WorldWideScience

Sample records for wind resource characteristics

  1. Mongolia wind resource assessment project

    International Nuclear Information System (INIS)

    Elliott, D.; Chadraa, B.; Natsagdorj, L.

    1998-01-01

    The development of detailed, regional wind-resource distributions and other pertinent wind resource characteristics (e.g., assessment maps and reliable estimates of seasonal, diurnal, and directional) is an important step in planning and accelerating the deployment of wind energy systems. This paper summarizes the approach and methods being used to conduct a wind energy resource assessment of Mongolia. The primary goals of this project are to develop a comprehensive wind energy resource atlas of Mongolia and to establish a wind measurement program in specific regions of Mongolia to identify prospective sites for wind energy projects and to help validate some of the wind resource estimates. The Mongolian wind resource atlas will include detailed, computerized wind power maps and other valuable wind resource characteristic information for the different regions of Mongolia

  2. Wind Energy Resource Atlas of Armenia

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, D.; Schwartz, M.; Scott, G.; Haymes, S.; Heimiller, D.; George, R.

    2003-07-01

    This wind energy resource atlas identifies the wind characteristics and distribution of the wind resource in the country of Armenia. The detailed wind resource maps and other information contained in the atlas facilitate the identification of prospective areas for use of wind energy technologies for utility-scale power generation and off-grid wind energy applications. The maps portray the wind resource with high-resolution (1-km2) grids of wind power density at 50-m above ground. The wind maps were created at the National Renewable Energy Laboratory (NREL) using a computerized wind mapping system that uses Geographic Information System (GIS) software.

  3. Wind Energy Resource Atlas of Oaxaca

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, D.; Schwartz, M.; Scott, G.; Haymes, S.; Heimiller, D.; George, R.

    2003-08-01

    The Oaxaca Wind Resource Atlas, produced by the National Renewable Energy Laboratory's (NREL's) wind resource group, is the result of an extensive mapping study for the Mexican State of Oaxaca. This atlas identifies the wind characteristics and distribution of the wind resource in Oaxaca. The detailed wind resource maps and other information contained in the atlas facilitate the identification of prospective areas for use of wind energy technologies, both for utility-scale power generation and off-grid wind energy applications.

  4. Wind Energy Resource Atlas of the Philippines

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, D.; Schwartz, M.; George, R.; Haymes, S.; Heimiller, D.; Scott, G.; McCarthy, E.

    2001-03-06

    This report contains the results of a wind resource analysis and mapping study for the Philippine archipelago. The study's objective was to identify potential wind resource areas and quantify the value of those resources within those areas. The wind resource maps and other wind resource characteristic information will be used to identify prospective areas for wind-energy applications.

  5. Philippines Wind Energy Resource Atlas Development

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, D.

    2000-11-29

    This paper describes the creation of a comprehensive wind energy resource atlas for the Philippines. The atlas was created to facilitate the rapid identification of good wind resource areas and understanding of the salient wind characteristics. Detailed wind resource maps were generated for the entire country using an advanced wind mapping technique and innovative assessment methods recently developed at the National Renewable Energy Laboratory.

  6. Mexico Wind Resource Assessment Project

    Energy Technology Data Exchange (ETDEWEB)

    Schwartz, M.N.; Elliott, D.L.

    1995-05-01

    A preliminary wind energy resource assessment of Mexico that produced wind resource maps for both utility-scale and rural applications was undertaken as part of the Mexico-U.S. Renewable Energy Cooperation Program. This activity has provided valuable information needed to facilitate the commercialization of small wind turbines and windfarms in Mexico and to lay the groundwork for subsequent wind resource activities. A surface meteorological data set of hourly data in digital form was utilized to prepare a more detailed and accurate wind resource assessment of Mexico than otherwise would have been possible. Software was developed to perform the first ever detailed analysis of the wind characteristics data for over 150 stations in Mexico. The hourly data set was augmented with information from weather balloons (upper-air data), ship wind data from coastal areas, and summarized wind data from sources in Mexico. The various data were carefully evaluated for their usefulness in preparing the wind resource assessment. The preliminary assessment has identified many areas of good-to-excellent wind resource potential and shows that the wind resource in Mexico is considerably greater than shown in previous surveys.

  7. A high resolution global wind atlas - improving estimation of world wind resources

    DEFF Research Database (Denmark)

    Badger, Jake; Ejsing Jørgensen, Hans

    2011-01-01

    to population centres, electrical transmission grids, terrain types, and protected land areas are important parts of the resource assessment downstream of the generation of wind climate statistics. Related to these issues of integration are the temporal characteristics and spatial correlation of the wind...... resources. These aspects will also be addressed by the Global Wind Atlas. The Global Wind Atlas, through a transparent methodology, will provide a unified, high resolution, and public domain dataset of wind energy resources for the whole world. The wind atlas data will be the most appropriate wind resource...

  8. Wind Resource Atlas of Oaxaca (CD-ROM)

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, D.; Schwartz, M.; Scott, G.; Haymes, S.; Heimiller, D.; George, R.

    2003-08-01

    The CD version of the Oaxaca Wind Resource Atlas, produced by the National Renewable Energy Laboratory's (NREL's) wind resource group, is the result of an extensive mapping study for the Mexican State of Oaxaca. This atlas identifies the wind characteristics and distribution of the wind resource in Oaxaca. The detailed wind resource maps and other information contained in the atlas facilitate the identification of prospective areas for use of wind energy technologies, both for utility-scale power generation and off-grid wind energy applications.

  9. Wind resource estimation and siting of wind turbines

    DEFF Research Database (Denmark)

    Lundtang Petersen, Erik; Mortensen, N.G.; Landberg, L.

    1994-01-01

    Detailed knowledge of the characteristics of the natural wind is necessary for the design, planning and operational aspect of wind energy systems. Here, we shall only be concerned with those meteorological aspects of wind energy planning that are termed wind resource estimation. The estimation...... of the wind resource ranges from the overall estimation of the mean energy content of the wind over a large area - called regional assessment - to the prediction of the average yearly energy production of a specific wind turbine at a specific location - called siting. A regional assessment will most often...... lead to a so-called wind atlas. A precise prediction of the wind speed at a given site is essential because for aerodynamic reasons the power output of a wind turbine is proportional to the third power of the wind speed, hence even small errors in prediction of wind speed may result in large deviations...

  10. Wind Energy Resource Atlas of Sri Lanka and the Maldives

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, D.; Schwartz, M.; Scott, G.; Haymes, S.; Heimiller, D.; George, R.

    2003-08-01

    The Wind Energy Resource Atlas of Sri Lanka and the Maldives, produced by the National Renewable Energy Laboratory's (NREL's) wind resource group identifies the wind characteristics and distribution of the wind resource in Sri Lanka and the Maldives. The detailed wind resource maps and other information contained in the atlas facilitate the identification of prospective areas for use of wind energy technologies, both for utility-scale power generation and off-grid wind energy applications.

  11. Wind power production: from the characterisation of the wind resource to wind turbine technologies

    International Nuclear Information System (INIS)

    Beslin, Guy; Multon, Bernard

    2016-01-01

    Illustrated by graphs and tables, this article first describes the various factors and means related to the assessment of wind resource in the World, in Europe, and the factors which characterize a local wind resource. In this last respect, the authors indicate how local topography is taken into account to calculate wind speed, how time variations are taken into account (at the yearly, seasonal or daily level), the different methods used to model a local wind resource, how to assess the power recoverable by a wind turbine with horizontal axis (notion of Betz limit). In the second part, the authors present the different wind turbines, their benefits and drawbacks: vertical axis, horizontal axis (examples of a Danish-type wind turbine, of wind turbines designed for extreme conditions). Then, they address the technology of big wind turbines: evolution of technology and of commercial offer, aerodynamic characteristics of wind turbine and benefit of a varying speed (technological solutions, importance of the electric generator). They describe how to choose a wind turbine, how product lines are organised, how the power curve and energy capacity are determined. The issue of integration of wind energy into the power system is then addressed. The next part addressed the economy of wind energy production (annualized production cost, order of magnitude of wind electric power production cost). Future trends are discussed and offshore wind energy production is briefly addressed

  12. Investigation of wind characteristics and assessment of wind energy potential for Waterloo region, Canada

    International Nuclear Information System (INIS)

    Li Meishen; Li Xianguo

    2005-01-01

    Wind energy becomes more and more attractive as one of the clean renewable energy resources. Knowledge of the wind characteristics is of great importance in the exploitation of wind energy resources for a site. It is essential in designing or selecting a wind energy conversion system for any application. This study examines the wind characteristics for the Waterloo region in Canada based on a data source measured at an elevation 10 m above the ground level over a 5-year period (1999-2003) with the emphasis on the suitability for wind energy technology applications. Characteristics such as annual, seasonal, monthly and diurnal wind speed variations and wind direction variations are examined. Wind speed data reveal that the windy months in Waterloo are from November to April, defined as the Cold Season in this study, with February being the windiest month. It is helpful that the high heating demand in the Cold Season coincides with the windy season. Analysis shows that the day time is the windy time, with 2 p.m. in the afternoon being the windiest moment. Moreover, a model derived from the maximum entropy principle (MEP) is applied to determine the diurnal, monthly, seasonal and yearly wind speed frequency distributions, and the corresponding Lagrangian parameters are determined. Based on these wind speed distributions, this study quantifies the available wind energy potential to provide practical information for the application of wind energy in this area. The yearly average wind power density is 105 W/m 2 . The day and night time wind power density in the Cold Season is 180 and 111 W/m 2 , respectively

  13. Database on wind characteristics. Users manual

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, G.C.; Hansen, K.S.

    2001-11-01

    The main objective of IEA R and D Wind Annex XVII - Database on Wind Characteristics - is to provide wind energy planners and designers, as well as the international wind engineering community in general, with easy access to quality controlled measured wind field time series observed in a wide range of environments. The project partners are Sweden, Norway, U.S.A., The Netherlands, Japan and Denmark, with Denmark as the Operating Agent. The reporting of IEA R and D Annex XVII falls in three separate parts. Part one deals with the overall structure and philosophy behind the database (including the applied data quality control procedures), part two accounts in details for the available data in the established database bank and part three is the Users Manual describing the various ways to access and analyse the data. The present report constitutes part three of the Annex XVII reporting and contains a trough description of the available online facilities for identifying, selecting, downloading and handling measured wind field time series and resource data from 'Database on Wind Characteristics'. (au)

  14. Analysis of the solar/wind resources in Southern Spain for optimal sizing of hybrid solar-wind power generation systems

    Science.gov (United States)

    Quesada-Ruiz, S.; Pozo-Vazquez, D.; Santos-Alamillos, F. J.; Lara-Fanego, V.; Ruiz-Arias, J. A.; Tovar-Pescador, J.

    2010-09-01

    A drawback common to the solar and wind energy systems is their unpredictable nature and dependence on weather and climate on a wide range of time scales. In addition, the variation of the energy output may not match with the time distribution of the load demand. This can partially be solved by the use of batteries for energy storage in stand-alone systems. The problem caused by the variable nature of the solar and wind resources can be partially overcome by the use of energy systems that uses both renewable resources in a combined manner, that is, hybrid wind-solar systems. Since both resources can show complementary characteristics in certain location, the independent use of solar or wind systems results in considerable over sizing of the batteries system compared to the use of hybrid solar-wind systems. Nevertheless, to the day, there is no single recognized method for properly sizing these hybrid wind-solar systems. In this work, we present a method for sizing wind-solar hybrid systems in southern Spain. The method is based on the analysis of the wind and solar resources on daily scale, particularly, its temporal complementary characteristics. The method aims to minimize the size of the energy storage systems, trying to provide the most reliable supply.

  15. Wind and solar resource data sets: Wind and solar resource data sets

    Energy Technology Data Exchange (ETDEWEB)

    Clifton, Andrew [National Renewable Energy Laboratory, Golden CO USA; Hodge, Bri-Mathias [National Renewable Energy Laboratory, Golden CO USA; Power Systems Engineering Center, National Renewable Energy Laboratory, Golden CO USA; Draxl, Caroline [National Renewable Energy Laboratory, Golden CO USA; National Wind Technology Center, National Renewable Energy Laboratory, Golden CO USA; Badger, Jake [Department of Wind Energy, Danish Technical University, Copenhagen Denmark; Habte, Aron [National Renewable Energy Laboratory, Golden CO USA; Power Systems Engineering Center, National Renewable Energy Laboratory, Golden CO USA

    2017-12-05

    The range of resource data sets spans from static cartography showing the mean annual wind speed or solar irradiance across a region to high temporal and high spatial resolution products that provide detailed information at a potential wind or solar energy facility. These data sets are used to support continental-scale, national, or regional renewable energy development; facilitate prospecting by developers; and enable grid integration studies. This review first provides an introduction to the wind and solar resource data sets, then provides an overview of the common methods used for their creation and validation. A brief history of wind and solar resource data sets is then presented, followed by areas for future research.

  16. The potential wind power resource in Australia: a new perspective.

    Science.gov (United States)

    Hallgren, Willow; Gunturu, Udaya Bhaskar; Schlosser, Adam

    2014-01-01

    Australia's wind resource is considered to be very good, and the utilization of this renewable energy resource is increasing rapidly: wind power installed capacity increased by 35% from 2006 to 2011 and is predicted to account for over 12% of Australia's electricity generation in 2030. Due to this growth in the utilization of the wind resource and the increasing importance of wind power in Australia's energy mix, this study sets out to analyze and interpret the nature of Australia's wind resources using robust metrics of the abundance, variability and intermittency of wind power density, and analyzes the variation of these characteristics with current and potential wind turbine hub heights. We also assess the extent to which wind intermittency, on hourly or greater timescales, can potentially be mitigated by the aggregation of geographically dispersed wind farms, and in so doing, lessen the severe impact on wind power economic viability of long lulls in wind and power generated. Our results suggest that over much of Australia, areas that have high wind intermittency coincide with large expanses in which the aggregation of turbine output does not mitigate variability. These areas are also geographically remote, some are disconnected from the east coast's electricity grid and large population centers, which are factors that could decrease the potential economic viability of wind farms in these locations. However, on the eastern seaboard, even though the wind resource is weaker, it is less variable, much closer to large population centers, and there exists more potential to mitigate it's intermittency through aggregation. This study forms a necessary precursor to the analysis of the impact of large-scale circulations and oscillations on the wind resource at the mesoscale.

  17. Nebraska wind resource assessment first year results

    Energy Technology Data Exchange (ETDEWEB)

    Hurley, P.J.F.; Vilhauer, R. [RLA Consulting, Inc., Bothell, WA (United States); Stooksbury, D. [Univ. of Nebraska, Lincoln, NE (United States)

    1996-12-31

    This paper presents the preliminary results from a wind resource assessment program in Nebraska sponsored by the Nebraska Power Association. During the first year the measured annual wind speed at 40 meters ranged from 6.5 - 7.5 m/s (14.6 - 16.8 mph) at eight stations across the state. The site selection process is discussed as well as an overview of the site characteristics at the monitoring locations. Results from the first year monitoring period including data recovery rate, directionality, average wind speeds, wind shear, and turbulence intensity are presented. Results from the eight sites are qualitatively compared with other midwest and west coast locations. 5 figs., 2 tabs.

  18. Offshore wind resource estimation for wind energy

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Badger, Merete; Mouche, A.

    2010-01-01

    Satellite remote sensing from active and passive microwave instruments is used to estimate the offshore wind resource in the Northern European Seas in the EU-Norsewind project. The satellite data include 8 years of Envisat ASAR, 10 years of QuikSCAT, and 23 years of SSM/I. The satellite observati......Satellite remote sensing from active and passive microwave instruments is used to estimate the offshore wind resource in the Northern European Seas in the EU-Norsewind project. The satellite data include 8 years of Envisat ASAR, 10 years of QuikSCAT, and 23 years of SSM/I. The satellite...... observations are compared to selected offshore meteorological masts in the Baltic Sea and North Sea. The overall aim of the Norsewind project is a state-of-the-art wind atlas at 100 m height. The satellite winds are all valid at 10 m above sea level. Extrapolation to higher heights is a challenge. Mesoscale...... modeling of the winds at hub height will be compared to data from wind lidars observing at 100 m above sea level. Plans are also to compare mesoscale model results and satellite-based estimates of the offshore wind resource....

  19. Distributed Wind Resource Assessment: State of the Industry

    Energy Technology Data Exchange (ETDEWEB)

    Fields, Jason [National Renewable Energy Lab. (NREL), Golden, CO (United States); Tinnesand, Heidi [National Renewable Energy Lab. (NREL), Golden, CO (United States); Baring-Gould, Ian [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-06-01

    In support of the U.S. Department of Energy (DOE) Wind and Water Power Technologies Office (WWPTO) goals, researchers from DOE's National Renewable Energy Laboratory (NREL), National Wind Technology Center (NWTC) are investigating the Distributed Wind Resource Assessment (DWRA) process, which includes pre-construction energy estimation as well as turbine site suitability assessment. DWRA can have a direct impact on the Wind Program goals of maximizing stakeholder confidence in turbine performance and safety as well as reducing the levelized cost of energy (LCOE). One of the major components of the LCOE equation is annual energy production. DWRA improvements can maximize the annual energy production, thereby lowering the overall LCOE and improving stakeholder confidence in the distributed wind technology sector by providing more accurate predictions of power production. Over the long term, one of the most significant benefits of a more defined DWRA process could be new turbine designs, tuned to site-specific characteristics that will help the distributed wind industry follow a similar trajectory to the low-wind-speed designs in the utility-scale industry sector. By understanding the wind resource better, the industry could install larger rotors, capture more energy, and as a result, increase deployment while lowering the LCOE. a direct impact on the Wind Program goals of maximizing stakeholder confidence in turbine performance and safety as well as reducing the levelized cost of energy (LCOE). One of the major components of the LCOE equation is annual energy production. DWRA improvements can maximize the annual energy production, thereby lowering the overall LCOE and improving stakeholder confidence in the distributed wind technology sector by providing more accurate predictions of power production. Over the long term, one of the most significant benefits of a more defined DWRA process could be new turbine designs, tuned to site-specific characteristics that

  20. The Potential Wind Power Resource in Australia: A New Perspective

    Science.gov (United States)

    Hallgren, Willow; Gunturu, Udaya Bhaskar; Schlosser, Adam

    2014-01-01

    Australia’s wind resource is considered to be very good, and the utilization of this renewable energy resource is increasing rapidly: wind power installed capacity increased by 35% from 2006 to 2011 and is predicted to account for over 12% of Australia’s electricity generation in 2030. Due to this growth in the utilization of the wind resource and the increasing importance of wind power in Australia’s energy mix, this study sets out to analyze and interpret the nature of Australia’s wind resources using robust metrics of the abundance, variability and intermittency of wind power density, and analyzes the variation of these characteristics with current and potential wind turbine hub heights. We also assess the extent to which wind intermittency, on hourly or greater timescales, can potentially be mitigated by the aggregation of geographically dispersed wind farms, and in so doing, lessen the severe impact on wind power economic viability of long lulls in wind and power generated. Our results suggest that over much of Australia, areas that have high wind intermittency coincide with large expanses in which the aggregation of turbine output does not mitigate variability. These areas are also geographically remote, some are disconnected from the east coast’s electricity grid and large population centers, which are factors that could decrease the potential economic viability of wind farms in these locations. However, on the eastern seaboard, even though the wind resource is weaker, it is less variable, much closer to large population centers, and there exists more potential to mitigate it’s intermittency through aggregation. This study forms a necessary precursor to the analysis of the impact of large-scale circulations and oscillations on the wind resource at the mesoscale. PMID:24988222

  1. The potential wind power resource in Australia: a new perspective.

    Directory of Open Access Journals (Sweden)

    Willow Hallgren

    Full Text Available Australia's wind resource is considered to be very good, and the utilization of this renewable energy resource is increasing rapidly: wind power installed capacity increased by 35% from 2006 to 2011 and is predicted to account for over 12% of Australia's electricity generation in 2030. Due to this growth in the utilization of the wind resource and the increasing importance of wind power in Australia's energy mix, this study sets out to analyze and interpret the nature of Australia's wind resources using robust metrics of the abundance, variability and intermittency of wind power density, and analyzes the variation of these characteristics with current and potential wind turbine hub heights. We also assess the extent to which wind intermittency, on hourly or greater timescales, can potentially be mitigated by the aggregation of geographically dispersed wind farms, and in so doing, lessen the severe impact on wind power economic viability of long lulls in wind and power generated. Our results suggest that over much of Australia, areas that have high wind intermittency coincide with large expanses in which the aggregation of turbine output does not mitigate variability. These areas are also geographically remote, some are disconnected from the east coast's electricity grid and large population centers, which are factors that could decrease the potential economic viability of wind farms in these locations. However, on the eastern seaboard, even though the wind resource is weaker, it is less variable, much closer to large population centers, and there exists more potential to mitigate it's intermittency through aggregation. This study forms a necessary precursor to the analysis of the impact of large-scale circulations and oscillations on the wind resource at the mesoscale.

  2. Wind Resource Variations Over Selected Sites in the West African Sub-Region

    International Nuclear Information System (INIS)

    Iheonu, E. E.; Akingbade, F.O A.; Ocholi, M.

    2002-01-01

    The analysis of wind characteristics and wind resource potentials at 4 locations in the West African sub-region is presented, applying data obtained at the Ibadan central station of the International Institute of Tropical Agriculture (IITA-Ibadan, Nigeria). The study has shown that the annual variations of wind speed have coefficient of variability between 10 and 15% but the available wind power at the studied locations is generally poor with values ranging between 2 and 10 Wm2 at the standard meteorological height of 10 m. Cotonou (Lat. 6.4 0 N, Long. 2.3 0 E) Benin Republic has however been distinguished from the other three locations in Nigeria, as the most promising site for wind resource development and utilization in the sub-region. With appropriate choice of wind turbine characteristics and design efficiency, establishing wind farms at the Cotonou location for electrical energy production could be feasible

  3. Database on wind characteristics - Analyses of wind turbine design loads

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, G.C.; Hansen, K.S.

    2004-06-01

    The main objective of IEA R and D Wind Annex XVII - Database on Wind Characteristics - has been to provide wind energy planners, designers and researchers, as well as the international wind engineering community in general, with a source of actual wind field data (time series and resource data) observed in a wide range of different wind climates and terrain types. Connected to an extension of the initial Annex period, the scope for the continuation was widened to include also support to the international wind turbine standardisation efforts.. The project partners are Sweden, Norway, U.S.A., The Netherlands and Denmark, with Denmark as the Operating Agent. The reporting of the continuation of Annex XVII falls in two separate parts. Part one accounts in details for the available data in the established database bank, and part two describes various data analyses performed with the overall purpose of improving the design load cases with relevance for to wind turbine structures. The present report constitutes the second part of the Annex XVII reporting. Both fatigue and extreme load aspects are dealt with, however, with the main emphasis on the latter. The work has been supported by The Ministry of Environment and Energy, Danish Energy Agency, The Netherlands Agency for Energy and the Environment (NOVEM), The Norwegian Water Resources and Energy Administration (NVE), The Swedish National Energy Administration (STEM) and The Government of the United States of America. (au)

  4. An assessment on seasonal analysis of wind energy characteristics and wind turbine characteristics

    International Nuclear Information System (INIS)

    Akpinar, E. Kavak; Akpinar, S.

    2005-01-01

    This paper presents seasonal variations of the wind characteristics and wind turbine characteristics in the regions around Elazig, namely Maden, Agin and Keban. Mean wind speed data in measured hourly time series format is statistically analyzed for the six year period 1998-2003. The probability density distributions are derived from the time series data and their distributional parameters are identified. Two probability density functions are fitted to the measured probability distributions on a seasonal basis. The wind energy characteristics of all the regions is studied based on the Weibull and Rayleigh distributions. Energy calculations and capacity factors for the wind turbine characteristics were determined for wind machines of different sizes between 300 and 2300 kW. It was found that Maden is the best region, among the regions analyzed, for wind characteristics and wind turbine characteristics

  5. Wind as a utility-grade supply resource: A planning framework for the Pacific Northwest

    International Nuclear Information System (INIS)

    Johnson, M.S.; Litchfield, J.

    1993-12-01

    Many areas throughout the United States possess favorable wind resources that, as yet, remain undeveloped. This paper provides valuable information on the type of information developers can provide, utility interpretation of the information in regard to electric energy and capacity attributes, and wind resource characteristics of interest to utilities. The paper also reviews key utility planning contexts within which prospective wind resources may be evaluated

  6. Wind resource analysis. Annual report

    Energy Technology Data Exchange (ETDEWEB)

    Hardy, D. M.

    1978-12-01

    FY78 results of the Wind Resource Analyses task of the ERAB are described. Initial steps were taken to acquire modern atmosphere models of near-surface wind flow and primary data sets used in previous studies of national and regional wind resources. Because numerous assumptions are necessary to interpret available data in terms of wind energy potential, conclusions of previous studies differ considerably. These data analyses may be improved by future SERI research. State-of-the-art atmosphere models are a necessary component of the SERI wind resource analyses capacity. However, these methods also need to be tested and verified in diverse applications. The primary data sets and principal features of the models are discussed.

  7. Offshore Wind Energy Resource Assessment for Alaska

    Energy Technology Data Exchange (ETDEWEB)

    Doubrawa Moreira, Paula [National Renewable Energy Lab. (NREL), Golden, CO (United States); Scott, George N. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Musial, Walter D. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Kilcher, Levi F. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Draxl, Caroline [National Renewable Energy Lab. (NREL), Golden, CO (United States); Lantz, Eric J. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2018-01-02

    This report quantifies Alaska's offshore wind resource capacity while focusing on its unique nature. It is a supplement to the existing U.S. Offshore Wind Resource Assessment, which evaluated the offshore wind resource for all other U.S. states. Together, these reports provide the foundation for the nation's offshore wind value proposition. Both studies were developed by the National Renewable Energy Laboratory. The analysis presented herein represents the first quantitative evidence of the offshore wind energy potential of Alaska. The technical offshore wind resource area in Alaska is larger than the technical offshore resource area of all other coastal U.S. states combined. Despite the abundant wind resource available, significant challenges inhibit large-scale offshore wind deployment in Alaska, such as the remoteness of the resource, its distance from load centers, and the wealth of land available for onshore wind development. Throughout this report, the energy landscape of Alaska is reviewed and a resource assessment analysis is performed in terms of gross and technical offshore capacity and energy potential.

  8. Wind Resource Assessment of Gujarat (India)

    Energy Technology Data Exchange (ETDEWEB)

    Draxl, C.; Purkayastha, A.; Parker, Z.

    2014-07-01

    India is one of the largest wind energy markets in the world. In 1986 Gujarat was the first Indian state to install a wind power project. In February 2013, the installed wind capacity in Gujarat was 3,093 MW. Due to the uncertainty around existing wind energy assessments in India, this analysis uses the Weather Research and Forecasting (WRF) model to simulate the wind at current hub heights for one year to provide more precise estimates of wind resources in Gujarat. The WRF model allows for accurate simulations of winds near the surface and at heights important for wind energy purposes. While previous resource assessments published wind power density, we focus on average wind speeds, which can be converted to wind power densities by the user with methods of their choice. The wind resource estimates in this study show regions with average annual wind speeds of more than 8 m/s.

  9. Wind Energy Resource Atlas of Mongolia

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, D; Schwartz, M; Scott, G.; Haymes, S.; Heimiller, D.; George, R.

    2001-08-27

    The United States Department of Energy (DOE) and the United States Agency for International Development (USAID) sponsored a project to help accelerate the large-scale use of wind energy technologies in Mongolia through the development of a wind energy resource atlas of Mongolia. DOE's National Renewable Energy Laboratory (NREL) administered and conducted this project in collaboration with USAID and Mongolia. The Mongolian organizations participating in this project were the Scientific, Production, and Trade Corporation for Renewable Energy (REC) and the Institute of Meteorology and Hydrology (IMH). The primary goals of the project were to develop detailed wind resource maps for all regions of Mongolia for a comprehensive wind resource atlas, and to establish a wind-monitoring program to identify prospective sites for wind energy projects and help validate some of the wind resource estimates.

  10. European Wind Atlas and Wind Resource Research in Denmark

    DEFF Research Database (Denmark)

    Mortensen, Niels Gylling

    to estimate the actual wind climate at any specific site and height within this region. The Danish and European Wind Atlases are examples of how the wind atlas methodology can be employed to estimate the wind resource potential for a country or a sub-continent. Recently, the methodology has also been used...... - from wind measurements at prospective sites to wind tunnel simulations and advanced flow modelling. Among these approaches, the wind atlas methodology - developed at Ris0 National Laboratory over the last 25 years - has gained widespread recognition and is presently considered by many as the industry......-standard tool for wind resource assessment and siting of wind turbines. The PC-implementation of the methodology, the Wind Atlas Analysis and Application Program (WAsP), has been applied in more than 70 countries and territories world-wide. The wind atlas methodology is based on physical descriptions and models...

  11. Cost of wind energy: comparing distant wind resources to local resources in the midwestern United States.

    Science.gov (United States)

    Hoppock, David C; Patiño-Echeverri, Dalia

    2010-11-15

    The best wind sites in the United States are often located far from electricity demand centers and lack transmission access. Local sites that have lower quality wind resources but do not require as much power transmission capacity are an alternative to distant wind resources. In this paper, we explore the trade-offs between developing new wind generation at local sites and installing wind farms at remote sites. We first examine the general relationship between the high capital costs required for local wind development and the relatively lower capital costs required to install a wind farm capable of generating the same electrical output at a remote site,with the results representing the maximum amount an investor should be willing to pay for transmission access. We suggest that this analysis can be used as a first step in comparing potential wind resources to meet a state renewable portfolio standard (RPS). To illustrate, we compare the cost of local wind (∼50 km from the load) to the cost of distant wind requiring new transmission (∼550-750 km from the load) to meet the Illinois RPS. We find that local, lower capacity factor wind sites are the lowest cost option for meeting the Illinois RPS if new long distance transmission is required to access distant, higher capacity factor wind resources. If higher capacity wind sites can be connected to the existing grid at minimal cost, in many cases they will have lower costs.

  12. Climate Wind Power Resources

    Directory of Open Access Journals (Sweden)

    Nana M. Berdzenishvili

    2013-01-01

    Full Text Available Georgia as a whole is characterized by rather rich solar energy resources, which allows to construct alternative power stations in the close proximity to traditional power plants. In this case the use of solar energy is meant. Georgia is divided into 5 zones based on the assessment of wind power resources. The selection of these zones is based on the index of average annual wind speed in the examined area, V> 3 m / s and V> 5 m / s wind speed by the summing duration in the course of the year and V = 0. . . 2 m / s of passive wind by total and continuous duration of these indices per hour.

  13. Wind Resource Estimation using QuikSCAT Ocean Surface Winds

    DEFF Research Database (Denmark)

    Xu, Qing; Zhang, Guosheng; Cheng, Yongcun

    2011-01-01

    In this study, the offshore wind resources in the East China Sea and South China Sea were estimated from over ten years of QuikSCAT scatterometer wind products. Since the errors of these products are larger close to the coast due to the land contamination of radar backscatter signal...... and the complexity of air-sea interaction processes, an empirical relationship that adjusts QuikSCAT winds in coastal waters was first proposed based on vessel measurements. Then the shape and scale parameters of Weibull function are determined for wind resource estimation. The wind roses are also plotted. Results...

  14. Evaluation model of wind energy resources and utilization efficiency of wind farm

    Science.gov (United States)

    Ma, Jie

    2018-04-01

    Due to the large amount of abandoned winds in wind farms, the establishment of a wind farm evaluation model is particularly important for the future development of wind farms In this essay, consider the wind farm's wind energy situation, Wind Energy Resource Model (WERM) and Wind Energy Utilization Efficiency Model(WEUEM) are established to conduct a comprehensive assessment of the wind farm. Wind Energy Resource Model (WERM) contains average wind speed, average wind power density and turbulence intensity, which assessed wind energy resources together. Based on our model, combined with the actual measurement data of a wind farm, calculate the indicators using the model, and the results are in line with the actual situation. We can plan the future development of the wind farm based on this result. Thus, the proposed establishment approach of wind farm assessment model has application value.

  15. Wind resource assessment and siting analysis in Italy

    International Nuclear Information System (INIS)

    Ricci, A.; Mizzoni, G.; Rossi, E.

    1992-01-01

    Recently, the wind power industry has matured; consequently, in many countries a lot of wind energy applications have been programmed. Many of them are already realized and running. As such, there is a direct necessity to identify a sizeable number of wind power plant sites. Choosing the right sites to match specific Wind Energy Conversion Systems (WECS) is also needed to harness this clean energy from the points of view of industrial viability and project financing. As a pre-requisite to install a wind turbine at a particular site, it is necessary to have knowledge of the theoretical available wind energy at the site, as well as, of the practicability of the design in matching the characteristics of the WECS. In this paper, ENEA (Italian National Agency for New Technology, Energy and Environment) wind siting and resource assessment activities, currently on-going in different regions in Italy, along with the present status and future prospects of the wind power industry

  16. Wind Resource Assessment – Østerild National Test Centre for Large Wind Turbines

    OpenAIRE

    Hansen, Brian Ohrbeck; Courtney, Michael; Mortensen, Niels Gylling

    2014-01-01

    This report presents a wind resource assessment for the seven test stands at the Østerild National Test Centre for Large Wind Turbines in Denmark. Calculations have been carried out mainly using wind data from three on-site wind lidars. The generalized wind climates applied in the wind resource calculations for the seven test stands are based on correlations between a short period of on-site wind data from the wind lidars with a long-term reference. The wind resource assessment for the seven ...

  17. Calculation of depleted wind resources near wind farms

    DEFF Research Database (Denmark)

    Nielsen, Morten

    2015-01-01

    Traditional wind resource maps include wind distribution, energy density and potential power production without wake effects. Adding wake effect to such maps is feasible by means of a new method based on Fourier transformation,and the extra computational work is comparable to that of the basic wind...

  18. Wind energy resource atlas. Volume 9. The Southwest Region

    Energy Technology Data Exchange (ETDEWEB)

    Simon, R.L.; Norman, G.T.; Elliott, D.L.; Barchet, W.R.; George, R.L.

    1980-11-01

    This atlas of the wind energy resource is composed of introductory and background information, a regional summary of the wind resource, and assessments of the wind resource in Nevada and California. Background on how the wind resource is assessed and on how the results of the assessment should be interpreted is presented. A description of the wind resource on a regional scale is then given. The results of the wind energy assessments for each state are assembled into an overview and summary of the various features of the regional wind energy resource. An introduction and outline to the descriptions of the wind resource given for each state are given. Assessments for individual states are presented as separate chapters. The state wind energy resources are described in greater detail than is the regional wind energy resource, and features of selected stations are discussed.

  19. Wind resource characterization in the Arabian Peninsula

    KAUST Repository

    Yip, Chak Man Andrew

    2015-12-28

    Wind energy is expected to contribute to alleviating the rise in energy demand in the Middle East that is driven by population growth and industrial development. However, variability and intermittency in the wind resource present significant challenges to grid integration of wind energy systems. These issues are rarely addressed in the literature of wind resource assessment in the Middle East due to sparse meteorological observations with varying record lengths. In this study, the wind field with consistent space–time resolution for over three decades at three hub heights (50m, 80m, 140m) over the whole Arabian Peninsula is constructed using the Modern Era Retrospective-Analysis for Research and Applications (MERRA) dataset. The wind resource is assessed at a higher spatial resolution with metrics of temporal variations in the wind than in prior studies. Previously unrecognized locations of interest with high wind abundance and low variability and intermittency have been identified in this study and confirmed by recent on-site observations. In particular, the western mountains of Saudi Arabia experience more abundant wind resource than most Red Sea coastal areas. The wind resource is more variable in coastal areas along the Arabian Gulf than their Red Sea counterparts at a similar latitude. Persistent wind is found along the coast of the Arabian Gulf.

  20. Wind conditions and resource assessment

    DEFF Research Database (Denmark)

    Lundtang Petersen, Erik; Troen, Ib

    2012-01-01

    The development of wind power as a competitive energy source requires resource assessment of increasing accuracy and detail (including not only the long-term ‘raw’ wind resource, but also turbulence, shear, and extremes), and in areas of increasing complexity. This in turn requires the use of the...

  1. Atlas de Recursos Eólicos del Estado de Oaxaca (The Spanish version of Wind Energy Resource Atlas of Oaxaca)

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, D.; Schwartz, M.; Scott, G.; Haymes, S.; Heimiller, D.; George, R.

    2004-04-01

    The Oaxaca Wind Resource Atlas, produced by the National Renewable Energy Laboratory's (NREL's) wind resource group, is the result of an extensive mapping study for the Mexican State of Oaxaca. This atlas identifies the wind characteristics and distribution of the wind resource in Oaxaca. The detailed wind resource maps and other information contained in the atlas facilitate the identification of prospective areas for use of wind energy technologies, both for utility-scale power generation and off-grid wind energy applications.

  2. Database on wind characteristics. Contents of database bank

    DEFF Research Database (Denmark)

    Larsen, Gunner Chr.; Hansen, K.S.

    2001-01-01

    for the available data in the established database bank and part three is the Users Manual describing the various ways to access and analyse the data. The present report constitutes the second part of the Annex XVII reporting. Basically, the database bank contains three categories of data, i.e. i) high sampled wind...... field time series; ii) high sampled wind turbine structural response time series; andiii) wind resource data. The main emphasis, however, is on category i). The available data, within each of the three categories, are described in details. The description embraces site characteristics, terrain type...

  3. Fort Carson Wind Resource Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Robichaud, R.

    2012-10-01

    This report focuses on the wind resource assessment, the estimated energy production of wind turbines, and economic potential of a wind turbine project on a ridge in the southeastern portion of the Fort Carson Army base.

  4. Wind and solar resource data sets

    DEFF Research Database (Denmark)

    Clifton, Andrew; Hodge, Bri-Mathias; Draxl, Caroline

    2017-01-01

    The range of resource data sets spans from static cartography showing the mean annual wind speed or solar irradiance across a region to high temporal and high spatial resolution products that provide detailed information at a potential wind or solar energy facility. These data sets are used...... to support continental-scale, national, or regional renewable energy development; facilitate prospecting by developers; and enable grid integration studies. This review first provides an introduction to the wind and solar resource data sets, then provides an overview of the common methods used...... for their creation and validation. A brief history of wind and solar resource data sets is then presented, followed by areas for future research. For further resources related to this article, please visit the WIREs website....

  5. Monthly Wind Characteristics and Wind Energy in Rwanda

    African Journals Online (AJOL)

    user

    Abstract. Evaluating wind power potential for a site is indispensable before making any decision for the installation of wind energy infrastructures and planning for relating projects. This paper presents a branch of a composite analysis whose objective was to investigate the potential of wind energy resource in Rwanda.

  6. Database on wind characteristics - contents of database bank

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, G.C.; Hansen, K.S.

    2004-06-01

    The main objective of IEA R and D Wind Annex XVII - Database on Wind Characteristics - has been to provide wind energy planners, designers and researchers, as well as the international wind engineering community in general, with a source of actual wind field data (time series and resource data) observed in a wide range of different wind climates and terrain types. Connected to an extension of the initial Annex period, the scope for the continuation was widened to include also support to the international wind turbine standardisation efforts.. The project partners are Sweden, Norway, U.S.A., The Netherlands and Denmark, with Denmark as the Operating Agent. The reporting of the continuation of Annex XVII falls in two separate parts. Part one accounts in details for the available data in the established database bank, and part two describes various data analyses performed with the overall purpose of improving the design load cases with relevance for to wind turbine structures. The present report constitutes the second part of the Annex XVII reporting. Both fatigue and extreme load aspects are dealt with, however, with the main emphasis on the latter. The work has been supported by The Ministry of Environment and Energy, Danish Energy Agency, The Netherlands Agency for Energy and the Environment (NOVEM), The Norwegian Water Resources and Energy Administration (NVE), The Swedish National Energy Administration (STEM) and The Government of the United States of America. (au)

  7. NANA Wind Resource Assessment Program Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Jay Hermanson

    2010-09-23

    NANA Regional Corporation (NRC) of northwest Alaska is located in an area with abundant wind energy resources. In 2007, NRC was awarded grant DE-FG36-07GO17076 by the US Department of Energy's Tribal Energy Program for funding a Wind Resource Assessment Project (WRAP) for the NANA region. The NANA region, including Kotzebue Electric Association (KEA) and Alaska Village Electric Cooperative (AVEC) have been national leaders at developing, designing, building, and operating wind-diesel hybrid systems in Kotzebue (starting in 1996) and Selawik (2002). Promising sites for the development of new wind energy projects in the region have been identified by the WRAP, including Buckland, Deering, and the Kivalina/Red Dog Mine Port Area. Ambler, Shungnak, Kobuk, Kiana, Noorvik & Noatak were determined to have poor wind resources at sites in or very near each community. However, all five of these communities may have better wind resources atop hills or at sites with slightly higher elevations several miles away.

  8. Wind resource assessment and wind energy system cost analysis: Fort Huachuca, Arizona

    Energy Technology Data Exchange (ETDEWEB)

    Olsen, T.L. [Tim Olsen Consulting, Denver, CO (United States); McKenna, E. [National Renewable Energy Lab., Golden, CO (United States)

    1997-12-01

    The objective of this joint DOE and National Renewable Energy Laboratory (NREL) Strategic Environmental Research and Development Program (SERDP) project is to determine whether wind turbines can reduce costs by providing power to US military facilities in high wind areas. In support of this objective, one year of data on the wind resources at several Fort Huachuca sites was collected. The wind resource data were analyzed and used as input to an economic study for a wind energy installation at Fort Huachuca. The results of this wind energy feasibility study are presented in the report.

  9. Terminology Guideline for Classifying Offshore Wind Energy Resources

    Energy Technology Data Exchange (ETDEWEB)

    Beiter, Philipp [National Renewable Energy Lab. (NREL), Golden, CO (United States); Musial, Walt [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-09-01

    The purpose of this guideline is to establish a clear and consistent vocabulary for conveying offshore wind resource potential and to interpret this vocabulary in terms that are familiar to the oil and gas (O&G) industry. This involves clarifying and refining existing definitions of offshore wind energy resource classes. The terminology developed in this guideline represents one of several possible sets of vocabulary that may differ with respect to their purpose, data availability, and comprehensiveness. It was customized to correspond with established offshore wind practices and existing renewable energy industry terminology (e.g. DOE 2013, Brown et al. 2015) while conforming to established fossil resource classification as best as possible. The developers of the guideline recognize the fundamental differences that exist between fossil and renewable energy resources with respect to availability, accessibility, lifetime, and quality. Any quantitative comparison between fossil and renewable energy resources, including offshore wind, is therefore limited. For instance, O&G resources are finite and there may be significant uncertainty associated with the amount of the resource. In contrast, aboveground renewable resources, such as offshore wind, do not generally deplete over time but can vary significantly subhourly, daily, seasonally, and annually. The intent of this guideline is to make these differences transparent and develop an offshore wind resource classification that conforms to established fossil resource classifications where possible. This guideline also provides methods to quantitatively compare certain offshore wind energy resources to O&G resource classes for specific applications. Finally, this guideline identifies areas where analogies to established O&G terminology may be inappropriate or subject to misinterpretation.

  10. Wind Tunnel Management and Resource Optimization: A Systems Modeling Approach

    Science.gov (United States)

    Jacobs, Derya, A.; Aasen, Curtis A.

    2000-01-01

    Time, money, and, personnel are becoming increasingly scarce resources within government agencies due to a reduction in funding and the desire to demonstrate responsible economic efficiency. The ability of an organization to plan and schedule resources effectively can provide the necessary leverage to improve productivity, provide continuous support to all projects, and insure flexibility in a rapidly changing environment. Without adequate internal controls the organization is forced to rely on external support, waste precious resources, and risk an inefficient response to change. Management systems must be developed and applied that strive to maximize the utility of existing resources in order to achieve the goal of "faster, cheaper, better". An area of concern within NASA Langley Research Center was the scheduling, planning, and resource management of the Wind Tunnel Enterprise operations. Nine wind tunnels make up the Enterprise. Prior to this research, these wind tunnel groups did not employ a rigorous or standardized management planning system. In addition, each wind tunnel unit operated from a position of autonomy, with little coordination of clients, resources, or project control. For operating and planning purposes, each wind tunnel operating unit must balance inputs from a variety of sources. Although each unit is managed by individual Facility Operations groups, other stakeholders influence wind tunnel operations. These groups include, for example, the various researchers and clients who use the facility, the Facility System Engineering Division (FSED) tasked with wind tunnel repair and upgrade, the Langley Research Center (LaRC) Fabrication (FAB) group which fabricates repair parts and provides test model upkeep, the NASA and LARC Strategic Plans, and unscheduled use of the facilities by important clients. Expanding these influences horizontally through nine wind tunnel operations and vertically along the NASA management structure greatly increases the

  11. Characterization of wind power resource and its intermittency

    Science.gov (United States)

    Gunturu, U. B.; Schlosser, C. A.

    2011-12-01

    Wind resource in the continental and offshore United States has been calculated and characterized using metrics that describe - apart from abundance - its availability, persistence and intermittency. The Modern Era Retrospective-Analysis for Research and Applications (MERRA) boundary layer flux data has been used to construct wind power density profiles at 50, 80, 100 and 120 m turbine hub heights. The wind power density estimates at 50 m are qualitatively similar to those in the US wind atlas developed by the National Renewable Energy Laboratory (NREL), but quantitatively a class less in some regions, but are within the limits of uncertainty. We also show that for long tailed distributions like those of the wind power density, the mean is an overestimation and median is a more robust metric for summary representation of wind power resource.Generally speaking, the largest and most available wind power density resources are found in off-shore regions of the Atlantic and Pacific coastline, and the largest on-shore resource potential lies in the central United States. However, the intermittency and widespread synchronicity of on-shore wind power density are substantial, and highlights areas where considerable back-up generation technologies will be required. Generation-duration curves are also presented for the independent systems operator (ISO) zones of the U.S. to highlight the regions with the largest capacity factor (MISO, ERCOT, and SWPP) as well as the periods and extent to which all ISOs contain no wind power and the potential benefits of aggregation on wind power intermittency in each region. The impact of raising the wind turbine hub height on metrics of abundance, persistence, variability and intermittency is analyzed. There is a general increase in availability and abundance of wind resource but there is also an increase in intermittency with respect to a 'usable wind power' crossing level in low resource regions. A similar perspective of wind resource for

  12. Quantifying offshore wind resources from satellite wind maps: Study area the North Sea

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Barthelmie, Rebecca Jane; Christiansen, Merete B.

    2006-01-01

    Offshore wind resources are quantified from satellite synthetic aperture radar (SAR) and satellite scatterometer observations at local and regional scale respectively at the Horns Rev site in Denmark. The method for wind resource estimation from satellite observations interfaces with the wind atlas...... of the Horns Rev wind farm is quantified from satellite SAR images and compared with state-of-the-art wake model results with good agreement. It is a unique method using satellite observations to quantify the spatial extent of the wake behind large offshore wind farms. Copyright © 2006 John Wiley & Sons, Ltd....... analysis and application program (WAsP). An estimate of the wind resource at the new project site at Horns Rev is given based on satellite SAR observations. The comparison of offshore satellite scatterometer winds, global model data and in situ data shows good agreement. Furthermore, the wake effect...

  13. Wind class sampling of satellite SAR imagery for offshore wind resource mapping

    DEFF Research Database (Denmark)

    Badger, Merete; Badger, Jake; Nielsen, Morten

    2010-01-01

    developed for mesoscale modeling of wind resources. Its performance in connection with sampling of SAR scenes is tested against two sets of random SAR samples and meteorological observations at three sites in the North Sea during 2005–08. Predictions of the mean wind speed and the Weibull scale parameter......High-resolution wind fields retrieved from satellite synthetic aperture radar (SAR) imagery are combined for mapping of wind resources offshore where site measurements are costly and sparse. A new sampling strategy for the SAR scenes is introduced, based on a method for statistical......-dynamical downscaling of large-scale wind conditions using a set of wind classes that describe representative wind situations. One or more SAR scenes are then selected to represent each wind class and the classes are weighted according to their frequency of occurrence. The wind class methodology was originally...

  14. Wind characteristics on the Yucatan Peninsula based on short term data from meteorological stations

    International Nuclear Information System (INIS)

    Soler-Bientz, Rolando; Watson, Simon; Infield, David

    2010-01-01

    Due to the availability of sparsely populated and flat open terrain, the Yucatan Peninsula located in eastern Mexico is a promising region from the perspective of wind energy development. Study of the diurnal and seasonal wind resource is an important stage in the move towards commercial exploitation of wind power in this Latin American region. An analysis of the characteristics of the wind resource of the Yucatan Peninsula is presented in this paper, based on 10 min averaged wind speed data from nine meteorological stations, between 2000 and 2007. Hourly and monthly patterns of the main environmental parameters have been examined. Highly directional behaviour was identified that reflects the influence of winds coming from the Caribbean Sea and the Gulf of Mexico. The characteristics of the wind speed variation observed at the studied sites reflected their proximity to the coast and whether they were influenced by wind coming predominantly from over the land or predominantly from over the sea. The atmospheric stability over the eastern seas of the Yucatan Peninsula was also analysed to assess thermal effects for different wind directions. The findings were consistent with the variation in average wind speeds observed at the coastal sites where winds came predominantly from over the sea. The research presented here is to be used as a basis for a wind atlas for the Yucatan Peninsula.

  15. Monthly Wind Characteristics and Wind Energy in Rwanda | Sarari ...

    African Journals Online (AJOL)

    Evaluating wind power potential for a site is indispensable before making any ... objective was to investigate the potential of wind energy resource in Rwanda. ... fit to the distribution of the measured wind data varies from a location to another. ... (14); Eritrea (1); Ethiopia (30); Ghana (27); Kenya (29); Lesotho (1); Libya (2) ...

  16. Assessment of Global Wind Energy Resource Utilization Potential

    Science.gov (United States)

    Ma, M.; He, B.; Guan, Y.; Zhang, H.; Song, S.

    2017-09-01

    Development of wind energy resource (WER) is a key to deal with climate change and energy structure adjustment. A crucial issue is to obtain the distribution and variability of WER, and mine the suitable location to exploit it. In this paper, a multicriteria evaluation (MCE) model is constructed by integrating resource richness and stability, utilization value and trend of resource, natural environment with weights. The global resource richness is assessed through wind power density (WPD) and multi-level wind speed. The utilizable value of resource is assessed by the frequency of effective wind. The resource stability is assessed by the coefficient of variation of WPD and the frequency of prevailing wind direction. Regression slope of long time series WPD is used to assess the trend of WER. All of the resource evaluation indicators are derived from the atmospheric reanalysis data ERA-Interim with spatial resolution 0.125°. The natural environment factors mainly refer to slope and land-use suitability, which are derived from multi-resolution terrain elevation data 2010 (GMTED 2010) and GlobalCover2009. Besides, the global WER utilization potential map is produced, which shows most high potential regions are located in north of Africa. Additionally, by verifying that 22.22 % and 48.8 9% operational wind farms fall on medium-high and high potential regions respectively, the result can provide a basis for the macroscopic siting of wind farm.

  17. Total, accessible and reserve wind energy resources in Bulgaria

    International Nuclear Information System (INIS)

    Ivanov, P.; Trifonova, L.

    1996-01-01

    The article is a part of the international project 'Bulgaria Country Study to Address Climate Change Inventory of the Greenhouse Gases Emission and Sinks Alternative Energy Balance and Technology Programs' sponsored by the Department of Energy, US. The 'total' average annual wind resources in Bulgaria determined on the basis wind velocity density for more than 100 meteorological stations are estimated on 125 000 TWh. For the whole territory the theoretical wind power potential is about 14200 GW. The 'accessible' wind resources are estimated on about 62000 TWh. The 'reserve' (or usable) wind resources are determined using 8 velocity intervals for WECS (Wind Energy Conversion Systems) operation, number and disposition of turbines, and the usable (3%) part of the territory. The annual reserve resources are estimated at about 21 - 33 TWh. The 'economically beneficial' wind resources (EBWR) are those part of the reserve resources which could be included in the country energy balance using specific technologies in specific time period. It is foreseen that at year 2010 the EBWR could reach 0.028 TWh. 7 refs., 2 tabs., 1 fig

  18. Estimating the Wind Resource in Uttarakhand: Comparison of Dynamic Downscaling with Doppler Lidar Wind Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Lundquist, J. K. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Pukayastha, A. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Martin, C. [Univ. of Colorado, Boulder, CO (United States); Newsom, R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-03-01

    Previous estimates of the wind resources in Uttarakhand, India, suggest minimal wind resources in this region. To explore whether or not the complex terrain in fact provides localized regions of wind resource, the authors of this study employed a dynamic down scaling method with the Weather Research and Forecasting model, providing detailed estimates of winds at approximately 1 km resolution in the finest nested simulation.

  19. Connecting Communities to Wind Resources

    Energy Technology Data Exchange (ETDEWEB)

    Baring-Gould, Edward I [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-08-18

    WINDExchange is the platform for the U.S. Department of Energy's (DOE's) Wind Energy Technologies Office to disseminate credible wind energy information on a national level. Stakeholder engagement and outreach activities are designed to enable well-informed decisions about appropriate wind energy deployment. WINDExchange focuses on wind energy outreach at the national level while managing and supporting similar regional efforts through the implementation of DOE Regional Resource Centers (RRCs). This fact sheet provides an overview of DOE's WINDExchange initiative and the RRCs. Examples of RRC activities are provided.

  20. Technical characteristic analysis of wind energy conversion systems for sustainable development

    International Nuclear Information System (INIS)

    BoroumandJazi, G.; Rismanchi, B.; Saidur, R.

    2013-01-01

    Highlights: ► Identifying the required technical characteristics of sustainable wind power system. ► Observing Weibull probability function and artificial neural networks for reliability. ► Daily/monthly generation data are used to investigate the system’s availability. - Abstract: Wind energy as a clean, environmentally friendly and cost effective renewable energy resource, is taken into consideration by many developed and developing countries as a promising means to provide electrical energy. In feasibility study stage of the wind energy systems, the sustainability analysis is one of the main issues that can assure the investors and stockholders to invest in this renewable energy. Since a system can be truly sustainable by achieving the energetic, ecological and economic sustainability, the present study will focus on the technical characteristics and performance analysis of the wind energy systems. The relations between reliability, availability, energy and exergy efficiency, risk management and the environmental impact of the wind energy systems are investigated in the context of this study. It is concluded that the wind characteristics data and the wind speed are the main effective parameters on its reliability and availability. It is also revealed that considering the system loss, exergy efficiency results of the wind energy systems are more reliable than the energy efficiencies. Due to avoid future failure of the systems, the causes of the failure are investigated and it was concluded that the structural failures caused by storms and strong winds are known as the most prevalent failures

  1. A statistical investigation of wind characteristics and wind energy potential based on the Weibull and Rayleigh models in Rwanda

    Energy Technology Data Exchange (ETDEWEB)

    Safari, Bonfils; Gasore, Jimmy [Department of Physics, National University of Rwanda, P.O. Box 117, Huye, South Province (Rwanda)

    2010-12-15

    A wind energy system converts the kinetic energy of the wind into mechanical or electrical energy that can be harnessed for practical uses and transform the economy of rural areas where access to water and electricity is very restricted and industry is almost nonexistent in most of the developing countries like Rwanda. Assessing wind power potential for a location is an imperative requirement before making a decision for the installation of windmills or a wind electric generator and evaluating plans for relating projects. The aim of the present study was to evaluate the potential of wind resource in Rwanda and to constitute a database for the users of the wind power. A time series of hourly daily measured wind speed and wind direction for the period between 1974 and 1993 on five main Rwandan meteorological stations was provided by the National Meteorology Department. Statistical methods applying Weibull and Rayleigh distribution were presented to evaluate the wind speed characteristics and the wind power potential at a height of 10 m above ground level using hourly monthly average data. Those characteristics were extrapolated for higher levels in altitude. The results give a global picture of the distribution of the wind potential in different locations of Rwanda. (author)

  2. Wind/solar resource in Texas

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, V.; Starcher, K.; Gaines, H. [West Texas A& M Univ., Canyon, TX (United States)

    1997-12-31

    Data are being collected at 17 sites to delineate a baseline for the wind and solar resource across Texas. Wind data are being collected at 10, 25, and 40 m (in some cases at 50 m) to determine wind shear and power at hub heights of large turbines. Many of the sites are located in areas of predicted terrain enhancement. The typical day in a month for power and wind turbine output was calculated for selected sites and combination of sites; distributed systems. Major result to date is that there is the possibility of load matching in South Texas during the summer months, even though the average values by month indicate a low wind potential.

  3. Database on Wind Characteristics

    DEFF Research Database (Denmark)

    Højstrup, J.; Ejsing Jørgensen, Hans; Lundtang Petersen, Erik

    1999-01-01

    his report describes the work and results of the project: Database on Wind Characteristics which was sponsered partly by the European Commision within the framework of JOULE III program under contract JOR3-CT95-0061......his report describes the work and results of the project: Database on Wind Characteristics which was sponsered partly by the European Commision within the framework of JOULE III program under contract JOR3-CT95-0061...

  4. Wind power error estimation in resource assessments.

    Directory of Open Access Journals (Sweden)

    Osvaldo Rodríguez

    Full Text Available Estimating the power output is one of the elements that determine the techno-economic feasibility of a renewable project. At present, there is a need to develop reliable methods that achieve this goal, thereby contributing to wind power penetration. In this study, we propose a method for wind power error estimation based on the wind speed measurement error, probability density function, and wind turbine power curves. This method uses the actual wind speed data without prior statistical treatment based on 28 wind turbine power curves, which were fitted by Lagrange's method, to calculate the estimate wind power output and the corresponding error propagation. We found that wind speed percentage errors of 10% were propagated into the power output estimates, thereby yielding an error of 5%. The proposed error propagation complements the traditional power resource assessments. The wind power estimation error also allows us to estimate intervals for the power production leveled cost or the investment time return. The implementation of this method increases the reliability of techno-economic resource assessment studies.

  5. Wind power error estimation in resource assessments.

    Science.gov (United States)

    Rodríguez, Osvaldo; Del Río, Jesús A; Jaramillo, Oscar A; Martínez, Manuel

    2015-01-01

    Estimating the power output is one of the elements that determine the techno-economic feasibility of a renewable project. At present, there is a need to develop reliable methods that achieve this goal, thereby contributing to wind power penetration. In this study, we propose a method for wind power error estimation based on the wind speed measurement error, probability density function, and wind turbine power curves. This method uses the actual wind speed data without prior statistical treatment based on 28 wind turbine power curves, which were fitted by Lagrange's method, to calculate the estimate wind power output and the corresponding error propagation. We found that wind speed percentage errors of 10% were propagated into the power output estimates, thereby yielding an error of 5%. The proposed error propagation complements the traditional power resource assessments. The wind power estimation error also allows us to estimate intervals for the power production leveled cost or the investment time return. The implementation of this method increases the reliability of techno-economic resource assessment studies.

  6. Satellite SAR wind resource mapping in China (SAR-China)

    Energy Technology Data Exchange (ETDEWEB)

    Badger, M.

    2009-07-15

    The project 'Off-Shore Wind Energy Resource Assessment and Feasibility Study of Off-Shore Wind Farm Development in China' is funded by the EU-China Energy and Environment Programme (EEP) and runs for one year (August 2008 - August 2009). The project is lead by the China Meteorological Administration (CMA) and supported by SgurrEnergy Ltd. Risoe National Laboratory for Sustainable Energy at the Technical University of Denmark (Risoe DTU) has been commissioned to perform a satellite based wind resource analysis as part of the project. The objective of this analysis is to map the wind resource offshore at a high spatial resolution (1 km). The detailed wind resource maps will be used, in combination with other data sets, for an assessment of potential sites for offshore wind farm development along the coastline from Fujian to Shandong in China. (au)

  7. Asynchrony of wind and hydropower resources in Australia

    KAUST Repository

    Gunturu, Udaya

    2017-08-14

    Wind and hydropower together constitute nearly 80% of the renewable capacity in Australia and their resources are collocated. We show that wind and hydro generation capacity factors covary negatively at the interannual time scales. Thus, the technology diversity mitigates the variability of renewable power generation at the interannual scales. The asynchrony of wind and hydropower resources is explained by the differential impact of the two modes of the El Ni˜no Southern Oscillation – canonical and Modoki – on the wind and hydro resources. Also, the Modoki El Ni˜no and the Modoki La Ni˜na phases have greater impact. The seasonal impact patterns corroborate these results. As the proportion of wind power increases in Australia’s energy mix, this negative covariation has implications for storage capacity of excess wind generation at short time scales and for generation system adequacy at the longer time scales.

  8. Asynchrony of wind and hydropower resources in Australia

    KAUST Repository

    Gunturu, Udaya; Hallgren, Willow

    2017-01-01

    Wind and hydropower together constitute nearly 80% of the renewable capacity in Australia and their resources are collocated. We show that wind and hydro generation capacity factors covary negatively at the interannual time scales. Thus, the technology diversity mitigates the variability of renewable power generation at the interannual scales. The asynchrony of wind and hydropower resources is explained by the differential impact of the two modes of the El Ni˜no Southern Oscillation – canonical and Modoki – on the wind and hydro resources. Also, the Modoki El Ni˜no and the Modoki La Ni˜na phases have greater impact. The seasonal impact patterns corroborate these results. As the proportion of wind power increases in Australia’s energy mix, this negative covariation has implications for storage capacity of excess wind generation at short time scales and for generation system adequacy at the longer time scales.

  9. Asynchrony of wind and hydropower resources in Australia.

    Science.gov (United States)

    Gunturu, Udaya Bhaskar; Hallgren, Willow

    2017-08-18

    Wind and hydropower together constitute nearly 80% of the renewable capacity in Australia and their resources are collocated. We show that wind and hydro generation capacity factors covary negatively at the interannual time scales. Thus, the technology diversity mitigates the variability of renewable power generation at the interannual scales. The asynchrony of wind and hydropower resources is explained by the differential impact of the two modes of the El Ni˜no Southern Oscillation - canonical and Modoki - on the wind and hydro resources. Also, the Modoki El Ni˜no and the Modoki La Ni˜na phases have greater impact. The seasonal impact patterns corroborate these results. As the proportion of wind power increases in Australia's energy mix, this negative covariation has implications for storage capacity of excess wind generation at short time scales and for generation system adequacy at the longer time scales.

