WorldWideScience

Sample records for wind relativistic protons

  1. Proton relativistic model

    International Nuclear Information System (INIS)

    Araujo, Wilson Roberto Barbosa de

    1995-01-01

    In this dissertation, we present a model for the nucleon, which is composed by three relativistic quarks interacting through a contract force. The nucleon wave-function was obtained from the Faddeev equation in the null-plane. The covariance of the model under kinematical null-plane boots is discussed. The electric proton form-factor, calculated from the Faddeev wave-function, was in agreement with the data for low-momentum transfers and described qualitatively the asymptotic region for momentum transfers around 2 GeV. (author)

  2. Proton relativistic model; Modelo relativistico do proton

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, Wilson Roberto Barbosa de

    1995-12-31

    In this dissertation, we present a model for the nucleon, which is composed by three relativistic quarks interacting through a contract force. The nucleon wave-function was obtained from the Faddeev equation in the null-plane. The covariance of the model under kinematical null-plane boots is discussed. The electric proton form-factor, calculated from the Faddeev wave-function, was in agreement with the data for low-momentum transfers and described qualitatively the asymptotic region for momentum transfers around 2 GeV. (author) 42 refs., 22 figs., 1 tab.

  3. Proton-proton virtual bremsstrahlung in a relativistic covariant model

    NARCIS (Netherlands)

    Martinus, GH; Scholten, O; Tjon, J

    1999-01-01

    Lepton-pair production (virtual bremsstrahlung) in proton-proton scattering is investigated using a relativistic covariant model. The effects of negative-energy slates and two-body currents are studied. These are shown to have large effects in some particular structure functions, even at the

  4. The Crab Pulsar and Relativistic Wind

    Science.gov (United States)

    Coroniti, F. V.

    2017-12-01

    The possibility that the Crab pulsar produces a separated ion-dominated and pair-plasma-dominated, magnetically striped relativistic wind is assessed by rough estimates of the polar cap acceleration of the ion and electron primary beams, the pair production of secondary electrons and positrons, and a simple model of the near-magnetosphere-wind zone. For simplicity, only the orthogonal rotator is considered. Below (above) the rotational equator, ions (electrons) are accelerated in a thin sheath, of order (much less than) the width of the polar cap, to Lorentz factor {γ }i≈ (5{--}10)× {10}7({γ }e≈ {10}7). The accelerating parallel electric field is shorted out by ion-photon (curvature synchrotron) pair production. With strong, but fairly reasonable, assumptions, a set of general magnetic geometry relativistic wind equations is derived and shown to reduce to conservation relations that are similar to those of the wind from a magnetic monopole. The strength of the field-aligned currents carried by the primary beams is determined by the wind’s Alfvén critical point condition to be about eight times the Goldreich-Julian value. A simple model for the transition from the dipole region wind to the asymptotic monopole wind zone is developed. The asymptotic ratio of Poynting flux to ion (pair plasma) kinetic energy flux—the wind {σ }w∞ -parameter—is found to be of order {σ }w∞ ≈ 1/2({10}4). The far wind zone is likely to be complex, with the ion-dominated and pair-plasma-dominated magnetic stripes merging, and the oppositely directed azimuthal magnetic fields annihilating.

  5. Proton-proton bremsstrahlung in a relativistic covariant model

    NARCIS (Netherlands)

    Martinus, Gerard Henk

    1998-01-01

    Proton-proton bremsstrahlung is one of the simplest processes involving the half off-shell NN interaction. Since protons are equally-charged particles with the same mass, electric-dipole radiation is suppressed and higher-order effects play an important role. Thus it is possible to get information

  6. Prognosis of Gles of Relativistic Solar Protons

    Science.gov (United States)

    Pérez-Peraza, Jorge; Juárez-Zuñiga, Alan

    2015-04-01

    Ground level enhancements (GLEs) are relativistic solar particles measured at ground level by the worldwide network of cosmic ray detectors. These sporadic events are associated with solar flares and are assumed to be of a quasi-random nature. Studying them gives information about their source and propagation processes, the maximum capacity of the Sun as a particle accelerator engine, the magnetic structure of the medium traversed, etc. Space vehicles, as well as electric transformers and gas pipes at high latitudes may be damaged by this kind of radiation. As a result, their prediction has turned out to be very important, but because of their random occurrence, up to now few efforts toward this goal have been made. The results of these efforts have been limited to possible warnings in real time, just before a GLE occurrence, but no specific dates have been predicted well enough in advance to prevent possible hazards. In this study we show that, in spite of the quasi-stochastic nature of GLEs, it is possible to predict them with relative precision, even for future solar cycles. Additionally, a previous study establishing synchronization among some periodicities of several layers of solar atmosphere argues against the full randomness of the phenomenon of relativistic particle production. Therefore, by means of wavelet spectral analysis combined with fuzzy logic tools, we reproduce previous known GLE events and present results for future events. The next GLE is expected to occur in the first semester of 2016.

  7. Relativistic Current Dynamics Investigations By Proton Probing

    Science.gov (United States)

    Borghesi, M.; Quinn, K.; Wilson, P. A.; Cecchetti, C. A.; Ramakrishna, B.; Romagnani, L.; Sarri, G.; Lancia, L.; Fuchs, J.; Pipahl, A.; Toncian, T.; Willi, O.; Carroll, D. C.; Gallegos, P.; Quinn, M. N.; Yuan, X. H.; McKenna, P.; Clarke, R. J.; Evans, R. G.; Neely, D.; Notley, M.; Macchi, A.; Lyseikina, T. V.; Nazarov, W.

    2009-07-01

    The proton probing technique has been used to investigate the incidence of a mid-1019 W cm-2 pulse with metallic wire and laminar foam targets. Electric fields ˜1010 Vṡm-1 are measured on the surface of the 125 μm-diameter wire in the wake of the laser interaction as it charges and discharges within a 20 ps temporal window, whilst the employment of a novel experimental technique permits the observation of the propagation of a charging front at ˜c away from the point of interaction. In the foam shots, meanwhile, the behaviour of the hot electrons generated by the interaction pulse is probed inside the target. Evidence of electric inhibition effects and filamentation is found.

  8. Role of the pressure anisotropy in the relativistic pulsar wind

    Energy Technology Data Exchange (ETDEWEB)

    Asseo, E.; Beaufils, D. (Ecole Polytechnique, 91 - Palaiseau (France). Centre de Physique Theorique)

    1983-01-01

    We generalize the hot relativistic MHD wind analysis to include the anisotropy of the pressure created in the pulsar wind by the strong magnetic field. Even with anisotropy the relativistic MHD equations integrate. In a very intense magnetic field, the motion of relativistic particles becomes rapidly one-dimensional in the direction of the field due to the very important radiative losses. Consequently, their distribution function becomes also one-dimensional and the component of the pressure, in the direction perpendicular to the magnetic field, decrease. In the limit Psub(perpendicular to)approx.=0, Psub(parallel)not=0 we obtain a solution for the fluid flow which, starting at the neutron star surface, reaches smoothly infinity.

  9. Role of the pressure anisotropy in the relativistic pulsar wind

    Science.gov (United States)

    Asseo, E.; Beaufils, D.

    1983-01-01

    The hot relativistic MHD wind analysis is generalized to include the anisotropy of the pressure created in the pulsar wind by the strong magnetic field. Even with anisotropy the relativistic MHD equations integrate. In a very intense magnetic field, the motion of relativistic particles becomes rapidly one dimensional in the direction of the field due to the very important radiative losses. Consequently, their distribution function becomes also one-dimensional and the component of the pressure, in the direction perpendicular to the magnetic field, decrease. In the limit the transverse component of P approximately 0 the longitudinal component of P not equal 0 we obtain a solution for the fluid flow which, starting at the neutron star surface, reaches smoothly infinity.

  10. Modeling the Proton Radiation Belt With Van Allen Probes Relativistic Electron-Proton Telescope Data

    Science.gov (United States)

    Selesnick, R. S.; Baker, D. N.; Kanekal, S. G.; Hoxie, V. C.; Li, X.

    2018-01-01

    An empirical model of the proton radiation belt is constructed from data taken during 2013-2017 by the Relativistic Electron-Proton Telescopes on the Van Allen Probes satellites. The model intensity is a function of time, kinetic energy in the range 18-600 MeV, equatorial pitch angle, and L shell of proton guiding centers. Data are selected, on the basis of energy deposits in each of the nine silicon detectors, to reduce background caused by hard proton energy spectra at low L. Instrument response functions are computed by Monte Carlo integration, using simulated proton paths through a simplified structural model, to account for energy loss in shielding material for protons outside the nominal field of view. Overlap of energy channels, their wide angular response, and changing satellite orientation require the model dependencies on all three independent variables be determined simultaneously. This is done by least squares minimization with a customized steepest descent algorithm. Model uncertainty accounts for statistical data error and systematic error in the simulated instrument response. A proton energy spectrum is also computed from data taken during the 8 January 2014 solar event, to illustrate methods for the simpler case of an isotropic and homogeneous model distribution. Radiation belt and solar proton results are compared to intensities computed with a simplified, on-axis response that can provide a good approximation under limited circumstances.

  11. Spectral variability in relativistic MHD winds

    Science.gov (United States)

    Thompson, Christopher

    1998-05-01

    Any cosmological GRB source with a rotation period of ~1 msec and the density of nuclear matter plausibly develops a very strong magnetic field B~1015 G, and disgorges ordered Poynting flux at the required rate of ~1051 erg s-1 [11,6]. This MHD wind advects outward an intense flux of thermal MeV photons which act as Compton seeds and regulate the thermodynamic state of matter. Electron-positron pairs created by photon collisions feed back strongly on the emergent spectrum, enhancing the efficiency of energy deposition in the leptonic component, and making regions of the wind with power-law high-energy spectra much brighter than regions with thermal spectra. By contrast, dissipation deep inside the electron-ion photosphere plausibly leads to quasi-thermal spectra, and may account for the soft X-ray tails seen by Ginga and soft subpulses seen by BATSE. Explicit solutions to the Kompaneets equation in an expanding wind containing isolated hotspots show that a broken power-law spectrum develops in a pair-dominated atmosphere that covers a very large range (~mp/me) in radius, and through which the integrated scattering depth significantly exceeds unity. The overall softening trend observed in many bursts may reflect gradual mixing between a high-Γ jet and surrounding lower-Γ material. We compare double Compton emission and cyclo-synchrotron radiation as sources of Compton seeds. The existence of bursts with soft high-energy cutoffs at rest frame energies much less than ~1 MeV indicates that quasi-thermal Comptonization is occuring. The γ-ray light-curve may provide interesting information about the central source if the asymptotic Lorentz factor is regulated by neutrino emission, yielding a characteristic luminosity of LP~1051 erg s-1. Off-axis material with Lorentz factor Γ∞~1-2 becomes optically thin to scattering with a delay of ~1 day(E/1052 erg)1/2, and can be a direct source of afterglow radiation.

  12. A Compact Relativistic Electron Proton Telescope (CREPT) to Investigate Magnetospheric Electron Microbursts

    Data.gov (United States)

    National Aeronautics and Space Administration — A Compact Relativistic Electron Proton Telescope (CREPT) to Investigate Magnetospheric Electron Microbursts is a project to build a solid-state (SSD) particle...

  13. 2D Relativistic MHD simulations of the Kruskal-Schwarzschild instability in a relativistic striped wind

    Science.gov (United States)

    Gill, Ramandeep; Granot, Jonathan; Lyubarsky, Yuri

    2018-03-01

    We study the linear and non-linear development of the Kruskal-Schwarzchild instability in a relativisitically expanding striped wind. This instability is the generalization of Rayleigh-Taylor instability in the presence of a magnetic field. It has been suggested to produce a self-sustained acceleration mechanism in strongly magnetized outflows found in active galactic nuclei, gamma-ray bursts, and micro-quasars. The instability leads to magnetic reconnection, but in contrast with steady-state Sweet-Parker reconnection, the dissipation rate is not limited by the current layer's small aspect ratio. We performed two-dimensional (2D) relativistic magnetohydrodynamic (RMHD) simulations featuring two cold and highly magnetized (1 ≤ σ ≤ 103) plasma layers with an anti-parallel magnetic field separated by a thin layer of relativistically hot plasma with a local effective gravity induced by the outflow's acceleration. Our simulations show how the heavier relativistically hot plasma in the reconnecting layer drips out and allows oppositely oriented magnetic field lines to reconnect. The instability's growth rate in the linear regime matches the predictions of linear stability analysis. We find turbulence rather than an ordered bulk flow near the reconnection region, with turbulent velocities up to ˜0.1c, largely independent of model parameters. However, the magnetic energy dissipation rate is found to be much slower, corresponding to an effective ordered bulk velocity inflow into the reconnection region vin = βinc of 10-3 ≲ βin ≲ 5 × 10-3. This occurs due to the slow evacuation of hot plasma from the current layer, largely because of the Kelvin-Helmholtz instability experienced by the dripping plasma. 3D RMHD simulations are needed to further investigate the non-linear regime.

  14. Precipitation of relativistic electrons of the Van Allen belts into the proton aurora

    Energy Technology Data Exchange (ETDEWEB)

    Jordanova, Vania K [Los Alamos National Laboratory; Miyoshi, Y [NAGOYA UNIV; Sakaguchi, K [NAGOYA UNIV; Shiokawa, K [NAGOYA UNIV; Evans, D S [SEC/NOAA; Albert, Jay [AFRL; Connors, M [UNIV OF ATHABASCA

    2008-01-01

    The Van Allen electron belts consist of two regions encircling the earth in which relativistic electrons are trapped in the earth's magnetic field. Populations of relativistic electrons in the Van Allen belts vary greatly with geomagnetic disturbance and they are a major source of damage to space vehicles. In order to know when and by how much these populations of relativistic electrons increase, it is important to elucidate not only the cause of acceleration of relativistic electrons but also the cause of their loss from the Van Allen belts. Here we show the first evidence that left-hand polarized electromagnetic ion cyclotron (EMIC) plasma waves can cause the loss of relativistic electrons into the atmosphere, on the basis of results of an excellent set of ground and satellite observations showing coincident precipitation of ions with energies of tens of keV and of relativistic electrons into an isolated proton aurora. The proton aurora was produced by precipitation of ions with energies of tens of keV due to EMIC waves near the plasma pause, which is a manifestation of wave-particle interactions. These observations clarify that ions with energies of tens of keV affect the evolution of relativistic electrons in the Van Allen belts via parasitic resonance with EMIC waves, an effect that was first theoretically predicted in the early 1970's.

  15. Calculation of fusion gain in fast ignition with magnetic target by relativistic electrons and protons

    Directory of Open Access Journals (Sweden)

    A Parvazian

    2010-12-01

    Full Text Available Fast ignition is a new method for inertial confinement fusion (ICF in which the compression and ignition steps are separated. In the first stage, fuel is compressed by laser or ion beams. In the second phase, relativistic electrons are generated by pettawat laser in the fuel. Also, in the second phase 5-35 MeV protons can be generated in the fuel. Electrons or protons can penetrate in to the ultra-dense fuel and deposit their energy in the fuel . More recently, cylindrical rather than spherical fuel chambers with magnetic control in the plasma domain have been also considered. This is called magnetized target fusion (MTF. Magnetic field has effects on relativistic electrons energy deposition rate in fuel. In this work, fast ignition method in cylindrical fuel chambers is investigated and transportation of the relativistic electrons and protons is calculated using MCNPX and FLUKA codes with 0. 25 and 0. 5 tesla magnetic field in single and dual hot spot. Furthermore, the transfer rate of relativistic electrons and high energy protons to the fuel and fusion gain are calculated. The results show that the presence of external magnetic field guarantees higher fusion gain, and relativistic electrons are much more appropriate objects for ignition. MTF in dual hot spot can be considered as an appropriate substitution for the current ICF techniques.

  16. Dechanneling of relativistic protons and nuclei in straight and bent crystals. Rechanneling role

    International Nuclear Information System (INIS)

    Taratin, A.M.

    1997-01-01

    Planar dechanneling of relativistic protons and Pb nuclei with the same momentum per unit charge p z in straight and bent crystals was investigated by simulation. It was shown that the different probability of the recapture into the channeling regime for protons and Pb nuclei infringes the dechanneling length invariance with respect to p z in the straight crystals, whereas in the bent crystals the approximate invariance occurs

  17. Analyses of relativistic optical potential for medium energy proton

    International Nuclear Information System (INIS)

    Feng Dachun; Liu Wenqin; Ma Zhongyu

    1993-01-01

    The influence of the parameters of the relativistic optical potential on the nucleon scattering properties, such as cross sections, angular distributions and spin observables etc., is studied based on a set of global Dirac phenomenological optical potentials. It is show that, in contrast with the case at low energies, the total scattering cross sections vary slowly as the energy and weakly depend on the potentials at E p <200 MeV. The differential cross sections and spin observables depend not only on the volume integrals of the optical potentials, but also on their strengths and shapes. The applicability of the relativistic microscopic optical potential based on Walecka model in the medium energy region is also discussed

  18. Dynamic of non relativistic electrons and protons in the plasmasphere

    International Nuclear Information System (INIS)

    Mendes Junior, O.; Pinto Junior, O.; Gonzalez, W.D.

    1985-01-01

    A study of the dynamics of electrons and protons inside the plasmasphere is presented. These particles are subjected to the geomagnetic field and to plasmaspheric electric fields, given by simple static models, during magnetically quiet and disturbed periods. (author) [pt

  19. Reactions of Proton Halo Nuclei in a Relativistic Optical Potential

    CERN Document Server

    Rashdan, M

    2003-01-01

    The reaction cross section, sigma sub R; of the proton halo nuclei sup 1 sup 7 Ne and sup 1 sup 2 N on Si is calculated using an optical potential derived from the solution of the Dirac-Brueckner-Bethe-Goldstone equation, starting from the one-boson-exchange potential of Bonn. The nuclear densities are generated from self-consistent Hartree-Fock calculations using the recent Skyrme interaction SKRA. It is found that the enhancement in the reaction cross section found experimentally for the sup 1 sup 7 Ne + Si system in comparison to sup 1 sup 5 O + Si, where sup 1 sup 5 O has been considered as a core of sup 1 sup 7 Ne, is mainly due to the proton halo structure of sup 1 sup 7 Ne which increases the interaction, in the surface and tail regions. Glauber model calculations did not produce this enhancement in sigma sub R for proton halo nuclei

  20. Biophysical characterization of a relativistic proton beam for image-guided radiosurgery.

    Science.gov (United States)

    Yu, Zhan; Vanstalle, Marie; La Tessa, Chiara; Jiang, Guo-Liang; Durante, Marco

    2012-07-01

    We measured the physical and radiobiological characteristics of 1 GeV protons for possible applications in stereotactic radiosurgery (image-guided plateau-proton radiosurgery). A proton beam was accelerated at 1 GeV at the Brookhaven National Laboratory (Upton, NY) and a target in polymethyl methacrylate (PMMA) was used. Clonogenic survival was measured after exposures to 1-10 Gy in three mammalian cell lines. Measurements and simulations demonstrate that the lateral scattering of the beam is very small. The lateral dose profile was measured with or without the 20-cm plastic target, showing no significant differences up to 2 cm from the axis A large number of secondary swift protons are produced in the target and this leads to an increase of approximately 40% in the measured dose on the beam axis at 20 cm depth. The relative biological effectiveness at 10% survival level ranged between 1.0 and 1.2 on the beam axis, and was slightly higher off-axis. The very low lateral scattering of relativistic protons and the possibility of using online proton radiography during the treatment make them attractive for image-guided plateau (non-Bragg peak) stereotactic radiosurgery.

  1. Proton thermal energetics in the solar wind: Helios reloaded

    Science.gov (United States)

    Hellinger, Petr; TráVníček, Pavel M.; Štverák, Štěpán; Matteini, Lorenzo; Velli, Marco

    2013-04-01

    The proton thermal energetics in the slow solar wind between 0.3 and 1 AU is reinvestigated using the Helios 1 and 2 data, complementing a similar analysis for the fast solar wind [Hellinger et al., 2011]. The results for slow and fast solar winds are compared and discussed in the context of previous results. Protons need to be heated in the perpendicular direction with respect to the ambient magnetic field from 0.3 to 1 AU. In the parallel direction, protons need to be cooled at 0.3 AU, with a cooling rate comparable to the corresponding perpendicular heating rate; between 0.3 and 1 AU, the required cooling rate decreases until a transition to heating occurs: by 1 AU the protons require parallel heating, with a heating rate comparable to that required to sustain the perpendicular temperature. The heating/cooling rates (per unit volume) in the fast and slow solar winds are proportional to the ratio between the proton kinetic energy and the expansion time. On average, the protons need to be heated and the necessary heating rates are comparable to the energy cascade rate of the magnetohydrodynamic turbulence estimated from the stationary Kolmogorov-Yaglom law at 1 AU; however, in the expanding solar wind, the stationarity assumption for this law is questionable. The turbulent energy cascade may explain the average proton energetics (although the stationarity assumption needs to be justified) but the parallel cooling is likely related to microinstabilities connected with the structure of the proton velocity distribution function. This is supported by linear analysis based on observed data and by results of numerical simulations.

  2. Interaction of relativistic short proton bunches with space charge limited electron clouds

    Directory of Open Access Journals (Sweden)

    F. B. Petrov

    2014-12-01

    Full Text Available The electron cloud buildup and interaction with a train of relativistic, short proton bunches is studied using particle-in-cell codes. The simulation models describe the electron generation at the beam pipe wall as well as the wakefield behind the bunches. The study focuses on the space charge limited (saturated cloud profile between the bunches and on the incoherent tune spread caused by the interaction of the saturated cloud with individual bunches. Analytical expressions describing the pinch of a saturated electron cloud are derived and compared to simulation results.

  3. The Wind/EPACT Proton Event Catalog (1996 - 2016)

    Science.gov (United States)

    Miteva, Rositsa; Samwel, Susan W.; Costa-Duarte, Marcus V.

    2018-02-01

    We present the finalized catalog of solar energetic proton events detected by the Wind/EPACT instrument over the period 1996 - 2016. Onset times, peak times, peak proton intensity and onset-to-peak proton fluence are evaluated for the two available energy channels, at about 25 and 50 MeV. We describe the procedure utilized to identify the proton events and to relate them to their solar origin (in terms of flares and coronal mass ejections). The statistical relationships between the energetic protons and their origin (linear and partial correlation analysis) are reported and discussed in view of earlier findings. Finally, the different trends found in the first 8 years of Solar Cycles 23 and 24 are discussed.

  4. Relativistic distorted-wave analysis of quasielastic proton-nucleus scattering

    Science.gov (United States)

    Titus, N. P.; van der Ventel, B. I. S.; van Niekerk, D. D.; Hillhouse, G. C.

    2011-04-01

    A relativistic distorted-wave impulse approximation formalism is presented for the calculation of quasielastic proton-nucleus scattering. It is shown that the double differential cross section may be written as a contraction between the hadronic tensor (describing the projectile and ejectile) and the polarization tensor (describing the nuclear target) and that this mathematical structure also holds for the case where distortions are included. The eikonal approximation is used to introduce distortions in the wave functions, and the nuclear response is described using a Fermi gas model. The highly oscillatory nine-dimensional integrand contained in the expression for the double differential cross section is computed using a novel technique based on combining traditional Gaussian integration methods with the powerful fitting functions in the matlab programming language. This work has successfully calculated the distorted-wave quasielastic differential cross section for proton-nucleus scattering within a fully relativistic framework. It is found that the distortions lead to a reduction in the double differential cross section and have a negligible effect on the computed spin observables.

  5. Proton thermal energetics in the solar wind: Helios reloaded

    Czech Academy of Sciences Publication Activity Database

    Hellinger, Petr; Trávníček, P.; Štverák, Štěpán; Matteini, L.; Velli, M.

    2013-01-01

    Roč. 118, č. 4 (2013), s. 1351-1365 ISSN 2169-9380 Institutional support: RVO:68378289 Keywords : solar wind * proton energetics * turbulent heating Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 3.440, year: 2013 http://onlinelibrary.wiley.com/doi/10.1002/jgra.50107/abstract

  6. LONG-TERM TRENDS IN THE SOLAR WIND PROTON MEASUREMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, Heather A.; McComas, David J. [Southwest Research Institute, San Antonio, TX (United States); DeForest, Craig E. [Southwest Research Institute, Boulder, CO (United States)

    2016-11-20

    We examine the long-term time evolution (1965–2015) of the relationships between solar wind proton temperature ( T {sub p}) and speed ( V {sub p}) and between the proton density ( n {sub p}) and speed using OMNI solar wind observations taken near Earth. We find a long-term decrease in the proton temperature–speed ( T {sub p}– V {sub p}) slope that lasted from 1972 to 2010, but has been trending upward since 2010. Since the solar wind proton density–speed ( n {sub p}– V {sub p}) relationship is not linear like the T {sub p}– V {sub p} relationship, we perform power-law fits for n {sub p}– V {sub p}. The exponent (steepness in the n {sub p}– V {sub p} relationship) is correlated with the solar cycle. This exponent has a stronger correlation with current sheet tilt angle than with sunspot number because the sunspot number maxima vary considerably from cycle to cycle and the tilt angle maxima do not. To understand this finding, we examined the average n {sub p} for different speed ranges, and found that for the slow wind n {sub p} is highly correlated with the sunspot number, with a lag of approximately four years. The fast wind n {sub p} variation was less, but in phase with the cycle. This phase difference may contribute to the n {sub p}– V {sub p} exponent correlation with the solar cycle. These long-term trends are important since empirical formulas based on fits to T {sub p} and V {sub p} data are commonly used to identify interplanetary coronal mass ejections, but these formulas do not include any time dependence. Changes in the solar wind density over a solar cycle will create corresponding changes in the near-Earth space environment and the overall extent of the heliosphere.

  7. Protons and alpha particles in the solar wind

    Science.gov (United States)

    Hellinger, Petr; Travnicek, Pavel M.; Passot, Thierry; Sulem, Pierre-Louis; Matteini, Lorenzo; Landi, Simone

    2014-05-01

    We investigate energetic consequences of ion kinetic instabilitities in the solar wind connected with beam and core protons and alpha particles drifting with respect to each other. We compare theoretical predictions, simulations and observation results. For theoretical prediction we assume drifting bi-Maxwellian ion populations and we calculate theoretical quasilinear heating rates (Hellinger et al., 2013b). The nonlinear evolution of beam-core protons, and alpha particles in the expanding solar wind we investigate using hybrid expanding box system (Hellinger and Travnicek, 2013). The expansion leads to many different kinetic instabilities. In the simulation the beam protons and alpha particles are decelerated with respect to the core protons and all the populations are cooled in the parallel direction and heated in the perpendicular one in agreement with theoretical expectations. On the macroscopic level the kinetic instabilities cause large departures of the system evolution from the double adiabatic prediction and lead to a perpendicular heating and parallel cooling rates. The simulated heating rates are comparable to the heating rates estimated from the Helios observations (Hellinger et al., 2013a); furthermore, the differential velocity between core and beam protons observed by Ulysses exhibits apparent bounds which are compatible with the theoretical constaints imposed by the linear theory for the magnetosonic instability driven by beam-core differential velocity (Matteini et al., 2013). References Hellinger, P., P. M. Travnicek, S. Stverak, L. Matteini, and M. Velli (2013a), Proton thermal energetics in the solar wind: Helios reloaded, J. Geophys. Res., 118, 1351-1365, doi:10.1002/jgra.50107. Hellinger, P., T. Passot, P.-L. Sulem, and P. M. Travnicek (2013b), Quasi-linear heating and acceleration in bi-Maxwellian plasmas, Phys. Plasmas, 20, 122306. Hellinger, P., and P. M. Travnicek (2013), Protons and alpha particles in the expanding solar wind: Hybrid

  8. A Proton-Cyclotron Wave Storm Generated by Unstable Proton Distribution Functions in the Solar Wind

    Science.gov (United States)

    Wicks, R. T.; Alexander, R. L.; Stevens, M.; Wilson, L. B., III; Moya, P. S.; Vinas, A.; Jian, L. K.; Roberts, D. A.; O’Modhrain, S.; Gilbert, J. A.; hide

    2016-01-01

    We use audification of 0.092 seconds cadence magnetometer data from the Wind spacecraft to identify waves with amplitudes greater than 0.1 nanoteslas near the ion gyrofrequency (approximately 0.1 hertz) with duration longer than 1 hour during 2008. We present one of the most common types of event for a case study and find it to be a proton-cyclotron wave storm, coinciding with highly radial magnetic field and a suprathermal proton beam close in density to the core distribution itself. Using linear Vlasov analysis, we conclude that the long-duration, large-amplitude waves are generated by the instability of the proton distribution function. The origin of the beam is unknown, but the radial field period is found in the trailing edge of a fast solar wind stream and resembles other events thought to be caused by magnetic field footpoint motion or interchange reconnection between coronal holes and closed field lines in the corona.

  9. Relativistic MHD modeling of magnetized neutron stars, pulsar winds, and their nebulae

    Science.gov (United States)

    Del Zanna, L.; Pili, A. G.; Olmi, B.; Bucciantini, N.; Amato, E.

    2018-01-01

    Neutron stars are among the most fascinating astrophysical sources, being characterized by strong gravity, densities about the nuclear one or even above, and huge magnetic fields. Their observational signatures can be extremely diverse across the electromagnetic spectrum, ranging from the periodic and low-frequency signals of radio pulsars, up to the abrupt high-energy gamma-ray flares of magnetars, where energies of ∼ {10}46 {erg} are released in a few seconds. Fast-rotating and highly magnetized neutron stars are expected to launch powerful relativistic winds, whose interaction with the supernova remnants gives rise to the non-thermal emission of pulsar wind nebulae, which are known cosmic accelerators of electrons and positrons up to PeV energies. In the extreme cases of proto-magnetars (magnetic fields of ∼ {10}15 G and millisecond periods), a similar mechanism is likely to provide a viable engine for the still mysterious gamma-ray bursts. The key ingredient in all these spectacular manifestations of neutron stars is the presence of strong magnetic fields in their constituent plasma. Here we will present recent updates of a couple of state-of-the-art numerical investigations by the high-energy astrophysics group in Arcetri: a comprehensive modeling of the steady-state axisymmetric structure of rotating magnetized neutron stars in general relativity, and dynamical 3D MHD simulations of relativistic pulsar winds and their associated nebulae.

  10. Proton thermal energetics in the solar wind: Helios reloaded

    Czech Academy of Sciences Publication Activity Database

    Hellinger, Petr; Trávníček, Pavel M.; Štverák, Štěpán; Matteini, L.; Velli, M.

    2013-01-01

    Roč. 118, č. 4 (2013), s. 3151-3165 ISSN 2169-9380 R&D Projects: GA ČR GAP209/12/2041; GA ČR GAP209/12/2023 EU Projects: European Commission(XE) 263340 - SWIFF Grant - others:EU(XE) SHOCK Project No. 284515 Institutional support: RVO:67985815 ; RVO:68378289 Keywords : solar wind * proton energetics * turbulent heating Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics; BL - Plasma and Gas Discharge Physics (UFA-U) Impact factor: 3.440, year: 2013

  11. Proton fire hose instabilities in the expanding solar wind

    Czech Academy of Sciences Publication Activity Database

    Hellinger, Petr

    2017-01-01

    Roč. 83, č. 1 (2017), č. článku 705830105. ISSN 0022-3778 Institutional support: RVO:68378289 Keywords : astrophysicals plasmas * plasma expansion * plasma simulation Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 1.160, year: 2016 https://www.cambridge.org/core/journals/journal-of-plasma-physics/article/proton-fire-hose-instabilities-in-the-expanding-solar-wind/6BA70378B25728533588A1A68073AC2F

  12. Predicting Atmospheric Ionization and Excitation by Precipitating SEP and Solar Wind Protons Measured By MAVEN

    Science.gov (United States)

    Jolitz, Rebecca; Dong, Chuanfei; Lee, Christina; Lillis, Rob; Brain, David; Curry, Shannon; Halekas, Jasper; Bougher, Stephen W.; Jakosky, Bruce

    2017-10-01

    Precipitating energetic particles ionize and excite planetary atmospheres, increasing electron content and producing aurora. At Mars, the solar wind and solar energetic particles (SEPs) can precipitate directly into the atmosphere because solar wind protons can charge exchange to become neutral and pass the magnetosheath, and SEPs are sufficiently energetic to cross the magnetosheath unchanged. We will compare ionization and Lyman alpha emission rates for solar wind and SEP protons during nominal solar activity and a CME shock front impact event on May 16 2016. We will use the Atmospheric Scattering of Protons and Energetic Neutrals (ASPEN) model to compare excitation and ionization rates by SEPs and solar wind protons currently measured by the SWIA (Solar Wind Ion Analyzer) and SEP instruments aboard the MAVEN spacecraft. Results will help quantify how SEP and solar wind protons influence atmospheric energy deposition during solar minimum.

  13. Solar wind proton temperature anisotropy: Linear theory and WIND/SWE observations

    Czech Academy of Sciences Publication Activity Database

    Hellinger, Petr; Trávníček, Pavel; Kasper, J. C.; Lazarus, A. J.

    2006-01-01

    Roč. 33, č. 9 (2006), L09101/1-L09101/4 ISSN 0094-8276 R&D Projects: GA AV ČR(CZ) IAA3042403 Grant - others:ESA(XE) PECS 98024; NASA (US) NAG-10915 Institutional research plan: CEZ:AV0Z30420517 Keywords : proton temperature anisotropy * solar wind * in situ observations Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 2.602, year: 2006

  14. Proton and pion transverse spectra at the BNL Relativistic Heavy Ion Collider from radial flow and finite size effects

    International Nuclear Information System (INIS)

    Ayala, Alejandro; Cuautle, Eleazar; Magnin, J.; Montano, Luis Manuel

    2006-01-01

    We show that the proton and pion transverse momentum distributions measured at BNL Relativistic Heavy Ion Collider (RHIC), for all collision centralities for pions and most of the collision centralities for protons, can be simultaneously described in terms of a thermal model with common values for the radial flow and temperature, when accounting for the finite size of the interaction region at the time of decoupling. We show that this description is obtained in terms of a simple scaling law of the size of the interaction region with the number of participants in the collision. The behavior of the proton to pion ratio at mid-rapidity can also be understood as a consequence of the strength of the radial flow and system size reached at RHIC energies

  15. Changes of the first Schumann resonance frequency during relativistic solar proton precipitation in the 6 November 1997 event

    Directory of Open Access Journals (Sweden)

    V. C. Roldugin

    Full Text Available The variations of the first mode of Schumann resonance are analyzed using data from Kola peninsula stations during the solar proton event of 6 November 1997. On this day the intensive flux of energetic protons on GOES-8 and the 10% increase of the count rate of the neutron monitor in Apatity between 1220 and 2000 UT were preceded by a solar X-ray burst at 1155 UT. This burst was accompanied by a simultaneous increase of the Schumann frequency by 3.5%, and the relativistic proton flux increase was accompanied by 1% frequency decrease. These effects are explained by changes of the height and dielectric permeability of the Earth-ionosphere cavity.

    Key words. Ionosphere (ionospheric disturbances; solar radiation and cosmic ray effects · Radio science (ionospheric propagation

  16. Changes of the first Schumann resonance frequency during relativistic solar proton precipitation in the 6 November 1997 event

    Directory of Open Access Journals (Sweden)

    V. C. Roldugin

    1999-10-01

    Full Text Available The variations of the first mode of Schumann resonance are analyzed using data from Kola peninsula stations during the solar proton event of 6 November 1997. On this day the intensive flux of energetic protons on GOES-8 and the 10% increase of the count rate of the neutron monitor in Apatity between 1220 and 2000 UT were preceded by a solar X-ray burst at 1155 UT. This burst was accompanied by a simultaneous increase of the Schumann frequency by 3.5%, and the relativistic proton flux increase was accompanied by 1% frequency decrease. These effects are explained by changes of the height and dielectric permeability of the Earth-ionosphere cavity.Key words. Ionosphere (ionospheric disturbances; solar radiation and cosmic ray effects · Radio science (ionospheric propagation

  17. Wind-type flows in astrophysical jets. I. The initial relativistic acceleration

    International Nuclear Information System (INIS)

    Ferrari, A.; Trussoni, E.; Rosner, R.; Tsinganos, K.; and Instituto di Cosmo-geofisica del Consiglio Nazionale delle Ricerche, Torino, Italy)

    1985-01-01

    We present transonic wind-type solutions of the relativistic quasi--two-dimensional Navier-Stokes fluid equations, which we assume to govern the initial acceleration of the plasma in astrophysical jets emerging from the funnel of an accretion disk orbiting a compact central object. The solutions depend on geometrical parameters characterizing the shape and height of the accretion funnel and on radiation parameters characterizing the luminosity and collimation of the radiation field inside this funnel. The two major results of our study are, first, that rapid expansion of the gas at the exit of the accretion funnel, which interacts synergistically with momentum deposition by radiation pressure, can lead to multiple critical points in the flow and to supersonic speeds very close to the central object; this main feature of our solution is consistent with observations that jets might already be accelerated to relativistic speeds on the sub--0.1 pc distance scale. Second, we show that for suitable values of the parameters characterizing the shape of the accretion funnel and its associated radiation field, multiple transonic solutions for the same initial conditions of the bulk flow speed are obtained, with shock transitions connecting some of these transonic solutions. Because of the sensitivity of the flow to slight variations of the disk and radiation parameters, such discontinuous transitions between distinct transonic flows might be related to the observed phenomenology and variability of active galactic nuclei

  18. Explaining the diverse response of ultra-relativistic Van Allen belt electrons to solar wind forcing

    Science.gov (United States)

    Mann, Ian; Ozeke, Louis; Murphy, Kyle; Claudepierre, Seth; Rae, Jonathan; Milling, David; Kale, Andy; Baker, Daniel

    2017-04-01

    The NASA Van Allen Probes have opened a new window on the dynamics of ultra-relativistic electrons in the Van Allen radiation belts. Under different solar wind forcing the outer belt is seen to respond in a variety of apparently diverse and sometimes remarkable ways. For example, sometimes a third radiation belt is carved out (e.g., September 2012), or the belts can remain depleted for 10 days or more (September 2014). More usually there is a sequential response of a strong and sometimes rapid depletion followed by a re-energization, the latter increasing outer belt electron flux by orders of magnitude on hour timescales during some of the strongest storms of this solar cycle (e.g., March 2013, March 2015). Such dynamics also appear to be always bounded at low-L by an apparently impenetrable barrier below L 2.8 through which ultra-relativistic electrons do not penetrate. Many studies in the Van Allen Probes era have sought explanations for these apparently diverse features, often incorporating the effects from multiple plasma waves. In contrast, we show how this apparently diverse behaviour can instead be explained by one simple dominant process: ULF wave radial transport. Once ULF wave transport rates are accurately specified by observations, and coupled to the dynamical variation of the outer boundary condition at the edge of the outer belt, the observed diverse responses can all be explained. In order to get good agreement with observations, the modeling reveals the importance of still currently unexplained fast loss in the main phase which decouples pre- and post-storm ultra-relativistic electron flux on hour timescales. Similarly, varying plasmasheet source populations are seen to be of critical importance such that near-tail dynamics likely play a crucial role in Van Allen belt dynamics. Nonetheless, simple models incorporating accurate transport rates derived directly from ULF wave measurements are shown to provide a single natural and compelling explanation

  19. Relativistic electrons in the outer-zone: An 11 year cycle, their relation to the solar wind

    Energy Technology Data Exchange (ETDEWEB)

    Belian, R.D.; Cayton, T.E.; Christensen, R.A.; Ingraham, J.C.; Meier, M.M.; Reeves, G.D. [Los Alamos National Lab., NM (United States); Lazarus, A.J. [Massachusetts Inst. of Tech., Cambridge, MA (United States)

    1994-12-31

    We examine Los Alamos energetic electron data from 1979 through the present to show long term trends in the trapped relativistic electron populations at geosynchronous-earth-orbit (GEO). Data is examined from several CPA and SOPA instruments to cover the interval from 1979 through June 1994. It is shown that the higher energy electrons fluxes (E > 300 keV) displayed a cycle of {approx}11 years. In agreement with other investigators, we also show that the relativistic electron cycle is out of phase with the sunspot cycle. We compare the occurrences of relativistic electrons and solar wind high speed streams and determine that on the time scale of 15 years the two do not correlate well. The long-term data set we provide here shows a systematic change of the electron energy spectrum during the course of the solar cycle. This information should be useful to magnetospheric scientists, model designers and space flight planners.

  20. Non-thermal particle acceleration in collisionless relativistic electron-proton reconnection

    Science.gov (United States)

    Werner, G. R.; Uzdensky, D. A.; Begelman, M. C.; Cerutti, B.; Nalewajko, K.

    2018-02-01

    Magnetic reconnection in relativistic collisionless plasmas can accelerate particles and power high-energy emission in various astrophysical systems. Whereas most previous studies focused on relativistic reconnection in pair plasmas, less attention has been paid to electron-ion plasma reconnection, expected in black hole accretion flows and relativistic jets. We report a comprehensive particle-in-cell numerical investigation of reconnection in an electron-ion plasma, spanning a wide range of ambient ion magnetizations σi, from the semirelativistic regime (ultrarelativistic electrons but non-relativistic ions, 10-3 ≪ σi ≪ 1) to the fully relativistic regime (both species are ultrarelativistic, σi ≫ 1). We investigate how the reconnection rate, electron and ion plasma flows, electric and magnetic field structures, electron/ion energy partitioning, and non-thermal particle acceleration depend on σi. Our key findings are: (1) the reconnection rate is about 0.1 of the Alfvénic rate across all regimes; (2) electrons can form concentrated moderately relativistic outflows even in the semirelativistic, small-σi regime; (3) while the released magnetic energy is partitioned equally between electrons and ions in the ultrarelativistic limit, the electron energy fraction declines gradually with decreased σi and asymptotes to about 0.25 in the semirelativistic regime; and (4) reconnection leads to efficient non-thermal electron acceleration with a σi-dependent power-law index, p(σ _i)˜eq const+0.7σ _i^{-1/2}. These findings are important for understanding black hole systems and lend support to semirelativistic reconnection models for powering non-thermal emission in blazar jets, offering a natural explanation for the spectral indices observed in these systems.

  1. Future X-ray Polarimetry of Relativistic Accelerators: Pulsar Wind Nebulae and Supernova Remnants

    Directory of Open Access Journals (Sweden)

    Niccolò Bucciantini

    2018-03-01

    Full Text Available Supernova remnants (SNRs and pulsar wind nebulae (PWNs are among the most significant sources of non-thermal X-rays in the sky, and the best means by which relativistic plasma dynamics and particle acceleration can be investigated. Being strong synchrotron emitters, they are ideal candidates for X-ray polarimetry, and indeed the Crab nebula is up to present the only object where X-ray polarization has been detected with a high level of significance. Future polarimetric measures will likely provide us with crucial information on the level of turbulence that is expected at particle acceleration sites, together with the spatial and temporal coherence of magnetic field geometry, enabling us to set stronger constraints on our acceleration models. PWNs will also allow us to estimate the level of internal dissipation. I will briefly review the current knowledge on the polarization signatures in SNRs and PWNs, and I will illustrate what we can hope to achieve with future missions such as IXPE/XIPE.

  2. Pion Production from Proton Synchrotron Radiation under Strong Magnetic Field in Relativistic Quantum Approach

    Directory of Open Access Journals (Sweden)

    Maruyama Tomoyuki

    2016-01-01

    Full Text Available We study pion production from proton synchrotron radiation in the presence of strong magnetic fields by using the exact proton propagator in a strong magnetic field and explicitly including the anomalous magnetic moment. Results in this exact quantum-field approach do not agree with those obtained in the semi-classical approach. Furthermore, we also find that the anomalous magnetic moment of the proton greatly enhances the production rate about by two orders of magnitude, and that the polar angle of an emitted pion is the same as that of an initial proton.

  3. Transmutation of.pub.239 Pu and other nuclides using spallation neutrons produced by relativistic protons reacting with massive U- and Pb-targets

    Czech Academy of Sciences Publication Activity Database

    Adam, Jindřich; Adloff, J. C.; Balabekyan, A.; Bamblevski, V. P.; Barabanov, M. Y.; Brandt, R.; Bradnova, V.; Chaloun, P.; Debeauvais, M.; Dwivedi, K. K.; Guo, S. L.; Hashemi-Nezhad, R. S.; Hella, K. M.; Kalinnikov, V. G.; Kievets, M. K.; Krivopustov, M. I.; Kulakov, B. A.; Langrock, E. J.; Li, Li.; Lomonosova, E. M.; Modolo, G.; Odoj, R.; Perelygin, V. P.; Pronskikh, V. S.; Solnyshkin, A. A.; Sosnin, A. N.; Stegailov, V. I.; Tsoupko-Sitnikov, V. M.; Vater, P.; Wan, J. S.; Westmeier, W.; Zamani-Valasiadou, M.; Zhuk, I. V.

    2002-01-01

    Roč. 90, - (2002), s. 441-442 ISSN 0033-8230 R&D Projects: GA AV ČR KSK1048102 Keywords : relativistic protons * transmutation * subcritical nuclear systems * long-lived radiactive waste Subject RIV: BG - Nuclear , Atomic and Molecular Physics, Colliders Impact factor: 0.809, year: 2002

  4. Mixing the Solar Wind Proton and Electron Scales: Effects of Electron Temperature Anisotropy on the Oblique Proton Firehose Instability

    Science.gov (United States)

    Maneva, Y.; Lazar, M.; Vinas, A.; Poedts, S.

    2016-01-01

    The double adiabatic expansion of the nearly collisionless solar wind plasma creates conditions for the firehose instability to develop and efficiently prevent the further increase of the plasma temperature in the direction parallel to the interplanetary magnetic field. The conditions imposed by the firehose instability have been extensively studied using idealized approaches that ignore the mutual effects of electrons and protons. Recently, more realistic approaches have been proposed that take into account the interplay between electrons and protons,? unveiling new regimes of the parallel oscillatory modes. However, for oblique wave propagation the instability develops distinct branches that grow much faster and may therefore be more efficient than the parallel firehose instability in constraining the temperature anisotropy of the plasma particles. This paper reports for the first time on the effects of electron plasma properties on the oblique proton firehose (PFH) instability and provides a comprehensive vision of the entire unstable wave-vector spectrum, unifying the proton and the smaller electron scales. The plasma ß and temperature anisotropy regimes considered here are specific for the solar wind and magnetospheric conditions, and enable the electrons and protons to interact via the excited electromagnetic fluctuations. For the selected parameters, simultaneous electron and PFH instabilities can be observed with a dispersion spectrum of the electron firehose (EFH) extending toward the proton scales. Growth rates of the PFH instability are markedly boosted by the anisotropic electrons, especially in the oblique direction where the EFH growth rates are orders of magnitude higher.

  5. Pion Production from Proton Synchrotron Radiation under Strong Magnetic Field in a Relativistic Quantum Approach

    Directory of Open Access Journals (Sweden)

    Maruyama Tomoyuki

    2016-01-01

    Full Text Available We study pion production from proton synchrotron radiation in the presence of strong magnetic fields by using the exact proton propagator in a strong magnetic field and explicitly including the anomalous magnetic moment. Results in this exact quantum approach do not agree with those obtained in the semi-classical approach. Then, we find that the anomalous magnetic moment of the proton greatly enhances the production rate by about two orders magnitude, and that the decay width satisfies a robust scaling law.

  6. Supernova ejecta with a relativistic wind from a central compact object: a unified picture for extraordinary supernovae

    Science.gov (United States)

    Suzuki, Akihiro; Maeda, Keiichi

    2017-04-01

    The hydrodynamical interaction between freely expanding supernova ejecta and a relativistic wind injected from the central region is studied in analytic and numerical ways. As a result of the collision between the ejecta and the wind, a geometrically thin shell surrounding a hot bubble forms and expands in the ejecta. We use a self-similar solution to describe the early dynamical evolution of the shell and carry out a two-dimensional special relativistic hydrodynamic simulation to follow further evolution. The Rayleigh-Taylor instability inevitably develops at the contact surface separating the shocked wind and ejecta, leading to the complete destruction of the shell and the leakage of hot gas from the hot bubble. The leaking hot materials immediately catch up with the outermost layer of the supernova ejecta and thus different layers of the ejecta are mixed. We present the spatial profiles of hydrodynamical variables and the kinetic energy distributions of the ejecta. We stop the energy injection when a total energy of 1052 erg, which is 10 times larger than the initial kinetic energy of the supernova ejecta, is deposited into the ejecta and follow the subsequent evolution. From the results of our simulations, we consider expected emission from supernova ejecta powered by the energy injection at the centre and discuss the possibility that superluminous supernovae and broad-lined Ic supernovae could be produced by similar mechanisms.

  7. Experimental and Simulation Studies of Hydrodynamic Tunneling of Ultra-Relativistic Protons

    CERN Document Server

    Burkart, Florian; Schmidt, Ruediger; Shutov, Alexander; Tahir, Naeem; Wollmann, Daniel; Zerlauth, Markus

    2015-01-01

    The expected damage due to the release of the full LHC beam energy at a single aperture bottleneck has been studied. These studies have shown that the range of the 7 TeV LHC proton beam is significantly extended compared to that of a single proton due to hydrodynamic tunneling effect. For instance, it was evaluated that the protons and their showers will penetrate up to a length of 25 m in solid carbon compared to a static range of around 3 m. To check the validity of these simulations, beam- target heating experiments using the 440 GeV proton beam generated by the SPS were performed at the HiRadMat test facility at CERN. Solid copper targets were facially irradiated by the beam and measurements confirmed hydrodynamic tunneling of the protons and their showers. Simulations have been done by running the energy deposition code FLUKA and the 2D hydrodynamic code, BIG2, iteratively. Very good agreement has been found between the simulations and the experimental results providing confidence in the validity of the ...

  8. Neutron production in interactions of relativistic protons and deuterons with lead targets

    International Nuclear Information System (INIS)

    Yurevich, V.I.; Amelin, N.S.; Yakovlev, R.M.; Nikolaev, V.A.; Lyapin, V.G.; Tsvetkov, I.O.

    2005-01-01

    Results on the neutron double-differential cross sections and yields obtained in the time-of-flight measurements with different lead targets and beams of protons and deuterons at an energy of about 2 GeV are discussed. The neutron spatial-energy distribution for an extended lead target was studied by the threshold detector method in the energy range of protons and deuterons 1-3.7 GeV. A dependence of the mean neutron multiplicity, energy of neutrons, and process of neutron multiplication in lead on the target dimension, and the type and energy of the beam particle is analyzed. (author)

  9. Neutron yields from massive lead and uranium targets irradiated with relativistic protons

    International Nuclear Information System (INIS)

    Zamani, M.; Fragopoulou, M.; Stoulos, S.; Manolopoulou, M.; Kulakov, B.A.; Krivopustov, M.I.; Sosnin, N.A.; Brandt, R.; Westmeier, W.; Debeauvais, M.; Hashemi-Nezhad, S.R.

    2005-01-01

    Long-lived isotopes can be transmuted into stable or short-lived elements either by neutron captures or neutron induced fission. The need of a large excess of neutrons has led to the use of accelerator driven sources (ADS). A series of experiments were carried out at the Synchrophasotron/Nuclotron of the Joint Institute for Nuclear Research (JINR) Dubna, using protons of 1.0 GeV. Solid Lead and Uranium targets surrounded by paraffin moderator were irradiated. On the outer surface of the moderator a number of Solid State Track Detectors were placed to monitor neutron spatial distribution. The results showed that the maximum neutron production was reached within the range of one to two proton mean free paths in the target. Then decreasing neutron production follows the proton beam attenuation along the target. Moreover, the results showed both targets neutron production evolution along the target, to be the same. However, neutron flux per incident proton is depended on the target mass, which was found to be higher for the heavier target

  10. Relation of solar wind fluctuations to differential flow between protons and alphas

    Science.gov (United States)

    Neugebauer, M.

    1974-01-01

    An analysis is made of the difference between the alpha particle and proton flow velocities in the solar wind as observed by the OGO 5 satellite. The alpha and proton velocities from each of 962 spectral scans are compared with the variance of 32 solar wind flux measurements made during the scans. The average velocity difference is plotted for each of 10 logarithmic variance intervals and is seen to decrease and approach zero when the variance is high. It is shown that such an anticorrelation may be due to the fact the wave/particle interactions provide the drag force between two streams of different velocity in a collisionless plasma.

  11. Sputtering of Lunar Regolith Simulant by Protons and Multicharged Heavy Ions at Solar Wind Energies

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Fred W [ORNL; Harris, Peter R [ORNL; Taylor, C. N. [Purdue University; Meyer III, Harry M [ORNL; Barghouty, N. [NASA Marshall Space Flight Center, Huntsville, AL; Adams Jr., J. [NASA Marshall Space Flight Center, Huntsville, AL

    2011-01-01

    We report preliminary results on sputtering of a lunar regolith simulant at room temperature by singly and multiply charged solar wind ions using quadrupole and time-of-flight (TOF) mass spectrometry approaches. Sputtering of the lunar regolith by solar-wind heavy ions may be an important particle source that contributes to the composition of the lunar exosphere, and is a possible mechanism for lunar surface ageing and compositional modification. The measurements were performed in order to assess the relative sputtering efficiency of protons, which are the dominant constituent of the solar wind, and less abundant heavier multicharged solar wind constituents, which have higher physical sputtering yields than same-velocity protons, and whose sputtering yields may be further enhanced due to potential sputtering. Two different target preparation approaches using JSC-1A AGGL lunar regolith simulant are described and compared using SEM and XPS surface analysis.

  12. A comparative study of silicon detector degradation under irradiation by heavy ions and relativistic protons

    Science.gov (United States)

    Eremin, V.; Mitina, D.; Fomichev, A.; Kiselev, O.; Egorov, N.; Eremin, I.; Shepelev, A.; Verbitskaya, E.

    2018-01-01

    Silicon detectors irradiated by 40Ar ions with the energy of 1.62 GeV were studied with the goal to find the parameters of radiation damage induced by ions. The measurements of the I–V characteristics, temperature dependences of the detector bulk current, deep level spectra and current pulse response were carried out for detectors irradiated within the fluence range 5×1010–2.3×1013 ion/cm2 and the obtained results were compared with the corresponding data for detectors irradiated by 23 GeV protons. It is shown that the processes of defect introduction by ions and overall radiation damage are similar to those induced by 23 GeV protons, while the introduction rates of radiation defects and current generation centers are about ten times higher for irradiation by 40Ar ions. The fact that these processes have much in common gives grounds to use the physical models and characteristic parametrization such as those developed earlier for detectors irradiated by protons and neutrons to build the long-term scenario of Si detector operation in the Time-Of-Flight diagnostic system of Super FRagment Separator designed at GSI for the future Facility for Antiproton and Ion Research, FAIR.

  13. First experiments on transmutation studies of iodine-129 and neptunium-237 using relativistic protons of 3.7 GeV

    International Nuclear Information System (INIS)

    Krivopustov, M.I.; Adam, J.; Bradnova, V.

    1997-01-01

    First experiments on the transmutation of long-lived 129 I and 237 Np using relativistic protons of 3.7 GeV are described. Relativistic protons generate in extended Pb-targets substantial neutron fluences. These neutrons get moderated in paraffin and are used for transmutation as follows: 129 (n, γ) 130 I(β - ) → 130 Xe(stable) and 237 Np(n, γ) 238 Np(β - ) →. The isotopes 130 I (T 1/2 =12.36 h) and 238 Np (T 1/2 =2.117 days) were identified radiochemically. One can estimate the transmutation cross section (n, γ) in the given neutron field as σ( 129 I(n, γ))=(10±2)b and σ( 237 Np(n, γ))=(140±30)b. The experiments were carried out in November 1996 at the Synchrophasotron, Laboratory of High Energies (LHE), Dubna, Russia

  14. Beam transfer functions for relativistic proton bunches with beam–beam interaction

    Energy Technology Data Exchange (ETDEWEB)

    Görgen, P., E-mail: goergen@temf.tu-darmstadt.de [Institut für Theorie Elektromagnetischer Felder (TEMF), Technische Universität Darmstadt, Schloßgartenstr. 8 64289 Darmstadt (Germany); Boine-Frankenheim, O. [Institut für Theorie Elektromagnetischer Felder (TEMF), Technische Universität Darmstadt, Schloßgartenstr. 8 64289 Darmstadt (Germany); Fischer, W. [Brookhaven National Laboratory, Upton, NY 11973 (United States)

    2015-03-21

    We present a method for the recovery of the transverse tune spread directly from the beam transfer function (BTF). The model is applicable for coasting beams and bunched beams at high energy with a tune spread from transverse nonlinearities induced by the beam–beam effect or by an electron lens. Other sources of tune spread can be added. A method for the recovery of the incoherent tune spread without prior knowledge of the nonlinearity is presented. The approach is based on the analytic model for BTFs of coasting beams, which agrees very well with simulations results for bunched beams at relativistic energies with typically low synchrotron tune. A priori the presented tune spread recovery method is usable only in the absence of coherent modes, but additional simulation data shows its applicability even in the presence of coherent beam–beam modes. Finally agreement of both the analytic and simulation models with measurement data obtained at RHIC is presented. The proposed method successfully recovers the tune spread from analytic, simulated and measured BTF.

  15. Identification and replacement of proton-contaminated real-time ACE solar wind measurements

    Science.gov (United States)

    Machol, Janet L.; Reinard, Alysha A.; Viereck, Rodney A.; Biesecker, Douglas A.

    2013-07-01

    Real-time solar wind speed measurements derived from measurements by the Solar Wind Electron, Proton, and Alpha Monitor (SWEPAM) aboard the Advanced Composition Explorer (ACE) satellite are critical to specifying and forecasting current space weather and its impacts. When solar energetic protons produce high background levels in SWEPAM, the real-time solar wind speed measurements can be corrupted due to errors in the onboard algorithm. We analyzed 14 years of ACE real-time solar wind data for the years 1998 through 2011 to determine how to identify the contaminated measurements and what proxy might be substituted for these corrupt data. We find that good criteria for flagging contaminated data are that (1) the measured solar wind speeds are below 305 km s-1, and (2) the >10 MeV ion fluxes measured by the ACE Solar Isotope Spectrometer (SIS) are above 180 pfu. We also compare several potential proxies for the contaminated solar wind and determine that the best proxy depends on the last valid measured wind speed, vinitial, and the duration of the contamination period. For the first 25 h, the best proxy is simply vinitial. At later times, if vinitial 400 km s-1, the best proxy is a linear function of the Kp geomagnetic index.

  16. THE NEAR-INTEGER WORKING POINT FOR POLARIZED PROTONS IN THE RELATIVISTIC HEAVY ION COLLIDER

    Energy Technology Data Exchange (ETDEWEB)

    MONTAG,C.; BAI, M.; BEEBE-WANG, J.; CALAGA, R.; BLASKIEWICZ, M.; ET AL.

    2007-06-25

    To achieve the RHIC polarized proton enhanced luminosity goal of 150.10{sup 30} cm{sup -2}sec{sup -} on average in stores at 250 GeV, the luminosity needs to be increased by a factor of 3 compared to what was achieved in 2006. Since the number of bunches is already at its maximum of 1 1 1, limited by the injection kickers and the experiments' time resolution, the luminosity can only be increased by either increasing the bunch intensity and/or reducing the beam emittance. This leads to a larger beam-beam tuneshift parameter. Operations during 2006 has shown that the beam-beam interaction is already dominating the luminosity lifetime. To overcome this limitation, a near-integer working point is under study. We will present recent results of these studies.

