WorldWideScience

Sample records for wind power solar

  1. Small Footprint Solar/Wind-powered CASTNET System Dataset

    Data.gov (United States)

    U.S. Environmental Protection Agency — In this Research Effort “Small Footprint Solar/Wind-Powered CASTNET System” there are two data sets. One data set contains atmospheric concentration measurements, at...

  2. Livestock water pumping with wind and solar power

    Science.gov (United States)

    Recent developments in pumping technologies have allowed for efficient use of renewable energies like wind and solar to power new pumps for remote water pumping. A helical type, positive displacement pump was developed a few years ago and recently modified to accept input from a variable power sourc...

  3. Power generation from wind turbines in a solar chimney

    Energy Technology Data Exchange (ETDEWEB)

    Foote, Tudor [Graduate Student, Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, Jolley Hall, Campus Box 1185, One Brookings Drive, St. Louis, Missouri, 63130 (United States); Agarwal, Ramesh K. [William Palm Professor, Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, Jolley Hall, Campus Box 1185, One Brookings Drive, St. Louis, Missouri, 63130 (United States)

    2013-07-01

    Recent studies have shown that shrouded wind turbines can generate greater power compared to bare turbines. A solar chimney generates an upward draft of wind inside a tower and a shroud around the wind turbine. There are numerous empty silos on farms in the U.S. that can be converted to solar chimneys with minor modifications at modest cost. The objective of this study is to determine the potential of these silos/chimneys for generating wind power. The study is conducted through analytical/computational approach by employing the commercial Computational Fluid Dynamics (CFD) software. Computations are performed for five different geometric configurations consisting of a turbine, a cylindrical silo, and/or a venturi and/or a diffuser using the dimensions of typical silos and assuming Class 3 wind velocity. The incompressible Navier-Stokes equations with the Boussinesq approximation and a two equation realizable {kappa}-{epsilon} model are employed in the calculations, and the turbine is modeled as an actuator disk. The power coefficient (Cp) and generated power are calculated for the five cases. Consistent with recent literature, it was found that the silos with diffusers increase the Cp beyond Betz’s limit significantly and thus the generated power. It should be noted that Cp is calculated by normalizing it by the turbine area swept by the wind. This study shows the potential of using abandoned silos in the mid-west and other parts of the country for localized wind power generation.

  4. ANALYSING SOLAR-WIND HYBRID POWER GENERATING SYSTEM

    Directory of Open Access Journals (Sweden)

    Mustafa ENGİN

    2005-02-01

    Full Text Available In this paper, a solar-wind hybrid power generating, system that will be used for security lighting was designed. Hybrid system was installed and solar cells, wind turbine, battery bank, charge regulators and inverter performance values were measured through the whole year. Using measured values of overall system efficiency, reliability, demanded energy cost per kWh were calculated, and percentage of generated energy according to resources were defined. We also include in the paper a discussion of new strategies to improve hybrid power generating system performance and demanded energy cost per kWh.

  5. GPP Webinar: Market Outlook and Innovations in Wind and Solar Power

    Science.gov (United States)

    Green Power Partnership webinar reviewing the state of the renewable energy industry as a whole, with a focus on wind and solar power and exploring recent marketplace innovations in wind and solar power and renewable energy purchases.

  6. Air emissions due to wind and solar power.

    Science.gov (United States)

    Katzenstein, Warren; Apt, Jay

    2009-01-15

    Renewables portfolio standards (RPS) encourage large-scale deployment of wind and solar electric power. Their power output varies rapidly, even when several sites are added together. In many locations, natural gas generators are the lowest cost resource available to compensate for this variability, and must ramp up and down quickly to keep the grid stable, affecting their emissions of NOx and CO2. We model a wind or solar photovoltaic plus gas system using measured 1-min time-resolved emissions and heat rate data from two types of natural gas generators, and power data from four wind plants and one solar plant. Over a wide range of renewable penetration, we find CO2 emissions achieve approximately 80% of the emissions reductions expected if the power fluctuations caused no additional emissions. Using steam injection, gas generators achieve only 30-50% of expected NOx emissions reductions, and with dry control NOx emissions increase substantially. We quantify the interaction between state RPSs and NOx constraints, finding that states with substantial RPSs could see significant upward pressure on NOx permit prices, if the gas turbines we modeled are representative of the plants used to mitigate wind and solar power variability.

  7. Study on Pyroelectric Harvesters Integrating Solar Radiation with Wind Power

    Directory of Open Access Journals (Sweden)

    Chun-Ching Hsiao

    2015-07-01

    Full Text Available Pyroelectric harvesters use temperature fluctuations to generate electrical outputs. Solar radiation and waste heat are rich energy sources that can be harvested. Pyroelectric energy converters offer a novel and direct energy-conversion technology by transforming time-dependent temperatures directly into electricity. Moreover, the great challenge for pyroelectric energy harvesting lies in finding promising temperature variations or an alternating thermal loading in real situations. Hence, in this article, a novel pyroelectric harvester integrating solar radiation with wind power by the pyroelectric effect is proposed. Solar radiation is a thermal source, and wind is a dynamic potential. A disk generator is used for harvesting wind power. A mechanism is considered to convert the rotary energy of the disk generator to drive a shutter for generating temperature variations in pyroelectric cells using a planetary gear system. The optimal period of the pyroelectric cells is 35 s to harvest the stored energy, about 70 μJ, while the rotary velocity of the disk generator is about 31 RPM and the wind speed is about 1 m/s. In this state, the stored energy acquired from the pyroelectric harvester is about 75% more than that from the disk generator. Although the generated energy of the proposed pyroelectric harvester is less than that of the disk generator, the pyroelectric harvester plays a complementary role when the disk generator is inactive in situations of low wind speed.

  8. Anisotropic Behaviour of Magnetic Power Spectra in Solar Wind Turbulence.

    Science.gov (United States)

    Banerjee, S.; Saur, J.; Gerick, F.; von Papen, M.

    2017-12-01

    Introduction:High altitude fast solar wind turbulence (SWT) shows different spectral properties as a function of the angle between the flow direction and the scale dependent mean magnetic field (Horbury et al., PRL, 2008). The average magnetic power contained in the near perpendicular direction (80º-90º) was found to be approximately 5 times larger than the average power in the parallel direction (0º- 10º). In addition, the parallel power spectra was found to give a steeper (-2) power law than the perpendicular power spectral density (PSD) which followed a near Kolmogorov slope (-5/3). Similar anisotropic behaviour has also been observed (Chen et al., MNRAS, 2011) for slow solar wind (SSW), but using a different method exploiting multi-spacecraft data of Cluster. Purpose:In the current study, using Ulysses data, we investigate (i) the anisotropic behaviour of near ecliptic slow solar wind using the same methodology (described below) as that of Horbury et al. (2008) and (ii) the dependence of the anisotropic behaviour of SWT as a function of the heliospheric latitude.Method:We apply the wavelet method to calculate the turbulent power spectra of the magnetic field fluctuations parallel and perpendicular to the local mean magnetic field (LMF). According to Horbury et al., LMF for a given scale (or size) is obtained using an envelope of the envelope of that size. Results:(i) SSW intervals always show near -5/3 perpendicular spectra. Unlike the fast solar wind (FSW) intervals, for SSW, we often find intervals where power parallel to the mean field is not observed. For a few intervals with sufficient power in parallel direction, slow wind turbulence also exhibit -2 parallel spectra similar to FSW.(ii) The behaviours of parallel and perpendicular power spectra are found to be independent of the heliospheric latitude. Conclusion:In the current study we do not find significant influence of the heliospheric latitude on the spectral slopes of parallel and perpendicular

  9. Role of Concentrating Solar Power in Integrating Solar and Wind Energy: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Denholm, P.; Mehos, M.

    2015-06-03

    As wind and solar photovoltaics (PV) increase in penetration it is increasingly important to examine enabling technologies that can help integrate these resources at large scale. Concentrating solar power (CSP) when deployed with thermal energy storage (TES) can provide multiple services that can help integrate variable generation (VG) resources such as wind and PV. CSP with TES can provide firm, highly flexible capacity, reducing minimum generation constraints which limit penetration and results in curtailment. By acting as an enabling technology, CSP can complement PV and wind, substantially increasing their penetration in locations with adequate solar resource.

  10. Investigating the Correlation Between Wind and Solar Power Forecast Errors in the Western Interconnection: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, J.; Hodge, B. M.; Florita, A.

    2013-05-01

    Wind and solar power generations differ from conventional energy generation because of the variable and uncertain nature of their power output. This variability and uncertainty can have significant impacts on grid operations. Thus, short-term forecasting of wind and solar generation is uniquely helpful for power system operations to balance supply and demand in an electricity system. This paper investigates the correlation between wind and solar power forecasting errors.

  11. Solar power. [comparison of costs to wind, nuclear, coal, oil and gas

    Science.gov (United States)

    Walton, A. L.; Hall, Darwin C.

    1990-01-01

    This paper describes categories of solar technologies and identifies those that are economic. It compares the private costs of power from solar, wind, nuclear, coal, oil, and gas generators. In the southern United States, the private costs of building and generating electricity from new solar and wind power plants are less than the private cost of electricity from a new nuclear power plant. Solar power is more valuable than nuclear power since all solar power is available during peak and midpeak periods. Half of the power from nuclear generators is off-peak power and therefore is less valuable. Reliability is important in determining the value of wind and nuclear power. Damage from air pollution, when factored into the cost of power from fossil fuels, alters the cost comparison in favor of solar and wind power. Some policies are more effective at encouraging alternative energy technologies that pollute less and improve national security.

  12. Ancillary Services for the European Grid with High Shares of Wind and Solar Power

    DEFF Research Database (Denmark)

    Van Hulle, Frans; Holttinen, Hannele; Kiviluoma, Juha

    2012-01-01

    services that are especially relevant for wind and solar power. These are mainly related to frequency, voltage control and restoration of the system. In addition, based on existing experience and wind integration studies, the paper analyses impacts that high amounts of wind/solar will have on different......With significantly increasing share of variable renewable power generation like wind and solar PV, the need in the power system for ancillary services supporting the network frequency, voltage, etc. changes. Turning this issue around, market opportunities will emerge for wind and solar PV...... technology to deliver such grid services. In the European power system, adequate market mechanisms need to be developed to ensure that there will be an efficient trading of these services. For that purpose a range of (economic) characteristics of wind (and solar) power as providers of grid services need...

  13. The influence of solar wind variability on magnetospheric ULF wave power

    International Nuclear Information System (INIS)

    Pokhotelov, D.; Rae, I.J.; Mann, I.R.

    2015-01-01

    Magnetospheric ultra-low frequency (ULF) oscillations in the Pc 4-5 frequency range play an important role in the dynamics of Earth's radiation belts, both by enhancing the radial diffusion through incoherent interactions and through the coherent drift-resonant interactions with trapped radiation belt electrons. The statistical distributions of magnetospheric ULF wave power are known to be strongly dependent on solar wind parameters such as solar wind speed and interplanetary magnetic field (IMF) orientation. Statistical characterisation of ULF wave power in the magnetosphere traditionally relies on average solar wind-IMF conditions over a specific time period. In this brief report, we perform an alternative characterisation of the solar wind influence on magnetospheric ULF wave activity through the characterisation of the solar wind driver by its variability using the standard deviation of solar wind parameters rather than a simple time average. We present a statistical study of nearly one solar cycle (1996-2004) of geosynchronous observations of magnetic ULF wave power and find that there is significant variation in ULF wave powers as a function of the dynamic properties of the solar wind. In particular, we find that the variability in IMF vector, rather than variabilities in other parameters (solar wind density, bulk velocity and ion temperature), plays the strongest role in controlling geosynchronous ULF power. We conclude that, although time-averaged bulk properties of the solar wind are a key factor in driving ULF powers in the magnetosphere, the solar wind variability can be an important contributor as well. This highlights the potential importance of including solar wind variability especially in studies of ULF wave dynamics in order to assess the efficiency of solar wind-magnetosphere coupling.

  14. Developing a hybrid solar/wind powered irrigation system for crops in the Great Plains

    Science.gov (United States)

    Some small scale irrigation systems (powered by wind or solar do not require subsidies, but this paper discusses ways to achieve an economical renewable energy powered center pivot irrigation system for crops in the Great Plains. By adding a solar-photovoltaic (PV) array together with a wind...

  15. Contribution of Strong Discontinuities to the Power Spectrum of the Solar Wind

    International Nuclear Information System (INIS)

    Borovsky, Joseph E.

    2010-01-01

    Eight and a half years of magnetic field measurements (2 22 samples) from the ACE spacecraft in the solar wind at 1 A.U. are analyzed. Strong (large-rotation-angle) discontinuities in the solar wind are collected and measured. An artificial time series is created that preserves the timing and amplitudes of the discontinuities. The power spectral density of the discontinuity series is calculated and compared with the power spectral density of the solar-wind magnetic field. The strong discontinuities produce a power-law spectrum in the ''inertial subrange'' with a spectral index near the Kolmogorov -5/3 index. The discontinuity spectrum contains about half of the power of the full solar-wind magnetic field over this ''inertial subrange.'' Warnings are issued about the significant contribution of discontinuities to the spectrum of the solar wind, complicating interpretation of spectral power and spectral indices.

  16. Contribution of strong discontinuities to the power spectrum of the solar wind.

    Science.gov (United States)

    Borovsky, Joseph E

    2010-09-10

    Eight and a half years of magnetic field measurements (2(22) samples) from the ACE spacecraft in the solar wind at 1 A.U. are analyzed. Strong (large-rotation-angle) discontinuities in the solar wind are collected and measured. An artificial time series is created that preserves the timing and amplitudes of the discontinuities. The power spectral density of the discontinuity series is calculated and compared with the power spectral density of the solar-wind magnetic field. The strong discontinuities produce a power-law spectrum in the "inertial subrange" with a spectral index near the Kolmogorov -5/3 index. The discontinuity spectrum contains about half of the power of the full solar-wind magnetic field over this "inertial subrange." Warnings are issued about the significant contribution of discontinuities to the spectrum of the solar wind, complicating interpretation of spectral power and spectral indices.

  17. Seasonal optimal mix of wind and solar power in a future, highly renewable Europe

    DEFF Research Database (Denmark)

    Heide, Dominik; Bremen, Lueder von; Greiner, Martin

    2010-01-01

    behaviors are able to counterbalance each other to a certain extent to follow the seasonal load curve. The best point of counterbalancing represents the seasonal optimal mix between wind and solar power generation. It leads to a pronounced minimum in required stored energy. For a 100% renewable Europe......The renewable power generation aggregated across Europe exhibits strong seasonal behaviors. Wind power generation is much stronger in winter than in summer. The opposite is true for solar power generation. In a future Europe with a very high share of renewable power generation those two opposite...... the seasonal optimal mix becomes 55% wind and 45% solar power generation. For less than 100% renewable scenarios the fraction of wind power generation increases and that of solar power generation decreases....

  18. An illustrative note on the system price effect of wind and solar power. The German case

    International Nuclear Information System (INIS)

    Jaegemann, Cosima

    2014-01-01

    Exposing wind and solar power to the market price signal allows for cost-efficient investment decisions, as it incentivizes investors to account for the marginal value (MV el ) of renewable energy technologies. As shown by Lamont (2008), the MV el of wind and solar power units depends on their penetration level. More specifically, the MV el of wind and solar power units is a function of the respective unit's capacity factor and the covariance between its generation profile and the system marginal costs. The latter component of the MV el (i.e., the covariance) is found to decline as the wind and solar power penetration increases, displacing dispatchable power plants with higher short-run marginal costs of power production and thus reducing the system marginal costs in all generation hours. This so called 'system price effect' is analyzed in more detail in this paper. The analysis complements the work Lamont (2008) in two regards. First of all, an alternative expression for the MV el of wind and solar power units is derived, which shows that the MV el of fluctuating renewable energy technologies depends not only on their own penetration level but also on a variety of other parameters that are specific to the electricity system. Second, based on historical wholesale prices and wind and solar power generation data for Germany, a numerical 'ceteris paribus' example for Germany is presented which illustrates that the system price effect is already highly relevant for both wind and solar power generation in Germany.

  19. Simulation and optimum design of hybrid solar-wind and solar-wind-diesel power generation systems

    Science.gov (United States)

    Zhou, Wei

    Solar and wind energy systems are considered as promising power generating sources due to its availability and topological advantages in local power generations. However, a drawback, common to solar and wind options, is their unpredictable nature and dependence on weather changes, both of these energy systems would have to be oversized to make them completely reliable. Fortunately, the problems caused by variable nature of these resources can be partially overcome by integrating these two resources in a proper combination to form a hybrid system. However, with the increased complexity in comparison with single energy systems, optimum design of hybrid system becomes more complicated. In order to efficiently and economically utilize the renewable energy resources, one optimal sizing method is necessary. This thesis developed an optimal sizing method to find the global optimum configuration of stand-alone hybrid (both solar-wind and solar-wind-diesel) power generation systems. By using Genetic Algorithm (GA), the optimal sizing method was developed to calculate the system optimum configuration which offers to guarantee the lowest investment with full use of the PV array, wind turbine and battery bank. For the hybrid solar-wind system, the optimal sizing method is developed based on the Loss of Power Supply Probability (LPSP) and the Annualized Cost of System (ACS) concepts. The optimization procedure aims to find the configuration that yields the best compromise between the two considered objectives: LPSP and ACS. The decision variables, which need to be optimized in the optimization process, are the PV module capacity, wind turbine capacity, battery capacity, PV module slope angle and wind turbine installation height. For the hybrid solar-wind-diesel system, minimization of the system cost is achieved not only by selecting an appropriate system configuration, but also by finding a suitable control strategy (starting and stopping point) of the diesel generator. The

  20. Power Spectra, Power Law Exponents, and Anisotropy of Solar Wind Turbulence at Small Scales

    Science.gov (United States)

    Podesta, J. J.; Roberts, D. A.; Goldstein, M. L.

    2006-01-01

    The Wind spacecraft provides simultaneous solar wind velocity and magnetic field measurements with 3- second time resolution, roughly an order of magnitude faster than previous measurements, enabling the small scale features of solar wind turbulence to be studied in unprecedented detail. Almost the entire inertial range can now be explored (the inertial range extends from approximately 1 to 10(exp 3) seconds in the spacecraft frame) although the dissipation range of the velocity fluctuations is still out of reach. Improved measurements of solar wind turbulence spectra at 1 AU in the ecliptic plane are presented including spectra of the energy and cross-helicity, the magnetic and kinetic energies, the Alfven ratio, the normalized cross-helicity, and the Elsasser ratio. Some recent observations and theoretical challenges are discussed including the observation that the velocity and magnetic field spectra often show different power law exponents with values close to 3/2 and 5/3, respectively; the energy (kinetic plus magnetic) and cross-helicity often have approximately equal power law exponents with values intermediate between 3/2 and 5/3; and the Alfven ratio, the ratio of the kinetic to magnetic energy spectra, is often a slowly increasing function of frequency increasing from around 0.4 to 1 for frequencies in the inertial range. Differences between high- and low-speed wind are also discussed. Comparisons with phenomenological turbulence theories show that important aspects of the physics are yet unexplained.

  1. Power Flow Simulations of a More Renewable California Grid Utilizing Wind and Solar Insolation Forecasting

    Science.gov (United States)

    Hart, E. K.; Jacobson, M. Z.; Dvorak, M. J.

    2008-12-01

    Time series power flow analyses of the California electricity grid are performed with extensive addition of intermittent renewable power. The study focuses on the effects of replacing non-renewable and imported (out-of-state) electricity with wind and solar power on the reliability of the transmission grid. Simulations are performed for specific days chosen throughout the year to capture seasonal fluctuations in load, wind, and insolation. Wind farm expansions and new wind farms are proposed based on regional wind resources and time-dependent wind power output is calculated using a meteorological model and the power curves of specific wind turbines. Solar power is incorporated both as centralized and distributed generation. Concentrating solar thermal plants are modeled using local insolation data and the efficiencies of pre-existing plants. Distributed generation from rooftop PV systems is included using regional insolation data, efficiencies of common PV systems, and census data. The additional power output of these technologies offsets power from large natural gas plants and is balanced for the purposes of load matching largely with hydroelectric power and by curtailment when necessary. A quantitative analysis of the effects of this significant shift in the electricity portfolio of the state of California on power availability and transmission line congestion, using a transmission load-flow model, is presented. A sensitivity analysis is also performed to determine the effects of forecasting errors in wind and insolation on load-matching and transmission line congestion.

  2. Costs of solar and wind power variability for reducing CO2 emissions.

    Science.gov (United States)

    Lueken, Colleen; Cohen, Gilbert E; Apt, Jay

    2012-09-04

    We compare the power output from a year of electricity generation data from one solar thermal plant, two solar photovoltaic (PV) arrays, and twenty Electric Reliability Council of Texas (ERCOT) wind farms. The analysis shows that solar PV electricity generation is approximately one hundred times more variable at frequencies on the order of 10(-3) Hz than solar thermal electricity generation, and the variability of wind generation lies between that of solar PV and solar thermal. We calculate the cost of variability of the different solar power sources and wind by using the costs of ancillary services and the energy required to compensate for its variability and intermittency, and the cost of variability per unit of displaced CO(2) emissions. We show the costs of variability are highly dependent on both technology type and capacity factor. California emissions data were used to calculate the cost of variability per unit of displaced CO(2) emissions. Variability cost is greatest for solar PV generation at $8-11 per MWh. The cost of variability for solar thermal generation is $5 per MWh, while that of wind generation in ERCOT was found to be on average $4 per MWh. Variability adds ~$15/tonne CO(2) to the cost of abatement for solar thermal power, $25 for wind, and $33-$40 for PV.

  3. Cost-benefit analysis of hybrid wind-solar power generation by ...

    African Journals Online (AJOL)

    HOMER power optimization software for evaluation of design and performance of both off-grid and gridconnected power systems has been applied for cost-benefit analysis of a wind-solar hybrid power generation system. Comparison was also made with the cost per kilowatt of grid power supply. The hybrid system had a ...

  4. A GRID-CONNECTED HYBRID WIND-SOLAR POWER SYSTEM

    Directory of Open Access Journals (Sweden)

    MAAMAR TALEB

    2017-06-01

    Full Text Available A hybrid renewable energy system consisting of a photovoltaic generator and a wind driven DC machine is interconnected with the power utilities grid. The interconnection is done through the use of two separate single phase full wave controlled bridge converters. The bridge converters are operated in the “inverter mode of operation”. That is to guaranty the extraction of the real powers from the wind driven generator as well as from the photovoltaic generator and inject them into the power utilities grid. At any pretended surrounding weather conditions, maximum extraction of powers from both renewable energy sources is targeted. This is done through the realization of self-adjusted firing angle controllers responsible of triggering the semiconductor elements of the controlled converters. An active power filter is shunted with the proposed setup to guaranty the sinusoid quality of the power utilities line current. The overall performance of the proposed system has been simulated in MATLAB/SIMULINK environment. Quite satisfactory and encouraging results have been obtained.

  5. Assessment of wind and solar power in global low-carbon energy scenarios: An introduction

    Energy Technology Data Exchange (ETDEWEB)

    Luderer, Gunnar; Pietzcker, Robert C.; Carrara, Samuel; de Boer, Harmen Sytze; Fujimori, Shinichiro; Johnson, Nils; Mima, Silvana; Arent, Douglas

    2017-04-07

    This preface introduces the special section on the assessment of wind and solar in global low-carbon energy scenarios. The special section documents the results of a coordinated research effort to improve the representation of variable renewable energies (VRE), including wind and solar power, in Integrated Assessment Models (IAM) and presents an overview of the results obtained in the underlying coordinated model inter-comparison exercise.

  6. Comparison of Solar and Wind Power Output and Correlation with Real-Time Pricing

    Science.gov (United States)

    Hoepfl, Kathryn E.; Compaan, Alvin D.; Solocha, Andrew

    2011-03-01

    This study presents a method that can be used to determine the least volatile power output of a wind and solar hybrid energy system in which wind and solar systems have the same peak power. Hourly data for wind and PV systems in Northwest Ohio are used to show that a combination of both types of sustainable energy sources produces a more stable power output and would be more valuable to the grid than either individually. This method could be used to determine the ideal ratio in any part of the country and should help convince electric utility companies to bring more renewable generation online. This study also looks at real-time market pricing and how each system (solar, wind, and hybrid) correlates with 2009 hourly pricing from the Midwest Interconnect. KEH acknowledges support from the NSF-REU grant PHY-1004649 to the Univ. of Toledo and Garland Energy Systems/Ohio Department of Development.

  7. Reduced storage and balancing needs in a fully renewable European power system with excess wind and solar power generation

    DEFF Research Database (Denmark)

    Heide, Dominik; Greiner, Martin; von Bremen, Lüder

    2011-01-01

    The storage and balancing needs of a simplified European power system, which is based on wind and solar power generation only, are derived from an extensive weather-driven modeling of hourly power mismatches between generation and load. The storage energy capacity, the annual balancing energy...... and the balancing power are found to depend significantly on the mixing ratio between wind and solar power generation. They decrease strongly with the overall excess generation. At 50% excess generation the required long-term storage energy capacity and annual balancing energy amount to 1% of the annual consumption...

  8. Reduced storage and balancing needs in a fully renewable European power system with excess wind and solar power generation

    DEFF Research Database (Denmark)

    Heide, Dominik; Greiner, Martin; von Bremen, Lüder

    The storage and balancing needs of a simplified European power system, which is based on wind and solar power generation only, are derived from an extensive weather-driven modeling of hourly power mismatches between generation and load. The storage energy capacity, the annual balancing energy...... and the balancing power are found to depend significantly on the mixing ratio between wind and solar power generation. They decrease strongly with the overall excess generation. At 50% excess generation the required long-term storage energy capacity and annual balancing energy amount to 1% of the annual consumption...

  9. Hybrid power system (hydro, solar and wind) for rural electricity generation

    International Nuclear Information System (INIS)

    Mahinda Kurukulasuriya

    2000-01-01

    Generation of affordable cheap electric energy for rural development by a hybrid power system (10-50 kW) of hydropower, solar and wind energies on self determining basis and computer application to determine its performance. In this paper the following topics were discussed, design of hybrid power system, its justification and economic analysis, manufacturing and installation of the system. (Author)

  10. Developing wind and/or solar powered crop irrigation systems for the Great Plains

    Science.gov (United States)

    Some small scale, off-grid irrigation systems (less than 2.5 ha) that are powered by wind or solar energy are cost effective, but this paper discusses ways to achieve an economical renewable energy powered center pivot irrigation system for crops in the Great Plains. It was found that partitioning t...

  11. Assessing the Structural, Driver and Economic Impacts of Traffic Pole Mounted Wind Power Generator and Solar Panel Hybrid System

    Science.gov (United States)

    2012-06-01

    This project evaluates the physical and economic feasibility of using existing traffic infrastructure to mount wind power : generators. Some possible places to mount a light weight wind generator and solar panel hybrid system are: i) Traffic : signal...

  12. On the exergetic capacity factor of a windSolar power generation system

    DEFF Research Database (Denmark)

    Xydis, George

    2013-01-01

    production. In this paper, a detailed exergetic analysis aiming to identify the overall Exergetic Capacity Factor (ExCF) for a windsolar power generation system was done. ExCF, as a new parameter, can be used for better classification and evaluation of renewable energy sources (RES). All the energy...... and exergy characteristics of wind and solar energy were examined in order to identify the variables that affect the power output of the hybrid system. A validated open source PV optimization tool was also included in the analysis, It was shown that parameters as e.g. air density or tracking losses, low...

  13. Strategic selection of suitable projects for hybrid solar-wind power generation systems

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Hsing Hung [Faculty of Management and Administration, Macau University of Science and Technology, Taipa, Macau (China); Kang, He-Yau [Department of Industrial Engineering and Management, National Chin-Yi University of Technology, Taiping, Taichung (China); Lee, Amy H.I. [Department of Industrial Management, Chung Hua University, Non.707, Sec. 2, WuFu Rd., Hsinchu (China)

    2010-01-15

    Because of the pressing need for maintaining a healthy environment with reasonable costs, China is moving toward the trend for generating electricity from renewable resources. Both solar energy and wind power have received a tremendous attention from private associations, political groups, and electric power companies to generate power on a large scale. A drawback is their unpredictable nature and dependence on weather. Fortunately, the problems can be partially tackled by using the strengths of one source to overcome the weakness of the other. Especially, a large fraction of the solar resource is available at times of peak electrical load. However, the complexity of using two different resources together makes the hybrid solar-wind generation systems more difficult to analyze. Accordingly, this paper first briefly introduces the solar-wind generation system and next develops its critical success criteria. Then, a fuzzy analytic hierarchy process associated with benefits, opportunities, costs and risks, is proposed to help select a suitable solar-wind power generation project. (author)

  14. Economic Dispatch for Power System Included Wind and Solar Thermal Energy

    Directory of Open Access Journals (Sweden)

    Saoussen BRINI

    2009-07-01

    Full Text Available With the fast development of technologies of alternative energy, the electric power network can be composed of several renewable energy resources. The energy resources have various characteristics in terms of operational costs and reliability. In this study, the problem is the Economic Environmental Dispatching (EED of hybrid power system including wind and solar thermal energies. Renewable energy resources depend on the data of the climate such as the wind speed for wind energy, solar radiation and the temperature for solar thermal energy. In this article it proposes a methodology to solve this problem. The resolution takes account of the fuel costs and reducing of the emissions of the polluting gases. The resolution is done by the Strength Pareto Evolutionary Algorithm (SPEA method and the simulations have been made on an IEEE network test (30 nodes, 8 machines and 41 lines.

  15. Integrating wind and solar power into the energy systems of the 21st century

    Energy Technology Data Exchange (ETDEWEB)

    Flavin, C. [Worldwatch Inst., Washington, DC (United States)

    1995-12-31

    Although they have been pursued by scientists and entrepreneurs for two decades, solar and wind energy have not yet claimed the large share of the world energy market that proponents hoped they would. Yet the past two years brought a series of developments that suggest the time has come for solar and wind energy to compete directly with fossil fuels. Wind and solar power generators are likely to contribute significant power to the electricity systems of scores of countries within the next decade, with generating costs as low as 4-5 cents per kilowatt-hour. This will require adjustment in the operation of power transmission and distribution systems to accommodate intermittent resources, as well as new time-specific pricing of electricity. The transition to more open, competitive power systems, with liberal access by independent producers, is likely to speed introduction of the new technologies. Altogether, the energy that strikes the earth`s atmosphere in the form of sunlight each year, and the winds that flow from it, represent the equivalent of nearly 1,000 trillion barrels of oil-sufficient to fuel the global economy thousands of times over. By relying on a new generation of efficient, high-tech, and mass produced energy conversion devices such as advanced wind turbines and photovoltaics, the world can rapidly reduce its dependence on oil and coal in the twenty-first century. In the more distant future, solar and wind energy have the potential not only to supply much of the world`s electricity but to displace the direct use of oil and natural gas. Solar and wind energy can be used to split water via electrolysis, producing hydrogen gas that can be substituted for liquid and gaseous fuels. (46 refs.)

  16. The climate and air-quality benefits of wind and solar power in the United States

    Science.gov (United States)

    Millstein, Dev; Wiser, Ryan; Bolinger, Mark; Barbose, Galen

    2017-09-01

    Wind and solar energy reduce combustion-based electricity generation and provide air-quality and greenhouse gas emission benefits. These benefits vary dramatically by region and over time. From 2007 to 2015, solar and wind power deployment increased rapidly while regulatory changes and fossil fuel price changes led to steep cuts in overall power-sector emissions. Here we evaluate how wind and solar climate and air-quality benefits evolved during this time period. We find cumulative wind and solar air-quality benefits of 2015 US$29.7-112.8 billion mostly from 3,000 to 12,700 avoided premature mortalities, and cumulative climate benefits of 2015 US$5.3-106.8 billion. The ranges span results across a suite of air-quality and health impact models and social cost of carbon estimates. We find that binding cap-and-trade pollutant markets may reduce these cumulative benefits by up to 16%. In 2015, based on central estimates, combined marginal benefits equal 7.3 ¢ kWh-1 (wind) and 4.0 ¢ kWh-1 (solar).

  17. Wind power

    International Nuclear Information System (INIS)

    Gipe, P.

    2007-01-01

    This book is a translation of the edition published in the USA under the title of ''wind power: renewable energy for home, farm and business''. In the wake of mass blackouts and energy crises, wind power remains a largely untapped resource of renewable energy. It is a booming worldwide industry whose technology, under the collective wing of aficionados like author Paul Gipe, is coming of age. Wind Power guides us through the emergent, sometimes daunting discourse on wind technology, giving frank explanations of how to use wind technology wisely and sound advice on how to avoid common mistakes. Since the mid-1970's, Paul Gipe has played a part in nearly every aspect of wind energy development from installing small turbines to promoting wind energy worldwide. As an American proponent of renewable energy, Gipe has earned the acclaim and respect of European energy specialists for years, but his arguments have often fallen on deaf ears at home. Today, the topic of wind power is cropping up everywhere from the beaches of Cape Cod to the Oregon-Washington border, and one wind turbine is capable of producing enough electricity per year to run 200 average American households. Now, Paul Gipe is back to shed light on this increasingly important energy source with a revised edition of Wind Power. Over the course of his career, Paul Gipe has been a proponent, participant, observer, and critic of the wind industry. His experience with wind has given rise to two previous books on the subject, Wind Energy Basics and Wind Power for Home and Business, which have sold over 50,000 copies. Wind Power for Home and Business has become a staple for both homeowners and professionals interested in the subject, and now, with energy prices soaring, interest in wind power is hitting an all-time high. With chapters on output and economics, Wind Power discloses how much you can expect from each method of wind technology, both in terms of energy and financial savings. The book updated models

  18. A simple mathematical description of an off-grid hybrid solar-wind power generating system

    Science.gov (United States)

    Blasone, M.; Dell'Anno, F.; De Luca, R.; Torre, G.

    2013-05-01

    We give a detailed description of the energy balance equation for a stand-alone hybrid solar-wind power generating system. The dimensions of the power generator and the energy capacity of a buffer battery (used as an energy storage system) are chosen to suit a known consumer's profile. Future applications of the mathematical model developed and analogies with a similar hydrodynamic problem are discussed.

  19. Climate Wind Power Resources

    Directory of Open Access Journals (Sweden)

    Nana M. Berdzenishvili

    2013-01-01

    Full Text Available Georgia as a whole is characterized by rather rich solar energy resources, which allows to construct alternative power stations in the close proximity to traditional power plants. In this case the use of solar energy is meant. Georgia is divided into 5 zones based on the assessment of wind power resources. The selection of these zones is based on the index of average annual wind speed in the examined area, V> 3 m / s and V> 5 m / s wind speed by the summing duration in the course of the year and V = 0. . . 2 m / s of passive wind by total and continuous duration of these indices per hour.

  20. Demonstrative study for the wind and solar hybrid power system. 2; Furyoku taiyoko hybrid hatsuden system ni kansuru jissho kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, Y.; Sakuma, H.; Ushiyama, I. [Ashikaga Institute of Technology, Tochigi (Japan)

    1996-10-27

    In order to verify the complementary relationship between wind and solar energy, the long-term field test of the hybrid power system was conducted at the natural energy square of Ashikaga Institute of Technology. The solar cell blade windmill composed of a Savonius windmill and flexible solar cells applied to swept buckets was also prepared. As a result, the wind power generation was promising mainly in the winter period including the late fall and early spring, while solar one was stable all the year through although it was slightly poor in winter. Stable power generation was thus achieved by combining wind energy with solar energy. As the whole data of other wind and solar power generation systems at the square were analyzed for every month, the same conclusion as the solar cell blade windmill was obtained as follows: the wind power generation in Ashikaga area is promising in Nov.-March from the field test result for 16 months, solar power generation is stable all the year through, the hybrid power system is effective in Nov.-April, and the solar cell blade windmill is equivalent to the hybrid power system. 3 refs., 5 figs.

  1. Spacecraft radio scattering observations of the power spectrum of electron density fluctuations in the solar wind

    International Nuclear Information System (INIS)

    Woo, R.; Armstrong, J.W.