  10. Computer modelling of the UK wind energy resource. Phase 2. Application of the methodology

    Energy Technology Data Exchange (ETDEWEB)

    Burch, S F; Makari, M; Newton, K; Ravenscroft, F; Whittaker, J

    1993-12-31

    This report presents the results of the second phase of a programme to estimate the UK wind energy resource. The overall objective of the programme is to provide quantitative resource estimates using a mesoscale (resolution about 1km) numerical model for the prediction of wind flow over complex terrain, in conjunction with digitised terrain data and wind data from surface meteorological stations. A network of suitable meteorological stations has been established and long term wind data obtained. Digitised terrain data for the whole UK were obtained, and wind flow modelling using the NOABL computer program has been performed. Maps of extractable wind power have been derived for various assumptions about wind turbine characteristics. Validation of the methodology indicates that the results are internally consistent, and in good agreement with available comparison data. Existing isovent maps, based on standard meteorological data which take no account of terrain effects, indicate that 10m annual mean wind speeds vary between about 4.5 and 7 m/s over the UK with only a few coastal areas over 6 m/s. The present study indicates that 28% of the UK land area had speeds over 6 m/s, with many hill sites having 10m speeds over 10 m/s. It is concluded that these `first order` resource estimates represent a substantial improvement over the presently available `zero order` estimates. The results will be useful for broad resource studies and initial site screening. Detailed resource evaluation for local sites will require more detailed local modelling or ideally long term field measurements. (12 figures, 14 tables, 21 references). (Author)

  11. Distribution Characteristics and Assessment of Wind Energy Resources at 70 m Height over Fujian Coastal Areas%福建沿海70米高度风能资源分布特点及评估

    Institute of Scientific and Technical Information of China (English)

    文明章; 吴滨; 林秀芳; 游立军; 杨丽慧

    2011-01-01

    Fujian Province lies in southeastern China,being rich in wind energy resources in its coastal areas due to its special geographical location.In order to evaluate wind energy resources,Fujian Meteorological Bureau built 18 wind towers in the coastal areas and observes wind speed and wind energy resources.Based on observational data at 70 m height from 18 wind towers from Jun 1,2009 to May 31,2010 in Fujian coastal areas,the reserves and distribution characteristics of wind speed and wind energy at 70 m height were analyzed using statistical methods.Results show that there are plenty of wind energy resources in Fujian coastal areas,and the wind energy resources are much richer in the area from mid-southern Fuzhou to the south of Quanzhou than other areas.The annual effective wind power density is (516.7~930.4) W/m2 in the area from mid-southern Fuzhou to the south of Quanzhou where there is the richest wind energy resources in Pingtan island with an annual effective wind power density of as much as 930.4 W/m2 in some places of Pingtan island.In addition,there are much wind energy resources in Chihu of Zhangpu County lying in the south of FuJian whose annual effective wind power density is more than 509.9 W/m2.The reserves and distribution characteristics of wind speed and wind energy are generally consistent with the simulations.Results also show that the mean annual effective hours of wind and its percent are more than 7014.4 h and 80.4%,respectively.The distributions of wind direction and wind energy density were analyzed as well.Results show that the wind direction stability is relatively high and the leading wind direction is obvious,with the northern,middle,and southern parts of Fujian coastal areas being N-NE,N-NNE,and NNE-ENE,respectively.The distribution characteristics of wind energy density are accordant with wind direction,and much more stable than wind direction.According to national standards (GB/T 18710-2002) of wind energy resources,the grade

  12. The design of wind turbine for electrical power generation in Malaysian wind characteristics

    International Nuclear Information System (INIS)

    Abas Ab Wahab; Chong Wen Thong

    2000-01-01

    The paper describes the study of a wind turbine for electrical power generation in Malaysia wind characteristics. In this research, the wind turbine is designs based on the local wind characteristics and tries to avoid the problems faced in the past (turbine design, access, manpower and technical). The new wind turbine rotor design for a medium speed wind speed turbine utilises the concept of open-close type of horizontal axis (up-wind) wind turbine is intended to widen the optimum performance range for electrical generation in Malaysia wind characteristics. The wind turbine has been designed to cut-in at a lower speed, and to provide the rotation speed that high enough to run a generator. The analysis and design of new low speed wind turbine blades and open-close turbine rotor and prediction of turbine performance are being detailed in this paper. (Author)

  13. Wind energy resource assessment in Madrid region

    Energy Technology Data Exchange (ETDEWEB)

    Migoya, Emilio; Crespo, Antonio; Jimenez, Angel; Garcia, Javier; Manuel, Fernando [Laboratorio de Mecanica de Fluidos, Departamento de Ingenieria Energetica y Fluidomecanica, Escuela Tecnica Superior Ingenieros Industriales (ETSII), Universidad Politecnica de Madrid (UPM), C/Jose Gutierrez Abascal, 2-28006, Madrid (Spain)

    2007-07-15

    The Comunidad Autonoma de Madrid (Autonomous Community of Madrid, in the following Madrid Region), is a region located at the geographical centre of the Iberian Peninsula. Its area is 8.028 km{sup 2}, and its population about five million people. The Department of Economy and Technological Innovation of the Madrid Region, together with some organizations dealing on energy saving and other research institutions have elaborated an Energy Plan for the 2004-12 period. As a part of this work, the Fluid Mechanics Laboratory of the Superior Technical School of Industrial Engineers of the Polytechnic University of Madrid has carried out the assessment of the wind energy resources [Crespo A, Migoya E, Gomez Elvira R. La energia eolica en Madrid. Potencialidad y prospectiva. Plan energetico de la Comunidad de Madrid, 2004-2012. Madrid: Comunidad Autonoma de Madrid; 2004]; using for this task the WAsP program (Wind Atlas Analysis and Application Program), and the own codes, UPMORO (code to study orography effects) and UPMPARK (code to study wake effects in wind parks). Different kinds of data have been collected about climate, topography, roughness of the land, environmentally protected areas, town and village distribution, population density, main facilities and electric power supply. The Spanish National Meteorological Institute has nine wind measurement stations in the region, but only four of them have good and reliable temporary wind data, with time measurement periods that are long enough to provide representative correlations among stations. The Observed Wind Climates of the valid meteorological stations have been made. The Wind Atlas and the resource grid have been calculated, especially in the high wind resource areas, selecting appropriate measurements stations and using criteria based on proximity, similarity and ruggedness index. Some areas cannot be used as a wind energy resource mainly because they have environmental regulation or, in some cases, are very close

  14. High-altitude wind resources in the Middle East

    KAUST Repository

    Yip, Chak Man Andrew; Gunturu, Udaya; Stenchikov, Georgiy L.

    2017-01-01

    In the Middle East, near-surface wind resources are intermittent. However, high-altitude wind resources are abundant, persistent, and readily available and may provide alternative energy resources in this fossil-fuel-dependent region. Using wind field data from the Modern-Era Retrospective Analysis for Research and Applications Version 2 (MERRA-2), this study identifies areas favorable to the deployment of airborne wind energy (AWE) systems in the Middle East and computes the optimal heights at which such systems would best operate. AWE potential is estimated using realistic AWE system specifications and assumptions about deployment scenarios and is compared with the near-surface wind generation potential with respect to diurnal and seasonal variability. The results show the potential utility of AWE in areas in the Middle East where the energy demand is high. In particular, Oman and Saudi Arabia have a high level of the potential power generation with low annual variability.

  15. High-altitude wind resources in the Middle East

    KAUST Repository

    Yip, Chak Man Andrew

    2017-08-23

    In the Middle East, near-surface wind resources are intermittent. However, high-altitude wind resources are abundant, persistent, and readily available and may provide alternative energy resources in this fossil-fuel-dependent region. Using wind field data from the Modern-Era Retrospective Analysis for Research and Applications Version 2 (MERRA-2), this study identifies areas favorable to the deployment of airborne wind energy (AWE) systems in the Middle East and computes the optimal heights at which such systems would best operate. AWE potential is estimated using realistic AWE system specifications and assumptions about deployment scenarios and is compared with the near-surface wind generation potential with respect to diurnal and seasonal variability. The results show the potential utility of AWE in areas in the Middle East where the energy demand is high. In particular, Oman and Saudi Arabia have a high level of the potential power generation with low annual variability.

  16. Database on wind characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, K.S. [The Technical Univ. of Denmark (Denmark); Courtney, M.S. [Risoe National Lab., (Denmark)

    1999-08-01

    The organisations that participated in the project consists of five research organisations: MIUU (Sweden), ECN (The Netherlands), CRES (Greece), DTU (Denmark), Risoe (Denmark) and one wind turbine manufacturer: Vestas Wind System A/S (Denmark). The overall goal was to build a database consisting of a large number of wind speed time series and create tools for efficiently searching through the data to select interesting data. The project resulted in a database located at DTU, Denmark with online access through the Internet. The database contains more than 50.000 hours of measured wind speed measurements. A wide range of wind climates and terrain types are represented with significant amounts of time series. Data have been chosen selectively with a deliberate over-representation of high wind and complex terrain cases. This makes the database ideal for wind turbine design needs but completely unsuitable for resource studies. Diversity has also been an important aim and this is realised with data from a large range of terrain types; everything from offshore to mountain, from Norway to Greece. (EHS)

  17. Offshore wind resources at Danish measurement sites

    Energy Technology Data Exchange (ETDEWEB)

    Barthelmie, R J; Courtney, M S; Lange, B; Nielsen, M; Sempreviva, A M [Risoe National Lab., Dept. of Wind Energy and Atmospheric Physics, Roskilde (Denmark); Svenson, J; Olsen, F [SEAS, Haslev (Denmark); Christensen, T [Elsamprojekt, Fredericia (Denmark)

    1999-03-01

    In order to characterise wind and turbulence characteristics at prospective offshore wind energy sites, meteorological observations from a number of purpose-built offshore monitoring sites have been analyzed and compared with long wind speed time series. New analyses have been conducted on the data sets focussing on meteorology, turbulence, extreme winds and wind and wave interactions. Relationships between wind speed, turbulence and fetch are highly complex. Minimum turbulence intensity offshore is associated with wind speeds of about 12 m/s. At lower wind speeds, stability effects are important while at higher winds speeds wind and wave interactions appear to dominate. On average, turbulence intensity offshore at 48 m height is approximately 0.08 if no coastal effects are present. However, the effect of the coastal discontinuity persists in wind speed and turbulence characteristics for considerable distances offshore. The majority of the adjustment of appears to occur within 20 km of the coast. (au)

  18. Comparison of SAR Wind Speed Retrieval Algorithms for Evaluating Offshore Wind Energy Resources

    DEFF Research Database (Denmark)

    Kozai, K.; Ohsawa, T.; Takeyama, Y.

    2010-01-01

    Envisat/ASAR-derived offshore wind speeds and energy densities based on 4 different SAR wind speed retrieval algorithms (CMOD4, CMOD-IFR2, CMOD5, CMOD5.N) are compared with observed wind speeds and energy densities for evaluating offshore wind energy resources. CMOD4 ignores effects of atmospheri...

  19. Improved Offshore Wind Resource Assessment in Global Climate Stabilization Scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Arent, D.; Sullivan, P.; Heimiller, D.; Lopez, A.; Eurek, K.; Badger, J.; Jorgensen, H. E.; Kelly, M.; Clarke, L.; Luckow, P.

    2012-10-01

    This paper introduces a technique for digesting geospatial wind-speed data into areally defined -- country-level, in this case -- wind resource supply curves. We combined gridded wind-vector data for ocean areas with bathymetry maps, country exclusive economic zones, wind turbine power curves, and other datasets and relevant parameters to build supply curves that estimate a country's offshore wind resource defined by resource quality, depth, and distance-from-shore. We include a single set of supply curves -- for a particular assumption set -- and study some implications of including it in a global energy model. We also discuss the importance of downscaling gridded wind vector data to capturing the full resource potential, especially over land areas with complex terrain. This paper includes motivation and background for a statistical downscaling methodology to account for terrain effects with a low computational burden. Finally, we use this forum to sketch a framework for building synthetic electric networks to estimate transmission accessibility of renewable resource sites in remote areas.

  20. On the Wind Energy Resource and Its Trend in the East China Sea

    Directory of Open Access Journals (Sweden)

    Adekunle Ayodotun Osinowo

    2017-01-01

    Full Text Available This study utilizes a 30-year (1980–2009 10 m wind field dataset obtained from the European Center for Medium Range Weather Forecast to investigate the wind energy potential in the East China Sea (ECS by using Weibull shape and scale parameters. The region generally showed good wind characteristics. The calculated annual mean of the wind power resource revealed the potential of the region for large-scale grid-connected wind turbine applications. Furthermore, the spatiotemporal variations showed strong trends in wind power in regions surrounding Taiwan Island. These regions were evaluated with high wind potential and were rated as excellent locations for installation of large wind turbines for electrical energy generation. Nonsignificant and negative trends dominated the ECS and the rest of the regions; therefore, these locations were found to be suitable for small wind applications. The wind power density exhibited an insignificant trend in the ECS throughout the study period. The trend was strongest during spring and weakest during autumn.

  1. 2016 Offshore Wind Energy Resource Assessment for the United States

    Energy Technology Data Exchange (ETDEWEB)

    Musial, Walt [National Renewable Energy Lab. (NREL), Golden, CO (United States); Heimiller, Donna [National Renewable Energy Lab. (NREL), Golden, CO (United States); Beiter, Philipp [National Renewable Energy Lab. (NREL), Golden, CO (United States); Scott, George [National Renewable Energy Lab. (NREL), Golden, CO (United States); Draxl, Caroline [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-09-01

    This report, the 2016 Offshore Wind Energy Resource Assessment for the United States, was developed by the National Renewable Energy Laboratory, and updates a previous national resource assessment study, and refines and reaffirms that the available wind resource is sufficient for offshore wind to be a large-scale contributor to the nation's electric energy supply.

  2. Where, when and how much wind is available? A provincial-scale wind resource assessment for China

    International Nuclear Information System (INIS)

    He, Gang; Kammen, Daniel M.

    2014-01-01

    China's wind installed capacity has grown at a remarkable rate, over 80% annually average growth since 2005, reaching 91.5 GW of capacity by end of 2013, accounting for over 27% of global capacity. This rapid growth has been the result of a domestic manufacturing base and favorable national policies. Further evolution will be greatly aided with a detailed wind resource assessment that incorporates spatial and temporal variability across China. We utilized 200 representative locations for which 10 years of hourly wind speed data exist to develop provincial capacity factors from 2001 to 2010, and to build analytic wind speed profiles. From these data and analysis we find that China's annual wind generation could reach 2000 TWh to 3500 TWh. Nationally this would correspond to an average capacity factor of 0.18. The diurnal and seasonal variation shows spring and winter has better wind resources than in the summer and fall. A highly interconnected and coordinated power system is needed to effectively exploit this large but variable resource. A full economic assessment of exploitable wind resources demands a larger, systems-level analysis of China's energy options, for which this work is a core requirement. - Highlights: • We assessed China's wind resources by utilizing 10 years of hourly wind speed data of 200 sites. • We built provincial scale wind speed profiles and develop provincial capacity factors for China. • We found that China's wind generation could reach 2000 TWh to 3500 TWh annually. • We observed similar temporal variation pattern of wind availability across China

  3. Wind energy resource atlas. Volume 7. The south central region

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, R.L.; Graves, L.F.; Sprankle, A.C.; Elliott, D.L.; Barchet, W.R.; George, R.L.

    1981-03-01

    This atlas of the south central region combines seven collections of wind resource data: one for the region, and one for each of the six states (Arkansas, Kansas, Louisiana, Missouri, Oklahoma, and Texas). At the state level, features of the climate, topography, and wind resource are discussed in greater detail than that provided in the regional discussion, and the data locations on which the assessment is based are mapped. Variations, over several time scales, in the wind resource at selected stations in each state are shown on graphs of monthly average and interannual wind speed and power, and hourly average wind speed for each season. Other graphs present speed, direction, and duration frequencies of the wind at these locations.

  4. Wind resource characterization in the Arabian Peninsula

    KAUST Repository

    Yip, Chak Man Andrew; Gunturu, Udaya; Stenchikov, Georgiy L.

    2015-01-01

    Wind energy is expected to contribute to alleviating the rise in energy demand in the Middle East that is driven by population growth and industrial development. However, variability and intermittency in the wind resource present significant

  5. Planning and Development of Wind Farms: Wind Resource Assessment and Siting

    DEFF Research Database (Denmark)

    Mortensen, Niels Gylling

    These course notes are intended for the three-week course 45700 Planning and Development of Wind Farms given at the Technical University of Denmark. The purpose of the course notes is to give an introduction to wind resource assessment and siting issues using the WAsP suite of programs....

  6. Planning and Development of Wind Farms: Wind Resource Assessment and Siting

    DEFF Research Database (Denmark)

    Mortensen, Niels Gylling

    These course notes are intended for the three-week course 46200 Planning and Development of Wind Farms given at the Technical University of Denmark. The purpose of the course notes is to give an introduction to wind resource assessment and siting issues using the WAsP suite of programs....

  7. Characteristics for wind energy and wind turbines by considering vertical wind shear

    Institute of Scientific and Technical Information of China (English)

    郑玉巧; 赵荣珍

    2015-01-01

    The probability distributions of wind speeds and the availability of wind turbines were investigated by considering the vertical wind shear. Based on the wind speed data at the standard height observed at a wind farm, the power-law process was used to simulate the wind speeds at a hub height of 60 m. The Weibull and Rayleigh distributions were chosen to express the wind speeds at two different heights. The parameters in the model were estimated via the least square (LS) method and the maximum likelihood estimation (MLE) method, respectively. An adjusted MLE approach was also presented for parameter estimation. The main indices of wind energy characteristics were calculated based on observational wind speed data. A case study based on the data of Hexi area, Gansu Province of China was given. The results show that MLE method generally outperforms LS method for parameter estimation, and Weibull distribution is more appropriate to describe the wind speed at the hub height.

  8. Airfoil characteristics for wind turbines

    OpenAIRE

    Bak, C.; Fuglsang, P.; Sørensen, Niels N.; Aagaard Madsen, Helge; Shen, W.Z.; Sørensen, Jens Nørkær

    1999-01-01

    Airfoil characteristics for use in the Blade Element Momentum (BEM) method calculating the forces on Horizontal Axis Wind Turbines (HAWT) are derived by use of systematic methods. The investigation and derivation of the airfoil characteristics are basedon four different methods: 1) Inverse momentum theory, 2) Actuator disc theory, 3) Numerical optimisation and 4) Quasi-3D CFD computations. The two former methods are based on 3D CFD computations and wind tunnel measurements on a 41-m full-scal...

  9. Danish-Czech wind resource know-how transfer project. Interim report 2002

    Energy Technology Data Exchange (ETDEWEB)

    Rathmann, O.; Noergaerd, P.; Frandsen, S.

    2003-12-01

    The progress of the Danish-Czech Wind Resource Know-how Transfer Project is reported. The know-how transfer component of the project has consisted in performing a wind resource training workshop for about 13 individuals from the Czech Republic, ranging from scientists to wind farm project developers, and in donating modern software for evaluating wind resources. The project has also included a review of a Czech overview-study of wind speeds inside the country as well as a study of the electricity tariffs and their impact on wind energy utilization in the Czech Republic. A problematic existing Czech wind farm project, locked up in a no-production situation, was also addressed. However, this situation turned out to be related to problems with economy and owner-ship to a higher degree than to low wind resources and technical problems, and it was not possible for the project to point out a way out of this situation. (au)

  10. Danish-Czech wind resource know-how transfer project. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Rathmann, O.; Noergaerd, P.; Frandsen, S.

    2004-06-01

    The course of the Danish-Czech Wind Resource Know-how Transfer Project is reported. The know-how transfer component of the project has consisted in performing a wind resource training work-shop for about 13 individuals from the Czech Republic, ranging from scientists to wind farm project developers, and in donating modern software for evaluating wind resources. The project has also included a review of a Czech overview-study of wind speeds inside the country as well as an investigation of the electricity tariffs and their impact on wind energy utilization in the Czech Republic. A problematic existing Czech wind farm project, locked up in a no-production situation, was also addressed. Not until the purchase by a new owner-company, which initiated the necessary repair and maintenance, the wind farm resumed normal operation. As its last task, the present project assisted in consolidating future operation through a helping package consisting of a training course for the wind farm technicians and in a package of relevant spare parts. (au)

  11. Demand side resource operation on the Irish power system with high wind power penetration

    DEFF Research Database (Denmark)

    Keane, A.; Tuohy, A.; Meibom, Peter

    2011-01-01

    part of the power system plant mix and contribute to the flexible operation of a power system. A model for demand side resources is proposed here that captures its key characteristics for commitment and dispatch calculations. The model is tested on the all island Irish power system, and the operation...... of the functions of conventional peaking plant. Demand side resources are also shown to be capable of improving the reliability of the system, with reserve capability identified as a key requirement in this respect....... of the model is simulated over one year in both a stochastic and deterministic mode, to illustrate the impact of wind and load uncertainty. The results illustrate that demand side resources can contribute to the efficient, flexible operation of systems with high penetrations of wind by replacing some...

  12. Wind resource assessment: A three year experience

    Energy Technology Data Exchange (ETDEWEB)

    Al-Abbadi, N.M.; Alawaji, S.H.; Eugenio, N.N. [Energy Research Institute (ERI), Riyadh (Saudi Arabia)

    1997-12-31

    This paper presents the results of data collected from three different sites located in the central, northern and eastern region of Saudi Arabia. Each site is geographically and climatologically different from the others. Statistical moments and frequency distributions were generated for the wind speed and direction parameters to analyse the wind energy characteristics and its availability. The results of these statistical operations present the wind power and energy density estimates of the three sites. The data analysis presented a prospect of wind energy conversion and utilization. The annual extractable energy density is 488, 890, 599 kWh/m{sup 2} for the central, northern and eastern sites respectively. Also, the paper demonstrates the lessons learned from operating wind assessment stations installed in remote areas having different environmental characteristics.

  13. The wind resource assessment program in Quebec Canada

    Energy Technology Data Exchange (ETDEWEB)

    Kahawita, R.; Bilodeau, L.; Gaudette, M.; Gratton, Y.; Noel, R.; Quach, T.T.

    1982-09-01

    This paper provides an overview of the wind resource assessment programme undertaken by the provincial power utility Hydro-Quebec, in Quebec, Canada. The methodology used in different phases of the project is enunciated and explained and the results discussed. Supplementary studies of airflow over complex terrain using numerical modelling are described and the results evaluated. Since the program is still far from completion, conclusive statements cannot, at this time, be made about the viability of the wind energy resource. However, tentative conclusions are that wind energy as an alternate source of energy for the province is likely to be commerciaally viable since two of the most important requirements viz, the presence of a good wind regime and the availability of suitable land are satisfied in many regions.

  14. Applicability of Synthetic Aperture Radar Wind Retrievals on Offshore Wind Resources Assessment in Hangzhou Bay, China

    DEFF Research Database (Denmark)

    Chang, Rui; Zhu, Rong; Badger, Merete

    2014-01-01

    In view of the high cost and sparse spatial resolution of offshore meteorological observations, ocean winds retrieved from satellites are valuable in offshore wind resource assessment as a supplement to in situ measurements. This study examines satellite synthetic aperture radar (SAR) images from...... ENVISAT advanced SAR (ASAR) for mapping wind resources with high spatial resolution. Around 181 collected pairs of wind data from SAR wind maps and from 13 meteorological stations in Hangzhou Bay are compared. The statistical results comparing in situ wind speed and SAR-based wind speed show a standard...... density functions are compared at one meteorological station. The SAR-based results appear not to estimate the mean wind speed, Weibull scale and shape parameters and wind power density from the full in situ data set so well due to the lower number of satellite samples. Distributions calculated from...

  15. Estimation of wind and solar resources in Mali

    Energy Technology Data Exchange (ETDEWEB)

    Badger, J.; Kamissoko, F.; Olander Rasmussen, M.; Larsen, Soeren; Guidon, N.; Boye Hansen, L.; Dewilde, L.; Alhousseini, M.; Noergaard, P.; Nygaard, I.

    2012-11-15

    The wind resource has been estimated for all of Mali at 7.5 km resolution using the KAMM/WAsP numerical wind atlas methodology. Three domains were used to cover entire country and three sets of wind classes used to capture change in large scale forcing over country. The final output includes generalized climate statistics for any location in Mali, giving wind direction and wind speed distribution. The modelled generalized climate statistics can be used directly in the WAsP software. The preliminary results show a wind resource, which is relatively low, but which under certain conditions may be economically feasible, i.e. at favourably exposed sites, giving enhanced winds, and where practical utilization is possible, given consideration to grid connection or replacement or augmentation of diesel-based electricity systems. The solar energy resource for Mali was assessed for the period between July 2008 and June 2011 using a remote sensing based estimate of the down-welling surface shortwave flux. The remote sensing estimates were adjusted on a month-by-month basis to account for seasonal differences between the remote sensing estimates and in situ data. Calibration was found to improve the coefficient of determination as well as decreasing the mean error both for the calibration and validation data. Compared to the results presented in the ''Renewable energy resources in Mali - preliminary mapping''-report that showed a tendency for underestimation compared to data from the NASA PPOWER/SSE database, the presented results show a very good agreement with the in situ data (after calibration) with no significant bias. Unfortunately, the NASA-database only contains data up until 2005, so a similar comparison could not be done for the time period analyzed in this study, although the agreement with the historic NASA data is still useful as reference. (LN)

  16. Wind resource assessment in heterogeneous terrain

    Science.gov (United States)

    Vanderwel, C.; Placidi, M.; Ganapathisubramani, B.

    2017-03-01

    High-resolution particle image velocimetry data obtained in rough-wall boundary layer experiments are re-analysed to examine the influence of surface roughness heterogeneities on wind resource. Two different types of heterogeneities are examined: (i) surfaces with repeating roughness units of the order of the boundary layer thickness (Placidi & Ganapathisubramani. 2015 J. Fluid Mech. 782, 541-566. (doi:10.1017/jfm.2015.552)) and (ii) surfaces with streamwise-aligned elevated strips that mimic adjacent hills and valleys (Vanderwel & Ganapathisubramani. 2015 J. Fluid Mech. 774, 1-12. (doi:10.1017/jfm.2015.228)). For the first case, the data show that the power extraction potential is highly dependent on the surface morphology with a variation of up to 20% in the available wind resource across the different surfaces examined. A strong correlation is shown to exist between the frontal and plan solidities of the rough surfaces and the equivalent wind speed, and hence the wind resource potential. These differences are also found in profiles of graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="RSTA20160109IM1"/> and graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="RSTA20160109IM2"/> (where U is the streamwise velocity), which act as proxies for thrust and power output. For the second case, the secondary flows that cause low- and high-momentum pathways when the spacing between adjacent hills is beyond a critical value result in significant variations in wind resource availability. Contour maps of graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="RSTA20160109IM3"/> and graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="RSTA20160109IM4"/> show a large difference in thrust and power potential (over 50%) between hills and valleys (at a fixed vertical height). These variations do not seem to be present when adjacent hills are close to each other (i.e. when the spacing is much less than the boundary layer thickness). The

  17. Wake characteristics of wind turbines in utility-scale wind farms

    Science.gov (United States)

    Yang, Xiaolei; Foti, Daniel; Sotiropoulos, Fotis

    2017-11-01

    The dynamics of turbine wakes is affected by turbine operating conditions, ambient atmospheric turbulent flows, and wakes from upwind turbines. Investigations of the wake from a single turbine have been extensively carried out in the literature. Studies on the wake dynamics in utility-scale wind farms are relatively limited. In this work, we employ large-eddy simulation with an actuator surface or actuator line model for turbine blades to investigate the wake dynamics in utility-scale wind farms. Simulations of three wind farms, i.e., the Horns Rev wind farm in Denmark, Pleasant Valley wind farm in Minnesota, and the Vantage wind farm in Washington are carried out. The computed power shows a good agreement with measurements. Analysis of the wake dynamics in the three wind farms is underway and will be presented in the conference. This work was support by Xcel Energy (RD4-13). The computational resources were provided by National Renewable Energy Laboratory.

  18. Bird flight characteristics near wind turbines in Minnesota

    Science.gov (United States)

    Osborn, R.G.; Dieter, C.D.; Higgins, K.F.; Usgaard, R.E.

    1998-01-01

    During 1994-1995, we saw 70 species of birds on the Buffalo Ridge Wind Resource Area. In both years bird abundance peaked in spring. Red-winged blackbirds (Agelaius phoeniceus), mallards (Anas platyrhynchos), common grackles (Quiscalus quiscula), and barn swallows (Hirundo rustica) were the species most commonly seen. Most birds (82-84%) flew above or below the height range of wind turbine blades (22-55 m). The Buffalo Ridge Wind Resource Area poses little threat to resident or migrating birds at its current operating level.

  19. Wind energy resource atlas. Volume 8. The southern Rocky Mountain region

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, S.R.; Freeman, D.L.; Hadley, D.L.; Elliott, D.L.; Barchet, W.R.; George, R.L.

    1981-03-01

    The Southern Rocky Mountain atlas assimilates five collections of wind resource data: one for the region and one for each of the four states that compose the Southern Rocky Mountain region (Arizona, Colorado, New Mexico, and Utah). At the state level, features of the climate, topography and wind resource are discussed in greater detail than is provided in the regional discussion, and the data locations on which the assessment is based are mapped. Variations, over several time scales, in the wind resource at selected stations in each state are shown on graphs of monthly average and interannual wind speed and power, and hourly average wind speed for each season. Other graphs present speed, direction, and duration frequencies of the wind at these locations.

  20. Could Crop Height Affect the Wind Resource at Agriculturally Productive Wind Farm Sites?

    Science.gov (United States)

    Vanderwende, Brian; Lundquist, Julie K.

    2016-03-01

    The collocation of cropland and wind turbines in the US Midwest region introduces complex meteorological interactions that could influence both agriculture and wind-power production. Crop management practices may affect the wind resource through alterations of land-surface properties. We use the weather research and forecasting (WRF) model to estimate the impact of crop height variations on the wind resource in the presence of a large turbine array. A hypothetical wind farm consisting of 121 1.8-MW turbines is represented using the WRF model wind-farm parametrization. We represent the impact of selecting soybeans rather than maize by altering the aerodynamic roughness length in a region approximately 65 times larger than that occupied by the turbine array. Roughness lengths of 0.1 and 0.25 m represent the mature soy crop and a mature maize crop, respectively. In all but the most stable atmospheric conditions, statistically significant hub-height wind-speed increases and rotor-layer wind-shear reductions result from switching from maize to soybeans. Based on simulations for the entire month of August 2013, wind-farm energy output increases by 14 %, which would yield a significant monetary gain. Further investigation is required to determine the optimal size, shape, and crop height of the roughness modification to maximize the economic benefit and minimize the cost of such crop-management practices. These considerations must be balanced by other influences on crop choice such as soil requirements and commodity prices.

  1. An Improved Global Wind Resource Estimate for Integrated Assessment Models: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Eurek, Kelly [National Renewable Energy Lab. (NREL), Golden, CO (United States); Sullivan, Patrick [National Renewable Energy Lab. (NREL), Golden, CO (United States); Gleason, Michael [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hettinger, Dylan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Heimiller, Donna [National Renewable Energy Lab. (NREL), Golden, CO (United States); Lopez, Anthony [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-02-01

    This paper summarizes initial steps to improving the robustness and accuracy of global renewable resource and techno-economic assessments for use in integrated assessment models. We outline a method to construct country-level wind resource supply curves, delineated by resource quality and other parameters. Using mesoscale reanalysis data, we generate estimates for wind quality, both terrestrial and offshore, across the globe. Because not all land or water area is suitable for development, appropriate database layers provide exclusions to reduce the total resource to its technical potential. We expand upon estimates from related studies by: using a globally consistent data source of uniquely detailed wind speed characterizations; assuming a non-constant coefficient of performance for adjusting power curves for altitude; categorizing the distance from resource sites to the electric power grid; and characterizing offshore exclusions on the basis of sea ice concentrations. The product, then, is technical potential by country, classified by resource quality as determined by net capacity factor. Additional classifications dimensions are available, including distance to transmission networks for terrestrial wind and distance to shore and water depth for offshore. We estimate the total global wind generation potential of 560 PWh for terrestrial wind with 90% of resource classified as low-to-mid quality, and 315 PWh for offshore wind with 67% classified as mid-to-high quality. These estimates are based on 3.5 MW composite wind turbines with 90 m hub heights, 0.95 availability, 90% array efficiency, and 5 MW/km2 deployment density in non-excluded areas. We compare the underlying technical assumption and results with other global assessments.

  2. Wind power in Scotland - a critique of recent resource assessments

    International Nuclear Information System (INIS)

    Twidell, J.W.

    1995-01-01

    A critical analysis of 4 recent UK official reports relating to the renewable energy resources of Scotland, particularly the large wind resource, and including institutional and economic factors. Key points are listed with comments for use in supporting wind power developments. (Author)

  3. Remapping of the Wind Energy Resource in the Midwestern United States: Preprint

    International Nuclear Information System (INIS)

    Schwartz, M.; Elliot, D.

    2001-01-01

    A recent increase in interest and development of wind energy in the Midwestern United States has focused the need for updating wind resource maps of this area. The wind resource assessment group at the National Renewable Energy Lab., a U.S. Department of Energy (DOE) laboratory, has produced updated high-resolution (1-km) wind resource maps for several states in this region. This abstract describes the computerized tools and methodology used by NREL to create the higher resolution maps

  4. Stochastic Prediction of Wind Generating Resources Using the Enhanced Ensemble Model for Jeju Island’s Wind Farms in South Korea

    Directory of Open Access Journals (Sweden)

    Deockho Kim

    2017-05-01

    Full Text Available Due to the intermittency of wind power generation, it is very hard to manage its system operation and planning. In order to incorporate higher wind power penetrations into power systems that maintain secure and economic power system operation, an accurate and efficient estimation of wind power outputs is needed. In this paper, we propose the stochastic prediction of wind generating resources using an enhanced ensemble model for Jeju Island’s wind farms in South Korea. When selecting the potential sites of wind farms, wind speed data at points of interest are not always available. We apply the Kriging method, which is one of spatial interpolation, to estimate wind speed at potential sites. We also consider a wind profile power law to correct wind speed along the turbine height and terrain characteristics. After that, we used estimated wind speed data to calculate wind power output and select the best wind farm sites using a Weibull distribution. Probability density function (PDF or cumulative density function (CDF is used to estimate the probability of wind speed. The wind speed data is classified along the manufacturer’s power curve data. Therefore, the probability of wind speed is also given in accordance with classified values. The average wind power output is estimated in the form of a confidence interval. The empirical data of meteorological towers from Jeju Island in Korea is used to interpolate the wind speed data spatially at potential sites. Finally, we propose the best wind farm site among the four potential wind farm sites.

  5. Wind Shear Characteristics at Central Plains Tall Towers (presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Schwartz, M.; Elliott, D.

    2006-06-05

    The objectives of this report are: (1) Analyze wind shear characteristics at tall tower sites for diverse areas in the central plains (Texas to North Dakota)--Turbines hub heights are now 70-100 m above ground and Wind measurements at 70-100+ m have been rare. (2) Present conclusions about wind shear characteristics for prime wind energy development regions.

  6. Opportunities for wind resources in the future competitive California power market

    International Nuclear Information System (INIS)

    Sezgen, O.; Marnay, C.; Bretz, S.; Markel, R.; Wiser, R.

    1998-01-01

    The goal of this work is to evaluate the profitability of wind development in the future competitive California power market. The viability of possible wind sites is assessed using a geographic information system (GIS) to determine the cost of development and Elfin, an electric utility production costing and capacity expansion model, to estimate the possible revenues and profits of wind farms at the sites. This approach improves on a simple profitability calculation by using site specific development cost calculations and by taking the effect of time varying market prices on revenues into account. The first component of the work is the characterization of wind resources suitable for use in production costing and capacity expansion models such as Elfin that are capable of simulating competitive electricity markets. An improved representation of California wind resources is built, using information collected by the California Energy Commission in previous site evaluations, and by using a GIS approach to estimating development costs at 36 specific sites. These sites, which have been identified as favorable for wind development, are placed on Digital Elevation Models and development costs are calculated based on distances to roads and transmission lines. GIS is also used to develop the potential capacity at each site by making use of the physical characteristics of the terrain, such as ridge lengths. In the second part of the effort, using a previously developed algorithm for simulating competitive entry to the California electricity market, Elfin is used to gauge the viability of wind farms at the 36 sites. The results of this exercise are forecasts of profitable development levels at each site and the effects of these developments on the electricity system as a whole. Results suggest that by the year 2030, about 7.5 GW of potential wind capacity can be profitably developed assuming rising natural gas prices. This example demonstrates that an analysis based on a

  7. Wind resource modelling for micro-siting - Validation at a 60-MW wind farm site

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, J C; Gylling Mortensen, N [Risoe National Lab., Wind Energy and Atmospheric Physics Dept., Roskilde (Denmark); Said, U S [New and Renewable Energy Authority, Cairo (Egypt)

    1999-03-01

    This paper investigates and validates the applicability of the WAsP-model for layout optimization and micro-siting of wind turbines at a given site for a 60-MW wind farm at Zafarana at the Gulf of Suez in Egypt. Previous investigations show large gradients in the wind climate within the area. For the design and optimization of the wind farm it was found necessary to verify the WAsP extrapolation of wind atlas results from 2 existing meteorological masts located 5 and 10 km, respectively, from the wind farm site. On-site measurements at the 3.5 x 3.5 km{sup 2} wind farm site in combination with 7 years of near-site wind atlas measurements offer significant amounts of data for verification of wind conditions for micro-siting. Wind speeds, wind directions, turbulence intensities and guests in 47.5 m a.g.l. have been measured at 9 locations across the site. Additionally, one of the site masts is equipped as a reference mast, measuring both vertical profiles of wind speed and temperature as well as air pressure and temperature. The exercise is further facilitated by the fact that winds are highly uni-directional; the north direction accounting for 80-90% of the wind resource. The paper presents comparisons of 5 months of on-site measurements and modeled predictions from 2 existing meteorological masts located at distances of 5 and 10 km, respectively, from the wind farm site. Predictions based on terrain descriptions of the Wind Atlas for the Gulf of Suez 1991-95 showed over-predictions of wind speeds of 4-10%. With calibrated terrain descriptions, made based on measured data and a re-visit to critical parts of the terrain, the average prediction error of wind speeds was reduced to about 1%. These deviations are smaller than generally expected for such wind resource modeling, clearly documenting the validity of using WAsP modeling for micro-siting and layout optimization of the wind farm. (au)

  8. Wind Energy Resource Atlas. Volume 11. Hawaii and Pacific Islands Region

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, T.A.; Hori, A.M.; Elliott, D.L.; Barchet, W.R.; George, R.L.

    1981-02-01

    This atlas of the wind energy resource is composed of introductory and background information, and assessments of the wind resource in each division of the region. Background on how the wind resource is assessed and on how the results of the assessment should be inerpreted is presented. An introduction and outline to the descriptions of the wind resource for each division are provided. Assessments for individual divisions are presented as separate chapters. Much of the information in the division chapters is given in graphic or tabular form. The sequences for each chapter are similar, but some presentations used for Hawaii are inappropriate or impractical for presentation with the Pacific Islands. Hawaii chapter figure and tables are cited below and appropriate Pacific Islands figure and table numbers are included in brackets ().

  9. Wind resource assessment using the WAsP software (DTU Wind Energy E-0135)

    DEFF Research Database (Denmark)

    Mortensen, Niels Gylling

    These course notes are intended for the three-week course 46200 Planning and Development of Wind Farms given each year at the Technical University of Denmark. The purpose of the course notes is to give an introduction to wind resource assessment and siting issues using the WAsP suite of programs....

  10. Airfoil characteristics for wind turbines

    DEFF Research Database (Denmark)

    Bak, C.; Fuglsang, P.; Sørensen, Niels N.

    1999-01-01

    Airfoil characteristics for use in the Blade Element Momentum (BEM) method calculating the forces on Horizontal Axis Wind Turbines (HAWT) are derived by use of systematic methods. The investigation and derivation of the airfoil characteristics are basedon four different methods: 1) Inverse momentum...... theory, 2) Actuator disc theory, 3) Numerical optimisation and 4) Quasi-3D CFD computations. The two former methods are based on 3D CFD computations and wind tunnel measurements on a 41-m full-scale rotorwith LM 19.1 blades. The derived airfoil characteristics show that the lift coefficient in stall...... to a commonly used set of airfoil characteristics. The numerical optimisation is based on both the 3D CFDcomputations and measurements on a 41-m rotor with LM 19.1 and LM 19.0 blades, respectively. The method requires power and loads from a turbine and is promising since a set of lift and drag curves is derived...

  11. Satellite based wind resource assessment over the South China Sea

    DEFF Research Database (Denmark)

    Badger, Merete; Astrup, Poul; Hasager, Charlotte Bay

    2014-01-01

    variations are clearly visible across the domain; for instance sheltering effects caused by the land masses. The satellite based wind resource maps have two shortcomings. One is the lack of information at the higher vertical levels where wind turbines operate. The other is the limited number of overlapping...... years of WRF data – specifically the parameters heat flux, air temperature, and friction velocity – are used to calculate a long-term correction for atmospheric stability effects. The stability correction is applied to the satellite based wind resource maps together with a vertical wind profile...... from satellite synthetic aperture radar (SAR) data are particularly suitable for offshore wind energy applications because they offer a spatial resolution up to 500 m and include coastal seas. In this presentation, satellite wind maps are used in combination with mast observations and numerical...

  12. Applicability of Synthetic Aperture Radar Wind Retrievals on Offshore Wind Resources Assessment in Hangzhou Bay, China

    Directory of Open Access Journals (Sweden)

    Rui Chang

    2014-05-01

    Full Text Available In view of the high cost and sparse spatial resolution of offshore meteorological observations, ocean winds retrieved from satellites are valuable in offshore wind resource assessment as a supplement to in situ measurements. This study examines satellite synthetic aperture radar (SAR images from ENVISAT advanced SAR (ASAR for mapping wind resources with high spatial resolution. Around 181 collected pairs of wind data from SAR wind maps and from 13 meteorological stations in Hangzhou Bay are compared. The statistical results comparing in situ wind speed and SAR-based wind speed show a standard deviation (SD of 1.99 m/s and correlation coefficient of R = 0.67. The model wind directions, which are used as input for the SAR wind speed retrieval, show a high correlation coefficient (R = 0.89 but a large standard deviation (SD = 42.3° compared to in situ observations. The Weibull probability density functions are compared at one meteorological station. The SAR-based results appear not to estimate the mean wind speed, Weibull scale and shape parameters and wind power density from the full in situ data set so well due to the lower number of satellite samples. Distributions calculated from the concurrent 81 SAR and in situ samples agree well.

  13. Wake flow characteristics at high wind speed

    DEFF Research Database (Denmark)

    Aagaard Madsen, Helge; Larsen, Torben J.; Larsen, Gunner Chr.

    2016-01-01

    Wake flow characteristic at high wind speeds is the main subject of this paper. Although the wake losses decrease at high wind speeds it has been found in a recent study that for multiple wake inflow the increase in loading due to wake effects are substantial even at wind speeds well above rated ...

  14. Prediction of Wind Energy Resources (PoWER) Users Guide

    Science.gov (United States)

    2016-01-01

    ARL-TR-7573● JAN 2016 US Army Research Laboratory Prediction of Wind Energy Resources (PoWER) User’s Guide by David P Sauter...manufacturer’s or trade names does not constitute an official endorsement or approval of the use thereof. Destroy this report when it is no longer needed. Do...not return it to the originator. ARL-TR-7573 ● JAN 2016 US Army Research Laboratory Prediction of Wind Energy Resources (PoWER

  15. Current limiting characteristics of transformer type SFCL with coupled secondary windings according to its winding direction

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Sung Hun [Dept. of Electrical Engineering, Soongsil University, Seoul (Korea, Republic of); Han, Tae Hee [Dept. of Aero Materials Engineering, Jungwon University, Goesan (Korea, Republic of)

    2017-06-15

    In this paper, the current limiting characteristics of the transformer type superconducting fault current limiter (SFCL) with the two coupled secondary windings due to its winding direction were analyzed. To analyze the dependence of transient fault current limiting characteristics on the winding direction of the additional secondary winding, the fault current limiting tests of the SFCL with an additional secondary winding, wound as subtractive polarity winding and additive polarity winding, were carried out. The time interval of quench occurrence between two superconducting elements comprising the transformer type SFCL with the additional secondary winding was confirmed to be affected by the winding direction of the additional secondary winding. In case of the subtractive polarity winding of the additional secondary winding, the time interval of the quench occurrence in two superconducting elements was shorter than the case of the additive polarity winding.

  16. Current limiting characteristics of transformer type SFCL with coupled secondary windings according to its winding direction

    International Nuclear Information System (INIS)

    Lim, Sung Hun; Han, Tae Hee

    2017-01-01

    In this paper, the current limiting characteristics of the transformer type superconducting fault current limiter (SFCL) with the two coupled secondary windings due to its winding direction were analyzed. To analyze the dependence of transient fault current limiting characteristics on the winding direction of the additional secondary winding, the fault current limiting tests of the SFCL with an additional secondary winding, wound as subtractive polarity winding and additive polarity winding, were carried out. The time interval of quench occurrence between two superconducting elements comprising the transformer type SFCL with the additional secondary winding was confirmed to be affected by the winding direction of the additional secondary winding. In case of the subtractive polarity winding of the additional secondary winding, the time interval of the quench occurrence in two superconducting elements was shorter than the case of the additive polarity winding

  17. Wind Energy

    International Nuclear Information System (INIS)

    Rodriguez D, J.M.

    1998-01-01

    The general theory of the wind energy conversion systems is presented. The availability of the wind resource in Colombia and the ranges of the speed of the wind in those which is possible economically to use the wind turbines are described. It is continued with a description of the principal technological characteristics of the wind turbines and are split into wind power and wind-powered pumps; and its use in large quantities grouped in wind farms or in autonomous systems. Finally, its costs and its environmental impact are presented

  18. Small Wind Site Assessment Guidelines

    Energy Technology Data Exchange (ETDEWEB)

    Olsen, Tim [Advanced Energy Systems LLC, Eugene, OR (United States); Preus, Robert [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-09-01

    Site assessment for small wind energy systems is one of the key factors in the successful installation, operation, and performance of a small wind turbine. A proper site assessment is a difficult process that includes wind resource assessment and the evaluation of site characteristics. These guidelines address many of the relevant parts of a site assessment with an emphasis on wind resource assessment, using methods other than on-site data collection and creating a small wind site assessment report.

  19. The value of co-locating energy storage with wind resources

    Energy Technology Data Exchange (ETDEWEB)

    Fox, C. [Victoria Univ., BC (Canada). Inst. for Integrated Energy Systems

    2010-07-01

    This PowerPoint presentation discussed the value of wind energy storage systems. The systems can be used to downsize transmission requirements and to minimize reliability and forecast uncertainty. Revenue factors in relation to wind power energy storage are determined by the amount of wind power produced each hour with the wind farm capacity and hourly electricity price. Case studies of a wind farm in Ontario over a period of 20 years were used to determine capacity and revenue factors as well as gross revenues. The maximum revenue factor was determined by multiplying the greatest wind energy output by the highest electricity prices. A hybrid wind farm energy storage system was designed to determine energy storage discharges and charges to and from the grid at pool prices. The method allowed for time-shifts in wind generation resources and downsized transmission requirements for remote resources. The mixed integer linear program model co-optimized revenues from the wind farm and the energy storage facility. Combined output was constrained to the transmission capacity. Transmission losses were neglected, and capital costs were considered. Future studies are needed to determine levelized electricity costs under different load growth scenarios. tabs., figs.

  20. Computer modelling of the UK wind energy resource: UK wind speed data package and user manual

    Energy Technology Data Exchange (ETDEWEB)

    Burch, S F; Ravenscroft, F

    1993-12-31

    A software package has been developed for IBM-PC or true compatibles. It is designed to provide easy access to the results of a programme of work to estimate the UK wind energy resource. Mean wind speed maps and quantitative resource estimates were obtained using the NOABL mesoscale (1 km resolution) numerical model for the prediction of wind flow over complex terrain. NOABL was used in conjunction with digitised terrain data and wind data from surface meteorological stations for a ten year period (1975-1984) to provide digital UK maps of mean wind speed at 10m, 25m and 45m above ground level. Also included in the derivation of these maps was the use of the Engineering Science Data Unit (ESDU) method to model the effect on wind speed of the abrupt change in surface roughness that occurs at the coast. With the wind speed software package, the user is able to obtain a display of the modelled wind speed at 10m, 25m and 45m above ground level for any location in the UK. The required co-ordinates are simply supplied by the user, and the package displays the selected wind speed. This user manual summarises the methodology used in the generation of these UK maps and shows computer generated plots of the 25m wind speeds in 200 x 200 km regions covering the whole UK. The uncertainties inherent in the derivation of these maps are also described, and notes given on their practical usage. The present study indicated that 23% of the UK land area had speeds over 6 m/s, with many hill sites having 10m speeds over 10 m/s. It is concluded that these `first order` resource estimates represent a substantial improvement over the presently available `zero order` estimates. (18 figures, 3 tables, 6 references). (author)

  1. Review of Methodologies for Offshore Wind Resource Assessment in European Seas

    DEFF Research Database (Denmark)

    Sempreviva, Anna Maria; Barthelmie, Rebecca Jane; Pryor, Sara

    2008-01-01

    promising wind farm sites and (ii) a site specific evaluation of wind climatology and vertical profiles of wind and atmospheric turbulence, in addition to an assessment of historical and possibly future changes due to climate non-stationarity. Phase (i) of the process can involve use of in situ observations......The wind resource offshore is generally larger than at geographically nearby onshore sites, which can offset the higher installation, operation and maintenance costs associated with offshore wind parks. Successful offshore wind energy development relies to some extent on accurate prediction of wind......) of the project often still requires in situ observations (which may or may not be supplemented with ground-based remote sensing technologies) and application of tools to provide a climatological context for the resulting measurements. Current methodologies for undertaking these aspects of the resource assessment...

  2. A CASE STUDY OF CHINA ́S WIND POWER RESOURCES

    Directory of Open Access Journals (Sweden)

    Xue Yanping

    2013-11-01

    Full Text Available At present, China is the largest energy producer and the second largest energy consumer in the world. With the increasing pressure to cut GHS emissions and to improve energy efficiency, China is now changing its traditional energy mix, mainly through consuming more renewable energy instead of fossil energy. This change has resulted in a policy adjustment which in turn boosts the utilization of the wind power resources. However, the development of the wind power resources in China is confronted with some significant challenges, such as greater installed electricity capacity than the electricity generation, greater electricity generation than the electricity transmission capacity and greater inland wind power generation than the offshore wind power generation. Therefore, the further development of China’s wind power electricity in the coming years depends largely on the ways these challenges will be addressed.

  3. The Wind Integration National Dataset (WIND) toolkit (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Caroline Draxl: NREL

    2014-01-01

    Regional wind integration studies require detailed wind power output data at many locations to perform simulations of how the power system will operate under high penetration scenarios. The wind datasets that serve as inputs into the study must realistically reflect the ramping characteristics, spatial and temporal correlations, and capacity factors of the simulated wind plants, as well as being time synchronized with available load profiles.As described in this presentation, the WIND Toolkit fulfills these requirements by providing a state-of-the-art national (US) wind resource, power production and forecast dataset.

  4. Wind resources at turbine height from Envisat and Sentinel-1 SAR

    DEFF Research Database (Denmark)

    Badger, Merete; Hasager, Charlotte Bay; Pena Diaz, Alfredo

    for the standard output level of 10 m above the sea surface. This presentation demonstrates the effects of two recent improvements related to satellite-based wind resource mapping: 1) The number of satellite samples has increased dramatically since the launch of Sentinel-1A/B 2) A new method looks promising...... National Ice Center. Once the instantaneous wind maps are stored in our database, they can be organized as time series in order to calculate wind resources for any point location or area. Since the time series comprises data from both Envisat and Sentinel-1, a check of the data calibration against one....... To extrapolate the 10-m wind resource maps from SAR to higher levels within the atmospheric boundary layer, we estimate a wind profile for each grid cell in the maps. Simulations from the Weather Research and Forecasting (WRF) model are used to correct this profile for long-term atmospheric stability effects...

  5. Forecastability as a Design Criterion in Wind Resource Assessment: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, J.; Hodge, B. M.

    2014-04-01

    This paper proposes a methodology to include the wind power forecasting ability, or 'forecastability,' of a site as a design criterion in wind resource assessment and wind power plant design stages. The Unrestricted Wind Farm Layout Optimization (UWFLO) methodology is adopted to maximize the capacity factor of a wind power plant. The 1-hour-ahead persistence wind power forecasting method is used to characterize the forecastability of a potential wind power plant, thereby partially quantifying the integration cost. A trade-off between the maximum capacity factor and the forecastability is investigated.

  6. Demand side resource operation on the Irish power system with high wind power penetration

    International Nuclear Information System (INIS)

    Keane, A.; Tuohy, A.; Meibom, P.; Denny, E.; Flynn, D.; Mullane, A.; O'Malley, M.

    2011-01-01

    The utilisation of demand side resources is set to increase over the coming years with the advent of advanced metering infrastructure, home area networks and the promotion of increased energy efficiency. Demand side resources are proposed as an energy resource that, through aggregation, can form part of the power system plant mix and contribute to the flexible operation of a power system. A model for demand side resources is proposed here that captures its key characteristics for commitment and dispatch calculations. The model is tested on the all island Irish power system, and the operation of the model is simulated over one year in both a stochastic and deterministic mode, to illustrate the impact of wind and load uncertainty. The results illustrate that demand side resources can contribute to the efficient, flexible operation of systems with high penetrations of wind by replacing some of the functions of conventional peaking plant. Demand side resources are also shown to be capable of improving the reliability of the system, with reserve capability identified as a key requirement in this respect. - Highlights: → Demand side resource model presented for use in unit commitment and dispatch calculations. → Benefits of demand side aggregation demonstrated specifically as a peaking unit and provider of reserve. → Potential to displace or defer construction of conventional peaking units.

  7. Potential for Development of Solar and Wind Resource in Bhutan

    Energy Technology Data Exchange (ETDEWEB)

    Gilman, P.; Cowlin, S.; Heimiller, D.

    2009-09-01

    With support from the U.S. Agency for International Development (USAID), the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) produced maps and data of the wind and solar resources in Bhutan. The solar resource data show that Bhutan has an adequate resource for flat-plate collectors, with annual average values of global horizontal solar radiation ranging from 4.0 to 5.5 kWh/m2-day (4.0 to 5.5 peak sun hours per day). The information provided in this report may be of use to energy planners in Bhutan involved in developing energy policy or planning wind and solar projects, and to energy analysts around the world interested in gaining an understanding of Bhutan's wind and solar energy potential.

  8. Development of distributed topographical forecasting model for wind resource assessment using artificial neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Narayana, P.B. [Green Life Energy Solutions LLP, Secunderabad (India); Rao, S.S. [National Institute of Technology. Dept. of Mechanical Engineering, Warangal (India); Reddy, K.H. [JNT Univ.. Dept. of Mechanical Engineering, Anantapur (India)

    2012-07-01

    Economics of wind power projects largely depend on the availability of wind power density. Wind resource assessment is a study estimating wind speeds and wind power densities in the region under consideration. The accuracy and reliability of data sets comprising of wind speeds and wind power densities at different heights per topographic region characterized by elevation or mean sea level, is important for wind power projects. Indian Wind Resource Assessment program conducted in 80's consisted of wind data measured by monitoring stations at different topographies in order to measure wind power density values at 25 and 50 meters above the ground level. In this paper, an attempt has been made to assess wind resource at a given location using artificial neural networks. Existing wind resource data has been used to train the neural networks. Location topography (characterized by longitude, latitude and mean sea level), air density, mean annual wind speed (MAWS) are used as inputs to the neural network. Mean annual wind power density (MAWPD) in watt/m{sup 2} is predicted for a new topographic location. Simple back propagation based neural network has been found to be sufficient for predicting these values with suitable accuracy. This model is closely linked to the problem of wind energy forecasting considering the variations of specific atmospheric variables with time horizons. This model will help the wind farm developers to have an initial estimation of the wind energy potential at a particular topography. (Author)

  9. A detailed and verified wind resource atlas for Denmark

    Energy Technology Data Exchange (ETDEWEB)

    Mortensen, N G; Landberg, L; Rathmann, O; Nielsen, M N [Risoe National Lab., Roskilde (Denmark); Nielsen, P [Energy and Environmental Data, Aalberg (Denmark)

    1999-03-01

    A detailed and reliable wind resource atlas covering the entire land area of Denmark has been established. Key words of the methodology are wind atlas analysis, interpolation of wind atlas data sets, automated generation of digital terrain descriptions and modelling of local wind climates. The atlas contains wind speed and direction distributions, as well as mean energy densities of the wind, for 12 sectors and four heights above ground level: 25, 45, 70 and 100 m. The spatial resolution is 200 meters in the horizontal. The atlas has been verified by comparison with actual wind turbine power productions from over 1200 turbines. More than 80% of these turbines were predicted to within 10%. The atlas will become available on CD-ROM and on the Internet. (au)

  10. Preliminary study of long-term wind characteristics of the Mexican Yucatan Peninsula

    International Nuclear Information System (INIS)

    Soler-Bientz, Rolando; Watson, Simon; Infield, David

    2009-01-01

    Mexico's Yucatan Peninsula is one of the most promising areas for wind energy development within the Latin American region but no comprehensive assessment of wind resource has been previously published. This research presents a preliminary analysis of the meteorological parameters relevant to the wind resource in order to find patterns in their long-term behaviour and to establish a foundation for subsequent research into the wind power potential of the Yucatan Peninsula. Three meteorological stations with data measured for a period between 10 and 20 years were used in this study. The monthly trends of ambient temperature, atmospheric pressure and wind speed data were identified and are discussed. The directional behaviour of the winds, their frequency distributions and the related Weibull parameters are presented. Wind power densities for the study sites have been estimated and have been shown to be relatively low (wind power class 1), though a larger number of suitable sites needs to be studied before a definitive resource evaluation can be reported.

  11. Wind power in Eritrea, Africa: A preliminary resource assessment

    Energy Technology Data Exchange (ETDEWEB)

    Garbesi, K.; Rosen, K. [San Jose State Univ., CA (United States); Van Buskirk, R. [Dept. of Energy, Eritrea (Ethiopia)

    1997-12-31

    The authors preliminary assessment of Eritrean wind energy potential identified two promising regions: (1) the southeastern Red Sea coast and (2) the mountain passes that channel winds between the coastal lowlands and the interior highlands. The coastal site, near the port city of Aseb, has an exceptionally good resource, with estimated average annual wind speeds at 10-m height above 9 m/s at the airport and 7 m/s in the port. Furthermore, the southern 200 km of coastline has offshore WS{sub aa} > 6 m/s. This area has strong potential for development, having a local 20 MW grid and unmet demand for the fishing industry and development. Although the highland sites contain only marginal wind resources ({approximately} 5 m/s), they warrant further investigation because of their proximity to the capital city, Asmera, which has the largest unmet demand and a larger power grid (40 MW with an additional 80 MW planned) to absorb an intermittent source without storage.

  12. Development of Regional Wind Resource and Wind Plant Output Datasets for the Hawaiian Islands

    Energy Technology Data Exchange (ETDEWEB)

    Manobianco, J.; Alonge, C.; Frank, J.; Brower, M.

    2010-07-01

    In March 2009, AWS Truepower was engaged by the National Renewable Energy Laboratory (NREL) to develop a set of wind resource and plant output data for the Hawaiian Islands. The objective of this project was to expand the methods and techniques employed in the Eastern Wind Integration and Transmission Study (EWITS) to include the state of Hawaii.

  13. A comprehensive measure of the energy resource: Wind power potential (WPP)

    International Nuclear Information System (INIS)

    Zhang, Jie; Chowdhury, Souma; Messac, Achille

    2014-01-01

    Highlights: • A more comprehensive metric is developed to accurately assess the quality of wind resources at a site. • WPP exploits the joint distribution of wind speed and direction, and yields more credible estimates. • WPP investigates the effect of wind distribution on the optimal net power generation of a farm. • The results show that WPD and WPP follow different trends. - Abstract: Currently, the quality of available wind energy at a site is assessed using wind power density (WPD). This paper proposes to use a more comprehensive metric: the wind power potential (WPP). While the former accounts for only wind speed information, the latter exploits the joint distribution of wind speed and wind direction and yields more credible estimates. The WPP investigates the effect of wind velocity distribution on the optimal net power generation of a farm. A joint distribution of wind speed and direction is used to characterize the stochastic variation of wind conditions. Two joint distribution methods are adopted in this paper: bivariate normal distribution and anisotropic lognormal method. The net power generation for a particular farmland size and installed capacity is maximized for different distributions of wind speed and wind direction, using the Unrestricted Wind Farm Layout Optimization (UWFLO) framework. A response surface is constructed to represent the computed maximum wind farm capacity factor as a function of the parameters of the wind distribution. Two different response surface methods are adopted in this paper: (i) the adaptive hybrid functions (AHF), and (ii) the quadratic response surface method (QRSM). Toward this end, for any farm site, we can (i) estimate the parameters of the joint distribution using recorded wind data (for bivariate normal or anisotropic lognormal distributions) and (ii) predict the maximum capacity factor for a specified farm size and capacity using this response surface. The WPP metric is illustrated using recorded wind

  14. The Use of Reanalysis Data for Wind Resource Assessment at the National Renewable Energy Laboratory

    International Nuclear Information System (INIS)

    Elliott, D.; Schwartz, M.; George, R.

    1999-01-01

    An important component of the National Renewable Energy Laboratory wind resource assessment methodology is the use of available upper-air data to construct detailed vertical profiles for a study region. Currently, the most useful upper-air data for this type of analysis are archived observations from approximately 1800 rawinsonde and pilot balloon stations worldwide. However, significant uncertainty exists in the accuracy of the constructed profiles for many regions. The United States Reanalysis Data Set, recently created by the National Center for Atmospheric Research and the National Centers for Environmental Prediction, has the potential to improve the quality of the vertical profiles. The initial evaluation of the usefulness of the Reanalysis data for wind resource assessment consisted of contrasting reanalysis-derived vertical profiles of the wind characteristics to those generated from upper-air observations for comparable locations. The results indicate that, while reanalysis data can be substituted for upper-air observation data in the assessment methodology for areas of the world where observation data are limited, enough discrepancies with observation data have been noticed to warrant further studies

  15. Wind Resource Assessment in Abadan Airport in Iran

    Directory of Open Access Journals (Sweden)

    Mojtaba Nedaei

    2012-11-01

    Full Text Available Renewable energies have potential for supplying of relatively clean and mostly local energy. Wind energy generation is expected to increase in the near future and has experienced dramatic growth over the past decade in many countries. Wind speed is the most important parameter in the design and study of wind energy conversion systems. Probability density functions such as Weibull and Rayleigh are often used in wind speed and wind energy analyses. This paper presents an assessment of wind energy at three heights during near two years based on Weibull distribution function in Abadan Airport. Extrapolation of the 10 m and 40 m data, using the power law, has been used to determine the wind speed at height of 80 m. According to the results wind speed at 80 m height in Abadan is ranged from 5.8 m/s in Nov to 8.5 m/s in Jun with average value of 7.15 m/s. In this study, different parameters such as Weibull parameters, diurnal and monthly wind speeds, cumulative distribution and turbulence intensity have been estimated and analyzed. In addition Energy production of different wind turbines at different heights was estimated. The results show that the studied site has good potential for Installation of large and commercial wind turbines at height of 80 m or higher. Keywords: Abadan, Iran, wind energy, wind resource, wind turbine, Weibull

  16. Satellite SAR wind resource mapping in China (SAR-China)

    DEFF Research Database (Denmark)

    Badger, Merete

    The project ‘Off-Shore Wind Energy Resource Assessment and Feasibility Study of Off-Shore Wind Farm Development in China’ is funded by the EU-China Energy and Environment Programme (EEP) and runs for one year (August 2008 - August 2009). The project is lead by the China Meteorological Administrat...