  17. Near-real time forecasts of MeV protons based on sub-relativistic electrons: communicating the outputs to the end users

    Science.gov (United States)

    Sarlanis, Christos; Heber, Bernd; Labrenz, Johannes; Kühl, Patrick; Marquardt, Johannes; Dimitroulakos, John; Papaioannou, Athanasios; Posner, Arik

    2017-04-01

    Solar Energetic Particle (SEP) events are one of the most important elements of space weather. Given that the complexity of the underlying physical processes of the acceleration and propagation of SEP events is still a very active research area, the prognosis of SEP event occurrence and their corresponding characteristics remains challenging. In order to provide up to an hour warning time before these particles arrive at Earth, relativistic electron and below 50 MeV proton data from the Electron Proton Helium Instrument (EPHIN) on SOHO were used to implement the 'Relativistic Electron Alert System for Exploration (REleASE)'. The REleASE forecasting scheme was recently rewritten in the open access programming language PYTHON and will be made publicly available. As a next step, along with relativistic electrons (v > 0.9 c) provided by SOHO, near-relativistic (v c) electron measurements from other instruments like the Electron Proton Alpha Monitor (EPAM) aboard the Advanced Composition Explorer (ACE) have been utilized. In this work, we demonstrate the real-time outputs derived by the end user from the REleASE using both SOHO/EPHIN and ACE/EPAM. We further, show a user friendly illustration of the outputs that make use of a "traffic light" to monitor the different warning stages: quiet, warning, alert offering a simple guidance to the end users. Finally, the capabilities offered by this new system, accessing both the pictorial and textural outputs REleASE are being presented. This work has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 637324.

  18. Empirical Constraints on Proton and Electron Heating in the Fast Solar Wind

    Science.gov (United States)

    Cranmer, Steven R.; Matthaeus, William H.; Breech, Benjamin A.; Kasper, Justin C.

    2009-01-01

    This paper presents analyses of measured proton and electron temperatures in the high-speed solar wind that are used to calculate the separate rates of heat deposition for protons and electrons. It was found that the protons receive about 60% of the total plasma heating in the inner heliosphere, and that this fraction increases to approximately 80% by the orbit of Jupiter. The empirically derived partitioning of heat between protons and electrons is in rough agreement with theoretical predictions from a model of linear Vlasov wave damping. For a modeled power spectrum consisting only of Alfvenic fluctuations, the best agreement was found for a distribution of wavenumber vectors that evolves toward isotropy as distance increases.

  19. Multiplicities of pions and slow protons in nuclear interactions at relativistic energies

    International Nuclear Information System (INIS)

    Idh, J.

    1993-02-01

    The distributions of the transverse energy and the multiplicity of charged particles in oxygen induced reactions are examined in the Fritiof Monte Carlo model. The shape of the distributions are found to be determined by the distribution of the number of particle-emitting sources, i.e. strings. The fluctuations in particle emission from each string is hidden by these much larger fluctuations. The fluctuations of these distributions when partial phase space coverage is used is well described by purely stochastic emission. Distributions of slow singly-charged fragments in the target region is measured for both hadron and oxygen induced reactions. The distributions extends to much larger values than simulated data from the Monte Carlo models Fritiof 1.7 and Venus 3.14. The hadron induced reactions give distributions that can be reproduced assuming that each participating target nucleon produced fragments according to a geometric distribution, where the average number of fragments per participating target nucleon is target dependent. The extracted average number of produced fragments are similar for proton and pion induced reactions. When the tails of the distributions are studied their extension can be parametrized, and for such an approach a target dependence of A 2/3 is found for all projectiles. The data for 60 and 200 A GeV are almost identical for distributions as well as angular and energy examined distributions. The angular distributions follow an exponential in cos(θ). If the slopes of the angular distributions are examined and target dependences as well as centrality dependences are extracted. For light targets there is a strong target dependence, but for targets heavier than copper there is not any great differences. The centrality dependence is almost negligible for a gold-target but for a copper-target the most central collisions have more forward peaked distributions. (62 refs.)

  20. Explaining the Diverse Response of the Ultra-relativistic Van Allen Radiation Belt to Solar Wind Forcing

    Science.gov (United States)

    Mann, I. R.; Ozeke, L.; Murphy, K. R.; Claudepierre, S. G.; Rae, J.; Milling, D. K.; Kale, A.; Baker, D. N.

    2017-12-01

    The NASA Van Allen Probes have opened a new window on the dynamics of ultra-relativistic electrons in the Van Allen radiation belts. Under different solar wind forcing the outer belt is seen to respond in a variety of apparently diverse and sometimes remarkable ways. For example, sometimes a third radiation belt is carved out (e.g., September 2012), or the belts can remain depleted for 10 days or more (September 2014). More usually there is a sequential response of a strong and sometimes rapid depletion followed by a re-energization, the latter increasing outer belt electron flux by orders of magnitude on hour timescales during some of the strongest storms of this solar cycle (e.g., March 2013, March 2015). Such dynamics also appear to be often bounded at low-L by an apparently impenetrable barrier at L 2.8 through which ultra-relativistic electrons do not penetrate. Many studies in the Van Allen Probes era have sought explanations for these apparently diverse features, often incorporating the effects from multiple plasma waves. In contrast, we show how this apparently diverse behaviour can instead be explained by one dominant process: ULF wave radial transport. Once ULF wave transport rates are accurately specified by observations, and coupled to the dynamical variation of the outer boundary condition at the edge of the outer belt, the observed diverse responses can all be explained. However, in order to get good agreement with observations, the modeling reveals the importance of still currently unexplained very fast loss in the main phase which results in an almost total extinction of the belts and decouples pre- and post-storm ultra-relativistic electron flux on hour timescales. Similarly, varying plasmasheet source populations are seen to be of critical importance such that near-tail dynamics play a crucial role in Van Allen belt dynamics. Nonetheless, simple models incorporating accurate transport rates derived directly from ULF wave measurements are shown to

  1. Protons and alpha particles in the expanding solar wind: Hybrid simulations

    Czech Academy of Sciences Publication Activity Database

    Hellinger, Petr; Trávníček, Pavel M.

    2013-01-01

    Roč. 118, č. 9 (2013), s. 5421-5429 ISSN 2169-9380 R&D Projects: GA ČR GAP209/12/2023 Grant - others:EU(XE) SHOCK Project No. 284515 Institutional support: RVO:67985815 ; RVO:68378289 Keywords : solar wind * proton energetics * turbulent heating Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics; BL - Plasma and Gas Discharge Physics (UFA-U) Impact factor: 3.440, year: 2013

  2. Parallel proton fire hose instability in the expanding solar wind: Hybrid simulations

    Czech Academy of Sciences Publication Activity Database

    Matteini, L.; Landi, S.; Hellinger, Petr; Velli, M.

    2006-01-01

    Roč. 111, - (2006), A10101/1-A10101/8 ISSN 0148-0227 R&D Projects: GA AV ČR IAA3042403 Grant - others:European Commission(XE) HPRN-CT-2001-00310 Institutional research plan: CEZ:AV0Z30420517 Keywords : solar wind * kinetic instabilities * proton temperature anisotropy * simulation studies Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 2.800, year: 2006

  3. Direct solar wind proton access into permanently shadowed lunar polar craters

    Science.gov (United States)

    Zimmerman, M. I.; Farrell, W. M.; Stubbs, T. J.; Halekas, J. S.

    2011-12-01

    Recent analyses of Lunar Prospector neutron spectrometer (LPNS) data have suggested that high abundances of hydrogen exist within cold traps at the lunar poles, and it has often been assumed that hydrogen-bearing volatiles sequestered in permanent shadow are topographically shielded from sputtering by solar wind protons. However, recent simulation results are presented showing that textbf{solar wind protons clearly access the floor of an idealized, shadowed lunar crater} through a combination of thermal and ambipolar processes, in effect creating a plasma "mini-wake". These simulations are the first to model the mini-wake environment in two spatial dimensions with a self-consistent lunar surface-plasma interaction. Progress is reported on constraining the nonzero particle fluxes and energies incident on kilometer-scale shadowed topography, such as a small crater embedded within a larger one. The importance of direct solar wind proton bombardment is discussed within the context of understanding the stability and inventory of hydrogen-bearing volatiles in shadow at the lunar poles. textit{The support of the National Lunar Science Institute, the DREAM Institute, LPROPS, and the NASA Postdoctoral Program at NASA Goddard Space Flight Center administered by ORAU are gratefully acknowledged.}

  4. Direct Solar Wind Proton Access into Permanently Shadowed Lunar Polar Craters

    Science.gov (United States)

    Zimmerman, M. I.; Farrell, W. M.; Stubbs, T. J.; Halekas, J. S.

    2011-01-01

    Recent analyses of Lunar Prospector neutron spectrometer (LPNS) data have suggested that high abundances of hydrogen exist within cold traps at the lunar poles, and it has often been assumed that hydrogen-bearing volatiles sequestered in permanent shadow are topographically shielded from sputtering by solar wind protons. However, recent simulation results are presented showing that solar wind protons clearly access the floor of an idealized, shadowed lunar crater through a combination of thermal and ambipolar processes, in effect creating a plasma "miniwake". These simulations are the first to model the mini-wake environment in two spatial dimensions with a self-consistent lunar surface-plasma interaction. Progress is reported on constraining the nonzero particle fluxes and energies incident on kilometer-scale shadowed topography, such as a small crater embedded within a larger one. The importance of direct solar wind proton bombardment is discussed within the context of understanding the stability and inventory of hydrogen-bearing volatiles in shadow at the lunar poles. The support of the National Lunar Science institute, the DREAM institute, LPROPS, and the NASA Postdoctoral Program at NASA Goddard Space Flight Center administered by ORAU are gratefully acknowledged.

  5. Average profiles of the solar wind and outer radiation belt during the extreme flux enhancement of relativistic electrons at geosynchronous orbit

    Directory of Open Access Journals (Sweden)

    R. Kataoka

    2008-06-01

    Full Text Available We report average profiles of the solar wind and outer radiation belt during the extreme flux enhancement of relativistic electrons at geosynchronous orbit (GEO. It is found that seven of top ten extreme events at GEO during solar cycle 23 are associated with the magnetosphere inflation during the storm recovery phase as caused by the large-scale solar wind structure of very low dynamic pressure (<1.0 nPa during rapid speed decrease from very high (>650 km/s to typical (400–500 km/s in a few days. For the seven events, the solar wind parameters, geomagnetic activity indices, and relativistic electron flux and geomagnetic field at GEO are superposed at the local noon period of GOES satellites to investigate the physical cause. The average profiles support the "double inflation" mechanism that the rarefaction of the solar wind and subsequent magnetosphere inflation are one of the best conditions to produce the extreme flux enhancement at GEO because of the excellent magnetic confinement of relativistic electrons by reducing the drift loss of trapped electrons at dayside magnetopause.

  6. CERN Proton Synchrotronworking point Matrix for extended pole face winding powering scheme

    CERN Document Server

    Freyermuth, P; Delrieux, M; Genoud, H; Gilardoni, S; Hanke, K; Hans, O; Mataguez, S; Metral, G; Peters, F; Steerenberg, R; Vandorpe, B

    2010-01-01

    The CERN Proton Synchrotron has been continuously improving its beam performances since 1959. The working point parameters of the accelerator are mainly controlled by dedicated windings installed on the poles of the main combined function magnets. In 2007, the power supplies of these windings were renovated and extended from three to five independent groups, allowing exploration of new working point settings. This configuration offers the flexibility of several adjustment strategies such as leaving one current free or to control an additional physical parameter, like Q′′ h. A non-linear chromaticity measurement campaign, at different beam momenta, resulted in matrices defining the relationship between the five pole face winding currents and the four beam parameters Qh, Qv, h, and v. Each cell of these matrices was fitted against momentum. The final result is a single matrix as a function of beam momentum, which is now used by the operational software to trim the working point. This paper summarises this m...

  7. Ulysses near-ecliptic observations of differential flow between protons and alphas in the solar wind

    Science.gov (United States)

    Neugebauer, M.; Goldstein, B. E.; Bame, S. J.; Feldman, W. C.

    1994-01-01

    The evolution of differential streaming between protons and alpha particles in the solar wind was observed with the solar wind plasma experiment on the Ulysses spacecraft over the solar range of 1.15 to 5.40 AU between November 18, 1990, and May 5, 1992. The correlation of the difference in ion speeds, Delta V = the absolute value of V(sub alpha) - the absolute value of V(sub p), with the proton speed V(sub p) observed by other spacecraft at solar distances less than or equal to 1 AU disappeared at approximately 2 AU. At solar distances greater than or equal to 2.85 AU, the largest values of both V(sub alpha p) = the absolute value of V(sub alpha p) = the absolute value of V(sub alpha) - V(sub p) and the absolute value of Delta V were found in the interaction regions on the leading edges of high-speed streams. The differential streaming was typically enhanced just downstream of strong forward and reverse shocks, and large negative values of Delta V were frequently encountered in the interaction regions. A correlation between V(sub alpha p) and the ratio tau(sub zero)/tau(sub e) of Coulomb collision time to expansion time was observed at all distances, but it is suggested that at the larger values of tau(sub zero)/tau(sub e) observed correlation may arise from enhanced production of differential streaming by processes that also increase the entropy of the solar wind protons.

  8. Net-baryon-, net-proton-, and net-charge kurtosis in heavy-ion collisions within a relativistic transport approach

    International Nuclear Information System (INIS)

    Nahrgang, Marlene; Schuster, Tim; Stock, Reinhard; Mitrovski, Michael; Bleicher, Marcus

    2012-01-01

    We explore the potential of net-baryon, net-proton and net-charge kurtosis measurements to investigate the properties of hot and dense matter created in relativistic heavy-ion collisions. Contrary to calculations in a grand-canonical ensemble we explicitly take into account exact electric and baryon charge conservation on an event-by-event basis. This drastically limits the width of baryon fluctuations. A simple model to account for this is to assume a grand-canonical distribution with a sharp cut-off at the tails. We present baseline predictions of the energy dependence of the net-baryon, net-proton and net-charge kurtosis for central (b≤2.75 fm) Pb+Pb/Au+Au collisions from E lab =2A GeV to √(s NN )=200 GeV from the UrQMD model. While the net-charge kurtosis is compatible with values around zero, the net-baryon number decreases to large negative values with decreasing beam energy. The net-proton kurtosis becomes only slightly negative for low √(s NN ). (orig.)

  9. Sputtering of lunar regolith simulant by protons and singly and multicharged Ar ions at solar wind energies

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, F.W., E-mail: meyerfw@ornl.gov [Physics Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831 (United States); Harris, P.R.; Taylor, C.N. [Physics Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831 (United States); Meyer III, H.M. [MST Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831 (United States); Barghouty, A.F.; Adams, J.H. [NASA-Marshall Space Flight Center, Huntsville, AL 35812 (United States)

    2011-06-01

    We report preliminary results on sputtering of a lunar regolith simulant at room temperature by singly and multiply charged solar wind ions using quadrupole and time-of-flight (TOF) mass spectrometry approaches. Sputtering of the lunar regolith by solar-wind heavy ions may be an important particle source that contributes to the composition of the lunar exosphere, and is a possible mechanism for lunar surface ageing and compositional modification. The measurements were performed in order to assess the relative sputtering efficiency of protons, which are the dominant constituent of the solar wind, and less abundant heavier multicharged solar wind constituents, which have higher physical sputtering yields than same-velocity protons, and whose sputtering yields may be further enhanced due to potential sputtering. Two different target preparation approaches using JSC-1A AGGL lunar regolith simulant are described and compared using SEM and XPS surface analysis.

  10. ULF power fluctuations in the solar-wind parameters and their relationship with the relativistic electron flux at the geosynchronous orbit

    International Nuclear Information System (INIS)

    Regi, M.

    2016-01-01

    We focused the attention on the Pc5 geomagnetic pulsations in response to the solar wind forcing and their relationship with the relativistic electron flux at geostationary orbit. We present here the results of a correlation analysis between the Pc5 power in the magnetosphere and on the ground, at low and high latitude, and the solar-wind speed and fluctuation power of the interplanetary magnetic field and solar-wind dynamic pressure through the years 2006 to 2010, also showing the relative timing between pulsations and solar-wind parameters. The Pc5 power appears significantly correlated with simultaneous solar-wind pressure fluctuations and with the solar-wind speed lagged by several hours. The relative amplitude of the two correlation peaks depends on the solar cycle phase and on the latitude. We also show a strong relationship between the Pc5 power and the > 600 keV and > 2MeV electron flux at geosynchronous orbit. Clear evidence emerges that the electron flux follows the Pc5 power by about 2 days; the time delay is a bit longer for the higher-energy electrons.

  11. Evolution of the solar wind proton temperature anisotropy from 0.3 to 2.5 AU

    Czech Academy of Sciences Publication Activity Database

    Matteini, L.; Landi, S.; Hellinger, Petr; Pantellini, F.; Maksimovic, M.; Velli, M.; Goldstein, B. E.; Marsch, E.

    2007-01-01

    Roč. 34, č. 20 (2007), L20105/1-L20105/5 ISSN 0094-8276 Grant - others:ASI(IT) I/015/07/0 Institutional research plan: CEZ:AV0Z30420517 Keywords : Proton temperature anisotropy * solar wind * radial evolution * observations Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.744, year: 2007

  12. Basic features of proton-proton interactions at ultra-relativistic energies and RFT-based quark-gluon string model

    Directory of Open Access Journals (Sweden)

    Zabrodin E.

    2017-01-01

    Full Text Available Proton-proton collisions at energies from √s = 200 GeV up to √s = 14 TeV are studied within the microscopic quark-gluon string model. The model is based on Gribov’s Reggeon Field Theory accomplished by string phenomenology. Comparison with experimental data shows that QGSM describes well particle yields, rapidity - and transverse momentum spectra, rise of mean 〈 pT 〉 and forward-backward multiplicity correlations. The latter arise in QGSM because of the addition of various processes with different mean multiplicities. The model also indicates fulfillment of extended longitudinal scaling and violation of Koba-Nielsen-Olesen scaling at LHC. The origin of both features is traced to short-range particle correlations in the strings. Predictions are made for √s = 14 TeV.

  13. Basic features of proton-proton interactions at ultra-relativistic energies and RFT-based quark-gluon string model

    Science.gov (United States)

    Zabrodin, E.; Bravina, L.; Bleibel, J.

    2017-12-01

    Proton-proton collisions at energies from √s = 200 GeV up to √s = 14 TeV are studied within the microscopic quark-gluon string model. The model is based on Gribov's Reggeon Field Theory accomplished by string phenomenology. Comparison with experimental data shows that QGSM describes well particle yields, rapidity - and transverse momentum spectra, rise of mean 〈 pT 〉 and forward-backward multiplicity correlations. The latter arise in QGSM because of the addition of various processes with different mean multiplicities. The model also indicates fulfillment of extended longitudinal scaling and violation of Koba-Nielsen-Olesen scaling at LHC. The origin of both features is traced to short-range particle correlations in the strings. Predictions are made for √s = 14 TeV.

  14. Determination of spatial and energy distributions of neutrons in experiments on transmutation of radioactive waste using relativistic protons

    CERN Document Server

    Zhuk, I V; Boulyga, S F; Kievitskaia, A I; Rakhno, I L; Chigrinov, S E; Bradnova, V; Krivopustov, M I; Kulakov, B A; Brandt, R; Ochs, M; Wan, J S

    1999-01-01

    The experiments on transmutation of sup 1 sup 2 sup 9 I and sup 2 sup 3 sup 7 Np using uranium-lead targets surrounded by a paraffin moderator were performed at the Joint Institute for Nuclear Research (JINR, Russia). The targets were irradiated by 1.5 GeV and 7.4 GeV protons at the Synchrophasotron of JINR. In the frame of present work spatial and energy distributions of neutrons on the surface of the paraffin moderator were measured using SSNTD technique. It is shown that measured values of spectral indices do not depend on the energy of incident protons but depend on the target composition. The presence of the uranium insertion softens neutron spectra.

  15. Relationship between Relativistic Electron Flux in the Inner Magnetosphere and ULF Pulsation on the Ground Associated with Long-term Variations of Solar Wind

    Science.gov (United States)

    Kitamura, K.; Nagatsuma, T.; Troshichev, O. A.; Obara, T.; Koshiishi, H.; Saita, S.; Yoshikawa, A.; Yumoto, K.

    2014-12-01

    In the present study the relativistic electron flux (0.59-1.18MeV) measured by Standard Dose Monitor (SDOM) onboard DRTS (KODAMA) satellite at the Geostationary Earth Orbit (GEO) is analyzed to investigate the long term (from 2002 to 2014) variations of the electron flux enhancement (REF) during the passage of Corotating Interaction Regions (CIRs) and/or Coronal Mass Ejection (CMEs). The long term variations of the REF clearly shows the 27-days period associated with the high speed solar wind velocity caused by the CIRs, whereas it is very few that the enhancement of REF lasts for several days after passage of CMEs. The 27-days period enhancement of REF represents the quite strong peak in 2003 when the high speed stream of the solar wind were quit active. We also conducted the same analysis for the Pc5 pulsations observed on the ground. The ground magnetic variations data globally observed by National Institute of Information and Communications Technology (NICT) and International Center for Space Weather Science and Education (ICSWSE) Kyushu University are used to investigate the long term variations of Pc5 power. The same signature in the REF variations is shown in the time variability of the Pc5 power on the ground. These results indicate that the solar wind condition strongly affects the acceleration process of the relativistic electron flux by the ULF wave. In particular the dependence of the REF and Pc5 variations on the sector structures and their seasonal variations strongly suggest that the relationship between Pc5 and REF variations could be controlled by the Russell-McPherron effect.

  16. Relativistic polarized deuteron fragmentation into protons as test of six-quark nature of deuteron at small distances

    International Nuclear Information System (INIS)

    Kobushkin, A.P.; Vizireva, L.

    1981-01-01

    A study of the nature of the short-range few-nucleon correlations in nuclei is proposed in the polarized high-energy deuteron fragmentation experiments. The presence of 6q-state in deuteron with probability of several percents is shown to change essentially the cross-section behaviour of this process in the momentum region where the fraction of the deuteron momentum carried out by proton in the infinite momentum frame is about 0.78. It is shown how the character of the cross-section of the transverse polarized deuteron fragmentation is changed depending on the parameters of 6q-admixure in deuteron [ru

  17. Transmutation of $^{239}$Pu and Other Nuclides Using Spallation Neutrons Produced by Relativistic Protons Reacting with Massive U- and Pb-Targets

    CERN Document Server

    Adam, J; Bamblevski, V P; Barabanov, M Yu; Bradnova, V; Chaloun, P; Hella, K M; Kalinnikov, V G; Krivopustov, M I; Kulakov, B A; Perelygin, V P; Pronskikh, V S; Pavliouk, A V; Solnyshkin, A A; Sosnin, A N; Stegailov, V I; Tsoupko-Sitnikov, V M; Zaverioukha, O S; Adloff, J C; Debeauvais, M; Brandt, R; Langrock, E J; Vater, P; Van, J S; Westmeier, W; Dwivedi, K K; Guo Shi Lun; Li Li Qiang; Hashemi-Nezhad, S R; Kievets, M K; Lomonosova, E M; Zhuk, I V; Modolo, G; Odoj, R; Zamani-Valassiadou, M

    2001-01-01

    Experimental studies on the transmutation of some long-lived radioactive waste nuclei, such as ^{129}I, ^{237}Np, and ^{239}Pu, as well as on natural uranium and lanthanum (all of them used as sensors) were carried out at the Synchrophasotron of the Laboratory for High Energies (JINR, Dubna). Spallation neutrons were produced by relativistic protons with energies in the range of 0.5 GeV\\le E(p)\\le 1.5 GeV interacting with 20 cm long uranium or lead target stacks. The targets were surrounded by 6 cm paraffin moderators. The radioactive sensors mentioned above were positioned on the outside surface of the moderator and contained typically approximately 0.5 up to 1 gram of long-lived isotopes. The highly radioactive targets were produced perfectly well-sealed in aluminum containers by the Institute of Physics and Power Engineering, Obninsk, Russia. From the experimentally observed transmutation rates one can easily extrapolate, that in a subcritical nuclear power assembly (or "energy amplifier") using a 10 mA pr...

  18. PROTON TEMPERATURE ANISOTROPY AND MAGNETIC RECONNECTION IN THE SOLAR WIND: EFFECTS OF KINETIC INSTABILITIES ON CURRENT SHEET STABILITY

    Energy Technology Data Exchange (ETDEWEB)

    Matteini, L.; Landi, S.; Velli, M. [Dipartimento di Fisica e Astronomia, Universita degli Studi di Firenze, Largo E. Fermi 2, I-50125 Florence (Italy); Matthaeus, W. H. [Bartol Research Institute, Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States)

    2013-02-15

    We investigate the role of kinetic instabilities driven by a proton anisotropy on the onset of magnetic reconnection by means of two-dimensional hybrid simulations. The collisionless tearing of a current sheet is studied in the presence of a proton temperature anisotropy in the surrounding plasma. Our results confirm that anisotropic protons within the current sheet region can significantly enhance/stabilize the tearing instability of the current. Moreover, fluctuations associated with linear instabilities excited by large proton temperature anisotropies can significantly influence the stability of the plasma and perturb the current sheets, triggering the tearing instability. We find that such a complex coupling leads to a faster tearing evolution in the T{sub Up-Tack} > T{sub ||} regime when an ion-cyclotron instability is generated by the anisotropic proton distribution functions. On the contrary, in the presence of the opposite anisotropy, fire-hose fluctuations excited by the unstable background protons with T{sub ||} < T{sub Up-Tack} are not able to efficiently destabilize current sheets, which remain stable for a long time after fire-hose saturation. We discuss possible influences of this novel coupling on the solar wind and heliospheric plasma dynamics.

  19. The heliospheric magnetic flux, solar wind proton flux, and cosmic ray intensity during the coming solar minimum

    Science.gov (United States)

    Smith, Charles W.; McCracken, K. G.; Schwadron, Nathan A.; Goelzer, Molly L.

    2014-07-01

    Recent papers have linked the heliospheric magnetic flux to the sunspot cycle with good correlation observed between prediction and observation. Other papers have shown a strong correlation between magnetic flux and solar wind proton flux from coronal holes. We combine these efforts with an expectation that the sunspot activity of the approaching solar minimum will resemble the Dalton or Gleissberg Minimum and predict that the magnetic flux and solar wind proton flux over the coming decade will be lower than at any time during the space age. Using these predictions and established theory, we also predict record high galactic cosmic ray intensities over the same years. The analysis shown here is a prediction of global space climate change within which space weather operates. It predicts a new parameter regime for the transient space weather behavior that can be expected during the coming decade.

  20. Solar wind proton density increase that preceded Central Italy earthquakes occurred between 26 and 30 October 2016

    Science.gov (United States)

    Cataldi, Gabriele; Cataldi, Daniele; Straser, Valentino

    2017-04-01

    Between 26 and 30 October 2016 in Central Italy were recorded two strong earthquakes: M6.1 occurred on October 26, 2016 at 19:18:08 UTC and M6.6 occurred on October 30, 2016 at 06:40:18 UTC. The authors of this study noted that the two earthquakes were preceded by an increase in the proton density of the interplanetary medium: a phenomenon observed since 2012 and has always preceded the seismic events of high intensity (M6+) occurring on a global scale. To obtain these results the authors have analyzed the conditions of Spaceweather "near Earth" and the characteristics of the Earth's geomagnetic field in the days and in the hours that preceded the two earthquakes. The data relating to the two earthquakes were provided by the United States Geological Survey (USGS). The data on ion density used to realize the study are represented by: solar wind ion density variation detected by ACE (Advanced Composition Explorer) Satellite, in orbit near the L1 Lagrange point, at 1.5 million of km from Earth, in direction of the Sun. The instrument used to perform the measurement of the solar wind ion density is the Electron, Proton, and Alpha Monitor (EPAM) instrument, equipped on the ACE Satellite. To conduct the study, the authors have taken in consideration the variation of the solar wind protons density of three different energy fractions: differential proton flux 1060-1900 keV (p/cm^2-sec-ster-MeV); differential proton flux 761-1220 keV (p/cm^2-sec-ster-MeV); differential proton flux 310-580 keV (p/cm^2-sec-ster-MeV). In addition, the authors were analyzed the Earth's geomagnetic field variations through the geomagnetic data released by Tromsø Geomagnetic Observatory (TGO), Norway; Scoresbysund Geomagnetic Observatory (SCO), Greenland, Denmark; Dikson Geomagnetic Observatory (DIK), Russia and Pushkov Institute of terrestrial magnetism, ionosphere and radio wave propagation (IZMIRAN), Troitsk, Moscow Region. The results of the study, in agreement with what already ascertained

  1. Turbulent Density Fluctuations and Proton Heating Rate in the Solar Wind from 9-20 R ⊙

    Science.gov (United States)

    Sasikumar Raja, K.; Subramanian, Prasad; Ramesh, R.; Vourlidas, Angelos; Ingale, Madhusudan

    2017-12-01

    We obtain scatter-broadened images of the Crab Nebula at 80 MHz as it transits through the inner solar wind in 2017 and 2016 June. These images are anisotropic, with the major axis oriented perpendicular to the radially outward coronal magnetic field. Using these data, we deduce that the density modulation index (δ {N}e/{N}e) caused by turbulent density fluctuations in the solar wind ranges from 1.9× {10}-3 to 7.7× {10}-3 between 9 and 20 R ⊙. We also find that the heating rate of solar wind protons at these distances ranges from 2.2× {10}-13 to 1.0× {10}-11 {erg} {{cm}}-3 {{{s}}}-1. On two occasions, the line of sight intercepted a coronal streamer. We find that the presence of the streamer approximately doubles the thickness of the scattering screen.

  2. Effects of solar proton events in the mesosphere/lower thermosphere region according to the data of meteo radar wind measurements at high and middle latitudes

    Science.gov (United States)

    Trifonov, A. N.; Makarov, N. A.; Merzlyakov, E. G.

    2016-03-01

    Data from meteo radar measurements of the wind in the mesosphere/lower thermosphere region at high latitudes of the Southern Hemisphere (Molodezhnaya station, 68° S, 45° E) and at middle latitudes of the Northern Hemisphere (Obninsk station, 55° N, 37° E) during solar proton events that took place in 1989, 1991, 2000, 2005, and 2012 are analyzed in the paper. In 1989 and 1991, we succeeded in observing the response to solar proton evens at both stations simultaneously. The results show that solar proton events lead to a change in the wind regime of the mesosphere and lower thermosphere. At high latitudes of the Southern Hemisphere, significant changes are observed in the values of the velocities of the meridional and zonal components of the prevailing wind. In the case of powerful solar proton events, the amplitude of the semidiurnal tide grows in the vicinity of the proton flux maximum. The response to these events depends on the season. The reaction of the prevailing wind at middle latitudes shows the same features as the reaction of the wind at high latitudes. However no unambiguous response of the tide amplitude is observed. In the summer season, even powerful events (for example, in July 2000) cause no changes in the wind regime parameters in the midlatitude region of the mesosphere/lower thermosphere.

  3. Importance of energy and angular resolutions in top-hat electrostatic analysers for solar wind proton measurements

    Science.gov (United States)

    De Marco, R.; Marcucci, M. F.; Bruno, R.; D'Amicis, R.; Servidio, S.; Valentini, F.; Lavraud, B.; Louarn, P.; Salatti, M.

    2016-08-01

    We use a numerical code which reproduces the angular/energy response of a typical top-hat electrostatic analyser starting from solar wind proton velocity distribution functions (VDFs) generated by numerical simulations. The simulations are based on the Hybrid Vlasov-Maxwell numerical algorithm which integrates the Vlasov equation for the ion distribution function, while the electrons are treated as a fluid. A virtual satellite launched through the simulation box measures the particle VDFs. Such VDFs are moved from the simulation Cartesian grid to energy-angular coordinates to mimic the response of a real sensor in the solar wind. Different energy-angular resolutions of the analyser are investigated in order to understand the influence of the phase-space resolution in existing and upcoming space missions, with regards to determining the key parameters of plasma dynamics.

  4. Relativistic astrophysics

    CERN Document Server

    Demianski, Marek

    2013-01-01

    Relativistic Astrophysics brings together important astronomical discoveries and the significant achievements, as well as the difficulties in the field of relativistic astrophysics. This book is divided into 10 chapters that tackle some aspects of the field, including the gravitational field, stellar equilibrium, black holes, and cosmology. The opening chapters introduce the theories to delineate gravitational field and the elements of relativistic thermodynamics and hydrodynamics. The succeeding chapters deal with the gravitational fields in matter; stellar equilibrium and general relativity

  5. Relativistic heavy-ion physics: Experimental overview

    Indian Academy of Sciences (India)

    The field of relativistic heavy-ion physics is reviewed with emphasis on new results and highlights from the first run of the relativistic heavy-ion collider at BNL and the 15 year research programme at the super proton synchrotron ...... to the charged particle spectra at high momentum (cf. §3.2). A similar suppression pattern.

  6. Relativistic heavy-ion physics: Experimental overview

    Indian Academy of Sciences (India)

    Abstract. The field of relativistic heavy-ion physics is reviewed with emphasis on new results and highlights from the first run of the relativistic heavy-ion collider at BNL and the 15 year research programme at the super proton synchrotron (SPS) at CERN and the AGS at BNL.

  7. Effects of relativity in proton-proton bremsstrahlung

    NARCIS (Netherlands)

    Martinus, G.H.; Scholten, O.; Tjon, J.A.

    1997-01-01

    We investigate the influence of negative-energy states in proton-proton bremsstrahlung in a fully relativistic framework using the T matrix of Fleischer and Tjon. The contribution from negative-energy states in the single-scattering diagrams is shown to be large, indicating that relativistic effects

  8. Oblique proton fire hose instability in the expanding solar wind: Hybrid simulations

    Czech Academy of Sciences Publication Activity Database

    Hellinger, Petr; Trávníček, Pavel M.

    2008-01-01

    Roč. 113, A10 (2008), A10109/1-A10109/9 ISSN 0148-0227 R&D Projects: GA AV ČR IAA300420702; GA AV ČR IAA300420602 Institutional research plan: CEZ:AV0Z30420517; CEZ:AV0Z10030501 Keywords : kinetic instability * fire hose * solar wind * fire hose instabilities * linear analysis * nonlinear evolution * solar wind Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 3.147, year: 2008

  9. Proton core-beam system in the expanding solar wind: Hybrid simulations

    Czech Academy of Sciences Publication Activity Database

    Hellinger, Petr; Trávníček, Pavel M.

    2011-01-01

    Roč. 116, A11 (2011), A11101/1-A11101/13 ISSN 0148-0227 R&D Projects: GA AV ČR IAA300420702 Grant - others:European Space Agency(XE) PECS contract No. 98068; European Commissions(XE) SWIFF (project 263340) Institutional research plan: CEZ:AV0Z30420517; CEZ:AV0Z10030501 Keywords : ELECTROMAGNETIC PROTON/PROTON INSTABILITIES * VELOCITY SPACE DIFFUSION * WAVE-WAVE SCATTERING * TEMPERATURE ANISOTROPY * PLASMA * DRIFT * DISTRIBUTIONS Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 3.021, year: 2011 http://www.agu.org/pubs/crossref/2011/2011JA016940.shtml

  10. Computational Laboratory Astrophysics to Enable Transport Modeling of Protons and Hydrogen in Stellar Winds, the ISM, and other Astrophysical Environments

    Science.gov (United States)

    Schultz, David

    As recognized prominently by the APRA program, interpretation of NASA astrophysical mission observations requires significant products of laboratory astrophysics, for example, spectral lines and transition probabilities, electron-, proton-, or heavy-particle collision data. Availability of these data underpin robust and validated models of astrophysical emissions and absorptions, energy, momentum, and particle transport, dynamics, and reactions. Therefore, measured or computationally derived, analyzed, and readily available laboratory astrophysics data significantly enhances the scientific return on NASA missions such as HST, Spitzer, and JWST. In the present work a comprehensive set of data will be developed for the ubiquitous proton-hydrogen and hydrogen-hydrogen collisions in astrophysical environments including ISM shocks, supernova remnants and bubbles, HI clouds, young stellar objects, and winds within stellar spheres, covering the necessary wide range of energy- and charge-changing channels, collision energies, and most relevant scattering parameters. In addition, building on preliminary work, a transport and reaction simulation will be developed incorporating the elastic and inelastic collision data collected and produced. The work will build upon significant previous efforts of the principal investigators and collaborators, will result in a comprehensive data set required for modeling these environments and interpreting NASA astrophysical mission observations, and will benefit from feedback from collaborators who are active users of the work proposed.

  11. Solar Wind Protons at 1 AU: Trends and Bounds, Constraints and Correlations

    Czech Academy of Sciences Publication Activity Database

    Hellinger, Petr; Trávníček, Pavel M.

    2014-01-01

    Roč. 784, č. 1 (2014), L15/1-L15/5 ISSN 2041-8205 R&D Projects: GA ČR GAP209/12/2023 Grant - others:EU(XE) SHOCK Project No. 284515 Institutional support: RVO:67985815 Keywords : instabilities * plasmas * solar wind Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 5.339, year: 2014

  12. Protons and alpha particles in the expanding solar wind: Hybrid simulations

    Czech Academy of Sciences Publication Activity Database

    Hellinger, Petr; Trávníček, Pavel M.

    2013-01-01

    Roč. 118, č. 9 (2013), s. 5421-5430 ISSN 2169-9380 Institutional support: RVO:68378289 Keywords : solar wind * ion energetics Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 3.440, year: 2013 http://onlinelibrary.wiley.com/doi/10.1002/jgra.50540/abstract

  13. Particle Acceleration in Relativistic Outflows

    Science.gov (United States)

    Bykov, Andrei; Gehrels, Neil; Krawczynski, Henric; Lemoine, Martin; Pelletier, Guy; Pohl, Martin

    2012-01-01

    In this review we confront the current theoretical understanding of particle acceleration at relativistic outflows with recent observational results on various source classes thought to involve such outflows, e.g. gamma-ray bursts, active galactic nuclei, and pulsar wind nebulae. We highlight the possible contributions of these sources to ultra-high-energy cosmic rays.

  14. Relativistic hydrodynamics

    CERN Document Server

    Luciano, Rezzolla

    2013-01-01

    Relativistic hydrodynamics is a very successful theoretical framework to describe the dynamics of matter from scales as small as those of colliding elementary particles, up to the largest scales in the universe. This book provides an up-to-date, lively, and approachable introduction to the mathematical formalism, numerical techniques, and applications of relativistic hydrodynamics. The topic is typically covered either by very formal or by very phenomenological books, but is instead presented here in a form that will be appreciated both by students and researchers in the field. The topics covered in the book are the results of work carried out over the last 40 years, which can be found in rather technical research articles with dissimilar notations and styles. The book is not just a collection of scattered information, but a well-organized description of relativistic hydrodynamics, from the basic principles of statistical kinetic theory, down to the technical aspects of numerical methods devised for the solut...

  15. The Role of Proton Cyclotron Resonance as a Dissipation Mechanism in Solar Wind Turbulence: A Statistical Study at Ion-kinetic Scales

    Science.gov (United States)

    Woodham, Lloyd D.; Wicks, Robert T.; Verscharen, Daniel; Owen, Christopher J.

    2018-03-01

    We use magnetic field and ion moment data from the MFI and SWE instruments on board the Wind spacecraft to study the nature of solar wind turbulence at ion-kinetic scales. We analyze the spectral properties of magnetic field fluctuations between 0.1 and 5.4 Hz during 2012 using an automated routine, computing high-resolution 92 s power and magnetic helicity spectra. To ensure the spectral features are physical, we make the first in-flight measurement of the MFI “noise-floor” using tail-lobe crossings of the Earth’s magnetosphere during early 2004. We utilize Taylor’s hypothesis to Doppler-shift into the spacecraft frequency frame, finding that the spectral break observed at these frequencies is best associated with the proton cyclotron resonance scale, 1/k c , rather than the proton inertial length, d i , or proton gyroscale, ρ i . This agreement is strongest when we consider periods where β i,\\perp ∼ 1, and is consistent with a spectral break at d i for β i,\\perp ≪1 and at ρ i for β i,\\perp ≫1. We also find that the coherent magnetic helicity signature observed at these frequencies is bounded at low frequencies by 1/k c , and its absolute value reaches a maximum at ρ i . These results hold in both slow and fast wind streams, but with a better correlation in the more Alfvénic fast wind where the helicity signature is strongest. We conclude that these findings are consistent with proton cyclotron resonance as an important mechanism for dissipation of turbulent energy in the solar wind, occurring at least half the time in our selected interval. However, we do not rule out additional mechanisms.

  16. Relativistic diffusion.

    Science.gov (United States)

    Haba, Z

    2009-02-01

    We discuss relativistic diffusion in proper time in the approach of Schay (Ph.D. thesis, Princeton University, Princeton, NJ, 1961) and Dudley [Ark. Mat. 6, 241 (1965)]. We derive (Langevin) stochastic differential equations in various coordinates. We show that in some coordinates the stochastic differential equations become linear. We obtain momentum probability distribution in an explicit form. We discuss a relativistic particle diffusing in an external electromagnetic field. We solve the Langevin equations in the case of parallel electric and magnetic fields. We derive a kinetic equation for the evolution of the probability distribution. We discuss drag terms leading to an equilibrium distribution. The relativistic analog of the Ornstein-Uhlenbeck process is not unique. We show that if the drag comes from a diffusion approximation to the master equation then its form is strongly restricted. The drag leading to the Tsallis equilibrium distribution satisfies this restriction whereas the one of the Jüttner distribution does not. We show that any function of the relativistic energy can be the equilibrium distribution for a particle in a static electric field. A preliminary study of the time evolution with friction is presented. It is shown that the problem is equivalent to quantum mechanics of a particle moving on a hyperboloid with a potential determined by the drag. A relation to diffusions appearing in heavy ion collisions is briefly discussed.

  17. Relativistic cosmology

    International Nuclear Information System (INIS)

    Bastero-Gil, M.

    2015-01-01

    Relativistic cosmology is nothing but the study of the evolution of our universe expanding from the General Theory of Relativity, which describes the gravitational interaction at any scale and given its character far-reaching is the force that dominate the evolution of the universe. (Author)

  18. Relativistic astrophysics

    CERN Document Server

    Price, R H

    1993-01-01

    Work reported in the workshop on relativistic astrophysics spanned a wide varicy of topics. Two specific areas seemed of particular interest. Much attention was focussed on gravitational wave sources, especially on the waveforms they produce, and progress was reported in theoretical and observational aspects of accretion disks.

  19. First experimental evidence of hydrodynamic tunneling of ultra–relativistic protons in extended solid copper target at the CERN HiRadMat facility

    CERN Document Server

    Schmidt, R; Sancho, J Blanco; Burkart, F; Grenier, D; Wollmann, D; Tahir, N A; Shutov, A; Piriz, A R

    2014-01-01

    A novel experiment has been performed at the CERN HiRadMat test facility to study the impact of the 440 GeV proton beam generated by the Super Proton Synchrotron on extended solid copper cylindrical targets. Substantial hydrodynamic tunneling of the protons in the target material has been observed that leads to significant lengthening of the projectile range, which confirms our previous theoretical predictions [N. A. Tahir et al., Phys. Rev. Spec. Top.-Accel. Beams 15, 051003 (2012)]. Simulation results show very good agreement with the experimental measurements. These results have very important implications on the machine protection design for powerful machines like the Large Hadron Collider (LHC), the future High Luminosity LHC, and the proposed huge 80 km circumference Future Circular Collider, which is currently being discussed at CERN. Another very interesting outcome of this work is that one may also study the field of High Energy Density Physics at this test facility.

  20. Lorentz contracted proton

    Energy Technology Data Exchange (ETDEWEB)

    Fierro, D. Bedoya; Kelkar, N.G.; Nowakowski, M. [Dept. de Fisica, Universidad de los Andes, Cra. 1E No. 18A-10, Santafe de Bogota (Colombia)

    2015-09-30

    The proton charge and magnetization density distributions can be related to the well known Sachs electromagnetic form factors G{sub E,M}(/emph {q}{sup 2}) through Fourier transforms, only in the Breit frame. The Breit frame however moves with relativistic velocities in the Lab and a Lorentz boost must be applied before extracting the static properties of the proton from the corresponding densities. Apart from this, the Fourier transform relating the densities and form factors is inherently a non-relativistic expression. We show that the relativistic corrections to it can be obtained by extending the standard Breit equation to higher orders in its 1/c{sup 2} expansion. We find that the inclusion of the above corrections reduces the size of the proton as determined from electron proton scattering data by about 4%.

  1. Relativistic klystrons

    International Nuclear Information System (INIS)

    Allen, M.A.; Azuma, O.; Callin, R.S.

    1989-03-01

    Experimental work is underway by a SLAC-LLNL-LBL collaboration to investigate the feasibility of using relativistic klystrons as a power source for future high gradient accelerators. Two different relativistic klystron configurations have been built and tested to date: a high grain multicavity klystron at 11.4 GHz and a low gain two cavity subharmonic buncher driven at 5.7 GHz. In both configurations power is extracted at 11.4 GHz. In order to understand the basic physics issues involved in extracting RF from a high power beam, we have used both a single resonant cavity and a multi-cell traveling wave structure for energy extraction. We have learned how to overcome our previously reported problem of high power RF pulse shortening, and have achieved peak RF power levels of 170 MW with the RF pulse of the same duration as the beam current pulse. 6 refs., 3 figs., 3 tabs

  2. Gravitation relativiste

    CERN Document Server

    Hakim, Rémi

    1994-01-01

    Il existe à l'heure actuelle un certain nombre de théories relativistes de la gravitation compatibles avec l'expérience et l'observation. Toutefois, la relativité générale d'Einstein fut historiquement la première à fournir des résultats théoriques corrects en accord précis avec les faits.

  3. Relativistic Astrophysics

    Science.gov (United States)

    Jones, Bernard J. T.; Markovic, Dragoljub

    1997-06-01

    Preface; Prologue: Conference overview Bernard Carr; Part I. The Universe At Large and Very Large Redshifts: 2. The size and age of the Universe Gustav A. Tammann; 3. Active galaxies at large redshifts Malcolm S. Longair; 4. Observational cosmology with the cosmic microwave background George F. Smoot; 5. Future prospects in measuring the CMB power spectrum Philip M. Lubin; 6. Inflationary cosmology Michael S. Turner; 7. The signature of the Universe Bernard J. T. Jones; 8. Theory of large-scale structure Sergei F. Shandarin; 9. The origin of matter in the universe Lev A. Kofman; 10. New guises for cold-dark matter suspects Edward W. Kolb; Part II. Physics and Astrophysics Of Relativistic Compact Objects: 11. On the unification of gravitational and inertial forces Donald Lynden-Bell; 12. Internal structure of astrophysical black holes Werner Israel; 13. Black hole entropy: external facade and internal reality Valery Frolov; 14. Accretion disks around black holes Marek A. Abramowicz; 15. Black hole X-ray transients J. Craig Wheeler; 16. X-rays and gamma rays from active galactic nuclei Roland Svensson; 17. Gamma-ray bursts: a challenge to relativistic astrophysics Martin Rees; 18. Probing black holes and other exotic objects with gravitational waves Kip Thorne; Epilogue: the past and future of relativistic astrophysics Igor D. Novikov; I. D. Novikov's scientific papers and books.

  4. Type-II entry of solar wind protons into the lunar wake: Effects of magnetic connection to the night-side surface

    Science.gov (United States)

    Nishino, Masaki N.; Fujimoto, Masaki; Saito, Yoshifumi; Tsunakawa, Hideo; Kasahara, Yoshiya; Kawamura, Mariko; Matsushima, Masaki; Takahashi, Futoshi; Shibuya, Hidetoshi; Shimizu, Hisayoshi; Goto, Yoshitaka; Hashimoto, Kozo; Omura, Yoshiharu; Kumamoto, Atsushi; Ono, Takayuki; Yokota, Shoichiro

    2014-05-01

    Our recent observations around the Moon revealed that so-called type-II (T2) entry of the solar wind protons into the near-Moon wake occurs when the IMF is dominated by the non-radial components (i.e. BY and/or BZ). Under this condition a part of the solar wind protons scattered/reflected at the lunar dayside surface subsequently enters the central region of the near-Moon wake after a large-scale cycloid motion, which accelerates electrons along the filed line into the wake. The situation handled in the previous studies is that the relevant magnetic field line is detached from the lunar surface, leaving a possibility of the T2 entry under magnetic connection left open. Here we report that the protons can access the central wake region that is magnetically connected to the lunar nightside surface, which we categorize into the T2 entry with magnetic connection to the lunar surface (T2MC). Furthermore we show that the energy of the electron beams induced by the proton entry into the wake depends on the magnetic connectivity. Strong electron acceleration (up to several hundred eV to 1 keV) along the magnetic field associated with the T2 entry is prominent when the field line has its both ends in the solar wind, that is, when the magnetic field is detached from the lunar surface (i.e. the previously-reported T2 entry that we rename to T2MD). On the other hand, no significant electron acceleration is found in the T2MC cases, although an enhancement of the electron flux associated with the T2 proton entry is evident. We also report that the T2 entry process takes place even under radial (BX-dominated) IMF condition. Our results indicate that, while the T2 entry of solar wind protons into the wake itself does not require a special IMF condition but is a rather general phenomenon, the characteristic energy of associated electrons does show a strong dependence on the magnetic connectivity to the lunar surface.

  5. Solar wind proton density variations that preceded the M6+ earthquakes occurring on a global scale between 17 and 20 April 2014

    Science.gov (United States)

    Cataldi, Gabriele; Cataldi, Daniele; Straser, Valentino

    2015-04-01

    Between 17 and 20 April 2014 on Earth were recorded six M6+ earthquakes: Balleny Islands region M6,2 earthquake occurred on 17 April at 15:06 UTC; Solomon Islands M6,1 earthquake occurred on 18 April at 04:13 UTC; Mexico M7,2 earthquake occurred on 18 April at 14:27 UTC; Papua New Guinea M6,6 earthquake occurred on 19 April at 01:04 UTC; Papua New Guinea M7,5 earthquake occurred on 19 April at 13:28 UTC; Papua New Guinea M6,2 earthquake occurred on 20 April at 00:15 UTC. The authors analyzed the modulation of solar wind ion density during the period from 14 to 23 April 2014 to determine whether the six earthquakes were preceded by a variations of the solar wind ion density and for testing a method to be applied in the future also for the prediction of tsunami. The data on ion density used to realize the correlation study are represented by: solar wind ion density variation detected by ACE (Advanced Composition Explorer) Satellite, in orbit near the L1 Lagrange point, at 1.5 million of km from Earth, in direction of the Sun. The instrument used to perform the measurement of the solar wind ion density is the Electron, Proton, and Alpha Monitor (EPAM) instrument, equipped on the ACE Satellite. To conduct the study, the authors have taken in consideration the variation of the solar wind protons density that have these characteristics: differential proton flux 1060-1900 keV (p/cm^2-sec-ster-MeV); differential proton flux 761-1220 keV (p/cm^2-sec-ster-MeV); differential proton flux 310-580 keV (p/cm^2-sec-ster-MeV) and differential proton flux 115-195 keV (p/cm^2-sec-ster-MeV). This data set has been marked with the time data (time markers) of M6+ earthquakes occurred on a global scale between 17 and 20 April 2014 (the data on M6+ seismic activity are provided in real time by USGS, INGV and CSEM). The result of the analysis showed that the six M6+ earthquakes occurred on a global scale in the time period taken as a reference, were preceded by a significant variation of

  6. Universal cross sections for K-shell ionization by low-velocity protons; importance of relativistic and energy-loss effects

    International Nuclear Information System (INIS)

    Zander, A.R.; Lapicki, G.

    1981-01-01

    When Z 1 2 , inner-shell ionization of a target atom of atomic number Z 2 by a projectile of atomic number Z 1 occurs predominately via removal of an inner-shell electron to the target atom continuum (direct ionization). Electron capture contributes then insignificantly to the ionization, and thus the predictions of perturbativein-Z 1 /Z 2 theories of direct ionization can be tested through comparison with measured ionization cross sections. We present such a comparison with the recently reported data for K-shell ionization of the Z 2 =22, 26, 28, and 30 elements by 60-150 keV protons (Z 1 =1). These ionization cross sections were inferred from x-ray production measurements using Krause's fluorescence yields

  7. Slowly rotating general relativistic superfluid neutron stars with relativistic entrainment

    International Nuclear Information System (INIS)

    Comer, G.L.

    2004-01-01

    Neutron stars that are cold enough should have two or more superfluids or supercondutors in their inner crusts and cores. The implication of superfluidity or superconductivity for equilibrium and dynamical neutron star states is that each individual particle species that forms a condensate must have its own, independent number density current and equation of motion that determines that current. An important consequence of the quasiparticle nature of each condensate is the so-called entrainment effect; i.e., the momentum of a condensate is a linear combination of its own current and those of the other condensates. We present here the first fully relativistic modeling of slowly rotating superfluid neutron stars with entrainment that is accurate to the second-order in the rotation rates. The stars consist of superfluid neutrons, superconducting protons, and a highly degenerate, relativistic gas of electrons. We use a relativistic σ-ω mean field model for the equation of state of the matter and the entrainment. We determine the effect of a relative rotation between the neutrons and protons on a star's total mass, shape, and Kepler, mass-shedding limit

  8. Relativistic Astronomy

    Science.gov (United States)

    Zhang, Bing; Li, Kunyang

    2018-02-01

    The “Breakthrough Starshot” aims at sending near-speed-of-light cameras to nearby stellar systems in the future. Due to the relativistic effects, a transrelativistic camera naturally serves as a spectrograph, a lens, and a wide-field camera. We demonstrate this through a simulation of the optical-band image of the nearby galaxy M51 in the rest frame of the transrelativistic camera. We suggest that observing celestial objects using a transrelativistic camera may allow one to study the astronomical objects in a special way, and to perform unique tests on the principles of special relativity. We outline several examples that suggest transrelativistic cameras may make important contributions to astrophysics and suggest that the Breakthrough Starshot cameras may be launched in any direction to serve as a unique astronomical observatory.

  9. Relativistic brachistochrone

    Science.gov (United States)

    Goldstein, Harris F.; Bender, Carl M.

    1986-02-01

    The trajectory joining two points a1 and a2, which minimizes the transit time for a particle, initially at rest, to fall in a uniform gravitational field from a1 to a2, is called the brachistochrone. Johann Bernoulli was the first to find an analytical form for the brachistochrone; in 1696, he discovered that the trajectory is a cycloid. In this paper the relativistic generalization of this classic problem is presented. Four separate curves are actually identified: a particle falling in both a uniform electric and uniform gravitational field is considered. The curves that minimize the times of flight measured by an observer in a laboratory in which a1 and a2 are fixed and also the curves that minimize the proper times of flight are found.

  10. Proton Fast Ignition

    International Nuclear Information System (INIS)

    Key, M H; Freeman, R R; Hatchett, S P; MacKinnon, A J; Patel, P K; Snavely, R A; Stephens, R B

    2006-04-01

    Fast ignition (FI) by a laser generated ballistically focused proton beam is a more recently proposed alternative to the original concept of FI by a laser generated beam of relativistic electrons. It has potential advantages in less complex energy transport into dense plasma. Recent successful target heating experiments motivate further investigation of the feasibility of proton fast ignition. The concept, the physics and characteristics of the proton beams, the recent experimental work on focusing of the beams and heating of solid targets and the overall prospects for proton FI are discussed

  11. Multiwavelength Observations of Relativistic Jets from General Relativistic Magnetohydrodynamic Simulations

    Directory of Open Access Journals (Sweden)

    Richard Anantua

    2018-03-01

    Full Text Available This work summarizes a program intended to unify three burgeoning branches of the high-energy astrophysics of relativistic jets: general relativistic magnetohydrodynamic (GRMHD simulations of ever-increasing dynamical range, the microphysical theory of particle acceleration under relativistic conditions, and multiwavelength observations resolving ever-decreasing spatiotemporal scales. The process, which involves converting simulation output into time series of images and polarization maps that can be directly compared to observations, is performed by (1 self-consistently prescribing models for emission, absorption, and particle acceleration and (2 performing time-dependent polarized radiative transfer. M87 serves as an exemplary prototype for this investigation due to its prominent and well-studied jet and the imminent prospect of learning much more from Event Horizon Telescope (EHT observations this year. Synthetic observations can be directly compared with real observations for observational signatures such as jet instabilities, collimation, relativistic beaming, and polarization. The simplest models described adopt the standard equipartition hypothesis; other models calculate emission by relating it to current density or shear. These models are intended for application to the radio jet instead of the higher frequency emission, the disk and the wind, which will be subjects of future investigations.

  12. Investigating the Origins of Two Extreme Solar Particle Events: Proton Source Profile and Associated Electromagnetic Emissions

    Energy Technology Data Exchange (ETDEWEB)

    Kocharov, Leon; Usoskin, Ilya [Sodankylä Geophysical Observatory/Oulu Unit, University of Oulu, P.O.B. 3000, Oulu FI-90014 (Finland); Pohjolainen, Silja [Tuorla Observatory, University of Turku, Piikkiö FI-21500 (Finland); Mishev, Alexander [Space Climate Research Unit, University of Oulu, Oulu FI-90014 (Finland); Reiner, Mike J. [The Catholic University of America, Washington, DC, and NASA/Goddard Space Flight Center, Greenbelt, MD (United States); Lee, Jeongwoo [Department of Physics and Astronomy, Seoul National University, Seoul 151-747 (Korea, Republic of); Laitinen, Timo [Jeremiah Horrocks Institute, University of Central Lancashire, Preston PR1 2HE (United Kingdom); Didkovsky, Leonid V. [University of Southern California Space Sciences Center, 835 Bloom Walk, Los Angeles CA 90089 (United States); Pizzo, Victor J. [NOAA Space Weather Prediction Center, Boulder, CO 80305 (United States); Kim, Roksoon; Cho, Kyung-Suk [Korea Astronomy and Space Science Institute, Daejeon 305-348 (Korea, Republic of); Klassen, Andreas [Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität, Kiel D-24118 (Germany); Karlicky, Marian [Astronomical Institute of the Czech Academy of Sciences, Fričova 258, Ondřejov 251 65 (Czech Republic); Gary, Dale E. [Center for Solar-Terrestrial Research, New Jersey Institute of Technology, Newark NJ 07102-1982 (United States); Valtonen, Eino; Vainio, Rami [Space Research Laboratory, University of Turku, Turku FI-20014 (Finland)

    2017-04-20

    We analyze the high-energy particle emission from the Sun in two extreme solar particle events in which protons are accelerated to relativistic energies and can cause a significant signal even in the ground-based particle detectors. Analysis of a relativistic proton event is based on modeling of the particle transport and interaction, from a near-Sun source through the solar wind and the Earth’s magnetosphere and atmosphere to a detector on the ground. This allows us to deduce the time profile of the proton source at the Sun and compare it with observed electromagnetic emissions. The 1998 May 2 event is associated with a flare and a coronal mass ejection (CME), which were well observed by the Nançay Radioheliograph, thus the images of the radio sources are available. For the 2003 November 2 event, the low corona images of the CME liftoff obtained at the Mauna Loa Solar Observatory are available. Those complementary data sets are analyzed jointly with the broadband dynamic radio spectra, EUV images, and other data available for both events. We find a common scenario for both eruptions, including the flare’s dual impulsive phase, the CME-launch-associated decimetric-continuum burst, and the late, low-frequency type III radio bursts at the time of the relativistic proton injection into the interplanetary medium. The analysis supports the idea that the two considered events start with emission of relativistic protons previously accelerated during the flare and CME launch, then trapped in large-scale magnetic loops and later released by the expanding CME.