    1979-01-01

    Solar wind electron density power spectra in the solar equatorial region are inferred from observations of phase scintillations and spectral broadening made with the Viking, Helios, and Pioneer spacecraft. The heliocentric distance range covered is 2--215 R/sub S/, and for some observations close to the sun the spectra extend to fluctuation frequencies as high as 100 Hz. For heliocentric distances > or approx. =20 R/sub S/ the equivalent spacecraft-measured one-dimensional density spectrym V/sub n/e is well modeled by a single power law (f/sup -alpha/) in the frequency range 10 -4 -5 x 10 -2 Hz. The mean spectral index α is 1.65, very close to the Kolmogorov value of 5/3. Under the assumption of constant solar wind speed, V/sub n/e varies as R/sup -3.45/, where R is heliocentric distance. Within 20 R/sub S/, V/sub n/e can still be modeled by a single power law over the frequency range 10 -3 -10 1 Hz, but the spectral index becomes smaller, αapprox.1.1. The flattening of the density spectrum with 20 R/sub S/ is presumably associated with energy deposition in the near-sun region and acceleration of the solar wind

  2. FENCH-analysis of electricity generation greenhouse gas emissions from solar and wind power in Germany

    International Nuclear Information System (INIS)

    Hartmann, D.

    1997-01-01

    The assessment of energy supply systems with regard to the influence on climate change requires not only the quantification of direct emissions caused by the operation of a power plant. It also has to take into account indirect emissions resulting from e.g. construction and dismounting of the power plant. Processes like manufacturing the materials for building the plant, the transportation of components and the construction and maintenance of the power plant are included. A tool to determine and assess the energy and mass flows is the Life Cycle Analysis (LCA) which allows the assessment of environmental impacts related to a product or service. In this paper a FENCH (Full Energy Chain)-analysis based on a LCA of electricity production from wind and solar power plants under operation conditions typical for application its Germany is presented. The FENCH-analysis is based on two methods, Process Chain Analysis (PCA) and Input-Output-Analysis (IOA) which are illustrated by the example of an electricity generation from a wind power plant. The calculated results are shown for the cumulated (indirect and direct) Greenhouse-Gas (GHG)-emissions for an electricity production from wind and solar power plants. A comparison of the results to the electricity production from a coal fired power plant is performed. At last a comparison of 1 kWh electricity from renewable energy to 1 kWh from fossil energy carrier has to be done, because the benefits of 1 kWh electricity from various types of power plants are different. Electricity from wind energy depends on the meteorological conditions while electricity from a fossil fired power plant is able to follow the power requirements of the consumers nearly all the time. By considering the comparison of the different benefit provided the GHG-Emissions are presented. (author)

  3. Wind and Solar on the Power Grid: Myths and Misperceptions, Greening the Grid (Spanish Version)

    Energy Technology Data Exchange (ETDEWEB)

    Authors: Denholm, Paul; Cochran, Jaquelin; Brancucci Martinez-Anido, Carlo

    2016-04-01

    This is the Spanish version of the 'Greening the Grid - Wind and Solar on the Power Grid: Myths and Misperceptions'. Wind and solar are inherently more variable and uncertain than the traditional dispatchable thermal and hydro generators that have historically provided a majority of grid-supplied electricity. The unique characteristics of variable renewable energy (VRE) resources have resulted in many misperceptions regarding their contribution to a low-cost and reliable power grid. Common areas of concern include: 1) The potential need for increased operating reserves, 2) The impact of variability and uncertainty on operating costs and pollutant emissions of thermal plants, and 3) The technical limits of VRE penetration rates to maintain grid stability and reliability. This fact sheet corrects misperceptions in these areas.

  4. Optimization of a stand-alone Solar PV-Wind-DG Hybrid System for Distributed Power Generation at Sagar Island

    Science.gov (United States)

    Roy, P. C.; Majumder, A.; Chakraborty, N.

    2010-10-01

    An estimation of a stand-alone solar PV and wind hybrid system for distributed power generation has been made based on the resources available at Sagar island, a remote area distant to grid operation. Optimization and sensitivity analysis has been made to evaluate the feasibility and size of the power generation unit. A comparison of the different modes of hybrid system has been studied. It has been estimated that Solar PV-Wind-DG hybrid system provides lesser per unit electricity cost. Capital investment is observed to be lesser when the system run with Wind-DG compared to Solar PV-DG.

  5. A Maine romance. [Solar heating, wind power and cliff erosion control at a Maine site

    Energy Technology Data Exchange (ETDEWEB)

    Adams, J.A.

    1979-09-01

    The construction of a house on the coast of Maine included terracing of the bluff for erosion control, installation of water solar collectors for space and water heating, and construction of a wind turbine for electric power generation. A total of 4,027 ft/sup 2/ of house area is heated by a system of 10 collectors and 4,000 gal water storage. Insulation values are R-19 in the walls, R-40 in the ceiling, R-26 in the floors, and R-14 in the basement. South-facing windows provide additional heat gain. The wind turbine and generator system supplies alternating current to the house and also heats auxiliary water storage when necessary. The house, collectors, and wind turbine are designed to supply 85% of the heating load.

  6. Design and analysis of a hybrid renewable energy plant with solar and wind power

    International Nuclear Information System (INIS)

    Kabalci, Ersan

    2013-01-01

    Highlights: • A distributed generation system is developed with separate solar plant and wind turbine. • The solar plant is controlled with MPPT infrastructure of Perturb and Observe algorithm. • Power generation of source sites are converted to DC with PI controlled buck converters and collected on a DC busbar. • Harvested DC power is converted to AC with a full bridge inverter and SPWM control is performed in inverter. • The total harmonic distortion (THD) ratio of the generated 3-phase line is obtained in the limit of standards. - Abstract: A hybrid renewable energy plant that is based on solar and wind energy conversion systems is designed and analysed in this paper. Each separate energy conversion system is controlled either using regular PI controller or extended PI controller with an auxiliary controller containing Perturb and Observe algorithm. The solar plant model is constituted by connecting 170 W photovoltaic (PV) panels serially and energy conversion is performed with maximum power point tracking (MPPT) algorithm that controls the modulator of buck converter. The MPPT algorithm utilized in the control step of converter is developed using Perturb and Observe (P and O) that is extended with PI controller. The wind energy plant is designed with a permanent magnet synchronous generator (PMSG), and the AC–DC conversion stage is constituted with an uncontrolled full-bridge rectifier. All the converter outputs are connected to a busbar over interphase transformers (IPTs). The DC bus-bar voltage is supplied to a full bridge inverter to generate three-phase AC voltages at the output of inverter. The three-phase inverter is controlled with sinusoidal pulse width modulation (SPWM) scheme, which is developed with phase shifted carrier signals. The total harmonic distortion (THD) ratios are obtained at proper values according to international standards such as IEC61000 and IEEE 519-1992. Measurement results and obtained three phase voltage are analysed

  7. Wind power

    International Nuclear Information System (INIS)

    2006-06-01

    This road-map proposes by the Group Total aims to inform the public on the wind power. It presents the principles, the technology takes off, its applications and technology focus, the global market trends and the outlooks and Total commitments in the domain. (A.L.B.)

  8. Wind and Solar on the Power Grid: Myths and Misperceptions, Greening the Grid

    Energy Technology Data Exchange (ETDEWEB)

    Katz, Jessica; Denholm, Paul; Pless, Jacquelyn

    2015-05-01

    Wind and solar are inherently more variable and uncertain than the traditional dispatchable thermal and hydro generators that have historically provided a majority of grid-supplied electricity. The unique characteristics of variable renewable energy (VRE) resources have resulted in many misperceptions regarding their contribution to a low-cost and reliable power grid. Common areas of concern include: 1) The potential need for increased operating reserves, 2) The impact of variability and uncertainty on operating costs and pollutant emissions of thermal plants, and 3) The technical limits of VRE penetration rates to maintain grid stability and reliability. This fact sheet corrects misperceptions in these areas.

  9. Fruitful symbiosis: Why an export bundled with wind energy is the most feasible option for North African concentrated solar power

    International Nuclear Information System (INIS)

    Kost, Christoph; Pfluger, Benjamin; Eichhammer, Wolfgang; Ragwitz, Mario

    2011-01-01

    The idea of generating electricity in North Africa using concentrating solar thermal power (CSP) has been around for some time now but has recently gained momentum through the Mediterranean Solar Plan (MSP) and the formation of the Desertec Industrial Initiative. This paper argues that while the large-scale deployment of CSP in North Africa does not seem economically attractive for either European or African institutions or countries on their own at present, combining domestic use and electricity exports could be profitable for both parties. A detailed economic portfolio covering both solar and wind power plants can achieve competitive price levels, which would accelerate the diffusion of solar technology in North Africa. This portfolio could be financed partially by exporting electricity from solar thermal plants in North Africa via HVDC interconnections to European consumers. Sharing the costs in this way makes it possible to generate solar electricity for the domestic market at a reasonable cost. Some of the electricity produced from the solar power plants and wind parks in North Africa is sold on European energy markets in the form of a long-term contracted solar-wind portfolio, which would qualify for support from the financial incentive schemes of the European Member States (e.g. feed-in tariffs). This transfer of green electricity could help to meet the targets for energy from renewable energy sources (RES) in the EU Member States as the new EU Directive of 2009 opened the European electricity market to imports from third states. - Research highlights: → This paper describes a feasible approach to financing a larger deployment of CSP in North Africa. → The proposed portfolio includes local consumption and electricity export to Europe. → Bundling wind with solar power as a business model for exporting solar electricity. → Prices of the solar-wind mix are competitive with other renewable energy sources. → Scenario outlook for the North African CSP

  10. Operation strategy for grid-tied DC-coupling power converter interface integrating wind/solar/battery

    Science.gov (United States)

    Jou, H. L.; Wu, J. C.; Lin, J. H.; Su, W. N.; Wu, T. S.; Lin, Y. T.

    2017-11-01

    The operation strategy for a small-capacity grid-tied DC-coupling power converter interface (GDPCI) integrating wind energy, solar energy and battery energy storage is proposed. The GDPCI is composed of a wind generator, a solar module set a battery bank, a boost DC-DC power converter (DDPC), a bidirectional DDPC power converter, an AC-DC power converter (ADPC) and a five-level DC-AC inverter (DAI). A solar module set, a wind generator and a battery bank are coupled to the common DC bus through the boost DDPC, the ADPC and the bidirectional DDPC, respectively. For verifying the performance of the GDPCI under different operation modes, computer simulation is carried out by PSIM.

  11. Techno-Economic Assessment of Concentrating Solar Power and Wind Hybridization in Jordan

    Directory of Open Access Journals (Sweden)

    Osama Ayadi

    2018-03-01

    A strong complementarity between wind and direct normal solar radiation was observed in the selected location in Jordan, which emphasizes the attractiveness of the selected hybrid system. The optimal configuration of the CSP-wind hybrid system was obtained with a solar field of a 2.6 solar multiple and a 5 hours energy storage. The achieved capacity factor was 94%, and the LCOE is lower than those resulted for standalone CSP plants.

  12. Developing a Hybrid Solar/Wind Powered Drip Irrigation System for Dragon Fruit Yield

    Science.gov (United States)

    Widiastuti, I.; Wijayanto, D. S.

    2017-03-01

    Irrigation operations take a large amount of water and energy which impact to total costs of crop production. Development of an efficient irrigation supplying precise amount of water and conserving the use of energy can have benefits not only by reducing the operating costs but also by enhancing the farmland productivity. This article presents an irrigation method that promotes sustainable use of water and energy appropriate for a developing tropical country. It proposes a drip irrigation system supported by a combined solar-wind electric power generation system for efficient use of water in dragon fruit cultivation. The electric power generated is used to drive a water pump filling a storage tank for irrigating a 3000 m2 dragon fruit yield in Nguntoronadi, Wonogiri, Indonesia. In designing the irrigation system, the plant’s water requirement was identified based on the value of reference evapotranspiration of the area. A cost/benefit analysis was performed to evaluate the economic feasibility of the proposed scheme. The installation of this solar and wind drip irrigation helps provide sufficient quantity of water to each plant using renewable energy sources which reduce dependence on fossil fuel.

  13. POWER SPECTRAL DENSITY OF FLUCTUATIONS OF BULK AND THERMAL SPEEDS IN THE SOLAR WIND

    International Nuclear Information System (INIS)

    Šafránková, J.; Němeček, Z.; Němec, F.; Přech, L.; Chen, C. H. K.; Zastenker, G. N.

    2016-01-01

    This paper analyzes solar wind power spectra of bulk and thermal speed fluctuations that are computed with a time resolution of 32 ms in the frequency range of 0.001–2 Hz. The analysis uses measurements of the Bright Monitor of the Solar Wind on board the Spektr-R spacecraft that are limited to 570 km s 1 bulk speed. The statistics, based on more than 42,000 individual spectra, show that: (1) the spectra of bulk and thermal speeds can be fitted by two power-law segments; (2) despite their large variations, the parameters characterizing frequency spectrum fits computed on each particular time interval are very similar for both quantities; (3) the median slopes of the bulk and thermal speeds of the segment attributed to the MHD scale are 1.43 and 1.38, respectively, whereas they are 3.08 and 2.43 in the kinetic range; (4) the kinetic range slopes of bulk and thermal speed spectra become equal when either the ion density or magnetic field strength are high; (5) the break between MHD and kinetic scales seems to be controlled by the ion β parameter; (6) the best scaling parameter for bulk and thermal speed variations is a sum of the inertial length and proton thermal gyroradius; and (7) the above conclusions can be applied to the density variations if the background magnetic field is very low.

  14. The economics of wind and solar variability. How the variability of wind and solar power affects their marginal value, optimal deployment, and integration costs

    Energy Technology Data Exchange (ETDEWEB)

    Hirth, Lion

    2014-11-14

    Variable renewable energy sources (VRE) for electricity generation, such as wind and solar power, are subject to inherent output fluctuations. This variability has significant impacts on power system and electricity markets if VRE are deployed at large scale. While on global average, wind and solar power currently supply only a minor share of electricity, they are expected to play a much larger role in the future - such that variability will become a major issue (which it already is in some regions). This thesis contributes to the literature that assesses these impacts the ''system and market integration'' literature. This thesis aims at answering the question: What is the impact of wind and solar power variability on the economics of these technologies? It will be laid out that the impact can be expressed in (at least) three ways: as reduction of value, as increase of cost, or as decrease of optimal deployment. Translating between these perspectives is not trivial, as evidenced by the confusion around the concept of ''integration costs''. Hence, more specifically: How does variability impact the marginal economic value of these power sources, their optimal deployment, and their integration costs? This is the question that this thesis addresses. This study comprises six papers, of which two develop a valuation framework that accounts for the specific characteristics of the good electricity, and the specific properties of wind and solar power versus ''dispatchable'' power plants. Three articles then assess quantitative questions and estimate marginal value, optimal deployment, and integration costs. These estimates stem from a newly developed numerical power market model, EMMA, market data, and quantitative literature reviews. The final paper addresses market design. In short, the principal findings of this thesis are as follows. Electricity is a peculiar economic good, being at the same time perfectly

  15. The economics of wind and solar variability. How the variability of wind and solar power affects their marginal value, optimal deployment, and integration costs

    International Nuclear Information System (INIS)

    Hirth, Lion

    2014-01-01

    Variable renewable energy sources (VRE) for electricity generation, such as wind and solar power, are subject to inherent output fluctuations. This variability has significant impacts on power system and electricity markets if VRE are deployed at large scale. While on global average, wind and solar power currently supply only a minor share of electricity, they are expected to play a much larger role in the future - such that variability will become a major issue (which it already is in some regions). This thesis contributes to the literature that assesses these impacts the ''system and market integration'' literature. This thesis aims at answering the question: What is the impact of wind and solar power variability on the economics of these technologies? It will be laid out that the impact can be expressed in (at least) three ways: as reduction of value, as increase of cost, or as decrease of optimal deployment. Translating between these perspectives is not trivial, as evidenced by the confusion around the concept of ''integration costs''. Hence, more specifically: How does variability impact the marginal economic value of these power sources, their optimal deployment, and their integration costs? This is the question that this thesis addresses. This study comprises six papers, of which two develop a valuation framework that accounts for the specific characteristics of the good electricity, and the specific properties of wind and solar power versus ''dispatchable'' power plants. Three articles then assess quantitative questions and estimate marginal value, optimal deployment, and integration costs. These estimates stem from a newly developed numerical power market model, EMMA, market data, and quantitative literature reviews. The final paper addresses market design. In short, the principal findings of this thesis are as follows. Electricity is a peculiar economic good, being at the same time perfectly

  16. Markets to Facilitate Wind and Solar Energy Integration in the Bulk Power Supply: An IEA Task 25 Collaboration; Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Milligan, M.; Holttinen, H.; Soder, L.; Clark, C.; Pineda, I.

    2012-09-01

    Wind and solar power will give rise to challenges in electricity markets regarding flexibility, capacity adequacy, and the participation of wind and solar generators to markets. Large amounts of wind power will have impacts on bulk power system markets and electricity prices. If the markets respond to increased wind power by increasing investments in low-capital, high-cost or marginal-cost power, the average price may remain in the same range. However, experiences so far from Denmark, Germany, Spain, and Ireland are such that the average market prices have decreased because of wind power. This reduction may result in additional revenue insufficiency, which may be corrected with a capacity market, yet capacity markets are difficult to design. However, the flexibility attributes of the capacity also need to be considered. Markets facilitating wind and solar integration will include possibilities for trading close to delivery (either by shorter gate closure times or intraday markets). Time steps chosen for markets can enable more flexibility to be assessed. Experience from 5- and 10-minute markets has been encouraging.

  17. Off-grid hybrid electric power supply system, using a combination of solar cells, small scale wind turbine and batteries

    Energy Technology Data Exchange (ETDEWEB)

    Schroeter, W.

    1994-03-01

    The design of an off-grid electric power supply system consisting of a small scale wind turbine, a combination of solar cells and batteries is described. The robust, small scale FC 4000 wind turbine, which needs little maintenance, can be used under varying climatic conditions. It is equipped with a permanent-magnet generator with an output of 1.5 kW. The generator`s rotor is directly coupled with the wind turbine`s rotor and is without a gearbox, so the frequency and output varies according to wind speed. The 12 m{sup 2} solar cell system consists of round modules embedded in glass and with an efficiency of 13%. The lead acid batteries are used when power consumption exceeds production and store energy for future use. Further adjustments are necessary in order to optimize the performance of this hybrid system. (AB)

  18. Towards more accurate wind and solar power prediction by improving NWP model physics

    Science.gov (United States)

    Steiner, Andrea; Köhler, Carmen; von Schumann, Jonas; Ritter, Bodo

    2014-05-01

    The growing importance and successive expansion of renewable energies raise new challenges for decision makers, economists, transmission system operators, scientists and many more. In this interdisciplinary field, the role of Numerical Weather Prediction (NWP) is to reduce the errors and provide an a priori estimate of remaining uncertainties associated with the large share of weather-dependent power sources. For this purpose it is essential to optimize NWP model forecasts with respect to those prognostic variables which are relevant for wind and solar power plants. An improved weather forecast serves as the basis for a sophisticated power forecasts. Consequently, a well-timed energy trading on the stock market, and electrical grid stability can be maintained. The German Weather Service (DWD) currently is involved with two projects concerning research in the field of renewable energy, namely ORKA*) and EWeLiNE**). Whereas the latter is in collaboration with the Fraunhofer Institute (IWES), the project ORKA is led by energy & meteo systems (emsys). Both cooperate with German transmission system operators. The goal of the projects is to improve wind and photovoltaic (PV) power forecasts by combining optimized NWP and enhanced power forecast models. In this context, the German Weather Service aims to improve its model system, including the ensemble forecasting system, by working on data assimilation, model physics and statistical post processing. This presentation is focused on the identification of critical weather situations and the associated errors in the German regional NWP model COSMO-DE. First steps leading to improved physical parameterization schemes within the NWP-model are presented. Wind mast measurements reaching up to 200 m height above ground are used for the estimation of the (NWP) wind forecast error at heights relevant for wind energy plants. One particular problem is the daily cycle in wind speed. The transition from stable stratification during

  19. On the causes of spectral enhancements in solar wind power spectra

    Science.gov (United States)

    Unti, T.; Russell, C. T.

    1976-01-01

    Enhancements in power spectra of the solar-wind ion flux in the frequency neighborhood of 0.5 Hz had been noted by Unti et al. (1973). It was speculated that these were due to convected small-scale density irregularities. In this paper, 54 flux spectra calculated from OGO 5 data are examined. It is seen that the few prominent spectral peaks which occur were not generated by density irregularities, but were due to several different causes, including convected discontinuities and propagating transverse waves. A superposition of many spectra, however, reveals a moderate enhancement at a frequency corresponding to convected features with a correlation length of a proton gyroradius, consistent with the results of Neugebauer (1975).

  20. Hybrid power generating systems of small wind power generators combined with solar cells or other generators.; Kogata furyoku to taiyoko, sonota tono haiburiddo hatsuden shisutemu

    Energy Technology Data Exchange (ETDEWEB)

    Koga, M. [Meidensha Corp., Ltd., Tokyo (Japan)

    2000-09-30

    Practical examples of the hybrid power generating system of small wind power generator combined with solar cells at a radio relay station at halfway up the mountain was outlined, and the effectiveness of a small hybrid power generating system of small wind power generator combined with micro hydraulic or micro gas turbine power generator was described. System interconnected large wind power generators are about to spread rapidly in Japan. But in terms of making good use of the small and unused natural energy, increasing uses of small independent and distributed power sources, as well as the international development assistance for un-electrified districts in developing countries, further technology developments and their support system are requested in small hybrid wind power generations as well. (NEDO)

  1. Prospects of solar photovoltaic–micro-wind based hybrid power systems in western Himalayan state of Himachal Pradesh in India

    International Nuclear Information System (INIS)

    Sinha, Sunanda; Chandel, S.S.

    2015-01-01

    Highlights: • Good prospects of PV–wind hybrid systems are found in western Himalayan Indian state. • A 6 kWp roof mounted PV–micro wind hybrid system at Hamirpur location is studied. • Optimum PV–wind hybrid system configurations are determined for 12 locations in the region. • Comparative analysis of hybrid systems is carried out using ANN, NASA and measured data. • Methodology can be used for assessing the potential of hybrid power systems worldwide. - Abstract: The western Himalayan state of Himachal Pradesh is known as the hydro-power state of India with associated social and environmental problems of large hydro power plants. The reduced water inflow in the rivers during extreme winters affects power generation in the state. Therefore solar and wind resources need to be utilized to supplement power generation requirements. With this objective the prospects of photovoltaic–micro wind based hybrid systems are studied for 12 locations of the state. The NASA data, Artificial Neural Network predicted and ground measured data are used in the analysis of Hamirpur location whereas for remaining 11 locations estimated, NASA and Artificial Neural Network predicted data are used, as measured solar and wind data are not available for most of the locations in the state. Root Mean Square Error between three input data types are found to range from 0.08 to 1.89. The results show that ANN predicted data are close to measured/estimated data. A 6 kWp roof mounted photovoltaic–micro wind hybrid system at Hamirpur with daily average energy demand of 5.2 kWh/day is studied. This system specifications are used to obtain optimum PV–micro wind based hybrid power system configurations for all locations. The optimum configuration for Hamirpur is found to be a 5 kWp micro wind turbine, 2 kW converter, 10 batteries and 8 kWp PV system whereas for other 11 locations a 5 kWp micro wind turbine, 2 kW converter, 10 batteries and 2–9 kWp PV systems are obtained. The

  2. Comparison of the greenhouse gas emissions from the full energy chains of solar and wind power generation

    International Nuclear Information System (INIS)

    Van De Vate, J.F.

    1997-01-01

    Fair comparison of the climate impacts from different energy sources can be made only by accounting for the emissions of all relevant greenhouse gases (GHGs) from the full energy chain (FENCH) of the energy sources. The scanty FENCH-GHG literature is reviewed. The literature data on FENCH material and energy use for renewable, solar and wind power technologies are discussed. Some calculations of FENCH-GHG emission factors are presented using basic literature data on the major energy and materials fluxes associated with each link of the FENCH. GHGs considered are CO 2 , CH 4 , N 2 O, and CF 4 . The FENCH CO 2 -equivalent emission factors of wind and solar power systems are in the range of 10-50 and 100-400 g CO 2 /kWh, resp. This is low compared to those of fossil fuels: 500-1200 g CO 2 /kWh. Compared to the international-consensus emission factors of nuclear and hydropower (5-20 g CO 2 /kWh), those of modern wind power and solar-thermal power are somewhat higher: 10-50 and 20-200 g CO 2 /kWh, resp. Solar PV has a ca. 10 times higher FENCH-GHG emission factor; however, advanced solar PV systems are expected to have 5-10 times lower emission factors. Important inconsistencies exist between literature data on FENCH-GHG emission factors which require explanation. Land-use associated (negative CO 2 sink) contributions due to low photosynthesis under solar systems have been estimated, amounting to ca. 20 and 11 g CO 2 /kWh for solar PV and solar thermal, resp. No information is available about contributions associated with backup supply or storage systems. (author)

  3. Comment on"Air Emissions Due to Wind and Solar Power" and Supporting Information

    Energy Technology Data Exchange (ETDEWEB)

    Mills, Andrew D.; Wiser, Ryan H.; Milligan, Michael; O' Malley, Mark

    2009-03-18

    Katzenstein and Apt investigate the important question of pollution emission reduction benefits from variable generation resources such as wind and solar. Their methodology, which couples an individual variable generator to a dedicated gas plant to produce a flat block of power is, however, inappropriate. For CO{sub 2}, the authors conclude that variable generators 'achieve {approx} 80% of the emission reductions expected if the power fluctuations caused no additional emissions.' They find even lower NO{sub x} emission reduction benefits with steam-injected gas turbines and a 2-4 times net increase in NO{sub x} emissions for systems with dry NO{sub x} control unless the ratio of energy from natural gas to variable plants is greater than 2:1. A more appropriate methodology, however, would find a significantly lower degradation of the emissions benefit than suggested by Katzenstein and Apt. As has been known for many years, models of large power system operations must take into account variable demand and the unit commitment and economic dispatch functions that are practiced every day by system operators. It is also well-known that every change in wind or solar power output does not need to be countered by an equal and opposite change in a dispatchable resource. The authors recognize that several of their assumptions to the contrary are incorrect and that their estimates therefore provide at best an upper bound to the emissions degradation caused by fluctuating output. Yet they still present the strong conclusion: 'Carbon dioxide emissions reductions are likely to be 75-80% of those presently assumed by policy makers. We have shown that the conventional method used to calculate emissions is inaccurate, particularly for NO{sub x} emissions.' The inherently problematic methodology used by the authors makes such strong conclusions suspect. Specifically, assuming that each variable plant requires a dedicated natural gas backup plant to create a flat

  4. Electricity generation comparison of food waste-based bioenergy with wind and solar powers: A mini review

    Directory of Open Access Journals (Sweden)

    Ngoc Bao Dung Thi

    2016-09-01

    Full Text Available The food waste treatment-based anaerobic digestion has been proven to play a primary role in electricity industry with high potentially economic benefits, which could reduce electricity prices in comparison with other renewable energy resources such as wind and solar power. The levelized costs of electricity were reported to be 65, 190, 130 and 204 US$ MWh−1 for food waste treatment in anaerobic landfill, anaerobic digestion biogas, solar power, and wind power, respectively. As examples, the approaches of food waste treatment via anaerobic digestion to provide a partial energy supply for many countries in future were estimated as 42.9 TWh yr−1 in China (sharing 0.87% of total electricity generation, 7.04 TWh yr−1 in Japan (0.64% of total electricity generation and 13.3 TWh yr−1 in the US (0.31% of total electricity generation. Electricity generation by treating food waste is promised to play an important role in renewable energy management. Comparing with wind and solar powers, converting food waste to bioenergy provides the lowest investment costs (500 US$ kW−1 and low operation cost (0.1 US$ kWh−1. With some limits in geography and season of other renewable powers, using food waste for electricity generation is supposedly to be a suitable solution for balancing energy demand in many countries.

  5. A Simple Power Management Scheme with Enhanced Stability for a Solar PV/Wind/Fuel Cell/Grid Fed Hybrid Power Supply Designed for Industrial Loads

    Directory of Open Access Journals (Sweden)

    S. Saravanan

    2014-01-01

    Full Text Available This paper proposes a new power conditioner topology with an intelligent power management controller that integrates multiple renewable energy sources such as solar energy, wind energy, and fuel cell energy with battery and AC grid supply as backup to make the best use of their operating characteristics with better reliability than that could be obtained by single renewable energy source based power supply. The proposed embedded controller is programmed to perform MPPT for solar PV panel and WTG, SOC estimation and battery, maintaining a constant voltage at PCC and power flow control by regulating the reference currents of the controller in an instantaneous basis. The instantaneous variation in reference currents of the controller enhances the controller response as it accommodates the effect of continuously varying solar insolation and wind speed in the power management. It also prioritizes the sources for consumption to achieve maximum usage of green energy than grid energy. The simulation results of the proposed power management system with real-time solar radiation and wind velocity data collected from solar centre, KEC, and experimental results for a sporadically varying load demand are presented in this paper and the results are encouraging from reliability and stability perspectives.

  6. Wind and Solar Curtailment: International Experience and Practices

    DEFF Research Database (Denmark)

    Lew, Debra; Bird, Lori; Milligan, Michael

    2013-01-01

    High penetrations of wind and solar generation on power systems are resulting in increasing curtailment. Wind and solar integration studies predict increased curtailment as penetration levels grow. This paper examines experiences with curtailment on bulk power systems internationally. It discusse...

  7. Optimized solar-wind-powered drip irrigation for farming in developing countries

    Science.gov (United States)

    Barreto, Carolina M.

    The two billion people produce 80% of all food consumed in the developing world and 1.3 billion lack access to electricity. Agricultural production will have to increase by about 70% worldwide by 2050 and to achieve this about 50% more primary energy has to be made available by 2035. Energy-smart agri-food systems can improve productivity in the food sector, reduce energy poverty in rural areas and contribute to achieving food security and sustainable development. Agriculture can help reduce poverty for 75% of the world's poor, who live in rural areas and work mainly in farming. The costs associated with irrigation pumping are directly affected by energy prices and have a strong impact on farmer income. Solar-wind (SW) drip irrigation (DI) is a sustainable method to meet these challenges. This dissertation shows with onsite data the low cost of SW pumping technologies correlating the water consumption (evapotranspiration) and the water production (SW pumping). The author designed, installed, and collected operating data from the six SWDI systems in Peru and in the Tohono O'odham Nation in AZ. The author developed, tested, and a simplified model for solar engineers to size SWDI systems. The author developed a business concept to scale up the SWDI technology. The outcome was a simplified design approach for a DI system powered by low cost SW pumping systems optimized based on the logged on site data. The optimization showed that the SWDI system is an income generating technology and that by increasing the crop production per unit area, it allowed small farmers to pay for the system. The efficient system resulted in increased yields, sometimes three to four fold. The system is a model for smallholder agriculture in developing countries and can increase nutrition and greater incomes for the world's poor.

  8. For the definition of capacity effects of electricity generation from wind power and solar radiation

    International Nuclear Information System (INIS)

    Kaltschmitt, M.

    1996-01-01

    It is the objective of this contribution to define the calculable really available output of a fluctuating electricity generation from wind energy and solar radiation. Apart from that, the methods for determining the really available output are explained, as far as they are necessary for understanding the definitions. Exemplified on a simulated large-scale regenerative electricity generation in Germany, in addition, some defined values are calculated and discussed. (orig.) [de

  9. ULF power fluctuations in the solar-wind parameters and their relationship with the relativistic electron flux at the geosynchronous orbit

    International Nuclear Information System (INIS)

    Regi, M.

    2016-01-01

    We focused the attention on the Pc5 geomagnetic pulsations in response to the solar wind forcing and their relationship with the relativistic electron flux at geostationary orbit. We present here the results of a correlation analysis between the Pc5 power in the magnetosphere and on the ground, at low and high latitude, and the solar-wind speed and fluctuation power of the interplanetary magnetic field and solar-wind dynamic pressure through the years 2006 to 2010, also showing the relative timing between pulsations and solar-wind parameters. The Pc5 power appears significantly correlated with simultaneous solar-wind pressure fluctuations and with the solar-wind speed lagged by several hours. The relative amplitude of the two correlation peaks depends on the solar cycle phase and on the latitude. We also show a strong relationship between the Pc5 power and the > 600 keV and > 2MeV electron flux at geosynchronous orbit. Clear evidence emerges that the electron flux follows the Pc5 power by about 2 days; the time delay is a bit longer for the higher-energy electrons.

  10. Assessment of wind energy to power solar brackish water greenhouse desalination units. A case study from Algeria

    Energy Technology Data Exchange (ETDEWEB)

    Mahmoudi, Hacene [Laboratory of Water and Environment, Hassiba Ben Bouali University, Chlef, P.O. Box 151 (Algeria); Faculty of Sciences and Engineering Sciences, Hassiba Ben Bouali University, Chlef (Algeria); Spahis, Nawel [Faculty of Sciences and Engineering Sciences, Hassiba Ben Bouali University, Chlef (Algeria); Goosen, Mattheus F. [Alfaisal University, P.O. Box 50927, Riyadh 11533, KSA (Saudi Arabia); Sablani, Shyam [Biological Systems Engineering, Washington State University, Pullman, WA (United States); Abdul-wahab, Sabah A. [College of Engineering, P.O. Box 33, Sultan Qaboos University, Al-Khod 123, Muscat (Oman); Ghaffour, Noreddine [Middle East Desalination Research Center, P.O. Box 21, P.C. 133, Muscat (Oman); Drouiche, Nadjib [Silicon Technology Development Unit (UDTS), 2 Bd Frantz Fanon BP399 Algiers (Algeria)

    2009-10-15

    The Algerian desert dominates large parts of the country's vast territory, and Algeria is among the countries filling most of the world's largest desert. In fact the country is over 80% desert. Even though more than 80% of the population is located in the northern Mediterranean coastal zone, most of oil and gas fields are located in the country's vast southern desert called Sahara. Furthermore, the desert region is developed into a major tourist destination. This arid zone region is characterized by a lack of potable water. However, in addition to the abundant solar energy, the region is also endowed with important wind and brackish groundwater resources with different qualities. Therefore, a brackish water greenhouse desalination unit that is powered by wind energy is a good solution for desalting groundwater for irrigation purposes in this region. Brackish water can be used to cool the greenhouse, creating the proper climate to grow valuable crops. Moreover, at the same time the fresh water that is produced in this system may be sufficient for the irrigation of crops grown inside the unit. In this study, five typical regions in the Sahara were selected and investigated. These regions were selected since they were areas of traditional agriculture. The frequency distributions of wind speed data were collected from Surface Meteorology and Solar Energy (SSE) statistics developed by NASA and evaluated for a 10-year period. The distributions were used to determine the average wind speed and the available wind power for the five locations. The results indicated that the available wind energy is a suitable resource for power production and can be used to provide the required electricity for the brackish groundwater greenhouse desalination units. (author)

  11. Wind Power Meteorology

    DEFF Research Database (Denmark)

    Lundtang Petersen, Erik; Mortensen, Niels Gylling; Landberg, Lars

    Wind power meteorology has evolved as an applied science, firmly founded on boundary-layer meteorology, but with strong links to climatology and geography. It concerns itself with three main areas: siting of wind turbines, regional wind resource assessment, and short-term prediction of the wind...... resource. The history, status and perspectives of wind power meteorology are presented, with emphasis on physical considerations and on its practical application. Following a global view of the wind resource, the elements of boundary layer meteorology which are most important for wind energy are reviewed......: wind profiles and shear, turbulence and gust, and extreme winds. The data used in wind power meteorology stem mainly from three sources: onsite wind measurements, the synoptic networks, and the re-analysis projects. Wind climate analysis, wind resource estimation and siting further require a detailed...

  12. The Cost-Optimal Distribution of Wind and Solar Generation Facilities in a Simplified Highly Renewable European Power System

    Science.gov (United States)

    Kies, Alexander; von Bremen, Lüder; Schyska, Bruno; Chattopadhyay, Kabitri; Lorenz, Elke; Heinemann, Detlev

    2016-04-01

    The transition of the European power system from fossil generation towards renewable sources is driven by different reasons like decarbonisation and sustainability. Renewable power sources like wind and solar have, due to their weather dependency, fluctuating feed-in profiles, which make their system integration a difficult task. To overcome this issue, several solutions have been investigated in the past like the optimal mix of wind and PV [1], the extension of the transmission grid or storages [2]. In this work, the optimal distribution of wind turbines and solar modules in Europe is investigated. For this purpose, feed-in data with an hourly temporal resolution and a spatial resolution of 7 km covering Europe for the renewable sources wind, photovoltaics and hydro was used. Together with historical load data and a transmission model , a simplified pan-European power power system was simulated. Under cost assumptions of [3] the levelized cost of electricity (LCOE) for this simplified system consisting of generation, consumption, transmission and backup units is calculated. With respect to the LCOE, the optimal distribution of generation facilities in Europe is derived. It is shown, that by optimal placement of renewable generation facilities the LCOE can be reduced by more than 10% compared to a meta study scenario [4] and a self-sufficient scenario (every country produces on average as much from renewable sources as it consumes). This is mainly caused by a shift of generation facilities towards highly suitable locations, reduced backup and increased transmission need. The results of the optimization will be shown and implications for the extension of renewable shares in the European power mix will be discussed. The work is part of the RESTORE 2050 project (Wuppertal Institute, Next Energy, University of Oldenburg), that is financed by the Federal Ministry of Education and Research (BMBF, Fkz. 03SFF0439A). [1] Kies, A. et al.: Kies, Alexander, et al

  13. Financial benefits of solar and wind power in South Africa in 2015

    CSIR Research Space (South Africa)

    Bischof-Niemz, ST

    2015-10-01

    Full Text Available of renewables (mainly wind & PV) for procurement from independent power producers. The CSIR conducted a study on the financial benefits of the first renewables in South Africa in 2014, and a continuation of this financial benefit study was conducted...