  17. Session: What can we learn from developed wind resource areas

    Energy Technology Data Exchange (ETDEWEB)

    Thelander, Carl; Erickson, Wally

    2004-09-01

    This session at the Wind Energy and Birds/Bats workshop was composed of two parts intended to examine what existing science tells us about wind turbine impacts at existing wind project sites. Part one dealt with the Altamont Wind Resource area, one of the older wind projects in the US, with a paper presented by Carl Thelander titled ''Bird Fatalities in the Altamont Pass Wind Resource Area: A Case Study, Part 1''. Questions addressed by the presenter included: how is avian habitat affected at Altamont and do birds avoid turbine sites; are birds being attracted to turbine strings; what factors contribute to direct impacts on birds by wind turbines at Altamont; how do use, behavior, avoidance and other factors affect risk to avian species, and particularly impacts those species listed as threatened, endangered, or of conservation concern, and other state listed species. The second part dealt with direct impacts to birds at new generation wind plants outside of California, examining such is sues as mortality, avoidance, direct habitat impacts from terrestrial wind projects, species and numbers killed per turbine rates/MW generated, impacts to listed threatened and endangered species, to USFWS Birds of Conservation Concern, and to state listed species. This session focused on newer wind project sites with a paper titled ''Bird Fatality and Risk at New Generation Wind Projects'' by Wally Erickson. Each paper was followed by a discussion/question and answer period.

  18. Wind speed forecasting in the central California wind resource area

    Energy Technology Data Exchange (ETDEWEB)

    McCarthy, E.F. [Wind Economics & Technology, Inc., Martinez, CA (United States)

    1997-12-31

    A wind speed forecasting program was implemented in the summer seasons of 1985 - 87 in the Central California Wind Resource Area (WRA). The forecasting program is designed to use either meteorological observations from the WRA and local upper air observations or upper air observations alone to predict the daily average windspeed at two locations. Forecasts are made each morning at 6 AM and are valid for a 24 hour period. Ease of use is a hallmark of the program as the daily forecast can be made using data entered into a programmable HP calculator. The forecasting program was the first step in a process to examine whether the electrical energy output of an entire wind power generation facility or defined subsections of the same facility could be predicted up to 24 hours in advance. Analysis of the results of the summer season program using standard forecast verification techniques show the program has skill over persistence and climatology.

  19. Wind energy prospecting: socio-economic value of a new wind resource assessment technique based on a NASA Earth science dataset

    Science.gov (United States)

    Vanvyve, E.; Magontier, P.; Vandenberghe, F. C.; Delle Monache, L.; Dickinson, K.

    2012-12-01

    Wind energy is amongst the fastest growing sources of renewable energy in the U.S. and could supply up to 20 % of the U.S power production by 2030. An accurate and reliable wind resource assessment for prospective wind farm sites is a challenging task, yet is crucial for evaluating the long-term profitability and feasibility of a potential development. We have developed an accurate and computationally efficient wind resource assessment technique for prospective wind farm sites, which incorporates innovative statistical techniques and the new NASA Earth science dataset MERRA. This technique produces a wind resource estimate that is more accurate than that obtained by the wind energy industry's standard technique, while providing a reliable quantification of its uncertainty. The focus now is on evaluating the socio-economic value of this new technique upon using the industry's standard technique. Would it yield lower financing costs? Could it result in lower electricity prices? Are there further down-the-line positive consequences, e.g. job creation, time saved, greenhouse gas decrease? Ultimately, we expect our results will inform efforts to refine and disseminate the new technique to support the development of the U.S. renewable energy infrastructure. In order to address the above questions, we are carrying out a cost-benefit analysis based on the net present worth of the technique. We will describe this approach, including the cash-flow process of wind farm financing, how the wind resource assessment factors in, and will present current results for various hypothetical candidate wind farm sites.

  20. Airfoil characteristics for wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Bak, C; Fuglsang, P; Soerensen, N N; Aagaard Madsen, H [Risoe National Lab., Roskilde (Denmark); Shen, Wen Zhong; Noerkaer Soerensen, J [Technical Univ. of Denmark, Lyngby (Denmark)

    1999-03-01

    Airfoil characteristics for use in the Blade Element Momentum (BEM) method calculating the forces on Horizontal Axis Wind Turbines (HAWT) are derived by use of systematic methods. The investigation and derivation of the airfoil characteristics are based on four different methods: 1) Inverse momentum theory, 2) Actuator disc theory, 3) Numerical optimisation and 4) Quasi-3D CFD computations. The two former methods are based on 3D CFD computations and wind tunnel measurements on a 41-m full-scale rotor with LM 19.1 blades. The derived airfoil characteristics show that the lift coefficient in stall at the tip is low and that it is high at the root compared to 2D airfoil characteristics. The use of these characteristics in aeroelastic calculations shows a good agreement in power and flap moments with measurements. Furthermore, a fatigue analysis shows a reduction in the loads of up to 15 % compared to a commonly used set of airfoil characteristics. The numerical optimisation is based on both the 3D CFD computations and measurements on a 41-m rotor with LM 19.1 and LM 19.0 blades, respectively. The method requires power and loads from a turbine and is promising since a set of lift and drag curves is derived that can be used to calculate mean values of power and loads. The lift in stall at the tip is low and at the root it is high compared to 2D airfoil characteristics. In particular the power curves were well calculated by use of the optimised airfoil characteristics. In the quasi-3D CFD computations, the airfoil characteristics are derived directly. This Navier-Stokes model takes into account rotational and 3D effects. The model enables the study of the rotational effect of a rotor blade at computing costs similar to what is typical for 2D airfoil calculations. The depicted results show that the model is capable of determining the correct qualitative behaviour for airfoils subject to rotation. The method shows that lift is high at the root compared to 2D airfoil

  1. 46200 Planning and Development of Wind Farms: Wind resource assessment using the WAsP software

    DEFF Research Database (Denmark)

    Mortensen, Niels Gylling

    These course notes are intended for the three-week course 46200 Planning and Development of Wind Farms given each year at the Technical University of Denmark. The purpose of the course notes is to give an introduction to wind resource assessment and siting issues using the WAsP suite of programs....

  2. Computer modelling of the UK wind energy resource: final overview report

    Energy Technology Data Exchange (ETDEWEB)

    Burch, S F; Ravenscroft, F

    1993-12-31

    This report describes the results of a programme of work to estimate the UK wind energy resource. Mean wind speed maps and quantitative resource estimates were obtained using the NOABL mesoscale (1 km resolution) numerical model for the prediction of wind flow over complex terrain. NOABL was used in conjunction with digitised terrain data and wind data from surface meteorological stations for a ten year period (1975-1984) to provide digital UK maps of mean wind speed at 10m, 25m and 45m above ground level. Also included in the derivation of these maps was the use of the Engineering Science Data Unit (ESDU) method to model the effect on wind speed of the abrupt change in surface roughness that occurs at the coast. Existing isovent maps, based on standard meteorological data which take no account of terrain effects, indicate that 10m annual mean wind speeds vary between about 4.5 and 7 m/s over the UK with only a few coastal areas over 6 m/s. The present study indicated that 23% of the UK land area had speeds over 6 m/s, with many hill sites having 10m speeds over 10 m/s. It is concluded that these `first order` resource estimates represent a substantial improvement over the presently available `zero order` estimates. (20 figures, 7 tables, 10 references). (author)

  3. Wind Resource and Feasibility Assessment Report for the Lummi Reservation

    Energy Technology Data Exchange (ETDEWEB)

    DNV Renewables (USA) Inc.; J.C. Brennan & Associates, Inc.; Hamer Environmental L.P.

    2012-08-31

    This report summarizes the wind resource on the Lummi Indian Reservation (Washington State) and presents the methodology, assumptions, and final results of the wind energy development feasibility assessment, which included an assessment of biological impacts and noise impacts.

  4. Multidimensional optimal droop control for wind resources in DC microgrids

    Science.gov (United States)

    Bunker, Kaitlyn J.

    Two important and upcoming technologies, microgrids and electricity generation from wind resources, are increasingly being combined. Various control strategies can be implemented, and droop control provides a simple option without requiring communication between microgrid components. Eliminating the single source of potential failure around the communication system is especially important in remote, islanded microgrids, which are considered in this work. However, traditional droop control does not allow the microgrid to utilize much of the power available from the wind. This dissertation presents a novel droop control strategy, which implements a droop surface in higher dimension than the traditional strategy. The droop control relationship then depends on two variables: the dc microgrid bus voltage, and the wind speed at the current time. An approach for optimizing this droop control surface in order to meet a given objective, for example utilizing all of the power available from a wind resource, is proposed and demonstrated. Various cases are used to test the proposed optimal high dimension droop control method, and demonstrate its function. First, the use of linear multidimensional droop control without optimization is demonstrated through simulation. Next, an optimal high dimension droop control surface is implemented with a simple dc microgrid containing two sources and one load. Various cases for changing load and wind speed are investigated using simulation and hardware-in-the-loop techniques. Optimal multidimensional droop control is demonstrated with a wind resource in a full dc microgrid example, containing an energy storage device as well as multiple sources and loads. Finally, the optimal high dimension droop control method is applied with a solar resource, and using a load model developed for a military patrol base application. The operation of the proposed control is again investigated using simulation and hardware-in-the-loop techniques.

  5. Determining the impact of wind on system costs via the temporal patterns of load and wind generation

    International Nuclear Information System (INIS)

    Davis, Clay D.; Gotham, Douglas J.; Preckel, Paul V.; Liu, Andrew L.

    2013-01-01

    Ambitious targets have been set for expanding electricity generation from renewable sources, including wind. Expanding wind power impacts needs for other electricity generating resources. As states plan for increasing levels of wind generation in their portfolio of generation resources it is important to consider how this intermittent resource impacts the need for other generation resources. A case study for Indiana estimates the value of wind capacity and demonstrates how to optimize its level and the levels of other generation resources. Changes are driven by temporal patterns of wind power output and load. System wide impacts are calculated for energy, capacity, and costs under multiple wind expansion scenarios which highlight the geographic characteristics of a systems portfolio of wind generation. The impacts of carbon prices, as proposed in the Bingaman Bill, are considered. Finally, calculations showing the effect increasing levels of wind generation will have on end use Indiana retail rates are included. - Highlights: • We estimate the value of wind capacity. • We determine wind generation's impact on the optimal mix of non-wind generation. • Optimal levels of wind and non-wind generation are determined. • We consider the impact of a carbon price on the optimal mix of resources. • The impact of additional wind capacity on Indiana residential rates is calculated

  6. Wind Energy Resource Assessment on Alaska Native Lands in Cordova Region of Prince William Sound

    Energy Technology Data Exchange (ETDEWEB)

    Whissel, John C. [Native Village of Eyak, Cordova, AK (United States); Piche, Matthew [Native Village of Eyak, Cordova, AK (United States)

    2015-06-29

    The Native Village of Eyak (NVE) has been monitoring wind resources around Cordova, Alaska in order to determine whether there is a role for wind energy to play in the city’s energy scheme, which is now supplies entirely by two run-of-the-river hydro plants and diesel generators. These data are reported in Appendices A and B. Because the hydro resources decline during winter months, and wind resources increase, wind is perhaps an ideal counterpart to round out Cordova’s renewable energy supply. The results of this effort suggests that this is the case, and that developing wind resources makes sense for our small, isolated community.

  7. Underwater acoustic characteristics of the OWEZ wind farm operation (T1)

    NARCIS (Netherlands)

    Haan, de D.; Burggraaf, D.; Wal, van der J.T.; Hal, van R.

    2013-01-01

    In Holland the first two offshore wind farms, the Offshore Wind Farm Egmond aan Zee (OWEZ) and “Prinses Amalia” were built in respectively 2006 and 2007. Beside the main goal of producing electric energy from wind resource the construction of the first wind farm (OWEZ) was also used to demonstrate

  8. Avian use of Norris Hill Wind Resource Area, Montana

    Energy Technology Data Exchange (ETDEWEB)

    Harmata, A.; Podruzny, K.; Zelenak, J. [Montana State Univ., Bozeman, MT (United States). Biology Dept.

    1998-07-01

    This document presents results of a study of avian use and mortality in and near a proposed wind resource area in southwestern Montana. Data collected in autumn 1995 through summer 1996 represented preconstruction condition; it was compiled, analyzed, and presented in a format such that comparison with post-construction data would be possible. The primary emphasis of the study was recording avian migration in and near the wind resource area using state-of-the-art marine surveillance radar. Avian use and mortality were investigated during the breeding season by employing traditional avian sampling methods, radiotelemetry, radar, and direct visual observation. 61 figs., 34 tabs.

  9. Global assessment of onshore wind power resources considering the distance to urban areas

    International Nuclear Information System (INIS)

    Silva Herran, Diego; Dai, Hancheng; Fujimori, Shinichiro; Masui, Toshihiko

    2016-01-01

    This study assessed global onshore wind power resources considering the distance to urban areas in terms of transmission losses and costs, and visibility (landscape impact) restrictions. Including this factor decreased the economic potential considerably depending on the level of supply cost considered (at least 37% and 16% for an economic potential below 10 and 14 US cents/kWh, respectively). Its importance compared to other factors was secondary below 15 US cents/kWh. At higher costs it was secondary only to land use, and was more important than economic and technical factors. The impact of this factor was mixed across all regions of the world, given the heterogeneity of wind resources in remote and proximal areas. Regions where available resources decreased the most included the European Union, Japan, Southeast Asia, the Middle East, and Africa. The supply cost chosen to evaluate the economic potential and uncertainties influencing the estimation of distance to the closest urban area are critical for the assessment. Neglecting the restrictions associated with integration into energy systems and social acceptability resulted in an overestimation of global onshore wind resources. These outcomes are fundamental for global climate policies because they help to clarify the limits of wind energy resource availability. - Highlights: • Global onshore wind resources were assessed including the distance to urban areas. • We evaluate the impact of transmission losses and cost, and visibility restrictions. • The distance to urban areas' impact was considerable, depending on the supply cost. • This factor's importance was secondary to economic, land use, and technical factors. • Neglecting this factor resulted in an overestimation of global wind resources.

  10. A GIS wind resource map with tabular printout of monthly and annual wind speeds for 2,000 towns in Iowa

    Energy Technology Data Exchange (ETDEWEB)

    Brower, M.C. [Brower & Company, Andover, MA (United States); Factor, T. [Iowa Wind Energy Institute, Fairfield, IA (United States)

    1997-12-31

    The Iowa Wind Energy Institute, under a grant from the Iowa Energy Center, undertook in 1994 to map wind resources in Iowa. Fifty-meter met towers were erected at 13 locations across the state deemed promising for utility-scale wind farm development. Two years of summarized wind speed, direction, and temperature data were used to create wind resource maps incorporating effects of elevation, relative exposure, terrain roughness, and ground cover. Maps were produced predicting long-term mean monthly and annual wind speeds on a one-kilometer grid. The estimated absolute standard error in the predicted annual average wind speeds at unobstructed locations is 9 percent. The relative standard error between points on the annual map is estimated to be 3 percent. These maps and tabular data for 2,000 cities and towns in Iowa are now available on the Iowa Energy Center`s web site (http.//www.energy.iastate.edu).

  11. Offshore Wind Resources Assessment from Multiple Satellite Data and WRF Modeling over South China Sea

    Directory of Open Access Journals (Sweden)

    Rui Chang

    2015-01-01

    Full Text Available Using accurate inputs of wind speed is crucial in wind resource assessment, as predicted power is proportional to the wind speed cubed. This study outlines a methodology for combining multiple ocean satellite winds and winds from WRF simulations in order to acquire the accurate reconstructed offshore winds which can be used for offshore wind resource assessment. First, wind speeds retrieved from Synthetic Aperture Radar (SAR and Scatterometer ASCAT images were validated against in situ measurements from seven coastal meteorological stations in South China Sea (SCS. The wind roses from the Navy Operational Global Atmospheric Prediction System (NOGAPS and ASCAT agree well with these observations from the corresponding in situ measurements. The statistical results comparing in situ wind speed and SAR-based (ASCAT-based wind speed for the whole co-located samples show a standard deviation (SD of 2.09 m/s (1.83 m/s and correlation coefficient of R 0.75 (0.80. When the offshore winds (i.e., winds directed from land to sea are excluded, the comparison results for wind speeds show an improvement of SD and R, indicating that the satellite data are more credible over the open ocean. Meanwhile, the validation of satellite winds against the same co-located mast observations shows a satisfactory level of accuracy which was similar for SAR and ASCAT winds. These satellite winds are then assimilated into the Weather Research and Forecasting (WRF Model by WRF Data Assimilation (WRFDA system. Finally, the wind resource statistics at 100 m height based on the reconstructed winds have been achieved over the study area, which fully combines the offshore wind information from multiple satellite data and numerical model. The findings presented here may be useful in future wind resource assessment based on satellite data.

  12. 76 FR 36532 - Iberdrola Renewables, Inc., PacifiCorp, NextEra Energy Resources, LLC, Invenergy Wind North...

    Science.gov (United States)

    2011-06-22

    ... Renewables, Inc., PacifiCorp, NextEra Energy Resources, LLC, Invenergy Wind North America LLC, Horizon Wind...), Iberdrola Renewables, Inc., PacifiCorp, NextEra Energy Resources, LLC, Invenergy Wind North America LLC, and Horizon Wind Energy LLC (Complainants) filed a formal complaint against Bonneville Power Administration...

  13. Study on new energy development planning and absorptive capability of Xinjiang in China considering resource characteristics and demand prediction

    Science.gov (United States)

    Shao, Hai; Miao, Xujuan; Liu, Jinpeng; Wu, Meng; Zhao, Xuehua

    2018-02-01

    Xinjiang, as the area where wind energy and solar energy resources are extremely rich, with good resource development characteristics, can provide a support for regional power development and supply protection. This paper systematically analyzes the new energy resource and development characteristics of Xinjiang and carries out the demand prediction and excavation of load characteristics of Xinjiang power market. Combing the development plan of new energy of Xinjiang and considering the construction of transmission channel, it analyzes the absorptive capability of new energy. It provides certain reference for the comprehensive planning of new energy development in Xinjiang and the improvement of absorptive capacity of new energy.

  14. Effect of wind fluctuating on self-starting aerodynamics characteristics of VAWT

    Institute of Scientific and Technical Information of China (English)

    朱建阳; 蒋林; 赵慧

    2016-01-01

    The present work deals with an investigation of the self-starting aerodynamic characteristics of VAWT under fluctuating wind. In contrast to the previous studies, the rotational speed of the turbine is not fixed, the rotation of the turbine is determined by the dynamic interaction between the fluctuating wind and turbine. A weak coupling method is developed to simulate the dynamic interaction between the fluctuating wind and passive rotation turbine, and the results show that if the fluctuating wind with appropriate fluctuation amplitude and frequency, the self-starting aerodynamic characteristics of VAWT will be enhanced. It is also found that compared with the fluctuation amplitude, the fluctuation frequency of the variation in wind velocity is shown to have a minor effect on the performance of the turbine. The analysis will provide straightforward physical insight into the self-starting aerodynamic characteristics of VAWT under fluctuating wind.

  15. Advancements in Wind Integration Study Data Modeling: The Wind Integration National Dataset (WIND) Toolkit; Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Draxl, C.; Hodge, B. M.; Orwig, K.; Jones, W.; Searight, K.; Getman, D.; Harrold, S.; McCaa, J.; Cline, J.; Clark, C.

    2013-10-01

    Regional wind integration studies in the United States require detailed wind power output data at many locations to perform simulations of how the power system will operate under high-penetration scenarios. The wind data sets that serve as inputs into the study must realistically reflect the ramping characteristics, spatial and temporal correlations, and capacity factors of the simulated wind plants, as well as be time synchronized with available load profiles. The Wind Integration National Dataset (WIND) Toolkit described in this paper fulfills these requirements. A wind resource dataset, wind power production time series, and simulated forecasts from a numerical weather prediction model run on a nationwide 2-km grid at 5-min resolution will be made publicly available for more than 110,000 onshore and offshore wind power production sites.

  16. Offshore Wind Resource, Cost, and Economic Potential in the State of Maine

    Energy Technology Data Exchange (ETDEWEB)

    Musial, Walter D. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2018-02-12

    This report provides information for decision-makers about floating offshore wind technologies in the state of Maine. It summarizes research efforts performed at the National Renewable Energy Laboratory between 2015 and 2017 to analyze the resource potential, cost of offshore wind, and economic potential of offshore wind from four primary reports: Musial et al. (2016); Beiter et al. (2016, 2017); and Mone et al. (unpublished). From Musial et al. (2016), Maine's technical offshore wind resource potential ranked seventh in the nation overall with more than 411 terawatt-hours/year of offshore resource generating potential. Although 90% of this wind resource is greater than 9.0-meters-per-second average velocity, most of the resource is over deep water, where floating wind technology is needed. Levelized cost of energy and levelized avoided cost of energy were computed to estimate the unsubsidized 'economic potential' for Maine in the year 2027 (Beiter et al. 2016, 2017). The studies found that Maine may have 65 gigawatts of economic potential by 2027, the highest of any U.S. state. Bottom-line costs for the Aqua Ventus project, which is part of the U.S. Department of Energy's Advanced Technology Demonstration project, were released from a proprietary report written by NREL in 2016 for the University of Maine (Mone et al. unpublished). The report findings were that economies of scale and new technology advancements lowered the cost from $300/megawatt-hour (MWh) for the two-turbine 12-megawatt (MW) Aqua Ventus 1 project, to $126/MWh for the commercial-scale, 498-MW Aqua Ventus-2 project. Further cost reductions to $77/MWh were found when new technology advancements were applied for the 1,000-MW Aqua Ventus-3 project in 2030. No new analysis was conducted for this report.

  17. Wind and Solar Energy Resource Assessment for Navy Installations in the Midwestern US

    Science.gov (United States)

    Darmenova, K.; Apling, D.; Higgins, G. J.; Carnes, J.; Smith, C.

    2012-12-01

    A stable supply of energy is critical for sustainable economic development and the ever-increasing demand for energy resources drives the need for alternative weather-driven renewable energy solutions such as solar and wind-generated power. Recognizing the importance of energy as a strategic resource, the Department of the Navy has focused on energy efficient solutions aiming to increase tactical and shore energy security and reduce greenhouse gas emissions. Implementing alternative energy solutions will alleviate the Navy installations demands on the National power grid, however transitioning to renewable energy sources is a complex multi-stage process that involves initial investment in resource assessment and feasibility of building solar and wind power systems in Navy's facilities. This study focuses on the wind and solar energy resource assessment for Navy installations in the Midwestern US. We use the dynamically downscaled datasets at 12 km resolution over the Continental US generated with the Weather Research and Forecasting (WRF) model to derive the wind climatology in terms of wind speed, direction, and wind power at 20 m above the surface for 65 Navy facilities. In addition, we derived the transmissivity of the atmosphere, diffuse radiation fraction, cloud cover and seasonal energy potential for a zenith facing surface with unobstructed horizon for each installation location based on the results of a broadband radiative transfer model and our cloud database based on 17-years of GOES data. Our analysis was incorporated in a GIS framework in combination with additional infrastructure data that enabled a synergistic resource assessment based on the combination of climatological and engineering factors.

  18. Analysis of the potential for hydrogen production in the province of Cordoba, Argentina, from wind resources

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, C.R.; Santa Cruz, R.; Aisa, S. [Universidad Empresarial Siglo 21, Monsenor Pablo Cabrera s/n calle, 5000 Cordoba (Argentina); Riso, M.; Jimenez Yob, G.; Ottogalli, R. [Subsecretaria de Infraestructuras y Programas, Ministerio de Obras y Servicios Publicos del Gobierno de la Provincia de Cordoba, Av. Poeta Lugones 12, 2do. Piso, 5000 Cordoba (Argentina); Jeandrevin, G. [Instituto Universitario Aeronautico, Avenida Fuerza Aerea km 6 1/2, 5022 Cordoba (Argentina); Leiva, E.P.M. [INFIQC, Unidad de Matematica y Fisica, Facultad de Ciencias Quimicas, Universidad Nacional de Cordoba, Haya de la Torre s/n, 5010 Cordoba (Argentina)

    2010-06-15

    The potential for hydrogen production from wind resources in the province of Cordoba, second consumer of fossil fuels for transportation in Argentina, is analyzed. Three aspects of the problem are considered: the evaluation of the hydrogen resource from wind power, the analysis of the production costs via electrolysis and the annual requirements of wind energy to generate hydrogen to fuel the vehicular transport of the province. Different scenarios were considered, including pure hydrogen as well as the so-called CNG plus, where hydrogen is mixed with compressed natural gas in a 20% V/V dilution of the former. The potential for hydrogen production from wind resources is analyzed for each department of the province, excluding those regions not suited for wind farms. The analysis takes into account the efficiency of the electrolyzer and the capacity factor of the wind power system. It is concluded that the automotive transportation could be supplied by hydrogen stemming from wind resources via electrolysis. (author)

  19. Wind Extraction for Natural Ventilation

    Science.gov (United States)

    Fagundes, Tadeu; Yaghoobian, Neda; Kumar, Rajan; Ordonez, Juan

    2017-11-01

    Due to the depletion of energy resources and the environmental impact of pollution and unsustainable energy resources, energy consumption has become one of the main concerns in our rapidly growing world. Natural ventilation, a traditional method to remove anthropogenic and solar heat gains, proved to be a cost-effective, alternative method to mechanical ventilation. However, while natural ventilation is simple in theory, its detailed design can be a challenge, particularly for wind-driven ventilation, which its performance highly involves the buildings' form, surrounding topography, turbulent flow characteristics, and climate. One of the main challenges with wind-driven natural ventilation schemes is due to the turbulent and unpredictable nature of the wind around the building that impose complex pressure loads on the structure. In practice, these challenges have resulted in founding the natural ventilation mainly on buoyancy (rather than the wind), as the primary force. This study is the initial step for investigating the physical principals of wind extraction over building walls and investigating strategies to reduce the dependence of the wind extraction on the incoming flow characteristics and the target building form.

  20. A methodology for the prediction of offshore wind energy resources

    Energy Technology Data Exchange (ETDEWEB)

    Watson, S J; Watson, G M [Rutherford Appleton Lab., Oxfordshire (United Kingdom); Holt, R.J. [Univ. of East Anglia, Climatic Research Unit, Norwich (United Kingdom)] Barthelmie, R.J. [Risoe National Lab., Dept. of Wind Energy and Atmospheric Physics, Roskilde (Denmark); Zuylen, E.J. van [Ecofys Energy and Environment, Utrecht (Netherlands)] Cleijne, J.W. [Kema Sustainable, Arnhem (Netherlands)

    1999-03-01

    There are increasing constraints on the development of wind power on land. Recently, there has been a move to develop wind power offshore, though the amount of measured wind speed data at potential offshore wind farm sites is sparse. We present a novel methodology for the prediction of offshore wind power resources which is being applied to European Union waters. The first stage is to calculate the geostrophic wind from long-term pressure fields over the sea area of interest. Secondly, the geostrophic wind is transformed to the sea level using WA{sup s}P, taking account of near shore topography. Finally, these values are corrected for land/sea climatology (stability) effects using an analytical Coastal discontinuity Model (CDM). These values are further refined using high resolution offshore data at selected sites. The final values are validated against existing offshore datasets. Preliminary results are presented of the geostrophic wind speed validation in European Union waters. (au)

  1. Rooftop wind resource assessment using a three-dimensional ultrasonic anemometer

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, D.C.; Whale, J.; Livingston, P.O.; Chan, D. [Murdoch Univ., Murdoch, WA (Australia)

    2008-07-01

    Building integrated wind turbines (BUWTs) are designed for the built environment and can be located on or next to buildings. In general, these types of urban wind turbines are less than 20 kW in rated capacity, and have the potential to contribute to the energy needs of the building and reduce overall emissions. There are currently over 32 manufacturers and 57 different urban wind turbine products available in Europe alone. The first rooftop wind system in Australia was installed in 2006. To data, 5 systems have been installed and there are plans for up to 20 more. The main problems associated with these types of systems are due to poor wind resources at the location or improper site selection for the turbine. This paper reported on a research study into initiating best practice guidelines for rooftop wind systems. There is a concern that environmentally conscious homeowners or businesses will install rooftop wind systems in support of sustainability, but without adequate consideration of safety, structural building integrity or turbine performance. The potential consequence of such projects could be the failure of the project due to underperforming turbines, noise, and vibration; or the development of a negative reputation for wind energy and the renewable energy industry. This study included 2 primary initiatives, notably a computer simulated modeling exercise and an onsite rooftop wind monitoring station. This paper focused on the methodology and justification for developing the monitoring station. An ultrasonic 3D anemometer was used to collect data and to develop a 3D wind profile. The wind regime on the rooftop in the complex terrain of the built environment was highly dynamic, turbulent, and included a strong vertical component. It was concluded that site selection for turbines must be determined by a proper feasibility study involving accurate data. Although the initial phase of the project to predict the resource and deploy the monitoring station has been

  2. SAR-Based Wind Resource Statistics in the Baltic Sea

    Directory of Open Access Journals (Sweden)

    Alfredo Peña

    2011-01-01

    Full Text Available Ocean winds in the Baltic Sea are expected to power many wind farms in the coming years. This study examines satellite Synthetic Aperture Radar (SAR images from Envisat ASAR for mapping wind resources with high spatial resolution. Around 900 collocated pairs of wind speed from SAR wind maps and from 10 meteorological masts, established specifically for wind energy in the study area, are compared. The statistical results comparing in situ wind speed and SAR-based wind speed show a root mean square error of 1.17 m s−1, bias of −0.25 m s−1, standard deviation of 1.88 m s−1 and correlation coefficient of R2 0.783. Wind directions from a global atmospheric model, interpolated in time and space, are used as input to the geophysical model function CMOD-5 for SAR wind retrieval. Wind directions compared to mast observations show a root mean square error of 6.29° with a bias of 7.75°, standard deviation of 20.11° and R2 of 0.950. The scale and shape parameters, A and k, respectively, from the Weibull probability density function are compared at only one available mast and the results deviate ~2% for A but ~16% for k. Maps of A and k, and wind power density based on more than 1000 satellite images show wind power density values to range from 300 to 800 W m−2 for the 14 existing and 42 planned wind farms.

  3. State of the art on wind resource estimation

    Energy Technology Data Exchange (ETDEWEB)

    Maribo Pedersen, B.

    1998-12-31

    With the increasing number of wind resource estimation studies carried out for regions, countries and even larger areas all over the world, the IEA finds that the time has come to stop and take stock of the various methods used in these studies. The IEA would therefore like to propose an Experts Meeting on wind resource estimation. The Experts Meeting should describe the models and databases used in the various studies. It should shed light on the strengths and shortcomings of the models and answer questions like: where and under what circumstances should a specific model be used? what is the expected accuracy of the estimate of the model? and what is the applicability? When addressing databases the main goal will be to identify the content and scope of these. Further, the quality, availability and reliability of the databases must also be recognised. In the various studies of wind resources the models and databases have been combined in different ways. A final goal of the Experts Meeting is to see whether it is possible to develop systems of methods which would depend on the available input. These systems of methods should be able to address the simple case (level 0) of a region with barely no data, to the complex case of a region with all available measurements: surface observations, radio soundings, satellite observations and so on. The outcome of the meeting should be an inventory of available models as well as databases and a map of already studied regions. (au)

  4. Database on wind characteristics - Structure and philosophy

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, G.C.; Hansen, K.S.

    2001-11-01

    The main objective of IEA R and D Wind Annex XVII - Database on Wind Characteristics - is to provide wind energy planners and designers, as well as the international wind engineering community in general, with easy access to quality controlled measured wind field time series observed in a wide range of environments. The project partners are Sweden, Norway, U.S.A., The Netherlands, Japan and Denmark, with Denmark as the Operating Agent. The reporting of IEA R and D Annex XVII falls in three separate parts. Part one deals with the overall structure and philosophy behind the database, part two accounts in details for the available data in the established database bank and part three is the Users Manual describing the various ways to access and analyse the data. The present report constitutes the first part of the Annex XVII reporting, and it contains a detailed description of the database structure, the data quality control procedures, the selected indexing of the data and the hardware system. (au)

  5. Evaluation of the climate change impact on wind resources in Taiwan Strait

    International Nuclear Information System (INIS)

    Chang, Tsang-Jung; Chen, Chun-Lung; Tu, Yi-Long; Yeh, Hung-Te; Wu, Yu-Ting

    2015-01-01

    Highlights: • We propose a new statistical downscaling framework to evaluate the climate change impact on wind resources in Taiwan Strait. • The statistical model relates Weibull distribution parameters to output of a GCM model and regression coefficients. • Validation of the simulated wind speed distribution presents an acceptable agreement with meteorological data. • Three chosen GCMs show the same tendency that the eastern half of Taiwan Strait stores higher wind resources. - Abstract: A new statistical downscaling framework is proposed to evaluate the climate change impact on wind resources in Taiwan Strait. In this framework, a two-parameter Weibull distribution function is used to estimate the wind energy density distribution in the strait. An empirically statistical downscaling model that relates the Weibull parameters to output of a General Circulation Model (GCM) and regression coefficients is adopted. The regression coefficients are calculated using wind speed results obtained from a past climate (1981–2000) simulation reconstructed by a Weather Research and Forecasting (WRF) model. These WRF-reconstructed wind speed results are validated with data collected at a weather station on an islet inside the strait. The comparison shows that the probability distributions of the monthly wind speeds obtained from WRF-reconstructed and measured wind speed data are in acceptable agreement, with small discrepancies of 10.3% and 7.9% for the shape and scale parameters of the Weibull distribution, respectively. The statistical downscaling framework with output from three chosen GCMs (i.e., ECHAM5, CM2.1 and CGCM2.3.2) is applied to evaluate the wind energy density distribution in Taiwan Strait for three future climate periods of 2011–2040, 2041–2070, and 2071–2100. The results show that the wind energy density distributions in the future climate periods are higher in the eastern half of Taiwan Strait, but reduce slightly by 3% compared with that in the

  6. Stochastic Prediction of Wind Generating Resources Using the Enhanced Ensemble Model for Jeju Island’s Wind Farms in South Korea

    OpenAIRE

    Deockho Kim; Jin Hur

    2017-01-01

    Due to the intermittency of wind power generation, it is very hard to manage its system operation and planning. In order to incorporate higher wind power penetrations into power systems that maintain secure and economic power system operation, an accurate and efficient estimation of wind power outputs is needed. In this paper, we propose the stochastic prediction of wind generating resources using an enhanced ensemble model for Jeju Island’s wind farms in South Korea. When selecting the poten...

  7. Evaluation of offshore wind resources by scale of development

    DEFF Research Database (Denmark)

    Möller, Bernd; Hong, Lixuan; Lonsing, Reinhard

    -economic model operating in a geographical information systems (GIS) environment, which describes resources, costs and area constraints in a spatially explicit way, the relation between project size, location, costs and ownership is analysed. Two scenarios are presented, which describe a state......Offshore wind energy has developed rapidly in terms of turbine and project size, and currently undergoes a significant up-scaling to turbines and parks at greater distance to shore and deeper waters. Expectations to the positive effect of economies of scale on power production costs, however, have...... can be explained by deeper water, higher distance to shore, bottlenecks in supply or higher raw material costs. The present paper addresses the scale of offshore wind parks for Denmark and invites to reconsider the technological and institutional choices made. Based on a continuous resource...

  8. Evaluation of offshore wind resources by scale of development

    DEFF Research Database (Denmark)

    Möller, Bernd; Hong, Lixuan; Lonsing, Reinhard

    2012-01-01

    -economic model operating in a geographical information systems (GIS) environment, which describes resources, costs and area constraints in a spatially explicit way, the relation between project size, location, costs and ownership is analysed. Two scenarios are presented, which describe a state......Offshore wind energy has developed rapidly in terms of turbine and project size, and currently undergoes a significant up-scaling to turbines and parks at greater distance to shore and deeper waters. Expectations to the positive effect of economies of scale on power production costs, however, have...... can be explained by deeper water, higher distance to shore, bottlenecks in supply or higher raw material costs. The present paper addresses the scale of offshore wind parks for Denmark and invites to reconsider the technological and institutional choices made. Based on a continuous resource...

  9. Wind resource in metropolitan France: assessment methods, variability and trends

    International Nuclear Information System (INIS)

    Jourdier, Benedicte

    2015-01-01

    France has one of the largest wind potentials in Europe, yet far from being fully exploited. The wind resource and energy yield assessment is a key step before building a wind farm, aiming at predicting the future electricity production. Any over-estimation in the assessment process puts in jeopardy the project's profitability. This has been the case in the recent years, when wind farm managers have noticed that they produced less than expected. The under-production problem leads to questioning both the validity of the assessment methods and the inter-annual wind variability. This thesis tackles these two issues. In a first part are investigated the errors linked to the assessment methods, especially in two steps: the vertical extrapolation of wind measurements and the statistical modelling of wind-speed data by a Weibull distribution. The second part investigates the inter-annual to decadal variability of wind speeds, in order to understand how this variability may have contributed to the under-production and so that it is better taken into account in the future. (author) [fr

  10. Regional tendencies of extreme wind characteristics in Hungary

    Science.gov (United States)

    Radics, Dr.; Bartholy, Dr.; Péliné

    2009-09-01

    Human activities have substantial effects on climate system. It has already accepted that change in the long-term climatic mean state will have significant consequences in the global economy and society, but the most important effects of climate change may come from changes in the intensity and frequency of climatic extremes. It is therefore of great interest to document the extremes of surface wind that could assist in estimating the regional effects of climate change. The research presented is based on 34-year-long (1975-2008) wind (speed, direction, and wind gust) data sets of 36 Hungarian synoptic meteorological stations. After processing (including digitalisation of old instrumental records, quality control and homogenisation of wind time series) the measured wind data sets, time series and complex wind climate analysis were carried out. Spatial and temporal distributions of mean and extreme wind climate characteristics were estimated, wind extremes and trends were interpolated and mapped over the country. Finally, measured and reanalysed (ERA40) wind data were compared over Hungary, in order to verify not only the validity of ERA40 reanalysed data sets, but the adaptability of climate simulation results in estimation of regional climate change effects.

  11. Imitation of the characteristics of the wind turbine based on DC motor

    Institute of Scientific and Technical Information of China (English)

    LIU Qihui; HE Yikang; ZHAO Rende

    2007-01-01

    This paper analyzed the operating principles and power and torque characteristics of the wind turbine and the direct current motor(DC motor),and investigated the operating characteristics of the wind turbine compared to that of the DC motor.The torque imitation scheme,which has good performance and high feasibility,together with the whole wind turbine imitation system,was provided.The wind turbine imitation system includes not only a hardware platform composed of PC,data-collection board and thyristor-based velocity-regulator,but also monitor software of wind turbine imitation.The experimental results of different occasions verify the correctness and feasibility of the wind turbine imitation scheme proposed in this paper,which provided a valid idea for wind turbine imitation and investigation of wind power generation techniques in the laboratory.

  12. Application of an atmospheric CFD code to wind resource assessment in complex terrain

    International Nuclear Information System (INIS)

    Laporte, Laurent

    2008-01-01

    This thesis is organized in two parts. The first part presents the use of the atmospheric CFD code Mercure Saturne to estimate the wind resource in complex terrain. A measurement campaign was led by EDF to obtain data for validation. A methodology was developed using meso-scale profiles as boundary conditions. Clustering of meteorological situations was used to reduce the number of simulations needed to calculate the wind resource. The validation of the code on the Askervein hill, the methodology and comparisons with measurements from the complex site are presented. The second part presents the modeling of wakes with the Mercure Saturne code. Forces, generated by the blades on the wind, are modeled by source terms, calculated by the BEM method. Two comparisons are proposed to validate the method: the first compares the numerical model with wind tunnel measurements from a small wind turbine, the second with measurements made on porous disks in an atmospheric boundary layer wind tunnel (author) [fr

  13. Analysis of available wind resources and their suitability for hydrogen production in the Sacramento area

    International Nuclear Information System (INIS)

    Bartholomy, O.J.

    2004-01-01

    This paper looks at the technical, economic, environmental and regulatory barriers to the production of hydrogen from local wind resources in Sacramento, CA. Both central and distributed hydrogen generation are compared. The technical analysis uses 6 years of hourly wind data from Solano County to define the diurnal and seasonal wind resource. The impacts of a fluctuating power source on the electrolyzer are examined as well as the grid or hydrogen distribution and storage infrastructure constraints for implementation. An economic analysis comparing the price of hydrogen produced from the local wind resource is done with sensitivity analyses for capital and operating costs of both wind turbines and electrolyzers. In addition, the economic analysis includes considerations of increased demand for wind electricity by California utilities attempting to meet their Renewable Portfolio Standards. The environmental analysis compares the emissions reductions of CO 2 and criteria pollutants for different energy usage scenarios. These include comparing electricity and transportation emissions rates to optimize the use of wind energy and natural gas, as well as comparison of SULEV hybrid vehicles with FCV's and H 2 ICE's. Finally, an examination of the existing regulatory structure and policies that could prevent or encourage the use of wind to produce hydrogen in Sacramento is also included. (author)

  14. Combining the VAS 3D interpolation method and Wind Atlas methodology to produce a high-resolution wind resource map for the Czech Republic

    Czech Academy of Sciences Publication Activity Database

    Hanslian, David; Hošek, Jiří

    2015-01-01

    Roč. 77, May (2015), s. 291-299 ISSN 0960-1481 Institutional support: RVO:68378289 Keywords : wind resource map * wind field modelling * wind measurements * wind climatology * Czech Republic * WAsP Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 3.404, year: 2015 http://www.sciencedirect.com/science/article/pii/S0960148114008398#

  15. Bird Mortaility at the Altamont Pass Wind Resource Area: March 1998--September 2001

    Energy Technology Data Exchange (ETDEWEB)

    Smallwood, K. S.; Thelander, C. G.

    2005-09-01

    Over the past 15 years, research has shown that wind turbines in the Altamont Pass Wind Resource Area (APWRA) kill many birds, including raptors, which are protected by the Migratory Bird Treaty Act (MBTA), the Bald and Golden Eagle Protection Act, and/or state and federal Endangered Species Acts. Early research in the APWRA on avian mortality mainly attempted to identify the extent of the problem. In 1998, however, the National Renewable Energy Laboratory (NREL) initiated research to address the causal relationships between wind turbines and bird mortality. NREL funded a project by BioResource Consultants to perform this research directed at identifying and addressing the causes of mortality of various bird species from wind turbines in the APWRA.With 580 megawatts (MW) of installed wind turbine generating capacity in the APWRA, wind turbines there provide up to 1 billion kilowatt-hours (kWh) of emissions-free electricity annually. By identifying and implementing new methods and technologies to reduce or resolve bird mortality in the APWRA, power producers may be able to increase wind turbine electricity production at the site and apply similar mortality-reduction methods at other sites around the state and country.

  16. CYGNSS Surface Wind Validation and Characteristics in the Maritime Continent

    Science.gov (United States)

    Asharaf, S.; Waliser, D. E.; Zhang, C.; Wandala, A.

    2017-12-01

    Surface wind over tropical oceans plays a crucial role in many local/regional weather and climate processes and helps to shape the global climate system. However, there is a lack of consistent high quality observations for surface winds. The newly launched NASA Cyclone Global Navigation Satellite System (CYGNSS) mission provides near surface wind speed over the tropical ocean with sampling that accounts for the diurnal cycle. In the early phase of the mission, validation is a critical task, and over-ocean validation is typically challenging due to a lack of robust validation resources that a cover a variety of environmental conditions. In addition, it can also be challenging to obtain in-situ observation resources and also to extract co-located CYGNSS records for some of the more scientifically interesting regions, such as the Maritime Continent (MC). The MC is regarded as a key tropical driver for the mean global circulation as well as important large-scale circulation variability such as the Madian-Julian Oscillation (MJO). The focus of this project and analysis is to take advantage of local in-situ resources from the MC regions (e.g. volunteer shipping, marine buoys, and the Year of Maritime Continent (YMC) campaign) to quantitatively characterize and validate the CYGNSS derived winds in the MC region and in turn work to unravel the complex multi-scale interactions between the MJO and MC. This presentation will show preliminary results of a comparison between the CYGNSS and the in-situ surface wind measurements focusing on the MC region. Details about the validation methods, uncertainties, and planned work will be discussed in this presentation.

  17. Results from utility wind resource assessment programs in Nebraska, Colorado, and Arizona

    Energy Technology Data Exchange (ETDEWEB)

    Drapeau, C.L. [Global Energy Concepts, Inc., Bothell, WA (United States)

    1997-12-31

    Global Energy Concepts (GEC) has been retained by utilities in Colorado, Nebraska, and Arizona to site, install, and operate 21 wind monitoring stations as part of the Utility Wind Resource Assessment Program (U*WRAP). Preliminary results indicate wind speed averages at 40 meters (132 ft) of 6.5 - 7.4 m/s (14.5-16.5 mph) in Nebraska and 7.6 - 8.9 m/s (17.0-19.9 mph) in Colorado. The Arizona stations are not yet operational. This paper presents the history and current status of the 21 monitoring stations as well as preliminary data results. Information on wind speeds, wind direction, turbulence intensity, wind shear, frequency distribution, and data recovery rates are provided.

  18. Wind and solar energy resources on the 'Roof of the World'

    Science.gov (United States)

    Zandler, Harald; Morche, Thomas; Samimi, Cyrus

    2015-04-01

    The Eastern Pamirs of Tajikistan, often referred to as 'Roof of the World', are an arid high mountain plateau characterized by severe energy poverty that may have great potential for renewable energy resources due to the prevailing natural conditions. The lack of energetic infrastructure makes the region a prime target for decentralized integration of wind and solar power. However, up to date no scientific attempt to assess the regional potential of these resources has been carried out. In this context, it is particularly important to evaluate if wind and solar energy are able to provide enough power to generate thermal energy, as other thermal energy carriers are scarce or unavailable and the existing alternative, local harvest of dwarf shrubs, is unsustainable due to the slow regeneration in this environment. Therefore, this study examines the feasibility of using wind and solar energy as thermal energy sources. Financial frame conditions were set on a maximum amount of five million Euros. This sum provides a realistic scenario as it is based on the current budget of the KfW development bank to finance the modernization of the local hydropower plant in the regions only city, Murghab, with about 1500 households. The basis for resource assessment is data of four climate stations, erected for this purpose in 2012, where wind speed, wind direction, global radiation and temperature are measured at a half hourly interval. These measurements confirm the expectation of a large photovoltaic potential and high panel efficiency with up to 84 percent of extraterrestrial radiation reaching the surface and only 16 hours of temperatures above 25°C were measured in two years at the village stations on average. As these observations are only point measurements, radiation data and the ASTER GDEM was used to train a GIS based solar radiation model to spatially extrapolate incoming radiation. With mean validation errors ranging from 5% in July (minimum) to 15% in December (maximum

  19. Wind energy renewable energy and the environment

    CERN Document Server

    Nelson, Vaughn

    2013-01-01

    As the demand for energy increases, and fossil fuels continue to decrease, Wind Energy: Renewable Energy and the Environment, Second Edition considers the viability of wind as an alternative renewable energy source. This book examines the wind industry from its start in the 1970s until now, and introduces all aspects of wind energy. The phenomenal growth of wind power for utilities is covered along with applications such as wind-diesel, village power, telecommunications, and street lighting.. It covers the characteristics of wind, such as shear, power potential, turbulence, wind resource, wind

  20. Resource Sharing in the Logistics of the Offshore Wind Farm Installation Process based on a Simulation Study

    Directory of Open Access Journals (Sweden)

    Thies Beinke

    2017-06-01

    Full Text Available This present contribution examines by means of a discrete event and agent-based simulation the potential of a joint use of resources in the installation phase of offshore wind energy. To this end, wind farm projects to be installed simultaneously are being examined, the impact of weather restrictions on the processes of loading, transport and installation are also taken into consideration, and both the wind farm specific resource allocation and the approach of a resource pool or resource sharing, respectively, are being implemented. This study is motivated by the large number of wind farms that will be installed in the future and by the potential savings that might be realized through resource sharing. While, so far, the main driver of the resource sharing approach has been the end consumer market, it has been applied in more and more areas, even in relatively conservative industries such as logistics. After the presentation of the backgrounds and of the underlying methodology, and the description of the prior art in this context, the network of the offshore wind energy installation phase will be described. This is the basis for the subsequent determination of the savings potential of a shared resource utilization, which is determined by the performance indicators such as the total installation time and degree of utilization of the resources. The results of the simulation show that weather restrictions have a significant effect on the installation times and the usage times of the resources as well as on their degree of utilization. In addition, the resource sharing approach, has been identified to have significant savings potential for the offshore wind energy installation.

  1. Tidal influence on offshore wind fields and resource predictions[Efficient Development of Offshore Windfarms

    Energy Technology Data Exchange (ETDEWEB)

    Khan, D. [Entec UK Ltd., Doherty Innovation Centre, Penicuik (United Kingdom); Infield, D. [Loughborough Univ., Centre for Renewable Energy Systems Tecnology, Loughborough (United Kingdom)

    2002-03-01

    The rise and fall of the sea surface due to tides effectively moves an offshore wind turbine hub through the wind shear profile. This effect is quantified using measured data from 3 offshore UK sites. Statistical evidence of the influence of tide on mean wind speed and turbulence is presented. The implications of this effect for predicting offshore wind resource are outlined. (au)

  2. Assessing climate change impacts on the near-term stability of the wind energy resource over the United States.

    Science.gov (United States)

    Pryor, S C; Barthelmie, R J

    2011-05-17

    The energy sector comprises approximately two-thirds of global total greenhouse gas emissions. For this and other reasons, renewable energy resources including wind power are being increasingly harnessed to provide electricity generation potential with negligible emissions of carbon dioxide. The wind energy resource is naturally a function of the climate system because the "fuel" is the incident wind speed and thus is determined by the atmospheric circulation. Some recent articles have reported historical declines in measured near-surface wind speeds, leading some to question the continued viability of the wind energy industry. Here we briefly articulate the challenges inherent in accurately quantifying and attributing historical tendencies and making robust projections of likely future wind resources. We then analyze simulations from the current generation of regional climate models and show, at least for the next 50 years, the wind resource in the regions of greatest wind energy penetration will not move beyond the historical envelope of variability. Thus this work suggests that the wind energy industry can, and will, continue to make a contribution to electricity provision in these regions for at least the next several decades.

  3. Database on wind characteristics - Analyses of wind turbine design loads

    DEFF Research Database (Denmark)

    Larsen, Gunner Chr.; Hansen, K.S.

    2004-01-01

    the design load cases with relevance for to wind turbine structures. The present report constitutes thesecond part of the Annex XVII reporting. Both fatigue and extreme load aspects are dealt with, however, with the main emphasis on the latter. The work has been supported by The Ministry of Environment...... and Energy, Danish Energy Agency, The NetherlandsAgency for Energy and the Environment (NOVEM), The Norwegian Water Resources and Energy Administration (NVE), The Swedish National Energy Administration (STEM) and The Government of the United States of America....

  4. Southward shift of the global wind energy resource under high carbon dioxide emissions

    Science.gov (United States)

    Karnauskas, Kristopher B.; Lundquist, Julie K.; Zhang, Lei

    2018-01-01

    The use of wind energy resource is an integral part of many nations' strategies towards realizing the carbon emissions reduction targets set forth in the Paris Agreement, and global installed wind power cumulative capacity has grown on average by 22% per year since 2006. However, assessments of wind energy resource are usually based on today's climate, rather than taking into account that anthropogenic greenhouse gas emissions continue to modify the global atmospheric circulation. Here, we apply an industry wind turbine power curve to simulations of high and low future emissions scenarios in an ensemble of ten fully coupled global climate models to investigate large-scale changes in wind power across the globe. Our calculations reveal decreases in wind power across the Northern Hemisphere mid-latitudes and increases across the tropics and Southern Hemisphere, with substantial regional variations. The changes across the northern mid-latitudes are robust responses over time in both emissions scenarios, whereas the Southern Hemisphere changes appear critically sensitive to each individual emissions scenario. In addition, we find that established features of climate change can explain these patterns: polar amplification is implicated in the northern mid-latitude decrease in wind power, and enhanced land-sea thermal gradients account for the tropical and southern subtropical increases.

  5. Human resources challenges for wind energy

    Energy Technology Data Exchange (ETDEWEB)

    Cottingham, C. [Electricity Sector Council, Ottawa, ON (Canada)

    2006-07-01

    The potential role of the Electricity Sector Council in wind power workforce development was reviewed. Canada is a major exporter of electricity, and production of electricity in the country has grown by 10 per cent in the last 10 years. The electric industry has become increasingly interested in the development of renewable and sustainable energy sources in order to reduce the environmental impacts of electricity production and use, as well to address potential supply shortages. However, total labour force growth in Canada is expected to drop to 0.5 per cent by 2010, and is expected to keep falling. Engineering and science enrolments in post-secondary institutions are declining. Many immigrants to Canada choose to settle in metropolitan areas, and only 4 in 10 immigrants are able to achieve validation of their credentials in the Canadian education system. One-third of Canadian employees are expected to retire in the next 8 years. The wind energy sector is the fastest growing energy source sector in Canada, and there are limited training facilities available. Competency profiles for roles in the industry are not clearly defined. Many provinces have very little development to support or sustain educational services for wind power training. This presentation suggested that the wind energy sector should prepare for the anticipated workforce shortage by planning training programs and building partnerships in workforce development. Investments in wind power research and development should have contract provisions regarding labour and skills development. Retiring electricity workers may provide a source of labour support. Sector councils provide a neutral forum for employers, educators, and employees, with a focus on human resource development for specific industry sectors. The councils represent an estimated 45 to 50 per cent of the labour market, and have significant federal funding. The Electricity Sector Council offers advanced career and workforce training; youth

  6. Characterization of the Wind Power Resource in Europe and its Intermittency

    Science.gov (United States)

    Cosseron, Alexandra; Gunturu, Bhaskar; Schlosser, Adam

    2013-04-01

    Thanks to incentives from the European Union and recent events, the political situation in Europe has never been so favorable towards renewables. As one of the most mature technologies among them, wind power has been chosen to be assessed over Europe, with a special care given to intermittency and variability quantifications. The goal of this study is to construct and analyze the availability and variability of the wind potential across Europe using the methodology developed in Gunturu and Schlosser (2011). The Modern Era Retrospective-Analysis for Research and Applications (MERRA) boundary flux data was used to construct wind profiles at 50, 80, 100 and 120 meters height over a domain spreading from Iceland to the western end of Ukraine. Comparisons and contrasts with previous works have asserted the reliability of the data and computations used in the analysis. It must be emphasized though that the data set used in this study has a thirty-year length, a time resolution of an hour and is a reconstruction of the atmospheric state by assimilating observational data from different platforms into a global model. Various metrics, such as coefficients of variation, inter-quartile ranges, capacity factors and wind episode lengths, have been introduced to assess magnitude and variability of wind power. Then, unconventional variables have been designed to further study the availability and reliability of this resource. Thus, to study the correlation between wind episodes across Europe, parameters called antiCoincidence and antiNullCoincidence have been built. Pragmatically, the seven closest grid points in each direction at every grid point have been studied to assess whether they had wind when the considered point had or had not. The analysis of these variables leads to the conclusion that wind-proponents' favorite statement, "wind always blows somewhere", may not be so true. All of these metrics have finally allowed a better understanding of wind power features over

  7. Effects of Yaw Error on Wind Turbine Running Characteristics Based on the Equivalent Wind Speed Model

    Directory of Open Access Journals (Sweden)

    Shuting Wan

    2015-06-01

    Full Text Available Natural wind is stochastic, being characterized by its speed and direction which change randomly and frequently. Because of the certain lag in control systems and the yaw body itself, wind turbines cannot be accurately aligned toward the wind direction when the wind speed and wind direction change frequently. Thus, wind turbines often suffer from a series of engineering issues during operation, including frequent yaw, vibration overruns and downtime. This paper aims to study the effects of yaw error on wind turbine running characteristics at different wind speeds and control stages by establishing a wind turbine model, yaw error model and the equivalent wind speed model that includes the wind shear and tower shadow effects. Formulas for the relevant effect coefficients Tc, Sc and Pc were derived. The simulation results indicate that the effects of the aerodynamic torque, rotor speed and power output due to yaw error at different running stages are different and that the effect rules for each coefficient are not identical when the yaw error varies. These results may provide theoretical support for optimizing the yaw control strategies for each stage to increase the running stability of wind turbines and the utilization rate of wind energy.

  8. A Comparison Study between Two MPPT Control Methods for a Large Variable-Speed Wind Turbine under Different Wind Speed Characteristics

    Directory of Open Access Journals (Sweden)

    Dongran Song

    2017-05-01

    Full Text Available Variable speed wind turbines (VSWTs usually adopt a maximum power point tracking (MPPT method to optimize energy capture performance. Nevertheless, obtained performance offered by different MPPT methods may be affected by the impact of wind turbine (WT’s inertia and wind speed characteristics and it needs to be clarified. In this paper, the tip speed ratio (TSR and optimal torque (OT methods are investigated in terms of their performance under different wind speed characteristics on a 1.5 MW wind turbine model. To this end, the TSR control method based on an effective wind speed estimator and the OT control method are firstly presented. Then, their performance is investigated and compared through simulation test results under different wind speeds using Bladed software. Comparison results show that the TSR control method can capture slightly more wind energy at the cost of high component loads than the other one under all wind conditions. Furthermore, it is found that both control methods present similar trends of power reduction that is relevant to mean wind speed and turbulence intensity. From the obtained results, we demonstrate that, to further improve MPPT capability of large VSWTs, other advanced control methods using wind speed prediction information need to be addressed.

  9. Analysis the Transient Process of Wind Power Resources when there are Voltage Sags in Distribution Grid

    Science.gov (United States)

    Nhu Y, Do

    2018-03-01

    Vietnam has many advantages of wind power resources. Time by time there are more and more capacity as well as number of wind power project in Vietnam. Corresponding to the increase of wind power emitted into national grid, It is necessary to research and analyze in order to ensure the safety and reliability of win power connection. In national distribution grid, voltage sag occurs regularly, it can strongly influence on the operation of wind power. The most serious consequence is the disconnection. The paper presents the analysis of distribution grid's transient process when voltage is sagged. Base on the analysis, the solutions will be recommended to improve the reliability and effective operation of wind power resources.

  10. Practical Robust Optimization Method for Unit Commitment of a System with Integrated Wind Resource

    Directory of Open Access Journals (Sweden)

    Yuanchao Yang

    2017-01-01

    Full Text Available Unit commitment, one of the significant tasks in power system operations, faces new challenges as the system uncertainty increases dramatically due to the integration of time-varying resources, such as wind. To address these challenges, we propose the formulation and solution of a generalized unit commitment problem for a system with integrated wind resources. Given the prespecified interval information acquired from real central wind forecasting system for uncertainty representation of nodal wind injections with their correlation information, the proposed unit commitment problem solution is computationally tractable and robust against all uncertain wind power injection realizations. We provide a solution approach to tackle this problem with complex mathematical basics and illustrate the capabilities of the proposed mixed integer solution approach on the large-scale power system of the Northwest China Grid. The numerical results demonstrate that the approach is realistic and not overly conservative in terms of the resulting dispatch cost outcomes.

  11. Wind energy in Vietnam: Resource assessment, development status and future implications

    International Nuclear Information System (INIS)

    Nguyen, Khanh Q.

    2007-01-01

    The aim of this study is to estimate the technical potential of wind energy in Vietnam and discuss strategies for promoting the market penetration of wind energy in the country. For the wind resource assessment, a geographical information system (GIS)- assisted approach has been developed. It is found that Vietnam has a good potential for wind energy. About 31,000 km 2 of land area can be available for wind development in which 865 km 2 equivalents to a wind power of 3572 MW has a generation cost less than 6 US cents/kWh. The study also proves that wind energy could be a good solution for about 300,000 rural non-electrified households. While wind energy brings about ecological, economic and social benefits, it is only modestly exploited in Vietnam, where the main barrier is the lack of political impetus and a proper framework for promoting renewable energy. The priority task therefore is to set a target for renewable energy development and to find instruments to achieve such a target. The main instruments proposed here are setting feed-in tariff and providing investment incentives

  12. State of the Art and Trends in Wind Resource Assessment

    Directory of Open Access Journals (Sweden)

    Oliver Probst

    2010-06-01

    Full Text Available Given the significant rise of the utilization of wind energy the accurate assessment of the wind potential is becoming increasingly important. Direct applications of wind assessment techniques include the creation of wind maps on a local scale (typically 5 20 km and the micrositing of wind turbines, the estimation of vertical wind speed variations, prospecting on a regional scale (>100 km, estimation of the long-term wind resource at a given site, and forecasting. The measurement of wind speed and direction still widely relies on cup anemometers, though sonic anemometers are becoming increasingly popular. Moreover, remote sensing by Doppler techniques using the backscattering of either sonic beams (SODAR or light (LIDAR allowing for vertical profiling well beyond hub height are quickly moving into the mainstream. Local wind maps are based on the predicted modification of the regional wind flow pattern by the local atmospheric boundary layer which in turn depends on both topographic and roughness features and the measured wind rose obtained from one or several measurement towers within the boundaries of the planned development site. Initial models were based on linearized versions of the Navier-Stokes equations, whereas more recently full CFD models have been applied to wind farm micrositing. Linear models tend to perform well for terrain slopes lower than about 25% and have the advantage of short execution times. Long-term performance is frequently estimated from correlations with nearby reference stations with concurrent information and continuous time series over a period of at least 10 years. Simple methods consider only point-to-point linear correlations; more advanced methods like multiple regression techniques and methods based on the theory of distributions will be discussed. Both for early prospecting in regions where only scarce or unreliable reference information is available, wind flow modeling on a larger scale (mesoscale is becoming

  13. Smoothing out the volatility of South Africa’s wind and solar energy resources

    CSIR Research Space (South Africa)

    Mushwana, Crescent

    2015-10-01

    Full Text Available In the past, renewables were mainly driven by the US, Europe and China, but South Africa is slowly picking up. This presentation discusses South Africa's wind and solar resources as alternative energy resources....