  13. Dependence of the multiplicity of relativistic charged particles on the atomic number in interactions between pi /sup -/ mesons with a 17 GeV/sec pulse and between protons with 60 GeV/sec and 67 GeV/sec pulses on photoemulsion nuclei

    CERN Document Server

    Maslennikova, N V; Melnichuk, T A; Tretakova, M I

    1972-01-01

    Full account of experiments with the photo-emulsion G5 being irradiated by pi /sup -/ mesons by the CERN accelerator and the photo- emulsions BR-2 and BRx4y being irradiated by protons by the Serpukhov accelerator is presented, supported by tables and histograms. Nuclear interactions, discovered along the trace, and the division criteria between interactions of light nuclei (CNO) and heavy nuclei (AgBr) are studied. All interactions are grouped under quasi-nuclear, light nuclei and heavy nuclei, and their distribution with differing quantities of relativistic particles n/sub s/ and heavily ionized particles N/sub h/ is explained and discussed. (5 refs).

  14. Relativistic Fluid Dynamics

    CERN Document Server

    Cattaneo, Carlo

    2011-01-01

    This title includes: Pham Mau Quam: Problemes mathematiques en hydrodynamique relativiste; A. Lichnerowicz: Ondes de choc, ondes infinitesimales et rayons en hydrodynamique et magnetohydrodynamique relativistes; A.H. Taub: Variational principles in general relativity; J. Ehlers: General relativistic kinetic theory of gases; K. Marathe: Abstract Minkowski spaces as fibre bundles; and, G. Boillat: Sur la propagation de la chaleur en relativite.

  15. Nearly constant ratio between the proton inertial scale and the spectrum break length scale in the plasma beta range from 0.2 to 1.4 in the solar wind turbulence

    Science.gov (United States)

    Wang, X.; Tu, C. Y.; He, J.; Wang, L.

    2017-12-01

    The spectrum break at the ion scale of the solar wind magnetic fluctuations are considered to give important clue on the turbulence dissipation mechanism. Among several possible mechanisms, the most notable ones are the two mechanisms that related respectively with proton thermal gyro-radius and proton inertial length. However, no definite conclusion has been given for which one is more reasonable because the two parameters have similar values in the normal plasma beta range. Here we do a statistical study for the first time to see if the two mechanism predictions have different dependence on the solar wind velocity and on the plasma beta in the normal plasma beta range in the solar wind at 1 AU. From magnetic measurements by Wind, Ulysses and Messenger, we select 60 data sets with duration longer than 8 hours. We found that the ratio between the proton inertial scale and the spectrum break scale do not change considerably with both varying the solar wind speed from 300km/s to 800km/s and varying the plasma beta from 0.2 to 1.4. The average value of the ratio times 2pi is 0.46 ± 0.08. However, the ratio between the proton gyro-radius and the break scale changes clearly. This new result shows that the proton inertial scale could be a single factor that determines the break length scale and hence gives a strong evidence to support the dissipation mechanism related to it in the normal plasma beta range. The value of the constant ratio may relate with the dissipation mechanism, but it needs further theoretical study to give detailed explanation.

  16. The investigation of relativistic microscopic optical potential based on RBBG equation

    International Nuclear Information System (INIS)

    Chen Baoqiu; Ma Zhongyu

    1992-01-01

    The relativistic microscopic optical potential is derived from the RBBG equation. The nucleon complex effective mass is determined phenomenologically by a fit to 200 MeV proton-nucleus scattering data. Then the relativistic microscopic optical potentials of proton scattered from different targets: 16 O, 40 Ca, 90 Zr and 208 Pb in the energies range from 160 to 800 MeV have been got. The relativistic microscopic optical potentials have been used to study proton- 40 Ca scattering at 200 MeV. Theoretical predictions for cross section and spin observables are compared with experimental data and phenomenological Dirac optical potential

  17. Relativistic mean field model for entrainment in general relativistic superfluid neutron stars

    International Nuclear Information System (INIS)

    Comer, G.L.; Joynt, R.

    2003-01-01

    General relativistic superfluid neutron stars have a significantly more intricate dynamics than their ordinary fluid counterparts. Superfluidity allows different superfluid (and superconducting) species of particles to have independent fluid flows, a consequence of which is that the fluid equations of motion contain as many fluid element velocities as superfluid species. Whenever the particles of one superfluid interact with those of another, the momentum of each superfluid will be a linear combination of both superfluid velocities. This leads to the so-called entrainment effect whereby the motion of one superfluid will induce a momentum in the other superfluid. We have constructed a fully relativistic model for entrainment between superfluid neutrons and superconducting protons using a relativistic σ-ω mean field model for the nucleons and their interactions. In this context there are two notions of 'relativistic': relativistic motion of the individual nucleons with respect to a local region of the star (i.e. a fluid element containing, say, an Avogadro's number of particles), and the motion of fluid elements with respect to the rest of the star. While it is the case that the fluid elements will typically maintain average speeds at a fraction of that of light, the supranuclear densities in the core of a neutron star can make the nucleons themselves have quite high average speeds within each fluid element. The formalism is applied to the problem of slowly rotating superfluid neutron star configurations, a distinguishing characteristic being that the neutrons can rotate at a rate different from that of the protons

  18. The RHIC [Relativistic Heavy Ion Collider] lattice

    International Nuclear Information System (INIS)

    Lee, S.Y.; Claus, J.; Courant, E.D.; Dell, G.F.; Hahn, H.; Parzen, G.; Ruggiero, A.G.

    1988-01-01

    An antisymmetric lattice for the proposed Relativistic Heavy Ion Collider at Brookhaven National Laboratory is presented. It has been designed to have an energy range from 7 GeV/amu up to 100 GeV/amu; a good tunability of Β* and betatron tune; capability of operating unequal species, for example, proton on gold. Suppression of structure resonances is achieved by proper choice of the phase advances across the insertions and the arc cells. 9 refs., 6 figs., 1 tab

  19. Relativistic Linear Restoring Force

    Science.gov (United States)

    Clark, D.; Franklin, J.; Mann, N.

    2012-01-01

    We consider two different forms for a relativistic version of a linear restoring force. The pair comes from taking Hooke's law to be the force appearing on the right-hand side of the relativistic expressions: d"p"/d"t" or d"p"/d["tau"]. Either formulation recovers Hooke's law in the non-relativistic limit. In addition to these two forces, we…

  20. Towards relativistic quantum geometry

    Energy Technology Data Exchange (ETDEWEB)

    Ridao, Luis Santiago [Instituto de Investigaciones Físicas de Mar del Plata (IFIMAR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mar del Plata (Argentina); Bellini, Mauricio, E-mail: mbellini@mdp.edu.ar [Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Funes 3350, C.P. 7600, Mar del Plata (Argentina); Instituto de Investigaciones Físicas de Mar del Plata (IFIMAR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mar del Plata (Argentina)

    2015-12-17

    We obtain a gauge-invariant relativistic quantum geometry by using a Weylian-like manifold with a geometric scalar field which provides a gauge-invariant relativistic quantum theory in which the algebra of the Weylian-like field depends on observers. An example for a Reissner–Nordström black-hole is studied.

  1. Ultra-relativistic heavy-ion physics with AFTER@LHC

    DEFF Research Database (Denmark)

    Rakotozafindrabe, A.; Arnaldi, R.; Brodsky, Stanley

    2013-01-01

    We outline the opportunities for ultra-relativistic heavy–ion physics which are offered by a next generation and multi-purpose fixed-target experiment exploiting the proton and ion LHC beams extracted by a bent crystal.......We outline the opportunities for ultra-relativistic heavy–ion physics which are offered by a next generation and multi-purpose fixed-target experiment exploiting the proton and ion LHC beams extracted by a bent crystal....

  2. Prompt injections of highly relativistic electrons induced by interplanetary shocks: A statistical study of Van Allen Probes observations

    Science.gov (United States)

    Schiller, Q.; Kanekal, S. G.; Jian, L. K.; Li, X.; Jones, A.; Baker, D. N.; Jaynes, A.; Spence, H. E.

    2016-12-01

    We conduct a statistical study on the sudden response of outer radiation belt electrons due to interplanetary (IP) shocks during the Van Allen Probes era, i.e., 2012 to 2015. Data from the Relativistic Electron-Proton Telescope instrument on board Van Allen Probes are used to investigate the highly relativistic electron response (E > 1.8 MeV) within the first few minutes after shock impact. We investigate the relationship of IP shock parameters, such as Mach number, with the highly relativistic electron response, including spectral properties and radial location of the shock-induced injection. We find that the driving solar wind structure of the shock does not affect occurrence for enhancement events, 25% of IP shocks are associated with prompt energization, and 14% are associated with MeV electron depletion. Parameters that represent IP shock strength are found to correlate best with highest levels of energization, suggesting that shock strength may play a key role in the severity of the enhancements. However, not every shock results in an enhancement, indicating that magnetospheric preconditioning may be required.

  3. Proton therapy

    Science.gov (United States)

    Proton beam therapy; Cancer - proton therapy; Radiation therapy - proton therapy; Prostate cancer - proton therapy ... that use x-rays to destroy cancer cells, proton therapy uses a beam of special particles called ...

  4. Heliospheric plasma sheet (HPS) impingement onto the magnetosphere as a cause of relativistic electron dropouts (REDs) via coherent EMIC wave scattering with possible consequences for climate change mechanisms

    Science.gov (United States)

    Tsurutani, B. T.; Hajra, R.; Tanimori, T.; Takada, A.; Bhanu, R.; Mannucci, A. J.; Lakhina, G. S.; Kozyra, J. U.; Shiokawa, K.; Lee, L. C.; Echer, E.; Reddy, R. V.; Gonzalez, W. D.

    2016-10-01

    A new scenario is presented for the cause of magnetospheric relativistic electron decreases (REDs) and potential effects in the atmosphere and on climate. High-density solar wind heliospheric plasmasheet (HPS) events impinge onto the magnetosphere, compressing it along with remnant noon-sector outer-zone magnetospheric 10-100 keV protons. The betatron accelerated protons generate coherent electromagnetic ion cyclotron (EMIC) waves through a temperature anisotropy (T⊥/T|| > 1) instability. The waves in turn interact with relativistic electrons and cause the rapid loss of these particles to a small region of the atmosphere. A peak total energy deposition of 3 × 1020 ergs is derived for the precipitating electrons. Maximum energy deposition and creation of electron-ion pairs at 30-50 km and at climate change mechanisms. Wilcox et al. (1973) noted a correlation between solar wind heliospheric current sheet (HCS) crossings and high atmospheric vorticity centers at 300 mb altitude. Tinsley et al. has constructed a global circuit model which depends on particle precipitation into the atmosphere. Other possible scenarios potentially affecting weather/climate change are also discussed.

  5. Interplanetary Magnetic Field Guiding Relativistic Particles

    Science.gov (United States)

    Masson, S.; Demoulin, P.; Dasso, S.; Klein, K. L.

    2011-01-01

    The origin and the propagation of relativistic solar particles (0.5 to few Ge V) in the interplanetary medium remains a debated topic. These relativistic particles, detected at the Earth by neutron monitors have been previously accelerated close to the Sun and are guided by the interplanetary magnetic field (IMF) lines, connecting the acceleration site and the Earth. Usually, the nominal Parker spiral is considered for ensuring the magnetic connection to the Earth. However, in most GLEs the IMF is highly disturbed, and the active regions associated to the GLEs are not always located close to the solar footprint of the nominal Parker spiral. A possible explanation is that relativistic particles are propagating in transient magnetic structures, such as Interplanetary Coronal Mass Ejections (ICMEs). In order to check this interpretation, we studied in detail the interplanetary medium where the particles propagate for 10 GLEs of the last solar cycle. Using the magnetic field and the plasma parameter measurements (ACE/MAG and ACE/SWEPAM), we found widely different IMF configurations. In an independent approach we develop and apply an improved method of the velocity dispersion analysis to energetic protons measured by SoHO/ERNE. We determined the effective path length and the solar release time of protons from these data and also combined them with the neutron monitor data. We found that in most of the GLEs, protons propagate in transient magnetic structures. Moreover, the comparison between the interplanetary magnetic structure and the interplanetary length suggest that the timing of particle arrival at Earth is dominantly determined by the type of IMF in which high energetic particles are propagating. Finally we find that these energetic protons are not significantly scattered during their transport to Earth.

  6. TOPICAL REVIEW: Relativistic laser-plasma interactions

    Science.gov (United States)

    Umstadter, Donald

    2003-04-01

    By focusing petawatt peak power laser light to intensities up to 1021 W cm-2, highly relativistic plasmas can now be studied. The force exerted by light pulses with this extreme intensity has been used to accelerate beams of electrons and protons to energies of a million volts in distances of only microns. This acceleration gradient is a thousand times greater than in radio-frequency-based accelerators. Such novel compact laser-based radiation sources have been demonstrated to have parameters that are useful for research in medicine, physics and engineering. They might also someday be used to ignite controlled thermonuclear fusion. Ultrashort pulse duration particles and x-rays that are produced can resolve chemical, biological or physical reactions on ultrafast (femtosecond) timescales and on atomic spatial scales. These energetic beams have produced an array of nuclear reactions, resulting in neutrons, positrons and radioactive isotopes. As laser intensities increase further and laser-accelerated protons become relativistic, exotic plasmas, such as dense electron-positron plasmas, which are of astrophysical interest, can be created in the laboratory. This paper reviews many of the recent advances in relativistic laser-plasma interactions.

  7. Relativistic Kinetic Theory

    Science.gov (United States)

    Vereshchagin, Gregory V.; Aksenov, Alexey G.

    2017-02-01

    Preface; Acknowledgements; Acronyms and definitions; Introduction; Part I. Theoretical Foundations: 1. Basic concepts; 2. Kinetic equation; 3. Averaging; 4. Conservation laws and equilibrium; 5. Relativistic BBGKY hierarchy; 6. Basic parameters in gases and plasmas; Part II. Numerical Methods: 7. The basics of computational physics; 8. Direct integration of Boltzmann equations; 9. Multidimensional hydrodynamics; Part III. Applications: 10. Wave dispersion in relativistic plasma; 11. Thermalization in relativistic plasma; 12. Kinetics of particles in strong fields; 13. Compton scattering in astrophysics and cosmology; 14. Self-gravitating systems; 15. Neutrinos, gravitational collapse and supernovae; Appendices; Bibliography; Index.

  8. Relativistic Electron Pitch Angle Distributions in the Inner Magnetosphere

    Science.gov (United States)

    Friedel, Reiner; Zhao, Hong; Reeves, Geoff; Chen, Yue; Henderson, Mike; Kanekal, Shri; Baker, Dan; Jaynes, Allison

    2017-04-01

    Relativistic electron pitch angle distributions (PADs) in the trapped inner region of the magnetosphere are a sensitive measure of many processes that govern the dynamics of these particles. We report here on statistical observations of relativistic electron PADs from the REPT (Relativistic Electron/Proton Telescope) instrument aboard the Van Allen Probes mission, which show an unexpected dawn/dusk asymmetry that seems to be a persistent feature during quiet times of Dst > -20 nT. The observed PADs show a more peaked pancake distribution at dusk compared to dawn for energies above 1.8 MeV only. Energies from a few 100 KeV to 1 m,eV do NOT show these asymmetries, ruling out magnetic field model effects. These observations hint at persistent processes that can act on relativistic electrons on timescales on the order of the outer radiation belt drift period (10 minutes).

  9. Relativistic Length Agony Continued

    Science.gov (United States)

    Redzic, D. V.

    2014-06-01

    We made an attempt to remedy recent confusing treatments of some basic relativistic concepts and results. Following the argument presented in an earlier paper (Redzic 2008b), we discussed the misconceptions that are recurrent points in the literature devoted to teaching relativity such as: there is no change in the object in Special Relativity, illusory character of relativistic length contraction, stresses and strains induced by Lorentz contraction, and related issues. We gave several examples of the traps of everyday language that lurk in Special Relativity. To remove a possible conceptual and terminological muddle, we made a distinction between the relativistic length reduction and relativistic FitzGerald-Lorentz contraction, corresponding to a passive and an active aspect of length contraction, respectively; we pointed out that both aspects have fundamental dynamical contents. As an illustration of our considerations, we discussed briefly the Dewan-Beran-Bell spaceship paradox and the 'pole in a barn' paradox.

  10. Relativistic GLONASS and geodesy

    Science.gov (United States)

    Mazurova, E. M.; Kopeikin, S. M.; Karpik, A. P.

    2016-12-01

    GNSS technology is playing a major role in applications to civil, industrial and scientific areas. Nowadays, there are two fully functional GNSS: American GPS and Russian GLONASS. Their data processing algorithms have been historically based on the Newtonian theory of space and time with only a few relativistic effects taken into account as small corrections preventing the system from degradation on a fairly long time. Continuously growing accuracy of geodetic measurements and atomic clocks suggests reconsidering the overall approach to the GNSS theoretical model based on the Einstein theory of general relativity. This is essentially more challenging but fundamentally consistent theoretical approach to relativistic space geodesy. In this paper, we overview the basic principles of the relativistic GNSS model and explain the advantages of such a system for GLONASS and other positioning systems. Keywords: relativistic GLONASS, Einstein theory of general relativity.

  11. Weakly relativistic plasma expansion

    Energy Technology Data Exchange (ETDEWEB)

    Fermous, Rachid, E-mail: rfermous@usthb.dz; Djebli, Mourad, E-mail: mdjebli@usthb.dz [Theoretical Physics Laboratory, Faculty of Physics, USTHB, B.P. 32 Bab-Ezzouar, 16079 Algiers (Algeria)

    2015-04-15

    Plasma expansion is an important physical process that takes place in laser interactions with solid targets. Within a self-similar model for the hydrodynamical multi-fluid equations, we investigated the expansion of both dense and under-dense plasmas. The weakly relativistic electrons are produced by ultra-intense laser pulses, while ions are supposed to be in a non-relativistic regime. Numerical investigations have shown that relativistic effects are important for under-dense plasma and are characterized by a finite ion front velocity. Dense plasma expansion is found to be governed mainly by quantum contributions in the fluid equations that originate from the degenerate pressure in addition to the nonlinear contributions from exchange and correlation potentials. The quantum degeneracy parameter profile provides clues to set the limit between under-dense and dense relativistic plasma expansions at a given density and temperature.

  12. Relativistic finite-temperature Thomas-Fermi model

    Science.gov (United States)

    Faussurier, Gérald

    2017-11-01

    We investigate the relativistic finite-temperature Thomas-Fermi model, which has been proposed recently in an astrophysical context. Assuming a constant distribution of protons inside the nucleus of finite size avoids severe divergence of the electron density with respect to a point-like nucleus. A formula for the nuclear radius is chosen to treat any element. The relativistic finite-temperature Thomas-Fermi model matches the two asymptotic regimes, i.e., the non-relativistic and the ultra-relativistic finite-temperature Thomas-Fermi models. The equation of state is considered in detail. For each version of the finite-temperature Thomas-Fermi model, the pressure, the kinetic energy, and the entropy are calculated. The internal energy and free energy are also considered. The thermodynamic consistency of the three models is considered by working from the free energy. The virial question is also studied in the three cases as well as the relationship with the density functional theory. The relativistic finite-temperature Thomas-Fermi model is far more involved than the non-relativistic and ultra-relativistic finite-temperature Thomas-Fermi models that are very close to each other from a mathematical point of view.

  13. Relativistic viscoelastic fluid mechanics.

    Science.gov (United States)

    Fukuma, Masafumi; Sakatani, Yuho

    2011-08-01

    A detailed study is carried out for the relativistic theory of viscoelasticity which was recently constructed on the basis of Onsager's linear nonequilibrium thermodynamics. After rederiving the theory using a local argument with the entropy current, we show that this theory universally reduces to the standard relativistic Navier-Stokes fluid mechanics in the long time limit. Since effects of elasticity are taken into account, the dynamics at short time scales is modified from that given by the Navier-Stokes equations, so that acausal problems intrinsic to relativistic Navier-Stokes fluids are significantly remedied. We in particular show that the wave equations for the propagation of disturbance around a hydrostatic equilibrium in Minkowski space-time become symmetric hyperbolic for some range of parameters, so that the model is free of acausality problems. This observation suggests that the relativistic viscoelastic model with such parameters can be regarded as a causal completion of relativistic Navier-Stokes fluid mechanics. By adjusting parameters to various values, this theory can treat a wide variety of materials including elastic materials, Maxwell materials, Kelvin-Voigt materials, and (a nonlinearly generalized version of) simplified Israel-Stewart fluids, and thus we expect the theory to be the most universal description of single-component relativistic continuum materials. We also show that the presence of strains and the corresponding change in temperature are naturally unified through the Tolman law in a generally covariant description of continuum mechanics.

  14. Dissipative relativistic hydrodynamics

    International Nuclear Information System (INIS)

    Imshennik, V.S.; Morozov, Yu.I.

    1989-01-01

    Using the comoving reference frame in the general non-inertial case, the relativistic hydrodynamics equations are derived with an account for dissipative effects in the matter. From the entropy production equation, the exact from for the dissipative tensor components is obtained. As a result, the closed system of equations of dissipative relativistic hydrodynamics is obtained in the comoving reference frame as a relativistic generalization of the known Navier-Stokes equations for Lagrange coordinates. Equations of relativistic hydrodynamics with account for dissipative effects in the matter are derived using the assocoated reference system in general non-inertial case. True form of the dissipative tensor components is obtained from entropy production equation. Closed system of equations for dissipative relativistic hydrodynamics is obtained as a result in the assocoated reference system (ARS) - relativistic generalization of well-known Navier-Stokes equations for Lagrange coordinates. Equation system, obtained in this paper for ARS, may be effectively used in numerical models of explosive processes with 10 51 erg energy releases which are characteristic for flashes of supernovae, if white dwarf type compact target suggested as presupernova

  15. Relativistic viscoelastic fluid mechanics

    International Nuclear Information System (INIS)

    Fukuma, Masafumi; Sakatani, Yuho

    2011-01-01

    A detailed study is carried out for the relativistic theory of viscoelasticity which was recently constructed on the basis of Onsager's linear nonequilibrium thermodynamics. After rederiving the theory using a local argument with the entropy current, we show that this theory universally reduces to the standard relativistic Navier-Stokes fluid mechanics in the long time limit. Since effects of elasticity are taken into account, the dynamics at short time scales is modified from that given by the Navier-Stokes equations, so that acausal problems intrinsic to relativistic Navier-Stokes fluids are significantly remedied. We in particular show that the wave equations for the propagation of disturbance around a hydrostatic equilibrium in Minkowski space-time become symmetric hyperbolic for some range of parameters, so that the model is free of acausality problems. This observation suggests that the relativistic viscoelastic model with such parameters can be regarded as a causal completion of relativistic Navier-Stokes fluid mechanics. By adjusting parameters to various values, this theory can treat a wide variety of materials including elastic materials, Maxwell materials, Kelvin-Voigt materials, and (a nonlinearly generalized version of) simplified Israel-Stewart fluids, and thus we expect the theory to be the most universal description of single-component relativistic continuum materials. We also show that the presence of strains and the corresponding change in temperature are naturally unified through the Tolman law in a generally covariant description of continuum mechanics.

  16. Features of energetic particle radial profiles inferred from geosynchronous responses to solar wind dynamic pressure enhancements

    Directory of Open Access Journals (Sweden)

    Y. Shi

    2009-02-01

    Full Text Available Determination of the radial profile of phase space density of relativistic electrons at constant adiabatic invariants is crucial for identifying the source for them within the outer radiation belt. The commonly used method is to convert flux observed at fixed energy to phase space density at constant first, second and third adiabatic invariants, which requires an empirical global magnetic field model and thus might produce some uncertainties in the final results. From a different perspective, in this paper we indirectly infer the shape of the radial profile of phase space density of relativistic electrons near the geosynchronous region by statistically examining the geosynchronous energetic flux response to 128 solar wind dynamic pressure enhancements during the years 2000 to 2003. We thus avoid the disadvantage of using empirical magnetic field models. Our results show that the flux response is species and energy dependent. For protons and low-energy electrons, the primary response to magnetospheric compression is an increase in flux at geosynchronous orbit. For relativistic electrons, the dominant response is a decrease in flux, which implies that the phase space density decreases toward increasing radial distance at geosynchronous orbit and leads to a local peak inside of geosynchronous orbit. The flux response of protons and non-relativistic electrons could result from a phase density that increases toward increasing radial distance, but this cannot be determined for sure due to the particle energization associated with pressure enhancements. Our results for relativistic electrons are consistent with previous results obtained using magnetic field models, thus providing additional confirmation that these results are correct and indicating that they are not the result of errors in their selected magnetic field model.

  17. Relativistic theory of inverse beta-decay of polarized neutron in ...

    Indian Academy of Sciences (India)

    The relativistic theory of the inverse beta-decay of polarized neutron, + → + -, in strong magnetic field is developed. For the proton wave function we use the exact solution of the Dirac equation in the magnetic filed that enables us to account exactly for effects of the proton momentum quantization in the magnetic ...

  18. Polarized Proton Collisions at RHIC

    CERN Document Server

    Bai, Mei; Alekseev, Igor G; Alessi, James; Beebe-Wang, Joanne; Blaskiewicz, Michael; Bravar, Alessandro; Brennan, Joseph M; Bruno, Donald; Bunce, Gerry; Butler, John J; Cameron, Peter; Connolly, Roger; De Long, Joseph; Drees, Angelika; Fischer, Wolfram; Ganetis, George; Gardner, Chris J; Glenn, Joseph; Hayes, Thomas; Hseuh Hsiao Chaun; Huang, Haixin; Ingrassia, Peter; Iriso, Ubaldo; Laster, Jonathan S; Lee, Roger C; Luccio, Alfredo U; Luo, Yun; MacKay, William W; Makdisi, Yousef; Marr, Gregory J; Marusic, Al; McIntyre, Gary; Michnoff, Robert; Montag, Christoph; Morris, John; Nicoletti, Tony; Oddo, Peter; Oerter, Brian; Osamu, Jinnouchi; Pilat, Fulvia Caterina; Ptitsyn, Vadim; Roser, Thomas; Satogata, Todd; Smith, Kevin T; Svirida, Dima; Tepikian, Steven; Tomas, Rogelio; Trbojevic, Dejan; Tsoupas, Nicholaos; Tuozzolo, Joseph; Vetter, Kurt; Wilinski, Michelle; Zaltsman, Alex; Zelenski, Anatoli; Zeno, Keith; Zhang, S Y

    2005-01-01

    The Relativistic Heavy Ion Collider~(RHIC) provides not only collisions of ions but also collisions of polarized protons. In a circular accelerator, the polarization of polarized proton beam can be partially or fully lost when a spin depolarizing resonance is encountered. To preserve the beam polarization during acceleration, two full Siberian snakes were employed in RHIC to avoid depolarizing resonances. In 2003, polarized proton beams were accelerated to 100~GeV and collided in RHIC. Beams were brought into collisions with longitudinal polarization at the experiments STAR and PHENIX by using spin rotators. RHIC polarized proton run experience demonstrates that optimizing polarization transmission efficiency and improving luminosity performance are significant challenges. Currently, the luminosity lifetime in RHIC is limited by the beam-beam effect. The current state of RHIC polarized proton program, including its dedicated physics run in 2005 and efforts to optimize luminosity production in beam-beam limite...

  19. Relativistic and non-relativistic studies of nuclear matter

    NARCIS (Netherlands)

    Banerjee, MK; Tjon, JA

    2002-01-01

    We point out that the differences between the results of the non-relativistic lowest order Brueckner theory (LOBT) and the relativistic Dirac-Brueckner analysis predominantly arise from two sources. Besides effects from a nucleon mass modification M* in nuclear medium we have in a relativistic

  20. Relativistic quantum mechanics

    International Nuclear Information System (INIS)

    Wolschin, Georg

    2016-01-01

    This course is a concise introduction to the foundations of relativistic quantum mechanics. It is concipated as one-semester, two-hour arrangement for bachelor and master students; some of the advanced parts can be also of interest or promovings. Primary adressates are studyings from the fourth semester upwards, which have already worked out the basic course of quantum mechanics and want beyond to get to know relativistic wave equations. In the introduction I draw first the development, the result of which was the establishment of Lorentz-invariant relativistic wave equations by Schroedinger, Klein, Gordon, and Dirac. After a chapter about the connection to the Galilei-invariant nonrelativistic quantum mechanics follow the presentations of the Klein-Gordon and Dirac and the study of the Dirac theory in view of invariances concerning parity, charge conjugation, ant time-reversal transformation. A short introduction to the principles of quantum field theory, especially quantum electrodynamics, follows.

  1. Relativistic quantum mechanics

    CERN Document Server

    Horwitz, Lawrence P

    2015-01-01

    This book describes a relativistic quantum theory developed by the author starting from the E.C.G. Stueckelberg approach proposed in the early 40s. In this framework a universal invariant evolution parameter (corresponding to the time originally postulated by Newton) is introduced to describe dynamical evolution. This theory is able to provide solutions for some of the fundamental problems encountered in early attempts to construct a relativistic quantum theory. A relativistically covariant construction is given for which particle spins and angular momenta can be combined through the usual rotation group Clebsch-Gordan coefficients. Solutions are defined for both the classical and quantum two body bound state and scattering problems. The recently developed quantum Lax-Phillips theory of semigroup evolution of resonant states is described. The experiment of Lindner and coworkers on interference in time is discussed showing how the property of coherence in time provides a simple understanding of the results. Th...

  2. Relativistic theories of materials

    CERN Document Server

    Bressan, Aldo

    1978-01-01

    The theory of relativity was created in 1905 to solve a problem concerning electromagnetic fields. That solution was reached by means of profound changes in fundamental concepts and ideas that considerably affected the whole of physics. Moreover, when Einstein took gravitation into account, he was forced to develop radical changes also in our space-time concepts (1916). Relativistic works on heat, thermodynamics, and elasticity appeared as early as 1911. However, general theories having a thermodynamic basis, including heat conduction and constitutive equations, did not appear in general relativity until about 1955 for fluids and appeared only after 1960 for elastic or more general finitely deformed materials. These theories dealt with materials with memory, and in this connection some relativistic versions of the principle of material indifference were considered. Even more recently, relativistic theories incorporating finite deformations for polarizable and magnetizable materials and those in which couple s...

  3. Handbook of relativistic quantum chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wenjian (ed.) [Peking Univ., Beijing (China). Center for Computational Science and Engineering

    2017-03-01

    This handbook focuses on the foundations of relativistic quantum mechanics and addresses a number of fundamental issues never covered before in a book. For instance: How can many-body theory be combined with quantum electrodynamics? How can quantum electrodynamics be interfaced with relativistic quantum chemistry? What is the most appropriate relativistic many-electron Hamiltonian? How can we achieve relativistic explicit correlation? How can we formulate relativistic properties? - just to name a few. Since relativistic quantum chemistry is an integral component of computational chemistry, this handbook also supplements the ''Handbook of Computational Chemistry''. Generally speaking, it aims to establish the 'big picture' of relativistic molecular quantum mechanics as the union of quantum electrodynamics and relativistic quantum chemistry. Accordingly, it provides an accessible introduction for readers new to the field, presents advanced methodologies for experts, and discusses possible future perspectives, helping readers understand when/how to apply/develop the methodologies.

  4. Biquaternions and relativistic kinematics

    International Nuclear Information System (INIS)

    Bogush, A.A.; Kurochkin, Yu.A.; Fedorov, F.I.

    1979-01-01

    The problems concerning the use of quaternion interpretation of the Lorentz group vector parametrization are considered for solving relativistic kinematics problems. A vector theory convenient for describing the characteristic features of the Lobachevsky space is suggested. The kinematics of elementary particle scattering is investigated on the basis of this theory. A synthesis of vector parametrization and of quaternion calculation has been shown to lead to natural formulation of the theory of vectors in the three-dimensional Lobachevsky space, realized on mass hyperboloids of relativistic particles

  5. Quasielastic Scattering from Relativistic Bound Nucleons: Transverse-Longitudinal Response

    Energy Technology Data Exchange (ETDEWEB)

    Udias, J. M. [Instituto de Estructura de la Materia, CSIC Serrano 123, E-28006 Madrid, (Spain); Departamento de Fisica Atomica, Molecular y Nuclear, Universidad Complutense de Madrid, E-28040 Madrid, (Spain); Caballero, J. A. [Instituto de Estructura de la Materia, CSIC Serrano 123, E-28006 Madrid, (Spain); Departamento de Fisica Atomica, Molecular y Nuclear, Universidad de Sevilla, E-41080 Sevilla, (Spain); Moya de Guerra, E. [Instituto de Estructura de la Materia, CSIC Serrano 123, E-28006 Madrid, (Spain); Amaro, J. E. [Departamento de Fisica Moderna, Universidad de Granada, E-18071 Granada, (Spain); Donnelly, T. W. [Center for Theoretical Physics, Laboratory for Nuclear Science and Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    1999-12-27

    Predictions for electron induced proton knockout from p{sub 1/2} and p{sub 3/2} shells in {sup 16}O are presented using various approximations for the relativistic nucleonic current. Results for differential cross section, transverse-longitudinal response (R{sub TL} ), and left-right asymmetry A{sub TL} are compared at |Q{sup 2}|=0.8(GeV/c){sup 2} . We show that there are important dynamical and kinematical relativistic effects which can be tested by experiment. (c) 1999 The American Physical Society.

  6. Particle Energization in Earth's Van Allen Radiation Belts Due to Solar Wind Forcing

    Science.gov (United States)

    Baker, D. N.

    2017-12-01

    Early observations of the Earth's radiation environment clearly indicated that the Van Allen belts could be delineated into an inner zone dominated by high-energy protons and an outer zone dominated by high-energy electrons. The energy distribution, spatial extent and particle species makeup of the Van Allen belts has been subsequently explored by several space missions. However, recent observations by the NASA dual-spacecraft Van Allen Probes mission have revealed unexpected properties of the radiation belts, especially for electrons at highly relativistic (E > 2 MeV) and ultra-relativistic (E > 5 MeV) kinetic energies. In this presentation we show using high spatial and temporal resolution data from the experiments on board the Van Allen Probes that multiple belts can exist concurrently and that an exceedingly sharp inner boundary exists for ultra-relativistic electrons. Using additionally available Van Allen Probes data, we demonstrate that these remarkable features of energetic electrons are driven by strong solar and solar wind forcings. The comprehensive Van Allen Probes data show more broadly and in many ways how extremely high energy particles are accelerated, transported, and lost in the magnetosphere due to interplanetary shock wave interactions, coronal mass ejection impacts, and high-speed solar wind streams. The new data have shown especially how dayside processes play a key role in electron acceleration and loss processes.

  7. Relativistic mean field theory for unstable nuclei

    International Nuclear Information System (INIS)

    Toki, Hiroshi

    2000-01-01

    We discuss the properties of unstable nuclei in the framework of the relativistic mean field (RMF) theory. We take the RMF theory as a phenomenological theory with several parameters, whose form is constrained by the successful microscopic theory (RBHF), and whose values are extracted from the experimental values of unstable nuclei. We find the outcome with the newly obtained parameter sets (TM1 and TMA) is promising in comparison with various experimental data. We calculate systematically the ground state properties of even-even nuclei up to the drip lines; about 2000 nuclei. We find that the neutron magic shells (N=82, 128) at the standard magic numbers stay at the same numbers even far from the stability line and hence provide the feature of the r-process nuclei. However, many proton magic numbers disappear at the neutron numbers far away from the magic numbers due to the deformations. We discuss how to describe giant resonances for the case of the non-linear coupling terms for the sigma and omega mesons in the relativistic RPA. We mention also the importance of the relativistic effect on the spin observables as the Gamow-Teller strength and the longitudinal and transverse spin responses. (author)

  8. Relativistic configuration interaction approach

    Indian Academy of Sciences (India)

    (and requirement for) ab-initio calculation of electronic structure providing a high level of reliability and accuracy in accounting for both relativistic and correlation effects associated with these properties has gained importance. In this paper, we will compute one of the P, T-odd interaction constants, the so-called Wd, which is.

  9. Relativistic length agony continued

    Directory of Open Access Journals (Sweden)

    Redžić D.V.

    2014-01-01

    Full Text Available We made an attempt to remedy recent confusing treatments of some basic relativistic concepts and results. Following the argument presented in an earlier paper (Redžić 2008b, we discussed the misconceptions that are recurrent points in the literature devoted to teaching relativity such as: there is no change in the object in Special Relativity, illusory character of relativistic length contraction, stresses and strains induced by Lorentz contraction, and related issues. We gave several examples of the traps of everyday language that lurk in Special Relativity. To remove a possible conceptual and terminological muddle, we made a distinction between the relativistic length reduction and relativistic FitzGerald-Lorentz contraction, corresponding to a passive and an active aspect of length contraction, respectively; we pointed out that both aspects have fundamental dynamical contents. As an illustration of our considerations, we discussed briefly the Dewan-Beran-Bell spaceship paradox and the ‘pole in a barn’ paradox. [Projekat Ministarstva nauke Republike Srbije, br. 171028

  10. Non-relativistic supersymmetry

    International Nuclear Information System (INIS)

    Clark, T.E.; Love, S.T.

    1984-01-01

    The most general one- and two-body hamiltonian invariant under galilean supersymmetry is constructed in superspace. The corresponding Feynman rules are given for the superfield Green functions. As demonstrated by a simple example, it is straightforward to construct models in which the supersymmetry is spontaneously broken by the non-relativistic vacuum. (orig.)

  11. Relativistic Coulomb excitation

    International Nuclear Information System (INIS)

    Winther, A.; Alder, K.

    1979-01-01

    Coulomb excitation of both target and projectile in relativistic heavy ion collisions is evaluated including the lowest order correction for the deviation from a straight line trajectory. Explicit results for differential and total cross sections are given in the form of tables and figures. (Auth.)

  12. Relativistic elementary atoms

    International Nuclear Information System (INIS)

    Mrowczynski, S.

    1989-01-01

    The physics of relativistic elementary atoms,i.e. of Coulomb bound states of elementary particles, like positronium, pionium or an atom of μ + π - , is presented. The atom lifetimes and processes, in which the atoms are produced, are discussed. The interaction of the atoms with matter is also described. A simple derivation of most results is given. 33 refs. (author)

  13. The Relativistic Rocket

    Science.gov (United States)

    Antippa, Adel F.

    2009-01-01

    We solve the problem of the relativistic rocket by making use of the relation between Lorentzian and Galilean velocities, as well as the laws of superposition of successive collinear Lorentz boosts in the limit of infinitesimal boosts. The solution is conceptually simple, and technically straightforward, and provides an example of a powerful…

  14. Relativistic effects on plasma expansion

    Energy Technology Data Exchange (ETDEWEB)

    Benkhelifa, El-Amine; Djebli, Mourad, E-mail: mdjebli@usthb.dz [USTHB, Faculty of Physics, Theoretical Physics Laboratory, B.P. 32 Bab-Ezzouar, 16079 Algiers (Algeria)

    2014-07-15

    The expansion of electron-ion plasma is studied through a fully relativistic multi-fluids plasma model which includes thermal pressure, ambipolar electrostatic potential, and internal energy conversion. Numerical investigation, based on quasi-neutral assumption, is performed for three different regimes: nonrelativistic, weakly relativistic, and relativistic. Ions' front in weakly relativistic regime exhibits spiky structure associated with a break-down of quasi-neutrality at the expanding front. In the relativistic regime, ion velocity is found to reach a saturation limit which occurs at earlier stages of the expansion. This limit is enhanced by higher electron velocity.

  15. The relativistic gravity train

    Science.gov (United States)

    Seel, Max

    2018-05-01

    The gravity train that takes 42.2 min from any point A to any other point B that is connected by a straight-line tunnel through Earth has captured the imagination more than most other applications in calculus or introductory physics courses. Brachystochron and, most recently, nonlinear density solutions have been discussed. Here relativistic corrections are presented. It is discussed how the corrections affect the time to fall through Earth, the Sun, a white dwarf, a neutron star, and—the ultimate limit—the difference in time measured by a moving, a stationary and the fiducial observer at infinity if the density of the sphere approaches the density of a black hole. The relativistic gravity train can serve as a problem with approximate and exact analytic solutions and as numerical exercise in any introductory course on relativity.

  16. Relativistic studies in actinides

    International Nuclear Information System (INIS)

    Weinberger, P.; Gonis, A.

    1987-01-01

    In this review the theoretical background is given for a relativistic description for actinide systems. A short introduction is given of the density functional theory which forms the basis for a fully relativistic single-particle theory. A section on the Dirac Hamiltonian is followed by a brief summary on group theoretical concepts. Single site scattering is presented such that formal extensions to the case of the presence of an internal (external) magnetic field and/or anisotropic scattering are evident. Multiple scattering is discussed such that it can readily be applied also to the problem of dislocations. In connection with the problem of selfconsistency particular attention is drawn to the use of complex energies. Finally the various theoretical aspects discussed are illustrated through the results of numerical calculations. 101 refs.; 37 figs.; 5 tabs

  17. Relativistic heavy ion reactions

    International Nuclear Information System (INIS)

    Brink, D.M.

    1989-08-01

    The theory of quantum chromodynamics predicts that if nuclear matter is heated to a sufficiently high temperature then quarks might become deconfined and a quark-gluon plasma could be produced. One of the aims of relativistic heavy ion experiments is to search for this new state of matter. These lectures survey some of the new experimental results and give an introduction to the theories used to interpret them. 48 refs., 4 tabs., 11 figs

  18. Gravitationally confined relativistic neutrinos

    Science.gov (United States)

    Vayenas, C. G.; Fokas, A. S.; Grigoriou, D.

    2017-09-01

    Combining special relativity, the equivalence principle, and Newton’s universal gravitational law with gravitational rather than rest masses, one finds that gravitational interactions between relativistic neutrinos with kinetic energies above 50 MeV are very strong and can lead to the formation of gravitationally confined composite structures with the mass and other properties of hadrons. One may model such structures by considering three neutrinos moving symmetrically on a circular orbit under the influence of their gravitational attraction, and by assuming quantization of their angular momentum, as in the Bohr model of the H atom. The model contains no adjustable parameters and its solution, using a neutrino rest mass of 0.05 eV/c2, leads to composite state radii close to 1 fm and composite state masses close to 1 GeV/c2. Similar models of relativistic rotating electron - neutrino pairs give a mass of 81 GeV/c2, close to that of W bosons. This novel mechanism of generating mass suggests that the Higgs mass generation mechanism can be modeled as a latent gravitational field which gets activated by relativistic neutrinos.

  19. Relativistic tidal disruption events

    Directory of Open Access Journals (Sweden)

    Levan A.

    2012-12-01

    Full Text Available In March 2011 Swift detected an extremely luminous and long-lived outburst from the nucleus of an otherwise quiescent, low luminosity (LMC-like galaxy. Named Swift J1644+57, its combination of high-energy luminosity (1048 ergs s−1 at peak, rapid X-ray variability (factors of >100 on timescales of 100 seconds and luminous, rising radio emission suggested that we were witnessing the birth of a moderately relativistic jet (Γ ∼ 2 − 5, created when a star is tidally disrupted by the supermassive black hole in the centre of the galaxy. A second event, Swift J2058+0516, detected two months later, with broadly similar properties lends further weight to this interpretation. Taken together this suggests that a fraction of tidal disruption events do indeed create relativistic outflows, demonstrates their detectability, and also implies that low mass galaxies can host massive black holes. Here, I briefly outline the observational properties of these relativistic tidal flares observed last year, and their evolution over the first year since their discovery.

  20. Point form relativistic quantum mechanics and relativistic SU(6)

    Science.gov (United States)

    Klink, W. H.

    1993-01-01

    The point form is used as a framework for formulating a relativistic quantum mechanics, with the mass operator carrying the interactions of underlying constituents. A symplectic Lie algebra of mass operators is introduced from which a relativistic harmonic oscillator mass operator is formed. Mass splittings within the degenerate harmonic oscillator levels arise from relativistically invariant spin-spin, spin-orbit, and tensor mass operators. Internal flavor (and color) symmetries are introduced which make it possible to formulate a relativistic SU(6) model of baryons (and mesons). Careful attention is paid to the permutation symmetry properties of the hadronic wave functions, which are written as polynomials in Bargmann spaces.

  1. Quark-Parton Model and Relativistic Quantum Mechanics

    Directory of Open Access Journals (Sweden)

    Kostenko Boris

    2018-01-01

    Full Text Available An attempt to treat the asymptotic freedom and the quark confinement as a self-consistent problem in the framework of relativistic quantum mechanics is realized. It is shown that the confinement of quarks induces a change of their helicities together with a simultaneous alteration of orbital momenta, so that the total angular momentum of each quark is conserved. This observation may cast light on the so-called proton spin puzzle after some additional numerical estimations.

  2. Relativistic Hartree theory for nuclei far from the stability line

    International Nuclear Information System (INIS)

    Hirata, D.; Toki, H.; Watabe, T.; Tanihata, I.; Carlson, B.V.

    1991-01-01

    We study nuclei far from the stability line using the relativistic Hartree theory. We calculate the properties of various elements of the Periodic Table up to the proton and neutron drip lines with several parameter sets. After comparing the numerical results, we discuss nuclear properties near the drip lines in detail for the parameter sets that include nonlinear terms in the sigma-meson Lagrangian

  3. Proton spin structure study with PHENIX detector at RHIC

    International Nuclear Information System (INIS)

    Bazilevsky, A.

    2000-01-01

    Acceleration of polarized protons in Relativistic Heavy Ion Collider (RHIC) will provide unique tool to study spin structure of the nucleon, covering the √s region from 50 GeV to 500 GeV with proton polarization of 70%. PHENIX, one of the major detector systems at RHIC, is going to investigate poorly known gluon and flavor identified sea quark polarization in the proton. Overview of the RHENIX spin program is presented and sensitivities of the measurements are discussed

  4. Relativistic wave mechanics

    CERN Document Server

    Corinaldesi, Ernesto

    1963-01-01

    Geared toward advanced undergraduate and graduate students of physics, this text provides readers with a background in relativistic wave mechanics and prepares them for the study of field theory. The treatment originated as a series of lectures from a course on advanced quantum mechanics that has been further amplified by student contributions.An introductory section related to particles and wave functions precedes the three-part treatment. An examination of particles of spin zero follows, addressing wave equation, Lagrangian formalism, physical quantities as mean values, translation and rotat

  5. RADIATION SPECTRAL SYNTHESIS OF RELATIVISTIC FILAMENTATION

    International Nuclear Information System (INIS)

    Frederiksen, Jacob Trier; Haugboelle, Troels; Medvedev, Mikhail V.; Nordlund, Ake

    2010-01-01

    Radiation from many astrophysical sources, e.g., gamma-ray bursts and active galactic nuclei, is believed to arise from relativistically shocked collisionless plasmas. Such sources often exhibit highly transient spectra evolving rapidly compared with source lifetimes. Radiation emitted from these sources is typically associated with nonlinear plasma physics, complex field topologies, and non-thermal particle distributions. In such circumstances, a standard synchrotron paradigm may fail to produce accurate conclusions regarding the underlying physics. Simulating spectral emission and spectral evolution numerically in various relativistic shock scenarios is then the only viable method to determine the detailed physical origin of the emitted spectra. In this Letter, we present synthetic radiation spectra representing the early stage development of the filamentation (streaming) instability of an initially unmagnetized plasma, which is relevant for both collisionless shock formation and reconnection dynamics in relativistic astrophysical outflows as well as for laboratory astrophysics experiments. Results were obtained using a highly efficient in situ diagnostics method, based on detailed particle-in-cell modeling of collisionless plasmas. The synthetic spectra obtained here are compared with those predicted by a semi-analytical model for jitter radiation from the filamentation instability, the latter including self-consistent generated field topologies and particle distributions obtained from the simulations reported upon here. Spectra exhibit dependence on the presence-or the absence-of an inert plasma constituent, when comparing baryonic plasmas (i.e., containing protons) with pair plasmas. The results also illustrate that considerable care should be taken when using lower-dimensional models to obtain information about the astrophysical phenomena generating observed spectra.

  6. Relativistic approach to nuclear structure

    International Nuclear Information System (INIS)

    Nguyen Van Giai; Bouyssy, A.

    1987-03-01

    Some recent works related with relativistic models of nuclear structure are briefly reviewed. The Dirac-Hartree-Fock and Dirac-Brueckner-Hartree-Fock are recalled and illustrated by some examples. The problem of isoscalar current and magnetic moments of odd nuclei is discussed. The application of the relativistic model to the nuclear response function is examined

  7. Relativistic non-Hamiltonian mechanics

    International Nuclear Information System (INIS)

    Tarasov, Vasily E.

    2010-01-01

    Relativistic particle subjected to a general four-force is considered as a nonholonomic system. The nonholonomic constraint in four-dimensional space-time represents the relativistic invariance by the equation for four-velocity u μ u μ + c 2 = 0, where c is the speed of light in vacuum. In the general case, four-forces are non-potential, and the relativistic particle is a non-Hamiltonian system in four-dimensional pseudo-Euclidean space-time. We consider non-Hamiltonian and dissipative systems in relativistic mechanics. Covariant forms of the principle of stationary action and the Hamilton's principle for relativistic mechanics of non-Hamiltonian systems are discussed. The equivalence of these principles is considered for relativistic particles subjected to potential and non-potential forces. We note that the equations of motion which follow from the Hamilton's principle are not equivalent to the equations which follow from the variational principle of stationary action. The Hamilton's principle and the principle of stationary action are not compatible in the case of systems with nonholonomic constraint and the potential forces. The principle of stationary action for relativistic particle subjected to non-potential forces can be used if the Helmholtz conditions are satisfied. The Hamilton's principle and the principle of stationary action are equivalent only for a special class of relativistic non-Hamiltonian systems.

  8. 'Antigravity' Propulsion and Relativistic Hyperdrive

    OpenAIRE

    Felber, Franklin S.

    2006-01-01

    Exact payload trajectories in the strong gravitational fields of compact masses moving with constant relativistic velocities are calculated. The strong field of a suitable driver mass at relativistic speeds can quickly propel a heavy payload from rest to a speed significantly faster than the driver, a condition called hyperdrive. Hyperdrive thresholds and maxima are calculated as functions of driver mass and velocity.

  9. A new way of utilizing pole face windings and magnetic field corrections for independent tuning of betatron wave numbers and chromaticities in the CERN Proton Synchrotron

    CERN Document Server

    Gouiran, R

    1978-01-01

    Precise control of the quadrupole and sextupole components of the magnetic fields in focusing and defocusing sectors respectively was achieved by the combined use of pole-face and yoke windings with three separate power supplies synchronously programmed by a computer. Experience of this technique led to a new philosophy in the design of pole-face windings, in which they become an integral and active part of the magnet. With the arrangement described, focusing and guiding functions are partially separated and an old combined-function accelerator can be transformed effectively into a more flexible separate-function machine without any decrease in available straight- section space. (5 refs).

  10. Relativistic centrifugal instability

    Science.gov (United States)

    Gourgouliatos, Konstantinos N.; Komissarov, Serguei S.

    2018-03-01

    Near the central engine, many astrophysical jets are expected to rotate about their axis. Further out they are expected to go through the processes of reconfinement and recollimation. In both these cases, the flow streams along a concave surface and hence, it is subject to the centrifugal force. It is well known that such flows may experience the centrifugal instability (CFI), to which there are many laboratory examples. The recent computer simulations of relativistic jets from active galactic nuclei undergoing the process of reconfinement show that in such jets CFI may dominate over the Kelvin-Helmholtz instability associated with velocity shear (Gourgouliatos & Komissarov). In this letter, we generalize the Rayleigh criterion for CFI in rotating fluids to relativistic flows using a heuristic analysis. We also present the results of computer simulations which support our analytic criterion for the case of an interface separating two uniformly rotating cylindrical flows. We discuss the difference between CFI and the Rayleigh-Taylor instability in flows with curved streamlines.

  11. Relativistic ring models

    Energy Technology Data Exchange (ETDEWEB)

    Ujevic, Maximiliano [Universidade Federal do ABC (UFABC), Santo Andre, SP (Brazil). Centro de Ciencias Naturais e Humanas; Letelier, Patricio S.; Vogt, Daniel [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Inst. de Matematica, Estatistica e Computacao Cientifica. Dept. de Matematica Aplicada

    2011-07-01

    Full text: Relativistic thick ring models are constructed using previously found analytical Newtonian potential-density pairs for flat rings and toroidal structures obtained from Kuzmin-Toomre family of discs. This was achieved by inflating previously constructed Newtonian ring potentials using the transformation |z|{yields}{radical}z{sup 2} + b{sup 2}, and then finding their relativistic analog. The models presented have infinite extension but the physical quantities decays very fast with the distance, and in principle, one could make a cut-off radius to consider it finite. In particular, we present systems with one ring, two rings and a disc with a ring. Also, the circular velocity of a test particle and its stability when performing circular orbits are presented in all these models. Using the Rayleigh criterion of stability of a fluid at rest in a gravitational field, we find that the different systems studied present a region of non-stability that appears in the intersection of the disc and the ring, and between the rings when they become thinner. (author)

  12. Experiments with stored relativistic exotic nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Geissel, H.; Radon, T.; Attallah, F. [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany)] [and others

    1998-07-01

    Beams of relativistic exotic nuclei were produced, separated and investigated with the combination of the fragment separator FRS and the storage ring ESR. The following experiments are presented: (1) Direct mass measurements of relativistic nickel and bismuth projectile fragments were performed using Schottky spectrometry. Applying electron cooling, the relative velocity spread of the circulating secondary nuclear beams of low intensity was reduced to below 10{sup -6}. The achieved mass resolving power of m/{Delta}m = 6.5 . 10{sup 5} (FWHM) in recent measurements represents an improvement by a factor of two compared to our previous experiments. The previously unknown masses of more than 100 proton-rich isotopes have been measured in the range of 54 {<=} Z {<=} 84. The results are compared with mass models and estimated values based on extrapolations of experimental values. (2) Exotic nuclei with half-lives shorter than the time required for electron cooling can be investigated by time-of-flight measurements with the ESR being operated in the isochronous mode. This novel experimental technique has been successfully applied in a first measurement with nickel fragments. A mass resolving power of m/{Delta}m = 1.5 . 10{sup 5} (FWHM) was achieved in this mode of operation. (3) Nuclear half-lives of stored and cooled bare projectile fragments have been measured to study the influence of the ionic charge state on the beta-decay probability. (orig.)

  13. Experiments with stored relativistic exotic nuclei

    International Nuclear Information System (INIS)

    Klepper, O.; Attallah, F.; Beckert, K.; Bosch, F.; Dolinskiy, A.; Eickhoff, H.; Franczak, B.; Franzke, B.; Geissel, H.; Hausmann, M.; Hellstroem, M.; Herfurth, F.; Kluge, H.-J.; Kozhuharov, C.; Muenzenberg, G.; Nolden, F.; Quint, W.; Tradon, T.; Reich, H.; Scheidenberger, C.; Schlitt, B.; Steck, M.; Suemmerer, K.; Vermeeren, L.; Winkler, M.; Winkler, Th.; Falch, M.; Kerscher, Th.; Loebner, K.E.G.; Fujita, Y.; Novikov, Yu.; Patyk, Z.; Stadlmann, J.; Wollnik, H.

    1999-01-01

    Beams of relativistic exotic nuclei were produced, separated and investigated with the combination of the fragment separator FRS and the storage ring ESR. The following experiments are presented: 1) Direct mass measurements of relativistic nickel and bismuth projectile fragments were performed using Schottky spectrometry. Applying electron cooling, the relative velocity spread of the circulating secondary nuclear beams of low intensity was reduced to below 10 -6 . The achieved mass resolving power of m/Δm = 6.5·10 5 (FWHM) in recent measurements represents an improvement by a factor of two compared to authors' previous experiments. The previously unknown masses of more than 100 proton-rich isotopes have been measured in the range of 54≤Z≤84. The results are compared with mass models and estimated values based on extrapolations of experimental values. 2) Exotic nuclei with half-lives shorter than the time required for electron cooling can be investigated by time-of-flight measurements with the ESR being operated in the isochronous mode. This novel experimental technique has been successfully applied in a first measurement with nickel fragments. A mass resolving power of m/Δm = 1.5·10 5 (FWHM) was achieved in this mode of operation. 3) Nuclear half-lives of stored and cooled bare projectile fragments have been measured to study the influence of the ionic charge state on the beta-decay probability

  14. Relativistic Planck-scale polymer

    Directory of Open Access Journals (Sweden)

    Giovanni Amelino-Camelia

    2017-12-01

    Full Text Available Polymer quantum mechanics has been studied as a simplified picture that reflects some of the key properties of Loop Quantum Gravity; however, while the fate of relativistic symmetries in Loop Quantum Gravity is still not established, it is usually assumed that the discrete polymer structure should lead to a breakdown of relativistic symmetries. We here focus for simplicity on a one-spatial-dimension polymer model and show that relativistic symmetries are deformed, rather than being broken. The specific type of deformed relativistic symmetries which we uncover appears to be closely related to analogous descriptions of relativistic symmetries in some noncommutative spacetimes. This also contributes to an ongoing effort attempting to establish whether the “quantum-Minkowski limit” of Loop Quantum Gravity is a noncommutative spacetime.

  15. Measurement of the Neutron Component in a Shower Generated in a Lead Target by Relativistic Nuclear Beam

    International Nuclear Information System (INIS)

    Chultehm, D.; Damdinsurehn, Ts.; D'yachenko, V.M.; Ehnkhzhin, L.; Lomova, L.A.; Perelygin, V.P.; Tolstov, K.D.

    1994-01-01

    The present paper describes a method of determining the total number of neutrons generated in an extended lead target by relativistic nuclei and protons. It is shown that 101±20 neutrons per proton are produced in the target with the volume of 50x50x80 cm 3 at 3.65 GeV energy of protons. 11 refs., 14 figs., 1 tab

  16. Relativistic fluid formulation and theory of intense relativistic electron beams

    International Nuclear Information System (INIS)

    Siambis, J.G.

    1984-01-01

    A new general relativistic fluid formulation has been obtained for intense relativistic electron beams (IREB) with arbitrarily high relativistic mass factor γ. This theory is valid for confined IREB equilibria such as those found inside high energy accelerators as well as in the pinched and ion-focused regimes of beam propagation in plasma channels. The new relativistic fluid formulation is based on the covariant relativistic fluid formulation of Newcomb with the parameter lambda identical to 1, in order to allow for realistic confined equilibria. The resulting equilibrium constraints require that the beam has a slow rotational velocity around its direction of propagation and that the off-diagonal thermal stress element, associated with these two directions of motion, be nonzero. The effective betatron oscillation frequency of the fluid elements of the beam is modified by the radial gradient and anisotropies in the thermal stress elements of the beam fluid. The wave equation, for sausage, hose and filamentation excitations on the relativistic fluid beam, is found to be formally identical to that obtained from the Vlasov equation approach, hence phase-mixing damping is a generic and self-consistent correlate of the new relativistic fluid formulation

  17. Observations of collective ion acceleration by a relativistic electron beam in a magnetic cusp

    International Nuclear Information System (INIS)

    Roberson, C.W.; Eckhouse, S.; Fisher, A.; Robertson, S.; Rostoker, N.

    1976-01-01

    Ion pulses of 10 13 protons were observed by passing hollow relativistic electron beams through a magnetic cusp using drift-chamber fill pressures from 75 to 600 mTorr of H 2 . Magnetic fields of 0.8 kG suppress the mechanism responsible for acceleration without magnetic field. A different mechanism appears to begin and peak as the cusp threshold is approached. More than 10 11 protons with energies greater than 2 MeV were observed

  18. Atomic physics using relativistic H- beams

    International Nuclear Information System (INIS)

    Bryant, H.C.

