc., Cary, NC (United States); Liu, Shu [ABB, Inc., Cary, NC (United States); Pennock, Ken [AWS Truepower, LLC, Albany, NY (United States); Frank, Jaclyn [AWS Truepower, LLC, Albany, NY (United States); Ibanez, Eduardo [National Renewable Energy Lab. (NREL), Golden, CO (United States); Heaney, Michael [National Renewable Energy Lab. (NREL), Golden, CO (United States); Bloom, Aaron [National Renewable Energy Lab. (NREL), Golden, CO (United States); Zhang, Yingchen [National Renewable Energy Lab. (NREL), Golden, CO (United States); Elliott, Dennis [National Renewable Energy Lab. (NREL), Golden, CO (United States); Seim, Harvey E. [Univ. of North Carolina, Chapel Hill, NC (United States)

    2015-04-30

    Duke Energy performed a phase 1 study to assess the impact of offshore wind development in the waters off the coasts of North Carolina and South Carolina. The study analyzed the impacts to the Duke Energy Carolinas electric power system of multiple wind deployment scenarios. Focusing on an integrated utility system in the Carolinas provided a unique opportunity to assess the impacts of offshore wind development in a region that has received less attention regarding renewables than others in the US. North Carolina is the only state in the Southeastern United States that currently has a renewable portfolio standard (RPS) which requires that 12.5% of the state’s total energy requirements be met with renewable resources by 2021. 12.5% of the state’s total energy requirements in 2021 equates to approximately 17,000 GWH of energy needed from renewable resources. Wind resources represent one of the ways to potentially meet this requirement. The study builds upon and augments ongoing work, including a study by UNC to identify potential wind development sites and the analysis of impacts to the regional transmission system performed by the NCTPC, an Order 890 planning entity of which DEC is a member. Furthermore, because the region does not have an independent system operator (ISO) or regional transmission organization (RTO), the study will provide additional information unique to non-RTO/ISO systems. The Phase 2 study builds on the results of Phase 1 and investigates the dynamic stability of the electrical network in Task 4, the operating characteristics of the wind turbines as they impact operating reserve requirements of the DEC utility in Task 5, and the production cost of integrating the offshore wind resources into the DEC generation fleet making comparisons to future planned operation without the addition of the wind resources in Task 6.

  11. What Factors Influence Wind Perceptions

    Science.gov (United States)

    Stein, Tatiana

    Over the last decade, wind power has emerged as a possible source of energy and has attracted the attention of homeowners and policy makers worldwide. Many technological hurdles have been overcome in the last few years that make this technology feasible and economical. The United States has added more wind power than any other type of electric generation in 2012. Depending on the location, wind resources have shown to have the potential to offer 20% of the nation's electricity; a single, large wind turbine has the capacity to produce enough electricity to power 350 homes. Throughout the development of wind turbines, however, energy companies have seen significant public opposition towards the tall white structures. The purpose of this research was to measure peoples' perceptions on wind turbine development throughout their growth, from proposal to existing phase. Three hypotheses were developed based on the participant's political affiliation, proximity and knowledge of wind turbines. To validate these hypotheses, participants were asked an array of questions regarding their perception on economic, environmental, and social impacts of wind turbines with an online service called Amazon Mechanical Turk. The responses were from residents living in the United States and required them to provide their zip code for subsequent analysis. The analysis from the data obtained suggests that participants are favorable towards wind turbine development and would be supportive of using the technology in their community. Political affiliation and proximity to the nearest wind turbine in any phase of development (proposal, construction, existing) were also analyzed to determine if they had an effect on a person's overall perception on wind turbines and their technology. From the analysis, political affiliation was seen to be an indirect factor to understanding favorability towards wind turbines; the more liberal you are, the more supportive you will be towards renewable energy use

  12. Potential for Jobs and Economic Development from Offshore Wind in California

    Energy Technology Data Exchange (ETDEWEB)

    Tegen, Suzanne

    2016-11-02

    In California's future scenarios, energy demand increases with population growth and productivity. Decision-makers will have to make choices about which energy resources to utilize, and offshore wind offers one option for carbon-free electricity with the potential for increased local jobs. This presentation discusses results from an NREL report, Floating Offshore Wind in California: Gross Potential for Jobs and Economic Impacts from Two Future Scenarios. Presenter Suzanne Tegen describes the Jobs and Economic Development Impact (JEDI) model and its results for two offshore wind scenarios in California. She discusses different assumptions and how they affect the scenarios.

  13. Developing wind energy in Ireland - consequences for our biodiversity and ecosystem services

    Energy Technology Data Exchange (ETDEWEB)

    Bourke, David; Stout, Jane

    2011-07-01

    Full text: In response to climate change, the EU has set a target to achieve 20% of energy from renewable sources by 2020 (Directive 2009/28/EC). Consequently, Ireland has set targets of 40, 10 and 12% of energy coming from renewable sources for electricity, transport and heat, respectively, by 2020. Wind energy is expected to contribute significantly to achieving these targets given Ireland.s large onshore and offshore wind potential. However, the potential impacts of these wind farm developments on Ireland.s biodiversity remain largely un quantified. The SIMBIOSYS (www.SIMBIOSYS.ie) project was set up to investigate the impacts of a range of sectors on biodiversity and ecosystem services, with part of the project.s focus on those measures that may help mitigate the effects of climate change. In this paper we aim to assess the potential positive and negative impacts of wind farms on Ireland.s marine and terrestrial biodiversity, highlighting potential conflicts concerning the spatial distribution of our wind and biodiversity resources. To help make these assessments an extensive review of the national and international scientific literature is used to highlight the potential positive and negative impacts of wind farm developments on biodiversity to date. Using GIS, spatial analyses are then used to quantify the extent to which wind resources and current and future wind farm developments overlap with biodiversity, using indicators such as Natura 2000 sites and Red Data List Plants. The outputs of these analyses are combined to help make recommendations on the sustainable future planning and management of wind farms in Ireland. Appropriate impact assessment and careful spatial planning will help ensure the direct benefits of green house gas emission reduction are maximised without compromising the protection of biodiversity in Ireland. (Author)

  14. Eagle-i: Making Invisible Resources, Visible

    Science.gov (United States)

    Haendel, M.; Wilson, M.; Torniai, C.; Segerdell, E.; Shaffer, C.; Frost, R.; Bourges, D.; Brownstein, J.; McInnerney, K.

    2010-01-01

    RP-134 The eagle-i Consortium – Dartmouth College, Harvard Medical School, Jackson State University, Morehouse School of Medicine, Montana State University, Oregon Health and Science University (OHSU), the University of Alaska, the University of Hawaii, and the University of Puerto Rico – aims to make invisible resources for scientific research visible by developing a searchable network of resource repositories at research institutions nationwide. Now in early development, it is hoped that the system will scale beyond the consortium at the end of the two-year pilot. Data Model & Ontology: The eagle-i ontology development team at the OHSU Library is generating the data model and ontologies necessary for resource indexing and querying. Our indexing system will enable cores and research labs to represent resources within a defined vocabulary, leading to more effective searches and better linkage between data types. This effort is being guided by active discussions within the ontology community (http://RRontology.tk) bringing together relevant preexisting ontologies in a logical framework. The goal of these discussions is to provide context for interoperability and domain-wide standards for resource types used throughout biomedical research. Research community feedback is welcomed. Architecture Development, led by a team at Harvard, includes four main components: tools for data collection, management and curation; an institutional resource repository; a federated network; and a central search application. Each participating institution will populate and manage their repository locally, using data collection and curation tools. To help improve search performance, data tools will support the semi-automatic annotation of resources. A central search application will use a federated protocol to broadcast queries to all repositories and display aggregated results. The search application will leverage the eagle-i ontologies to help guide users to valid queries via auto

  15. SimWIND: A geospatial infrastructure model for optimizing wind power generation and transmission

    International Nuclear Information System (INIS)

    Phillips, Benjamin R.; Middleton, Richard S.

    2012-01-01

    Wind is a clean, enduring energy resource with the capacity to satisfy 20% or more of U.S. electricity demand. Presently, wind potential is limited by a paucity of electrical transmission lines and/or capacity between promising wind resources and primary load centers. We present the model SimWIND to address this shortfall. SimWIND is an integrated optimization model for the geospatial arrangement and cost minimization of wind-power generation–transmission–delivery infrastructure. Given a set of possible wind-farm sites, the model simultaneously determines (1) where and how much power to generate and (2) where to build new transmission infrastructure and with what capacity in order to minimize the cost for delivering a targeted amount of power to load. Costs and routing of transmission lines consider geographic and social constraints as well as electricity losses. We apply our model to the Electric Reliability Council of Texas (ERCOT) Interconnection, considering scenarios that deliver up to 20 GW of new wind power. We show that SimWIND could potentially reduce ERCOT's projected ∼$5B transmission network upgrade line length and associated costs by 50%. These results suggest that SimWIND's coupled generation–transmission–delivery modeling approach could play a critical role in enhancing planning efforts and reducing costs for wind energy integration. - Highlights: ► Wind power is limited by transmission capacity between resources and demands. ► SimWIND is a coupled generation-transmission-delivery model for wind infrastructure. ► The model minimizes costs considering realistic transmission routing and networking. ► We show that SimWIND could save 50% of $5B costs for expanding the Texas grid. ► Results suggest SimWIND may play a critical role in enhancings wind planning efforts.

  16. Hybrid Pricing in a Coupled European Power Market with More Wind Power

    OpenAIRE

    Bjørndal, Endre; Bjørndal, Mette; Cai, Hong; Panos, Evangelos

    2015-01-01

    In the European market, the promotion of wind power leads to more network congestion. Zonal pricing (market coupling), which does not take the physical characteristics of transmission into account, is the most commonly used method to relieve congestion in Europe. Zonal pricing fails to provide adequate locational price signals regarding the energy resource scarcity and thus creates a large amount of unscheduled cross-border flows originating from wind-generated power, making the interconne...

  17. A probabilistic assessment of large scale wind power development for long-term energy resource planning

    Science.gov (United States)

    Kennedy, Scott Warren

    A steady decline in the cost of wind turbines and increased experience in their successful operation have brought this technology to the forefront of viable alternatives for large-scale power generation. Methodologies for understanding the costs and benefits of large-scale wind power development, however, are currently limited. In this thesis, a new and widely applicable technique for estimating the social benefit of large-scale wind power production is presented. The social benefit is based upon wind power's energy and capacity services and the avoidance of environmental damages. The approach uses probabilistic modeling techniques to account for the stochastic interaction between wind power availability, electricity demand, and conventional generator dispatch. A method for including the spatial smoothing effect of geographically dispersed wind farms is also introduced. The model has been used to analyze potential offshore wind power development to the south of Long Island, NY. If natural gas combined cycle (NGCC) and integrated gasifier combined cycle (IGCC) are the alternative generation sources, wind power exhibits a negative social benefit due to its high capacity cost and the relatively low emissions of these advanced fossil-fuel technologies. Environmental benefits increase significantly if charges for CO2 emissions are included. Results also reveal a diminishing social benefit as wind power penetration increases. The dependence of wind power benefits on natural gas and coal prices is also discussed. In power systems with a high penetration of wind generated electricity, the intermittent availability of wind power may influence hourly spot prices. A price responsive electricity demand model is introduced that shows a small increase in wind power value when consumers react to hourly spot prices. The effectiveness of this mechanism depends heavily on estimates of the own- and cross-price elasticities of aggregate electricity demand. This work makes a valuable

  18. Advancements in Wind Integration Study Data Modeling: The Wind Integration National Dataset (WIND) Toolkit; Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Draxl, C.; Hodge, B. M.; Orwig, K.; Jones, W.; Searight, K.; Getman, D.; Harrold, S.; McCaa, J.; Cline, J.; Clark, C.

    2013-10-01

    Regional wind integration studies in the United States require detailed wind power output data at many locations to perform simulations of how the power system will operate under high-penetration scenarios. The wind data sets that serve as inputs into the study must realistically reflect the ramping characteristics, spatial and temporal correlations, and capacity factors of the simulated wind plants, as well as be time synchronized with available load profiles. The Wind Integration National Dataset (WIND) Toolkit described in this paper fulfills these requirements. A wind resource dataset, wind power production time series, and simulated forecasts from a numerical weather prediction model run on a nationwide 2-km grid at 5-min resolution will be made publicly available for more than 110,000 onshore and offshore wind power production sites.

  19. Statistics-Based Compression of Global Wind Fields

    KAUST Repository

    Jeong, Jaehong

    2017-02-07

    Wind has the potential to make a significant contribution to future energy resources. Locating the sources of this renewable energy on a global scale is however extremely challenging, given the difficulty to store very large data sets generated by modern computer models. We propose a statistical model that aims at reproducing the data-generating mechanism of an ensemble of runs via a Stochastic Generator (SG) of global annual wind data. We introduce an evolutionary spectrum approach with spatially varying parameters based on large-scale geographical descriptors such as altitude to better account for different regimes across the Earth\\'s orography. We consider a multi-step conditional likelihood approach to estimate the parameters that explicitly accounts for nonstationary features while also balancing memory storage and distributed computation. We apply the proposed model to more than 18 million points of yearly global wind speed. The proposed SG requires orders of magnitude less storage for generating surrogate ensemble members from wind than does creating additional wind fields from the climate model, even if an effective lossy data compression algorithm is applied to the simulation output.

  20. On wind power in the Nordic countries

    International Nuclear Information System (INIS)

    Nilsson, Lars J.

    1993-01-01

    The purpose of this article is to discuss the prospects for a large scale introduction of wind power in the Nordic countries especially with respect to the consequences for small independent power producers of the ongoing and planned deregulation of the electricity sector. The recoverable wind resources are great and integration costs are small due to the good load following capability of the existing Swedish and Norwegian hydroelectric capacity. The structure of the present electricity system and the current principles for electricity trade are reviewed. To what extent wind power will be the technology of choice for capacity replacement and expansion depends on how intermittent power will be valued on the future electricity market. In a deregulated market, wind power may be priced below its value unless appropriate pricing mechanisms are developed. Market reforms should therefore include consideration of the large contribution that wind energy must make in a future electricity system which, in addition to being economically efficient, is compatible with broader societal goals. 47 refs, 2 figs

  1. Statistics-Based Compression of Global Wind Fields

    KAUST Repository

    Jeong, Jaehong; Castruccio, Stefano; Crippa, Paola; Genton, Marc G.

    2017-01-01

    Wind has the potential to make a significant contribution to future energy resources. Locating the sources of this renewable energy on a global scale is however extremely challenging, given the difficulty to store very large data sets generated by modern computer models. We propose a statistical model that aims at reproducing the data-generating mechanism of an ensemble of runs via a Stochastic Generator (SG) of global annual wind data. We introduce an evolutionary spectrum approach with spatially varying parameters based on large-scale geographical descriptors such as altitude to better account for different regimes across the Earth's orography. We consider a multi-step conditional likelihood approach to estimate the parameters that explicitly accounts for nonstationary features while also balancing memory storage and distributed computation. We apply the proposed model to more than 18 million points of yearly global wind speed. The proposed SG requires orders of magnitude less storage for generating surrogate ensemble members from wind than does creating additional wind fields from the climate model, even if an effective lossy data compression algorithm is applied to the simulation output.

  2. Should we build wind farms close to load or invest in transmission to access better wind resources in remote areas? A case study in the MISO region

    International Nuclear Information System (INIS)

    Lamy, Julian V.; Jaramillo, Paulina; Azevedo, Inês L.; Wiser, Ryan

    2016-01-01

    Wind speeds in remote areas are sometimes very high, but transmission costs to access these locations can be prohibitive. We present a conceptual model to estimate the economics of accessing high quality wind resources in remote areas to comply with renewable energy policy targets, and apply the model to the Midwestern grid (MISO) as a case study. We assess the goal of providing 40 TWh of new wind generation while minimizing costs, and include temporal aspects of wind power (variability costs and correlation to market prices) as well as total wind power produced from different farms. We find that building wind farms in North/South Dakota (windiest states) compared to Illinois (less windy, but close to load) would only be economical if the incremental transmission costs to access them were below $360/kW of wind capacity (break-even value). Historically, the incremental transmission costs for wind development in North/South Dakota compared to in Illinois are about twice this value. However, the break-even incremental transmission cost for wind farms in Minnesota/Iowa (also windy states) is $250/kW, which is consistent with historical costs. We conclude that wind development in Minnesota/Iowa is likely more economical to meet MISO renewable targets compared to North/South Dakota or Illinois. - Highlights: •We evaluate the economics of building wind farms in remote areas in MISO. •We present a conceptual wind site selection model to meet 40 TWh of new wind. •We use the model to compare remote windy sites to less windy ones closer to load. •We show break-even transmission costs that would justify remote wind development. •Comparing break-even values to historical costs, MN/IA sites are most economical.

  3. "Wealth Makes Many Friends": Children Expect More Giving From Resource-Rich Than Resource-Poor Individuals.

    Science.gov (United States)

    Ahl, Richard E; Dunham, Yarrow

    2017-08-21

    Young children show social preferences for resource-rich individuals, although few studies have explored the causes underlying such preferences. We evaluate the viability of one candidate cause: Children believe that resource wealth relates to behavior, such that they expect the resource rich to be more likely to materially benefit others (including themselves) than the resource poor. In Studies 1 and 2 (ages 4-10), American children from predominantly middle-income families (n = 94) and Indian children from lower income families (n = 30) predicted that the resource rich would be likelier to share with others than the resource poor. In Study 3, American children (n = 66) made similar predictions in an incentivized decision-making task. The possibility that children's expectations regarding giving contribute to prowealth preferences is discussed. © 2017 The Authors. Child Development © 2017 Society for Research in Child Development, Inc.

  4. Onshore Wind Farms: Value Creation for Stakeholders in Lithuania

    Science.gov (United States)

    Burinskienė, Marija; Rudzkis, Paulius; Kanopka, Adomas

    With the costs of fossil fuel consistently rising worldwide over the last decade, the development of green technologies has become a major goal in many countries. Therefore the evaluation of wind power projects becomes a very important task. To estimate the value of the technologies based on renewable resources also means taking into consideration social, economic, environmental, and scientific value of such projects. This article deals with economic evaluation of electricity generation costs of onshore wind farms in Lithuania and the key factors that have influence on wind power projects and offer a better understanding of social-economic context behind wind power projects. To achieve these goals, this article makes use of empirical data of Lithuania's wind power farms as well as data about the investment environment of the country.Based on empirical data of wind power parks, the research investigates the average wind farm generation efficiency in Lithuania. Employing statistical methods the return on investments of wind farms in Lithuania is calculated. The value created for every party involved and the total value of the wind farm is estimated according to Stakeholder theory.

  5. Using modeling, satellite images and existing global datasets for rapid preliminary assessments of renewable energy resources: The case of Mali

    International Nuclear Information System (INIS)

    Nygaard, Ivan; Badger, Jake; Larsen, Soeren; Rasmussen, Kjeld; Nielsen, Thomas Theis; Hansen, Lars Boye; Stisen, Simon; Mariko, Adama; Togola, Ibrahim

    2010-01-01

    This paper presents a novel approach to the preliminary, low-cost, national-scale mapping of wind energy, solar energy and certain categories of bio-energy resources in developing countries, using Mali as an example. The methods applied make extensive use of satellite remote sensing and meteorological mesoscale modeling. The paper presents first results from applying the methodology in Mali and discusses the appropriateness of the results obtained. It is shown that northern Mali has considerable wind energy potential, while average wind speeds in the southern part are too low to make wind power a competitive option. Solar energy resources are shown to be abundant in all of Mali, though the highest values are found in the south. The temporal variation is relatively limited. Bio-energy resources are also concentrated in the south, but there are small pockets of high vegetation productivity in the irrigated areas of the Niger inland delta that might be interesting from a renewable energy resource perspective. Finally, the paper discusses the role that renewable energy resources might play in the energy systems of Mali, given the spatio-temporal distribution of renewable energy resources. It is argued that at the current price of about 70 US$/barrel for fossil fuels, renewable energy resources are becoming economically as well as environmentally attractive options. (author)

  6. Offshore Wind Energy Market Overview (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Baring-Gould, I.

    2013-07-01

    This presentation describes the current international market conditions regarding offshore wind, including the breakdown of installation costs, how to reduce costs, and the physical siting considerations considered when planning offshore wind construction. The presentation offers several examples of international existing and planned offshore wind farm sites and compares existing international offshore resources with U.S. resources. The presentation covers future offshore wind trends and cites some challenges that the United States must overcome before it will be able to fully develop offshore wind sites.

  7. Blowing in the Wind: A Review of Wind Power Technology

    Science.gov (United States)

    Harris, Frank

    2014-01-01

    The use of wind as a replenishable energy resource has come back into favour in recent decades. It is much promoted as a viable, clean energy option that will help towards reducing CO[subscript 2] emissions in the UK. This article examines the history of wind power and considers the development of wind turbines, together with their economic,…

  8. Wind energy program overview

    International Nuclear Information System (INIS)

    1992-02-01

    This overview emphasizes the amount of electric power that could be provided by wind power rather than traditional fossil fuels. New wind power markets, advances in technology, technology transfer, and wind resources are some topics covered in this publication

  9. Renewable energy and sustainable communities: Alaska's wind generator experience.

    Science.gov (United States)

    Konkel, R Steven

    2013-01-01

    better understanding wind energy potential through resource assessments and new tools for detailed feasibility and project planning, need for comprehensive monitoring and data analysis, and state funding requirements and opportunity costs. The energy policy choices ahead for Alaska will have important implications for Arctic population health, especially for those villages whose relatively small size and remote locations make energy a key component of subsistence lifestyles and community sustainability. Wind generation can contribute to meeting renewable energy goals and is a particularly important resource for rural and remote Alaskan communities currently dependent on diesel fuel for generating electricity and heat.

  10. 天津近海风能资源的高分辨率数值模拟与评估%High-Resolution Numerical Simulation and Assessment of the Offshore Wind Energy Resource in Tianjin

    Institute of Scientific and Technical Information of China (English)

    杨艳娟; 李明财; 任雨; 熊明明

    2011-01-01

    Wind energy is a rapidly growing alternative energy source and has been widely developed around the world over the last 10 years. Offshore wind power generation is now becoming a new trend in the development of future wind power generation because wind tends to blow faster and be more uniform over offshore areas than on the land. Accurate assessment of wind energy resource is fundamental and valuable for wind energy developers and potential wind energy users because it allows them to choose a general area of the estimated high wind resource for more detailed examination. However, it is difficult to make direct observations from meteorological variables over offshore areas, which calls for numerical simulation with high resolution so as to derive the availability and potential of wind energy. The distribution of wind energy resources with 1 km horizontal resolution and 10 m vertical resolution in Tianjin coastal areas was simulated using the numerical model MM5 and Calmet to derive wind energy potential over the offshore areas. In addition, the simulation efficiency was determined by comparing observation data with three wind-measurement towers over the same period. Results show that the annual mean wind speed and trend of daily mean wind speed were simulated well, and the relative deviations between observations and simulated values at three wind measurement towers were 7.11%, 12.99%, and 6.14%, respectively. This suggests that the models are effective in assessing the offshore wind energy resource in Tianjin. The long time wind energy resource was obtained by comparing simulated year’s and recent 20 years’ mean wind speed. It was found that annual mean wind speed is (6.6~7.0)m/s, and annual mean wind power density is above 340w/m2, which indicate that the offshore wind energy resource in Tianjin is exploitable and could be used for grid-connected power generation. The assessment shows that the MM5/Calmet model is capable of providing reasonable wind status

  11. Evaluating the best available social science for natural resource management decision-making

    Science.gov (United States)

    Susan Charnley; Courtney Carothers; Terre Satterfield; Arielle Levine; Melissa R. Poe; Karma Norman; Jamie Donatuto; Sara Jo Breslow; Michael B. Mascia; Phillip S. Levin; Xavier Basurto; Christina C. Hicks; Carlos García-Quijano; Kevin St. Martin

    2017-01-01

    Increasing recognition of the human dimensions of natural resource management issues, and of social and ecological sustainability and resilience as being inter-related, highlights the importance of applying social science to natural resource management decision-making. Moreover, a number of laws and regulations require natural resource management agencies to consider...

  12. The value of holding scarce wind resource—A cause of overinvestment in wind power capacity in China

    International Nuclear Information System (INIS)

    Liu, Xuemei

    2013-01-01

    China's wind power capacity has increased dramatically in recent years, but about 30% of the installed capacity sits idle, so overinvestment in wind power capacity seems to be a serious problem. This paper explores reasons for the overinvestment. The economic analysis shows that, given uncertain future policy on wind power, it is optimal for power companies to invest more than the amount in a certain world. A part of the “overinvestment” has a real value, which can be interpreted as the value of holding scarce wind resource. This value exists because the wind-rich sites with convenient locations to connect to the grids are scarce resource, and also because the specific government policies that are essential for promoting wind power are uncertain in the future. This value should be taken into account in the investment decision, but it results in the phenomenon of “overinvestment”. The concept of the value of holding scarce resource can be generally applied to the resources that are scarce and for which the future policy is uncertain

  13. PV–wind hybrid power option for a low wind topography

    International Nuclear Information System (INIS)

    Bhattacharjee, Subhadeep; Acharya, Shantanu

    2015-01-01

    Highlights: • Optimally harness the wind energy by unification of solar resource. • Analysis of PV–wind hybrid system with tangible experience. • Cost of generation and renewable fraction are $0.488/kWh and 0.90 respectively. • Maximum wind penetration is observed to be 32.75% with installed PV–wind system. • Indicative annual grid electricity conservation is 90%. - Abstract: Solar and wind are clean energy sources with enormous potential to alleviate grid dependence. The paper aims to optimally harness the wind resource with the support of solar energy through hybrid technology for a north-east Indian state Tripura (low wind topography). Techno-economic analysis of a photovoltaic (PV)-wind hybrid simulation model has been performed for small scale application in an educational building. The study also evaluates the tangible performance of a similar plant in practical condition of the site. It has emerged from the study that major energy generation is turning out from PV segment which is promising almost all round the year. Nonetheless, a considerable amount of wind power is found to be generated during half of the year when average PV power production is comparatively less. The cost of electricity from the simulation model is found to be $0.488/kWh while renewable fraction in the total electricity share is obtained to be 0.90. From the actual performance of the plant, maximum wind penetration is observed to be 32.75%

  14. Wind energy applications of synthetic aperture radar

    Energy Technology Data Exchange (ETDEWEB)

    Bruun Christiansen, M.