  14. Wind deployment in the United States: states, resources, policy, and discourse.

    Science.gov (United States)

    Wilson, Elizabeth J; Stephens, Jennie C

    2009-12-15

    A transformation in the way the United States produces and uses energy is needed to achieve greenhouse gas reduction targets for climate change mitigation. Wind power is an important low-carbon technology and the most rapidly growing renewable energy technology in the U.S. Despite recent advances in wind deployment, significant state-by-state variation in wind power distribution cannot be explained solely by wind resource patterns nor by state policy. Other factors embedded within the state-level socio-political context also contribute to wind deployment patterns. We explore this socio-political context in four U.S. states by integrating multiple research methods. Through comparative state-level analysis of the energy system, energy policy, and public discourse as represented in the media, we examine variation in the context for wind deployment in Massachusetts, Minnesota, Montana, and Texas. Our results demonstrate that these states have different patterns of wind deployment, are engaged in different debates about wind power, and appear to frame the risks and benefits of wind power in different ways. This comparative assessment highlights the complex variation of the state-level socio-political context and contributes depth to our understanding of energy technology deployment processes, decision-making, and outcomes.

  15. Wind climate from the regional climate model REMO

    DEFF Research Database (Denmark)

    Larsén, Xiaoli Guo; Mann, Jakob; Berg, Jacob

    2010-01-01

    Selected outputs from simulations with the regional climate model REMO from the Max Planck Institute, Hamburg, Germany were studied in connection with wind energy resource assessment. It was found that the mean wind characteristics based on observations from six mid-latitude stations are well...... described by the standard winds derived from the REMO pressure data. The mean wind parameters include the directional wind distribution, directional and omni-directional mean values and Weibull fitting parameters, spectral analysis and interannual variability of the standard winds. It was also found that......, on average, the wind characteristics from REMO are in better agreement with observations than those derived from the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) re-analysis pressure data. The spatial correlation of REMO surface winds in Europe...

  16. Small scale wind power harnessing in Colombian oil industry facilities: Wind resource and technology issues

    Energy Technology Data Exchange (ETDEWEB)

    Giraldo, Mauricio; Nieto, Cesar; Escudero, Ana C.; Cobos, Juan C.; Delgado, Fernando

    2010-07-01

    Full text: Looking to improve its national and international standing, Colombia's national oil company, Ecopetrol, has set its goal on becoming involved on the production of energy from multiple sources, most importantly, on having an important percentage of its installed capacity from renewable sources. Part of this effort entices the evaluation of wind power potential on its facilities, including production, transportation and administrative, as well as identifying those technologies most suitable for the specific conditions of an equatorial country such as Colombia. Due to the lack of adequate site information, the first step consisted in superimposing national data to the facilities map of the company; this allowed for the selection of the first set of potential sites. From this set, the terminal at Covenas-Sucre was selected taking into account not only wind resource, but ease of access and power needs, as well as having a more or less representative wind potential in comparison to the rest of the country. A weather station was then installed to monitor wind variables. Measurements taken showed high variations in wind direction, and relatively low velocity profiles, making most commercially available wind turbines difficult to implement. In light of the above, a series of iterative steps were taken, first considering a range of individual Vertical Axis Wind Turbines (VAWT), given their capacity to adapt to changing wind directions. However, wind speed variations proved to be a challenge for individual VAWT's, i.e. Darriues turbines do not work well with low wind speeds, and Savonius turbines are not efficient of high wind speeds. As a result, a combined Darrieus- Savonius VAWT was selected given the capacity to adapt to both wind regimes, while at the same time modifying the size and shape of the blades in order to adapt to the lower average wind speeds present at the site. The resulting prototype is currently under construction and is scheduled to

  17. Voltage-current characteristics of multiterminal HVDC-VSC for offshore wind farms

    Energy Technology Data Exchange (ETDEWEB)

    Gomis-Bellmunt, Oriol [Centre d' Innovacio Tecnologica en Convertidors Estatics i Accionaments (CITCEA-UPC), Universitat Politecnica de Catalunya UPC, Av. Diagonal, 647, Pl. 2., 08028 Barcelona (Spain); IREC Catalonia Institute for Energy Research, Barcelona (Spain); Liang, Jun; Ekanayake, Janaka; Jenkins, Nicholas [School of Engineering, Cardiff University, Queen' s Buildings, The Parade, Cardiff CF24 3AA, Wales (United Kingdom)

    2011-02-15

    Voltage-current characteristics and equilibrium points for the DC voltages of multiterminal HVDC systems using voltage source converters are discussed. The wind farm rectifiers and grid connected inverters are analyzed through their operating modes, governing equations and graphical characteristics. Using the converter equations and the HVDC grid conductance matrix the equilibrium voltages and currents are found. Case studies are presented considering wind power generation, loss of a converter and voltage sags in the AC grid. (author)

  18. Avian Monitoring and Risk Assessment at the San Gorgonio Wind Resource Area

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, R.; Tom, J.; Neumann, N.; Erickson, W. P.; Strickland, M. D.; Bourassa, M.; Bay, K. J.; Sernka, K. J.

    2005-08-01

    The primary objective of this study at the San Gorgonio Wind Resource Area was to estimate and compare bird utilization, fatality rates, and the risk index among factors including bird taxonomic groups, wind turbine and reference areas, wind turbine sizes and types, and geographic locations. The key questions addressed to meet this objective include: (1) Are there any differences in the level of bird activity, called ''utilization rate'' or ''use'', with the operating wind plant and within the surrounding undeveloped areas (reference area)?; (2) Are there any differences in the rate of bird fatalities (or avian fatality) within the operating wind plant or the surrounding undeveloped areas (reference area)?; (3) Does bird use, fatality rates, or bird risk index vary according to the geographic location, type and size of wind turbine, and/or type of bird within the operating wind plant and surrounding undeveloped areas (reference area)?; and (4) How do raptor fatality rates at San Gorgonio compare to other wind projects with comparable data?

  19. A study on the survey of wind energy resources for potential areas

    Energy Technology Data Exchange (ETDEWEB)

    Park, Kyung Ho; Kim, Keon Hoon; Yoo, Seung Won; Choi, Chang Joon; Ahn, Jung Jong [Korea Inst. of Energy Research, Taejon (Korea, Republic of)

    1995-12-01

    Among the wind energy utilization projects, the siting work for wind turbine installation is one of the most important procedure because the wind energy distribution is very different regionally and wind energy density influences greatly to the feasibility of wind energy utilization. So, the potential sites of wind generating in our country must be surveyed and analyzed the feasibility of wind energy utilization. In addition to this, the technique of wind energy prediction considered of the topography, surface roughness and obstacle condition must be established for the reliable analysis of wind energy utilization. The contents carried out in this project are shown below, 1. Determining of the measuring sites of wind data - Wyoulryung-ri, Youngrag-ri, Gapa-ri in Cheju Province - Heul-ri, Gangwon Province. 2. Analysis of wind energy at measuring sites The characteristics of wind energy at the measured sites were analysed. It will be continued to measure the wind data by wind data logger. 3. A study on wind energy prediction technique It was studied how to obtain the topographic map data for using WAsP(WIndAtlas Analysis and Application Program). (author). 21 refs., 59 figs., 19 tabs.

  20. Offshore Wind Resources Assessment from Multiple Satellite Data and WRF Modeling over South China Sea

    DEFF Research Database (Denmark)

    Chang, Rui; Rong, Zhu; Badger, Merete

    2015-01-01

    offshore winds which can be used for offshore wind resource assessment. First, wind speeds retrieved from Synthetic Aperture Radar (SAR) and Scatterometer ASCAT images were validated against in situ measurements from seven coastal meteorological stations in South China Sea (SCS). The wind roses from...... (SD) of 2.09 m/s (1.83 m/s) and correlation coefficient of R 0.75 (0.80). When the offshore winds (i.e., winds directed from land to sea) are excluded, the comparison results for wind speeds show an improvement of SD and R, indicating that the satellite data are more credible over the open ocean...

  1. Market protocols in ERCOT and their effect on wind generation

    International Nuclear Information System (INIS)

    Sioshansi, Ramteen; Hurlbut, David

    2010-01-01

    Integrating wind generation into power systems and wholesale electricity markets presents unique challenges due to the characteristics of wind power, including its limited dispatchability, variability in generation, difficulty in forecasting resource availability, and the geographic location of wind resources. Texas has had to deal with many of these issues beginning in 2002 when it restructured its electricity industry and introduced aggressive renewable portfolio standards that helped spur major investments in wind generation. In this paper we discuss the issues that have arisen in designing market protocols that take account of these special characteristics of wind generation and survey the regulatory and market rules that have been developed in Texas. We discuss the perverse incentives some of the rules gave wind generators to overschedule generation in order to receive balancing energy payments, and steps that have been taken to mitigate those incentive effects. Finally, we discuss more recent steps taken by the market operator and regulators to ensure transmission capacity is available for new wind generators that are expected to come online in the future.

  2. Wind Resource Assessment in Complex Terrain with a High-Resolution Numerical Weather Prediction Model

    Science.gov (United States)

    Gruber, Karin; Serafin, Stefano; Grubišić, Vanda; Dorninger, Manfred; Zauner, Rudolf; Fink, Martin

    2014-05-01

    A crucial step in planning new wind farms is the estimation of the amount of wind energy that can be harvested in possible target sites. Wind resource assessment traditionally entails deployment of masts equipped for wind speed measurements at several heights for a reasonably long period of time. Simplified linear models of atmospheric flow are then used for a spatial extrapolation of point measurements to a wide area. While linear models have been successfully applied in the wind resource assessment in plains and offshore, their reliability in complex terrain is generally poor. This represents a major limitation to wind resource assessment in Austria, where high-altitude locations are being considered for new plant sites, given the higher frequency of sustained winds at such sites. The limitations of linear models stem from two key assumptions in their formulation, the neutral stratification and attached boundary-layer flow, both of which often break down in complex terrain. Consequently, an accurate modeling of near-surface flow over mountains requires the adoption of a NWP model with high horizontal and vertical resolution. This study explores the wind potential of a site in Styria in the North-Eastern Alps. The WRF model is used for simulations with a maximum horizontal resolution of 800 m. Three nested computational domains are defined, with the innermost one encompassing a stretch of the relatively broad Enns Valley, flanked by the main crest of the Alps in the south and the Nördliche Kalkalpen of similar height in the north. In addition to the simulation results, we use data from fourteen 10-m wind measurement sites (of which 7 are located within valleys and 5 near mountain tops) and from 2 masts with anemometers at several heights (at hillside locations) in an area of 1600 km2 around the target site. The potential for wind energy production is assessed using the mean wind speed and turbulence intensity at hub height. The capacity factor is also evaluated

  3. Remotely sensed data fusion for offshore wind energy resource mapping; Fusion de donnees satellitaires pour la cartographie du potentiel eolien offshore

    Energy Technology Data Exchange (ETDEWEB)

    Ben Ticha, M.B

    2007-11-15

    Wind energy is a component of an energy policy contributing to a sustainable development. Last years, offshore wind parks have been installed offshore. These parks benefit from higher wind speeds and lower turbulence than onshore. To sit a wind park, it is necessary to have a mapping of wind resource. These maps are needed at high spatial resolution to show wind energy resource variations at the scale of a wind park. Wind resource mapping is achieved through the description of the spatial variations of statistical parameters characterizing wind climatology. For a precise estimation of these statistical parameters, high temporal resolution wind speed and direction measurements are needed. However, presently, there is no data source allying high spatial resolution and high temporal resolution. We propose a data fusion method taking advantage of the high spatial resolution of some remote sensing instruments (synthetic aperture radars) and the high temporal resolution of other remote sensing instruments (scatterometers). The data fusion method is applied to a case study and the results quality is assessed. The results show the pertinence of data fusion for the mapping of wind energy resource offshore. (author)

  4. Wind Power Meteorology

    DEFF Research Database (Denmark)

    Lundtang Petersen, Erik; Mortensen, Niels Gylling; Landberg, Lars

    Wind power meteorology has evolved as an applied science, firmly founded on boundary-layer meteorology, but with strong links to climatology and geography. It concerns itself with three main areas: siting of wind turbines, regional wind resource assessment, and short-term prediction of the wind...... resource. The history, status and perspectives of wind power meteorology are presented, with emphasis on physical considerations and on its practical application. Following a global view of the wind resource, the elements of boundary layer meteorology which are most important for wind energy are reviewed......: wind profiles and shear, turbulence and gust, and extreme winds. The data used in wind power meteorology stem mainly from three sources: onsite wind measurements, the synoptic networks, and the re-analysis projects. Wind climate analysis, wind resource estimation and siting further require a detailed...

  5. A tall tower study of Missouri winds

    Energy Technology Data Exchange (ETDEWEB)

    Fox, Neil I. [Department of Soil, Environmental and Atmospheric Sciences, 332 ABNR Building, University of Missouri, Columbia, MO 65211 (United States)

    2011-01-15

    This paper summarizes the results of a study of wind speeds observed at heights up to 150 m above ground level around Missouri. This is an amalgamation of four projects that allowed a total of eleven tall communication towers to be instrumented with wind observation equipment across the State of Missouri. This provided an assessment of the wind resource and the characteristics of the seasonal and diurnal cycles of wind in different areas of Missouri at the heights of utility scale wind turbines. Comparisons were also made to wind speeds predicted at these levels from a previously published wind map. The main finding was that the observed winds at each tower were smaller than those presented in the wind map. The discrepancy is most likely to be due to underestimation of the surface roughness and turbulence leading to an overestimation of near-surface wind shear. However, the wind shear, as expressed by the shear parameter was consistently greater than the 'standard' value of 1.4. The reconciliation of these two apparently contradictory findings is that the shear varies with the height at which it is measured. In wind resource assessment, wind shear is usually observed below 50 m and is tacitly assumed to be constant with height when used to extrapolate winds to higher levels. The author advocates the use of the friction velocity as a measure of shear in wind power applications in preference to the shear parameter that is usually used. This is because the shear parameter has a velocity bias that can also manifest as a bias with height or season. As wind power resource assessment is starting to use taller towers than the standard 50 m, intercomparison of site resources and extrapolation to turbine heights can be compromised if the shear parameter is used. (author)

  6. Estimating near-shore wind resources

    DEFF Research Database (Denmark)

    Floors, Rogier Ralph; Hahmann, Andrea N.; Peña, Alfredo

    An evaluation and sensitivity study using the WRF mesoscale model to estimate the wind in a coastal area is performed using a unique data set consisting of scanning, profiling and floating lidars. The ability of the WRF model to represent the wind speed was evaluated by running the model for a four...... grid spacings were performed for each of the two schemes. An evaluation of the wind profile using vertical profilers revealed small differences in modelled mean wind speed between the different set-ups, with the YSU scheme predicting slightly higher mean wind speeds. Larger differences between...... the different simulations were observed when comparing the root-mean-square error (RMSE) between modelled and measured wind, with the ERA interim-based simulations having the lowest errors. The simulations with finer horizontal grid spacing had a larger MSE. Horizontal transects of mean wind speed across...

  7. Thermodynamic performance assessment of wind energy systems: An application

    International Nuclear Information System (INIS)

    Redha, Adel Mohammed; Dincer, Ibrahim; Gadalla, Mohamed

    2011-01-01

    In this paper, the performance of wind energy system is assessed thermodynamically, from resource and technology perspectives. The thermodynamic characteristics of wind through energy and exergy analyses are considered and both energetic and exergetic efficiencies are studied. Wind speed is affected by air temperature and pressure and has a subsequent effect on wind turbine performance based on wind reference temperature and Bernoulli's equation. VESTAS V52 wind turbine is selected for (Sharjah/UAE). Energy and exergy efficiency equations for wind energy systems are further developed for practical applications. The results show that there are noticeable differences between energy and exergy efficiencies and that exergetic efficiency reflects the right/actual performance. Finally, exergy analysis has been proven to be the right tool used in design, simulation, and performance evaluation of all renewable energy systems. -- Highlights: → In this research the performance of wind energy system is assessed thermodynamically, from resource and technology perspectives. → Energy and exergy equations for wind energy systems are further developed for practical applications. → Thermodynamic characteristics of wind turbine systems through energetic and exergetic efficiencies are evaluated from January till March 2010. → Exergy efficiency describes the system irreversibility and the minimum irreversibility exists when the wind speed reaches 11 m/s. → The power production during March was about 17% higher than the month of February and 66% higher than January.

  8. COMPLEX MAPPING OF ENERGY RESOURCES FOR ALLOCATION OF SOLAR AND WIND ENERGY OBJECTS

    Directory of Open Access Journals (Sweden)

    B. A. Novakovskiy

    2016-01-01

    Full Text Available The paper presents developed methodology of solar and wind energy resources complex mapping at the regional level, taking into account the environmental and socio-economic factors affecting the placement of renewable energy facilities. Methodology provides a reasonable search and allocation of areas, the most promising for the placement of wind and solar power plants.

  9. Climate change impacts on wind energy resources in northern Europe

    International Nuclear Information System (INIS)

    Pryor, S.C.; Barthelmie, R.J.; Kjellstroem, E.

    2005-01-01

    Energy is a fundamental human need. Heat, light and transport for individuals combined with the needs of industry have created a demand for energy which for the last 100-200 years has been met largely through consumption of fossil fuels leading to altered atmospheric composition and modification of the global climate. These effects will be realised on local scales affecting not just temperature and precipitation but also wind, radiation and other parameters. Annual mean wind speeds and wind energy density over northern Europe were significantly higher at the end of twentieth century than during the middle portion of that century, with the majority of the change being focused on the winter season. To address questions regarding possible future wind climates we employ dynamical and empirical downscaling techniques that seek to take coarse resolution output from General Circulation Models (GCM), run to provide scenarios of future climate, and develop higher resolution regional wind climates. Analyses of the wind climate during the historical record indicate that both the dynamical approach and the empirical approach are capable of generating accurate, robust and quantitative assessments of the wind climate and energy density in northern Europe, and hence that they may be of great utility to those seeking financing for, or risk management of, wind farms in the face of climate uncertainty. The synthesis of application of these downscaling tools to climate projections for northern Europe is that there is no evidence of major changes in the wind energy resource. However, more research is required to quantify the uncertainties in developing these projections and to reduce those uncertainties. Further work should also be conducted to assess the validity of these downscaling approaches in other geographical locations. (BA)

  10. A multi-state model for wind farms considering operational outage probability

    DEFF Research Database (Denmark)

    Cheng, Lin; Liu, Manjun; Sun, Yuanzhang

    2013-01-01

    As one of the most important renewable energy resources, wind power has drawn much attention in recent years. The stochastic characteristics of wind speed lead to generation output uncertainties of wind energy conversion system (WECS) and affect power system reliability, especially at high wind...... as well as solving a series of reliability-centered decision-making problems of power system scheduling and maintenance arrangements....

  11. Controllable and affordable utility-scale electricity from intermittent wind resources and compressed air energy storage (CAES)

    International Nuclear Information System (INIS)

    Cavallo, Alfred

    2007-01-01

    World wind energy resources are substantial, and in many areas, such as the US and northern Europe, could in theory supply all of the electricity demand. However, the remote or challenging location (i.e. offshore) and especially the intermittent character of the wind resources present formidable barriers to utilization on the scale required by a modern industrial economy. All of these technical challenges can be overcome. Long distance transmission is well understood, while offshore wind technology is being developed rapidly. Intermittent wind power can be transformed to a controllable power source with hybrid wind/compressed air energy storage (CAES) systems. The cost of electricity from such hybrid systems (including transmission) is affordable, and comparable to what users in some modern industrial economies already pay for electricity. This approach to intermittent energy integration has many advantages compared to the current strategy of forcing utilities to cope with supply uncertainty and transmission costs. Above all, it places intermittent wind on an equal technical footing with every other generation technology, including nuclear power, its most important long-term competitor

  12. The analysis of dynamic characteristics and wind-induced displacement response of space Beam String Structure

    Directory of Open Access Journals (Sweden)

    Chen Yong Jian

    2018-01-01

    Full Text Available The Beam String Structure structural system, also called BSS, has the advantages of lighter dead weight and greater flexibility. The wind load is the main design control factor. The dynamic characteristics and wind-induced displacement response of BSS are studied by the finite element method. The roof structure of the stadium roof of the Fuzhou Olympic Sports Center is the engineering background. 1The numerical model was built by ANSYS, by shape finding, determine the initial stress state of structural members such as external cables; 2From the analysis of dynamic characteristics, the main mode of vibration is the vibration of cables; 3The wind speed spectrum of MATLAB generation structure is obtained by AR method, the structural response of the structure under static wind load and fluctuating wind load is calculated. From the analysis result, considering the equivalent static wind load of BSS , the design of adverse wind is not safe, and the fluctuating wind load should be taken into account.

  13. Wind-wave induced dynamic response analysis for motions and mooring loads of a spar-type offshore floating wind turbine

    Institute of Scientific and Technical Information of China (English)

    马钰; 肖龙飞; 胡志强

    2014-01-01

    Due to the energy crisis and the environmental issues like pollution and global warming, the exploration for renewable and clean energies becomes crucial. The offshore floating wind turbines (OFWTs) draw a great deal of attention recently as a means to exploit the steadier and stronger wind resources available in deep water seas. This paper studies the hydrodynamic characteristics of a spar-type wind turbine known as the OC3-Hywind concept and the dynamic responses of the turbine. Response characteristics of motions and mooring loads of the system under different sea states are evaluated and the effects of the loads induced by the wind and the wave on the system are discussed. The calculations are carried out with the numerical simulation code FAST in the time domain and the frequency analysis is made by using the FFT method. The results and the conclusions from this paper might help better understand the behavior characteristics of the floating wind turbine system under actual ocean environments and provide valuable data in design and engineering practice.

  14. Wind power development field test project at Ashibe-cho. Detailed wind characteristics survey; Ashibecho ni okeru furyoku kaihatsu field test jigyo (fukyo seisa) hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-11-01

    A detailed wind characteristics survey was conducted at Ashibe-cho, Iki-gun, Nagasaki Prefecture, on the assumption that a wind power generation system would be constructed. The survey was a 1-year project from October 1998 through September 1999, and wind characteristics such as the average wind speed, average wind direction, standard deviation of wind velocity, and the maximum instantaneous wind speed were observed. The observation point was fixed at 20m above ground, the minimum time unit for observation was 10 minutes, and the 10-minute average value was defined as the measured value. For the maximum instantaneous wind speed, the minimum time unit for observation was set to be 2 seconds. The yearly average wind speed was 5.8m/s and the maximum wind speed in the period was 35m/s. Winds came from the prevailing direction of NE (21.3%), and then from NNE (14.7%) and ENE (7.9%). The wind axis was in the NE-SW direction, and the total wind direction occurrence rate from the 6 directions was 60.2%. Turbulence intensity was 0.19 at wind speed 2.0m/s or more and 0.17 at wind speed 4.0m/s or more. Estimated wind turbine yearly operating factors of 66-84% were obtained using rated values of a 150kW, 300kW, and 750kW-class wind turbines. (NEDO)

  15. A Transmission-Cost-Based Model to Estimate the Amount of Market-Integrable Wind Resources

    DEFF Research Database (Denmark)

    Morales González, Juan Miguel; Pinson, Pierre; Madsen, Henrik

    2012-01-01

    are made to share the expenses in transmission derived from their integration, they may see the doors of electricity markets closed for not being competitive enough. This paper presents a model to decide the amount of wind resources that are economically exploitable at a given location from a transmission......In the pursuit of the large-scale integration of wind power production, it is imperative to evaluate plausible frictions among the stochastic nature of wind generation, electricity markets, and the investments in transmission required to accommodate larger amounts of wind. If wind producers......-cost perspective. This model accounts for the uncertain character of wind by using a modeling framework based on stochastic optimization, simulates market barriers by means of a bi-level structure, and considers the financial risk of investments in transmission through the conditional value-at-risk. The major...

  16. The influence of waves on the offshore wind resource

    Energy Technology Data Exchange (ETDEWEB)

    Lange, B [Risoe National Lab., Roskilde (Denmark); Hoejstrup, J [NEG Micon, Randers (Denmark)

    1999-03-01

    With the growing interest in offshore wind resources, it has become increasingly important to establish and refine models for the interaction between wind and waves in order to obtain accurate models for the sea surface roughness. The simple Charnock relation that has been applied for open sea conditions does not work well in the shallow water near-coastal areas that are important for offshore wind energy. A model for the surface roughness of the sea has been developed based on this concept, using an expression for the Charnock constant as a function of wave age, and then relating the wave `age` to the distance to the nearest upwind coastline. The data used in developing these models originated partly from analysis of data from the Vindeby site, partly from previously published results. The scatter in the data material was considerable and consequently there is a need to test these models further by analysing data from sites exhibiting varying distances to the coast. Results from such analysis of recent data are presented for sites with distances to the coast varying from 10 km to several hundreds of km. The model shows a good agreement also with this data. (au)

  17. Climate change implications for wind power resources in the Northwest United States

    International Nuclear Information System (INIS)

    Sailor, David J.; Smith, Michael; Hart, Melissa

    2008-01-01

    Using statistically downscaled output from four general circulation models (GCMs), we have investigated scenarios of climate change impacts on wind power generation potential in a five-state region within the Northwest United States (Idaho, Montana, Oregon, Washington, and Wyoming). All GCM simulations were extracted from the standardized set of runs created for the Intergovernmental Panel on Climate Change (IPCC). Analysis of model runs for the 20th century (20c3m) simulations revealed that the direct output of wind statistics from these models is of relatively poor quality compared with observations at airport weather stations within each state. When the GCM output was statistically downscaled, the resulting estimates of current climate wind statistics are substantially better. Furthermore, in looking at the GCM wind statistics for two IPCC future climate scenarios from the Special Report on Emissions Scenarios (SRES A1B and A2), there was significant disagreement in the direct model output from the four GCMs. When statistical downscaling was applied to the future climate simulations, a more coherent story unfolded related to the likely impact of climate change on the region's wind power resource. Specifically, the results suggest that summertime wind speeds in the Northwest may decrease by 5-10%, while wintertime wind speeds may decrease by relatively little, or possibly increase slightly. When these wind statistics are projected to typical turbine hub heights and nominal wind turbine power curves are applied, the impact of the climate change scenarios on wind power may be as high as a 40% reduction in summertime generation potential. (author)

  18. Impacts of climate change on wind energy resources in France: a regionalization study

    International Nuclear Information System (INIS)

    Najac, J.

    2008-11-01

    In this work, we study the impact of climate change on surface winds in France and draw conclusions concerning wind energy resources. Because of their coarse spatial resolution, climate models cannot properly reproduce the spatial variability of surface winds. Thus, 2 down-scaling methods are developed in order to regionalize an ensemble of climate scenarios: a statistical method based on weather typing and a statistic-dynamical method that resorts to high resolution mesoscale modelling. By 2050, significant but relatively small changes are depicted with, in particular, a decrease of the wind speed in the southern and an increase in the northern regions of France. The use of other down-scaling methods enables us to study several uncertainty sources: it appears that most of the uncertainty is due to the climate models. (author)

  19. 77 FR 2286 - Iberdrola Renewables, Inc., PacifiCorp, NextEra Energy Resources, LLC, Invenergy Wind North...

    Science.gov (United States)

    2012-01-17

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. EL11-44-000] Iberdrola Renewables, Inc., PacifiCorp, NextEra Energy Resources, LLC, Invenergy Wind North America LLC, Horizon Wind Energy LLC v. Bonneville Power Administration; Notice of Designation of Certain Commission Personnel as...

  20. Assessment of Offshore Wind Energy Resources for the United States

    Energy Technology Data Exchange (ETDEWEB)

    Schwartz, M.; Heimiller, D.; Haymes, S.; Musial, W.

    2010-06-01

    This report summarizes the offshore wind resource potential for the contiguous United States and Hawaii as of May 2009. The development of this assessment has evolved over multiple stages as new regional meso-scale assessments became available, new validation data was obtained, and better modeling capabilities were implemented. It is expected that further updates to the current assessment will be made in future reports.

  1. Grid Integration of Offshore Wind | Wind | NREL

    Science.gov (United States)

    Grid Integration of Offshore Wind Grid Integration of Offshore Wind Much can be learned from the existing land-based integration research for handling the variability and uncertainty of the wind resource Arklow Bank offshore wind park consists of seven GE Wind 3.6-MW wind turbines. Integration and

  2. Analysis of the balancing of the wind and solar energy resources in Andalusia (Southern Spain)

    Science.gov (United States)

    Santos-Alamillos, F. J.; Pozo-Vazquez, D.; Lara-Fanego, V.; Ruiz-Arias, J. A.; Hernandez-Alvaro, J.; Tova-Pescador, J.

    2010-09-01

    A higher penetration of the renewable energy in the electric system in the future will be conditioned to a reduction of the uncertainty of the yield. A way to obtain this goal is to analyze the balancing between the productions of different sources of renewable energy, trying to combine these productions. In this work we analyze, from a meteorological point of view, the balancing between wind and solar energy resources in Andalusia (southern Iberian Peninsula). To this end, wind speed and global radiation data corresponding to an one year integration of the Weather Research and Forecasting (WRF) Numerical Weather Prediction (NWP) model were analyzed. Two method of analysis were used: a point correlation analysis and a Canonical Correlation Analysis (CCA). Results from these analyses allow obtaining, eventually, areas of local and distributed balancing between the wind and solar energy resources. The analysis was carried out separately for the different seasons of the year. Results showed, overall, a considerable balancing effect between the wind and solar resources in the mountain areas of the interior of the region, along the coast of the central part of the region and, specially, in the coastal area near the Gibraltar strait. Nevertheless, considerable differences were found between the seasons of the year, which may lead to compensating effects. Autumn proved to be the season with the most significant results.

  3. Wind energy: Overcoming inadequate wind and modeling uncertainties

    Energy Technology Data Exchange (ETDEWEB)

    Kane, Vivek

    2010-09-15

    'Green Energy' is the call of the day, and significance of Wind Energy can never be overemphasized. But the key question here is - What if the wind resources are inadequate? Studies reveal that the probability of finding favorable wind at a given place on land is only 15%. Moreover, there are inherent uncertainties associated with wind business. Can we overcome inadequate wind resources? Can we scientifically quantify uncertainty and model it to make business sense? This paper proposes a solution, by way of break-through Wind Technologies, combined with advanced tools for Financial Modeling, enabling vital business decisions.

  4. Growth curves and sustained commissioning modelling of renewable energy: Investigating resource constraints for wind energy

    International Nuclear Information System (INIS)

    Davidsson, Simon; Grandell, Leena; Wachtmeister, Henrik; Höök, Mikael

    2014-01-01

    Several recent studies have proposed fast transitions to energy systems based on renewable energy technology. Many of them dismiss potential physical constraints and issues with natural resource supply, and do not consider the growth rates of the individual technologies needed or how the energy systems are to be sustained over longer time frames. A case study is presented modelling potential growth rates of the wind energy required to reach installed capacities proposed in other studies, taking into account the expected service life of wind turbines. A sustained commissioning model is proposed as a theoretical foundation for analysing reasonable growth patterns for technologies that can be sustained in the future. The annual installation and related resource requirements to reach proposed wind capacity are quantified and it is concluded that these factors should be considered when assessing the feasibility, and even the sustainability, of fast energy transitions. Even a sustained commissioning scenario would require significant resource flows, for the transition as well as for sustaining the system, indefinitely. Recent studies that claim there are no potential natural resource barriers or other physical constraints to fast transitions to renewable energy appear inadequate in ruling out these concerns. - Highlights: • Growth rates and service life is important when evaluating energy transitions. • A sustained commissioning model is suggested for analysing renewable energy. • Natural resource requirements for renewable energy are connected to growth rates. • Arguments by recent studies ruling out physical constraints appear inadequate

  5. Transmission cost minimization strategies for wind-electric generating facilities

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, R. [Northern States Power Company, Minneapolis, MN (United States)

    1997-12-31

    Integrating wind-electric generation facilities into existing power systems presents opportunities not encountered in conventional energy projects. Minimizing outlet cost requires probabilistic value-based analyses appropriately reflecting the wind facility`s operational characteristics. The wind resource`s intermittent nature permits relaxation of deterministic criteria addressing outlet configuration and capacity required relative to facility rating. Equivalent capacity ratings of wind generation facilities being a fraction of installed nameplate rating, outlet design studies contingency analyses can concentrate on this fractional value. Further, given its non-dispatchable, low capacity factor nature, a lower level of redundancy in outlet facilities is appropriate considering the trifling contribution to output unreliability. Further cost reduction opportunities arise from {open_quotes}wind speed/generator power output{close_quotes} and {open_quotes}wind speed/overhead conductor rating{close_quotes} functions` correlation. Proper analysis permits the correlation`s exploitation to safely increase line ratings. Lastly, poor correlation between output and utility load may permit use of smaller conductors, whose higher (mostly off-peak) losses are economically justifiable.

  6. A 100% renewable electricity generation system for New Zealand utilising hydro, wind, geothermal and biomass resources

    International Nuclear Information System (INIS)

    Mason, I.G.; Page, S.C.; Williamson, A.G.

    2010-01-01

    The New Zealand electricity generation system is dominated by hydro generation at approximately 60% of installed capacity between 2005 and 2007, augmented with approximately 32% fossil-fuelled generation, plus minor contributions from geothermal, wind and biomass resources. In order to explore the potential for a 100% renewable electricity generation system with substantially increased levels of wind penetration, fossil-fuelled electricity production was removed from an historic 3-year data set, and replaced by modelled electricity production from wind, geothermal and additional peaking options. Generation mixes comprising 53-60% hydro, 22-25% wind, 12-14% geothermal, 1% biomass and 0-12% additional peaking generation were found to be feasible on an energy and power basis, whilst maintaining net hydro storage. Wind capacity credits ranged from 47% to 105% depending upon the incorporation of demand management, and the manner of operation of the hydro system. Wind spillage was minimised, however, a degree of residual spillage was considered to be an inevitable part of incorporating non-dispatchable generation into a stand-alone grid system. Load shifting was shown to have considerable advantages over installation of new peaking plant. Application of the approach applied in this research to countries with different energy resource mixes is discussed, and options for further research are outlined.

  7. Temporal and spatial complementarity of wind and solar resources in Lower Silesia (Poland)

    Science.gov (United States)

    Jurasz, Jakub; Wdowikowski, Marcin; Kaźmierczak, Bartosz; Dąbek, Paweł

    2017-11-01

    This paper investigates the concept of temporal and spatial complementarity of wind and solar resources in Lower Silesia (south-wester Poland). For the purpose of our research we have used hourly load and energy yield from photovoltaics and wind turbines covering period 2010-2014. In order to assess the spatial complementarity we have divided the considered voivodeship into 74 squared regions with maximal area of 400 km2. The obtained results indicate an existence of temporal complementarity on a monthly time scale and a positive correlation between load and wind generation patterns (also on a monthly time scale). The temporal complementarity for hourly time series in relatively low but has potential to smooth the energy generation curves.

  8. Performance characteristics of a Vertical Axis Wind Turbine (VAWT) under transient conditions

    OpenAIRE

    Colley, Gareth; Mishra, Rakesh

    2011-01-01

    The present work investigates the performance characteristics of a novel Vertical Axis Wind Turbine (VAWT) for use in the urban environment. Here the performance of the wind turbine has been analyzed experimentally using a full scale prototype measuring 2.0m diameter and 1.0m in height. The turbine was located at the exit of a 0.6m x 0.6m wind tunnel section and was subjected to a jet flow. The performance output from the turbine has been obtained using a torque transducer unit which provides...

  9. Wind power development field test project at Hirashima, Sakito-cho. Detailed wind characteristics survey; Sakitocho Hirashima ni okeru furyoku kaihatsu field test jigyo (fukyo seisa) hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-11-01

    A detailed wind characteristics survey was conducted at Hirashima, Sakito-cho, Nishisonogi-gun, Nagasaki Prefecture, on the assumption that a wind power generation system would be constructed. The survey was a 1-year project from October 1998 through September 1999, and wind characteristics such as the average wind speed, average wind direction, standard deviation of wind velocity, and the maximum instantaneous wind speed were observed. The observation point was fixed at 20m above ground, the minimum time unit for observation was 10 minutes, and the 10-minute average value was defined as the measured value. For the maximum instantaneous wind speed, the minimum time unit for observation was set to be 2 seconds. The yearly average wind speed was 7.1m/s and the maximum wind speed in the period was 37m/s. Winds came prevalently from N (13.9%), and then from NNE (13.3%), NW (12.2%), and NE (10.7%). The total wind direction occurrence rate involving the 4 directions was 50.1%. Turbulence intensity was 0.14 at wind speed 2.0m/s or more and 0.12 at wind speed 4.0m/s or more. Estimated wind turbine yearly operating factors of 77-87% were obtained using rated values of a 150kW, 300kW, and 750kW-class wind turbines. (NEDO)

  10. Relationship of Interplanetary Shock Micro and Macro Characteristics: A Wind Study

    Science.gov (United States)

    Szabo, Adam; Koval, A

    2008-01-01

    The non-linear least squared MHD fitting technique of Szabo 11 9941 has been recently further refined to provide realistic confidence regions for interplanetary shock normal directions and speeds. Analyzing Wind observed interplanetary shocks from 1995 to 200 1, macro characteristics such as shock strength, Theta Bn and Mach numbers can be compared to the details of shock micro or kinetic structures. The now commonly available very high time resolution (1 1 or 22 vectors/sec) Wind magnetic field data allows the precise characterization of shock kinetic structures, such as the size of the foot, ramp, overshoot and the duration of damped oscillations on either side of the shock. Detailed comparison of the shock micro and macro characteristics will be given. This enables the elucidation of shock kinetic features, relevant for particle energization processes, for observations where high time resolution data is not available. Moreover, establishing a quantitative relationship between the shock micro and macro structures will improve the confidence level of shock fitting techniques during disturbed solar wind conditions.

  11. Combined wind, hydropower and photovoltaic systems for generation of electric power and control of water resources

    International Nuclear Information System (INIS)

    Abid, M.; Karimov, K.S.; Akhmedov, K.M.

    2011-01-01

    In this paper the present day energy consumption and potentialities of utilization of wind- and hydropower resources in some Central and Southern Asian Republics, in particular, in the Republic of Tajikistan, Kyrgyzstan and Pakistan are presented. The maximum consumption of electric power is observed in winter time when hydropower is the minimum, but wind power is the maximum. At the same time water is needed mostly in summer time for irrigation and in winter time for generation of electric power. This results in conflicts between countries that utilize water mostly for irrigation and those which use water for generation of electric power. It is proposed that the utilization of water with the supplement of wind and solar energy will facilitate the proper and efficient management of water resources in Central Asia. In the future in Tajikistan, wind power systems with a capacity of 30-100 MW and more will be installed, providing power balance of the country in winter; hence saving water in reservoirs, especially in drought years. This will provide the integration of electricity generated by wind, hydroelectric power and photovoltaic system in the unified energy system of the country. (author)

  12. SAT-WIND project. Final report[Winds from satellites for offshore and coastal wind energy mapping and wind-indexing

    Energy Technology Data Exchange (ETDEWEB)

    Hasager, C.B.; Astrup, P.; Nielsen, M. (and others)

    2007-04-15

    The SAT-WIND project 'Winds from satellites for offshore and coastal wind energy mapping and wind-indexing' was a research project funded by STVF/DSF in the years 2003 to 2006 (Sagsnr. 2058-03-0006). The goal of the project was to verify the applicability of satellite wind maps derived from passive microwave, altimeter, scatterometer and imaging Synthetic Aperture Radar (SAR) technologies for wind energy tools for wind resources and wind-indexing. The study area was the Danish Seas including the North Sea, interior seas and the Baltic Sea. The report describes technical details on the satellite data sources including: 1) passive microwave (SSM/I, AMSR-E), 2) passive microwave polarimetric (WindSat), 3) scatterometer (ERS, QuikSCAT, Midori-2 and NSCAT), 4) altimeter (ERS, Topex, Poseidon, GFO-1, Jason-1), 5) SAR (ERS, Envisat). The SAR wind maps were treated in S-WAsP developed by Risoe National Laboratory in cooperation with GRAS A/S in the innovative project SAT-WIND-SMV (Sagsnr. 2104-05-0084) in the years 2005 and 2006 in parallel with SAT-WIND. The results from the SAT-WIND project are presented. These include ocean wind statistics, offshore wind resource estimates and comparison results for wind-indexing. (au)

  13. SAT-WIND project. Final report[Winds from satellites for offshore and coastal wind energy mapping and wind-indexing

    Energy Technology Data Exchange (ETDEWEB)

    Hasager, C B; Astrup, P; Nielsen, M [and others

    2007-04-15

    The SAT-WIND project 'Winds from satellites for offshore and coastal wind energy mapping and wind-indexing' was a research project funded by STVF/DSF in the years 2003 to 2006 (Sagsnr. 2058-03-0006). The goal of the project was to verify the applicability of satellite wind maps derived from passive microwave, altimeter, scatterometer and imaging Synthetic Aperture Radar (SAR) technologies for wind energy tools for wind resources and wind-indexing. The study area was the Danish Seas including the North Sea, interior seas and the Baltic Sea. The report describes technical details on the satellite data sources including: 1) passive microwave (SSM/I, AMSR-E), 2) passive microwave polarimetric (WindSat), 3) scatterometer (ERS, QuikSCAT, Midori-2 and NSCAT), 4) altimeter (ERS, Topex, Poseidon, GFO-1, Jason-1), 5) SAR (ERS, Envisat). The SAR wind maps were treated in S-WAsP developed by Risoe National Laboratory in cooperation with GRAS A/S in the innovative project SAT-WIND-SMV (Sagsnr. 2104-05-0084) in the years 2005 and 2006 in parallel with SAT-WIND. The results from the SAT-WIND project are presented. These include ocean wind statistics, offshore wind resource estimates and comparison results for wind-indexing. (au)

  14. Wind resource assessment handbook: Fundamentals for conducting a successful monitoring program

    International Nuclear Information System (INIS)

    Bailey, B.H.; McDonald, S.L.; Bernadett, D.W.; Markus, M.J.; Elsholz, K.V.

    1997-01-01

    This handbook presents industry-accepted guidelines for planning and conducting a wind resource measurement program to support a wind energy feasibility initiative. These guidelines, which are detailed and highly technical, emphasize the tasks of selecting, installing, and operating wind measurement equipment, as well as collecting and analyzing the associated data, once one or more measurement sites are located. The handbook's scope encompasses state-of-the-art measurement and analysis techniques at multiple heights on tall towers (e.g., 40 m) for a measurement duration of at least one year. These guidelines do not represent every possible method of conducting a quality wind measurement program, but they address the most important elements based on field-proven experience. The intended audience for this handbook is any organization or individual who desires the planning framework and detailed procedures for conducting a formally structured wind measurement program. Personnel from the management level to field technicians will find this material applicable. The organizational aspects of a measurement program, including the setting of clear program objectives and designing commensurate measurement and quality assurance plans, all of which are essential to ensuring the program's successful outcome, are emphasized. Considerable attention is also given to the details of actually conducting the measurement program in its many aspects, from selecting instrumentation that meets minimum performance standards to analyzing and reporting on the collected data. 5 figs., 15 tabs

  15. U.S. Department of Energy Regional Resource Centers Report: State of the Wind Industry in the Regions

    Energy Technology Data Exchange (ETDEWEB)

    Baranowski, Ruth [National Renewable Energy Lab. (NREL), Golden, CO (United St; Oteri, Frank [National Renewable Energy Lab. (NREL), Golden, CO (United St; Baring-Gould, Ian [National Renewable Energy Lab. (NREL), Golden, CO (United St; Tegen, Suzanne [National Renewable Energy Lab. (NREL), Golden, CO (United St

    2016-03-01

    The wind industry and the U.S. Department of Energy (DOE) are addressing technical challenges to increasing wind energy's contribution to the national grid (such as reducing turbine costs and increasing energy production and reliability), and they recognize that public acceptance issues can be challenges for wind energy deployment. Wind project development decisions are best made using unbiased information about the benefits and impacts of wind energy. In 2014, DOE established six wind Regional Resource Centers (RRCs) to provide information about wind energy, focusing on regional qualities. This document summarizes the status and drivers for U.S. wind energy development on regional and state levels. It is intended to be a companion to DOE's 2014 Distributed Wind Market Report, 2014 Wind Technologies Market Report, and 2014 Offshore Wind Market and Economic Analysis that provide assessments of the national wind markets for each of these technologies.

  16. Management of moderate wind energy coastal resources

    International Nuclear Information System (INIS)

    Karamanis, D.

    2011-01-01

    Research highlights: → Life cycle analysis reveals the viability of moderate wind fields utilization. → Wind turbine is the greenest electricity generator at a touristic site. → Wind parks should be collective applications of small hotel-apartments owners. -- Abstract: The feasibility of wind energy utilization at moderate wind fields was investigated for a typical touristic coastal site in Western Greece. Initially, the wind speed and direction as well as its availability, duration and diurnal variation were assessed. For an analysis period of eight years, the mean wind speed at ten meters was determined as 3.8 m s -1 with a small variation in monthly average wind speeds between 3.0 (January) and 4.4 m s -1 (October). The mean wind power density was less than 200 W m -2 at 10 m indicating the limiting suitability of the site for the usual renewable energy applications. However, life cycle analysis for wind turbine generators with lower cut-in, cut-out, and rated speeds revealed that the energy yield ratio can reach a value of six for a service life of 20 years while the energy pay-back period can be 3 years with 33 kt CO 2 -e of avoided greenhouse emissions. Therefore, the recent technological turbine improvements make wind power viable even at moderate wind fields. Moreover, the study of electricity supply of typical small hotel-apartments in the region of Western Greece indicated that the installation of 300 wind turbine generators in these moderate wind fields would cover the total consumption during the open touristic period with profits during the rest of the year. According to these results, wind turbine generators are the 'greenest' way of generating electricity in touristic coastal sites, even of moderate wind speeds.

  17. [Diagnosis and treatment characteristics of head-wind sha in She medicine].

    Science.gov (United States)

    Zou, Guangyi; Xu, Xiangdong; Zheng, Songming; Yan, Lianhe; Lei, Houxing; Zhang, Qiao-ling; Xiang, Yingmei; Ye, Yiping; Song, Liwei

    2015-03-01

    The diagnosis and treatment characteristics of head-wind sha in She medicine were analyzed and summarized. By visiting She-nationality villages and towns in Zhejiang province and Fujian province and interviewing hundreds of doctors of She medicine, the sha diagnosis, sha differentiation, experience and theory of treatment were arranged, and a comprehensive summary on theory and application of head-wind sha in She medicine such as pathogeny, name of disease, mechanism, diagnosis, differential diagnosis and treatment was made. It is believed that the methods of diagnosis and treatment in She medicine for head-wind sha could effectively enhance curative effect, safety and patients' quality of life, and the further research should be carried out.

  18. A Novel Wind Speed Forecasting Model for Wind Farms of Northwest China

    Science.gov (United States)

    Wang, Jian-Zhou; Wang, Yun

    2017-01-01

    Wind resources are becoming increasingly significant due to their clean and renewable characteristics, and the integration of wind power into existing electricity systems is imminent. To maintain a stable power supply system that takes into account the stochastic nature of wind speed, accurate wind speed forecasting is pivotal. However, no single model can be applied to all cases. Recent studies show that wind speed forecasting errors are approximately 25% to 40% in Chinese wind farms. Presently, hybrid wind speed forecasting models are widely used and have been verified to perform better than conventional single forecasting models, not only in short-term wind speed forecasting but also in long-term forecasting. In this paper, a hybrid forecasting model is developed, the Similar Coefficient Sum (SCS) and Hermite Interpolation are exploited to process the original wind speed data, and the SVM model whose parameters are tuned by an artificial intelligence model is built to make forecast. The results of case studies show that the MAPE value of the hybrid model varies from 22.96% to 28.87 %, and the MAE value varies from 0.47 m/s to 1.30 m/s. Generally, Sign test, Wilcoxon's Signed-Rank test, and Morgan-Granger-Newbold test tell us that the proposed model is different from the compared models.

  19. Characteristics of bubble plumes, bubble-plume bubbles and waves from wind-steepened wave breaking

    NARCIS (Netherlands)

    Leifer, I.; Caulliez, G.; Leeuw, G. de

    2007-01-01

    Observations of breaking waves, associated bubble plumes and bubble-plume size distributions were used to explore the coupled evolution of wave-breaking, wave properties and bubble-plume characteristics. Experiments were made in a large, freshwater, wind-wave channel with mechanical wind-steepened

  20. Profiles of Wind and Turbulence in the Coastal Atmospheric Boundary Layer of Lake Erie

    KAUST Repository

    Wang, H; Barthelmie, R J; Crippa, P; Doubrawa, P; Pryor, S C

    2014-01-01

    Prediction of wind resource in coastal zones is difficult due to the complexity of flow in the coastal atmospheric boundary layer (CABL). A three week campaign was conducted over Lake Erie in May 2013 to investigate wind characteristics and improve

  1. A Joint Evaluation of the Wind and Wave Energy Resources Close to the Greek Islands

    Directory of Open Access Journals (Sweden)

    Daniel Ganea

    2017-06-01

    Full Text Available The objective of this work is to analyze the wind and wave energy potential in the proximity of the Greek islands. Thus, by evaluating the synergy between wind and waves, a more comprehensive picture of the renewable energy resources in the target area is provided. In this study, two different data sources are considered. The first data set is provided by the European Centre for Medium-Range Weather Forecasts (ECMWF through the ERA-Interim project and covers an 11-year period, while the second data set is Archiving, Validation and Interpretation of Satellite Oceanographic data (AVISO and covers six years of information. Using these data, parameters such as wind speed, significant wave height (SWH and mean wave period (MWP are analyzed. The following marine areas are targeted: Ionian Sea, Aegean Sea, Sea of Crete, Libyan Sea and Levantine Sea, near the coastal environment of the Greek islands. Initially, 26 reference points were considered. For a more detailed analysis, the number of reference points was narrowed down to 10 that were considered more relevant. Since in the island environments the resources are in general rather limited, the proposed work provides some outcomes concerning the wind and wave energy potential and the synergy between these two natural resources in the vicinity of the Greek islands. From the analysis performed, it can be noticed that the most energetic wind conditions are encountered west of Cios Island, followed by the regions east of Tinos and northeast of Crete. In these locations, the annual average values of the wind power density (Pwind are in the range of 286–298.6 W/m2. Regarding the wave power density (Pwave, the most energetic locations can be found in the vicinity of Crete, north, south and southeast of the island. There, the wave energy potential is in the range of 2.88–2.99 kW/m.

  2. 78 FR 15718 - Iberdrola Renewables, Inc. PacifiCorp NextEra Energy Resources, LLC Invenergy Wind North America...

    Science.gov (United States)

    2013-03-12

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. EL11-44-006] Iberdrola Renewables, Inc. PacifiCorp NextEra Energy Resources, LLC Invenergy Wind North America LLC Horizon Wind Energy LLC v. Bonneville Power Administration; Notice of Filing Take notice that on March 1, 2013...

  3. Assessment of wind resources and annual energy production of wind farms

    DEFF Research Database (Denmark)

    the last 17 years. In Denmark the plan is to increase to 50% share of total electricity consumption in 2020 compared to 26% in 2011. In EU this was 6.3% in 2011. In EU new installed wind power was 9 GW and 0.8 GW, onshore and offshore, respectively, in 2011. The total capacity in Europe is 96 GW......Wind energy provides a significant share of EU’s renewable energy source. It is anticipated in the European Commission (EC), the International Energy Agency (IEA), and the European Wind Energy Association (EWEA) that wind energy expands further. Wind energy has had an annual growth of 15.6% during...

  4. Wind Resource Assessment and Requested Wind Turbine Recommendations

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Ken [Municipal Civil Corporation, Gas City, IN (United States); Wolar, John [Municipal Civil Corporation, Gas City, IN (United States)

    2012-10-22

    Alternate Energy Solutions, Inc. (“AESWR”) was engaged by the Town of Brookston (“Brookston”) to assemble, erect and maintain one 60 m XHD meteorological tower manufactured by NRG Systems, Inc.; for monitoring, recording and evaluating collected wind data. It is the opinion of AESWR staff that study results support the development of a wind turbine project at the Bol Family Farm provided: a) additional land is leased for the project; b) project construction costs are controlled; and c) a prudent power purchase agreement is negotiated with a power take-off entity. We believe that a project having an aggregate nameplate rating sized from 6.0 MW to 20 MW would be appropriate for this location. We recommend 100-125 acres of land per installed MW be used as a general rule for acquiring wind energy land lease agreements, total land lease holdings to be acquired would then approach 750 acres to 2,500 acres.

  5. Experimental and numerical investigation of 3D aerofoil characteristics on a MW wind turbine

    DEFF Research Database (Denmark)

    Troldborg, Niels; Bak, Christian; Sørensen, Niels N.

    2013-01-01

    3D aerofoil characteristics on a MW wind turbine is investigated through a combination of field measurements, wind tunnel tests and computational fluid dynamics (CFD). Surface pressuremeasurements as well as the integrated force coefficients for selected aerofoil sections on a blade of the turbine...... is compared to wind tunnel measurements on the same aerofoil sections in order to reveal the difference in performance of aerofoils on full scale rotors in atmospheric conditions and aerofoils in wind tunnels. The findings of the measurements are backed up by analogous CFD analysis involving fully resolved 3D...... computations on the wind turbine as well as 2D aerofoil simulations....

  6. The role of energy storage in accessing remote wind resources in the Midwest

    International Nuclear Information System (INIS)

    Lamy, Julian; Azevedo, Inês L.; Jaramillo, Paulina

    2014-01-01

    Replacing current generation with wind energy would help reduce the emissions associated with fossil fuel electricity generation. However, integrating wind into the electricity grid is not without cost. Wind power output is highly variable and average capacity factors from wind farms are often much lower than conventional generators. Further, the best wind resources with highest capacity factors are often located far away from load centers and accessing them therefore requires transmission investments. Energy storage capacity could be an alternative to some of the required transmission investment, thereby reducing capital costs for accessing remote wind farms. This work focuses on the trade-offs between energy storage and transmission. In a case study of a 200 MW wind farm in North Dakota to deliver power to Illinois, we estimate the size of transmission and energy storage capacity that yields the lowest average cost of generating and delivering electricity ($/MW h) from this farm. We find that transmission costs must be at least $600/MW-km and energy storage must cost at most $100/kW h in order for this application of energy storage to be economical. - Highlights: • We evaluate the break-even cost of energy storage to replace transmission. • We focus on a wind farm in North Dakota that must deliver power to Illinois. • Energy storage capital costs must be less than $100/kW h. • Transmission capital costs must be greater than $600/MW-km

  7. Effects of Wind Turbines Equipped with Doubly-fed Induction Generators on Distance Protection

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    Nowadays wind energy is the fastest growing renewable energy resource in the world. The problems of integrating wind farms are caused by changes of wind speed during a day. Moreover, the behaviors of wind turbines equipped with doubly-fed induction generators differ fundamentally from synchronous generators. Therefore, more considerations are needed to analyze the performances of the distance protection relays. The protection of a wind farm with distance relay is inspected. By changing the conditions of the wind farm, the characteristics of the distance relay are studied.

  8. Measurement of starting characteristics of a remote area Darrieus wind turbine

    Energy Technology Data Exchange (ETDEWEB)

    Freere, P. [Monash University, Clayton (Australia). Dept. of Electrical Engineering; Moller, C.; Jespersen, R. [Danish Technical University, Copenhagen (Denmark). Dept. of Electrical Engineering

    1999-07-01

    A 17 kW Darrieus was constructed as a remote area power supply for an independent community outside Melbourne, Australia. After languishing for several years it was reconditioned, but found not to start at wind speeds up to 12 m/s. Therefore, the turbine was modelled by driving it with an electric motor at various rotational speeds over a range of wind speeds. Thus it was possible to measure the turbine starting characteristics, thereby indicating reasons for the turbine's lack of performance. (author)

  9. Investigation on wind energy-compressed air power system.

    Science.gov (United States)

    Jia, Guang-Zheng; Wang, Xuan-Yin; Wu, Gen-Mao

    2004-03-01

    Wind energy is a pollution free and renewable resource widely distributed over China. Aimed at protecting the environment and enlarging application of wind energy, a new approach to application of wind energy by using compressed air power to some extent instead of electricity put forward. This includes: explaining the working principles and characteristics of the wind energy-compressed air power system; discussing the compatibility of wind energy and compressor capacity; presenting the theoretical model and computational simulation of the system. The obtained compressor capacity vs wind power relationship in certain wind velocity range can be helpful in the designing of the wind power-compressed air system. Results of investigations on the application of high-pressure compressed air for pressure reduction led to conclusion that pressure reduction with expander is better than the throttle regulator in energy saving.

  10. Endurance Wind Power : practical insights into small wind

    International Nuclear Information System (INIS)

    Hicks, D.

    2008-01-01

    This presentation discussed practical issues related to purchasing and installing small wind turbines in Canada. Wind power capacity can be estimated by looking at provincial wind maps as well as by seeking wind data at local airports. Wind resources are typically measured at heights of between 20 meters and 50 m. The height of a wind turbine tower can significantly increase the turbine's wind generating capacity. Turbine rotors should always be placed 30 feet higher than obstacles within 500 feet. Many provinces have now mandated utilities to accept renewable energy resources from grid-connected wind energy plants. Net billing systems are used to determine the billing relationship between power-producing consumers and the utilities who will buy the excess power and sell it to other consumers. Utilities are not yet mandated to purchase excess power, and it is likely that federal and provincial legislation will be needed to ensure that net billing systems continue to grow. Many Canadian municipalities have no ordinances related to wind turbine placements. Consumers interested in purchasing small wind turbines should ensure that the turbine has been certified by an accredited test facility and has an adequate safety system. The noise of the turbine as well as its power performance in relation to the purchaser's needs must also be considered. It was concluded that small wind turbines can provide a means for electricity consumers to reduce their carbon footprint and hedge against the inflationary costs of fossil-fuelled energy resources. tabs., figs

  11. Wintertime slope winds and its turbulent characteristics in the Yeongdong region of Korea

    Science.gov (United States)

    Jeon, H. R.; Eun, S. H.; Kim, B. G.; Lee, Y. H.

    2015-12-01

    The Yeongdong region has various meteorological phenomenons by virtue of complicated geographical characteristics with high Taebaek Mountains running from the north to the south and an adjacent East Sea to the east. There are few studies on the slope winds and its turbulent characteristics over the complex terrain, which are critical information in mountain climbing, hiking, paragliding, even winter sports such as alpine skiing and ski jump etc. For the understanding of diverse mountain winds in the complex terrain in Yeongdong, hot-wire anemometers (Campbell Scientific) have been installed at a couple of sites since October 2014 and several automatic weather stations at several sites around the mountainous region in Yeongdong since November 2012.WRF model simulations have been also done with an ultra-fine horizontal resolution of 300 m for 10 years. Generally, model and observation show that the dominant wind is westerly, approximately more than 75%. It is quite consistent that wind fields from both model and observation agree with each other in the valley region and at the top of the mountain, but there is a significant disagreement in wind direction specifically in the slide slope. Probably this implies model's performance with even an ultra-fine resolution is still not enough for the slide slope domain of complex terrains. Despite that, the observation clearly showed up- and down slope winds for the weak synoptic conditions carefully selected such as strong insolation and a synoptic wind less than 5m/s in the 850 hPa. The up- and down slope flows are also demonstrated in the snow-covered condition as well as grass ground. Further, planar fit transformation algorithm against the coordinate tilt has been applied to raw wind data (10Hz) of the slope site for the analysis of turbulence properties. Turbulence also increases with synoptic wind strength. Detailed analysis of mechanical turbulence and buoyance will be discussed for different surface properties (grass

  12. A Comparison of Wind Flow Models for Wind Resource Assessment in Wind Energy Applications

    Directory of Open Access Journals (Sweden)

    Mathieu Landry

    2012-10-01

    Full Text Available The objective of this work was to assess the accuracy of various coupled mesoscale-microscale wind flow modeling methodologies for wind energy applications. This is achieved by examining and comparing mean wind speeds from several wind flow modeling methodologies with observational measurements from several 50 m met towers distributed across the study area. At the mesoscale level, with a 5 km resolution, two scenarios are examined based on the Mesoscale Compressible Community Model (MC2 model: the Canadian Wind Energy Atlas (CWEA scenario, which is based on standard input data, and the CWEA High Definition (CWEAHD scenario where high resolution land cover input data is used. A downscaling of the obtained mesoscale wind climate to the microscale level is then performed, where two linear microscale models, i.e., MsMicro and the Wind Atlas Analysis and Application Program (WAsP, are evaluated following three downscaling scenarios: CWEA-WAsP, CWEA-MsMicro and CWEAHD-MsMicro. Results show that, for the territory studied, with a modeling approach based on the MC2 and MsMicro models, also known as Wind Energy Simulation Toolkit (WEST, the use of high resolution land cover and topography data at the mesoscale level helps reduce modeling errors for both the mesoscale and microscale models, albeit only marginally. At the microscale level, results show that the MC2-WAsP modeling approach gave substantially better results than both MC2 and MsMicro modeling approaches due to tweaked meso-micro coupling.

  13. Anholt offshore wind farm winds investigated from satellite images

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Badger, Merete; Volker, Patrick

    , i.e. before the wind farm was constructed. Based on these data the wind resource is estimated. Concurrent Sentinel-1 SAR data and available SCADA and lidar data, kindly provided by DONG Energy and partners, for the period January 2013 to June 2015 account for ~70 images, while ~300 images...... are available for Sentinel-1 from July 2015 to February 2017. The Sentinel-1 wind maps are investigated for wind farm wake effects. Furthermore the results on wind resources and wakes are compared to the SCADA and model results from WRF, Park, Fuga and RANS models....

  14. Methodology for the determination of wind characteristics and assessment of wind energy potential in Túquerres - Nariño

    Directory of Open Access Journals (Sweden)

    Francisco Eraso Checa

    2018-01-01

    Full Text Available The world is living a steady increase in the electric power demand, an alternative power generation different to conventional is the renewable energy. With the appearance of the Law 1715, Colombia has an incentives policy for the integration of new projects in renewable energies. Because of that, is important to develop studies with real data in the field of the potential of renewable energy resources which can be implemented. This article presents the analysis of the wind generation potential of Túquerres Savanna, located in the department of Nariño. The potential was obtained from the measurement of the wind speed, during the period between the months of June and December of the year 2015. The data were analyzed statistically according to a measure of central tendency, frequency distribution and Weibull distribution for the normalization of scattered data; finally, the power density was calculated according to a horizontal axis wind turbine and the electrical generation potential of the area was simulated. The average wind speeds are 4,4 m/s and the power density founded is 3,47 W/m2.