  14. Wind Power Now!

    Science.gov (United States)

    Inglis, David Rittenhouse

    1975-01-01

    The government promotes and heavily subsidizes research in nuclear power plants. Federal development of wind power is slow in comparison even though much research with large wind-electric machines has already been conducted. Unless wind power programs are accelerated it will not become a major energy alternative to nuclear power. (MR)

  15. A novel off-grid hybrid power system comprised of solar photovoltaic, wind, and hydro energy sources

    International Nuclear Information System (INIS)

    Bhandari, Binayak; Lee, Kyung-Tae; Lee, Caroline Sunyong; Song, Chul-Ki; Maskey, Ramesh K.; Ahn, Sung-Hoon

    2014-01-01

    Highlights: • We propose two hybridization methods for small off-grid power systems consisting solar (PV), wind, and micro-hydro sources. • One of the methods was implemented in a mini-grid connecting Thingan and Kolkhop villages in Makawanpur District, Nepal. • The results can be applied to help achieve Millennium Development Goal 7: Ensuring environmental sustainability. • This is the first implementation anywhere comprising of three renewable energy power, in a single off-grid power system. • This research may be applied as a practical guide for implementing similar systems in various locations. - Abstract: Several factors must be considered before adopting a full-phase power generation system based on renewable energy sources. Long-term necessary data (for one year if possible) should be collected before making any decisions concerning implementation of such a systems. To accurately assess the potential of available resources, we measured solar irradiation, wind speed, and ambient temperature at two high-altitude locations in Nepal: the Lama Hotel in Rasuwa District and Thingan in Makawanpur District. Here, we propose two practical, economical hybridization methods for small off-grid systems consisting entirely of renewable energy sources—specifically solar photovoltaic (PV), wind, and micro-hydro sources. One of the methods was tested experimentally, and the results can be applied to help achieve Millennium Development Goal 7: Ensuring environmental sustainability. Hydro, wind, and solar photovoltaic energy are the top renewable energy sources in terms of globally installed capacity. However, no reports have been published about off-grid hybrid systems comprised of all three sources, making this implementation the first of its kind anywhere. This research may be applied as a practical guide for implementing similar systems in various locations. Of the four off-grid PV systems installed by the authors for village electrification in Nepal, one was

  16. How Does Energy Storage Increase the Efficiency of an Electricity Market with Integrated Wind and Solar Power Generation?—A Case Study of Korea

    Directory of Open Access Journals (Sweden)

    Jung Youn Mo

    2017-10-01

    Full Text Available In recent years, increasing requests to reduce greenhouse gas emissions have led to renewable resources rapidly replacing conventional power sources. However, the inherent variability of renewable sources reduces the reliability of power systems. Energy storage has been proposed as a viable alternative, as it can mitigate the variability of renewable energy sources and increase the efficiency of power systems by lowering peak electricity demand. In this study, we evaluate the benefits of integrating energy storage with combined wind and solar power generation in the Korean power system through using the dynamic optimization method. Realistic wind and photovoltaic solar power generation scenarios were estimated for actual sites. The results show that the wind power-based system benefitted more from energy storage than the combined wind and solar photovoltaic power-based system. This is because the high variability of wind power was reduced when it was combined with solar power. Co-optimization for energy and reserve costs was more beneficial than optimization for energy costs alone, which suggests that the reliability offered by storage is an important cost-saving factor, in addition to the reduction of energy costs by price arbitrage. Finally, the analysis was conducted under various scenarios to determine the validity of energy storage cost effectiveness.

  17. Wind power soars

    Energy Technology Data Exchange (ETDEWEB)

    Flavin, C. [Worldwatch Inst., Washington, DC (United States)

    1996-12-31

    Opinions on the world market for wind power are presented in this paper. Some data for global wind power generating capacity are provided. European and other markets are discussed individually. Estimated potential for wind power is given for a number of countries. 3 figs.

  18. Wind power takes over

    International Nuclear Information System (INIS)

    2002-01-01

    All over the industrialized world concentrated efforts are being made to make wind turbines cover some of the energy demand in the coming years. There is still a long way to go, however, towards a 'green revolution' as far as energy is concerned, for it is quite futile to use wind power for electric heating. The article deals with some of the advantages and disadvantages of developing wind power. In Norway, for instance, environmentalists fear that wind power plants along the coast may have serious consequences for the stocks of white-tailed eagle and golden eagle. An other factor that delays the large-scale application of wind power in Norway is the low price of electricity. Some experts, however, maintain that wind power may already compete with new hydroelectric power of intermediate cost. The investment costs are expected to go down with one third by 2020, when wind power may be the most competitive energy source to utilize

  19. Assessment of greenhouse gas emissions from the full energy chain of solar and wind power and other energy sources. Working material

    International Nuclear Information System (INIS)

    1997-01-01

    An international Advisory Group Meeting on Assessment of Greenhouse Gas Emission from the Full Energy Chain of Solar and Wind Power was convened by the IAEA at its Headquarters in Vienna, 21-24 October, 1996. The meeting was attended by 12 experts from 9 countries and two international organizations, and including one consultant to the Agency. The objectives of the workshop were: to define and to analyze the solar and wind power chains in terms of emissions of greenhouse gases from the whole energy chain, i.e., during a plant's operation, and from the construction of the plant to the plant's decommissioning and waste storage; to evaluate existing assessments of full-energy-chain emissions of greenhouse gases from the wind and solar power chains and, where possible, compare these results with such emissions from nuclear power and other energy chains

  20. Potentials of wind power

    International Nuclear Information System (INIS)

    Bezrukikh, P.P.; Bezrukikh, P.P.

    2000-01-01

    The ecological advantages of the wind power facilities (WPF) are considered. The possibilities of small WPF, generating the capacity from 40 W up to 10 kW, are discussed. The basic technical data on the national and foreign small WPF are presented. The combined wind power systems are considered. Special attention is paid to the most perspective wind-diesel systems, which provide for all possible versions of the electro-power supply. Useful recommendations and information on the wind power engineering are given for those, who decided to build up a wind facility [ru

  1. Wind power variability and power system reserves in South Africa

    DEFF Research Database (Denmark)

    Sørensen, Poul Ejnar; Litong-Palima, Marisciel; Hahmann, Andrea N.

    2017-01-01

    Variable renewable generation, primarily from wind and solar, introduces new uncertainties in the operation of power systems. This paper describes and applies a method to quantify how wind power development will affect the use of short-term automatic reserves in the future South African power...... system. The study uses a scenario for wind power development in South Africa, based on information from the South African transmission system operator (Eskom) and the Department of Energy. The scenario foresees 5% wind power penetration by 2025. Time series for wind power production and forecasts...... are simulated, and the duration curves for wind power ramp rates and wind power forecast errors are applied to assess the use of reserves due to wind power variability. The main finding is that the 5% wind power penetration in 2025 will increase the use of short-term automatic reserves by approximately 2%....

  2. Evaluation of a proposal for reliable low-cost grid power with 100% wind, water, and solar.

    Science.gov (United States)

    Clack, Christopher T M; Qvist, Staffan A; Apt, Jay; Bazilian, Morgan; Brandt, Adam R; Caldeira, Ken; Davis, Steven J; Diakov, Victor; Handschy, Mark A; Hines, Paul D H; Jaramillo, Paulina; Kammen, Daniel M; Long, Jane C S; Morgan, M Granger; Reed, Adam; Sivaram, Varun; Sweeney, James; Tynan, George R; Victor, David G; Weyant, John P; Whitacre, Jay F

    2017-06-27

    A number of analyses, meta-analyses, and assessments, including those performed by the Intergovernmental Panel on Climate Change, the National Oceanic and Atmospheric Administration, the National Renewable Energy Laboratory, and the International Energy Agency, have concluded that deployment of a diverse portfolio of clean energy technologies makes a transition to a low-carbon-emission energy system both more feasible and less costly than other pathways. In contrast, Jacobson et al. [Jacobson MZ, Delucchi MA, Cameron MA, Frew BA (2015) Proc Natl Acad Sci USA 112(49):15060-15065] argue that it is feasible to provide "low-cost solutions to the grid reliability problem with 100% penetration of WWS [wind, water and solar power] across all energy sectors in the continental United States between 2050 and 2055", with only electricity and hydrogen as energy carriers. In this paper, we evaluate that study and find significant shortcomings in the analysis. In particular, we point out that this work used invalid modeling tools, contained modeling errors, and made implausible and inadequately supported assumptions. Policy makers should treat with caution any visions of a rapid, reliable, and low-cost transition to entire energy systems that relies almost exclusively on wind, solar, and hydroelectric power.

  3. Wind power. [electricity generation

    Science.gov (United States)

    Savino, J. M.

    1975-01-01

    A historical background on windmill use, the nature of wind, wind conversion system technology and requirements, the economics of wind power and comparisons with alternative systems, data needs, technology development needs, and an implementation plan for wind energy are presented. Considerable progress took place during the 1950's. Most of the modern windmills feature a wind turbine electricity generator located directly at the top of their rotor towers.

  4. Wind electric power generation

    International Nuclear Information System (INIS)

    Koch, M.K.; Wind, L.; Canter, B.; Moeller, T.

    2001-01-01

    The monthly statistics of wind electric power generation in Denmark are compiled from information given by the owners of the private wind turbines. For each wind turbine the name of the site and of the type of turbine is given, and the power generation data are given for the month in question together with the total production in 1999 and 2000. Also the data of operation start are given. On the map of Denmark the sites of the wind turbines are marked. (CLS)

  5. Wind power today

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-04-01

    This publication highlights initiatives of the US DOE`s Wind Energy Program. 1997 yearly activities are also very briefly summarized. The first article describes a 6-megawatt wind power plant installed in Vermont. Another article summarizes technical advances in wind turbine technology, and describes next-generation utility and small wind turbines in the planning stages. A village power project in Alaska using three 50-kilowatt turbines is described. Very brief summaries of the Federal Wind Energy Program and the National Wind Technology Center are also included in the publication.

  6. Solar wind stagnation near comets

    International Nuclear Information System (INIS)

    Galeev, A.A.; Cravens, T.E.; Gombosi, T.I.

    1983-03-01

    The nature of the solar wind flow near comets is examined analytically. In particular, the typical values for the stagnation pressure and magnetic barrier strength are estimated, taking into account the magnetic field line tension and the charge exchange cooling of the mass loaded solar wind. Knowledge of the strength of the magnetic barrier is required in order to determine the location of the contact discontinuity which separates the contaminated solar wind plasma and the outflowing plasma of the cometary ionosphere. (author)

  7. Optimal Site Selection of Wind-Solar Complementary Power Generation Project for a Large-Scale Plug-In Charging Station

    Directory of Open Access Journals (Sweden)

    Wenjun Chen

    2017-10-01

    Full Text Available The wind-solar hybrid power generation project combined with electric vehicle charging stations can effectively reduce the impact on the power system caused by the random charging of electric cars, contribute to the in-situ wind-solar complementary system and reduce the harm arising from its output volatility. In this paper, the site selection index system of a landscape complementary power generation project is established by using the statistical methods and statistical analysis in the literature. Subsequently, using the Analytic Network Process to calculate the index weight, a cloud model was used in combination with preference ranking organization method for enrichment evaluations to transform and sort uncertain language information. Finally, using the results of the decision-making for the location of the Shanghai wind-solar complementary project and by carrying out contrast analysis and sensitivity analysis, the superiority and stability of the decision model constructed in this study was demonstrated.

  8. A MODEL FOR THE NON-UNIVERSAL POWER LAW OF THE SOLAR WIND SUB-ION-SCALE MAGNETIC SPECTRUM

    International Nuclear Information System (INIS)

    Passot, T.; Sulem, P. L.

    2015-01-01

    A phenomenological turbulence model for kinetic Alfvén waves in a magnetized collisionless plasma that is able to reproduce the non-universal power-law spectra observed at the sub-ion scales in the solar wind and the terrestrial magnetosphere is presented. The process of temperature homogenization along distorted magnetic field lines, induced by Landau damping, affects the turbulence transfer time and results in a steepening of the sub-ion power-law spectrum of critically balanced turbulence, whose exponent is sensitive to the ratio between the Alfvén wave period and the nonlinear timescale. Transition from large-scale weak turbulence to smaller scale strong turbulence is captured and nonlocal interactions, relevant in the case of steep spectra, are accounted for

  9. On the Role of Solar Wind Discontinuities in the ULF Power Spectral Density at the Earth's Outer Radiation Belt: a Case Study

    Science.gov (United States)

    Lago, A.; Alves, L. R.; Braga, C. R.; Mendonca, R. R. S.; Jauer, P. R.; Medeiros, C.; Souza, V. M. C. E. S.; Mendes, O., Jr.; Marchezi, J.; da Silva, L.; Vieira, L.; Rockenbach, M.; Sibeck, D. G.; Kanekal, S. G.; Baker, D. N.; Wygant, J. R.; Kletzing, C.

    2016-12-01

    The solar wind incident upon the Earth's magnetosphere can produce either enhancement, depletion or no change in the flux of relativistic electrons at the outer radiation belt. During geomagnetic storms progress, solar wind parameters may change significantly, and occasionally relativistic electron fluxes at the outer radiation belt show dropouts in a range of energy and L-shells. Wave-particle interactions observed within the Van Allen belts have been claimed to play a significant role in energetic particle flux changes. The relation between changes on the solar wind parameters and the radiation belt is still a hot topic nowadays, particularly the role played by the solar wind on sudden electron flux decreases. The twin satellite Van Allen Probes measured a relativistic electron flux dropout concurrent to broad band Ultra-low frequency (ULF) waves, i.e. from 1 mHz to 10 Hz, on October 2, 2013. Magnetic field and plasma data from both ACE and WIND satellites allowed the characterization of this event as being an interplanetary coronal mass ejection in conjunction with shock. The interaction of this event with the Earth's magnetosphere was modeled using a global magnetohydrodynamic simulation and the magnetic field perturbation deep in magnetosphere could be analyzed from the model outputs. Results show the contribution of time-varying solar wind parameters to the generation of ULF waves. The power spectral densities, as a function of L-shell, were evaluated considering changes in the input parameters, e.g. magnitude and duration of dynamic pressure and magnetic field. The modeled power spectral densities are compared with Van Allen Probes data. The results provide us a clue on the solar wind characteristics that might be able to drive ULF waves in the inner magnetosphere, and also which wave modes are expected to be excited under a specific solar wind driving.

  10. Solar powered dugout aeration

    International Nuclear Information System (INIS)

    Murrell, S.

    2001-10-01

    Pasture dugouts are a significant source of water for livestock on the Canadian Prairies and as such, must maintain the best water quality possible. Aeration improves the water quality and is part of a good management plan to reduce overall water treatment costs. Although dugouts can be aerated naturally through wind and wave action and photosynthesis, this generally aerates only the top portion of the dugout. Artificial aeration by air injection into the lowest point of the dugout ensures that the water is oxygenated throughout the entire dugout. Solar aeration can be used in remote areas where grid power is not practical. With solar powered aeration systems, solar panels are used to generate the electrical power needed to run the compressor while storing excess energy in batteries. A solar aeration system includes solar panels, deep cycle batteries to store excess power, a control board with a regulator, a compressor, a weighed feeder hose, and an air diffuser. This publication presented the design of a solar aeration system and its cost. 1 tab., 3 figs

  11. Optimal power flow based TU/CHP/PV/WPP coordination in view of wind speed, solar irradiance and load correlations

    International Nuclear Information System (INIS)

    Azizipanah-Abarghooee, Rasoul; Niknam, Taher; Malekpour, Mostafa; Bavafa, Farhad; Kaji, Mahdi

    2015-01-01

    Highlights: • Formulate probabilistic OPF with VPE, multi-fuel options, POZs, FOR of CHP units. • Propose a new powerful optimization method based on enhanced black hole algorithm. • Coordinate of TUs, WPPs, PVs and CHP units together in the proposed problem. • Evaluate the impacts of inputs’ uncertainties and their correlations on the POPF. • Use the 2m + 1 point estimated method. - Abstract: This paper addresses a novel probabilistic optimisation framework for handling power system uncertainties in the optimal power flow (OPF) problem that considers all the essential factors of great impact in the OPF problem. The object is to study and model the correlation and fluctuation of load demands, photovoltaic (PV) and wind power plants (WPPs) which have an important influence on transmission lines and bus voltages. Moreover, as an important tool of saving waste heat energy in the thermoelectric power plant, the power networks share of combined heat and power (CHP) has increased dramatically in the past decade. So, the probabilistic OPF (POPF) problem considering valve point effects, multi-fuel options and prohibited zones of thermal units (TUs) is firstly formulated. The PV, WPP and CHP units are also modeled. Then, a new method utilizing enhanced binary black hole (EBBH) algorithm and 2m + 1 point estimated method is proposed to solve this problem and to handle the random nature of solar irradiance, wind speed and load of consumers. The correlation between input random variables is considered using a correlation matrix. Finally, numerical results are presented and considered regarding the IEEE 118-busses, including PV, WPP, CHP and TU at several busses. The simulation and comparison results obtained demonstrate the broad advantages and feasibility of the suggested framework in the presence of dependent non-Gaussian distribution of random variables

  12. Comparison Between The Characteristics Of Wind Power ...

    African Journals Online (AJOL)

    Data on wind speed and global solar radiation over the period 1985 – 1999 for Onne obtained from the International Institute of Tropical Agriculture (IITA) stationed at Onne, Nigeria have been compiled and evaluated, to determine the wind power which is compared with the global solar radiation energies. Monthly and ...

  13. Wind Power Career Chat

    Energy Technology Data Exchange (ETDEWEB)

    2011-01-01

    This document will teach students about careers in the wind energy industry. Wind energy, both land-based and offshore, is expected to provide thousands of new jobs in the next several decades. Wind energy companies are growing rapidly to meet America's demand for clean, renewable, and domestic energy. These companies need skilled professionals. Wind power careers will require educated people from a variety of areas. Trained and qualified workers manufacture, construct, operate, and manage wind energy facilities. The nation will also need skilled researchers, scientists, and engineers to plan and develop the next generation of wind energy technologies.

  14. Observability of wind power

    International Nuclear Information System (INIS)

    Gonot, J.P.; Fraisse, J.L.

    2009-01-01

    The total installed capacity of wind power grows from a few hundred MW at the beginning of 2005 to 3400 MW at the end of 2008. With such a trend, a total capacity of 7000 MW could be reached by 2010. The natural variability of wind power and the difficulty of its predictability require a change in the traditional way of managing supply/demand balance, day-ahead margins and the control of electrical flows. As a consequence, RTE operators should be informed quickly and reliably of the real time output power of wind farms and of its evolvement some hours or days ahead to ensure the reliability of the French electrical power system. French specificities are that wind farms are largely spread over the territory, that 95 % of wind farms have an output power below 10 MW and that they are connected to the distribution network. In this context, new tools were necessary to acquire as soon as possible data concerning wind power. In two years long, RTE set up an observatory of wind production 'IPES system' enable to get an access to the technical characteristics of the whole wind farms, to observe in real time 75 % of the wind generation and to implement a forecast model related to wind generation. (authors)

  15. Providing all global energy with wind, water, and solar power, Part II: Reliability, system and transmission costs, and policies

    International Nuclear Information System (INIS)

    Delucchi, Mark A.; Jacobson, Mark Z.

    2011-01-01

    This is Part II of two papers evaluating the feasibility of providing all energy for all purposes (electric power, transportation, and heating/cooling), everywhere in the world, from wind, water, and the sun (WWS). In Part I, we described the prominent renewable energy plans that have been proposed and discussed the characteristics of WWS energy systems, the global demand for and availability of WWS energy, quantities and areas required for WWS infrastructure, and supplies of critical materials. Here, we discuss methods of addressing the variability of WWS energy to ensure that power supply reliably matches demand (including interconnecting geographically dispersed resources, using hydroelectricity, using demand-response management, storing electric power on site, over-sizing peak generation capacity and producing hydrogen with the excess, storing electric power in vehicle batteries, and forecasting weather to project energy supplies), the economics of WWS generation and transmission, the economics of WWS use in transportation, and policy measures needed to enhance the viability of a WWS system. We find that the cost of energy in a 100% WWS will be similar to the cost today. We conclude that barriers to a 100% conversion to WWS power worldwide are primarily social and political, not technological or even economic. - Research highlights: → We evaluate the feasibility of global energy supply from wind, water, and solar energy. → WWS energy can be supplied reliably and economically to all energy-use sectors. → The social cost of WWS energy generally is less than the cost of fossil-fuel energy. → Barriers to 100% WWS power worldwide are socio-political, not techno-economic.

  16. Concentrating solar thermal power.

    Science.gov (United States)

    Müller-Steinhagen, Hans

    2013-08-13

    In addition to wind and photovoltaic power, concentrating solar thermal power (CSP) will make a major contribution to electricity provision from renewable energies. Drawing on almost 30 years of operational experience in the multi-megawatt range, CSP is now a proven technology with a reliable cost and performance record. In conjunction with thermal energy storage, electricity can be provided according to demand. To date, solar thermal power plants with a total capacity of 1.3 GW are in operation worldwide, with an additional 2.3 GW under construction and 31.7 GW in advanced planning stage. Depending on the concentration factors, temperatures up to 1000°C can be reached to produce saturated or superheated steam for steam turbine cycles or compressed hot gas for gas turbine cycles. The heat rejected from these thermodynamic cycles can be used for sea water desalination, process heat and centralized provision of chilled water. While electricity generation from CSP plants is still more expensive than from wind turbines or photovoltaic panels, its independence from fluctuations and daily variation of wind speed and solar radiation provides it with a higher value. To become competitive with mid-load electricity from conventional power plants within the next 10-15 years, mass production of components, increased plant size and planning/operating experience will be accompanied by technological innovations. On 30 October 2009, a number of major industrial companies joined forces to establish the so-called DESERTEC Industry Initiative, which aims at providing by 2050 15 per cent of European electricity from renewable energy sources in North Africa, while at the same time securing energy, water, income and employment for this region. Solar thermal power plants are in the heart of this concept.

  17. Solar wind stream interfaces

    International Nuclear Information System (INIS)

    Gosling, J.T.; Asbridge, J.R.; Bame, S.J.; Feldman, W.C.

    1978-01-01

    Measurements aboard Imp 6, 7, and 8 reveal that approximately one third of all high-speed solar wind streams observed at 1 AU contain a sharp boundary (of thickness less than approx.4 x 10 4 km) near their leading edge, called a stream interface, which separates plasma of distinctly different properties and origins. Identified as discontinuities across which the density drops abruptly, the proton temperature increases abruptly, and the speed rises, stream interfaces are remarkably similar in character from one stream to the next. A superposed epoch analysis of plasma data has been performed for 23 discontinuous stream interfaces observed during the interval March 1971 through August 1974. Among the results of this analysis are the following: (1) a stream interface separates what was originally thick (i.e., dense) slow gas from what was originally thin (i.e., rare) fast gas; (2) the interface is the site of a discontinuous shear in the solar wind flow in a frame of reference corotating with the sun; (3) stream interfaces occur at speeds less than 450 km s - 1 and close to or at the maximum of the pressure ridge at the leading edges of high-speed streams; (4) a discontinuous rise by approx.40% in electron temperature occurs at the interface; and (5) discontinuous changes (usually rises) in alpha particle abundance and flow speed relative to the protons occur at the interface. Stream interfaces do not generally recur on successive solar rotations, even though the streams in which they are embedded often do. At distances beyond several astronomical units, stream interfaces should be bounded by forward-reverse shock pairs; three of four reverse shocks observed at 1 AU during 1971--1974 were preceded within approx.1 day by stream interfaces. Our observations suggest that many streams close to the sun are bounded on all sides by large radial velocity shears separating rapidly expanding plasma from more slowly expanding plasma

  18. Offshore Wind Power Data

    DEFF Research Database (Denmark)

    Cutululis, Nicolaos Antonio; Litong-Palima, Marisciel; Zeni, Lorenzo

    2012-01-01

    Wind power development scenarios are critical when trying to assess the impact of the demonstration at national and European level. The work described in this report had several objectives. The main objective was to prepare and deliver the proper input necessary for assessing the impact of Demo 4...... – Storm management at national and European level. For that, detailed scenarios for offshore wind power development by 2020 and 2030 were required. The aggregation level that is suitable for the analysis to be done is at wind farm level. Therefore, the scenarios for offshore wind power development offer...... details about the wind farms such as: capacity and coordinates. Since the focus is on the impact of storm fronts passage in Northen Europe, the offshore wind power scenarios were estimated only for the countries at North and Baltic Sea. The sources used are public sources, mentioned in the reference list...

  19. Wind power in France

    International Nuclear Information System (INIS)

    Tuille, F.; Courtel, J.

    2015-01-01

    After 3 years of steady decreasing, wind power has resumed growth in 2014 in France and the preliminary figures of 2015 confirm this trend. About 1100 MW were installed in 2014 which was almost twice as much as it was installed the year before. This renaissance is mostly due to the implementation of Brottes' law that eases the installations of wind farms by suppressing the wind power development areas (that were interfering with regional wind power schemes) and by suppressing the minimum number of 5 turbines for any new wind farms. Another important incentive measure was the announcement in January 2015 of a new financial support scheme in replacement of the policy of guaranteed purchase price for the electricity produced. In 2014 the total wind power produced in mainland France reached 17 TW which represented 3.1% of the production of electricity. (A.C.)

  20. Danish Wind Power

    DEFF Research Database (Denmark)

    Lund, Henrik; Hvelplund, Frede; Østergaard, Poul Alberg

    In a normal wind year, Danish wind turbines generate the equivalent of approx. 20 percent of the Danish electricity demand. This paper argues that only approx. 1 percent of the wind power production is exported. The rest is used to meet domestic Danish electricity demands. The cost of wind power......, a study made by the Danish think tank CEPOS claimed the opposite, i.e. that most of the Danish wind power has been exported in recent years. However, this claim is based on an incorrect interpretation of statistics and a lack of understanding of how the international electricity markets operate...... is paid solely by the electricity consumers and the net influence on consumer prices was as low as 1-3 percent on average in the period 2004-2008. In 2008, the net influence even decreased the average consumer price, although only slightly. In Denmark, 20 percent wind power is integrated by using both...

  1. Wind power prediction models

    Science.gov (United States)

    Levy, R.; Mcginness, H.

    1976-01-01

    Investigations were performed to predict the power available from the wind at the Goldstone, California, antenna site complex. The background for power prediction was derived from a statistical evaluation of available wind speed data records at this location and at nearby locations similarly situated within the Mojave desert. In addition to a model for power prediction over relatively long periods of time, an interim simulation model that produces sample wind speeds is described. The interim model furnishes uncorrelated sample speeds at hourly intervals that reproduce the statistical wind distribution at Goldstone. A stochastic simulation model to provide speed samples representative of both the statistical speed distributions and correlations is also discussed.

  2. Enabling Wind Power Nationwide

    Energy Technology Data Exchange (ETDEWEB)

    Jose Zayas, Michael Derby, Patrick Gilman and Shreyas Ananthan,

    2015-05-01

    Leveraging this experience, the U.S. Department of Energy’s (DOE’s) Wind and Water Power Technologies Office has evaluated the potential for wind power to generate electricity in all 50 states. This report analyzes and quantifies the geographic expansion that could be enabled by accessing higher above ground heights for wind turbines and considers the means by which this new potential could be responsibly developed.

  3. Adding concentrated solar power plants to wind farms to achieve a good utility electrical load match

    Science.gov (United States)

    Texas has the greatest installed wind turbine capacity of any state in the United States, the percentage of wind capacity approaches 10% of the utilities capacity (in 2010 the total wind generated capacity in Texas was 8%). It is becomimg increasingly difficult for the utility to balance the elec...

  4. Wind Power in Georgia

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-11-01

    Georgia has good wind power potential. Preliminary analyses show that the technical wind power potential in Georgia is good. Meteorological data shows that Georgia has four main areas in Georgia with annual average wind speeds of over 6 m/s and two main areas with 5-6 m/s at 80m. The most promising areas are the high mountain zone of the Great Caucasus, The Kura river valley, The South-Georgian highland and the Southern part of the Georgian Black Sea coast. Czech company Wind Energy Invest has recently signed a Memorandum of Understanding with Georgian authorities for development of the first wind farm in Georgia, a 50MW wind park in Paravani, Southern Georgia, to be completed in 2014. Annual generation is estimated to 170.00 GWh and the investment estimated to 101 million US$. Wind power is suited to balance hydropower in the Georgian electricity sector Electricity generation in Georgia is dominated by hydro power, constituting 88% of total generation in 2009. Limited storage capacity and significant spring and summer peaks in river flows result in an uneven annual generation profile and winter time shortages that are covered by three gas power plants. Wind power is a carbon-free energy source well suited to balance hydropower, as it is available (often strongest) in the winter and can be exported when there is a surplus. Another advantage with wind power is the lead time for the projects; the time from site selection to operation for a wind power park (approximately 2.5 years) is much shorter than for hydro power (often 6-8 years). There is no support system or scheme for renewable sources in Georgia, so wind power has to compete directly with other energy sources and is in most cases more expensive to build than hydro power. In a country and region with rapidly increasing energy demands, the factors described above nevertheless indicate that there is a commercial niche and a role to play for Georgian wind power. Skra: An example of a wind power development

  5. Study of Green Shipping Technologies - Harnessing Wind, Waves and Solar Power in New Generation Marine Propulsion Systems

    Directory of Open Access Journals (Sweden)

    Grzegorz Rutkowski

    2016-12-01

    Full Text Available The purpose and scope of this paper is to describe the complexity of the new generation marine propulsion technologies implemented in the shipping industry to promote green ships concept and change the view of sea transportation to a more ecological and environment-friendly. Harnessing wind, waves and solar power in shipping industry can help the ship’s owners reduce the operational costs. Reducing fuel consumption results in producing less emissions and provides a clean source of renewable energy. Green shipping technologies can also effectively increase the operating range of vessels and help drive sea transportation towards a greener future and contribute to the global reduction of harmful gas emissions from the world's shipping fleets.

  6. WIND TURBINES FOR WIND POWER INSTALLATIONS

    Directory of Open Access Journals (Sweden)

    Barladean A.S.

    2008-04-01

    Full Text Available The problem of wind turbine choice for wind power stations is examined in this paper. It is shown by comparison of parameters and characteristics of wind turbines, that for existing modes and speeds of wind in territory of Republic of Moldova it is necessary to use multi-blade small speed rotation wind turbines of fan class.

  7. Offshore Wind Power

    DEFF Research Database (Denmark)

    Negra, Nicola Barberis

    The aim of the project is to investigate the influence of wind farms on the reliability of power systems. This task is particularly important for large offshore wind farms, because failure of a large wind farm might have significant influence on the balance of the power system, and because offshore...... Carlo simulation is used for these calculations: this method, in spite of an extended computation time, has shown flexibility in performing reliability studies, especially in case of wind generation, and a broad range of results which can be evaluated. The modelling is then extended to the entire power...... system considering conventional power plants, distributed generation based on wind energy and CHP technology as well as the load and transmission facilities. In particular, the different models are used to represent two well-known test systems, the RBTS and the IEEE-RTS, and to calculate...

  8. Hydro, wind and solar power as a base for a 100% renewable energy supply for South and Central America.

    Science.gov (United States)

    Barbosa, Larissa de Souza Noel Simas; Bogdanov, Dmitrii; Vainikka, Pasi; Breyer, Christian

    2017-01-01

    Power systems for South and Central America based on 100% renewable energy (RE) in the year 2030 were calculated for the first time using an hourly resolved energy model. The region was subdivided into 15 sub-regions. Four different scenarios were considered: three according to different high voltage direct current (HVDC) transmission grid development levels (region, country, area-wide) and one integrated scenario that considers water desalination and industrial gas demand supplied by synthetic natural gas via power-to-gas (PtG). RE is not only able to cover 1813 TWh of estimated electricity demand of the area in 2030 but also able to generate the electricity needed to fulfil 3.9 billion m3 of water desalination and 640 TWhLHV of synthetic natural gas demand. Existing hydro dams can be used as virtual batteries for solar and wind electricity storage, diminishing the role of storage technologies. The results for total levelized cost of electricity (LCOE) are decreased from 62 €/MWh for a highly decentralized to 56 €/MWh for a highly centralized grid scenario (currency value of the year 2015). For the integrated scenario, the levelized cost of gas (LCOG) and the levelized cost of water (LCOW) are 95 €/MWhLHV and 0.91 €/m3, respectively. A reduction of 8% in total cost and 5% in electricity generation was achieved when integrating desalination and power-to-gas into the system.

  9. Hydro, wind and solar power as a base for a 100% renewable energy supply for South and Central America

    Science.gov (United States)

    Barbosa, Larissa de Souza Noel Simas; Bogdanov, Dmitrii; Vainikka, Pasi; Breyer, Christian

    2017-01-01

    Power systems for South and Central America based on 100% renewable energy (RE) in the year 2030 were calculated for the first time using an hourly resolved energy model. The region was subdivided into 15 sub-regions. Four different scenarios were considered: three according to different high voltage direct current (HVDC) transmission grid development levels (region, country, area-wide) and one integrated scenario that considers water desalination and industrial gas demand supplied by synthetic natural gas via power-to-gas (PtG). RE is not only able to cover 1813 TWh of estimated electricity demand of the area in 2030 but also able to generate the electricity needed to fulfil 3.9 billion m3 of water desalination and 640 TWhLHV of synthetic natural gas demand. Existing hydro dams can be used as virtual batteries for solar and wind electricity storage, diminishing the role of storage technologies. The results for total levelized cost of electricity (LCOE) are decreased from 62 €/MWh for a highly decentralized to 56 €/MWh for a highly centralized grid scenario (currency value of the year 2015). For the integrated scenario, the levelized cost of gas (LCOG) and the levelized cost of water (LCOW) are 95 €/MWhLHV and 0.91 €/m3, respectively. A reduction of 8% in total cost and 5% in electricity generation was achieved when integrating desalination and power-to-gas into the system. PMID:28329023

  10. Wind and solar energy incentives in Iran

    International Nuclear Information System (INIS)

    Taleghani, G.; Kazemi Karegar, H.

    2006-01-01

    Incentive have yet been viewed as a means of supporting technological developments until a new technology becomes cost competitive wind based electricity is not jet generally competitive with alternate sources of electricity such as fossil fuels. This paper presents the potential for wind and solar in Iran and shows how much electric energy is now produced by renewable power plants compared to steam and gas. The importance of renewable energy effects on Iran environment and economy is also discussed and the issue of the contribution of renewable energy for producing electricity in the future will be shown. Also this paper highlights the ability of Iran to manufacture the components of the wind turbine and solar system locally, and its effect on the price of wind turbine and solar energy

  11. The difficult wind power

    International Nuclear Information System (INIS)

    Groenaas, Sigbjoern

    2005-01-01

    The article presents a brief survey of the conditions for wind power production in Norway and points out that several areas should be well suited. A comparison to Danish climate is made. The wind variations, turbulence problems and regional conditions are discussed

  12. The merit-order effect in the Italian power market: The impact of solar and wind generation on national wholesale electricity prices

    International Nuclear Information System (INIS)

    Clò, Stefano; Cataldi, Alessandra; Zoppoli, Pietro

    2015-01-01

    Italy promoted one of the most generous renewable support schemes worldwide which resulted in a high increase of solar power generation. We analyze the Italian day-ahead wholesale electricity market, finding empirical evidence of the merit-order effect. Over the period 2005–2013 an increase of 1 GWh in the hourly average of daily production from solar and wind sources has, on average, reduced wholesale electricity prices by respectively 2.3€/MWh and 4.2€/MWh and has amplified their volatility. The impact on prices has decreased over time in correspondence with the increase in solar and wind electricity production. We estimate that, over the period 2009–2013, solar production has generated higher monetary savings than wind production, mainly because the former is more prominent than the latter. However, in the solar case, monetary savings are not sufficient to compensate the cost of the related supporting schemes which are entirely internalized within end-user tariffs, causing a reduction of the consumer surplus, while the opposite occurs in the case of wind. - Highlights: • We find empirical evidence of the merit-order effect in the Italian market. • 1 GWh from solar and wind (hourly average) reduces prices by 2.3€/MW and 4.2€/MWh. • The impact of RES on price has declined as RES production has increased. • Monetary savings from solar production do not compensate the cost of the incentives. • Monetary savings from wind production are higher than the cost of the incentives

  13. Solar Power

    Science.gov (United States)

    Ford, Norman C.; Kane, Joseph W.