    2006-11-15

    Synthetic aperture radars (SAR), mounted on satellites or aircraft, have proven useful for ocean wind mapping. Wind speeds at the height 10 m may be retrieved from measurements of radar backscatter using empirical model functions. The resulting wind fields are valuable in offshore wind energy planning as a supplement to on site measurements, which are costly and sparse, and model wind fields, which are not fully validated. Two applications of SAR measurements in offshore wind energy planning are addressed here: the study of wind farm wake effects and the potential of using SAR winds in offshore wind resource assessment. Firstly, wind wakes behind two large offshore wind farms in Denmark Horns Rev and Nysted are identified. A region of reduced wind speed is found downstream of both wind farms from the SAR wind fields. The wake extent and magnitude depends on the wind speed, the atmospheric stability, and the fraction of turbines operating. Wind farm wake effects are detected up to 20 km downwind of the last turbine. This distance is longer than predicted by state-of-the art wake models. Wake losses are typically 10-20% near the wind farms. Secondly, the potential of using SAR wind maps in offshore wind resource assessment is investigated. The resource assessment is made through Weibull fitting to frequency observations of wind speed and requires at least 100 satellite observations per year for a given site of interest. Predictions of the energy density are very sensitive to the wind speed and the highest possible accuracy on SAR wind retrievals is therefore sought. A 1.1 m s{sup -1} deviation on the mean wind speed is found through comparison with mast measurements at Horns Rev. The accuracy on mean wind speeds and energy densities found from satellite measurements varies with different empirical model functions. Additional uncertainties are introduced by the infrequent satellite sampling at fixed times of the day. The accuracy on satellite based wind resource

  15. Implementation of wind power in the Norwegian market; the reason why some of the best wind resources in Europe were not utilised by 2010

    International Nuclear Information System (INIS)

    Blindheim, Bernt

    2013-01-01

    Norway has some of the best wind resources in Europe. In 1999, the Norwegian Parliament committed to attain an annual onshore wind power production goal of 3.0 TWh by 2010; however, in 2010, onshore wind power production measured only 1.0 TWh. This article discusses the reasons that this goal was not achieved. The analysis addresses the key figures on the strategic, tactical and operational levels. This model is combined with a time line that seeks to define when different actors should have secured concessions and funding to achieve the goal. After introducing the time line, a list of questions is introduced for these key actors. The three-level model, the time line and the questions constitute the analytical framework. Explanations for the failure to achieve the goal may be identified on all three levels. However, the primary explanatory factors were political uncertainty in the support scheme and wind power's role in the energy market in general; both of these factors are identified on the strategic level. Uncertainty on the strategic level influenced the lower levels, which led to bottlenecks in the concession process and jittery investors who thought that the risk of investment in wind power was too high. - Highlights: • Implementation of wind power in the Norwegian energy system up to 2010. • The concession process, the support scheme and the marked players are considered. • Uncertainty about the support scheme slowed down the implementation process. • The concession process has been a bottleneck. • The support scheme has only to a certain degree trigged investments

  16. WIND ENERGY – ECOSUSTAINABILITY ENGINEERING SOLUTION

    Directory of Open Access Journals (Sweden)

    Roxana Gabriela POPA

    2013-05-01

    Full Text Available Renewables provides increased safety energy supply and limiting imports of energy resources, interms of sustainable economic development. The new requirements for sustainable development have determinedthe world to put the issue of energy production methods and increase the share of energy produced fromrenewable energy. This paper presents the history of wind power, advantages and disadvantages of renewableenergy, particularly wind energy as an alternative source of energy. Windmills can be horizontal axis or verticalaxis Savonius and Darrieus rotor. Latest innovations allow operation of variable speed wind turbines, or turbinespeed control based on wind speed. Wind energy is considered one of the most sustainable choices betweenvariants future wind resources are immense.

  17. Situating School District Resource Decision Making in Policy Context

    Science.gov (United States)

    Spain, Angeline K.

    2016-01-01

    Decentralization and deregulation policies assume that local educational leaders make better resource decisions than state policy makers do. Conceptual models drawn from organizational theory, however, offer competing predictions about how district central office administrators are likely to leverage their professional expertise in devolved…

  18. Contribution to the study of the wind and solar radiation over Guadeloupe

    International Nuclear Information System (INIS)

    Bertin, A.; Frangi, J.P.

    2013-01-01

    Highlights: • We study wind and solar resource in Guadeloupe (FWI). • Weibull distributions reveal a nocturnal radiative layer blocking wind at airport. • We provide monthly and annual irradiations, horizontal and tilted, for four sites. • Five Linke turbidity coefficient calculation methods are reviewed and compared. - Abstract: Guadeloupean archipelago must reach energy autonomy in 2030 and include at least 50% of renewables in 2020, where wind and photovoltaics can play a significant role. Still, Guadeloupe gathers a lot of landscapes having great impact on wind and solar resource. Study of three 10-years database and one 5-year database locates a nocturnal radiative layer above the airport meteorological station, drastically limiting the wind potential there, and gives all the irradiation components (monthly sums) and therefore key parameters for photovoltaic energy yield. This paper also points out the underestimation of Linke turbidity coefficient in the airport station with Solar Radiation Database (SoDa), compared to ground-based determination, and calculates the value of this coefficient for three stations across Guadeloupe. All those parameters are discussed, as being of importance to make fair predictions of statistical relationships involving preliminary assessment and modeling of wind and solar energy systems. These results can then be used in neighboring countries, Guadeloupe having various meteorological conditions retrieved in Caribbean

  19. Aggregated wind power plant models consisting of IEC wind turbine models

    DEFF Research Database (Denmark)

    Altin, Müfit; Göksu, Ömer; Hansen, Anca Daniela

    2015-01-01

    The common practice regarding the modelling of large generation components has been to make use of models representing the performance of the individual components with a required level of accuracy and details. Owing to the rapid increase of wind power plants comprising large number of wind...... turbines, parameters and models to represent each individual wind turbine in detail makes it necessary to develop aggregated wind power plant models considering the simulation time for power system stability studies. In this paper, aggregated wind power plant models consisting of the IEC 61400-27 variable...... speed wind turbine models (type 3 and type 4) with a power plant controller is presented. The performance of the detailed benchmark wind power plant model and the aggregated model are compared by means of simulations for the specified test cases. Consequently, the results are summarized and discussed...

  20. Year-to-year correlation, record length, and overconfidence in wind resource assessment

    Directory of Open Access Journals (Sweden)

    N. Bodini

    2016-08-01

    Full Text Available Interannual variability of wind speeds presents a fundamental source of uncertainty in preconstruction energy estimates. Our analysis of one of the longest and geographically most widespread extant sets of instrumental wind-speed observations (62-year records from 60 stations in Canada shows that deviations from mean resource levels persist over many decades, substantially increasing uncertainty. As a result of this persistence, the performance of each site's last 20 years diverges more widely than expected from the P50 level estimated from its first 42 years: half the sites have either fewer than 5 or more than 15 years exceeding the P50 estimate. In contrast to this 10-year-wide interquartile range, a 4-year-wide range (2.5 times narrower was found for "control" records where statistical independence was enforced by randomly permuting each station's historical values. Similarly, for sites with capacity factor of 0.35 and interannual variability of 6  %, one would expect 9 years in 10 to fall in the range 0.32–0.38; we find the actual 90  % range to be 0.27–0.43, or three times wider. The previously un-quantified effect of serial correlations favors a shift in resource-assessment thinking from a climatology-focused approach to a persistence-focused approach: for this data set, no improvement in P50 error is gained by using records longer than 4–5 years, and use of records longer than 20 years actually degrades accuracy.

  1. Information needs for water resources decision-making

    International Nuclear Information System (INIS)

    Sellers, J.

    1993-01-01

    Water and related resources planning and decision-making have developed to the state of multiple objective and/or multiple criteria analysis using complicated systems analysis. The objective of this paper is to indicate the major components of information needed to facilitate the planning process for resource utilization, and to provide desirable outputs from management schemes. The process could best be described as the proper development of Management Information Systems (MIS) or Decision Support Systems (DDS). Data and information systems are never completed and must be continually updated and modified. The exact composition of any system depends also upon the general type of decision techniques being used. A brief outline of the decision process is given with the remainder of the paper dealing with the types of information needed to support the decision system. (author). 34 refs

  2. The National Wind Erosion Research Network: Building a standardized long-term data resource for aeolian research, modeling and land management

    Science.gov (United States)

    Webb, Nicholas P.; Herrick, Jeffrey E.; Van Zee, Justin W; Courtright, Ericha M; Hugenholtz, Ted M; Zobeck, Ted M; Okin, Gregory S.; Barchyn, Thomas E; Billings, Benjamin J; Boyd, Robert A.; Clingan, Scott D; Cooper, Brad F; Duniway, Michael C.; Derner, Justin D.; Fox, Fred A; Havstad, Kris M.; Heilman, Philip; LaPlante, Valerie; Ludwig, Noel A; Metz, Loretta J; Nearing, Mark A; Norfleet, M Lee; Pierson, Frederick B; Sanderson, Matt A; Sharrat, Brenton S; Steiner, Jean L; Tatarko, John; Tedela, Negussie H; Todelo, David; Unnasch, Robert S; Van Pelt, R Scott; Wagner, Larry

    2016-01-01

    The National Wind Erosion Research Network was established in 2014 as a collaborative effort led by the United States Department of Agriculture’s Agricultural Research Service and Natural Resources Conservation Service, and the United States Department of the Interior’s Bureau of Land Management, to address the need for a long-term research program to meet critical challenges in wind erosion research and management in the United States. The Network has three aims: (1) provide data to support understanding of basic aeolian processes across land use types, land cover types, and management practices, (2) support development and application of models to assess wind erosion and dust emission and their impacts on human and environmental systems, and (3) encourage collaboration among the aeolian research community and resource managers for the transfer of wind erosion technologies. The Network currently consists of thirteen intensively instrumented sites providing measurements of aeolian sediment transport rates, meteorological conditions, and soil and vegetation properties that influence wind erosion. Network sites are located across rangelands, croplands, and deserts of the western US. In support of Network activities, http://winderosionnetwork.org was developed as a portal for information about the Network, providing site descriptions, measurement protocols, and data visualization tools to facilitate collaboration with scientists and managers interested in the Network and accessing Network products. The Network provides a mechanism for engaging national and international partners in a wind erosion research program that addresses the need for improved understanding and prediction of aeolian processes across complex and diverse land use types and management practices.

  3. Down-scaling wind energy resource from mesoscale to local scale by nesting and data assimilation with a CFD model

    International Nuclear Information System (INIS)

    Duraisamy Jothiprakasam, Venkatesh

    2014-01-01

    The development of wind energy generation requires precise and well-established methods for wind resource assessment, which is the initial step in every wind farm project. During the last two decades linear flow models were widely used in the wind industry for wind resource assessment and micro-siting. But the linear models inaccuracies in predicting the wind speeds in very complex terrain are well known and led to use of CFD, capable of modeling the complex flow in details around specific geographic features. Mesoscale models (NWP) are able to predict the wind regime at resolutions of several kilometers, but are not well suited to resolve the wind speed and turbulence induced by the topography features on the scale of a few hundred meters. CFD has proven successful in capturing flow details at smaller scales, but needs an accurate specification of the inlet conditions. Thus coupling NWP and CFD models is a better modeling approach for wind energy applications. A one-year field measurement campaign carried out in a complex terrain in southern France during 2007-2008 provides a well-documented data set both for input and validation data. The proposed new methodology aims to address two problems: the high spatial variation of the topography on the domain lateral boundaries, and the prediction errors of the mesoscale model. It is applied in this work using the open source CFD code Code-Saturne, coupled with the mesoscale forecast model of Meteo-France (ALADIN). The improvement is obtained by combining the mesoscale data as inlet condition and field measurement data assimilation into the CFD model. Newtonian relaxation (nudging) data assimilation technique is used to incorporate the measurement data into the CFD simulations. The methodology to reconstruct long term averages uses a clustering process to group the similar meteorological conditions and to reduce the number of CFD simulations needed to reproduce 1 year of atmospheric flow over the site. The assimilation

  4. Wind-Climate Estimation Based on Mesoscale and Microscale Modeling: Statistical-Dynamical Downscaling for Wind Energy Applications

    DEFF Research Database (Denmark)

    Badger, Jake; Frank, Helmut; Hahmann, Andrea N.

    2014-01-01

    This paper demonstrates that a statistical dynamical method can be used to accurately estimate the wind climate at a wind farm site. In particular, postprocessing of mesoscale model output allows an efficient calculation of the local wind climate required for wind resource estimation at a wind...

  5. Avian risk behavior and fatalities at the Altamont Wind Resource Area: March 1998 - February 1999

    Energy Technology Data Exchange (ETDEWEB)

    Thelander, C.; Rugge, L.

    2000-05-08

    Since 1981, more than 7,000 wind turbines have been installed in the Altamont Wind Resource Area in north-central California. Currently, about 5,000 turbines are operating. Past research efforts demonstrated that wind turbines frequently kill birds, especially raptors. Little is known about the specific flight and perching behaviors by birds near wind turbines. A better understanding of these interactions may one day yield insights on how to minimize bird fatalities. This Phase 1 progress report summarizes research findings obtained at 20 study plots totaling 785 turbines of various configurations and conducted between March 1998 and February 1999. The authors examined bird use and behaviors and collected data on fatalities at the same turbines throughout the course of the surveys. They completed 745 30-minute point counts (1,702 bird observations) that quantified bird risk behaviors and bird use of the study plots. The four most frequently observed bird species were red-tailed hawks, common ravens, turkey vultures, and golden eagles. During the same period, the authors recorded 95 bird fatalities. Raptors represent 51% (n=49) of the kills found. The data indicate that the relative abundance of species observed does not predict the relative frequency of fatalities per species. Phase II of the research is underway.

  6. Avian risk behavior and fatalities at the Altamont Wind Resource Area: March 1998 - February 1999

    International Nuclear Information System (INIS)

    Thelander, C.; Rugge, L.

    2000-01-01

    Since 1981, more than 7,000 wind turbines have been installed in the Altamont Wind Resource Area in north-central California. Currently, about 5,000 turbines are operating. Past research efforts demonstrated that wind turbines frequently kill birds, especially raptors. Little is known about the specific flight and perching behaviors by birds near wind turbines. A better understanding of these interactions may one day yield insights on how to minimize bird fatalities. This Phase 1 progress report summarizes research findings obtained at 20 study plots totaling 785 turbines of various configurations and conducted between March 1998 and February 1999. The authors examined bird use and behaviors and collected data on fatalities at the same turbines throughout the course of the surveys. They completed 745 30-minute point counts (1,702 bird observations) that quantified bird risk behaviors and bird use of the study plots. The four most frequently observed bird species were red-tailed hawks, common ravens, turkey vultures, and golden eagles. During the same period, the authors recorded 95 bird fatalities. Raptors represent 51% (n=49) of the kills found. The data indicate that the relative abundance of species observed does not predict the relative frequency of fatalities per species. Phase II of the research is underway

  7. Onshore wind power development in China: Challenges behind a successful story

    International Nuclear Information System (INIS)

    Han Jingyi; Mol, Arthur P.J.; Lu Yonglong; Zhang Lei

    2009-01-01

    Wind energy utilization, especially onshore grid-connected wind power generation, has a history of 30 years in China. With the increasing attention to renewable energy development in recent years, wind energy has become the focus of academic research and policy-making. While the potential and advantages of wind energy are widely recognized, many questions regarding the effectiveness of policies and performances of current practices remain unanswered. This paper takes Inner Mongolia, the province that has the most abundant wind energy resources in China, as a case to assess the performance of Chinese onshore wind power projects, focusing on the institutional setting, economic and technological performance, as well as environmental and social impacts. Results show that China is experiencing a rapid growth in wind power generation, which brings China great environmental, energy security and social benefits. However, for a full development of wind energy in China a number of barriers need to be removed: high generation cost, low on-grid price, and stagnating development of domestic manufacture. These findings lead to three policy recommendations.

  8. Wind energy management for smart grids with storage systems

    Energy Technology Data Exchange (ETDEWEB)

    Gasco, Manuel [Universidad de Alicante (Spain). Area de Ingenieria Electrica; Rios, Alberto [Universidad Europea de Madrid (Spain). Area de Ingenieria Electrica

    2012-07-01

    Increasing integration of wind energy into the power system makes the optimal management of different situations that can occur more and more important. The objective of the present study is to replace the power necessary for electrical feed when the wind resources are not available, and to make a continuous demand tracking of the power. The energy storage systems treated in this study are as follows: a fuel cell, flywheel, pump systems and turbine systems, compressed air systems, electrochemical cells, electric vehicles, supercapacitors and superconductors. As a result the maximum benefit of the smart grid is achieved and it includes coexistence of the energy storage systems described and integrated in the numerous microgrids which can form the distribution grid. The current capacity is observed in order to be able to manage the wind generation for short periods of time. This way it is possible to plan the production which would be adjusted to the variations through these storage systems allowing the systems to maintain their constant programming for the base plants, adjusting the variations in these systems in the short term. (orig.)

  9. A tall tower study of Missouri winds

    Energy Technology Data Exchange (ETDEWEB)

    Fox, Neil I. [Department of Soil, Environmental and Atmospheric Sciences, 332 ABNR Building, University of Missouri, Columbia, MO 65211 (United States)

    2011-01-15

    This paper summarizes the results of a study of wind speeds observed at heights up to 150 m above ground level around Missouri. This is an amalgamation of four projects that allowed a total of eleven tall communication towers to be instrumented with wind observation equipment across the State of Missouri. This provided an assessment of the wind resource and the characteristics of the seasonal and diurnal cycles of wind in different areas of Missouri at the heights of utility scale wind turbines. Comparisons were also made to wind speeds predicted at these levels from a previously published wind map. The main finding was that the observed winds at each tower were smaller than those presented in the wind map. The discrepancy is most likely to be due to underestimation of the surface roughness and turbulence leading to an overestimation of near-surface wind shear. However, the wind shear, as expressed by the shear parameter was consistently greater than the 'standard' value of 1.4. The reconciliation of these two apparently contradictory findings is that the shear varies with the height at which it is measured. In wind resource assessment, wind shear is usually observed below 50 m and is tacitly assumed to be constant with height when used to extrapolate winds to higher levels. The author advocates the use of the friction velocity as a measure of shear in wind power applications in preference to the shear parameter that is usually used. This is because the shear parameter has a velocity bias that can also manifest as a bias with height or season. As wind power resource assessment is starting to use taller towers than the standard 50 m, intercomparison of site resources and extrapolation to turbine heights can be compromised if the shear parameter is used. (author)

  10. Sliding Window Technique for Calculating System LOLP Contributions of Wind Power Plants

    International Nuclear Information System (INIS)

    Milligan, M. R.

    2001-01-01

    Conventional electric power generation models do not typically recognize the probabilistic nature of the power variations from wind plants. Most models allow for an accurate hourly representation of wind power output, but do not incorporate any probabilistic assessment of whether the given level of wind power will vary from its expected value. The technique presented in this paper uses this variation to calculate an effective forced-outage rate for wind power plants (EFORW). Depending on the type of wind regime undergoing evaluation, the length and diurnal characteristics of a sliding time window can be adjusted so that the EFORW is based on an appropriate time scale. The algorithm allows us to calculate the loss-of-load probability (LOLP) on an hourly basis, fully incorporating the variability of the wind resource into the calculation. This makes it possible to obtain a more accurate assessment of reliability of systems that include wind generation when system reliability is a concern

  11. Wind power merit-order and feed-in-tariffs effect: A variability analysis of the Spanish electricity market

    International Nuclear Information System (INIS)

    Azofra, D.; Jiménez, E.; Martínez, E.; Blanco, J.; Saenz-Díez, J.C.

    2014-01-01

    Highlights: • M5P algorithm-based model determines influence of wind power on Spanish spot market. • Assessment of the wind power influence for different levels of wind resource. • Cost-benefit analysis is developed, accounting feed-in-tariffs and merit order effect. • The worst and best levels of wind power production for the system are determined. - Abstract: The incipient large-scale energy-storage technologies are not sufficiently developed yet, which means that the wind power production depends on the wind speed at every moment. This, along with the fact that the wind resource is not constant over time, makes wind power production quite variable. Therefore, an artificial intelligence-based technique (M5P algorithm) is applied to empirical hourly data to determine the influence of wind power technology on the spot market for different levels of wind resource in 2012. It concludes that wind power depressed the spot prices between 7.42 and 10.94 €/MW h for a wind power production of 90% and 110% of the real one, respectively. Furthermore, taking into account the important presence of wind power in the Spanish generation mix, the above range has been extended up to 0% in order to determine the worst and best level of wind power production for the Spanish electrical system (from an economical point of view). To do so, both feed-in-tariffs and wind power impact on spot market (merit order effect) have been accounted in accordance with the different levels of wind power production. Since empirical data from 2012 have been used to conduct the research, the results presented in this paper may provide policy makers with a worst and best-case scenario to discuss about the convenience of the last cutting expenses over wind power technology in Spain

  12. Value of Flexible Resources, Virtual Bidding, and Self-Scheduling in Two-Settlement Electricity Markets With Wind Generation – Part I: Principles and Competitive Model

    DEFF Research Database (Denmark)

    Kazempour, Jalal; Hobbs, Benjamin F.

    2017-01-01

    Part one of this two-part paper presents new models for evaluating flexible resources in two-settlement electricity markets (day-ahead and real-time) with uncertain net loads (demand minus wind). Physical resources include wind together with fast- and slow-start demand response and thermal...... of certain equivalencies of the four models. We show how virtual bidding enhances market performance, since, together with self-scheduling by slow-start generators, it can help deterministic day-ahead market to choose the most efficient unit commitment....

  13. Effects of distributing wind energy generation over Europe

    Energy Technology Data Exchange (ETDEWEB)

    Giebel, G [Risoe National Lab., Wind Energy and Atmospheric Physics Dept., Roskilde (Denmark)

    1999-03-01

    Using data from 60 meteorological stations distributed all over Europe in conjunction with the National Grid Model (NGM) from the Rutherford Appleton Laboratory, the effects of the large-scale distribution of wind energy generation are studied. In some regions of Europe, wind energy already covers a significant proportion of the electricity demand. But the intermittence of the wind resource is always a limiting factor when penetration levels are high. Studies for single countries have shown that distributing the generation over a large area reduces the variability of the output and hence makes wind energy more appealing to utilities, since the stability requirement of the network are easier to fulfil. The data are analysed in terms of absolute highs and lows, temporal and spatial correlations. To assess the financial benefits, the NGM is used to evaluate the match of electricity demand and generation as well as the possibel savings of fossil fuel in an electricity grid incorporating various capacities of wind energy generation. To assess the value of wind energy on a trans-national scale, the European plant mix is modelled, and the NGM is used to simulate the scheduling of these plants in the presence of different penetrations of wind energy. (au) EU-JOULE-3. 11 refs.

  14. Optimum sizing of wind-battery systems incorporating resource uncertainty

    International Nuclear Information System (INIS)

    Roy, Anindita; Kedare, Shireesh B.; Bandyopadhyay, Santanu

    2010-01-01

    The inherent uncertainty of the wind is a major impediment for successful implementation of wind based power generation technology. A methodology has been proposed in this paper to incorporate wind speed uncertainty in sizing wind-battery system for isolated applications. The uncertainty associated with the wind speed is incorporated using chance constraint programming approach. For a pre-specified reliability requirement, a deterministic equivalent energy balance equation may be derived from the chance constraint that allows time series simulation of the entire system. This results in a generation of the entire set of feasible design options, satisfying different system level constraints, on a battery capacity vs. generator rating diagram, also known as the design space. The proposed methodology highlights the trade-offs between the wind turbine rating, rotor diameter and the battery size for a given reliability of power supply. The optimum configuration is chosen on the basis of the minimum cost of energy (US$/kWh). It is shown with the help of illustrative examples that the proposed methodology is generic and flexible to incorporate alternate sub-component models. (author)

  15. Preliminary results of Aruba wind resource assessment

    Energy Technology Data Exchange (ETDEWEB)

    Guda, M.H. [Fundashon Antiyano Pa Energia, Curacao (Netherlands Antilles)

    1996-12-31

    As part of a project to assess the possibilities for wind energy utilitization in the Dutch Antilles islands, windspeed and -direction data were collected in Aruba for two years, from March 1992 to February 1994. Five sites that were estimated to be representative for the islands` wind regimes, were monitored during this period: two sites on the windward coast, one east and one west; two inland sites, again one east and one west, and one site topping the cliffs overlooking the eastern windward coast. Additionally, twenty years worth of data were analyzed for the reference site at the airport, which is in the middle part of the island, on the leeward coast. Correlation calculations between these data and the data for the project sites were performed, in order to establish a methodology for estimating the long-term behavior of the wind regimes at these sites. 8 figs., 3 tabs.

  16. Mid-Atlantic Wind - Overcoming the Challenges

    Energy Technology Data Exchange (ETDEWEB)

    Daniel F. Ancona III; Kathryn E. George; Richard P. Bowers; Dr. Lynn Sparling; Bruce Buckheit; Daniel LoBue

    2012-05-31

    This study, supported by the US Department of Energy, Wind Powering America Program, Maryland Department of Natural Resources and Chesapeake Bay Foundation, analyzed barriers to wind energy development in the Mid-Atlantic region along with options for overcoming or mitigating them. The Mid-Atlantic States including Delaware, Maryland, North Carolina and Virginia, have excellent wind energy potential and growing demand for electricity, but only two utility-scale projects have been installed to date. Reasons for this apathetic development of wind resources were analyzed and quantified for four markets. Specific applications are: 1) Appalachian mountain ridgeline sites, 2) on coastal plains and peninsulas, 3) at shallow water sites in Delaware and Chesapeake Bays, Albemarle and Pamlico Sounds, and 4) at deeper water sites off the Atlantic coast. Each market has distinctly different opportunities and barriers. The primary barriers to wind development described in this report can be grouped into four categories; state policy and regulatory issues, wind resource technical uncertainty, economic viability, and public interest in environmental issues. The properties of these typologies are not mutually independent and do interact. The report concluded that there are no insurmountable barriers to land-based wind energy projects and they could be economically viable today. Likewise potential sites in sheltered shallow waters in regional bay and sounds have been largely overlooked but could be viable currently. Offshore ocean-based applications face higher costs and technical and wind resource uncertainties. The ongoing research and development program, revision of state incentive policies, additional wind measurement efforts, transmission system expansion, environmental baseline studies and outreach to private developers and stakeholders are needed to reduce barriers to wind energy development.

  17. Mid-Atlantic Wind - Overcoming the Challenges

    Energy Technology Data Exchange (ETDEWEB)

    Daniel F. Ancona III; Kathryn E. George; Lynn Sparling; Bruce C. Buckheit; Daniel LoBue; and Richard P. Bowers

    2012-06-29

    This study, supported by the US Department of Energy, Wind Powering America Program, Maryland Department of Natural Resources and Chesapeake Bay Foundation, analyzed barriers to wind energy development in the Mid-Atlantic region along with options for overcoming or mitigating them. The Mid-Atlantic States including Delaware, Maryland, North Carolina and Virginia, have excellent wind energy potential and growing demand for electricity, but only two utility-scale projects have been installed to date. Reasons for this apathetic development of wind resources were analyzed and quantified for four markets. Specific applications are: 1) Appalachian mountain ridgeline sites, 2) on coastal plains and peninsulas, 3) at shallow water sites in Delaware and Chesapeake Bays, Albemarle and Pamlico Sounds, and 4) at deeper water sites off the Atlantic coast. Each market has distinctly different opportunities and barriers. The primary barriers to wind development described in this report can be grouped into four categories; state policy and regulatory issues, wind resource technical uncertainty, economic viability, and public interest in environmental issues. The properties of these typologies are not mutually independent and do interact. The report concluded that there are no insurmountable barriers to land-based wind energy projects and they could be economically viable today. Likewise potential sites in sheltered shallow waters in regional bay and sounds have been largely overlooked but could be viable currently. Offshore ocean-based applications face higher costs and technical and wind resource uncertainties. The ongoing research and development program, revision of state incentive policies, additional wind measurement efforts, transmission system expansion, environmental baseline studies and outreach to private developers and stakeholders are needed to reduce barriers to wind energy development.

  18. Database on wind characteristics - Analyses of wind turbine design loads

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, G.C.; Hansen, K.S.