    2005-01-01

    Full text: An 8 GeV hydrogen atom can traverse a focused laser beam of width of 1 micron in a time of 353 attoseconds in its rest frame. A design is currently underway at Fermilab for a superconducting linear accelerator that will accelerate H - ions to 8 GeV. This 'Proton Driver' beam is intended to be injected, after stripping down to protons, into the 120 GeV Main Injector for the mass production of neutrinos aimed at a neutrino detector (MINOS) in a mine shaft in Soudan, Minnesota (USA) for the study of neutrino oscillations. It has not passed unnoticed that with some advance planning a few nanoamps from the up-to-250 mA beam could be diverted for atomic physics experiments. Relativistic kinematics enable the creation of extreme conditions for a beam atom. For example, the Doppler shift allows a very large tuning range in the atom's rest frame of a laser beam that is fixed- frequency in the lab. At 8 GeV the rest frame Doppler shift ranges from a factor of 19 in the forward direction to 0.05 backward. The laser intensity is enhanced by the square of the Doppler shift, so that the world's most intense laser beam would be amplified by a factor of 360 in the atom's rest frame. Furthermore, although there are extreme changes in the frequency and intensity in the atom's frame as one changes the intersection angle, the ponderomotive potential remains constant, as it is a relativistic invariant. One of the interesting problems that arises in the planning for this accelerator is the stripping of electrons from the negative ions by photodetachment from Doppler shifted thermal photons. We estimate that, if the transfer lines are kept at 300 K (room temperature), the mean free path at 8 GeV for stripping from collisions with cavity radiation is about 1300 km. The physics of the interactions of such a beam with very thin material foils, again in the attosecond regime, has been treated theoretically, but has not been studied experimentally at such high energies. We will

  19. Relativistic heavy ion physics

    International Nuclear Information System (INIS)

    Hill, J.C.; Wohn, F.K.

    1993-01-01

    This is a progress report for the period May 1992 through April 1993. The first section, entitled ''Purpose and Trends, gives background on the recent trends in the research program and its evolution from an emphasis on nuclear structure physics to its present emphasis on relativistic heavy ion and RHIC physics. The next section, entitled ''Physics Research Progress'', is divided into four parts: participation in the program to develop a large detector named PHENIX for the RHIC accelerator; joining E864 at the AGS accelerator and the role in that experiment; progress made in the study of electromagnetic dissociation highlight of this endeavor is an experiment carried out with the 197 Au beam from the AGS accelerator in April 1992; progress in completion of the nuclear structure studies. In the final section a list of publications, invited talks, and contributed talks is given

  20. Relativistic thermodynamics of fluids

    International Nuclear Information System (INIS)

    Souriau, J.-M.

    1977-05-01

    The relativistic covariant definition of a statistical equilibrium, applied to a perfect gas, involves a 'temperature four-vector', whose direction is the mean velocity of the fluid, and whose length is the reciprocal temperature. The hypothesis of this 'temperature four-vector' being a relevant variable for the description of the dissipative motions of a simple fluid is discussed. The kinematics is defined by using a vector field and measuring the number of molecules. Such a dissipative fluid is subject to motions involving null entropy generation; the 'temperature four-vector' is then a Killing vector; the equations of motion can be completely integrated. Perfect fluids can be studied by this way and the classical results of Lichnerowicz are obtained. In weakly dissipative motions two viscosity coefficient appear together with the heat conductibility coefficient. Two other coefficients perharps measurable on real fluids. Phase transitions and shock waves are described with using the model [fr

  1. Elementary relativistic atoms

    International Nuclear Information System (INIS)

    Nemenov, L.

    2001-01-01

    The Coulomb interaction which occurs in the final state between two particles with opposite charges allows for creation of the bound state of these particles. In the case when particles are generated with large momentum in lab frame, the Lorentz factors of the bound state will also be much larger than one. The relativistic velocity of the atoms provides the opportunity to observe bound states of (π + μ - ), (π + π - ) and (π + K - ) with a lifetime as short as 10 -16 s, and to measure their parameters. The ultrarelativistic positronium atoms (A 2e ) allow us to observe the e.ect of superpenetration in matter, to study the effects caused by the formation time of A 2e from virtual e + e - pairs and to investigate the process of transformation of two virtual particles into the bound state

  2. Relativistic Light Sails

    Energy Technology Data Exchange (ETDEWEB)

    Kipping, David, E-mail: dkipping@astro.columbia.edu [Department of Astronomy, Columbia University, 550 W. 120th St., New York, NY 10027 (United States)

    2017-06-01

    One proposed method for spacecraft to reach nearby stars is by accelerating sails using either solar radiation pressure or directed energy. This idea constitutes the thesis behind the Breakthrough Starshot project, which aims to accelerate a gram-mass spacecraft up to one-fifth the speed of light toward Proxima Centauri. For such a case, the combination of the sail’s low mass and relativistic velocity renders previous treatments incorrect at the 10% level, including that of Einstein himself in his seminal 1905 paper introducing special relativity. To address this, we present formulae for a sail’s acceleration, first in response to a single photon and then extended to an ensemble. We show how the sail’s motion in response to an ensemble of incident photons is equivalent to that of a single photon of energy equal to that of the ensemble. We use this principle of ensemble equivalence for both perfect and imperfect mirrors, enabling a simple analytic prediction of the sail’s velocity curve. Using our results and adopting putative parameters for Starshot , we estimate that previous relativistic treatments underestimate the spacecraft’s terminal velocity by ∼10% for the same incident energy. Additionally, we use a simple model to predict the sail’s temperature and diffraction beam losses during the laser firing period; this allows us to estimate that, for firing times of a few minutes and operating temperatures below 300°C (573 K), Starshot will require a sail that absorbs less than one in 260,000 photons.

  3. Relativistic Light Sails

    Science.gov (United States)

    Kipping, David

    2017-06-01

    One proposed method for spacecraft to reach nearby stars is by accelerating sails using either solar radiation pressure or directed energy. This idea constitutes the thesis behind the Breakthrough Starshot project, which aims to accelerate a gram-mass spacecraft up to one-fifth the speed of light toward Proxima Centauri. For such a case, the combination of the sail’s low mass and relativistic velocity renders previous treatments incorrect at the 10% level, including that of Einstein himself in his seminal 1905 paper introducing special relativity. To address this, we present formulae for a sail’s acceleration, first in response to a single photon and then extended to an ensemble. We show how the sail’s motion in response to an ensemble of incident photons is equivalent to that of a single photon of energy equal to that of the ensemble. We use this principle of ensemble equivalence for both perfect and imperfect mirrors, enabling a simple analytic prediction of the sail’s velocity curve. Using our results and adopting putative parameters for Starshot, we estimate that previous relativistic treatments underestimate the spacecraft’s terminal velocity by ∼10% for the same incident energy. Additionally, we use a simple model to predict the sail’s temperature and diffraction beam losses during the laser firing period; this allows us to estimate that, for firing times of a few minutes and operating temperatures below 300°C (573 K), Starshot will require a sail that absorbs less than one in 260,000 photons.

  4. Rotating relativistic neutron stars

    Energy Technology Data Exchange (ETDEWEB)

    Weber, F.; Glendenning, N.K.

    1991-07-21

    Models of rotating neutron stars are constructed in the framework of Einstein's theory of general relativity. For this purpose a refined version of Hartle's method is applied. The properties of these objects, e.g. gravitational mass, equatorial and polar radius, eccentricity, red- and blueshift, quadrupole moment, are investigated for Kepler frequencies of 4000 s{sup {minus}1} {le} {Omega}{sub K} {le} 9000 s{sup {minus}1}. Therefore a self-consistency problem inherent in the determination of {Omega}{sub K} must be solved. The investigation is based on neutron star matter equations of state derived from the relativistic Martin-Schwinger hierarch of coupled Green's functions. By means of introducing the Hartree, Hartree-Fock, and ladder ({Lambda}) approximations, models of the equation of state derived. A special feature of the latter approximation scheme is the inclusion of dynamical two-particle correlations. These have been calculated from the relativistic T-matrix applying both the HEA and Bonn meson-exchange potentials of the nucleon-nucleon force. The nuclear forces of the former two treatments are those of the standard scalar-vector-isovector model of quantum hadron dynamics, with parameters adjusted to the nuclear matter data. An important aspect of this work consists in testing the compatibility of different competing models of the nuclear equation of state with data on pulsar periods. By this the fundamental problem of nuclear physics concerning the behavior of the equation of state at supernuclear densities can be treated.

  5. Lattice Boltzmann scheme for relativistic fluids

    OpenAIRE

    Mendoza, M.; Boghosian, B.; Herrmann, H. J.; Succi, S.

    2009-01-01

    A Lattice Boltzmann formulation for relativistic fluids is presented and numerically verified through quantitative comparison with recent hydrodynamic simulations of relativistic shock-wave propagation in viscous quark-gluon plasmas. This formulation opens up the possibility of exporting the main advantages of Lattice Boltzmann methods to the relativistic context, which seems particularly useful for the simulation of relativistic fluids in complicated geometries.

  6. CAFE: A NEW RELATIVISTIC MHD CODE

    Energy Technology Data Exchange (ETDEWEB)

    Lora-Clavijo, F. D.; Cruz-Osorio, A. [Instituto de Astronomía, Universidad Nacional Autónoma de México, AP 70-264, Distrito Federal 04510, México (Mexico); Guzmán, F. S., E-mail: fdlora@astro.unam.mx, E-mail: aosorio@astro.unam.mx, E-mail: guzman@ifm.umich.mx [Instituto de Física y Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo. Edificio C-3, Cd. Universitaria, 58040 Morelia, Michoacán, México (Mexico)

    2015-06-22

    We introduce CAFE, a new independent code designed to solve the equations of relativistic ideal magnetohydrodynamics (RMHD) in three dimensions. We present the standard tests for an RMHD code and for the relativistic hydrodynamics regime because we have not reported them before. The tests include the one-dimensional Riemann problems related to blast waves, head-on collisions of streams, and states with transverse velocities, with and without magnetic field, which is aligned or transverse, constant or discontinuous across the initial discontinuity. Among the two-dimensional (2D) and 3D tests without magnetic field, we include the 2D Riemann problem, a one-dimensional shock tube along a diagonal, the high-speed Emery wind tunnel, the Kelvin–Helmholtz (KH) instability, a set of jets, and a 3D spherical blast wave, whereas in the presence of a magnetic field we show the magnetic rotor, the cylindrical explosion, a case of Kelvin–Helmholtz instability, and a 3D magnetic field advection loop. The code uses high-resolution shock-capturing methods, and we present the error analysis for a combination that uses the Harten, Lax, van Leer, and Einfeldt (HLLE) flux formula combined with a linear, piecewise parabolic method and fifth-order weighted essentially nonoscillatory reconstructors. We use the flux-constrained transport and the divergence cleaning methods to control the divergence-free magnetic field constraint.

  7. CAFE: A New Relativistic MHD Code

    Science.gov (United States)

    Lora-Clavijo, F. D.; Cruz-Osorio, A.; Guzmán, F. S.

    2015-06-01

    We introduce CAFE, a new independent code designed to solve the equations of relativistic ideal magnetohydrodynamics (RMHD) in three dimensions. We present the standard tests for an RMHD code and for the relativistic hydrodynamics regime because we have not reported them before. The tests include the one-dimensional Riemann problems related to blast waves, head-on collisions of streams, and states with transverse velocities, with and without magnetic field, which is aligned or transverse, constant or discontinuous across the initial discontinuity. Among the two-dimensional (2D) and 3D tests without magnetic field, we include the 2D Riemann problem, a one-dimensional shock tube along a diagonal, the high-speed Emery wind tunnel, the Kelvin-Helmholtz (KH) instability, a set of jets, and a 3D spherical blast wave, whereas in the presence of a magnetic field we show the magnetic rotor, the cylindrical explosion, a case of Kelvin-Helmholtz instability, and a 3D magnetic field advection loop. The code uses high-resolution shock-capturing methods, and we present the error analysis for a combination that uses the Harten, Lax, van Leer, and Einfeldt (HLLE) flux formula combined with a linear, piecewise parabolic method and fifth-order weighted essentially nonoscillatory reconstructors. We use the flux-constrained transport and the divergence cleaning methods to control the divergence-free magnetic field constraint.

  8. Generic stability of dissipative non-relativistic and relativistic fluids

    International Nuclear Information System (INIS)

    Ván, Peter

    2009-01-01

    The linear stability of the homogeneous equilibrium of non-relativistic fluids with mass flux and special relativistic fluids with the absolute value of the energy vector as internal energy is investigated. It is proved that the equilibrium is asymptotically stable in both cases due to purely thermodynamic restrictions; the only requirements are the thermodynamic stability and the non-negativity of the transport coefficients

  9. On the nucleon-nucleus scattering and the relativistic eikonal approximation

    International Nuclear Information System (INIS)

    Eiras, A.; Nemes, M.C.

    1992-12-01

    A generalization of the relativistic eikonal amplitude originally developed to describe elastic scattering between structured particles is introduced. The coherent and incoherent proton-nucleus scattering processes are analysed and closed forms expressions for elastic and inelastic amplitudes are derived. In particular, for incoherent case, an energy conserving version of Glauber's theory is obtained. (author)

  10. Extragalactic gamma-ray background from AGN winds and star-forming galaxies in cosmological galaxy-formation models

    Science.gov (United States)

    Lamastra, A.; Menci, N.; Fiore, F.; Antonelli, L. A.; Colafrancesco, S.; Guetta, D.; Stamerra, A.

    2017-10-01

    We derive the contribution to the extragalactic gamma-ray background (EGB) from active galactic nuclei (AGN) winds and star-forming galaxies by including a physical model for the γ-ray emission produced by relativistic protons accelerated by AGN-driven and supernova-driven shocks into a state-of-the-art semi-analytic model of galaxy formation. This is based on galaxy interactions as triggers of AGN accretion and starburst activity and on expanding blast waves as the mechanism to communicate outwards the energy injected into the interstellar medium by the active nucleus. We compare the model predictions with the latest measurement of the EGB spectrum performed by the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope (Fermi) in the range between 100 MeV and 820 GeV. We find that AGN winds can provide 35 ± 15% of the observed EGB in the energy interval Eγ = 0.1-1 GeV, for 73 ± 15% at Eγ = 1-10 GeV, and for 60 ± 20% at Eγ ≳10 GeV. The AGN wind contribution to the EGB is predicted to be larger by a factor of 3-5 than that provided by star-forming galaxies (quiescent plus starburst) in the hierarchical clustering scenario. The cumulative γ-ray emission from AGN winds and blazars can account for the amplitude and spectral shape of the EGB, assuming the standard acceleration theory, and AGN wind parameters that agree with observations. We also compare the model prediction for the cumulative neutrino background from AGN winds with the most recent IceCube data. We find that for AGN winds with accelerated proton spectral index p = 2.2-2.3, and taking into account internal absorption of γ-rays, the Fermi-LAT and IceCube data could be reproduced simultaneously.

  11. Conductivity of a relativistic plasma

    International Nuclear Information System (INIS)

    Braams, B.J.; Karney, C.F.F.

    1989-03-01

    The collision operator for a relativistic plasma is reformulated in terms of an expansion in spherical harmonics. This formulation is used to calculate the electrical conductivity. 13 refs., 1 fig., 1 tab

  12. Conductivity of a relativistic plasma

    Energy Technology Data Exchange (ETDEWEB)

    Braams, B.J.; Karney, C.F.F.

    1989-03-01

    The collision operator for a relativistic plasma is reformulated in terms of an expansion in spherical harmonics. This formulation is used to calculate the electrical conductivity. 13 refs., 1 fig., 1 tab.

  13. Superheavy nuclei in the relativistic mean-field theory

    International Nuclear Information System (INIS)

    Lalazissis, G.A.; Ring, P.; Gambhir, Y.K.

    1996-01-01

    We have carried out a study of superheavy nuclei in the framework of the relativistic mean-field theory. Relativistic Hartree-Bogoliubov (RHB) calculations have been performed for nuclei with large proton and neutron numbers. A finite-range pairing force of Gogny type has been used in the RHB calculations. The ground-state properties of very heavy nuclei with atomic numbers Z=100-114 and neutron numbers N=154-190 have been obtained. The results show that in addition to N=184 the neutron numbers N=160 and N=166 exhibit an extra stability as compared to their neighbors. For the case of protons the atomic number Z=106 is shown to demonstrate a closed-shell behavior in the region of well deformed nuclei about N=160. The proton number Z=114 also indicates a shell closure. Indications for a doubly magic character at Z=106 and N=160 are observed. Implications of shell closures on a possible synthesis of superheavy nuclei are discussed. (orig.)

  14. Relativistic multiwave Cerenkov generator

    Science.gov (United States)

    Bugaev, S. P.; Kanavets, V. I.; Klimov, A. I.; Koshelev, V. I.; Cherepenin, V. A.

    1983-11-01

    The design and operation of a multiwave Cerenkov generator using a relativistic electron beam are reported. The device comprises a 3-cm-radius tubular graphite cathode fed with a 1-microsec 1-2.5-MW pulse from a Marx generator; a 5.6-cm-radius anode; an increasing 14-32-kG magnetic field; a 3.4-cm-aperture-radius graphite collimating iris; a stainless-steel semitoroidal-iris-loaded slow-wave structure of maximum length 48.6 cm, inside radius 4.2 cm, iris aperture radius 3.0 cm, iris minor radius 3 mm, and period 1.5 cm; a stainless-steel cone collector; and a vacuum-tight 60-cm-radius window. At 2.5 MV and 21 kG, output power at wavelength 3.15 + or - 0.1 cm is measured as about 5 GW, with baseline pulse length 30-50 nsec and efficiency up to about 10 percent.

  15. Practical Relativistic Bit Commitment.

    Science.gov (United States)

    Lunghi, T; Kaniewski, J; Bussières, F; Houlmann, R; Tomamichel, M; Wehner, S; Zbinden, H

    2015-07-17

    Bit commitment is a fundamental cryptographic primitive in which Alice wishes to commit a secret bit to Bob. Perfectly secure bit commitment between two mistrustful parties is impossible through an asynchronous exchange of quantum information. Perfect security is, however, possible when Alice and Bob each split into several agents exchanging classical information at times and locations suitably chosen to satisfy specific relativistic constraints. In this Letter we first revisit a previously proposed scheme [C. Crépeau et al., Lect. Notes Comput. Sci. 7073, 407 (2011)] that realizes bit commitment using only classical communication. We prove that the protocol is secure against quantum adversaries for a duration limited by the light-speed communication time between the locations of the agents. We then propose a novel multiround scheme based on finite-field arithmetic that extends the commitment time beyond this limit, and we prove its security against classical attacks. Finally, we present an implementation of these protocols using dedicated hardware and we demonstrate a 2 ms-long bit commitment over a distance of 131 km. By positioning the agents on antipodal points on the surface of Earth, the commitment time could possibly be extended to 212 ms.

  16. Physical interpretation of the angle-dependent magnetic helicity spectrum in the solar wind: The nature of turbulent fluctuations near the proton gyroradius scale

    Energy Technology Data Exchange (ETDEWEB)

    Klein, Kristopher G.; Howes, Gregory G. [Department of Physics and Astronomy, University of Iowa, Iowa City, IA 52242 (United States); TenBarge, Jason M. [IREAP, University of Maryland, College Park, MD 20742 (United States); Podesta, John J., E-mail: kristopher-klein@uiowa.edu [Center for Space Plasma Physics, Space Science Institute, Boulder, CO 80301 (United States)

    2014-04-20

    Motivated by recent observations of distinct parallel and perpendicular signatures in magnetic helicity measurements segregated by wave period and angle between the local magnetic field and the solar wind velocity, this paper undertakes a comparison of three intervals of Ulysses data with synthetic time series generated from a physically motivated turbulence model. From these comparisons, it is hypothesized that the observed signatures result from a perpendicular cascade of Alfvénic fluctuations and a local, non-turbulent population of ion-cyclotron or whistler waves generated by temperature anisotropy instabilities. By constraining the model's free parameters through comparison to in situ data, it is found that, on average, ∼95% of the power near dissipative scales is contained in a perpendicular Alfvénic cascade and that the parallel fluctuations are propagating nearly unidirectionally. The effects of aliasing on magnetic helicity measurements are considered and shown to be significant near the Nyquist frequency.

  17. Comparison of antiproton-proton and proton-proton collisions at the CERN Intersecting Storage Ring

    International Nuclear Information System (INIS)

    di Ciaccio, A.; Gordon, H.; Hogue, R.

    1981-01-01

    A comparative investigation of anti pp and pp collisions at the CERN Intersecting Storage Rings is reported. The study was performed using the cylindrical drift chamber of the Axial Field Spectrometer. Non-relativistic particles were identified through multiple ionization sampling. The inclusive production of pions, kaons, protons and antiprotons in the central region of rapidity (absolute value y < 0.8) is compared. Distributions in charged particle multiplicity, rapidity and P/sub T/ are found to be very similar in anti pp and pp data

  18. Protonated nitrosamide

    DEFF Research Database (Denmark)

    Egsgaard, H.; Carlsen, L.; Øgaard Madsen, J.

    1994-01-01

    The protonated nitrosamide, NH3NO+, has been generated by chemical ionization mass spectrometry. Although a direct search for this species in ammonia flames has proved negative, fast proton transfer to major flame constituents is supported experimentally as well as by MO calculations....

  19. VEBA relativistic electron accelerator

    International Nuclear Information System (INIS)

    Parker, R.K.; Ury, M.

    1975-01-01

    The VEBA high-current, relativistic electron accelerator was designed and constructed at NRL for applications in the study of high-power microwave sources. To meet the requirements of this study, the accelerator was designed for operation in either a short (60 nsec) or long (2.2 μsec) pulse mode. The short-pulse mode has been in operation for nearly two years and has proven to be an extremely reliable design. The design of the long-pulse mode is now complete and component fabrication will soon be underway. The pulse-forming network in the short-pulse mode is an unbalanced, water Blumlein with an output impedance of 9.2 Ω. The Blumlein is pulse charged by a 17 stage Marx generator which has a series capacitance of 29.4 nF. By transmission along a tapered coaxial line, the output pulse is transformed to 20 Ω, and the voltage developed across a matched load increases to a maximum of 2.3 MV. The proposed conversion to the long-pulse mode will require the Blumlein and transformer sections be removed and the diode assembly be attached directly to the oversized Marx tank. The direct coupling between the Marx and the Blumlein will then be replaced by two nested water capacitors, which are shunted by spiral inductors. When coupled in series with the Marx, this output filter will form a three-section, voltage-fed, Guillemin (type A), pulse-forming network with a characteristic impedance of 40 Ω and a maximum output voltage of 0.9 MV. (auth)

  20. Relativistic theory of gravity

    International Nuclear Information System (INIS)

    Logunov, A.A.; Mestvirishvili, M.A.

    1985-01-01

    This work presents an unambiguous construction of the relativistic theory of gravity (RTG) in the framework of relativity and the geometrization principle. The gauge principle has been formulated, and the Lagrangian density of the gravitational field has thus been constructed. This theory explains the totality of the available experimental data on the solar system and predicts the existence of gravitational waves of the Faraday-Maxwell type. According to the RTG, the Universe is infinite and ''flat'', hence it follows that its matter density should be equal to its critical density. Therefore, an appreciable ''hidden mass'' exceeding the presently observed mass of the matter almost 40-fold should exist in the Universe in some form of the matter or other. In accordance with the RTG, a massive body having a finite density ceases to contract under gravitational forces within a finite interval of proper time. From the viewpoint of an external reference frame, the brightness of the body decreases exponentially (it is getting darker), but nothing extraordinary happens in this case because its density always remains finite and, for example, for a body with the mass of about 10 8 M 0 it is equal to 2 g/cm 3 . That is why it follows from the RTG that there could be no object whatsoever (black holes) in which gravitational collapse of matter develops to an infinite density. As has been shown, the presence of a cosmological term necessarily requires the introduction of a term with an explicit dependence on the Minkowski metrics. For the long-range gravitational forces the cosmological constant vanishes

  1. Studies of neutron emission from relativistic nuclear interactions

    CERN Document Server

    Guo, S L; Wang, Y L; Guo, H Y; Sá Ben-Hao; Zheng, Y M; Brandt, R; Vater, P; Wan, J S; Ochs, M; Kulakov, B A; Sosnin, A N; Krivopustov, M I; Butsev, V S; Bradnova, V

    1999-01-01

    Studies were carried out on the yields and spatial distributions of secondary neutrons produced in the relativistic nuclear interactions of 1.5 GeV to 14.4 GeV projectiles p, d and alpha-particles with targets Pb and U/Pb. CR-39 track detectors were used to measure the neutrons. It shows that: (1) Secondary neutrons are produced in the whole length of Pb or U targets having a thickness of 20 cm. The neutron intensities produced by proton bombardments are reduced along the proton beam direction in the targets. The higher the energy of protons, the lower the reduction rate of the neutrons. The reduction rate of neutrons in U target is higher than in Pb target for the same energy of protons. (2) The radial intensities of neutrons decrease as the distance increases from the target central line. (3) The neutron yield in U target by proton bombardments is approx 55% higher than in Pb target. (4) The ratio of neutron yield by 14.4 GeV alpha to 7.3 GeV d bombardment in Pb target is 1.74+-0.20.

  2. Scattering in relativistic particle mechanics

    International Nuclear Information System (INIS)

    De Bievre, S.

    1986-01-01

    The problem of direct interaction in relativistic particle mechanics has been extensively studied and a variety of models has been proposed avoiding the conclusions of the so-called no-interaction theorems. In this thesis the authors studied scattering in the relativistic two-body problem. He uses the results to analyze gauge invariance in Hamiltonian constraint models and the uniqueness of the symplectic structure in manifestly covariant relativistic particle mechanics. A general geometric framework that underlies approaches to relativistic particle mechanics is presented and the kinematic properties of the scattering transformation, i.e., those properties that arise solely from the invariance of the theory under the Poincare group are studied. The second part of the analysis of the relativistic two-body scattering problem is devoted to the dynamical properties of the scattering process. Using general geometric arguments, gauge invariance of the scattering transformation in the Todorov-Komar Hamiltonian constraint model is proved. Finally, quantization of the models is discussed

  3. RHIC polarized proton performance in run-8.

    Energy Technology Data Exchange (ETDEWEB)

    Montag,C.; Abreu, N.; Ahrens, L.; Bai, M.; Barton, D.; et al.

    2008-06-23

    During Run-8, the Relativistic Heavy Ion Collider (RHIC) provided collisions of spin-polarized proton beams at two interaction regions. Helical spin rotators at these two interaction regions were used to control the spin orientation of both beams at the collision points. Physics data were taken with different orientations of the beam polarization. We present recent developments and improvements as well as the luminosity and polarization performance achieved during Run-8.

  4. RHIC Polarized proton performance in run-8

    International Nuclear Information System (INIS)

    Montag, C.; Bai, M.; MacKay, W.W.; Roser, T.; Abreu, N.; Ahrens, L.; Barton, D.; Beebe-Wang, J.; Blaskiewicz, M.; Brennan, J.M.; Brown, K.A.; Bruno, D.; Bunce, G.; Calaga, R.; Cameron, P.; Connolly, R.; D'Ottavio, T.; Drees, A.; Fedotov, A.V.; Fischer, W.; Ganetis, G.; Gardner, C.; Glenn, J.; Hayes, T.; Huang, H.; Ingrassia, P.; Kayran, D.A.; Kewisch, J.; Lee, R.C.; Lin, F.; Litvinenko, V.N.; Luccio, A.U.; Luo, Y.; Makdisi, Y.; Malitsky, N.; Marr, G.; Marusic, A.; Michnoff, R.; Morris, J.; Oerter, B.; Pilat, F.; Pile, P.; Robert-Demolaize, G.; Russo, T.; Satogata, T.; Schultheiss, C.; Sivertz, M.; Smith, K.; Tepikian, S.; Trbojevic, D.; Tsoupas, N.; Tuozzolo, J.; Zaltsman, A.; Zelenski, A.; Zeno, K.; Zhang, S.Y.

    2008-01-01

    During Run-8, the Relativistic Heavy Ion Collider (RHIC) provided collisions of spin-polarized proton beams at two interaction regions. Physics data were taken with vertical orientation of the beam polarization, which in the 'Yellow' RHIC ring was significantly lower than in previous years. We present recent developments and improvements as well as the luminosity and polarization performance achieved during Run-8, and we discuss possible causes of the not as high as previously achieved polarization performance of the 'Yellow' ring.

  5. Proton Transport

    Science.gov (United States)

    Pohorille, Andrew; DeVincenzi, Donald L. (Technical Monitor)

    2001-01-01

    The transport of protons across membranes is an essential process for both bioenergetics of modern cells and the origins of cellular life. All living systems make use of proton gradients across cell walls to convert environmental energy into a high-energy chemical compound, adenosine triphosphate (ATP), synthesized from adenosine diphosphate. ATP, in turn, is used as a source of energy to drive many cellular reactions. The ubiquity of this process in biology suggests that even the earliest cellular systems were relying on proton gradient for harvesting environmental energy needed to support their survival and growth. In contemporary cells, proton transfer is assisted by large, complex proteins embedded in membranes. The issue addressed in this Study was: how the same process can be accomplished with the aid of similar but much simpler molecules that could have existed in the protobiological milieu? The model system used in the study contained a bilayer membrane made of phospholipid, dimyristoylphosphatidylcholine (DMPC) which is a good model of the biological membranes forming cellular boundaries. Both sides of the bilayer were surrounded by water which simulated the environment inside and outside the cell. Embedded in the membrane was a fragment of the Influenza-A M$_2$ protein and enough sodium counterions to maintain system neutrality. This protein has been shown to exhibit remarkably high rates of proton transport and, therefore, is an excellent model to study the formation of proton gradients across membranes. The Influenza M$_2$ protein is 97 amino acids in length, but a fragment 25 amino acids long. which contains a transmembrane domain of 19 amino acids flanked by three amino acids on each side. is sufficient to transport protons. Four identical protein fragments, each folded into a helix, aggregate to form small channels spanning the membrane. Protons are conducted through a narrow pore in the middle of the channel in response to applied voltage. This

  6. Net-proton measurements at RHIC and the quantum ...

    Indian Academy of Sciences (India)

    2014-10-17

    Oct 17, 2014 ... Two measurements related to the proton and antiproton production near midrapidity in s N N = 7.7, 11.5, 19.6, 27, 39, 62.4 and 200 GeV Au+Au collisions using the STAR detector at the Relativistic Heavy Ion Collider (RHIC) are discussed. At intermediate impact parameters, the net-proton midrapidity d v 1 ...

  7. Relativistic electron acceleration during HILDCAA events: are precursor CIR magnetic storms important?

    Czech Academy of Sciences Publication Activity Database

    Hajra, R.; Tsurutani, B. T.; Echer, E.; Gonzalez, W. D.; Brum, Ch. G. M.; Antunes Vieira, L. E.; Santolík, Ondřej

    2015-01-01

    Roč. 67, Article Number 109 (2015), 109/1-109/11 ISSN 1880-5981 R&D Projects: GA MŠk LH12231 Institutional support: RVO:68378289 Keywords : HILDCAAs * high-speed streams * CIRs * chorus plasma waves * radiation belt * magnetospheric relativistic electrons * solar wind * geomagnetic storms Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 1.871, year: 2015

  8. Relativistic Few-Body Hadronic Physics Calculations

    Energy Technology Data Exchange (ETDEWEB)

    Polyzou, Wayne [Univ. of Iowa, Iowa City, IA (United States)

    2016-06-20

    The goal of this research proposal was to use ``few-body'' methods to understand the structure and reactions of systems of interacting hadrons (neutrons, protons, mesons, quarks) over a broad range of energy scales. Realistic mathematical models of few-hadron systems have the advantage that they are sufficiently simple that they can be solved with mathematically controlled errors. These systems are also simple enough that it is possible to perform complete accurate experimental measurements on these systems. Comparison between theory and experiment puts strong constraints on the structure of the models. Even though these systems are ``simple'', both the experiments and computations push the limits of technology. The important property of ``few-body'' systems is that the ``cluster property'' implies that the interactions that appear in few-body systems are identical to the interactions that appear in complicated many-body systems. Of particular interest are models that correctly describe physics at distance scales that are sensitive to the internal structure of the individual nucleons. The Heisenberg uncertainty principle implies that in order to be sensitive to physics on distance scales that are a fraction of the proton or neutron radius, a relativistic treatment of quantum mechanics is necessary. The research supported by this grant involved 30 years of effort devoted to studying all aspects of interacting two and three-body systems. Realistic interactions were used to compute bound states of two- and three-nucleon, and two- and three-quark systems. Scattering observables for these systems were computed for a broad range of energies - from zero energy scattering to few GeV scattering, where experimental evidence of sub-nucleon degrees of freedom is beginning to appear. Benchmark calculations were produced, which when compared with calculations of other groups provided an essential check on these complicated calculations. In

  9. Non-Relativistic Superstring Theories

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Bom Soo

    2007-12-14

    We construct a supersymmetric version of the 'critical' non-relativistic bosonic string theory [1] with its manifest global symmetry. We introduce the anticommuting bc CFT which is the super partner of the {beta}{gamma} CFT. The conformal weights of the b and c fields are both 1/2. The action of the fermionic sector can be transformed into that of the relativistic superstring theory. We explicitly quantize the theory with manifest SO(8) symmetry and find that the spectrum is similar to that of Type IIB superstring theory. There is one notable difference: the fermions are non-chiral. We further consider 'noncritical' generalizations of the supersymmetric theory using the superspace formulation. There is an infinite range of possible string theories similar to the supercritical string theories. We comment on the connection between the critical non-relativistic string theory and the lightlike Linear Dilaton theory.

  10. Relativistic description of deformed nuclei

    International Nuclear Information System (INIS)

    Price, C.E.

    1988-01-01

    The author has shown that relativistic Hartree calculations using parameters that have been fit to the properties of nuclear matter can provide a good description of both spherical and axially deformed nuclei. The quantitative agreement with experiment is equivalent to that which was obtained in non-relativistic calculations using Skyrme interactions. The equilibrium deformation is strongly correlated with the size of the spin-orbit splitting, and that parameter sets which give roughly the correct value for this splitting provide the best agreement with the quadrupole moments in the s-d shell. Finally, for closed shell +/- 1 nuclei, it was shown that the self-consistent calculations are able to reproduce the experimental magnetic moments. This was not possible in relativistic calculations which include only the effects of the valence orbital

  11. On the proton exchange contribution to electron-hydrogen atom elastic scattering

    International Nuclear Information System (INIS)

    Mignaco, J.A.; Tort, A.C.

    1979-05-01

    It is shown that the exchange contribution to the electron-proton potential Born term in elastic electron-hydrogen atom scattering arises as the non relativistic limit from the exchange of a proton between the two participant electrons - calculated from quantum electrodynamics including properly bound states (as solution of Bethe - Salpeter equation). (Author) [pt

  12. Frontiers in relativistic celestial mechanics

    CERN Document Server

    2014-01-01

    Relativistic celestial mechanics – investigating the motion celestial bodies under the influence of general relativity – is a major tool of modern experimental gravitational physics. With a wide range of prominent authors from the field, this two-volume series consists of reviews on a multitude of advanced topics in the area of relativistic celestial mechanics – starting from more classical topics such as the regime of asymptotically-flat spacetime, light propagation and celestial ephemerides, but also including its role in cosmology and alternative theories of gravity as well as modern experiments in this area.

  13. SPECIAL RELATIVISTIC HYDRODYNAMICS WITH GRAVITATION

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Jai-chan [Department of Astronomy and Atmospheric Sciences, Kyungpook National University, Daegu (Korea, Republic of); Noh, Hyerim [Korea Astronomy and Space Science Institute, Daejon (Korea, Republic of)

    2016-12-20

    Special relativistic hydrodynamics with weak gravity has hitherto been unknown in the literature. Whether such an asymmetric combination is possible has been unclear. Here, the hydrodynamic equations with Poisson-type gravity, considering fully relativistic velocity and pressure under the weak gravity and the action-at-a-distance limit, are consistently derived from Einstein’s theory of general relativity. An analysis is made in the maximal slicing, where the Poisson’s equation becomes much simpler than our previous study in the zero-shear gauge. Also presented is the hydrodynamic equations in the first post-Newtonian approximation, now under the general hypersurface condition. Our formulation includes the anisotropic stress.

  14. Special Relativistic Hydrodynamics with Gravitation

    Science.gov (United States)

    Hwang, Jai-chan; Noh, Hyerim

    2016-12-01

    Special relativistic hydrodynamics with weak gravity has hitherto been unknown in the literature. Whether such an asymmetric combination is possible has been unclear. Here, the hydrodynamic equations with Poisson-type gravity, considering fully relativistic velocity and pressure under the weak gravity and the action-at-a-distance limit, are consistently derived from Einstein’s theory of general relativity. An analysis is made in the maximal slicing, where the Poisson’s equation becomes much simpler than our previous study in the zero-shear gauge. Also presented is the hydrodynamic equations in the first post-Newtonian approximation, now under the general hypersurface condition. Our formulation includes the anisotropic stress.

  15. Multibaryon interactions at relativistic energies

    International Nuclear Information System (INIS)

    Baldin, A.M.

    1980-01-01

    Having discussed the basic notions and quantities used when considering multibaryon interactions in the relativistic range, attention is focussed on particle production in the region of limiting fragmentation of nuclei which is kinematically forbidden for one-nucleon collisions (the cumulative region). Multibaryon configurations responsible for the cumulative effect are examined with especial reference to the possible existence of metastable multiquark systems, for example of dibaryons. Finally the present status and perspectives of studies in the field of relativistic nuclear physics at the Joint Institute for Nuclear Research are discussed. (UK)

  16. Methods in relativistic nuclear physics

    International Nuclear Information System (INIS)

    Danos, M.; Gillet, V.; Cauvin, M.

    1984-01-01

    This book is intended to provide the methods and tools for performing actual calculations for finite many-body systems of bound relativistic constituent particles. The aim is to cover thoroughly the methodological aspects of the relativistic many-body problem for bound states while avoiding the presentation of specific models. The many examples contained in the later part of the work are meant to give concrete illustrations of how to actually apply the methods which are given in the first part. The basic framework of the approach is the lagrangian field theory solved in the time-independent Schroedinger picture. (Auth.)

  17. General-relativistic celestial mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Treder, H.-J.

    1980-01-01

    The fundamental principles of general relativistic dynamics are deduced from Einstein's field equations and one- and two-particle problems in relativistic celestial mechanics are considered. Different opinions as to the physical meaning of calculations of gravitational radiation for double stars are discussed. It is shown that these different opinions are based on different interpretations of Einstein's gravitational equations as generally covariant determinations of the space-time metric and as gauge-invariant tensor field equations in a given space-time background.

  18. Beam-beam observations in the Relativistic Heavy Ion Collider

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Y. [Brookhaven National Laboratory (BNL), Upton, NY (United States); Fischer, W. [Brookhaven National Laboratory (BNL), Upton, NY (United States); White, S. [Brookhaven National Laboratory (BNL), Upton, NY (United States)

    2015-06-24

    The Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory has been operating since 2000. Over the past decade, thanks to the continuously increased bunch intensity and reduced β*s at the interaction points, the maximum peak luminosity in the polarized proton operation has been increased by more than two orders of magnitude. In this article, we first present the beam-beam observations in the previous RHIC polarized proton runs. Then we analyze the mechanisms for the beam loss and emittance growth in the presence of beam-beam interaction. The operational challenges and limitations imposed by beam-beam interaction and their remedies are also presented. In the end, we briefly introduce head-on beam-beam compensation with electron lenses in RHIC.

  19. Wind energy

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This chapter discusses the role wind energy may have in the energy future of the US. The topics discussed in the chapter include historical aspects of wind energy use, the wind energy resource, wind energy technology including intermediate-size and small wind turbines and intermittency of wind power, public attitudes toward wind power, and environmental, siting and land use issues

  20. Parametric Model for Astrophysical Proton-Proton Interactions and Applications

    Energy Technology Data Exchange (ETDEWEB)

    Karlsson, Niklas [KTH Royal Institute of Technology, Stockholm (Sweden)

    2007-01-01

    Observations of gamma-rays have been made from celestial sources such as active galaxies, gamma-ray bursts and supernova remnants as well as the Galactic ridge. The study of gamma rays can provide information about production mechanisms and cosmic-ray acceleration. In the high-energy regime, one of the dominant mechanisms for gamma-ray production is the decay of neutral pions produced in interactions of ultra-relativistic cosmic-ray nuclei and interstellar matter. Presented here is a parametric model for calculations of inclusive cross sections and transverse momentum distributions for secondary particles--gamma rays, e±, ve, $\\bar{v}$e, vμ and $\\bar{μ}$e--produced in proton-proton interactions. This parametric model is derived on the proton-proton interaction model proposed by Kamae et al.; it includes the diffraction dissociation process, Feynman-scaling violation and the logarithmically rising inelastic proton-proton cross section. To improve fidelity to experimental data for lower energies, two baryon resonance excitation processes were added; one representing the Δ(1232) and the other multiple resonances with masses around 1600 MeV/c2. The model predicts the power-law spectral index for all secondary particle to be about 0.05 lower in absolute value than that of the incident proton and their inclusive cross sections to be larger than those predicted by previous models based on the Feynman-scaling hypothesis. The applications of the presented model in astrophysics are plentiful. It has been implemented into the Galprop code to calculate the contribution due to pion decays in the Galactic plane. The model has also been used to estimate the cosmic-ray flux in the Large Magellanic Cloud based on HI, CO and gamma-ray observations. The transverse momentum distributions enable calculations when the proton distribution is anisotropic. It is shown that the gamma-ray spectrum and flux due to a

  1. Transport models for relativistic heavy-ion collisions at Relativistic ...

    Indian Academy of Sciences (India)

    2015-04-29

    Apr 29, 2015 ... We review the transport models that are widely used to study the properties of the quark-gluon plasma formed in relativistic heavy-ion collisions at RHIC and LHC. We show that transport model analysis of two important and complementary observables, the anisotropic flow of bulk hadrons and suppression ...

  2. Radiatively-driven general relativistic jets

    Indian Academy of Sciences (India)

    Mukesh K. Vyas

    2018-02-10

    Feb 10, 2018 ... Abstract. We use moment formalism of relativistic radiation hydrodynamics to obtain equations of motion of radial jets and solve them using polytropic equation of state of the relativistic gas. We consider curved space- time around black holes and obtain jets with moderately relativistic terminal speeds.

  3. Relativistic generalization of strong plasma turbulence

    International Nuclear Information System (INIS)

    Chian, A.C.-L.

    1982-01-01

    Two fundamental electrostatic modes of an unmagnetized plasma, namely, ion acoustic mode and Langumir mode are studied. Previous theories are generalized to include the effect of relativistic mass variations. The existence of relativistic ion acoustic solitons is demonstrated. In addition, it is shown that simple, relativistic Langumir solitons do not exist in a infinite plasma. (L.C.) [pt

  4. Apparent unambiguousness of relativistic time dilation

    International Nuclear Information System (INIS)

    Strel'tsov, V.N.

    1992-01-01

    It is indicated on the definite analogy between the dependence of visible sizes of relativistic objects and period of the wave, emitted by the moving source from the observation conditions ('retradition factor'). It is noted that the definition of time for moving extended objects, led to relativistic dilation, corresponds to the definition of the relativistic (radar) length led to the 'elongation formula'. 10 refs

  5. Relativistic electron dropout echoes induced by interplanetary shocks

    Science.gov (United States)

    Schiller, Q.; Kanekal, S. G.; Boyd, A. J.; Baker, D. N.; Blake, J. B.; Spence, H. E.

    2017-12-01

    Interplanetary shocks that impact Earth's magnetosphere can produce immediate and dramatic responses in the trapped relativistic electron population. One well-studied response is a prompt injection capable of transporting relativistic electrons deep into the magnetosphere and accelerating them to multi-MeV energies. The converse effect, electron dropout echoes, are observations of a sudden dropout of electron fluxes observed after the interplanetary shock arrival. Like the injection echo signatures, dropout echoes can also show clear energy dispersion signals. They are of particular interest because they have only recently been observed and their causal mechanism is not well understood. In the analysis presented here, we show observations of electron drift echo signatures from the Relativistic Electron-Proton Telescope (REPT) and Magnetic Electron and Ion Sensors (MagEIS) onboard NASA's Van Allen Probes mission, which show simultaneous prompt enhancements and dropouts within minutes of the associated with shock impact. We show that the observations associated with both enhancements and dropouts are explained by the inward motion caused by the electric field impulse induced by the interplanetary shock, and either energization to cause the enhancement, or lack of a seed population to cause the dropout.

  6. Probing SEP Acceleration Processes With Near-relativistic Electrons

    International Nuclear Information System (INIS)

    Haggerty, Dennis K.; Roelof, Edmond C.

    2009-01-01

    Processes in the solar corona are prodigious accelerators of near-relativistic electrons. Only a small fraction of these electrons escape the low corona, yet they are by far the most abundant species observed in Solar Energetic Particle events. These beam-like energetic electron events are sometimes time-associated with coronal mass ejections from the western solar hemisphere. However, a significant number of events are observed without any apparent association with a transient event. The relationship between solar energetic particle events, coronal mass ejections, and near-relativistic electron events are better ordered when we classify the intensity time profiles during the duration of the beam-like anisotropies into three broad categories: 1) Spikes (rapid and equal rise and decay); 2) Pulses (rapid rise, slower decay); and 3) Ramps (rapid rise followed by a plateau). We report on the results of a study that is based on our catalog (covering nearly the complete Solar Cycle 23) of 216 near-relativistic electron events and their association with: solar electromagnetic emissions, shocks driven by coronal mass ejections, models of the coronal magnetic fields and energetic protons. We conclude that electron events with time-intensity profiles of Spikes and Pulses are associated with explosive events in the low corona while events with time-intensity profiles of Ramps are associated with the injection/acceleration process of the CME driven shock.

  7. Incompressible Wind Accretion

    Science.gov (United States)

    Tejeda, E.

    2018-04-01

    We present a simple, analytic model of an incompressible fluid accreting onto a moving gravitating object. This solution allows us to probe the highly subsonic regime of wind accretion. Moreover, it corresponds to the Newtonian limit of a previously known relativistic model of a stiff fluid accreting onto a black hole. Besides filling this blank in the literature, the new solution should be useful as a benchmark test for numerical hydrodynamics codes. Given its simplicity, it can also be used as an illustrative example in a gas dynamics course.

  8. Nuclei at extreme conditions. A relativistic study

    Energy Technology Data Exchange (ETDEWEB)

    Afanasjev, Anatoli [Mississippi State Univ., Mississippi State, MS (United States)

    2014-11-14

    The major goals of the current project were further development of covariant density functional theory (CDFT), better understanding of its features, its application to different nuclear structure and nuclear astrophysics phenomena and training of graduate and undergraduate students. The investigations have proceeded in a number of directions which are discussed in detail in the part “Accomplishments” of this report. We have studied the role of isovector and isoscalar proton-neutron pairings in rotating nuclei; based on available experimental data it was concluded that there are no evidences for the existence of isoscalar proton-neutron pairing. Generalized theoretical approach has been developed for pycnonuclear reaction rates in the crust of neutron stars and interior of white dwarfs. Using this approach, extensive database for considerable number of pycnonuclear reactions involving stable and neutron-rich light nuclei has been created; it can be used in future for the study of various nuclear burning phenomena in different environments. Time-odd mean fields and their manifestations in terminating states, non-rotating and rotating nuclei have been studied in the framework of covariant density functional theory. Contrary to non-relativistic density functional theories these fields, which are important for a proper description of nuclear systems with broken time-reversal symmetry, are uniquely defined in the CDFT framework. Hyperdeformed nuclear shapes (with semi-axis ratio 2.5:1 and larger) have been studied in the Z = 40-58 part of nuclear chart. We strongly believe that such shapes could be studied experimentally in the future with full scale GRETA detector.

  9. Helical dipole magnets for polarized protons in RHIC

    International Nuclear Information System (INIS)

    Syphers, M.; Courant, E.; Fischer, W.

    1997-01-01

    Superconducting helical dipole magnets will be used in the Brookhaven Relativistic Heavy Ion Collider (RHIC) to maintain polarization of proton beams and to perform localized spin rotations at the two major experimental detector regions. Requirements for the helical dipole system are discussed, and magnet prototype work is reported

  10. Future relativistic heavy ion experiments

    International Nuclear Information System (INIS)

    Pugh, H.G.

    1980-12-01

    Equations of state for nuclear matter and ongoing experimental studies are discussed. Relativistic heavy ion physics is the only opportunity to study in the laboratory the properties of extended multiquark systems under conditions such that quarks might run together into new arrangements previously unobserved. Several lines of further study are mentioned

  11. Fundamental length and relativistic length

    International Nuclear Information System (INIS)

    Strel'tsov, V.N.

    1988-01-01

    It si noted that the introduction of fundamental length contradicts the conventional representations concerning the contraction of the longitudinal size of fast-moving objects. The use of the concept of relativistic length and the following ''elongation formula'' permits one to solve this problem

  12. Thermal effects in relativistic plasmas

    International Nuclear Information System (INIS)

    Castaldo, C.; Fedele, R.; Angelis, U. de; Bingham, R.

    1990-11-01

    A kinetic approach is used for a description of a plasma in the presence of a large amplitude wave (ie relativistic electrons). The case of a ''small'' momentum spread around an average momentum is considered and corrections to the cold plasma case (zero spread) are given. (author)

  13. Relativistic electron beams above thunderclouds

    DEFF Research Database (Denmark)

    Füellekrug, M.; Roussel-Dupre, R.; Symbalisty, E. M. D.

    2011-01-01

    of electrons partially discharge the lightning electric field above thunderclouds and thereby gain a mean energy of similar to 7MeV to transport a total charge of similar to-10mC upwards. The impulsive current similar to 3 x 10(-3) Am-2 associated with relativistic electron beams above thunderclouds...

  14. Relativistic models of nuclear structure

    International Nuclear Information System (INIS)

    Gillet, V.; Kim, E.J.; Cauvin, M.; Kohmura, T.; Ohnaka, S.

    1991-01-01

    The introduction of the relativistic field formalism for the description of nuclear structure has improved our understanding of fundamental nuclear mechanisms such as saturation or many body forces. We discuss some of these progresses, both in the semi-classical mean field approximation and in a quantized meson field approach. (author)

  15. Fast lattice Boltzmann solver for relativistic hydrodynamics.

    Science.gov (United States)

    Mendoza, M; Boghosian, B M; Herrmann, H J; Succi, S

    2010-07-02

    A lattice Boltzmann formulation for relativistic fluids is presented and numerically validated through quantitative comparison with recent hydrodynamic simulations of relativistic fluids. In order to illustrate its capability to handle complex geometries, the scheme is also applied to the case of a three-dimensional relativistic shock wave, generated by a supernova explosion, impacting on a massive interstellar cloud. This formulation opens up the possibility of exporting the proven advantages of lattice Boltzmann methods, namely, computational efficiency and easy handling of complex geometries, to the context of (mildly) relativistic fluid dynamics at large, from quark-gluon plasmas up to supernovae with relativistic outflows.

  16. Studies of relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Madansky, L.

    1989-01-01

    This report presents the progress in our program of Relativistic Heavy Ion studies. The first phase of experiments on lepton pairs is almost complete and the results from the initial part of this program are presented in copies of three publications. It appears that the origin of lepton pairs is the annihilation of pions. The evidence for this seems to be the shape of the dilepton mass spectrum, the cross-section as a function of energy which seems to scale with pion production, and the general kinematic behavior of the lepton pairs themselves. We present progress on the development of Ring Imaging Cerenkov counters for dilepton observations in general, and a short report on a high resolution method counter proposal that could be adapted to RHIC counters in general. Publication of results on hyperon polarization with incident polarized proton beams is also presented. These results use the phenomenological approach that could be useful in understanding hyperon production in heavy ion collisions. In this connection, a proposal for studying high density nuclear matter with incident antiprotons is presented. Progress on the TPC detectors developed by the BNL group for heavy ion research is reported, along with recent analysis of polarization with incident silicon beams. Finally, the most recent results on subthreshold antiproton production is presented. These latter results are several orders of magnitude more than expected and they point to some kind of coherent hadronic phenomena even at extremely low energies

  17. Analysis of factorization in (e,e`p) reactions. A survey of the relativistic plane wave impulse approximation

    Energy Technology Data Exchange (ETDEWEB)

    Caballero, J.A. [Univ. de Sevilla (Spain). Dept. de Fisica Atomica, Molecular y Nucl.]|[Instituto de Estructura de la Materia, Consejo Superior de Investigaciones Cientificas, Serrano 123, Madrid 28006 (Spain); Donnelly, T.W. [Centre for Theoretical Physics, Laboratory for Nuclear Science and Dept. of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139-4307 (United States); Moya de Guerra, E. [Instituto de Estructura de la Materia, Consejo Superior de Investigaciones Cientificas, Serrano 123, Madrid 28006 (Spain); Udias, J.M. [Departamento de Fisica Atomica, Molecular y Nuclear, Universidad Complutense de Madrid, Avda. Complutense s/n, Madrid 28040 (Spain)

    1998-03-23

    The issue of factorization within the context of coincidence quasi-elastic electron scattering is revisited. Using a relativistic formalism for the entire reaction mechanism and restricting ourselves to the case of plane waves for the outgoing proton, we discuss the role of the negative-energy components of the bound nucleon wave function. (orig.). 30 refs.

  18. Perpendicular relativistic shocks in magnetized pair plasma

    Science.gov (United States)

    Plotnikov, Illya; Grassi, Anna; Grech, Mickael

    2018-04-01

    Perpendicular relativistic (γ0 = 10) shocks in magnetized pair plasmas are investigated using two dimensional Particle-in-Cell simulations. A systematic survey, from unmagnetized to strongly magnetized shocks, is presented accurately capturing the transition from Weibel-mediated to magnetic-reflection-shaped shocks. This transition is found to occur for upstream flow magnetizations 10-3 10-2, it leaves place to a purely electromagnetic precursor following from the strong emission of electromagnetic waves at the shock front. Particle acceleration is found to be efficient in weakly magnetized perpendicular shocks in agreement with previous works, and is fully suppressed for σ > 10-2. Diffusive Shock Acceleration is observed only in weakly magnetized shocks, while a dominant contribution of Shock Drift Acceleration is evidenced at intermediate magnetizations. The spatial diffusion coefficients are extracted from the simulations allowing for a deeper insight into the self-consistent particle kinematics and scale with the square of the particle energy in weakly magnetized shocks. These results have implications for particle acceleration in the internal shocks of AGN jets and in the termination shocks of Pulsar Wind Nebulae.

  19. Non relativistic Broad Band wake fields and potential-well distortion

    CERN Document Server

    Quatraro, D; Findlay, A; Mikulec, B

    2010-01-01

    The study of the interaction between a particle beam and wake fields is usually based on the assumption of ultra relativistic beams. This is not the case, for example, for the Proton Synchrotron Booster(PSB), in which protons cover the energy range. There are some examples in literature which derive nonultra relativistic formulae for the resistive wall impedance. In this paper we have extended the Broad-Band resonator model, allowing the impedance to have poles even in the upper half complex plane, in order to obtain a wake function different from zero for. The Haissinski equation has been numerically solved showing longitudinal bunch shape changes with. In addition some longitudinal bunch profile measurements, taken for two different bunch intensities at the PSB, are shown.

  20. Kinetic approach to relativistic dissipation

    Science.gov (United States)

    Gabbana, A.; Mendoza, M.; Succi, S.; Tripiccione, R.

    2017-08-01

    Despite a long record of intense effort, the basic mechanisms by which dissipation emerges from the microscopic dynamics of a relativistic fluid still elude complete understanding. In particular, several details must still be finalized in the pathway from kinetic theory to hydrodynamics mainly in the derivation of the values of the transport coefficients. In this paper, we approach the problem by matching data from lattice-kinetic simulations with analytical predictions. Our numerical results provide neat evidence in favor of the Chapman-Enskog [The Mathematical Theory of Non-Uniform Gases, 3rd ed. (Cambridge University Press, Cambridge, U.K., 1970)] procedure as suggested by recent theoretical analyses along with qualitative hints at the basic reasons why the Chapman-Enskog expansion might be better suited than Grad's method [Commun. Pure Appl. Math. 2, 331 (1949), 10.1002/cpa.3160020403] to capture the emergence of dissipative effects in relativistic fluids.

  1. The relativistic electron wave equation

    International Nuclear Information System (INIS)

    Dirac, P.A.M.

    1977-08-01

    The paper was presented at the European Conference on Particle Physics held in Budapest between the 4th and 9th July of 1977. A short review is given on the birth of the relativistic electron wave equation. After Schroedinger has shown the equivalence of his wave mechanics and the matrix mechanics of Heisenberg, a general transformation theory was developed by the author. This theory required a relativistic wave equation linear in delta/delta t. As the Klein--Gordon equation available at this time did not satisfy this condition the development of a new equation became necessary. The equation which was found gave the value of the electron spin and magnetic moment automatically. (D.P.)

  2. Relativistic quantum mechanics of bosons

    International Nuclear Information System (INIS)

    Ghose, P.; Home, D.; Sinha Roy, M.N.

    1993-01-01

    We show that it is possible to use the Klein-Gordon, Proca and Maxwell formulations to construct multi-component relativistic configuration space wavefunctions of spin-0 and spin-1 bosons in an external field. These wavefunctions satisfy the first-order Kemmer-Duffin equation. The crucial ingredient is the use of the future-causal normal n μ (n μ n μ =1, n 0 >0) to the space-like hypersurfaces foliating space-time, inherent in the concept of a relativistic wavefunction, to construct a conserved future-causal probability current four-vector from the second-rank energy-momentum tensor, following Holland's prescription. The existence of a Hermitian position operator, localized solutions, compatibility with the second quantized theories and the question of interpretation are discussed. (orig.)

  3. Double Relativistic Electron Accelerating Mirror

    Directory of Open Access Journals (Sweden)

    Saltanat Sadykova

    2013-02-01

    Full Text Available In the present paper, the possibility of generation of thin dense relativistic electron layers is shown using the analytical and numerical modeling of laser pulse interaction with ultra-thin layers. It was shown that the maximum electron energy can be gained by optimal tuning between the target width, intensity and laser pulse duration. The optimal parameters were obtained from a self-consistent system of Maxwell equations and the equation of motion of electron layer. For thin relativistic electron layers, the gaining of maximum electron energies requires a second additional overdense plasma layer, thus cutting the laser radiation off the plasma screen at the instant of gaining the maximum energy (DREAM-schema.

  4. Diffraction radiation from relativistic particles

    International Nuclear Information System (INIS)

    Potylitsyn, Alexander Petrovich; Ryazanov, Mikhail Ivanovich; Strikhanov, Mikhail Nikolaevich; Tishchenko, Alexey Alexandrovich

    2010-01-01

    This book deals with diffraction radiation, which implies the boundary problems of electromagnetic radiation theory. Diffraction radiation is generated when a charged particle moves in a vacuum near a target edge. Diffraction radiation of non-relativistic particles is widely used to design intense emitters in the cm wavelength range. Diffraction radiation from relativistic charged particles is important for noninvasive beam diagnostics and design of free electron lasers based on Smith-Purcell radiation which is diffraction radiation from periodic structures. Different analytical models of diffraction radiation and results of recent experimental studies are presented in this book. The book may also serve as guide to classical electrodynamics applications in beam physics and electrodynamics. It can be of great use for young researchers to develop skills and for experienced scientists to obtain new results. (orig.)