    1971-01-01

    Proposes a method of collecting solar energy by using available plastics for Fresnel lenses to focus heat onto a converter where thermal dissociation of water would produce hydrogen. The hydrogen would be used as an efficient non-polluting fuel. Cost estimates are included. (AL)

  14. Wind power barometer

    International Nuclear Information System (INIS)

    2006-01-01

    This annual evaluation is a synthesis of works published in 2006. Comparisons are presented between the wind power performances and European Commission White Paper and Biomass action plan objectives. Germany and Spain are no longer the only countries ensuring European Union market growth. The market sees also a rise in importance of wind power in United Kingdom, Portugal, Italy and France. (A.L.B.)

  15. The Solar Wind Environment in Time

    Science.gov (United States)

    Pognan, Quentin; Garraffo, Cecilia; Cohen, Ofer; Drake, Jeremy J.

    2018-03-01

    We use magnetograms of eight solar analogs of ages 30 Myr–3.6 Gyr obtained from Zeeman Doppler Imaging and taken from the literature, together with two solar magnetograms, to drive magnetohydrodynamical wind simulations and construct an evolutionary scenario of the solar wind environment and its angular momentum loss rate. With observed magnetograms of the radial field strength as the only variant in the wind model, we find that a power-law model fitted to the derived angular momentum loss rate against time, t, results in a spin-down relation Ω ∝ t ‑0.51, for angular speed Ω, which is remarkably consistent with the well-established Skumanich law Ω ∝ t ‑0.5. We use the model wind conditions to estimate the magnetospheric standoff distances for an Earth-like test planet situated at 1 au for each of the stellar cases, and to obtain trends of minimum and maximum wind ram pressure and average ram pressure in the solar system through time. The wind ram pressure declines with time as \\overline{{P}ram}}\\propto {t}2/3, amounting to a factor of 50 or so over the present lifetime of the solar system.

  16. Wind in the Solar System

    Science.gov (United States)

    McIntosh, Gordon

    2010-01-01

    As an astronomy instructor I am always looking for commonly experienced Earthly phenomena to help my students and me understand and appreciate similar occurrences elsewhere in the solar system. Recently I wrote short "TPT" articles on frost and precipitation. The present article is on winds in the solar system. A windy day or storm might…

  17. Perspectives of using of portable solar wind power plants in order to provide the population with boiling water in emergency situations

    International Nuclear Information System (INIS)

    Oktay, S.

    2015-01-01

    The research shows that recently the surrounding atmosphere, soil and drinking water sources are exposed to environmentally catastrophic pollution on one hand anthropogenic, on the other hand as a result of technogenic factors. Hot water supply of people who are forced to live in desert conditions is of paramount importance for any reason. In such cases using of alternative and renewable energy sources, especially solar collectors, photoelectric current sources and wind power engines powered mobile devices using the hot water supply is of great importance. Hot water supply of houses and cottages in the village of combined solar wind power plant designed, developed and successfully tested for several years has been held in Baku climatic conditions in transformation of renewable energy laboratory of The Institute of Radiation Problems of Azerbaijan National Academy of Science.

  18. Designing Wind and Solar Power Purchase Agreements to Support Grid Integration

    Energy Technology Data Exchange (ETDEWEB)

    O' Neill, Barbara [National Renewable Energy Lab. (NREL), Golden, CO (United States); Chernyakhovskiy, Ilya [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-07-01

    Power purchase agreements (PPAs) represent one of many institutional tools that power systems can use to improve grid services from variable renewable energy (VRE) generators. This fact sheet introduces the concept of PPAs for VRE generators and provides a brief summary of key PPA components that can facilitate VRE generators to enhance grid stability and serve as a source of power system flexibility.

  19. Dayside magnetic ULF power at high latitudes: A possible long-term proxy for the solar wind velocity?

    DEFF Research Database (Denmark)

    Vennerstrøm, Susanne

    1999-01-01

    from the solar cycle variation of regular geomagnetic activity, measured by indices such as aa and Dst. The spectral band power is generally at minimum just prior to solar maximum and has a strong maximum in the late declining phase associated with high-speed streams from coronal holes. We have...

  20. Hybrid wind-power-distillation plant

    Directory of Open Access Journals (Sweden)

    Ninić Neven

    2012-01-01

    Full Text Available This paper reports and elaborates on the idea of a solar distiller and an offshore wind power plant operating together. The subject under discussion is a single-stage solar distillation plant with vaporization, using adiabatic expansion in the gravitational field inside a wind power plant supporting column. This scheme divides investment costs for electric power and distillate production. In the region of the Adriatic Sea, all electric power produced could be “converted” to hydrogen using less than 10% of the distillate produced.

  1. Integrated Wind Power Planning Tool

    DEFF Research Database (Denmark)

    Rosgaard, Martin H.; Hahmann, Andrea N.; Nielsen, Torben S.

    This poster presents the Public Service Obligation (PSO) funded project PSO 10464 "Integrated Wind Power Planning Tool". The project goal is to integrate a Numerical Weather Prediction (NWP) model with statistical tools in order to assess wind power fluctuations, with focus on short term...... forecasting for existing wind farms, as well as long term power system planning for future wind farms....

  2. Plasma fluctuations in the solar wind

    International Nuclear Information System (INIS)

    Neugebauer, M.; Wu, C.S.; Huba, J.D.

    1978-01-01

    Ogo 5 plasma and magnetic field data are used to compute power spectra of solar wind fluctuations over the frequency interval 10 -3 10 -1 Hz. We confirm the validity of the assumption made in earlier papers that the power spectra calculated from total flux measurements are approximately equal to the power spectra of density fluctuations times the square of the average solar wind speed. The relative density power spectrum P/sub n//n 2 0 is usually of the same order of magnitude as the power spectrum of speed fluctuations relative to the Alfven speed, P/sub v//v 2 /sub A/. All cases studied show evidence of the presence of Alfven waves in this frequency range. In some data sets the density and field fluctuations are consistent with magnetosonic waves. In other sets the ratio of the power in field magnitude fluctuations to that in density fluctuations is inconsistent with magnetosonic waves; for these cases we postulate static inhomogeneities with a balance between electron thermal and magnetic pressures. Finally, we suggest that the power enhancements near 1 Hz reported in earlier papers may be caused by a resonant proton cyclotron instability driven by the proton thermal anisotropy in the solar wind

  3. An overview of the photovoltaic, wind power, solar water heating and small-scale hydropower supply industries in South Africa up to 1994/95

    International Nuclear Information System (INIS)

    Stassen, G.; Holm, D.

    1997-01-01

    This paper contains a broad overview of the South African photovoltaic, solar water heating, wind power and small-scale hydropower industries. Against the general lack of a comprehensive national database on renewable energy supply and demand, this overview attempts to provide general background information on these commercial industries, market trends, local sales figures, export volumes and installed capacity estimates. It also identifies the industry's major constraints, as well as their future outlook. (author). 12 refs., 13 tabs., 4 figs

  4. The “Weather Intelligence for Renewable Energies” Benchmarking Exercise on Short-Term Forecasting of Wind and Solar Power Generation

    DEFF Research Database (Denmark)

    Sperati, Simone; Alessandrini, Stefano; Pinson, Pierre

    2015-01-01

    A benchmarking exercise was organized within the framework of the European Action Weather Intelligence for Renewable Energies (“WIRE”) with the purpose of evaluating the performance of state of the art models for short-term renewable energy forecasting. The exercise consisted in forecasting...... the power output of two wind farms and two photovoltaic power plants, in order to compare the merits of forecasts based on different modeling approaches and input data. It was thus possible to obtain a better knowledge of the state of the art in both wind and solar power forecasting, with an overview...... and comparison of the principal and the novel approaches that are used today in the field, and to assess the evolution of forecast performance with respect to previous benchmarking exercises. The outcome of this exercise consisted then in proposing new challenges in the renewable power forecasting field...

  5. The “Weather Intelligence for Renewable Energies” Benchmarking Exercise on Short-Term Forecasting of Wind and Solar Power Generation

    Directory of Open Access Journals (Sweden)

    Simone Sperati

    2015-09-01

    Full Text Available A benchmarking exercise was organized within the framework of the European Action Weather Intelligence for Renewable Energies (“WIRE” with the purpose of evaluating the performance of state of the art models for short-term renewable energy forecasting. The exercise consisted in forecasting the power output of two wind farms and two photovoltaic power plants, in order to compare the merits of forecasts based on different modeling approaches and input data. It was thus possible to obtain a better knowledge of the state of the art in both wind and solar power forecasting, with an overview and comparison of the principal and the novel approaches that are used today in the field, and to assess the evolution of forecast performance with respect to previous benchmarking exercises. The outcome of this exercise consisted then in proposing new challenges in the renewable power forecasting field and identifying the main areas for improving accuracy in the future.

  6. Wind power barometer

    International Nuclear Information System (INIS)

    Anon.

    2010-01-01

    The global wind power market not only repelled the strictures of the financial crisis, but saw the installation of 37 GW in 2009, which is almost 10 GW up on 2008. China and the United States registered particularly steady growth and the European Union also picked up momentum to break its installation record. A total capacity of 158 GW of wind power are now installed across the world from which 74.8 GW in the European Union. Among the European countries Denmark has the highest wind capacity per inhabitant in 2009: 627.5 kW/1000 inhabitants. Spain seeks to limit its market's growth in order to better manage the development of wind energy across the country. German growth is back, Italy chalks up a new record for installation and the French market is becoming increasingly regulated. United-Kingdom is developing offshore wind farms: the offshore capacity could reasonably rise to 20000 MW by 2020. The last part of the article reports some economical news from the leading players: Vestas, GE-Energy, Gamesa, Enercon, Sinovel and Siemens. (A.C.)

  7. Mathematical model of an off-grid hybrid solar and wind power generating system

    Science.gov (United States)

    Blasone, M.; Dell'Anno, F.; De Luca, R.; Torre, G.

    2014-12-01

    The dynamics of an off-grid power generating system, coupled to a storage unit and to household appliances, is described by means of an analytic hydrodynamic analog. Following this analogy, by noticing that the effux rate from a leaking bucket is described, in terms of the liquid content, by Torricelli's formula, we denote as "Torricelli's smart consumer" a user being able to calibrate its energy consumption rate with respect to the energy level in the storage unit as if the hydrodynamic model would strictly apply. Simple solutions to the nonlinear dynamic problem associated to this type of smart consumer are found and generalization to other types of smart consumers are sought.

  8. Solar wind stream evolution

    International Nuclear Information System (INIS)

    Gosling, J.T.

    1978-01-01

    Highlights of the recent progress in understanding the problem of high speed stream evolution with increasing heliocentric distance are reviewed. Crucial to this understanding are the measurements made in the inner solar system by Helios and the outer solar system by Pioneers 10 and 11. When coupled with observations at 1 AU these measurements allow a testing of current theoretical models of stream evolution. 21 references

  9. Gearless wind power generator

    Energy Technology Data Exchange (ETDEWEB)

    Soederlund, L.; Ridanpaeae, P.; Vihriaelae, H.; Peraelae, R. [Tampere Univ. of Technology (Finland). Lab. of Electricity and Magnetism

    1998-12-31

    During the wind power generator project a design algorithm for a gearless permanent magnet generator with an axially orientated magnetic flux was developed and a 10 kW model machine was constructed. Utilising the test results a variable wind speed system of 100 kW was designed that incorporates a permanent magnet generator, a frequency converter and a fuzzy controller. This system produces about 5-15% more energy than existing types and stresses to the blades are minimised. The type of generator designed in the project represents in general a gearless solution for slow-speed electrical drives. (orig.)

  10. Mathematical model of an off-grid hybrid solar and wind power generating system

    Directory of Open Access Journals (Sweden)

    Blasone M.

    2014-01-01

    Full Text Available The dynamics of an off-grid power generating system, coupled to a storage unit and to household appliances, is described by means of an analytic hydrodynamic analog. Following this analogy, by noticing that the effux rate from a leaking bucket is described, in terms of the liquid content, by Torricelli's formula, we denote as “Torricelli's smart consumer” a user being able to calibrate its energy consumption rate with respect to the energy level in the storage unit as if the hydrodynamic model would strictly apply. Simple solutions to the nonlinear dynamic problem associated to this type of smart consumer are found and generalization to other types of smart consumers are sought.

  11. The combined value of wind and solar power forecasting improvements and electricity storage

    Energy Technology Data Exchange (ETDEWEB)

    Hodge, Bri-Mathias; Brancucci Martinez-Anido, Carlo; Wang, Qin; Chartan, Erol; Florita, Anthony; Kiviluoma, Juha

    2018-03-01

    As the penetration rates of variable renewable energy increase, the value of power systems operation flexibility technology options, such as renewable energy forecasting improvements and electricity storage, is also assumed to increase. In this work, we examine the value of these two technologies, when used independently and concurrently, for two real case studies that represent the generation mixes for the California and Midcontinent Independent System Operators (CAISO and MISO). Since both technologies provide additional system flexibility they reduce operational costs and renewable curtailment for both generation mixes under study. Interestingly, the relative impacts are quite similar when both technologies are used together. Though both flexibility options can solve some of the same issues that arise with high penetration levels of renewables, they do not seem to significantly increase or decrease the economic potential of the other technology.

  12. A solar PV augmented hybrid scheme for enhanced wind power generation through improved control strategy for grid connected doubly fed induction generator

    Directory of Open Access Journals (Sweden)

    Adikanda Parida

    2016-12-01

    Full Text Available In this paper, a wind power generation scheme using a grid connected doubly fed induction generator (DFIG augmented with solar PV has been proposed. A reactive power-based rotor speed and position estimation technique with reduced machine parameter sensitivity is also proposed to improve the performance of the DFIG controller. The estimation algorithm is based on model reference adaptive system (MRAS, which uses the air gap reactive power as the adjustable variable. The overall generation reliability of the wind energy conversion system can be considerably improved as both solar and wind energy can supplement each other during lean periods of either of the sources. The rotor-side DC-link voltage and active power generation at the stator terminals of the DFIG are maintained constant with minimum storage battery capacity using single converter arrangement without grid-side converter (GSC. The proposed scheme has been simulated and experimentally validated with a practical 2.5 kW DFIG using dSPACE CP1104 module which produced satisfactory results.

  13. Verification of high-speed solar wind stream forecasts using operational solar wind models

    DEFF Research Database (Denmark)

    Reiss, Martin A.; Temmer, Manuela; Veronig, Astrid M.

    2016-01-01

    and the background solar wind conditions. We found that both solar wind models are capable of predicting the large-scale features of the observed solar wind speed (root-mean-square error, RMSE ≈100 km/s) but tend to either overestimate (ESWF) or underestimate (WSA) the number of high-speed solar wind streams (threat...

  14. Robust unit commitment with dispatchable wind power

    NARCIS (Netherlands)

    Morales Espana, G.; Lorca, Álvaro; de Weerdt, M.M.

    The increasing penetration of uncertain generation such as wind and solar in power systems imposes new challenges to the unit commitment (UC) problem, one of the most critical tasks in power systems operations. The two most common approaches to address these challenges — stochastic and robust

  15. Wind Powering America

    International Nuclear Information System (INIS)

    Flowers, L.; Dougherty, P. J.

    2001-01-01

    At the June 1999 Windpower Conference, the Secretary of Energy launched the Office of Energy Efficiency and Renewable Energy's Wind Powering America (WPA) initiative. The goals of the initiative are to meet 5% of the nation's energy needs with wind energy by 2020 (i.e., 80,000 megawatts installed), to double the number of states that have more than 20 megawatts (MW) of wind capacity to 16 by 2005 and triple it to 24 by 2010, and to increase wind's contribution to Federal electricity use to 5% by 2010. To achieve the Federal government's goal, DOE would take the leadership position and work with its Federal partners. Subsequently, the Secretary accelerated the DOE 5% commitment to 2005. Achieving the 80,000 MW goal would result in approximately$60 billion investment and$1.5 billion of economic development in our rural areas (where the wind resources are the greatest). The purpose of this paper is to provide an update on DOE's strategy for achieving its goals and the activities it has undertaken since the initiative was announced

  16. Wind Powering America

    Energy Technology Data Exchange (ETDEWEB)

    Flowers, L. (NREL); Dougherty, P. J. (DOE)

    2001-07-07

    At the June 1999 Windpower Conference, the Secretary of Energy launched the Office of Energy Efficiency and Renewable Energy's Wind Powering America (WPA) initiative. The goals of the initiative are to meet 5% of the nation's energy needs with wind energy by 2020 (i.e., 80,000 megawatts installed), to double the number of states that have more than 20 megawatts (MW) of wind capacity to 16 by 2005 and triple it to 24 by 2010, and to increase wind's contribution to Federal electricity use to 5% by 2010. To achieve the Federal government's goal, DOE would take the leadership position and work with its Federal partners. Subsequently, the Secretary accelerated the DOE 5% commitment to 2005. Achieving the 80,000 MW goal would result in approximately $60 billion investment and $1.5 billion of economic development in our rural areas (where the wind resources are the greatest). The purpose of this paper is to provide an update on DOE's strategy for achieving its goals and the activities it has undertaken since the initiative was announced.

  17. Pricing offshore wind power

    International Nuclear Information System (INIS)

    Levitt, Andrew C.; Kempton, Willett; Smith, Aaron P.; Musial, Walt; Firestone, Jeremy

    2011-01-01

    Offshore wind offers a very large clean power resource, but electricity from the first US offshore wind contracts is costlier than current regional wholesale electricity prices. To better understand the factors that drive these costs, we develop a pro-forma cash flow model to calculate two results: the levelized cost of energy, and the breakeven price required for financial viability. We then determine input values based on our analysis of capital markets and of 35 operating and planned projects in Europe, China, and the United States. The model is run for a range of inputs appropriate to US policies, electricity markets, and capital markets to assess how changes in policy incentives, project inputs, and financial structure affect the breakeven price of offshore wind power. The model and documentation are made publicly available. - Highlights: → We calculate the Breakeven Price (BP) required to deploy offshore wind plants. → We determine values for cost drivers and review incentives structures in the US. → We develop 3 scenarios using today's technology but varying in industry experience. → BP differs widely by Cost Scenario; relative policy effectiveness varies by stage. → The low-range BP is below regional market values in the Northeast United States.

  18. Wind power barometer

    International Nuclear Information System (INIS)

    Anon.

    2012-01-01

    Despite the economic crisis affecting most of the globe's major economies, wind energy continues to gain supporters around the world. Global wind power capacity increased by 40.5 GW between 2010 and 2011 compared to a 39 GW rise between 2009 and 2010, after deduction of decommissioned capacity. By the end of 2011 global installed wind turbine capacity should stand at around 238.5 GW, and much of the world's growth is being driven by capacity build-up in the emerging markets (China, India...). In 2011 Asia was the world's biggest market (52%) ahead of Europe (24.5%) and North-America (19.7%). Europe has still the largest wind power capacity in the world with 40.6% of total in 2011. 2011 was another tough year for Vestas company while Gamesa company has managed to maintain positive profit growth by gaining market shares abroad. Siemens keeps its lead in the offshore market. The Chinese market is now suffering form excess capacity and Chinese companies fell prey to domestic competition

  19. Solar power roof shingle

    Science.gov (United States)

    Forestieri, A. F.; Ratajczak, A. F.; Sidorak, L. G.

    1975-01-01

    Silicon solar cell module provides both all-weather protection and electrical power. Module consists of array of circular silicon solar cells bonded to fiberglass substrate roof shingle with fluorinated ethylene propylene encapsulant.

  20. Wind power integration : From individual wind turbine to wind park as a power plant

    NARCIS (Netherlands)

    Zhou, Y.

    2009-01-01

    As power capacities of single wind turbine, single wind park and total wind power installation are continuously increasing, the wind power begins to challenge the safety operation of the power system. This thesis focuses on the grid integration aspects such as the dynamic behaviours of wind power

  1. Strategic wind power trading considering rival wind power production

    DEFF Research Database (Denmark)

    Exizidis, Lazaros; Kazempour, Jalal; Pinson, Pierre

    2016-01-01

    In an electricity market with high share of wind power, it is expected that wind power producers may exercise market power. However, wind producers have to cope with wind’s uncertain nature in order to optimally offer their generation, whereas in a market with more than one wind producers......, uncertainty of rival wind power generation should also be considered. Under this context, this paper addresses the impact of rival wind producers on the offering strategy and profits of a pricemaker wind producer. A stochastic day-ahead market setup is considered, which optimizes the day-ahead schedules...... considering a number of foreseen real-time scenarios. The results indicate that strategic wind producer is more likely to exercise market power having a mid-mean or low-mean forecast distribution, rather than having a high-mean one. Furthermore, it is observed that its offering strategy varies considerably...

  2. Wind power in modern power systems

    DEFF Research Database (Denmark)

    Chen, Zhe

    2013-01-01

    In recent years, wind power is experiencing a rapid growth, and large-scale wind turbines/wind farms have been developed and connected to power systems. However, the traditional power system generation units are centralized located synchronous generators with different characteristics compared...... with wind turbines. This paper presents an overview of the issues about integrating large-scale wind power plants into modern power systems. Firstly, grid codes are introduced. Then, the main technical problems and challenges are presented. Finally, some possible technical solutions are discussed....

  3. 77 FR 61597 - Avalon Wind, LLC; Avalon Wind 2, LLC; Catalina Solar, LLC; Catalina Solar 2, LLC; Pacific Wind...

    Science.gov (United States)

    2012-10-10

    ... Energy Regulatory Commission Avalon Wind, LLC; Avalon Wind 2, LLC; Catalina Solar, LLC; Catalina Solar 2, LLC; Pacific Wind Lessee, LLC; Pacific Wind 2, LLC; Valentine Solar, LLC; EDF Renewable Development, Inc.; Notice of Petition for Declaratory Order Take notice that on September 27, 2012, Avalon Wind...

  4. Dayside magnetic ULF power at high latitudes: A possible long-term proxy for the solar wind velocity?

    DEFF Research Database (Denmark)

    Vennerstrøm, Susanne

    1999-01-01

    We examine the occurrence of dayside high-latitude magnetic variations with periods between 2 and 10 min statistically using data from around 20 magnetic stations in Greenland, Scandinavia, and Canada, many of which have been in operation for a full solar cycle. We derive time series of the power...

  5. Gearless wind power generator

    Energy Technology Data Exchange (ETDEWEB)

    Soederlund, L.; Ridanpaeae, P.; Vihriaelae, H.; Peraelae, R. [Tampere Univ. of Technology (Finland). Lab. of Electricity and Magnetism

    1998-10-01

    In the project a 100 kW axial flux permanent magnet wind power generator has been designed. The toroidal stator with air gap winding is placed between two rotating discs with permanent magnets. The magnet material is NdBFe due to its excellent magnetic properties compared to other materials. This type of topology enables a very large number of poles compared to conventional machine of the same size. A large number of poles is required to achieve a low rotational speed and consequently a direct driven system. The stator winding is formed by rectangular coils. The end winding is very short leading to small resistive losses. On the other hand, the absence of iron teeth causes eddy current losses in the conductors. These can be restricted to an acceptable level by keeping the wire diameter and flux density small. This means that the number of phases should be large. Several independent three phase systems may be used. The toothless stator also means that the iron losses are small and there exists no cogging torque

  6. Assembling Markets for Wind Power

    DEFF Research Database (Denmark)

    Pallesen, Trine

    This project studies the making of a market for wind power in France. Markets for wind power are often referred to as ‘political markets: On the one hand, wind power has the potential to reduce CO2-emissions and thus stall the effects of electricity generation on climate change; and on the other...... hand, as an economic good, wind power is said to suffer from (techno-economic) ‘disabilities’, such as high costs, fluctuating and unpredictable generation, etc. Therefore, because of its performance as a good, it is argued that the survival of wind power in the market is premised on different...... instruments, some of which I will refer to as ‘prosthetic devices’. This thesis inquires into two such prosthetic devices: The feed-in tariff and the wind power development zones (ZDE) as they are negotiated and practiced in France, and also the ways in which they affect the making of markets for wind power....

  7. The Western Wind and Solar Integration Study Phase 2

    Energy Technology Data Exchange (ETDEWEB)

    Lew, Debra [National Renewable Energy Lab. (NREL), Golden, CO (United States); Brinkman, Greg [National Renewable Energy Lab. (NREL), Golden, CO (United States); Ibanez, E. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Florita, A. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Heaney, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hodge, B. -M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hummon, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Stark, G. [National Renewable Energy Lab. (NREL), Golden, CO (United States); King, J. [RePPAE; Lefton, S. A. [Intertek-APTECH, Houston, TX (United States); Kumar, N. [Intertek-APTECH, Houston, TX (United States); Agan, D. [Intertek-APTECH, Houston, TX (United States); Jordan, G. [GE Energy, Fairfield, CT (United States); Venkataraman, S. [GE Energy, Fairfield, CT (United States)

    2013-09-01

    The electric grid is a highly complex, interconnected machine, and changing one part of the grid can have consequences elsewhere. Adding wind and solar affects the operation of the other power plants and adding high penetrations can induce cycling of fossil-fueled generators. Cycling leads to wear-and-tear costs and changes in emissions. Phase 2 of the Western Wind and Solar Integration Study (WWSIS-2) evaluated these costs and emissions and simulated grid operations for a year to investigate the detailed impact of wind and solar on the fossil-fueled fleet. This built on Phase 1, one of the largest wind and solar integration studies ever conducted, which examined operational impacts of high wind and solar penetrations in the West(GE Energy 2010).

  8. The Western Wind and Solar Integration Study Phase 2

    Energy Technology Data Exchange (ETDEWEB)

    Lew, D.; Brinkman, G.; Ibanez, E.; Hodge, B. M.; Hummon, M.; Florita, A.; Heaney, M.

    2013-09-01

    The electric grid is a highly complex, interconnected machine, and changing one part of the grid can have consequences elsewhere. Adding wind and solar affects the operation of the other power plants and adding high penetrations can induce cycling of fossil-fueled generators. Cycling leads to wear-and-tear costs and changes in emissions. Phase 2 of the Western Wind and Solar Integration Study (WWSIS-2) evaluated these costs and emissions and simulated grid operations for a year to investigate the detailed impact of wind and solar on the fossil-fueled fleet. This built on Phase 1, one of the largest wind and solar integration studies ever conducted, which examined operational impacts of high wind and solar penetrations in the West.

  9. Turbulence in the solar wind

    CERN Document Server

    Bruno, Roberto

    2016-01-01

    This book provides an overview of solar wind turbulence from both the theoretical and observational perspective. It argues that the interplanetary medium offers the best opportunity to directly study turbulent fluctuations in collisionless plasmas. In fact, during expansion, the solar wind evolves towards a state characterized by large-amplitude fluctuations in all observed parameters, which resembles, at least at large scales, the well-known hydrodynamic turbulence. This text starts with historical references to past observations and experiments on turbulent flows. It then introduces the Navier-Stokes equations for a magnetized plasma whose low-frequency turbulence evolution is described within the framework of the MHD approximation. It also considers the scaling of plasma and magnetic field fluctuations and the study of nonlinear energy cascades within the same framework. It reports observations of turbulence in the ecliptic and at high latitude, treating Alfvénic and compressive fluctuations separately in...

  10. A Multiobjective Robust Scheduling Optimization Mode for Multienergy Hybrid System Integrated by Wind Power, Solar Photovoltaic Power, and Pumped Storage Power

    Directory of Open Access Journals (Sweden)

    Lihui Zhang

    2017-01-01

    Full Text Available Wind power plant (WPP, photovoltaic generators (PV, cell-gas turbine (CGT, and pumped storage power station (PHSP are integrated into multienergy hybrid system (MEHS. Firstly, this paper presents MEHS structure and constructs a scheduling model with the objective functions of maximum economic benefit and minimum power output fluctuation. Secondly, in order to relieve the uncertainty influence of WPP and PV on system, robust stochastic theory is introduced to describe uncertainty and propose a multiobjective stochastic scheduling optimization mode by transforming constraint conditions with uncertain variables. Finally, a 9.6 MW WPP, a 6.5 MW PV, three CGT units, and an upper reservoir with 10 MW·h equivalent capacity are chosen as simulation system. The results show MEHS system can achieve the best operation result by using the multienergy hybrid generation characteristic. PHSP could shave peak and fill valley of load curve by optimizing pumping storage and inflowing generating behaviors based on the load supply and demand status and the available power of WPP and PV. Robust coefficients can relieve the uncertainty of WPP and PV and provide flexible scheduling decision tools for decision-makers with different risk attitudes by setting different robust coefficients, which could maximize economic benefits and minimize operation risks at the same time.

  11. Wind power's coming of age

    International Nuclear Information System (INIS)

    Phillips, J.A.

    1992-01-01

    This article examines the role that wind power has in meeting future energy demand. The topics of the article include demonstration of current technology, an overview of research and market activity, institutional and regulatory barriers and other issues, financing of wind power projects, incentives and penalties, current market experience, national trends in application of wind power plants, advanced technologies, intermittency, power quality, and transmission and distribution

  12. An Appropriate Wind Model for Wind Integrated Power Systems Reliability Evaluation Considering Wind Speed Correlations

    Directory of Open Access Journals (Sweden)

    Rajesh Karki

    2013-02-01

    Full Text Available Adverse environmental impacts of carbon emissions are causing increasing concerns to the general public throughout the world. Electric energy generation from conventional energy sources is considered to be a major contributor to these harmful emissions. High emphasis is therefore being given to green alternatives of energy, such as wind and solar. Wind energy is being perceived as a promising alternative. This source of energy technology and its applications have undergone significant research and development over the past decade. As a result, many modern power systems include a significant portion of power generation from wind energy sources. The impact of wind generation on the overall system performance increases substantially as wind penetration in power systems continues to increase to relatively high levels. It becomes increasingly important to accurately model the wind behavior, the interaction with other wind sources and conventional sources, and incorporate the characteristics of the energy demand in order to carry out a realistic evaluation of system reliability. Power systems with high wind penetrations are often connected to multiple wind farms at different geographic locations. Wind speed correlations between the different wind farms largely affect the total wind power generation characteristics of such systems, and therefore should be an important parameter in the wind modeling process. This paper evaluates the effect of the correlation between multiple wind farms on the adequacy indices of wind-integrated systems. The paper also proposes a simple and appropriate probabilistic analytical model that incorporates wind correlations, and can be used for adequacy evaluation of multiple wind-integrated systems.

  13. Solar thermal power plants

    International Nuclear Information System (INIS)

    Schnatbaum, L.

    2009-01-01

    The solar thermal power plant technology, the opportunities it presents and the developments in the market are outlined. The focus is on the technology of parabolic trough power plants, a proven technology for solar power generation on a large scale. In a parabolic trough power plant, trough-shaped mirrors concentrate the solar irradiation onto a pipe in the focal line of the collector. The thermal energy thus generated is used for electricity generation in a steam turbine. Parabolic trough plants can be combined with thermal storage and fossil or biomass fired heat exchangers to generate electricity even when the sun is not shining. Solar Millennium AG in Erlangen has developed the first power plant of this kind in Europe. After two years of construction the plant started operation in Southern Spain in 2008. This one and its sister projects are important steps leading the way for the whole market. The paper also covers the technological challenges, the key components used and the research and development activities concerning this technology. Solar thermal power plants are ideal for covering peak and medium loads in power grids. In hybrid operation they can also cover base-load. The Solar Chimney power plant, another striking technology for the conversion of solar into electric energy, is described briefly. The paper concludes with a look at the future - the import of solar energy from the deserts of North Africa to central Europe. (author)

  14. Modeling of Wind Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Spacil, D.; Santarius, P. [VSB - Technical University of Ostrava, Department of Electrical Measurement, FEECS, 17. listopadu 15, 708 33 Ostrava- Poruba (Czech Republic); Dobrucky, B. [University of Zilina, Department of Mechatronics and Electronics, FEE, Univerzitna 1, 010 26 Zilina (Slovakia)

    2006-07-01

    The electrical power produced by the wind power plant has increased in the last years in the world and probably will increase further in the future. Therefore, wind power plants have a significant influence on the power production. In this article the connection of the wind turbine to a grid is described in order to determine the impact of the existing wind turbines as well as planned wind turbines on the grid and ensure the proper functioning of the wind turbine. The purpose of the presented work is to find an analytical generator model for the simulation of the wind power plant and determine the influence on the grid by programming with Matlab/Simulink.

  15. The wind power of Mexico

    International Nuclear Information System (INIS)

    Hernandez-Escobedo, Q.; Manzano-Agugliaro, F.; Zapata-Sierra, A.

    2010-01-01

    The high price of fossil fuels and the environmental damage they cause have encouraged the development of renewable energy resources, especially wind power. This work discusses the potential of wind power in Mexico, using data collected every 10 min between 2000 and 2008 at 133 automatic weather stations around the country. The wind speed, the number of hours of wind useful for generating electricity and the potential electrical power that could be generated were estimated for each year via the modelling of a wind turbine employing a logistic curve. A linear correlation of 90.3% was seen between the mean annual wind speed and the mean annual number of hours of useful wind. Maps were constructed of the country showing mean annual wind speeds, useful hours of wind, and the electrical power that could be generated. The results show that Mexico has great wind power potential with practically the entire country enjoying more than 1700 h of useful wind per year and the potential to generate over 2000 kW of electrical power per year per wind turbine installed (except for the Chiapas's State). Indeed, with the exception of six states, over 5000 kW per year could be generated by each turbine. (author)

  16. The wind power of Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez-Escobedo, Q. [Gerencia de Energias No Convencionales, Instituto de Investigaciones Electricas, Reforma 113 Col. Palmira, C. P. 62490, Cuernavaca, Morelos (Mexico); Manzano-Agugliaro, F.; Zapata-Sierra, A. [Departamento de Ingenieria Rural, Universidad de Almeria, La Canada de San Urbano, 04120 Almeria (Spain)

    2010-12-15

    The high price of fossil fuels and the environmental damage they cause have encouraged the development of renewable energy resources, especially wind power. This work discusses the potential of wind power in Mexico, using data collected every 10 min between 2000 and 2008 at 133 automatic weather stations around the country. The wind speed, the number of hours of wind useful for generating electricity and the potential electrical power that could be generated were estimated for each year via the modelling of a wind turbine employing a logistic curve. A linear correlation of 90.3% was seen between the mean annual wind speed and the mean annual number of hours of useful wind. Maps were constructed of the country showing mean annual wind speeds, useful hours of wind, and the electrical power that could be generated. The results show that Mexico has great wind power potential with practically the entire country enjoying more than 1700 h of useful wind per year and the potential to generate over 2000 kW of electrical power per year per wind turbine installed (except for the Chiapas's State). Indeed, with the exception of six states, over 5000 kW per year could be generated by each turbine. (author)

  17. Solar Wind Variation with the Cycle

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... The average solar wind density, velocity and temperature measured at the Earth's orbit show specific decadal variations and trends, which are of the order of the first tens per cent during the last three solar cycles. Statistical, spectral and correlation characteristics of the solar wind are reviewed with the ...

  18. Can solar power deliver?

    Science.gov (United States)

    Nelson, Jenny; Emmott, Christopher J M

    2013-08-13

    Solar power represents a vast resource which could, in principle, meet the world's needs for clean power generation. Recent growth in the use of photovoltaic (PV) technology has demonstrated the potential of solar power to deliver on a large scale. Whilst the dominant PV technology is based on crystalline silicon, a wide variety of alternative PV materials and device concepts have been explored in an attempt to decrease the cost of the photovoltaic electricity. This article explores the potential for such emerging technologies to deliver cost reductions, scalability of manufacture, rapid carbon mitigation and new science in order to accelerate the uptake of solar power technologies.