    2004-06-01

    The main objective of IEA R and D Wind Annex XVII - Database on Wind Characteristics - has been to provide wind energy planners, designers and researchers, as well as the international wind engineering community in general, with a source of actual wind field data (time series and resource data) observed in a wide range of different wind climates and terrain types. Connected to an extension of the initial Annex period, the scope for the continuation was widened to include also support to the international wind turbine standardisation efforts.. The project partners are Sweden, Norway, U.S.A., The Netherlands and Denmark, with Denmark as the Operating Agent. The reporting of the continuation of Annex XVII falls in two separate parts. Part one accounts in details for the available data in the established database bank, and part two describes various data analyses performed with the overall purpose of improving the design load cases with relevance for to wind turbine structures. The present report constitutes the second part of the Annex XVII reporting. Both fatigue and extreme load aspects are dealt with, however, with the main emphasis on the latter. The work has been supported by The Ministry of Environment and Energy, Danish Energy Agency, The Netherlands Agency for Energy and the Environment (NOVEM), The Norwegian Water Resources and Energy Administration (NVE), The Swedish National Energy Administration (STEM) and The Government of the United States of America. (au)

  19. M PPING SUIT BLE SITES FOR SETTING UP WIND F RMS: C SE ...

    African Journals Online (AJOL)

    USER

    2015-04-14

    Apr 14, 2015 ... Due to the negative impacts on the environment of traditional ... The study employed the Geographical Information Systems (GIS) ... in rural areas make the medium suitability areas. ... greenhouse gas emissions in the world. ... exploitation of its wind resources. ..... keep the site away from water in case of.

  20. Sharing wind power forecasts in electricity markets: A numerical analysis

    International Nuclear Information System (INIS)

    Exizidis, Lazaros; Kazempour, S. Jalal; Pinson, Pierre; Greve, Zacharie de; Vallée, François

    2016-01-01

    Highlights: • Information sharing among different agents can be beneficial for electricity markets. • System cost decreases by sharing wind power forecasts between different agents. • Market power of wind producer may increase by sharing forecasts with market operator. • Extensive out-of-sample analysis is employed to draw reliable conclusions. - Abstract: In an electricity pool with significant share of wind power, all generators including conventional and wind power units are generally scheduled in a day-ahead market based on wind power forecasts. Then, a real-time market is cleared given the updated wind power forecast and fixed day-ahead decisions to adjust power imbalances. This sequential market-clearing process may cope with serious operational challenges such as severe power shortage in real-time due to erroneous wind power forecasts in day-ahead market. To overcome such situations, several solutions can be considered such as adding flexible resources to the system. In this paper, we address another potential solution based on information sharing in which market players share their own wind power forecasts with others in day-ahead market. This solution may improve the functioning of sequential market-clearing process through making more informed day-ahead schedules, which reduces the need for balancing resources in real-time operation. This paper numerically evaluates the potential value of sharing forecasts for the whole system in terms of system cost reduction. Besides, its impact on each market player’s profit is analyzed. The framework of this study is based on a stochastic two-stage market setup and complementarity modeling, which allows us to gain further insights into information sharing impacts.

  1. Map-Based Repowering and Reorganization of a Wind Resource Area to Minimize Burrowing Owl and Other Bird Fatalities

    Directory of Open Access Journals (Sweden)

    Lee Neher

    2009-10-01

    Full Text Available Wind turbines in the Altamont Pass Wind Resource Area (Alameda/Contra Costa Counties, California, USA generate about 730 GWh of electricity annually, but have been killing thousands of birds each year, including >2,000 raptors and hundreds of burrowing owls. We have developed collision hazard maps and hazard ratings of wind turbines to guide relocation of existing wind turbines and careful repowering to modern turbines to reduce burrowing owl fatalities principally, and other birds secondarily. Burrowing owls selected burrow sites lower on slopes and on smaller, shallower slopes than represented by the average 10 × 10 m2 grid cell among 187,908 grid cells sampled from 2,281,169 grid cells comprising a digital elevation model (DEM of the study area. Fuzzy logic and discriminant function analysis produced likelihood surfaces encompassing most burrowing owl burrows within a fraction of the study area, and the former corresponded with burrowing owl fatalities and the latter with other raptor fatalities. Our ratings of wind turbine hazard were more predictive of burrowing owl fatalities, but would be more difficult to implement. Careful repowering to modern wind turbines would most reduce fatalities of burrowing owls and other birds while adding about 1,000 GWh annually toward California’s 33% Renewable Portfolio Standard.

  2. Map-based repowering and reorganization of a wind resource area to minimize burrowing owl and other bird fatalities

    Energy Technology Data Exchange (ETDEWEB)

    Smallwood, K. S. [Research Ecologist, 3108 Finch Street, Davis, CA 95616 (United States); Neher, L. [Gis Specialist, Neher Consulting, 7241 34th Street, North Highlands, CA 95660 (United States); Bell, D. A. [East Bay Regional Park District, 2950 Peralta Oaks Court, Oakland, CA 94605-0381 (United States)

    2009-07-01

    Wind turbines in the Altamont Pass Wind Resource Area (Alameda/Contra Costa Counties, California, USA) generate about 730 GWh of electricity annually, but have been killing thousands of birds each year, including >2,000 raptors and hundreds of burrowing owls. We have developed collision hazard maps and hazard ratings of wind turbines to guide relocation of existing wind turbines and careful repowering to modern turbines to reduce burrowing owl fatalities principally, and other birds secondarily. Burrowing owls selected burrow sites lower on slopes and on smaller, shallower slopes than represented by the average 10 x 10 m{sup 2} grid cell among 187,908 grid cells sampled from 2,281,169 grid cells comprising a digital elevation model (DEM) of the study area. Fuzzy logic and discriminant function analysis produced likelihood surfaces encompassing most burrowing owl burrows within a fraction of the study area, and the former corresponded with burrowing owl fatalities and the latter with other raptor fatalities. Our ratings of wind turbine hazard were more predictive of burrowing owl fatalities, but would be more difficult to implement. Careful repowering to modern wind turbines would most reduce fatalities of burrowing owls and other birds while adding about 1,000 GWh annually toward California's 33% Renewable Portfolio Standard. (author)

  3. Renewable energy and sustainable communities: Alaska's wind generator experience†

    Science.gov (United States)

    Konkel, R. Steven

    2013-01-01

    with climate change on human health,progress in better understanding wind energy potential through resource assessments and new tools for detailed feasibility and project planning,need for comprehensive monitoring and data analysis, andstate funding requirements and opportunity costs. Conclusion The energy policy choices ahead for Alaska will have important implications for Arctic population health, especially for those villages whose relatively small size and remote locations make energy a key component of subsistence lifestyles and community sustainability. Wind generation can contribute to meeting renewable energy goals and is a particularly important resource for rural and remote Alaskan communities currently dependent on diesel fuel for generating electricity and heat. PMID:23971014

  4. Renewable energy and sustainable communities: Alaska's wind generator experience†

    Directory of Open Access Journals (Sweden)

    R. Steven Konkel

    2013-08-01

    villages, b. impacts associated with climate change on human health, c. progress in better understanding wind energy potential through resource assessments and new tools for detailed feasibility and project planning, d. need for comprehensive monitoring and data analysis, and e. state funding requirements and opportunity costs. Conclusion . The energy policy choices ahead for Alaska will have important implications for Arctic population health, especially for those villages whose relatively small size and remote locations make energy a key component of subsistence lifestyles and community sustainability. Wind generation can contribute to meeting renewable energy goals and is a particularly important resource for rural and remote Alaskan communities currently dependent on diesel fuel for generating electricity and heat.

  5. Wind energy information guide

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-04-01

    This book is divided into nine chapters. Chapters 1--8 provide background and annotated references on wind energy research, development, and commercialization. Chapter 9 lists additional sources of printed information and relevant organizations. Four indices provide alphabetical access to authors, organizations, computer models and design tools, and subjects. A list of abbreviations and acronyms is also included. Chapter topics include: introduction; economics of using wind energy; wind energy resources; wind turbine design, development, and testing; applications; environmental issues of wind power; institutional issues; and wind energy systems development.

  6. Reducing storage of global wind ensembles with stochastic generators

    KAUST Repository

    Jeong, Jaehong

    2018-03-09

    Wind has the potential to make a significant contribution to future energy resources. Locating the sources of this renewable energy on a global scale is however extremely challenging, given the difficulty to store very large data sets generated by modern computer models. We propose a statistical model that aims at reproducing the data-generating mechanism of an ensemble of runs via a Stochastic Generator (SG) of global annual wind data. We introduce an evolutionary spectrum approach with spatially varying parameters based on large-scale geographical descriptors such as altitude to better account for different regimes across the Earth’s orography. We consider a multi-step conditional likelihood approach to estimate the parameters that explicitly accounts for nonstationary features while also balancing memory storage and distributed computation. We apply the proposed model to more than 18 million points of yearly global wind speed. The proposed SG requires orders of magnitude less storage for generating surrogate ensemble members from wind than does creating additional wind fields from the climate model, even if an effective lossy data compression algorithm is applied to the simulation output.

  7. Reducing storage of global wind ensembles with stochastic generators

    KAUST Repository

    Jeong, Jaehong; Castruccio, Stefano; Crippa, Paola; Genton, Marc G.

    2018-01-01

    Wind has the potential to make a significant contribution to future energy resources. Locating the sources of this renewable energy on a global scale is however extremely challenging, given the difficulty to store very large data sets generated by modern computer models. We propose a statistical model that aims at reproducing the data-generating mechanism of an ensemble of runs via a Stochastic Generator (SG) of global annual wind data. We introduce an evolutionary spectrum approach with spatially varying parameters based on large-scale geographical descriptors such as altitude to better account for different regimes across the Earth’s orography. We consider a multi-step conditional likelihood approach to estimate the parameters that explicitly accounts for nonstationary features while also balancing memory storage and distributed computation. We apply the proposed model to more than 18 million points of yearly global wind speed. The proposed SG requires orders of magnitude less storage for generating surrogate ensemble members from wind than does creating additional wind fields from the climate model, even if an effective lossy data compression algorithm is applied to the simulation output.

  8. Multi objective decision making in hybrid energy system design

    Science.gov (United States)

    Merino, Gabriel Guillermo

    The design of grid-connected photovoltaic wind generator system supplying a farmstead in Nebraska has been undertaken in this dissertation. The design process took into account competing criteria that motivate the use of different sources of energy for electric generation. The criteria considered were 'Financial', 'Environmental', and 'User/System compatibility'. A distance based multi-objective decision making methodology was developed to rank design alternatives. The method is based upon a precedence order imposed upon the design objectives and a distance metric describing the performance of each alternative. This methodology advances previous work by combining ambiguous information about the alternatives with a decision-maker imposed precedence order in the objectives. Design alternatives, defined by the photovoltaic array and wind generator installed capacities, were analyzed using the multi-objective decision making approach. The performance of the design alternatives was determined by simulating the system using hourly data for an electric load for a farmstead and hourly averages of solar irradiation, temperature and wind speed from eight wind-solar energy monitoring sites in Nebraska. The spatial variability of the solar energy resource within the region was assessed by determining semivariogram models to krige hourly and daily solar radiation data. No significant difference was found in the predicted performance of the system when using kriged solar radiation data, with the models generated vs. using actual data. The spatial variability of the combined wind and solar energy resources was included in the design analysis by using fuzzy numbers and arithmetic. The best alternative was dependent upon the precedence order assumed for the main criteria. Alternatives with no PV array or wind generator dominated when the 'Financial' criteria preceded the others. In contrast, alternatives with a nil component of PV array but a high wind generator component

  9. Offshore wind power in the Aegean Sea

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Badger, Merete; Hahmann, Andrea N.

    hub heights at around 100 m using a combination of satellite wind fields and the long-term climate of atmospheric stability from the mesoscale model (Badger et al. 2016). The result of the mean wind speed at hub-height for the Aegean Sea is shown in Figure 1. The map shows the stability dependent......, where the spatial variations in wind speed are very high, accurate resource mapping is of great importance as the produced wind power is proportional to the cubed wind speed. It is challenging to model the wind resource and it is costly to measure from the ground at every place of interest. Maps based...

  10. China: an emerging offshore wind development hotspot. With a new assessment of China's offshore wind potential

    Energy Technology Data Exchange (ETDEWEB)

    Reinvang, Rasmus; Enslow, Rachel; Beaumont, Hubert

    2010-08-15

    This study provides new and more detailed estimates of the offshore wind energy resources in China, with particular focus on Southern China. The study points out that the offshore wind industry is ramping up in China with at least 11.9GW in the development pipeline per April 2010. The study estimates the offshore wind potential of China (excluding Taiwan) to 11,580TWh/year. The study proves estimates and wind energy resource maps per province. Fujian, Zhejiang and Hainan stand out with the highest offshore wind speeds in China while Guangdong also shows significant potential, with annual wind speed averages of 6.5-10.2m/s and an energy density range of 12-36GWh/km2. Even though current offshore wind development is mainly taking place in Fujian and Jiangsu, this study shows that the potential is likely even greater in other provinces. The study was developed by the Chinese Wind Energy Association (CWEA) and Sun Yat-sen University, and commissioned by WWF as part of a project funded by the Norwegian Agency of development Coopeartion (Norad). Methodology and constraints: The wind resource analysis improves upon previous studies in estimating the wind energy generation potential for offshore wind power in China, with available meteorological data adjusted for influence of typhoons. The study models how much energy offshore wind can produce along China's coast up to 100km from the shore by calculating the energy output of theoretical wind farms by applying the power curve of a 3MW turbine at a 100m hub height. In addition the study further expands by giving special consideration to the deep-sea offshore potential at +50m water depths. The study focuses particularly on the coastline from Shandong down to Hainan. The final results provide good indication of the offshore wind resource in China when comparing one area to the other. The report can therefore be used as a preliminary tool to identifying most interesting provinces and locations for offshore wind

  11. Wind potential assessment of Quebec Province

    International Nuclear Information System (INIS)

    Ilinca, A.; Chaumel, J.-L.; Retiveau, J.-L.

    2003-01-01

    The paper presents the development of a comprehensive wind atlas of the Province of Quebec. This study differs from previous studies by 1) use of a standard classification index to categorize the wind resource, 2) extensive review of surface and upper air data available for the Province to define the wind resource, and 3) integration of available wind data with the topography of the Province. The wind resource in the Province of Quebec is classified using the scheme proposed by Battelle-Pacific Northwest Laboratory (PNL). The Battelle-PNL classification is a numerical one which includes rankings from Wind Power Class 1 (lowest) to Wind Power Class 7 (highest). Associated with each numerical classification is a range of wind power and associated mean wind speed at 10 m and 50 m above ground level. For this study, a classification for 30 m above ground level was interpolated and used. A significant amount of wind data was gathered for the Province. These data were obtained from Atmospheric Environment Service (AES), Canada, from wind project developers, and from climatological summaries of surface and upper air data. A total of 35 primary data sites were selected in the Province. Although a number of wind data sites in the Province were identified and used in the analysis, large areas of the Province lacked any specific wind information. The Province was divided into grid blocks having dimensions of 1/4 o latitude by 1/3 o longitude. Each grid block is assigned a numerical Wind Power Class value ranging from 1 to 7. This value is based on the integration of the available wind data and the topography within the square. The majority of the Province was classified as 1 or 2. Coastal locations and topographic features in the interior of the Province typically have Wind Power Class 3 or higher. (author)

  12. Distribution Characteristics and Assessment of Wind Energy Resources at 70 m Height over Fujian Coastal Areas%福建沿海70米高度风能资源分布特点及评估

    Institute of Scientific and Technical Information of China (English)

    文明章; 吴滨; 林秀芳; 游立军; 杨丽慧

    2011-01-01

    Fujian Province lies in southeastern China,being rich in wind energy resources in its coastal areas due to its special geographical location.In order to evaluate wind energy resources,Fujian Meteorological Bureau built 18 wind towers in the coastal areas and observes wind speed and wind energy resources.Based on observational data at 70 m height from 18 wind towers from Jun 1,2009 to May 31,2010 in Fujian coastal areas,the reserves and distribution characteristics of wind speed and wind energy at 70 m height were analyzed using statistical methods.Results show that there are plenty of wind energy resources in Fujian coastal areas,and the wind energy resources are much richer in the area from mid-southern Fuzhou to the south of Quanzhou than other areas.The annual effective wind power density is (516.7~930.4) W/m2 in the area from mid-southern Fuzhou to the south of Quanzhou where there is the richest wind energy resources in Pingtan island with an annual effective wind power density of as much as 930.4 W/m2 in some places of Pingtan island.In addition,there are much wind energy resources in Chihu of Zhangpu County lying in the south of FuJian whose annual effective wind power density is more than 509.9 W/m2.The reserves and distribution characteristics of wind speed and wind energy are generally consistent with the simulations.Results also show that the mean annual effective hours of wind and its percent are more than 7014.4 h and 80.4%,respectively.The distributions of wind direction and wind energy density were analyzed as well.Results show that the wind direction stability is relatively high and the leading wind direction is obvious,with the northern,middle,and southern parts of Fujian coastal areas being N-NE,N-NNE,and NNE-ENE,respectively.The distribution characteristics of wind energy density are accordant with wind direction,and much more stable than wind direction.According to national standards (GB/T 18710-2002) of wind energy resources,the grade

  13. Wind energy and Turkey.

    Science.gov (United States)

    Coskun, Aynur Aydin; Türker, Yavuz Özhan

    2012-03-01

    The global energy requirement for sustaining economic activities, meeting social needs and social development is increasing daily. Environmentally friendly, renewable energy resources are an alternative to the primary non-renewable energy resources, which devastate ecosystems in order to meet increasing demand. Among renewable energy sources such as hydropower, biopower, geothermal power and solar power, wind power offers distinct advantages to Turkey. There is an increasing tendency toward wind globally and the European Union adjusted its legal regulations in this regard. As a potential EU Member state, Turkey is going through a similar process. The number of institutional and legal regulations concerning wind power has increased in recent years; technical infrastructure studies were completed, and some important steps were taken in this regard. This study examines the way in which Turkey has developed support for wind power, presents a SWOT analysis of the wind power sector in Turkey and a projection was made for the concrete success expected to be accomplished in the future.

  14. Wind erosion processes and control

    Science.gov (United States)

    Wind erosion continues to threaten the sustainability of our nations' soil, air, and water resources. To effectively apply conservation systems to prevent wind driven soil loss, an understanding of the fundamental processes of wind erosion is necessary so that land managers can better recognize the ...

  15. WIND ENERGY CONVERSION SYSTEMS - A TECHNICAL REVIEW

    Directory of Open Access Journals (Sweden)

    N. RAMESH BABU

    2013-08-01

    Full Text Available Wind power production has been under the main focus for the past decade in power production and tremendous amount of research work is going on renewable energy, specifically on wind power extraction. Wind power provides an eco-friendly power generation and helps to meet the national energy demand when there is a diminishing trend in terms of non-renewable resources. This paper reviews the modeling of Wind Energy Conversion Systems (WECS, control strategies of controllers and various Maximum Power Point Tracking (MPPT technologies that are being proposed for efficient production of wind energy from the available resource.

  16. The Numerical Wind Atlas - the KAMM/WAsP Method

    Energy Technology Data Exchange (ETDEWEB)

    Frank, H P; Rathmann, O; Mortensen, N G; Landberg, L

    2001-06-01

    The method of combining the Karlsruhe Atmospheric Mesoscale Model, KAMM, with the Wind Atlas Analysis and Application Program, WAsP, to make local predictions of the wind resource is presented. It combines the advantages of meso-scale modeling - overview over a big region and use of global data bases - with the local prediction capacity of the small-scale model WAsP. Results are presented for Denmark, Ireland, Northern Portugal and Galicia, and the Faroe Islands. Wind atlas files were calculated from wind data simulated with the meso-scale model using model grids with a resolution of 2.5, 5, and 10 km. Using these wind atlas files in WAsP the local prediction of the mean wind does not depend on the grid resolution of the meso-scale model. The local predictions combining KAMM and WAsP are much better than simple interpolation of the wind simulated by KAMM. In addition an investigation was made on the dependence of wind atlas data on the size of WAsP-maps. It is recommended that a topographic map around a site should extend 10 km out from it. If there is a major roughness change like a coast line further away in a frequent wind direction this should be included at even greater distances, perhaps up to 20 km away.

  17. The Irish Wind Atlas

    Energy Technology Data Exchange (ETDEWEB)

    Watson, R [Univ. College Dublin, Dept. of Electronic and Electrical Engineering, Dublin (Ireland); Landberg, L [Risoe National Lab., Meteorology and Wind Energy Dept., Roskilde (Denmark)

    1999-03-01

    The development work on the Irish Wind Atlas is nearing completion. The Irish Wind Atlas is an updated improved version of the Irish section of the European Wind Atlas. A map of the irish wind resource based on a WA{sup s}P analysis of the measured data and station description of 27 measuring stations is presented. The results of previously presented WA{sup s}P/KAMM runs show good agreement with these results. (au)

  18. Construction of research wind-solar monitoring station 'North-East Bulgaria'

    International Nuclear Information System (INIS)

    Mateeva, Z.; Filipov, A.; Filipov, V.

    2008-01-01

    The rising energy prices, the lack of conventional energy sources, as well as the growing ecological problems, imposing the development of a new energy strategy of Bulgaria, are the prerequisites for the thorough researches in the field of wind-solar resources and the construction of experimental bases with modern equipment for the detailed investigations on the specificities of these resources with the view of their optimal utilization. The lack of homogenous covering of the territory of the country with meteorological stations, as well as the rather specific microclimatic conditions in the diverse physical-geographic localities in the country make the necessity of building experimental stations for meteo-monitoring under specific local conditions still more indispensable. This work presents the monitoring parameters of wind-solar resources in a real physical-geographic environment, for carrying out scientific-research, applied-practical and educational-training activity. A broad spectrum of scientific methods and approaches - instrumental, topographic, terrain, mathematical-statistical, numerical modeling, cartographic, educational and team-working, are envisaged for attaining the set objective. (author)

  19. Assessment of wind power generation along the coast of Ghana

    Energy Technology Data Exchange (ETDEWEB)

    Adaramola, Muyiwa S., E-mail: muyiwa.adaramola@umb.no [Department of Ecology and Natural Resource Management, Norwegian University of Life Sciences, Ås (Norway); Agelin-Chaab, Martin [Department of Automotive, Mechanical and Manufacturing Engineering, University of Ontario Institute of Technology, Oshawa, ON (Canada); Paul, Samuel S. [REHAU Industries, Winnipeg, Manitoba (Canada)

    2014-01-15

    Highlights: • The wind energy and its economic viability along the coastal region of Ghana are examined. • Wind resource along the coastal region of Ghana fall into Class 2 or less wind resource. • Wind turbine with rated speed from 9 to 11 m/s is suggested for wind power development. • The unit cost of wind generated electricity is found be between 0.0732 GH¢/kW h and 0.2905 GH¢/kW h. - Abstract: This study examined the wind energy potential and the economic viability of using wind turbine for electricity generation in selected locations along the coastal region of Ghana. The two-parameter Weibull probability density function was employed to analyze the wind speed data obtained from the Ghana Energy Commission. The energy output and unit cost of electricity generated from medium size commercial wind turbine models with rated powers ranging from 50 kW to 250 kW were determined. It was found that the wind resource along the coastal region of Ghana can be classified into Class 2 or less wind resource which indicate that this resource in this area is marginally suitable for large scale wind energy development or suitable for small scale applications and be useful as part of hybrid energy system. It was further observed that wind turbine with designed cut-in wind speed of less than 3 m/s and moderate rated wind speed between 9 and 11 m/s is more suitable for wind energy development along the coastal region of Ghana. Based on the selected wind turbine and assumptions used in this study, it was estimated that the unit cost of electricity varied between 0.0695 GH¢/kW h and 0.2817 GH¢/kW h.

  20. Assessment of wind power generation along the coast of Ghana

    International Nuclear Information System (INIS)

    Adaramola, Muyiwa S.; Agelin-Chaab, Martin; Paul, Samuel S.

    2014-01-01

    Highlights: • The wind energy and its economic viability along the coastal region of Ghana are examined. • Wind resource along the coastal region of Ghana fall into Class 2 or less wind resource. • Wind turbine with rated speed from 9 to 11 m/s is suggested for wind power development. • The unit cost of wind generated electricity is found be between 0.0732 GH¢/kW h and 0.2905 GH¢/kW h. - Abstract: This study examined the wind energy potential and the economic viability of using wind turbine for electricity generation in selected locations along the coastal region of Ghana. The two-parameter Weibull probability density function was employed to analyze the wind speed data obtained from the Ghana Energy Commission. The energy output and unit cost of electricity generated from medium size commercial wind turbine models with rated powers ranging from 50 kW to 250 kW were determined. It was found that the wind resource along the coastal region of Ghana can be classified into Class 2 or less wind resource which indicate that this resource in this area is marginally suitable for large scale wind energy development or suitable for small scale applications and be useful as part of hybrid energy system. It was further observed that wind turbine with designed cut-in wind speed of less than 3 m/s and moderate rated wind speed between 9 and 11 m/s is more suitable for wind energy development along the coastal region of Ghana. Based on the selected wind turbine and assumptions used in this study, it was estimated that the unit cost of electricity varied between 0.0695 GH¢/kW h and 0.2817 GH¢/kW h

  1. Decision making for multiple utilization of water resources in New Zealand

    Science.gov (United States)

    Memon, Pyar Ali

    1989-09-01

    The Clutha is the largest river in New Zealand. The last two decades have witnessed major conflicts centered on the utilization of the water resources of the upper Clutha river. These conflicts have by no means been finally resolved. The focus of this article is on institutional arrangements for water resource management on the Clutha, with particular reference to the decision-making processes that have culminated in the building of the high dam. It critically evaluates recent experiences and comments on future prospects for resolving resource use conflicts rationally through planning for multiple utilization in a climate of market led policies of the present government. The study demonstrates the inevitable conflicts that can arise within a public bureaucracy that combines dual responsibilities for policy making and operational functions. Hitherto, central government has been able to manipulate the water resource allocation process to its advantage because of a lack of clear separation between its two roles as a policy maker and developer. The conflicts that have manifested themselves during the last two decades over the Clutha should be seen as part of a wider public debate during the last two decades concerning resource utilization in New Zealand. The Clutha controversy was preceded by comparable concerns over the rising of the level of Lake Manapouri during the 1960s and has been followed by the debate over the “think big” resource development projects during the 1980s. The election of the fourth Labour government in 1983 has heralded a political and economic policy shift in New Zealand towards minimizing the role of public intervention in resource allocation and major structural reforms in the relative roles of central and regional government in resource management. The significance of these changes pose important implications for the future management of the Clutha.

  2. SAT-WIND project. Final report

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Astrup, Poul; Nielsen, Niels Morten

    microwave, altimeter, scatterometer and imaging Synthetic Aperture Radar (SAR) technologies for wind energy tools for wind resources and wind-indexing. The study area was the Danish Seas including the North Sea, interior seas and the Baltic Sea. The report describes technical details on the satellite data...

  3. Wind's share in global energy markets

    International Nuclear Information System (INIS)

    Madsen, B.T.

    1997-01-01

    The question of how great of a contribution wind power can really make to the world's energy needs is discussed. Emphasis up until recently has been mainly on improving wind turbine technology and siting practices as it is these that will provide an answer. The International Energy Agency predicts that world energy demand will increase by 30-50% by 2010. More countries than ever are either using wind power now or are preparing for its use. Wind power continues to improve its price competitiveness. There is enough wind to cover our energy needs many times over, according to some reports twice the world's electricity supply could be met by utilizing just 5-10% of areas identified as having average wind speeds of 5 m/s or greater - ignoring population centers, forests and specially protected areas. But a major limiting factor to utilizing the available wind resource is the established grid systems, which can only base 20% of supply on wind power. It is concluded that wind can contribute significantly to the world's energy needs in the next century and beyond. If wind, which has taken giant leaps in improving its competitiveness over the past 20 hears, can be a major energy contributor by early next century, other renewables such as solar and biomass might also evolve to become major contributors too. If so, renewables, including hydro, could conceivably cover 50% of our energy needs by the middle of the next century. Much will depend on decision-makers at the centers of power. For Europe and certain other areas of the world, policies governing cross-border trade of electricity as well as the framework for environmental protection related to energy production will determine the final outcome

  4. Stochastic Analysis of Wind Energy for Wind Pump Irrigation in Coastal Andhra Pradesh, India

    Science.gov (United States)

    Raju, M. M.; Kumar, A.; Bisht, D.; Rao, D. B.