  15. Assessing risk to birds from industrial wind energy development via paired resource selection models.

    Science.gov (United States)

    Miller, Tricia A; Brooks, Robert P; Lanzone, Michael; Brandes, David; Cooper, Jeff; O'Malley, Kieran; Maisonneuve, Charles; Tremblay, Junior; Duerr, Adam; Katzner, Todd

    2014-06-01

    When wildlife habitat overlaps with industrial development animals may be harmed. Because wildlife and people select resources to maximize biological fitness and economic return, respectively, we estimated risk, the probability of eagles encountering and being affected by turbines, by overlaying models of resource selection for each entity. This conceptual framework can be applied across multiple spatial scales to understand and mitigate impacts of industry on wildlife. We estimated risk to Golden Eagles (Aquila chrysaetos) from wind energy development in 3 topographically distinct regions of the central Appalachian Mountains of Pennsylvania (United States) based on models of resource selection of wind facilities (n = 43) and of northbound migrating eagles (n = 30). Risk to eagles from wind energy was greatest in the Ridge and Valley region; all 24 eagles that passed through that region used the highest risk landscapes at least once during low altitude flight. In contrast, only half of the birds that entered the Allegheny Plateau region used highest risk landscapes and none did in the Allegheny Mountains. Likewise, in the Allegheny Mountains, the majority of wind turbines (56%) were situated in poor eagle habitat; thus, risk to eagles is lower there than in the Ridge and Valley, where only 1% of turbines are in poor eagle habitat. Risk within individual facilities was extremely variable; on average, facilities had 11% (SD 23; range = 0-100%) of turbines in highest risk landscapes and 26% (SD 30; range = 0-85%) of turbines in the lowest risk landscapes. Our results provide a mechanism for relocating high-risk turbines, and they show the feasibility of this novel and highly adaptable framework for managing risk of harm to wildlife from industrial development. © 2014 Society for Conservation Biology.

  16. Avian Monitoring and Risk Assessment at the Tehachapi Pass Wind Resource Area; Period of Performance: October 2, 1996--May 27, 1998

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, R.; Neumann, N.; Tom, J.; Erickson, W. P.; Strickland, M. D.; Bourassa, M.; Bay, K. J.; Sernka, K. J.

    2004-09-01

    Observations of dead raptors at the Altamont Pass Wind Resource Area triggered concerns on the parts of regulatory agencies, environmental/conservation groups, wildlife resource agencies, and wind and electric utility industries about possible impacts to birds from wind energy development. Bird fatality rates observed at most wind projects are not currently considered significant to individual bird species populations. Although many bird species have observed fatalities, raptors have received the most attention. The primary objective of this study was to estimate and compare bird utilization, fatality rates, and collision risk indices among factors such as bird taxonomic groups, turbine types, and turbine locations within the operating wind plant in the Tehachapi Pass WRA, in south-central California between October 1996 and May 1998.

  17. Wind energy

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This chapter discusses the role wind energy may have in the energy future of the US. The topics discussed in the chapter include historical aspects of wind energy use, the wind energy resource, wind energy technology including intermediate-size and small wind turbines and intermittency of wind power, public attitudes toward wind power, and environmental, siting and land use issues

  18. Wind power development field test project at Aoyama Heights, Aoyama-cho. Detailed wind characteristics survey; Aoyamacho Aoyama Kogen ni okeru furyoku kaihatsu field test jigyo (fukyo seisa) hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-11-01

    A detailed wind characteristics survey was conducted at Aoyama Heights, Aoyama-cho, Naga-gun, Mie Prefecture, on the assumption that a wind power generation system would be constructed. The survey was a 1-year project from October 1998 through September 1999, and wind characteristics such as the average wind speed, average wind direction, standard deviation of wind velocity, and the maximum instantaneous wind speed were observed. The observation point was fixed at 20m above ground, the minimum time unit for observation was 10 minutes, and the 10-minute average value was defined as the measured value. For the maximum instantaneous wind speed, the minimum time unit for observation was set to be 2 seconds. The yearly average wind speed was 5.3m/s and the maximum wind speed in the period was 32m/s. Winds came prevalently from WNW (31.6%), and then from NW (16.8%), ESE (20.9%), and E (9.9%). The wind axis was in the direction of WNW-ESE, and the total wind direction occurrence rate was 89.0%. Turbulence intensity was 0.25 at wind speed 2.0m/s or more and 0.23 at wind speed 4.0m/s or more. Estimated wind turbine yearly operating factors of 70-84% were obtained using rated values of a 150kW, 300kW, and 750kW-class wind turbines. (NEDO)

  19. Characteristics of Solar Wind Density Depletions During Solar Cycles 23 and 24

    Directory of Open Access Journals (Sweden)

    Keunchan Park

    2017-06-01

    Full Text Available Solar wind density depletions are phenomena that solar wind density is rapidly decreased and keep the state. They are generally believed to be caused by the interplanetary (IP shocks. However, there are other cases that are hardly associated with IP shocks. We set up a hypothesis for this phenomenon and analyze this study. We have collected the solar wind parameters such as density, speed and interplanetary magnetic field (IMF data related to the solar wind density depletion events during the period from 1996 to 2013 that are obtained with the advanced composition explorer (ACE and the Wind satellite. We also calculate two pressures (magnetic, dynamic and analyze the relation with density depletion. As a result, we found total 53 events and the most these phenomena’s sources caused by IP shock are interplanetary coronal mass ejection (ICME. We also found that solar wind density depletions are scarcely related with IP shock’s parameters. The solar wind density is correlated with solar wind dynamic pressure within density depletion. However, the solar wind density has an little anti-correlation with IMF strength during all events of solar wind density depletion, regardless of the presence of IP shocks. Additionally, In 47 events of IP shocks, we find 6 events that show a feature of blast wave. The quantities of IP shocks are weaker than blast wave from the Sun, they are declined in a short time after increasing rapidly. We thus argue that IMF strength or dynamic pressure are an important factor in understanding the nature of solar wind density depletion. Since IMF strength and solar wind speed varies with solar cycle, we will also investigate the characteristics of solar wind density depletion events in different phases of solar cycle as an additional clue to their physical nature.

  20. Avian Hearing and the Avoidance of Wind Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Dooling, R.

    2002-06-01

    This report provides a complete summary of what is known about basic hearing capabilities in birds in relation to the characteristics of noise generated by wind turbines. It is a review of existing data on bird hearing with some preliminary estimates of environmental noise and wind turbine noise at Altamont Pass, California, in the summer of 1999. It is intended as a resource in future discussions of the role that hearing might play in bird avoidance of turbines.

  1. Wind Energy Development in India and a Methodology for Evaluating Performance of Wind Farm Clusters

    Directory of Open Access Journals (Sweden)

    Sanjeev H. Kulkarni

    2016-01-01

    Full Text Available With maturity of advanced technologies and urgent requirement for maintaining a healthy environment with reasonable price, India is moving towards a trend of generating electricity from renewable resources. Wind energy production, with its relatively safer and positive environmental characteristics, has evolved from a marginal activity into a multibillion dollar industry today. Wind energy power plants, also known as wind farms, comprise multiple wind turbines. Though there are several wind-mill clusters producing energy in different geographical locations across the world, evaluating their performance is a complex task and is an important focus for stakeholders. In this work an attempt is made to estimate the performance of wind clusters employing a multicriteria approach. Multiple factors that affect wind farm operations are analyzed by taking experts opinions, and a performance ranking of the wind farms is generated. The weights of the selection criteria are determined by pairwise comparison matrices of the Analytic Hierarchy Process (AHP. The proposed methodology evaluates wind farm performance based on technical, economic, environmental, and sociological indicators. Both qualitative and quantitative parameters were considered. Empirical data were collected through questionnaire from the selected wind farms of Belagavi district in the Indian State of Karnataka. This proposed methodology is a useful tool for cluster analysis.

  2. Economic Dispatch for Power System Included Wind and Solar Thermal Energy

    Directory of Open Access Journals (Sweden)

    Saoussen BRINI

    2009-07-01

    Full Text Available With the fast development of technologies of alternative energy, the electric power network can be composed of several renewable energy resources. The energy resources have various characteristics in terms of operational costs and reliability. In this study, the problem is the Economic Environmental Dispatching (EED of hybrid power system including wind and solar thermal energies. Renewable energy resources depend on the data of the climate such as the wind speed for wind energy, solar radiation and the temperature for solar thermal energy. In this article it proposes a methodology to solve this problem. The resolution takes account of the fuel costs and reducing of the emissions of the polluting gases. The resolution is done by the Strength Pareto Evolutionary Algorithm (SPEA method and the simulations have been made on an IEEE network test (30 nodes, 8 machines and 41 lines.

  3. Wind resource and plant output data sets for wind integration studies

    Energy Technology Data Exchange (ETDEWEB)

    Frank, Jaclyn D.; Manobianco, John; Alonge, Charles J.; Brower, Michael C. [AWS Truepower, Albany, NY (United States)

    2010-07-01

    One of the first step towards understanding the impact of increasing penetrations of wind is developing data sets of wind power output over large regions. To facilitate the development of these data sets, AWS Truepower (AWST) generated wind speeds over multiple years (2-3) using the Mesoscale Atmospheric Simulation System (MASS). These simulations were performed with high spatial resolution (1-2 km) to capture the wind flows over each area of interest. Output was saved in 10-minute interval to capture variations in wind speed so that plant output could be analyzed against utility load and system operations. This paper will describe the methodology of mesoscale modeling, site selection, conversion to power, and downscaling to high frequency output. Additionally, the generation of synthetic forecasts will be discussed. The validation results from recent studies in the eastern United States and Hawaii will be highlighted. (orig.)

  4. Assessment of Off-shore Wind Energy Resource in China using QuikSCAT Satellite data and SAR Satellite Images

    DEFF Research Database (Denmark)

    Xiuzhi, Zhang; Yanbo, Shen; Jingwei, Xu

    2010-01-01

    From August 2008 to August 2009, the project ‘Off-Shore Wind Energy Resource Assessment and Feasibility Study of Off-Shore Wind Farm Development in China’ was carried out by China Meteorological Administration (CMA), which was funded by the EU-China Energy and Environment Programme (EEP). As one ...

  5. Wind energy resources assessment for Yanbo, Saudi Arabia

    International Nuclear Information System (INIS)

    Rehman, Shafiqur

    2004-01-01

    The paper presents long term wind data analysis in terms of annual, seasonal and diurnal variations at Yanbo, which is located on the west coast of Saudi Arabia. The wind speed and wind direction hourly data for a period of 14 years between 1970 and 1983 is used in the analysis. The analysis showed that the seasonal and diurnal pattern of wind speed matches the electricity load pattern of the location. Higher winds of the order of 5.0 m/s and more were observed during the summer months of the year and noon hours (09:00 to 16:00 h) of the day. The wind duration availability is discussed as the percent of hours during which the wind remained in certain wind speed intervals or bins. Wind energy calculations were performed using wind machines of sizes 150, 250, 600, 800, 1000, 1300, 1500, 2300 and 2500 kW rated power. Wind speed is found to remain above 3.5 m/s for 69% of the time during the year at 40, 50, 60, and 80 m above ground level. The energy production analysis showed higher production from wind machines of smaller sizes than the bigger ones for a wind farm of 30 MW installed capacity. Similarly, higher capacity factors were obtained for smaller wind machines compared to larger ones

  6. Satellite winds as a tool for offshore wind resource assessment: The Great Lakes Wind Atlas

    DEFF Research Database (Denmark)

    Doubrawa, Paula; Barthelmie, Rebecca Jane; Pryor, Sara C.

    2015-01-01

    and combine all scenes into one wind speed map. QuikSCAT winds undergo a seasonal correction due to lack of data during the cold season that is based on its ratio relative to buoy time series. All processing steps reduce the biases of the individual maps relative to the buoy observed wind climates. The remote...

  7. Integrating wind output with bulk power operations and wholesale electricity markets

    International Nuclear Information System (INIS)

    Hirst, E.

    2002-01-01

    Wind farms have three characteristics that complicate their widespread application as an electricity resource: limited control, unpredictability and variability. Therefore the integration of wind output into bulk power electric systems is qualitatively different from that of other types of generators. The electric system operator must move other generators up or down to offset the time-varying wind fluctuations. Such movements raise the costs of fuel and maintenance for these other generators. Not only is wind power different, it is new. The operators of bulk power systems have limited experience in integrating wind output into the larger system. As a consequence, market rules that treat wind fairly - neither subsidizing nor penalizing its operation - have not yet been developed. The lack of data and analytical methods encourages wind advocates and sceptics to rely primarily on their biases and beliefs in suggesting how wind should be integrated into bulk power systems. This project helps fill this data and analysis gap. Specifically, it develops and applies a quantitative method for the integration of a wind resource into a large electric system. The method permits wind to bid its output into a short-term forward market (specifically, an hour-ahead energy market) or to appear in real time and accept only intrahour and hourly imbalance payments for the unscheduled energy it delivers to the system. Finally, the method analyses the short-term (minute-to-minute) variation in wind output to determine the regulation requirement the wind resource imposes on the electrical system. (author)

  8. Report on the field test project for wind power development at Soyo Town (wind characteristics investigation); Soyomachi ni okeru furyoku kaihatsu field test jigyo (fukyo seisa) hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-11-01

    Wind characteristics are observed for a year at Soyo Town, Aso-gun, Kumamoto Prefecture. The annual average wind speed is 5.9m/s and 5.6m/s at 20m and 10m above ground, respectively, satisfying the reference values of 5.6m/s and 5.0m/s. The prevalent wind direction is WNW (occurrence rate: 32.8%). The wind from the directions with WNW at their middle occupies 75%, stable and satisfying the reference value of 60%. Strong winds come frequently from the direction of high occurrence, which is advantageous in arranging plural wind turbine systems. The exponential index in the wind speed vertical distribution is 13.3, but wind distribution is not simple at a mountain top site like the observation station in this report. Wind characteristics are similar to those at places with mild inundations, and the maximum instantaneous wind speed of 40.8m/s will not pose a problem. The wind energy density is 205W/m{sup 2}, satisfying the reference value of 150. Wind power systems of 150kW, 300kW, and 750kW are assumed. When the exponential index is 13.3, their annual operation rates will be 70%, 71%, and 82%; and their capacity ratios are 22.6%, 23.9%, and 22.9%, all satisfying the reference values. They will collect 297MWh, 629MWh, and 1507MWh of wind energy per year. It is concluded that Soyo Town is fully qualified as a site for wind power development. (NEDO)

  9. Jet stream wind power as a renewable energy resource: little power, big impacts

    Directory of Open Access Journals (Sweden)

    L. M. Miller

    2011-11-01

    Full Text Available Jet streams are regions of sustained high wind speeds in the upper atmosphere and are seen by some as a substantial renewable energy resource. However, jet streams are nearly geostrophic flow, that is, they result from the balance between the pressure gradient and Coriolis force in the near absence of friction. Therefore, jet stream motion is associated with very small generation rates of kinetic energy to maintain the high wind velocities, and it is this generation rate that will ultimately limit the potential use of jet streams as a renewable energy resource. Here we estimate the maximum limit of jet stream wind power by considering extraction of kinetic energy as a term in the free energy balance of kinetic energy that describes the generation, depletion, and extraction of kinetic energy. We use this balance as the basis to quantify the maximum limit of how much kinetic energy can be extracted sustainably from the jet streams of the global atmosphere as well as the potential climatic impacts of its use. We first use a simple thought experiment of geostrophic flow to demonstrate why the high wind velocities of the jet streams are not associated with a high potential for renewable energy generation. We then use an atmospheric general circulation model to estimate that the maximum sustainable extraction from jet streams of the global atmosphere is about 7.5 TW. This estimate is about 200-times less than previous estimates and is due to the fact that the common expression for instantaneous wind power 12 ρv3 merely characterizes the transport of kinetic energy by the flow, but not the generation rate of kinetic energy. We also find that when maximum wind power is extracted from the jet streams, it results in significant

  10. Analysis of multi-scale chaotic characteristics of wind power based on Hilbert–Huang transform and Hurst analysis

    International Nuclear Information System (INIS)

    Liang, Zhengtang; Liang, Jun; Zhang, Li; Wang, Chengfu; Yun, Zhihao; Zhang, Xu

    2015-01-01

    Highlights: • A scale division method of wind power based on HHT and Hurst analysis is proposed. • The time–frequency components of wind power show different fractal structures. • These components are superposed and reconstructed into three scale subsequences. • Each subsequence has a chaotic characteristic and shows its own properties. • The EMD-LSSVM + ELM method improves the short-term wind power forecasting accuracy. - Abstract: The causes of uncertainty in wind farm power generation are not yet fully understood. A method for the scale division of wind power based on the Hilbert–Huang transform (HHT) and Hurst analysis is proposed in this paper, which allows the various multi-scale chaotic characteristics of wind power to be investigated to reveal further information about the dynamic behavior of wind power. First, the time–frequency characteristics of wind power are analyzed using the HHT, and then Hurst analysis is applied to analyze the stochastic/persistent characteristics of the different time–frequency components. Second, based on their fractal structures, the components are superposed and reconstructed into three series, which are defined as the Micro-, Meso- and Macro-scale subsequences. Finally, indices related to the statistical and behavioral characteristics of the subsequences are calculated and used to analyze their nonlinear dynamic behavior. The data collected from a wind farm of Hebei Province, China, are selected for case studies. The simulation results reveal that (1) although the time–frequency components can be decomposed, the different fractal structures of the signal are also derived from the original series; (2) the three scale subsequences all present chaotic characteristics and each of them exhibits its own unique properties. The Micro-scale subsequence shows strong randomness and contributes the least to the overall fluctuations; the Macro-scale subsequence is the steadiest and exhibits the most significant tendency

  11. FY 1998 Report on development of large-scale wind power generation systems. Feasibility study on development of new technologies for wind power generation, and study on local wind resource prediction model; 1998 nendo ogata furyoku hatsuden system kaihatsu seika hokokusho. Furyoku hatsuden shingijutsu kaihatsu kanosei chosa (kyokusho fukyo yosoku shuho ni kansuru chosa)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Described herein are the FY 1998 results of the study on local wind resource prediction model. The local wind resource prediction models developed so far apply the solutions based on the existing linear models (WASP and AVENU) for relatively flat terrain. These models are studied for their applicability limits. The study covers wind direction and speed patterns of the surface wind and upper winds at 3 sites in Hokkaido, Fukushima Pref. and Shizuoka Pref. The surface winds are found to be correlated with the upper winds both for wind direction and wind speed in almost all cases. Next, wind resources simulations are carried out for each of the classified weather patterns using the existing models, and the prediction errors are studied. The results show that the prediction accuracy of the existing linear models is highly dependent on inputs of observed data, and that the accuracy tends to decrease for the situations where the upper and surface wind conditions greatly differ from each other, as in the case of a land and sea breeze of thermal origin. It is also confirmed that prediction accuracy is lower on complex terrain than on flat terrain. (NEDO)

  12. Design optimization and analysis of vertical axis wind turbine blade

    International Nuclear Information System (INIS)

    Jarral, A.; Ali, M.; Sahir, M.H.

    2013-01-01

    Wind energy is clean and renwable source of energy and is also the world's fastest growing energy resource. Keeping in view power shortages and growing cost of energy, the low cost wind energy has become a primary solution. It is imperative that economies and individuals begin to conserve energy and focus on the production of energy from renewable sources. Present study describes a wind turbine blade designed with enhanced aerodynamic properties. Vertical axis turbine is chosen because of its easy installment, less noisy and having environmental friendly characteristics. Vertical axis wind turbines are thought to be ideal for installations where wind conditions are not consistent. The presented turbine blade is best suitable for roadsides where the rated speed due to vehicles is most /sup -1/ often 8 ms .To get an optimal shape design symmetrical profile NACA0025 has been considered which is then analyzed for stability and aerodynamic characteristics at optimal conditions using analysis tools ANSYS and CFD tools. (author)

  13. Economics of wind farm layout

    Energy Technology Data Exchange (ETDEWEB)

    Germain, A.C. [Wind Energy Resource Specialist, Oakland, CA (United States); Bain, D.A. [Oregon Office of Energy, Portland, OR (United States)

    1997-12-31

    The life cycle cost of energy (COE) is the primary determinant of the economic viability of a wind energy generation facility. The cost of wind turbines and associated hardware is counterbalanced by the energy which can be generated. This paper focuses on the turbine layout design process, considering the cost and energy capture implications of potential spacing options from the viewpoint of a practicing project designer. It is argued that lateral spacings in the range of 1.5 to 5 diameters are all potentially optimal, but only when matched to wind resource characteristics and machine design limits. The effect of wakes on energy capture is quantified while the effect on turbine life and maintenance cost is discussed qualitatively. Careful optimization can lower COE and project designers are encouraged to integrate the concepts in project designs.

  14. Wind Energy Based Electric Vehicle Charging Stations Sitting. A GIS/Wind Resource Assessment Approach

    Directory of Open Access Journals (Sweden)

    George Xydis

    2015-11-01

    Full Text Available The transportation sector is severely correlated with major problems in environment, citizens’ health, climate and economy. Issues such as traffic, fuel cost and parking space have make life more difficult, especially in the dense urban environment. Thus, there is a great need for the development of the electric vehicle (EV sector. The number of cars in cities has increased so much that the current transportation system (roads, parking places, traffic lights, etc. cannot accommodate them properly. The increasing number of vehicles does not affect only humans but also the environment, through air and noise pollution. According to EPA, the 39.2% of total gas emissions in 2007 was caused by transportation activities. Studies have shown that the pollutants are not only gathered in the major roads and/or highways but can travel depending on the meteorological conditions leading to generic pollution. The promotion of EVs and the charging stations are both equally required to be further developed in order EVs to move out of the cities and finally confront the range problem. In this work, a wind resource and a GIS analysis optimizes in a wider area the sitting of wind based charging stations and proposes an optimizing methodology.

  15. The Energy Commission's notice to the Minister of Natural Resources regarding the place of wind energy in Quebec's energy portfolio

    International Nuclear Information System (INIS)

    Dumais, A.; Frayne, A.; Tanguay, F.

    1998-01-01

    In December 1997 Quebec's Minister of Natural Resources requested that the Energy Commission advise him on the quota given to wind energy in the future energy development plans of Hydro-Quebec. The Commission's report to the Minister includes 18 recommendations. Among these is a recommendation that an assessment of wind resources be conducted as soon as possible to identify suitable sites for the installation of wind turbines. A provincial program for the development of wind energy is also recommended, to be initiated by the year 2002, and that it should proceed over the next nine years to reach a target production capacity of 450 MW by the year 2011. This production would come from the yearly installation of 60 to 70 wind turbines of 750 kV. The Commission also recommended that in the initial years costs for this wind energy not exceed that of the Le Nordais project, i.e. 5.8 cents per kWh. Any additional costs incurred in the generation of wind electricity over conventional hydro power should be assumed by the Quebec Government. Conversely, in instances where the wind power is sold to consumers outside of the province, Hydro-Quebec should pay for the full cost of this power. 8 tabs., 1 appendix

  16. Wind: new wind markets

    International Nuclear Information System (INIS)

    Cameron, A.

    2005-01-01

    The June 2005 edition of 'Wind Force 12' suggests that wind could generate 12% of global electricity requirements by 2020. But what moves a potential market into an emerging one? Geographical factors include a good wind resource, plenty of open space and the ability to get the generated electricity to end-users. A country's political framework is equally important, with fixed price systems, renewable quota systems and political will all playing a part. Some potential wind markets around the world are thought to have the conditions necessary to become key players in the wind industry. The emerging markets in countries such as Australia, Brazil, Canada, France, Japan and the Philippines are highlighted as examples

  17. Reliability benefits of dispersed wind resource development

    International Nuclear Information System (INIS)

    Milligan, M.; Artig, R.

    1998-05-01

    Generating capacity that is available during the utility peak period is worth more than off-peak capacity. Wind power from a single location might not be available during enough of the peak period to provide sufficient value. However, if the wind power plant is developed over geographically disperse locations, the timing and availability of wind power from these multiple sources could provide a better match with the utility's peak load than a single site. There are other issues that arise when considering disperse wind plant development. Singular development can result in economies of scale and might reduce the costs of obtaining multiple permits and multiple interconnections. However, disperse development can result in cost efficiencies if interconnection can be accomplished at lower voltages or at locations closer to load centers. Several wind plants are in various stages of planning or development in the US. Although some of these are small-scale demonstration projects, significant wind capacity has been developed in Minnesota, with additional developments planned in Wyoming, Iowa and Texas. As these and other projects are planned and developed, there is a need to perform analysis of the value of geographically disperse sites on the reliability of the overall wind plant.This paper uses a production-cost/reliability model to analyze the reliability of several wind sites in the state of Minnesota. The analysis finds that the use of a model with traditional reliability measures does not produce consistent, robust results. An approach based on fuzzy set theory is applied in this paper, with improved results. Using such a model, the authors find that system reliability can be optimized with a mix of disperse wind sites

  18. Comparisons of spectral characteristics of wind noise between omnidirectional and directional microphones.

    Science.gov (United States)

    Chung, King

    2012-06-01

    Wind noise reduction is a topic of ongoing research and development for hearing aids and cochlear implants. The purposes of this study were to examine spectral characteristics of wind noise generated by directional (DIR) and omnidirectional (OMNI) microphones on different styles of hearing aids and to derive wind noise reduction strategies. Three digital hearing aids (BTE, ITE, and ITC) were fitted to Knowles Electronic Manikin for Acoustic Research. They were programmed to have linear amplification and matching frequency responses between the DIR and OMNI modes. Flow noise recordings were made from 0° to 360° azimuths at flow velocities of 4.5, 9.0, and 13.5 m/s in a quiet wind tunnel. Noise levels were analyzed in one-third octave bands from 100 to 8000 Hz. Comparison of wind noise revealed that DIR generally produced higher noise levels than OMNI for all hearing aids, but it could result in lower levels than OMNI at some frequencies and head angles. Wind noise reduction algorithms can be designed to detect noise levels of DIR and OMNI outputs in each frequency channel, remove the constraint to switch to OMNI in low-frequency channel(s) only, and adopt the microphone mode with lower noise levels to take advantage of the microphone differences.

  19. Research on wind power grid-connected operation and dispatching strategies of Liaoning power grid

    Science.gov (United States)

    Han, Qiu; Qu, Zhi; Zhou, Zhi; He, Xiaoyang; Li, Tie; Jin, Xiaoming; Li, Jinze; Ling, Zhaowei

    2018-02-01

    As a kind of clean energy, wind power has gained rapid development in recent years. Liaoning Province has abundant wind resources and the total installed capacity of wind power is in the forefront. With the large-scale wind power grid-connected operation, the contradiction between wind power utilization and peak load regulation of power grid has been more prominent. To this point, starting with the power structure and power grid installation situation of Liaoning power grid, the distribution and the space-time output characteristics of wind farm, the prediction accuracy, the curtailment and the off-grid situation of wind power are analyzed. Based on the deep analysis of the seasonal characteristics of power network load, the composition and distribution of main load are presented. Aiming at the problem between the acceptance of wind power and power grid adjustment, the scheduling strategies are given, including unit maintenance scheduling, spinning reserve, energy storage equipment settings by the analysis of the operation characteristics and the response time of thermal power units and hydroelectric units, which can meet the demand of wind power acceptance and provide a solution to improve the level of power grid dispatching.

  20. Joint Evaluation of the Wave and Offshore Wind Energy Resources in the Developing Countries

    Directory of Open Access Journals (Sweden)

    Eugen Rusu

    2017-11-01

    Full Text Available The objective of the present work is to assess the global wind and wave resources in the vicinity of some developing countries by evaluating 16-year of data (2001–2016, coming from the European Centre for Medium range Weather Forecast (ECMWF. Until now, not much work has been done to evaluate and use the renewable energy sources from these marine environments. This is because most of the attention was focused on more promising areas, such as the European coasts, which are more advanced in terms of technical and economical aspects. A general perspective of the current energy market from the selected target areas is first presented, indicating at the same time the progresses that have been reported in the field of the renewable energy. Besides the spatial and seasonal variations of the marine resources considered, the results also indicate the energy potential of these coastal environments as well as the performances of some offshore wind turbines, which may operate in these regions.

  1. A GIS-assisted approach to wide-area wind resource assessment and site selection for the state of Colorado

    Energy Technology Data Exchange (ETDEWEB)

    Brower, M.C. [Brower & Company, Andover, MA (United States); Hurley, P. [RLA Consulting, Bothell, WA (United States); Simon, R. [Consulting Meteorologist, Mill Valley, CA (United States)

    1996-12-31

    This paper describes the methodology and results of a wide-area wind resource assessment and site selection in Colorado. This was the first phase in a three-part assessment and monitoring program conducted for the State of Colorado Office of Energy Conservation and several collaborating utilities. The objective of this phase was to identify up to 20 candidate sites for evaluation and possible long-term monitoring. This was accomplished using a geographic information system (GIS), which takes into account such factors as topography, existing wind resource data, locations of transmission lines, land cover, and land use. The resulting list of sites recommended for evaluation in Phase 2 of the study includes locations throughout Colorado, but most are in the eastern plains. The GIS wind siting model may be modified and updated in the future as additional information becomes available. 3 figs., 1 tab.

  2. Large scale wind energy conversion system (WECS) design and installation as affected by site wind energy characteristics, grouping arrangement, and social acceptance. [Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Ljungstrom, O

    1977-01-01

    The Swedish wind energy prospecting program includes special features of determining site wind characteristics and design of WECS group stations, which are described briefly, such as applications of normalized WDP-Wind Duration Profiles, WHP-Wind Height Profiles and how these are affected by site location and terrain roughness. A set of WEC-Wind Energy Classes (1 to 4) is introduced as an aid in territorial wind energy surveys. A survey of Sweden's WEPA-Wind Energy Producing Areas--with associated distribution over WEC-2-4 is presented. In order to determine the corresponding wind energy production capacity, the problem of optimizing WECS group station design for cost effective energy production per land usage must be solved. Here, the effects of WECS unit size and spacing on specific annual energy production, TWh/km/sup 2/, yr, are analyzed with the use of specific group station models in the 40 to 100 MW capacity range, applying WECS unit sizes 50kW, 1 MW and 5 MW, studying the energy balance for typical group stations. By applying the specific productivity data for 1 to 5 MW systems, a survey of the WEPA-associated wind energy production capacity in Sweden is presented.

  3. Characteristics Analysis of an Excitation Assistance Switched Reluctance Wind Power Generator

    DEFF Research Database (Denmark)

    Liu, Xiao; Wang, Chao; Chen, Zhe

    2015-01-01

    In order to fully analyze the characteristics of an excitation assistance switched reluctance generator (EASRG) applied in wind power generation, a static model and a dynamic model are proposed. The static model is based on the 3-D finite-element method (FEM), which can be used to obtain the stat...

  4. Evolution of wind towards wind turbine

    NARCIS (Netherlands)

    Giyanani, A.H.; Bierbooms, W.A.A.M.; Van Bussel, G.J.W.

    2015-01-01

    Remote sensing of the atmospheric variables with the use of LiDAR is a relatively new technology field for wind resource assessment in wind energy. The validation of LiDAR measurements and comparisons is of high importance for further applications of the data.

  5. Yawing characteristics during slippage of the nacelle of a multi MW wind turbine

    Science.gov (United States)

    Kim, M.-G.; Dalhoff, P. H.; Gust, P.

    2016-09-01

    High aerodynamic yaw loads coupled with electrical failures in the wind turbine can result to a slippage of the nacelle, due to limited braking capabilities of the yaw system. A slippage on the other hand can lead to a mechanical malfunction of the yaw system. To analyse the yawing characteristics of a wind turbine during nacelle slippage situations, a detailed multibody system model of the yaw system has been developed and incorporated in a multibody system model of a wind turbine based on a 3.3 MW turbine. Extreme load cases which lead to a nacelle slippage have been simulated. The dynamics and loads on different wind turbine components are presented and discussed. First results show minimal load increases of the rotor torque and the bending moments of the blade root sections during slippage but unfavourable rotational speeds of the yaw drives.

  6. Lake Michigan Offshore Wind Feasibility Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Boezaart, Arnold [GVSU; Edmonson, James [GVSU; Standridge, Charles [GVSU; Pervez, Nahid [GVSU; Desai, Neel [University of Michigan; Williams, Bruce [University of Delaware; Clark, Aaron [GVSU; Zeitler, David [GVSU; Kendall, Scott [GVSU; Biddanda, Bopi [GVSU; Steinman, Alan [GVSU; Klatt, Brian [Michigan State University; Gehring, J. L. [Michigan State University; Walter, K. [Michigan State University; Nordman, Erik E. [GVSU

    2014-06-30

    recording wind data technology at a at a high confidence level as compared to traditional anemometer cup technology. • During storms, mean Turbulent Kinetic Energy (TKE) increases with height above water; • Sufficient wind resources exist over Lake Michigan to generate 7,684 kWh of power using a 850 kW rated turbine at elevations between 90 - 125 meters, a height lower than originally anticipated for optimum power generation; • Based on initial assessments, wind characteristics are not significantly different at distant (thirty-two mile) offshore locations as compared to near-shore (six mile) locations; • Significant cost savings can be achieved in generation wind energy at lower turbine heights and locating closer to shore. • Siting must be sufficiently distant from shore to minimize visual impact and to address public sentiment about offshore wind development; • Project results show that birds and bats do frequent the middle of Lake Michigan, bats more so than birds; • Based on the wind resource assessment and depths of Lake Michigan encountered during the project, future turbine placement will most likely need to incorporate floating or anchored technology; • The most appropriate siting of offshore wind energy locations will enable direct routing of transmission cables to existing generating and transmission facilities located along the Michigan shoreline; • Wind turbine noise propagation from a wind energy generating facility at a five mile offshore location will not be audible at the shoreline over normal background sound levels.

  7. Wind power, network congestion and hydro resource utilisation in the Norwegian power market

    International Nuclear Information System (INIS)

    Foersund, Finn; Singh, Balbir; Jensen, Trond; Larsen, Cato

    2005-01-01

    Capacity constraints in electricity networks can have important impacts on utilization of new renewable energy (RE) capacity and incumbent generation resources. Neglect of such impacts in development of RE resources can result in crowding-out of incumbent generation. This trade-off is particularly problematic if the incumbent generation also consists of renewable sources, such as hydropower in the Norwegian electricity system. This paper presents a numerical analysis of the current wind-power development plans in North Norway and their impacts on utilization of hydropower. Policy simulations in paper are conducted using a dynamic partial equilibrium model that is calibrated to reflect the structure of the Nordic power market. The paper draws conclusion and policy implications for integration of RE resources in the Norwegian power market. (Author)

  8. Improved Formulation for the Optimization of Wind Turbine Placement in a Wind Farm

    Directory of Open Access Journals (Sweden)

    Zong Woo Geem

    2013-01-01

    Full Text Available As an alternative to fossil fuels, wind can be considered because it is a renewable and greenhouse gas-free natural resource. When wind power is generated by wind turbines in a wind farm, the optimal placement of turbines is critical because different layouts produce different efficiencies. The objective of the wind turbine placement problem is to maximize the generated power while minimizing the cost in installing the turbines. This study proposes an efficient optimization formulation for the optimal layout of wind turbine placements under the resources (e.g., number of turbines or budget limit by introducing corresponding constraints. The proposed formulation gave users more conveniences in considering resources and budget bounds. After performing the optimization, results were compared using two different methods (branch and bound method and genetic algorithm and two different objective functions.

  9. Consequences of variations in spatial turbulence characteristics for fatigue life time of wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, G.C.

    1998-09-01

    The fatigue loading of turbines situated in complex terrain is investigated in order to determine the crucial parameters in the spatial structure of the turbulence in such situations. The parameter study is performed by means of numerical calculations, and it embraces three different wind turbine types, representing a pitch controlled concept, a stall controlled concept, and a stall controlled concept with an extremely flexible tower. For each of the turbine concepts, the fatigue load sensibility to the selected turbulence characteristics are investigated for three different mean wind speeds at hub height. The selected mean wind speeds represent the linear-, the stall-, and the post stall aerodynamic region for the stall controlled turbines and analogously the unregulated-, the partly regulated-, and the fully regulated regime for the pitch controlled turbine. Denoting the turbulence component in the mean wind direction by u, the lateral turbulence component by v, and the vertical turbulence component by w, the selected turbulence characteristics comprise the u-turbulence length scale, the ratio between the v- and w-turbulence intensities and the u-turbulence intensity, the uu-coherence decay factor, and finally the u-v and u-w cross-correlations. The turbulence length scale in the mean wind direction gives rise to significant modification of the fatigue loading on all the investigated wind turbine concepts, but for the other selected parameter variations, large individual differences exists between the turbines. With respect to sensitivity to the performed parameter variations, the Vestas V39 wind turbine is the most robust of the investigated turbines. The Nordtank 500/37 turbine, equipped with the (artificial) soft tower, is by far the most sensitive of the investigated turbine concepts - also much more sensitive than the conventional Nordtank 500/37 turbine equipped with a traditional tower. (au) 2 tabs., 43 ills., 7 refs.

  10. Oak Ridge Reservation. Physical Characteristics and National Resources

    Energy Technology Data Exchange (ETDEWEB)

    Parr, Patricia Dreyer [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Joan, F. Hughes [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2006-10-09

    The topology, geology, hydrology, vegetation, and wildlife of the Oak Ridge Reservation (ORR) provide a complex and intricate array of resources that directly impact land stewardship and use decisions. The purpose of this document is to consolidate general information regarding the natural resources and physical characteristics of the ORR.

  11. Assessment of wind characteristics for energy generation

    Energy Technology Data Exchange (ETDEWEB)

    Koray Ulgen [Ege University, Izmir (Turkey). Solar Energy Institute; Asir Genc [Selcuk University, Konya (Turkey). Dept. of Statistics; Arif Hepbasli [Ege University, Izmir (Turkey). Dept. of Mechanical Engineering; Galip Oturanc [Selcuk University, Konya (Turkey). Dept. of Mathematics

    2004-11-15

    Wind technology in Turkey has gained considerable maturity over the last five years, and wind energy projects are becoming commercially attractive in the country. In practice, it is essential to describe the variation of wind speeds for optimizing the design of the systems resulting in less energy generating costs. The wind variation for a typical site is usually described using the so-called Weibull distribution. In this study, the two Weibull parameters of the wind speed distribution function, the shape parameter k (dimensionless) and the scale parameter c (m/s), were computed from the wind speed data for Aksehir in Konya, located in Central Anatolia in Turkey (latitude: 38.35{sup o} and longitude: 31.42{sup o}). Wind data, consisting of hourly wind speed records over a 6 year period, 1997-2002, were obtained from the Aksehir State Meteorological Station. Based on the experimental data, it was found that the numerical values of both Weibull parameters (k and c) for Aksehir vary over a wide range. The yearly values of k range from 1.756 to 2.076, while those of c are in the range of 2.956 to 3.444. Average seasonal Weibull distributions for Aksehir are given. The wind speed distributions are represented by Weibull distribution and also by Rayleigh distribution with a special case of the Weibull distribution for k = 2. The Rayleigh distribution is found to be suitable to represent the actual probability of wind speed data for the site studied. (author)

  12. Offshore wind power resource assessment using Oceansat-2 scatterometer data at a regional scale

    International Nuclear Information System (INIS)

    Gadad, Sanjeev; Deka, Paresh Chandra

    2016-01-01

    Highlights: • Accuracy assessment of Oceansat-2 scatterometer (OSCAT) winds by the in situ real-time ship observations for study area. • OSCAT data for two years (2011 and 2012) were used to evaluate the offshore wind power potential for the Karnataka state. • Wind speed and power atlases are developed to study the spatial distribution over study area. • 9,091 MW potential was estimated using 5 MW wind turbine in the Monopile region. • Recommend development of 10% of the estimated potential, 116% of energy deficit for 2012–13 can be met. - Abstract: In the offshore region the scarcity of in situ wind data in space proves to be a major setback for wind power potential assessments. Satellite data effectively overcomes this setback by providing continuous and total spatial coverage. The study intends to assess the offshore wind power resource of the Karnataka state, which is located on the west coast of India. Oceansat-2 scatterometer (OSCAT) wind data and GIS based methodology were adopted in the study. The OSCAT data accuracy was assessed using INCOIS Realtime All Weather Station (IRAWS) data. Wind speed maps at 10 m, 90 m and wind power density maps using OSCAT data were developed to understand the spatial distribution of winds over the study area. Bathymetric map was developed based on the available foundation types and demarking various exclusion zones to help in minimizing conflicts. The wind power generation capacity estimation performed using REpower 5 MW turbine, based on the water depth classes was found to be 9,091 MW in Monopile (0–35 m), 11,709 MW in Jacket (35–50 m), 23,689 MW in Advanced Jacket (50–100 m) and 117,681 MW in Floating (100–1000 m) foundation technology. In Indian scenario major thrust for wind farm development in Monopile region is required. Therefore as first phase of development, if 10% of the estimated potential in the region can be developed then, 116% of energy deficit for FY 2011–12 could be met. Also, up to 79

  13. Flow field and load characteristics of the whole MEXICO wind turbine

    DEFF Research Database (Denmark)

    Xu, Haoran; Yang, Hua; Liu, Chao

    2017-01-01

    CFD(Computational Fluid Dynamics) method was used to perform steady numerical simulation investigation on the flow field and load characteristics of MEXICO(Model EXperiment In Controlled cOnditions) wind turbine under non-yawed condition. Circumferentially-Averaged method was used to extract...... characteristics around the blade was analyzed and the points of flow separation were found along the blade, the results show that the points of flow separation move towards trailing edge with the increase of radius. The distribution of vorticity in the wake of MEXICO rotor was also analyzed. The distribution...

  14. Assessment of wind energy potential in China

    Institute of Scientific and Technical Information of China (English)

    Zhu Rong; Zhang De; Wang Yuedong; Xing Xuhuang; Li Zechun

    2009-01-01

    China wind atlas was made by numerical simulation and the wind energy potential in China was calculated. The model system for wind energy resource assessment was set up based on Canadian Wind Energy Simulating Toolkit (WEST) and the simulating method was as follows. First, the weather classes were obtained depend on meteorological data of 30 years. Then, driven by the initial meteorological field produced by each weather class, the meso-scale model ran for the distribution of wind energy resources according each weather class condition one by one. Finally, averaging all the modeling output weighted by the occurrence frequency of each weather class, the annual mean distribution of wind energy resources was worked out. Compared the simulated wind energy potential with other results from several ac-tivities and studies for wind energy resource assessment, it is found that the simulated wind energy potential in mainland of China is 3 times that from the second and the third investigations for wind energy resources by CMA, and is similar to the wind energy potential obtained by NREL in Solar and Wind Energy Resource Assessment (SWERA) project. The simulated offshore wind energy potential of China seems smaller than the true value. According to the simulated results of CMA and considering lots of limited factors to wind energy development, the final conclusion can be obtained that the wind energy availability in China is 700~1 200 GW, in which 600~1 000 GW is in mainland and 100~200 GW is on offshore, and wind power will become the important part of energy composition in future.

  15. Accurate Short-Term Power Forecasting of Wind Turbines: The Case of Jeju Island’s Wind Farm

    OpenAIRE

    BeomJun Park; Jin Hur

    2017-01-01

    Short-term wind power forecasting is a technique which tells system operators how much wind power can be expected at a specific time. Due to the increasing penetration of wind generating resources into the power grids, short-term wind power forecasting is becoming an important issue for grid integration analysis. The high reliability of wind power forecasting can contribute to the successful integration of wind generating resources into the power grids. To guarantee the reliability of forecas...

  16. Metocean Data Needs Assessment for U.S. Offshore Wind Energy

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, Bruce H. [AWS Truepower LLC., Albany, NY (United States); Filippelli, Matthew [AWS Truepower LLC., Albany, NY (United States); Baker, Matthew [AWS Truepower LLC., Albany, NY (United States)

    2015-01-01

    A potential barrier to developing offshore wind energy in the United States is the general lack of accurate information in most offshore areas about the wind resource characteristics and external metocean design conditions at the heights and depths relevant to wind turbines and their associated structures and components. Knowledge of these conditions enables specification of the appropriate design basis for wind turbine structures and components so they can withstand the loads expected over a project’s lifetime. Human safety, vessel navigation, and project construction and maintenance activities are equally tied to the metocean environment. Currently, metocean data is sparse in potential development areas and even when available, does not include the detail or quality required to make informed decisions.

  17. Wind farm project economics : value of wind

    Energy Technology Data Exchange (ETDEWEB)

    Bills-Everett, T. [Mainstream Renewable Power, Toronto, ON (Canada)

    2010-07-01

    This PowerPoint presentation discussed methods of increasing the value of wind power projects. Appropriate turbine selection and layout is needed to ensure that wind resources are fully developed. Construction costs have a significant impact on project costs. The world turbine price index has not significantly fluctuated since 2006. Operating costs, and the value of wind power projects, are linked with OPEX fluctuations. Wind power projects can significantly reduce greenhouse gas (GHG) emissions. An increase in wind power capacity will reduce the overall cost of energy produced from wind power. Countries can use wind power as part of a renewable energy portfolio designed to reduce risks related to diminishing petroleum supplies. Wind power will help to ensure a global transition to renewable energy use. tabs., figs.

  18. Climatic wind tunnel for wind engineering tasks

    Czech Academy of Sciences Publication Activity Database

    Kuznetsov, Sergeii; Pospíšil, Stanislav; Král, Radomil

    2015-01-01

    Roč. 112, 2-B (2015), s. 303-316 ISSN 1897-628X R&D Projects: GA ČR(CZ) GA14-12892S Keywords : climatic tunnel * wind tunnel * atmospheric boundary layer * flow resistance * wind tunnel contraction Subject RIV: JM - Building Engineering https://suw.biblos.pk.edu.pl/resources/i5/i6/i6/i7/i6/r56676/KuznetsovS_ClimaticWind.pdf

  19. Database on wind characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Hoejstrup, J. [Risoe National Lab., Roskilde (Denmark). Dept. of Meterology and Wind Energy; Hansen, K.S. [DTU, Lyngby (Denmark). Fluid Mechanics Section

    1996-12-31

    Wind data with high temporal resolution exist from a variety of sites, and have been in demand by windturbine designers and wind engineers. Unfortunately it has always been a problem to gain access to a suitable amount of this data, because they are available from many different sources in different formats and with very different levels of documentation and quality control. We are in the process of gaining access to a large amount of this data, checking the quality of the data and putting the data at the disposition of the windturbine designer community through easy Internet access. Online search will use summary statistics calculated for each series to help in the selection of data. The selected data can then be downloaded directly to the user. (Author)

  20. EnviroAtlas - Annual average potential wind energy resource by 12-digit HUC for the Conterminous United States

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset shows the annual average potential wind energy resource in kilowatt hours per square kilometer per day for each 12-digit Hydrologic Unit...

  1. Tribal Wind Assessment by the Eastern Shoshone Tribe of the Wind River Reservation

    Energy Technology Data Exchange (ETDEWEB)

    Pete, Belvin; Perry, Jeremy W.; Stump, Raphaella Q.

    2009-08-28

    The Tribes, through its consultant and advisor, Distributed Generation Systems (Disgen) -Native American Program and Resources Division, of Lakewood CO, assessed and qualified, from a resource and economic perspective, a wind energy generation facility on tribal lands. The goal of this feasibility project is to provide wind monitoring and to engage in preproject planning activities designed to provide a preliminary evaluation of the technical, economic, social and environmental feasibility of developing a sustainable, integrated wind energy plan for the Eastern Shoshone and the Northern Arapahoe Tribes, who resides on the Wind River Indian Reservation. The specific deliverables of the feasibility study are: 1) Assessments of the wind resources on the Wind River Indian Reservation 2) Assessments of the potential environmental impacts of renewable development 3) Assessments of the transmission capacity and capability of a renewable energy project 4) Established an economic models for tribal considerations 5) Define economic, cultural and societal impacts on the Tribe

  2. Externalities in utility resource selection: A means to formally recognize the envionmental benefits of wind farms

    International Nuclear Information System (INIS)

    Birner, S.

    1992-01-01

    Wind can only make its full contribution to the minimization of the total cost of energy services if it is valued for all the costs that it avoids, including avoided environmental costs. Means of incorporating environmental costs, or externalities, into utility planning decisions are described. Externalities are defined as uncompensated costs or benefits of an action borne by a party other than the one causing the costs. A simple example of the use of externalities in utility resource selection is presented, comparing costs of a coal-fired power plant and a wind farm. Externalities of wind farms are analyzed and found to be very low. An examination of some aspects of legislation in the USA and Canada shows a trend for utility commissions and other regulatory bodies to determine that including externalitites lies within their mandate. By formally recognizing and accounting for the environmental benefits of wind farms, it is seen that externalities can have a significant effect on utility demand for wind energy. A review of USA state actions regarding externalities is appended. 10 refs

  3. Frequency-domain characteristics of aerodynamic loads of offshore floating vertical axis wind turbines

    DEFF Research Database (Denmark)

    Borg, Michael; Collu, M.

    2015-01-01

    The re-emerging interest in vertical axis wind turbines for floating offshore applications has led to a need to investigate the relatively complex dynamics of such floating offshore structures. Through the use of a coupled model of dynamics this article investigates the frequency......-domain characteristics of floating vertical axis wind turbine aerodynamic loads. The impact of platform induced motion on aerodynamic loads is discussed in detail, with results indicating an increase in aerodynamic loads of several orders of magnitude over the range of frequencies usually containing significant wave...

  4. The use of wind to produce energy in Ketodestrin province

    International Nuclear Information System (INIS)

    Shirani, E.; Ahmadkia, H.; Talebi, F.; Mojib, J.

    2004-01-01

    Productivity of oil and gas and their high cost benefit in matters than combustion, in one hand and their problem of environmental pollution when they are burnt, on the other hand attracted the decision markers in Iran to consider the wind energy as a good alternative for energy resources . It is especially important because of the existence of regions with high potential for wind energy in Iran. The Kurdestan province is one of the windy places in Iran that has not been considered for wind energy yet. In this paper, the general characteristics of the different kinds of winds which are blown throughout the year in Kurdestan province are considered firstly. Then by using the information from the stations in the sixth major cities in the province, the wind characteristics including power, direction, intensity and probability at different months of the year, are considered. The statistical studies show that Bijar, Zarine Obatoo, Ghorveh, Sanandaj and Marivan have the most wind energy potential, and Bijar and Ghorveh are the best places to install the wind turbine. for all of the above regions, the maximum of the wind average speed and powe are obtained in March, April. May, and the minimum of the average wind speed occurs in December. Bijar, Ghorveh and Zarine Obatoo have high average wind speed and its recommended to search for best places in these regions for the wind turbine sites

  5. Carolina Offshore Wind Integration Case Study: Phases I and II Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Fallon, Christopher [Duke Energy Business Services, LLC, Charlotte, NC (United States); Piper, Orvane [Duke Energy Business Services, LLC, Charlotte, NC (United States); Hazelip, William [Duke Energy Business Services, LLC, Charlotte, NC (United States); Zhao, Yishan [Duke Energy Business Services, LLC, Charlotte, NC (United States); Salvador, Lisa [Duke Energy Business Services, LLC, Charlotte, NC (United States); Pruitt, Tom [Duke Energy Business Services, LLC, Charlotte, NC (United States); Peterson, Jeffrey [Duke Energy Business Services, LLC, Charlotte, NC (United States); Ashby, Rebecca [Duke Energy Business Services, LLC, Charlotte, NC (United States); Pierce, Bob [Duke Energy Business Services, LLC, Charlotte, NC (United States); Burner, Bob [Duke Energy Business Services, LLC, Charlotte, NC (United States); Daniel, John [ABB, Inc., Cary, NC (United States); Zhu, Jinxiang [ABB, Inc., Cary, NC (United States); Moore, Maria [ABB, Inc., Cary, NC (United States); Liu, Shu [ABB, Inc., Cary, NC (United States); Pennock, Ken [AWS Truepower, LLC, Albany, NY (United States); Frank, Jaclyn [AWS Truepower, LLC, Albany, NY (United States); Ibanez, Eduardo [National Renewable Energy Lab. (NREL), Golden, CO (United States); Heaney, Michael [National Renewable Energy Lab. (NREL), Golden, CO (United States); Bloom, Aaron [National Renewable Energy Lab. (NREL), Golden, CO (United States); Zhang, Yingchen [National Renewable Energy Lab. (NREL), Golden, CO (United States); Elliott, Dennis [National Renewable Energy Lab. (NREL), Golden, CO (United States); Seim, Harvey E. [Univ. of North Carolina, Chapel Hill, NC (United States)

    2015-04-30

    Duke Energy performed a phase 1 study to assess the impact of offshore wind development in the waters off the coasts of North Carolina and South Carolina. The study analyzed the impacts to the Duke Energy Carolinas electric power system of multiple wind deployment scenarios. Focusing on an integrated utility system in the Carolinas provided a unique opportunity to assess the impacts of offshore wind development in a region that has received less attention regarding renewables than others in the US. North Carolina is the only state in the Southeastern United States that currently has a renewable portfolio standard (RPS) which requires that 12.5% of the state’s total energy requirements be met with renewable resources by 2021. 12.5% of the state’s total energy requirements in 2021 equates to approximately 17,000 GWH of energy needed from renewable resources. Wind resources represent one of the ways to potentially meet this requirement. The study builds upon and augments ongoing work, including a study by UNC to identify potential wind development sites and the analysis of impacts to the regional transmission system performed by the NCTPC, an Order 890 planning entity of which DEC is a member. Furthermore, because the region does not have an independent system operator (ISO) or regional transmission organization (RTO), the study will provide additional information unique to non-RTO/ISO systems. The Phase 2 study builds on the results of Phase 1 and investigates the dynamic stability of the electrical network in Task 4, the operating characteristics of the wind turbines as they impact operating reserve requirements of the DEC utility in Task 5, and the production cost of integrating the offshore wind resources into the DEC generation fleet making comparisons to future planned operation without the addition of the wind resources in Task 6.

  6. Database on wind characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Hojstrup, J. [Riso National Lab., Roskilde (Denmark); Hansen, K.S. [Fluid Mechanics Section, Lyngby (Denmark)

    1996-12-31

    Wind data with high temporal resolution exist from a variety of sites, and is in demand by windturbine designers and wind engineers. Unfortunately it has always been a problem to gain access to a suitable amount of this data, because they are available from many different sources in different formats and with very different levels of documentation and quality control. We are now in the process of gaining access to a large amount of this type of data, checking the quality of the data and putting the data at the disposition of the windturbine designer community through easy Internet access. Online search will use summary statistics calculated for each series to help in the selection of data. The selected data can then be downloaded directly to the user. 3 figs.

  7. The Development and Utilization of Wind Energy in Caofeidian Harbor%曹妃甸港口风能的开发与利用

    Institute of Scientific and Technical Information of China (English)

    申英霞; 贺静; 高瑞香; 丁怀青

    2014-01-01

    风能是我国未来开发、利用的重要能源之一,本文充分研究了曹妃甸风能资源,并对曹妃甸风能资源进行分析、评估。根据该地区天然风能资源特点设计风能发电系统,实现曹妃甸港口的风能资源的开发与利用。%Wind energy is one of the important energy for the development and utilization of China energy in the future. This thesis studied the wind energy resources in Caofeidian harbor, analyzes and estimates the wind energy resource. According to the natural wind resource characteristics of the area, the authors design the wind power generating system, realize the development and utilization of wind energy resources in Caofeidian harbor.

  8. SimWIND: A geospatial infrastructure model for optimizing wind power generation and transmission

    International Nuclear Information System (INIS)

    Phillips, Benjamin R.; Middleton, Richard S.

    2012-01-01

    Wind is a clean, enduring energy resource with the capacity to satisfy 20% or more of U.S. electricity demand. Presently, wind potential is limited by a paucity of electrical transmission lines and/or capacity between promising wind resources and primary load centers. We present the model SimWIND to address this shortfall. SimWIND is an integrated optimization model for the geospatial arrangement and cost minimization of wind-power generation–transmission–delivery infrastructure. Given a set of possible wind-farm sites, the model simultaneously determines (1) where and how much power to generate and (2) where to build new transmission infrastructure and with what capacity in order to minimize the cost for delivering a targeted amount of power to load. Costs and routing of transmission lines consider geographic and social constraints as well as electricity losses. We apply our model to the Electric Reliability Council of Texas (ERCOT) Interconnection, considering scenarios that deliver up to 20 GW of new wind power. We show that SimWIND could potentially reduce ERCOT's projected ∼$5B transmission network upgrade line length and associated costs by 50%. These results suggest that SimWIND's coupled generation–transmission–delivery modeling approach could play a critical role in enhancing planning efforts and reducing costs for wind energy integration. - Highlights: ► Wind power is limited by transmission capacity between resources and demands. ► SimWIND is a coupled generation-transmission-delivery model for wind infrastructure. ► The model minimizes costs considering realistic transmission routing and networking. ► We show that SimWIND could save 50% of $5B costs for expanding the Texas grid. ► Results suggest SimWIND may play a critical role in enhancings wind planning efforts.

  9. Hybrid Pricing in a Coupled European Power Market with More Wind Power

    OpenAIRE

    Bjørndal, Endre; Bjørndal, Mette; Cai, Hong; Panos, Evangelos

    2015-01-01

    In the European market, the promotion of wind power leads to more network congestion. Zonal pricing (market coupling), which does not take the physical characteristics of transmission into account, is the most commonly used method to relieve congestion in Europe. Zonal pricing fails to provide adequate locational price signals regarding the energy resource scarcity and thus creates a large amount of unscheduled cross-border flows originating from wind-generated power, making the interconne...

  10. Wind speed estimation using multilayer perceptron

    International Nuclear Information System (INIS)

    Velo, Ramón; López, Paz; Maseda, Francisco

    2014-01-01

    Highlights: • We present a method for determining the average wind speed using neural networks. • We use data from that site in the short term and data from other nearby stations. • The inputs used in the ANN were wind speed and direction data from a station. • The method allows knowing the wind speed without topographical data. - Abstract: Wind speed knowledge is prerequisite in the siting of wind turbines. In consequence the wind energy use requires meticulous and specified knowledge of the wind characteristics at a location. This paper presents a method for determining the annual average wind speed at a complex terrain site by using neural networks, when only short term data are available for that site. This information is useful for preliminary calculations of the wind resource at a remote area having only a short time period of wind measurements measurement in a site. Artificial neural networks are useful for implementing non-linear process variables over time, and therefore are a useful tool for estimating the wind speed. The neural network used is multilayer perceptron with three layers and the supervised learning algorithm used is backpropagation. The inputs used in the neural network were wind speed and direction data from a single station, and the training patterns used correspond to sixty days data. The results obtained by simulating the annual average wind speed at the selected site based on data from nearby stations with correlation coefficients above 0.5 were satisfactory, compared with actual values. Reliable estimations were obtained, with errors below 6%

  11. Wind Characteristics and an Evaluation of Wind Power Density at Three Sites in Egypt

    International Nuclear Information System (INIS)

    Etman, S.M.

    2008-01-01

    This paper presents the results of the analysis of wind speed data for one calendar year (2005) at three stations (El-Tor, El-Nonzha, and El-Notron) in Egypt along with the wind energy potential of each site. The wind power density at 25 m height was obtained by extrapolation of data at 10 m using a Power-law expression. The frequency distribution of observed hourly wind speeds occurring at each station is examined, particularly for wind speeds greater than or equal to 3 and 5 m/s (cut-in wind speeds for most wind turbines). The study reveals that the wind turbine can be operated at the sites El-Tor, El-Nouzha, and El-Notron with an annual availability factor of about 89.9 %, 76.2 %, and 67.9 % if the cut-in wind speed is 3 m/s and 67.2 %,51.8 %, and 17.1 % if the cut-in wind speed is 5 m/s, respectively. The total available wind power density ( kWh/m 2 /yr) Was estimated at the selected sites; El-Tor, El-Nouzha and El-Notron and was found to be: 3838.4, 825.5 and 284 kWh/m 2 /yr for case 3m/s and 2276.2, 489,5 and 71 kWh/m 2 /yr for case 5 m/s, respectively

  12. Wind Generator & Biomass No-draft Gasification Hybrid

    Science.gov (United States)

    Hein, Matthew R.

    The premise of this research is that underutilized but vast intermittent renewable energy resources, such as wind, can become more market competitive by coupling with storable renewable energy sources, like biomass; thereby creating a firm capacity resource. Specifically, the Midwest state of South Dakota has immense wind energy potential that is not used because of economic and logistic barriers of electrical transmission or storage. Coupling the state's intermittent wind resource with another of the state's energy resources, cellulosic non-food biomass, by using a wind generator and no-draft biomass gasification hybrid system will result in a energy source that is both firm and storable. The average energy content of common biomass feedstock was determined, 14.8 MJ/kg (7.153 Btu/lb), along with the assumed typical biomass conversion efficiency of the no-draft gasifier, 65%, so that an average electrical energy round trip efficiency (RTE) of 214% can be expected (i.e. One unit of wind electrical energy can produce 2.14 kWh of electrical energy stored as syngas.) from a wind generator and no-draft biomass gasification system. Wind characteristics are site specific so this analysis utilizes a synthetic wind resource to represent a statistically sound gross representation of South Dakota's wind regime based on data from the Wind Resource Assessment Network (WRAN) locations. A synthetic wind turbine generated from common wind turbine power curves and scaled to 1-MW rated capacity was utilized for this analysis in order to remove equipment bias from the results. A standard 8,760-hour BIN Analysis model was constructed within HOMER, powerful simulation software developed by the National Renewable Energy Laboratory (NREL) to model the performance of renewable power systems. It was found that the optimum configuration on a per-megawatt-transmitted basis required a wind generator (wind farm) rated capacity of 3-MW with an anticipated annual biomass feedstock of 26,132 GJ

  13. Simulating European wind power generation applying statistical downscaling to reanalysis data

    International Nuclear Information System (INIS)

    González-Aparicio, I.; Monforti, F.; Volker, P.; Zucker, A.; Careri, F.; Huld, T.; Badger, J.