  19. Byproduct metal requirements for U.S. wind and solar photovoltaic electricity generation up to the year 2040 under various Clean Power Plan scenarios

    Science.gov (United States)

    Nassar, Nedal T.; Wilburn, David R.; Goonan, Thomas G.

    2016-01-01

    The United States has and will likely continue to obtain an increasing share of its electricity from solar photovoltaics (PV) and wind power, especially under the Clean Power Plan (CPP). The need for additional solar PV modules and wind turbines will, among other things, result in greater demand for a number of minor metals that are produced mainly or only as byproducts. In this analysis, the quantities of 11 byproduct metals (Ag, Cd, Te, In, Ga, Se, Ge, Nd, Pr, Dy, and Tb) required for wind turbines with rare-earth permanent magnets and four solar PV technologies are assessed through the year 2040. Three key uncertainties (electricity generation capacities, technology market shares, and material intensities) are varied to develop 42 scenarios for each byproduct metal. The results indicate that byproduct metal requirements vary significantly across technologies, scenarios, and over time. In certain scenarios, the requirements are projected to become a significant portion of current primary production. This is especially the case for Te, Ge, Dy, In, and Tb under the more aggressive scenarios of increasing market share and conservative material intensities. Te and Dy are, perhaps, of most concern given their substitution limitations. In certain years, the differences in byproduct metal requirements between the technology market share and material intensity scenarios are greater than those between the various CPP and No CPP scenarios. Cumulatively across years 2016–2040, the various CPP scenarios are estimated to require 15–43% more byproduct metals than the No CPP scenario depending on the specific byproduct metal and scenario. Increasing primary production via enhanced recovery rates of the byproduct metals during the beneficiation and enrichment operations, improving end-of-life recycling rates, and developing substitutes are important strategies that may help meet the increased demand for these byproduct metals.

  20. Solar thermal power meeting - Proceedings

    International Nuclear Information System (INIS)

    2011-07-01

    This document summarizes the presentations and debates of the first edition of the Solar thermal power meeting. Content: 1 - Opening talk (Jean-Louis BAL, SER); 2 - Solar thermal power, European and global road-maps (Cedric Philibert, IEA; Mariangels Perez Latorre, Estela); 3 - first round-table on the international development of solar energy (Philippe Lorec, DGEC France; Said Mouline, Aderee Morocco; Obaid Amrane, Masen Morocco; Kawther Lihidheb, ANME Tunisia; Abdelaziz Boumahra, Rouiba Eclairage, Algeria; Badis Derradji, NEAL Algeria; Yao Azoumah, Lesee, 2IE Foundation Burkina Faso; Mamadou Amadou Kane, MPEM Mauritania; Jean-Charles Mulet, Bertin Technologies); 4 - Second round-table on the French solar thermal offer for export (Georgina Grenon, DGEC; Stephanie Bouzigueseschmann, DG Tresor; Armand Pineda, Alstom; Florent Brunet, Mena-Areva; Roger Pujol, CNIM; Gilles David, Enertime; Michel Wohrer, Saed; Mathieu Vrinat, Sogreah; Marc Benmarraze, Solar Euromed; 5 - Presentation of Amisole - Moroccan association of solar and wind industries (Ahmed Squalli, Amisole); 6 - Third round-table on French research at the solar industry service (Gilles Flamant, Promes Lab. CNRS; Francois Moisan, Ademe; Tahar Melliti, CGI; Andre Joffre, Derbi; Michel Wohrer, Capenergies; 7 - Fourth round table on projects financing (Vincent Girard, Loan Officer BEI; Bertrand Marchais, Miga World Bank; Philippe Meunier, CDC Climat Groupe Caisse des Depots; Christian de Gromard, AFD; Laurent Belouze, Natixis; Piotr Michalowski, Loan Officer BEI); 8 - Closing of the meeting (Roger Pujol, SER)

  1. Effect of current sheets on the solar wind magnetic field power spectrum from the Ulysses observation: from Kraichnan to Kolmogorov scaling.

    Science.gov (United States)

    Li, G; Miao, B; Hu, Q; Qin, G

    2011-03-25

    The MHD turbulence theory developed by Iroshnikov and Kraichnan predicts a k(-1.5) power spectrum. Solar wind observations, however, often show a k(-5/3) Kolmogorov scaling. Based on 3 years worth of Ulysses magnetic field data where over 28,000 current sheets are identified, we propose that the current sheet is the cause of the Kolmogorov scaling. We show that for 5 longest current-sheet-free periods the magnetic field power spectra are all described by the Iroshnikov-Kraichnan scaling. In comparison, for 5 periods that have the most number of current sheets, the power spectra all exhibit Kolmogorov scaling. The implication of our results is discussed.

  2. Distributed Wind Cost Reduction: Learning from Solar

    Energy Technology Data Exchange (ETDEWEB)

    Tegen, Suzanne

    2016-02-23

    The distributed wind energy industry can learn several lessons from the solar industry regarding reducing soft costs. Suzanne Tegen presented this overview at the 2016 Distributed Wind Energy Association Business Conference in Washington, D.C., on February 23, 2016.

  3. Astrospheres and Solar-like Stellar Winds

    Directory of Open Access Journals (Sweden)

    Wood Brian E.

    2004-07-01

    Full Text Available Stellar analogs for the solar wind have proven to be frustratingly difficult to detect directly. However, these stellar winds can be studied indirectly by observing the interaction regions carved out by the collisions between these winds and the interstellar medium (ISM. These interaction regions are called "astrospheres", analogous to the "heliosphere" surrounding the Sun. The heliosphere and astrospheres contain a population of hydrogen heated by charge exchange processes that can produce enough H I Ly alpha absorption to be detectable in UV spectra of nearby stars from the Hubble Space Telescope (HST. The amount of astrospheric absorption is a diagnostic for the strength of the stellar wind, so these observations have provided the first measurements of solar-like stellar winds. Results from these stellar wind studies and their implications for our understanding of the solar wind are reviewed here. Of particular interest are results concerning the past history of the solar wind and its impact on planetary atmospheres.

  4. Disadvantages of the wind power

    International Nuclear Information System (INIS)

    Andersen, Odd W.

    2005-01-01

    The article discussed various disadvantages of the wind power production and focuses on turbine types, generators, operational safety and development aspects. Some environmental problems are mentioned

  5. Wind Tunnel Measurements at LM Wind Power

    DEFF Research Database (Denmark)

    Bertagnolio, Franck

    2012-01-01

    This section presents the results obtained during the experimental campaign that was conducted in the wind tunnel at LM Wind Power in Lunderskov from August 16th to 26th, 2010. The goal of this study is to validate the so-called TNO trailing edge noise model through measurements of the boundary...... layer turbulence characteristics and the far-field noise generated by the acoustic scattering of the turbulent boundary layer vorticies as they convect past the trailing edge. This campaign was conducted with a NACA0015 airfoil section that was placed in the wind tunnel section. It is equipped with high...

  6. Solar Wind Earth Exchange Project (SWEEP)

    Science.gov (United States)

    2016-10-28

    highly charged ions of the solar wind. The main challenge in predicting the resultant photon flux in the X-ray energy bands is due to the...Newton, an X-ray astronomical observatory. We use OMNI solar wind conditions, heavy ion composition data from ACE, the Hodges neutral hydrogen model...of SWEEP was to compare theoretical models of X-ray emission in the terrestrial magnetosphere caused by the Solar Wind Charge Exchange

  7. The San Cristobal wind and solar projects : energy in action : displacing diesel-powered generation by renewable energy in the Galapagos Islands

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-01-01

    The e8 is a non-profit international organization, consisting of nine leading electricity companies from the G8 countries, which promotes sustainable energy development through electricity sector projects and human capacity building activities in developing nations worldwide. The e8 San Cristobal wind project, features the implementation of a 2.4 MW wind farm on the inhabited island of San Cristobal, in the Galapagos World Heritage Site. It is expected to displace diesel-powered electricity generation by wind energy, helping to reduce greenhouse gas emissions and the risk for equally devastating diesel-fuel tanker spills in this highly protected environment. This report discussed renewable electrification of the Galapagos Islands and described the San Cristobal wind project. This included a discussion of: management of the San Cristobal wind project; project engineering, development and implementation; sustainable development and an environmental impact assessment; as well as interviews with project managers. Human capacity building activities to enhance the promotion of renewable energy options in the Galapagos such as the micro-solar long-distance learning program were also identified. It was concluded that the complementary educational and training programs on renewable energy options and energy efficiency use, initiated along with the wind project have significantly contributed to the local community's increased awareness and knowledge of sustainable energy options and the importance of cost-conscious electricity use and energy-efficient consumption. Through these programs, the e8 has highlighted the importance of human capacity building and public education for the effective local acceptance, development and spread of renewable and clean energy technologies. tabs., figs.

  8. Wind power plant system services

    DEFF Research Database (Denmark)

    Basit, Abdul; Altin, Müfit

    Traditionally, conventional power plants have the task to support the power system, by supplying power balancing services. These services are required by the power system operators in order to secure a safe and reliable operation of the power system. However, as in the future the wind power...... is going more and more to replace conventional power plants, the sources of conventional reserve available to the system will be reduced and fewer conventional plants will be available on-line to share the regulation burden. The reliable operation of highly wind power integrated power system might...... then beat risk unless the wind power plants (WPPs) are able to support and participate in power balancing services. The objective of this PhD project is to develop and analyse control strategies which can increase the WPPs capability to provide system services, such as active power balancing control...

  9. Mastering the power of wind

    International Nuclear Information System (INIS)

    Stiegel, J.

    1999-01-01

    In this paper the author deals with environmental aspects use of fossil fuels for the energy production. As a way for our planet to get back to a normal and ecologically balanced system the fossil fuels reduction and their replacement by renewable racecourses is recommended. Energetic potential of flowing sun, wind and tidal waves as power resources is discussed. The natural ecological resources are best utilised in the United States where the installed wind power output is 1600 MW. With 360 MW installed output in 1991 the Denmark took lead among European countries in utilising the wind power. The most dynamic power plant development among the European Union countries was recorded in Germany, where the installed power output of the wind power plants is 632 MW, i.e. i.e. 11.5 times higher compared to 55 MW in 1991. The economy of wind power in Germany and in Slovakia is compared. In Slovakia with annual 200 000 kWh power generation annually and the present kWh purchase price guarantee the rate of return of 10 million slovak crowns investment into a wind power plant project is in 100 years. Although the first wind power plants have already been built in the Zahorie, Kremnicke Bane, and Secovce regions, the wind exploitation status in Slovakia is still limping. According to professionals, the wind conditions in Slovakia are not ideal, but sufficient for a supplementary wind power plant system, that can be quite motivating especially for villages. Mount Chopok or mount Krizna are ideal sites to erect the three-blade tower with respect to wind speed. And also the anticipated Kremnicke vrchy site is worth considering. (author)

  10. Concentrated solar power generation using solar receivers

    Science.gov (United States)

    Anderson, Bruce N.; Treece, William Dean; Brown, Dan; Bennhold, Florian; Hilgert, Christoph

    2017-08-08

    Inventive concentrated solar power systems using solar receivers, and related devices and methods, are generally described. Low pressure solar receivers are provided that function to convert solar radiation energy to thermal energy of a working fluid, e.g., a working fluid of a power generation or thermal storage system. In some embodiments, low pressure solar receivers are provided herein that are useful in conjunction with gas turbine based power generation systems.

  11. Tomography of the Solar Wind using Interplanetary Scintillation ...

    Indian Academy of Sciences (India)

    tribpo

    Tomography—solar wind—interplanetary scintillation. Extended abstract. Interplanetary ... properties of solar wind (SW) along the line of sight (los) to a distant compact radio source. Mapping a los back to ... power spectra of intensity fluctuations, the primary IPS observable, constructed using the distribution of properties of ...

  12. Pioneering with Solar Power.

    Science.gov (United States)

    Pollack, George; Pollack, Mary

    1982-01-01

    Describes the development of Mississippi County Community College's (MCCC's) solar energy system. Explains the functioning of the campus's computer-controlled photovoltaic concentrator system, MCCC's cooperative agreement with the Arkansas-Missouri Power Company, program funding, the integration of the solar system with other building components,…

  13. Active Power Control from Wind Power (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Ela, E.; Brooks, D.

    2011-04-01

    In order to keep the electricity grid stable and the lights on, the power system relies on certain responses from its generating fleet. This presentation evaluates the potential for wind turbines and wind power plants to provide these services and assist the grid during critical times.

  14. MCMC for Wind Power Simulation

    NARCIS (Netherlands)

    Papaefthymiou, G.; Klöckl, B.

    2008-01-01

    This paper contributes a Markov chain Monte Carlo (MCMC) method for the direct generation of synthetic time series of wind power output. It is shown that obtaining a stochastic model directly in the wind power domain leads to reduced number of states and to lower order of the Markov chain at equal

  15. Assembling Markets for Wind Power

    DEFF Research Database (Denmark)

    Pallesen, Trine

    instruments, some of which I will refer to as ‘prosthetic devices’. This thesis inquires into two such prosthetic devices: The feed-in tariff and the wind power development zones (ZDE) as they are negotiated and practiced in France, and also the ways in which they affect the making of markets for wind power....

  16. Power from the Wind

    Science.gov (United States)

    Roman, Harry T.

    2004-01-01

    Wind energy is the fastest-growing renewable energy source in the world. Over the last 20 years, the wind industry has done a very good job of engineering machines, improving materials, and economies of production, and making this energy source a reality. Like all renewable energy forms, wind energy's successful application is site specific. Also,…

  17. Wind power outlook 2006

    Energy Technology Data Exchange (ETDEWEB)

    anon.

    2006-04-15

    This annual brochure provides the American Wind Energy Association's up-to-date assessment of the wind industry in the United States. This 2006 general assessment shows positive signs of growth, use and acceptance of wind energy as a vital component of the U.S. energy mix.

  18. Site insolation and wind power characteristics. Summary report

    Energy Technology Data Exchange (ETDEWEB)

    Bray, R E

    1980-08-01

    Design and operation of either large or small scale solar and wind energy conversion systems should be based, in part, on knowledge of expected solar and wind power trends. For this purpose, historic solar and wind data available at 101 National Weather Service stations were processed statistically. Preliminary planning data are provided for selected daily average solar and wind power conditions occurring and persisting for time periods of interest. Solar data are global radiation incident on a horizontal surface, and wind data represent wind power normal to the air flow. Empirical probabilities were constructed from the historic data to provide a reasonable inference of the chance of similar climatological conditions occurring at any given time in the future. (Diurnal wind power variations were also considered.) Ratios were also generated at each station to relate the global radiation data to insolation on a south-facing surface inclined at various angles. In addition, joint probability distributions were derived to show the proportion of days with solar and wind power within selected intervals.

  19. Harmonic analysis and suppression in hybrid wind & PV solar system

    Science.gov (United States)

    Gupta, Tripti; Namekar, Swapnil

    2018-04-01

    The growing demand of electricity has led to produce power through non-conventional source of energy such as solar energy, wind energy, hydro power, energy through biogas and biomass etc. Hybrid system is taken to complement the shortcoming of either sources of energy. The proposed system is grid connected hybrid wind and solar system. A 2.1 MW Doubly fed Induction Generator (DFIG) has been taken for analysis of wind farm whose rotor part is connected to two back-to-back converters. A 250 KW Photovoltaic (PV) array taken to analyze solar farm where inverter is required to convert power from DC to AC since electricity generated through solar PV is in the form of DC. Stability and reliability of the system is very important when the system is grid connected. Harmonics is the major Power quality issue which degrades the quality of power at load side. Harmonics in hybrid system arise through the use of power conversion unit. The other causes of harmonics are fluctuation in wind speed and solar irradiance. The power delivered to grid must be free from harmonics and within the limits specified by Indian grid codes. In proposed work, harmonic analysis of the hybrid system is performed in Electrical Transient Analysis program (ETAP) and single tuned harmonic filter is designed to maintain the utility grid harmonics within limits.

  20. Attitudes towards wind power

    International Nuclear Information System (INIS)

    Young, B.

    1993-01-01

    Planning permission for the construction of a small 'farm' of wind turbines at Delabole (Deli windfarm) had been obtained and it was intended to use this source of renewable energy by generating electricity and selling it to the electrical power companies for distribution through the National Grid. It was important, therefore, to establish just what the attitudes of local residents were to the proposed development. A programme of research was discussed with the developer and it was agreed that an attitude survey would be conducted in the local area in the summer of 1990, before the turbines were erected, and before the tourist season was completely spent in order to obtain the views of visitors as well. A similar survey would then be done one year later, when the Deli windfarm was established and running. In addition, control samples would be taken at these two times in Exeter to give baseline information on attitudes toward this topic. This proposal was put to the developer and agreement was reached with him and the UK Department of Energy who were providing financial support for the research. The results of the research are reported. (author)

  1. Wind Power Today and Tomorrow

    Energy Technology Data Exchange (ETDEWEB)

    2004-03-01

    Wind Power Today and Tomorrow is an annual publication that provides an overview of the wind research conducted under the U.S. Department of Energy's Wind and Hydropower Technologies Program. The purpose of Wind Power Today and Tomorrow is to show how DOE supports wind turbine research and deployment in hopes of furthering the advancement of wind technologies that produce clean, low-cost, reliable energy. Content objectives include: educate readers about the advantages and potential for widespread deployment of wind energy; explain the program's objectives and goals; describe the program's accomplishments in research and application; examine the barriers to widespread deployment; describe the benefits of continued research and development; facilitate technology transfer; and attract cooperative wind energy projects with industry. This 2003 edition of the program overview also includes discussions about wind industry growth in 2003, how DOE is taking advantage of low wind speed region s through advancing technology, and distributed applications for small wind turbines.

  2. Solar energy system with wind vane

    Science.gov (United States)

    Grip, Robert E

    2015-11-03

    A solar energy system including a pedestal defining a longitudinal axis, a frame that is supported by the pedestal and that is rotateable relative to the pedestal about the longitudinal axis, the frame including at least one solar device, and a wind vane operatively connected to the frame to urge the frame relative to the pedestal about the longitudinal axis in response to wind acting on the wind vane.

  3. A Review of Power Electronics for Wind Power

    DEFF Research Database (Denmark)

    Chen, Zhe

    2011-01-01

    The paper reviews the power electronic applications for wind energy systems. Main wind turbine systems with different generators and power electronic converters are described. The electrical topologies of wind farms with power electronic conversion are discussed. Power electronic applications...

  4. Concentrating Solar Power

    Energy Technology Data Exchange (ETDEWEB)

    Weinstein, Lee A.; Loomis, James; Bhatia, Bikram; Bierman, David M.; Wang, Evelyn N.; Chen, Gang

    2015-12-09

    Solar energy is a bountiful renewable energy resource: the energy in the sunlight that reaches Earth in an hour exceeds the energy consumed by all of humanity in a year.(1) While the phrase “solar energy conversion” probably brings photovoltaic (PV) cells to mind first, PV is not the only option for generating electricity from sunlight. Another promising technology for solar energy conversion is solar–thermal conversion, commonly referred to as concentrating solar power (CSP).(2) The first utility-scale CSP plants were constructed in the 1980s, but in the two decades that followed, CSP saw little expansion.(3, 4) More recent years, however, have seen a CSP renaissance due to unprecedented growth in the adoption of CSP.(3, 5) Photographs of two operating CSP plants, a parabolic trough collector plant and a central receiver (or “power tower”), are shown here.

  5. Integrated Wind Power Planning Tool

    DEFF Research Database (Denmark)

    Rosgaard, M. H.; Giebel, Gregor; Nielsen, T. S.

    2012-01-01

    This poster presents the current state of the public service obligation (PSO) funded project PSO 10464, with the working title "Integrated Wind Power Planning Tool". The project commenced October 1, 2011, and the goal is to integrate a numerical weather prediction (NWP) model with purely statisti......This poster presents the current state of the public service obligation (PSO) funded project PSO 10464, with the working title "Integrated Wind Power Planning Tool". The project commenced October 1, 2011, and the goal is to integrate a numerical weather prediction (NWP) model with purely...... statistical tools in order to assess wind power fluctuations, with focus on long term power system planning for future wind farms as well as short term forecasting for existing wind farms. Currently, wind power fluctuation models are either purely statistical or integrated with NWP models of limited...... resolution. With regard to the latter, one such simulation tool has been developed at the Wind Energy Division, Risø DTU, intended for long term power system planning. As part of the PSO project the inferior NWP model used at present will be replaced by the state-of-the-art Weather Research & Forecasting...

  6. Simulation of transcontinental wind and solar PV generation time series

    DEFF Research Database (Denmark)

    Nuño Martinez, Edgar; Maule, Petr; Hahmann, Andrea N.

    2018-01-01

    The deployment of Renewable Energy Sources (RES) is driving modern power systems towards a fundamental green transition. In this regard, there is a need to develop models to accurately capture the variability of wind and solar photovoltaic (PV) power, at different geographical and temporal scales...

  7. Solar powered Stirling engine

    Energy Technology Data Exchange (ETDEWEB)

    Meijer, R.J.

    1987-11-24

    In a solar dish module which comprises a dish which receives incident solar rays and reflects them to a focus at which is located the combination of a receiver and a heat engine organized and arranged so that the heat energy of the reflected solar rays collected at the receiver powers the engine, and wherein the receiver and heat engine are supported from the dish by a framework, the improvement is described which comprises journal means for journaling at least the engine on the framework to maintain certain predetermined spatial orientation for the engine in relation to the direction of gravity irrespective of spatial orientation of the dish.

  8. A simple model for the energy supply of a stand-alone house using a hybrid wind-solar power system

    Science.gov (United States)

    Beke, Tamas

    2016-01-01

    A research project for secondary school students involving both physical measurements and modelling is presented. The problem to be solved is whether and how a typical house can be supplied with energy off-grid, based entirely on renewable energy sources, more specifically, on solar and wind energy, while using relatively simple devices, namely, photovoltaic modules, wind turbines and accumulators. To this end our students carried out a long term measurement series in order to assess the typical energy consumption of houses. Further, the number of solar modules and wind turbines, and the necessary accumulator capacity, was estimated.

  9. Noise from wind power plants

    International Nuclear Information System (INIS)

    Ljunggren, S.

    2001-12-01

    First, the generation of noise at wind power plants and the character of the sound is described. The propagation of the sound and its dependence on the structure of the ground and on wind and temperature is treated next. Models for calculation of the noise emission are reviewed and examples of applications are given. Different means for reducing the disturbances are described

  10. Hybrid SolarWind – Diesel Systems for Rural Application in North ...

    African Journals Online (AJOL)

    Bheema

    )-Wind-Diesel hybrid power systems for supplying electricity to off-grid rural communities in the Tigray region of northern Ethiopia. Using wind resource assessment and solar potential-based data from the. National Meteorological Agency of ...

  11. Solar Powered Refrigeration System

    Science.gov (United States)

    Ewert, Michael K. (Inventor); Bergeron, David J., III (Inventor)

    2002-01-01

    A solar powered vapor compression refrigeration system is made practicable with thermal storage and novel control techniques. In one embodiment, the refrigeration system includes a photovoltaic panel, a variable speed compressor, an insulated enclosure, and a thermal reservoir. The photovoltaic (PV) panel converts sunlight into DC (direct current) electrical power. The DC electrical power drives a compressor that circulates refrigerant through a vapor compression refrigeration loop to extract heat from the insulated enclosure. The thermal reservoir is situated inside the insulated enclosure and includes a phase change material. As heat is extracted from the insulated enclosure, the phase change material is frozen, and thereafter is able to act as a heat sink to maintain the temperature of the insulated enclosure in the absence of sunlight. The conversion of solar power into stored thermal energy is optimized by a compressor control method that effectively maximizes the compressor's usage of available energy. A capacitor is provided to smooth the power voltage and to provide additional current during compressor start-up. A controller monitors the rate of change of the smoothed power voltage to determine if the compressor is operating below or above the available power maximum, and adjusts the compressor speed accordingly. In this manner, the compressor operation is adjusted to convert substantially all available solar power into stored thermal energy.

  12. Solar wind classification from a machine learning perspective

    Science.gov (United States)

    Heidrich-Meisner, V.; Wimmer-Schweingruber, R. F.

    2017-12-01

    It is a very well known fact that the ubiquitous solar wind comes in at least two varieties, the slow solar wind and the coronal hole wind. The simplified view of two solar wind types has been frequently challenged. Existing solar wind categorization schemes rely mainly on different combinations of the solar wind proton speed, the O and C charge state ratios, the Alfvén speed, the expected proton temperature and the specific proton entropy. In available solar wind classification schemes, solar wind from stream interaction regimes is often considered either as coronal hole wind or slow solar wind, although their plasma properties are different compared to "pure" coronal hole or slow solar wind. As shown in Neugebauer et al. (2016), even if only two solar wind types are assumed, available solar wind categorization schemes differ considerably for intermediate solar wind speeds. Thus, the decision boundary between the coronal hole and the slow solar wind is so far not well defined.In this situation, a machine learning approach to solar wind classification can provide an additional perspective.We apply a well-known machine learning method, k-means, to the task of solar wind classification in order to answer the following questions: (1) How many solar wind types can reliably be identified in our data set comprised of ten years of solar wind observations from the Advanced Composition Explorer (ACE)? (2) Which combinations of solar wind parameters are particularly useful for solar wind classification?Potential subtypes of slow solar wind are of particular interest because they can provide hints of respective different source regions or release mechanisms of slow solar wind.

  13. Starting to Explore Wind Power

    Science.gov (United States)

    Hare, Jonathan

    2008-01-01

    Described is a simple, cheap and versatile homemade windmill and electrical generator suitable for a school class to use to explore many aspects and practicalities of using wind to generate electrical power. (Contains 8 figures.)

  14. Wind farm - A power source in future power systems

    DEFF Research Database (Denmark)

    Chen, Zhe; Blaabjerg, Frede

    2009-01-01

    The paper describes modern wind power systems, introduces the issues of large penetration of wind power into power systems, and discusses the possible methods of making wind turbines/farms act as a power source, like conventional power plants in power systems. Firstly, the paper describes modern...... wind turbines and wind farms, and then introduces the wind power development and wind farms. An optimization platform for designing electrical systems of offshore wind farms is briefed. The major issues related to the grid connection requirements and the operation of wind turbines/farms in power...... systems are illustrated....

  15. Panorama 2016 - Offshore wind power

    International Nuclear Information System (INIS)

    Vinot, Simon

    2015-11-01

    While onshore wind power is a rapidly growing global industry, the offshore wind power market remains in its consolidation and globalization phase. This most mature of renewable marine energies continues to develop and can no longer be considered a niche industry. This fact sheet evaluates the market over the last several years, looking at its potential and its current rank in terms of electricity production costs. (author)

  16. Panorama 2013 - Offshore wind power

    International Nuclear Information System (INIS)

    Vinot, Simon

    2012-10-01

    While onshore wind power is already a well-developed global industry, offshore wind power is still in the consolidation and globalization phase. The most mature of marine renewable energies is beginning to venture off the European coast and even to other continents, driven by public policies and the ever increasing number of players joining this promising market, which should evolve into deeper waters thanks to floating structures. (author)

  17. Offshore wind power in Finland

    Energy Technology Data Exchange (ETDEWEB)

    Holttinen, H. [VTT Energy, Espoo (Finland)

    1998-12-31

    The objectives of the project were to estimate the technical offshore wind power potential of the Gulf of Bothnia, with cost assessments, to study icing conditions and ice loads, and to design a foundation suitable for the environmental conditions. The technical offshore potential from Vaasa to Tornio is huge, more than 40 TWh/a, although the cost of offshore wind power is still higher than on land. Wind turbines have not previously been designed for the icing conditions found in Gulf of Bothnia and the recommendations for load cases and siting of megawatt-class turbines are an important result of the project. (orig.)

  18. Solar Thermal Power.

    Science.gov (United States)

    McDaniels, David K.

    The different approaches to the generation of power from solar energy may be roughly divided into five categories: distributed collectors; central receivers; biomass; ocean thermal energy conversion; and photovoltaic devices. The first approach (distributed collectors) is the subject of this module. The material presented is designed to…

  19. Solar Sea Power

    Science.gov (United States)

    Zener, Clarence

    1976-01-01

    In their preoccupation with highly complex new energy systems, scientists and statesmen may be overlooking the possibilities of Ocean Thermal Energy Conversion (OTEC). That is the view of a Carnegie-Mellon University physicist who is in the forefront of solar sea power investigation. (Author/BT)

  20. Innovation paths in wind power

    DEFF Research Database (Denmark)

    Lema, Rasmus; Nordensvärd, Johan; Urban, Frauke

    Denmark and Germany both make substantial investments in low carbon innovation, not least in the wind power sector. These investments in wind energy are driven by the twin objectives of reducing carbon emissions and building up international competitive advantage. Support for wind power dates back...... paths: government policies, demand conditions, geography, value chains, and the strategies undertaken by firms. It demonstrates that the innovation paths common to both countries have roots in a confluence of determining factors which are mainly due to social and political priorities, preferences...... Denmark and Germany have common national causes, while company-specific strategies also influence the innovation paths in significant ways. This raises important questions about the national specificity of innovation paths in wind power development. Finally, the paper briefly addresses the increasing...

  1. Acceleration and heating of the solar wind

    Science.gov (United States)

    Barnes, A.

    1978-01-01

    Some of the competing theories of solar wind acceleration and heating are reviewed, and the observations that are required to distinguish among them are discussed. In most cases what is required is measurement of plasma velocity and temperature and magnetic field, as near the sun as possible and certainly inside 20 solar radii; another critical aspect of this question is determining whether a turbulent envelope exists in this inner region, and if so, defining its properties. Plasma and magnetic observations from the proposed Solar Probe mission would thus yield a quantum jump in our understanding of the dynamics of the solar wind.

  2. Large Scale Wind and Solar Integration in Germany

    Energy Technology Data Exchange (ETDEWEB)

    Ernst, Bernhard; Schreirer, Uwe; Berster, Frank; Pease, John; Scholz, Cristian; Erbring, Hans-Peter; Schlunke, Stephan; Makarov, Yuri V.

    2010-02-28

    This report provides key information concerning the German experience with integrating of 25 gigawatts of wind and 7 gigawatts of solar power capacity and mitigating its impacts on the electric power system. The report has been prepared based on information provided by the Amprion GmbH and 50Hertz Transmission GmbH managers and engineers to the Bonneville Power Administration (BPA) and Pacific Northwest National Laboratory representatives during their visit to Germany in October 2009. The trip and this report have been sponsored by the BPA Technology Innovation office. Learning from the German experience could help the Bonneville Power Administration engineers to compare and evaluate potential new solutions for managing higher penetrations of wind energy resources in their control area. A broader dissemination of this experience will benefit wind and solar resource integration efforts in the United States.

  3. Wind and solar resource data sets

    DEFF Research Database (Denmark)

    Clifton, Andrew; Hodge, Bri-Mathias; Draxl, Caroline

    2017-01-01

    The range of resource data sets spans from static cartography showing the mean annual wind speed or solar irradiance across a region to high temporal and high spatial resolution products that provide detailed information at a potential wind or solar energy facility. These data sets are used...... to support continental-scale, national, or regional renewable energy development; facilitate prospecting by developers; and enable grid integration studies. This review first provides an introduction to the wind and solar resource data sets, then provides an overview of the common methods used...... for their creation and validation. A brief history of wind and solar resource data sets is then presented, followed by areas for future research. For further resources related to this article, please visit the WIREs website....

  4. Solar and Wind Site Screening Decision Trees

    Science.gov (United States)

    EPA and NREL created a decision tree to guide state and local governments and other stakeholders through a process for screening sites for their suitability for future redevelopment with solar photovoltaic (PV) energy and wind energy.

  5. Electrostatic Solitary Waves in the Solar Wind: Evidence for Instability at Solar Wind Current Sheets

    Science.gov (United States)

    Malaspina, David M.; Newman, David L.; Wilson, Lynn Bruce; Goetz, Keith; Kellogg, Paul J.; Kerstin, Kris

    2013-01-01

    A strong spatial association between bipolar electrostatic solitary waves (ESWs) and magnetic current sheets (CSs) in the solar wind is reported here for the first time. This association requires that the plasma instabilities (e.g., Buneman, electron two stream) which generate ESWs are preferentially localized to solar wind CSs. Distributions of CS properties (including shear angle, thickness, solar wind speed, and vector magnetic field change) are examined for differences between CSs associated with ESWs and randomly chosen CSs. Possible mechanisms for producing ESW-generating instabilities at solar wind CSs are considered, including magnetic reconnection.

  6. Solar Wind MHD Turbulence: Anomalous Scaling and Intermittency Effects in the Slow and Fast Wind

    Science.gov (United States)

    Salem, C.; Mangeney, A.; Bale, S. D.

    2007-12-01

    Although considerable progress has been made in the understanding of MHD turbulence over the past few decades through the analysis of in-situ solar wind data, two of the primary problems of solar wind MHD turbulence that still remain a puzzle are the nature of the nonlinear energy cascade, and the strong intermittent character of solar wind fluctuations in the inertial range. This intermittency modifies significantly the scaling exponents of actual power-law spectra, which are directly related to the physical nature of the energy cascade taking place in the solar wind. The identification of the most intermittent structures and their relation to dissipation represents then a crucial problem in the framework of turbulence. Anomalous scaling of both solar wind magnetic field and velocity fluctuations in the inertial range, as well as intermittency effects have recently been investigated in detail using Wavelet transforms on simultaneous WIND 3s resolution particle and magnetic field data from the 3DP and the MFi experiments respectively. Specifically, the Haar Wavelet transform is used to compute spectra, structure functions and probability distribution functions (PDFs). This powerful technique allows: (1) for a systematic study of intermittency effects on these spectra, structure functions and PDFs, thus for a clear determination of the actual scaling properties in the inertial range, and (2) for a direct and systematic identification of the most active, singular structures responsible for the intermittency in the solar wind. The analysis of structure functions and PDFs, as well as new results on the nature of the intermittent coherent structures will be presented. The turbulent properties and intermittency effects in different solar wind regimes will be also discussed.

  7. Wind Power in Electrical Distribution Systems

    DEFF Research Database (Denmark)

    Chen, Zhe

    2013-01-01

    Recent years, wind power is experiencing a rapid growth, large number of wind turbines/wind farms have been installed and connected to power systems. In addition to the large centralised wind farms connected to transmission grids, many distributed wind turbines and wind farms are operated...... as distributed generators in distribution systems. This paper discusses the issues of wind turbines in distribution systems. Wind power conversion systems briefly introduced, the basic features and technical characteristics of distributed wind power system are described, and the main technical demands...

  8. China Wind Power Outlook 2010

    International Nuclear Information System (INIS)

    Junfeng, Li; Pengfei, Shi; Hu, Gao

    2010-10-01

    China's wind power can reach 230 GW of installed capacity by 2020, which is equal to 13 times the current capacity of the Three Gorges Dam; its annual electricity output of 464.9 TWh could replace 200 coal fire power plants. In 2009, China led the world in newly installed wind-energy devices, reaching a capacity of 13.8 GW (10,129 turbines) - a rate of one new turbine every hour. In terms of overall capacity, China ranks second, at 25.8 GW. The report projects that by 2020, China's total wind power capacity will reach at least 150GW, possibly up to 230GW, which, if realized, could cut 410 million tons of CO2 emission, or 150 million tons of coal consumption. Compared to multinationals, many Chinese companies are young and lack a strong basis for research and development. Despite a renewable energy policy requiring grid companies to purchase all electricity from wind farms, access to wind power for the grid is frequently lagging behind an unstable, out-dated grid infrastructure. There is also the problem of a lack of incentives and penalties for grid companies, and slow progress in more wind energy technologies.

  9. Wind power in political whirlwind

    International Nuclear Information System (INIS)

    Morch, Stein

    2002-01-01

    In Norway, according to this article, shifting fair wind and head wind for wind power have changed to unpredictable political whirlwinds. That is, there is great uncertainty with respect to further development of wind power in Norway as well as in nearby markets such as Sweden, Denmark and the Netherlands. The government, represented by Enova, has announced reduced investment grants, and so the realization of a ''green'' market, at home or across the frontiers, becomes very important. The political goal of producing 3 TWh of wind power per year by 2010 apparently is still valid, but it is difficult to see any robust and convincing clarity when it comes to policy instruments and economical frames that will make it possible to reach that goal. In its directive on renewable energy sources in the energy generation, the EU has quoted a total increase in capacity from 14 percent in 1997 to 22 percent in 2010. This has been shared among the member countries as indicative targets and there is great freedom in the selection of policy instruments. At the end of 2002, the wind power production in Norway is 0.3 TWh/year

  10. Offshore wind speed and wind power characteristics for ten ...

    Indian Academy of Sciences (India)

    This paper utilizes wind speed data measured at 3 and 10 m above water surface level using buoys at 10 stations in Ionian and Aegean Seas to understand the behaviour of wind and thereafter energy yield at these stations using 5 MW rated power offshore wind turbine. With wind power densities of 971 and 693 W/m2 at ...