    2014-09-01

    The rapid escalation in the prices of oil and gas as well as increasing demand for energy has attracted the attention of scientists and researchers to explore the possibility of generating and utilizing the alternative and renewable sources of wind energy in the long coastal belt of India with considerable wind energy resources. A detailed analysis of wind potential is a prerequisite to harvest the wind energy resources efficiently. Keeping this in view, the present study was undertaken to analyze the wind energy potential to assess feasibility of the wind-pump operated irrigation system in the coastal region of Andhra Pradesh, India, where high ground water table conditions are available. The stochastic analysis of wind speed data were tested to fit a probability distribution, which describes the wind energy potential in the region. The normal and Weibull probability distributions were tested; and on the basis of Chi square test, the Weibull distribution gave better results. Hence, it was concluded that the Weibull probability distribution may be used to stochastically describe the annual wind speed data of coastal Andhra Pradesh with better accuracy. The size as well as the complete irrigation system with mass curve analysis was determined to satisfy various daily irrigation demands at different risk levels.

  5. Using modeling, satellite images and existing global datasets for rapid preliminary assessments of renewable energy resources: The case of Mali

    DEFF Research Database (Denmark)

    Nygaard, Ivan; Rasmussen, K.; Badger, Jake

    2010-01-01

    This paper presents a novel approach to the preliminary, low-cost, national-scale mapping of wind energy, solar energy and certain categories of bio-energy resources in developing countries, using Mali as an example. The methods applied make extensive use of satellite remote sensing and meteorolo...... that at the current price of about 70 US$/barrel for fossil fuels, renewable energy resources are becoming economically as well as environmentally attractive options.......This paper presents a novel approach to the preliminary, low-cost, national-scale mapping of wind energy, solar energy and certain categories of bio-energy resources in developing countries, using Mali as an example. The methods applied make extensive use of satellite remote sensing...... a competitive option. Solar energy resources are shown to be abundant in all of Mali, though the highest values are found in the south. The temporal variation is relatively limited. Bio-energy resources are also concentrated in the south, but there are small pockets of high vegetation productivity...

  6. Wind Energy

    Energy Technology Data Exchange (ETDEWEB)

    Beurskens, H.J.M. [SET Analysis, Kievitlaan 26, 1742 AD Schagen (Netherlands); Brand, A.J. [Energy research Centre of the Netherlands ECN, Unit Wind Energy, P.O. Box 1, 1755 ZG Petten (Netherlands)

    2013-02-15

    Over the years, wind energy has become a major source of renewable energy worldwide. The present chapter addresses the wind resource, which is available for exploitation for large-scale electricity production, and its specific physical properties. Furthermore, the technical options available to convert the energy of the air flow into mechanical energy and electricity are described. Specific problems of large-scale integration of wind energy into the grid as well as the present and future market developments are described in this chapter. Finally, environmental aspects are discussed briefly.

  7. Alberta wind integration. Status and outlook

    Energy Technology Data Exchange (ETDEWEB)

    Kehler, John; Aksomitis, Kris; Duchesne, Jacques [Alberta Electric System Operator (AESO), Calgary, AB (Canada)

    2010-07-01

    Alberta has excellent wind resources with over 600 MW of wind generation currently operating on the Alberta Interconnected Electric System (AIES) and there continues to be strong interest in wind development. Integration of large-scale wind power, however, is still relatively new and presents new operational opportunities and challenges. The AESO currently has over 7,700 MW in potential wind power development in Alberta in our interconnection queue. The Alberta system peak load is 10, 236 MW with 12,763 MW installed generation capacity and limited interconnection capability to neighboring jurisdictions. The AESO recognizes that it is important, both to system reliability and to the successful development of renewable resources in Alberta, that the impact on power system operations and the obligations of market participants are understood as Alberta reaches higher levels of wind penetration. The paper discusses the current status and future outlook on wind integration in Alberta. (orig.)

  8. Wind energy conversion 1994. Proceedings

    International Nuclear Information System (INIS)

    Elliot, G.

    1995-01-01

    At the British Wind Energy Association's 16th Annual Conference, held in Stirling, over 60 high quality papers were presented, including a session devoted to 'Wind Energy in Scotland'. Under the Non Fossil Fuel Obligation (NFFO) wind energy has experienced rapid growth in England and Wales and with Scotland now having its own 'Scottish Renewables Obligation' (SRO) the opportunity to tap one of Europe's most important renewable energy resources now exists. The main contemporary issues concerning wind farming today, namely technical, social, economic and environmental were examined in the Geoff Pontin Memorial Lecture, which focused on these aspects in the context of grid integrated wind energy development. The remaining conference themes included machine development, aerodynamics and control, small machines, fatigue and dynamics, public attitudes, noise emissions, electrical integration, resource measurement, and standards, safety and planning. (author)

  9. Wind energy development: Danish experiences and international options

    International Nuclear Information System (INIS)

    Frandsen, S.; Hasted, F.; Josephsen, L.; Nielson, J.H.

    1989-01-01

    In Denmark, wind energy makes a visible contribution to energy planning. Since 1976, over 1,800 wind turbine units have been installed in Denmark, representing a capacity of ca 140 MW out of a grid capacity of 8,000 MW. These units are all grid-connected and the unit sizes range from 55 kW to 400 kW. The installed wind energy capacity represents a substantial development of technologies for wind energy utilization during the last 15 years, involving participation from research institutes, electric utilities, private industry, and the national energy administration. A considerable improvement of the technical and economic performance of wind turbines, along with increased reliability and durability, has been strongly supported by comprehensive government programs. In 1985, another large construction program was initiated which will add 100 MW wind power capacity by the end of 1990. Parallel with commercial development, Danish utilities have developed and constructed a number of megawatt-size wind turbines on a pilot basis. In general terms the wind energy resources in Denmark are rather good, and many suitable sites exist, but installed wind energy capacity is limited by the high population density. Consequently, research is being conducted on the feasibility of offshore wind turbines. In other countries, wind energy developments similar to those in Denmark are taking place. In communities with no connection to the national grid, special attention should be paid to hybrid systems such as wind-diesel and hydro-wind systems. A substantial transfer of technology is required for facilitating significant development of hybrid systems in developing countries. 11 refs., 7 figs., 2 tabs

  10. Profit-based conventional resource scheduling with renewable energy penetration

    Science.gov (United States)

    Reddy, K. Srikanth; Panwar, Lokesh Kumar; Kumar, Rajesh; Panigrahi, B. K.

    2017-08-01

    Technological breakthroughs in renewable energy technologies (RETs) enabled them to attain grid parity thereby making them potential contenders for existing conventional resources. To examine the market participation of RETs, this paper formulates a scheduling problem accommodating energy market participation of wind- and solar-independent power producers (IPPs) treating both conventional and RETs as identical entities. Furthermore, constraints pertaining to penetration and curtailments of RETs are restructured. Additionally, an appropriate objective function for profit incurred by conventional resource IPPs through reserve market participation as a function of renewable energy curtailment is also proposed. The proposed concept is simulated with a test system comprising 10 conventional generation units in conjunction with solar photovoltaic (SPV) and wind energy generators (WEG). The simulation results indicate that renewable energy integration and its curtailment limits influence the market participation or scheduling strategies of conventional resources in both energy and reserve markets. Furthermore, load and reliability parameters are also affected.

  11. QuikSCAT and SSM/I ocean surface winds for wind energy

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Astrup, Poul; Nielsen, Per

    2007-01-01

    -European mid-latitudes and in the Atlantic trade belt zone are compared. Distinct differences are identified and these agree well with independent data from meteorological masts in the two regions. Seven years of twice daily observations from QuikSCAT are used for the offshore wind resource assessment. Wind...

  12. Statistical characterization of roughness uncertainty and impact on wind resource estimation

    DEFF Research Database (Denmark)

    Kelly, Mark C.; Ejsing Jørgensen, Hans

    2017-01-01

    In this work we relate uncertainty in background roughness length (z0) to uncertainty in wind speeds, where the latter are predicted at a wind farm location based on wind statistics observed at a different site. Sensitivity of predicted winds to roughness is derived analytically for the industry...... between mean wind speed and AEP. Following our developments, we provide guidance on approximate roughness uncertainty magnitudes to be expected in industry practice, and we also find that sites with larger background roughness incur relatively larger uncertainties.......-standard European Wind Atlas method, which is based on the geostrophic drag law. We statistically consider roughness and its corresponding uncertainty, in terms of both z0 derived from measured wind speeds as well as that chosen in practice by wind engineers. We show the combined effect of roughness uncertainty...

  13. Advances in wind energy conversion technology

    CERN Document Server

    Sathyajith, Mathew

    2011-01-01

    The technology of generating energy from wind has significantly changed during the past five years. The book brings together all the latest aspects of wind energy conversion technology - from wind resource analysis to grid integration of generated electricity.

  14. A study on the survey of wind energy resources for potential areas

    Energy Technology Data Exchange (ETDEWEB)

    Park, Kyung Ho; Kim, Keon Hoon; Yoo, Seung Won; Choi, Chang Joon; Ahn, Jung Jong [Korea Inst. of Energy Research, Taejon (Korea, Republic of)

    1995-12-01

    Among the wind energy utilization projects, the siting work for wind turbine installation is one of the most important procedure because the wind energy distribution is very different regionally and wind energy density influences greatly to the feasibility of wind energy utilization. So, the potential sites of wind generating in our country must be surveyed and analyzed the feasibility of wind energy utilization. In addition to this, the technique of wind energy prediction considered of the topography, surface roughness and obstacle condition must be established for the reliable analysis of wind energy utilization. The contents carried out in this project are shown below, 1. Determining of the measuring sites of wind data - Wyoulryung-ri, Youngrag-ri, Gapa-ri in Cheju Province - Heul-ri, Gangwon Province. 2. Analysis of wind energy at measuring sites The characteristics of wind energy at the measured sites were analysed. It will be continued to measure the wind data by wind data logger. 3. A study on wind energy prediction technique It was studied how to obtain the topographic map data for using WAsP(WIndAtlas Analysis and Application Program). (author). 21 refs., 59 figs., 19 tabs.

  15. Trading wind generation from short-term probabilistic forecasts of wind power

    DEFF Research Database (Denmark)

    Pinson, Pierre; Chevallier, Christophe; Kariniotakis, Georges

    2007-01-01

    Due to the fluctuating nature of the wind resource, a wind power producer participating in a liberalized electricity market is subject to penalties related to regulation costs. Accurate forecasts of wind generation are therefore paramount for reducing such penalties and thus maximizing revenue......, as well as on modeling of the sensitivity a wind power producer may have to regulation costs. The benefits resulting from the application of these strategies are clearly demonstrated on the test case of the participation of a multi-MW wind farm in the Dutch electricity market over a year....... participation. Such strategies permit to further increase revenues and thus enhance competitiveness of wind generation compared to other forms of dispatchable generation. This paper formulates a general methodology for deriving optimal bidding strategies based on probabilistic forecasts of wind generation...

  16. Wind energy. To produce electricity with the wind

    International Nuclear Information System (INIS)

    Bareau, Helene

    2015-11-01

    This guide addresses the different aspects of wind-based power generation. It outlines the role of wind energy to meet objectives related to the share of renewable energies in the French energy mix, that wind energy is actually replacing fossil energies, that it is based on local resources within higher safety and less wastage, that current advances are made to integrate wind energy production into the grid, and that it is a solution to diversify energy production. Some figures are presented and commented, regarding onshore wind energy production in France, the location of wind farms, and wind energy production in comparison with other renewable sources. The operation of a wind turbine is described and the different types of wind turbines are evoked. The issue of wind farm planning with citizen participation is addressed: regional planning, studies of pre-feasibility for location selection, procedure, and content of the impact study (radars, fauna and flora, landscapes, safety, health). Other features are outlined: a planned dismantling, and a globally favourable perception. The next part addresses offshore wind energy: the interesting potential of stronger and more reliable wind at sea (European situation, French opportunities, elements comprised in an offshore wind farm), impacts (on marine ecosystems, on neighbouring localities, and interests for visitors). Economic aspects are then addressed: cost and profitability, economic spin-offs, and perspectives. The last part concerns individuals and the possibilities to participate to wind farm projects or to invest in small wind turbines with some prerequisites (constant and steady winds, installation assessment, required expertise, indispensable preliminary steps, costs, aids and profitability)

  17. The future of wind energy

    International Nuclear Information System (INIS)

    Koughnett, K. Van

    2003-01-01

    This presentation provided a brief history of wind power through the ages, and culminated with a look at installed capacity in 2002. Vision Quest has been in the wind power business since 1980, and the first turbines were installed in 1997. The company operates 40 per cent of Canada's wind capacity. Vision Quest became part of TransAlta in December 2002, the largest non-regulated electric generation and marketing company in Canada. The reasons for investing in wind power were briefly reviewed. The author then examined the physics of wind power and wind energy resources. The key resource issues were identified as being resource availability and constancy, which is similar to oil and gas exploration. Utility scale turbines were described. The pros and cons of larger turbines were compared, and it was shown that larger turbines offer better economics, a higher capacity factor and fewer turbines to permit. Manufacturers are focused on larger machines for offshore. The various permitting authorities and their areas of responsibility were listed, from municipal, provincial and federal levels. The key drivers are: wind speed, installed cost of equipment, revenue, operating expense, and financial expense. Project risks include: power purchase agreements, technology risk, financial risk, construction risk, regulation, operating risks, dependence on third parties, and reliance on advisors. Some of the challenges facing Vision Quest are being early, permitting, electric grid interconnection, openness of markets, market supply, demand forces, and getting capital costs down. tabs., figs

  18. Investigation of wind characteristics and assessment of wind energy potential for Waterloo region, Canada

    International Nuclear Information System (INIS)

    Li Meishen; Li Xianguo

    2005-01-01

    Wind energy becomes more and more attractive as one of the clean renewable energy resources. Knowledge of the wind characteristics is of great importance in the exploitation of wind energy resources for a site. It is essential in designing or selecting a wind energy conversion system for any application. This study examines the wind characteristics for the Waterloo region in Canada based on a data source measured at an elevation 10 m above the ground level over a 5-year period (1999-2003) with the emphasis on the suitability for wind energy technology applications. Characteristics such as annual, seasonal, monthly and diurnal wind speed variations and wind direction variations are examined. Wind speed data reveal that the windy months in Waterloo are from November to April, defined as the Cold Season in this study, with February being the windiest month. It is helpful that the high heating demand in the Cold Season coincides with the windy season. Analysis shows that the day time is the windy time, with 2 p.m. in the afternoon being the windiest moment. Moreover, a model derived from the maximum entropy principle (MEP) is applied to determine the diurnal, monthly, seasonal and yearly wind speed frequency distributions, and the corresponding Lagrangian parameters are determined. Based on these wind speed distributions, this study quantifies the available wind energy potential to provide practical information for the application of wind energy in this area. The yearly average wind power density is 105 W/m 2 . The day and night time wind power density in the Cold Season is 180 and 111 W/m 2 , respectively

  19. Assessing offshore wind potential

    International Nuclear Information System (INIS)

    Adelaja, Adesoji; McKeown, Charles; Calnin, Benjamin; Hailu, Yohannes

    2012-01-01

    Quantifying wind potential is a pivotal initial step in developing and articulating a state’s policies and strategies for offshore wind industry development. This is particularly important in the Great Lakes States where lessons from other offshore environments are not directly applicable. This paper presents the framework developed for conducting a preliminary assessment of offshore wind potential. Information on lake bathymetry and wind resources were combined in simulating alternative scenarios of technically feasible turbine construction depths and distance concerns by stakeholders. These yielded estimates of developable offshore wind areas and potential power generation. While concerns about the visibility of turbines from shore reduce the power that can be generated, engineering solutions that increase the depths at which turbines can be sited increase such potential power output. This paper discusses the costs associated with technical limitations on depth and the social costs related to public sentiments about distance from the shoreline, as well as the possible tradeoffs. The results point to a very large untapped energy resource in the Michigan’s Great Lakes, large enough to prompt policy action from the state government. - Highlights: ▶ We build a theoretical framework for modeling offshore wind power production. ▶ Illustration of the impact of technology and social limitations on offshore wind energy development. ▶ Geospatial modeling of the offshore wind potential of the Great Lakes.

  20. Improving weather forecasts for wind energy applications

    Science.gov (United States)

    Kay, Merlinde; MacGill, Iain

    2010-08-01

    Weather forecasts play an important role in the energy industry particularly because of the impact of temperature on electrical demand. Power system operation requires that this variable and somewhat unpredictable demand be precisely met at all times and locations from available generation. As wind generation makes up a growing component of electricity supply around the world, it has become increasingly important to be able to provide useful forecasting for this highly variable and uncertain energy resource. Of particular interest are forecasts of weather events that rapidly change wind energy production from one or more wind farms. In this paper we describe work underway to improve the wind forecasts currently available from standard Numerical Weather Prediction (NWP) through a bias correction methodology. Our study has used the Australian Bureau of Meteorology MesoLAPS 5 km limited domain model over the Victoria/Tasmania region, providing forecasts for the Woolnorth wind farm, situated in Tasmania, Australia. The accuracy of these forecasts has been investigated, concentrating on the key wind speed ranges 5 - 15 ms-1 and around 25 ms-1. A bias correction methodology was applied to the NWP hourly forecasts to help account for systematic issues such as the NWP grid point not being at the exact location of the wind farm. An additional correction was applied for timing issues by using meteorological data from the wind farm. Results to date show a reduction in spread of forecast error for hour ahead forecasts by as much as half using this double correction methodology - a combination of both bias correction and timing correction.

  1. Improving weather forecasts for wind energy applications

    International Nuclear Information System (INIS)

    Kay, Merlinde; MacGill, Iain

    2010-01-01

    Weather forecasts play an important role in the energy industry particularly because of the impact of temperature on electrical demand. Power system operation requires that this variable and somewhat unpredictable demand be precisely met at all times and locations from available generation. As wind generation makes up a growing component of electricity supply around the world, it has become increasingly important to be able to provide useful forecasting for this highly variable and uncertain energy resource. Of particular interest are forecasts of weather events that rapidly change wind energy production from one or more wind farms. In this paper we describe work underway to improve the wind forecasts currently available from standard Numerical Weather Prediction (NWP) through a bias correction methodology. Our study has used the Australian Bureau of Meteorology MesoLAPS 5 km limited domain model over the Victoria/Tasmania region, providing forecasts for the Woolnorth wind farm, situated in Tasmania, Australia. The accuracy of these forecasts has been investigated, concentrating on the key wind speed ranges 5 - 15 ms -1 and around 25 ms -1 . A bias correction methodology was applied to the NWP hourly forecasts to help account for systematic issues such as the NWP grid point not being at the exact location of the wind farm. An additional correction was applied for timing issues by using meteorological data from the wind farm. Results to date show a reduction in spread of forecast error for hour ahead forecasts by as much as half using this double correction methodology - a combination of both bias correction and timing correction.

  2. Development of wind power generation in China

    International Nuclear Information System (INIS)

    Zhiquan, Y.; Yan, C.; Lijun, X.

    1995-01-01

    Present status and development of wind power generation in China is described in this paper. China is vast in territory with abundant wind resources. The exploitable wind energy in China is estimated up to 253,000 MW. At present, more than 150 thousand small WTGs of a total capacity of 17 MW are used to provide residential electricity uses in non-grid connected areas and 13 wind farms, with above 160 medium and large scale grid connected WTGs (50-500 kW) of a total capacity of 30 MW, have been constructed. At the same time, some progress has been made in the fields of nation-wide wind resource assessment, measurement technology of wind turbine performance, the assimilation of foreign wind turbine technology, grid connected WTG technology and the operation of wind farm etc. It is planned that the total installed capacity of WTGs will reach 1000 MW by the end of 2000. Wind power generation could be a part of electric power industry in China. (Author)

  3. Real-time energy resources scheduling considering short-term and very short-term wind forecast

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Marco; Sousa, Tiago; Morais, Hugo; Vale, Zita [Polytechnic of Porto (Portugal). GECAD - Knowledge Engineering and Decision Support Research Center

    2012-07-01

    This paper proposes an energy resources management methodology based on three distinct time horizons: day-ahead scheduling, hour-ahead scheduling, and real-time scheduling. In each scheduling process the update of generation and consumption operation and of the storage and electric vehicles storage status are used. Besides the new operation conditions, the most accurate forecast values of wind generation and of consumption using results of short-term and very short-term methods are used. A case study considering a distribution network with intensive use of distributed generation and electric vehicles is presented. (orig.)

  4. Satellite information for wind energy applications

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, M.; Astrup, P.; Bay Hasager, C.

    2004-11-01

    An introduction to satellite information relevant for wind energy applications is given. It includes digital elevation model (DEM) data based on satellite observations. The Shuttle Radar Topography Mission (SRTM) is useful for regional scale wind resource studies. Comparison results from complex terrain in Spain and flat terrain in Denmark are found to be acceptable for both sites. Also land cover type information can be retrieved from satellite observations. Land cover type maps have to be combined with roughness data from field observation or literature values. Land cover type maps constitute an aid to map larger regions within shorter time. Field site observations of obstacles and hedges are still necessary. The raster-based map information from DEM and land cover maps can be converted for use in WASP. For offshore locations it is possible to estimate the wind resources based on ocean surface wind data from several types of satellite observations. The RWT software allows an optimal calculation of SAR wind resource statistics. A tab-file with SAR-based observed wind climate (OWC) data can be obtained for 10 m above sea level and used in WASP. RWT uses a footprint averaging technique to obtain data as similar as possible to mast observations. Maximum-likelihood fitting is used to calculate the Weibull A and k parameters from the constrained data set. Satellite SAR wind maps cover the coastal zone from 3 km and offshore with very detailed information of 400 m by 400 m grid resolution. Spatial trends in mean wind, energy density, Weibull A and k and uncertainty values are provided for the area of interest. Satellite scatterometer wind observations have a spatial resolution of 25 km by 25 km. These data typically represent a site further offshore, and the tab-file statistics should be used in WASP combined with topography and roughness information to assess the coastal wind power potential. Scatterometer wind data are observed {approx} twice per day, whereas SAR only

  5. Wind versus coal: Comparing the local economic impacts of energy resource development in Appalachia

    International Nuclear Information System (INIS)

    Collins, Alan R.; Hansen, Evan; Hendryx, Michael

    2012-01-01

    Two energy development scenarios were compared for the Coal River Mountain in Raleigh County, West Virginia: (1) mountaintop mining (MTM) of coal, and (2) wind energy plus underground mining of coal. Economic impact computations over the life of each energy development scenario were made on a county basis for output of goods and services, the number of jobs created, and local earnings. Externality costs were assigned monetary values for coal mining and subtracted from earnings. Premature mortality within the general population due to additional coal mining accounted for 96% of these external cost computations. The results showed that economic output over the life of each scenario was twice as high for MTM mining as wind energy plus underground coal mining. Over the short term, employment and earnings were higher for MTM mining, but towards the end of the scenario, cumulative employment and earnings became higher under scenario (2). When local externality costs were subtracted from local earnings, MTM coal production had an overall negative net social impact on the citizens of Raleigh County. The external costs of MTM coal production provide an explanation of the existence of a “resource curse” and the conflicting results of output versus income provide insights into why coal-producing counties are underdeveloped. - Highlights: ► Mountaintop mining (MTM) was compared to wind plus underground mining. ► Economic output was twice as high for MTM. ► Employment and earnings were cumulatively higher for wind energy. ► Including local externality costs, MTM had an overall negative net social impact. ► Results provide insights into why coal-producing counties are underdeveloped.

  6. Potential of Offshore Wind Energy and Extreme Wind Speed Forecasting on the West Coast of Taiwan

    Directory of Open Access Journals (Sweden)

    Pei-Chi Chang

    2015-02-01

    Full Text Available It is of great importance and urgency for Taiwan to develop offshore wind power. However, relevant data on offshore wind energy resources are limited. This study imported wind speeds measured by a tidal station and a buoy into the software WAsP to estimate the high-altitude wind speeds in the two areas. A light detection and ranging (Lidar system was set up near the tidal station and buoy. High-altitude wind speeds measured by the Lidar system were compared with the WAsP-estimated values, and it was discovered that the two data sets were consistent. Then, long-term wind speed data observed by buoys and tidal stations at various locations were imported into WAsP to forecast wind speeds at heights of 55–200 m on the west coast of Taiwan. The software WAsP Engineering was used to analyze the extreme wind speeds in the same areas. The results show that wind speeds at 100 m are approximately 9.32–11.24 m/s, which means that the coastal areas of west Taiwan are rich in wind energy resources. When a long-term 10-min average wind speed is used, the extreme wind speed on the west coast is estimated to be between 36.4 and 55.3 m/s.

  7. Hybrid PV/Wind Power Systems Incorporating Battery Storage and Considering the Stochastic Nature of Renewable Resources

    Science.gov (United States)

    Barnawi, Abdulwasa Bakr

    Hybrid power generation system and distributed generation technology are attracting more investments due to the growing demand for energy nowadays and the increasing awareness regarding emissions and their environmental impacts such as global warming and pollution. The price fluctuation of crude oil is an additional reason for the leading oil producing countries to consider renewable resources as an alternative. Saudi Arabia as the top oil exporter country in the word announced the "Saudi Arabia Vision 2030" which is targeting to generate 9.5 GW of electricity from renewable resources. Two of the most promising renewable technologies are wind turbines (WT) and photovoltaic cells (PV). The integration or hybridization of photovoltaics and wind turbines with battery storage leads to higher adequacy and redundancy for both autonomous and grid connected systems. This study presents a method for optimal generation unit planning by installing a proper number of solar cells, wind turbines, and batteries in such a way that the net present value (NPV) is minimized while the overall system redundancy and adequacy is maximized. A new renewable fraction technique (RFT) is used to perform the generation unit planning. RFT was tested and validated with particle swarm optimization and HOMER Pro under the same conditions and environment. Renewable resources and load randomness and uncertainties are considered. Both autonomous and grid-connected system designs were adopted in the optimal generation units planning process. An uncertainty factor was designed and incorporated in both autonomous and grid connected system designs. In the autonomous hybrid system design model, the strategy including an additional amount of operation reserve as a percent of the hourly load was considered to deal with resource uncertainty since the battery storage system is the only backup. While in the grid-connected hybrid system design model, demand response was incorporated to overcome the impact of

  8. Statistical characterization of roughness uncertainty and impact on wind resource estimation

    Directory of Open Access Journals (Sweden)

    M. Kelly

    2017-04-01

    Full Text Available In this work we relate uncertainty in background roughness length (z0 to uncertainty in wind speeds, where the latter are predicted at a wind farm location based on wind statistics observed at a different site. Sensitivity of predicted winds to roughness is derived analytically for the industry-standard European Wind Atlas method, which is based on the geostrophic drag law. We statistically consider roughness and its corresponding uncertainty, in terms of both z0 derived from measured wind speeds as well as that chosen in practice by wind engineers. We show the combined effect of roughness uncertainty arising from differing wind-observation and turbine-prediction sites; this is done for the case of roughness bias as well as for the general case. For estimation of uncertainty in annual energy production (AEP, we also develop a generalized analytical turbine power curve, from which we derive a relation between mean wind speed and AEP. Following our developments, we provide guidance on approximate roughness uncertainty magnitudes to be expected in industry practice, and we also find that sites with larger background roughness incur relatively larger uncertainties.