  5. Diffraction radiation from relativistic particles

    CERN Document Server

    Potylitsyn, Alexander Petrovich; Strikhanov, Mikhail Nikolaevich; Tishchenko, Alexey Alexandrovich

    2010-01-01

    This book deals with diffraction radiation, which implies the boundary problems of electromagnetic radiation theory. Diffraction radiation is generated when a charged particle moves in a vacuum near a target edge. Diffraction radiation of non-relativistic particles is widely used to design intense emitters in the cm wavelength range. Diffraction radiation from relativistic charged particles is important for noninvasive beam diagnostics and design of free electron lasers based on Smith-Purcell radiation which is diffraction radiation from periodic structures. Different analytical models of diffraction radiation and results of recent experimental studies are presented in this book. The book may also serve as guide to classical electrodynamics applications in beam physics and electrodynamics. It can be of great use for young researchers to develop skills and for experienced scientists to obtain new results.

  6. Volatility smile as relativistic effect

    Science.gov (United States)

    Kakushadze, Zura

    2017-06-01

    We give an explicit formula for the probability distribution based on a relativistic extension of Brownian motion. The distribution (1) is properly normalized and (2) obeys the tower law (semigroup property), so we can construct martingales and self-financing hedging strategies and price claims (options). This model is a 1-constant-parameter extension of the Black-Scholes-Merton model. The new parameter is the analog of the speed of light in Special Relativity. However, in the financial context there is no ;speed limit; and the new parameter has the meaning of a characteristic diffusion speed at which relativistic effects become important and lead to a much softer asymptotic behavior, i.e., fat tails, giving rise to volatility smiles. We argue that a nonlocal stochastic description of such (Lévy) processes is inadequate and discuss a local description from physics. The presentation is intended to be pedagogical.

  7. Pythagoras Theorem and Relativistic Kinematics

    Science.gov (United States)

    Mulaj, Zenun; Dhoqina, Polikron

    2010-01-01

    In two inertial frames that move in a particular direction, may be registered a light signal that propagates in an angle with this direction. Applying Pythagoras theorem and principles of STR in both systems, we can derive all relativistic kinematics relations like the relativity of simultaneity of events, of the time interval, of the length of objects, of the velocity of the material point, Lorentz transformations, Doppler effect and stellar aberration.

  8. Gravity waves from relativistic binaries

    OpenAIRE

    Levin, Janna; O'Reilly, Rachel; Copeland, E. J.

    1999-01-01

    The stability of binary orbits can significantly shape the gravity wave signal which future Earth-based interferometers hope to detect. The inner most stable circular orbit has been of interest as it marks the transition from the late inspiral to final plunge. We consider purely relativistic orbits beyond the circular assumption. Homoclinic orbits are of particular importance to the question of stability as they lie on the boundary between dynamical stability and instability. We identify thes...

  9. Asymptotics of relativistic spin networks

    International Nuclear Information System (INIS)

    Barrett, John W; Steele, Christopher M

    2003-01-01

    The stationary phase technique is used to calculate asymptotic formulae for SO(4) relativistic spin networks. For the tetrahedral spin network this gives the square of the Ponzano-Regge asymptotic formula for the SU(2) 6j-symbol. For the 4-simplex (10j-symbol) the asymptotic formula is compared with numerical calculations of the spin network evaluation. Finally, we discuss the asymptotics of the SO(3, 1) 10j-symbol

  10. Relativistic covariance of Ohm's law

    OpenAIRE

    Starke, R.; Schober, G. A. H.

    2014-01-01

    The derivation of Lorentz-covariant generalizations of Ohm's law has been a long-term issue in theoretical physics with deep implications for the study of relativistic effects in optical and atomic physics. In this article, we propose an alternative route to this problem, which is motivated by the tremendous progress in first-principles materials physics in general and ab initio electronic structure theory in particular. We start from the most general, Lorentz-covariant first-order response l...

  11. Relativistic gravitational deflection of photons

    CERN Document Server

    Saca, J M

    2002-01-01

    A relativistic analysis of the deflection of a light ray due to a massive attractive centre is here developed by solving a differential equation of the orbit of photons. Results are compared with a widely known approximate formula for the deflection obtained by Einstein in 1916. Finally, it is concluded that the results here obtained, although very close to Einstein's values, could stand out as a conclusive reference for comparison with future direct measurements of the deflection.

  12. General relativistic collapse of textures

    International Nuclear Information System (INIS)

    Durrer, R.; Heusler, M.; Jetzer, P.; Straumann, N.

    1991-01-01

    We present an exact self-similar solution of the coupled Einstein-σ model equations which describes the general relativistic collapse of global textures. In one coordinate system the texture geometry has a simple interpretation in terms of a deficit solid angle. We also briefly discuss the behavior of matter and light in this geometry. In particular we show that the weak field approximation for the metric perturbations of flat space texture solutions is quantitatively quite reliable. (orig.)

  13. Relativistic covariance of Ohm's law

    Science.gov (United States)

    Starke, R.; Schober, G. A. H.

    2016-04-01

    The derivation of Lorentz-covariant generalizations of Ohm's law has been a long-term issue in theoretical physics with deep implications for the study of relativistic effects in optical and atomic physics. In this article, we propose an alternative route to this problem, which is motivated by the tremendous progress in first-principles materials physics in general and ab initio electronic structure theory in particular. We start from the most general, Lorentz-covariant first-order response law, which is written in terms of the fundamental response tensor χμ ν relating induced four-currents to external four-potentials. By showing the equivalence of this description to Ohm's law, we prove the validity of Ohm's law in every inertial frame. We further use the universal relation between χμ ν and the microscopic conductivity tensor σkℓ to derive a fully relativistic transformation law for the latter, which includes all effects of anisotropy and relativistic retardation. In the special case of a constant, scalar conductivity, this transformation law can be used to rederive a standard textbook generalization of Ohm's law.

  14. Relativistic beaming and quasar statistics

    International Nuclear Information System (INIS)

    Orr, M.J.L.; Browne, I.W.A.

    1982-01-01

    The statistical predictions of a unified scheme for the radio emission from quasars are explored. This scheme attributes the observed differences between flat- and steep-spectrum quasars to projection and the effects of relativistic beaming of the emission from the nuclear components. We use a simple quasar model consisting of a compact relativistically beamed core with spectral index zero and unbeamed lobes, spectral index - 1, to predict the proportion of flat-spectrum sources in flux-limited samples selected at different frequencies. In our model this fraction depends on the core Lorentz factor, γ and we find that a value of approximately 5 gives satisfactory agreement with observation. In a similar way the model is used to construct the expected number/flux density counts for flat-spectrum quasars from the observed steep-spectrum counts. Again, good agreement with the observations is obtained if the average core Lorentz factor is about 5. Independent estimates of γ from observations of superluminal motion in quasars are of the same order of magnitude. We conclude that the statistical properties of quasars are entirely consistent with the predictions of simple relativistic-beam models. (author)

  15. Relativistic Binaries in Globular Clusters

    Directory of Open Access Journals (Sweden)

    Matthew J. Benacquista

    2013-03-01

    Full Text Available Galactic globular clusters are old, dense star systems typically containing 10^4 – 10^6 stars. As an old population of stars, globular clusters contain many collapsed and degenerate objects. As a dense population of stars, globular clusters are the scene of many interesting close dynamical interactions between stars. These dynamical interactions can alter the evolution of individual stars and can produce tight binary systems containing one or two compact objects. In this review, we discuss theoretical models of globular cluster evolution and binary evolution, techniques for simulating this evolution that leads to relativistic binaries, and current and possible future observational evidence for this population. Our discussion of globular cluster evolution will focus on the processes that boost the production of tight binary systems and the subsequent interaction of these binaries that can alter the properties of both bodies and can lead to exotic objects. Direct N-body integrations and Fokker–Planck simulations of the evolution of globular clusters that incorporate tidal interactions and lead to predictions of relativistic binary populations are also discussed. We discuss the current observational evidence for cataclysmic variables, millisecond pulsars, and low-mass X-ray binaries as well as possible future detection of relativistic binaries with gravitational radiation.

  16. Studies of the relativistic electron source and related phenomena in Petawatt Laser matter interactions

    International Nuclear Information System (INIS)

    Key, M.H.; Campbell, E.M.; Cowan, T.E.; Hatchett, S.P.; Henry, E.A.; Koch, J.A.; Landgon, A.B.; Lasinski, B.F.; Lee, R.W.; MacKinnon, A.; Offenberger, A.; Pennington, D.M.; Perry, M.D.; Sangster, T.C.; Yasuike, K.; Snavely, R.; Roth, M.; Phillips, T.W.; Stoyer, M.A.; Wilks, S.C.; Singh, M.S.

    1999-01-01

    The interaction of laser radiation with solid targets at 1 petawatt power and intensity up to 3x10 20 Wcm -2 has been studied with emphasis on relativistic electrons and high energy ions. Secondary effects including Bremsstrahlung radiation, nuclear interactions and heating have been characterized. A collimated beam of protons with up to 55 MeV energy is emitted normal to the rear surface of thin targets and its characteristics and origin are discussed. The significance of the data for radiography, fast ignition and proton beam applications is summarized

  17. Prediction Model for Relativistic Electrons at Geostationary Orbit

    Science.gov (United States)

    Khazanov, George V.; Lyatsky, Wladislaw

    2008-01-01

    We developed a new prediction model for forecasting relativistic (greater than 2MeV) electrons, which provides a VERY HIGH correlation between predicted and actually measured electron fluxes at geostationary orbit. This model implies the multi-step particle acceleration and is based on numerical integrating two linked continuity equations for primarily accelerated particles and relativistic electrons. The model includes a source and losses, and used solar wind data as only input parameters. We used the coupling function which is a best-fit combination of solar wind/interplanetary magnetic field parameters, responsible for the generation of geomagnetic activity, as a source. The loss function was derived from experimental data. We tested the model for four year period 2004-2007. The correlation coefficient between predicted and actual values of the electron fluxes for whole four year period as well as for each of these years is stable and incredibly high (about 0.9). The high and stable correlation between the computed and actual electron fluxes shows that the reliable forecasting these electrons at geostationary orbit is possible.

  18. Nonlinear dynamics of the relativistic standard map

    International Nuclear Information System (INIS)

    Nomura, Y.; Ichikawa, Y.H.; Horton, W.

    1991-04-01

    Heating and acceleration of charged particles by RF fields have been extensively investigated by the standard map. The question arises as to how the relativistic effects change the nonlinear dynamical behavior described by the classical standard map. The relativistic standard map is a two parameter (K, Β = ω/kc) family of dynamical systems reducing to the standard map when Β → 0. For Β ≠ 0 the relativistic mass increase suppresses the onset of stochasticity. It shown that the speed of light limits the rate of advance of the phase in the relativistic standard map and introduces KAM surfaces persisting in the high momentum region. An intricate structure of mixing in the higher order periodic orbits and chaotic orbits is analyzed using the symmetry properties of the relativistic standard map. The interchange of the stability of the periodic orbits in the relativistic standard map is also observed and is explained by the local linear stability of the orbits. 12 refs., 16 figs

  19. Proton therapy

    International Nuclear Information System (INIS)

    Jongen, Y.

    1995-01-01

    Ideal radiotherapy deposits a large amount of energy in the tumour volume, and none in the surrounding healthy tissues. Proton therapy comes closer to this goal because of a greater concentration of dose, well defined proton ranges and points of energy release which are precisely known - the Bragg peak1. In the past, the development of clinical proton therapy has been hampered by complexity, size, and cost. To be clinically effective, energies of several hundred MeV are required; these were previously unavailable for hospital installations, and pioneering institutions had to work with complex, inadequate equipment originally intended for nuclear physics research. Recently a number of specialist organizations and commercial companies have been working on dedicated systems for proton therapy. One, IBA of Belgium, has equipment for inhouse hospital operation which encompasses a complete therapy centre, delivered as a turnkey package and incorporating a compact, automated, higher energy cyclotron with isocentric gantries. Their system will be installed at Massachusetts General Hospital, Boston. The proton therapy system comprises: - a 235 MeV isochronous cyclotron to deliver beams of up to 1.5 microamps, but with a hardware limitation to restrict the maximum possible dose; - variable energy beam (235 to 70 MeV ) with energy spread and emittance verification; - a beam transport and switching system to connect the exit of the energy selection system to the entrances of a number of gantries and fixed beamlines. Along the beam transport system, the beam characteristics are monitored with non-interceptive multiwire ionization chambers for automatic tuning; - gantries fitted with nozzles and beamline elements for beam control; both beam scattering and beam wobbling techniques are available for shaping the beam;

  20. Radiation Hazard of Relativistic Interstellar Flight

    OpenAIRE

    Semyonov, Oleg G.

    2006-01-01

    From the point of view of radiation safety, interstellar space is not an empty void. Interstellar gas and cosmic rays, which consist of hydrogen and helium nucleons, present a severe radiation hazard to crew and electronics aboard a relativistic interstellar ship. Of the two, the oncoming relativistic flow of interstellar gas produces the most intence radiation. A protection shield will be needed to block relativistic interstellar gas that can also absorb most of the cosmic rays which, as a r...

  1. RELATIVISTIC CYCLOTRON INSTABILITY IN ANISOTROPIC PLASMAS

    Energy Technology Data Exchange (ETDEWEB)

    López, Rodrigo A.; Moya, Pablo S.; Muñoz, Víctor; Valdivia, J. Alejandro [Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago (Chile); Navarro, Roberto E.; Araneda, Jaime A. [Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Concepción, Casilla 160-C, Concepción (Chile); Viñas, Adolfo F., E-mail: rlopez186@gmail.com [NASA Goddard Space Flight Center, Heliophysics Science Division, Geospace Physics Laboratory, Mail Code 673, Greenbelt, MD 20771 (United States)

    2016-11-20

    A sufficiently large temperature anisotropy can sometimes drive various types of electromagnetic plasma micro-instabilities, which can play an important role in the dynamics of relativistic pair plasmas in space, astrophysics, and laboratory environments. Here, we provide a detailed description of the cyclotron instability of parallel propagating electromagnetic waves in relativistic pair plasmas on the basis of a relativistic anisotropic distribution function. Using plasma kinetic theory and particle-in-cell simulations, we study the influence of the relativistic temperature and the temperature anisotropy on the collective and noncollective modes of these plasmas. Growth rates and dispersion curves from the linear theory show a good agreement with simulations results.

  2. Solar wind classification from a machine learning perspective

    Science.gov (United States)

    Heidrich-Meisner, V.; Wimmer-Schweingruber, R. F.

    2017-12-01

    It is a very well known fact that the ubiquitous solar wind comes in at least two varieties, the slow solar wind and the coronal hole wind. The simplified view of two solar wind types has been frequently challenged. Existing solar wind categorization schemes rely mainly on different combinations of the solar wind proton speed, the O and C charge state ratios, the Alfvén speed, the expected proton temperature and the specific proton entropy. In available solar wind classification schemes, solar wind from stream interaction regimes is often considered either as coronal hole wind or slow solar wind, although their plasma properties are different compared to "pure" coronal hole or slow solar wind. As shown in Neugebauer et al. (2016), even if only two solar wind types are assumed, available solar wind categorization schemes differ considerably for intermediate solar wind speeds. Thus, the decision boundary between the coronal hole and the slow solar wind is so far not well defined.In this situation, a machine learning approach to solar wind classification can provide an additional perspective.We apply a well-known machine learning method, k-means, to the task of solar wind classification in order to answer the following questions: (1) How many solar wind types can reliably be identified in our data set comprised of ten years of solar wind observations from the Advanced Composition Explorer (ACE)? (2) Which combinations of solar wind parameters are particularly useful for solar wind classification?Potential subtypes of slow solar wind are of particular interest because they can provide hints of respective different source regions or release mechanisms of slow solar wind.

  3. Proton radiography to improve proton therapy treatment

    NARCIS (Netherlands)

    Takatsu, J.; van der Graaf, E. R.; van Goethem, Marc-Jan; van Beuzekom, M.; Klaver, T.; Visser, Jan; Brandenburg, S.; Biegun, A. K.

    The quality of cancer treatment with protons critically depends on an accurate prediction of the proton stopping powers for the tissues traversed by the protons. Today, treatment planning in proton radiotherapy is based on stopping power calculations from densities of X-ray Computed Tomography (CT)

  4. Relativistic force field: parametric computations of proton-proton coupling constants in (1)H NMR spectra.

    Science.gov (United States)

    Kutateladze, Andrei G; Mukhina, Olga A

    2014-09-05

    Spin-spin coupling constants in (1)H NMR carry a wealth of structural information and offer a powerful tool for deciphering molecular structures. However, accurate ab initio or DFT calculations of spin-spin coupling constants have been very challenging and expensive. Scaling of (easy) Fermi contacts, fc, especially in the context of recent findings by Bally and Rablen (Bally, T.; Rablen, P. R. J. Org. Chem. 2011, 76, 4818), offers a framework for achieving practical evaluation of spin-spin coupling constants. We report a faster and more precise parametrization approach utilizing a new basis set for hydrogen atoms optimized in conjunction with (i) inexpensive B3LYP/6-31G(d) molecular geometries, (ii) inexpensive 4-31G basis set for carbon atoms in fc calculations, and (iii) individual parametrization for different atom types/hybridizations, not unlike a force field in molecular mechanics, but designed for the fc's. With the training set of 608 experimental constants we achieved rmsd <0.19 Hz. The methodology performs very well as we illustrate with a set of complex organic natural products, including strychnine (rmsd 0.19 Hz), morphine (rmsd 0.24 Hz), etc. This precision is achieved with much shorter computational times: accurate spin-spin coupling constants for the two conformers of strychnine were computed in parallel on two 16-core nodes of a Linux cluster within 10 min.

  5. Wind Energy

    International Nuclear Information System (INIS)

    Rodriguez D, J.M.

    1998-01-01

    The general theory of the wind energy conversion systems is presented. The availability of the wind resource in Colombia and the ranges of the speed of the wind in those which is possible economically to use the wind turbines are described. It is continued with a description of the principal technological characteristics of the wind turbines and are split into wind power and wind-powered pumps; and its use in large quantities grouped in wind farms or in autonomous systems. Finally, its costs and its environmental impact are presented

  6. Electromagnetic responses of relativistic electrons

    Science.gov (United States)

    de Carvalho, C. A. A.; Reis, D. M.

    2018-02-01

    We compute the real and imaginary parts of the electric permittivities and magnetic permeabilities of relativistic electrons from quantum electrodynamics at finite temperatures and densities, for weak fields, neglecting electron-electron interactions. For non-zero temperatures, electromagnetic responses are reduced to one-dimensional integrals computed numerically. For zero temperature, we find analytic expressions for both their real/dispersive and imaginary/absorptive parts. As an application of our results, we obtain the dispersion relation for longitudinal electric plasmons. Present calculations support our recent claim that, at low frequencies and long wavelengths, the system will exhibit simultaneously negative electric and magnetic responses.

  7. Chaotic distributions for relativistic particles

    OpenAIRE

    Mustafa, Dawan; Wennberg, Bernt

    2015-01-01

    We study a modified Kac model where the classical kinetic energy is replaced by an arbitrary energy function $\\phi(v)$, $v \\in \\mathbb{R}$. The aim of this paper is to show that the uniform density with respect to the microcanonical measure is $Ce^{-z_0\\phi(v)}$-chaotic, $C,z_0 \\in \\mathbb{R}_+$. The kinetic energy for relativistic particles is a special case. A generalization to the case $v\\in \\mathbb{R}^d$ which involves conservation momentum is also formally discussed.

  8. The magnetosphere in relativistic physics

    International Nuclear Information System (INIS)

    Zapffe, C.A.

    1982-01-01

    The present paper takes off from the author's earlier epistemological analysis and criticism of the Special Theory of Relativity, identifies the problem as lying in Einstein's choice of the inertial frame of Newtonian mechanics rather than the electromagnetic frame of the locally embedding Maxwellian field when discussing electrodynamics, then proposes this Maxwellian field of the magnetosphere as the specific rest frame proper to all experimentation of optical or electromagnetic sort conducted within its bounds. The result is shown to remove all paradoxes from relativistic physics. (author)

  9. Relativistic heavy ion facilities: worldwide

    International Nuclear Information System (INIS)

    Schroeder, L.S.

    1986-05-01

    A review of relativistic heavy ion facilities which exist, are in a construction phase, or are on the drawing boards as proposals is presented. These facilities span the energy range from fixed target machines in the 1 to 2 GeV/nucleon regime, up to heavy ion colliders of 100 GeV/nucleon on 100 GeV/nucleon. In addition to specifying the general features of such machines, an outline of the central physics themes to be carried out at these facilities is given, along with a sampling of the detectors which will be used to extract the physics. 22 refs., 17 figs., 3 tabs

  10. Unlimited Relativistic Shock Surfing Acceleration

    International Nuclear Information System (INIS)

    Ucer, D.; Shapiro, V. D.

    2001-01-01

    Nonrelativistic shock surfing acceleration at quasiperpendicular shocks is usually considered to be a preacceleration mechanism for slow pickup ions to initiate diffusive shock acceleration. In shock surfing, the particle accelerates along the shock front under the action of the convective electric field of the plasma flow. However, the particle also gains kinetic energy normal to the shock and eventually escapes downstream. We consider the case when ions are accelerated to relativistic velocities. In this case, the ions are likely to be trapped for infinitely long times, because the energy of bounce oscillations tends to decrease during acceleration. This suggests the possibility of unlimited acceleration by shock surfing

  11. Relativistic ls coupling in scalar potential

    International Nuclear Information System (INIS)

    Martem'yanov, B.V.; Shchepkin, M.G.

    1987-01-01

    On fermion example ls-splitting of the levels in scalar potential in the general case including relativistic range is considered. The derived formulas are compared with the classical ones for the energy concerned with the Thomas spin precession. It is shown that in the relativistic range ls-coupling causes change of rotational excitation spectrum

  12. Relativistic calculations of coalescing binary neutron stars

    Indian Academy of Sciences (India)

    We have designed and tested a new relativistic Lagrangian hydrodynamics code, which treats gravity in the conformally flat approximation to general relativity. We have tested the resulting code extensively, finding that it performs well for calculations of equilibrium single-star models, collapsing relativistic dust clouds, and ...

  13. Relativistic calculations of coalescing binary neutron stars

    Indian Academy of Sciences (India)

    We have designed and tested a new relativistic Lagrangian hydrodynamics code, which treats gravity in the conformally flat approximation to general relativity. We have tested ... We find that the amount of mass ejected from the system, much less than a per cent, is greatly reduced by the inclusion of relativistic gravitation.

  14. Einstein Never Approved of Relativistic Mass

    Science.gov (United States)

    Hecht, Eugene

    2009-01-01

    During much of the 20th century it was widely believed that one of the significant insights of special relativity was "relativistic mass." Today there are two schools on that issue: the traditional view that embraces speed-dependent "relativistic mass," and the more modern position that rejects it, maintaining that there is only one mass and it's…

  15. Beam loss mechanisms in relativistic heavy-ion colliders

    CERN Document Server

    Bruce, Roderik; Gilardoni, S; Wallén, E

    2009-01-01

    The Large Hadron Collider (LHC), the largest particle accelerator ever built, is presently under commissioning at the European Organization for Nuclear Research (CERN). It will collide beams of protons, and later Pb82+ ions, at ultrarelativistic energies. Because of its unprecedented energy, the operation of the LHC with heavy ions will present beam physics challenges not encountered in previous colliders. Beam loss processes that are harmless in the presently largest operational heavy-ion collider, the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory, risk to cause quenches of superconducting magnets in the LHC. Interactions between colliding beams of ultrarelativistic heavy ions, or between beam ions and collimators, give rise to nuclear fragmentation. The resulting isotopes could have a charge-to-mass ratio different from the main beam and therefore follow dispersive orbits until they are lost. Depending on the machine conditions and the ion species, these losses could occur in loca...

  16. Incident energy dependence of pt correlations at relativistic energies

    CERN Document Server

    Adams, J; Ahammed, Z; Amonett, J; Anderson, B D; Arkhipkin, D; Averichev, G S; Badyal, S K; Bai, Y; Balewski, J; Barannikova, O; Barnby, L S; Baudot, J; Bekele, S; Belaga, V V; Bellingeri-Laurikainen, A; Bellwied, R; Berger, J; Bezverkhny, B I; Bharadwaj, S; Bhasin, A; Bhati, A K; Bhatia, V S; Bichsel, H; Bielcik, J; Bielcikova, J; Billmeier, A; Bland, L C; Blyth, C O; Bonner, B E; Botje, M; Boucham, A; Bouchet, J; Brandin, A V; Bravar, A; Bystersky, M; Cadman, R V; Cai, X Z; Caines, H; Calderón de la Barca-Sanchez, M; Castillo, J; Catu, O; Cebra, D; Chajecki, Z; Chaloupka, P; Chattopadhyay, S; Chen, H F; Chen, Y; Cheng, J; Cherney, M; Chikanian, A; Christie, W; Coffin, J P; Cormier, T M; Cramer, J G; Crawford, H J; Das, D; Das, S; Daugherity, M; De Moura, M M; Dedovich, T G; Derevshchikov, A A; Didenko, L; Dietel, T; Dogra, S M; Dong, W J; Dong, X; Draper, J E; Du, F; Dubey, A K; Dunin, V B; Dunlop, J C; Dutta, M R; Mazumdar; Eckardt, V; Edwards, W R; Efimov, L G; Emelianov, V; Engelage, J; Eppley, G; Erazmus, B; Estienne, M; Fachini, P; Faivre, J; Fatemi, R; Fedorisin, J; Filimonov, K; Filip, P; Finch, E; Fine, V; Fisyak, Yu; Fu, J; Gagliardi, C A; Gaillard, L; Gans, J; Ganti, M S; Geurts, F; Ghazikhanian, V; Ghosh, P; González, J E; Gos, H; Grachov, O; Grebenyuk, O; Grosnick, D P; Guertin, S M; Guo, Y; Sen-Gupta, A; Gutíerrez, T D; Hallman, T J; Hamed, A; Hardtke, D; Harris, J W; Heinz, M; Henry, T W; Hepplemann, S; Hippolyte, B; Hirsch, A; Hjort, E; Hoffmann, G W; Huang, H Z; Huang, S L; Hughes, E W; Humanic, T J; Igo, G; Ishihara, A; Jacobs, P; Jacobs, W W; Jedynak, M; Jiang, H; Jones, P G; Judd, E G; Kabana, S; Kang, K; Kaplan, M; Keane, D; Kechechyan, A; Khodyrev, V Yu; Kiryluk, J; Kisiel, A; Kislov, E M; Klay, J; Klein, S R; Koetke, D D; Kollegger, T; Kopytine, M; Kotchenda, L; Kowalik, K L; Krämer, M; Kravtsov, P; Kravtsov, V I; Krüger, K; Kuhn, C; Kulikov, A I; Kumar, A; Kutuev, R K; Kuznetsov, A A; Lamont, M A C; Landgraf, J M; Lange, S; Laue, F; Lauret, J; Lebedev, A; Lednicky, R; Lehocka, S; Le Vine, M J; Li, C; Li, Q; Li, Y; Lin, G; Lindenbaum, S J; Lisa, M A; Liu, F; Liu, H; Liu, L; Liu, Q J; Liu, Z; Ljubicic, T; Llope, W J; Long, H; Longacre, R S; López-Noriega, M; Love, W A; Lu, Y; Ludlam, T; Lynn, D; Ma, G L; Ma, J G; Ma, Y G; Magestro, D; Mahajan, S; Mahapatra, D P; Majka, R; Mangotra, L K; Manweiler, R; Margetis, S; Markert, C; Martin, L; Marx, J N; Matis, H S; Matulenko, Yu A; McClain, C J; McShane, T S; Meissner, F; Melnik, Yu M; Meschanin, A; Miller, M L; Minaev, N G; Mironov, C; Mischke, A; Mishra, D K; Mitchell, J; Mohanty, B; Molnár, L; Moore, C F; Morozov, D A; Munhoz, M G; Nandi, B K; Nayak, S K; Nayak, T K; Nelson, J M; Netrakanti, P K; Nikitin, V A; Nogach, L V; Nurushev, S B; Odyniec, Grazyna Janina; Ogawa, A; Okorokov, V; Oldenburg, M; Olson, D; Pal, S K; Panebratsev, Yu A; Panitkin, S Y; Pavlinov, A I; Pawlak, T; Peitzmann, T; Perevozchikov, V; Perkins, C; Peryt, W; Petrov, V A; Phatak, S C; Picha, R; Planinic, M; Pluta, J; Porile, N; Porter, J; Poskanzer, A M; Potekhin, M V; Potrebenikova, E V; Potukuchi, B V K S; Prindle, D; Pruneau, C A; Putschke, J; Rakness, G; Raniwala, R; Raniwala, S; Ravel, O; Ray, R L; Razin, S V; Reichhold, D M; Reid, J G; Reinnarth, J; Renault, G; Retière, F; Ridiger, A; Ritter, H G; Roberts, J B; Rogachevski, O V; Romero, J L; Rose, A; Roy, C; Ruan, L; Russcher, M; Sahoo, R; Sakrejda, I; Salur, S; Sandweiss, J; Sarsour, M; Savin, I; Sazhin, P S; Schambach, J; Scharenberg, R P; Schmitz, N; Schweda, K; Seger, J; Seyboth, P; Shahaliev, E; Shao, M; Shao, W; Sharma, M; Shen, W Q; Shestermanov, K E; Shimansky, S S; Sichtermann, E P; Simon, F; Singaraju, R N; Smirnov, N; Snellings, R; Sood, G; Sørensen, P; Sowinski, J; Speltz, J; Spinka, H M; Srivastava, B; Stadnik, A; Stanislaus, T D S; Stock, R; Stolpovsky, A; Strikhanov, M N; Stringfellow, B C; Suaide, A A P; Sugarbaker, E R; Suire, C; Sumbera, M; Surrow, B; Swanger, M; Symons, T J M; Szanto de Toledo, A; Tai, A; Takahashi, J; Tang, A H; Tarnowsky, T J; Thein, D; Thomas, J H; Timoshenko, S; Tokarev, M; Trentalange, S; Tribble, R E; Tsai, O D; Ulery, J; Ullrich, T; Underwood, D G; Van Buren, G; Van Leeuwen, M; Van der Molen, A M; Varma, R; Vasilevski, I M; Vasilev, A N; Vernet, R; Vigdor, S E; Viyogi, Y P; Vokal, S; Voloshin, S A; Waggoner, W T; Wang, F; Wang, G; Wang, X L; Wang, Y; Wang, Z M; Ward, H; Watson, J W; Webb, J C; Westfall, G D; Wetzler, A; Whitten, C; Wieman, H; Wissink, S W; Witt, R; Wood, J; Wu, J; Xu, N; Xu, Z; Xu, Z Z; Yamamoto, E; Yepes, P; Yurevich, V I; Zborovský, I; Zhang, H; Zhang, W M; Zhang, Y; Zhang, Z P; Zoulkarneev, R; Zoulkarneeva, Y; Zubarev, A N

    2005-01-01

    We present results for two-particle transverse momentum correlations, , as a function of event centrality for Au+Au collisions at sqrt(sNN) = 20, 62, 130, and 200 GeV at the Relativistic Heavy Ion Collider. We observe correlations decreasing with centrality that are similar at all four incident energies. The correlations multiplied by the multiplicity density increase with incident energy and the centrality dependence may show evidence of processes such as thermalization, minijet production, or the saturation of transverse flow. The square root of the correlations divided by the event-wise average transverse momentum per event shows little or no beam energy dependence and generally agrees with previous measurements at the Super Proton Synchrotron.

  17. Energetic ion beams from ultra thin relativistic transparent targets

    Science.gov (United States)

    Hicks, George; Ahmed, H.; Dover, N.; Fernandez-Tobias, J.; Heathcote, R.; Kar, S.; Kreuzer, C.; MacLellan, D.; Musgrave, I.; Nakamura, H.; Notley, M.; Shaikh, W.; Streeter, M.; Borghesi, M.; McKenna, P.; Neely, D.; Schreiber, J.; Zepf, M.; Najmudin, Z.

    2014-10-01

    In high intensity laser solid interactions, going to ultra thin foils allows access to novel regimes of acceleration such as radiation pressure, hole boring and relativistic transparency. We present data from an experiment on the Vulcan Petawatt laser at the Central Laser Facility, UK. We used a 220 J, 1ps laser pulse focussed to a 9.5 μm spot at 0° to accelerate ions from ultra-thin CH foils. The improved OPCPA front end of Vulcan PetaWatt allowed us to obtain energetic protons >50 MeV from CH foils down to 25 nm thickness, without the use of a plasma mirror. Structures characteristic of the radiation pressure acceleration regime, such as a filamented central beam, and an outer ring structure, were produced. Further information about the interaction could be determined from backscattered spectra and transverse optical probing. The experimental observations are supported by 2D particle-in-cell simulations and an analytical model.

  18. Physical processes in relativistic plasmas

    International Nuclear Information System (INIS)

    Svensson, R.

    1984-01-01

    The continuum emission in many active galactic nuclei (AGNs) extend to 100 keV and beyond (e.g. Rothschild et al. 1983). In thermal models of the continuum emission this implies temperatures above 10 9 K or kT of order mc 2 . In such a plasma the electrons are at least mildly relativistic and furthermore the particles and the photons are energetic enough to produce electron-positron pairs. The physics of such hot plasmas has only recently been studied in any detail and here we review the results of those studies. Significant electron-positron pair production may also occur in non-thermal models of the continuum emission if the optical depth to photon-photon pair production is greater than unity. We review the few results obtained regarding this interesting but not very well studied possibility. First, however, we briefly discuss the processes taking place in relativistic plasmas and the standard models for the continuum emission from AGNs. We then summarize the effects pair production have on these models and the observational implications of the presence of electron-positron pairs. (orig./WL)

  19. Relativistic ion collisions as the source of hypernuclei

    Energy Technology Data Exchange (ETDEWEB)

    Botvina, A.S. [J.W. Goethe University, Frankfurt Institute for Advanced Studies, Frankfurt am Main (Germany); Russian Academy of Sciences, Institute for Nuclear Research, Moscow (Russian Federation); Bleicher, M.; Steinheimer, J. [J.W. Goethe University, Frankfurt Institute for Advanced Studies, Frankfurt am Main (Germany); Pochodzalla, J. [J. Gutenberg-Universitaet, Helmholtz-Institut Mainz, Mainz (Germany); J. Gutenberg-Universitaet Mainz, Institut fuer Kernphysik and PRISMA Cluster of Excellence, Mainz (Germany)

    2016-08-15

    We shortly review the theory of hypernuclei production in relativistic ion collisions, that is adequate to future experiments at BM rate at N, NICA, and FAIR. Within a hybrid approach we use transport, coalescence and statistical models to describe the whole process. We demonstrate that the origin of hypernuclei can be explained by typical baryon interactions, that is similar to the production of conventional nuclei. In particular, heavy hypernuclei are coming mostly from projectile and target residues, whereas light hypernuclei can be produced at all rapidities. The yields of hypernuclei increase considerably above the energy threshold for Λ hyperon production, and there is a tendency to saturation of yields of hypernuclei with increasing the beam energy up to few TeV. There are unique opportunities in relativistic ion collisions which are difficult to realize in traditional hypernuclear experiments: The produced hypernuclei have a broad distribution in masses and isospin. They can even reach beyond the neutron and proton drip-lines and that opens a chance to investigate properties of exotic hypernuclei. One finds also the abundant production of multi-strange nuclei, of bound and unbound hypernuclear states with new decay modes. In addition, we can directly get an information on the hypermatter both at high and low temperatures. (orig.)

  20. Microscopic Processes in Global Relativistic Jets Containing Helical Magnetic Fields

    Directory of Open Access Journals (Sweden)

    Ken-Ichi Nishikawa

    2016-09-01

    Full Text Available In the study of relativistic jets one of the key open questions is their interaction with the environment on the microscopic level. Here, we study the initial evolution of both electron–proton ( e − – p + and electron–positron ( e ± relativistic jets containing helical magnetic fields, focusing on their interaction with an ambient plasma. We have performed simulations of “global” jets containing helical magnetic fields in order to examine how helical magnetic fields affect kinetic instabilities such as the Weibel instability, the kinetic Kelvin-Helmholtz instability (kKHI and the Mushroom instability (MI. In our initial simulation study these kinetic instabilities are suppressed and new types of instabilities can grow. In the e − – p + jet simulation a recollimation-like instability occurs and jet electrons are strongly perturbed. In the e ± jet simulation a recollimation-like instability occurs at early times followed by a kinetic instability and the general structure is similar to a simulation without helical magnetic field. Simulations using much larger systems are required in order to thoroughly follow the evolution of global jets containing helical magnetic fields.

  1. Source and seed populations for relativistic electrons: Their roles in radiation belt changes

    OpenAIRE

    Jaynes, AN; Baker, DN; Singer, HJ; Rodriguez, JV; Loto'aniu, TM; Ali, AF; Elkington, SR; Li, X; Kanekal, SG; Fennell, JF; Li, W; Thorne, RM; Kletzing, CA; Spence, HE; Reeves, GD

    2015-01-01

    ©2015. American Geophysical Union. All Rights Reserved. Strong enhancements of outer Van Allen belt electrons have been shown to have a clear dependence on solar wind speed and on the duration of southward interplanetary magnetic field. However, individual case study analyses also have demonstrated that many geomagnetic storms produce little in the way of outer belt enhancements and, in fact, may produce substantial losses of relativistic electrons. In this study, focused upon a key period in...

  2. Source and seed populations for relativistic electrons: Their roles in radiation belt changes

    OpenAIRE

    Jaynes, AN; Baker, DN; Singer, HJ; Rodriguez, JV; Rodriguez, JV; Loto'aniu, TM; Loto'aniu, TM; Ali, AF; Elkington, SR; Li, X; Kanekal, SG; Fennell, JF; Li, W; Thorne, RM; Kletzing, CA

    2015-01-01

    © 2015. American Geophysical Union. All Rights Reserved. Strong enhancements of outer Van Allen belt electrons have been shown to have a clear dependence on solar wind speed and on the duration of southward interplanetary magnetic field. However, individual case study analyses also have demonstrated that many geomagnetic storms produce little in the way of outer belt enhancements and, in fact, may produce substantial losses of relativistic electrons. In this study, focused upon a key period i...

  3. RHIC Polarized proton performance in run-8

    Energy Technology Data Exchange (ETDEWEB)

    Montag,C.; Bai, M.; MacKay, W.W.; Roser, T.; Abreu, N.; Ahrens, L.; Barton, D.; Beebe-Wang, J.; Blaskiewicz, M.; Brennan, J.M.; Brown, K.A.; Bruno, D.; Bunce, G.; Calaga, R.; Cameron, P.; Connolly, R.; D' Ottavio, T.; Drees, A.; Fedotov, A.V.; Fischer, W.; Ganetis, G.; Gardner, C.; Glenn, J.; Hayes, T.; Huang, H.; Ingrassia, P.; Kayran, D.A.; Kewisch, J.; Lee, R.C.; Lin, F.; Litvinenko, V.N.; Luccio, A.U.; Luo, Y.; Makdisi, Y.; Malitsky, N.; Marr, G.; Marusic, A.; Michnoff, R.; Morris, J.; Oerter, B.; Pilat, F.; Pile, P.; Robert-Demolaize, G.; Russo, T.; Satogata, T.; Schultheiss, C.; Sivertz, M.; Smith, K.; Tepikian, S.; D. Trbojevic, D.; Tsoupas, N.; Tuozzolo, J.; Zaltsman, A.; Zelenski, A.; Zeno, K.; Zhang, S.Y.

    2008-10-06

    During Run-8, the Relativistic Heavy Ion Collider (RHIC) provided collisions of spin-polarized proton beams at two interaction regions. Physics data were taken with vertical orientation of the beam polarization, which in the 'Yellow' RHIC ring was significantly lower than in previous years. We present recent developments and improvements as well as the luminosity and polarization performance achieved during Run-8, and we discuss possible causes of the not as high as previously achieved polarization performance of the 'Yellow' ring.

  4. High luminosity polarized proton collisions at RHIC

    International Nuclear Information System (INIS)

    Roser, T.

    2001-01-01

    The Brookhaven Relativistic Heavy Ion Collider (RHIC) provides the unique opportunity to collide polarized proton beams at a center-of-mass energy of up to 500 GeV and luminosities of up to 2 x 10 32 cm -2 s -1 . Such high luminosity and high energy polarized proton collisions will open up the possibility of studying spin effects in hard processes. However, the acceleration of polarized beams in circular accelerators is complicated by the numerous depolarizing spin resonances. Using a partial Siberian snake and a rf dipole that ensure stable adiabatic spin motion during acceleration has made it possible to accelerate polarized protons to 25 GeV at the Brookhaven AGS. After successful operation of RHIC with gold beams polarized protons from the AGS have been successfully injected into RHIC and accelerated using a full Siberian snakes built from four superconducting helical dipoles. A new high energy proton polarimeter was also successfully commissioned. Operation with two snakes per RHIC ring is planned for next year

  5. Pulsar magnetosphere-wind or wave

    International Nuclear Information System (INIS)

    Kennel, C.F.

    1979-01-01

    The structure of both the interior and exterior pulsar magnetosphere depends upon the strength of its plasma source near the surface of the star. We review wave models of exterior pulsar magnetospheres in the light of a vacuum pair-production source model proposed by Sturrock, and Ruderman and Sutherland. This model predicts the existence of a cutoff, determined by the neutron star's spin rate and magnetic field strenght, beyond which coherent radio emission is no longer possible. Since the observed distribution of pulsar spin periods and period derivatives, and the distribution of pulsars with missing radio pulses, is consistent with the pair production threshold, those neutron stars observed as radio pulsars can have relativistic magnetohydrodynamic wind exterior magnetospheres, and cannot have relativistic plasma wave exterior magnetospheres. On the other hand, most erstwhile pulsars in the galaxy are probably halo objects that emit weak fluxes of energetic photons that can have relativistic wave exterior magnetospheres. Extinct pulsars have not been yet observed

  6. Relativistic heavy-ion collisions

    CERN Document Server

    Bhalerao, Rajeev S.

    The field of relativistic heavy-ion collisions is introduced to the high-energy physics students with no prior knowledge in this area. The emphasis is on the two most important observables, namely the azimuthal collective flow and jet quenching, and on the role fluid dynamics plays in the interpretation of the data. Other important observables described briefly are constituent quark number scaling, ratios of particle abundances, strangeness enhancement, and sequential melting of heavy quarkonia. Comparison is made of some of the basic heavy-ion results obtained at LHC with those obtained at RHIC. Initial findings at LHC which seem to be in apparent conflict with the accumulated RHIC data are highlighted.

  7. Coherent production of {epsilon}{sup +} particles in crystal using proton beam from SSC

    Energy Technology Data Exchange (ETDEWEB)

    Okorokov, V.V.; Dubin, A.Yu. [ITER, Moscow, (Russian Federation)

    1995-05-01

    The unique possibilities of the SSC can be ideally used for a new generation of coherent generation experiments with relativistic protons which require 20 Tev energy of the incident beam. The availability of 20 Tev proton beam at SSC allows new experiments on coherent production of {var_epsilon}{sup +} particle by relativistic proton in crystal. Experiment carried out at low energies can now be extended with protons in very narrow energy region (resonance energy, which easy can be calculated) using the new accelerator facilities at SSC. We propose to study coherent production via the Coulomb field of the cristal atoms to excite the transition p + {gamma}{implies} {var_epsilon} {sup +} (1189).

  8. Relativistic thermodynamics of Fluids. l

    International Nuclear Information System (INIS)

    Havas, P.; Swenson, R.J.

    1979-01-01

    In 1953, Stueckelberg and Wanders derived the basic laws of relativistic linear nonequilibrium thermodynamics for chemically reacting fluids from the relativistic local conservation laws for energy-momentum and the local laws of production of substances and of nonnegative entropy production by the requirement that the corresponding currents (assumed to depend linearly on the derivatives of the state variables) should not be independent. Generalizing their method, we determine the most general allowed form of the energy-momentum tensor T/sup alphabeta/ and of the corresponding rate of entropy production under the same restriction on the currents. The problem of expressing this rate in terms of thermodynamic forces and fluxes is discussed in detail; it is shown that the number of independent forces is not uniquely determined by the theory, and seven possibilities are explored. A number of possible new cross effects are found, all of which persist in the Newtonian (low-velocity) limit. The treatment of chemical reactions is incorporated into the formalism in a consistent manner, resulting in a derivation of the law for rate of production, and in relating this law to transport processes differently than suggested previously. The Newtonian limit is discussed in detail to establish the physical interpretation of the various terms of T/sup alphabeta/. In this limit, the interpretation hinges on that of the velocity field characterizing the fluid. If it is identified with the average matter velocity following from a consideration of the number densities, the usual local conservation laws of Newtonian nonequilibrium thermodynamics are obtained, including that of mass. However, a slightly different identification allows conversion of mass into energy even in this limit, and thus a macroscopic treatment of nuclear or elementary particle reactions. The relation of our results to previous work is discussed in some detail

  9. Thermodynamic laws and equipartition theorem in relativistic Brownian motion.

    Science.gov (United States)

    Koide, T; Kodama, T

    2011-06-01

    We extend the stochastic energetics to a relativistic system. The thermodynamic laws and equipartition theorem are discussed for a relativistic Brownian particle and the first and the second law of thermodynamics in this formalism are derived. The relation between the relativistic equipartition relation and the rate of heat transfer is discussed in the relativistic case together with the nature of the noise term.

  10. Energy Dependence of Near-relativistic Electron Spectrum at ...

    Indian Academy of Sciences (India)

    the Relativistic Electron Dropouts (REDs) and the Relativistic Electron Enhancements. (REEs) observed at the geosynchronous altitudes. The sudden drop in the relativistic electron flux often by two orders of magnitude is called RED which is usually pre- ceded by the gradual enhancement in the relativistic electron fluxes, ...

  11. Wind Structure and Wind Loading

    DEFF Research Database (Denmark)

    Brorsen, Michael

    The purpose of this note is to provide a short description of wind, i.e. of the flow in the atmosphere of the Earth and the loading caused by wind on structures. The description comprises: causes to the generation of windhe interaction between wind and the surface of the Earthhe stochastic nature...... of windhe interaction between wind and structures, where it is shown that wind loading depends strongly on this interaction...

  12. Relativistic klystron research for linear colliders

    International Nuclear Information System (INIS)

    Allen, M.A.; Callin, R.S.; Deruyter, H.

    1988-09-01

    Relativistic klystrons are being developed as a power source for high gradient accelerator applications which include large linear electron-positron colliders, compact accelerators, and FEL sources. We have attained 200 MW peak power at 11.4 GHz from a relativistic klystron, and 140 MV/m longitudinal gradient in a short 11.4 GHz accelerator section. We report here on the design of our relativistic klystrons, the results of our experiments so far, and some of our plans for the near future. 5 refs., 9 figs., 1 tab

  13. New derivation of relativistic dissipative fluid dynamics

    International Nuclear Information System (INIS)

    Jaiswal, Amaresh; Bhalerao, Rajeev S.; Pal, Subrata

    2012-01-01

    Relativistic dissipative hydrodynamics has been quite successful in explaining the spectra and azimuthal anisotropy of particles produced in heavy-ion collisions at the RHIC and recently at the LHC. The first-order dissipative fluid dynamics or the relativistic Navier-Stokes (NS) theory involves parabolic differential equations and suffers from a causality and instability. The second-order or Israel-Stewart (IS) theory with its hyperbolic equations restores causality but may not guarantee stability. The correct formulation of relativistic viscous fluid dynamics is far from settled and is under intense investigation

  14. Local density approximations for relativistic exchange energies

    International Nuclear Information System (INIS)

    MacDonald, A.H.

    1986-01-01

    The use of local density approximations to approximate exchange interactions in relativistic electron systems is reviewed. Particular attention is paid to the physical content of these exchange energies by discussing results for the uniform relativistic electron gas from a new point of view. Work on applying these local density approximations in atoms and solids is reviewed and it is concluded that good accuracy is usually possible provided self-interaction corrections are applied. The local density approximations necessary for spin-polarized relativistic systems are discussed and some new results are presented

  15. The de Sitter relativistic top theory

    International Nuclear Information System (INIS)

    Armenta, J.; Nieto, J.A.

    2005-01-01

    We discuss the relativistic top theory from the point of view of the de Sitter (or anti-de Sitter) group. Our treatment rests on the Hanson-Regge spherical relativistic top Lagrangian formulation. We propose an alternative method for studying spinning objects via Kaluza-Klein theory. In particular, we derive the relativistic top equations of motion starting with the geodesic equation for a point particle in 4+N dimensions. We compare our approach with Fukuyama's formulation of spinning objects, which is also based on Kaluza-Klein theory. We also report a generalization of our approach to a 4+N+D dimensional theory

  16. Holographic Aspects of a Relativistic Nonconformal Theory

    Directory of Open Access Journals (Sweden)

    Chanyong Park

    2013-01-01

    Full Text Available We study a general D-dimensional Schwarzschild-type black brane solution of the Einstein-dilaton theory and derive, by using the holographic renormalization, its thermodynamics consistent with the geometric results. Using the membrane paradigm, we calculate the several hydrodynamic transport coefficients and compare them with the results obtained by the Kubo formula, which shows the self-consistency of the gauge/gravity duality in the relativistic nonconformal theory. In order to understand more about the relativistic non-conformal theory, we further investigate the binding energy, drag force, and holographic entanglement entropy of the relativistic non-conformal theory.

  17. On the physics of relativistic double layers

    International Nuclear Information System (INIS)

    Carlqvist, P.

    1982-06-01

    A model of a strong, time-independent, and relativistic double layer is studied. Besides double layers having the electric field parallel to the current the model also describes a certain type of oblique double layers. The 'Langmuir condition' (ratio of ion current density to electron current density) as well as an expression for the potential drop of the double layer are derived. Furthermore, the distribution of charged particles, electric field, and potential within the double layer are clarified and discussed. It is found that the properties of relativistic double layers differ substantially from the properties of corresponding non-relativistic double layers. (Author)

  18. Development of circular protons accelerator for ocular teletherapy

    International Nuclear Information System (INIS)

    Rabelo, L. A.; Campos, T.P.R.

    2011-01-01

    The proton therapy has been used for ocular tumors providing tumor control in most cases and vision preservations. The protons show high doses in depth depict lower scattering from beam than other particles, electrons and photons. The cyclotron is a type of accelerator that increases the kinetic energy of the charged particle, recirculating it on a magnetic field and crossing an accelerating electrical field. It can be used to produce radioisotopes to hospitals. The goal of this study is to investigate a unit of circular accelerator to be coupled in existing national cyclotrons to generate a proton beams suitable to ocular therapy. Herein, physical parameters are evaluable, including relativistic corrections. That result shows the viability of developing an accelerator unit to ocular proton therapy. (author)

  19. Proton imaging apparatus for proton therapy application

    International Nuclear Information System (INIS)

    Sipala, V.; Lo Presti, D.; Brianzi, M.; Civinini, C.; Bruzzi, M.; Scaringella, M.; Talamonti, C.; Bucciolini, M.; Cirrone, G.A.P.; Cuttone, G.; Randazzo, N.; Stancampiano, C.; Tesi, M.

    2011-01-01

    Radiotherapy with protons, due to the physical properties of these particles, offers several advantages for cancer therapy as compared to the traditional radiotherapy and photons. In the clinical use of proton beams, a p CT (Proton Computer Tomography) apparatus can contribute to improve the accuracy of the patient positioning and dose distribution calculation. In this paper a p CT apparatus built by the Prima (Proton Imaging) Italian Collaboration will be presented and the preliminary results will be discussed.

  20. Proton radioactivity from proton-rich nuclei

    International Nuclear Information System (INIS)

    Guzman, F.; Goncalves, M.; Tavares, O.A.P.; Duarte, S.B.; Garcia, F.; Rodriguez, O.

    1999-03-01

    Half-lives for proton emission from proton-rich nuclei have been calculated by using the effective liquid drop model of heavy-particle decay of nuclei. It is shown that this model is able to offer results or spontaneous proton-emission half-life-values in excellent agreement with the existing experimental data. Predictions of half-life-values for other possible proton-emission cases are present for null orbital angular momentum. (author)

  1. Investigations of instabilities in nuclear matter in stochastic relativistic models

    International Nuclear Information System (INIS)

    Ayik, S.; Yilmaz, O.; Acar, F.; Danisman, B.; Er, N.; Gokalp, A.

    2011-01-01

    The spinodal instabilities for symmetric nuclear matter at finite temperature are studied within different relativistic mean-field models in the semi-classical approximation and the relativistic results are compared with Skyrme type non-relativistic calculations. Qualitatively similar results appear in the unstable response of the system in both non-relativistic and relativistic descriptions. Furthermore, the early growth of baryon, scalar and current density correlation functions are calculated for hot symmetric nuclear matter.

  2. Wind and IMP 8 Solar Wind, Magnetosheath and Shock Data

    Science.gov (United States)

    2004-01-01

    The purpose of this project was to provide the community access to magnetosheath data near Earth. We provided 27 years of IMP 8 magnetosheath proton velocities, densities, and temperatures with our best (usually 1-min.) time resolution. IMP 8 crosses the magnetosheath twice each 125 day orbit, and we provided magnetosheath data for the roughly 27 years of data for which magnetometer data are also available (which are needed to reliably pick boundaries). We provided this 27 years of IMP 8 magnetosheath data to the NSSDC; this data is now integrated with the IMP 8 solar wind data with flags indicating whether each data point is in the solar wind, magnetosheath, or at the boundary between the two regions. The plasma speed, density, and temperature are provided for each magnetosheath point. These data are also available on the MIT web site ftp://space .mit.edu/pub/plasma/imp/www/imp.html. We provide ASCII time-ordered rows of data giving the observation time, the spacecraft position in GSE, the velocity is GSE, the density and temperature for protons. We also have analyzed and archived on our web site the Wind magnetosheath plasma parameters. These consist of ascii files of the proton and alpha densities, speeds, and thermal speeds. These data are available at ftp://space.mit.edu/pub/plasma/wind/sheath These are the two products promised in the work statement and they have been completed in full.

  3. Screening and Absorption of Gravitation in Pre-Relativistic and Relativistic Theories

    Science.gov (United States)

    von Borzeszkowski, H.-H.; Chrobok, T.; Treder, H.-J.

    After commenting on the early search for a mechanism explaining the Newtonian action-at-a-distance gravitational law we review non-Newtonian effects occurring in certain ansatzes for shielding, screening and absorption effects in pre-relativistic theories of gravity. Mainly under the aspect of absorption and suppression (or amplification), we then consider some implications of these ansatzes for relativistic theories of gravity and discuss successes and problems in establishing a general framework for a comparison of alternative relativistic theories of gravity. We examine relativistic representatives of theories with absorption and suppression (or amplification) effects, such as fourth-order theories, tetrad theories and the Einstein-Cartan-Kibble-Sciama theory.

  4. A unified treatment of the non-relativistic and relativistic hydrogen atom: Pt. 2

    International Nuclear Information System (INIS)

    Swainson, R.A.; Drake, G.W.F.

    1991-01-01

    This is the second in a series of three papers in which it is shown how the radial part of non-relativistic and relativistic hydrogenic bound-state calculations involving the Green functions can be presented in a unified manner. In this paper the non-relativistic Green function is examined in detail; new functional forms are presented and a clear mathematical progression is show to link these and most other known forms. A linear transformation of the four radial parts of the relativistic Green function is given which allows for the presentation of this function as a simple generalization of the non-relativistic Green function. Thus, many properties of the non-relativistic Green function are shown to have simple relativistic generalizations. In particular, new recursion relations of the radial parts of both the non-relativistic and relativistic Green functions are presented, along with new expressions for the double Laplace transforms and recursion relations between the radial matrix elements. (author)

  5. Relativistic Boltzmann theory for a plasma

    International Nuclear Information System (INIS)

    Erkelens, H. van.

    1984-01-01

    This thesis gives a self-contained treatment of the relativistic Boltzmann theory for a plasma. Here plasma means any mixture containing electrically charged particles. The relativistic Boltzmann equation is linearized for the case of a plasma. The Chapman-Enskog method is elaborated further for transport phenomena. Linear laws for viscous phenomena are derived. Then the collision term in the Boltzmann theory is dealt with. Using the transport equation, a kinetic theory of wave phenomena is developed and the dissipation of hydromagnetic waves in a relativistic plasma is investigated. In the final chapter, it is demonstrated how the relativistic Boltzmann theory can be applied in cosmology. In doing so, expressions are derived for the electric conductivity of the cosmological plasma in the lepton era, the plasma era and the annihilation era. (Auth.)

  6. Nucleon relativistic phenomenological and microscopic optical potential

    International Nuclear Information System (INIS)

    Shen Qingbiao; Feng Dachun; Zhuo Yizhong

    1991-01-01

    In this talk, both the phenomenological and microscopic nucleon relativistic optical potentials are presented. The global neutron relativistic phenomenological optical potential (RPOP) based on the available experimental data for various nuclei ranging from C to U with incident energies En=20-1000 MeV has been obtained through automatic search of the best parameters by computer. Then the nucleon relativistic microscopic optical potential (RMOP) is studied by utilizing effective lagrangian based on popular Walecka model. Through comparison between the theoretical results and experimental data we have shed some insight into both the RMOP and RPOP. We have concluded that both the phenomenological and microscopic relativistic optical potentials proposed here can be extensively used for intermediate energy nucleon data evaluation. Further improvement concerning how to combine the phenomenological potential with the microscopic one in order to reduce the number of free parameters appearing in RPOP is suggested. (author). 33 refs, 24 figs

  7. Fourth sound in relativistic superfluidity theory

    International Nuclear Information System (INIS)

    Vil'chinskij, S.I.; Fomin, P.I.

    1995-01-01

    The Lorentz-covariant equations describing propagation of the fourth sound in the relativistic theory of superfluidity are derived. The expressions for the velocity of the fourth sound are obtained. The character of oscillation in sound is determined

  8. On the origin of relativistic bond contraction

    International Nuclear Information System (INIS)

    Ziegler, T.; Snijders, J.G.; Baerends, E.J.

    1980-01-01

    The origin of the well-established relativistic bond contractions is investigated in the Au 2 , AuH and AuCl model systems. It is shown that, contrary to popular belief, this contraction is not caused ba relativistic orbital contractions. Rather it has to be ascribed to a relaxation of kinetic repulsion, which is quite independent of changes in the form of the orbitals. (orig.)

  9. Relativistic klystron research at SLAC and LLNL

    International Nuclear Information System (INIS)

    Allen, M.A.; Callin, R.S.; Deruyter, H.

    1988-06-01

    We are developing relativistic klystrons as a power source for high gradient accelerator applications such as large linear electron-positron colliders and compact accelerators. We have attained 200 MW peak power at 11.4 GHz from a relativistic klystron, and 140 MV/m longitudinal gradient in a short 11.4 GHz accelerator section. We report here briefly on our experiments so far. 5 refs., 1 fig., 1 tab

  10. Relativistic particles on quantum space-time

    Energy Technology Data Exchange (ETDEWEB)

    Stern, A., E-mail: astern@bama.ua.edu [Dept. of Physics and Astronomy, Univ. of Alabama, Tuscaloosa, AL 35487 (United States)

    2011-06-20

    We discuss alternatives to the usual quantization of a relativistic particle which result in discrete spectra for position and time operators. -- Highlights: → Anomalies can appear in the reparametrization symmetry of a relativistic particle. → The anomalies are signaled by noncommutative space-time. → The space-time algebra can have discrete representations. → A discrete spatial lattice emerges from one gauge. → A discrete time spectrum emerges in another gauge.

  11. Dechanneling function for relativistic axially channeled electrons

    International Nuclear Information System (INIS)

    Muralev, V.A.; Telegin, V.I.