  11. Wind power; Die Kraft der Winde

    Energy Technology Data Exchange (ETDEWEB)

    Mardo, Dietrich

    2009-10-30

    Wind power plants are probably only one pillar of the bridge that is taking us into an energy future still unimaginable to us. They are extremely cost-intensive and bulky and they spoil our landscapes. Their patronage by political leaders is understandable considering our excessive dependence on oil and gas. True energy autonomy is currently still a utopian dream for a country as poor in resources as Germany. On the other hand, to reach Utopia you have to build bridges there. Seen this way all currently available types of renewable energy represent bridge technologies whose realisation is imperative.

  12. Wind Power Today: (2002) Wind Energy Research Highlights

    Energy Technology Data Exchange (ETDEWEB)

    2003-05-01

    Wind Power Today is an annual publication that provides an overview of the wind research conducted under the U.S. Department of Energy's Wind and Hydropower Technologies Program. The purpose of Wind Power Today is to show how DOE supports wind turbine research and deployment in hopes of furthering the advancement of wind technologies that produce clean, low-cost, reliable energy. Content objectives include: educate readers about the advantages and potential for widespread deployment of wind energy; explain the program's objectives and goals; describe the program's accomplishments in research and application; examine the barriers to widespread deployment; describe the benefits of continued research and development; facilitate technology transfer; and attract cooperative wind energy projects with industry. This 2002 edition of Wind Power Today also includes discussions about wind industry growth in 2002, how DOE is taking advantage of low wind speed regions through advancing technology, and distributed applications for small wind turbines.

  13. Wind Power Utilization Guide.

    Science.gov (United States)

    1981-09-01

    Contact: Ken O’Brock North Benton, OH 44449 Telephone: 216-584-4681 Pacific Energy Systems North Wind 615 Romero Canyon Road Contact: Fred Carr Santa... Natal St ation. NMa~port 121.: CO(. rok Is NN. ode 4. 12 Mai e otrp’. Di’i Ireastire Is- San Francisco (CA: I i r Nlech Pt;rr 3𔄁\\\\(’ŗ Norlnolk N\\N. I

  14. Wind loads on solar energy roofs

    NARCIS (Netherlands)

    Geurts, C.P.W.; Bentum, C.A. van

    2007-01-01

    This paper presents an overview of the wind loads on roofs, equipped with solar energy products, so called Active Roofs. Values given in this paper have been based on wind tunnel and full scale measurements, carried out at TNO, and on an interpretation of existing rules and guidelines. The results

  15. Cost-minimized combinations of wind power, solar power and electrochemical storage, powering the grid up to 99.9% of the time

    DEFF Research Database (Denmark)

    Budischak, Cory; Sewell, DeAnna; Thomson, Heather

    2013-01-01

    intermittent power, we seek combinations of diverse renewables at diverse sites, with storage, that are not intermittent and satisfy need a given fraction of hours. And 2) we seek minimal cost, calculating true cost of electricity without subsidies and with inclusion of external costs. Our model evaluated over...... renewable generation and the excess capacity together meet electric load with less storage, lowering total system cost. At 2030 technology costs and with excess electricity displacing natural gas, we find that the electric system can be powered 90%–99.9% of hours entirely on renewable electricity, at costs...

  16. Solar-wind predictions for the Parker Solar Probe orbit. Near-Sun extrapolations derived from an empirical solar-wind model based on Helios and OMNI observations

    Science.gov (United States)

    Venzmer, M. S.; Bothmer, V.

    2018-03-01

    Context. The Parker Solar Probe (PSP; formerly Solar Probe Plus) mission will be humanitys first in situ exploration of the solar corona with closest perihelia at 9.86 solar radii (R⊙) distance to the Sun. It will help answer hitherto unresolved questions on the heating of the solar corona and the source and acceleration of the solar wind and solar energetic particles. The scope of this study is to model the solar-wind environment for PSPs unprecedented distances in its prime mission phase during the years 2018 to 2025. The study is performed within the Coronagraphic German And US SolarProbePlus Survey (CGAUSS) which is the German contribution to the PSP mission as part of the Wide-field Imager for Solar PRobe. Aim. We present an empirical solar-wind model for the inner heliosphere which is derived from OMNI and Helios data. The German-US space probes Helios 1 and Helios 2 flew in the 1970s and observed solar wind in the ecliptic within heliocentric distances of 0.29 au to 0.98 au. The OMNI database consists of multi-spacecraft intercalibrated in situ data obtained near 1 au over more than five solar cycles. The international sunspot number (SSN) and its predictions are used to derive dependencies of the major solar-wind parameters on solar activity and to forecast their properties for the PSP mission. Methods: The frequency distributions for the solar-wind key parameters, magnetic field strength, proton velocity, density, and temperature, are represented by lognormal functions. In addition, we consider the velocity distributions bi-componental shape, consisting of a slower and a faster part. Functional relations to solar activity are compiled with use of the OMNI data by correlating and fitting the frequency distributions with the SSN. Further, based on the combined data set from both Helios probes, the parameters frequency distributions are fitted with respect to solar distance to obtain power law dependencies. Thus an empirical solar-wind model for the inner

  17. Wind power costs in Portugal

    Energy Technology Data Exchange (ETDEWEB)

    Saleiro, C. [Univ. of Minho, Dept. of Biological Engineering (Portugal); Araujo, M.; Ferreira, P. [Univ. of Minho, Dept. of Production and Systems (Portugal)

    2007-05-15

    In a way to reduce the external energy dependence, increasing also the investments in renewable energy sources and aiming for the concretization of the European renewable objectives, the Portuguese government defined a goal of 5100 MW of installed wind power, up to 2012. If the drawn objectives are accomplished, by 2010 the wind power share may reach values comparable to leading countries like Denmark, Germany or Spain. The Portuguese forecasts also indicate a reinforcement of the natural gas fired generation in particular through the use of the combined cycle technology, following the European tendency. This analysis sets out to evaluate the total generating cost of wind power and CCGT in Portugal. A life cycle cost analysis was conducted, including investment costs, O and M costs, fuel costs and external costs of emissions, for each type of technology. For the evaluation of the externalities ExternE values were used. The results show that presently the wind power production cost is higher than the CCGT one, at least from the strictly financial point of view. CCGT costs increase significantly when charges for externalities are included. However, they only reach levels higher than the equivalents for wind power for high externality costs estimations. This partially results from the low load factor of the wind farms in Portugal and also from the low emission levels of the gas fired technology used in the comparison. A sensitive analysis of the technical and economical parameters was also conducted. Particular attention was given to the natural gas prices due to the possible increase over time. The fuel escalation rate is the parameter that has larger effects on the final costs. It was verified that the total cost of wind plant is more influenced by the load factor than the total cost of CCGT. (au)

  18. Weakest solar wind of the space age and the current 'MINI' solar maximum

    International Nuclear Information System (INIS)

    McComas, D. J.; Angold, N.; Elliott, H. A.; Livadiotis, G.; Schwadron, N. A.; Smith, C. W.; Skoug, R. M.

    2013-01-01

    The last solar minimum, which extended into 2009, was especially deep and prolonged. Since then, sunspot activity has gone through a very small peak while the heliospheric current sheet achieved large tilt angles similar to prior solar maxima. The solar wind fluid properties and interplanetary magnetic field (IMF) have declined through the prolonged solar minimum and continued to be low through the current mini solar maximum. Compared to values typically observed from the mid-1970s through the mid-1990s, the following proton parameters are lower on average from 2009 through day 79 of 2013: solar wind speed and beta (∼11%), temperature (∼40%), thermal pressure (∼55%), mass flux (∼34%), momentum flux or dynamic pressure (∼41%), energy flux (∼48%), IMF magnitude (∼31%), and radial component of the IMF (∼38%). These results have important implications for the solar wind's interaction with planetary magnetospheres and the heliosphere's interaction with the local interstellar medium, with the proton dynamic pressure remaining near the lowest values observed in the space age: ∼1.4 nPa, compared to ∼2.4 nPa typically observed from the mid-1970s through the mid-1990s. The combination of lower magnetic flux emergence from the Sun (carried out in the solar wind as the IMF) and associated low power in the solar wind points to the causal relationship between them. Our results indicate that the low solar wind output is driven by an internal trend in the Sun that is longer than the ∼11 yr solar cycle, and they suggest that this current weak solar maximum is driven by the same trend.

  19. Innovations in Wind and Solar PV Financing

    Energy Technology Data Exchange (ETDEWEB)

    Cory, K.; Coughlin, J.; Jenkin, T.; Pater, J.; Swezey, B.

    2008-02-01

    There is growing national interest in renewable energy development based on the economic, environmental, and security benefits that these resources provide. Historically, greater development of our domestic renewable energy resources has faced a number of hurdles, primarily related to cost, regulation, and financing. With the recent sustained increase in the costs and associated volatility of fossil fuels, the economics of renewable energy technologies have become increasingly attractive to investors, both large and small. As a result, new entrants are investing in renewable energy and new business models are emerging. This study surveys some of the current issues related to wind and solar photovoltaic (PV) energy project financing in the electric power industry, and identifies both barriers to and opportunities for increased investment.

  20. Wind turbine wakes; power deficit in clusters and wind farms

    DEFF Research Database (Denmark)

    Hansen, Kurt Schaldemose; Barthelmie, Rebecca

    2012-01-01

    The purpose of this presentation is to present recent power deficit analysis based on wind farm measurements. The power deficit is used to validate wind farm prediction models for different inflow conditions......The purpose of this presentation is to present recent power deficit analysis based on wind farm measurements. The power deficit is used to validate wind farm prediction models for different inflow conditions...

  1. Manifestation of solar activity in solar wind particle flux density

    International Nuclear Information System (INIS)

    Kovalenko, V.A.

    1988-01-01

    An analysis has been made of the origin of long-term variations in flux density of solar wind particles (nv) for different velocity regimes. The study revealed a relationship of these variations to the area of the polar coronal holes (CH). It is shown that within the framework of the model under development, the main longterm variations of nv are a result of the latitude redistribution of the solar wind mass flux in the heliosphere and are due to changes in the large-scale geometry of the solar plasma flow in the corona. A study has been made of the variations of nv for high speed solar wind streams. It is found that nv in high speed streams which are formed in CH, decreases from minimum to maximum solar activity. The analysis indicates that this decrease is attributable to the magnetic field strength increase in coronal holes. It has been found that periods of rapid global changes of background magnetic fields on the Sun are accompanied by a reconfiguration of coronal magnetic fields, rapid changes in the length of quiescent filaments, and by an increase in the density of the particle flux of a high speed solar wind. It has been established that these periods precede the formation of CH, corresponding to the increase in solar wind velocity near the Earth and to enhancement of the level of geomagnetic disturbance. (author)

  2. A Review of Hybrid Solar PV and Wind Energy System

    Directory of Open Access Journals (Sweden)

    Rashid Al Badwawi

    2015-07-01

    Full Text Available Due to the fact that solar and wind power is intermittent and unpredictable in nature, higher penetration of their types in existing power system could cause and create high technical challenges especially to weak grids or stand-alone systems without proper and enough storage capacity. By integrating the two renewable resources into an optimum combination, the impact of the variable nature of solar and wind resources can be partially resolved and the overall system becomes more reliable and economical to run. This paper provides a review of challenges and opportunities / solutions of hybrid solar PV and wind energy integration systems. Voltage and frequency fluctuation, and harmonics are major power quality issues for both grid-connected and stand-alone systems with bigger impact in case of weak grid. This can be resolved to a large extent by having proper design, advanced fast response control facilities, and good optimization of the hybrid systems. The paper gives a review of the main research work reported in the literature with regard to optimal sizing design, power electronics topologies and control. The paper presents a review of the state of the art of both grid-connected and stand-alone hybrid solar and wind systems.

  3. Inclined solar chimney for power production

    Energy Technology Data Exchange (ETDEWEB)

    Panse, S.V., E-mail: sudhirpanse@yahoo.com [Institute of Chemical Technology, Matunga, Mumbai 400 019 (India); Jadhav, A.S.; Gudekar, A.S. [Institute of Chemical Technology, Matunga, Mumbai 400 019 (India); Joshi, J.B. [Institute of Chemical Technology, Matunga, Mumbai 400 019 (India); Homi Bhabha National Institute, Trombay, Mumbai 400 094 (India)

    2011-09-15

    Highlights: {yields} Solar energy harnessing using inclined face of high mountains as solar chimney. {yields} Solar chimneys with structural stability, ease of construction and lower cost. {yields} Mathematical model developed, using complete (mechanical and thermal) energy balance. {yields} Can harness wind power also, as wind velocities at mountain top add to power output. {yields} Air temperature and velocity increase, as air rises in inclined chimney. - Abstract: The present concept of solar chimney is a tall vertical chimney constructed at the center of a large area, which is the collector. This creates questions about stability and economic viability of the chimney and also demands elaborate engineering techniques for constructing a tall chimney. We suggest geometry of 'Inclined Solar Chimney' (ISC), which is constructed along the face of a high rising mountain, on which maximum solar insolation is incident throughout the year. The chimney and the collector get merged here. This makes the structure stable, cost effective and easy for construction. A mathematical model has been developed considering the total energy balance. It predicts the temperature and velocity and kinetic power of the emerging air draft for some chosen values of other parameters. The model also shows the proportion in which absorbed solar energy is divided into different forms, and hence predicts the dependence of kinetic of emerging air draft upon dimensions of the chimney and properties of materials used. Further, it is shown that external winds enhance the kinetic power of the emerging air. Thus ISC can also harness the wind energy, available at the top of the mountain.

  4. Integrated Wind Power Planning Tool

    DEFF Research Database (Denmark)

    Rosgaard, M. H.; Hahmann, Andrea N.; Nielsen, T. S.

    This poster describes the status as of April 2012 of the Public Service Obligation (PSO) funded project PSO 10464 \\Integrated Wind Power Planning Tool". The project goal is to integrate a meso scale numerical weather prediction (NWP) model with a statistical tool in order to better predict short...... term power variation from off shore wind farms, as well as to conduct forecast error assessment studies in preparation for later implementation of such a feature in an existing simulation model. The addition of a forecast error estimation feature will further increase the value of this tool, as it...

  5. Dynamic influences of wind power on the power system

    Energy Technology Data Exchange (ETDEWEB)

    Rosas, Pedro

    2003-03-01

    The thesis first presents the basics influences of wind power on the power system stability and quality by pointing out the main power quality issues of wind power in a small-scale case and following, the expected large-scale problems are introduced. Secondly, a dynamic wind turbine model that supports power quality assessment of wind turbines is presented. Thirdly, an aggregate wind farm model that support power quality and stability analysis from large wind farms is presented. The aggregate wind farm model includes the smoothing of the relative power fluctuation from a wind farm compared to a single wind turbine. Finally, applications of the aggregate wind farm model to the power systems are presented. The power quality and stability characteristics influenced by large-scale wind power are illustrated with three cases. In this thesis, special emphasis has been given to appropriate models to represent the wind acting on wind farms. The wind speed model to a single wind turbine includes turbulence and tower shadow effects from the wind and the rotational sampling turbulence due to the rotation of the blades. In a park scale, the wind speed model to the wind farm includes the spatial coherence between different wind turbines. Here the wind speed model is applied to a constant rotational speed wind turbine/farm, but the model is suitable to variable speed wind turbine/farm as well. The cases presented here illustrate the influences of the wind power on the power system quality and stability. The flicker and frequency deviations are the main power quality parameters presented. The power system stability concentrates on the voltage stability and on the power system oscillations. From the cases studied, voltage and the frequency variations were smaller than expected from the large-scale wind power integration due to the low spatial correlation of the wind speed. The voltage quality analysed in a Brazilian power system and in the Nordel power system from connecting large

  6. Solar Power Sources: PV, Concentrated PV, and Concentrated Solar Power

    DEFF Research Database (Denmark)

    Kim, Katherine A.; Mentesidi, Konstantina; Yang, Yongheng

    2017-01-01

    Solar power is highly abundant, relatively reliable, and not limited to a geographic region, making it one of the most important renewable energy sources. Catering for a clean and green energy system, solar energy will be an active player in the future mixed power grid that is also undergoing...... a significant change. Beyond this energy transition, the still declining cost of the solar technology has become an important driving force for more solar-powered systems. However, high penetration of solar-powered systems also brings technical challenges to the entire energy systems. In order to fully address...... those issues, the technological properties of solar power should be investigated. Thus, the basics of solar power technology will be introduced and discussed in this chapter....

  7. Solar Power Sources: PV, Concentrated PV, and Concentrated Solar Power

    DEFF Research Database (Denmark)

    Kim, Katherine A.; Mentesidi, Konstantina; Yang, Yongheng

    2017-01-01

    a significant change. Beyond this energy transition, the still declining cost of the solar technology has become an important driving force for more solar-powered systems. However, high penetration of solar-powered systems also brings technical challenges to the entire energy systems. In order to fully address......Solar power is highly abundant, relatively reliable, and not limited to a geographic region, making it one of the most important renewable energy sources. Catering for a clean and green energy system, solar energy will be an active player in the future mixed power grid that is also undergoing...... those issues, the technological properties of solar power should be investigated. Thus, the basics of solar power technology will be introduced and discussed in this chapter....

  8. Drivers of imbalance cost of wind power

    DEFF Research Database (Denmark)

    Obersteiner, C.; Siewierski, T.; Andersen, Anders

    2010-01-01

    In Europe an increasing share of wind power is sold on the power market. Therefore more and more wind power generators become balancing responsible and face imbalance cost that reduce revenues from selling wind power. A comparison of literature illustrates that the imbalance cost of wind power...... varies in a wide range. To explain differences we indentify parameters influencing imbalance cost and compare them for case studies in Austria, Denmark and Poland. Besides the wind power forecast error also the correlation between imbalance and imbalance price influences imbalance cost significantly...... of imperfect forecast is better suited to reflect real cost incurred due to inaccurate wind power forecasts....

  9. Wind power in Arctic regions

    International Nuclear Information System (INIS)

    Lundsager, P.; Ahm, P.; Madsen, B.; Krogsgaard, P.

    1993-07-01

    Arctic or semi-arctic regions are often endowed with wind resources adequate for a viable production of electricity from the wind. Only limited efforts have so far been spent to introduce and to demonstrate the obvious synergy of combining wind power technology with the problems and needs of electricity generation in Arctic regions. Several factors have created a gap preventing the wind power technology carrying its full role in this context, including a certain lack of familiarity with the technology on the part of the end-users, the local utilities and communities, and a lack of commonly agreed techniques to adapt the same technology for Arctic applications on the part of the manufacturers. This report is part of a project that intends to contribute to bridging this gap. The preliminary results of a survey conducted by the project are included in this report, which is a working document for an international seminar held on June 3-4, 1993, at Risoe National Laboratory, Denmark. Following the seminar a final report will be published. It is intended that the final report will serve as a basis for a sustained, international effort to develop the wind power potential of the Arctic and semi-arctic regions. The project is carried out by a project group formed by Risoe, PA Energy and BTM Consult. The project is sponsored by the Danish Energy Agency of the Danish Ministry of Energy through grant no. ENS-51171/93-0008. (au)

  10. Wind power and bird kills

    International Nuclear Information System (INIS)

    Raynolds, M.

    1998-01-01

    The accidental killing of birds by wind generators, and design improvements in the towers that support the turbines that might cut down on the bird killings were discussed. The first problem for the industry began in the late 1980s when the California Energy Commission reported as many as 160 birds (the majority being raptors, including the protected golden eagle) killed in one year in the vicinity of wind power plants. The key factor identified was the design of the towers as birds of prey are attracted to lattice towers as a place to hunt from. Tubular towers do not provide a place for the birds to perch, therefore they reduce the potential for bird strikes. Bird strikes also have been reported in Spain and the siting of the towers have been considered as the principal cause of the bird strikes. In view of these incidents, the wind power industry is developing standards for studying the potential of bird strikes and is continuing to study bird behaviour leading to collisions, the impact of topography, cumulative impacts and new techniques to reduce bird strikes. Despite the reported incidents, the risk of bird strikes by wind turbines, compared to other threats to birds such as pollution, oil spills, and other threats from fossil and nuclear fuels, is considered to be negligible. With continuing efforts to minimize incidents by proper design and siting, wind power can continue to grow as an environmentally sound and efficient source of energy

  11. Impact of advanced wind power ancillary services on power system

    DEFF Research Database (Denmark)

    Hansen, Anca Daniela; Altin, Müfit

    The objective of this report is to illustrate and analyse, by means of simulation test cases, the impact of wind power advanced ancillary services, like inertial response (IR), power oscillation damping (POD) and synchronising power (SP) on the power system. Generic models for wind turbine, wind...... power plant and power system are used in the investigation....

  12. Solar thermal power system

    Science.gov (United States)

    Bennett, Charles L.

    2010-06-15

    A solar thermal power generator includes an inclined elongated boiler tube positioned in the focus of a solar concentrator for generating steam from water. The boiler tube is connected at one end to receive water from a pressure vessel as well as connected at an opposite end to return steam back to the vessel in a fluidic circuit arrangement that stores energy in the form of heated water in the pressure vessel. An expander, condenser, and reservoir are also connected in series to respectively produce work using the steam passed either directly (above a water line in the vessel) or indirectly (below a water line in the vessel) through the pressure vessel, condense the expanded steam, and collect the condensed water. The reservoir also supplies the collected water back to the pressure vessel at the end of a diurnal cycle when the vessel is sufficiently depressurized, so that the system is reset to repeat the cycle the following day. The circuital arrangement of the boiler tube and the pressure vessel operates to dampen flow instabilities in the boiler tube, damp out the effects of solar transients, and provide thermal energy storage which enables time shifting of power generation to better align with the higher demand for energy during peak energy usage periods.

  13. Solar Power Grid

    Science.gov (United States)

    2008-01-01

    Shown here is one of the first images taken by NASA's Phoenix Mars Lander of one of the octagonal solar panels, which opened like two handheld, collapsible fans on either side of the spacecraft. Beyond this view is a small slice of the north polar terrain of Mars. The successfully deployed solar panels are critical to the success of the 90-day mission, as they are the spacecraft's only means of replenishing its power. Even before these images reached Earth, power readings from the spacecraft indicated to engineers that the solar panels were already at work recharging the spacecraft's batteries. Before deploying the Surface Stereo Imager to take these images, the lander waited about 15 minutes for the dust to settle. This image was taken by the spacecraft's Surface Stereo Imager on Sol, or Martian day, 0 (May 25, 2008). The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  14. Solar Power Grid Unfurled

    Science.gov (United States)

    2008-01-01

    Shown here is one of the first images taken by NASA's Phoenix Mars Lander of one of the octagonal solar panels, which opened like two handheld, collapsible fans on either side of the spacecraft. Beyond this view is a small slice of the north polar terrain of Mars. The successfully deployed solar panels are critical to the success of the 90-day mission, as they are the spacecraft's only means of replenishing its power. Even before these images reached Earth, power readings from the spacecraft indicated to engineers that the solar panels were already at work recharging the spacecraft's batteries. Before deploying the Surface Stereo Imager to take these images, the lander waited about 15 minutes for the dust to settle. This image was taken by the spacecraft's Surface Stereo Imager on Sol, or Martian day, 0 (May 25, 2008). This image has been geometrically corrected. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  15. Agua Caliente Wind/Solar Project at Whitewater Ranch

    Energy Technology Data Exchange (ETDEWEB)

    Hooks, Todd [Agua Caliente Band of Cahuilla Indians, Palm Springs, CA (United States); Stewart, Royce [Red Mountain Energy Partners, Sante Fe, NM (United States)

    2014-12-16

    Agua Caliente Band of Cahuilla Indians (ACBCI) was awarded a grant by the Department of Energy (DOE) to study the feasibility of a wind and/or solar renewable energy project at the Whitewater Ranch (WWR) property of ACBCI. Red Mountain Energy Partners (RMEP) was engaged to conduct the study. The ACBCI tribal lands in the Coachella Valley have very rich renewable energy resources. The tribe has undertaken several studies to more fully understand the options available to them if they were to move forward with one or more renewable energy projects. With respect to the resources, the WWR property clearly has excellent wind and solar resources. The DOE National Renewable Energy Laboratory (NREL) has continued to upgrade and refine their library of resource maps. The newer, more precise maps quantify the resources as among the best in the world. The wind and solar technology available for deployment is also being improved. Both are reducing their costs to the point of being at or below the costs of fossil fuels. Technologies for energy storage and microgrids are also improving quickly and present additional ways to increase the wind and/or solar energy retained for later use with the network management flexibility to provide power to the appropriate locations when needed. As a result, renewable resources continue to gain more market share. The transitioning to renewables as the major resources for power will take some time as the conversion is complex and can have negative impacts if not managed well. While the economics for wind and solar systems continue to improve, the robustness of the WWR site was validated by the repeated queries of developers to place wind and/or solar there. The robust resources and improving technologies portends toward WWR land as a renewable energy site. The business case, however, is not so clear, especially when the potential investment portfolio for ACBCI has several very beneficial and profitable alternatives.

  16. The SOHO project - Coronal and solar wind investigations

    Science.gov (United States)

    Poland, A. I.; Domingo, V.

    1988-01-01

    The Solar and Heliospheric Observatory (SOHO) satellite mission is planned to study the solar interior, to investigate the physical phenomena related to the formation of the solar corona and the solar wind, and to make in situ measurements of the solar wind. The SOHO instruments designed to study the solar atmosphere and the solar wind are described. The experiments include the study of solar UV radiation, a coronal diagnostic spectrometer, an extreme UV imaging telescope, a UV coronagraph spectrometer, a white light and spectrometric coronagraph, and a study of solar wind anisotropies.

  17. Solar Illumination Control of the Polar Wind

    Science.gov (United States)

    Maes, L.; Maggiolo, R.; De Keyser, J.; André, M.; Eriksson, A. I.; Haaland, S.; Li, K.; Poedts, S.

    2017-11-01

    Polar wind outflow is an important process through which the ionosphere supplies plasma to the magnetosphere. The main source of energy driving the polar wind is solar illumination of the ionosphere. As a result, many studies have found a relation between polar wind flux densities and solar EUV intensity, but less is known about their relation to the solar zenith angle at the ionospheric origin, certainly at higher altitudes. The low energy of the outflowing particles and spacecraft charging means it is very difficult to measure the polar wind at high altitudes. We take advantage of an alternative method that allows estimations of the polar wind flux densities far in the lobes. We analyze measurements made by the Cluster spacecraft at altitudes from 4 up to 20 RE. We observe a strong dependence on the solar zenith angle in the ion flux density and see that both the ion velocity and density exhibit a solar zenith angle dependence as well. We also find a seasonal variation of the flux density.

  18. Wind for Schools: A Wind Powering America Project

    Science.gov (United States)

    US Department of Energy, 2007

    2007-01-01

    The U.S. Department of Energy's (DOE's) Wind Powering America program (based at the National Renewable Energy Laboratory) sponsors the Wind for Schools Project to raise awareness in rural America about the benefits of wind energy while simultaneously educating college seniors regarding wind energy applications. The three primary project goals of…

  19. LONG-TERM TRENDS IN THE SOLAR WIND PROTON MEASUREMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, Heather A.; McComas, David J. [Southwest Research Institute, San Antonio, TX (United States); DeForest, Craig E. [Southwest Research Institute, Boulder, CO (United States)

    2016-11-20

    We examine the long-term time evolution (1965–2015) of the relationships between solar wind proton temperature ( T {sub p}) and speed ( V {sub p}) and between the proton density ( n {sub p}) and speed using OMNI solar wind observations taken near Earth. We find a long-term decrease in the proton temperature–speed ( T {sub p}– V {sub p}) slope that lasted from 1972 to 2010, but has been trending upward since 2010. Since the solar wind proton density–speed ( n {sub p}– V {sub p}) relationship is not linear like the T {sub p}– V {sub p} relationship, we perform power-law fits for n {sub p}– V {sub p}. The exponent (steepness in the n {sub p}– V {sub p} relationship) is correlated with the solar cycle. This exponent has a stronger correlation with current sheet tilt angle than with sunspot number because the sunspot number maxima vary considerably from cycle to cycle and the tilt angle maxima do not. To understand this finding, we examined the average n {sub p} for different speed ranges, and found that for the slow wind n {sub p} is highly correlated with the sunspot number, with a lag of approximately four years. The fast wind n {sub p} variation was less, but in phase with the cycle. This phase difference may contribute to the n {sub p}– V {sub p} exponent correlation with the solar cycle. These long-term trends are important since empirical formulas based on fits to T {sub p} and V {sub p} data are commonly used to identify interplanetary coronal mass ejections, but these formulas do not include any time dependence. Changes in the solar wind density over a solar cycle will create corresponding changes in the near-Earth space environment and the overall extent of the heliosphere.

  20. Evidence for solar wind modulation of lightning

    Science.gov (United States)

    Scott, C. J.; Harrison, R. G.; Owens, M. J.; Lockwood, M.; Barnard, L.

    2014-05-01

    The response of lightning rates over Europe to arrival of high speed solar wind streams at Earth is investigated using a superposed epoch analysis. Fast solar wind stream arrival is determined from modulation of the solar wind V y component, measured by the Advanced Composition Explorer spacecraft. Lightning rate changes around these event times are determined from the very low frequency arrival time difference (ATD) system of the UK Met Office. Arrival of high speed streams at Earth is found to be preceded by a decrease in total solar irradiance and an increase in sunspot number and Mg II emissions. These are consistent with the high speed stream’s source being co-located with an active region appearing on the Eastern solar limb and rotating at the 27 d period of the Sun. Arrival of the high speed stream at Earth also coincides with a small (˜1%) but rapid decrease in galactic cosmic ray flux, a moderate (˜6%) increase in lower energy solar energetic protons (SEPs), and a substantial, statistically significant increase in lightning rates. These changes persist for around 40 d in all three quantities. The lightning rate increase is corroborated by an increase in the total number of thunder days observed by UK Met stations, again persisting for around 40 d after the arrival of a high speed solar wind stream. This result appears to contradict earlier studies that found an anti-correlation between sunspot number and thunder days over solar cycle timescales. The increase in lightning rates and thunder days that we observe coincides with an increased flux of SEPs which, while not being detected at ground level, nevertheless penetrate the atmosphere to tropospheric altitudes. This effect could be further amplified by an increase in mean lightning stroke intensity that brings more strokes above the detection threshold of the ATD system. In order to remove any potential seasonal bias the analysis was repeated for daily solar wind triggers occurring during the summer

  1. PV–wind hybrid power option for a low wind topography

    International Nuclear Information System (INIS)

    Bhattacharjee, Subhadeep; Acharya, Shantanu

    2015-01-01

    Highlights: • Optimally harness the wind energy by unification of solar resource. • Analysis of PV–wind hybrid system with tangible experience. • Cost of generation and renewable fraction are $0.488/kWh and 0.90 respectively. • Maximum wind penetration is observed to be 32.75% with installed PV–wind system. • Indicative annual grid electricity conservation is 90%. - Abstract: Solar and wind are clean energy sources with enormous potential to alleviate grid dependence. The paper aims to optimally harness the wind resource with the support of solar energy through hybrid technology for a north-east Indian state Tripura (low wind topography). Techno-economic analysis of a photovoltaic (PV)-wind hybrid simulation model has been performed for small scale application in an educational building. The study also evaluates the tangible performance of a similar plant in practical condition of the site. It has emerged from the study that major energy generation is turning out from PV segment which is promising almost all round the year. Nonetheless, a considerable amount of wind power is found to be generated during half of the year when average PV power production is comparatively less. The cost of electricity from the simulation model is found to be $0.488/kWh while renewable fraction in the total electricity share is obtained to be 0.90. From the actual performance of the plant, maximum wind penetration is observed to be 32.75%

  2. Solar wind modulation of UK lightning

    Science.gov (United States)

    Davis, Chris; Harrison, Giles; Lockwood, Mike; Owens, Mathew; Barnard, Luke

    2013-04-01

    The response of lightning rates in the UK to arrival of high speed solar wind streams at Earth is investigated using a superposed epoch analysis. The fast solar wind streams' arrivals are determined from modulation of the solar wind Vy component, measured by the Advanced Composition Explorer (ACE) spacecraft. Lightning rate changes around these event times are then determined from the very low frequency Arrival Time Difference (ATD) system of the UK Met Office. Arrival of high speed streams at Earth is found to be preceded by a decrease in total solar irradiance and an increase in sunspot number and Mg II emissions. These are consistent with the high speed stream's source being co-located with an active region appearing on the Eastern solar limb and rotating at the 27 day rate of the Sun. Arrival of the high speed stream at Earth also coincides with a rapid decrease in cosmic ray flux and an increase in lightning rates over the UK, persisting for around 40 days. The lightning rate increase is corroborated by an increase in the total number of thunder days observed by UK Met stations, again for around 40 days after the arrival of a high speed solar wind stream. This increase in lightning may be beneficial to medium range forecasting of hazardous weather.

  3. Wind Turbine Power Curves Incorporating Turbulence Intensity

    DEFF Research Database (Denmark)

    Sørensen, Emil Hedevang Lohse

    2014-01-01

    The performance of a wind turbine in terms of power production (the power curve) is important to the wind energy industry. The current IEC-61400-12-1 standard for power curve evaluation recognizes only the mean wind speed at hub height and the air density as relevant to the power production...

  4. Improving wind power quality with energy storage

    OpenAIRE

    Rasmussen, Claus Nygaard

    2009-01-01

    The results of simulation of the influence of energy storage on wind power quality are presented. Simulations are done using a mathematical model of energy storage. Results show the relation between storage power and energy, and the obtained increase in minimum available power from the combination of wind and storage. The introduction of storage enables smoothening of wind power on a timescale proportional to the storage energy. Storage does not provide availability of wind power at all times...

  5. Wind Power Prediction using Ensembles

    DEFF Research Database (Denmark)

    Giebel, Gregor; Badger, Jake; Landberg, Lars

    2005-01-01

    offshore wind farm and the whole Jutland/Funen area. The utilities used these forecasts for maintenance planning, fuel consumption estimates and over-the-weekend trading on the Leipzig power exchange. Othernotable scientific results include the better accuracy of forecasts made up from a simple...... superposition of two NWP provider (in our case, DMI and DWD), an investigation of the merits of a parameterisation of the turbulent kinetic energy within thedelivered wind speed forecasts, and the finding that a “naïve” downscaling of each of the coarse ECMWF ensemble members with higher resolution HIRLAM did...

  6. THE NEW HORIZONS SOLAR WIND AROUND PLUTO (SWAP) OBSERVATIONS OF THE SOLAR WIND FROM 11–33 au

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, H. A.; McComas, D. J.; Valek, P.; Weidner, S.; Livadiotis, G. [Southwest Research Institute, 6220 Culebra Road, San Antonio, TX 78238 (United States); Nicolaou, G., E-mail: helliott@swri.edu [Swedish Institute of Space Physics, Box 812, SE-98128, Kiruna (Sweden)

    2016-04-15

    The Solar Wind Around Pluto (SWAP) instrument on National Aeronautics and Space Administration's New Horizons Pluto mission has collected solar wind observations en route from Earth to Pluto, and these observations continue beyond Pluto. Few missions have explored the solar wind in the outer heliosphere making this dataset a critical addition to the field. We created a forward model of SWAP count rates, which includes a comprehensive instrument response function based on laboratory and flight calibrations. By fitting the count rates with this model, the proton density (n), speed (V), and temperature (T) parameters are determined. Comparisons between SWAP parameters and both propagated 1 au observations and prior Voyager 2 observations indicate consistency in both the range and mean wind values. These comparisons as well as our additional findings confirm that small and midsized solar wind structures are worn down with increasing distance due to dynamic interaction of parcels of wind with different speed. For instance, the T–V relationship steepens, as the range in V is limited more than the range in T with distance. At times the T–V correlation clearly breaks down beyond 20 au, which may indicate wind currently expanding and cooling may have an elevated T reflecting prior heating and compression in the inner heliosphere. The power of wind parameters at shorter periodicities decreases with distance as the longer periodicities strengthen. The solar rotation periodicity is present in temperature beyond 20 au indicating the observed parcel temperature may reflect not only current heating or cooling, but also heating occurring closer to the Sun.

  7. Shock heating of the solar wind plasma

    Science.gov (United States)

    Whang, Y. C.; Liu, Shaoliang; Burlaga, L. F.