  9. A new method for wind speed forecasting based on copula theory.

    Science.gov (United States)

    Wang, Yuankun; Ma, Huiqun; Wang, Dong; Wang, Guizuo; Wu, Jichun; Bian, Jinyu; Liu, Jiufu

    2018-01-01

    How to determine representative wind speed is crucial in wind resource assessment. Accurate wind resource assessments are important to wind farms development. Linear regressions are usually used to obtain the representative wind speed. However, terrain flexibility of wind farm and long distance between wind speed sites often lead to low correlation. In this study, copula method is used to determine the representative year's wind speed in wind farm by interpreting the interaction of the local wind farm and the meteorological station. The result shows that the method proposed here can not only determine the relationship between the local anemometric tower and nearby meteorological station through Kendall's tau, but also determine the joint distribution without assuming the variables to be independent. Moreover, the representative wind data can be obtained by the conditional distribution much more reasonably. We hope this study could provide scientific reference for accurate wind resource assessments. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Wind Development on Tribal Lands

    Energy Technology Data Exchange (ETDEWEB)

    Ken Haukaas; Dale Osborn; Belvin Pete

    2008-01-18

    Background: The Rosebud Sioux Tribe (RST) is located in south central South Dakota near the Nebraska border. The nearest community of size is Valentine, Nebraska. The RST is a recipient of several Department of Energy grants, written by Distributed Generation Systems, Inc. (Disgen), for the purposes of assessing the feasibility of its wind resource and subsequently to fund the development of the project. Disgen, as the contracting entity to the RST for this project, has completed all the pre-construction activities, with the exception of the power purchase agreement and interconnection agreement, to commence financing and construction of the project. The focus of this financing is to maximize the economic benefits to the RST while achieving commercially reasonable rates of return and fees for the other parties involved. Each of the development activities required and its status is discussed below. Land Resource: The Owl Feather War Bonnet 30 MW Wind Project is located on RST Tribal Trust Land of approximately 680 acres adjacent to the community of St. Francis, South Dakota. The RST Tribal Council has voted on several occasions for the development of this land for wind energy purposes, as has the District of St. Francis. Actual footprint of wind farm will be approx. 50 acres. Wind Resource Assessment: The wind data has been collected from the site since May 1, 2001 and continues to be collected and analyzed. The latest projections indicate a net capacity factor of 42% at a hub height of 80 meters. The data has been collected utilizing an NRG 9300 Data logger System with instrumentation installed at 30, 40 and 65 meters on an existing KINI radio tower. The long-term annual average wind speed at 65-meters above ground level is 18.2 mph (8.1 mps) and 18.7 mph (8.4 mps) at 80-meters agl. The wind resource is excellent and supports project financing.

  11. Onshore-offshore wind energy resource evaluation based on synergetic use of multiple satellite data and meteorological stations in Jiangsu Province, China

    Science.gov (United States)

    Wei, Xianglin; Duan, Yuewei; Liu, Yongxue; Jin, Song; Sun, Chao

    2018-05-01

    The demand for efficient and cost-effective renewable energy is increasing as traditional sources of energy such as oil, coal, and natural gas, can no longer satisfy growing global energy demands. Among renewable energies, wind energy is the most prominent due to its low, manageable impacts on the local environment. Based on meteorological data from 2006 to 2014 and multi-source satellite data (i.e., Advanced Scatterometer, Quick Scatterometer, and Windsat) from 1999 to 2015, an assessment of the onshore and offshore wind energy potential in Jiangsu Province was performed by calculating the average wind speed, average wind direction, wind power density, and annual energy production (AEP). Results show that Jiangsu has abundant wind energy resources, which increase from inland to coastal areas. In onshore areas, wind power density is predominantly less than 200 W/m2, while in offshore areas, wind power density is concentrates in the range of 328-500 W/m2. Onshore areas comprise more than 13,573.24 km2, mainly located in eastern coastal regions with good wind farm potential. The total wind power capacity in onshore areas could be as much as 2.06 x 105 GWh. Meanwhile, offshore wind power generation in Jiangsu Province is calculated to reach 2 x 106 GWh, which is approximately four times the electricity demand of the entire Jiangsu Province. This study validates the effective application of Advanced Scatterometer, Quick Scatterometer, and Windsat data to coastal wind energy monitoring in Jiangsu. Moreover, the methodology used in this study can be effectively applied to other similar coastal zones.

  12. Wave and offshore wind potential for the island of Tenerife

    International Nuclear Information System (INIS)

    Veigas, M.; Iglesias, G.

    2013-01-01

    Highlights: • The island aims to reduce its carbon footprint by developing renewable energy. • The substantial wave and offshore wind resources around the island are examined. • One area is appropriate for installing a hybrid wave–offshore wind farm. - Abstract: The island of Tenerife, a UNESCO Biosphere Reserve in the Atlantic Ocean, aims to be energy self-sufficient in order to reduce its carbon footprint. To accomplish this goal it should develop the renewable sources, in particular wave and offshore wind energy. The objectives of this work are twofold; (i) to characterize the wave and offshore wind power distribution around the island and (ii) to determine which offshore area is best suited for their exploitation, taking into account the resource and other conditioning factors such as the bathymetry, distance to the coastline and ports, and offshore zoning. To carry out this research, hindcast wave and wind data obtained with numerical models are used alongside observations from meteorological stations. One area, in the vicinity of Puerto de la Cruz, is identified as having great potential for installing a hybrid floating wave–wind farm. Both resources are characterized for the area selected: the wave resource in terms of wave directions, significant wave heights and energy periods; the offshore wind resource in terms of directions and speeds in addition to the seasonality for the both resources. It is found that most of the wave resource is provided by N and NNW waves with significant wave heights between 1.5 m and 3.0 m and energy periods between 10 s and 14 s. It follows that the Wave Energy Converters deployed in the area should have maximum efficiency in those ranges. As for the offshore wind resource, most of the energy corresponds to NNE and NE winds with speeds between 9 and 14 m s −1 , which should be taken into account when selecting the offshore wind turbines

  13. Wind Extraction for Natural Ventilation

    Science.gov (United States)

    Fagundes, Tadeu; Yaghoobian, Neda; Kumar, Rajan; Ordonez, Juan

    2017-11-01

    Due to the depletion of energy resources and the environmental impact of pollution and unsustainable energy resources, energy consumption has become one of the main concerns in our rapidly growing world. Natural ventilation, a traditional method to remove anthropogenic and solar heat gains, proved to be a cost-effective, alternative method to mechanical ventilation. However, while natural ventilation is simple in theory, its detailed design can be a challenge, particularly for wind-driven ventilation, which its performance highly involves the buildings' form, surrounding topography, turbulent flow characteristics, and climate. One of the main challenges with wind-driven natural ventilation schemes is due to the turbulent and unpredictable nature of the wind around the building that impose complex pressure loads on the structure. In practice, these challenges have resulted in founding the natural ventilation mainly on buoyancy (rather than the wind), as the primary force. This study is the initial step for investigating the physical principals of wind extraction over building walls and investigating strategies to reduce the dependence of the wind extraction on the incoming flow characteristics and the target building form.

  14. The Answer Is Blowing in the Wind. Investment in Training from a Human Resource Accounting Perspective.

    Science.gov (United States)

    Johanson, Ulf

    1998-01-01

    Presents components of human resource accounting (HRA)--description of human resource costs, estimation of return on investment, estimation of human resource values. Reviews research on the influence of HRA on decision making, concluding that a number of factors inhibit its effective use. (SK)

  15. Wind energy potential of coastal Eritrea: an analysis of sparse wind data

    International Nuclear Information System (INIS)

    Rosen, K.; Buskirk, R. van; Garbesi, K.

    1999-01-01

    This paper describes an analysis of historical surface wind data for the small country of Eritrea, in northeastern Africa. Winds in this region are directed by summer and winter monsoons in addition to diurnal land-sea effects. An analysis of national Eritrean and historical Italian wind records indicated marginal wind resources in the central highlands near the Eritrean capital of Asmera. An analysis of wind speed records recorded at two sites in the southern port city of Aseb indicate mean annual 10-m wind speeds of 9.5 m s -1 at the windier site. Surface wind speed records for the Red Sea suggest that similar potential may be found along the lower 200 km of the Eritrean coastline. Based on these findings, wind-generated electricity in this region should be substantially cheaper than the current supply generated from imported diesel. (author)

  16. Wind Energy for Sustainable Development

    International Nuclear Information System (INIS)

    Comsan, M.N.H.

    2009-01-01

    The growing demand in energy and concern about depleting natural resources and global warming has led states worldwide to consider alternatives to the use of fossil fuel for energy production. Several countries especially in Europe have already increased their renewable energy share 6-10%, expected to increase to 20% by the year 2020. For Egypt excellent resources of wind and solar energy exist. The article discusses perspectives of wind energy in Egypt with projections to generate ∼ 3.5 GWe by 2022, representing ∼ 9% of the total installed power at that time (40.2 GW). Total renewable (hydro + wind + solar) are expected to provide ∼ 7.4 GWe by 2022 representing ∼ 19% of the total installed power. Such a share would reduce dependence on depleting oil and gas resources, and hence improve country's sustainable development

  17. Two-Stage Coordinated Operational Strategy for Distributed Energy Resources Considering Wind Power Curtailment Penalty Cost

    Directory of Open Access Journals (Sweden)

    Jing Qiu

    2017-07-01

    Full Text Available The concept of virtual power plant (VPP has been proposed to facilitate the integration of distributed renewable energy. VPP behaves similar to a single entity that aggregates a collection of distributed energy resources (DERs such as distributed generators, storage devices, flexible loads, etc., so that the aggregated power outputs can be flexibly dispatched and traded in electricity markets. This paper presents an optimal scheduling model for VPP participating in day-ahead (DA and real-time (RT markets. In the DA market, VPP aims to maximize the expected profit and reduce the risk in relation to uncertainties. The risk is measured by a risk factor based on the mean-variance Markowitz theory. In the RT market, VPP aims to minimize the imbalance cost and wind power curtailment by adjusting the scheduling of DERs in its portfolio. In case studies, the benefits (e.g., surplus profit and reduced wind power curtailment of aggregated VPP operation are assessed. Moreover, we have investigated how these benefits are affected by different risk-aversion levels and uncertainty levels. According to the simulation results, the aggregated VPP scheduling approach can effectively help the integration of wind power, mitigate the impact of uncertainties, and reduce the cost of risk-aversion.

  18. Wake characteristics of wind turbines in utility-scale wind farms

    Science.gov (United States)

    Yang, Xiaolei; Foti, Daniel; Sotiropoulos, Fotis

    2017-11-01

    The dynamics of turbine wakes is affected by turbine operating conditions, ambient atmospheric turbulent flows, and wakes from upwind turbines. Investigations of the wake from a single turbine have been extensively carried out in the literature. Studies on the wake dynamics in utility-scale wind farms are relatively limited. In this work, we employ large-eddy simulation with an actuator surface or actuator line model for turbine blades to investigate the wake dynamics in utility-scale wind farms. Simulations of three wind farms, i.e., the Horns Rev wind farm in Denmark, Pleasant Valley wind farm in Minnesota, and the Vantage wind farm in Washington are carried out. The computed power shows a good agreement with measurements. Analysis of the wake dynamics in the three wind farms is underway and will be presented in the conference. This work was support by Xcel Energy (RD4-13). The computational resources were provided by National Renewable Energy Laboratory.

  19. Wind Atlas for Egypt

    DEFF Research Database (Denmark)

    The results of a comprehensive, 8-year wind resource assessment programme in Egypt are presented. The objective has been to provide reliable and accurate wind atlas data sets for evaluating the potential wind power output from large electricityproducing wind turbine installations. The regional wind...... climates of Egypt have been determined by two independent methods: a traditional wind atlas based on observations from more than 30 stations all over Egypt, and a numerical wind atlas based on long-term reanalysis data and a mesoscale model (KAMM). The mean absolute error comparing the two methods is about...... 10% for two large-scale KAMM domains covering all of Egypt, and typically about 5% for several smaller-scale regional domains. The numerical wind atlas covers all of Egypt, whereas the meteorological stations are concentrated in six regions. The Wind Atlas for Egypt represents a significant step...

  20. Wind Atlas for Egypt

    DEFF Research Database (Denmark)

    Mortensen, Niels Gylling; Said Said, Usama; Badger, Jake

    2006-01-01

    The results of a comprehensive, 8-year wind resource assessment programme in Egypt are presented. The objective has been to provide reliable and accurate wind atlas data sets for evaluating the potential wind power output from large electricityproducing wind turbine installations. The regional wind...... climates of Egypt have been determined by two independent methods: a traditional wind atlas based on observations from more than 30 stations all over Egypt, and a numerical wind atlas based on long-term reanalysis data and a mesoscale model (KAMM). The mean absolute error comparing the two methods is about...... 10% for two large-scale KAMM domains covering all of Egypt, and typically about 5% for several smaller-scale regional domains. The numerical wind atlas covers all of Egypt, whereas the meteorological stations are concentrated in six regions. The Wind Atlas for Egypt represents a significant step...

  1. An analysis of wind and solar energy resources for the State of Kuwait

    Science.gov (United States)

    Alhusainan, Haya Nasser

    Kuwait is an important producer of oil and gas. Its rapid socio-economic growth has been characterized by increasing population, high rates of urbanization, and substantial industrialization, which is transforming it into a large big energy consumer as well. In addition to urbanization, climatic conditions have played an important function in increasing demand for electricity in Kuwait. Electricity for thermal cooling has become essential in the hot desert climate, and its use has developed rapidly along with the economic development, urbanization, and population growth. This study examines the long-term wind and solar resources over the Kuwait to determine the feasibility of these resources as potential sustainable and renewable energy sources. The ultimate goal of this research is to help identify the potential role of renewable energy in Kuwait. This study will examine the drivers and requirements for the deployment of these energy sources and their possible integration into the electricity generation sector to illustrate how renewable energy can be a suitable resource for power production in Kuwait and to illustrate how they can also be used to provide electricity for the country. For this study, data from sixteen established stations monitored by the meteorological department were analyzed. A solar resource map was developed that identifies the most suitable locations for solar farm development. A range of different relevant variables, including, for example, electric networks, population zones, fuel networks, elevation, water wells, streets, and weather stations, were combined in a geospatial analysis to predict suitable locations for solar farm development and placement. An analysis of recommendations, future energy targets and strategies for renewable energy policy in Kuwait are then conducted. This study was put together to identify issues and opportunities related to renewable energy in the region, since renewable energy technologies are still limited in

  2. Wind Resource Assessment and Forecast Planning with Neural Networks

    Directory of Open Access Journals (Sweden)

    Nicolus K. Rotich

    2014-06-01

    Full Text Available In this paper we built three types of artificial neural networks, namely: Feed forward networks, Elman networks and Cascade forward networks, for forecasting wind speeds and directions. A similar network topology was used for all the forecast horizons, regardless of the model type. All the models were then trained with real data of collected wind speeds and directions over a period of two years in the municipal of Puumala, Finland. Up to 70th percentile of the data was used for training, validation and testing, while 71–85th percentile was presented to the trained models for validation. The model outputs were then compared to the last 15% of the original data, by measuring the statistical errors between them. The feed forward networks returned the lowest errors for wind speeds. Cascade forward networks gave the lowest errors for wind directions; Elman networks returned the lowest errors when used for short term forecasting.

  3. Wind Vision: A New Era for Wind Power in the United States

    Energy Technology Data Exchange (ETDEWEB)

    U.S. Department of Energy

    2015-03-12

    With more than 4.5% of the nation's electricity supplied by wind energy today, the Department of Energy has collaborated with industry, environmental organizations, academic institutions, and national laboratories to develop a renewed Wind Vision, documenting the contributions of wind to date and envisioning a future where wind continues to provide key contributions to the nation’s energy portfolio. Building on and updating the 2008 20% Wind Energy by 2030 report, the new Wind Vision Report quantifies the economic, environmental, and social benefits of a robust wind energy future and the actions that wind stakeholders can take to make it a reality.

  4. WindFloat Pacific Project, Final Scientific and Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Banister, Kevin [Principle Power, Inc., Emeryville, CA (United States)

    2017-01-17

    PPI’s WindFloat Pacific project (WFP) was an up to 30 MW floating offshore wind demonstration project proposed off the Coast of Oregon. The project was to be sited approximately 18 miles due west of Coos Bay, in over 1000 ft. of water, and is the first floating offshore wind array proposed in the United States, and the first offshore wind project of any kind proposed off the West Coast. PPI’s WindFloat, a semi-submersible foundation designed for high-capacity (6MW+) offshore wind turbines, is at the heart of the proposed project, and enables access to the world class wind resource at the project site and, equally, to other deep water, high wind resource areas around the country.

  5. Performance analysis of wind resource assessment software in different wind sites in México and Brazil

    OpenAIRE

    Jorio, Nyzar

    2010-01-01

    Renewable energy sources are increasing in order to provide power with minimal envi- ronmental impact. The most commercially advanced of these at present is wind power. The production and use of wind energy opens new opportunities for Latin American coun- tries to limit the emissions of carbon dioxide. It will provide a cleaner, sustainable, efficient and competitive energy matrix. According to the Latin American Wind Energy Association (LAWEA), Latin America has an installed capacity of only...

  6. Technology solutions for wind integration in Ercot

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2015-02-23

    Texas has for more than a decade led all other states in the U.S. with the most wind generation capacity on the U.S. electric grid. The State recognized the value that wind energy could provide, and committed early on to build out the transmission system necessary to move power from the windy regions in West Texas to the major population centers across the state. It also signaled support for renewables on the grid by adopting an aggressive renewable portfolio standard (RPS). The joining of these conditions with favorable Federal tax credits has driven the rapid growth in Texas wind capacity since its small beginning in 2000. In addition to the major transmission grid upgrades, there have been a number of technology and policy improvements that have kept the grid reliable while adding more and more intermittent wind generation. Technology advancements such as better wind forecasting and deployment of a nodal market system have improved the grid efficiency of wind. Successful large scale wind integration into the electric grid, however, continues to pose challenges. The continuing rapid growth in wind energy calls for a number of technology additions that will be needed to reliably accommodate an expected 65% increase in future wind resources. The Center for the Commercialization of Electric Technologies (CCET) recognized this technology challenge in 2009 when it submitted an application for funding of a regional demonstration project under the Recovery Act program administered by the U.S. Department of Energy1. Under that program the administration announced the largest energy grid modernization investment in U.S. history, making available some $3.4 billion in grants to fund development of a broad range of technologies for a more efficient and reliable electric system, including the growth of renewable energy sources like wind and solar. At that time, Texas was (and still is) the nation’s leader in the integration of wind into the grid, and was investing heavily

  7. Technology solutions for wind integration in ERCOT

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2015-01-03

    Texas has for more than a decade led all other states in the U.S. with the most wind generation capacity on the U.S. electric grid. The State recognized the value that wind energy could provide, and committed early on to build out the transmission system necessary to move power from the windy regions in West Texas to the major population centers across the state. It also signaled support for renewables on the grid by adopting an aggressive renewable portfolio standard (RPS). The joining of these conditions with favorable Federal tax credits has driven the rapid growth in Texas wind capacity since its small beginning in 2000. In addition to the major transmission grid upgrades, there have been a number of technology and policy improvements that have kept the grid reliable while adding more and more intermittent wind generation. Technology advancements such as better wind forecasting and deployment of a nodal market system have improved the grid efficiency of wind. Successful large scale wind integration into the electric grid, however, continues to pose challenges. The continuing rapid growth in wind energy calls for a number of technology additions that will be needed to reliably accommodate an expected 65% increase in future wind resources. The Center for the Commercialization of Electric Technologies (CCET) recognized this technology challenge in 2009 when it submitted an application for funding of a regional demonstration project under the Recovery Act program administered by the U.S. Department of Energy1. Under that program the administration announced the largest energy grid modernization investment in U.S. history, making available some $3.4 billion in grants to fund development of a broad range of technologies for a more efficient and reliable electric system, including the growth of renewable energy sources like wind and solar. At that time, Texas was (and still is) the nation’s leader in the integration of wind into the grid, and was investing heavily

  8. High resolution climatological wind measurements for wind energy applications

    Energy Technology Data Exchange (ETDEWEB)

    Bergstroem, H. [Uppsala Univ. (Sweden). Dept. of Meteorology

    1996-12-01

    Measurements with a combined cup anemometer/wind vane instrument, developed at the Department of Meteorology in Uppsala, is presented. The instrument has a frequency response of about 1 Hz, making it suitable not only for mean wind measurements, but also for studies of atmospheric turbulence. It is robust enough to be used for climatological purposes. Comparisons with data from a hot-film anemometer show good agreement, both as regards standard deviations and the spectral decomposition of the turbulent wind signal. The cup anemometer/wind vane instrument is currently used at three sites within the Swedish wind energy research programme. These measurements are shortly described, and a few examples of the results are given. 1 ref, 10 figs

  9. Study of the power production potential of ground-based wind energy in Provence-Alpes-Cote d'Azur

    International Nuclear Information System (INIS)

    2010-12-01

    Whereas the wind sector displays a particularly strong growth, and the PACA region possesses a lot of natural resources and assets regarding wind energy, this study aims at providing information and other elements to be used for a better definition of future wind energy projects in this region. Based on a regional wind energy atlas, it aims at providing technical, environmental, and regulatory constraints, as well as landscape studies, and thus a relevant decision-making tool for the development of wind energy in PACA. It is based on an inventory, classification and cartography of environmental, technical and regulatory issues and servitudes, a map of identified landscape settings, a map of wind resources, and an assessment of exploitable areas and of potential production. The report proposes a detailed overview of various issues: in terms of environment, heritage (protected areas, regulations), landscape, and in terms of technical issues (civil, military and meteorological servitudes, housing, power grid, seismic and fire risks). Then, after a presentation of the assessment methodology, it indicates the determination of the exploitable area, of wind power per square kilometre, and of results in terms of potential power by 2020 and by 2030, and of avoided CO 2 emissions and jobs

  10. Adaptive control algorithm for improving power capture of wind turbines in turbulent winds

    DEFF Research Database (Denmark)

    Diaz-Guerra, Lluis; Adegas, Fabiano Daher; Stoustrup, Jakob

    2012-01-01

    , the complex and time-varying aerodynamics a WT face due to turbulent winds make their determination a hard task. The selected constant parameters may maximize energy for a particular, but not all, wind regime conditions. Adaptivity can modify the controller to increase power capture under variable wind...

  11. Overview and Meteorological Validation of the Wind Integration National Dataset toolkit

    Energy Technology Data Exchange (ETDEWEB)

    Draxl, C. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Hodge, B. M. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Clifton, A. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); McCaa, J. [3TIER by VAisala, Seattle, WA (United States)

    2015-04-13

    The Wind Integration National Dataset (WIND) Toolkit described in this report fulfills these requirements, and constitutes a state-of-the-art national wind resource data set covering the contiguous United States from 2007 to 2013 for use in a variety of next-generation wind integration analyses and wind power planning. The toolkit is a wind resource data set, wind forecast data set, and wind power production and forecast data set derived from the Weather Research and Forecasting (WRF) numerical weather prediction model. WIND Toolkit data are available online for over 116,000 land-based and 10,000 offshore sites representing existing and potential wind facilities.

  12. Moroccan wind farm potential feasibility. Case study

    International Nuclear Information System (INIS)

    Nouri, Abdellatif; Ait Babram, Mohamed; Elwarraki, Elmostafa; Enzili, Mustapha

    2016-01-01

    Highlights: • A new methodology for the technical feasibility of wind farm potentials is proposed. • The wind resources of two different sites in Morocco are compared. • Comparison between short and long term data using multivariate analysis is made. • Geographic information system implementation. • A 10 MW wind farm is designed and optimized. - Abstract: The subject of this paper is the elaboration of a methodology to study the technical feasibility of a wind farm potential. The implementation of this methodology allows a comparison between the wind resources of two different sites in Morocco. One site is located in the region of Essaouira, whereas the other one is located in the region of Safi. The comparison is based on real wind data collected from two masts at the heights of 30, 50, and 60 m. Each of the masts is installed at one of the mentioned potential sites over a fixed time period, lasting fifteen months for the first site, and eight months for the second one. The aim is the determination of the most applicable site presenting a good potential for a statistical study in order to predict long-term wind behaviors. Thus, the geographical situation study of the chosen site including topography, roughness and obstacles, is carried out. Furthermore, the wind resource using data, generated by the measuring masts, is evaluated. Finally, the areas which present great wind potential are located and the wind farm turbine locations are optimized by using the WAsP software.

  13. Trend in China's Wind Power

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    @@ Attractive prospects for wind power development Sha Yiqiang:In recent years,the development and utilization of wind energy has achieved remarkable results.To the end of 2007,the installed capacity of the wind power had reached 94 000 MW all over the world,which is distributed over 60 countries.Over the past 20 years,the wind power generation installation cost has been reduced by 50% and is closing to that of the conventional energy resources.Meanwhile,the single unit capacity,efficiency and reliability of wind power have been greatly improved.

  14. Kansas Wind Energy Consortium

    Energy Technology Data Exchange (ETDEWEB)

    Gruenbacher, Don [Kansas State Univ., Manhattan, KS (United States)

    2015-12-31

    This project addresses both fundamental and applied research problems that will help with problems defined by the DOE “20% Wind by 2030 Report”. In particular, this work focuses on increasing the capacity of small or community wind generation capabilities that would be operated in a distributed generation approach. A consortium (KWEC – Kansas Wind Energy Consortium) of researchers from Kansas State University and Wichita State University aims to dramatically increase the penetration of wind energy via distributed wind power generation. We believe distributed generation through wind power will play a critical role in the ability to reach and extend the renewable energy production targets set by the Department of Energy. KWEC aims to find technical and economic solutions to enable widespread implementation of distributed renewable energy resources that would apply to wind.

  15. Four essays on offshore wind power potential, development, regulatory framework, and integration

    Science.gov (United States)

    Dhanju, Amardeep

    Offshore wind power is an energy resource whose potential in the US has been recognized only recently. There is now growing interest among the coastal states to harness the resource, particularly in states adjacent to the Mid-Atlantic Bight where the shallow continental shelf allows installation of wind turbines using the existing foundation technology. But the promise of bountiful clean energy from offshore wind could be delayed or forestalled due to policy and regulatory challenges. This dissertation is an effort to identify and address some of the important challenges. Focusing on Delaware as a case study it calculates the extent of the wind resource; considers one means to facilitate resource development---the establishment of statewide and regional public power authorities; analyzes possible regulatory frameworks to manage the resource in state-controlled waters; and assesses the use of distributed storage to manage intermittent output from wind turbines. In order to cover a diversity of topics, this research uses a multi-paper format with four essays forming the body of work. The first essay lays out an accessible methodology to calculate offshore wind resource potential using publicly available data, and uses this methodology to access wind resources off Delaware. The assessment suggests a wind resource approximately four times the average electrical load in Delaware. The second essay examines the potential role of a power authority, a quasi-public institution, in lowering the cost of capital, reducing financial risk of developing and operating a wind farm, and enhancing regional collaboration on resource development and management issues. The analysis suggests that a power authority can lower the cost of offshore wind power by as much as 1/3, thereby preserving the ability to pursue cost-competitive development even if the current federal incentives are removed. The third essay addresses the existing regulatory void in state-controlled waters of Delaware

  16. Wind Power Potential at Abandoned Mines in Korea

    Science.gov (United States)

    jang, M.; Choi, Y.; Park, H.; Go, W.