    1981-01-01

    Behaviour of the x(t) dechanneling function depending on the depth is theoretically studied. Theoretical consideration of x(t) for axial channeled relativistic electrons in anisotropic medium results in two-dimensional kinetic equation with mixed derivatives of the parabolic type. The kinetic equation in the approximation of the continuous Lindchard model for relativistic axial channeled electrons is numerically solved. The depth dependence of the x(t) dechanneling function is obtained [ru

  12. Limits and signatures of relativistic spaceflight

    Science.gov (United States)

    Yurtsever, Ulvi; Wilkinson, Steven

    2018-01-01

    While special relativity imposes an absolute speed limit at the speed of light, our Universe is not empty Minkowski spacetime. The constituents that fill the interstellar/intergalactic vacuum, including the cosmic microwave background photons, impose a lower speed limit on any object travelling at relativistic velocities. Scattering of cosmic microwave photons from an ultra-relativistic object may create radiation with a characteristic signature allowing the detection of such objects at large distances.

  13. Summary of the relativistic heavy ion sessions

    International Nuclear Information System (INIS)

    Harris, J.W.

    1988-01-01

    The topics covered in the Relativistic Heavy Ion Sessions span four orders of magnitude in energy in the laboratory and a few more in theory. In the two years since the last Intersections conference, experiments in the field of very high energy heavy ion research have begun at CERN and Brookhaven. The prime motivation for these experiments is the possibility of forming quark matter. This paper is a review of the topics covered in the Relativistic Heavy Ion Sessions

  14. Localization and Entanglement in Relativistic Quantum Physics

    OpenAIRE

    Yngvason, Jakob

    2014-01-01

    The combination of quantum theory and special relativity leads to structures that differ in several respects from non-relativistic quantum mechanics of particles. These differences are quite familiar to practitioners of Algebraic Quantum Field Theory but less well known outside this community. The paper is intended as a concise survey of some selected aspects of relativistic quantum physics, in particular regarding localization and entanglement.

  15. Timelike Killing Fields and Relativistic Statistical Mechanics

    OpenAIRE

    Klein, David; Collas, Peter

    2008-01-01

    For spacetimes with timelike Killing fields, we introduce a "Fermi-Walker-Killing" coordinate system and use it to prove a Liouville Theorem for an appropriate volume element of phase space for a statistical mechanical system of particles. We derive an exact relativistic formula for the Helmholtz free energy of an ideal gas and compare it, for a class of spacetimes, to its Newtonian analog, derived both independently and as the Newtonian limit of our formula. We also find the relativistic the...

  16. Ohm's Law for a Relativistic Pair Plasma

    OpenAIRE

    Blackman, Eric G.; Field, George B.

    1994-01-01

    We derive the fully relativistic Ohm's law for an electron-positron plasma. The absence of non-resistive terms in Ohm's law and the natural substitution of the 4-velocity for the velocity flux in the relativistic bulk plasma equations do not require the field gradient length scale to be much larger than the lepton inertial lengths, or the existence of a frame in which the distribution functions are isotropic.

  17. Possibilities of the forecast of generation of the high energy solar protons for the safety of Mars mission

    Science.gov (United States)

    Avakyan, S. V.; Gaponov, V. A.; Nicol'skii, G. A.; Solov'ev, A. A.

    2017-06-01

    During interplanetary flight, after large solar flares, astronauts are subject to the impact of relativistic solar protons. These particles produce an especially strong effect during extravehicular activity or landing on Mars (in the future). The relativistic protons reach the orbits of the Earth and Mars with a delay of several hours relative to solar X-rays and UV radiation. In this paper, we discuss a new opportunity to predict the most dangerous events caused by Solar Cosmic Rays with protons of maximum (relativistic) energy, known in the of solar-terrestrial physics asGround Level Enhancements or Ground Level Events (GLEs). This new capability is based on a close relationship between the dangerous events and decrease ofTotal Solar Irradiance (TSI)which precedes these events. This important relationship is revealed for the first time.

  18. Alterations to the relativistic Love-Franey model and their application to inelastic scattering

    International Nuclear Information System (INIS)

    Zeile, J.R.

    1989-01-01

    The fictitious axial-vector and tensor mesons for the real part of the relativistic Love-Franey interaction are removed. In an attempt to make up for this loss, derivative couplings are used for the π and ρ mesons. Such derivative couplings require the introduction of axial-vector and tensor contact term corrections. Meson parameters are then fit to free nucleon-nucleon scattering data. The resulting fits are comparable to those of the relativistic Love-Franey model provided that the contact term corrections are included and the fits are weighted over the physically significant quantity of twice the tensor minus the axial-vector Lorentz invariants. Failure to include contact term corrections leads to poor fits at higher energies. The off-shell behavior of this model is then examined by looking at several applications from inelastic proton-nucleus scattering

  19. The relativistic geoid: redshift and acceleration potential

    Science.gov (United States)

    Philipp, Dennis; Lämmerzahl, Claus; Puetzfeld, Dirk; Hackmann, Eva; Perlick, Volker

    2017-04-01

    We construct a relativistic geoid based on a time-independent redshift potential, which foliates the spacetime into isochronometric surfaces. This relativistic potential coincides with the acceleration potential for isometric congruences. We show that the a- and u- geoid, defined in a post-Newtonian framework, coincide also in a more general setup. Known Newtonian and post-Newtonian results are recovered in the respective limits. Our approach offers a relativistic definition of the Earth's geoid as well as a description of the Earth itself (or observers on its surface) in terms of an isometric congruence. Being fully relativistic, this notion of a geoid can also be applied to other compact objects such as neutron stars. By definition, this relativistic geoid can be determined by a congruence of Killing observers equipped with standard clocks by comparing their frequencies as well as by measuring accelerations of objects that follow the congruence. The redshift potential gives the correct result also for frequency comparison through optical fiber links as long as the fiber is at rest w.r.t. the congruence. We give explicit expressions for the relativistic geoid in the Kerr spacetime and the Weyl class of spacetimes. To investigate the influence of higher order mass multipole moments we compare the results for the Schwarzschild case to those obtained for the Erez-Rosen and q-metric spacetimes.

  20. RHIC Polarized proton operation

    International Nuclear Information System (INIS)

    Huang, H.; Ahrens, L.; Alekseev, I.G.; Aschenauer, E.; Atoian, G.; Bai, M.; Bazilevsky, A.; Blaskiewicz, M.; Brennan, J.M.; Brown, K.A.; Bruno, D.; Connolly, R.; Dion, A.; D'Ottavio, T.; Drees, K.A.; Fischer, W.; Gardner, C.; Glenn, J.W.; Gu, X.; Harvey, M.; Hayes, T.; Hoff, L.; Hulsart, R.L.; Laster, J.; Liu, C.; Luo, Y.; MacKay, W.W.; Makdisi, Y.; Marr, G.J.; Marusic, A.; Meot, F.; Mernick, K.; Michnoff, R.; Minty, M.; Montag, C.; Morris, J.; Nemesure, S.; Poblaguev, A.; Ptitsyn, V.; Ranjibar, V.; Robert-Demolaize, G.; Roser, T.; Schmidke, B.; Schoefer, V.; Severino, F.; Smirnov, D.; Smith, K.; Steski, D.; Svirida, D.; Tepikian, S.; Trbojevic, D.; Tsoupas, N.; Tuozzolo, J.E.; Wang, G.; Wilinski, M.; Yip, K.; Zaltsman, A.; Zelenski, A.; Zeno, K.; Zhang, S.Y.

    2011-01-01

    The Relativistic Heavy Ion Collider (RHIC) operation as the polarized proton collider presents unique challenges since both luminosity(L) and spin polarization(P) are important. With longitudinally polarized beams at the experiments, the figure of merit is LP 4 . A lot of upgrades and modifications have been made since last polarized proton operation. A 9 MHz rf system is installed to improve longitudinal match at injection and to increase luminosity. The beam dump was upgraded to increase bunch intensity. A vertical survey of RHIC was performed before the run to get better magnet alignment. The orbit control is also improved this year. Additional efforts are put in to improve source polarization and AGS polarization transfer efficiency. To preserve polarization on the ramp, a new working point is chosen such that the vertical tune is near a third order resonance. The overview of the changes and the operation results are presented in this paper. Siberian snakes are essential tools to preserve polarization when accelerating polarized beams to higher energy. At the same time, the higher order resonances still can cause polarization loss. As seen in RHIC, the betatron tune has to be carefully set and maintained on the ramp and during the store to avoid polarization loss. In addition, the orbit control is also critical to preserve polarization. The higher polarization during this run comes from several improvements over last run. First we have a much better orbit on the ramp. The orbit feedback brings down the vertical rms orbit error to 0.1mm, much better than the 0.5mm last run. With correct BPM offset and vertical realignment, this rms orbit error is indeed small. Second, the jump quads in the AGS improved input polarization for RHIC. Third, the vertical tune was pushed further away from 7/10 snake resonance. The tune feedback maintained the tune at the desired value through the ramp. To calibrate the analyzing power of RHIC polarimeters at any energy above

  1. RHIC Polarized proton operation

    Energy Technology Data Exchange (ETDEWEB)

    Huang, H.; Ahrens, L.; Alekseev, I.G.; Aschenauer, E.; Atoian, G.; Bai, M.; Bazilevsky, A.; Blaskiewicz, M.; Brennan, J.M.; Brown, K.A.; Bruno, D.; Connolly, R.; Dion, A.; D' Ottavio, T.; Drees, K.A.; Fischer, W.; Gardner, C.; Glenn, J.W.; Gu, X.; Harvey, M.; Hayes, T.; Hoff, L.; Hulsart, R.L.; Laster, J.; Liu, C.; Luo, Y.; MacKay, W.W.; Makdisi, Y.; Marr, G.J.; Marusic, A.; Meot, F.; Mernick, K.; Michnoff, R,; Minty, M.; Montag, C.; Morris, J.; Nemesure, S.; Poblaguev, A.; Ptitsyn, V.; Ranjibar, V.; Robert-Demolaize, G.; Roser, T.; J.; Severino, F.; Schmidke, B.; Schoefer, V.; Severino, F.; Smirnov, D.; Smith, K.; Steski, D.; Svirida, D.; Tepikian, S.; Trbojevic, D.; Tsoupas, N.; Tuozzolo, J. Wang, G.; Wilinski, M.; Yip, K.; Zaltsman, A.; Zelenski, A.; Zeno, K.; Zhang, S.Y.

    2011-03-28

    The Relativistic Heavy Ion Collider (RHIC) operation as the polarized proton collider presents unique challenges since both luminosity(L) and spin polarization(P) are important. With longitudinally polarized beams at the experiments, the figure of merit is LP{sup 4}. A lot of upgrades and modifications have been made since last polarized proton operation. A 9 MHz rf system is installed to improve longitudinal match at injection and to increase luminosity. The beam dump was upgraded to increase bunch intensity. A vertical survey of RHIC was performed before the run to get better magnet alignment. The orbit control is also improved this year. Additional efforts are put in to improve source polarization and AGS polarization transfer efficiency. To preserve polarization on the ramp, a new working point is chosen such that the vertical tune is near a third order resonance. The overview of the changes and the operation results are presented in this paper. Siberian snakes are essential tools to preserve polarization when accelerating polarized beams to higher energy. At the same time, the higher order resonances still can cause polarization loss. As seen in RHIC, the betatron tune has to be carefully set and maintained on the ramp and during the store to avoid polarization loss. In addition, the orbit control is also critical to preserve polarization. The higher polarization during this run comes from several improvements over last run. First we have a much better orbit on the ramp. The orbit feedback brings down the vertical rms orbit error to 0.1mm, much better than the 0.5mm last run. With correct BPM offset and vertical realignment, this rms orbit error is indeed small. Second, the jump quads in the AGS improved input polarization for RHIC. Third, the vertical tune was pushed further away from 7/10 snake resonance. The tune feedback maintained the tune at the desired value through the ramp. To calibrate the analyzing power of RHIC polarimeters at any energy above

  2. Covariant density functional theory for decay of deformed proton emitters: A self-consistent approach

    Directory of Open Access Journals (Sweden)

    L.S. Ferreira

    2016-02-01

    Full Text Available Proton radioactivity from deformed nuclei is described for the first time by a self-consistent calculation based on covariant relativistic density functionals derived from meson exchange and point coupling models. The calculation provides an important new test to these interactions at the limits of stability, since the mixing of different angular momenta in the single particle wave functions is probed.

  3. Proton movies

    CERN Multimedia

    2009-01-01

    A humorous short film made by three secondary school students received an award at a Geneva film festival. Even without millions of dollars or Hollywood stars at your disposal, it is still possible to make a good science fiction film about CERN. That is what three students from the Collège Madame de Staël in Carouge, near Geneva, demonstrated. For their amateur short film on the LHC, they were commended by the jury of the video and multimedia festival for schools organised by the "Media in education" service of the Canton of Geneva’s Public Education Department. The film is a spoof of a television news report on the LHC start-up. In sequences full of humour and imagination, the reporter conducts interviews with a very serious "Professor Sairne", some protons preparing for their voyage and even the neutrons that were rejected by the LHC. "We got the idea of making a film about CERN at the end of the summer," explains Lucinda Päsche, one of the three students. "We did o...

  4. Compression-amplified EMIC waves and their effects on relativistic electrons

    Energy Technology Data Exchange (ETDEWEB)

    Li, L. Y., E-mail: lyli-ssri@buaa.edu.cn; Yu, J.; Cao, J. B. [School of Space and Environment, Beihang University, Beijing (China); Yuan, Z. G. [School of Electronic Information, Wuhan University, Wuhan (China)

    2016-06-15

    During enhancement of solar wind dynamic pressure, we observe the periodic emissions of electromagnetic ion cyclotron (EMIC) waves near the nightside geosynchronous orbit (6.6R{sub E}). In the hydrogen and helium bands, the different polarized EMIC waves have different influences on relativistic electrons (>0.8 MeV). The flux of relativistic electrons is relatively stable if there are only the linearly polarized EMIC waves, but their flux decreases if the left-hand polarized (L-mode) EMIC waves are sufficiently amplified (power spectral density (PSD) ≥ 1 nT{sup 2}/Hz). The larger-amplitude L-mode waves can cause more electron losses. In contrast, the R-mode EMIC waves are very weak (PSD < 1 nT{sup 2}/Hz) during the electron flux dropouts; thus, their influence may be ignored here. During the electron flux dropouts, the relativistic electron precipitation is observed by POES satellite near the foot point (∼850 km) of the wave emission region. The quasi-linear simulation of wave-particle interactions indicates that the L-mode EMIC waves can cause the rapid precipitation loss of relativistic electrons, especially when the initial resonant electrons have a butterfly-like pitch angle distribution.

  5. Non-relativistic and relativistic scattering by short-range potentials

    DEFF Research Database (Denmark)

    Arnbak, H.; Christiansen, Peter Leth; Gaididei, Yuri Borisovich

    2011-01-01

    Relativistic and non-relativistic scattering by short-range potentials is investigated for selected problems. Scattering by the δ′ potential in the Schrödinger equation and δ potentials in the Dirac equation must be solved by regularization, efficiently carried out by a perturbation technique...

  6. A unified treatment of the non-relativistic and relativistic hydrogen atom: Pt. 1

    International Nuclear Information System (INIS)

    Swainson, R.A.; Drake, G.W.F.

    1991-01-01

    In this and the following two papers in this series it is shown how the radial part of non-relativistic and relativistic hydrogenic bound-state calculations involving the Green functions can be presented in a unified manner. The angular part of such calculations, being well understood, is performed in the standard way. In this, the first paper, it is shown how a suitable linear transformation of the two relativistic radial wavefunctions allows the pair of relativistic coupled differential equations to be written as two uncoupled second-order equations which are simple generalizations of the corresponding non-relativistic equation. This transformation is presented in a manner which allows for a simple extension to the Green function problem. The transformed relativistic wavefunctions are explicitly derived and the normalization is presented in a novel and simple way. A new derivation is given for the recursion relations for both non-relativistic and relativistic radial wavefunctions, some of which are new. These relations are required in the subsequent papers. (author)

  7. Non-relativistic and relativistic quantum kinetic equations in nuclear physics.

    NARCIS (Netherlands)

    Botermans, Wilhelmus Martinus Maria

    1989-01-01

    In this thesis, we discussed the derivation of quantum kinetic equations appropriate for applications in nuclear physics, both in a non-relativistic and in a relativistic context. In each case we obtained a kinetic equation together with an equation for the effective interaction. The latter serves

  8. Energy loss distributions of 7 TeV protons channeled in a bent silicon crystals

    Directory of Open Access Journals (Sweden)

    Stojanov Nace

    2013-01-01

    Full Text Available The energy loss distributions of relativistic protons axially channeled through the bent Si crystals, with the constant curvature radius, R = 50 m, are studied here. The proton energy is 7 TeV and the thickness of the crystal is varied from 1 mm to 5 mm, which corresponds to the reduced crystal thickness, L, from 2.1 to 10.6, respectively. The proton energy was chosen in accordance with the large hadron collider project, at the European Organization for Nuclear Research, in Geneva, Switzerland. The energy loss distributions of the channeled protons were generated by the computer simulation method using the numerical solution of the proton equations of motion in the transverse plane. Dispersion of the proton scattering angle caused by its collisions with the crystal’s electrons was taken into account. [Projekat Ministarstva nauke Republike Srbije, br. III 45006

  9. Proton Therapy - Accelerating Protons to Save Lives

    Energy Technology Data Exchange (ETDEWEB)

    Keppel, Cynthia [Hampton Univ. Proton Therapy Inst., Hampton, VA (United States)

    2011-10-25

    In 1946, physicist Robert Wilson first suggested that protons could be used as a form of radiation therapy in the treatment of cancer because of the sharp drop-off that occurs on the distal edge of the radiation dose. Research soon confirmed that high-energy protons were particularly suitable for treating tumors near critical structures, such as the heart and spinal column. The precision with which protons can be delivered means that more radiation can be deposited into the tumor while the surrounding healthy tissue receives substantially less or, in some cases, no radiation. Since these times, particle accelerators have continuously been used in cancer therapy and today new facilities specifically designed for proton therapy are being built in many countries. Proton therapy has been hailed as a revolutionary cancer treatment, with higher cure rates and fewer side effects than traditional X-ray photon radiation therapy. Proton therapy is the modality of choice for treating certain small tumors of the eye, head or neck. Because it exposes less of the tissue surrounding a tumor to the dosage, proton therapy lowers the risk of secondary cancers later in life - especially important for young children. To date, over 80,000 patients worldwide have been treated with protons. Currently, there are nine proton radiation therapy facilities operating in the United States, one at the Hampton University Proton Therapy Institute. An overview of the treatment technology and this new center will be presented.

  10. Wind power

    International Nuclear Information System (INIS)

    Gipe, P.

    2007-01-01

    This book is a translation of the edition published in the USA under the title of ''wind power: renewable energy for home, farm and business''. In the wake of mass blackouts and energy crises, wind power remains a largely untapped resource of renewable energy. It is a booming worldwide industry whose technology, under the collective wing of aficionados like author Paul Gipe, is coming of age. Wind Power guides us through the emergent, sometimes daunting discourse on wind technology, giving frank explanations of how to use wind technology wisely and sound advice on how to avoid common mistakes. Since the mid-1970's, Paul Gipe has played a part in nearly every aspect of wind energy development from installing small turbines to promoting wind energy worldwide. As an American proponent of renewable energy, Gipe has earned the acclaim and respect of European energy specialists for years, but his arguments have often fallen on deaf ears at home. Today, the topic of wind power is cropping up everywhere from the beaches of Cape Cod to the Oregon-Washington border, and one wind turbine is capable of producing enough electricity per year to run 200 average American households. Now, Paul Gipe is back to shed light on this increasingly important energy source with a revised edition of Wind Power. Over the course of his career, Paul Gipe has been a proponent, participant, observer, and critic of the wind industry. His experience with wind has given rise to two previous books on the subject, Wind Energy Basics and Wind Power for Home and Business, which have sold over 50,000 copies. Wind Power for Home and Business has become a staple for both homeowners and professionals interested in the subject, and now, with energy prices soaring, interest in wind power is hitting an all-time high. With chapters on output and economics, Wind Power discloses how much you can expect from each method of wind technology, both in terms of energy and financial savings. The book updated models

  11. Modeling experimental plasma diagnostics in the FLASH code: proton radiography

    Science.gov (United States)

    Flocke, Norbert; Weide, Klaus; Feister, Scott; Tzeferacos, Petros; Lamb, Donald

    2017-10-01

    Proton radiography is an important diagnostic tool for laser plasma experiments and for studying magnetized plasmas. We describe a new synthetic proton radiography diagnostic recently implemented into the FLASH code. FLASH is an open source, finite-volume Eulerian, spatially adaptive radiation hydrodynamics and magneto-hydrodynamics code that incorporates capabilities for a broad range of physical processes. Proton radiography is modeled through the use of the (relativistic) Lorentz force equation governing the motion of protons through 3D domains. Both instantaneous (one time step) and time-resolved (over many time steps) proton radiography can be simulated. The code module is also equipped with several different setup options (beam structure and detector screen placements) to reproduce a large variety of experimental proton radiography designs. FLASH's proton radiography diagnostic unit can be used either during runtime or in post-processing of simulation results. FLASH is publicly available at flash.uchicago.edu. U.S. DOE NNSA, U.S. DOE NNSA ASC, U.S. DOE Office of Science and NSF.

  12. Heating of the interstellar medium by the solar wind

    Science.gov (United States)

    Kunc, J. A.; Wu, F. M.; Judge, D. L.

    1983-01-01

    The heating of inflowing interstellar gas by the solar wind is calculated. The experimental differential cross sections have been used for calculating electron-H(He) and proton-H(He) elastic scattering rate coefficients. The solar wind is assumed to be a two-component (protons and electrons), steady, spherically symmetric stream moving radially outward, with the inflowing gas following Keplerian trajectories. The spatial distributions of effective temperature increase within interplanetary space have been obtained.

  13. Proton-air and proton-proton cross sections

    Directory of Open Access Journals (Sweden)

    Ulrich Ralf

    2013-06-01

    Full Text Available Different attempts to measure hadronic cross sections with cosmic ray data are reviewed. The major results are compared to each other and the differences in the corresponding analyses are discussed. Besides some important differences, it is crucial to see that all analyses are based on the same fundamental relation of longitudinal air shower development to the observed fluctuation of experimental observables. Furthermore, the relation of the measured proton-air to the more fundamental proton-proton cross section is discussed. The current global picture combines hadronic proton-proton cross section data from accelerator and cosmic ray measurements and indicates a good consistency with predictions of models up to the highest energies.

  14. Spin rotation function in a microscopic non-relativistic optical model

    International Nuclear Information System (INIS)

    Bauhoff, W.

    1984-01-01

    A microscopic optical potential, which is calculated non-relativistically with a density-dependent effective force, is used to calculate cross-section, polarization and spin-rotation function for elastic proton scattering from 40 Ca at 160 MeV and 497 MeV. At 160 MeV, the agreement to the data is comparable to phenomenological fits, and the spin-rotation can be used to distinguish between microscopic and Woods-Saxon potentials. A good fit to the spin-rotation function results at 497 MeV, whereas the polarization data are not well reproduced

  15. The Formation of Relativistic Jets from Kerr Black Holes

    Science.gov (United States)

    Nishikawa, K.-I.; Richardson, G.; Preece, R.; Hardee, P.; Koide, S.; Shibata, K.; Kudoh, T.; Sol, H.; Fishman, G. J.

    2003-01-01

    We have performed the first fully three-dimensional general relativistic magnetohydrodynamics (GRMHD) simulation for Schwarzschild and Kerr black holes with a free falling corona and thin accretion disk. The initial simulation results with a Schwarzschild metric show that a jet is created as in the previous axisymmetric simulations with mirror symmetry at the equator. However, the time to form the jet is slightly longer than in the 2-D axisymmetric simulation. We expect that the dynamics of jet formation are modified due to the additional freedom in the azimuth dimension without axisymmetry with respect to the Z axis and reflection symmetry respect to the equatorial plane. The jet which is initially formed due to the twisted magnetic fields and shocks becomes a wind at the later time. The wind flows out with a much wider angle than the initial jet. The twisted magnetic fields at the earlier time were untwisted and less pinched. The accretion disk became thicker than the initial condition. Further simulations with initial perturbations will provide insights for accretion dynamics with instabilities such as magneto-rotational instability (MRI) and accretion-eject instability (AEI). These instabilities may contribute to variabilities observed in microquasars and AGN jets.

  16. Relativistic model for statevector reduction

    International Nuclear Information System (INIS)

    Pearle, P.

    1991-04-01

    A relativistic quantum field model describing statevector reduction for fermion states is presented. The time evolution of the states is governed by a Schroedinger equation with a Hamiltonian that has a Hermitian and a non-Hermitian part. In addition to the fermions, the Hermitian part describes positive and negative energy mesons of equal mass, analogous to the longitudinal and timelike photons of electromagnetism. The meson-field-sum is coupled to the fermion field. This ''dresses'' each fermion so that, in the extreme nonrelativistic limit (non-moving fermions), a fermion in a position eigenstate is also in an eigenstate of the meson-field-difference with the Yukawa-potential as eigenvalue. However, the fermions do not interact: this is a theory of free dressed fermions. It is possible to obtain a stationary normalized ''vacuum'' state which satisfies two conditions analogous to the gauge conditions of electromagnetism (i.e., that the meson-field-difference, as well as its time derivative, give zero when applied to the vacuum state), to any desired degree of accuracy. The non-Hermitian part of the Hamiltonian contains the coupling of the meson-field-difference to an externally imposed c-number fluctuating white noise field, of the CSL (Continuous Spontaneous Localization) form. This causes statevector reduction, as is shown in the extreme nonrelativistic limit. For example, a superposition of spatially separated wavepackets of a fermion will eventually be reduced to a single wavepacket: the meson-field-difference discriminates among the Yukawa-potential ''handles'' attached to each wavepacket, thereby selecting one wavepacket to survive by the CSL mechanism. Analysis beyond that given in this paper is required to see what happens when the fermions are allowed to move. (It is possible that the ''vacuum'' state becomes involved in the dynamics so that the ''gauge'' conditions can no longer be maintained.) It is shown how to incorporate these ideas into quantum

  17. Chaos and maps in relativistic rynamical systems

    Directory of Open Access Journals (Sweden)

    L. P. Horwitz

    2000-01-01

    Full Text Available The basic work of Zaslavskii et al showed that the classical non-relativistic electromagnetically kicked oscillator can be cast into the form of an iterative map on the phase space; the resulting evolution contains a stochastic flow to unbounded energy. Subsequent studies have formulated the problem in terms of a relativistic charged particle in interaction with the electromagnetic field. We review the structure of the covariant Lorentz force used to study this problem. We show that the Lorentz force equation can be derived as well from the manifestly covariant mechanics of Stueckelberg in the presence of a standard Maxwell field, establishing a connection between these equations and mass shell constraints. We argue that these relativistic generalizations of the problem are intrinsically inaccurate due to an inconsistency in the structure of the relativistic Lorentz force, and show that a reformulation of the relativistic problem, permitting variations (classically in both the particle mass and the effective “mass” of the interacting electromagnetic field, provides a consistent system of classical equations for describing such processes.

  18. Relativistic electrodynamics of spinning compact objects

    International Nuclear Information System (INIS)

    Kim, H. S.; Lee, H. M.; Lee, C. H.; Lee, H. K.

    2006-01-01

    A theoretical study of some electrodynamic features of a region close to a slowly-rotating magnetized relativistic star is performed. To be a little more specific, based on the solution-generating method given by Wald, the magnetic fields around both uncharged and (slightly) charged relativistic stars have been obtained. Particularly for a charged relativistic star, again following the argument by Wald, the star was shown to gradually accrete charge until it reached an equilibrium value Q =2B 0 J. This value of the equilibrium charge seems to be generic as a rotating black hole is known to accrete exactly the same amount. Although these results are equally relevant to all species of slowly-rotating relativistic stars, we particularly have the rotating neutron star in mind. As such, it would be of some interest to attempt to make contact with a real pulsar case. Thus, we discuss how many of the theoretical results obtained in the present work can be carried over to a realistic, general relativistic description of a pulsar's magnetosphere.

  19. Opacity Build-up in Impulsive Relativistic Sources

    Energy Technology Data Exchange (ETDEWEB)

    Granot, Jonathan; Cohen-Tanugi, Johann; Silva, Eduardo do Couto e

    2007-09-28

    Opacity effects in relativistic sources of high-energy gamma-rays, such as gamma-ray bursts (GRBs) or Blazars, can probe the Lorentz factor of the outflow as well as the distance of the emission site from the source, and thus help constrain the composition of the outflow (protons, pairs, magnetic field) and the emission mechanism. Most previous works consider the opacity in steady state. Here we study the effects of the time dependence of the opacity to pair production ({gamma}{gamma} {yields} e{sup +}e{sup -}) in an impulsive relativistic source, which may be relevant for the prompt gamma-ray emission in GRBs or flares in Blazars. We present a simple, yet rich, semi-analytic model for the time and energy dependence of the optical depth, {tau}{gamma}{gamma}, in which a thin spherical shell expands ultra-relativistically and emits isotropically in its own rest frame over a finite range of radii, R{sub 0} {le} R {le} R{sub 0}+{Delta}R. This is particularly relevant for GRB internal shocks. We find that in an impulsive source ({Delta}R {approx}< R{sub 0}), while the instantaneous spectrum (which is typically hard to measure due to poor photon statistics) has an exponential cutoff above the photon energy {var_epsilon}1(T) where t{gamma}{gamma}({var_epsilon}1) = 1, the time integrated spectrum (which is easier to measure) has a power-law high-energy tail above the photon energy {var_epsilon}1* {approx} {var_epsilon}1({Delta}T) where {Delta}T is the duration of the emission episode. Furthermore, photons with energies {var_epsilon} > {var_epsilon}1* are expected to arrive mainly near the onset of the spike in the light curve or flare, which corresponds to the short emission episode. This arises since in such impulsive sources it takes time to build-up the (target) photon field, and thus the optical depth {tau}{gamma}{gamma}({var_epsilon}) initially increases with time and {var_epsilon}1(T) correspondingly decreases with time, so that photons of energy {var_epsilon} > {var

  20. Opacity Build-up in Impulsive Relativistic Sources

    International Nuclear Information System (INIS)

    Granot, Jonathan; Cohen-Tanugi, Johann; Silva, Eduardo do Couto e

    2007-01-01

    Opacity effects in relativistic sources of high-energy gamma-rays, such as gamma-ray bursts (GRBs) or Blazars, can probe the Lorentz factor of the outflow as well as the distance of the emission site from the source, and thus help constrain the composition of the outflow (protons, pairs, magnetic field) and the emission mechanism. Most previous works consider the opacity in steady state. Here we study the effects of the time dependence of the opacity to pair production (γγ → e + e - ) in an impulsive relativistic source, which may be relevant for the prompt gamma-ray emission in GRBs or flares in Blazars. We present a simple, yet rich, semi-analytic model for the time and energy dependence of the optical depth, τγγ, in which a thin spherical shell expands ultra-relativistically and emits isotropically in its own rest frame over a finite range of radii, R 0 (le) R (le) R 0 +ΔR. This is particularly relevant for GRB internal shocks. We find that in an impulsive source (ΔR ∼ 0 ), while the instantaneous spectrum (which is typically hard to measure due to poor photon statistics) has an exponential cutoff above the photon energy (var e psilon)1(T) where tγγ((var e psilon)1) = 1, the time integrated spectrum (which is easier to measure) has a power-law high-energy tail above the photon energy (var e psilon)1* ∼ (var e psilon)1(ΔT) where ΔT is the duration of the emission episode. Furthermore, photons with energies (var e psilon) > (var e psilon)1* are expected to arrive mainly near the onset of the spike in the light curve or flare, which corresponds to the short emission episode. This arises since in such impulsive sources it takes time to build-up the (target) photon field, and thus the optical depth τγγ((var e psilon)) initially increases with time and (var e psilon)1(T) correspondingly decreases with time, so that photons of energy (var e psilon) > (var e psilon)1* are able to escape the source mainly very early on while (var e psilon)1(T) > (var

  1. Proton therapy device

    International Nuclear Information System (INIS)

    Tronc, D.

    1994-01-01

    The invention concerns a proton therapy device using a proton linear accelerator which produces a proton beam with high energies and intensities. The invention lies in actual fact that the proton beam which is produced by the linear accelerator is deflected from 270 deg in its plan by a deflecting magnetic device towards a patient support including a bed the longitudinal axis of which is parallel to the proton beam leaving the linear accelerator. The patient support and the deflecting device turn together around the proton beam axis while the bed stays in an horizontal position. The invention applies to radiotherapy. 6 refs., 5 figs

  2. Higher order net-proton number cumulants dependence on the centrality definition and other spurious effects

    Science.gov (United States)

    Sombun, S.; Steinheimer, J.; Herold, C.; Limphirat, A.; Yan, Y.; Bleicher, M.

    2018-02-01

    We study the dependence of the normalized moments of the net-proton multiplicity distributions on the definition of centrality in relativistic nuclear collisions at a beam energy of \\sqrt{{s}{NN}}=7.7 {GeV}. Using the ultra relativistic quantum molecular dynamics model as event generator we find that the centrality definition has a large effect on the extracted cumulant ratios. Furthermore we find that the finite efficiency for the determination of the centrality introduces an additional systematic uncertainty. Finally, we quantitatively investigate the effects of event-pile up and other possible spurious effects which may change the measured proton number. We find that pile-up alone is not sufficient to describe the data and show that a random double counting of events, adding significantly to the measured proton number, affects mainly the higher order cumulants in most central collisions.

  3. Relativistic stars in vector-tensor theories

    Science.gov (United States)

    Kase, Ryotaro; Minamitsuji, Masato; Tsujikawa, Shinji

    2018-04-01

    We study relativistic star solutions in second-order generalized Proca theories characterized by a U (1 )-breaking vector field with derivative couplings. In the models with cubic and quartic derivative coupling, the mass and radius of stars become larger than those in general relativity for negative derivative coupling constants. This phenomenon is mostly attributed to the increase of star radius induced by a slower decrease of the matter pressure compared to general relativity. There is a tendency that the relativistic star with a smaller mass is not gravitationally bound for a low central density and hence is dynamically unstable, but that with a larger mass is gravitationally bound. On the other hand, we show that the intrinsic vector-mode couplings give rise to general relativistic solutions with a trivial field profile, so the mass and radius are not modified from those in general relativity.

  4. Relativistic Calculations for Be-like Iron

    International Nuclear Information System (INIS)

    Yang Jianhui; Zhang Jianping; Li Ping; Li Huili

    2008-01-01

    Relativistic configuration interaction calculations for the states of 1s 2 2s 2 , 1s 2 2s3l (l = s,p,d) and 1s 2 2p3l (l = s,p,d) configurations of iron are carried out using relativistic configuration interaction (RCI) and multi-configuration Dirac-Fock (MCDF) method in the active interaction approach. In the present calculation, a large-scale configuration expansion was used in describing the target states. These results are extensively compared with other available calculative and experimental and observed values, the corresponding present results are in good agreement with experimental and observed values, and some differences are found with other available calculative values. Because more relativistic effects are considered than before, the present results should be more accurate and reliable

  5. Neutron relativistic phenomenological and microscopic optical potential

    International Nuclear Information System (INIS)

    Shen Qing-biao; Feng Da-chun; Zhuo Yi-zhong

    1991-01-01

    In this paper, both the phenomenological and microscopic neutron relativistic optical potentials are presented. The global neutron relativistic phenomenological optical potential (RPOP) based on the available experimental data for various nuclei ranging from C to U with incident energies E n =20--1000 MeV has been obtained through an automatic search of the best parameters by computer. Then the nucleon relativistic microscopic optical potential (RMOP) is studied by utilizing the effective Lagrangian based on the popular Walecka model. Through comparison between the theoretical results and experimental data we shed some insight into both the RMOP and RPOP. Further improvement concerning how to combine the phenomenological potential with the microscopic one in order to reduce the number of free parameters appearing in the RPOP is suggested

  6. Relativistic Spacecraft Propelled by Directed Energy

    Science.gov (United States)

    Kulkarni, Neeraj; Lubin, Philip; Zhang, Qicheng

    2018-04-01

    Achieving relativistic flight to enable extrasolar exploration is one of the dreams of humanity and the long-term goal of our NASA Starlight program. We derive a relativistic solution for the motion of a spacecraft propelled by radiation pressure from a directed energy (DE) system. Depending on the system parameters, low-mass spacecraft can achieve relativistic speeds, thus enabling interstellar exploration. The diffraction of the DE system plays an important role and limits the maximum speed of the spacecraft. We consider “photon recycling” as a possible method to achieving higher speeds. We also discuss recent claims that our previous work on this topic is incorrect and show that these claims arise from an improper treatment of causality.

  7. Exact quantisation of the relativistic Hopfield model

    Energy Technology Data Exchange (ETDEWEB)

    Belgiorno, F., E-mail: francesco.belgiorno@polimi.it [Dipartimento di Matematica, Politecnico di Milano, Piazza Leonardo 32, IT-20133 Milano (Italy); INdAM-GNFM (Italy); Cacciatori, S.L., E-mail: sergio.cacciatori@uninsubria.it [Department of Science and High Technology, Università dell’Insubria, Via Valleggio 11, IT-22100 Como (Italy); INFN sezione di Milano, via Celoria 16, IT-20133 Milano (Italy); Dalla Piazza, F., E-mail: f.dallapiazza@gmail.com [Università “La Sapienza”, Dipartimento di Matematica, Piazzale A. Moro 2, I-00185, Roma (Italy); Doronzo, M., E-mail: m.doronzo@uninsubria.it [Department of Science and High Technology, Università dell’Insubria, Via Valleggio 11, IT-22100 Como (Italy)

    2016-11-15

    We investigate the quantisation in the Heisenberg representation of a relativistically covariant version of the Hopfield model for dielectric media, which entails the interaction of the quantum electromagnetic field with the matter dipole fields, represented by a mesoscopic polarisation field. A full quantisation of the model is provided in a covariant gauge, with the aim of maintaining explicit relativistic covariance. Breaking of the Lorentz invariance due to the intrinsic presence in the model of a preferred reference frame is also taken into account. Relativistic covariance forces us to deal with the unphysical (scalar and longitudinal) components of the fields, furthermore it introduces, in a more tricky form, the well-known dipole ghost of standard QED in a covariant gauge. In order to correctly dispose of this contribution, we implement a generalised Lautrup trick. Furthermore, causality and the relation of the model with the Wightman axioms are also discussed.

  8. Relativistic Scott correction for atoms and molecules

    DEFF Research Database (Denmark)

    Solovej, Jan Philip; Sørensen, Thomas Østergaard; Spitzer, Wolfgang Ludwig

    2010-01-01

    We prove the first correction to the leading Thomas-Fermi energy for the ground state energy of atoms and molecules in a model where the kinetic energy of the electrons is treated relativistically. The leading Thomas-Fermi energy, established in [25], as well as the correction given here, are of ......We prove the first correction to the leading Thomas-Fermi energy for the ground state energy of atoms and molecules in a model where the kinetic energy of the electrons is treated relativistically. The leading Thomas-Fermi energy, established in [25], as well as the correction given here......, are of semiclassical nature. Our result on atoms and molecules is proved from a general semiclassical estimate for relativistic operators with potentials with Coulomb-like singularities. This semiclassical estimate is obtained using the coherent state calculus introduced in [36]. The paper contains a unified treatment...

  9. Pivotal issues on relativistic electrons in ITER

    Science.gov (United States)

    Boozer, Allen H.

    2018-03-01

    The transfer of the plasma current from thermal to relativistic electrons is a threat to ITER achieving its mission. This danger is significantly greater in the nuclear than in the non-nuclear phase of ITER operations. Two issues are pivotal. The first is the extent and duration of magnetic surface breaking in conjunction with the thermal quenches. The second is the exponential sensitivity of the current transfer to three quantities: (1) the poloidal flux change required to e-fold the number of relativistic electrons, (2) the time τa after the beginning of the thermal quench before the accelerating electric field exceeds the Connor-Hastie field for runaway, and (3) the duration of the period τ_op in which magnetic surfaces remain open. Adequate knowledge does not exist to devise a reliable strategy for the protection of ITER. Uncertainties are sufficiently large that a transfer of neither a negligible nor the full plasma current to relativistic electrons can be ruled out during the non-nuclear phase of ITER. Tritium decay can provide a sufficiently strong seed for a dangerous relativistic-electron current even if τa and τ_op are sufficiently long to avoid relativistic electrons during non-nuclear operations. The breakup of magnetic surfaces that is associated with thermal quenches occurs on a time scale associated with fast magnetic reconnection, which means reconnection at an Alfvénic rather than a resistive rate. Alfvénic reconnection is well beyond the capabilities of existing computational tools for tokamaks, but its effects can be studied using its property of conserving magnetic helicity. Although the dangers to ITER from relativistic electrons have been known for twenty years, the critical issues have not been defined with sufficient precision to formulate an effective research program. Studies are particularly needed on plasma behavior in existing tokamaks during thermal quenches, behavior which could be clarified using methods developed here.

  10. Ion acceleration from relativistic laser nano-target interaction

    International Nuclear Information System (INIS)

    Jung, Daniel

    2012-01-01

    Laser-ion acceleration has been of particular interest over the last decade for fundamental as well as applied sciences. Remarkable progress has been made in realizing laser-driven accelerators that are cheap and very compact compared with conventional rf-accelerators. Proton and ion beams have been produced with particle energies of up to 50 MeV and several MeV/u, respectively, with outstanding properties in terms of transverse emittance and current. These beams typically exhibit an exponentially decaying energy distribution, but almost all advanced applications, such as oncology, proton imaging or fast ignition, require quasimonoenergetic beams with a low energy spread. The majority of the experiments investigated ion acceleration in the target normal sheath acceleration (TNSA) regime with comparably thick targets in the μm range. In this thesis ion acceleration is investigated from nm-scaled targets, which are partially produced at the University of Munich with thickness as low as 3 nm. Experiments have been carried out at LANL's Trident high-power and high-contrast laser (80 J, 500 fs, λ=1054 nm), where ion acceleration with these nano-targets occurs during the relativistic transparency of the target, in the so-called Breakout afterburner (BOA) regime. With a novel high resolution and high dispersion Thomson parabola and ion wide angle spectrometer, thickness dependencies of the ions angular distribution, particle number, average and maximum energy have been measured. Carbon C 6+ energies reached 650 MeV and 1 GeV for unheated and heated targets, respectively, and proton energies peaked at 75 MeV and 120 MeV for diamond and CH 2 targets. Experimental data is presented, where the conversion efficiency into carbon C 6+ (protons) is investigated and found to have an up to 10fold (5fold) increase over the TNSA regime. With circularly polarized laser light, quasi-monoenergetic carbon ions have been generated from the same nm-scaled foil targets at Trident with an

  11. Ion acceleration from relativistic laser nano-target

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Daniel

    2012-01-06

    Laser-ion acceleration has been of particular interest over the last decade for fundamental as well as applied sciences. Remarkable progress has been made in realizing laser-driven accelerators that are cheap and very compact compared with conventional rf-accelerators. Proton and ion beams have been produced with particle energies of up to 50 MeV and several MeV/u, respectively, with outstanding properties in terms of transverse emittance and current. These beams typically exhibit an exponentially decaying energy distribution, but almost all advanced applications, such as oncology, proton imaging or fast ignition, require quasimonoenergetic beams with a low energy spread. The majority of the experiments investigated ion acceleration in the target normal sheath acceleration (TNSA) regime with comparably thick targets in the {mu}m range. In this thesis ion acceleration is investigated from nm-scaled targets, which are partially produced at the University of Munich with thickness as low as 3 nm. Experiments have been carried out at LANL's Trident high-power and high-contrast laser (80 J, 500 fs, {lambda}=1054 nm), where ion acceleration with these nano-targets occurs during the relativistic transparency of the target, in the so-called Breakout afterburner (BOA) regime. With a novel high resolution and high dispersion Thomson parabola and ion wide angle spectrometer, thickness dependencies of the ions angular distribution, particle number, average and maximum energy have been measured. Carbon C{sup 6+} energies reached 650 MeV and 1 GeV for unheated and heated targets, respectively, and proton energies peaked at 75 MeV and 120 MeV for diamond and CH{sub 2} targets. Experimental data is presented, where the conversion efficiency into carbon C{sup 6+} (protons) is investigated and found to have an up to 10fold (5fold) increase over the TNSA regime. With circularly polarized laser light, quasi-monoenergetic carbon ions have been generated from the same nm-scaled foil

  12. Beam dynamics simulation of a double pass proton linear accelerator

    Science.gov (United States)

    Hwang, Kilean; Qiang, Ji

    2017-04-01

    A recirculating superconducting linear accelerator with the advantage of both straight and circular accelerator has been demonstrated with relativistic electron beams. The acceleration concept of a recirculating proton beam was recently proposed [J. Qiang, Nucl. Instrum. Methods Phys. Res., Sect. A 795, 77 (2015, 10.1016/j.nima.2015.05.056)] and is currently under study. In order to further support the concept, the beam dynamics study on a recirculating proton linear accelerator has to be carried out. In this paper, we study the feasibility of a two-pass recirculating proton linear accelerator through the direct numerical beam dynamics design optimization and the start-to-end simulation. This study shows that the two-pass simultaneous focusing without particle losses is attainable including fully 3D space-charge effects through the entire accelerator system.

  13. Beam dynamics simulation of a double pass proton linear accelerator

    Directory of Open Access Journals (Sweden)

    Kilean Hwang

    2017-04-01

    Full Text Available A recirculating superconducting linear accelerator with the advantage of both straight and circular accelerator has been demonstrated with relativistic electron beams. The acceleration concept of a recirculating proton beam was recently proposed [J. Qiang, Nucl. Instrum. Methods Phys. Res., Sect. A 795, 77 (2015NIMAER0168-900210.1016/j.nima.2015.05.056] and is currently under study. In order to further support the concept, the beam dynamics study on a recirculating proton linear accelerator has to be carried out. In this paper, we study the feasibility of a two-pass recirculating proton linear accelerator through the direct numerical beam dynamics design optimization and the start-to-end simulation. This study shows that the two-pass simultaneous focusing without particle losses is attainable including fully 3D space-charge effects through the entire accelerator system.

  14. The relativistic Brownian motion: Interdisciplinary applications

    International Nuclear Information System (INIS)

    Aragones-Munoz, A; Sandoval-Villalbazo, A

    2010-01-01

    Relativistic Brownian motion theory will be applied to the study of analogies between physical and economic systems, emphasizing limiting cases in which Gaussian distributions are no longer valid. The characteristic temperatures of the particles will be associated with the concept of variance, and this will allow us to choose whether the pertinent distribution is classical or relativistic, while working specific situations. The properties of particles can be interpreted as economic variables, in order to study the behavior of markets in terms of Levy financial processes, since markets behave as stochastic systems. As far as we know, the application of the Juettner distribution to the study of economic systems is a new idea.

  15. Properties of compressible elastica from relativistic analogy.

    Science.gov (United States)

    Oshri, Oz; Diamant, Haim

    2016-01-21

    Kirchhoff's kinetic analogy relates the deformation of an incompressible elastic rod to the classical dynamics of rigid body rotation. We extend the analogy to compressible filaments and find that the extension is similar to the introduction of relativistic effects into the dynamical system. The extended analogy reveals a surprising symmetry in the deformations of compressible elastica. In addition, we use known results for the buckling of compressible elastica to derive the explicit solution for the motion of a relativistic nonlinear pendulum. We discuss cases where the extended Kirchhoff analogy may be useful for the study of other soft matter systems.

  16. Relativistic klystron research for high gradient accelerators

    International Nuclear Information System (INIS)

    Allen, M.A.; Callin, R.S.; Deruyter, H.

    1988-06-01

    Relativistic klystrons are being developed as a power source for high gradient accelerator applications which include large linear electron--positron colliders, compact accelerators, and FEL sources. We have attained 200MW peak power at 11.4 GHz from a relativistic klystron, and 140 MV/m longitudinal gradient in a short 11.4 GHz accelerator section. We report here on the design of our first klystrons, the results of our experiments so far, and some of our plans for the near future. 5 refs., 7 figs

  17. Physics with relativistic heavy-ion collisions

    Directory of Open Access Journals (Sweden)

    Dönigus Benjamin

    2015-01-01

    Full Text Available An overview is given on the experimental study of physics with relativistic heavy-ion collisions, with emphasis on recent measurements at the Large Hadron Collider (LHC and the Relativistic Heavy Ion Collider (RHIC. The focus here is laid on p–Pb collisions at the LHC and the corresponding d–Au measurements at RHIC. The topics touched are “collectivity and approach to equilibrium”, “high pT and jets”, “heavy flavour and electroweak bosons” and “search for exotic objects”.

  18. Relativistic quantum mechanics of leptons and fields

    International Nuclear Information System (INIS)

    Grandy, W.T. Jr.

    1991-01-01

    This book serves as an advanced text on the Dirac theory, and provides a monograph summarizing the description of relativistic quantum mechanics and quantum electrodynamics as classical field theories. It presents a broad, detailed, and up-to-date exposition of relativistic quantum mechanics, including the two-body problem. It also demonstrates the extent to which the behavior of stable particles and their interactions can be understood without introducing operator (second-quantized) fields. The subsequent difficulties are studied in detail and possible resolutions are presented through quantum field theory

  19. Relativistic deuteron wave function on light front

    International Nuclear Information System (INIS)

    Karmanov, V.A.

    1980-01-01

    In the framework of the one boson exchange model the approximate analytical expression for the deuteron wave function (WF) at relativistic relative momenta is obtained. WF depends on extra variable having the form of a unit vector and is determined by six functions instead of two ones (S-and D-waves) in the nonrelativistic case. At moderate momenta the WF is matched with WF in the Reid model. It is emphasized the importance of indication of the qualitative observed phenomena associated with change of parametrization and spin structure of relativistic deuteron WF

  20. Relativistic corrections to molecular dynamic dipole polarizabilities

    DEFF Research Database (Denmark)

    Kirpekar, Sheela; Oddershede, Jens; Jensen, Hans Jørgen Aagaard

    1995-01-01

    in the correlated calculations, as has also been observed for other properties. For SnH4 the correlation contribution and the pure relativistic correction are of the same order of magnitude, whereas for PbH 4 the relativistic correction becomes more important than the correlation contribution. We report estimated...... Cauchy moments, obtained from fitting the dispersion of the calculated corrections as a function of ω2. The frequency dependence of the nonrelativistic polarizability is most pronounced at the correlated level, mainly due to lower excitation energies in the multiconfigurational calculations than those...

  1. Relativistic classical limit of quantum theory

    International Nuclear Information System (INIS)

    Shin, G.R.; Rafelski, J.

    1993-01-01

    We study the classical limit of the equal-time relativistic quantum transport theory. We discuss in qualitative terms the need to fold first the Wigner function with a coarse-graining function. Only then does the singularity at ℎ→0 seem to be manageable. In the limit ℎ→0, we obtain the relativistic Vlasov equations for the particle and the antiparticle sector of the Fock space. Similarly, we address the evolution equations of the spin and the magnetic-moment density

  2. Thermodynamic equilibrium in relativistic rotating systems

    International Nuclear Information System (INIS)

    Suen, W.M.; Washington Univ., St. Louis, MO; Young, K.

    1988-01-01

    The thermodynamic equilibrium configurations of relativistic rotating stars are studied using the maximum entropy principle. It is shown that the heuristic arguments for the equilibrium conditions can be developed into a maximum entropy principle in which the variations are carried out in a fixed background spacetime. This maximum principle with the fixed background assumption is technically simpler than, but has to be justified by, a maximum entropy principle without the assumption. Such a maximum entropy principle is formulated in this paper, showing that the general relativistic system can be treated on the same footing as other long-range force systems. (author)

  3. Fermi Acceleration in driven relativistic billiards

    Energy Technology Data Exchange (ETDEWEB)

    Pinto, Rafael S., E-mail: rsoaresp@ifi.unicamp.br [Instituto de Fisica ' Gleb Wataghin' , Universidade Estadual de Campinas, 13083-970, Campinas, SP (Brazil); Letelier, Patricio S. [Departamento de Matematica Aplicada, Instituto de Matematica, Estatistica e Computacao Cientifica, Universidade Estadual de Campinas, 13083-859, Campinas, SP (Brazil)

    2011-08-29

    We show numerical experiments of driven billiards using special relativity. We have the remarkable fact that for the relativistic driven circular and annular concentric billiards, depending on initial conditions and parameters, we observe Fermi Acceleration, absent in the Newtonian case. The velocity for these cases tends to the speed of light very quickly. We find that for the annular eccentric billiard the initial velocity grows for a much longer time than the concentric annular billiard until it asymptotically reach c. -- Highlights: → Fermi Acceleration is studied for relativistic driven billiards. → We studied regular and chaotic billiards with different parameters. → Fermi Acceleration is present even for static regular billiards.

  4. Relativistic Celestial Mechanics of the Solar System

    CERN Document Server

    Kopeikin, Sergei; Kaplan, George

    2011-01-01

    This authoritative book presents the theoretical development of gravitational physics as it applies to the dynamics of celestial bodies and the analysis of precise astronomical observations. In so doing, it fills the need for a textbook that teaches modern dynamical astronomy with a strong emphasis on the relativistic aspects of the subject produced by the curved geometry of four-dimensional spacetime. The first three chapters review the fundamental principles of celestial mechanics and of special and general relativity. This background material forms the basis for understanding relativistic r

  5. Elastic proton-proton scattering at RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Yip, K.

    2011-09-03

    Here we describe elastic proton+proton (p+p) scattering measurements at RHIC in p+p collisions with a special optics run of {beta}* {approx} 21 m at STAR, at the center-of-mass energy {radical}s = 200 GeV during the last week of the RHIC 2009 run. We present preliminary results of single and double spin asymmetries.

  6. An energy principle for two-dimensional collisionless relativistic plasmas

    International Nuclear Information System (INIS)

    Otto, A.; Schindler, K.

    1984-01-01

    Using relativistic Vlasov theory an energy principle for two-dimensional plasmas is derived, which provides a sufficient and necessary criterion for the stability of relativistic plasma equilibria. This energy principle includes charge separating effects since the exact Poisson equation was taken into consideration. Applying the variational principle to the case of the relativistic plane plasma sheet, the same marginal wave length is found as in the non-relativistic case. (author)

  7. Magnetic Origin of Black Hole Winds Across the Mass Scale

    Science.gov (United States)

    Fukumura, Keigo; Kazanas, Demosthenes; Shrader, Chris; Behar, Ehud; Tombesi, Francesco; Contopoulos, Ioannis

    2017-01-01

    Black hole accretion disks appear to produce invariably plasma outflows that result in blue-shifted absorption features in their spectra. The X-ray absorption-line properties of these outflows are quite diverse, ranging in velocity from non-relativistic (approx. 300 km/sec) to sub-relativistic (approx. 0.1c where c is the speed of light) and a similarly broad range in the ionization states of the wind plasma. We report here that semi-analytic, self-similar magnetohydrodynamic (MHD) wind models that have successfully accounted for the X-ray absorber properties of supermassive black holes, also fit well the high-resolution X-ray spectrum of the accreting stellar-mass black hole, GRO J1655-40. This provides an explicit theoretical argument of their MHD origin (aligned with earlier observational claims) and supports the notion of a universal magnetic structure of the observed winds across all known black hole sizes.

  8. Proton pump inhibitors

    Science.gov (United States)

    Proton pump inhibitors (PPIs) are medicines that work by reducing the amount of stomach acid made by ... Proton pump inhibitors are used to: Relieve symptoms of acid reflux, or gastroesophageal reflux disease (GERD). This ...

  9. Strange particle correlations measured by the Star experiment in ultra-relativistic heavy ion collisions a RHIC; Etude des correlations de particules etranges mesurees par l'experience STAR dans les collisions d'ions lourds ultra-relativistes au RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Renault, G

    2004-09-01

    Non-identical correlation functions allow to study the space-time evolution of the source of particles formed in ultra-relativistic heavy ion collisions. The STAR experiment is dedicated to probe the formation of a new state of nuclear matter called Quark Gluon Plasma. The proton - lambda correlation function is supposed to be more sensitive to bigger source sizes than the proton - proton because of the absence of the final state Coulomb interaction. In this thesis, proton - lambda, anti-proton - anti-lambda, anti-proton - lambda and proton - anti-lambda correlation functions are studied in Au+Au collisions at {radical}S{sub NN} = 200 GeV using an analytical model. The proton - lambda and anti-proton - anti-lambda correlation functions exhibit the same behavior as in previous measurements. The anti-proton - lambda and proton - anti-lambda correlation functions, measured for the first time, show a very strong signal corresponding to the baryon - anti-baryon annihilation channel. Parameterizing the correlation functions has allowed to characterize final state interactions. (author)

  10. Proton: the particle.

    Science.gov (United States)

    Suit, Herman

    2013-11-01

    The purpose of this article is to review briefly the nature of protons: creation at the Big Bang, abundance, physical characteristics, internal components, and life span. Several particle discoveries by proton as the experimental tool are considered. Protons play important roles in science, medicine, and industry. This article was prompted by my experience in the curative treatment of cancer patients by protons and my interest in the nature of protons as particles. The latter has been stimulated by many discussions with particle physicists and reading related books and journals. Protons in our universe number ≈10(80). Protons were created at 10(-6) -1 second after the Big Bang at ≈1.37 × 10(10) years beforethe present. Proton life span has been experimentally determined to be ≥10(34) years; that is, the age of the universe is 10(-24)th of the minimum life span of a proton. The abundance of the elements is hydrogen, ≈74%; helium, ≈24%; and heavier atoms, ≈2%. Accordingly, protons are the dominant baryonic subatomic particle in the universe because ≈87% are protons. They are in each atom in our universe and thus involved in virtually every activity of matter in the visible universe, including life on our planet. Protons were discovered in 1919. In 1968, they were determined to be composed of even smaller particles, principally quarks and gluons. Protons have been the experimental tool in the discoveries of quarks (charm, bottom, and top), bosons (W(+), W(-), Z(0), and Higgs), antiprotons, and antineutrons. Industrial applications of protons are numerous and important. Additionally, protons are well appreciated in medicine for their role in radiation oncology and in magnetic resonance imaging. Protons are the dominant baryonic subatomic particle in the visible universe, comprising ≈87% of the particle mass. They are present in each atom of our universe and thus a participant in every activity involving matter. Copyright © 2013 Elsevier Inc. All

  11. Quantum ion-acoustic solitary waves in weak relativistic plasma

    Indian Academy of Sciences (India)

    A linear dispersion relation is also obtained taking into account the relativistic effect. The properties of quantum ion-acoustic solitary waves, obtained from the deformed KdV equation, are studied taking into account the quantum mechanical effects in the weak relativistic limit. It is found that relativistic effects significantly ...

  12. Relativistic effects in the Thomas--Fermi atom

    International Nuclear Information System (INIS)

    Waber, J.T.; Canfield, J.M.

    1975-01-01

    Two methods of applying relativistic corrections to the Thomas--Fermi atom are considered, and numerical calculations are discussed. Radial charge distributions calculated from a relativistic Thomas--Fermi equation agree in gross form with those from more complicated self-consistent calculations. Energy eigenvalues for mercury, as determined from the relativistic Thomas--Fermi solution, are compared with other calculated and experimental values

  13. Is a Relativistic Thermodynamics possible?; Es posible una Termodinamica Relativista?

    Energy Technology Data Exchange (ETDEWEB)

    Guemez, J.

    2010-07-01

    A brief historical review the literature on developing the concept of Thermodynamics Relativistic. We analyze two examples of application of the Galilean and Relativistic Thermodynamics discussed under what circumstances could build a relativistic Thermodynamics Lorentz covariant with physical sense. (Author) 19 refs.