    2017-01-01

    Highlights: •Wind speed spatial resolution highly influences calculated wind power peaks and ramps. •Reduction of wind power generation uncertainties using statistical downscaling. •Publicly available dataset of wind power generation hourly time series at NUTS2. -- Abstract: The growing share of electricity production from solar and mainly wind resources constantly increases the stochastic nature of the power system. Modelling the high share of renewable energy sources – and in particular wind power – crucially depends on the adequate representation of the intermittency and characteristics of the wind resource which is related to the accuracy of the approach in converting wind speed data into power values. One of the main factors contributing to the uncertainty in these conversion methods is the selection of the spatial resolution. Although numerical weather prediction models can simulate wind speeds at higher spatial resolution (up to 1 × 1 km) than a reanalysis (generally, ranging from about 25 km to 70 km), they require high computational resources and massive storage systems: therefore, the most common alternative is to use the reanalysis data. However, local wind features could not be captured by the use of a reanalysis technique and could be translated into misinterpretations of the wind power peaks, ramping capacities, the behaviour of power prices, as well as bidding strategies for the electricity market. This study contributes to the understanding what is captured by different wind speeds spatial resolution datasets, the importance of using high resolution data for the conversion into power and the implications in power system analyses. It is proposed a methodology to increase the spatial resolution from a reanalysis. This study presents an open access renewable generation time series dataset for the EU-28 and neighbouring countries at hourly intervals and at different geographical aggregation levels (country, bidding zone and administrative

  14. THE CHARACTERISTICS OF THE OPERATING PARAMETERS OF THE VERTICAL AXIS WIND TURBINE FOR THE SELECTED WIND SPEED

    Directory of Open Access Journals (Sweden)

    Zbigniew Czyż

    2017-03-01

    Full Text Available The article presents the results of examining a wind turbine on the vertical axis of rotation. The study was conducted in an open circuit wind tunnel Gunt HM 170 in the laboratory of the Department of Thermodynamics, Fluid Mechanics and Aviation Propulsion Systems in Lublin University of Technology. The subject of research was a rotor based on the patent PL 219985. The research object in the form of rotor consists of blades capable of altering the surface of the active area (receiving kinetic energy of the wind. The study was performed on appropriately scaled and geometrically similar models with maintaining, relevant to the type of research, the criterion numbers. Research objects in the form of rotors with different angles of divergence of blades were made using a 3D powder printer ZPrinter® 450. The results of the research conducted were carried out at the selected flow velocity of 6.5 m/s for three angles of divergence, ie. 30°, 60°, and 90° at variable rotational speed. The applied research station allows braking of the turbine to the required speed, recording velocity and torque, which allows to obtain characteristics of torque and power as a function of rotor speed.

  15. Should we build wind farms close to load or invest in transmission to access better wind resources in remote areas? A case study in the MISO region

    International Nuclear Information System (INIS)

    Lamy, Julian V.; Jaramillo, Paulina; Azevedo, Inês L.; Wiser, Ryan

    2016-01-01

    Wind speeds in remote areas are sometimes very high, but transmission costs to access these locations can be prohibitive. We present a conceptual model to estimate the economics of accessing high quality wind resources in remote areas to comply with renewable energy policy targets, and apply the model to the Midwestern grid (MISO) as a case study. We assess the goal of providing 40 TWh of new wind generation while minimizing costs, and include temporal aspects of wind power (variability costs and correlation to market prices) as well as total wind power produced from different farms. We find that building wind farms in North/South Dakota (windiest states) compared to Illinois (less windy, but close to load) would only be economical if the incremental transmission costs to access them were below $360/kW of wind capacity (break-even value). Historically, the incremental transmission costs for wind development in North/South Dakota compared to in Illinois are about twice this value. However, the break-even incremental transmission cost for wind farms in Minnesota/Iowa (also windy states) is $250/kW, which is consistent with historical costs. We conclude that wind development in Minnesota/Iowa is likely more economical to meet MISO renewable targets compared to North/South Dakota or Illinois. - Highlights: •We evaluate the economics of building wind farms in remote areas in MISO. •We present a conceptual wind site selection model to meet 40 TWh of new wind. •We use the model to compare remote windy sites to less windy ones closer to load. •We show break-even transmission costs that would justify remote wind development. •Comparing break-even values to historical costs, MN/IA sites are most economical.

  16. Wind Speed Prediction with Wavelet Time Series Based on Lorenz Disturbance

    Directory of Open Access Journals (Sweden)

    ZHANG, Y.

    2017-08-01

    Full Text Available Due to the sustainable and pollution-free characteristics, wind energy has been one of the fastest growing renewable energy sources. However, the intermittent and random fluctuation of wind speed presents many challenges for reliable wind power integration and normal operation of wind farm. Accurate wind speed prediction is the key to ensure the safe operation of power system and to develop wind energy resources. Therefore, this paper has presented a wavelet time series wind speed prediction model based on Lorenz disturbance. Therefore, in this paper, combined with the atmospheric dynamical system, a wavelet-time series improved wind speed prediction model based on Lorenz disturbance is proposed and the wind turbines of different climate types in Spain and China are used to simulate the disturbances of Lorenz equations with different initial values. The prediction results show that the improved model can effectively correct the preliminary prediction of wind speed, improving the prediction. In a word, the research work in this paper will be helpful to arrange the electric power dispatching plan and ensure the normal operation of the wind farm.

  17. Doppler lidar investigation of wind turbine wake characteristics and atmospheric turbulence under different surface roughness.

    Science.gov (United States)

    Zhai, Xiaochun; Wu, Songhua; Liu, Bingyi

    2017-06-12

    Four field experiments based on Pulsed Coherent Doppler Lidar with different surface roughness have been carried out in 2013-2015 to study the turbulent wind field in the vicinity of operating wind turbine in the onshore and offshore wind parks. The turbulence characteristics in ambient atmosphere and wake area was analyzed using transverse structure function based on Plane Position Indicator scanning mode. An automatic wake processing procedure was developed to determine the wake velocity deficit by considering the effect of ambient velocity disturbance and wake meandering with the mean wind direction. It is found that the turbine wake obviously enhances the atmospheric turbulence mixing, and the difference in the correlation of turbulence parameters under different surface roughness is significant. The dependence of wake parameters including the wake velocity deficit and wake length on wind velocity and turbulence intensity are analyzed and compared with other studies, which validates the empirical model and simulation of a turbine wake for various atmosphere conditions.

  18. The market value and impact of offshore wind on the electricity spot market: Evidence from Germany

    International Nuclear Information System (INIS)

    Ederer, Nikolaus

    2015-01-01

    Highlights: • Market value of offshore wind based on feed-in and weather data is assessed. • Merit order effect caused by wind energy is simulated for 2006–2014. • Results indicate same impact of on- and offshore wind on market price and value. • Steadier wind resource offshore imposes less variability on market price. • Characteristic of variable wind feed-in cannot be blamed for price deterioration. - Abstract: Although the expansion of offshore wind has recently increased in Germany, as in other countries, it is still forced to defend its role in long-term energy policy plans, particularly against its onshore counterpart, to secure future expansion targets and financial support. The objective of this article is to investigate the economic effects of offshore wind on the electricity spot market and thus open up another perspective that has not been part of the debate about offshore vs. onshore wind thus far. A comprehensive assessment based on a large amount of market, feed-in and weather data in Germany revealed that the market value of offshore wind is generally higher than that of onshore wind. Simulating the merit order effect on the German day-ahead electricity market for the short term and long term in the years 2006–2014 aimed to identify the reason for this observation and show whether it is also an indication of a lower impact on the electricity spot market due to a steadier wind resource prevailing offshore. Although the results suggest no difference regarding the impact on market price and value, they indeed reveal that offshore wind imposes less variability on the spot market price than onshore wind. In addition, the long-term simulation proved that the ongoing price deterioration cannot be blamed on the characteristic of variable wind production

  19. An Appropriate Wind Model for Wind Integrated Power Systems Reliability Evaluation Considering Wind Speed Correlations

    Directory of Open Access Journals (Sweden)

    Rajesh Karki

    2013-02-01

    Full Text Available Adverse environmental impacts of carbon emissions are causing increasing concerns to the general public throughout the world. Electric energy generation from conventional energy sources is considered to be a major contributor to these harmful emissions. High emphasis is therefore being given to green alternatives of energy, such as wind and solar. Wind energy is being perceived as a promising alternative. This source of energy technology and its applications have undergone significant research and development over the past decade. As a result, many modern power systems include a significant portion of power generation from wind energy sources. The impact of wind generation on the overall system performance increases substantially as wind penetration in power systems continues to increase to relatively high levels. It becomes increasingly important to accurately model the wind behavior, the interaction with other wind sources and conventional sources, and incorporate the characteristics of the energy demand in order to carry out a realistic evaluation of system reliability. Power systems with high wind penetrations are often connected to multiple wind farms at different geographic locations. Wind speed correlations between the different wind farms largely affect the total wind power generation characteristics of such systems, and therefore should be an important parameter in the wind modeling process. This paper evaluates the effect of the correlation between multiple wind farms on the adequacy indices of wind-integrated systems. The paper also proposes a simple and appropriate probabilistic analytical model that incorporates wind correlations, and can be used for adequacy evaluation of multiple wind-integrated systems.

  20. Offshore Wind Energy Market Overview (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Baring-Gould, I.

    2013-07-01

    This presentation describes the current international market conditions regarding offshore wind, including the breakdown of installation costs, how to reduce costs, and the physical siting considerations considered when planning offshore wind construction. The presentation offers several examples of international existing and planned offshore wind farm sites and compares existing international offshore resources with U.S. resources. The presentation covers future offshore wind trends and cites some challenges that the United States must overcome before it will be able to fully develop offshore wind sites.

  1. Blowing in the Wind: A Review of Wind Power Technology

    Science.gov (United States)

    Harris, Frank

    2014-01-01

    The use of wind as a replenishable energy resource has come back into favour in recent decades. It is much promoted as a viable, clean energy option that will help towards reducing CO[subscript 2] emissions in the UK. This article examines the history of wind power and considers the development of wind turbines, together with their economic,…

  2. Wind energy program overview

    International Nuclear Information System (INIS)

    1992-02-01

    This overview emphasizes the amount of electric power that could be provided by wind power rather than traditional fossil fuels. New wind power markets, advances in technology, technology transfer, and wind resources are some topics covered in this publication

  3. Using Large-Eddy Simulations to Define Spectral and Coherence Characteristics of the Hurricane Boundary Layer for Wind-Energy Applications

    Science.gov (United States)

    Worsnop, Rochelle P.; Bryan, George H.; Lundquist, Julie K.; Zhang, Jun A.

    2017-10-01

    Offshore wind-energy development is planned for regions where hurricanes commonly occur, such as the USA Atlantic Coast. Even the most robust wind-turbine design (IEC Class I) may be unable to withstand a Category-2 hurricane (hub-height wind speeds >50 m s^{-1}). Characteristics of the hurricane boundary layer that affect the structural integrity of turbines, especially in major hurricanes, are poorly understood, primarily due to a lack of adequate observations that span typical turbine heights (wind profiles of an idealized Category-5 hurricane at high spatial (10 m) and temporal (0.1 s) resolution. By comparison with unique flight-level observations from a field project, we find that a relatively simple configuration of the Cloud Model I model accurately represents the properties of Hurricane Isabel (2003) in terms of mean wind speeds, wind-speed variances, and power spectra. Comparisons of power spectra and coherence curves derived from our hurricane simulations to those used in current turbine design standards suggest that adjustments to these standards may be needed to capture characteristics of turbulence seen within the simulated hurricane boundary layer. To enable improved design standards for wind turbines to withstand hurricanes, we suggest modifications to account for shifts in peak power to higher frequencies and greater spectral coherence at large separations.

  4. Estonian wind climate

    International Nuclear Information System (INIS)

    Kull, Ain

    1999-01-01

    Estonia is situated on the eastern coast of the Baltic Sea. This is a region with intensive cyclonic activity and therefore with a relatively high mean wind speed. Atmospheric circulation and its seasonal variation determine the general character of the Estonian wind regime over the Atlantic Ocean and Eurasia. However, the Baltic sea itself is a very important factor affecting wind climate, it has an especially strong influence on the wind regime in costal areas. The mean energy density (W/m 2 ) is a wind energy characteristic that is proportional to the third power of wind speed and describes energy available in a flow of air through a unit area. The mean energy density is a characteristic which has practical importance in regional assessment of snowdrift, storm damage and wind energy

  5. The value of holding scarce wind resource—A cause of overinvestment in wind power capacity in China

    International Nuclear Information System (INIS)

    Liu, Xuemei

    2013-01-01

    China's wind power capacity has increased dramatically in recent years, but about 30% of the installed capacity sits idle, so overinvestment in wind power capacity seems to be a serious problem. This paper explores reasons for the overinvestment. The economic analysis shows that, given uncertain future policy on wind power, it is optimal for power companies to invest more than the amount in a certain world. A part of the “overinvestment” has a real value, which can be interpreted as the value of holding scarce wind resource. This value exists because the wind-rich sites with convenient locations to connect to the grids are scarce resource, and also because the specific government policies that are essential for promoting wind power are uncertain in the future. This value should be taken into account in the investment decision, but it results in the phenomenon of “overinvestment”. The concept of the value of holding scarce resource can be generally applied to the resources that are scarce and for which the future policy is uncertain

  6. PV–wind hybrid power option for a low wind topography

    International Nuclear Information System (INIS)

    Bhattacharjee, Subhadeep; Acharya, Shantanu

    2015-01-01

    Highlights: • Optimally harness the wind energy by unification of solar resource. • Analysis of PV–wind hybrid system with tangible experience. • Cost of generation and renewable fraction are $0.488/kWh and 0.90 respectively. • Maximum wind penetration is observed to be 32.75% with installed PV–wind system. • Indicative annual grid electricity conservation is 90%. - Abstract: Solar and wind are clean energy sources with enormous potential to alleviate grid dependence. The paper aims to optimally harness the wind resource with the support of solar energy through hybrid technology for a north-east Indian state Tripura (low wind topography). Techno-economic analysis of a photovoltaic (PV)-wind hybrid simulation model has been performed for small scale application in an educational building. The study also evaluates the tangible performance of a similar plant in practical condition of the site. It has emerged from the study that major energy generation is turning out from PV segment which is promising almost all round the year. Nonetheless, a considerable amount of wind power is found to be generated during half of the year when average PV power production is comparatively less. The cost of electricity from the simulation model is found to be $0.488/kWh while renewable fraction in the total electricity share is obtained to be 0.90. From the actual performance of the plant, maximum wind penetration is observed to be 32.75%

  7. Wind energy applications of synthetic aperture radar

    Energy Technology Data Exchange (ETDEWEB)

    Bruun Christiansen, M.

    2006-11-15

    Synthetic aperture radars (SAR), mounted on satellites or aircraft, have proven useful for ocean wind mapping. Wind speeds at the height 10 m may be retrieved from measurements of radar backscatter using empirical model functions. The resulting wind fields are valuable in offshore wind energy planning as a supplement to on site measurements, which are costly and sparse, and model wind fields, which are not fully validated. Two applications of SAR measurements in offshore wind energy planning are addressed here: the study of wind farm wake effects and the potential of using SAR winds in offshore wind resource assessment. Firstly, wind wakes behind two large offshore wind farms in Denmark Horns Rev and Nysted are identified. A region of reduced wind speed is found downstream of both wind farms from the SAR wind fields. The wake extent and magnitude depends on the wind speed, the atmospheric stability, and the fraction of turbines operating. Wind farm wake effects are detected up to 20 km downwind of the last turbine. This distance is longer than predicted by state-of-the art wake models. Wake losses are typically 10-20% near the wind farms. Secondly, the potential of using SAR wind maps in offshore wind resource assessment is investigated. The resource assessment is made through Weibull fitting to frequency observations of wind speed and requires at least 100 satellite observations per year for a given site of interest. Predictions of the energy density are very sensitive to the wind speed and the highest possible accuracy on SAR wind retrievals is therefore sought. A 1.1 m s{sup -1} deviation on the mean wind speed is found through comparison with mast measurements at Horns Rev. The accuracy on mean wind speeds and energy densities found from satellite measurements varies with different empirical model functions. Additional uncertainties are introduced by the infrequent satellite sampling at fixed times of the day. The accuracy on satellite based wind resource

  8. Report on field test project for wind power development at Nagashima-cho. Detailed wind characteristics survey; Nagashimacho ni okeru furyoku field test jigyo (fukyo seisa) hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-11-01

    A detailed wind characteristics survey was conducted to study the feasibility of a wind power generation system for Nagashima-cho, Izumi-gun, Kagoshima Prefecture. Observation instruments were installed at the top of a hill approximately 80m above the sea level situated to the northwest of the Nagashima-cho town hall and, in the period October 1998 through September 1999, data were collected at a point 20m above ground, such as the average wind speed and direction, wind velocity standard deviation, and the maximum instantaneous wind velocity. The data were analyzed, and findings were obtained, as mentioned below. The annual average wind speed was 5.0m, strong in winter and weak in summer. The annual wind direction occurrence rate was 61.8%, turbulence intensity was 0.17 at wind speeds of 4m/s and more, these not presenting any particular problem. Wind energy density was 148W/m{sup 2}. Both wind speed conditions and energy density were slightly lower than the reference levels indicated for evaluation. Studies were made on the assumption that three classes of wind turbines (150, 300, and 750kW) would be introduced, and then it was found that both operating factors and facility availability rates exceeded the required levels. Since there were no detrimental factors in the surrounding conditions, it was concluded that possibilities were high that wind power generation at the site would be practical. (NEDO)

  9. Implementation of wind power in the Norwegian market; the reason why some of the best wind resources in Europe were not utilised by 2010

    International Nuclear Information System (INIS)

    Blindheim, Bernt

    2013-01-01

    Norway has some of the best wind resources in Europe. In 1999, the Norwegian Parliament committed to attain an annual onshore wind power production goal of 3.0 TWh by 2010; however, in 2010, onshore wind power production measured only 1.0 TWh. This article discusses the reasons that this goal was not achieved. The analysis addresses the key figures on the strategic, tactical and operational levels. This model is combined with a time line that seeks to define when different actors should have secured concessions and funding to achieve the goal. After introducing the time line, a list of questions is introduced for these key actors. The three-level model, the time line and the questions constitute the analytical framework. Explanations for the failure to achieve the goal may be identified on all three levels. However, the primary explanatory factors were political uncertainty in the support scheme and wind power's role in the energy market in general; both of these factors are identified on the strategic level. Uncertainty on the strategic level influenced the lower levels, which led to bottlenecks in the concession process and jittery investors who thought that the risk of investment in wind power was too high. - Highlights: • Implementation of wind power in the Norwegian energy system up to 2010. • The concession process, the support scheme and the marked players are considered. • Uncertainty about the support scheme slowed down the implementation process. • The concession process has been a bottleneck. • The support scheme has only to a certain degree trigged investments

  10. WIND ENERGY – ECOSUSTAINABILITY ENGINEERING SOLUTION

    Directory of Open Access Journals (Sweden)

    Roxana Gabriela POPA

    2013-05-01

    Full Text Available Renewables provides increased safety energy supply and limiting imports of energy resources, interms of sustainable economic development. The new requirements for sustainable development have determinedthe world to put the issue of energy production methods and increase the share of energy produced fromrenewable energy. This paper presents the history of wind power, advantages and disadvantages of renewableenergy, particularly wind energy as an alternative source of energy. Windmills can be horizontal axis or verticalaxis Savonius and Darrieus rotor. Latest innovations allow operation of variable speed wind turbines, or turbinespeed control based on wind speed. Wind energy is considered one of the most sustainable choices betweenvariants future wind resources are immense.

  11. Characteristics of transformer-type superconducting fault current limiter depending on reclosing in changing the number of turns of secondary winding

    International Nuclear Information System (INIS)

    Choi, S.G.; Choi, H.S.; Cho, Y.S.; Park, H.M.; Jung, B.I.; Ha, K.H.

    2011-01-01

    The amount of consumed power is increasing with industrial development and rapidly increasing population. In accidents due to increased power consumption, the fault current sharply increases. Superconducting fault current limiters (SFCL) are studied widely to limit such fault currents. In this study, the characteristics of a transformer-type SFCL are analyzed depending on reclosing in changing the number of secondary winding turns. For experiment conditions, the turn ratio of the primary and secondary windings of a transformer-type SFCL was set to 4:2 and 4:4. The voltage was incremented by 80 V from 120 V for the experiment. The circuit breaker was operated with two open times of CO-0.17 s -CO-0.17 s -CO seconds (C; closed, O; open), respectively. Comparing the result for the experiment conditions with the case of the turn ratios of the primary and secondary windings at 4:4 and 4:2, the fault current was limited effectively in 4:2 than in 4:4 for the fault current limit ratios. With respect to the result of recovery characteristics, it was examined that the superconducting unit recovered faster when the turn ratio of the primary and secondary windings was 4:2 than 4:4. Comparing the amount of consumed power related to the recovery characteristics of the superconducting element, it was examined that the recovery time was faster in less power consumption for the superconducting unit. As such, since a transformer-type SFCL depending on reclosing in changing the number of turns of the secondary winding controls the turn ratio of the secondary winding to control fault current limiting and recovery characteristics, it can normally operate.

  12. Analysis of superconducting magnetic energy storage applications at a proposed wind farm site near Browning, Montana

    Science.gov (United States)

    Gaustad, K. L.; Desteese, J. G.

    1993-07-01

    A computer program was developed to analyze the viability of integrating superconducting magnetic energy storage (SMES) with proposed wind farm scenarios at a site near Browning, Montana. The program simulated an hour-by-hour account of the charge/discharge history of a SMES unit for a representative wind-speed year. Effects of power output, storage capacity, and power conditioning capability on SMES performance characteristics were analyzed on a seasonal, diurnal, and hourly basis. The SMES unit was assumed to be charged during periods when power output of the wind resource exceeded its average value. Energy was discharged from the SMES unit into the grid during periods of low wind speed to compensate for below-average output of the wind resource. The option of using SMES to provide power continuity for a wind farm supplemented by combustion turbines was also investigated. Levelizing the annual output of large wind energy systems operating in the Blackfeet area of Montana was found to require a storage capacity too large to be economically viable. However, it appears that intermediate-sized SMES economically levelize the wind energy output on a seasonal basis.

  13. Report on the field test project for wind power development at Kamiyaku Town (wind characteristics investigation); Kamiyakucho ni okeru furyoku kaihatsu field test jigyo (fukyo seisa) hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-11-01

    Wind characteristics are observed for a year at the above town located at the northern end of the Yakushima island, Kagoshima Prefecture. The exponential index of the wind speed distribution in the vertical direction is 6.06 with all the directions averaged, and is so high as 8.4/13.6 in the wind directions (W/E). Prudence should be exercised, when to estimate the wind speed at the wind turbine hub altitude, against disjunction from the simple exponential law due to geographical peculiarities of the observation location. Turbulence intensity is low and is 0.15 when the wind speed is 2m/s or more, not exerting an ill effect on wind power development. As for the total wind direction occurrence rate on the prevalent wind axis, 78.2% is recorded, which is much higher than the reference value (60%). The average wind speed on this wind axis is high, and this shows that the location is quite suitable for wind power development. The annual average wind speed of 6.3m/s is much higher than the reference value, this again promising a success. The wind energy density of 478W/m{sup 2} is sufficiently high, as compared with the reference value (215W/m{sup 2}). Since there are possibilities of a maximum instantaneous wind speed of over 60m/s, caution is to be used in determining wind endurance for the wind turbine design. The annual capacity ratios for the 150/300/750kW wind turbine models are 33.8/36.5/36.9%, respectively, higher than the NEDO-provided reference value (17% or higher) and predicting sufficient power generation. (NEDO)

  14. Year-to-year correlation, record length, and overconfidence in wind resource assessment

    Directory of Open Access Journals (Sweden)

    N. Bodini

    2016-08-01

    Full Text Available Interannual variability of wind speeds presents a fundamental source of uncertainty in preconstruction energy estimates. Our analysis of one of the longest and geographically most widespread extant sets of instrumental wind-speed observations (62-year records from 60 stations in Canada shows that deviations from mean resource levels persist over many decades, substantially increasing uncertainty. As a result of this persistence, the performance of each site's last 20 years diverges more widely than expected from the P50 level estimated from its first 42 years: half the sites have either fewer than 5 or more than 15 years exceeding the P50 estimate. In contrast to this 10-year-wide interquartile range, a 4-year-wide range (2.5 times narrower was found for "control" records where statistical independence was enforced by randomly permuting each station's historical values. Similarly, for sites with capacity factor of 0.35 and interannual variability of 6  %, one would expect 9 years in 10 to fall in the range 0.32–0.38; we find the actual 90  % range to be 0.27–0.43, or three times wider. The previously un-quantified effect of serial correlations favors a shift in resource-assessment thinking from a climatology-focused approach to a persistence-focused approach: for this data set, no improvement in P50 error is gained by using records longer than 4–5 years, and use of records longer than 20 years actually degrades accuracy.

  15. The National Wind Erosion Research Network: Building a standardized long-term data resource for aeolian research, modeling and land management

    Science.gov (United States)

    Webb, Nicholas P.; Herrick, Jeffrey E.; Van Zee, Justin W; Courtright, Ericha M; Hugenholtz, Ted M; Zobeck, Ted M; Okin, Gregory S.; Barchyn, Thomas E; Billings, Benjamin J; Boyd, Robert A.; Clingan, Scott D; Cooper, Brad F; Duniway, Michael C.; Derner, Justin D.; Fox, Fred A; Havstad, Kris M.; Heilman, Philip; LaPlante, Valerie; Ludwig, Noel A; Metz, Loretta J; Nearing, Mark A; Norfleet, M Lee; Pierson, Frederick B; Sanderson, Matt A; Sharrat, Brenton S; Steiner, Jean L; Tatarko, John; Tedela, Negussie H; Todelo, David; Unnasch, Robert S; Van Pelt, R Scott; Wagner, Larry

    2016-01-01

    The National Wind Erosion Research Network was established in 2014 as a collaborative effort led by the United States Department of Agriculture’s Agricultural Research Service and Natural Resources Conservation Service, and the United States Department of the Interior’s Bureau of Land Management, to address the need for a long-term research program to meet critical challenges in wind erosion research and management in the United States. The Network has three aims: (1) provide data to support understanding of basic aeolian processes across land use types, land cover types, and management practices, (2) support development and application of models to assess wind erosion and dust emission and their impacts on human and environmental systems, and (3) encourage collaboration among the aeolian research community and resource managers for the transfer of wind erosion technologies. The Network currently consists of thirteen intensively instrumented sites providing measurements of aeolian sediment transport rates, meteorological conditions, and soil and vegetation properties that influence wind erosion. Network sites are located across rangelands, croplands, and deserts of the western US. In support of Network activities, http://winderosionnetwork.org was developed as a portal for information about the Network, providing site descriptions, measurement protocols, and data visualization tools to facilitate collaboration with scientists and managers interested in the Network and accessing Network products. The Network provides a mechanism for engaging national and international partners in a wind erosion research program that addresses the need for improved understanding and prediction of aeolian processes across complex and diverse land use types and management practices.

  16. Down-scaling wind energy resource from mesoscale to local scale by nesting and data assimilation with a CFD model

    International Nuclear Information System (INIS)

    Duraisamy Jothiprakasam, Venkatesh

    2014-01-01

    The development of wind energy generation requires precise and well-established methods for wind resource assessment, which is the initial step in every wind farm project. During the last two decades linear flow models were widely used in the wind industry for wind resource assessment and micro-siting. But the linear models inaccuracies in predicting the wind speeds in very complex terrain are well known and led to use of CFD, capable of modeling the complex flow in details around specific geographic features. Mesoscale models (NWP) are able to predict the wind regime at resolutions of several kilometers, but are not well suited to resolve the wind speed and turbulence induced by the topography features on the scale of a few hundred meters. CFD has proven successful in capturing flow details at smaller scales, but needs an accurate specification of the inlet conditions. Thus coupling NWP and CFD models is a better modeling approach for wind energy applications. A one-year field measurement campaign carried out in a complex terrain in southern France during 2007-2008 provides a well-documented data set both for input and validation data. The proposed new methodology aims to address two problems: the high spatial variation of the topography on the domain lateral boundaries, and the prediction errors of the mesoscale model. It is applied in this work using the open source CFD code Code-Saturne, coupled with the mesoscale forecast model of Meteo-France (ALADIN). The improvement is obtained by combining the mesoscale data as inlet condition and field measurement data assimilation into the CFD model. Newtonian relaxation (nudging) data assimilation technique is used to incorporate the measurement data into the CFD simulations. The methodology to reconstruct long term averages uses a clustering process to group the similar meteorological conditions and to reduce the number of CFD simulations needed to reproduce 1 year of atmospheric flow over the site. The assimilation

  17. Wind-Climate Estimation Based on Mesoscale and Microscale Modeling: Statistical-Dynamical Downscaling for Wind Energy Applications

    DEFF Research Database (Denmark)

    Badger, Jake; Frank, Helmut; Hahmann, Andrea N.

    2014-01-01

    This paper demonstrates that a statistical dynamical method can be used to accurately estimate the wind climate at a wind farm site. In particular, postprocessing of mesoscale model output allows an efficient calculation of the local wind climate required for wind resource estimation at a wind...

  18. Wind Tunnel Tests for Wind Pressure Distribution on Gable Roof Buildings

    Science.gov (United States)

    2013-01-01

    Gable roof buildings are widely used in industrial buildings. Based on wind tunnel tests with rigid models, wind pressure distributions on gable roof buildings with different aspect ratios were measured simultaneously. Some characteristics of the measured wind pressure field on the surfaces of the models were analyzed, including mean wind pressure, fluctuating wind pressure, peak negative wind pressure, and characteristics of proper orthogonal decomposition results of the measured wind pressure field. The results show that extremely high local suctions often occur in the leading edges of longitudinal wall and windward roof, roof corner, and roof ridge which are the severe damaged locations under strong wind. The aspect ratio of building has a certain effect on the mean wind pressure coefficients, and the effect relates to wind attack angle. Compared with experimental results, the region division of roof corner and roof ridge from AIJ2004 is more reasonable than those from CECS102:2002 and MBMA2006.The contributions of the first several eigenvectors to the overall wind pressure distributions become much bigger. The investigation can offer some basic understanding for estimating wind load distribution on gable roof buildings and facilitate wind-resistant design of cladding components and their connections considering wind load path. PMID:24082851

  19. Avian risk behavior and fatalities at the Altamont Wind Resource Area: March 1998 - February 1999

    Energy Technology Data Exchange (ETDEWEB)

    Thelander, C.; Rugge, L.

    2000-05-08

    Since 1981, more than 7,000 wind turbines have been installed in the Altamont Wind Resource Area in north-central California. Currently, about 5,000 turbines are operating. Past research efforts demonstrated that wind turbines frequently kill birds, especially raptors. Little is known about the specific flight and perching behaviors by birds near wind turbines. A better understanding of these interactions may one day yield insights on how to minimize bird fatalities. This Phase 1 progress report summarizes research findings obtained at 20 study plots totaling 785 turbines of various configurations and conducted between March 1998 and February 1999. The authors examined bird use and behaviors and collected data on fatalities at the same turbines throughout the course of the surveys. They completed 745 30-minute point counts (1,702 bird observations) that quantified bird risk behaviors and bird use of the study plots. The four most frequently observed bird species were red-tailed hawks, common ravens, turkey vultures, and golden eagles. During the same period, the authors recorded 95 bird fatalities. Raptors represent 51% (n=49) of the kills found. The data indicate that the relative abundance of species observed does not predict the relative frequency of fatalities per species. Phase II of the research is underway.

  20. Avian risk behavior and fatalities at the Altamont Wind Resource Area: March 1998 - February 1999

    International Nuclear Information System (INIS)

    Thelander, C.; Rugge, L.

    2000-01-01

    Since 1981, more than 7,000 wind turbines have been installed in the Altamont Wind Resource Area in north-central California. Currently, about 5,000 turbines are operating. Past research efforts demonstrated that wind turbines frequently kill birds, especially raptors. Little is known about the specific flight and perching behaviors by birds near wind turbines. A better understanding of these interactions may one day yield insights on how to minimize bird fatalities. This Phase 1 progress report summarizes research findings obtained at 20 study plots totaling 785 turbines of various configurations and conducted between March 1998 and February 1999. The authors examined bird use and behaviors and collected data on fatalities at the same turbines throughout the course of the surveys. They completed 745 30-minute point counts (1,702 bird observations) that quantified bird risk behaviors and bird use of the study plots. The four most frequently observed bird species were red-tailed hawks, common ravens, turkey vultures, and golden eagles. During the same period, the authors recorded 95 bird fatalities. Raptors represent 51% (n=49) of the kills found. The data indicate that the relative abundance of species observed does not predict the relative frequency of fatalities per species. Phase II of the research is underway

  1. Financing wind projects

    International Nuclear Information System (INIS)

    Manson, J.

    2006-01-01

    This presentation reviewed some of the partnership opportunities available from GE Energy. GE Energy's ecomagination commitment has promised to double research investment, make customers true partners and reduce greenhouse gases (GHGs). GE Energy's renewable energy team provides a broad range of financial products, and has recently funded 30 wind farms and 2 large solar projects. The company has a diverse portfolio of technology providers and wind regimes, and is increasing their investment in technology. GE Energy recognizes that the wind industry is growing rapidly and has received increased regulatory support that is backed by strong policy and public support. It is expected that Canada will have 3006 wind projects either planned or under construction by 2007. According to GE Energy, successful wind financing is dependent on the location of the site and its wind resources, as well as on the wind developer's power sales agreement. The success of a wind project is also determined by clear financing goals. Site-specific data is needed to determine the quality of wind resource, and off-site data can also be used to provide validation. Proximity to load centres will help to minimize capital costs. Power sales agreements should be based on the project's realistic net capacity factor as well as on the cost of the turbines. The economics of many wind farms is driven by the size of the turbines used. Public consultations are also needed to ensure the success of wind power projects. It was concluded that a good partner will have staying power in the wind power industry, and will understand the time-lines and needs that are peculiar to wind energy developers. refs., tabs., figs

  2. Sliding Window Technique for Calculating System LOLP Contributions of Wind Power Plants

    International Nuclear Information System (INIS)

    Milligan, M. R.

    2001-01-01

    Conventional electric power generation models do not typically recognize the probabilistic nature of the power variations from wind plants. Most models allow for an accurate hourly representation of wind power output, but do not incorporate any probabilistic assessment of whether the given level of wind power will vary from its expected value. The technique presented in this paper uses this variation to calculate an effective forced-outage rate for wind power plants (EFORW). Depending on the type of wind regime undergoing evaluation, the length and diurnal characteristics of a sliding time window can be adjusted so that the EFORW is based on an appropriate time scale. The algorithm allows us to calculate the loss-of-load probability (LOLP) on an hourly basis, fully incorporating the variability of the wind resource into the calculation. This makes it possible to obtain a more accurate assessment of reliability of systems that include wind generation when system reliability is a concern

  3. Investigation of wind characteristics and wind energy assessment in Sao Joao do Cariri (SJC) - Paraiba, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Lima, Laerte; Filho, Celso

    2010-09-15

    In this study wind characterization and wind energy assessment of the Sao Joao do Cariri (SJC) in Paraiba state situated in Brazilian northeast. The average wind speed and temperature for 25 and 50 m were found 4,74m/s, 24,46C and 5,31m/s 24,25C with wind speed predominate direction of SSE (165 degrees). Weibull shape, scale ,Weibull fit wind speed and Power wind density found 2,54, 5,4m/s, 4,76m/s and 103W/m2 for 25m wind height measurements and 2,59, 6,0m/s, 5,36m/s and 145W/m2 for 50m wind height measurements.

  4. An integrated methodology on the suitability of offshore sites for wind farm development

    Science.gov (United States)

    Patlakas, Platon; Galanis, George; Péray, Marie; Filipot, Jean-François; Kalogeri, Christina; Spyrou, Christos; Diamantis, Dimitris; Kallos, Gerorge

    2016-04-01

    During, the last decades the potential and interest in wind energy investments has been constantly increasing in the European countries. As technology changes rapidly, more and more areas can be identified as suitable for energy applications. Offshore wind farms perfectly illustrate how new technologies allow to build bigger, more efficient and resistant in extreme conditions wind power plants. The current work proposes an integrated methodology to determine the suitability of an offshore marine area for the development of wind farm structures. More specifically, the region of interest is evaluated based both on the natural resources, connected to the local environmental characteristics, and potential constrains set by anthropogenic or other activities. State of the art atmospheric and wave models and a 10-year hindcast database are utilized in conjunction with local information for a number of potential constrains, leading to a 5-scale suitability index for the whole area. In this way, sub regions are characterized, at a high resolution mode, as poorly or highly suitable for wind farm development, providing a new tool for technical/research teams and decision makers. In addition, extreme wind and wave conditions and their 50-years return period are analyzed and used to define the safety level of the wind farms structural characteristics.

  5. Value of Flexible Resources, Virtual Bidding, and Self-Scheduling in Two-Settlement Electricity Markets With Wind Generation – Part I: Principles and Competitive Model

    DEFF Research Database (Denmark)

    Kazempour, Jalal; Hobbs, Benjamin F.

    2017-01-01

    Part one of this two-part paper presents new models for evaluating flexible resources in two-settlement electricity markets (day-ahead and real-time) with uncertain net loads (demand minus wind). Physical resources include wind together with fast- and slow-start demand response and thermal...... of certain equivalencies of the four models. We show how virtual bidding enhances market performance, since, together with self-scheduling by slow-start generators, it can help deterministic day-ahead market to choose the most efficient unit commitment....

  6. Report on the field test project for wind power development at Yaku Town (wind characteristics investigation); Yakumachi ni okeru furyoku kaihatsu field test jigyo (fukyo seisa) hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-11-01

    Wind characteristics are observed for a year at Yakushima Young Travellers' Village of the above-named town, Kagoshima Prefecture. The exponential index of the wind speed distribution in the vertical direction is between 1.6 and 4.7, or 3.5 on the average, relatively small due probably to the peculiar terrain and causing no trouble in the development. Turbulence intensity is 0.16 at when the wind speed is 2m/s or more, low enough to meet the reference value (0.30 or less). The total occurrence rate on the prevalent wind axis (SSE-NNW) is 48%, falling short of the reference value (60% or more). The average wind speed in the prevalent wind direction is high and the wind energy density concentrates on the prevalent wind axis, this showing that the site is good for wind power development. The annual average wind speed is 5.6m/s, slightly lower than the reference value (5.8m/s or more). Since there are possibilities of a maximum instantaneous wind speed of over 60m/s, caution is to be used in determining the wind endurance level for the wind turbine design. The annual wind energy density is 325W/m{sup 2}, fully meeting the reference value (215W/m{sup 2} or more). The annual operation rates of the 150/300/750kW wind turbine models are 61/65/80%, and these meet the reference value (45% or more). Their annual capacity ratios are 24.5/26.6/27.7%, and these again meet the reference value (17% or more). (NEDO)

  7. Optimum sizing of wind-battery systems incorporating resource uncertainty

    International Nuclear Information System (INIS)

    Roy, Anindita; Kedare, Shireesh B.; Bandyopadhyay, Santanu

    2010-01-01

    The inherent uncertainty of the wind is a major impediment for successful implementation of wind based power generation technology. A methodology has been proposed in this paper to incorporate wind speed uncertainty in sizing wind-battery system for isolated applications. The uncertainty associated with the wind speed is incorporated using chance constraint programming approach. For a pre-specified reliability requirement, a deterministic equivalent energy balance equation may be derived from the chance constraint that allows time series simulation of the entire system. This results in a generation of the entire set of feasible design options, satisfying different system level constraints, on a battery capacity vs. generator rating diagram, also known as the design space. The proposed methodology highlights the trade-offs between the wind turbine rating, rotor diameter and the battery size for a given reliability of power supply. The optimum configuration is chosen on the basis of the minimum cost of energy (US$/kWh). It is shown with the help of illustrative examples that the proposed methodology is generic and flexible to incorporate alternate sub-component models. (author)

  8. Economic feasibility of developing wind turbines in Aligoodarz, Iran

    International Nuclear Information System (INIS)

    Mohammadi, Kasra; Mostafaeipour, Ali

    2013-01-01

    Highlights: • Three hourly long term measured wind speed data from 2005 to 2009 for city of Aligoodarz in Iran was analyzed. • Wind power density and wind energy density of the region were estimated using Weibull distribution. • Performance of six different wind turbine models were analyzed. • Economic evaluation was performed and installing of E-3120 (50 kW) model turbine was suggested. - Abstract: This study evaluates the economic feasibility of electricity generation using wind turbines in city of Aligoodarz situated in the west part of Iran. For this purpose, the wind energy potential and its characteristics were assessed in terms of diurnal, monthly and annual analysis using five years measured wind speed data from 2005 to 2009 at 10 m height. The analysis results specified a nearly stable wind pattern in different hours and months of the year which demonstrated more suitability of the region for wind energy harnessing to meet the electricity demand in all time intervals throughout the year. According to Pacific Northwest Laboratory (PNL) wind power classification, the wind resource in Aligoodarz falls in class 3 and the location was recognized as a moderate location for wind energy development. The economic feasibility of six different wind turbines with rated powers ranging from 20 to 150 kW was evaluated. Among all turbines examined, the E-3120 wind turbine was introduced as the most attractive option for installation

  9. Preliminary results of Aruba wind resource assessment

    Energy Technology Data Exchange (ETDEWEB)

    Guda, M.H. [Fundashon Antiyano Pa Energia, Curacao (Netherlands Antilles)

    1996-12-31

    As part of a project to assess the possibilities for wind energy utilitization in the Dutch Antilles islands, windspeed and -direction data were collected in Aruba for two years, from March 1992 to February 1994. Five sites that were estimated to be representative for the islands` wind regimes, were monitored during this period: two sites on the windward coast, one east and one west; two inland sites, again one east and one west, and one site topping the cliffs overlooking the eastern windward coast. Additionally, twenty years worth of data were analyzed for the reference site at the airport, which is in the middle part of the island, on the leeward coast. Correlation calculations between these data and the data for the project sites were performed, in order to establish a methodology for estimating the long-term behavior of the wind regimes at these sites. 8 figs., 3 tabs.

  10. Inflow characteristics associated with high-blade-loading events in a wind farm

    Science.gov (United States)

    Kelley, N. D.

    1993-07-01

    The stochastic characteristics of the turbulent inflow have been shown to be of major significance in the accumulation of fatigue in wind turbines. Because most of the wind turbine installations in the U.S. have taken place in multi-turbine or windfarm configurations, the fatigue damage associated with the higher turbulence levels within such arrangements must be taken into account when making estimates of component service lifetimes. The simultaneous monitoring of two adjacent wind turbines over a wide range of turbulent inflow conditions has given the authors more confidence in describing the structural load distributions that can be expected in such an environment. The adjacent testing of the two turbines allowed the authors to postulate that observed similarities in the response dynamics and load distributions could be considered quasi-universal, while the dissimilarities could be considered to result from the differing design of the rotors. The format has also allowed them to begin to define appropriate statistical load distribution models for many of the critical components in which fatigue is a major driver of the design. In addition to the adjacent turbine measurements, they also briefly discuss load distributions measured on a teetered-hub turbine.

  11. Mid-Atlantic Wind - Overcoming the Challenges

    Energy Technology Data Exchange (ETDEWEB)

    Daniel F. Ancona III; Kathryn E. George; Richard P. Bowers; Dr. Lynn Sparling; Bruce Buckheit; Daniel LoBue

    2012-05-31

    This study, supported by the US Department of Energy, Wind Powering America Program, Maryland Department of Natural Resources and Chesapeake Bay Foundation, analyzed barriers to wind energy development in the Mid-Atlantic region along with options for overcoming or mitigating them. The Mid-Atlantic States including Delaware, Maryland, North Carolina and Virginia, have excellent wind energy potential and growing demand for electricity, but only two utility-scale projects have been installed to date. Reasons for this apathetic development of wind resources were analyzed and quantified for four markets. Specific applications are: 1) Appalachian mountain ridgeline sites, 2) on coastal plains and peninsulas, 3) at shallow water sites in Delaware and Chesapeake Bays, Albemarle and Pamlico Sounds, and 4) at deeper water sites off the Atlantic coast. Each market has distinctly different opportunities and barriers. The primary barriers to wind development described in this report can be grouped into four categories; state policy and regulatory issues, wind resource technical uncertainty, economic viability, and public interest in environmental issues. The properties of these typologies are not mutually independent and do interact. The report concluded that there are no insurmountable barriers to land-based wind energy projects and they could be economically viable today. Likewise potential sites in sheltered shallow waters in regional bay and sounds have been largely overlooked but could be viable currently. Offshore ocean-based applications face higher costs and technical and wind resource uncertainties. The ongoing research and development program, revision of state incentive policies, additional wind measurement efforts, transmission system expansion, environmental baseline studies and outreach to private developers and stakeholders are needed to reduce barriers to wind energy development.

  12. Mid-Atlantic Wind - Overcoming the Challenges

    Energy Technology Data Exchange (ETDEWEB)

    Daniel F. Ancona III; Kathryn E. George; Lynn Sparling; Bruce C. Buckheit; Daniel LoBue; and Richard P. Bowers

    2012-06-29

    This study, supported by the US Department of Energy, Wind Powering America Program, Maryland Department of Natural Resources and Chesapeake Bay Foundation, analyzed barriers to wind energy development in the Mid-Atlantic region along with options for overcoming or mitigating them. The Mid-Atlantic States including Delaware, Maryland, North Carolina and Virginia, have excellent wind energy potential and growing demand for electricity, but only two utility-scale projects have been installed to date. Reasons for this apathetic development of wind resources were analyzed and quantified for four markets. Specific applications are: 1) Appalachian mountain ridgeline sites, 2) on coastal plains and peninsulas, 3) at shallow water sites in Delaware and Chesapeake Bays, Albemarle and Pamlico Sounds, and 4) at deeper water sites off the Atlantic coast. Each market has distinctly different opportunities and barriers. The primary barriers to wind development described in this report can be grouped into four categories; state policy and regulatory issues, wind resource technical uncertainty, economic viability, and public interest in environmental issues. The properties of these typologies are not mutually independent and do interact. The report concluded that there are no insurmountable barriers to land-based wind energy projects and they could be economically viable today. Likewise potential sites in sheltered shallow waters in regional bay and sounds have been largely overlooked but could be viable currently. Offshore ocean-based applications face higher costs and technical and wind resource uncertainties. The ongoing research and development program, revision of state incentive policies, additional wind measurement efforts, transmission system expansion, environmental baseline studies and outreach to private developers and stakeholders are needed to reduce barriers to wind energy development.

  13. Comparison Between The Characteristics Of Wind Power ...

    African Journals Online (AJOL)

    Data on wind speed and global solar radiation over the period 1985 – 1999 for Onne obtained from the International Institute of Tropical Agriculture (IITA) stationed at Onne, Nigeria have been compiled and evaluated, to determine the wind power which is compared with the global solar radiation energies. Monthly and ...

  14. An Algorithm for Abnormal Data Identification of Wind Turbine Based on Wind Characteristic Analysis%基于风特征分析的风电机组异常数据识别算法

    Institute of Scientific and Technical Information of China (English)

    杨茂; 翟冠强; 苏欣

    2017-01-01

    The study of wind power often depends on historical power data, and the historical data collected by wind turbine often contains a lot of abnormal data, which seriously affects the analysis of wind power characteristics. According to the measured power data of wind turbines, the influence of RISE-FALL-Feature of wind speed and wind direction characteristics on the output power of wind turbine was analyzed, and the data of different wind characteristics were discussed separately. Using Copula function to get the probability power curve, three types of anomaly data were summed up according to the timing characteristics of anomaly data and the exception data recognition model was established. The actual data and artificial date of wind turbine were used for simulation analysis. The results show that the proposed method can identify all kinds of anomaly data efficiently, which is of great significance to wind power research.%对风电的研究往往要依托于历史功率数据,而风电机组采集到的历史数据中往往含有大量的异常数据,这严重影响了对风电功率规律特性的分析.针对风电机组的实测功率数据进行研究,分析风速升降特征与风向特征对风电机组输出功率的影响.将不同的风特征的数据分开讨论,分别利用Copula函数得到概率功率曲线,结合异常数据的时序特征归纳出三类异常数据,建立异常数据识别模型.利用风电机组的实际数据和人工生成数据进行仿真分析,结果表明,该方法能够高效地识别各类异常数据,对风电研究有着重要的意义.

  15. Aerodynamic characteristics of the modified 40- by 80-foot wind tunnel as measured in a 1/50th-scale model

    Science.gov (United States)

    Smith, Brian E.; Naumowicz, Tim

    1987-01-01

    The aerodynamic characteristics of the 40- by 80-Foot Wind Tunnel at Ames Research Center were measured by using a 1/50th-scale facility. The model was configured to closely simulate the features of the full-scale facility when it became operational in 1986. The items measured include the aerodynamic effects due to changes in the total-pressure-loss characteristics of the intake and exhaust openings of the air-exchange system, total-pressure distributions in the flow field at locations around the wind tunnel circuit, the locations of the maximum total-pressure contours, and the aerodynamic changes caused by the installation of the acoustic barrier in the southwest corner of the wind tunnel. The model tests reveal the changes in the aerodynamic performance of the 1986 version of the 40- by 80-Foot Wind Tunnel compared with the performance of the 1982 configuration.

  16. Small Wind Electric Systems An Alaska Consumer's Guide

    International Nuclear Information System (INIS)

    O'Dell, K.

    2001-01-01

    The Alaska Consumer's Guide for Small Wind Electric Systems provides consumers with enough information to help them determine if a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include: how to make your home more energy efficient, how to choose the right size turbine, the parts of a wind electric system, determining if there is enough wind resource on your site, choosing the best site for your turbine, connecting your system to the utility grid, and if it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a state wind resource map and a list of state incentives and state contacts for more information

  17. Small Wind Electric Systems: A Vermont Consumer's Guide

    International Nuclear Information System (INIS)

    O'Dell, K.

    2001-01-01

    The Vermont Consumer's Guide for Small Wind Electric Systems provides consumers with enough information to help them determine if a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include: how to make your home more energy efficient, how to choose the right size turbine, the parts of a wind electric system, determining if there is enough wind resource on your site, choosing the best site for your turbine, connecting your system to the utility grid, and if it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a state wind resource map and a list of state incentives and state contacts for more information

  18. Map-Based Repowering and Reorganization of a Wind Resource Area to Minimize Burrowing Owl and Other Bird Fatalities

    Directory of Open Access Journals (Sweden)

    Lee Neher

    2009-10-01

    Full Text Available Wind turbines in the Altamont Pass Wind Resource Area (Alameda/Contra Costa Counties, California, USA generate about 730 GWh of electricity annually, but have been killing thousands of birds each year, including >2,000 raptors and hundreds of burrowing owls. We have developed collision hazard maps and hazard ratings of wind turbines to guide relocation of existing wind turbines and careful repowering to modern turbines to reduce burrowing owl fatalities principally, and other birds secondarily. Burrowing owls selected burrow sites lower on slopes and on smaller, shallower slopes than represented by the average 10 × 10 m2 grid cell among 187,908 grid cells sampled from 2,281,169 grid cells comprising a digital elevation model (DEM of the study area. Fuzzy logic and discriminant function analysis produced likelihood surfaces encompassing most burrowing owl burrows within a fraction of the study area, and the former corresponded with burrowing owl fatalities and the latter with other raptor fatalities. Our ratings of wind turbine hazard were more predictive of burrowing owl fatalities, but would be more difficult to implement. Careful repowering to modern wind turbines would most reduce fatalities of burrowing owls and other birds while adding about 1,000 GWh annually toward California’s 33% Renewable Portfolio Standard.

  19. Map-based repowering and reorganization of a wind resource area to minimize burrowing owl and other bird fatalities

    Energy Technology Data Exchange (ETDEWEB)

    Smallwood, K. S. [Research Ecologist, 3108 Finch Street, Davis, CA 95616 (United States); Neher, L. [Gis Specialist, Neher Consulting, 7241 34th Street, North Highlands, CA 95660 (United States); Bell, D. A. [East Bay Regional Park District, 2950 Peralta Oaks Court, Oakland, CA 94605-0381 (United States)

    2009-07-01

    Wind turbines in the Altamont Pass Wind Resource Area (Alameda/Contra Costa Counties, California, USA) generate about 730 GWh of electricity annually, but have been killing thousands of birds each year, including >2,000 raptors and hundreds of burrowing owls. We have developed collision hazard maps and hazard ratings of wind turbines to guide relocation of existing wind turbines and careful repowering to modern turbines to reduce burrowing owl fatalities principally, and other birds secondarily. Burrowing owls selected burrow sites lower on slopes and on smaller, shallower slopes than represented by the average 10 x 10 m{sup 2} grid cell among 187,908 grid cells sampled from 2,281,169 grid cells comprising a digital elevation model (DEM) of the study area. Fuzzy logic and discriminant function analysis produced likelihood surfaces encompassing most burrowing owl burrows within a fraction of the study area, and the former corresponded with burrowing owl fatalities and the latter with other raptor fatalities. Our ratings of wind turbine hazard were more predictive of burrowing owl fatalities, but would be more difficult to implement. Careful repowering to modern wind turbines would most reduce fatalities of burrowing owls and other birds while adding about 1,000 GWh annually toward California's 33% Renewable Portfolio Standard. (author)

  20. Study on DFIG wind turbines control strategy for improving frequency response characteristics

    Science.gov (United States)

    Zhao, Dongmei; Wu, Di; Liu, Yanhua; Zhou, Zhiyu

    2012-01-01

    The active and reactive power decoupling control for the double-fed induction generator wind turbines(DFIG) does not play a positive role to the frequency response ability of power grid because it performs as the hidden inertia for the power grid. If we want to improve the transient frequency stability of the wind turbine when it is integrated with the system, we must ameliorate its frequency response characteristics. The inability of frequency control due to DFIG decoupling control could be overcome through releasing (or absorbing) a part of the kinetic energy stored in the rotor, so as to increase (or decrease) active power injected to the power system when the deviation of power system frequency appears. This paper discusses the mathematical model of the variable speed DFIG, including the aerodynamic model, pitch control system model, shaft model, generator model and inverter control model, and other key components, focusing on the mathematical model of the converters in rotor side and grid side. Based on the existing model of wind generator, the paper attaches the frequency control model on the platform of the simulation software DIgSILENT/PowerFactory. The simulation results show that the proposed control strategy can response quickly to transient frequency deviation and prove that wind farms can participate in the system frequency regulation to a certain extent. Finally, the result verifies the accuracy and plausibility of the inverter control model which attaches the frequency control module.

  1. Social Resource Characteristics and Adolescent Substance Abuse Relapse.

    Science.gov (United States)

    Vik, Peter W.; And Others

    1992-01-01

    Examined social resource network characteristics of adolescent substance abusers (n=19). Perceived similarity to one's social network emerged as important moderator of whether social network provided support to remain abstinent or elevated risk for relapse. Increased perceived support predicted continued posttreatment abstinence when recovering…

  2. Determination of Scaled Wind Turbine Rotor Characteristics from Three Dimensional RANS Calculations

    International Nuclear Information System (INIS)

    Burmester, S; Gueydon, S; Make, M

    2016-01-01

    Previous studies have shown the importance of 3D effects when calculating the performance characteristics of a scaled down turbine rotor [1-4]. In this paper the results of 3D RANS (Reynolds-Averaged Navier-Stokes) computations by Make and Vaz [1] are taken to calculate 2D lift and drag coefficients. These coefficients are assigned to FAST (Blade Element Momentum Theory (BEMT) tool from NREL) as input parameters. Then, the rotor characteristics (power and thrust coefficients) are calculated using BEMT. This coupling of RANS and BEMT was previously applied by other parties and is termed here the RANS-BEMT coupled approach. Here the approach is compared to measurements carried out in a wave basin at MARIN applying Froude scaled wind, and the direct 3D RANS computation. The data of both a model and full scale wind turbine are used for the validation and verification. The flow around a turbine blade at full scale has a more 2D character than the flow properties around a turbine blade at model scale (Make and Vaz [1]). Since BEMT assumes 2D flow behaviour, the results of the RANS-BEMT coupled approach agree better with the results of the CFD (Computational Fluid Dynamics) simulation at full- than at model-scale. (paper)

  3. Wind energy information guide

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-04-01

    This book is divided into nine chapters. Chapters 1--8 provide background and annotated references on wind energy research, development, and commercialization. Chapter 9 lists additional sources of printed information and relevant organizations. Four indices provide alphabetical access to authors, organizations, computer models and design tools, and subjects. A list of abbreviations and acronyms is also included. Chapter topics include: introduction; economics of using wind energy; wind energy resources; wind turbine design, development, and testing; applications; environmental issues of wind power; institutional issues; and wind energy systems development.

  4. Offshore wind power in the Aegean Sea

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Badger, Merete; Hahmann, Andrea N.

    hub heights at around 100 m using a combination of satellite wind fields and the long-term climate of atmospheric stability from the mesoscale model (Badger et al. 2016). The result of the mean wind speed at hub-height for the Aegean Sea is shown in Figure 1. The map shows the stability dependent......, where the spatial variations in wind speed are very high, accurate resource mapping is of great importance as the produced wind power is proportional to the cubed wind speed. It is challenging to model the wind resource and it is costly to measure from the ground at every place of interest. Maps based...

  5. China: an emerging offshore wind development hotspot. With a new assessment of China's offshore wind potential

    Energy Technology Data Exchange (ETDEWEB)

    Reinvang, Rasmus; Enslow, Rachel; Beaumont, Hubert

    2010-08-15

    This study provides new and more detailed estimates of the offshore wind energy resources in China, with particular focus on Southern China. The study points out that the offshore wind industry is ramping up in China with at least 11.9GW in the development pipeline per April 2010. The study estimates the offshore wind potential of China (excluding Taiwan) to 11,580TWh/year. The study proves estimates and wind energy resource maps per province. Fujian, Zhejiang and Hainan stand out with the highest offshore wind speeds in China while Guangdong also shows significant potential, with annual wind speed averages of 6.5-10.2m/s and an energy density range of 12-36GWh/km2. Even though current offshore wind development is mainly taking place in Fujian and Jiangsu, this study shows that the potential is likely even greater in other provinces. The study was developed by the Chinese Wind Energy Association (CWEA) and Sun Yat-sen University, and commissioned by WWF as part of a project funded by the Norwegian Agency of development Coopeartion (Norad). Methodology and constraints: The wind resource analysis improves upon previous studies in estimating the wind energy generation potential for offshore wind power in China, with available meteorological data adjusted for influence of typhoons. The study models how much energy offshore wind can produce along China's coast up to 100km from the shore by calculating the energy output of theoretical wind farms by applying the power curve of a 3MW turbine at a 100m hub height. In addition the study further expands by giving special consideration to the deep-sea offshore potential at +50m water depths. The study focuses particularly on the coastline from Shandong down to Hainan. The final results provide good indication of the offshore wind resource in China when comparing one area to the other. The report can therefore be used as a preliminary tool to identifying most interesting provinces and locations for offshore wind

  6. Wind potential assessment of Quebec Province

    International Nuclear Information System (INIS)

    Ilinca, A.; Chaumel, J.-L.; Retiveau, J.-L.

    2003-01-01

    The paper presents the development of a comprehensive wind atlas of the Province of Quebec. This study differs from previous studies by 1) use of a standard classification index to categorize the wind resource, 2) extensive review of surface and upper air data available for the Province to define the wind resource, and 3) integration of available wind data with the topography of the Province. The wind resource in the Province of Quebec is classified using the scheme proposed by Battelle-Pacific Northwest Laboratory (PNL). The Battelle-PNL classification is a numerical one which includes rankings from Wind Power Class 1 (lowest) to Wind Power Class 7 (highest). Associated with each numerical classification is a range of wind power and associated mean wind speed at 10 m and 50 m above ground level. For this study, a classification for 30 m above ground level was interpolated and used. A significant amount of wind data was gathered for the Province. These data were obtained from Atmospheric Environment Service (AES), Canada, from wind project developers, and from climatological summaries of surface and upper air data. A total of 35 primary data sites were selected in the Province. Although a number of wind data sites in the Province were identified and used in the analysis, large areas of the Province lacked any specific wind information. The Province was divided into grid blocks having dimensions of 1/4 o latitude by 1/3 o longitude. Each grid block is assigned a numerical Wind Power Class value ranging from 1 to 7. This value is based on the integration of the available wind data and the topography within the square. The majority of the Province was classified as 1 or 2. Coastal locations and topographic features in the interior of the Province typically have Wind Power Class 3 or higher. (author)

  7. De-trending of wind speed variance based on first-order and second-order statistical moments only

    DEFF Research Database (Denmark)

    Larsen, Gunner Chr.; Hansen, Kurt Schaldemose

    2014-01-01

    The lack of efficient methods for de-trending of wind speed resource data may lead to erroneous wind turbine fatigue and ultimate load predictions. The present paper presents two models, which quantify the effect of an assumed linear trend on wind speed standard deviations as based on available...... statistical data only. The first model is a pure time series analysis approach, which quantifies the effect of non-stationary characteristics of ensemble mean wind speeds on the estimated wind speed standard deviations as based on mean wind speed statistics only. This model is applicable to statistics...... of arbitrary types of time series. The second model uses the full set of information and includes thus additionally observed wind speed standard deviations to estimate the effect of ensemble mean non-stationarities on wind speed standard deviations. This model takes advantage of a simple physical relationship...

  8. Experimental investigation on the wake interference among wind turbines sited in atmospheric boundary layer winds

    Institute of Scientific and Technical Information of China (English)

    W. Tian; A. Ozbay; X. D. Wang; H.Hu

    2017-01-01

    We examined experimentally the effects of incom-ing surface wind on the turbine wake and the wake interfer-ence among upstream and downstream wind turbines sited in atmospheric boundary layer (ABL) winds. The experi-ment was conducted in a large-scale ABL wind tunnel with scaled wind turbine models mounted in different incom-ing surface winds simulating the ABL winds over typical offshore/onshore wind farms. Power outputs and dynamic loadings acting on the turbine models and the wake flow char-acteristics behind the turbine models were quantified. The results revealed that the incoming surface winds significantly affect the turbine wake characteristics and wake interference between the upstream and downstream turbines. The velocity deficits in the turbine wakes recover faster in the incoming surface winds with relatively high turbulence levels. Varia-tions of the power outputs and dynamic wind loadings acting on the downstream turbines sited in the wakes of upstream turbines are correlated well with the turbine wakes charac-teristics. At the same downstream locations, the downstream turbines have higher power outputs and experience greater static and fatigue loadings in the inflow with relatively high turbulence level, suggesting a smaller effect of wake inter-ference for the turbines sited in onshore wind farms.

  9. Numerical study on aerodynamic damping of floating vertical axis wind turbines

    DEFF Research Database (Denmark)

    Cheng, Zhengshun; Aagaard Madsen, Helge; Gao, Zhen

    2016-01-01

    Harvesting offshore wind energy resources using floating vertical axis wind turbines (VAWTs) has attracted an increasing interest in recent years. Due to its potential impact on fatigue damage, the aerodynamic damping should be considered in the preliminary design of a floating VAWT based...... on the frequency domain method. However, currently the study on aerodynamic damping of floating VAWTs is very limited. Due to the essential difference in aerodynamic load characteristics, the aerodynamic damping of a floating VAWT could be different from that of a floating horizontal axis wind turbine (HAWT...... to four were considered. The aerodynamic damping under steady and turbulent wind conditions were estimated using fully coupled aero-hydro-servo-elastic time domain simulations. It is found that the aerodynamic damping ratio of the considered floating VAWTs ranges from 1.8% to 5.3%. Moreover...