    2013-12-01

    This study performed an assessment of wind power potential at abandoned mines in the Kangwon province by analyzing gross energy production, greenhouse gas emission reduction and economic effects estimated from a 600 kW wind turbine. Wind resources maps collected from the renewable energy data center in Korea Institute of Energy Research(KIER) were used to determine the average wind speed, temperature and atmospheric pressure at hub height(50 m) for each abandoned mine. RETScreen software developed by Natural Resources Canada(NRC) was utilized for the energy, emission and financial analyses of wind power systems. Based on the results from 5 representative mining sites, we could know that the average wind speed at hub height is the most critical factor for assessing the wind power potential. Finally, 47 abandoned mines that have the average wind speed faster than 6.5 m/s were analyzed, and top 10 mines were suggested as relatively favorable sites with high wind power potential in the Kangwon province.

  17. Hourly temporal distribution of wind

    Science.gov (United States)

    Deligiannis, Ilias; Dimitriadis, Panayiotis; Koutsoyiannis, Demetris

    2016-04-01

    The wind process is essential for hydrometeorology and additionally, is one of the basic renewable energy resources. Most stochastic forecast models are limited up to daily scales disregarding the hourly scale which is significant for renewable energy management. Here, we analyze hourly wind timeseries giving emphasis on the temporal distribution of wind within the day. We finally present a periodic model based on statistical as well as hydrometeorological reasoning that shows good agreement with data. Acknowledgement: This research is conducted within the frame of the undergraduate course "Stochastic Methods in Water Resources" of the National Technical University of Athens (NTUA). The School of Civil Engineering of NTUA provided moral support for the participation of the students in the Assembly.

  18. Wind energy renewable energy and the environment

    CERN Document Server

    Nelson, Vaughn

    2013-01-01

    As the demand for energy increases, and fossil fuels continue to decrease, Wind Energy: Renewable Energy and the Environment, Second Edition considers the viability of wind as an alternative renewable energy source. This book examines the wind industry from its start in the 1970s until now, and introduces all aspects of wind energy. The phenomenal growth of wind power for utilities is covered along with applications such as wind-diesel, village power, telecommunications, and street lighting.. It covers the characteristics of wind, such as shear, power potential, turbulence, wind resource, wind

  19. A Multi-layer Dynamic Model for Coordination Based Group Decision Making in Water Resource Allocation and Scheduling

    Science.gov (United States)

    Huang, Wei; Zhang, Xingnan; Li, Chenming; Wang, Jianying

    Management of group decision-making is an important issue in water source management development. In order to overcome the defects in lacking of effective communication and cooperation in the existing decision-making models, this paper proposes a multi-layer dynamic model for coordination in water resource allocation and scheduling based group decision making. By introducing the scheme-recognized cooperative satisfaction index and scheme-adjusted rationality index, the proposed model can solve the problem of poor convergence of multi-round decision-making process in water resource allocation and scheduling. Furthermore, the problem about coordination of limited resources-based group decision-making process can be solved based on the effectiveness of distance-based group of conflict resolution. The simulation results show that the proposed model has better convergence than the existing models.

  20. Analyzing the Impacts of Increased Wind Power on Generation Revenue Sufficiency: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Qin; Wu, Hongyu; Tan, Jin; Hodge, Bri-Mathias; Li, Wanning; Luo, Cheng

    2016-08-01

    The Revenue Sufficiency Guarantee (RSG), as part of make-whole (or uplift) payments in electricity markets, is designed to recover the generation resources' offer-based production costs that are not otherwise covered by their market revenues. Increased penetrations of wind power will bring significant impacts to the RSG payments in the markets. However, literature related to this topic is sparse. This paper first reviews the industrial practices of implementing RSG in major U.S. independent system operators (ISOs) and regional transmission operators (RTOs) and then develops a general RSG calculation method. Finally, an 18-bus test system is adopted to demonstrate the impacts of increased wind power on RSG payments.

  1. Making full use of wind power potential in North America -- possibilities

    Energy Technology Data Exchange (ETDEWEB)

    Guillaud, Christian

    2010-09-15

    The anticipated increase in electrical load in North America up to the year 2050 will be at least 50%. Wind potential in North America is enormous, well in excess of the expected requirements. However, the amount of wind capacity, which can be directly connected to a grid is limited to 20% of the installed capacity because of technical constraints. Technologies to enable full wind potential to be harnessed still need to be developed; they will consist in storing wind energy in hydroelectric reservoirs or generating hydrogen. However, the resulting cost of electricity will be somewhat higher than present.

  2. Transport of biologically important nutrients by wind in an eroding cold desert

    Science.gov (United States)

    Sankey, Joel B.; Germino, Matthew J.; Benner, Shawn G.; Glenn, Nancy F.; Hoover, Amber N.

    2012-01-01

    Wind erosion following fire is an important landscape process that can result in the redistribution of ecologically important soil resources. In this study we evaluated the potential for a fire patch in a desert shrubland to serve as a source of biologically important nutrients to the adjacent, downwind, unburned ecosystem. We analyzed nutrient concentrations (P, K, Ca, Mg, Cu, Fe, Mn, Al) in wind-transported sediments, and soils from burned and adjacent unburned surfaces, collected during the first to second growing seasons after a wildfire that burned in 2007 in Idaho, USA in sagebrush steppe; a type of cold desert shrubland. We also evaluated the timing of potential wind erosion events and weather conditions that might have contributed to nutrient availability in downwind shrubland. Findings indicated that post-fire wind erosion resulted in an important, but transient, addition of nutrients on the downwind shrubland. Aeolian sediments from the burned area were enriched relative to both the up- and down-wind soil and indicated the potential for a fertilization effect through the deposition of the nutrient-enriched sediment during the first, but not second, summer after wildfire. Weather conditions that could have produced nutrient transport events might have provided increased soil moisture necessary to make nutrients accessible for plants in the desert environment. Wind transport of nutrients following fire is likely important in the sagebrush steppe as it could contribute to pulses of resource availability that might, for example, affect plant species differently depending on their phenology, and nutrient- and water-use requirements.

  3. Three essays on the effect of wind generation on power system planning and operations

    Science.gov (United States)

    Davis, Clay Duane

    While the benefits of wind generation are well known, some drawbacks are still being understood as wind power is integrated into the power grid at increasing levels. The primary difference between wind generation and other forms of generation is the intermittent, and somewhat unpredictable, aspect of this resource. The somewhat uncontrollable aspect of wind generation makes it important to consider the relationship between this resource and load, and also how the operation of other non-wind generation resources may be affected. The three essays that comprise this dissertation focus on these and other important issues related to wind generation; leading to an improved understanding of how to better plan for and utilize this resource. The first essay addresses the cost of increased levels of installed wind capacity from both a capacity planning and economic dispatch perspective to arrive at the total system cost of installing a unit of wind capacity. This total includes not only the cost of the wind turbine and associated infrastructure, but also the cost impact an additional unit of wind capacity has on the optimal mix and operation of other generating units in the electricity supply portfolio. The results of the model showed that for all wind expansion scenarios, wind capacity is not cost-effective regardless of the level of the wind production tax credit and carbon prices that were considered. Larger levels of installed wind capacity result in reduced variable cost, but this reduction is not able to offset increases in capital cost, as a unit of installed wind capacity does not result in an equal reduction in other non-wind capacity needs. The second essay develops a methodology to better handle unexpected short term fluctuations in wind generation within the existing power system. The methodology developed in this essay leads to lower expected costs by anticipating and planning for fluctuations in wind generation by focusing on key constraints in the system. The

  4. Final Report for Project: Impacts of stratification and non-equilibrium winds and waves on hub-height winds

    Energy Technology Data Exchange (ETDEWEB)

    Patton, Edward G. [Univ. Corporation for Atmospheric Research, Boulder, CO (United States)

    2015-07-14

    ) primarily experienced weakly-unstable conditions, while stability at the ASIT tower (with a larger influence of offshore winds) experiences a mix of both unstable and stable conditions, where the summer months are predominantly stable. Wind-wave misalignment likely explains the large scatter in observed non-dimensional surface roughness under swell-dominated conditions. Andreas et al.’s (2012) relationship between u* and the 10-m wind speed under predicts the increased u* produced by wave-induced pressure drag produced by misaligned winds and waves. Incorporating wave-state (speed and direction) influences in parameterizations improves predictive skill. In a broad sense, these results suggest that one needs information on winds, temperature, and wave state to upscale buoy measurements to hub-height and across the rotor plane. Our parameterization of wave-state influences on surface drag has been submitted for inclusion in the next publicly available release. In combination, our project elucidates the impacts of two important physical processes (non-equilibrium wind/waves and stratification) on the atmosphere within which offshore turbines operate. This knowledge should help guide and inform manufacturers making critical decisions surrounding design criteria of future turbines to be deployed in the coastal zone. Reductions in annually averaged hub height wind speed error using our new wave-state-aware surface layer parameterization are relatively modest. However since wind turbine power production depends on the wind speed cubed, the error in estimated power production is close to 5%; which is significant and can substantially impact wind resource assessment and decision making with regards to the viability of particular location for a wind plant location. For a single 30-hour forecast, significant reductions in wind speed prediction errors can yield substantially improved wind power forecast skill, thereby mitigating costs and/or increasing revenue through improved

  5. Status report of wind energy programs in the Philippines

    Energy Technology Data Exchange (ETDEWEB)

    Benavidez, P.J. [National Power Corp., Quezon City (Philippines)

    1996-12-31

    This paper discusses the wind resource assessment activities being undertaken by the National Power Corporation at the extreme northern part of Luzon island. Preliminary results from the 10-month wind data are presented. This will give prospective wind developers all idea oil tile vast resources of wind energy available in the northern part of the country. This paper will also discuss briefly the stand-alone 10 kW wind turbine system that was commissioned early this year and the guidelines being drafted for the entry of new and renewable energy sources in the country`s energy generation mix. 4 figs., 1 tab.

  6. Wind power and bats : Ontario guideline

    Energy Technology Data Exchange (ETDEWEB)

    McGuiness, F. [Ontario Ministry of Natural Resources, Peterborough, ON (Canada). Renewable Energy Resources; Stewart, J. [Ontario Ministry of Natural Resources, Toronto, ON (Canada). Wildlife Section

    2008-07-01

    None of the 8 species of bats in Ontario are considered as species at risk. However, all bats in Ontario are protected under the Fish and Wildlife Conservation Act. The Ontario Ministry of Natural Resources (MNR) is responsible for identifying significant wildlife habitat for bats, including hibernacula and maternity roosts. The MNR's role in wind development includes environmental assessments (EA) and surveys. The MNR bat guideline includes a summary of Ontario species, a literature review of research related to wind turbines and bats, and a review of methods for assessing and monitoring bats. Guideline development includes a bat working group responsible for obtaining data on risk factors and monitoring requirements. The MNR has determined that site selection is critical for minimizing potential impacts. Wind farm proponents can use MNR data, information, and maps for their site selection process. Information requirements include bat species data; habitat data; and meteorological data. The presence of risk factors results in a sensitivity rating. The MNR is also developing a site sensitivity mapping project in order to assist proponents in making siting decisions. All proposed sites are required to conduct pre-construction site surveys. Acoustic detectors and radar are used to determine bat activity at the site. Monitoring and mitigation strategies include selective wind turbine shutdown during key periods or weather conditions. tabs., figs.

  7. The Application of TAPM for Site Specific Wind Energy Forecasting

    Directory of Open Access Journals (Sweden)

    Merlinde Kay

    2016-02-01

    Full Text Available The energy industry uses weather forecasts for determining future electricity demand variations due to the impact of weather, e.g., temperature and precipitation. However, as a greater component of electricity generation comes from intermittent renewable sources such as wind and solar, weather forecasting techniques need to now also focus on predicting renewable energy supply, which means adapting our prediction models to these site specific resources. This work assesses the performance of The Air Pollution Model (TAPM, and demonstrates that significant improvements can be made to only wind speed forecasts from a mesoscale Numerical Weather Prediction (NWP model. For this study, a wind farm site situated in North-west Tasmania, Australia was investigated. I present an analysis of the accuracy of hourly NWP and bias corrected wind speed forecasts over 12 months spanning 2005. This extensive time frame allows an in-depth analysis of various wind speed regimes of importance for wind-farm operation, as well as extreme weather risk scenarios. A further correction is made to the basic bias correction to improve the forecast accuracy further, that makes use of real-time wind-turbine data and a smoothing function to correct for timing-related issues. With full correction applied, a reduction in the error in the magnitude of the wind speed by as much as 50% for “hour ahead” forecasts specific to the wind-farm site has been obtained.

  8. Wind Turbines Make Waves: Why Some Residents near Wind Turbines Become Ill

    Science.gov (United States)

    Havas, Magda; Colling, David

    2011-01-01

    People who live near wind turbines complain of symptoms that include some combination of the following: difficulty sleeping, fatigue, depression, irritability, aggressiveness, cognitive dysfunction, chest pain/pressure, headaches, joint pain, skin irritations, nausea, dizziness, tinnitus, and stress. These symptoms have been attributed to the…

  9. Assembling Markets for Wind Power

    DEFF Research Database (Denmark)

    Pallesen, Trine

    hand, as an economic good, wind power is said to suffer from (techno-economic) ‘disabilities’, such as high costs, fluctuating and unpredictable generation, etc. Therefore, because of its performance as a good, it is argued that the survival of wind power in the market is premised on different......This project studies the making of a market for wind power in France. Markets for wind power are often referred to as ‘political markets: On the one hand, wind power has the potential to reduce CO2-emissions and thus stall the effects of electricity generation on climate change; and on the other...... instruments, some of which I will refer to as ‘prosthetic devices’. This thesis inquires into two such prosthetic devices: The feed-in tariff and the wind power development zones (ZDE) as they are negotiated and practiced in France, and also the ways in which they affect the making of markets for wind power....

  10. Rotor Speed Control of a Direct-Driven Permanent Magnet Synchronous Generator-Based Wind Turbine Using Phase-Lag Compensators to Optimize Wind Power Extraction

    Directory of Open Access Journals (Sweden)

    Ester Hamatwi

    2017-01-01

    Full Text Available Due to the intermittent nature of wind, the wind power output tends to be inconsistent, and hence maximum power point tracking (MPPT is usually employed to optimize the power extracted from the wind resource at a wide range of wind speeds. This paper deals with the rotor speed control of a 2 MW direct-driven permanent magnet synchronous generator (PMSG to achieve MPPT. The proportional-integral (PI, proportional-derivative (PD, and proportional-integral-derivative (PID controllers have widely been employed in MPPT studies owing to their simple structure and simple design procedure. However, there are a number of shortcomings associated with these controllers; the trial-and-error design procedure used to determine the P, I, and D gains presents a possibility for poorly tuned controller gains, which reduces the accuracy and the dynamic performance of the entire control system. Moreover, these controllers’ linear nature, constricted operating range, and their sensitivity to changes in machine parameters make them ineffective when applied to nonlinear and uncertain systems. On the other hand, phase-lag compensators are associated with a design procedure that is well defined from fundamental principles as opposed to the aforementioned trial-and-error design procedure. This makes the latter controller type more accurate, although it is not well developed yet, and hence it is the focus of this paper. The simulation results demonstrated the effectiveness of the proposed MPPT controller.

  11. The job demands and resources decision making (JD-R-DM) model

    NARCIS (Netherlands)

    Gordon, H.J.; Demerouti, E.; Bipp, T.; Le Blanc, P.M.

    2015-01-01

    This study explores the effects of nurses’ daily job characteristics (i.e., job demands and resources) and general work engagement on their daily decision making (i.e., analytical and intuitive) and consequently their daily performance (i.e., task and contextual). Participants completed a baseline

  12. Environmental impacts assessment: Instruments for environmental policy making and resource management

    International Nuclear Information System (INIS)

    Cavelli, C.M.; Sartori, S.

    1993-06-01

    This review of evaluation criteria for environmental impacts assessments in Italy covers the following aspects: the efficacy of current Italian normatives governing assessment methods, the current approach of regional public administrations, the necessity for the creation of a national regulating board, environmental impacts assessment for complex environmental systems, the application of impacts assessment recommendations to resource development modelling in the planning of integrated environmental-economic systems, the involvement of the general public in decision making, techniques to determine the monetary worth of environmental resources, the use of multi-criteria analysis techniques

  13. Wind Energy: Trends And Enabling Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Devabhaktuni, Vijay; Alam, Mansoor; Boyapati, Premchand; Chandna, Pankaj; Kumar, Ashok; Lack, Lewis; Nims, Douglas; Wang, Lingfeng

    2010-09-15

    With attention now focused on the damaging impact of greenhouse gases, wind energy is rapidly emerging as a low carbon, resource efficient, cost-effective sustainable technology in many parts of the world. Despite higher economic costs, offshore appears to be the next big step in wind energy development alternative because of the space scarcity for installation of onshore wind turbine. This paper presents the importance of off-shore wind energy, the wind farm layout design, the off-shore wind turbine technological developments, the role of sensors and the smart grid, and the challenges and future trends of wind energy.

  14. Development of a methodology to assess the climate evolution and its impacts on wind energy

    Energy Technology Data Exchange (ETDEWEB)

    Simard, I. [Moncton Univ., NB (Canada); Yu, W. [Moncton Univ., NB (Canada). Meteorological Research Div.; Gagnon, Y. [Moncton Univ., NB (Canada). K.C. Irving Chair in Sustainable Development

    2010-07-01

    Maps of wind resources were used to develop a method of evaluating climatic changes and their potential impacts on wind energy resources. Global IPCC climate change scenarios were used to predict climatic conditions for the future, while past wind resource availability was simulated and validated using NCEP and NCAR reanalysis data as well as observed meteorological data from Environment Canada. The simulations were used to compare each 5-year period with a 50-year reference period. Regional scale climate change impacts were evaluated using a statistical dynamic down-scaling method. Advanced meteorological models were used to predict wind flow patterns across specific landscapes. The evolution of past wind resource availability was then simulated. Five-year wind resource simulations for a 50-year period were simulated at 25 km{sup 2} wind speeds at 80 m above the ground. Average wind speed variations were then evaluated. The method has been used to simulate 5-year periods within a 50-year reference period in New Brunswick. Further studies will be conducted to simulate future wind resources availability. tabs., figs.

  15. An Innovative Approach To Making Ultra Light Weight Wind Turbine Blades

    Directory of Open Access Journals (Sweden)

    Suhail Zaki Farooqui

    2012-04-01

    Full Text Available An innovative mould free method for the fabrication of ultimate light weight small wind turbine blades made out of composites has been suggested in this paper. The method has been practically applied with very satisfactory results. The method is low cost and is specifically suitable for individual small wind turbine makers. The airfoils used are simple to shape and possess good Cl/Cd characteristics. The blades are crafted using galvanized iron sheets, aluminum pipes, hard paper and fiberglass. A computer program is included with tip correction features to design the blades at the required power rating, wind speed, tip speed ratio and the chosen constant angle of attack. Results of the program run for designing 250 and 500 watt wind turbine blades at 8 m/s wind speed and tip speed ratios of 5.5 are tabulated. Performance results of the blades thus produced are also discussed.

  16. Potential Offshore Wind Energy Areas in California: An Assessment of Locations, Technology, and Costs

    Energy Technology Data Exchange (ETDEWEB)

    Musial, Walter [National Renewable Energy Lab. (NREL), Golden, CO (United States); Beiter, Philipp [National Renewable Energy Lab. (NREL), Golden, CO (United States); Tegen, Suzanne [National Renewable Energy Lab. (NREL), Golden, CO (United States); Smith, Aaron [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-12-01

    This report summarizes a study of possible offshore wind energy locations, technologies, and levelized cost of energy in the state of California between 2015 and 2030. The study was funded by the U.S. Department of the Interior's Bureau of Ocean Energy Management (BOEM), the federal agency responsible for regulating renewable energy development on the Outer Continental Shelf. It is based on reference wind energy areas where representative technology and performance characteristics were evaluated. These reference areas were identified as sites that were suitable to represent offshore wind cost and technology based on physical site conditions, wind resource quality, known existing site use, and proximity to necessary infrastructure. The purpose of this study is to assist energy policy decision-making by state utilities, independent system operators, state government officials and policymakers, BOEM, and its key stakeholders. The report is not intended to serve as a prescreening exercise for possible future offshore wind development.

  17. The future of wind is growing larger

    International Nuclear Information System (INIS)

    Hansen, Jesper

    1999-01-01

    This article highlights the dramatic developments in wind turbines over the last 20 years, and notes the increase in efficiency, reduced noise emissions, improvements in manufacturing , and refined resource assessment tools. A summary of the wind turbine market is tabulated, and the increasing size of wind turbines, the assembly of the wind turbines, and current designs are discussed. (UK)

  18. Small Wind Electric Systems: A Virginia Consumer's Guide

    Energy Technology Data Exchange (ETDEWEB)

    2003-06-01

    The purpose of the Small Wind Electric Systems Consumer's: A Virginia Consumer's Guide is to provide consumers with enough information to help them determine if a small wind electric system will work for them based on their wind resource, the type and size of their sites, and their economics. The cover of this guide contains a Virginia wind resource map and information about state incentives and contacts for more information.

  19. Attractiveness Evaluation of Investment in Wind Energy Projects

    Directory of Open Access Journals (Sweden)

    Paulius Rudzkis

    2012-07-01

    Full Text Available Last decade as prices of fossil energy resources were almost constantly going upwards, increasing flow of investments is directed to renewable energy resources. Development and application of green energy became one of priority objectives in many countries. While in the context of wind energy production Lithuania lags behind the EU average, its potential of wind energy usage has great perspective. In this article using random processes, cost-benefit and financial analysis, attractiveness of investment in wind energy projects is examined. Given the stochastic nature of wind energy and by looking into investment profitableness and risk factors, effectiveness of wind turbine is evaluated. Analysis showed that wind energy projects could be considered as having high profit-to-risk factor and should generate significant interest of investment community.

  20. Wind Predictions Upstream Wind Turbines from a LiDAR Database

    Directory of Open Access Journals (Sweden)

    Soledad Le Clainche

    2018-03-01

    Full Text Available This article presents a new method to predict the wind velocity upstream a horizontal axis wind turbine from a set of light detection and ranging (LiDAR measurements. The method uses higher order dynamic mode decomposition (HODMD to construct a reduced order model (ROM that can be extrapolated in space. LiDAR measurements have been carried out upstream a wind turbine at six different planes perpendicular to the wind turbine axis. This new HODMD-based ROM predicts with high accuracy the wind velocity during a timespan of 24 h in a plane of measurements that is more than 225 m far away from the wind turbine. Moreover, the technique introduced is general and obtained with an almost negligible computational cost. This fact makes it possible to extend its application to both vertical axis wind turbines and real-time operation.

  1. Atmospheric air density analysis with Meteo-40S wind monitoring system

    Directory of Open Access Journals (Sweden)

    Zahariea Dănuţ

    2017-01-01

    Full Text Available In order to estimate the wind potential of wind turbine sites, the wind resource maps can be used for mean annual wind speed, wind speed frequency distribution and mean annual wind power density determination. The general evaluation of the wind resource and the wind turbine ratings are based on the standard air density measured at sea level and at 15°C, ρs=1.225 kg/m3. Based on the experimental data obtained for a continental climate specific location, this study will present the relative error between the standard air density and the density of the dry and the moist air. Considering a cold day, for example on Friday 10th February 2017, on 1-second measurement rate and 10-minute measuring interval starting at 16:20, the mean relative errors obtained are 10.4145% for dry air, and 10.3634% for moist air. Based on these results, a correction for temperature, atmospheric air pressure and relative humidity should be always considered for wind resource assessment, as well as for the predicting the wind turbines performance.

  2. Planning your first wind power project. A primer for utilities: Everything you need to know to bring your first wind power plant on-line

    International Nuclear Information System (INIS)

    Conover, K.; Davis, E.

    1994-12-01

    This primer has been prepared to help utility personnel become familiar with some or the details relative to wind power technology and project development. It is written as a series of relatively independent chapters to address specific topics or phases of wind power evaluation and development as they might occur within a utility. The topics include: wind prospecting and the first pass analysis, resource validation, project feasibility, resource planning and evaluation, resource acquisition, project development, equipment selection, project design and construction, and plant operation and maintenance

  3. Mastering the power of wind

    International Nuclear Information System (INIS)

    Stiegel, J.

    1999-01-01

    In this paper the author deals with environmental aspects use of fossil fuels for the energy production. As a way for our planet to get back to a normal and ecologically balanced system the fossil fuels reduction and their replacement by renewable racecourses is recommended. Energetic potential of flowing sun, wind and tidal waves as power resources is discussed. The natural ecological resources are best utilised in the United States where the installed wind power output is 1600 MW. With 360 MW installed output in 1991 the Denmark took lead among European countries in utilising the wind power. The most dynamic power plant development among the European Union countries was recorded in Germany, where the installed power output of the wind power plants is 632 MW, i.e. i.e. 11.5 times higher compared to 55 MW in 1991. The economy of wind power in Germany and in Slovakia is compared. In Slovakia with annual 200 000 kWh power generation annually and the present kWh purchase price guarantee the rate of return of 10 million slovak crowns investment into a wind power plant project is in 100 years. Although the first wind power plants have already been built in the Zahorie, Kremnicke Bane, and Secovce regions, the wind exploitation status in Slovakia is still limping. According to professionals, the wind conditions in Slovakia are not ideal, but sufficient for a supplementary wind power plant system, that can be quite motivating especially for villages. Mount Chopok or mount Krizna are ideal sites to erect the three-blade tower with respect to wind speed. And also the anticipated Kremnicke vrchy site is worth considering. (author)

  4. Wind energy and social acceptability

    International Nuclear Information System (INIS)

    Feurtey, E.

    2008-01-01

    This document was prepared as part of a decentralized collaboration between Quebec and France to share knowledge regarding strategies and best practices in wind power development. It reviewed the social acceptance of Quebec's wind power industry, particularly at the municipal level. The wind industry is growing rapidly in Quebec, and this growth has generated many reactions ranging from positive to negative. The purpose of this joint effort was to describe decision making steps to developing a wind turbine array. The history of wind development in Quebec was discussed along with the various hardware components required in a wind turbine and different types of installations. The key element in implementing wind turbine arrays is to establish public acceptance of the project, followed by a good regulatory framework to define the roles and responsibilities of participants. The production of electricity from wind turbines constitutes a clean and renewable source of energy. Although it is associated with a reduction in greenhouse gas emissions, this form of energy can also have negative environmental impacts, including noise. The revenues generated by wind parks are important factors in the decision making process. Two case studies in Quebec were presented. refs., tabs., figs.

  5. Siting guidelines for utility application of wind turbines. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Pennell, W.T.

    1983-01-01

    Utility-oriented guidelines are described for identifying viable sites for wind turbines. Topics and procedures are also discussed that are important in carrying out a wind turbine siting program. These topics include: a description of the Department of Energy wind resource atlases; procedures for predicting wind turbine performance at potential sites; methods for analyzing wind turbine economics; procedures for estimating installation and maintenance costs; methods for anlayzing the distribution of wind resources over an area; and instrumentation for documenting wind behavior at potential sites. The procedure described is applicable to small and large utilities. Although the procedure was developed as a site-selection tool, it can also be used by a utility who wishes to estimate the potential for wind turbine penetration into its future generation mix.