  14. A relativistic quark–diquark model for the nucleon

    Indian Academy of Sciences (India)

    relativistic kinetic energy correction are studied. Finally, charge form factor of the model ... isfactory results for the static properties of the nucleon and of its excited states. However, relativistic versions of the ... perturbative way the kinetic energy relativistic correction that was not considered previously. Furthermore, we use a ...

  15. Search for non-relativistic magnetic monopoles with IceCube

    Science.gov (United States)

    Aartsen, M. G.; Abbasi, R.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Altmann, D.; Arguelles, C.; Arlen, T. C.; Auffenberg, J.; Bai, X.; Baker, M.; Barwick, S. W.; Baum, V.; Bay, R.; Beatty, J. J.; Becker Tjus, J.; Becker, K.-H.; Benabderrahmane, M. L.; BenZvi, S.; Berghaus, P.; Berley, D.; Bernardini, E.; Bernhard, A.; Besson, D. Z.; Binder, G.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D. J.; Bohm, C.; Bose, D.; Böser, S.; Botner, O.; Brayeur, L.; Bretz, H.-P.; Brown, A. M.; Bruijn, R.; Casey, J.; Casier, M.; Chirkin, D.; Christov, A.; Christy, B.; Clark, K.; Classen, L.; Clevermann, F.; Coenders, S.; Cohen, S.; Cowen, D. F.; Cruz Silva, A. H.; Danninger, M.; Daughhetee, J.; Davis, J. C.; Day, M.; de André, J. P. A. M.; De Clercq, C.; De Ridder, S.; Desiati, P.; de Vries, K. D.; de With, M.; DeYoung, T.; Díaz-Vélez, J. C.; Dunkman, M.; Eagan, R.; Eberhardt, B.; Eichmann, B.; Eisch, J.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fazely, A. R.; Fedynitch, A.; Feintzeig, J.; Feusels, T.; Filimonov, K.; Finley, C.; Fischer-Wasels, T.; Flis, S.; Franckowiak, A.; Frantzen, K.; Fuchs, T.; Gaisser, T. K.; Gallagher, J.; Gerhardt, L.; Gladstone, L.; Glüsenkamp, T.; Goldschmidt, A.; Golup, G.; Gonzalez, J. G.; Goodman, J. A.; Góra, D.; Grandmont, D. T.; Grant, D.; Gretskov, P.; Groh, J. C.; Groß, A.; Ha, C.; Haack, C.; Haj Ismail, A.; Hallen, P.; Hallgren, A.; Halzen, F.; Hanson, K.; Hebecker, D.; Heereman, D.; Heinen, D.; Helbing, K.; Hellauer, R.; Hickford, S.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Homeier, A.; Hoshina, K.; Huang, F.; Huelsnitz, W.; Hulth, P. O.; Hultqvist, K.; Hussain, S.; Ishihara, A.; Jacobi, E.; Jacobsen, J.; Jagielski, K.; Japaridze, G. S.; Jero, K.; Jlelati, O.; Kaminsky, B.; Kappes, A.; Karg, T.; Karle, A.; Kauer, M.; Kelley, J. L.; Kiryluk, J.; Kläs, J.; Klein, S. R.; Köhne, J.-H.; Kohnen, G.; Kolanoski, H.; Köpke, L.; Kopper, C.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Krasberg, M.; Kriesten, A.; Krings, K.; Kroll, G.; Kunnen, J.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Landsman, H.; Larson, M. J.; Lesiak-Bzdak, M.; Leuermann, M.; Leute, J.; Lünemann, J.; Macías, O.; Madsen, J.; Maggi, G.; Maruyama, R.; Mase, K.; Matis, H. S.; McNally, F.; Meagher, K.; Meli, A.; Merck, M.; Meures, T.; Miarecki, S.; Middell, E.; Milke, N.; Miller, J.; Mohrmann, L.; Montaruli, T.; Morse, R.; Nahnhauer, R.; Naumann, U.; Niederhausen, H.; Nowicki, S. C.; Nygren, D. R.; Obertacke, A.; Odrowski, S.; Olivas, A.; Omairat, A.; O'Murchadha, A.; Palczewski, T.; Paul, L.; Pepper, J. A.; Pérez de los Heros, C.; Pfendner, C.; Pieloth, D.; Pinat, E.; Posselt, J.; Price, P. B.; Przybylski, G. T.; Quinnan, M.; Rädel, L.; Rameez, M.; Rawlins, K.; Redl, P.; Reimann, R.; Resconi, E.; Rhode, W.; Ribordy, M.; Richman, M.; Riedel, B.; Robertson, S.; Rodrigues, J. P.; Rott, C.; Ruhe, T.; Ruzybayev, B.; Ryckbosch, D.; Saba, S. M.; Sander, H.-G.; Santander, M.; Sarkar, S.; Schatto, K.; Scheriau, F.; Schmidt, T.; Schmitz, M.; Schoenen, S.; Schöneberg, S.; Schönwald, A.; Schukraft, A.; Schulte, L.; Schulz, O.; Seckel, D.; Sestayo, Y.; Seunarine, S.; Shanidze, R.; Sheremata, C.; Smith, M. W. E.; Soldin, D.; Spiczak, G. M.; Spiering, C.; Stamatikos, M.; Stanev, T.; Stanisha, N. A.; Stasik, A.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Strahler, E. A.; Ström, R.; Strotjohann, N. L.; Sullivan, G. W.; Taavola, H.; Taboada, I.; Tamburro, A.; Tepe, A.; Ter-Antonyan, S.; Tešić, G.; Tilav, S.; Toale, P. A.; Tobin, M. N.; Toscano, S.; Tselengidou, M.; Unger, E.; Usner, M.; Vallecorsa, S.; van Eijndhoven, N.; van Santen, J.; Vehring, M.; Voge, M.; Vraeghe, M.; Walck, C.; Wallraff, M.; Weaver, Ch.; Wellons, M.; Wendt, C.; Westerhoff, S.; Whelan, B. J.; Whitehorn, N.; Wiebe, K.; Wiebusch, C. H.; Williams, D. R.; Wissing, H.; Wolf, M.; Wood, T. R.; Woschnagg, K.; Xu, D. L.; Xu, X. W.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zarzhitsky, P.; Ziemann, J.; Zierke, S.; Zoll, M.

    2014-07-01

    The IceCube Neutrino Observatory is a large Cherenkov detector instrumenting of Antarctic ice. The detector can be used to search for signatures of particle physics beyond the Standard Model. Here, we describe the search for non-relativistic, magnetic monopoles as remnants of the Grand Unified Theory (GUT) era shortly after the Big Bang. Depending on the underlying gauge group these monopoles may catalyze the decay of nucleons via the Rubakov-Callan effect with a cross section suggested to be in the range of to . In IceCube, the Cherenkov light from nucleon decays along the monopole trajectory would produce a characteristic hit pattern. This paper presents the results of an analysis of first data taken from May 2011 until May 2012 with a dedicated slow-particle trigger for DeepCore, a subdetector of IceCube. A second analysis provides better sensitivity for the brightest non-relativistic monopoles using data taken from May 2009 until May 2010. In both analyses no monopole signal was observed. For catalysis cross sections of the flux of non-relativistic GUT monopoles is constrained up to a level of at a 90 % confidence level, which is three orders of magnitude below the Parker bound. The limits assume a dominant decay of the proton into a positron and a neutral pion. These results improve the current best experimental limits by one to two orders of magnitude, for a wide range of assumed speeds and catalysis cross sections.

  16. Pion–nucleon correlations in finite nuclei in a relativistic framework: Effects on the shell structure

    Directory of Open Access Journals (Sweden)

    Elena Litvinova

    2016-04-01

    Full Text Available The relativistic particle-vibration coupling (RPVC model is extended by the inclusion of isospin-flip excitation modes into the phonon space, introducing a new mechanism of dynamical interaction between nucleons with different isospin in the nuclear medium. Protons and neutrons exchange by collective modes which are formed by isovector π and ρ-mesons, in turn, softened considerably because of coupling to nucleons of the medium. These modes are investigated within the proton–neutron relativistic random phase approximation (pn-RRPA and relativistic proton–neutron time blocking approximation (pn-RTBA. The appearance of isospin-flip states with sizable transition probabilities at low energies points out that they are likely to couple to the single-particle degrees of freedom and, in addition to isoscalar low-lying phonons, to modify their spectroscopic characteristics. Such a coupling is quantified for the shell structure of 100,132Sn and found significant for the location of the dominant single-particle states.

  17. Relativistic Stern-Gerlach Interaction in an RF Cavity

    Energy Technology Data Exchange (ETDEWEB)

    Conte,M.; Luccio, A. U.; Pusterla, M.

    2009-05-01

    The general expression of the Stern-Gerlach (SG) force is deduced for a relativistic charged spin-1/2 particle which travels inside a time varying magnetic field. This result was obtained either by means of two Lorentz boosts or starting from Dirac's equation. Then, the utilization of this interaction for attaining the spin states separation is reconsidered in a new example using a new radio-frequency arrangement. On the basis of the previous estimates, we feel ready to propose the time varying SG interaction as a method for attaining a spin state separation of an unpolarized beam of, say (anti)protons, since the energy of particles with opposite spin orientations will differ and beams in the two states can be separated. In a first stage of the study of a sensible practical design, we intend to proceed with numerical simulations. As a first step, we intend to verify the correctness of Eqs.(42) and (43) setting once {beta}{sub ph} = 2 and then {beta}{sub ph} = 3, in a cavity where the field line pattern can be realistically controlled. Beyond the verification of the present theory, there is also the aim of studying the effects generated by the spin precession inside the cavity, that we did not yet address in this note. Next, we shall consider a spin splitter scheme based on the lattice of an existing or planned (anti)proton ring endowed with an array of splitting cavities. The principal aim of the latter implementations is to check the mixing effect of the longitudinal phase-plane filamentation, i.e. the actual foe which could frustrate the entire spin splitting process.

  18. General-relativistic Simulations of Four States of Accretion onto Millisecond Pulsars

    Science.gov (United States)

    Parfrey, Kyle; Tchekhovskoy, Alexander

    2017-12-01

    Accreting neutron stars can power a wide range of astrophysical phenomena including short- and long-duration gamma-ray bursts, ultra-luminous X-ray sources, and X-ray binaries. Numerical simulations are a valuable tool for studying the accretion-disk–magnetosphere interaction that is central to these problems, most clearly for the recently discovered transitional millisecond pulsars. However, magnetohydrodynamic (MHD) methods, widely used for simulating accretion, have difficulty in highly magnetized stellar magnetospheres, while force-free methods, suitable for such regions, cannot include the accreting gas. We present an MHD method that can stably evolve essentially force-free, highly magnetized regions, and describe the first time-dependent relativistic simulations of magnetized accretion onto millisecond pulsars. Our axisymmetric general-relativistic MHD simulations for the first time demonstrate how the interaction of a turbulent accretion flow with a pulsar’s electromagnetic wind can lead to the transition of an isolated pulsar to the accreting state. This transition naturally leads to the formation of relativistic jets, whose power can greatly exceed the power of the isolated pulsar’s wind. If the accretion rate is below a critical value, the pulsar instead expels the accretion stream. More generally, our simulations produce for the first time the four possible accretion regimes, in order of decreasing mass accretion rate: (a) crushed magnetosphere and direct accretion; (b) magnetically channeled accretion onto the stellar poles; (c) the propeller state, where material enters through the light cylinder but is prevented from accreting by the centrifugal barrier; (d) almost perfect exclusion of the accretion flow from the light cylinder by the pulsar wind.

  19. Proton radioactivity within a generalized liquid drop model

    Science.gov (United States)

    Dong, J. M.; Zhang, H. F.; Royer, G.

    2009-05-01

    The proton radioactivity half-lives of spherical proton emitters are investigated theoretically. The potential barriers preventing the emission of protons are determined in the quasimolecular shape path within a generalized liquid drop model (GLDM) including the proximity effects between nuclei in a neck and the mass and charge asymmetry. The penetrability is calculated with the WKB approximation. The spectroscopic factor has been taken into account in half-life calculation, which is obtained by employing the relativistic mean field (RMF) theory combined with the BCS method with the force NL3. The half-lives within the GLDM are compared with the experimental data and other theoretical values. The GLDM works quite well for spherical proton emitters when the spectroscopic factors are considered, indicating the necessity of introducing the spectroscopic factor and the success of the GLDM for proton emission. Finally, we present two formulas for proton emission half-life calculation similar to the Viola-Seaborg formulas and Royer's formulas of α decay.

  20. Localization and causality in relativistic quantum mechanics

    International Nuclear Information System (INIS)

    Perez, J.F.; Wilde, I.F.

    It is shown that in relativistic quantum mechanics there is no criterion for the strict localization of a state in a bounded space-time region compatible with causality, translation covariance and the spectral condition (or positivity of energy together with Lorentz covariance) [pt

  1. Introduction to impedance for short relativistic bunches

    International Nuclear Information System (INIS)

    Morton, P.L.

    1993-02-01

    The purpose of this paper is to introduce the concept of impedance to calculate the wake field forces left behind by a short bunch which travels at relativistic speed through a structure with discontinuities. We will try to be as intuitive as possible and leave the more rigorous derivations to the second paper on this subject by J. Wang

  2. Production of hypernuclei in relativistic ion beams

    International Nuclear Information System (INIS)

    Bando, H.; Sano, M.; Wakai, M.; Zofka, J.

    1988-05-01

    The hypernuclear formation in collisions of relativistic beams of 4 He, 7 Li, 12 C and 19 F with target of 12 C is calculated at energies used in the recent Dubna experiment. The hyperfragments optimal for observation are pointed out and the secondary (π + K + ) formation is evaluated and found to be nonnegligible. (author)

  3. Relativistic rapprochement of electromagnetic and strong interactions

    International Nuclear Information System (INIS)

    Strel'tsov, V.N.

    1995-01-01

    On the basis of the Lienard-Wiechert potential and the relativistic Yukawa potential it is shown that the corresponding interactions with velocity growth increase differently (the electromagnetic one increases faster). According to preliminary estimations they are equivalent, at distances of the 'action radius' of nuclear forces, at γ≅ 960, where γ is the Lorentz factor. 2 refs

  4. Relativistic magnetohydrodynamics as a Hamiltonian system

    International Nuclear Information System (INIS)

    Holm, D.D.; Kupershmidt, A.

    1985-01-01

    The equations of ideal relativistic magnetohydrodynamics in the laboratory frame form a noncanonical Hamiltonian system with the same Poisson bracket as for the nonrelativistic system, but with dynamical variables and Hamiltonian obtained via a regular deformation of their nonrelativistic counterparts [fr

  5. Radiatively-driven general relativistic jets

    Indian Academy of Sciences (India)

    ... around black holes and obtain jets with moderately relativistic terminal speeds. In addition, the radiation field from the accretion disc, is able to induce internal shocks in the jet close to the horizon. Under combinedeffect of thermal as well as radiative driving, terminal speeds up to 0.75 (units of light speed) are obtained.

  6. New interior solution describing relativistic fluid sphere

    Indian Academy of Sciences (India)

    General relativity; exact solution; embedding class I; anisotropy; compact star. Abstract. Anewexact solution of embedding class I is presented for a relativistic anisotropicmassive fluid sphere. The new exact solution satisfies Karmarkar condition, is well-behaved in all respects, and therefore is suitable for the modelling of ...

  7. Detector issues for relativistic heavy ion experimentation

    International Nuclear Information System (INIS)

    Gordon, H.

    1986-04-01

    Several aspects of experiments using relativistic heavy ion beams are discussed. The problems that the current generation of light ion experiments would face in using gold beams are noted. A brief review of colliding beam experiments for heavy ion beams is contrasted with requirements for SSC detectors. 11 refs., 13 figs

  8. Detectors for relativistic heavy-ion experiments

    International Nuclear Information System (INIS)

    Braun-Munzinger, P.; Cleland, W.; Young, G.R.

    1989-04-01

    We present in some detail an overview of the detectors currently used in relativistic heavy-ion research at the BNL AGS and the CERN SPS. Following that, a detailed list of RandD projects is given, including specific areas of work which need to be addressed in preparation for further experiments at the AGS and SPS for the upcoming experiments at RHIC

  9. New interior solution describing relativistic fluid sphere

    Indian Academy of Sciences (India)

    Anewexact solution of embedding class I is presented for a relativistic anisotropicmassive fluid sphere. The new exact solution satisfies Karmarkar condition, is well-behaved in all respects, and therefore is suitable for the modelling of superdense stars. Consequently, using this solution, we have studied in detail two ...

  10. Quantum correlation with moving beamsplitters in relativistic ...

    Indian Academy of Sciences (India)

    ... Lecture Workshops · Refresher Courses · Symposia · Live Streaming. Home; Journals; Pramana – Journal of Physics; Volume 59; Issue 2. Quantum correlation with moving beamsplitters in relativistic configuration. André Stefanov Hugo Zbinden Nicolas Gisin Antoine Suarez. Volume 59 Issue 2 August 2002 pp 181-188 ...

  11. Strong-coupling diffusion in relativistic systems

    Indian Academy of Sciences (India)

    hanced values needed to interpret the data at higher energies point towards the importance of strong-coupling effects. ... when all secondary particles have been created. For short times in the initial phase ... It is decisive for a proper representation of the available data for relativistic heavy-ion collisions at and beyond SPS.

  12. Electromagnetic processes in relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Bertulani, C.A.; Rio de Janeiro Univ.

    1987-05-01

    A study of the processes generated by the electromagnetic interaction in relativistic nuclear, and atomic collisions is presented. Very strong electromagnetic fields for a very short time are present in distant collisions with no nuclear contact. Such fields can also lead to interesting effects, which are discussed here. (orig.)

  13. Strong-coupling diffusion in relativistic systems

    Indian Academy of Sciences (India)

    FPE) in rapidity space analytically for the case of a time-dependent diffusion coefficient. The solutions represent SPS data for 158 A•GeV/c Pb+Pb very well. With the dependence of the rapidity relaxation coeffi- cients on the available relativistic ...

  14. Relativistic heavy ions a brief look

    CERN Document Server

    Darriulat, Pierre

    2003-01-01

    A brief and elementary presentation is made of the main recent achievements in the field of relativistic heavy ion collisions at RHIC and at CERN with the aim of conveying to an audience of nonspecialists some of the excitement that they have generated.

  15. RELATIVISTIC HEAVY ION PHYSICS: A THEORETICAL OVERVIEW.

    Energy Technology Data Exchange (ETDEWEB)

    KHARZEEV,D.

    2004-03-28

    This is a mini-review of recent theoretical work in the field of relativistic heavy ion physics. The following topics are discussed initial conditions and the Color Glass Condensate; approach to thermalization and the hydrodynamic evolution; hard probes and the properties of the Quark-Gluon Plasma. Some of the unsolved problems and potentially promising directions for future research are listed as well.

  16. Relativistic quantum correlations in bipartite fermionic states

    Indian Academy of Sciences (India)

    2016-09-21

    Sep 21, 2016 ... Relativistic quantum correlations in bipartite fermionic states. S KHAN1,∗ and N A KHAN2. 1Department of Physics, COMSATS Institute of Information Technology, Park Road, Tarlai Kalan 45550,. Islamabad, Pakistan. 2CFP and Departamento de Física, Faculdade de Ciências, Universidade do Porto, ...

  17. General relativity and relativistic astrophysics. Second edition

    International Nuclear Information System (INIS)

    Straumann, N.

    1984-01-01

    This book discusses general relativity and relativistic astrophysics. It is written in three parts. Part I develops the mathematical tools used in the general theory of relativity, Part II develops the general theory of relativity along traditional lines, and Part III treats aspects of the physics of compact objects

  18. Global existence proof for relativistic Boltzmann equation

    International Nuclear Information System (INIS)

    Dudynski, M.; Ekiel-Jezewska, M.L.

    1992-01-01

    The existence and causality of solutions to the relativistic Boltzmann equation in L 1 and in L loc 1 are proved. The solutions are shown to satisfy physically natural a priori bounds, time-independent in L 1 . The results rely upon new techniques developed for the nonrelativistic Boltzmann equation by DiPerna and Lions

  19. Relativistic atomic physics at the SSC

    International Nuclear Information System (INIS)

    1990-01-01

    This report discusses the following proposed work for relativistic atomic physics at the Superconducting Super Collider: Beam diagnostics; atomic physics research; staffing; education; budget information; statement concerning matching funds; description and justification of major items of equipment; statement of current and pending support; and assurance of compliance

  20. Study of quantum spin correlations of relativistic electron pairs - Testing nonlocality of relativistic quantum mechanics

    International Nuclear Information System (INIS)

    Bodek, K.; Rozpędzik, D.; Zejma, J.; Caban, P.; Rembieliński, J.; Włodarczyk, M.; Ciborowski, J.; Enders, J.; Köhler, A.; Kozela, A.

    2013-01-01

    The Polish-German project QUEST aims at studying relativistic quantum spin correlations of the Einstein-Rosen-Podolsky-Bohm type, through measurement of the correlation function and the corresponding probabilities for relativistic electron pairs. The results will be compared to theoretical predictions obtained by us within the framework of relativistic quantum mechanics, based on assumptions regarding the form of the relativistic spin operator. Agreement or divergence will be interpreted in the context of non-uniqueness of the relativistic spin operator in quantum mechanics as well as dependence of the correlation function on the choice of observables representing the spin. Pairs of correlated electrons will originate from the Mo/ller scattering of polarized 15 MeV electrons provided by the superconducting Darmstadt electron linear accelerator S-DALINAC, TU Darmstadt, incident on a Be target. Spin projections will be determined using the Mott polarimetry technique. Measurements (starting 2013) are planned for longitudinal and transverse beam polarizations and different orientations of the beam polarization vector w.r.t. the Mo/ller scattering plane. This is the first project to study relativistic spin correlations for particles with mass

  1. Structure and thermodynamic properties of relativistic electron gases.

    Science.gov (United States)

    Liu, Yu; Wu, Jianzhong

    2014-07-01

    Relativistic effect is important in many quantum systems but theoretically complicated from both fundamental and practical perspectives. Herein we introduce an efficient computational procedure to predict the structure and energetic properties of relativistic quantum systems by mapping the Pauli principle into an effective pairwise-additive potential such that the properties of relativistic nonquantum systems can be readily predicted from conventional liquid-state methods. We applied our theoretical procedure to relativistic uniform electron gases and compared the pair correlation functions with those for systems of nonrelativistic electrons. A simple analytical expression has been developed to correlate the exchange-correlation free energy of relativistic uniform electron systems.

  2. Proton therapy physics

    CERN Document Server

    2012-01-01

    Proton Therapy Physics goes beyond current books on proton therapy to provide an in-depth overview of the physics aspects of this radiation therapy modality, eliminating the need to dig through information scattered in the medical physics literature. After tracing the history of proton therapy, the book summarizes the atomic and nuclear physics background necessary for understanding proton interactions with tissue. It describes the physics of proton accelerators, the parameters of clinical proton beams, and the mechanisms to generate a conformal dose distribution in a patient. The text then covers detector systems and measuring techniques for reference dosimetry, outlines basic quality assurance and commissioning guidelines, and gives examples of Monte Carlo simulations in proton therapy. The book moves on to discussions of treatment planning for single- and multiple-field uniform doses, dose calculation concepts and algorithms, and precision and uncertainties for nonmoving and moving targets. It also exami...

  3. Spherical proton emitters

    International Nuclear Information System (INIS)

    Berg, S.; Semmes, P.B.; Nazarewicz, W.

    1997-01-01

    Various theoretical approaches to proton emission from spherical nuclei are investigated, and it is found that all the methods employed give very similar results. The calculated decay widths are found to be qualitatively insensitive to the parameters of the proton-nucleus potential, i.e., changing the potential parameters over a fairly large range typically changes the decay width by no more than a factor of ∼3. Proton half-lives of observed heavy proton emitters are, in general, well reproduced by spherical calculations with the spectroscopic factors calculated in the independent quasiparticle approximation. The quantitative agreement with experimental data obtained in our study requires that the parameters of the proton-nucleus potential be chosen carefully. It also suggests that deformed proton emitters will provide invaluable spectroscopic information on the angular momentum decomposition of single-proton orbitals in deformed nuclei. copyright 1997 The American Physical Society

  4. Wind energy

    CERN Document Server

    Woll, Kris

    2016-01-01

    Across the country, huge open spaces are covered in gently turning wind turbines. In Wind Energy, explore how these machines generate electricity, learn about the history of wind power, and discover the latest advances in the field. Easy-to-read text, vivid images, and helpful back matter give readers a clear look at this subject. Features include a table of contents, infographics, a glossary, additional resources, and an index. Aligned to Common Core Standards and correlated to state standards. Core Library is an imprint of Abdo Publishing, a division of ABDO.

  5. Spatial Extent of Relativistic Electron Precipitation from the Radiation Belts

    Science.gov (United States)

    Shekhar, Sapna

    Relativistic Electron Precipitation (REP) in the atmosphere can contribute signi- cantly to electron loss from the outer radiation belts. In order to estimate the contribution to this loss, it is important to estimate the spatial extent of the precipitation region. We observed REP with the 0° Medium Energy Proton Electron Detector (MEPED) on board Polar Orbiting Environmental Satellites (POES), for 15 years (2000-2014) and used both single and multi satellite measurements to estimate an average extent of the region of precipitation in L shell and Magnetic Local Time. In the duration of 15 years (2000-2014), 31035 REPs were found in this study. Events were found to split into two classes; one class of events coincided with proton precipitation in the P1 channel (30-80 keV), were located in the dusk and early morning sector, and were more localized in L shell and magnetic local time (dMLT 0-3 hrs, dL 0.25-0.5),whereas the other class of events did not include proton precipitation, and were located mostly in the midnight sector and were wider in L shell (dL 1-2.5) but localized in MLT (dMLT 0-3 hrs); both classes occurred mostly during the declining phase of the solar cycle and geomagnetically active times. The events located in the midnight sector for both classes were found to be associated with tail magnetic field stretching which could be due to the fact that they tend to occur mostly during geomagnetically active times, or could imply that precipitation is caused by current sheet scattering. Use of POES to infer information about the precipitation energy spectrum was also investigated, despite the coarse energy channels and contamination issues. In order to study the energy specicity of the REP events, a method to t exponential spectra to the REP events, wherever possible, was formulated and validated through comparisons with SAMPEX observed spectra. 18 events on POES were found to be in conjunction with SAMPEX in the years 2000-04. The exponentially tted

  6. Leading order relativistic chiral nucleon-nucleon interaction

    Science.gov (United States)

    Ren, Xiu-Lei; Li, Kai-Wen; Geng, Li-Sheng; Long, Bingwei; Ring, Peter; Meng, Jie

    2018-01-01

    Motivated by the successes of relativistic theories in studies of atomic/molecular and nuclear systems and the need for a relativistic chiral force in relativistic nuclear structure studies, we explore a new relativistic scheme to construct the nucleon-nucleon interaction in the framework of covariant chiral effective field theory. The chiral interaction is formulated up to leading order with covariant power counting and a Lorentz invariant chiral Lagrangian. We find that the relativistic scheme induces all six spin operators needed to describe the nuclear force. A detailed investigation of the partial wave potentials shows a better description of the {}1S0 and {}3P0 phase shifts than the leading order Weinberg approach, and similar to that of the next-to-leading order Weinberg approach. For the other partial waves with angular momenta J≥slant 1, the relativistic results are almost the same as their leading order non-relativistic counterparts. )

  7. Towards Extreme Field Physics: Relativistic Optics and Particle Acceleration in the Transparent-Overdense Regime

    Science.gov (United States)

    Hegelich, B. Manuel

    2011-10-01

    A steady increase of on-target laser intensity with also increasing pulse contrast is leading to light-matter interactions of extreme laser fields with matter in new physics regimes which in turn enable a host of applications. A first example is the realization of interactions in the transperent-overdense regime (TOR), which is reached by interacting a highly relativistic (a0 >10), ultra high contrast laser pulse [1] with a solid density target, turning it transparent to the laser by the relativistic mass increase of the electrons. Thus, the interactions becomes volumetric, increasing the energy coupling from laser to plasma, facilitating a range of effects, including relativistic optics and pulse shaping, mono-energetic electron acceleration [3], highly efficient ion acceleration in the break-out afterburner regime [4], and the generation of relativistic and forward directed surface harmonics. Experiments at the LANL 130TW Trident laser facility successfully reached the TOR, and show relativistic pulse shaping beyond the Fourier limit, the acceleration of mono-energetic ~40 MeV electron bunches from solid targets, forward directed coherent relativistic high harmonic generation >1 keV Break-Out Afterburner (BOA) ion acceleration of Carbon to >1 GeV and Protons to >100 MeV. Carbon ions were accelerated with a conversion efficiency of >10% for ions >20 MeV and monoenergetic carbon ions with an energy spread of ICF diagnostics over ion fast ignition to medical physics. Furthermore, TOR targets traverse a wide range of HEDP parameter space during the interaction ranging from WDM conditions (e.g. brown dwarfs) to energy densities of ~1011 J/cm3 at peak, then dropping back to the underdense but extremely hot parameter range of gamma-ray bursts. Whereas today this regime can only be accessed on very few dedicated facilities, employing special targets and pulse cleaning technology, the next generation of laser facilities will operate in this regime by default, turning its

  8. Electron, proton, neutron as spheroidical particles

    International Nuclear Information System (INIS)

    Bagge, E.R.

    1993-01-01

    It is shown that it is possible to describe the electron and the proton at rest within the framework of Dirac's relativistic theory of particles as electro-magnetic stable, spheroidal particles like balloons with very thin envelopes. Their properties, especially their spins and their magnetic momenta, are exactly those, which have been measured at first and later on derived by Dirac. In this picture the neutron plays the role of a system of two concentric and synchronically rotating balloons with a small distance between them at a positive energetic minimum of balance at 1.26 MeV. The magnetic moment of this particle has a negative sign and is of the correct size. (orig.)

  9. The ionisation loss of relativistic charged particles in thin gas samples and its use for particle identification. I

    International Nuclear Information System (INIS)

    Cobb, J.H.; Allison, W.W.M.; Bunch, J.N.

    1976-01-01

    A brief review shows a significant discrepancy between available data and theoretical predictions on the ionisation loss of charged particles in thin gas-filled proportional counters. The discrepancy related both to the increase of the most probable loss at relativistic velocities (relativistic rise) and to the spectrum of such losses at a given velocity (the Landau distribution). The origin of this relativistic rise is discussed in simple terms and related to the phenomena of transition radiation and Cherenkov radiation. It is shown that the failure of the prediction is due to the small number of ionising collisions in a gas. This problem is overcome by using a Monte Carlo method rather than a continuous integral over the spectrum of single collision processes. A specific mode of the atomic form factors is used with a modified Born approximation to yield the differential cross sections needed for the calculation. The new predictions give improved agreement with experiment and are used to investigate the problem of identifying particles of known momenta in the relativistic region. It is shown that by measuring the ionisation loss of each particle several hundred times over 5m or more, kaon, pion and proton separation with good confidence level may be achieved. Many gases are considered and a comparison is made. The results are also compared with the velocity resolution achievable by measuring primary ionisation. (Auth.)

  10. World Wind

    Data.gov (United States)

    National Aeronautics and Space Administration — World Wind allows any user to zoom from satellite altitude into any place on Earth, leveraging high resolution LandSat imagery and SRTM elevation data to experience...

  11. Numerical investigation of kinetic turbulence in relativistic pair plasmas - I. Turbulence statistics

    Science.gov (United States)

    Zhdankin, Vladimir; Uzdensky, Dmitri A.; Werner, Gregory R.; Begelman, Mitchell C.

    2018-02-01

    We describe results from particle-in-cell simulations of driven turbulence in collisionless, magnetized, relativistic pair plasma. This physical regime provides a simple setting for investigating the basic properties of kinetic turbulence and is relevant for high-energy astrophysical systems such as pulsar wind nebulae and astrophysical jets. In this paper, we investigate the statistics of turbulent fluctuations in simulations on lattices of up to 10243 cells and containing up to 2 × 1011 particles. Due to the absence of a cooling mechanism in our simulations, turbulent energy dissipation reduces the magnetization parameter to order unity within a few dynamical times, causing turbulent motions to become sub-relativistic. In the developed stage, our results agree with predictions from magnetohydrodynamic turbulence phenomenology at inertial-range scales, including a power-law magnetic energy spectrum with index near -5/3, scale-dependent anisotropy of fluctuations described by critical balance, lognormal distributions for particle density and internal energy density (related by a 4/3 adiabatic index, as predicted for an ultra-relativistic ideal gas), and the presence of intermittency. We also present possible signatures of a kinetic cascade by measuring power-law spectra for the magnetic, electric and density fluctuations at sub-Larmor scales.

  12. Destination Universe: The Incredible Journey of a Proton in the Large Hadron Collider (English version)

    CERN Multimedia

    Lefevre, C

    2008-01-01

    This brochure illustrates the incredible journey of a proton as he winds his way through the CERN accelerator chain and ends up inside the Large Hadron Collider (LHC). The LHC is CERN's flagship particle accelerator which can collide protons together at close to the speed of light, creating circumstances like those just seconds after the Big Bang.

  13. Destination Universe: The Incredible Journey of a Proton in the Large Hadron Collider

    CERN Multimedia

    Lefevre, C

    2008-01-01

    This brochure illustrates the incredible journey of a proton as he winds his way through the CERN accelerator chain and ends up inside the Large Hadron Collider (LHC). The LHC is CERN's flagship particle accelerator which can collide protons together at close to the speed of light, creating circumstances like those just seconds after the Big Bang.

  14. Beam-energy dependence of the directed flow of protons, antiprotons, and pions in Au+Au collisions.

    Science.gov (United States)

    Adamczyk, L; Adkins, J K; Agakishiev, G; Aggarwal, M M; Ahammed, Z; Alekseev, I; Alford, J; Anson, C D; Aparin, A; Arkhipkin, D; Aschenauer, E C; Averichev, G S; Banerjee, A; Beavis, D R; Bellwied, R; Bhasin, A; Bhati, A K; Bhattarai, P; Bichsel, H; Bielcik, J; Bielcikova, J; Bland, L C; Bordyuzhin, I G; Borowski, W; Bouchet, J; Brandin, A V; Brovko, S G; Bültmann, S; Bunzarov, I; Burton, T P; Butterworth, J; Caines, H; Calderón de la Barca Sánchez, M; Cebra, D; Cendejas, R; Cervantes, M C; Chaloupka, P; Chang, Z; Chattopadhyay, S; Chen, H F; Chen, J H; Chen, L; Cheng, J; Cherney, M; Chikanian, A; Christie, W; Chwastowski, J; Codrington, M J M; Contin, G; Cramer, J G; Crawford, H J; Cui, X; Das, S; Davila Leyva, A; De Silva, L C; Debbe, R R; Dedovich, T G; Deng, J; Derevschikov, A A; Derradi de Souza, R; Dhamija, S; di Ruzza, B; Didenko, L; Dilks, C; Ding, F; Djawotho, P; Dong, X; Drachenberg, J L; Draper, J E; Du, C M; Dunkelberger, L E; Dunlop, J C; Efimov, L G; Engelage, J; Engle, K S; Eppley, G; Eun, L; Evdokimov, O; Eyser, O; Fatemi, R; Fazio, S; Fedorisin, J; Filip, P; Finch, E; Fisyak, Y; Flores, C E; Gagliardi, C A; Gangadharan, D R; Garand, D; Geurts, F; Gibson, A; Girard, M; Gliske, S; Greiner, L; Grosnick, D; Gunarathne, D S; Guo, Y; Gupta, A; Gupta, S; Guryn, W; Haag, B; Hamed, A; Han, L-X; Haque, R; Harris, J W; Heppelmann, S; Hirsch, A; Hoffmann, G W; Hofman, D J; Horvat, S; Huang, B; Huang, H Z; Huang, X; Huck, P; Humanic, T J; Igo, G; Jacobs, W W; Jang, H; Judd, E G; Kabana, S; Kalinkin, D; Kang, K; Kauder, K; Ke, H W; Keane, D; Kechechyan, A; Kesich, A; Khan, Z H; Kikola, D P; Kisel, I; Kisiel, A; Koetke, D D; Kollegger, T; Konzer, J; Koralt, I; Kotchenda, L; Kraishan, A F; Kravtsov, P; Krueger, K; Kulakov, I; Kumar, L; Kycia, R A; Lamont, M A C; Landgraf, J M; Landry, K D; Lauret, J; Lebedev, A; Lednicky, R; Lee, J H; Levine, M J; Li, C; Li, W; Li, X; Li, X; Li, Y; Li, Z M; Lisa, M A; Liu, F; Ljubicic, T; Llope, W J; Lomnitz, M; Longacre, R S; Luo, X; Ma, G L; Ma, Y G; Madagodagettige Don, D M M D; Mahapatra, D P; Majka, R; Margetis, S; Markert, C; Masui, H; Matis, H S; McDonald, D; McShane, T S; Minaev, N G; Mioduszewski, S; Mohanty, B; Mondal, M M; Morozov, D A; Mustafa, M K; Nandi, B K; Nasim, Md; Nayak, T K; Nelson, J M; Nigmatkulov, G; Nogach, L V; Noh, S Y; Novak, J; Nurushev, S B; Odyniec, G; Ogawa, A; Oh, K; Ohlson, A; Okorokov, V; Oldag, E W; Olvitt, D L; Pachr, M; Page, B S; Pal, S K; Pan, Y X; Pandit, Y; Panebratsev, Y; Pawlak, T; Pawlik, B; Pei, H; Perkins, C; Peryt, W; Pile, P; Planinic, M; Pluta, J; Poljak, N; Porter, J; Poskanzer, A M; Pruthi, N K; Przybycien, M; Pujahari, P R; Putschke, J; Qiu, H; Quintero, A; Ramachandran, S; Raniwala, R; Raniwala, S; Ray, R L; Riley, C K; Ritter, H G; Roberts, J B; Rogachevskiy, O V; Romero, J L; Ross, J F; Roy, A; Ruan, L; Rusnak, J; Rusnakova, O; Sahoo, N R; Sahu, P K; Sakrejda, I; Salur, S; Sandweiss, J; Sangaline, E; Sarkar, A; Schambach, J; Scharenberg, R P; Schmah, A M; Schmidke, W B; Schmitz, N; Seger, J; Seyboth, P; Shah, N; Shahaliev, E; Shanmuganathan, P V; Shao, M; Sharma, B; Shen, W Q; Shi, S S; Shou, Q Y; Sichtermann, E P; Singaraju, R N; Skoby, M J; Smirnov, D; Smirnov, N; Solanki, D; Sorensen, P; Spinka, H M; Srivastava, B; Stanislaus, T D S; Stevens, J R; Stock, R; Strikhanov, M; Stringfellow, B; Sumbera, M; Sun, X; Sun, X M; Sun, Y; Sun, Z; Surrow, B; Svirida, D N; Symons, T J M; Szelezniak, M A; Takahashi, J; Tang, A H; Tang, Z; Tarnowsky, T; Thomas, J H; Timmins, A R; Tlusty, D; Tokarev, M; Trentalange, S; Tribble, R E; Tribedy, P; Trzeciak, B A; Tsai, O D; Turnau, J; Ullrich, T; Underwood, D G; Van Buren, G; van Nieuwenhuizen, G; Vandenbroucke, M; Vanfossen, J A; Varma, R; Vasconcelos, G M S; Vasiliev, A N; Vertesi, R; Videbæk, F; Viyogi, Y P; Vokal, S; Vossen, A; Wada, M; Wang, F; Wang, G; Wang, H; Wang, J S; Wang, X L; Wang, Y; Wang, Y; Webb, G; Webb, J C; Westfall, G D; Wieman, H; Wissink, S W; Witt, R; Wu, Y F; Xiao, Z; Xie, W; Xin, K; Xu, H; Xu, J; Xu, N; Xu, Q H; Xu, Y; Xu, Z; Yan, W; Yang, C; Yang, Y; Yang, Y; Ye, Z; Yepes, P; Yi, L; Yip, K; Yoo, I-K; Yu, N; Zawisza, Y; Zbroszczyk, H; Zha, W; Zhang, J B; Zhang, J L; Zhang, S; Zhang, X P; Zhang, Y; Zhang, Z P; Zhao, F; Zhao, J; Zhong, C; Zhu, X; Zhu, Y H; Zoulkarneeva, Y; Zyzak, M

    2014-04-25

    Rapidity-odd directed flow (v1) measurements for charged pions, protons, and antiprotons near midrapidity (y=0) are reported in sNN=7.7, 11.5, 19.6, 27, 39, 62.4, and 200 GeV Au+Au collisions as recorded by the STAR detector at the Relativistic Heavy Ion Collider. At intermediate impact parameters, the proton and net-proton slope parameter dv1/dy|y=0 shows a minimum between 11.5 and 19.6 GeV. In addition, the net-proton dv1/dy|y=0 changes sign twice between 7.7 and 39 GeV. The proton and net-proton results qualitatively resemble predictions of a hydrodynamic model with a first-order phase transition from hadronic matter to deconfined matter, and differ from hadronic transport calculations.

  15. Beam-Energy Dependence of the Directed Flow of Protons, Antiprotons, and Pions in Au+Au Collisions

    Science.gov (United States)

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Alekseev, I.; Alford, J.; Anson, C. D.; Aparin, A.; Arkhipkin, D.; Aschenauer, E. C.; Averichev, G. S.; Banerjee, A.; Beavis, D. R.; Bellwied, R.; Bhasin, A.; Bhati, A. K.; Bhattarai, P.; Bichsel, H.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Bordyuzhin, I. G.; Borowski, W.; Bouchet, J.; Brandin, A. V.; Brovko, S. G.; Bültmann, S.; Bunzarov, I.; Burton, T. P.; Butterworth, J.; Caines, H.; Calderón de la Barca Sánchez, M.; Cebra, D.; Cendejas, R.; Cervantes, M. C.; Chaloupka, P.; Chang, Z.; Chattopadhyay, S.; Chen, H. F.; Chen, J. H.; Chen, L.; Cheng, J.; Cherney, M.; Chikanian, A.; Christie, W.; Chwastowski, J.; Codrington, M. J. M.; Contin, G.; Cramer, J. G.; Crawford, H. J.; Cui, X.; Das, S.; Davila Leyva, A.; De Silva, L. C.; Debbe, R. R.; Dedovich, T. G.; Deng, J.; Derevschikov, A. A.; Derradi de Souza, R.; Dhamija, S.; di Ruzza, B.; Didenko, L.; Dilks, C.; Ding, F.; Djawotho, P.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Du, C. M.; Dunkelberger, L. E.; Dunlop, J. C.; Efimov, L. G.; Engelage, J.; Engle, K. S.; Eppley, G.; Eun, L.; Evdokimov, O.; Eyser, O.; Fatemi, R.; Fazio, S.; Fedorisin, J.; Filip, P.; Finch, E.; Fisyak, Y.; Flores, C. E.; Gagliardi, C. A.; Gangadharan, D. R.; Garand, D.; Geurts, F.; Gibson, A.; Girard, M.; Gliske, S.; Greiner, L.; Grosnick, D.; Gunarathne, D. S.; Guo, Y.; Gupta, A.; Gupta, S.; Guryn, W.; Haag, B.; Hamed, A.; Han, L.-X.; Haque, R.; Harris, J. W.; Heppelmann, S.; Hirsch, A.; Hoffmann, G. W.; Hofman, D. J.; Horvat, S.; Huang, B.; Huang, H. Z.; Huang, X.; Huck, P.; Humanic, T. J.; Igo, G.; Jacobs, W. W.; Jang, H.; Judd, E. G.; Kabana, S.; Kalinkin, D.; Kang, K.; Kauder, K.; Ke, H. W.; Keane, D.; Kechechyan, A.; Kesich, A.; Khan, Z. H.; Kikola, D. P.; Kisel, I.; Kisiel, A.; Koetke, D. D.; Kollegger, T.; Konzer, J.; Koralt, I.; Kotchenda, L.; Kraishan, A. F.; Kravtsov, P.; Krueger, K.; Kulakov, I.; Kumar, L.; Kycia, R. A.; Lamont, M. A. C.; Landgraf, J. M.; Landry, K. D.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, J. H.; LeVine, M. J.; Li, C.; Li, W.; Li, X.; Li, X.; Li, Y.; Li, Z. M.; Lisa, M. A.; Liu, F.; Ljubicic, T.; Llope, W. J.; Lomnitz, M.; Longacre, R. S.; Luo, X.; Ma, G. L.; Ma, Y. G.; Madagodagettige Don, D. M. M. D.; Mahapatra, D. P.; Majka, R.; Margetis, S.; Markert, C.; Masui, H.; Matis, H. S.; McDonald, D.; McShane, T. S.; Minaev, N. G.; Mioduszewski, S.; Mohanty, B.; Mondal, M. M.; Morozov, D. A.; Mustafa, M. K.; Nandi, B. K.; Nasim, Md.; Nayak, T. K.; Nelson, J. M.; Nigmatkulov, G.; Nogach, L. V.; Noh, S. Y.; Novak, J.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Oh, K.; Ohlson, A.; Okorokov, V.; Oldag, E. W.; Olvitt, D. L.; Pachr, M.; Page, B. S.; Pal, S. K.; Pan, Y. X.; Pandit, Y.; Panebratsev, Y.; Pawlak, T.; Pawlik, B.; Pei, H.; Perkins, C.; Peryt, W.; Pile, P.; Planinic, M.; Pluta, J.; Poljak, N.; Porter, J.; Poskanzer, A. M.; Pruthi, N. K.; Przybycien, M.; Pujahari, P. R.; Putschke, J.; Qiu, H.; Quintero, A.; Ramachandran, S.; Raniwala, R.; Raniwala, S.; Ray, R. L.; Riley, C. K.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Ross, J. F.; Roy, A.; Ruan, L.; Rusnak, J.; Rusnakova, O.; Sahoo, N. R.; Sahu, P. K.; Sakrejda, I.; Salur, S.; Sandweiss, J.; Sangaline, E.; Sarkar, A.; Schambach, J.; Scharenberg, R. P.; Schmah, A. M.; Schmidke, W. B.; Schmitz, N.; Seger, J.; Seyboth, P.; Shah, N.; Shahaliev, E.; Shanmuganathan, P. V.; Shao, M.; Sharma, B.; Shen, W. Q.; Shi, S. S.; Shou, Q. Y.; Sichtermann, E. P.; Singaraju, R. N.; Skoby, M. J.; Smirnov, D.; Smirnov, N.; Solanki, D.; Sorensen, P.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Stevens, J. R.; Stock, R.; Strikhanov, M.; Stringfellow, B.; Sumbera, M.; Sun, X.; Sun, X. M.; Sun, Y.; Sun, Z.; Surrow, B.; Svirida, D. N.; Symons, T. J. M.; Szelezniak, M. A.; Takahashi, J.; Tang, A. H.; Tang, Z.; Tarnowsky, T.; Thomas, J. H.; Timmins, A. R.; Tlusty, D.; Tokarev, M.; Trentalange, S.; Tribble, R. E.; Tribedy, P.; Trzeciak, B. A.; Tsai, O. D.; Turnau, J.; Ullrich, T.; Underwood, D. G.; Van Buren, G.; van Nieuwenhuizen, G.; Vandenbroucke, M.; Vanfossen, J. A.; Varma, R.; Vasconcelos, G. M. S.; Vasiliev, A. N.; Vertesi, R.; Videbæk, F.; Viyogi, Y. P.; Vokal, S.; Vossen, A.; Wada, M.; Wang, F.; Wang, G.; Wang, H.; Wang, J. S.; Wang, X. L.; Wang, Y.; Wang, Y.; Webb, G.; Webb, J. C.; Westfall, G. D.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, Y. F.; Xiao, Z.; Xie, W.; Xin, K.; Xu, H.; Xu, J.; Xu, N.; Xu, Q. H.; Xu, Y.; Xu, Z.; Yan, W.; Yang, C.; Yang, Y.; Yang, Y.; Ye, Z.; Yepes, P.; Yi, L.; Yip, K.; Yoo, I.-K.; Yu, N.; Zawisza, Y.; Zbroszczyk, H.; Zha, W.; Zhang, J. B.; Zhang, J. L.; Zhang, S.; Zhang, X. P.; Zhang, Y.; Zhang, Z. P.; Zhao, F.; Zhao, J.; Zhong, C.; Zhu, X.; Zhu, Y. H.; Zoulkarneeva, Y.; Zyzak, M.; STAR Collaboration

    2014-04-01

    Rapidity-odd directed flow (v1) measurements for charged pions, protons, and antiprotons near midrapidity (y =0) are reported in √sNN =7.7, 11.5, 19.6, 27, 39, 62.4, and 200 GeV Au+Au collisions as recorded by the STAR detector at the Relativistic Heavy Ion Collider. At intermediate impact parameters, the proton and net-proton slope parameter dv1/dy|y=0 shows a minimum between 11.5 and 19.6 GeV. In addition, the net-proton dv1/dy|y=0 changes sign twice between 7.7 and 39 GeV. The proton and net-proton results qualitatively resemble predictions of a hydrodynamic model with a first-order phase transition from hadronic matter to deconfined matter, and differ from hadronic transport calculations.

  16. 78 FR 29364 - Exelon Corporation, Exelon Wind 1, LLC, Exelon Wind 2, LLC, Exelon Wind 3, LLC, Exelon Wind 4...

    Science.gov (United States)

    2013-05-20

    ...-005, QF07-257-004] Exelon Corporation, Exelon Wind 1, LLC, Exelon Wind 2, LLC, Exelon Wind 3, LLC, Exelon Wind 4, LLC, Exelon Wind 5, LLC, Exelon Wind 6, LLC, Exelon Wind 7, LLC, Exelon Wind 8, LLC, Exelon Wind 9, LLC, Exelon Wind 10, LLC, Exelon Wind 11, LLC, High Plains Wind Power, LLC v. Xcel Energy...

  17. Proton-Proton and Proton-Antiproton Colliders

    CERN Document Server

    Scandale, Walter

    2014-01-01

    In the last five decades, proton–proton and proton–antiproton colliders have been the most powerful tools for high energy physics investigations. They have also deeply catalyzed innovation in accelerator physics and technology. Among the large number of proposed colliders, only four have really succeeded in becoming operational: the ISR, the SppbarS, the Tevatron and the LHC. Another hadron collider, RHIC, originally conceived for ion–ion collisions, has also been operated part-time with polarized protons. Although a vast literature documenting them is available, this paper is intended to provide a quick synthesis of their main features and key performance.

  18. Solar wind stream interfaces

    International Nuclear Information System (INIS)

    Gosling, J.T.; Asbridge, J.R.; Bame, S.J.; Feldman, W.C.

    1978-01-01

    Measurements aboard Imp 6, 7, and 8 reveal that approximately one third of all high-speed solar wind streams observed at 1 AU contain a sharp boundary (of thickness less than approx.4 x 10 4 km) near their leading edge, called a stream interface, which separates plasma of distinctly different properties and origins. Identified as discontinuities across which the density drops abruptly, the proton temperature increases abruptly, and the speed rises, stream interfaces are remarkably similar in character from one stream to the next. A superposed epoch analysis of plasma data has been performed for 23 discontinuous stream interfaces observed during the interval March 1971 through August 1974. Among the results of this analysis are the following: (1) a stream interface separates what was originally thick (i.e., dense) slow gas from what was originally thin (i.e., rare) fast gas; (2) the interface is the site of a discontinuous shear in the solar wind flow in a frame of reference corotating with the sun; (3) stream interfaces occur at speeds less than 450 km s - 1 and close to or at the maximum of the pressure ridge at the leading edges of high-speed streams; (4) a discontinuous rise by approx.40% in electron temperature occurs at the interface; and (5) discontinuous changes (usually rises) in alpha particle abundance and flow speed relative to the protons occur at the interface. Stream interfaces do not generally recur on successive solar rotations, even though the streams in which they are embedded often do. At distances beyond several astronomical units, stream interfaces should be bounded by forward-reverse shock pairs; three of four reverse shocks observed at 1 AU during 1971--1974 were preceded within approx.1 day by stream interfaces. Our observations suggest that many streams close to the sun are bounded on all sides by large radial velocity shears separating rapidly expanding plasma from more slowly expanding plasma

  19. Anomalous magnetohydrodynamics in the extreme relativistic domain

    CERN Document Server

    Giovannini, Massimo

    2016-01-01

    The evolution equations of anomalous magnetohydrodynamics are derived in the extreme relativistic regime and contrasted with the treatment of hydromagnetic nonlinearities pioneered by Lichnerowicz in the absence of anomalous currents. In particular we explore the situation where the conventional vector currents are complemented by the axial-vector currents arising either from the pseudo Nambu-Goldstone bosons of a spontaneously broken symmetry or because of finite fermionic density effects. After expanding the generally covariant equations in inverse powers of the conductivity, the relativistic analog of the magnetic diffusivity equation is derived in the presence of vortical and magnetic currents. While the anomalous contributions are generally suppressed by the diffusivity, they are shown to disappear in the perfectly conducting limit. When the flow is irrotational, boost-invariant and with vanishing four-acceleration the corresponding evolution equations are explicitly integrated so that the various physic...

  20. Pseudospin symmetry and the relativistic harmonic oscillator

    International Nuclear Information System (INIS)

    Lisboa, R.; Malheiro, M.; Castro, A.S. de; Alberto, P.; Fiolhais, M.

    2004-01-01

    A generalized relativistic harmonic oscillator for spin 1/2 particles is studied. The Dirac Hamiltonian contains a scalar S and a vector V quadratic potentials in the radial coordinate, as well as a tensor potential U linear in r. Setting either or both combinations Σ=S+V and Δ=V-S to zero, analytical solutions for bound states of the corresponding Dirac equations are found. The eigenenergies and wave functions are presented and particular cases are discussed, devoting a special attention to the nonrelativistic limit and the case Σ=0, for which pseudospin symmetry is exact. We also show that the case U=Δ=0 is the most natural generalization of the nonrelativistic harmonic oscillator. The radial node structure of the Dirac spinor is studied for several combinations of harmonic-oscillator potentials, and that study allows us to explain why nuclear intruder levels cannot be described in the framework of the relativistic harmonic oscillator in the pseudospin limit

  1. Relativistic nuclear physics with the spectator model

    International Nuclear Information System (INIS)

    Gross, F.

    1988-01-01

    The spectator model, a general approach to the relativistic treatment of nuclear physics problems in which spectators to nuclear interactions are put on their mass-shell, will be defined nd described. The approach grows out of the relativistic treatment of two and three body systems in which one particle is off-shell, and recent numerical results for the NN interaction will be presented. Two meson-exchange models, one with only 4 mesons (π, σ, /rho/, ω) but with a 25% admixture of γ 5 coupling for the pion, and a second with 6 mesons (π, σ, /rho/, ω, δ, and /eta/) but a pure γ 5 γ/sup mu/ pion coupling, are shown to give very good quantitative fits to NN scattering phase shifts below 400 MeV, and also a good description of the /rho/ 40 Cα elastic scattering observables. 19 refs., 6 figs., 1 tab

  2. Meson spectra using relativistic quark models

    International Nuclear Information System (INIS)

    Eggers, M.C.

    1985-01-01

    The complexity of QCD has led to the use of simpler, phenomenological models for hadrons, notably potential models. A short overview of the origin, rationale, merits and demerits of such models is given. Nonrelativistic models and scaling laws are discussed using the WKB technique for illustrative purposes. The failure of nonrelativistic models to describe the lighter mesons motivates the introduction of relativistic equations. Relativistic kinematics are incorporated into a Schroedinger formalism using equations derived by A. Barut, while two-body kinematics are brought into a one-body form via a substitution related to the Todorov equation. The potential used involves a semi-analytic solution to a harmonic oscillator modified by a spin-spin interaction term. The results seem to indicate that such a harmonic oscillator is unsuitable to describe diquark systems adequately

  3. Intense EM filamentation in relativistic hot plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Qiang-Lin [Department of Physics, Jinggangshan University, Ji' an, Jiangxi 343009 (China); Chen, Zhong-Ping [Department of Physics and Institute for Fusion Studies, The University of Texas at Austin, Austin, TX 78712 (United States); Mahajan, Swadesh M., E-mail: mahajan@mail.utexas.edu [Department of Physics and Institute for Fusion Studies, The University of Texas at Austin, Austin, TX 78712 (United States); Department of Physics, School of Natural Sciences, Shiv Nadar University, Uttar Pradesh 201314 (India)

    2017-03-03

    Highlights: • Breaking up of an intense EM pulse into filaments is a spectacular demonstration of the nonlinear wave-plasma interaction. • Filaments are spectacularly sharper, highly extended and longer lived at relativistic temperatures. • EM energy concentration can trigger new nonlinear phenomena with absolute consequences for high energy density matter. - Abstract: Through 2D particle-in-cell (PIC) simulations, we demonstrate that the nature of filamentation of a high intensity electromagnetic (EM) pulse propagating in an underdense plasma, is profoundly affected at relativistically high temperatures. The “relativistic” filaments are sharper, are dramatically extended (along the direction of propagation), and live much longer than their lower temperature counterparts. The thermally boosted electron inertia is invoked to understand this very interesting and powerful phenomenon.

  4. Relativistic-microwave theory of ball lightning

    Science.gov (United States)

    Wu, H.-C.

    2016-06-01

    Ball lightning, a fireball sometimes observed during lightnings, has remained unexplained. Here we present a comprehensive theory for the phenomenon: At the tip of a lightning stroke reaching the ground, a relativistic electron bunch can be produced, which in turn excites intense microwave radiation. The latter ionizes the local air and the radiation pressure evacuates the resulting plasma, forming a spherical plasma bubble that stably traps the radiation. This mechanism is verified by particle simulations. The many known properties of ball lightning, such as the occurrence site, relation to the lightning channels, appearance in aircraft, its shape, size, sound, spark, spectrum, motion, as well as the resulting injuries and damages, are also explained. Our theory suggests that ball lighting can be created in the laboratory or triggered during thunderstorms. Our results should be useful for lightning protection and aviation safety, as well as stimulate research interest in the relativistic regime of microwave physics.

  5. Newtonian view of general relativistic stars

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, A.M. [Instituto Federal do Espirito Santo (IFES), Grupo de Ciencias Ambientais e Recursos Naturais, Guarapari (Brazil); Velten, H.E.S.; Fabris, J.C. [Universidade Federal do Espirito Santo (UFES), Departamento de Fisica, Vitoria (Brazil); Salako, I.G. [Institut de Mathematiques et de Sciences Physiques (IMSP), Porto-Novo (Benin)

    2014-11-15

    Although general relativistic cosmological solutions, even in the presence of pressure, can be mimicked by using neo-Newtonian hydrodynamics, it is not clear whether there exists the same Newtonian correspondence for spherical static configurations. General relativity solutions for stars are known as the Tolman-Oppenheimer-Volkoff (TOV) equations. On the other hand, the Newtonian description does not take into account the total pressure effects and therefore cannot be used in strong field regimes. We discuss how to incorporate pressure in the stellar equilibrium equations within the neo-Newtonian framework. We compare the Newtonian, neo-Newtonian, and the full relativistic theory by solving the equilibrium equations for both three approaches and calculating the mass-radius diagrams for some simple neutron stars' equations of state. (orig.)