    1990-01-01

    The role played by shocks in heating solar-wind plasma is investigated using data on 413 shocks which were identified from the plasma and magnetic-field data collected between 1973 and 1982 by Pioneer and Voyager spacecraft. It is found that the average shock strength increased with the heliocentric distance outside 1 AU, reaching a maximum near 5 AU, after which the shock strength decreased with the distance; the entropy of the solar wind protons also reached a maximum at 5 AU. An MHD simulation model in which shock heating is the only heating mechanism available was used to calculate the entropy changes for the November 1977 event. The calculated entropy agreed well with the value calculated from observational data, suggesting that shocks are chiefly responsible for heating solar wind plasma between 1 and 15 AU.

  8. Offshore Wind Power Planning in Korea

    DEFF Research Database (Denmark)

    Seo, Chul Soo; Cha, Seung-Tae; Park, Sang Ho

    2012-01-01

    Wind power generation is globally recognized as the most universal and reliable form of renewable energy. Korea is currently depending mostly on coal and petroleum to generate electrical power and is now trying to replace them with renewable energy such as offshore wind power generation. To make...... that connecting offshore wind power generation to a power system has on the power system. This paper looks over offshore wind power planning in Korea and describes the development of impact assessment technology of offshore wind farms....

  9. Nordic wind power conference 2007. Proceedings

    International Nuclear Information System (INIS)

    Cutululis, Nicolaos; Soerensen, Poul

    2007-11-01

    This fourth Nordic Wind Power Conference was focused on power system integration and electrical systems of wind turbines and wind farms. NWPC presents the newest research results related to technical electrical aspects of wind power, spanning from power system integration to electrical design and control of wind turbines. The first NWPC was held in Trondheim (2000), Norway, the second in Gothenburg (2004), Sweden, and the third in Espoo (2006), Finland. Invited speakers, oral presentation of papers and poster sessions ensured this to be a valuable event for professionals and high-level students wanting to strengthen their knowledge on wind power integration and electrical systems. (au)

  10. Nordic wind power conference 2007. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Cutululis, N.; Soerensen, P. (eds.)

    2007-11-15

    This fourth Nordic Wind Power Conference was focused on power system integration and electrical systems of wind turbines and wind farms. NWPC presents the newest research results related to technical electrical aspects of wind power, spanning from power system integration to electrical design and control of wind turbines. The first NWPC was held in Trondheim (2000), Norway, the second in Gothenburg (2004), Sweden, and the third in Espoo (2006), Finland. Invited speakers, oral presentation of papers and poster sessions ensured this to be a valuable event for professionals and high-level students wanting to strengthen their knowledge on wind power integration and electrical systems. (au)

  11. COMPLEX MAPPING OF ENERGY RESOURCES FOR ALLOCATION OF SOLAR AND WIND ENERGY OBJECTS

    Directory of Open Access Journals (Sweden)

    B. A. Novakovskiy

    2016-01-01

    Full Text Available The paper presents developed methodology of solar and wind energy resources complex mapping at the regional level, taking into account the environmental and socio-economic factors affecting the placement of renewable energy facilities. Methodology provides a reasonable search and allocation of areas, the most promising for the placement of wind and solar power plants.

  12. The Solar Wind: Our Current Understanding and How We Got Here ...

    Indian Academy of Sciences (India)

    addition (rS is the solar radius). 3. The wave-driven wind. The next major advance was the discovery (Belcher & Davis 1971) of the ubiquitous presence of Alfvén waves in the solar wind. Most of the wave power resides at long periods, of the order of hours. The waves predominantly propagate away from the Sun, especially ...

  13. Solar PV resource for higher penetration through a combined spatial aggregation with wind

    CSIR Research Space (South Africa)

    Bischof-Niemz, ST

    2016-06-01

    Full Text Available between wind and solar PV and how these would be reflected in the power system. The benefits of spatial distribution of renewables are well understood, but the impact of the combined spatial aggregation of wind and solar PV is central to the design...

  14. Solar Power Satellites

    CERN Document Server

    Flournoy, Don M

    2012-01-01

    Communication satellites are a $144 billion industry. Is there any space-based industry that could possibly beat that market? 'Solar Power Satellites' shows why and how the space satellite industry will soon begin expanding its market from relaying signals to Earth to generating energy in space and delivering it to the ground as electricity. In all industrialized nations, energy demand is growing exponentially. In the developing world, the need for energy is as basic as food and water. The Sun's energy is available everywhere, and it is non-polluting. As business plans demonstrate its technical feasibility, commercial potential, and environmental acceptability, every country on Earth will look to space for the power it needs.

  15. Wind and Solar Energy Role in the Achievement of EU Climate Policy After 2020

    International Nuclear Information System (INIS)

    Knezevic, S.

    2016-01-01

    This paper grades the possible role of solar and wind energy in the generation of electricity after 2020. The development of those energy sources will be defined by the climate policy implemented based on the last year's Paris Climate Agreement, but also by the existing initiatives of the European Commission (2030 climate and energy framework and 2050 low-carbon economy). Additionally, electricity generation from RES is observed through the decrease of dependency on the import of fossil fuels outside of the EU. According to the report of the International Renewable Energy Agency (IRENA), the biggest share of RES power plants, after hydro power plants, in EU are wind and solar power plants. Both wind and sun are constantly available resources, but with variable specific power, which makes the maximal generation dependent on the time of day and/or weather (wind, clouds). Future increase of wind and solar energy has to be observed from various perspectives as to properly grade it for the next period, until 2020. Therefore, this paper considers the following, intertwined aspects: Maturity of wind and solar technologies and future trends, Price of electricity generation from wind and solar power plants, with an analysis of price decreasing trends; Possibilities of power energy system and measures for the acceptance of wind and solar power plants; Integrative approach to all forms and transformations of electricity; Market integration of RES - aspirations towards free trade(author).

  16. RE-SUPPLY: Securing the supply chains of wind power and solar PV Securing the supply chain for renewable energy. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Lehner, Franz; Vuille, Francois; Ziem, Sabine [E4tech UK Ltd, London (United Kingdom); Rastogi, Ankur; Sengupta, Subhabrata [Avalon Consulting, Mumbai (India)

    2012-11-15

    The RE-SUPPLY project aimed to provide insight into the elements of the supply chains which are presently or can in the future evolve as critical constraints in further large-scale deployment of on- and offshore wind and solar photovoltaic energy. The objectives of the study were twofold: Risk assessment: identify potential bottlenecks in the supply chains of wind and PV and assess their criticality and timeline for occurrence; and, Risk management: identify suitable mitigation strategies and recommend specific actions at policy and industry level.

  17. Western Wind and Solar Integration Study: Hydropower Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Acker, T.; Pete, C.

    2012-03-01

    The U.S. Department of Energy's (DOE) study of 20% Wind Energy by 2030 was conducted to consider the benefits, challenges, and costs associated with sourcing 20% of U.S. energy consumption from wind power by 2030. This study found that with proactive measures, no insurmountable barriers were identified to meet the 20% goal. Following this study, DOE and the National Renewable Energy Laboratory (NREL) conducted two more studies: the Eastern Wind Integration and Transmission Study (EWITS) covering the eastern portion of the U.S., and the Western Wind and Solar Integration Study (WWSIS) covering the western portion of the United States. The WWSIS was conducted by NREL and research partner General Electric (GE) in order to provide insight into the costs, technical or physical barriers, and operational impacts caused by the variability and uncertainty of wind, photovoltaic, and concentrated solar power when employed to serve up to 35% of the load energy in the WestConnect region (Arizona, Colorado, Nevada, New Mexico, and Wyoming). WestConnect is composed of several utility companies working collaboratively to assess stakeholder and market needs to and develop cost-effective improvements to the western wholesale electricity market. Participants include the Arizona Public Service, El Paso Electric Company, NV Energy, Public Service of New Mexico, Salt River Project, Tri-State Generation and Transmission Cooperative, Tucson Electric Power, Xcel Energy and the Western Area Power Administration.

  18. Reassessing Solar Wind Stability using Nyquist's Method

    Science.gov (United States)

    Klein, Kristopher; Kasper, Justin; Alterman, Benjamin; Stevens, Michael; Korreck, Kelly

    2017-10-01

    In nearly-collisionless plasmas, such as the solar wind, non-local thermodynamic equilibrium structures, including temperature anisotropies, beam populations with relative drifts, and agyrotropic features, are frequently observed to persist. These features can act as sources of free energy which may drive instabilities that move the plasma closer to LTE. Analysis techniques applied to solar wind observations for the presence of such instabilities typically consider only a single source of free energy, such the temperature anisotropy of the proton population. We have developed an efficient algorithm for general determination of linear stability considering all sources of free energy using Nyquist's Method. By applying this method to the dispersion relation associated with a particular solar wind observation, we rapidly determine if the plasma is linearly unstable, and if so, how many normal modes are driven. Our technique is verified against well-characterized theoretical and observational cases from the literature, and applied to in situ observations from the Wind spacecraft to determine how additional sources of free energy affect the plasma's stability and may govern the solar wind's evolution.

  19. Decentralised Solar Power at Homes

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Decentralised Solar Power at Homes. Solar PV gives DC Power. But load is AC; Needs a DC-AC convertor. Now if we add a battery. Battery stores only DC. Require a AC-DC convertor for charging; Require a DC-AC convertor during discharging. For low power, each ...

  20. Concentrated solar power: an overview

    International Nuclear Information System (INIS)

    Najam, Z.; Khan, M.I.

    2011-01-01

    Solar thermal power is a relatively new technology and a fine arrangement for the provision of Electrical Energy and Clean Energy in general .The concentrated solar offers a viable option for the Sunny Zones of the world. The efficiency of the System depends on a few factors like Area, Intensity of Sunlight, Type of receiver, Hybridisation etc. Solar Thermal Systems employ lenses or mirrors to focus a large area of sunlight onto a small area. Electrical power is produced when the concentrated light is impugned onto photovoltaic cell made surfaces or used to heat a transfer fluid for a conventional power plant. In this paper we give a brief overview of a baseline Solar Thermal Power Plant, Technological details, Cost and Benefit analysis, a glimpse of solar thermal power and future of solar thermal power. (author)

  1. Performance of a small wind powered water pumping system

    Science.gov (United States)

    Lorentz helical pumps (Henstedt-Ulzburg, Germany) have been powered by solar energy for remote water pumping applications for many years, but from October 2005 to March 2008 a Lorentz helical pump was powered by wind energy at the USDA-ARS Conservation and Production Research Laboratory (CPRL) near ...

  2. Research Developments on Power System Integration of Wind Power

    DEFF Research Database (Denmark)

    Chen, Zhe; Hansen, Jens Carsten; Qiuwei, Wu

    2011-01-01

    This paper presents an overview on the recent research activities and tendencies regarding grid integration of wind power in Denmark and some related European activities, including power electronics for enhancing wind power controllability, wind turbines and wind farms modeling,wind power...... variability and prediction, wind power plant ancillary services, grid connection and operation, Smart grids and demand side management under market functionality. The topics of the first group of PhD program starting 2011 under the wind energy Sino-Danish Centre for Education & Research (SDC) are also...

  3. Research Developments on Power System Integration of Wind Power

    DEFF Research Database (Denmark)

    Chen, Zhe; Hansen, Jens Carsten; Wu, Qiuwei

    2011-01-01

    This paper presents an overview on the recent research activities and tendencies regarding grid integration of wind power in Denmark and some related European activities, including power electronics for enhancing wind power controllability, wind turbines and wind farms modeling, wind power...... variability and prediction, wind power plant ancillary services, grid connection and operation, Smart grids and demand side management under market functionality. The topics of the first group of PhD program starting 2011 under the wind energy Sino-Danish Centre for Education & Research (SDC) are also...

  4. Trend chart: wind power. Third quarter 2016

    International Nuclear Information System (INIS)

    Reynaud, Didier

    2016-11-01

    This publication presents the wind energy situation of continental France and overseas territories during the third quarter 2016: total connected load, new connected facilities, regional distribution of wind power production, evolution of quarterly production, distribution of facilities versus power, evolution forecasts of the French wind power park, projects in progress, detailed regional results, methodology used

  5. Trend chart: wind power. Second quarter 2016

    International Nuclear Information System (INIS)

    Reynaud, Didier

    2016-08-01

    This publication presents the wind energy situation of continental France and overseas territories during the second quarter 2016: total connected load, new connected facilities, regional distribution of wind power production, evolution of quarterly production, distribution of facilities versus power, evolution forecasts of the French wind power park, projects in progress, detailed regional results, methodology used

  6. Trend chart: wind power. First quarter 2017

    International Nuclear Information System (INIS)

    2017-05-01

    This publication presents the wind energy situation of continental France and overseas territories during the first quarter 2017: total connected load, new connected facilities, regional distribution of wind power production, evolution of quarterly production, distribution of facilities versus power, evolution forecasts of the French wind power park, projects in progress, detailed regional results, methodology used

  7. Trend chart: wind power. First quarter 2016

    International Nuclear Information System (INIS)

    Reynaud, Didier

    2016-05-01

    This publication presents the wind energy situation of continental France and overseas territories during the first quarter 2016: total connected load, new connected facilities, regional distribution of wind power production, evolution of quarterly production, distribution of facilities versus power, evolution forecasts of the French wind power park, projects in progress, detailed regional results, methodology used

  8. Trend chart: wind power. Third quarter 2015

    International Nuclear Information System (INIS)

    Reynaud, Didier

    2015-11-01

    This publication presents the wind energy situation of continental France and overseas territories during the third quarter 2015: total connected load, new connected facilities, regional distribution of wind power production, evolution of quarterly production, distribution of facilities versus power, evolution forecasts of the French wind power park, projects in progress, detailed regional results, methodology used

  9. Trend chart: wind power. Forth quarter 2015

    International Nuclear Information System (INIS)

    Reynaud, Didier

    2016-02-01

    This publication presents the wind energy situation of continental France and overseas territories during the forth quarter 2015: total connected load, new connected facilities, regional distribution of wind power production, evolution of quarterly production, distribution of facilities versus power, evolution forecasts of the French wind power park, projects in progress, detailed regional results, methodology used

  10. Trend chart: wind power. Forth quarter 2016

    International Nuclear Information System (INIS)

    Coltier, Yves

    2017-02-01

    This publication presents the wind energy situation of continental France and overseas territories during the forth quarter 2016: total connected load, new connected facilities, regional distribution of wind power production, evolution of quarterly production, distribution of facilities versus power, evolution forecasts of the French wind power park, projects in progress, detailed regional results, methodology used

  11. Trend chart: wind power. Fourth quarter 2017

    International Nuclear Information System (INIS)

    Moreau, Sylvain

    2018-02-01

    This publication presents the wind energy situation of continental France and overseas territories during the fourth quarter 2017: total connected load, new connected facilities, regional distribution of wind power production, evolution of quarterly production, distribution of facilities versus power, evolution forecasts of the French wind power park, projects in progress, detailed regional results, revision of results

  12. Trend chart: wind power. Third quarter 2017

    International Nuclear Information System (INIS)

    2017-11-01

    This publication presents the wind energy situation of continental France and overseas territories during the third quarter 2017: total connected load, new connected facilities, regional distribution of wind power production, evolution of quarterly production, distribution of facilities versus power, evolution forecasts of the French wind power park, projects in progress, detailed regional results, revision of results

  13. Trend chart: wind power. Second quarter 2017

    International Nuclear Information System (INIS)

    2017-08-01

    This publication presents the wind energy situation of continental France and overseas territories during the second quarter 2017: total connected load, new connected facilities, regional distribution of wind power production, evolution of quarterly production, distribution of facilities versus power, evolution forecasts of the French wind power park, projects in progress, detailed regional results, revision of results

  14. PSS Controller for Wind Power Generation Systems

    Science.gov (United States)

    Domínguez-García, J. L.; Gomis-Bellmunt, O.; Bianchi, F.; Sumper, A.

    2012-10-01

    Small signal stability analysis for power systems with wind farm interaction is presented. Power systems oscillation modes can be excited by disturbance or fault in the grid. Variable speed wind turbines can be regulated to reduce these oscillations, stabilising the power system. A power system stabiliser (PSS) control loop for wind power is designed in order to increase the damping of the oscillation modes. The proposed power system stabiliser controller is evaluated by small signal analysis.

  15. Thermodynamic characteristics of a novel wind-solar-liquid air energy storage system

    Science.gov (United States)

    Ji, W.; Zhou, Y.; Sun, Y.; Zhang, W.; Pan, C. Z.; Wang, J. J.

    2017-12-01

    Due to the nature of fluctuation and intermittency, the utilization of wind and solar power will bring a huge impact to the power grid management. Therefore a novel hybrid wind-solar-liquid air energy storage (WS-LAES) system was proposed. In this system, wind and solar power are stored in the form of liquid air by cryogenic liquefaction technology and thermal energy by solar thermal collector, respectively. Owing to the high density of liquid air, the system has a large storage capacity and no geographic constraints. The WS-LAES system can store unstable wind and solar power for a stable output of electric energy and hot water. Moreover, a thermodynamic analysis was carried out to investigate the best system performance. The result shows that the increases of compressor adiabatic efficiency, turbine inlet pressure and inlet temperature all have a beneficial effect.

  16. Wind power today: 1999 Wind Energy program highlights

    Energy Technology Data Exchange (ETDEWEB)

    Weis-Taylor, Pat

    2000-04-06

    Wind Power Today is an annual publication that provides an overview for the Department of Energy's Wind Energy Program. The purpose of Wind Power Today is to show how DOE's Wind Energy Program supports wind turbine research and deployment in hopes of furthering the advancement of wind technologies that produce clean, low-cost, reliable energy for the 21st century. Content objectives include: Educate readers about the advantages and potential for widespread deployment of wind energy; explain DOE wind energy program objectives and goals; describe program accomplishments in research and application; examine the barriers to widespread deployment; describe benefits of continued research and development; facilitate technology transfer; attract cooperative wind energy projects with industry.

  17. Power Electronics Converters for Wind Turbine Systems

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Liserre, Marco; Ma, Ke

    2012-01-01

    The steady growth of installed wind power together with the upscaling of the single wind turbine power capability has pushed the research and development of power converters toward full-scale power conversion, lowered cost pr kW, increased power density, and also the need for higher reliability......, in the latter case with attention to series connection and parallel connection either electrical or magnetic ones (multiphase/windings machines/transformers). It is concluded that as the power level increases in wind turbines, medium-voltage power converters will be a dominant power converter configuration...

  18. Lunar solar-power system: Commerical power

    Science.gov (United States)

    Criswell, David R.

    1995-01-01

    The proposed Lunar Solar-Power (LSP) System collects solar power on the moon. The power is converted to beams of microwaves and transmitted to fields of microwave receivers (rectennas) on Earth that provide electric power to local and regional power grids. LSP can provide abundant and low cost energy to Earth to sustain several centuries of economic development on Earth and in space. The LSP power is independent of the biosphere (global warming, weather, and climate changes), independent of reserves of terrestrial non-renewable and renewable power, and is low in total costs compared to other large scale power systems. Efficient utilization of the moon as a platform for solar collectors/power transmitters and as a source of building materials is key to the development and emplacement of the LSP System. LSP development costs can be significantly reduced by the establishment of a manned lunar base.

  19. Data mining for wind power forecasting

    OpenAIRE

    Fugon, Lionel; Juban, Jérémie; Kariniotakis, Georges

    2008-01-01

    International audience; Short-term forecasting of wind energy production up to 2-3 days ahead is recognized as a major contribution for reliable large-scale wind power integration. Increasing the value of wind generation through the improvement of prediction systems performance is recognised as one of the priorities in wind energy research needs for the coming years. This paper aims to evaluate Data Mining type of models for wind power forecasting. Models that are examined include neural netw...

  20. Economic Operation of Power Systems with Significant Wind Power Penetration

    DEFF Research Database (Denmark)

    Farashbashi-Astaneh, Seyed-Mostafa

    This dissertation addresses economic operation of power systems with high penetration of wind power. Several studies are presented to address the economic operation of power systems with high penetration of variable wind power. The main concern in such power systems is high variability...... and unpredictability. Unlike conventional power plants, the output power of a wind farm is not controllable. This brings additional complexity to operation and planning of wind dominant power systems. The key solution in face of wind power uncertainty is to enhance power system flexibility. The enhanced flexibility......, cooperative wind-storage operation is studied. Lithium-Ion battery units are chosen as storage units. A novel formulation is proposed to investigate optimal operation of a storage unit considering power system balancing conditions and wind power imbalances. An optimization framework is presented to increase...

  1. Development of a controller based on Fuzzy theory to better use the energy of a hybrid system power generation solar-photovoltaic and wind; Desenvolvimento de um controlador baseado na teoria Fuzzy para melhor aproveitamento da energia de um sistema hibrido de geracao de energia solar-fotovoltaico e eolico

    Energy Technology Data Exchange (ETDEWEB)

    Caneppele, Fernando de Lima [Universidade Estadual Paulista (UNESP), Itapeva, SP (Brazil). Campus Experimental], E-mail: fernando@itapeva.unesp.br; Seraphim, Odivaldo Jose [Universidade Estadual Paulista (FCA/UNESP), Botucatu, SP (Brazil). Fac. de Ciencias Agronomicas. Dept. de Engenharia Rural; Gabriel Filho, Luis Roberto de Almeida [Universidade Estadual Paulista (UNESP), Tupa, SP (Brazil). Campus Experimental

    2010-07-01

    The work developed a methodology fuzzy and simulated its use in control of a hybrid system of electric power generation, using solar-photovoltaic and wind energy. Using this control system, we get the point of maximum energy generation and transfer all the energy generated from alternative sources, solar-photovoltaic and wind energy to charge and / or batteries. The model uses three input variables, which are: wind (wind speed), sun (solar radiation) and batteries (charge the battery bank). With these variables, the fuzzy system will play, according to the rules to be described, what is the source of power supply system, which will have priority and how the batteries are loaded. For the simulations regarding the use of fuzzy theory to control, we used the scientific computing environment MATLAB. In this environment have been analyzed and simulated all mathematical modeling, rules and other variables described in the fuzzy system. This model can be applied to implement a control system of hybrid power generation, providing the best use of renewable energy, solar and wind, so that we can extract the maximum possible energy of these alternative sources without compromising the environment. (author)

  2. Energy Primer: Solar, Water, Wind, and Biofuels.

    Science.gov (United States)

    Portola Inst., Inc., Menlo Park, CA.

    This is a comprehensive, fairly technical book about renewable forms of energy--solar, water, wind, and biofuels. The biofuels section covers biomass energy, agriculture, aquaculture, alcohol, methane, and wood. The focus is on small-scale systems which can be applied to the needs of the individual, small group, or community. More than one-fourth…

  3. Classification of Solar Wind With Machine Learning

    Science.gov (United States)

    Camporeale, Enrico; Carè, Algo; Borovsky, Joseph E.

    2017-11-01

    We present a four-category classification algorithm for the solar wind, based on Gaussian Process. The four categories are the ones previously adopted in Xu and Borovsky (2015): ejecta, coronal hole origin plasma, streamer belt origin plasma, and sector reversal origin plasma. The algorithm is trained and tested on a labeled portion of the OMNI data set. It uses seven inputs: the solar wind speed Vsw, the temperature standard deviation σT, the sunspot number R, the F10.7 index, the Alfven speed vA, the proton specific entropy Sp, and the proton temperature Tp compared to a velocity-dependent expected temperature. The output of the Gaussian Process classifier is a four-element vector containing the probabilities that an event (one reading from the hourly averaged OMNI database) belongs to each category. The probabilistic nature of the prediction allows for a more informative and flexible interpretation of the results, for instance, being able to classify events as "undecided." The new method has a median accuracy larger than 90% for all categories, even using a small set of data for training. The Receiver Operating Characteristic curve and the reliability diagram also demonstrate the excellent quality of this new method. Finally, we use the algorithm to classify a large portion of the OMNI data set, and we present for the first time transition probabilities between different solar wind categories. Such probabilities represent the "climatological" statistics that determine the solar wind baseline.

  4. The Solar Wind as a Turbulence Laboratory

    Directory of Open Access Journals (Sweden)

    Vincenzo Carbone

    2013-05-01

    Full Text Available In this review we will focus on a topic of fundamental importance for both astrophysics and plasma physics, namely the occurrence of large-amplitude low-frequency fluctuations of the fields that describe the plasma state. This subject will be treated within the context of the expanding solar wind and the most meaningful advances in this research field will be reported emphasizing the results obtained in the past decade or so. As a matter of fact, Helios inner heliosphere and Ulysses' high latitude observations, recent multi-spacecrafts measurements in the solar wind (Cluster four satellites and new numerical approaches to the problem, based on the dynamics of complex systems, brought new important insights which helped to better understand how turbulent fluctuations behave in the solar wind. In particular, numerical simulations within the realm of magnetohydrodynamic (MHD turbulence theory unraveled what kind of physical mechanisms are at the basis of turbulence generation and energy transfer across the spectral domain of the fluctuations. In other words, the advances reached in these past years in the investigation of solar wind turbulence now offer a rather complete picture of the phenomenological aspect of the problem to be tentatively presented in a rather organic way.

  5. Mirror Instability in the Turbulent Solar Wind

    Czech Academy of Sciences Publication Activity Database

    Hellinger, Petr; Landi, S.; Matteini, L.; Verdini, A.; Franci, L.

    2017-01-01

    Roč. 838, č. 2 (2017), 158/1-158/7 ISSN 0004-637X Institutional support: RVO:67985815 Keywords : instabilities * solar wind * waves Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics OBOR OECD: Astronomy (including astrophysics,space science) Impact factor: 5.533, year: 2016

  6. Wind power forecast error smoothing within a wind farm

    International Nuclear Information System (INIS)

    Saleck, Nadja; Bremen, Lueder von

    2007-01-01

    Smoothing of wind power forecast errors is well-known for large areas. Comparable effects within a wind farm are investigated in this paper. A Neural Network was taken to predict the power output of a wind farm in north-western Germany comprising 17 turbines. A comparison was done between an algorithm that fits mean wind and mean power data of the wind farm and a second algorithm that fits wind and power data individually for each turbine. The evaluation of root mean square errors (RMSE) shows that relative small smoothing effects occur. However, it can be shown for this wind farm that individual calculations have the advantage that only a few turbines are needed to give better results than the use of mean data. Furthermore different results occurred if predicted wind speeds are directly fitted to observed wind power or if predicted wind speeds are first fitted to observed wind speeds and then applied to a power curve. The first approach gives slightly better RMSE values, the bias improves considerably

  7. Intermittency Statistics in the Expanding Solar Wind

    Science.gov (United States)

    Cuesta, M. E.; Parashar, T. N.; Matthaeus, W. H.

    2017-12-01

    The solar wind is observed to be turbulent. One of the open questions in solar wind research is how the turbulence evolves as the solar wind expands to great distances. Some studies have focused on evolution of the outer scale but not much has been done to understand how intermittency evolves in the expanding wind beyond 1 AU (see [1,2]). We use magnetic field data from Voyager I spacecraft from 1 to 10AU to study the evolution of statistics of magnetic discontinuities. We perform various statistical tests on these discontinuities and make connections to the physical processes occurring in the expanding wind.[1] Tsurutani, Bruce T., and Edward J. Smith. "Interplanetary discontinuities: Temporal variations and the radial gradient from 1 to 8.5 AU." Journal of Geophysical Research: Space Physics 84.A6 (1979): 2773-2787.[2] Greco, A., et al. "Evidence for nonlinear development of magnetohydrodynamic scale intermittency in the inner heliosphere." The Astrophysical Journal 749.2 (2012): 105.

  8. POSSPOW: Possible Power of Offshore Wind Power Plants

    DEFF Research Database (Denmark)

    Giebel, Gregor; Göçmen, Tuhfe; Sørensen, Poul Ejnar

    2013-01-01

    will be verified on some of the large offshore wind farms owned by Vattenfall, and possibly in a DONG Energy wind farm too. Dedicated experiments to the wind flow in large offshore wind farms are planned. Main body of abstract Modern wind turbines have a SCADA signal called possible power. In normal operation...

  9. Wind and solar resource data sets: Wind and solar resource data sets

    Energy Technology Data Exchange (ETDEWEB)

    Clifton, Andrew [National Renewable Energy Laboratory, Golden CO USA; Hodge, Bri-Mathias [National Renewable Energy Laboratory, Golden CO USA; Power Systems Engineering Center, National Renewable Energy Laboratory, Golden CO USA; Draxl, Caroline [National Renewable Energy Laboratory, Golden CO USA; National Wind Technology Center, National Renewable Energy Laboratory, Golden CO USA; Badger, Jake [Department of Wind Energy, Danish Technical University, Copenhagen Denmark; Habte, Aron [National Renewable Energy Laboratory, Golden CO USA; Power Systems Engineering Center, National Renewable Energy Laboratory, Golden CO USA

    2017-12-05

    The range of resource data sets spans from static cartography showing the mean annual wind speed or solar irradiance across a region to high temporal and high spatial resolution products that provide detailed information at a potential wind or solar energy facility. These data sets are used to support continental-scale, national, or regional renewable energy development; facilitate prospecting by developers; and enable grid integration studies. This review first provides an introduction to the wind and solar resource data sets, then provides an overview of the common methods used for their creation and validation. A brief history of wind and solar resource data sets is then presented, followed by areas for future research.

  10. Harnessing wind power with sustained policy support

    Energy Technology Data Exchange (ETDEWEB)

    Meera, L. [BITS-Pilani. Dept. of Economics, Hyderabad (India)

    2012-07-01

    The development of wind power in India began in the 1990s, and has significantly increased in the last few years. The ''Indian Wind Turbine Manufacturers Association (IWTMA)'' has played a leading role in promoting wind energy in India. Although a relative newcomer to the wind industry compared with Denmark or the US, a combination of domestic policy support for wind power and the rise of Suzlon (a leading global wind turbine manufacturer) have led India to become the country with the fifth largest installed wind power capacity in the world. Wind power accounts for 6% of India's total installed power capacity, and it generates 1.6% of the country's power. (Author)

  11. Concentration solar thermal power

    International Nuclear Information System (INIS)

    Livet, F.

    2011-01-01

    As the production of electricity by concentration solar power (CSP) installations is said to be a source of energy for the future, the author discusses past experiments (notably the French Thermis project), and the different techniques which are currently being used. He indicates the regions which appear to be the most appropriate for this technique. He presents the three main techniques: parabolic cylinder, tower, and Stirling cycle installations. He discusses the issue of intermittency. He proposes an assessment of prices and of their evolution, and indicates the investments made in different installations (in Italy, Spain, Germany and Portugal). He comments the case of hybrid installations (sun and gas), evokes the Desertec project proposed by the German industry which comprises a set of hybrid installations. He notices that there is no significant technological evolution for this process

  12. Wind Tunnel Measurements at LM Wind Power

    DEFF Research Database (Denmark)

    Bertagnolio, Franck

    2012-01-01

    The optimization of airfoil profiles specifically designed for wind turbine application was initiated in the late 80’s [67, 68, 30, 15]. The first attempts to reduce airfoil noise for wind turbines made use of airfoil trailing edge serration. Themodification of airfoil shapes targeted at noise...... reduction is more recent. An important effort was produced in this direction within the SIROCCO project. This latter work involved measurements on full size wind turbines and showed that trailing edge serration may proved a viable solution for mitigating wind turbine noise though it has not been implemented...... on commercial wind turbine yet. It should be mentioned here that the attenuation of turbulent inflow noise using wavy leading edge has recently been investigated [55], but this technique has still to be further validated for practical applications. In this paper, it is proposed to optimize an airfoil which...

  13. Wind power development and policies in China

    International Nuclear Information System (INIS)

    Liao, Cuiping; Farid, Nida R.; Jochem, Eberhard; Zhang, Yi

    2010-01-01

    The People's Republic of China foresees a target of 30 GW for installed wind power capacity by 2010 (2008: 12 GW). This paper reports on the technical and economic potentials of wind power, the recent development, existing obstacles, and related policies in China. The barriers to further commercialization of the wind power market are important and may deter the 100 GW capacity target of the Chinese government by 2020. The paper concludes that the diffusion of wind power in China is an important element for not only reducing global greenhouse gas emissions, but also for worldwide progress of wind power technology and needed economies of scale. (author)

  14. Electric solar wind sail mass budget model

    Directory of Open Access Journals (Sweden)

    P. Janhunen

    2013-02-01

    Full Text Available The electric solar wind sail (E-sail is a new type of propellantless propulsion system for Solar System transportation, which uses the natural solar wind to produce spacecraft propulsion. The E-sail consists of thin centrifugally stretched tethers that are kept charged by an onboard electron gun and, as such, experience Coulomb drag through the high-speed solar wind plasma stream. This paper discusses a mass breakdown and a performance model for an E-sail spacecraft that hosts a mission-specific payload of prescribed mass. In particular, the model is able to estimate the total spacecraft mass and its propulsive acceleration as a function of various design parameters such as the number of tethers and their length. A number of subsystem masses are calculated assuming existing or near-term E-sail technology. In light of the obtained performance estimates, an E-sail represents a promising propulsion system for a variety of transportation needs in the Solar System.

  15. Sources of the wind power stations

    International Nuclear Information System (INIS)

    Chudivani, J.; Huettner, L.

    2012-01-01

    The paper deals with problems of the wind power stations. Describes the basic properties of wind energy. Shows and describes the different types of electrical machines used as a source of electricity in the wind power stations. Shows magnetic fields synchronous generator with salient poles and permanent magnets in the program FEMM. Describes methods for assessing of reversing the effects of the wind power stations on the distribution network. (Authors)

  16. Forecasting volatility of wind power production

    OpenAIRE

    Zhiwei Shen; Matthias Ritter

    2015-01-01

    Abstract: The increasing share of wind energy in the portfolio of energy sources highlights its uncertainties due to changing weather conditions. To account for the uncertainty in predicting wind power production, this article examines the volatility forecasting abilities of different GARCH-type models for wind power production. Moreover, due to characteristic features of the wind power process, such as heteroscedasticity and nonlinearity, we also investigate the use of a Markov regime-switch...

  17. Solar energy perspectives for public power

    Energy Technology Data Exchange (ETDEWEB)

    Woodley, N. H.

    1979-06-01

    Perspectives on the utilization of solar energy for electricity production and thermal energy utilization by the public are briefly discussed. Wind energy conversion, biomass conversion, solar thermal, OTEC, photovoltaics, and solar heating and cooling are discussed. (WHK)

  18. Blowing in the Wind: A Review of Wind Power Technology

    Science.gov (United States)

    Harris, Frank

    2014-01-01

    The use of wind as a replenishable energy resource has come back into favour in recent decades. It is much promoted as a viable, clean energy option that will help towards reducing CO[subscript 2] emissions in the UK. This article examines the history of wind power and considers the development of wind turbines, together with their economic,…

  19. Confidence intervals for annual wind power production******

    Directory of Open Access Journals (Sweden)

    Bensoussan Alain

    2014-01-01

    Full Text Available Wind power is an intermittent resource due to wind speed intermittency. However wind speed can be described as a stochastic process with short memory. This allows us to derive a central limit theorem for the annual or pluri-annual wind power production and then get quantiles of the wind power production for one, ten or twenty years future periods. On the one hand, the interquantile spread offers a measurement of the intrinsic uncertainties of wind power production. On the other hand, different quantiles with different periods of time are used by financial institutions to quantify the financial risk of the wind turbine. Our method is then applied to real datasets corresponding to a French wind turbine. Since confidence intervals can be enhanced by taking into account seasonality, we present some tools for change point analysis on wind series.

  20. Electron characteristics in the high speed solar wind

    International Nuclear Information System (INIS)

    Feldman, W.C.

    1978-01-01

    Experimental work done since 1976 on the physics of electrons in the high speed solar wind is reviewed. The main new results are most electron parameters are uniform in the high speed solar wind indicating that it is a well defined, structure-free state of the coronal expansion. The higher energy unbound part of electron velocity distributions (the halo) is consistent with nearly collisionless propagation to 1AU from some heliocentric distance in the range between about 10 and 30 solar radii. The low energy bound electron (core) component appears to be strongly coupled to the protons as well as to one another through Coulomb and wave electron collisions. The first measured radial profile of the core-electron temperature in the high speed solar wind is best characterized in terms of two separate power laws applicable in the distance ranges between 0.47 and 0.62 AU and between 0.62 and 1.0 AU respectively. The best estimate for the power law indices in the inner and outer regions are α 1 = -1.14 +-0.24 and α 0 = +0.28 +-0.13, respectively. A relations of the form Q = γN/sub c/kT/sub c/U/(1 + βγ/sub sigma11 γcp) with = 10.7 and β = 4.2 may be useful in closing the Vlasov moment equations describing general solar wind flows in interplanetary space. The quantity Q is the total heat flux, N/sub c/ and T/sub c/ are the core-electron density and temperature respectively, k is Boltzmann's constant, U is the proton bulk speed in the solar corotating reference frame, /sub tsigma/ is the bounce period of a typical core electron and /+ sub tcp/ is the average core electron-proton Coulomb deflection time. 16 refs

  1. Endurance Wind Power : practical insights into small wind

    International Nuclear Information System (INIS)

    Hicks, D.