  6. Panel: Eco-informatics and decision making managing our natural resources

    Science.gov (United States)

    Gushing, J.B.; Wilson, T.; Martin, F.; Schnase, J.; Spengler, S.; Sugarbaker, L.; Pardo, T.

    2006-01-01

    This panel responds to the December 2004 workshop on Eco-Informatics and Decision Making [1], which addressed how informatics tools can help with better management of natural resources and policy making. The workshop was jointly sponsored by the NSF, NBII, NASA, and EPA. Workshop participants recommended that informatics research in four IT areas be funded: modeling and simulation, data quality, information integration and ontologies, and social and human aspects. Additionally, they recommend that funding agencies provide infrastructure and some changes in funding habits to assure cycles of innovation in the domain were addressed. This panel brings issues raised in that workshop to the attention of digital government researchers.

  7. Agua Caliente Wind/Solar Project at Whitewater Ranch

    Energy Technology Data Exchange (ETDEWEB)

    Hooks, Todd [Agua Caliente Band of Cahuilla Indians, Palm Springs, CA (United States); Stewart, Royce [Red Mountain Energy Partners, Sante Fe, NM (United States)

    2014-12-16

    Agua Caliente Band of Cahuilla Indians (ACBCI) was awarded a grant by the Department of Energy (DOE) to study the feasibility of a wind and/or solar renewable energy project at the Whitewater Ranch (WWR) property of ACBCI. Red Mountain Energy Partners (RMEP) was engaged to conduct the study. The ACBCI tribal lands in the Coachella Valley have very rich renewable energy resources. The tribe has undertaken several studies to more fully understand the options available to them if they were to move forward with one or more renewable energy projects. With respect to the resources, the WWR property clearly has excellent wind and solar resources. The DOE National Renewable Energy Laboratory (NREL) has continued to upgrade and refine their library of resource maps. The newer, more precise maps quantify the resources as among the best in the world. The wind and solar technology available for deployment is also being improved. Both are reducing their costs to the point of being at or below the costs of fossil fuels. Technologies for energy storage and microgrids are also improving quickly and present additional ways to increase the wind and/or solar energy retained for later use with the network management flexibility to provide power to the appropriate locations when needed. As a result, renewable resources continue to gain more market share. The transitioning to renewables as the major resources for power will take some time as the conversion is complex and can have negative impacts if not managed well. While the economics for wind and solar systems continue to improve, the robustness of the WWR site was validated by the repeated queries of developers to place wind and/or solar there. The robust resources and improving technologies portends toward WWR land as a renewable energy site. The business case, however, is not so clear, especially when the potential investment portfolio for ACBCI has several very beneficial and profitable alternatives.

  8. Power from the Wind

    Science.gov (United States)

    Roman, Harry T.

    2004-01-01

    Wind energy is the fastest-growing renewable energy source in the world. Over the last 20 years, the wind industry has done a very good job of engineering machines, improving materials, and economies of production, and making this energy source a reality. Like all renewable energy forms, wind energy's successful application is site specific. Also,…

  9. Quantifying the Impact of Wind Turbine Wakes on Power Output at Offshore Wind Farms

    DEFF Research Database (Denmark)

    Barthelmie, Rebecca Jane; Pryor, Sara; Frandsen, Sten Tronæs

    2010-01-01

    There is an urgent need to develop and optimize tools for designing large wind farm arrays for deployment offshore. This research is focused on improving the understanding of, and modeling of, wind turbine wakes in order to make more accurate power output predictions for large offshore wind farms...

  10. Landscape integration and harmonization assessment guide : wind farm siting project on public land

    Energy Technology Data Exchange (ETDEWEB)

    Bouchard, M.A.; Boudart, M.; Arsenault, M.; Lauzon, M.; Lizotte, C.; Munoz, P.; Poirier, C.; Guimont, C.; Sainte-Marie, L.

    2005-07-01

    The development of a wind farm industry depends greatly on obtaining land use rights. This paper describes a program created by the Quebec Government to make public land available for wind farm construction. In particular, the program allows the government to set aside public land to promote the development of the wind industry in the Gaspe Region and the Matane Regional County Municipality. It also awards land rights for wind farm construction to bidders who have signed wind energy sales contracts with Hydro-Quebec Distribution. The program allows the government to set lease rates for public land used for wind farms based on market rates. This document is a guide used by Quebec's Ministry of Natural Resources to evaluate projects and issue leases for parcels of public land to be used for wind turbine arrays. It identifies major landscape issues associated with wind farms and allows proponents to demonstrate the natural and anthropogenic impacts of a wind farm on the landscape and present mitigative measures to minimize these impacts. This document also identifies the wind farm landscape integration and harmonization principles for public lands in Quebec. It was noted that wind farm projects with 10 MW capacity or less are not subject to guidelines established by the Quebec Ministry of Sustainable Development, Environment and Parks. 23 refs., 2 tabs.

  11. New England Wind Forum: A Wind Powering America Project, Volume 1, Issue 3 -- October 2007 (Newsletter)

    Energy Technology Data Exchange (ETDEWEB)

    Grace, R. C.; Gifford, J.

    2007-10-01

    The New England Wind Forum electronic newsletter summarizes the latest news in wind energy development activity, markets, education, and policy in the New England region. It also features an interview with a key figure influencing New England's wind energy development. Volume 1, Issue 3 features an interview with Andrew Dzykewicz, Commissioner of the Rhode Island Office of Energy Resources.

  12. Wind Generation Feasibility Study in Bethel, AK

    Energy Technology Data Exchange (ETDEWEB)

    Tom Humphrey, YKHC; Lance Kincaid, EMCOR Energy & Technologies

    2004-07-31

    This report studies the wind resources in the Yukon-Kuskokwim Health Corporation (YKHC) region, located in southwestern Alaska, and the applicability of wind generation technologies to YKHC facilities.

  13. Knowledge Co-production Strategies for Water Resources Modeling and Decision Making

    Science.gov (United States)

    Gober, P.

    2016-12-01

    The limited impact of scientific information on policy making and climate adaptation in North America has raised awareness of the need for new modeling strategies and knowledge transfer processes. This paper outlines the rationale for a new paradigm in water resources modeling and management, using examples from the USA and Canada. Principles include anticipatory modeling, complex system dynamics, decision making under uncertainty, visualization, capacity to represent and manipulate critical trade-offs, stakeholder engagement, local knowledge, context-specific activities, social learning, vulnerability analysis, iterative and collaborative modeling, and the concept of a boundary organization. In this framework, scientists and stakeholders are partners in the production and dissemination of knowledge for decision making, and local knowledge is fused with scientific observation and methodology. Discussion draws from experience in building long-term collaborative boundary organizations in Phoenix, Arizona in the USA and the Saskatchewan River Basin (SRB) in Canada. Examples of boundary spanning activities include the use of visualization, the concept of a decision theater, infrastructure to support social learning, social networks, and reciprocity, simulation modeling to explore "what if" scenarios of the future, surveys to elicit how water problems are framed by scientists and stakeholders, and humanistic activities (theatrical performances, art exhibitions, etc.) to draw attention to local water issues. The social processes surrounding model development and dissemination are at least as important as modeling assumptions, procedures, and results in determining whether scientific knowledge will be used effectively for water resources decision making.

  14. National Wind Technology Center sitewide, Golden, CO: Environmental assessment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-11-01

    The National Renewable Energy Laboratory (NREL), the nation`s primary solar and renewable energy research laboratory, proposes to expand its wind technology research and development program activities at its National Wind Technology Center (NWTC) near Golden, Colorado. NWTC is an existing wind energy research facility operated by NREL for the US Department of Energy (DOE). Proposed activities include the construction and reuse of buildings and facilities, installation of up to 20 wind turbine test sites, improvements in infrastructure, and subsequent research activities, technology testing, and site operations. In addition to wind turbine test activities, NWTC may be used to support other NREL program activities and small-scale demonstration projects. This document assesses potential consequences to resources within the physical, biological, and human environment, including potential impacts to: air quality, geology and soils, water resources, biological resources, cultural and historic resources, socioeconomic resources, land use, visual resources, noise environment, hazardous materials and waste management, and health and safety conditions. Comment letters were received from several agencies in response to the scoping and predecisional draft reviews. The comments have been incorporated as appropriate into the document with full text of the letters contained in the Appendices. Additionally, information from the Rocky Flats Environmental Technology Site on going sitewide assessment of potential environmental impacts has been reviewed and discussed by representatives of both parties and incorporated into the document as appropriate.

  15. National Wind Technology Center sitewide, Golden, CO: Environmental assessment

    International Nuclear Information System (INIS)

    1996-11-01

    The National Renewable Energy Laboratory (NREL), the nation's primary solar and renewable energy research laboratory, proposes to expand its wind technology research and development program activities at its National Wind Technology Center (NWTC) near Golden, Colorado. NWTC is an existing wind energy research facility operated by NREL for the US Department of Energy (DOE). Proposed activities include the construction and reuse of buildings and facilities, installation of up to 20 wind turbine test sites, improvements in infrastructure, and subsequent research activities, technology testing, and site operations. In addition to wind turbine test activities, NWTC may be used to support other NREL program activities and small-scale demonstration projects. This document assesses potential consequences to resources within the physical, biological, and human environment, including potential impacts to: air quality, geology and soils, water resources, biological resources, cultural and historic resources, socioeconomic resources, land use, visual resources, noise environment, hazardous materials and waste management, and health and safety conditions. Comment letters were received from several agencies in response to the scoping and predecisional draft reviews. The comments have been incorporated as appropriate into the document with full text of the letters contained in the Appendices. Additionally, information from the Rocky Flats Environmental Technology Site on going sitewide assessment of potential environmental impacts has been reviewed and discussed by representatives of both parties and incorporated into the document as appropriate

  16. Longitudinal associations between mothers' perceptions of nonresidential fathers' investment of resources and influence in decision-making.

    Science.gov (United States)

    Fagan, Jay; Palkovitz, Rob

    2018-02-01

    Nonresidential fathers are challenged to remain involved with their children across time in both direct and indirect ways, including influencing decision-making around important issues such as school attendance and medical care. An analytic sample of 1,350 families with residential mothers and nonresidential fathers was selected from the Early Childhood Longitudinal Survey-Birth Cohort (ECLS-B) to examine the longitudinal relationships between mothers' reports of nonresidential fathers' influence in decision-making and their provision of resources to their children. Findings indicate that fathers' voluntary contribution of tangible resources (informal child support, caregiving time) when children are 2 years old positively predict fathers' influence in decision-making regarding the care of their 4-year-old children. Fathers' early formal child support is not related to later decision-making. Fathers' communication with mother about the child at 24 months is related to later decision-making among daughters but not sons. Fathers' early decision-making is longitudinally related to later informal child support, caregiving time, and coparenting communication. The findings support the utility of a resource theory of fathering for understanding and predicting observed patterns of father involvement. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  17. Development and Application of Advanced Weather Prediction Technologies for the Wind Energy Industry (Invited)

    Science.gov (United States)

    Mahoney, W. P.; Wiener, G.; Liu, Y.; Myers, W.; Johnson, D.

    2010-12-01

    Wind energy decision makers are required to make critical judgments on a daily basis with regard to energy generation, distribution, demand, storage, and integration. Accurate knowledge of the present and future state of the atmosphere is vital in making these decisions. As wind energy portfolios expand, this forecast problem is taking on new urgency because wind forecast inaccuracies frequently lead to substantial economic losses and constrain the national expansion of renewable energy. Improved weather prediction and precise spatial analysis of small-scale weather events are crucial for renewable energy management. In early 2009, the National Center for Atmospheric Research (NCAR) began a collaborative project with Xcel Energy Services, Inc. to perform research and develop technologies to improve Xcel Energy's ability to increase the amount of wind energy in their generation portfolio. The agreement and scope of work was designed to provide highly detailed, localized wind energy forecasts to enable Xcel Energy to more efficiently integrate electricity generated from wind into the power grid. The wind prediction technologies are designed to help Xcel Energy operators make critical decisions about powering down traditional coal and natural gas-powered plants when sufficient wind energy is predicted. The wind prediction technologies have been designed to cover Xcel Energy wind resources spanning a region from Wisconsin to New Mexico. The goal of the project is not only to improve Xcel Energy’s wind energy prediction capabilities, but also to make technological advancements in wind and wind energy prediction, expand our knowledge of boundary layer meteorology, and share the results across the renewable energy industry. To generate wind energy forecasts, NCAR is incorporating observations of current atmospheric conditions from a variety of sources including satellites, aircraft, weather radars, ground-based weather stations, wind profilers, and even wind sensors on

  18. The Current Situation of Wind Energy in Turkey

    Directory of Open Access Journals (Sweden)

    Raşit Ata

    2013-01-01

    Full Text Available Wind energy applications and turbine installations at different scales have increased since the beginning of this century. As wind energy is an alternative clean energy source compared to the fossil fuels that pollute the atmosphere, systems that convert wind energy to electricity have developed rapidly. Turkey’s domestic fossil fuel resources are extremely limited. In addition, Turkey’s geographical location has several advantages for extensive use of wind power. In this context, renewable energy resources appear to be one of the most efficient and effective solutions for sustainable energy development and environmental pollution prevention in Turkey. Among the renewable sources, Turkey has very high wind energy potential. According to the Organization for Economic Cooperation and Development (OECD Turkey theoretically has 166 TWh a year of wind potential. However the installed wind power capacity is approximately 14% of total economical wind potential. In this study, Turkey’s installed electric power capacity and electric energy production are investigated and also the current situation of wind energy in Turkey is examined. The wind data used in this study were taken from Turkish Wind Energy Association (TUREB for the year 2012. This paper reviews the assessment of wind energy in Turkey as of the end of July 2012 including wind energy applications.

  19. Time Series Model of Wind Speed for Multi Wind Turbines based on Mixed Copula

    Directory of Open Access Journals (Sweden)

    Nie Dan

    2016-01-01

    Full Text Available Because wind power is intermittent, random and so on, large scale grid will directly affect the safe and stable operation of power grid. In order to make a quantitative study on the characteristics of the wind speed of wind turbine, the wind speed time series model of the multi wind turbine generator is constructed by using the mixed Copula-ARMA function in this paper, and a numerical example is also given. The research results show that the model can effectively predict the wind speed, ensure the efficient operation of the wind turbine, and provide theoretical basis for the stability of wind power grid connected operation.

  20. Using Probability of Exceedance to Compare the Resource Risk of Renewable and Gas-Fired Generation

    Energy Technology Data Exchange (ETDEWEB)

    Bolinger, Mark [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-08-01

    Of the myriad risks surrounding long-term investments in power plants, resource risk is one of the most difficult to mitigate, and is also perhaps the risk that most-clearly distinguishes renewable generation from natural gas-fired generation. For renewable generators like wind and solar projects, resource risk manifests as a quantity risk—i.e., the risk that the quantity of wind and insolation will be less than expected.i For gas-fired generators (i.e., a combined-cycle gas turbine or “CCGT”), resource risk manifests primarily as a price risk—i.e., the risk that natural gas will cost more than expected. Most often, resource risk—and natural gas price risk in particular—falls disproportionately on utility ratepayers, who are typically not well-equipped to manage this risk. As such, it is incumbent upon utilities, regulators, and policymakers to ensure that resource risk is taken into consideration when making or approving resource decisions, or enacting policies that influence the development of the electricity sector more broadly.

  1. Kaneohe, Hawaii Wind Resource Assessment Report

    Energy Technology Data Exchange (ETDEWEB)

    Robichaud, R.; Green, J.; Meadows, B.

    2011-11-01

    The Department of Energy (DOE) has an interagency agreement to assist the Department of Defense (DOD) in evaluating the potential to use wind energy for power at residential properties at DOD bases in Hawaii. DOE assigned the National Renewable Energy Laboratory (NREL) to facilitate this process by installing a 50-meter (m) meteorological (Met) tower on residential property associated with the Marine Corps Base Housing (MCBH) Kaneohe Bay in Hawaii.

  2. Evaluation of wind power generation potential using a three hybrid approach for households in Ardebil Province, Iran

    International Nuclear Information System (INIS)

    Qolipour, Mojtaba; Mostafaeipour, Ali; Shamshirband, Shahaboddin; Alavi, Omid; Goudarzi, Hossein; Petković, Dalibor

    2016-01-01

    Highlights: • Technical–economic feasibility of small wind turbines for six areas in Ardabil province of Iran was investigated. • Hybrid approach of Data Envelopment Analysis, Balanced Scorecard, and Game Theory was analyzed. • HOMER software was used for economic evaluation. • Technical–economic feasibility was studied using wind speed data during 2008–2014. • The areas of Airport, Nir, Namin, BilaSavar, Firozabad and Ardabil were ranked from first to last, respectively. - Abstract: The objective of the present paper is to conduct a thorough technical–economic evaluation for the construction of small wind turbines in six areas within Ardabil province of Iran using the Hybrid Optimization of Multiple Energy Resources software, and also to rank these areas by a hybrid approach composed of Data Envelopment Analysis, Balanced Scorecard, and Game Theory methodologies. Higher accuracy of the proposed hybrid approach and its ability to properly detect the relationships between the decision-making components make it preferable over the simple Data Envelopment Analysis method. Technical–economic feasibility study is conducted by analyzing wind speed data for period from 2008 to 2014 using Hybrid Optimization of Multiple Energy Resources software. In the next step, the type of equipment used in the design, benefit, costs, total net costs, depreciation and amount of generated electricity are obtained separately for each location. The results show that; Airport, Nir, Namin, Bilasavar, Firozabad and Ardabil were rank first to last respectively.

  3. Analysis of economics of investment in a wind-farm system

    International Nuclear Information System (INIS)

    Ali, F; Nayyar, A.H.

    2005-01-01

    With the constant increase in the cost of generating electricity through conventional means, there is a growing need to look for other sources of energy. Renewable energy resources with their zero-emission features provide us with a good alternative. Of all the renewable energy resources, wind has proved to be the most promising one, chiefly due to its cost effectiveness and ability to provide grid-quality power. In Pakistan, the concept of using renewable energy for power generation is not new. However, the lack of support from the Government proved to be a major hurdle in developing Renewable Energy resources. Nevertheless, only recently the Government of Pakistan has taken concrete steps to develop renewable energy resources, one of which is a wind-mapping/charting program being carried out in the coastal areas of Balochistan and Sindh. The wind mapping program would eventually determine the wind-power potential of Pakistan and sizes of the wind-farm systems to be set up here. This study aims to estimate the cost of generating electricity using wind-energy and a suitable tariff-rate that may be set to attract foreign/local investment in this sector. This study also lays out policy recommendations that may help to attract investment to develop wind farm systems. (author)

  4. Built-Environment Wind Turbine Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    Smith, J.; Forsyth, T.; Sinclair, K.; Oteri, F.

    2012-11-01

    Although only a small contributor to total electricity production needs, built-environment wind turbines (BWTs) nonetheless have the potential to influence the public's consideration of renewable energy, and wind energy in particular. Higher population concentrations in urban environments offer greater opportunities for project visibility and an opportunity to acquaint large numbers of people to the advantages of wind projects on a larger scale. However, turbine failures will be equally visible and could have a negative effect on public perception of wind technology. This roadmap provides a framework for achieving the vision set forth by the attendees of the Built-Environment Wind Turbine Workshop on August 11 - 12, 2010, at the U.S. Department of Energy's National Renewable Energy Laboratory. The BWT roadmap outlines the stakeholder actions that could be taken to overcome the barriers identified. The actions are categorized as near-term (0 - 3 years), medium-term (4 - 7 years), and both near- and medium-term (requiring immediate to medium-term effort). To accomplish these actions, a strategic approach was developed that identifies two focus areas: understanding the built-environment wind resource and developing testing and design standards. The authors summarize the expertise and resources required in these areas.

  5. Coordinated voltage control for multiple wind plants in Eastern Wyoming. Analysis, field experience and validation

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Nicholas; MacDowell, Jason; Chmiel, Gary; Konopinski, Ryan; Gautam, Durga [GE Energy, Schenectady, NY (United States); Laughter, Grant; Hagen, Dave [PacifiCorp., Salt Lake City, UT (United States)

    2012-07-01

    At high levels of wind power penetration, multiple wind plants may be the predominant generation resource over large geographic areas. Thus, not only do wind plants need to provide a high level of functionality, they must coordinate properly with each other. This paper describes the analysis and field testing of wind plant voltage controllers designed to improve system voltage performance through passive coordination. The described wind power plant controls can coordinate the real and reactive power response of multiple wind turbines and thereby make the plant function as a single ''grid friendly'' power generation source. For this application, involving seven large wind plants with predominantly GE wind turbines in Eastern Wyoming, the voltage portion of the controllers were configured and tuned to allow the collective reactive power response of multiple wind plants in the region to work well together. This paper presents the results of the initial configuration and tuning study, and the results of the subsequent field tuning and testing of the modified controls. The paper also presents some comparisons of the measured field performance with the stability simulation models, which show that the available wind plant models provide accurate, high fidelity results for actual operating conditions of commercial wind power plants. (orig.)

  6. Wind on the moors

    International Nuclear Information System (INIS)

    Martin, S.

    1992-01-01

    A local town councillor describes the setting up of a wind farm in the south Pennines which plans to sell electricity to the local electricity suppliers. The Coal Clough wind farm will generate sufficient electricity to meet the average demand of 7,500 households and will be managed by a consortium known as Wind Resources Limited linking the construction company and the utilities aiming to buy the electricity produced. While wind power offers many environmental advantages over other means of power generation, local opposition was strong on the basis of the noise produced and clearly visible structures in an area designated as being of outstanding natural beauty. (UK)

  7. Financing renewables - wind energy

    International Nuclear Information System (INIS)

    Armstrong, J.

    1998-01-01

    This paper describes the status of the wind energy markets world-wide, in Europe and in the UK. It outlines the main methods of financing wind energy installations and discusses why different institutional structures have led to different markets in the UK and in Germany, with some concern about the state of the UK onshore industry. The paper looks ahead to the opening up of the potentially much larger offshore wind resource, concluding that in this area, existing UK development and financing structures are well suited. (Author)

  8. Greater Sage-Grouse Habitat Use and Population Demographics at the Simpson Ridge Wind Resource Area, Carbon County, Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    Gregory D. Johnson; Chad W. LeBeau; Ryan Nielsen; Troy Rintz; Jamey Eddy; Matt Holloran

    2012-03-27

    This study was conducted to obtain baseline data on use of the proposed Simpson Ridge Wind Resource Area (SRWRA) in Carbon County, Wyoming by greater sage-grouse. The first two study years were designed to determine pre-construction seasonally selected habitats and population-level vital rates (productivity and survival). The presence of an existing wind energy facility in the project area, the PacifiCorp Seven Mile Hill (SMH) project, allowed us to obtain some information on initial sage-grouse response to wind turbines the first two years following construction. To our knowledge these are the first quantitative data on sage-grouse response to an existing wind energy development. This report presents results of the first two study years (April 1, 2009 through March 30, 2011). This study was selected for continued funding by the National Wind Coordinating Collaborative Sage-Grouse Collaborative (NWCC-SGC) and has been ongoing since March 30, 2011. Future reports summarizing results of this research will be distributed through the NWCC-SGC. To investigate population trends through time, we determined the distribution and numbers of males using leks throughout the study area, which included a 4-mile radius buffer around the SRWRA. Over the 2-year study, 116 female greater sage-grouse were captured by spotlighting and use of hoop nets on roosts surrounding leks during the breeding period. Radio marked birds were located anywhere from twice a week to once a month, depending on season. All radio-locations were classified to season. We developed predictor variables used to predict success of fitness parameters and relative probability of habitat selection within the SRWRA and SMH study areas. Anthropogenic features included paved highways, overhead transmission lines, wind turbines and turbine access roads. Environmental variables included vegetation and topography features. Home ranges were estimated using a kernel density estimator. We developed resource selection

  9. Offshore Wind Resource Estimation in Mediterranean Area Using SAR Images

    DEFF Research Database (Denmark)

    Calaudi, Rosamaria; Arena, Felice; Badger, Merete

    Satellite observations of the ocean surface from Synthetic Aperture Radars (SAR) provide information about the spatial wind variability over large areas. This is of special interest in the Mediterranean, where spatial wind information is only provided by sparse buoys, often with long periods of m...

  10. Onshore industrial wind turbine locations for the United States up to March 2014

    Science.gov (United States)

    Diffendorfer, James E.; Kramer, Louisa; Ancona, Zachary H.; Garrity, Christopher P.

    2015-01-01

    Wind energy is a rapidly growing form of renewable energy in the United States. While summary information on the total amounts of installed capacity are available by state, a free, centralized, national, turbine-level, geospatial dataset useful for scientific research, land and resource management, and other uses did not exist. Available in multiple formats and in a web application, these public domain data provide industrial-scale onshore wind turbine locations in the United States up to March 2014, corresponding facility information, and turbine technical specifications. Wind turbine records have been collected and compiled from various public sources, digitized or position verified from aerial imagery, and quality assured and quality controlled. Technical specifications for turbines were assigned based on the wind turbine make and model as described in public literature. In some cases, turbines were not seen in imagery or turbine information did not exist or was difficult to obtain. Uncertainty associated with these is recorded in a confidence rating.

  11. Onshore industrial wind turbine locations for the United States up to March 2014.

    Science.gov (United States)

    Diffendorfer, Jay E; Kramer, Louisa A; Ancona, Zach H; Garrity, Christopher P

    2015-11-24

    Wind energy is a rapidly growing form of renewable energy in the United States. While summary information on the total amounts of installed capacity are available by state, a free, centralized, national, turbine-level, geospatial dataset useful for scientific research, land and resource management, and other uses did not exist. Available in multiple formats and in a web application, these public domain data provide industrial-scale onshore wind turbine locations in the United States up to March 2014, corresponding facility information, and turbine technical specifications. Wind turbine records have been collected and compiled from various public sources, digitized or position verified from aerial imagery, and quality assured and quality controlled. Technical specifications for turbines were assigned based on the wind turbine make and model as described in public literature. In some cases, turbines were not seen in imagery or turbine information did not exist or was difficult to obtain. Uncertainty associated with these is recorded in a confidence rating.

  12. Bird flight characteristics near wind turbines in Minnesota

    Science.gov (United States)

    Osborn, R.G.; Dieter, C.D.; Higgins, K.F.; Usgaard, R.E.

    1998-01-01

    During 1994-1995, we saw 70 species of birds on the Buffalo Ridge Wind Resource Area. In both years bird abundance peaked in spring. Red-winged blackbirds (Agelaius phoeniceus), mallards (Anas platyrhynchos), common grackles (Quiscalus quiscula), and barn swallows (Hirundo rustica) were the species most commonly seen. Most birds (82-84%) flew above or below the height range of wind turbine blades (22-55 m). The Buffalo Ridge Wind Resource Area poses little threat to resident or migrating birds at its current operating level.

  13. Lower Sioux Wind Feasibility & Development

    Energy Technology Data Exchange (ETDEWEB)

    Minkel, Darin

    2012-04-01

    This report describes the process and findings of a Wind Energy Feasibility Study (Study) conducted by the Lower Sioux Indian Community (Community). The Community is evaluating the development of a wind energy project located on tribal land. The project scope was to analyze the critical issues in determining advantages and disadvantages of wind development within the Community. This analysis addresses both of the Community's wind energy development objectives: the single turbine project and the Commerical-scale multiple turbine project. The main tasks of the feasibility study are: land use and contraint analysis; wind resource evaluation; utility interconnection analysis; and project structure and economics.