  10. Wind energy and Turkey.

    Science.gov (United States)

    Coskun, Aynur Aydin; Türker, Yavuz Özhan

    2012-03-01

    The global energy requirement for sustaining economic activities, meeting social needs and social development is increasing daily. Environmentally friendly, renewable energy resources are an alternative to the primary non-renewable energy resources, which devastate ecosystems in order to meet increasing demand. Among renewable energy sources such as hydropower, biopower, geothermal power and solar power, wind power offers distinct advantages to Turkey. There is an increasing tendency toward wind globally and the European Union adjusted its legal regulations in this regard. As a potential EU Member state, Turkey is going through a similar process. The number of institutional and legal regulations concerning wind power has increased in recent years; technical infrastructure studies were completed, and some important steps were taken in this regard. This study examines the way in which Turkey has developed support for wind power, presents a SWOT analysis of the wind power sector in Turkey and a projection was made for the concrete success expected to be accomplished in the future.

  11. Statistical analysis of installed wind capacity in the United States

    International Nuclear Information System (INIS)

    Staid, Andrea; Guikema, Seth D.

    2013-01-01

    There is a large disparity in the amount of wind power capacity installed in each of the states in the U.S. It is often thought that the different policies of individual state governments are the main reason for these differences, but this may not necessarily be the case. The aim of this paper is to use statistical methods to study the factors that have the most influence on the amount of installed wind capacity in each state. From this analysis, we were able to use these variables to accurately predict the installed wind capacity and to gain insight into the driving factors for wind power development and the reasons behind the differences among states. Using our best model, we find that the most important variables for explaining the amount of wind capacity have to do with the physical and geographic characteristics of the state as opposed to policies in place that favor renewable energy. - Highlights: • We conduct a statistical analysis of factors influencing wind capacity in the U.S. • We find that state policies do not strongly influence the differences among states. • Driving factors are wind resources, cropland area, and available percentage of land

  12. Wind erosion processes and control

    Science.gov (United States)

    Wind erosion continues to threaten the sustainability of our nations' soil, air, and water resources. To effectively apply conservation systems to prevent wind driven soil loss, an understanding of the fundamental processes of wind erosion is necessary so that land managers can better recognize the ...

  13. WIND ENERGY CONVERSION SYSTEMS - A TECHNICAL REVIEW

    Directory of Open Access Journals (Sweden)

    N. RAMESH BABU

    2013-08-01

    Full Text Available Wind power production has been under the main focus for the past decade in power production and tremendous amount of research work is going on renewable energy, specifically on wind power extraction. Wind power provides an eco-friendly power generation and helps to meet the national energy demand when there is a diminishing trend in terms of non-renewable resources. This paper reviews the modeling of Wind Energy Conversion Systems (WECS, control strategies of controllers and various Maximum Power Point Tracking (MPPT technologies that are being proposed for efficient production of wind energy from the available resource.

  14. Computational study: The influence of omni-directional guide vane on the flow pattern characteristic around Savonius wind turbine

    Science.gov (United States)

    Wicaksono, Yoga Arob; Tjahjana, D. D. D. P.

    2017-01-01

    Standart Savonius wind turbine have a low performance such as low coefficient of power and low coefficient of torque compared with another type of wind turbine. This phenomenon occurs because the wind stream can cause the negative pressure at the returning rotor. To solve this problem, standard Savonius combined with Omni Directional Guide Vane (ODGV) proposed. The aim of this research is to study the influence of ODGV on the flow pattern characteristic around of Savonius wind turbine. The numerical model is based on the Navier-Stokes equations with the standard k-ɛ turbulent model. This equation solved by a finite volume discretization method. This case was analyzed by commercial computational fluid dynamics solver such as SolidWorks Flow Simulations. Simulations were performed at the different wind directions; there are 0°, 30°,60° at 4 m/s wind speed. The numerical method validated with the past experimental data. The result indicated that the ODGV able to augment air flow to advancing rotor and decrease the negative pressure in the upstream of returning rotor compared to the bare Savonius wind turbine.

  15. The Irish Wind Atlas

    Energy Technology Data Exchange (ETDEWEB)

    Watson, R [Univ. College Dublin, Dept. of Electronic and Electrical Engineering, Dublin (Ireland); Landberg, L [Risoe National Lab., Meteorology and Wind Energy Dept., Roskilde (Denmark)

    1999-03-01

    The development work on the Irish Wind Atlas is nearing completion. The Irish Wind Atlas is an updated improved version of the Irish section of the European Wind Atlas. A map of the irish wind resource based on a WA{sup s}P analysis of the measured data and station description of 27 measuring stations is presented. The results of previously presented WA{sup s}P/KAMM runs show good agreement with these results. (au)

  16. Wind Energy Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Laurie, Carol

    2017-02-01

    This book takes readers inside the places where daily discoveries shape the next generation of wind power systems. Energy Department laboratory facilities span the United States and offer wind research capabilities to meet industry needs. The facilities described in this book make it possible for industry players to increase reliability, improve efficiency, and reduce the cost of wind energy -- one discovery at a time. Whether you require blade testing or resource characterization, grid integration or high-performance computing, Department of Energy laboratory facilities offer a variety of capabilities to meet your wind research needs.

  17. Assessment of wind power generation along the coast of Ghana

    Energy Technology Data Exchange (ETDEWEB)

    Adaramola, Muyiwa S., E-mail: muyiwa.adaramola@umb.no [Department of Ecology and Natural Resource Management, Norwegian University of Life Sciences, Ås (Norway); Agelin-Chaab, Martin [Department of Automotive, Mechanical and Manufacturing Engineering, University of Ontario Institute of Technology, Oshawa, ON (Canada); Paul, Samuel S. [REHAU Industries, Winnipeg, Manitoba (Canada)

    2014-01-15

    Highlights: • The wind energy and its economic viability along the coastal region of Ghana are examined. • Wind resource along the coastal region of Ghana fall into Class 2 or less wind resource. • Wind turbine with rated speed from 9 to 11 m/s is suggested for wind power development. • The unit cost of wind generated electricity is found be between 0.0732 GH¢/kW h and 0.2905 GH¢/kW h. - Abstract: This study examined the wind energy potential and the economic viability of using wind turbine for electricity generation in selected locations along the coastal region of Ghana. The two-parameter Weibull probability density function was employed to analyze the wind speed data obtained from the Ghana Energy Commission. The energy output and unit cost of electricity generated from medium size commercial wind turbine models with rated powers ranging from 50 kW to 250 kW were determined. It was found that the wind resource along the coastal region of Ghana can be classified into Class 2 or less wind resource which indicate that this resource in this area is marginally suitable for large scale wind energy development or suitable for small scale applications and be useful as part of hybrid energy system. It was further observed that wind turbine with designed cut-in wind speed of less than 3 m/s and moderate rated wind speed between 9 and 11 m/s is more suitable for wind energy development along the coastal region of Ghana. Based on the selected wind turbine and assumptions used in this study, it was estimated that the unit cost of electricity varied between 0.0695 GH¢/kW h and 0.2817 GH¢/kW h.

  18. Assessment of wind power generation along the coast of Ghana

    International Nuclear Information System (INIS)

    Adaramola, Muyiwa S.; Agelin-Chaab, Martin; Paul, Samuel S.

    2014-01-01

    Highlights: • The wind energy and its economic viability along the coastal region of Ghana are examined. • Wind resource along the coastal region of Ghana fall into Class 2 or less wind resource. • Wind turbine with rated speed from 9 to 11 m/s is suggested for wind power development. • The unit cost of wind generated electricity is found be between 0.0732 GH¢/kW h and 0.2905 GH¢/kW h. - Abstract: This study examined the wind energy potential and the economic viability of using wind turbine for electricity generation in selected locations along the coastal region of Ghana. The two-parameter Weibull probability density function was employed to analyze the wind speed data obtained from the Ghana Energy Commission. The energy output and unit cost of electricity generated from medium size commercial wind turbine models with rated powers ranging from 50 kW to 250 kW were determined. It was found that the wind resource along the coastal region of Ghana can be classified into Class 2 or less wind resource which indicate that this resource in this area is marginally suitable for large scale wind energy development or suitable for small scale applications and be useful as part of hybrid energy system. It was further observed that wind turbine with designed cut-in wind speed of less than 3 m/s and moderate rated wind speed between 9 and 11 m/s is more suitable for wind energy development along the coastal region of Ghana. Based on the selected wind turbine and assumptions used in this study, it was estimated that the unit cost of electricity varied between 0.0695 GH¢/kW h and 0.2817 GH¢/kW h

  19. SAT-WIND project. Final report

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Astrup, Poul; Nielsen, Niels Morten

    microwave, altimeter, scatterometer and imaging Synthetic Aperture Radar (SAR) technologies for wind energy tools for wind resources and wind-indexing. The study area was the Danish Seas including the North Sea, interior seas and the Baltic Sea. The report describes technical details on the satellite data...

  20. Stochastic Analysis of Wind Energy for Wind Pump Irrigation in Coastal Andhra Pradesh, India

    Science.gov (United States)

    Raju, M. M.; Kumar, A.; Bisht, D.; Rao, D. B.

    2014-09-01

    The rapid escalation in the prices of oil and gas as well as increasing demand for energy has attracted the attention of scientists and researchers to explore the possibility of generating and utilizing the alternative and renewable sources of wind energy in the long coastal belt of India with considerable wind energy resources. A detailed analysis of wind potential is a prerequisite to harvest the wind energy resources efficiently. Keeping this in view, the present study was undertaken to analyze the wind energy potential to assess feasibility of the wind-pump operated irrigation system in the coastal region of Andhra Pradesh, India, where high ground water table conditions are available. The stochastic analysis of wind speed data were tested to fit a probability distribution, which describes the wind energy potential in the region. The normal and Weibull probability distributions were tested; and on the basis of Chi square test, the Weibull distribution gave better results. Hence, it was concluded that the Weibull probability distribution may be used to stochastically describe the annual wind speed data of coastal Andhra Pradesh with better accuracy. The size as well as the complete irrigation system with mass curve analysis was determined to satisfy various daily irrigation demands at different risk levels.

  1. Wind Energy

    Energy Technology Data Exchange (ETDEWEB)

    Beurskens, H.J.M. [SET Analysis, Kievitlaan 26, 1742 AD Schagen (Netherlands); Brand, A.J. [Energy research Centre of the Netherlands ECN, Unit Wind Energy, P.O. Box 1, 1755 ZG Petten (Netherlands)

    2013-02-15

    Over the years, wind energy has become a major source of renewable energy worldwide. The present chapter addresses the wind resource, which is available for exploitation for large-scale electricity production, and its specific physical properties. Furthermore, the technical options available to convert the energy of the air flow into mechanical energy and electricity are described. Specific problems of large-scale integration of wind energy into the grid as well as the present and future market developments are described in this chapter. Finally, environmental aspects are discussed briefly.

  2. Alberta wind integration. Status and outlook

    Energy Technology Data Exchange (ETDEWEB)

    Kehler, John; Aksomitis, Kris; Duchesne, Jacques [Alberta Electric System Operator (AESO), Calgary, AB (Canada)

    2010-07-01

    Alberta has excellent wind resources with over 600 MW of wind generation currently operating on the Alberta Interconnected Electric System (AIES) and there continues to be strong interest in wind development. Integration of large-scale wind power, however, is still relatively new and presents new operational opportunities and challenges. The AESO currently has over 7,700 MW in potential wind power development in Alberta in our interconnection queue. The Alberta system peak load is 10, 236 MW with 12,763 MW installed generation capacity and limited interconnection capability to neighboring jurisdictions. The AESO recognizes that it is important, both to system reliability and to the successful development of renewable resources in Alberta, that the impact on power system operations and the obligations of market participants are understood as Alberta reaches higher levels of wind penetration. The paper discusses the current status and future outlook on wind integration in Alberta. (orig.)

  3. Wind energy conversion 1994. Proceedings

    International Nuclear Information System (INIS)

    Elliot, G.

    1995-01-01

    At the British Wind Energy Association's 16th Annual Conference, held in Stirling, over 60 high quality papers were presented, including a session devoted to 'Wind Energy in Scotland'. Under the Non Fossil Fuel Obligation (NFFO) wind energy has experienced rapid growth in England and Wales and with Scotland now having its own 'Scottish Renewables Obligation' (SRO) the opportunity to tap one of Europe's most important renewable energy resources now exists. The main contemporary issues concerning wind farming today, namely technical, social, economic and environmental were examined in the Geoff Pontin Memorial Lecture, which focused on these aspects in the context of grid integrated wind energy development. The remaining conference themes included machine development, aerodynamics and control, small machines, fatigue and dynamics, public attitudes, noise emissions, electrical integration, resource measurement, and standards, safety and planning. (author)

  4. QuikSCAT and SSM/I ocean surface winds for wind energy

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Astrup, Poul; Nielsen, Per

    2007-01-01

    -European mid-latitudes and in the Atlantic trade belt zone are compared. Distinct differences are identified and these agree well with independent data from meteorological masts in the two regions. Seven years of twice daily observations from QuikSCAT are used for the offshore wind resource assessment. Wind...

  5. Introducing a system of wind speed distributions for modeling properties of wind speed regimes around the world

    International Nuclear Information System (INIS)

    Jung, Christopher; Schindler, Dirk; Laible, Jessica; Buchholz, Alexander

    2017-01-01

    Highlights: • Evaluation of statistical properties of 10,016 empirical wind speed distributions. • Analysis of the shape of empirical wind speed distributions by L-moment ratios. • Introduction of a new system of wind speed distributions (Swd). • Random forests classification of the most appropriate distribution. • Comprehensive goodness of Swd fit evaluation on a global scale. - Abstract: Accurate modeling of empirical wind speed distributions is a crucial step in the estimation of average wind turbine power output. For this purpose, the Weibull distribution has often been fitted to empirical wind speed distributions. However, the Weibull distribution has been found to be insufficient to reproduce many wind speed regimes existing around the world. Results from previous studies demonstrate that numerous one-component distributions as well as mixture distributions provide a better goodness-of-fit to empirical wind speed distributions than the Weibull distribution. Moreover, there is considerable interest to apply a single system of distributions that can be utilized to reproduce the large majority of near-surface wind speed regimes existing around the world. Therefore, a system of wind speed distributions was developed that is capable of reproducing the main characteristics of existing wind speed regimes. The proposed system consists of two one-component distributions (Kappa and Wakeby) and one mixture distribution (Burr-Generalized Extreme Value). A random forests classifier was trained in order to select the most appropriate of these three distributions for each of 10,016 globally distributed empirical wind speed distributions. The shape of the empirical wind speed distributions was described by L-moment ratios. The L-moment ratios were used as predictor variables for the random forests classifier. The goodness-of-fit of the system of wind speed distributions was evaluated according to eleven goodness-of-fit metrics, which were merged into one

  6. Statistical characterization of roughness uncertainty and impact on wind resource estimation

    DEFF Research Database (Denmark)

    Kelly, Mark C.; Ejsing Jørgensen, Hans

    2017-01-01

    In this work we relate uncertainty in background roughness length (z0) to uncertainty in wind speeds, where the latter are predicted at a wind farm location based on wind statistics observed at a different site. Sensitivity of predicted winds to roughness is derived analytically for the industry...... between mean wind speed and AEP. Following our developments, we provide guidance on approximate roughness uncertainty magnitudes to be expected in industry practice, and we also find that sites with larger background roughness incur relatively larger uncertainties.......-standard European Wind Atlas method, which is based on the geostrophic drag law. We statistically consider roughness and its corresponding uncertainty, in terms of both z0 derived from measured wind speeds as well as that chosen in practice by wind engineers. We show the combined effect of roughness uncertainty...

  7. Solar wind radiation damage in lunar dust grains and the characteristics of the ancient solar wind

    International Nuclear Information System (INIS)

    Borg, J.; Chaumont, J.

    1980-01-01

    Current understanding of the exposure history of lunar dust grains to the ancient solar wind is reviewed, the work being based mostly on a Monte Carlo statistical code, describing the 'gardening' effects of the meteorite bombardment in the lunar regolith, and on analytical models, yielding the lifetimes of the grains against various types of destruction processes. Families of lunar dust grains are identified, and evidence is presented showing that lunar dust grains were not partially shielded from solar wind ions. Results of solar wind simulation experiments are used to interpret the thickness distribution of the amorphous coatings of solar wind radiation-damaged material observed on 1-micron lunar dust grains. It is argued that such distributions reflect the speed distribution of the ancient solar wind as averaged over periods of approximately 5000 years in duration, and that the ancient solar wind is less energetic than the present day solar wind

  8. Intercomparison of state-of-the-art models for wind energy resources with mesoscale models:

    Science.gov (United States)

    Olsen, Bjarke Tobias; Hahmann, Andrea N.; Sempreviva, Anna Maria; Badger, Jake; Joergensen, Hans E.

    2016-04-01

    1. Introduction Mesoscale models are increasingly being used to estimate wind conditions to identify perspective areas and sites where to develop wind farm projects. Mesoscale models are functional for giving information over extensive areas with various terrain complexities where measurements are scarce and measurement campaigns costly. Several mesoscale models and families of models are being used, and each often contains thousands of setup options. Since long-term integrations are expensive and tedious to carry out, only limited comparisons exist. To remedy this problem and for evaluating the capabilities of mesoscale models to estimate site wind conditions, a tailored benchmarking study has been co-organized by the European Wind Energy Association (EWEA) and the European Energy Research Alliance Joint Programme Wind Energy (EERA JP WIND). EWEA hosted results and ensured that participants were anonymous. The blind evaluation was performed at the Wind Energy Department of the Technical University of Denmark (DTU) with the following objectives: (1) To highlight common issues on mesoscale modelling of wind conditions on sites with different characteristics, and (2) To identify gaps and strengths of models and understand the root conditions for further evaluating uncertainties. 2. Approach Three experimental sites were selected: FINO 3 (offshore, GE), Høvsore (coastal, DK), and Cabauw (land-based, NL), and three other sites without observations based on . The three mast sites were chosen because the availability of concurrent suitable time series of vertical profiles of winds speed and other surface parameters. The participants were asked to provide hourly time series of wind speed, wind direction, temperature, etc., at various vertical heights for a complete year. The methodology used to derive the time series was left to the choice of the participants, but they were asked for a brief description of their model and many other parameters (e.g., horizontal and

  9. Wind turbine wake visualization and characteristics analysis by Doppler lidar.

    Science.gov (United States)

    Wu, Songhua; Liu, Bingyi; Liu, Jintao; Zhai, Xiaochun; Feng, Changzhong; Wang, Guining; Zhang, Hongwei; Yin, Jiaping; Wang, Xitao; Li, Rongzhong; Gallacher, Daniel

    2016-05-16

    Wind power generation is growing fast as one of the most promising renewable energy sources that can serve as an alternative to fossil fuel-generated electricity. When the wind turbine generator (WTG) extracts power from the wind, the wake evolves and leads to a considerable reduction in the efficiency of the actual power generation. Furthermore, the wake effect can lead to the increase of turbulence induced fatigue loads that reduce the life time of WTGs. In this work, a pulsed coherent Doppler lidar (PCDL) has been developed and deployed to visualize wind turbine wakes and to characterize the geometry and dynamics of wakes. As compared with the commercial off-the-shelf coherent lidars, the PCDL in this work has higher updating rate of 4 Hz and variable physical spatial resolution from 15 to 60 m, which improves its capability to observation the instantaneous turbulent wind field. The wind speed estimation method from the arc scan technique was evaluated in comparison with wind mast measurements. Field experiments were performed to study the turbulent wind field in the vicinity of operating WTGs in the onshore and offshore wind parks from 2013 to 2015. Techniques based on a single and a dual Doppler lidar were employed for elucidating main features of turbine wakes, including wind velocity deficit, wake dimension, velocity profile, 2D wind vector with resolution of 10 m, turbulence dissipation rate and turbulence intensity under different conditions of surface roughness. The paper shows that the PCDL is a practical tool for wind energy research and will provide a significant basis for wind farm site selection, design and optimization.

  10. The social acceptability of wind turbines: some resident are ready to pay to keep their wind turbines. Survey on four French wind farms

    International Nuclear Information System (INIS)

    2009-06-01

    The authors report a study which aimed at exploiting and deepening the results of a 2001 survey on visual and sound disturbances caused by wind turbines in Sigean (Aude), at identifying all the attitudes and opinions with respect with wind energy, and at assessing the different characteristics of a wind farm (height, localization, and so on). A survey has been performed on four sites located in different French regions. The authors discuss the social-demographic characteristics of the population samples, the global opinion on wind energy, and the opinion of the people on wind turbines located in their neighbourhood. They propose an estimation of benefits and damages related to the vicinity of wind turbines. By applying a method of choice experiments, they reveal the preferences of residents

  11. Wind power statistics and an evaluation of wind energy density

    Energy Technology Data Exchange (ETDEWEB)

    Jamil, M.; Parsa, S.; Majidi, M. [Materials and Energy Research Centre, Tehran (Iran, Islamic Republic of)

    1995-11-01

    In this paper the statistical data of fifty days` wind speed measurements at the MERC- solar site are used to find out the wind energy density and other wind characteristics with the help of the Weibull probability distribution function. It is emphasized that the Weibull and Rayleigh probability functions are useful tools for wind energy density estimation but are not quite appropriate for properly fitting the actual wind data of low mean speed, short-time records. One has to use either the actual wind data (histogram) or look for a better fit by other models of the probability function. (Author)

  12. Advances in wind energy conversion technology

    CERN Document Server

    Sathyajith, Mathew

    2011-01-01

    The technology of generating energy from wind has significantly changed during the past five years. The book brings together all the latest aspects of wind energy conversion technology - from wind resource analysis to grid integration of generated electricity.

  13. Small Wind Electric Systems: A New Mexico Consumer's Guide

    International Nuclear Information System (INIS)

    O'Dell, K.

    2001-01-01

    The New Mexico Consumer's Guide for Small Wind Electric Systems provides consumers with enough information to help them determine if a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include: how to make your home more energy efficient, how to choose the right size turbine, the parts of a wind electric system, determining if there is enough wind resource on your site, choosing the best site for your turbine, connecting your system to the utility grid, and if it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a state wind resource map and a list of state incentives and state contacts for more information

  14. Small Wind Electric Systems: A South Dakota Consumer's Guide

    International Nuclear Information System (INIS)

    O'Dell, K.

    2001-01-01

    The South Dakota Consumer's Guide for Small Wind Electric Systems provides consumers with enough information to help them determine if a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include: how to make your home more energy efficient, how to choose the right size turbine, the parts of a wind electric system, determining if there is enough wind resource on your site, choosing the best site for your turbine, connecting your system to the utility grid, and if it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a state wind resource map and a list of state incentives and state contacts for more information

  15. Trading wind generation from short-term probabilistic forecasts of wind power

    DEFF Research Database (Denmark)

    Pinson, Pierre; Chevallier, Christophe; Kariniotakis, Georges

    2007-01-01

    Due to the fluctuating nature of the wind resource, a wind power producer participating in a liberalized electricity market is subject to penalties related to regulation costs. Accurate forecasts of wind generation are therefore paramount for reducing such penalties and thus maximizing revenue......, as well as on modeling of the sensitivity a wind power producer may have to regulation costs. The benefits resulting from the application of these strategies are clearly demonstrated on the test case of the participation of a multi-MW wind farm in the Dutch electricity market over a year....... participation. Such strategies permit to further increase revenues and thus enhance competitiveness of wind generation compared to other forms of dispatchable generation. This paper formulates a general methodology for deriving optimal bidding strategies based on probabilistic forecasts of wind generation...

  16. Survey of wind power potential for wind-based electricity at ...

    African Journals Online (AJOL)

    The potential for wind-generated electricity is examined using 22 months wind data collected from a prospective site located in the southern highlands of Tanzania. While the data for the year 2001 was from March to December that of 2002 was for all the twelve months of the year. Characteristics of monthly and annual wind ...

  17. Wind energy. To produce electricity with the wind

    International Nuclear Information System (INIS)

    Bareau, Helene

    2015-11-01

    This guide addresses the different aspects of wind-based power generation. It outlines the role of wind energy to meet objectives related to the share of renewable energies in the French energy mix, that wind energy is actually replacing fossil energies, that it is based on local resources within higher safety and less wastage, that current advances are made to integrate wind energy production into the grid, and that it is a solution to diversify energy production. Some figures are presented and commented, regarding onshore wind energy production in France, the location of wind farms, and wind energy production in comparison with other renewable sources. The operation of a wind turbine is described and the different types of wind turbines are evoked. The issue of wind farm planning with citizen participation is addressed: regional planning, studies of pre-feasibility for location selection, procedure, and content of the impact study (radars, fauna and flora, landscapes, safety, health). Other features are outlined: a planned dismantling, and a globally favourable perception. The next part addresses offshore wind energy: the interesting potential of stronger and more reliable wind at sea (European situation, French opportunities, elements comprised in an offshore wind farm), impacts (on marine ecosystems, on neighbouring localities, and interests for visitors). Economic aspects are then addressed: cost and profitability, economic spin-offs, and perspectives. The last part concerns individuals and the possibilities to participate to wind farm projects or to invest in small wind turbines with some prerequisites (constant and steady winds, installation assessment, required expertise, indispensable preliminary steps, costs, aids and profitability)

  18. Simulating European wind power generation applying statistical downscaling to reanalysis data

    DEFF Research Database (Denmark)

    Gonzalez-Aparicio, I.; Monforti, F.; Volker, Patrick

    2017-01-01

    generation time series dataset for the EU-28 and neighbouring countries at hourly intervals and at different geographical aggregation levels (country, bidding zone and administrative territorial unit), for a 30 year period taking into account the wind generating fleet at the end of 2015. (C) 2017 The Authors...... and characteristics of the wind resource which is related to the accuracy of the approach in converting wind speed data into power values. One of the main factors contributing to the uncertainty in these conversion methods is the selection of the spatial resolution. Although numerical weather prediction models can...... could not be captured by the use of a reanalysis technique and could be translated into misinterpretations of the wind power peaks, ramping capacities, the behaviour of power prices, as well as bidding strategies for the electricity market. This study contributes to the understanding what is captured...

  19. Performance characteristics of aerodynamically optimum turbines for wind energy generators

    Science.gov (United States)

    Rohrbach, C.; Worobel, R.

    1975-01-01

    This paper presents a brief discussion of the aerodynamic methodology for wind energy generator turbines, an approach to the design of aerodynamically optimum wind turbines covering a broad range of design parameters, some insight on the effect on performance of nonoptimum blade shapes which may represent lower fabrication costs, the annual wind turbine energy for a family of optimum wind turbines, and areas of needed research. On the basis of the investigation, it is concluded that optimum wind turbines show high performance over a wide range of design velocity ratios; that structural requirements impose constraints on blade geometry; that variable pitch wind turbines provide excellent power regulation and that annual energy output is insensitive to design rpm and solidity of optimum wind turbines.

  20. The future of wind energy

    International Nuclear Information System (INIS)

    Koughnett, K. Van

    2003-01-01

    This presentation provided a brief history of wind power through the ages, and culminated with a look at installed capacity in 2002. Vision Quest has been in the wind power business since 1980, and the first turbines were installed in 1997. The company operates 40 per cent of Canada's wind capacity. Vision Quest became part of TransAlta in December 2002, the largest non-regulated electric generation and marketing company in Canada. The reasons for investing in wind power were briefly reviewed. The author then examined the physics of wind power and wind energy resources. The key resource issues were identified as being resource availability and constancy, which is similar to oil and gas exploration. Utility scale turbines were described. The pros and cons of larger turbines were compared, and it was shown that larger turbines offer better economics, a higher capacity factor and fewer turbines to permit. Manufacturers are focused on larger machines for offshore. The various permitting authorities and their areas of responsibility were listed, from municipal, provincial and federal levels. The key drivers are: wind speed, installed cost of equipment, revenue, operating expense, and financial expense. Project risks include: power purchase agreements, technology risk, financial risk, construction risk, regulation, operating risks, dependence on third parties, and reliance on advisors. Some of the challenges facing Vision Quest are being early, permitting, electric grid interconnection, openness of markets, market supply, demand forces, and getting capital costs down. tabs., figs

  1. Report on the field test project for wind power development at Yugawara Town (wind characteristics investigation); Yugawaramachi ni okeru furyoku kaihatsu field test jigyo (fukyo seisa) hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-11-01

    Wind characteristics are observed in the period November 1997 through October 1998 at Yugawara Town, Kanagawa Prefecture. The average wind speed is 5.1m/s and 5.0m/s at 20m and 10m above ground, respectively, suggesting that the difference in altitude causes but a very small difference in wind speed and that a large wind speed component exists in the vertical direction. Under the 16 compass point system, the wind direction occurrence rate is the highest in the NE direction and the second highest in the W direction. The two directions are prevalent, and their occurrence rates on the wind axes total 62.6%. The occurrence rate of wind speeds of not less than 5m/s is 40%. Turbulence intensity is 0.23 and 0.17 for the average wind speed of not less than 2m/s and for the average wind speed of not less than 4m/s, respectively, suggesting but a little impact of air current turbulence. The amounts of energy to be acquired by wind turbine systems of 150kW, 300kW, and 750kW are estimated at 301,363kWh, 651,593kWh, and 1,668,825kWh, respectively. Their annual capacity ratios are 22.9%, 24.8%, and 25.4%, respectively. Since difference in wind speed due to difference in altitude is small, it is supposed that the wind speed at the hub altitude is not so high. It is inferred consequently that service operation will be quite difficult to realize. Difficulties will be also encountered in relation to the route of turbine system transportation, power distribution line, and the distance to a transformation station. (NEDO)

  2. Assessing offshore wind potential

    International Nuclear Information System (INIS)

    Adelaja, Adesoji; McKeown, Charles; Calnin, Benjamin; Hailu, Yohannes

    2012-01-01

    Quantifying wind potential is a pivotal initial step in developing and articulating a state’s policies and strategies for offshore wind industry development. This is particularly important in the Great Lakes States where lessons from other offshore environments are not directly applicable. This paper presents the framework developed for conducting a preliminary assessment of offshore wind potential. Information on lake bathymetry and wind resources were combined in simulating alternative scenarios of technically feasible turbine construction depths and distance concerns by stakeholders. These yielded estimates of developable offshore wind areas and potential power generation. While concerns about the visibility of turbines from shore reduce the power that can be generated, engineering solutions that increase the depths at which turbines can be sited increase such potential power output. This paper discusses the costs associated with technical limitations on depth and the social costs related to public sentiments about distance from the shoreline, as well as the possible tradeoffs. The results point to a very large untapped energy resource in the Michigan’s Great Lakes, large enough to prompt policy action from the state government. - Highlights: ▶ We build a theoretical framework for modeling offshore wind power production. ▶ Illustration of the impact of technology and social limitations on offshore wind energy development. ▶ Geospatial modeling of the offshore wind potential of the Great Lakes.

  3. Development of wind power generation in China

    International Nuclear Information System (INIS)

    Zhiquan, Y.; Yan, C.; Lijun, X.

    1995-01-01

    Present status and development of wind power generation in China is described in this paper. China is vast in territory with abundant wind resources. The exploitable wind energy in China is estimated up to 253,000 MW. At present, more than 150 thousand small WTGs of a total capacity of 17 MW are used to provide residential electricity uses in non-grid connected areas and 13 wind farms, with above 160 medium and large scale grid connected WTGs (50-500 kW) of a total capacity of 30 MW, have been constructed. At the same time, some progress has been made in the fields of nation-wide wind resource assessment, measurement technology of wind turbine performance, the assimilation of foreign wind turbine technology, grid connected WTG technology and the operation of wind farm etc. It is planned that the total installed capacity of WTGs will reach 1000 MW by the end of 2000. Wind power generation could be a part of electric power industry in China. (Author)

  4. Real-time energy resources scheduling considering short-term and very short-term wind forecast

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Marco; Sousa, Tiago; Morais, Hugo; Vale, Zita [Polytechnic of Porto (Portugal). GECAD - Knowledge Engineering and Decision Support Research Center

    2012-07-01

    This paper proposes an energy resources management methodology based on three distinct time horizons: day-ahead scheduling, hour-ahead scheduling, and real-time scheduling. In each scheduling process the update of generation and consumption operation and of the storage and electric vehicles storage status are used. Besides the new operation conditions, the most accurate forecast values of wind generation and of consumption using results of short-term and very short-term methods are used. A case study considering a distribution network with intensive use of distributed generation and electric vehicles is presented. (orig.)

  5. Wind Gust Measurement Techniques—From Traditional Anemometry to New Possibilities

    Directory of Open Access Journals (Sweden)

    Irene Suomi

    2018-04-01

    Full Text Available Information on wind gusts is needed for assessment of wind-induced damage and risks to safety. The measurement of wind gust speed requires a high temporal resolution of the anemometer system, because the gust is defined as a short-duration (seconds maximum of the fluctuating wind speed. Until the digitalization of wind measurements in the 1990s, the wind gust measurements suffered from limited recording and data processing resources. Therefore, the majority of continuous wind gust records date back at most only by 30 years. Although the response characteristics of anemometer systems are good enough today, the traditional measurement techniques at weather stations based on cup and sonic anemometers are limited to heights and regions where the supporting structures can reach. Therefore, existing measurements are mainly concentrated over densely-populated land areas, whereas from remote locations, such as the marine Arctic, wind gust information is available only from sparse coastal locations. Recent developments of wind gust measurement techniques based on turbulence measurements from research aircraft and from Doppler lidar can potentially provide new information from heights and locations unreachable by traditional measurement techniques. Moreover, fast-developing measurement methods based on Unmanned Aircraft Systems (UASs may add to better coverage of wind gust measurements in the future. In this paper, we provide an overview of the history and the current status of anemometry from the perspective of wind gusts. Furthermore, a discussion on the potential future directions of wind gust measurement techniques is provided.

  6. Efficiency of a small wind power station

    International Nuclear Information System (INIS)

    Ivanov, K.; Christov, Ch.; Kozarev, N.

    2001-01-01

    The aim of the study is to obtain the optimal solution for wind station both by technical parameters and costs. The energetic characteristics of the wind as a renewable energy source are discussed and assessment of the economical efficiency is made. For the determination of the optimal wind parameters the method of integral wind curves is used. The low power wind generators (0.4 - 1.5 kW) are considered as optimal for the presented wind characteristics

  7. Effects of gear modifications on the dynamic characteristics of wind turbine gearbox considering elastic support of the gearbox

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shuaishuai; Zhu, Caichao; Song, Chaosheng; Liu, Huachao; Tan, Jianjun [Chongqing University, Chongqing (China); Bai, Houyi [Chongqing Wangjiang Industrial Co., Ltd., Chongqing (China)

    2017-03-15

    The reliability and service life of wind turbines are directly influenced by the dynamic performance of the gearbox under the time varying wind loads. The control of vibration behavior is essential for the achievement of a 20-year service life. We developed a rigid flexible coupled dynamic model for a wind turbine gearbox. The planet carrier, the housing, and the bed plate are modelled as flexibilities while other components are assumed as rigid bodies. The actual three points elastic supporting are considered and a strip based mesh model is used to represent the engagement of the gear pairs. The effects of gear tooth modifications on the dynamics were investigated. Finally, we conducted a dynamic test for the wind turbine gearbox in the wind field. Results showed that the contact characteristics of gear pairs were improved significantly; the peak-to-peak value of transmission error of each gear pair was reduced; the amplitudes of the vibration acceleration and the structural noise of the wind turbine gearbox were lowered after suitable tooth modification.

  8. Report on field test project for wind power development at Onejime Athletic Park. Detailed wind characteristics survey; Onejime Undo Koen ni okeru furyoku kaihatsu field test jigyo (fukyo seisa) hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-11-01

    A detailed wind characteristics survey was conducted to study the feasibility of a wind power generation system for Onejime Athletic Park, Kimotsugu-gun, Kagoshima Prefecture. Observation instruments were installed at a wasteland beside the park and, in the period October 1, 1998, through September 30, 1999, data were collected at a point 20m above ground, such as the average wind speed and direction, wind velocity standard deviation, and the maximum instantaneous wind velocity. The data were analyzed, and findings were obtained, as mentioned below. The wind axis along which the wind direction occurrence rate was the highest ran WNW-ESE at an occurrence rate of 65.8%. Turbulence intensity was 0.23 at wind speeds of 2m/s and more, the maximum instantaneous wind velocity was 40m/s, all these fully satisfying the evaluation levels set forth by NEDO (New Energy and Industrial Technology Development Organization). On the other hand, the average wind speed was 3.48m/s and wind energy density was 69W/m{sup 2}, these failing to satisfy the levels indicated by NEDO. Studies were made on the assumption that 150, 300, and 750kW-class wind turbines would be introduced, and then it was found that their annual operating factors and facility availability rates both failed to meet the NEDO standards concerned and that therefore the site in question was not fit for wind power generation. (NEDO)

  9. Wind energy in Mediterranean Basin

    International Nuclear Information System (INIS)

    Gaudiosi, G.

    1991-01-01

    In its examination of wind energy potential in the Mediterranean Basin, this paper provides brief notes on the Basin's geography; indicates power production and demand; describes the area's wind characteristics and wind monitoring activities; illustrates wind velocity distributions; estimates local wind power production potential; reviews the Basin's wind energy marketing situation and each bordering country's wind energy programs; surveys installed wind energy farms; and assesses national research and commercialization efforts

  10. A study of rotor and platform design trade-offs for large-scale floating vertical axis wind turbines

    Science.gov (United States)

    Griffith, D. Todd; Paquette, Joshua; Barone, Matthew; Goupee, Andrew J.; Fowler, Matthew J.; Bull, Diana; Owens, Brian

    2016-09-01

    Vertical axis wind turbines are receiving significant attention for offshore siting. In general, offshore wind offers proximity to large populations centers, a vast & more consistent wind resource, and a scale-up opportunity, to name a few beneficial characteristics. On the other hand, offshore wind suffers from high levelized cost of energy (LCOE) and in particular high balance of system (BoS) costs owing to accessibility challenges and limited project experience. To address these challenges associated with offshore wind, Sandia National Laboratories is researching large-scale (MW class) offshore floating vertical axis wind turbines (VAWTs). The motivation for this work is that floating VAWTs are a potential transformative technology solution to reduce offshore wind LCOE in deep-water locations. This paper explores performance and cost trade-offs within the design space for floating VAWTs between the configurations for the rotor and platform.

  11. Wind farm radar study

    International Nuclear Information System (INIS)

    Davies, N.G.

    1995-01-01

    This report examines the possible degradations of radar performance that may be caused by the presence of a wind turbine generator within the radar coverage area. A brief literature survey reviews the previously published work, which is mainly concerned with degradation of broadcast TV reception. Estimates are made of wind turbine generator scattering cross-sections, and of the time and Doppler characteristics of the echo signals from representative wind turbine generator. The general characteristics of radar detection and tracking methods are described, and the behaviour of such systems in the presence of strong returns from a wind turbine generator (or an array of them) is discussed. (author)

  12. Satellite information for wind energy applications

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, M.; Astrup, P.; Bay Hasager, C.

    2004-11-01

    An introduction to satellite information relevant for wind energy applications is given. It includes digital elevation model (DEM) data based on satellite observations. The Shuttle Radar Topography Mission (SRTM) is useful for regional scale wind resource studies. Comparison results from complex terrain in Spain and flat terrain in Denmark are found to be acceptable for both sites. Also land cover type information can be retrieved from satellite observations. Land cover type maps have to be combined with roughness data from field observation or literature values. Land cover type maps constitute an aid to map larger regions within shorter time. Field site observations of obstacles and hedges are still necessary. The raster-based map information from DEM and land cover maps can be converted for use in WASP. For offshore locations it is possible to estimate the wind resources based on ocean surface wind data from several types of satellite observations. The RWT software allows an optimal calculation of SAR wind resource statistics. A tab-file with SAR-based observed wind climate (OWC) data can be obtained for 10 m above sea level and used in WASP. RWT uses a footprint averaging technique to obtain data as similar as possible to mast observations. Maximum-likelihood fitting is used to calculate the Weibull A and k parameters from the constrained data set. Satellite SAR wind maps cover the coastal zone from 3 km and offshore with very detailed information of 400 m by 400 m grid resolution. Spatial trends in mean wind, energy density, Weibull A and k and uncertainty values are provided for the area of interest. Satellite scatterometer wind observations have a spatial resolution of 25 km by 25 km. These data typically represent a site further offshore, and the tab-file statistics should be used in WASP combined with topography and roughness information to assess the coastal wind power potential. Scatterometer wind data are observed {approx} twice per day, whereas SAR only

  13. Wind versus coal: Comparing the local economic impacts of energy resource development in Appalachia

    International Nuclear Information System (INIS)

    Collins, Alan R.; Hansen, Evan; Hendryx, Michael

    2012-01-01

    Two energy development scenarios were compared for the Coal River Mountain in Raleigh County, West Virginia: (1) mountaintop mining (MTM) of coal, and (2) wind energy plus underground mining of coal. Economic impact computations over the life of each energy development scenario were made on a county basis for output of goods and services, the number of jobs created, and local earnings. Externality costs were assigned monetary values for coal mining and subtracted from earnings. Premature mortality within the general population due to additional coal mining accounted for 96% of these external cost computations. The results showed that economic output over the life of each scenario was twice as high for MTM mining as wind energy plus underground coal mining. Over the short term, employment and earnings were higher for MTM mining, but towards the end of the scenario, cumulative employment and earnings became higher under scenario (2). When local externality costs were subtracted from local earnings, MTM coal production had an overall negative net social impact on the citizens of Raleigh County. The external costs of MTM coal production provide an explanation of the existence of a “resource curse” and the conflicting results of output versus income provide insights into why coal-producing counties are underdeveloped. - Highlights: ► Mountaintop mining (MTM) was compared to wind plus underground mining. ► Economic output was twice as high for MTM. ► Employment and earnings were cumulatively higher for wind energy. ► Including local externality costs, MTM had an overall negative net social impact. ► Results provide insights into why coal-producing counties are underdeveloped.

  14. Potential of Offshore Wind Energy and Extreme Wind Speed Forecasting on the West Coast of Taiwan

    Directory of Open Access Journals (Sweden)

    Pei-Chi Chang

    2015-02-01

    Full Text Available It is of great importance and urgency for Taiwan to develop offshore wind power. However, relevant data on offshore wind energy resources are limited. This study imported wind speeds measured by a tidal station and a buoy into the software WAsP to estimate the high-altitude wind speeds in the two areas. A light detection and ranging (Lidar system was set up near the tidal station and buoy. High-altitude wind speeds measured by the Lidar system were compared with the WAsP-estimated values, and it was discovered that the two data sets were consistent. Then, long-term wind speed data observed by buoys and tidal stations at various locations were imported into WAsP to forecast wind speeds at heights of 55–200 m on the west coast of Taiwan. The software WAsP Engineering was used to analyze the extreme wind speeds in the same areas. The results show that wind speeds at 100 m are approximately 9.32–11.24 m/s, which means that the coastal areas of west Taiwan are rich in wind energy resources. When a long-term 10-min average wind speed is used, the extreme wind speed on the west coast is estimated to be between 36.4 and 55.3 m/s.

  15. Hybrid PV/Wind Power Systems Incorporating Battery Storage and Considering the Stochastic Nature of Renewable Resources

    Science.gov (United States)

    Barnawi, Abdulwasa Bakr

    Hybrid power generation system and distributed generation technology are attracting more investments due to the growing demand for energy nowadays and the increasing awareness regarding emissions and their environmental impacts such as global warming and pollution. The price fluctuation of crude oil is an additional reason for the leading oil producing countries to consider renewable resources as an alternative. Saudi Arabia as the top oil exporter country in the word announced the "Saudi Arabia Vision 2030" which is targeting to generate 9.5 GW of electricity from renewable resources. Two of the most promising renewable technologies are wind turbines (WT) and photovoltaic cells (PV). The integration or hybridization of photovoltaics and wind turbines with battery storage leads to higher adequacy and redundancy for both autonomous and grid connected systems. This study presents a method for optimal generation unit planning by installing a proper number of solar cells, wind turbines, and batteries in such a way that the net present value (NPV) is minimized while the overall system redundancy and adequacy is maximized. A new renewable fraction technique (RFT) is used to perform the generation unit planning. RFT was tested and validated with particle swarm optimization and HOMER Pro under the same conditions and environment. Renewable resources and load randomness and uncertainties are considered. Both autonomous and grid-connected system designs were adopted in the optimal generation units planning process. An uncertainty factor was designed and incorporated in both autonomous and grid connected system designs. In the autonomous hybrid system design model, the strategy including an additional amount of operation reserve as a percent of the hourly load was considered to deal with resource uncertainty since the battery storage system is the only backup. While in the grid-connected hybrid system design model, demand response was incorporated to overcome the impact of

  16. Characteristics of future Vertical Axis Wind Turbines (VAWTs). [to generate utility grid electric power

    Science.gov (United States)

    Kadlec, E. G.

    1979-01-01

    The developing Darrieus VAWT technology whose ultimate objective is economically feasible, industry-produced, commercially marketed wind energy systems is reviewed. First-level aerodynamic, structural, and system analyses capabilities which support and evaluate the system designs are discussed. The characteristics of current technology designs are presented and their cost effectiveness is assessed. Potential improvements identified are also presented along with their cost benefits.

  17. Statistical characterization of roughness uncertainty and impact on wind resource estimation

    Directory of Open Access Journals (Sweden)

    M. Kelly

    2017-04-01

    Full Text Available In this work we relate uncertainty in background roughness length (z0 to uncertainty in wind speeds, where the latter are predicted at a wind farm location based on wind statistics observed at a different site. Sensitivity of predicted winds to roughness is derived analytically for the industry-standard European Wind Atlas method, which is based on the geostrophic drag law. We statistically consider roughness and its corresponding uncertainty, in terms of both z0 derived from measured wind speeds as well as that chosen in practice by wind engineers. We show the combined effect of roughness uncertainty arising from differing wind-observation and turbine-prediction sites; this is done for the case of roughness bias as well as for the general case. For estimation of uncertainty in annual energy production (AEP, we also develop a generalized analytical turbine power curve, from which we derive a relation between mean wind speed and AEP. Following our developments, we provide guidance on approximate roughness uncertainty magnitudes to be expected in industry practice, and we also find that sites with larger background roughness incur relatively larger uncertainties.

  18. A new method for wind speed forecasting based on copula theory.

    Science.gov (United States)

    Wang, Yuankun; Ma, Huiqun; Wang, Dong; Wang, Guizuo; Wu, Jichun; Bian, Jinyu; Liu, Jiufu

    2018-01-01

    How to determine representative wind speed is crucial in wind resource assessment. Accurate wind resource assessments are important to wind farms development. Linear regressions are usually used to obtain the representative wind speed. However, terrain flexibility of wind farm and long distance between wind speed sites often lead to low correlation. In this study, copula method is used to determine the representative year's wind speed in wind farm by interpreting the interaction of the local wind farm and the meteorological station. The result shows that the method proposed here can not only determine the relationship between the local anemometric tower and nearby meteorological station through Kendall's tau, but also determine the joint distribution without assuming the variables to be independent. Moreover, the representative wind data can be obtained by the conditional distribution much more reasonably. We hope this study could provide scientific reference for accurate wind resource assessments. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Wind Development on Tribal Lands

    Energy Technology Data Exchange (ETDEWEB)

    Ken Haukaas; Dale Osborn; Belvin Pete

    2008-01-18

    Background: The Rosebud Sioux Tribe (RST) is located in south central South Dakota near the Nebraska border. The nearest community of size is Valentine, Nebraska. The RST is a recipient of several Department of Energy grants, written by Distributed Generation Systems, Inc. (Disgen), for the purposes of assessing the feasibility of its wind resource and subsequently to fund the development of the project. Disgen, as the contracting entity to the RST for this project, has completed all the pre-construction activities, with the exception of the power purchase agreement and interconnection agreement, to commence financing and construction of the project. The focus of this financing is to maximize the economic benefits to the RST while achieving commercially reasonable rates of return and fees for the other parties involved. Each of the development activities required and its status is discussed below. Land Resource: The Owl Feather War Bonnet 30 MW Wind Project is located on RST Tribal Trust Land of approximately 680 acres adjacent to the community of St. Francis, South Dakota. The RST Tribal Council has voted on several occasions for the development of this land for wind energy purposes, as has the District of St. Francis. Actual footprint of wind farm will be approx. 50 acres. Wind Resource Assessment: The wind data has been collected from the site since May 1, 2001 and continues to be collected and analyzed. The latest projections indicate a net capacity factor of 42% at a hub height of 80 meters. The data has been collected utilizing an NRG 9300 Data logger System with instrumentation installed at 30, 40 and 65 meters on an existing KINI radio tower. The long-term annual average wind speed at 65-meters above ground level is 18.2 mph (8.1 mps) and 18.7 mph (8.4 mps) at 80-meters agl. The wind resource is excellent and supports project financing.

  20. Experimental and Numerical Study of the Aerodynamic Characteristics of an Archimedes Spiral Wind Turbine Blade

    Directory of Open Access Journals (Sweden)

    Kyung Chun Kim

    2014-11-01

    Full Text Available A new type of horizontal axis wind turbine adopting the Archimedes spiral blade is introduced for urban-use. Based on the angular momentum conservation law, the design formula for the blade was derived using a variety of shape factors. The aerodynamic characteristics and performance of the designed Archimedes wind turbine were examined using computational fluid dynamics (CFD simulations. The CFD simulations showed that the new type of wind turbine produced a power coefficient (Cp of approximately 0.25, which is relatively high compared to other types of urban-usage wind turbines. To validate the CFD results, experimental studies were carried out using a scaled-down model. The instantaneous velocity fields were measured using the two-dimensional particle image velocimetry (PIV method in the near field of the blade. The PIV measurements revealed the presence of dominant vortical structures downstream the hub and near the blade tip. The interaction between the wake flow at the rotor downstream and the induced velocity due to the tip vortices were strongly affected by the wind speed and resulting rotational speed of the blade. The mean velocity profiles were compared with those predicted by the steady state and unsteady state CFD simulations. The unsteady CFD simulation agreed better with those of the PIV experiments than the steady state CFD simulations.

  1. Onshore-offshore wind energy resource evaluation based on synergetic use of multiple satellite data and meteorological stations in Jiangsu Province, China

    Science.gov (United States)

    Wei, Xianglin; Duan, Yuewei; Liu, Yongxue; Jin, Song; Sun, Chao

    2018-05-01

    The demand for efficient and cost-effective renewable energy is increasing as traditional sources of energy such as oil, coal, and natural gas, can no longer satisfy growing global energy demands. Among renewable energies, wind energy is the most prominent due to its low, manageable impacts on the local environment. Based on meteorological data from 2006 to 2014 and multi-source satellite data (i.e., Advanced Scatterometer, Quick Scatterometer, and Windsat) from 1999 to 2015, an assessment of the onshore and offshore wind energy potential in Jiangsu Province was performed by calculating the average wind speed, average wind direction, wind power density, and annual energy production (AEP). Results show that Jiangsu has abundant wind energy resources, which increase from inland to coastal areas. In onshore areas, wind power density is predominantly less than 200 W/m2, while in offshore areas, wind power density is concentrates in the range of 328-500 W/m2. Onshore areas comprise more than 13,573.24 km2, mainly located in eastern coastal regions with good wind farm potential. The total wind power capacity in onshore areas could be as much as 2.06 x 105 GWh. Meanwhile, offshore wind power generation in Jiangsu Province is calculated to reach 2 x 106 GWh, which is approximately four times the electricity demand of the entire Jiangsu Province. This study validates the effective application of Advanced Scatterometer, Quick Scatterometer, and Windsat data to coastal wind energy monitoring in Jiangsu. Moreover, the methodology used in this study can be effectively applied to other similar coastal zones.

  2. Comparative study of the behavior of wind-turbines in a wind farm

    Energy Technology Data Exchange (ETDEWEB)

    Migoya, Emilio; Crespo, Antonio; Garcia, Javier; Manuel, Fernando; Jimenez, Angel [Universidad Politecnica de Madrid (UPM), Madrid (Spain). Departamento de Ingenieria Energetica y Fluidomecanica, Laboratorio de Mecanica de Fluidos; Moreno, Fermin [Comision Nacional de la Energia, Madrid (Spain); Costa, Alexandre [Energia Eolica, Division de Energias Renovables, CIEMAT, Madrid (Spain)

    2007-10-15

    The Sotavento wind farm is an experimental wind farm which has different types of wind turbines. It is located in an area whose topography is moderately complex, and where wake effects can be significant. One of the objectives of Sotavento wind farm is to compare the performances of the different machines; particularly regarding power production, maintenance and failures. However, because of wakes and topography, the different machines are not working under identical conditions. Two linearized codes have been used to estimate topography effects: UPMORO and WAsP. For wind directions in which topography is abrupt, the non-linear flow equations have been solved with the commercial code FLUENT, although the results are only qualitatively used. For wake effects, the UPMPARK code has been applied. As a result, the incident velocity over each wind turbine is obtained, and the power production is estimated by means of the power curve of each machine. Experimental measurements give simultaneously the wind characteristics at the measuring stations, the wind velocity, at the nacelle anemometer, and the power production of each wind turbine. These experimental results are employed to validate the numerical predictions. The main objective of this work is to deduce and validate a relationship between the wind characteristics measured in the anemometers and the wind velocity and the power output in each machine. (author)

  3. Wind inflow observation from load harmonics

    Directory of Open Access Journals (Sweden)

    M. Bertelè

    2017-12-01

    Full Text Available The wind field leaves its fingerprint on the rotor response. This fact can be exploited by using the rotor as a sensor: by looking at the rotor response, in the present case in terms of blade loads, one may infer the wind characteristics. This paper describes a wind state observer that estimates four wind parameters, namely the vertical and horizontal shears and the yaw and upflow misalignment angles, from out-of-plane and in-plane blade bending moments. The resulting observer provides on-rotor wind inflow characteristics that can be exploited for wind turbine and wind farm control. The proposed formulation is evaluated through extensive numerical simulations in turbulent and nonturbulent wind conditions using a high-fidelity aeroservoelastic model of a multi-MW wind turbine.

  4. Wave and offshore wind potential for the island of Tenerife

    International Nuclear Information System (INIS)

    Veigas, M.; Iglesias, G.

    2013-01-01

    Highlights: • The island aims to reduce its carbon footprint by developing renewable energy. • The substantial wave and offshore wind resources around the island are examined. • One area is appropriate for installing a hybrid wave–offshore wind farm. - Abstract: The island of Tenerife, a UNESCO Biosphere Reserve in the Atlantic Ocean, aims to be energy self-sufficient in order to reduce its carbon footprint. To accomplish this goal it should develop the renewable sources, in particular wave and offshore wind energy. The objectives of this work are twofold; (i) to characterize the wave and offshore wind power distribution around the island and (ii) to determine which offshore area is best suited for their exploitation, taking into account the resource and other conditioning factors such as the bathymetry, distance to the coastline and ports, and offshore zoning. To carry out this research, hindcast wave and wind data obtained with numerical models are used alongside observations from meteorological stations. One area, in the vicinity of Puerto de la Cruz, is identified as having great potential for installing a hybrid floating wave–wind farm. Both resources are characterized for the area selected: the wave resource in terms of wave directions, significant wave heights and energy periods; the offshore wind resource in terms of directions and speeds in addition to the seasonality for the both resources. It is found that most of the wave resource is provided by N and NNW waves with significant wave heights between 1.5 m and 3.0 m and energy periods between 10 s and 14 s. It follows that the Wave Energy Converters deployed in the area should have maximum efficiency in those ranges. As for the offshore wind resource, most of the energy corresponds to NNE and NE winds with speeds between 9 and 14 m s −1 , which should be taken into account when selecting the offshore wind turbines

  5. The impact of urbanization on wind speed and surface aerodynamic characteristics in Beijing during 1991-2011

    Science.gov (United States)

    Liu, Junkai; Gao, Zhiqiu; Wang, Linlin; Li, Yubin; Gao, Chloe Y.

    2018-06-01

    Urbanization has a significant influence on climate and meteorological conditions through altering surface aerodynamic characteristics. Based on observational data collected at 15 levels on a 325 m meteorological tower in Beijing during 1991-2011, changes in wind speed, vertical profile, aerodynamic roughness length (z0), and zero-plane displacement height (zd) were analyzed. Decreasing trends were observed predominantly during this period, especially for levels between 65 and 140 m where the largest decreasing rates often occur. The annual and seasonal (spring, summer, autumn, and winter) mean wind speeds at 15 levels all present decreasing trends with average rates of 0.029, 0.024, 0.023, 0.040, and 0.019 m s-1 a-1, respectively. The decreases in strong wind categories contribute most to the reduction of mean wind speed. Furthermore, in 2005-2011, the diurnal maximum wind speeds at lower levels tend to appear earlier as compared to those in 1991-1997, while the patterns of diurnal cycle between different levels become more similar in these periods. Besides, the phenomena of "kink" in wind profiles are visible in various atmospheric stabilities, and the average height of a kink has increased from about 40 m to nearly 80 m associated with urbanization during 1991-2011. In addition, the results of z0 and zd calculated using the wind profile method vary with wind directions due to surface heterogeneity and that larger values often occur along with southerly winds. Both z0 and zd show increasing trends in different sectors during 1991-2011, and the annual mean z0 and zd have increased from less than 1 m to greater than 2 m, and from less than 10 m to greater than 20 m, respectively.

  6. European wind turbine testing procedure developments. Task 1: Measurement method to verify wind turbine performance characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Hunter, R.; Friis Pedersen, T.; Dunbabin, P.; Antoniou, I.; Frandsen, S.; Klug, H.; Albers, A.; Lee, W.K.

    2001-01-01

    There is currently significant standardisation work ongoing in the context of wind farm energy yield warranty assessment and wind turbine power performance testing. A standards maintenance team is revising the current IEC (EN) 61400-12 Ed 1 standard for wind turbine power performance testing. The standard is being divided into four documents. Two of them are drafted for evaluation and verification of complete wind farms and of individual wind turbines within wind farms. This document, and the project it describes, has been designed to help provide a solid technical foundation for this revised standard. The work was wide ranging and addressed 'grey' areas of knowledge, regarding existing methodologies or to carry out basic research in support of fundamentally new procedures. The work has given rise to recommendations in all areas of the work, including site calibration procedures, nacelle anemometry, multi-variate regression analysis and density normalisation. (au)

  7. Draft-circular on wind turbines. Concept-circulaire wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    1983-01-01

    Criteria for providing licenses to build and operate a wind turbine are surveyed. Factors to consider are: characteristics of the landscape, density of population, town and country planning, environmental aspects (birds), safety and nuisance. National regulations for wind turbines will simplify licensing procedures and improve legal security.

  8. Short-Term Wind Speed Forecasting Using Decomposition-Based Neural Networks Combining Abnormal Detection Method

    Directory of Open Access Journals (Sweden)

    Xuejun Chen

    2014-01-01

    Full Text Available As one of the most promising renewable resources in electricity generation, wind energy is acknowledged for its significant environmental contributions and economic competitiveness. Because wind fluctuates with strong variation, it is quite difficult to describe the characteristics of wind or to estimate the power output that will be injected into the grid. In particular, short-term wind speed forecasting, an essential support for the regulatory actions and short-term load dispatching planning during the operation of wind farms, is currently regarded as one of the most difficult problems to be solved. This paper contributes to short-term wind speed forecasting by developing two three-stage hybrid approaches; both are combinations of the five-three-Hanning (53H weighted average smoothing method, ensemble empirical mode decomposition (EEMD algorithm, and nonlinear autoregressive (NAR neural networks. The chosen datasets are ten-minute wind speed observations, including twelve samples, and our simulation indicates that the proposed methods perform much better than the traditional ones when addressing short-term wind speed forecasting problems.

  9. Wind energy potential of coastal Eritrea: an analysis of sparse wind data

    International Nuclear Information System (INIS)

    Rosen, K.; Buskirk, R. van; Garbesi, K.

    1999-01-01

    This paper describes an analysis of historical surface wind data for the small country of Eritrea, in northeastern Africa. Winds in this region are directed by summer and winter monsoons in addition to diurnal land-sea effects. An analysis of national Eritrean and historical Italian wind records indicated marginal wind resources in the central highlands near the Eritrean capital of Asmera. An analysis of wind speed records recorded at two sites in the southern port city of Aseb indicate mean annual 10-m wind speeds of 9.5 m s -1 at the windier site. Surface wind speed records for the Red Sea suggest that similar potential may be found along the lower 200 km of the Eritrean coastline. Based on these findings, wind-generated electricity in this region should be substantially cheaper than the current supply generated from imported diesel. (author)

  10. Characteristics of human resources in Serbian rural tourism

    Directory of Open Access Journals (Sweden)

    Premović Jelena

    2016-01-01

    Full Text Available Modern consumer society affects the changes in behavior and wishes of modern tourists who require high-quality tourist service which can be provided only by highly qualified and well-trained tourism personnel. However, the education system, in almost all tourist countries doesn't follow the trends of modern tourism. This paper analyzes demographic conditions and the basic characteristics of human resources in rural areas of Serbia. In this analysis were applied the method of induction and deduction, analysis and synthesis method, deductive and comparative methods as well as techniques of structured questionnaire. The obtained data were processed in SPSS program. Based on the results of the original research, it was concluded that there is a positive correlation between level of education and the number of days spent on professional training of human resources and the competitive position of tourism enterprises in which human resources are working.

  11. Wind Energy for Sustainable Development

    International Nuclear Information System (INIS)

    Comsan, M.N.H.

    2009-01-01

    The growing demand in energy and concern about depleting natural resources and global warming has led states worldwide to consider alternatives to the use of fossil fuel for energy production. Several countries especially in Europe have already increased their renewable energy share 6-10%, expected to increase to 20% by the year 2020. For Egypt excellent resources of wind and solar energy exist. The article discusses perspectives of wind energy in Egypt with projections to generate ∼ 3.5 GWe by 2022, representing ∼ 9% of the total installed power at that time (40.2 GW). Total renewable (hydro + wind + solar) are expected to provide ∼ 7.4 GWe by 2022 representing ∼ 19% of the total installed power. Such a share would reduce dependence on depleting oil and gas resources, and hence improve country's sustainable development

  12. Two-Stage Coordinated Operational Strategy for Distributed Energy Resources Considering Wind Power Curtailment Penalty Cost

    Directory of Open Access Journals (Sweden)

    Jing Qiu

    2017-07-01

    Full Text Available The concept of virtual power plant (VPP has been proposed to facilitate the integration of distributed renewable energy. VPP behaves similar to a single entity that aggregates a collection of distributed energy resources (DERs such as distributed generators, storage devices, flexible loads, etc., so that the aggregated power outputs can be flexibly dispatched and traded in electricity markets. This paper presents an optimal scheduling model for VPP participating in day-ahead (DA and real-time (RT markets. In the DA market, VPP aims to maximize the expected profit and reduce the risk in relation to uncertainties. The risk is measured by a risk factor based on the mean-variance Markowitz theory. In the RT market, VPP aims to minimize the imbalance cost and wind power curtailment by adjusting the scheduling of DERs in its portfolio. In case studies, the benefits (e.g., surplus profit and reduced wind power curtailment of aggregated VPP operation are assessed. Moreover, we have investigated how these benefits are affected by different risk-aversion levels and uncertainty levels. According to the simulation results, the aggregated VPP scheduling approach can effectively help the integration of wind power, mitigate the impact of uncertainties, and reduce the cost of risk-aversion.