  6. Relativistic-microwave theory of ball lightning.

    Science.gov (United States)

    Wu, H-C

    2016-06-22

    Ball lightning, a fireball sometimes observed during lightnings, has remained unexplained. Here we present a comprehensive theory for the phenomenon: At the tip of a lightning stroke reaching the ground, a relativistic electron bunch can be produced, which in turn excites intense microwave radiation. The latter ionizes the local air and the radiation pressure evacuates the resulting plasma, forming a spherical plasma bubble that stably traps the radiation. This mechanism is verified by particle simulations. The many known properties of ball lightning, such as the occurrence site, relation to the lightning channels, appearance in aircraft, its shape, size, sound, spark, spectrum, motion, as well as the resulting injuries and damages, are also explained. Our theory suggests that ball lighting can be created in the laboratory or triggered during thunderstorms. Our results should be useful for lightning protection and aviation safety, as well as stimulate research interest in the relativistic regime of microwave physics.

  7. Exact Relativistic Magnetized Haloes around Rotating Disks

    Directory of Open Access Journals (Sweden)

    Antonio C. Gutiérrez-Piñeres

    2015-01-01

    Full Text Available The study of the dynamics of magnetic fields in galaxies is one of important problems in formation and evolution of galaxies. In this paper, we present the exact relativistic treatment of a rotating disk surrounded by a magnetized material halo. The features of the halo and disk are described by the distributional energy-momentum tensor of a general fluid in canonical form. All the relevant quantities and the metric and electromagnetic potentials are exactly determined by an arbitrary harmonic function only. For instance, the generalized Kuzmin-disk potential is used. The particular class of solutions obtained is asymptotically flat and satisfies all the energy conditions. Moreover, the motion of a charged particle on the halo is described. As far as we know, this is the first relativistic model describing analytically the magnetized halo of a rotating disk.

  8. Relativistic theory of tidal Love numbers

    International Nuclear Information System (INIS)

    Binnington, Taylor; Poisson, Eric

    2009-01-01

    In Newtonian gravitational theory, a tidal Love number relates the mass multipole moment created by tidal forces on a spherical body to the applied tidal field. The Love number is dimensionless, and it encodes information about the body's internal structure. We present a relativistic theory of Love numbers, which applies to compact bodies with strong internal gravities; the theory extends and completes a recent work by Flanagan and Hinderer, which revealed that the tidal Love number of a neutron star can be measured by Earth-based gravitational-wave detectors. We consider a spherical body deformed by an external tidal field, and provide precise and meaningful definitions for electric-type and magnetic-type Love numbers; and these are computed for polytropic equations of state. The theory applies to black holes as well, and we find that the relativistic Love numbers of a nonrotating black hole are all zero.

  9. Electromagnetic wave propagation in relativistic magnetized plasmas

    International Nuclear Information System (INIS)

    Weiss, I.

    1985-01-01

    An improved mathematical technique and a new code for deriving the conductivity tensor for collisionless plasmas have been developed. The method is applicable to a very general case, including both hot (relativistic) and cold magnetized plasmas, with only isotropic equilibrium distributions being considered here. The usual derivation starts from the relativistic Vlasov equation and leads to an integration over an infinite sum of Bessel functions which has to be done numerically. In the new solution the integration is carried out over a product of two Bessel functions only. This reduces the computing time very significantly. An added advantage over existing codes is our capability to perform the computations for waves propagating obliquely to the magnetic field. Both improvements greatly facilitate investigations of properties of the plasma under conditions hitherto unexplored

  10. Hydrodynamics of ultra-relativistic bubble walls

    Directory of Open Access Journals (Sweden)

    Leonardo Leitao

    2016-04-01

    Full Text Available In cosmological first-order phase transitions, gravitational waves are generated by the collisions of bubble walls and by the bulk motions caused in the fluid. A sizeable signal may result from fast-moving walls. In this work we study the hydrodynamics associated to the fastest propagation modes, namely, ultra-relativistic detonations and runaway solutions. We compute the energy injected by the phase transition into the fluid and the energy which accumulates in the bubble walls. We provide analytic approximations and fits as functions of the net force acting on the wall, which can be readily evaluated for specific models. We also study the back-reaction of hydrodynamics on the wall motion, and we discuss the extrapolation of the friction force away from the ultra-relativistic limit. We use these results to estimate the gravitational wave signal from detonations and runaway walls.

  11. Test of Relativistic Eigenfunctions for Pseudospin Symmetry

    Science.gov (United States)

    Ginocchio, Joseph N.

    2001-10-01

    Pseudospin symmetry has been shown to be a relativistic symmetry of the Dirac Hamiltonian [1] and the generators of this symmetry have been determined [2]. Although the measured energy splittings between pseudospin doublets are small, the eigenfunctions of the doublets have been examined only recently [3]. We show to what extent the pseudospin partners of realistic relativistic mean field eigenfunctions [4] are themselves eigenfunctions of the same Dirac Hamiltonian. 1) J. N. Ginocchio, Phys. Rev. Lett. 78, 436 (1997). 2) J. N. Ginocchio and A. Leviatan, Phys. Lett. B 425, 1 (1998). 3) J. N. Ginocchio and A. Leviatan, to be published in Phys. Rev. Lett. (2001). 4) J. N. Ginocchio and D. G. Madland, Phys. Rev. C 57, 1167 (1998).

  12. Transport theory for relativistic ionized gases

    International Nuclear Information System (INIS)

    Georgiou, A.

    1985-01-01

    The phenomenological non-equilibrium thermodynamics is adapted to the description of relativistic multicomponent plasmas. The general and special forms of matter energy-momentum tensor are given and the physical meaning of the different terms are discussed. A delicate problem of such theories, the contribution of ionized components of plasmas to the electromagnetic energy-momentum tensor is analyzed and illustrated by special examples. The relativistic form of Gibbs equation leads to the balance equation of entropy density. The theory is compared to the nonrelativistic one. The linear transport equations are derived by assuming the linear dependence of currents on deviations. The thermodynamical fluxes and forces are identified and the interference of cross phenomena is discussed. (D.Gy.)

  13. Relativistic quantum chemistry on quantum computers

    DEFF Research Database (Denmark)

    Veis, L.; Visnak, J.; Fleig, T.

    2012-01-01

    The past few years have witnessed a remarkable interest in the application of quantum computing for solving problems in quantum chemistry more efficiently than classical computers allow. Very recently, proof-of-principle experimental realizations have been reported. However, so far only...... the nonrelativistic regime (i.e., the Schrodinger equation) has been explored, while it is well known that relativistic effects can be very important in chemistry. We present a quantum algorithm for relativistic computations of molecular energies. We show how to efficiently solve the eigenproblem of the Dirac......-Coulomb Hamiltonian on a quantum computer and demonstrate the functionality of the proposed procedure by numerical simulations of computations of the spin-orbit splitting in the SbH molecule. Finally, we propose quantum circuits with three qubits and nine or ten controlled-NOT (CNOT) gates, which implement a proof...

  14. A unified treatment of the non-relativistic and relativistic hydrogen atom: Pt. 3

    International Nuclear Information System (INIS)

    Swainson, R.A.; Drake, G.W.F.

    1991-01-01

    This is the last in a series of three papers in which it is shown how the radial part of non-relativistic and relativistic hydrogenic bound-state calculations involving the Green functions can be presented in a unified manner. The work presented here is concerned with the reduced Green functions which arise in second-order stationary state perturbation theory. Using a simple-linear transformation of the four radical parts of the relativistic reduced Green function it is shown how the non-relativistic and relativistic functions are special instances of the solution of a general second-order differential equation. The general solution of this equation is exhibited in the form of a Sturmian expansion, and complete solutions in both cases are presented. Recursion relations are deduced for the radial parts of both reduced Green functions and their matrix elements are examined in detail. As a test of the given functions the second-order effect of a perturbation of the nuclear charge is calculated and is shown to agree exactly with the value expected from a simple Taylor expansion of the hydrogenic energy formula. (author)

  15. Proton irradiation of vanadium

    International Nuclear Information System (INIS)

    Hultgren, P.J.

    1976-04-01

    Radiation blisters were produced on vanadium, niobium, and molybdenum after bombardment with 150-keV protons. The proton fluxes ranged from approximately 3 x 10 15 to 3 x 10 16 H + /s cm 2 while the proton fluence ranged from 8 x 10 17 to 7 x 10 19 H + /cm 2 . Increases in the proton fluence produced an increase in blister size and a decrease in the blister density. The formation of blisters at temperatures below the hydride dissociation temperature was demonstrated for vanadium. 26 figures, 31 tables

  16. On the ambiguity in relativistic tidal deformability

    Science.gov (United States)

    Gralla, Samuel E.

    2018-04-01

    The LIGO collaboration recently reported the first gravitational-wave constraints on the tidal deformability of neutron stars. I discuss an inherent ambiguity in the notion of relativistic tidal deformability that, while too small to affect the present measurement, may become important in the future. I propose a new way to understand the ambiguity and discuss future prospects for reliably linking observed gravitational waveforms to compact object microphysics.

  17. Using MUSIC to study relativistic nuclear collisions

    International Nuclear Information System (INIS)

    1983-01-01

    A large Multiple Sampling Ionization Chamber (MUSIC) has been developed as a part of the Heavy Ion Spectrometer System (HISS). This facility is being used for the study of relativistic nuclear collisions at the Bevalac of Lawrence Berkeley Laboratory. Preliminary data from MUSIC indicate that a charge resolution of one unit should be achieved from Z approximately equal to 7 to Z approximately equal to 100. (author)

  18. Transient effects in a relativistic quantum system

    Energy Technology Data Exchange (ETDEWEB)

    Sadurni, E.; Moshinsky, M. [IFUNAM, Departamento de Fisica Teorica, A.P. 20-364, 01000 Mexico D.F. (Mexico)]. e-mail: sadurni@fisica.unam.mx

    2007-12-15

    The spectral decomposition of propagators is useful in the study of dynamical problems in the Schroedinger picture. However, relativistic problems exhibit complicated spectra containing positive and negative energies. In this work we write an appropriate spectral decomposition for the propagator of the Dirac oscillator. With such propagator we study the dynamical problem of sudden frequency change related to processes in which the isospin projection of the particle is modified. (Author)

  19. Multiple electromagnetic excitations of relativistic projectiles

    International Nuclear Information System (INIS)

    Llope, W.J.; Braun-Munzinger, P.

    1992-01-01

    Conditions optimum for the first experimental verification of the multiplication electromagnetic excitations of nuclei in relativistic nucleus-nucleus collisions are described. The relative magnitudes of three important physical processes that might interfere with such a measurement are compared to the predicted strengths for the single and multiple electromagnetic excitations for various choices of the projectile mass and beam energy. Strategies are presented for making inferences concerning the presence of multiple excitation strength in experimental data

  20. Status of the Relativistic Heavy Ion Collider

    International Nuclear Information System (INIS)

    Lee, S.Y.

    1990-01-01

    Accelerator Physics issues, such as the dynamical aperture, the beam lifetime and the current--intensity limitation are carefully studied for the Relativistic Heavy Ion Collider at Brookhaven National Laboratory. The single layer superconducting magnets, of 8 cm coil inner diameter, satisfying the beam stability requirements have also been successfully tested. The proposal has generated wide spread interest in the particle and nuclear physics. 1 ref., 4 figs., 3 tabs

  1. Relativistic-microwave theory of ball lightning

    OpenAIRE

    H.-C. Wu

    2016-01-01

    Ball lightning, a fireball sometimes observed during lightnings, has remained unexplained. Here we present a comprehensive theory for the phenomenon: At the tip of a lightning stroke reaching the ground, a relativistic electron bunch can be produced, which in turn excites intense microwave radiation. The latter ionizes the local air and the radiation pressure evacuates the resulting plasma, forming a spherical plasma bubble that stably traps the radiation. This mechanism is verified by partic...

  2. Heavy baryon spectroscopy with relativistic kinematics

    International Nuclear Information System (INIS)

    Valcarce, A.; Garcilazo, H.; Vijande, J.

    2014-01-01

    We present a comparative Faddeev study of heavy baryon spectroscopy with nonrelativistic and relativistic kinematics. We show results for different standard hyperfine interactions with both kinematics in an attempt to learn about the light quark dynamics. We highlight the properties of particular states accessible in nowadays laboratories that would help in discriminating between different dynamical models. The advance in the knowledge of light quark dynamics is a key tool for the understanding of the existence of exotic hadrons.

  3. Supersymmetric solutions for non-relativistic holography

    International Nuclear Information System (INIS)

    Donos, Aristomenis; Gauntlett, Jerome P.

    2009-01-01

    We construct families of supersymmetric solutions of type IIB and D=11 supergravity that are invariant under the non-relativistic conformal algebra for various values of dynamical exponent z≥4 and z≥3, respectively. The solutions are based on five- and seven-dimensional Sasaki-Einstein manifolds and generalise the known solutions with dynamical exponent z=4 for the type IIB case and z=3 for the D=11 case, respectively. (orig.)

  4. Variational thermodynamics of relativistic thin disks

    Science.gov (United States)

    Gutiérrez-Piñeres, Antonio C.; Lopez-Monsalvo, Cesar S.; Quevedo, Hernando

    2015-12-01

    We present a relativistic model describing a thin disk system composed of two fluids. The system is surrounded by a halo in the presence of a non-trivial electromagnetic field. We show that the model is compatible with the variational multifluid thermodynamics formalism, allowing us to determine all the thermodynamic variables associated with the matter content of the disk. The asymptotic behavior of these quantities indicates that the single fluid interpretation should be abandoned in favor of a two-fluid model.

  5. Interferometric Measurement of Acceleration at Relativistic Speeds

    Energy Technology Data Exchange (ETDEWEB)

    Christian, Pierre; Loeb, Abraham, E-mail: pchristian@cfa.harvard.edu, E-mail: aloeb@cfa.harvard.edu [Astronomy Department, Harvard University, 60 Garden Street, Cambridge, MA 02138 (United States)

    2017-01-10

    We show that an interferometer moving at a relativistic speed relative to a point source of light offers a sensitive probe of acceleration. Such an accelerometer contains no moving parts, and is thus more robust than conventional “mass-on-a-spring” accelerometers. In an interstellar mission to Alpha Centauri, such an accelerometer could be used to measure the masses of exoplanets and their host stars as well as test theories of modified gravity.

  6. Relativistic theory of tidal Love numbers

    OpenAIRE

    Binnington, Taylor; Poisson, Eric

    2009-01-01

    In Newtonian gravitational theory, a tidal Love number relates the mass multipole moment created by tidal forces on a spherical body to the applied tidal field. The Love number is dimensionless, and it encodes information about the body's internal structure. We present a relativistic theory of Love numbers, which applies to compact bodies with strong internal gravities; the theory extends and completes a recent work by Flanagan and Hinderer, which revealed that the tidal Love number of a neut...

  7. Magnetized pair Bose gas: relativistic superconductor

    International Nuclear Information System (INIS)

    Daicic, J.; Frankel, N.E.; Kowalenko, V.

    1993-01-01

    The magnetized Bose gas at temperatures above pair threshold is investigated. New magnetization laws are obtained for a wide range of field strengths, and the gas is shown to exhibit the Meissner effect. Some related results for the Fermi gas, a relativistic paramagnet, are also discussed. It is concluded that the pair gases, through the interplay between pair creation, temperature, field strength, statistics and/in the case of fermions/spin, have remarkable magnetic properties. 14 refs

  8. Experimental tests of relativistic gravitation theories

    Science.gov (United States)

    Anderson, J. D.

    1971-01-01

    Experimental tests were studied for determining the potential uses of future deep space missions in studies of relativistic gravity. The extensions to the parametrized post-Newtonian framework to take explicit account of the solar system's center of mass relative to the mean rest frame of the Universe is reported. Discoveries reported include the Machian effects of motion relative to the universal rest frame. Summaries of the JPL research are included.

  9. Proton spin tracking with symplectic integration of orbit motion

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Y. [Brookhaven National Lab. (BNL), Upton, NY (United States); Dutheil, Y. [Brookhaven National Lab. (BNL), Upton, NY (United States); Huang, H. [Brookhaven National Lab. (BNL), Upton, NY (United States); Meot, F. [Brookhaven National Lab. (BNL), Upton, NY (United States); Ranjbar, V. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-05-03

    Symplectic integration had been adopted for orbital motion tracking in code SimTrack. SimTrack has been extensively used for dynamic aperture calculation with beam-beam interaction for the Relativistic Heavy Ion Collider (RHIC). Recently proton spin tracking has been implemented on top of symplectic orbital motion in this code. In this article, we will explain the implementation of spin motion based on Thomas-BMT equation, and the benchmarking with other spin tracking codes currently used for RHIC. Examples to calculate spin closed orbit and spin tunes are presented too.

  10. The computer simulation of laser proton acceleration for hadron therapy

    Science.gov (United States)

    Lykov, Vladimir; Baydin, Grigory

    2008-11-01

    The ions acceleration by intensive ultra-short laser pulses has interest in views of them possible applications for proton radiography, production of medical isotopes and hadron therapy. The 3D relativistic PIC-code LegoLPI is developed at RFNC-VNIITF for modeling of intensive laser interaction with plasma. The LegoLPI-code simulations were carried out to find the optimal conditions for generation of proton beams with parameters necessary for hadrons therapy. The performed simulations show that optimal for it may be two-layer foil of aluminum and polyethylene with thickness 100 nm and 50 nm accordingly. The maximum efficiency of laser energy transformation into 200 MeV protons is achieved on irradiating these foils by 30 fs laser pulse with intensity about 2.10^22 W/cm^2. The conclusion is made that lasers with peak power about 0.5-1PW and average power 0.5-1 kW are needed for generation of proton beams with parameters necessary for proton therapy.

  11. Relativistically strong electromagnetic radiation in a plasma

    Science.gov (United States)

    Bulanov, S. V.; Esirkepov, T. Zh.; Kando, M.; Kiriyama, H.; Kondo, K.

    2016-03-01

    Physical processes in a plasma under the action of relativistically strong electromagnetic waves generated by high-power lasers have been briefly reviewed. These processes are of interest in view of the development of new methods for acceleration of charged particles, creation of sources of bright hard electromagnetic radiation, and investigation of macroscopic quantum-electrodynamical processes. Attention is focused on nonlinear waves in a laser plasma for the creation of compact electron accelerators. The acceleration of plasma bunches by the radiation pressure of light is the most efficient regime of ion acceleration. Coherent hard electromagnetic radiation in the relativistic plasma is generated in the form of higher harmonics and/or electromagnetic pulses, which are compressed and intensified after reflection from relativistic mirrors created by nonlinear waves. In the limit of extremely strong electromagnetic waves, radiation friction, which accompanies the conversion of radiation from the optical range to the gamma range, fundamentally changes the behavior of the plasma. This process is accompanied by the production of electron-positron pairs, which is described within quantum electrodynamics theory.

  12. General Relativistic Effects in Atom Interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Dimopoulos, Savas; /Stanford U., Phys. Dept.; Graham, Peter W.; /SLAC /Stanford U., Phys. Dept.; Hogan, Jason M.; Kasevich, Mark A.; /Stanford U., Phys. Dept.

    2008-03-17

    Atom interferometry is now reaching sufficient precision to motivate laboratory tests of general relativity. We begin by explaining the non-relativistic calculation of the phase shift in an atom interferometer and deriving its range of validity. From this we develop a method for calculating the phase shift in general relativity. This formalism is then used to find the relativistic effects in an atom interferometer in a weak gravitational field for application to laboratory tests of general relativity. The potentially testable relativistic effects include the non-linear three-graviton coupling, the gravity of kinetic energy, and the falling of light. We propose experiments, one currently under construction, that could provide a test of the principle of equivalence to 1 part in 10{sup 15} (300 times better than the present limit), and general relativity at the 10% level, with many potential future improvements. We also consider applications to other metrics including the Lense-Thirring effect, the expansion of the universe, and preferred frame and location effects.

  13. Relativistic dynamics, Green function and pseudodifferential operators

    Energy Technology Data Exchange (ETDEWEB)

    Cirilo-Lombardo, Diego Julio [National Institute of Plasma Physics (INFIP), Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires 1428 (Argentina); Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation)

    2016-06-15

    The central role played by pseudodifferential operators in relativistic dynamics is known very well. In this work, operators like the Schrodinger one (e.g., square root) are treated from the point of view of the non-local pseudodifferential Green functions. Starting from the explicit construction of the Green (semigroup) theoretical kernel, a theorem linking the integrability conditions and their dependence on the spacetime dimensions is given. Relativistic wave equations with arbitrary spin and the causality problem are discussed with the algebraic interpretation of the radical operator and their relation with coherent and squeezed states. Also we perform by means of pure theoretical procedures (based in physical concepts and symmetry) the relativistic position operator which satisfies the conditions of integrability: it is a non-local, Lorentz invariant and does not have the same problems as the “local”position operator proposed by Newton and Wigner. Physical examples, as zitterbewegung and rogue waves, are presented and deeply analyzed in this theoretical framework.

  14. Cosmological measurements with general relativistic galaxy correlations

    Energy Technology Data Exchange (ETDEWEB)

    Raccanelli, Alvise [Department of Physics and Astronomy, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218 (United States); Montanari, Francesco; Durrer, Ruth [Département de Physique Théorique, Université de Genève, 24 quai Ernest Ansermet, 1211 Genève 4 (Switzerland); Bertacca, Daniele [Argelander-Institut für Astronomie, Auf dem Hügel 71, D-53121 Bonn (Germany); Doré, Olivier, E-mail: alvise@jhu.edu, E-mail: francesco.montanari@helsinki.fi, E-mail: daniele.bertacca@gmail.com, E-mail: Olivier.P.Dore@jpl.nasa.gov, E-mail: ruth.durrer@unige.ch [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States)

    2016-05-01

    We investigate the cosmological dependence and the constraining power of large-scale galaxy correlations, including all redshift-distortions, wide-angle, lensing and gravitational potential effects on linear scales. We analyze the cosmological information present in the lensing convergence and in the gravitational potential terms describing the so-called ''relativistic effects'', and we find that, while smaller than the information contained in intrinsic galaxy clustering, it is not negligible. We investigate how neglecting them does bias cosmological measurements performed by future spectroscopic and photometric large-scale surveys such as SKA and Euclid. We perform a Fisher analysis using the CLASS code, modified to include scale-dependent galaxy bias and redshift-dependent magnification and evolution bias. Our results show that neglecting relativistic terms, especially lensing convergence, introduces an error in the forecasted precision in measuring cosmological parameters of the order of a few tens of percent, in particular when measuring the matter content of the Universe and primordial non-Gaussianity parameters. The analysis suggests a possible substantial systematic error in cosmological parameter constraints. Therefore, we argue that radial correlations and integrated relativistic terms need to be taken into account when forecasting the constraining power of future large-scale number counts of galaxy surveys.

  15. Relativistic quark-diquark model of baryons with a spin-isospin transition interaction: Non-strange baryon spectrum and nucleon magnetic moments

    Energy Technology Data Exchange (ETDEWEB)

    Sanctis, M. de [Universidad Nacional de Colombia, Bogota (Colombia); Ferretti, J. [Universita La Sapienza, Dipartimento di Fisica, Roma (Italy); INFN, Roma (Italy); Santopinto, E.; Vassallo, A. [INFN, Sezione di Genova, Genova (Italy)

    2016-05-15

    The relativistic interacting quark-diquark model of baryons, recently developed, is here extended introducing in the mass operator a spin-isospin transition interaction. This refined version of the model is used to calculate the non-strange baryon spectrum. The results are compared to the present experimental data. A preliminary calculation of the magnetic moments of the proton and neutron is also presented. (orig.)

  16. STATISTICAL STUDY ON THE DECAY PHASE OF SOLAR NEAR-RELATIVISTIC ELECTRON EVENTS

    International Nuclear Information System (INIS)

    Lario, D.

    2010-01-01

    We study the decay phase of solar near-relativistic (53-315 keV) electron events as observed by the Advanced Composition Explorer (ACE) and the Ulysses spacecraft during solar cycle 23. By fitting an exponential function (exp - t/τ) to the time-intensity profile in the late phase of selected solar near-relativistic electron events, we examine the dependence of τ on electron energy, electron intensity spectra, event peak intensity, event fluence, and solar wind velocity, as well as heliocentric radial distance, heliolatitude, and heliolongitude of the spacecraft with respect to the parent solar event. The decay rates are found to be either independent or slightly decrease with the electron energy. No clear dependence is found between τ and the heliolongitude of the parent solar event, with the exception of well-connected events for which low values of τ are more commonly observed than for poorly-connected events. For those events concurrently observed by ACE and Ulysses, decay rates increase at distances >3 AU. Events with similar decay rates at ACE and Ulysses were observed mainly when Ulysses was at high heliographic latitudes. We discuss the basic physical mechanisms that control the decay phase of the electron events and conclude that both solar wind convection and adiabatic deceleration effects influence the final shape of the decay phase of solar energetic particle events, but not as expressed by the models based on diffusive transport acting on an isotropic particle population.

  17. WIND TURBINES FOR WIND POWER INSTALLATIONS

    Directory of Open Access Journals (Sweden)

    Barladean A.S.

    2008-04-01

    Full Text Available The problem of wind turbine choice for wind power stations is examined in this paper. It is shown by comparison of parameters and characteristics of wind turbines, that for existing modes and speeds of wind in territory of Republic of Moldova it is necessary to use multi-blade small speed rotation wind turbines of fan class.

  18. Bond centred functions in relativistic and non-relativistic calculations for diatomics

    International Nuclear Information System (INIS)

    Matito, Eduard; Kobus, Jacek; Styszynski, Jacek

    2006-01-01

    In this paper, we discuss the performance of molecular basis sets consisting of atomic centred (AC) functions augmented with bond centred (BC) functions in relativistic and non-relativistic calculations carried out at the Hartree-Fock and several correlated levels of approximation. While usually non-correlated calculations employing BC functions can be performed at a lower computational cost as compared with those making use of energy optimized AC basis sets, the correlated calculations are always more accurate and less expensive with the latter. It is demonstrated that both correlated or non-correlated calculations always benefit from the addition of a few BC functions with a moderate increase of computational effort. The performance of basis sets containing even-tempered BC functions is also studied and their usage is advocated in case of relativistic calculations

  19. Mercury's Surface Magnetic Field Determined from Proton-Reflection Magnetometry

    Science.gov (United States)

    Winslow, Reka M.; Johnson, Catherine L.; Anderson, Brian J.; Gershman, Daniel J.; Raines, Jim M.; Lillis, Robert J.; Korth, Haje; Slavin, James A.; Solomon, Sean C.; Zurbuchen, Thomas H.; hide

    2014-01-01

    Solar wind protons observed by the MESSENGER spacecraft in orbit about Mercury exhibit signatures of precipitation loss to Mercury's surface. We apply proton-reflection magnetometry to sense Mercury's surface magnetic field intensity in the planet's northern and southern hemispheres. The results are consistent with a dipole field offset to the north and show that the technique may be used to resolve regional-scale fields at the surface. The proton loss cones indicate persistent ion precipitation to the surface in the northern magnetospheric cusp region and in the southern hemisphere at low nightside latitudes. The latter observation implies that most of the surface in Mercury's southern hemisphere is continuously bombarded by plasma, in contrast with the premise that the global magnetic field largely protects the planetary surface from the solar wind.

  20. Proton decay: spectroscopic probe beyond the proton drip line

    International Nuclear Information System (INIS)

    Seweryniak, D; Davids, C N; Robinson, A; Woods, P J; Blank, B; Carpenter, M P; Davinson, T; Freeman, S J; Hammond, N; Hoteling, N; Janssens, R V F; Khoo, T L; Liu, Z; Mukherjee, G; Shergur, J; Sinha, S; Sonzogni, A A; Walters, W B; Woehr, A

    2005-01-01

    Proton decay has been transformed in recent years from an exotic phenomenon into a powerful spectroscopic tool. The frontiers of experimental and theoretical proton-decay studies will be reviewed. Different aspects of proton decay will be illustrated with recent results on the deformed proton emitter 135 Tb, the odd-odd deformed proton emitter 130 Eu, the complex fine structure in the odd-odd 146 Tm nucleus and on excited states in the transitional proton emitter 145 Tm

  1. Wind turbine

    Science.gov (United States)

    Cheney, Jr., Marvin C.

    1982-01-01

    A wind turbine of the type having an airfoil blade (15) mounted on a flexible beam (20) and a pitch governor (55) which selectively, torsionally twists the flexible beam in response to wind turbine speed thereby setting blade pitch, is provided with a limiter (85) which restricts unwanted pitch change at operating speeds due to torsional creep of the flexible beam. The limiter allows twisting of the beam by the governor under excessive wind velocity conditions to orient the blades in stall pitch positions, thereby preventing overspeed operation of the turbine. In the preferred embodiment, the pitch governor comprises a pendulum (65,70) which responds to changing rotor speed by pivotal movement, the limiter comprising a resilient member (90) which engages an end of the pendulum to restrict further movement thereof, and in turn restrict beam creep and unwanted blade pitch misadjustment.

  2. Protons and how they are transported by proton pumps

    DEFF Research Database (Denmark)

    Buch-Pedersen, Morten Jeppe; Pedersen, Bjørn Panyella; Nissen, Poul

    2008-01-01

    molecular components that allow the plasma membrane proton H(+)-ATPase to carry out proton transport against large membrane potentials. When divergent proton pumps such as the plasma membrane H(+)-ATPase, bacteriorhodopsin, and F(O)F(1) ATP synthase are compared, unifying mechanistic premises for biological...... proton pumps emerge. Most notably, the minimal pumping apparatus of all pumps consists of a central proton acceptor/donor, a positively charged residue to control pK (a) changes of the proton acceptor/donor, and bound water molecules to facilitate rapid proton transport along proton wires....

  3. Second quantization of classical nonlinear relativistic field theory. Pt. 2

    International Nuclear Information System (INIS)

    Balaban, T.

    1976-01-01

    The construction of a relativistic interacting local quantum field is given in two steps: first the classical nonlinear relativistic field theory is written down in terms of Poisson brackets, with initial conditions as canonical variables: next a representation of Poisson bracket Lie algebra by means of linear operators in the topological vector space is given and an explicit form of a local interacting relativistic quantum field PHI is obtained. (orig./BJ) [de

  4. Relativistic description of directly interacting pions and nucleons

    International Nuclear Information System (INIS)

    Heller, L.

    1976-01-01

    The expected magnitudes of the leading relativistic effects on an off-energy-shell T matrix element are estimated using the Bakamjian--Thomas formulation of relativistic potential theory. For pion-nucleon scattering at medium energy, the two largest corrections are expected to result from the use of relativistic relative momenta rather than nonrelativistic values. The importance of additional terms depends upon the detailed behavior of the T matrix

  5. A relativistic, meson exchange model of pion-nucleon scattering

    International Nuclear Information System (INIS)

    Pearces, B.C.; Jennings, B.K.

    1990-06-01

    A relativistic meson exchange approach to the pion-nucleon interaction is developed using a three-dimensional relativistic two-body propagator, and the results using different propagators are compared. The relativistic approach is able to describe low energy scattering up to 400 MeV above threshold, while preserving the soft pion theorems. The different propagators give similar results, as the form factors necessary to get a fit suppress much of the multiple scattering. (Author) (24 refs., 4 tabs., 6 figs.)

  6. Relativistic quantum mechanics and introduction to field theory

    Energy Technology Data Exchange (ETDEWEB)

    Yndurain, F.J. [Universidad Autonoma de Madrid (Spain). Dept. de Fisica Teorica

    1996-12-01

    The following topics were dealt with: relativistic transformations, the Lorentz group, Klein-Gordon equation, spinless particles, spin 1/2 particles, Dirac particle in a potential, massive spin 1 particles, massless spin 1 particles, relativistic collisions, S matrix, cross sections, decay rates, partial wave analysis, electromagnetic field quantization, interaction of radiation with matter, interactions in quantum field theory and relativistic interactions with classical sources.

  7. Phase-space path integration of the relativistic particle equations

    International Nuclear Information System (INIS)

    Guer, H.

    1991-01-01

    Hamilton-Jacobi theory is applied to find appropriate canonical transformations for the calculation of the phase-space path integrals of the relativistic particle equations. Hence, canonical transformations and Hamilton-Jacobi theory are also introduced into relativistic quantum mechanics. Moreover, from the classical physics viewpoint, it is very interesting to find and to solve the Hamilton-Jacobi equations for the relativistic particle equations

  8. On the proton decay

    International Nuclear Information System (INIS)

    Fonda, L.; Ghirardi, G.C.; Weber, T.

    1983-07-01

    The problem of the proton decay is considered taking into account that in actual experiments there is an interaction of the proton with its environment which could imply an increase of its theoretical lifetime. It is seen that, by application of the time-energy uncertainty relation, no prolongation of the lifetime is obtained in this case. (author)

  9. Giving Protons a Boost

    CERN Multimedia

    2004-01-01

    The first of LHC's superconducting radio-frequency cavity modules has passed its final test at full power in the test area of building SM18. These modules carry an oscillating electric field that will accelerate protons around the LHC ring and help maintain the stability of the proton beams.

  10. Mass spectrum bound state systems with relativistic corrections

    Energy Technology Data Exchange (ETDEWEB)

    Dineykhan, M; Zhaugasheva, S A [Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna (Russian Federation); Toinbaeva, N Sh; Jakhanshir, A [al-Farabi Kazak National University, 480012 Almaty (Kazakhstan)

    2009-07-28

    Based on the investigation of the asymptotic behaviour of the polarization loop function for charged n scalar particles in an external gauge field, we determine the interaction Hamiltonian including relativistic corrections. The mass spectrum of the bound state is analytically derived. The mechanism for arising of the constituent mass of the relativistic bound-state forming particles is explained. The mass and the constituent mass of the two-, three- and n-body relativistic bound states are calculated taking into account relativistic corrections. The corrections arising due to the one- and two-loop electron polarization to the energy spectrum of muonic hydrogen with orbital and radial excitations are calculated.

  11. Theoretical study of the relativistic molecular rotational g-tensor

    International Nuclear Information System (INIS)

    Aucar, I. Agustín; Gomez, Sergio S.; Giribet, Claudia G.; Ruiz de Azúa, Martín C.

    2014-01-01

    An original formulation of the relativistic molecular rotational g-tensor valid for heavy atom containing compounds is presented. In such formulation, the relevant terms of a molecular Hamiltonian for non-relativistic nuclei and relativistic electrons in the laboratory system are considered. Terms linear and bilinear in the nuclear rotation angular momentum and an external uniform magnetic field are considered within first and second order (relativistic) perturbation theory to obtain the rotational g-tensor. Relativistic effects are further analyzed by carrying out the linear response within the elimination of the small component expansion. Quantitative results for model systems HX (X=F, Cl, Br, I), XF (X=Cl, Br, I), and YH + (Y=Ne, Ar, Kr, Xe, Rn) are obtained both at the RPA and density functional theory levels of approximation. Relativistic effects are shown to be small for this molecular property. The relation between the rotational g-tensor and susceptibility tensor which is valid in the non-relativistic theory does not hold within the relativistic framework, and differences between both molecular parameters are analyzed for the model systems under study. It is found that the non-relativistic relation remains valid within 2% even for the heavy HI, IF, and XeH + systems. Only for the sixth-row Rn atom a significant deviation of this relation is found

  12. Theoretical study of the relativistic molecular rotational g-tensor

    Energy Technology Data Exchange (ETDEWEB)

    Aucar, I. Agustín, E-mail: agustin.aucar@conicet.gov.ar; Gomez, Sergio S., E-mail: ssgomez@exa.unne.edu.ar [Institute for Modeling and Technological Innovation, IMIT (CONICET-UNNE) and Faculty of Exact and Natural Sciences, Northeastern University of Argentina, Avenida Libertad 5400, W3404AAS Corrientes (Argentina); Giribet, Claudia G.; Ruiz de Azúa, Martín C. [Physics Department, Faculty of Exact and Natural Sciences, University of Buenos Aires and IFIBA CONICET, Ciudad Universitaria, Pab. I, 1428 Buenos Aires (Argentina)

    2014-11-21

    An original formulation of the relativistic molecular rotational g-tensor valid for heavy atom containing compounds is presented. In such formulation, the relevant terms of a molecular Hamiltonian for non-relativistic nuclei and relativistic electrons in the laboratory system are considered. Terms linear and bilinear in the nuclear rotation angular momentum and an external uniform magnetic field are considered within first and second order (relativistic) perturbation theory to obtain the rotational g-tensor. Relativistic effects are further analyzed by carrying out the linear response within the elimination of the small component expansion. Quantitative results for model systems HX (X=F, Cl, Br, I), XF (X=Cl, Br, I), and YH{sup +} (Y=Ne, Ar, Kr, Xe, Rn) are obtained both at the RPA and density functional theory levels of approximation. Relativistic effects are shown to be small for this molecular property. The relation between the rotational g-tensor and susceptibility tensor which is valid in the non-relativistic theory does not hold within the relativistic framework, and differences between both molecular parameters are analyzed for the model systems under study. It is found that the non-relativistic relation remains valid within 2% even for the heavy HI, IF, and XeH{sup +} systems. Only for the sixth-row Rn atom a significant deviation of this relation is found.

  13. Lagrangian formulation of a consistent relativistic guiding center theory

    International Nuclear Information System (INIS)

    Wimmel, H.K.

    1983-02-01

    A new relativistic guiding center mechanics is presented that conserves energy (in time-independent fields) and satisfies a Liouville's theorem. The theory reduces to Littlejohn's theory in the non-relativistic limit and agrees to leading orders in epsilon identical rsub(g)/L with the relativistic theory by Morozov and Solov'ev (which generally lacks a Liouville's theorem). The new theory is developed from an appropriate Lagrangian and is supplemented by a collisionless relativistic kinetic equation for the guiding centers. Moment equations for guiding center density and energy density are also derived. (orig.)

  14. Relativistic blast waves in two dimensions. I - The adiabatic case

    Science.gov (United States)

    Shapiro, P. R.

    1979-01-01

    Approximate solutions are presented for the dynamical evolution of strong adiabatic relativistic blast waves which result from a point explosion in an ambient gas in which the density varies both with distance from the explosion center and with polar angle in axisymmetry. Solutions are analytical or quasi-analytical for the extreme relativistic case and numerical for the arbitrarily relativistic case. Some general properties of nonplanar relativistic shocks are also discussed, including the incoherence of spherical ultrarelativistic blast-wave fronts on angular scales greater than the reciprocal of the shock Lorentz factor, as well as the conditions for producing blast-wave acceleration.

  15. Proton beams in radiotherapy

    Science.gov (United States)

    Khoroshkov, V. S.; Minakova, E. I.

    1998-11-01

    A branch of radiology, proton therapy employs fast protons as a tool for the treatment of various, mainly oncological, diseases. The features of tissue ionization by protons (Bragg peak) facilitate a further step towards solving the principal challenge in radiology: to deliver a sufficiently high and homogeneous dose to virtually any tumour, while sparing healthy neighbouring tissues, organs and structures. The state of the art of proton therapy is described, as well as the main technical, physics and clinical results gained since the 1950s at high-energy physics centres worldwide. The future of proton therapy is connected with the construction of hospital-based facilities with dedicated medical accelerators and modern technical instrumentation.

  16. Medical Applications: Proton Radiotherapy

    Science.gov (United States)

    Keppel, Cynthia

    2009-05-01

    Proton therapy is a highly advanced and precise form of radiation treatment for cancer. Due to the characteristic Bragg peak associated with ion energy deposition, proton therapy provides the radiation oncologist with an improved method of treatment localization within a patient, as compared with conventional radiation therapy using X-rays or electrons. Controlling disease and minimizing side effects are the twin aims of radiation treatment. Proton beams enhance the opportunity for both by facilitating maximal dose to tumor and minimal dose to surrounding tissue. In the United States, five proton radiotherapy centers currently treat cancer patients, with more in the construction phase. New facilities and enabling technologies abound. An overview of the treatment modality generally, as well as of the capabilities and research planned for the field and for the Hampton University Proton Therapy Institute in particular, will be presented.

  17. Wind power

    International Nuclear Information System (INIS)

    2006-06-01

    This road-map proposes by the Group Total aims to inform the public on the wind power. It presents the principles, the technology takes off, its applications and technology focus, the global market trends and the outlooks and Total commitments in the domain. (A.L.B.)

  18. Wind energy

    International Nuclear Information System (INIS)

    Portilla S, L.A.

    1995-01-01

    The wind energy or eolic energy is a consequence of solar energy, the one which is absorbed by the atmosphere and is transformed into energy of movement of large bulks of air. In this process the atmosphere acts as the filter to the solar radiation and demotes the ultraviolet beams that result fatal to life in the Earth. The ionosphere is the most external cap and this is ionized by means of absorption process of ultraviolet radiation arising to the Sun. The atmosphere also acts as a trap to the infrared radiation, it that results from the continual process of energetic degradation. In this way, the interaction between Earth - Atmospheres, is behaved as a great greenhouse, maintaining the constant temperatures, including in the dark nights. Processes as the natural convection (that occur by the thermodynamic phenomenon), equatorial calmness, trade winds and against trade winds and global distribution of the air currents are described. The other hand, techniques as the transformation of the wind into energy and its parameters also are shown

  19. Wind Energy Japan

    Energy Technology Data Exchange (ETDEWEB)

    Komatsubara, Kazuyo [Embassy of the Kingdom of the Netherlands, Tokyo (Japan)

    2012-06-15

    An overview is given of wind energy in Japan: Background; Wind Energy in Japan; Japanese Wind Energy Industry; Government Supports; Useful Links; Major Japanese Companies; Profiles of Major Japanese Companies; Major Wind Energy Projects in Japan.

  20. Target dependence of proton source sizes at 14.6 A · GeV/c

    International Nuclear Information System (INIS)

    Stephans, G.S.F.

    1994-01-01

    Relative-momentum correlations have been measured for pairs of protons from central collisions of 14.6 A-GeV/c 28 Si with 27 Al, 107 Ag, and 197 Au nuclei. The protons were detected in a region centered near a laboratory rapidity of 1.2. Theoretical correlation functions are convoluted with the spectrometer response function and fitted to the data to derive the source volume. The fitted radii are corrected for small relativistic effects. The extracted volumes are consistent with a crude geometrical overlap model and depart from π - π and K-K data trends which suggest a source size closer to that of the projectile

  1. Nuclear sub-structure in 112–122Ba nuclei within relativistic mean field theory

    International Nuclear Information System (INIS)

    Bhuyan, M.; Patra, S.K.; Arumugam, P.; Gupta, Raj K.

    2011-01-01

    Working within the framework of relativistic mean field theory, we study for the first time the clustering structure (nuclear sub-structure) of 112–122 Ba nuclei in an axially deformed cylindrical coordinate. We calculate the individual neutrons and protons density distributions for Ba-isotopes. From the analysis of the clustering configurations in total (neutrons-plus-protons) density distributions for various shapes of both the ground and excited states, we find different sub-structures inside the Ba nuclei considered here. The important step, carried out here for the first time, is the counting of number of protons and neutrons present in the clustering region(s). 12 C is shown to constitute the cluster configuration in prolate-deformed ground-states of 112–116 Ba and oblate-deformed first excited states of 118–122 Ba nuclei. Presence of other lighter clusters such as 2 H, 3 H and nuclei in the neighborhood of N = Z, 14 N, 34–36 Cl, 36 Ar and 42 Ca are also indicated in the ground and excited states of these nuclei. Cases with no cluster configuration are shown for 112–116 Ba in their first and second excited states. All these results are of interest for the observed intermediate-mass-fragments and fusion–fission processes, and the so far unobserved evaporation residues from the decaying Ba* compound nuclei formed in heavy ion reactions. (author)

  2. Relativistic pn-QRPA to the double beta decay

    Energy Technology Data Exchange (ETDEWEB)

    Conti, Claudio de [Universidade Estadual Paulista (UNESP), Itapeva, SP (Brazil). Campus Experimental de Itapeva; Krmpotic, F. [Universidad Nacional de La Plata (Argentina). Facultad de Ciencias Astronomicas y Geofisicas; Carlson, Brett Vern [Centro Tecnico Aeroespacial (CTA/ITA), Sao Jose dos Campos, SP (Brazil). Inst. Tecnologico de Aeronautica. Dept. de Fisica

    2010-07-01

    Full text: In nature there are about 50 nuclear systems where the single beta-decay is energetically forbidden, and double- beta decay turns out to be only possible mode of disintegration. It is the nuclear pairing force which causes such an 'anomaly', by making the mass of the odd-odd isobar, (N - 1;Z + 1), to be greater than the masses of its even-even neighbors, (N;Z) and (N - 2;Z +2). The modes by which the double-beta decay can take place are connected with the neutrino and antineutrino distinction. In case the lepton number is strictly conserved the neutrino is a Dirac fermion and the two-neutrino mode is the only possible mode of disintegration. On the other hand, if this conservation is violated, the neutrino is a Majorana particle and neutrinoless double-beta decay also can occur. Both two-neutrino and neutrinoless double-beta decay processes have attracted much attention, because a comparison between experiment and theory for the first, provides a measure of confidence one may have in the nuclear wave function employed for extracting the unknown parameters from neutrinoless lifetime measurements. The proton-neutron (pn) quasiparticle random phase approximation (QRPA) has turned out be the most simple model for calculating the nuclear wave function involved in the double-beta decay transitions. In this work the transition matrix elements for 0{sup +} -> 0{sup +} double-beta decay are calculated for {sup 48}Ca, {sup 76}Ge, {sup 82}Se, {sup 100}Mo, {sup 128}Te and {sup 130}Te nuclei, using a relativistic pn-QRPA based on Hartree-Bogoliubov approximation to the single-particle motion. (author)

  3. Interaction of relativistic H- ions with thin foils

    International Nuclear Information System (INIS)

    Mohagheghi, A.H.

    1990-09-01

    The response of relativistic H - ions to thin carbon foils was investigated for beam energies ranging from 226 MeV to 800 MeV. For the foil thicknesses we have studied, ranging from 15 to 300 μg/cm 2 , an appreciable fraction of the H - beam survives intact, some H - ions are stripped down to protons, and the remainder is distributed over the states of H 0 . This experiment is different from the low energy studies in that the projectile velocity is comparable to the speed of light, leading to an interaction time of typically less than a femtosecond. The present results challenge the theoretical understanding of the interaction mechanisms. An electron spectrometer was used to selectively field-ionize the Rydberg states, 9 < n < 17, at beam energies of 581 MeV and 800 MeV. The yield of low-lying states were measured by Doppler tuning a Nd:YAG laser to excite transitions to a Rydberg state which was then field-ionized and detected. A simple model is developed to fit the yield of each state as a function of foil thickness. The simple model is successful in predicting the general features of the yield data. However, the data are suggestive of a more complex structure in the yield curves. The yield of a given state depends strongly on the foil thickness, demonstrating that the excited states are formed during the passage of the ions through a foil. The optimum thickness to produce a given state increases with the principal quantum number of the state suggesting an excitation process which is at least pratially stepwise. The results of a Monte Carlo simulation are compared with the experimental data to estimate the distribution of the excited states coming out of a foil. The distributions of the excited states and their dependence on foil thickness are discussed

  4. Solar wind modulation of the Martian ionosphere observed by Mars Global Surveyor

    Directory of Open Access Journals (Sweden)

    J.-S. Wang

    2004-06-01

    Full Text Available Electron density profiles in the Martian ionosphere observed by the radio occultation experiment on board Mars Global Surveyor have been analyzed to determine if the densities are influenced by the solar wind. Evidence is presented that the altitude of the maximum ionospheric electron density shows a positive correlation to the energetic proton flux in the solar wind. The solar wind modulation of the Martian ionosphere can be attributed to heating of the neutral atmosphere by the solar wind energetic proton precipitation. The modulation is observed to be most prominent at high solar zenith angles. It is argued that this is consistent with the proposed modulation mechanism.

  5. Holographic View of Non-relativistic Physics

    Science.gov (United States)

    Balasubramanian, Koushik

    Motivated by the AdS/CFT correspondence for relativistic CFTs, it seems natural to generalize it to non-relativistic CFTs. Such a dual description could provide insight into strong coupling phenomena observed in condensed matter systems. Scale invariance can be realized in non-relativistic theories in many ways. One freedom is the relative scale dimension of time and space, called the dynamical exponent z. In this thesis, we will mainly focus on the case where z = 2, however gravity duals for other values of z have also been found. In the first part of the thesis, we study NRCFTs that are Galilean invariant. Discrete light cone quantization (DLCQ) of N = 4 super Yang-Mills theory is an example of such a system with z = 2 scaling symmetry. A more realistic example of a system with the same set of symmetries is a system of cold fermions at unitarity. These non-relativistic systems respect a symmetry algebra known as the Schrodinger algebra. We propose a gravity dual that realizes the symmetries of the Schrodinger algebra as isometries. An unusual feature of this duality is that the bulk geometry has two extra dimensions than the CFT, instead of the usual one. The additional direction is a compact direction and shift symmetry along this direction corresponds to the particle number transformation. This solution can be embedded into string theory by performing a set of operations (known as the Null-Melvin twist) on AdS 5 x S5 solution of type IIB supergravity. This method also provides a way of finding a black hole solution which has asymptotic Schrodinger symmetries. The field theory dual of these gravity solutions happens to be a modified version of DLCQ N = 4 super Yang-Mills theory. The thermodynamics of these theories is very different from that of cold atoms. This happens to be a consequence of realizing the entire Schrodinger group as isometries of the spacetime. We give an example of a holographic realization in which the particle number symmetry is realized as

  6. Polarization transfer in relativistic magnetized plasmas

    Science.gov (United States)

    Heyvaerts, Jean; Pichon, Christophe; Prunet, Simon; Thiébaut, Jérôme

    2013-04-01

    The polarization transfer coefficients of a relativistic magnetized plasma are derived. These results apply to any momentum distribution function of the particles, isotropic or anisotropic. Particles interact with the radiation either in a non-resonant mode when the frequency of the radiation exceeds their characteristic synchrotron emission frequency or quasi-resonantly otherwise. These two classes of particles contribute differently to the polarization transfer coefficients. For a given frequency, this dichotomy corresponds to a regime change in the dependence of the transfer coefficients on the parameters of the particle's population, since these parameters control the relative weight of the contribution of each class of particles. Our results apply to either regimes as well as the intermediate one. The derivation of the transfer coefficients involves an exact expression of the conductivity tensor of the relativistic magnetized plasma that has not been used hitherto in this context. Suitable expansions valid at frequencies much larger than the cyclotron frequency allow us to analytically perform the summation over all resonances at high harmonics of the relativistic gyrofrequency. The transfer coefficients are represented in the form of two-variable integrals that can be conveniently computed for any set of parameters by using Olver's expansion of high-order Bessel functions. We particularize our results to a number of distribution functions, isotropic, thermal or power law, with different multipolar anisotropies of low order, or strongly beamed. Specifically, earlier exact results for thermal distributions are recovered. For isotropic distributions, the Faraday coefficients are expressed in the form of a one-variable quadrature over energy, for which we provide the kernels in the high-frequency limit and in the asymptotic low-frequency limit. An interpolation formula extending over the full energy range is proposed for these kernels. A similar reduction to a

  7. The disk-wind-jet connection in the black hole H 1743-322

    NARCIS (Netherlands)

    Miller, J.M.; Raymond, J.; Fabian, A.C.; Reynolds, C.S.; King, A.L.; Kallman, T.R.; Cackett, E.M.; van der Klis, M.; Steeghs, D.T.H.

    2012-01-01

    X-ray disk winds are detected in spectrally soft, disk-dominated phases of stellar-mass black hole outbursts. In contrast, compact, steady, relativistic jets are detected in spectrally hard states that are dominated by non-thermal X-ray emission. Although these distinctive outflows appear to be

  8. Determination of solar proton fluxes and energies at high solar latitudes by UV radiation measurements

    Science.gov (United States)

    Witt, N.; Blum, P. W.; Ajello, J. M.

    1981-01-01

    The latitudinal variation of the solar proton flux and energy causes a density increase at high solar latitudes of the neutral gas penetrating the heliosphere. Measurements of the neutral density by UV resonance radiation observations from interplanetary spacecraft thus permit deductions on the dependence of the solar proton flux on heliographic latitude. Using both the results of Mariner 10 measurements and of other off-ecliptic solar wind observations, the values of the solar proton fluxes and energies at polar heliographic latitudes are determined for several cases of interest. The Mariner 10 analysis, together with IPS results, indicate a significant decrease of the solar proton flux at polar latitudes.

  9. Relativistic conformal magneto-hydrodynamics from holography

    International Nuclear Information System (INIS)

    Buchbinder, Evgeny I.; Buchel, Alex

    2009-01-01

    We use the AdS/CFT correspondence to study first-order relativistic viscous magneto-hydrodynamics of (2+1)-dimensional conformal magnetic fluids. It is shown that the first order magneto-hydrodynamics constructed following Landau and Lifshitz from the positivity of the entropy production is inconsistent. We propose additional contributions to the entropy motivated dissipative current and, correspondingly, new dissipative transport coefficients. We use the strongly coupled M2-brane plasma in external magnetic field to show that the new magneto-hydrodynamics leads to self-consistent results in the shear and sound wave channels.

  10. Foil focusing of relativistic electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Ekdahl, Jr., Carl August [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-10-26

    When an intense relativistic electron beams (IREB) passes through a grounded metal foil, the transverse electric field due to the beam space charge is locally shorted out, and the beam is focused by the magnetic field of its current. The effect can be treated as focusing by a thin lens with first order aberration. Expressions for the focal length and aberration coefficient of the equivalent thin lens are developed in this note. These are then applied to practical examples representative of IREB research at Los Alamos National Laboratory.

  11. BRST field theory of relativistic particles

    International Nuclear Information System (INIS)

    Holten, J.W. van

    1992-01-01

    A generalization of BRST field theory is presented, based on wave operators for the fields constructed out of, but different from the BRST operator. The authors discuss their quantization, gauge fixing and the derivation of propagators. It is shown, that the generalized theories are relevant to relativistic particle theories in the Brink-Di Vecchia-Howe-Polyakov (BDHP) formulation, and argue that the same phenomenon holds in string theories. In particular it is shown, that the naive BRST formulation of the BDHP theory leads to trivial quantum field theories with vanishing correlation functions. (author). 22 refs

  12. On relativistic irreducible quantum fields fulfilling CCR

    International Nuclear Information System (INIS)

    Baumann, K.

    1987-01-01

    Let phi be a relativistic scalar field fulfilling canonical commutation relations (CCR). Furthermore it is assumed that the time zero fields and momenta form an irreducible set. Based on estimates given by Herbst [I. W. Herbst, J. Math. Phys. 17, 1210 (1976)], and by methods developed by Powers [R. T. Powers, Commun. Math. Phys. 4, 145 (1967)], it is shown that phi has to be a free field in n>3 space dimensions. For n = 3 (resp. n = 2) restrictions that look similar to the restriction in a formal :phi 4 : 3 /sub +/ 1 (resp. :phi 6 : 2 /sub +/ 1 ) theory are obtained

  13. Relativistic collisions of structured atomic particles

    International Nuclear Information System (INIS)

    Voitkiv, A.; Ullrich, J.

    2008-01-01

    The book reviews the progress achieved over the last decade in the study of collisions between an ion and an atom in which both the atomic particles carry electrons and can undergo transitions between their internal states - including continua. It presents the detailed considerations of different theoretical approaches, that can be used to describe collisions of structured atomic particles for the very broad interval of impact energies ranging from 0.5-1 MeV/u till extreme relativistic energies where the collision velocity very closely approaches the speed of light. (orig.)

  14. Relativistic energy loss in a dispersive medium

    DEFF Research Database (Denmark)

    Houlrik, Jens Madsen

    2002-01-01

    The electron energy loss in a dispersive medium is obtained using macroscopic electrodynamics taking advantage of a static frame of reference. Relativistic corrections are described in terms of a dispersive Lorentz factor obtained by replacing the vacuum velocity c by the characteristic phase...... velocity c/n, where n is the complex index of refraction. The angle-resolved energy-loss spectrum of a Drude conductor is analyzed in detail and it is shown that the low-energy peak due to Ohmic losses is enhanced compared to the classical approximation....

  15. A Relativistic Symmetrical Interpretation of Quantum Mechanics

    Science.gov (United States)

    Heaney, Michael B.

    This poster describes a relativistic symmetrical interpretation (RSI) which postulates: quantum mechanics is intrinsically time-symmetric, with no arrow of time; the fundamental objects of quantum mechanics are transitions; a transition is fully described by a complex transition amplitude density with specified initial and final boundary conditions, and; transition amplitude densities never collapse. This RSI is compared to the Copenhagen Interpretation (CI) for the analysis of Einstein's bubble experiment using both the Dirac and Klein-Gordon equations. The RSI has no zitterbewegung in the particle's rest frame, resolves some inconsistencies of the CI, and gives intuitive explanations of some previously mysterious quantum effects.

  16. Relativistic charged particle ejection from optical lattice

    Science.gov (United States)

    Frolov, E. N.; Dik, A. V.; Dabagov, S. B.

    2018-03-01

    We have analyzed relativistic (~ MeV) electron ejection from potential channels of standing laser wave taking into account both rapid and averaged oscillations within the region of declining field of standing wave. We show that only a few last rapid oscillations can define transverse speed and, therefore, angle at which a particle leaves standing wave. This conclusion might drastically simplify numerical simulations of charged particles channeling and accompanying radiation in crossed lasers field. Moreover, it might provide a valuable information for estimation of charged particle beams parameters after their interaction with finite standing wave.

  17. Modular TPC's for relativistic heavy ion experiments

    International Nuclear Information System (INIS)

    Etkin, A.; Eiseman, S.E.; Foley, K.J.

    1989-01-01

    We have developed a TPC system for use in relativistic heavy ion experiments that permits the efficient reconstruction of high multiplicity events including events with decay vertices. It operates with the beam through the middle of the chamber giving good efficiency, two-track separation and spatial resolution. The three-dimensional points in this system allow the reconstruction of the complex events of interest. The use of specially developed hybrid electronics allows us to build a compact and cost-effective system. 11 figs

  18. Relativistic thermal plasmas - Effects of magnetic fields

    Science.gov (United States)

    Araki, S.; Lightman, A. P.

    1983-01-01

    Processes and equilibria in finite, relativistic, thermal plasmas are investigated, taking into account electron-positron creation and annihilation, photon production by internal processes, and photon production by a magnetic field. Inclusion of the latter extends previous work on such plasmas. The basic relations for thermal, Comptonized synchrotron emission are analyzed, including emission and absorption without Comptonization, Comptonized thermal synchrotron emission, and the Comptonized synchrotron and bremsstrahlung luminosities. Pair equilibria are calculated, including approximations and dimensionless parameters, the pair balance equation, maximum temperatures and field strengths, and individual models and cooling curves.

  19. Relativistic thermal plasmas - Pair processes and equilibria

    Science.gov (United States)

    Lightman, A. P.

    1982-01-01

    The work of Bisnovatyi-Kogan, Zel'dovich and Sunyaev (1971) is extended and generalized, through the inclusion of pair-producing photon processes and effects due to the finite size of the plasma, in an investigation of the equilibria of relativistic thermal plasmas which takes into account electron-positron creation and annihilation and photons produced within the plasma. It is shown that the bridge between an effectively thin plasma and an effectively thick plasma occurs in the transrelativistic region, where the dimensionless temperature value is between 0.1 and 1.0 and the temperature remains in this region over a great luminosity range.

  20. Relativistic quantum mechanics and field theory

    CERN Document Server

    Gross, Franz

    1999-01-01

    An accessible, comprehensive reference to modern quantum mechanics and field theory.In surveying available books on advanced quantum mechanics and field theory, Franz Gross determined that while established books were outdated, newer titles tended to focus on recent developments and disregard the basics. Relativistic Quantum Mechanics and Field Theory fills this striking gap in the field. With a strong emphasis on applications to practical problems as well as calculations, Dr. Gross provides complete, up-to-date coverage of both elementary and advanced topics essential for a well-rounded understanding of the field.