  14. Environmental impact of wind energy

    DEFF Research Database (Denmark)

    Mann, Jakob; Teilmann, Jonas

    2013-01-01

    One purpose of wind turbines is to provide pollution-free electric power at a reasonable price in an environmentally sound way. In this focus issue the latest research on the environmental impact of wind farms is presented. Offshore wind farms affect the marine fauna in both positive and negative...... ways. For example, some farms are safe havens for porpoises while other farms show fewer harbor porpoises even after ten years. Atmospheric computer experiments are carried out to investigate the possible impact and resource of future massive installations of wind turbines. The following questions...... are treated. What is the global capacity for energy production by the wind? Will the added turbulence and reduced wind speeds generated by massive wind farms cool or heat the surface? Can wind farms affect precipitation? It is also shown through life-cycle analysis how wind energy can reduce the atmospheric...

  15. A Successful Small Wind Future: There Is Great Potential

    Energy Technology Data Exchange (ETDEWEB)

    Tegen, Suzanne

    2017-05-02

    Suzanne Tegen made this presentation at the 2017 Small Wind Conference in Bloomington, Minnesota. It provides an overview of DOE-sponsored small wind products, testing, and support; an example of a Regional Resource Center defending distributed wind; the recently published Distributed Wind Taxonomy; the dWind model and recent results; and other recent DOE and NREL publications related to small and distributed wind.

  16. Wind Energy Forecasting: A Collaboration of the National Center for Atmospheric Research (NCAR) and Xcel Energy

    Energy Technology Data Exchange (ETDEWEB)

    Parks, K.; Wan, Y. H.; Wiener, G.; Liu, Y.

    2011-10-01

    . The downside is costs are higher. In organized electricity markets, units that are committed for reliability reasons are paid their offer price even when prevailing market prices are lower. Often, these uplift charges are allocated to market participants that caused the inefficient dispatch in the first place. Thus, wind energy facilities are burdened with their share of costs proportional to their forecast errors. For Xcel Energy, wind energy uncertainty costs manifest depending on specific market structures. In the Public Service of Colorado (PSCo), inefficient commitment and dispatch caused by wind uncertainty increases fuel costs. Wind resources participating in the Midwest Independent System Operator (MISO) footprint make substantial payments in the real-time markets to true-up their day-ahead positions and are additionally burdened with deviation charges called a Revenue Sufficiency Guarantee (RSG) to cover out of market costs associated with operations. Southwest Public Service (SPS) wind plants cause both commitment inefficiencies and are charged Southwest Power Pool (SPP) imbalance payments due to wind uncertainty and variability. Wind energy forecasting helps mitigate these costs. Wind integration studies for the PSCo and Northern States Power (NSP) operating companies have projected increasing costs as more wind is installed on the system due to forecast error. It follows that reducing forecast error would reduce these costs. This is echoed by large scale studies in neighboring regions and states that have recommended adoption of state-of-the-art wind forecasting tools in day-ahead and real-time planning and operations. Further, Xcel Energy concluded reduction of the normalized mean absolute error by one percent would have reduced costs in 2008 by over $1 million annually in PSCo alone. The value of reducing forecast error prompted Xcel Energy to make substantial investments in wind energy forecasting research and development.

  17. Multiobjective Optimization Model for Wind Power Allocation

    Directory of Open Access Journals (Sweden)

    Juan Alemany

    2017-01-01

    Full Text Available There is an increasing need for the injection to the grid of renewable energy; therefore, to evaluate the optimal location of new renewable generation is an important task. The primary purpose of this work is to develop a multiobjective optimization model that permits finding multiple trade-off solutions for the location of new wind power resources. It is based on the augmented ε-constrained methodology. Two competitive objectives are considered: maximization of preexisting energy injection and maximization of new wind energy injection, both embedded, in the maximization of load supply. The results show that the location of new renewable generation units affects considerably the transmission network flows, the load supply, and the preexisting energy injection. Moreover, there are diverse opportunities to benefit the preexisting generation, contrarily to the expected effect where renewable generation displaces conventional power. The proposed methodology produces a diverse range of equivalent solutions, expanding and enriching the horizon of options and giving flexibility to the decision-making process.

  18. Wind: French revolutions

    International Nuclear Information System (INIS)

    Jones, C.

    2006-01-01

    Despite having the second best wind resources in Europe after the UK, the wind industry in France lags behind its European counterparts with just 6 W of installed wind capacity per person. The electricity market in France is dominated by the state-owned Electricite de France (EdF) and its nuclear power stations. However, smaller renewable generators are now in theory allowed access to the market and France has transposed the EU renewables directive into national law. The French governement has set a target of generating 10,000 MW of renewable capacity by 2010. The announcement of an increased feed-in tariff and the introduction of 'development zones' (ZDEs) which could allow fast-tracking of planning for wind projects are also expected to boost wind projects. But grid access and adminstrative burdens remain major barriers. In addition, French politicians and local authorities remain committed to nuclear, though encouraged by the European Commission, wind is beginning to gain acceptance; some 325 wind farms (representing 1557 MW of capacity) were approved between February 2004 and January 2005. France is now regarded by the international wind energy sector as a target market. One of France's leading independent wind developers and its only listed wind company, Theolia, is expected to be one of the major beneficiaries of the acceleration of activity in France, though other companies are keen to maximise the opportunities for wind. France currently has only one indigenous manufacturer of wind turbines, but foreign suppliers are winning orders

  19. Accounting for variation in wind deployment between Canadian provinces

    International Nuclear Information System (INIS)

    Ferguson-Martin, Christopher J.; Hill, Stephen D.

    2011-01-01

    Wind energy deployment varies widely across regions and this variation cannot be explained by differences in natural wind resources alone. Evidence suggests that institutional factors beyond physical wind resources can influence the deployment of wind energy systems. Building on the work of , this study takes a historical institutionalist approach to examine the main factors influencing wind energy deployment across four Canadian provinces Canada: Alberta, Manitoba, Ontario and Nova Scotia. Our case studies suggest that wind energy deployment depends upon a combination of indirect causal factors-landscape values, political and social movements, government electricity policy, provincial electricity market structure and incumbent generation technologies and direct causal factors-grid architecture, ownership patterns, renewable incentive programs, planning and approvals processes and stakeholder support and opposition. - Research highlights: → Examines the reasons for variations in wind deployment between Canadian provinces. → Employs a historical institutional approach to the analysis. → Discusses social factors that affect wind deployment across Canadian jurisdictions.

  20. Preliminary study of long-term wind characteristics of the Mexican Yucatan Peninsula

    International Nuclear Information System (INIS)

    Soler-Bientz, Rolando; Watson, Simon; Infield, David

    2009-01-01

    Mexico's Yucatan Peninsula is one of the most promising areas for wind energy development within the Latin American region but no comprehensive assessment of wind resource has been previously published. This research presents a preliminary analysis of the meteorological parameters relevant to the wind resource in order to find patterns in their long-term behaviour and to establish a foundation for subsequent research into the wind power potential of the Yucatan Peninsula. Three meteorological stations with data measured for a period between 10 and 20 years were used in this study. The monthly trends of ambient temperature, atmospheric pressure and wind speed data were identified and are discussed. The directional behaviour of the winds, their frequency distributions and the related Weibull parameters are presented. Wind power densities for the study sites have been estimated and have been shown to be relatively low (wind power class 1), though a larger number of suitable sites needs to be studied before a definitive resource evaluation can be reported.

  1. The potential of wind farms

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    Summaries of papers presented at the European wind energy conference on the potential of wind farms are presented. It is stated that in Denmark today, wind energy provides about 3% to the Danish electricity consumption and the wind power capacity is, according to Danish wind energy policy, expected to increase substantially in the years to come. A number of countries in Europe and elsewhere are making significant progress in this repect. Descriptions of performance are given in relation to some individual wind farms. The subjects covered concern surveys of national planning and policies regarding wind utilization and national and global development of wind turbine arrays. Papers also deal with utility and project planning, wind prediction and certification, wind loads and fatigue, wakes, noise and control. (AB).

  2. Report on wind energy for small communities

    Energy Technology Data Exchange (ETDEWEB)

    Maissan, J.F. [Leading Edge Projects Inc., Whitehorse, YT (Canada)

    2006-04-15

    Wind energy projects can be economically viable in the north under a range of conditions when oil prices are in the range of $60 U.S. per barrel. Some of the requirements for economic viability include locations with economies of scale, availability of local equipment, availability of local technical human resources, access to reasonable transportation, and a committed community and project proponent. This paper presented the results of a study on wind energy in small northern communities. The objective of the paper was to provide an assessment of the feasibility of wind power to community leaders in diesel-dependant remote communities. The paper provided a review of wind power technologies including wind turbines; wind turbine towers; wind-diesel integration; wind penetration levels; anti-icing technology; suppliers of wind-diesel integration systems; and wind turbine manufacturers promoting wind-diesel systems. The paper also provided a review of the historical capital costs for the installation of wind projects; recommendations from project developers; project site selection criteria; as well as a simplified economic analyses for small communities. The paper also discussed the successful Kotzebue Alaska wind-diesel project as a model to follow. It described how to start a wind energy program with reference to the roles of the federal government, territorial governments and their power utilities. It was demonstrated that wind energy can be a cost effective option to reduce diesel generation requirements in the appropriate circumstances. It was concluded that deployment of wind energy in the north still needs to proceed on a carefully planned path beginning with leader projects and branching out from there. In addition, there is a need for good quality wind resource assessment at potential wind project locations in many communities in the north. refs., tabs., figs.

  3. WindPACT Reference Wind Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Dykes, Katherine L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Rinker, Jennifer [Former National Renewable Energy Laboratory (NREL) employee

    2018-04-02

    To fully understand how loads and turbine cost scale with turbine size, it is necessary to have identical turbine models that have been scaled to different rated powers. The report presents the WindPACT baseline models, which are a series of four baseline models that were designed to facilitate investigations into the scalings of loads and turbine cost with size. The models have four different rated powers (750 kW, 1.5 MW, 3.0 MW, and 5.0 MW), and each model was designed to its specified rated power using the same design methodology. The models were originally implemented in FAST_AD, the predecessor to NREL's open-source wind turbine simulator FAST, but have yet to be implemented in FAST. This report contains the specifications for all four WindPACT baseline models - including structural, aerodynamic, and control specifications - along with the inherent assumptions and equations that were used to calculate the model parameters. It is hoped that these baseline models will serve as extremely useful resources for investigations into the scalings of costs, loads, or optimization routines.

  4. Electrical network limitations on large-scale deployment of offshore wind energy

    Energy Technology Data Exchange (ETDEWEB)

    Power, P.B.

    2001-07-01

    In this report we have summarised the electrical network limitations to the connection of offshore wind energy schemes in the United Kingdom. The offshore wind resource in the United Kingdom could enable energy production in excess of 230 TWh to be realised. The wind resource of the UK coast should enable 4 GW of wind generation (13.4 GWh assuming 30% load factor) to be developed, providing appropriate technical and commercial arrangements can be made. (author)

  5. Overview of Existing Wind Energy Ordinances

    Energy Technology Data Exchange (ETDEWEB)

    Oteri, F.

    2008-12-01

    Due to increased energy demand in the United States, rural communities with limited or no experience with wind energy now have the opportunity to become involved in this industry. Communities with good wind resources may be approached by entities with plans to develop the resource. Although these opportunities can create new revenue in the form of construction jobs and land lease payments, they also create a new responsibility on the part of local governments to ensure that ordinances will be established to aid the development of safe facilities that will be embraced by the community. The purpose of this report is to educate and engage state and local governments, as well as policymakers, about existing large wind energy ordinances. These groups will have a collection of examples to utilize when they attempt to draft a new large wind energy ordinance in a town or county without existing ordinances.

  6. Wind Generator & Biomass No-draft Gasification Hybrid

    Science.gov (United States)

    Hein, Matthew R.

    The premise of this research is that underutilized but vast intermittent renewable energy resources, such as wind, can become more market competitive by coupling with storable renewable energy sources, like biomass; thereby creating a firm capacity resource. Specifically, the Midwest state of South Dakota has immense wind energy potential that is not used because of economic and logistic barriers of electrical transmission or storage. Coupling the state's intermittent wind resource with another of the state's energy resources, cellulosic non-food biomass, by using a wind generator and no-draft biomass gasification hybrid system will result in a energy source that is both firm and storable. The average energy content of common biomass feedstock was determined, 14.8 MJ/kg (7.153 Btu/lb), along with the assumed typical biomass conversion efficiency of the no-draft gasifier, 65%, so that an average electrical energy round trip efficiency (RTE) of 214% can be expected (i.e. One unit of wind electrical energy can produce 2.14 kWh of electrical energy stored as syngas.) from a wind generator and no-draft biomass gasification system. Wind characteristics are site specific so this analysis utilizes a synthetic wind resource to represent a statistically sound gross representation of South Dakota's wind regime based on data from the Wind Resource Assessment Network (WRAN) locations. A synthetic wind turbine generated from common wind turbine power curves and scaled to 1-MW rated capacity was utilized for this analysis in order to remove equipment bias from the results. A standard 8,760-hour BIN Analysis model was constructed within HOMER, powerful simulation software developed by the National Renewable Energy Laboratory (NREL) to model the performance of renewable power systems. It was found that the optimum configuration on a per-megawatt-transmitted basis required a wind generator (wind farm) rated capacity of 3-MW with an anticipated annual biomass feedstock of 26,132 GJ

  7. Wind in the future hydrogen economy

    International Nuclear Information System (INIS)

    Andres, P.

    2006-01-01

    Converting to a hydrogen economy will only be sustainable and have a positive impact on the environment if the fuel source for the hydrogen production is from a renewable or GHG free fuel source. Wind energy is of particular interest as a potential energy source for hydrogen production. It is modular, abundant and competitive and is far from fully exploited around the globe. Transmission constraints are however the current bottle neck to fully exploiting this resource. Producing electrolytic hydrogen from wind energy in transmission constraint areas will allow for better utilization of the available wind energy and transmission resources. The type of hydrogen storage and transportation option chosen and the size of the facilities will be the crucial factors in determining the relative cost competitiveness of a wind / hydrogen facility verses traditional hydrogen production from fossil fuels. With fossil fuel prices at record highs and the traditional demand for hydrogen growing (oil refining, ammonia production) and the fact that the world has entered a GHG constraint era the need to explore large scale wind / hydrogen production facilities has never been more urgent. (author)

  8. Vertical axis wind turbine

    International Nuclear Information System (INIS)

    Obretenov, V.; Tsalov, T.; Chakarov, T.

    2012-01-01

    In recent years, the interest in wind turbines with vertical axis noticeably increased. They have some important advantages: low cost, relatively simple structure, reliable packaging system of wind aggregate long period during which require no maintenance, low noise, independence of wind direction, etc.. The relatively low efficiency, however, makes them applicable mainly for small facilities. The work presents a methodology and software for approximately aerodynamic design of wind turbines of this type, and also analyzed the possibility of improving the efficiency of their workflow

  9. FINAL TECHNICAL REPORT: 20% Wind by 2030: Overcoming the Challenges

    Energy Technology Data Exchange (ETDEWEB)

    Tom Kaiserski; Dan Lloyd

    2012-02-28

    The funds allocated through the Wind Powering America (WPA) grant were utilized by the State of Montana to support broad outreach activities communicating the benefits and opportunities of increased wind energy and transmission development. The challenges to increased wind development were also clearly communicated with the understanding that a clearer comprehension of the challenges would be beneficial in overcoming the obstacles to further development. The ultimate purpose of these activities was to foster the increased development of Montana's rich wind resources through increased public acceptance and wider dissemination of technical resources.

  10. Wind vision 2025 : a realistic goal for Quebec

    International Nuclear Information System (INIS)

    Lafrance, G.; Nolet, J.F.; Cote, G.

    2010-01-01

    The province of Quebec aims to have 4000 MW of wind energy interconnected to the electricity grid by 2015, and hopes to have 12,000 MW by 2025. This PowerPoint presentation explored some of the technical issues that may challenge the province's wind energy goals. The last decade has seen Quebec dominated by a tight supply and demand electricity market and a wholesale market dominated by short term contracts. Quebec aims to create surplus energy for exportation as well as to have 10 percent of the Hydro-Quebec power system supplied by wind resources. Electricity demand is expected to increase over the next decade. Quebec's wind resource development represents an alternative strategy to the development of hydro-electric resources. Strategic planning is needed to develop Quebec's integration potential. However, high standards are needed to ensure the reliability of the province's large electricity system, which is vulnerable to extreme weather events and technical failures. Various power contracts and agreements are being explored by Hydro-Quebec in order to supply power reliably during peak periods. Details of studies conducted to assess Quebec's wind power potential in relation to the electricity system were discussed, and the impact of wind power on the system was evaluated. refs., tabs., figs.

  11. Wind power; Le grand livre de l'eolien

    Energy Technology Data Exchange (ETDEWEB)

    Gipe, P

    2007-07-01

    This book is a translation of the edition published in the USA under the title of ''wind power: renewable energy for home, farm and business''. In the wake of mass blackouts and energy crises, wind power remains a largely untapped resource of renewable energy. It is a booming worldwide industry whose technology, under the collective wing of aficionados like author Paul Gipe, is coming of age. Wind Power guides us through the emergent, sometimes daunting discourse on wind technology, giving frank explanations of how to use wind technology wisely and sound advice on how to avoid common mistakes. Since the mid-1970's, Paul Gipe has played a part in nearly every aspect of wind energy development from installing small turbines to promoting wind energy worldwide. As an American proponent of renewable energy, Gipe has earned the acclaim and respect of European energy specialists for years, but his arguments have often fallen on deaf ears at home. Today, the topic of wind power is cropping up everywhere from the beaches of Cape Cod to the Oregon-Washington border, and one wind turbine is capable of producing enough electricity per year to run 200 average American households. Now, Paul Gipe is back to shed light on this increasingly important energy source with a revised edition of Wind Power. Over the course of his career, Paul Gipe has been a proponent, participant, observer, and critic of the wind industry. His experience with wind has given rise to two previous books on the subject, Wind Energy Basics and Wind Power for Home and Business, which have sold over 50,000 copies. Wind Power for Home and Business has become a staple for both homeowners and professionals interested in the subject, and now, with energy prices soaring, interest in wind power is hitting an all-time high. With chapters on output and economics, Wind Power discloses how much you can expect from each method of wind technology, both in terms of energy and financial savings. The

  12. Wind Energy Systems

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Ma, Ke

    2017-01-01

    transmission networks at the scale of hundreds of megawatts. As its level of grid penetration has begun to increase dramatically, wind power is starting to have a significant impact on the operation of the modern grid system. Advanced power electronics technologies are being introduced to improve......Wind power now represents a major and growing source of renewable energy. Large wind turbines (with capacities of up to 6-8 MW) are widely installed in power distribution networks. Increasing numbers of onshore and offshore wind farms, acting as power plants, are connected directly to power...... the characteristics of the wind turbines, and make them more suitable for integration into the power grid. Meanwhile, there are some emerging challenges that still need to be addressed. This paper provides an overview and discusses some trends in the power electronics technologies used for wind power generation...

  13. On developing a prospecting tool for wind industry and policy decision support

    International Nuclear Information System (INIS)

    McKeown, Charles; Adelaja, Adesoji; Calnin, Benjamin

    2011-01-01

    This paper presents the rudiments of a Wind Prospecting Tool designed to inform private and public decision makers involved in wind industry development in reducing transaction costs associated with identifying areas of mutual focus within a state. The multiple layer decision support framework has proven to be valuable to industry, state government and local decision makers. Information on wind resources, land availability, potential land costs, potential NIMBYism concerns and economic development potential were integrated to develop a framework for decision support. The paper also highlights implications for decision support research and the role of higher education in providing anticipatory science to enhance private and public choices in economic development. - Research Highlights: →In this paper we explore the building and value of a wind industry location decision support tool. →We examine the development process from the industry perspective. →We discuss the creation of a decision support tool that was designed for industry, state policy makers and local decision makers. →We build a model framework for wind prospecting decision support. →Finally we discuss the impact on local and state decision making as a result of being informed by science based decision support.

  14. Estimating return periods of extreme values from relatively short time series of winds

    Science.gov (United States)

    Jonasson, Kristjan; Agustsson, Halfdan; Rognvaldsson, Olafur; Arfeuille, Gilles

    2013-04-01

    An important factor for determining the prospect of individual wind farm sites is the frequency of extreme winds at hub height. Here, extreme winds are defined as the value of the highest 10 minutes averaged wind speed with a 50 year return period, i.e. annual exceeding probability of 2% (Rodrigo, 2010). A frequently applied method to estimate winds in the lowest few hundred meters above ground is to extrapolate observed 10-meter winds logarithmically to higher altitudes. Recent study by Drechsel et al. (2012) showed however that this methodology is not as accurate as interpolating simulated results from the global ECMWF numerical weather prediction (NWP) model to the desired height. Observations of persistent low level jets near Colima in SW-Mexico also show that the logarithmic approach can give highly inaccurate results for some regions (Arfeuille et al., 2012). To address these shortcomings of limited, and/or poorly representative, observations and extrapolations of winds one can use NWP models to dynamically scale down relatively coarse resolution atmospheric analysis. In the case of limited computing resources one has typically to make a compromise between spatial resolution and the duration of the simulated period, both of which can limit the quality of the wind farm siting. A common method to estimate maximum winds is to fit an extreme value distribution (e.g. Gumbel, gev or Pareto) to the maximum values of each year of available data, or the tail of these values. If data are only available for a short period, e.g. 10 or 15 years, then this will give a rather inaccurate estimate. It is possible to deal with this problem by utilizing monthly or weekly maxima, but this introduces new problems: seasonal variation, autocorrelation of neighboring values, and increased discrepancy between data and fitted distribution. We introduce a new method to estimate return periods of extreme values of winds at hub height from relatively short time series of winds, simulated

  15. Operation and sizing of energy storage for wind power plants in a market system

    International Nuclear Information System (INIS)

    Korpaas, M.; Holen, A.T.

    2003-01-01

    This paper presents a method for the scheduling and operation of energy storage for wind power plants in electricity markets. A dynamic programming algorithm is employed to determine the optimal energy exchange with the market for a specified scheduling period, taking into account transmission constraints. During operation, the energy storage is used to smooth variations in wind power production in order to follow the scheduling plan. The method is suitable for any type of energy storage and is also useful for other intermittent energy resources than wind. An application of the method to a case study is also presented, where the impact of energy storage sizing and wind forecasting accuracy on system operation and economics are emphasized. Simulation results show that energy storage makes it possible for owners of wind power plants to take advantage of variations in the spot price, by thus increasing the value of wind power in electricity markets. With present price estimates, energy storage devices such as reversible fuel cells are likely to be a more expensive alternative than grid expansions for the siting of wind farms in weak networks. However, for areas where grid expansions lead to unwanted interference with the local environment, energy storage should be considered as a reasonable way to increase the penetration of wind power. (author)

  16. Bird Risk Behaviors and Fatalities at the Altamont Pass Wind Resource Area: Period of Performance, March 1998--December 2000

    Energy Technology Data Exchange (ETDEWEB)

    Thelander, C. G.; Smallwood, K. S.; Rugge, L.

    2003-12-01

    It has been documented that wind turbine operations at the Altamont Pass Wind Resource Area kill large numbers of birds of multiple species, including raptors. We initiated a study that integrates research on bird behaviors, raptor prey availability, turbine design, inter-turbine distribution, landscape attributes, and range management practices to explain the variation in avian mortality at two levels of analysis: the turbine and the string of turbines. We found that inter-specific differences in intensities of use of airspace within close proximity did not explain the variation in mortality among species. Unique suites of attributes relate to mortality of each species, so species-specific analyses are required to understand the factors that underlie turbine-caused fatalities. We found that golden eagles are killed by turbines located in the canyons and that rock piles produced during preparation of the wind tower laydown areas related positively to eagle mortality, perhaps due to the use of these rock piles as cover by desert cottontails. Other similar relationships between fatalities and environmental factors are identified and discussed. The tasks remaining to complete the project are summarized.

  17. The Development of an Expert System for Decision Making in Forest Resources Managemant

    Directory of Open Access Journals (Sweden)

    Nur Ilyana Mohd Zukki

    2010-01-01

    Full Text Available Tropical forests are a repository of biodiversity which provides habitats for more than 50% of the earth’s plant and animal species, an important sink for carbon stores which provides many goods and ecosystem services and a critical contributor to livelihoods, mainly of the indigenous groups which are totally dependent on forests. Yet, forests are under pressure. Tropical forests are among the earth’s most threatened ecosystems, particularly threatened by human activities and climate change. Consequently, tropical forests are loosing capacity to provide basic goods and services that are essentials to human livelihood. Hence, every decision involving forest utilization should consider various criteria that are important for sustainable forest management. However, making decision about forest resources management often involves balancing conflicting, inadequate and incompatible values of many users and usage of a resource. One of the most fundamental and difficult task is the effective integration of environmental, economic and social values to achieve and maintain ecologically sustainable development. Therefore, an integrated technology such as an Analytical Hierarchy Process and expert systems is essential to be performed in making decision process for forest resources management because an AHP method is capable to capture both tangible and intangible criteria. This study places emphasis on the development of expert system for forest resources management to assist decision makers to select the best forest resources use based on Malaysian Criteria and Indicators [(MC&I2002].

  18. Status of Wind Power Technologies

    DEFF Research Database (Denmark)

    Zhao, Haoran; Wu, Qiuwei

    2018-01-01

    With the development of wind turbine technology, wind power will become more controllable and grid‐friendly. It is desirable to make wind farms operate as conventional power plants. Wind turbine generators (WTGs) were mainly used in rural and remote areas for wind power generation. WTG‐based wind...... energy conversion systems (WECS) can be divided into the four main types (type 1‐4). Due to the inherent variability and uncertainty of the wind, the integration of wind power into the grid has brought challenges in several different areas, including power quality, system reliability, stability......, and planning. The impact of each is largely dependent on the level of wind power penetration in the grid. In many countries, relatively high levels of wind power penetration have been achieved. This chapter shows the estimated wind power penetration in leading wind markets....

  19. Determination of recoverable wind energy for electricity generation ...

    African Journals Online (AJOL)

    Utilization of renewable energy source, essentially the wind energy, has been growing rapidly in the whole world due to environmental pollution, consumption of the limited fossil fuels and global warming. Moreover, wind resource determination is a fundamental step in planning a wind energy project and exhaustive ...

  20. Toward Robust and Efficient Climate Downscaling for Wind Energy

    Science.gov (United States)

    Vanvyve, E.; Rife, D.; Pinto, J. O.; Monaghan, A. J.; Davis, C. A.

    2011-12-01

    This presentation describes a more accurate and economical (less time, money and effort) wind resource assessment technique for the renewable energy industry, that incorporates innovative statistical techniques and new global mesoscale reanalyzes. The technique judiciously selects a collection of "case days" that accurately represent the full range of wind conditions observed at a given site over a 10-year period, in order to estimate the long-term energy yield. We will demonstrate that this new technique provides a very accurate and statistically reliable estimate of the 10-year record of the wind resource by intelligently choosing a sample of ±120 case days. This means that the expense of downscaling to quantify the wind resource at a prospective wind farm can be cut by two thirds from the current industry practice of downscaling a randomly chosen 365-day sample to represent winds over a "typical" year. This new estimate of the long-term energy yield at a prospective wind farm also has far less statistical uncertainty than the current industry standard approach. This key finding has the potential to reduce significantly market barriers to both onshore and offshore wind farm development, since insurers and financiers charge prohibitive premiums on investments that are deemed to be high risk. Lower uncertainty directly translates to lower perceived risk, and therefore far more attractive financing terms could be offered to wind farm developers who employ this new technique.