  13. WIND TURBINE OPERATION PARAMETER CHARACTERISTICS AT A GIVEN WIND SPEED

    Directory of Open Access Journals (Sweden)

    Zdzisław Kamiński

    2014-06-01

    Full Text Available This paper discusses the results of the CFD simulation of the flow around Vertical Axis Wind Turbine rotor. The examined rotor was designed following patent application no. 402214. The turbine operation is characterised by parameters, such as opening angle of blades, power, torque, rotational velocity at a given wind velocity. Those parameters have an impact on the performance of entire assembly. The distribution of forces acting on the working surfaces in the turbine can change, depending on the angle of rotor rotation. Moreover, the resultant force derived from the force acting on the oncoming and leaving blades should be as high as possible. Accordingly, those parameters were individually simulated over time for each blade in three complete rotations. The attempts to improve the performance of the entire system resulted in a new research trend to improve the performance of working turbine rotor blades.

  14. Wind Atlas for Egypt

    DEFF Research Database (Denmark)

    The results of a comprehensive, 8-year wind resource assessment programme in Egypt are presented. The objective has been to provide reliable and accurate wind atlas data sets for evaluating the potential wind power output from large electricityproducing wind turbine installations. The regional wind...... climates of Egypt have been determined by two independent methods: a traditional wind atlas based on observations from more than 30 stations all over Egypt, and a numerical wind atlas based on long-term reanalysis data and a mesoscale model (KAMM). The mean absolute error comparing the two methods is about...... 10% for two large-scale KAMM domains covering all of Egypt, and typically about 5% for several smaller-scale regional domains. The numerical wind atlas covers all of Egypt, whereas the meteorological stations are concentrated in six regions. The Wind Atlas for Egypt represents a significant step...

  15. Wind Atlas for Egypt

    DEFF Research Database (Denmark)

    Mortensen, Niels Gylling; Said Said, Usama; Badger, Jake

    2006-01-01

    The results of a comprehensive, 8-year wind resource assessment programme in Egypt are presented. The objective has been to provide reliable and accurate wind atlas data sets for evaluating the potential wind power output from large electricityproducing wind turbine installations. The regional wind...... climates of Egypt have been determined by two independent methods: a traditional wind atlas based on observations from more than 30 stations all over Egypt, and a numerical wind atlas based on long-term reanalysis data and a mesoscale model (KAMM). The mean absolute error comparing the two methods is about...... 10% for two large-scale KAMM domains covering all of Egypt, and typically about 5% for several smaller-scale regional domains. The numerical wind atlas covers all of Egypt, whereas the meteorological stations are concentrated in six regions. The Wind Atlas for Egypt represents a significant step...

  16. Wind Characteristics of Coastal and Inland Surface Flows

    Science.gov (United States)

    Subramanian, Chelakara; Lazarus, Steven; Jin, Tetsuya

    2015-11-01

    Lidar measurements of the winds in the surface layer (up to 80 m) inland and near the beach are studied to better characterize the velocity profile and the effect of roughness. Mean and root-mean-squared profiles of horizontal and vertical wind components are analyzed. The effects of variable time (18, 60 and 600 seconds) averaging on the above profiles are discussed. The validity of common surface layer wind profile models to estimate skin friction drag is assessed in light of these measurements. Other turbulence statistics such as auto- and cross- correlations in spatial and temporal domains are also presented. The help of FIT DMES field measurement crew is acknowledged.

  17. An analysis of wind and solar energy resources for the State of Kuwait

    Science.gov (United States)

    Alhusainan, Haya Nasser

    Kuwait is an important producer of oil and gas. Its rapid socio-economic growth has been characterized by increasing population, high rates of urbanization, and substantial industrialization, which is transforming it into a large big energy consumer as well. In addition to urbanization, climatic conditions have played an important function in increasing demand for electricity in Kuwait. Electricity for thermal cooling has become essential in the hot desert climate, and its use has developed rapidly along with the economic development, urbanization, and population growth. This study examines the long-term wind and solar resources over the Kuwait to determine the feasibility of these resources as potential sustainable and renewable energy sources. The ultimate goal of this research is to help identify the potential role of renewable energy in Kuwait. This study will examine the drivers and requirements for the deployment of these energy sources and their possible integration into the electricity generation sector to illustrate how renewable energy can be a suitable resource for power production in Kuwait and to illustrate how they can also be used to provide electricity for the country. For this study, data from sixteen established stations monitored by the meteorological department were analyzed. A solar resource map was developed that identifies the most suitable locations for solar farm development. A range of different relevant variables, including, for example, electric networks, population zones, fuel networks, elevation, water wells, streets, and weather stations, were combined in a geospatial analysis to predict suitable locations for solar farm development and placement. An analysis of recommendations, future energy targets and strategies for renewable energy policy in Kuwait are then conducted. This study was put together to identify issues and opportunities related to renewable energy in the region, since renewable energy technologies are still limited in

  18. Design of a wind turbine-generator system considering the conformability to wind velocity fluctuations

    Energy Technology Data Exchange (ETDEWEB)

    Wakui, Tetsuya; Hashizume, Takumi; Outa, Eisuke

    1999-07-01

    The conformability of the rated power output of the wind turbine-generator system and of the wind turbine type to wind velocity fluctuations are investigated with a simulation model. The authors examine three types of wind turbines: the Darrieus-Savonius hybrid, the Darrieus proper and the Propeller. These systems are mainly operated at a constant tip speed ratio, which refers to a maximum power coefficient points. As a computed result of the net extracting power, the Darrieus turbine proper has little conformability to wind velocity fluctuations because of its output characteristics. As for the other turbines, large-scale systems do not always have an advantage over small-scale systems as the effect of its dynamic characteristics. Furthermore, it is confirmed that the net extracting power of the Propeller turbine, under wind direction fluctuation, is much reduced when compared with the hybrid wind turbine. Thus, the authors conclude that the appropriate rated power output of the system exists with relation to the wind turbine type for each wind condition.

  19. Wind Resource Assessment and Forecast Planning with Neural Networks

    Directory of Open Access Journals (Sweden)

    Nicolus K. Rotich

    2014-06-01

    Full Text Available In this paper we built three types of artificial neural networks, namely: Feed forward networks, Elman networks and Cascade forward networks, for forecasting wind speeds and directions. A similar network topology was used for all the forecast horizons, regardless of the model type. All the models were then trained with real data of collected wind speeds and directions over a period of two years in the municipal of Puumala, Finland. Up to 70th percentile of the data was used for training, validation and testing, while 71–85th percentile was presented to the trained models for validation. The model outputs were then compared to the last 15% of the original data, by measuring the statistical errors between them. The feed forward networks returned the lowest errors for wind speeds. Cascade forward networks gave the lowest errors for wind directions; Elman networks returned the lowest errors when used for short term forecasting.

  20. Characteristics of Wind Generated Waves in the Delaware Estuary

    Science.gov (United States)

    Chen, J. L.; Ralston, D. K.; Geyer, W. R.; Chant, R. J.; Sommerfield, C. K.

    2016-02-01

    Coastal marshes provide important services for human uses such as fishery industry, recreation, ports and marine operations. Bombay Hook Wildlife Refuge, located along the western shore of the Delaware Estuary, has experienced substantial loss of salt marsh in recent decades. To evaluate the importance of different mechanisms which cause observed shoreline retreat, wave gauges were deployed along the dredged navigation channel and shoreline in the Delaware Estuary. A coupled wave and circulation modeling system (SWAN/ROMS) based on the most recent bathymetry (last updated 2013) is validated with waves observed during both calm and energetic conditions in November 2015. Simulation results based on different model parameterizations of whitecapping, bottom friction and the wind input source are compared. The tendency of observed wave steepness is more similar to a revised whitecapping source term [Westhuysen, 2007] than the default in SWAN model. Both model results and field data show that the generation/dissipation of waves in the Delaware estuary is determined by the local wind speed and channel depth. Whitecapping-induced energy dissipation is dominant in the channel, while dissipation due to bottom friction and depth-induced breaking become important on lateral shoals. To characterize the effects of wind fetch on waves in estuaries more generally, simulations with an idealized domain and varying wind conditions are compared and the results are expressed in terms of non-dimensional parameters. The simulations based on a 10m-depth uniform idealized channel show that the dissipation of waves is mainly controlled by whitecapping in all wind conditions. Under strong wind conditions (wind speed >10m/s) the effect of bottom friction becomes important so the simulated wave heights are no longer linearly correlated with wind speed.

  1. Full scale measurement of wind induced pressures : 1 configuration of wind induced pressures

    NARCIS (Netherlands)

    Geurts, C.P.W.; Wijen, H.L.M.

    1994-01-01

    A research project 10 the spectral characteristics of wind induced pressures is in progress in Eindhoven. This project includes both wind tunnel and full scale measurements. Wind induced pressures are measured in full scale at the main building of Eindhoven University of Technology. This paper

  2. WindFloat Pacific Project, Final Scientific and Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Banister, Kevin [Principle Power, Inc., Emeryville, CA (United States)

    2017-01-17

    PPI’s WindFloat Pacific project (WFP) was an up to 30 MW floating offshore wind demonstration project proposed off the Coast of Oregon. The project was to be sited approximately 18 miles due west of Coos Bay, in over 1000 ft. of water, and is the first floating offshore wind array proposed in the United States, and the first offshore wind project of any kind proposed off the West Coast. PPI’s WindFloat, a semi-submersible foundation designed for high-capacity (6MW+) offshore wind turbines, is at the heart of the proposed project, and enables access to the world class wind resource at the project site and, equally, to other deep water, high wind resource areas around the country.

  3. Performance analysis of wind resource assessment software in different wind sites in México and Brazil

    OpenAIRE

    Jorio, Nyzar

    2010-01-01

    Renewable energy sources are increasing in order to provide power with minimal envi- ronmental impact. The most commercially advanced of these at present is wind power. The production and use of wind energy opens new opportunities for Latin American coun- tries to limit the emissions of carbon dioxide. It will provide a cleaner, sustainable, efficient and competitive energy matrix. According to the Latin American Wind Energy Association (LAWEA), Latin America has an installed capacity of only...

  4. Modelling wind speed parameters for computer generation of wind speed in Flanders. A case study using small wind turbines in an urban environment

    Energy Technology Data Exchange (ETDEWEB)

    Gay, Michael; Dessel, Michel van [Lessius Mechelen, Campus De Nayer (Belgium). Dept. of Applied Engineering; Driesen, Johan [Leuven Univ. (Belgium). Dept. of Electrical Engineering / ESAT

    2012-07-01

    The calculation of wind energy parameters is made for small wind turbines on moderate height in a suburban environment. After using the measured data, the same parameters were calculated using first order Markov chain computer generated data. Some characteristics of the wind and the wind power were preserved using Markov, other were not. (orig.)

  5. Basic Characteristics and Design of a Novel Hybrid Magnetic Bearing for Wind Turbines

    Directory of Open Access Journals (Sweden)

    Yanjun Yu

    2016-11-01

    Full Text Available This paper proposes a five-degree-of-freedom (5-DOF hybrid magnetic bearing (HMB for direct-drive wind turbines, which can realize suspension in the 4-DOF radial and 1-DOF axial directions. Only two sets of radial control windings are employed in the proposed HMB because only one set of radial control windings can achieve the 2-DOF suspension in the radial direction. Unlike the traditional active thrust magnetic bearings, this paper uses a cylindrical rotor core without a large thrust disc in the novel HMB. The numbers of the controller, power amplifier and system volume can be reduced in the magnetic suspension system. This paper also presents the structure and basic characteristics of the proposed magnetic bearing. A precision equivalent magnetic circuit analysis of the permanent magnet ring and control magnetic field is conducted in this study, in consideration of the non-uniform distribution of magnetic density. Accordingly, the mathematical models, including the suspension force expression, are derived based on the accurate equivalent magnetic circuit. The basic principle of the structure parameter design is presented, based on the given key parameters. The accuracy of the analytical method is further validated by 3D finite element analysis.

  6. Overview and Meteorological Validation of the Wind Integration National Dataset toolkit

    Energy Technology Data Exchange (ETDEWEB)

    Draxl, C. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Hodge, B. M. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Clifton, A. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); McCaa, J. [3TIER by VAisala, Seattle, WA (United States)

    2015-04-13

    The Wind Integration National Dataset (WIND) Toolkit described in this report fulfills these requirements, and constitutes a state-of-the-art national wind resource data set covering the contiguous United States from 2007 to 2013 for use in a variety of next-generation wind integration analyses and wind power planning. The toolkit is a wind resource data set, wind forecast data set, and wind power production and forecast data set derived from the Weather Research and Forecasting (WRF) numerical weather prediction model. WIND Toolkit data are available online for over 116,000 land-based and 10,000 offshore sites representing existing and potential wind facilities.

  7. European wind turbine testing procedure developments. Task 1: Measurement method to verify wind turbine performance characteristics

    DEFF Research Database (Denmark)

    Hunter, R.; Friis Pedersen, Troels; Dunbabin, P.

    2001-01-01

    There is currently significant standardisation work ongoing in the context of wind farm energy yield warranty assessment and wind turbine power performance testing. A standards maintenance team is revising the current IEC (EN) 61400-12 Ed 1 standard forwind turbine power performance testing....... The standard is being divided into four documents. Two of them are drafted for evaluation and verification of complete wind farms and of individual wind turbines within wind farms. This document, and the project itdescribes, has been designed to help provide a solid technical foundation for this revised...... standard. The work was wide ranging and addressed 'grey' areas of knowledge, regarding existing methodologies or to carry out basic research in support offundamentally new procedures. The work has given rise to recommendations in all areas of the work, including site calibration procedures, nacelle...

  8. Moroccan wind farm potential feasibility. Case study

    International Nuclear Information System (INIS)

    Nouri, Abdellatif; Ait Babram, Mohamed; Elwarraki, Elmostafa; Enzili, Mustapha

    2016-01-01

    Highlights: • A new methodology for the technical feasibility of wind farm potentials is proposed. • The wind resources of two different sites in Morocco are compared. • Comparison between short and long term data using multivariate analysis is made. • Geographic information system implementation. • A 10 MW wind farm is designed and optimized. - Abstract: The subject of this paper is the elaboration of a methodology to study the technical feasibility of a wind farm potential. The implementation of this methodology allows a comparison between the wind resources of two different sites in Morocco. One site is located in the region of Essaouira, whereas the other one is located in the region of Safi. The comparison is based on real wind data collected from two masts at the heights of 30, 50, and 60 m. Each of the masts is installed at one of the mentioned potential sites over a fixed time period, lasting fifteen months for the first site, and eight months for the second one. The aim is the determination of the most applicable site presenting a good potential for a statistical study in order to predict long-term wind behaviors. Thus, the geographical situation study of the chosen site including topography, roughness and obstacles, is carried out. Furthermore, the wind resource using data, generated by the measuring masts, is evaluated. Finally, the areas which present great wind potential are located and the wind farm turbine locations are optimized by using the WAsP software.

  9. Trend in China's Wind Power

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    @@ Attractive prospects for wind power development Sha Yiqiang:In recent years,the development and utilization of wind energy has achieved remarkable results.To the end of 2007,the installed capacity of the wind power had reached 94 000 MW all over the world,which is distributed over 60 countries.Over the past 20 years,the wind power generation installation cost has been reduced by 50% and is closing to that of the conventional energy resources.Meanwhile,the single unit capacity,efficiency and reliability of wind power have been greatly improved.

  10. Characteristics of Wind Power Projects in Mountainous Area and Techniques for Wind Turbine Installation%山区风电工程特点与风机吊装技术

    Institute of Scientific and Technical Information of China (English)

    张栋

    2014-01-01

    In recent years , mountains for domestic wind power development become higher , which also make the instal-lation of wind turbines a more difficult work .For wind power projects , it is now a major issue to complete the installation of wind turbines safely and efficiently on schedule .In this paper , practical experience from the second stage Luotuogou project in Hebei province is summarized .Characteristics of wind power projects in mountainous area and techniques for wind turbine installation are analyzed , which provide useful references to other wind turbine installation work in moun-tainous area .%近年来国内山区风电工程中山越来越高,风机安装难度越来越大,如何在紧张的工期下安全高效的完成风机安装,是每个风电施工企业面临的主要课题。以河北坝上骆驼沟二期风电场为例,对山区风电工程特点和风机吊装技术进行总结分析,以期对更多山区风机安装提供借鉴。

  11. Kansas Wind Energy Consortium

    Energy Technology Data Exchange (ETDEWEB)

    Gruenbacher, Don [Kansas State Univ., Manhattan, KS (United States)

    2015-12-31

    This project addresses both fundamental and applied research problems that will help with problems defined by the DOE “20% Wind by 2030 Report”. In particular, this work focuses on increasing the capacity of small or community wind generation capabilities that would be operated in a distributed generation approach. A consortium (KWEC – Kansas Wind Energy Consortium) of researchers from Kansas State University and Wichita State University aims to dramatically increase the penetration of wind energy via distributed wind power generation. We believe distributed generation through wind power will play a critical role in the ability to reach and extend the renewable energy production targets set by the Department of Energy. KWEC aims to find technical and economic solutions to enable widespread implementation of distributed renewable energy resources that would apply to wind.

  12. Four essays on offshore wind power potential, development, regulatory framework, and integration

    Science.gov (United States)

    Dhanju, Amardeep

    Offshore wind power is an energy resource whose potential in the US has been recognized only recently. There is now growing interest among the coastal states to harness the resource, particularly in states adjacent to the Mid-Atlantic Bight where the shallow continental shelf allows installation of wind turbines using the existing foundation technology. But the promise of bountiful clean energy from offshore wind could be delayed or forestalled due to policy and regulatory challenges. This dissertation is an effort to identify and address some of the important challenges. Focusing on Delaware as a case study it calculates the extent of the wind resource; considers one means to facilitate resource development---the establishment of statewide and regional public power authorities; analyzes possible regulatory frameworks to manage the resource in state-controlled waters; and assesses the use of distributed storage to manage intermittent output from wind turbines. In order to cover a diversity of topics, this research uses a multi-paper format with four essays forming the body of work. The first essay lays out an accessible methodology to calculate offshore wind resource potential using publicly available data, and uses this methodology to access wind resources off Delaware. The assessment suggests a wind resource approximately four times the average electrical load in Delaware. The second essay examines the potential role of a power authority, a quasi-public institution, in lowering the cost of capital, reducing financial risk of developing and operating a wind farm, and enhancing regional collaboration on resource development and management issues. The analysis suggests that a power authority can lower the cost of offshore wind power by as much as 1/3, thereby preserving the ability to pursue cost-competitive development even if the current federal incentives are removed. The third essay addresses the existing regulatory void in state-controlled waters of Delaware

  13. Wind Tunnel Measurements at LM Wind Power

    DEFF Research Database (Denmark)

    Bertagnolio, Franck

    2012-01-01

    This section presents the results obtained during the experimental campaign that was conducted in the wind tunnel at LM Wind Power in Lunderskov from August 16th to 26th, 2010. The goal of this study is to validate the so-called TNO trailing edge noise model through measurements of the boundary...... layer turbulence characteristics and the far-field noise generated by the acoustic scattering of the turbulent boundary layer vorticies as they convect past the trailing edge. This campaign was conducted with a NACA0015 airfoil section that was placed in the wind tunnel section. It is equipped with high...

  14. Wind Power Potential at Abandoned Mines in Korea

    Science.gov (United States)

    jang, M.; Choi, Y.; Park, H.; Go, W.

    2013-12-01

    This study performed an assessment of wind power potential at abandoned mines in the Kangwon province by analyzing gross energy production, greenhouse gas emission reduction and economic effects estimated from a 600 kW wind turbine. Wind resources maps collected from the renewable energy data center in Korea Institute of Energy Research(KIER) were used to determine the average wind speed, temperature and atmospheric pressure at hub height(50 m) for each abandoned mine. RETScreen software developed by Natural Resources Canada(NRC) was utilized for the energy, emission and financial analyses of wind power systems. Based on the results from 5 representative mining sites, we could know that the average wind speed at hub height is the most critical factor for assessing the wind power potential. Finally, 47 abandoned mines that have the average wind speed faster than 6.5 m/s were analyzed, and top 10 mines were suggested as relatively favorable sites with high wind power potential in the Kangwon province.

  15. Aerodynamic Characteristics of High Speed Trains under Cross Wind Conditions

    Science.gov (United States)

    Chen, W.; Wu, S. P.; Zhang, Y.

    2011-09-01

    Numerical simulation for the two models in cross-wind was carried out in this paper. The three-dimensional compressible Reynolds-averaged Navier-Stokes equations(RANS), combined with the standard k-ɛ turbulence model, were solved on multi-block hybrid grids by second order upwind finite volume technique. The impact of fairing on aerodynamic characteristics of the train models was analyzed. It is shown that, the flow separates on the fairing and a strong vortex is generated, the pressure on the upper middle car decreases dramatically, which leads to a large lift force. The fairing changes the basic patterns around the trains. In addition, formulas of the coefficient of aerodynamic force at small yaw angles up to 24° were expressed.

  16. Hourly temporal distribution of wind

    Science.gov (United States)

    Deligiannis, Ilias; Dimitriadis, Panayiotis; Koutsoyiannis, Demetris

    2016-04-01

    The wind process is essential for hydrometeorology and additionally, is one of the basic renewable energy resources. Most stochastic forecast models are limited up to daily scales disregarding the hourly scale which is significant for renewable energy management. Here, we analyze hourly wind timeseries giving emphasis on the temporal distribution of wind within the day. We finally present a periodic model based on statistical as well as hydrometeorological reasoning that shows good agreement with data. Acknowledgement: This research is conducted within the frame of the undergraduate course "Stochastic Methods in Water Resources" of the National Technical University of Athens (NTUA). The School of Civil Engineering of NTUA provided moral support for the participation of the students in the Assembly.

  17. Simulation of Small Wind Turbine Generation System Using Ring Winding Slotless PMSG by FEM

    OpenAIRE

    徳永, 翔平; 袈裟丸, 勝己; Tokunaga, Shohei; Kesamaru, Katsumi

    2011-01-01

    This paper describes a novel small wind turbine generation system with ring winding slotless PMSG. To reduce cogging torque, ring winding PM generator is used for a wind turbine generator. Using finite element analysis, the characteristics of slotless PMSGs are elucidated and the dynamic performance of the proposed system with MPPT control is represented. In this paper, the constant wind test and the quasi-natural wind test are conducted. The results of these tests indicate the proposed syste...

  18. Optimal Capacity Proportion and Distribution Planning of Wind, Photovoltaic and Hydro Power in Bundled Transmission System

    Science.gov (United States)

    Ye, X.; Tang, Q.; Li, T.; Wang, Y. L.; Zhang, X.; Ye, S. Y.

    2017-05-01

    The wind, photovoltaic and hydro power bundled transmission system attends to become common in Northwest and Southwest of China. To make better use of the power complementary characteristic of different power sources, the installed capacity proportion of wind, photovoltaic and hydro power, and their capacity distribution for each integration node is a significant issue to be solved in power system planning stage. An optimal capacity proportion and capacity distribution model for wind, photovoltaic and hydro power bundled transmission system is proposed here, which considers the power out characteristic of power resources with different type and in different area based on real operation data. The transmission capacity limit of power grid is also considered in this paper. Simulation cases are tested referring to one real regional system in Southwest China for planning level year 2020. The results verify the effectiveness of the model in this paper.

  19. Current scenario of the wind energy in Pakistan challenges and future perspectives: A case study

    Directory of Open Access Journals (Sweden)

    Mazhar H. Baloch

    2016-11-01

    Full Text Available Electricity plays an important role in the socioeconomic growth and social prosperity of any country. It is to be considered as the basic need for human development. Nowadays, low production of electricity is a serious problem in Pakistan, which directly restricts the development of the state. One-third of Pakistan’s population does not have any electricity in the rural areas and about 10–12 hours load shedding in urban areas and is quite common. Although, the state of Pakistan always shows a deficit in the conventional resources, but no progress was also being made in the renewable resources such as the wind and solar energy. Therefore, it is better to utilize these natural assets in order to fulfill the electricity supply the country. In this manuscript, our main objective is to study and outlooks the country energy profile situation vis-à-vis wind energy potential characteristics of the most important wind corridor in the southern part of the country. Pakistan has around 1100 kilometers (km coastal line for the wind energy potential, but in this manuscript, we have chosen one of the most suitable wind corridors of the southern part of the country. We also tried to prove theoretically that this wind zone is more favorable for country consumer demand. Moreover, future perspective and the major challenges during windmill implementation is also being discussed herein.

  20. Generation of electricity by wind power

    Energy Technology Data Exchange (ETDEWEB)

    Golding, E W

    1976-01-01

    Information on wind power is presented concerning the history of windmills; estimation of the energy obtainable from the wind; wind characteristics and distribution; wind power sites; wind surveys; wind flow over hills; measurement of wind velocity; wind structure and its determination; wind data and energy estimation; testing of wind driven ac generators; wind-driven machines; propeller type windmills; plants for isolated premises and small communities; economy of wind power generation; construction costs for large wind-driven generators; relationship of wind power to other power sources; research and development; and international cooperation.

  1. Status report of wind energy programs in the Philippines

    Energy Technology Data Exchange (ETDEWEB)

    Benavidez, P.J. [National Power Corp., Quezon City (Philippines)

    1996-12-31

    This paper discusses the wind resource assessment activities being undertaken by the National Power Corporation at the extreme northern part of Luzon island. Preliminary results from the 10-month wind data are presented. This will give prospective wind developers all idea oil tile vast resources of wind energy available in the northern part of the country. This paper will also discuss briefly the stand-alone 10 kW wind turbine system that was commissioned early this year and the guidelines being drafted for the entry of new and renewable energy sources in the country`s energy generation mix. 4 figs., 1 tab.

  2. Apparatus and method for using radar to evaluate wind flow fields for wind energy applications

    Science.gov (United States)

    Schroeder, John; Hirth, Brian; Guynes, Jerry

    2017-02-21

    The present invention provides an apparatus and method for obtaining data to determine one or more characteristics of a wind flow field using one or more radars. Data is collected from the one or more radars, and analyzed to determine the one or more characteristics of the wind flow field. The one or more radars are positioned to have a portion of the wind flow field within a scanning sector of the one or more radars.

  3. The Potential of hybrid solar-wind electricity generation in Ghana

    International Nuclear Information System (INIS)

    Tibiru, Ayirewura Vitus

    2013-07-01

    In this work the potential of harnessing electricity from solar and wind sources in Ghana is evaluated both quantitatively and qualitatively. In this regard solar, wind and other relevant data were collected (over a period of one year) from various parts of Ghana. Detailed assessment of the capacity or potential of power production from hybrid solar-wind sources is done with the use of empirical mathematical formulae and the PRO VITUS model incorporated in the 'ENERGY X' software. The various characteristics of wind, solar and available energy resources for the five locations over a one year period have been studied too. The annual mean wind speed at a height of 10 m above ground level for five locations namely Accra, Kumasi, Takoradi, Sunyani and Tamale are 2.38 ms"-"1 ± 0.05, 2.39 ms"-"1 ± 0.05, 2.38 ms"-"1 ± 0.06, 2.18 ms"-"1 ± 0.05 and 2.47 ± ms"-"1 respectively and their corresponding annual mean solar radiations are 228.71 Wm"-"2 ± 9.81, 187.69 Wm"-"2 ± 9.60, 236.58 Wm"-"2 ± 10.39, 200.99 Wm"-"2 ± 9.88 and 231.63 Wm"-"2 . Thus, the five sites hold potential for hybrid solar-wind energy exploitation. (au)

  4. Cup anemometer response to the wind turbulence-measurement of the horizontal wind variance

    Directory of Open Access Journals (Sweden)

    S. Yahaya

    2004-11-01

    Full Text Available This paper presents some dynamic characteristics of an opto-electronic cup anemometer model in relation to its response to the wind turbulence. It is based on experimental data of the natural wind turbulence measured both by an ultrasonic anemometer and two samples of the mentioned cup anemometer. The distance constants of the latter devices measured in a wind tunnel are in good agreement with those determined by the spectral analysis method proposed in this study. In addition, the study shows that the linear compensation of the cup anemometer response, beyond the cutoff frequency, is limited to a given frequency, characteristic of the device. Beyond this frequency, the compensation effectiveness relies mainly on the wind characteristics, particularly the direction variability and the horizontal turbulence intensity. Finally, this study demonstrates the potential of fast cup anemometers to measure some turbulence parameters (like wind variance with errors of the magnitude as those deriving from the mean speed measurements. This result proves that fast cup anemometers can be used to assess some turbulence parameters, especially for long-term measurements in severe climate conditions (icing, snowing or sandy storm weathers.

  5. Wind Energy: Trends And Enabling Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Devabhaktuni, Vijay; Alam, Mansoor; Boyapati, Premchand; Chandna, Pankaj; Kumar, Ashok; Lack, Lewis; Nims, Douglas; Wang, Lingfeng

    2010-09-15

    With attention now focused on the damaging impact of greenhouse gases, wind energy is rapidly emerging as a low carbon, resource efficient, cost-effective sustainable technology in many parts of the world. Despite higher economic costs, offshore appears to be the next big step in wind energy development alternative because of the space scarcity for installation of onshore wind turbine. This paper presents the importance of off-shore wind energy, the wind farm layout design, the off-shore wind turbine technological developments, the role of sensors and the smart grid, and the challenges and future trends of wind energy.

  6. On mean wind and turbulence profile measurements from ground-based wind lidars

    DEFF Research Database (Denmark)

    Mikkelsen, Torben

    2009-01-01

    Two types of wind lidar?s have become available for ground-based vertical mean wind and turbulence profiling. A continuous wave (CW) wind lidar, and a pulsed wind lidar. Although they both are build upon the same recent 1.55 μ telecom fibre technology, they possess fundamental differences between...... their temporal and spatial resolution capabilities. A literature review of the two lidar systems spatial and temporal resolution characteristics will be presented, and the implication for the two lidar types vertical profile measurements of mean wind and turbulence in the lower atmospheric boundary layer...

  7. Development of a methodology to assess the climate evolution and its impacts on wind energy

    Energy Technology Data Exchange (ETDEWEB)

    Simard, I. [Moncton Univ., NB (Canada); Yu, W. [Moncton Univ., NB (Canada). Meteorological Research Div.; Gagnon, Y. [Moncton Univ., NB (Canada). K.C. Irving Chair in Sustainable Development

    2010-07-01

    Maps of wind resources were used to develop a method of evaluating climatic changes and their potential impacts on wind energy resources. Global IPCC climate change scenarios were used to predict climatic conditions for the future, while past wind resource availability was simulated and validated using NCEP and NCAR reanalysis data as well as observed meteorological data from Environment Canada. The simulations were used to compare each 5-year period with a 50-year reference period. Regional scale climate change impacts were evaluated using a statistical dynamic down-scaling method. Advanced meteorological models were used to predict wind flow patterns across specific landscapes. The evolution of past wind resource availability was then simulated. Five-year wind resource simulations for a 50-year period were simulated at 25 km{sup 2} wind speeds at 80 m above the ground. Average wind speed variations were then evaluated. The method has been used to simulate 5-year periods within a 50-year reference period in New Brunswick. Further studies will be conducted to simulate future wind resources availability. tabs., figs.

  8. The future of wind is growing larger

    International Nuclear Information System (INIS)

    Hansen, Jesper

    1999-01-01

    This article highlights the dramatic developments in wind turbines over the last 20 years, and notes the increase in efficiency, reduced noise emissions, improvements in manufacturing , and refined resource assessment tools. A summary of the wind turbine market is tabulated, and the increasing size of wind turbines, the assembly of the wind turbines, and current designs are discussed. (UK)

  9. Small Wind Electric Systems: A Virginia Consumer's Guide

    Energy Technology Data Exchange (ETDEWEB)

    2003-06-01

    The purpose of the Small Wind Electric Systems Consumer's: A Virginia Consumer's Guide is to provide consumers with enough information to help them determine if a small wind electric system will work for them based on their wind resource, the type and size of their sites, and their economics. The cover of this guide contains a Virginia wind resource map and information about state incentives and contacts for more information.

  10. Potential Offshore Wind Energy Areas in California: An Assessment of Locations, Technology, and Costs

    Energy Technology Data Exchange (ETDEWEB)

    Musial, Walter [National Renewable Energy Lab. (NREL), Golden, CO (United States); Beiter, Philipp [National Renewable Energy Lab. (NREL), Golden, CO (United States); Tegen, Suzanne [National Renewable Energy Lab. (NREL), Golden, CO (United States); Smith, Aaron [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-12-01

    This report summarizes a study of possible offshore wind energy locations, technologies, and levelized cost of energy in the state of California between 2015 and 2030. The study was funded by the U.S. Department of the Interior's Bureau of Ocean Energy Management (BOEM), the federal agency responsible for regulating renewable energy development on the Outer Continental Shelf. It is based on reference wind energy areas where representative technology and performance characteristics were evaluated. These reference areas were identified as sites that were suitable to represent offshore wind cost and technology based on physical site conditions, wind resource quality, known existing site use, and proximity to necessary infrastructure. The purpose of this study is to assist energy policy decision-making by state utilities, independent system operators, state government officials and policymakers, BOEM, and its key stakeholders. The report is not intended to serve as a prescreening exercise for possible future offshore wind development.

  11. Small Wind Electric Systems: A U.S. Consumer's Guide

    International Nuclear Information System (INIS)

    O'Dell, K.

    2001-01-01

    The U.S. Consumer's Guide for Small Wind Electric systems provides consumers with enough information to help them determine if a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include: how to make your home more energy efficient, how to choose the right size turbine, the parts of a wind electric system, determining if there is enough wind resource on your site, choosing the best site for your turbine, connecting your system to the utility grid, and if it's possible to become independent of the utility grid using wind energy

  12. Small Wind Electric Systems: A Kansas Consumer's Guide

    International Nuclear Information System (INIS)

    O'Dell, K.

    2001-01-01

    The Kansas Consumer's Guide for Small Wind Electric Systems provides consumers with enough information to help them determine if a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include: how to make your home more energy efficient, how to choose the right size turbine, the parts of a wind electric system, determining if there is enough wind resource on your site, choosing the best site for your turbine, connecting your system to the utility grid, and if it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of state incentives and state contacts for more information

  13. Attractiveness Evaluation of Investment in Wind Energy Projects

    Directory of Open Access Journals (Sweden)

    Paulius Rudzkis

    2012-07-01

    Full Text Available Last decade as prices of fossil energy resources were almost constantly going upwards, increasing flow of investments is directed to renewable energy resources. Development and application of green energy became one of priority objectives in many countries. While in the context of wind energy production Lithuania lags behind the EU average, its potential of wind energy usage has great perspective. In this article using random processes, cost-benefit and financial analysis, attractiveness of investment in wind energy projects is examined. Given the stochastic nature of wind energy and by looking into investment profitableness and risk factors, effectiveness of wind turbine is evaluated. Analysis showed that wind energy projects could be considered as having high profit-to-risk factor and should generate significant interest of investment community.

  14. Atmospheric air density analysis with Meteo-40S wind monitoring system

    Directory of Open Access Journals (Sweden)

    Zahariea Dănuţ

    2017-01-01

    Full Text Available In order to estimate the wind potential of wind turbine sites, the wind resource maps can be used for mean annual wind speed, wind speed frequency distribution and mean annual wind power density determination. The general evaluation of the wind resource and the wind turbine ratings are based on the standard air density measured at sea level and at 15°C, ρs=1.225 kg/m3. Based on the experimental data obtained for a continental climate specific location, this study will present the relative error between the standard air density and the density of the dry and the moist air. Considering a cold day, for example on Friday 10th February 2017, on 1-second measurement rate and 10-minute measuring interval starting at 16:20, the mean relative errors obtained are 10.4145% for dry air, and 10.3634% for moist air. Based on these results, a correction for temperature, atmospheric air pressure and relative humidity should be always considered for wind resource assessment, as well as for the predicting the wind turbines performance.

  15. WIND SPEED Monitoring in Northern Eurasia

    Science.gov (United States)

    Bulygina, O.; Korshunova, N. N.; Razuvaev, V. N.; Groisman, P. Y.

    2016-12-01

    The wind regime of Russia varies a great deal due to the large size of the country's territory and variety of climate and terrain conditions. Changes in the regime of surface wind are of great practical importance. They can affect heat and water balance. Strong wind is one of the most hazardous meteorological event for various sectors of economy and for infrastructure. The main objective of this research is to monitoring wind speed change in Northern Eurasia At meteorological stations wind speed and wind direction are measured at the height of 10-12 meters over the land surface with the help of wind meters or wind wanes. Calculations were made on the basis of data for the period of 1980-2015. It allowed the massive scale disruption of homogeneity to be eliminated and sufficient period needed to obtain sustainable statistic characteristics to be retained. Data on average and maximum wind speed measured at 1457 stations of Russia were used. The analysis of changes in wind characteristics was made on the basis of point data and series of average characteristics obtained for 18 quasi-homogeneous climatic regions. Statistical characteristics (average and maximum values of wind speed, prevailing wind direction, values of the boundary of the 90%, 95% and 99%-confidence interval in the distribution of maximum wind speed) were obtained for all seasons and for the year as a whole. Values of boundaries of the 95% and 99%-confidence interval in the distribution of maximum wind speed were considered as indicators of extremeness of the wind regime. The trend of changes in average and maximum wind speed was assessed with a linear trend coefficient. A special attention was paid to wind changes in the Arctic where dramatic changes in surface air temperature and sea ice extent and density have been observed during the past decade. The analysis of the results allowed seasonal and regional features of changes in the wind regime on the territory of the northern part of Eurasia to be

  16. Planning your first wind power project. A primer for utilities: Everything you need to know to bring your first wind power plant on-line

    International Nuclear Information System (INIS)

    Conover, K.; Davis, E.

    1994-12-01

    This primer has been prepared to help utility personnel become familiar with some or the details relative to wind power technology and project development. It is written as a series of relatively independent chapters to address specific topics or phases of wind power evaluation and development as they might occur within a utility. The topics include: wind prospecting and the first pass analysis, resource validation, project feasibility, resource planning and evaluation, resource acquisition, project development, equipment selection, project design and construction, and plant operation and maintenance

  17. Mastering the power of wind

    International Nuclear Information System (INIS)

    Stiegel, J.

    1999-01-01

    In this paper the author deals with environmental aspects use of fossil fuels for the energy production. As a way for our planet to get back to a normal and ecologically balanced system the fossil fuels reduction and their replacement by renewable racecourses is recommended. Energetic potential of flowing sun, wind and tidal waves as power resources is discussed. The natural ecological resources are best utilised in the United States where the installed wind power output is 1600 MW. With 360 MW installed output in 1991 the Denmark took lead among European countries in utilising the wind power. The most dynamic power plant development among the European Union countries was recorded in Germany, where the installed power output of the wind power plants is 632 MW, i.e. i.e. 11.5 times higher compared to 55 MW in 1991. The economy of wind power in Germany and in Slovakia is compared. In Slovakia with annual 200 000 kWh power generation annually and the present kWh purchase price guarantee the rate of return of 10 million slovak crowns investment into a wind power plant project is in 100 years. Although the first wind power plants have already been built in the Zahorie, Kremnicke Bane, and Secovce regions, the wind exploitation status in Slovakia is still limping. According to professionals, the wind conditions in Slovakia are not ideal, but sufficient for a supplementary wind power plant system, that can be quite motivating especially for villages. Mount Chopok or mount Krizna are ideal sites to erect the three-blade tower with respect to wind speed. And also the anticipated Kremnicke vrchy site is worth considering. (author)

  18. Perception of temperature and wind by users of public outdoor spaces: relationships with weather parameters and personal characteristics.

    Science.gov (United States)

    Andrade, Henrique; Alcoforado, Maria-João; Oliveira, Sandra

    2011-09-01

    We aim to understand the relationship between people's declared bioclimatic comfort, their personal characteristics (age, origin, clothing, activity and motivation, etc.) and the atmospheric conditions. To attain this goal, questionnaire surveys were made concurrently with weather measurements (air temperature, relative humidity, solar and long-wave radiation and wind speed) in two open leisure areas of Lisbon (Portugal), during the years 2006 and 2007. We analysed the desire expressed by the interviewees to decrease, maintain or increase the values of air temperature and wind speed, in order to improve their level of comfort. Multiple logistic regression was used to analyse the quantitative relation between preference votes and environmental and personal parameters. The preference for a different temperature depends on the season and is strongly associated with wind speed. Furthermore, a general decrease of discomfort with increasing age was also found. Most people declared a preference for lower wind speed in all seasons; the perception of wind shows significant differences depending on gender, with women declaring a lower level of comfort with higher wind speed. It was also found that the tolerance of warmer conditions is higher than of cooler conditions, and that adaptive strategies are undertaken by people to improve their level of comfort outdoors.

  19. Siting guidelines for utility application of wind turbines. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Pennell, W.T.

    1983-01-01

    Utility-oriented guidelines are described for identifying viable sites for wind turbines. Topics and procedures are also discussed that are important in carrying out a wind turbine siting program. These topics include: a description of the Department of Energy wind resource atlases; procedures for predicting wind turbine performance at potential sites; methods for analyzing wind turbine economics; procedures for estimating installation and maintenance costs; methods for anlayzing the distribution of wind resources over an area; and instrumentation for documenting wind behavior at potential sites. The procedure described is applicable to small and large utilities. Although the procedure was developed as a site-selection tool, it can also be used by a utility who wishes to estimate the potential for wind turbine penetration into its future generation mix.

  20. Variability in large-scale wind power generation: Variability in large-scale wind power generation

    Energy Technology Data Exchange (ETDEWEB)

    Kiviluoma, Juha [VTT Technical Research Centre of Finland, Espoo Finland; Holttinen, Hannele [VTT Technical Research Centre of Finland, Espoo Finland; Weir, David [Energy Department, Norwegian Water Resources and Energy Directorate, Oslo Norway; Scharff, Richard [KTH Royal Institute of Technology, Electric Power Systems, Stockholm Sweden; Söder, Lennart [Royal Institute of Technology, Electric Power Systems, Stockholm Sweden; Menemenlis, Nickie [Institut de recherche Hydro-Québec, Montreal Canada; Cutululis, Nicolaos A. [DTU, Wind Energy, Roskilde Denmark; Danti Lopez, Irene [Electricity Research Centre, University College Dublin, Dublin Ireland; Lannoye, Eamonn [Electric Power Research Institute, Palo Alto California USA; Estanqueiro, Ana [LNEG, Laboratorio Nacional de Energia e Geologia, UESEO, Lisbon Spain; Gomez-Lazaro, Emilio [Renewable Energy Research Institute and DIEEAC/EDII-AB, Castilla-La Mancha University, Albacete Spain; Zhang, Qin [State Grid Corporation of China, Beijing China; Bai, Jianhua [State Grid Energy Research Institute Beijing, Beijing China; Wan, Yih-Huei [National Renewable Energy Laboratory, Transmission and Grid Integration Group, Golden Colorado USA; Milligan, Michael [National Renewable Energy Laboratory, Transmission and Grid Integration Group, Golden Colorado USA

    2015-10-25

    The paper demonstrates the characteristics of wind power variability and net load variability in multiple power systems based on real data from multiple years. Demonstrated characteristics include probability distribution for different ramp durations, seasonal and diurnal variability and low net load events. The comparison shows regions with low variability (Sweden, Spain and Germany), medium variability (Portugal, Ireland, Finland and Denmark) and regions with higher variability (Quebec, Bonneville Power Administration and Electric Reliability Council of Texas in North America; Gansu, Jilin and Liaoning in China; and Norway and offshore wind power in Denmark). For regions with low variability, the maximum 1 h wind ramps are below 10% of nominal capacity, and for regions with high variability, they may be close to 30%. Wind power variability is mainly explained by the extent of geographical spread, but also higher capacity factor causes higher variability. It was also shown how wind power ramps are autocorrelated and dependent on the operating output level. When wind power was concentrated in smaller area, there were outliers with high changes in wind output, which were not present in large areas with well-dispersed wind power.

  1. Agua Caliente Wind/Solar Project at Whitewater Ranch

    Energy Technology Data Exchange (ETDEWEB)

    Hooks, Todd [Agua Caliente Band of Cahuilla Indians, Palm Springs, CA (United States); Stewart, Royce [Red Mountain Energy Partners, Sante Fe, NM (United States)

    2014-12-16

    Agua Caliente Band of Cahuilla Indians (ACBCI) was awarded a grant by the Department of Energy (DOE) to study the feasibility of a wind and/or solar renewable energy project at the Whitewater Ranch (WWR) property of ACBCI. Red Mountain Energy Partners (RMEP) was engaged to conduct the study. The ACBCI tribal lands in the Coachella Valley have very rich renewable energy resources. The tribe has undertaken several studies to more fully understand the options available to them if they were to move forward with one or more renewable energy projects. With respect to the resources, the WWR property clearly has excellent wind and solar resources. The DOE National Renewable Energy Laboratory (NREL) has continued to upgrade and refine their library of resource maps. The newer, more precise maps quantify the resources as among the best in the world. The wind and solar technology available for deployment is also being improved. Both are reducing their costs to the point of being at or below the costs of fossil fuels. Technologies for energy storage and microgrids are also improving quickly and present additional ways to increase the wind and/or solar energy retained for later use with the network management flexibility to provide power to the appropriate locations when needed. As a result, renewable resources continue to gain more market share. The transitioning to renewables as the major resources for power will take some time as the conversion is complex and can have negative impacts if not managed well. While the economics for wind and solar systems continue to improve, the robustness of the WWR site was validated by the repeated queries of developers to place wind and/or solar there. The robust resources and improving technologies portends toward WWR land as a renewable energy site. The business case, however, is not so clear, especially when the potential investment portfolio for ACBCI has several very beneficial and profitable alternatives.

  2. New England Wind Forum: A Wind Powering America Project, Volume 1, Issue 3 -- October 2007 (Newsletter)

    Energy Technology Data Exchange (ETDEWEB)

    Grace, R. C.; Gifford, J.

    2007-10-01

    The New England Wind Forum electronic newsletter summarizes the latest news in wind energy development activity, markets, education, and policy in the New England region. It also features an interview with a key figure influencing New England's wind energy development. Volume 1, Issue 3 features an interview with Andrew Dzykewicz, Commissioner of the Rhode Island Office of Energy Resources.

  3. Wind Generation Feasibility Study in Bethel, AK

    Energy Technology Data Exchange (ETDEWEB)

    Tom Humphrey, YKHC; Lance Kincaid, EMCOR Energy & Technologies

    2004-07-31

    This report studies the wind resources in the Yukon-Kuskokwim Health Corporation (YKHC) region, located in southwestern Alaska, and the applicability of wind generation technologies to YKHC facilities.

  4. National Wind Technology Center sitewide, Golden, CO: Environmental assessment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-11-01

    The National Renewable Energy Laboratory (NREL), the nation`s primary solar and renewable energy research laboratory, proposes to expand its wind technology research and development program activities at its National Wind Technology Center (NWTC) near Golden, Colorado. NWTC is an existing wind energy research facility operated by NREL for the US Department of Energy (DOE). Proposed activities include the construction and reuse of buildings and facilities, installation of up to 20 wind turbine test sites, improvements in infrastructure, and subsequent research activities, technology testing, and site operations. In addition to wind turbine test activities, NWTC may be used to support other NREL program activities and small-scale demonstration projects. This document assesses potential consequences to resources within the physical, biological, and human environment, including potential impacts to: air quality, geology and soils, water resources, biological resources, cultural and historic resources, socioeconomic resources, land use, visual resources, noise environment, hazardous materials and waste management, and health and safety conditions. Comment letters were received from several agencies in response to the scoping and predecisional draft reviews. The comments have been incorporated as appropriate into the document with full text of the letters contained in the Appendices. Additionally, information from the Rocky Flats Environmental Technology Site on going sitewide assessment of potential environmental impacts has been reviewed and discussed by representatives of both parties and incorporated into the document as appropriate.

  5. National Wind Technology Center sitewide, Golden, CO: Environmental assessment

    International Nuclear Information System (INIS)

    1996-11-01

    The National Renewable Energy Laboratory (NREL), the nation's primary solar and renewable energy research laboratory, proposes to expand its wind technology research and development program activities at its National Wind Technology Center (NWTC) near Golden, Colorado. NWTC is an existing wind energy research facility operated by NREL for the US Department of Energy (DOE). Proposed activities include the construction and reuse of buildings and facilities, installation of up to 20 wind turbine test sites, improvements in infrastructure, and subsequent research activities, technology testing, and site operations. In addition to wind turbine test activities, NWTC may be used to support other NREL program activities and small-scale demonstration projects. This document assesses potential consequences to resources within the physical, biological, and human environment, including potential impacts to: air quality, geology and soils, water resources, biological resources, cultural and historic resources, socioeconomic resources, land use, visual resources, noise environment, hazardous materials and waste management, and health and safety conditions. Comment letters were received from several agencies in response to the scoping and predecisional draft reviews. The comments have been incorporated as appropriate into the document with full text of the letters contained in the Appendices. Additionally, information from the Rocky Flats Environmental Technology Site on going sitewide assessment of potential environmental impacts has been reviewed and discussed by representatives of both parties and incorporated into the document as appropriate

  6. Investigating the potential and feasibility of an offshore wind farm in the Northern Adriatic Sea

    International Nuclear Information System (INIS)

    Schweizer, Joerg; Antonini, Alessandro; Govoni, Laura; Gottardi, Guido; Archetti, Renata; Supino, Enrico; Berretta, Claudia; Casadei, Carlo; Ozzi, Claudia

    2016-01-01

    Highlights: • First feasibility study for an offshore wind farm in the Northern Adriatic Sea. • Field wind and wave data collected at the site. • Site-specific design of transition piece and foundation. • Economical and technical feasibility applied to four different scenarios. - Abstract: The use of offshore wind power is becoming increasingly important towards a sustainable growth worldwide. In Italy, as well as in other countries where wind energy is provided only by onshore plants, the interest in the deployment of offshore wind resources is rapidly growing, despite relatively modest average wind speeds, compared to typical wind conditions in the North Sea. Research efforts have, so far, addressed the exploration of the most promising locations, based on wind characteristics; however, more extended evidence of technical and economic feasibility is now needed to raise awareness in the decision makers and secure to this source of renewable energy a proper role in the future energy policies. Within such a context, the paper presents the first feasibility study for the development of an offshore wind farm off the coast of Rimini, in the Northern Adriatic Sea. The study is based on an anemometric campaign started at the site in 2008 to provide a statistical assessment of the wind characteristics and the related wind energy potential, and on a 10-year wave measurement record next to the area, together with a thorough analysis of the site geological and environmental characteristics. Environmental data are interpreted with a proper consideration of the extreme events distribution and relevant results are used to select the most appropriate commercially available wind turbine and to design the site-specific support structure. A comprehensive evaluation of the investment costs and revenues is then carried out with reference to two wind farm layouts (a first smaller, constituted of 15 elements, and another one, featuring up to 60 elements) and in relation to two

  7. The Current Situation of Wind Energy in Turkey

    Directory of Open Access Journals (Sweden)

    Raşit Ata

    2013-01-01

    Full Text Available Wind energy applications and turbine installations at different scales have increased since the beginning of this century. As wind energy is an alternative clean energy source compared to the fossil fuels that pollute the atmosphere, systems that convert wind energy to electricity have developed rapidly. Turkey’s domestic fossil fuel resources are extremely limited. In addition, Turkey’s geographical location has several advantages for extensive use of wind power. In this context, renewable energy resources appear to be one of the most efficient and effective solutions for sustainable energy development and environmental pollution prevention in Turkey. Among the renewable sources, Turkey has very high wind energy potential. According to the Organization for Economic Cooperation and Development (OECD Turkey theoretically has 166 TWh a year of wind potential. However the installed wind power capacity is approximately 14% of total economical wind potential. In this study, Turkey’s installed electric power capacity and electric energy production are investigated and also the current situation of wind energy in Turkey is examined. The wind data used in this study were taken from Turkish Wind Energy Association (TUREB for the year 2012. This paper reviews the assessment of wind energy in Turkey as of the end of July 2012 including wind energy applications.

  8. Predicting higher education graduation rates from institutional characteristics and resource allocation

    Directory of Open Access Journals (Sweden)

    Florence A. Hamrick

    2004-05-01

    Full Text Available This study incorporated institutional characteristics (e.g., Carnegie type, selectivity and resource allocations (e.g., instructional expenditures, student affairs expenditures into a statistical model to predict undergraduate graduation rates. Instructional expenditures, library expenditures, and a number of institutional classification variables were significant predictors of graduation rates. Based on these results, recommendations as well as warranted cautions are included about allocating academic financial resources to optimize graduation rates

  9. Winds at the Phoenix landing site

    DEFF Research Database (Denmark)

    Holstein-Rathlou, C.; Gunnlaugsson, H.P.; Merrison, J.P.

    2010-01-01

    Wind speeds and directions were measured on the Phoenix Lander by a mechanical anemometer, the so-called Telltale wind indicator. Analysis of images of the instrument taken with the onboard imager allowed for evaluation of wind speeds and directions. Daily characteristics of the wind data are hig...

  10. Energy resources of the Denver and Cheyenne Basins, Colorado - resource characteristics, development potential, and environmental problems. Environmental Geology 12

    International Nuclear Information System (INIS)

    Kirkham, R.M.; Ladwig, L.R.

    1980-01-01

    The geological characteristics, development potential, and environmental problems related to the exploration for and development of energy resources in the Denver and Cheyenne Basins of Colorado were investigated. Coal, lignite, uranium, oil and natural gas were evaluated. Emphasis is placed on environmental problems that may develop from the exploration for an extraction of these energy resources

  11. Time Series Model of Wind Speed for Multi Wind Turbines based on Mixed Copula

    Directory of Open Access Journals (Sweden)

    Nie Dan

    2016-01-01

    Full Text Available Because wind power is intermittent, random and so on, large scale grid will directly affect the safe and stable operation of power grid. In order to make a quantitative study on the characteristics of the wind speed of wind turbine, the wind speed time series model of the multi wind turbine generator is constructed by using the mixed Copula-ARMA function in this paper, and a numerical example is also given. The research results show that the model can effectively predict the wind speed, ensure the efficient operation of the wind turbine, and provide theoretical basis for the stability of wind power grid connected operation.

  12. Kaneohe, Hawaii Wind Resource Assessment Report

    Energy Technology Data Exchange (ETDEWEB)

    Robichaud, R.; Green, J.; Meadows, B.

    2011-11-01

    The Department of Energy (DOE) has an interagency agreement to assist the Department of Defense (DOD) in evaluating the potential to use wind energy for power at residential properties at DOD bases in Hawaii. DOE assigned the National Renewable Energy Laboratory (NREL) to facilitate this process by installing a 50-meter (m) meteorological (Met) tower on residential property associated with the Marine Corps Base Housing (MCBH) Kaneohe Bay in Hawaii.

  13. Study on characteristics of water resources in Beijing in recent 15 years

    Science.gov (United States)

    Chuan, L. M.; Zheng, H. G.; Zhao, J. J.; Wang, A. L.; Zhang, X. J.

    2018-02-01

    In order to understand the characteristics of water supply and water usage in Beijing in recent 15 years, a variety of statistical datasets were collected and field investigations were carried out, to analyze the total water resource, the characteristics and trends of water resource supply, utilization and distribution during 2000-2014. The results showed that the total amount of water resources in Beijing is maintained at 1.61~3.95 billion m3, and the surface water accounts for about 1/3, and the groundwater accounts for 2/3. Agricultural water and living water were the dominated consumption in the past 15 years in Beijing, accounted for 35.3% and 38.9% of the total amount, followed by industrial water, which accounting for 17.9% of total water consumption, and water used in environment is relatively small, only accounting for 7.8% of the total amount. This study can provide theoretical support for the establishment and management of water conservation policies and the rational utilization of water resources in Beijing.

  14. Computer Programs for Calculating and Plotting the Stability Characteristics of a Balloon Tethered in a Wind

    Science.gov (United States)

    Bennett, R. M.; Bland, S. R.; Redd, L. T.

    1973-01-01

    Computer programs for calculating the stability characteristics of a balloon tethered in a steady wind are presented. Equilibrium conditions, characteristic roots, and modal ratios are calculated for a range of discrete values of velocity for a fixed tether-line length. Separate programs are used: (1) to calculate longitudinal stability characteristics, (2) to calculate lateral stability characteristics, (3) to plot the characteristic roots versus velocity, (4) to plot the characteristic roots in root-locus form, (5) to plot the longitudinal modes of motion, and (6) to plot the lateral modes for motion. The basic equations, program listings, and the input and output data for sample cases are presented, with a brief discussion of the overall operation and limitations. The programs are based on a linearized, stability-derivative type of analysis, including balloon aerodynamics, apparent mass, buoyancy effects, and static forces which result from the tether line.

  15. Analysis of economics of investment in a wind-farm system

    International Nuclear Information System (INIS)

    Ali, F; Nayyar, A.H.

    2005-01-01

    With the constant increase in the cost of generating electricity through conventional means, there is a growing need to look for other sources of energy. Renewable energy resources with their zero-emission features provide us with a good alternative. Of all the renewable energy resources, wind has proved to be the most promising one, chiefly due to its cost effectiveness and ability to provide grid-quality power. In Pakistan, the concept of using renewable energy for power generation is not new. However, the lack of support from the Government proved to be a major hurdle in developing Renewable Energy resources. Nevertheless, only recently the Government of Pakistan has taken concrete steps to develop renewable energy resources, one of which is a wind-mapping/charting program being carried out in the coastal areas of Balochistan and Sindh. The wind mapping program would eventually determine the wind-power potential of Pakistan and sizes of the wind-farm systems to be set up here. This study aims to estimate the cost of generating electricity using wind-energy and a suitable tariff-rate that may be set to attract foreign/local investment in this sector. This study also lays out policy recommendations that may help to attract investment to develop wind farm systems. (author)

  16. A qualitative and quantitative analysis of the characteristics of gout patient education resources.

    Science.gov (United States)

    Robinson, Philip C; Schumacher, H Ralph

    2013-06-01

    Patient education is an important aspect of gout management, but there is evidence that many patients lack adequate knowledge of their condition. Our aim was to examine the characteristics of gout patient education resources. Ten gout patient information resources were examined for readability (Flesch-Kincaid reading level, the Simple Measure of Gobbledygook measure and the Flesch Reading Ease Score), qualitative characteristics such as figure and jargon use and whether they included information on the major points of gout. The median readability grade level of the examined resources was 8.5. The difference in readability grade level between the highest and the lowest education resource was 6.3 grade levels. The information content of the resources was high with an average of only 3.9 proposed criteria of 19 (19 %) absent from the resources. Jargon use was low and concepts were usually explained. However, important information regarding acute flare prophylaxis during urate-lowering therapy initiation and titration and treating serum uric acid to target was absent from 60 % of the patient education resources. There was poor use of key messages at the start. Gout patient resources have a wide range of readability. Thirty percent of resources were above the average reading level of rheumatology outpatients reported in previous studies. Sixty percent of gout patient resources omit education items that could impact on patient adherence and in turn patient outcomes. Further research is needed into the literacy levels and education requirements of patients with gout.

  17. Superconducting Wind Turbine Generators

    Directory of Open Access Journals (Sweden)

    Yunying Pan

    2016-08-01

    Full Text Available Wind energy is well known as a renewable energy because its clean and less polluted characteristic, which is the foundation of development modern wind electricity. To find more efficient wind turbine is the focus of scientists around the world. Compared from conventional wind turbines, superconducting wind turbine generators have advantages at zero resistance, smaller size and lighter weight. Superconducting wind turbine will inevitably become the main trends in this area. This paper intends to introduce the basic concept and principle of superconductivity, and compare form traditional wind turbine to obtain superiority, then to summary three proposed machine concept.While superconductivity have difficulty  in modern technology and we also have proposed some challenges in achieving superconducting wind turbine finally.

  18. Extreme Response for Wind Turbines

    DEFF Research Database (Denmark)

    Toft, Henrik Stensgaard; Sørensen, John Dalsgaard

    2009-01-01

    The characteristic load on wind turbines during operation are among others dependent on the mean wind speed, the turbulence intensity and type and settings of the control system. The characteristic load during operation is normally estimated by statistical extrapolation of a limited number...... of simulated 10min time series of the response according to the wind turbine standard IEC 61400-1. However, this method assumes that the individual 10min time series and the extracted peaks from the time series are independent. In the present paper is this assumption investigated based on field measurements...

  19. Built-Environment Wind Turbine Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    Smith, J.; Forsyth, T.; Sinclair, K.; Oteri, F.

    2012-11-01

    Although only a small contributor to total electricity production needs, built-environment wind turbines (BWTs) nonetheless have the potential to influence the public's consideration of renewable energy, and wind energy in particular. Higher population concentrations in urban environments offer greater opportunities for project visibility and an opportunity to acquaint large numbers of people to the advantages of wind projects on a larger scale. However, turbine failures will be equally visible and could have a negative effect on public perception of wind technology. This roadmap provides a framework for achieving the vision set forth by the attendees of the Built-Environment Wind Turbine Workshop on August 11 - 12, 2010, at the U.S. Department of Energy's National Renewable Energy Laboratory. The BWT roadmap outlines the stakeholder actions that could be taken to overcome the barriers identified. The actions are categorized as near-term (0 - 3 years), medium-term (4 - 7 years), and both near- and medium-term (requiring immediate to medium-term effort). To accomplish these actions, a strategic approach was developed that identifies two focus areas: understanding the built-environment wind resource and developing testing and design standards. The authors summarize the expertise and resources required in these areas.

  20. Wind on the moors

    International Nuclear Information System (INIS)

    Martin, S.

    1992-01-01

    A local town councillor describes the setting up of a wind farm in the south Pennines which plans to sell electricity to the local electricity suppliers. The Coal Clough wind farm will generate sufficient electricity to meet the average demand of 7,500 households and will be managed by a consortium known as Wind Resources Limited linking the construction company and the utilities aiming to buy the electricity produced. While wind power offers many environmental advantages over other means of power generation, local opposition was strong on the basis of the noise produced and clearly visible structures in an area designated as being of outstanding natural beauty. (UK)