    2008-01-01

    This presentation discussed practical issues related to purchasing and installing small wind turbines in Canada. Wind power capacity can be estimated by looking at provincial wind maps as well as by seeking wind data at local airports. Wind resources are typically measured at heights of between 20 meters and 50 m. The height of a wind turbine tower can significantly increase the turbine's wind generating capacity. Turbine rotors should always be placed 30 feet higher than obstacles within 500 feet. Many provinces have now mandated utilities to accept renewable energy resources from grid-connected wind energy plants. Net billing systems are used to determine the billing relationship between power-producing consumers and the utilities who will buy the excess power and sell it to other consumers. Utilities are not yet mandated to purchase excess power, and it is likely that federal and provincial legislation will be needed to ensure that net billing systems continue to grow. Many Canadian municipalities have no ordinances related to wind turbine placements. Consumers interested in purchasing small wind turbines should ensure that the turbine has been certified by an accredited test facility and has an adequate safety system. The noise of the turbine as well as its power performance in relation to the purchaser's needs must also be considered. It was concluded that small wind turbines can provide a means for electricity consumers to reduce their carbon footprint and hedge against the inflationary costs of fossil-fuelled energy resources. tabs., figs

  2. The power of transformation wind, sun and the economics of flexible power systems

    CERN Document Server

    2014-01-01

    Wind power and solar photovoltaics (PV) are crucial to meeting future energy needs while decarbonising the power sector. Deployment of both technologies has expanded rapidly in recent years, one of the few bright spots in an otherwise bleak picture of clean energy progress. However, the inherent variability of wind power and solar PV raises unique and pressing questions. Can power systems remain reliable and cost-effective while supporting high shares of variable renewable energy (VRE)? And if so, how?. Based on a thorough review of the integration challenge, this publication gauges the econom

  3. Wind Power Today: 2000 Wind Energy Program Highlights

    Energy Technology Data Exchange (ETDEWEB)

    Weis-Taylor, W.

    2001-05-08

    Wind Power Today is an annual publication that provides an overview of the U.S. Department of Energy's Wind Energy Program. The purpose of Wind Power Today is to show how DOE's Wind Energy Program supports wind turbine research and deployment in hopes of furthering the advancement of wind technologies that produce clean, low-cost, reliable energy. Content objectives include: educate readers about the advantages and potential for widespread deployment of wind energy; explain the program's objectives and goals; describe the program's accomplishments in research and application; examine the barriers to widespread deployment; describe the benefits of continued research and development; facilitate technology transfer; and attract cooperative wind energy projects with industry.

  4. Solar Wind Associated with Near Equatorial Coronal Hole M ...

    Indian Academy of Sciences (India)

    2015-05-25

    May 25, 2015 ... Probably, during the early his- tory of solar system formation, strong solar wind might have played a dominant role. 355 .... (Atmospheric Imaging Assembly), we have considered near equatorial coronal hole data with 1 hour time ... thermal or kinetic energy of the solar wind? (iii) at what height in the solar ...

  5. Footprints in the wind? Environmental impacts of wind power development

    Energy Technology Data Exchange (ETDEWEB)

    Magoha, P. [Jomo Kenyatta University of Agriculture and Technology, Nairobi (Cayman Islands). Dept. of Mechanical Engineering

    2002-10-01

    This paper reviews the environmental impacts of wind power development and examines noise generated by wind turbines, noise control methods, visual impacts and visibility, and the impact on wildlife and natural habitat. Details are given of other impacts such as electromagnetic interference and the disposal of materials used in the manufacture of parts of wind energy converters. Political issues and social costs of wind energy are considered.

  6. Dynamic Frequency Response of Wind Power Plants

    DEFF Research Database (Denmark)

    Altin, Müfit

    to maintain sustainable and reliable operation of the power system for these targets, transmission system operators (TSOs) have revised the grid code requirements. Also, the TSOs are planning the future development of the power system with various wind penetration scenarios to integrate more wind power...... according to their grid codes. In these scenarios particularly with high wind power penetration cases, conventional power plants (CPPs) such as old thermal power plants are planned to be replaced with wind power plants (WPPs). Consequently, the power system stability will be affected and the control...... capability of WPPs would be investigated. The objective of this project is to analyze and identify the power system requirements for the synchronizing power support and inertial response control of WPPs in high wind power penetration scenarios. The dynamic frequency response of WPPs is realized...

  7. Wind and IMP 8 Solar Wind, Magnetosheath and Shock Data

    Science.gov (United States)

    2004-01-01

    The purpose of this project was to provide the community access to magnetosheath data near Earth. We provided 27 years of IMP 8 magnetosheath proton velocities, densities, and temperatures with our best (usually 1-min.) time resolution. IMP 8 crosses the magnetosheath twice each 125 day orbit, and we provided magnetosheath data for the roughly 27 years of data for which magnetometer data are also available (which are needed to reliably pick boundaries). We provided this 27 years of IMP 8 magnetosheath data to the NSSDC; this data is now integrated with the IMP 8 solar wind data with flags indicating whether each data point is in the solar wind, magnetosheath, or at the boundary between the two regions. The plasma speed, density, and temperature are provided for each magnetosheath point. These data are also available on the MIT web site ftp://space .mit.edu/pub/plasma/imp/www/imp.html. We provide ASCII time-ordered rows of data giving the observation time, the spacecraft position in GSE, the velocity is GSE, the density and temperature for protons. We also have analyzed and archived on our web site the Wind magnetosheath plasma parameters. These consist of ascii files of the proton and alpha densities, speeds, and thermal speeds. These data are available at ftp://space.mit.edu/pub/plasma/wind/sheath These are the two products promised in the work statement and they have been completed in full.

  8. Global wind power development: Economics and policies

    International Nuclear Information System (INIS)

    Timilsina, Govinda R.; Cornelis van Kooten, G.; Narbel, Patrick A.

    2013-01-01

    Existing literature indicates that theoretically, the earth's wind energy supply potential significantly exceeds global energy demand. Yet, only 2–3% of global electricity demand is currently derived from wind power despite 27% annual growth in wind generating capacity over the last 17 years. More than 95% of total current wind power capacity is installed in the developed countries plus China and India. Our analysis shows that the economic competitiveness of wind power varies at wider range across countries or locations. A climate change damage cost of US$20/tCO 2 imposed to fossil fuels would make onshore wind competitive to all fossil fuels for power generation; however, the same would not happen to offshore wind, with few exceptions, even if the damage cost is increased to US$100/tCO 2 . To overcome a large number of technical, financial, institutional, market and other barriers to wind power, many countries have employed various policy instruments, including capital subsidies, tax incentives, tradable energy certificates, feed-in tariffs, grid access guarantees and mandatory standards. Besides, climate change mitigation policies, such as the Clean Development Mechanism, have played a pivotal role in promoting wind power. Despite these policies, intermittency, the main technical constraint, could remain as the major challenge to the future growth of wind power. - Highlights: • Global wind energy potential is enormous, yet the wind energy contribution is very small. • Existing policies are boosting development of wind power. • Costs of wind energy are higher than cost of fossil-based energies. • Reasonable premiums for climate change mitigation substantially promote wind power. • Intermittency is the key challenge to future development of wind power

  9. FACTS Devices for Large Wind Power Plants

    DEFF Research Database (Denmark)

    Adamczyk, Andrzej Grzegorz; Teodorescu, Remus; Rodriguez, Pedro

    2010-01-01

    Growing number of wind turbines is changing electricity generation profile all over the world. However, high wind energy penetration affects power system safety and stability. For this reason transmission system operators (TSO) impose more stringent connection requirements on the wind power plant...

  10. Wind Power Today: Wind Energy Program Highlights 2001

    Energy Technology Data Exchange (ETDEWEB)

    2002-05-01

    Wind Power Today is an annual publication that provides an overview of the U.S. Department of Energy's Wind Energy Program accomplishments for the previous year. The purpose of Wind Power Today is to show how DOE's Wind Energy Program supports wind turbine research and deployment in hopes of furthering the advancement of wind technologies that produce clean, low-cost, reliable energy. Content objectives include: educate readers about the advantages and potential for widespread deployment of wind energy; explain the program's objectives and goals; describe the program's accomplishments in research and application; examine the barriers to widespread deployment; describe the benefits of continued research and development; facilitate technology transfer; and attract cooperative wind energy projects with industry. This 2001 edition of Wind Power Today also includes discussions about wind industry growth in 2001, how DOE is taking advantage of low wind speed regions through advancing technology, and distributed applications for small wind turbines.

  11. Power electronics converters for wind turbine systems

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Liserre, Marco; Ma, Ke

    2011-01-01

    The steady growth of installed wind power which reached 200 GW capacity in 2010, together with the up-scaling of the single wind turbine power capability - 7 MW’s has been announced by manufacturers - has pushed the research and development of power converters towards full scale power conversion,...

  12. In the wind of change. The wind power as pacesetters and guide to a fast turn to renewable energies; Im Wind des Wandels. Die Windkraft als Schrittmacher und Wegweiser zu einer schnellen Wende zu Erneuerbaren Energien

    Energy Technology Data Exchange (ETDEWEB)

    Scheer, H.; Alt, F.

    2007-07-01

    All renewable energy potentials (water power, bioenergy, wave power, geothermal energy) clearly are widespread as oil, natural gas, coal or uranium. For these potentials there are natural, spatial restrictions. In contrast to this, there exist any spatial restrictions for solar power and wind force. Under this aspect, the author of the contribution under consideration reports on wind force as a pacesetter and guide to a fast turn to renewable energy. Solar energy and wind energy have two crucial advantages of realizations: (a) The solar power plants and wind power plants can be installed faster than all other plants for generation of electrical power; (b) Solar power plants and wind power plants enable a radical shortening and simplification for the power supply. The generation and supply of electricity from solar power and wind power are also economically undefeatable. It is not a utopia to increase the contribution of the wind energy at the German power generation on basis of the renewable energy law in few years on over 40 %. The thesis, a further development of the wind power only is possible with offshore installations, because no suitable locations are present in the inland, is not correct. The emphasis of the use of wind power must remain with onshore plants. A broad dispersion of wind power plants should have priority, because the grid entrance is more easily realizable. The political attention must be directed toward the overcoming of the permission obstacles. Wind energy enables the passing of electricity from the shade of atomic and fossil power supply.

  13. A proposed national wind power R and D program. [offshore wind power system for electric energy supplies

    Science.gov (United States)

    Heronemus, W.

    1973-01-01

    An offshore wind power system is described that consists of wind driven electrical dc generators mounted on floating towers in offshore waters. The output from the generators supplies underwater electrolyzer stations in which water is converted into hydrogen and oxygen. The hydrogen is piped to shore for conversion to electricity in fuel cell stations. It is estimated that this system can produce 159 x 10 to the ninth power kilowatt-hours per year. It is concluded that solar energy - and that includes wind energy - is the only way out of the US energy dilemma in the not too distant future.

  14. Wind power potential and integration in Africa

    Directory of Open Access Journals (Sweden)

    Agbetuyi, A.F.

    2013-03-01

    Full Text Available Wind energy penetration into power networks is increasing very rapidly all over the world. The great concern about global warming and continued apprehensions about nuclear power around the world should drive most countries in Africa into strong demand for wind generation because of its advantages which include the absence of harmful emissions, very clean and almost infinite availability of wind that is converted into electricity. This paper shows the power available in the wind. It also gives an overview of the wind power potential and integration in some selected Africa countries like Egypt, Morocco, South Africa and Nigeria and the challenges of wind power integration in Africa’s continent are also discussed. The Northern part of Africa is known to be Africa’s Wind pioneers having installed and connected the Wind Energy Converters (WEC to the grid. About 97% of the continent’s total wind installations are located in Egypt, Morocco and Tunisia. Research work should commence on the identified sites with high wind speeds in those selected Africa countries, so that those potential sites can be connected to the grid. This is because the ability of a site to sufficiently accommodate wind generation not only depends on wind speeds but on its ability to interconnect to the existing grid. If these wind energy potentials are tapped and connected to the grid, the erratic and epileptic power supply facing most countries in Africa will be reduced; thereby reducing rural-urban migration and more jobs will be created.

  15. Wind Power Prediction Considering Nonlinear Atmospheric Disturbances

    Directory of Open Access Journals (Sweden)

    Yagang Zhang

    2015-01-01

    Full Text Available This paper considers the effect of nonlinear atmospheric disturbances on wind power prediction. A Lorenz system is introduced as an atmospheric disturbance model. Three new improved wind forecasting models combined with a Lorenz comprehensive disturbance are put forward in this study. Firstly, we define the form of the Lorenz disturbance variable and the wind speed perturbation formula. Then, different artificial neural network models are used to verify the new idea and obtain better wind speed predictions. Finally we separately use the original and improved wind speed series to predict the related wind power. This proves that the corrected wind speed provides higher precision wind power predictions. This research presents a totally new direction in the wind prediction field and has profound theoretical research value and practical guiding significance.

  16. Wind power project; Proyecto eolico

    Energy Technology Data Exchange (ETDEWEB)

    Borja D, Marco A. [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)

    2003-07-01

    In the international scope, nowadays it is recognized that the wind power generation is an innovating activity of high technology that has been integrated to the electrical systems in order to diversify the power generation and to foment the sustainable development. In several industrialized countries no one discusses any longer if wind power generation is a viable alternative or not, because in the last ten years the facts have widely demonstrated their technical viability and environmental advantage with respect to the conventional generation schemes. [Spanish] En el ambito internacional, hoy en dia se reconoce que la generacion eoloelectrica es una actividad innovadora de alta tecnologia que se ha integrado a los sistemas electricos con el proposito de diversificar la generacion de electricidad y fomentar el desarrollo sustentable. En varios paises industrializados ya no se discute si la generacion eoloelectrica es una alternativa viable o no, pues en los ultimos diez anos los hechos han demostrado ampliamente su viabilidad tecnica y ventaja ambiental respecto a la generacion convencional.

  17. Solar and wind exergy potentials for Mars

    International Nuclear Information System (INIS)

    Delgado-Bonal, Alfonso; Martín-Torres, F. Javier; Vázquez-Martín, Sandra; Zorzano, María-Paz

    2016-01-01

    The energy requirements of the planetary exploration spacecrafts constrain the lifetime of the missions, their mobility and capabilities, and the number of instruments onboard. They are limiting factors in planetary exploration. Several missions to the surface of Mars have proven the feasibility and success of solar panels as energy source. The analysis of the exergy efficiency of the solar radiation has been carried out successfully on Earth, however, to date, there is not an extensive research regarding the thermodynamic exergy efficiency of in-situ renewable energy sources on Mars. In this paper, we analyse the obtainable energy (exergy) from solar radiation under Martian conditions. For this analysis we have used the surface environmental variables on Mars measured in-situ by the Rover Environmental Monitoring Station onboard the Curiosity rover and from satellite by the Thermal Emission Spectrometer instrument onboard the Mars Global Surveyor satellite mission. We evaluate the exergy efficiency from solar radiation on a global spatial scale using orbital data for a Martian year; and in a one single location in Mars (the Gale crater) but with an appreciable temporal resolution (1 h). Also, we analyse the wind energy as an alternative source of energy for Mars exploration and compare the results with those obtained on Earth. We study the viability of solar and wind energy station for the future exploration of Mars, showing that a small square solar cell of 0.30 m length could maintain a meteorological station on Mars. We conclude that the low density of the atmosphere of Mars is responsible of the low thermal exergy efficiency of solar panels. It also makes the use of wind energy uneffective. Finally, we provide insights for the development of new solar cells on Mars. - Highlights: • We analyse the exergy of solar radiation under Martian environment • Real data from in-situ instruments is used to determine the maximum efficiency of radiation • Wind

  18. Financing Solar Thermal Power Plants

    International Nuclear Information System (INIS)

    Price, Henry W.; Kistner, Rainer

    1999-01-01

    The commercialization of concentrating solar power technology took a major step forward in the mid 1980s and early 1990s with the development of the SEGS plants in California. Over the years they have proven that parabolic trough power technologies are the most cost-effective approach for commercial scale solar power generation in the sunbelt countries of the world. However, the question must be asked why no additional solar power plants have been build following the bankruptcy of the developer of the SEGS projects, LUZ International Limited. Although many believe the SEGS projects were a success as a result of parabolic trough technology they employ, in truth, the SEGS projects were developed simply because they represented an attractive opportunity for investors. Simply stated, no additional projects have been developed because no one has been able to put together a similarly attractive financial package to potential investors. More than $1.2 billion in private capital was raised in debt and equity financing for the nine SEGS plants. Investors and bankers who make these investments are the real clients for solar power technologies. They are not interested in annual solar to electric efficiencies, but in risk, return on investments, and coverage ratios. This paper will take a look at solar power projects from the financier's perspective. The challenge in moving forward is to attract private investors, commercial lenders, and international development agencies and to find innovative solutions to the difficult issues that investment in the global power market poses for solar power technologies

  19. Financing solar thermal power plants

    International Nuclear Information System (INIS)

    Kistner, R.; Price, H.

    1999-01-01

    The commercialization of concentrating solar power technology took a major step forward in the mid 1980s and early 1990s with the development of the SEGS plants in California. Over the years they have proven that parabolic trough power technologies are the most cost-effective approach for commercial scale solar power generation in the sunbelt countries of the world. However, the question must be asked why no additional solar power plants have been built following the bankruptcy of the developer of the SEGS projects, LUZ International Limited. Although many believe the SEGS projects were a success as a result of parabolic trough technology they employ, in truth, the SEGS projects were developed simply because they represented an attractive opportunity for investors. Simply states, no additional projects have been developed because no one has been able to put together a similarly attractive financial package to potential investors. More than $1.2 billion in private capital was raised in debt and equity financing for the nine SEGS plants. Investors and bankers who make these investments are the real clients for solar power technologies. They are not interested in annual solar to electric efficiencies, but in risk, return on investments, and coverage ratios. This paper will take a look at solar power projects form the financier's perspective. The challenge in moving forward is to attract private investors, commercial lenders, and international development agencies and to find innovative solutions to the difficult issues that investment in the global power market poses for solar power technologies

  20. Generalized similarity in magnetohydrodynamic turbulence as seen in the solar corona and solar wind

    Science.gov (United States)

    Chapman, S. C.; Leonardis, E.; Nicol, R. M.; Foullon, C.

    2010-12-01

    A key property of turbulence is that it can be characterized and quantified in a robust and reproducible way in terms of the ensemble averaged statistical properties of fluctuations. Importantly, fluctuations associated with a turbulent field show similarity or scaling in their statistics and we test for this in observations of magnetohydrodynamic turbulence in the solar corona and solar wind with both power spectra and Generalized Structure Functions. Realizations of turbulence that are finite sized are known to exhibit a generalized or extended self-similarity (ESS). ESS was recently demonstrated in magnetic field timeseries of Ulysses single point in-situ observations of fluctuations of quiet solar wind for which a single robust scaling function was found [1-2]. Flows in solar coronal prominences can be highly variable, with dynamics suggestive of turbulence. The Hinode SOT instrument provides observations (images) at simultaneous high spatial and temporal resolution which span several decades in both spatial and temporal scales. We focus on specific Calcium II H-line observations of solar quiescent prominences with dynamic, highly variable small-scale flows. We analyze these images from the perspective of a finite sized turbulent flow. We discuss this evidence of ESS in the SOT images and in Ulysses solar wind observations- is there a single universal scaling of the largest eddies in the finite range magnetohydrodynamic turbulent flow? [1] S. C. Chapman, R. M. Nicol, Generalized Similarity in Finite Range Solar Wind Magnetohydrodynamic Turbulence, Phys. Rev. Lett., 103, 241101 (2009) [2] S. C. Chapman, R. M. Nicol, E. Leonardis, K. Kiyani, V. Carbone, Observation of universality in the generalized similarity of evolving solar wind turbulence as seen by ULYSSES, Ap. J. Letters, 695, L185, (2009)

  1. Application of synchronous grid-connected controller in the wind-solar-storage micro grid

    OpenAIRE

    Li, Hua; Ren, Yongfeng; Li, Le; Luo, Zhenpeng

    2016-01-01

    Recently, there has been an increasing interest in using distributed generators (DG) not only to inject power into the grid, but also to enhance the power quality. In this study, a space voltage pulse width modulation (SVPWM) control method is proposed for a synchronous grid-connected controller in a wind-solar-storage micro grid. This method is based on the appropriate topology of the synchronous controller. The wind-solar-storage micro grid is controlled to reconnect to the grid synchronous...

  2. A desalination plant with solar and wind energy

    International Nuclear Information System (INIS)

    Chen, H; Ye, Z; Gao, W

    2013-01-01

    The shortage of freshwater resources has become a worldwide problem. China has a water shortage, although the total amount of water resources is the sixth in the world, the per capita water capacity is the 121th (a quarter of the world's per capita water capacity), and the United Nations considers China one of the poorest 13 countries in the world in terms of water. In order to increase the supply of fresh water, a realistic way is to make full use of China's long and narrow coastline for seawater desalination. This paper discusses a sea water desalination device, the device adopts distillation, uses the greenhouse effect principle and wind power heating principle, and the two-type start is used to solve the problem of vertical axis wind turbine self-starting. Thrust bearings are used to ensure the stability of the device, and to ensure absorbtion of wind energy and solar energy, and to collect evaporation of water to achieve desalination. The device can absorb solar and wind energy instead of input energy, so it can be used in ship, island and many kinds of environment. Due to the comprehensive utilization of wind power and solar power, the efficiency of the device is more than other passive sea water desalting plants, the initial investment and maintenance cost is lower than active sea water desalting plant. The main part of the device cannot only be used in offshore work, but can also be used in deep sea floating work, so the device can utilise deep sea energy. In order to prove the practicability of the device, the author has carried out theory of water production calculations. According to the principle of conservation of energy, the device ais bsorbing solar and wind power, except loose lost part which is used for water temperature rise and phase transition. Assume the inflow water temperature is 20 °C, outflow water temperature is 70 °C, the energy utilization is 60%, we can know that the water production quantity is 8 kg/ m 2 per hour. Comparing

  3. A desalination plant with solar and wind energy

    Science.gov (United States)

    Chen, H.; Ye, Z.; Gao, W.

    2013-12-01

    The shortage of freshwater resources has become a worldwide problem. China has a water shortage, although the total amount of water resources is the sixth in the world, the per capita water capacity is the 121th (a quarter of the world's per capita water capacity), and the United Nations considers China one of the poorest 13 countries in the world in terms of water. In order to increase the supply of fresh water, a realistic way is to make full use of China's long and narrow coastline for seawater desalination. This paper discusses a sea water desalination device, the device adopts distillation, uses the greenhouse effect principle and wind power heating principle, and the two-type start is used to solve the problem of vertical axis wind turbine self-starting. Thrust bearings are used to ensure the stability of the device, and to ensure absorbtion of wind energy and solar energy, and to collect evaporation of water to achieve desalination. The device can absorb solar and wind energy instead of input energy, so it can be used in ship, island and many kinds of environment. Due to the comprehensive utilization of wind power and solar power, the efficiency of the device is more than other passive sea water desalting plants, the initial investment and maintenance cost is lower than active sea water desalting plant. The main part of the device cannot only be used in offshore work, but can also be used in deep sea floating work, so the device can utilise deep sea energy. In order to prove the practicability of the device, the author has carried out theory of water production calculations. According to the principle of conservation of energy, the device ais bsorbing solar and wind power, except loose lost part which is used for water temperature rise and phase transition. Assume the inflow water temperature is 20 °C, outflow water temperature is 70 °C, the energy utilization is 60%, we can know that the water production quantity is 8 kg/ m2 per hour. Comparing with the

  4. Power System Operation with Large Scale Wind Power Integration

    DEFF Research Database (Denmark)

    Suwannarat, A.; Bak-Jensen, B.; Chen, Z.

    2007-01-01

    The Danish power system starts to face problems of integrating thousands megawatts of wind power, which produce in a stochastic behavior due to natural wind fluctuations. With wind power capacities increasing, the Danish Transmission System Operator (TSO) is faced with new challenges related...... to the uncertain nature of wind power. In this paper, proposed models of generations and control system are presented which analyze the deviation of power exchange at the western Danish-German border, taking into account the fluctuating nature of wind power. The performance of the secondary control of the thermal...... power plants and the spinning reserves control from the Combined Heat and Power (CHP) units to achieve active power balance with the increased wind power penetration is presented....

  5. Role and Nature of Intermittency in Solar Wind Alfvénic Turbulence: Wind Observations.

    Science.gov (United States)

    Salem, C. S.; Mangeney, A.; Bale, S. D.

    2006-12-01

    In the Alfvénic regime, i.e. for frequencies below the local proton cyclotron frequency, solar wind MHD turbulence exhibits what appears like an inertial domain, with power-law spectra and scale-invariance, suggesting as in fluid turbulence, a nonlinear energy cascade from the large "energy containing" scales towards much smaller scales, where dissipation via kinetic effects is presumed to act. However, the intermittent character of the solar wind fluctuations in the inertial range is much more important than in ordinary fluids. Indeed, the fluctuations consist of a mixture of random fluctuations and small-scale "singular" or coherent structures. This intermittency modifies significantly the scaling exponents of actual power-law spectra, which are directly related to the physical nature of the energy cascade taking place in the solar wind. The identification of the most intermittent structures and their relation to dissipation represents then a crucial problem in the framework of turbulence. We will discuss here recent results on scaling laws and intermittency based on the use of Wavelet transforms on simultaneous WIND 3s resolution particle and magnetic field data from the 3DP and the MFi experiments respectively. More specifically, the Haar Wavelet transform is used to compute spectra, structure functions and probability distribution functions (PDFs). We show that this powerful technique allows: (1) for a systematic elimination of intermittency effects on spectra and structure functions and thus for a clear determination of the actual scaling properties in the inertial range, and (2) for a direct and systematic identification of the most active, singular structures responsible for the intermittency in the solar wind. The analysis of structure functions and PDFs will be reviewed and new results on the nature of the intermittent coherent structures will be presented.

  6. Scale-Invariance and Intermittency in the Solar Wind Alfvénic Turbulence: Wind Observations

    Science.gov (United States)

    Salem, C. S.; Mangeney, A.; Bale, S. D.; Veltri, P.

    2004-12-01

    In the "Alfvénic" regime, i.e. for frequencies below the local proton cyclotron frequency, solar wind MHD turbulence exhibits what appears like an inertial domain, with power-law spectra and scale-invariance, suggesting as in fluid turbulence, a nonlinear energy cascade from the large "energy containing" scales towards the small scales where dissipation by kinetic effects is presumed to act. However, the intermittent character of solar wind fluctuations is much more important than in ordinary fluids. Indeed, the fluctuations consist of a mixture of random fluctuations and small-scale "singular" or coherent structures. This intermittency modifies significantly the scaling exponents of actual power-law spectra, which are directly related to the physical nature of the energy cascade taking place in the solar wind. The identification of the most intermittent structures and their relation to dissipation represents then a crucial problem in the framework of turbulence. We present here a new approach to study the scaling laws and intermittency based on the use of Wavelet transforms on simultaneous WIND 3s resolution particle and magnetic field data from the 3DP and the MFi experiments respectively. Using the Haar wavelet transform, spectra and structure functions are calculated. We show that this powerful technique allows: (1) for a systematic elimination of intermittency effects on spectra and structure functions and thus for a clear determination of the actual scaling properties in the inertial range, and (2) for a direct and systematic identification of the most active, singular structures responsible for the intermittency in the solar wind. We finally discuss the various effects which may be important for the formation of these structures in the absence of collisions.

  7. Improving wind power quality with energy storage

    DEFF Research Database (Denmark)

    Rasmussen, Claus Nygaard

    2009-01-01

    The results of simulation of the influence of energy storage on wind power quality are presented. Simulations are done using a mathematical model of energy storage. Results show the relation between storage power and energy, and the obtained increase in minimum available power from the combination...... of wind and storage. The introduction of storage enables smoothening of wind power on a timescale proportional to the storage energy. Storage does not provide availability of wind power at all times, but allows for a certain fraction of average power in a given timeframe to be available with high...... probability. The amount of storage capacity necessary for significant wind power quality improvement in a given period is found to be 20 to 40% of the energy produced in that period. The necessary power is found to be 80 to 100% of the average power of the period....

  8. Balancing modern Power System with large scale of wind power

    DEFF Research Database (Denmark)

    Basit, Abdul; Altin, Müfit; Hansen, Anca Daniela

    2014-01-01

    Power system operators must ensure robust, secure and reliable power system operation even with a large scale integration of wind power. Electricity generated from the intermittent wind in large propor-tion may impact on the control of power system balance and thus deviations in the power system...... frequency in small or islanded power systems or tie line power flows in interconnected power systems. Therefore, the large scale integration of wind power into the power system strongly concerns the secure and stable grid operation. To ensure the stable power system operation, the evolving power system has...... to be analysed with improved analytical tools and techniques. This paper proposes techniques for the active power balance control in future power systems with the large scale wind power integration, where power balancing model provides the hour-ahead dispatch plan with reduced planning horizon and the real time...

  9. Modeling lifetime of high power IGBTs in wind power applications

    DEFF Research Database (Denmark)

    Busca, Cristian

    2011-01-01

    The wind power industry is continuously developing bringing to the market larger and larger wind turbines. Nowadays reliability is more of a concern than in the past especially for the offshore wind turbines since the access to offshore wind turbines in case of failures is both costly and difficult....... Lifetime modeling of future large wind turbines is needed in order to make reliability predictions about these new wind turbines early in the design phase. By doing reliability prediction in the design phase the manufacturer can ensure that the new wind turbines will live long enough. This paper represents...... an overview of the different aspects of lifetime modeling of high power IGBTs in wind power applications. In the beginning, wind turbine reliability survey results are briefly reviewed in order to gain an insight into wind turbine subassembly failure rates and associated downtimes. After that the most common...

  10. Solar wind velocity and geomagnetic moment variations

    International Nuclear Information System (INIS)

    Kalinin, Yu.D.; Rozanova, T.S.

    1982-01-01

    The mean year values of the solar wind velocity have been calculated from the mean-year values of a geomagnetic activity index am according to the Svalgard equation of regression for the pe-- riod from 1930 to 1960. For the same years the values of the geomagnetic moment M and separately of its ''inner'' (causes of which'' are inside the Earth) and ''external'' (causes of which are outside the Earth) parts have been calculated from the mean year data of 12 magnetic observatories. The proof of the presence of the 11-year variation in the moment M has been obtained. It is concluded that the 11-year variations in M result from the variations of the solar wind velocity

  11. Feasibility of wind power generation in Ghana | Ayensu | Journal of ...

    African Journals Online (AJOL)

    For payback period of 10 years, the projected cost of the energy produced by a single turbine was estimated to be GHC 0.30 (~ 20 cents) per kWh (compared to 14 cents/kWh for photovoltaic generation and 10 cents/kWh for solar thermal), which therefore makes large scale optimized wind power generation competitive in ...

  12. Wind Power Forecasting Error Frequency Analyses for Operational Power System Studies: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Florita, A.; Hodge, B. M.; Milligan, M.

    2012-08-01

    The examination of wind power forecasting errors is crucial for optimal unit commitment and economic dispatch of power systems with significant wind power penetrations. This scheduling process includes both renewable and nonrenewable generators, and the incorporation of wind power forecasts will become increasingly important as wind fleets constitute a larger portion of generation portfolios. This research considers the Western Wind and Solar Integration Study database of wind power forecasts and numerical actualizations. This database comprises more than 30,000 locations spread over the western United States, with a total wind power capacity of 960 GW. Error analyses for individual sites and for specific balancing areas are performed using the database, quantifying the fit to theoretical distributions through goodness-of-fit metrics. Insights into wind-power forecasting error distributions are established for various levels of temporal and spatial resolution, contrasts made among the frequency distribution alternatives, and recommendations put forth for harnessing the results. Empirical data are used to produce more realistic site-level forecasts than previously employed, such that higher resolution operational studies are possible. This research feeds into a larger work of renewable integration through the links wind power forecasting has with various operational issues, such as stochastic unit commitment and flexible reserve level determination.

  13. Mirror Instability in the Turbulent Solar Wind

    Czech Academy of Sciences Publication Activity Database

    Hellinger, Petr; Landi, S.; Matteini, L.; Verdini, A.; Franci, L.

    2017-01-01

    Roč. 838, č. 2 (2017), č. článku 158. ISSN 0004-637X Institutional support: RVO:68378289 Keywords : instabilities * solar wind * turbulence * waves Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 5.533, year: 2016 http://iopscience.iop.org/article/10.3847/1538-4357/aa67e0

  14. Wind power error estimation in resource assessments.

    Science.gov (United States)

    Rodríguez, Osvaldo; Del Río, Jesús A; Jaramillo, Oscar A; Martínez, Manuel

    2015-01-01

    Estimating the power output is one of the elements that determine the techno-economic feasibility of a renewable project. At present, there is a need to develop reliable methods that achieve this goal, thereby contributing to wind power penetration. In this study, we propose a method for wind power error estimation based on the wind speed measurement error, probability density function, and wind turbine power curves. This method uses the actual wind speed data without prior statistical treatment based on 28 wind turbine power curves, which were fitted by Lagrange's method, to calculate the estimate wind power output and the corresponding error propagation. We found that wind speed percentage errors of 10% were propagated into the power output estimates, thereby yielding an error of 5%. The proposed error propagation complements the traditional power resource assessments. The wind power estimation error also allows us to estimate intervals for the power production leveled cost or the investment time return. The implementation of this method increases the reliability of techno-economic resource assessment studies.

  15. Network wind power over the Pacific Northwest

    Energy Technology Data Exchange (ETDEWEB)

    Hewson, E W; Baker, R W; Barber, D A; Peterson, B

    1978-09-01

    Since 1975 the Bonneville Power Administration (BPA) has been sponsoring wind power research at Oregon State University. A feasibility study that initially concentrated on the wind power potential in the Columbia River Gorge has expanded to the BPA service area which covers Washington, Oregon, Idaho, western Montana and northern Nevada. Previous BPA reports have documented the progress of this research.

  16. The Solar Wind and The Sun in the Past

    Science.gov (United States)

    Wood, Brian E.

    Exposure to the solar wind can have significant long term consequences for planetary atmospheres, especially for planets such as Mars that are not protected by global magnetospheres. Estimating the effects of solar wind exposure requires knowledge of the history of the solar wind. Much of what we know about the Sun's past behavior is based on inferences from observations of young solar-like stars. Stellar analogs of the weak solar wind cannot be detected directly, but the interaction regions between these winds and the interstellar medium have been detected and used to estimate wind properties. I here review these observations, with emphasis on what they suggest about the history of the solar wind.

  17. Solar Wind drivers affecting GIC magnitude in New Zealand.

    Science.gov (United States)

    Mac Manus, D. H.; Rodger, C. J.; Dalzell, M.; Petersen, T.; Clilverd, M. A.

    2017-12-01

    Interplanetary shocks arriving at the Earth drive magnetosphere and ionosphere current systems. Ground based magnetometers detect the time derivation of the horizontal magnetic field (dBH/dt) which can indicate the strength of these ionospheric currents. The strong dBH/dt spikes have been observed to cause large Geomagnetically Induced Currents (GIC) in New Zealand. Such could, potentially lead to large scale damage to technological infrastructure such as power network transformers; one transformer was written off in New Zealand after a sudden commencement on 6 November 2001. The strength of the incoming interplanetary shocks are monitored by satellite measurements undertaken at the L1 point. Such measurements could give power network operators a 20-60 minute warning before potentially damaging GIC occurs. In this presentation we examine solar wind measurements from the Advanced Composition Explorer (ACE), Wind, and the Solar and Heliospheric Observatory (SOHO). We contrast those solar wind observations with GIC measured in New Zealand's South Island from 2001 to 2016. We are searching for a consistent relationship between the incoming interplanetary shock and the GIC magnitude. Such a relationship would allow Transpower New Zealand Limited a small time window to implement mitigation plans in order to restrict any GIC-caused damage.

  18. Construction of Solar-Wind-Like Magnetic Fields

    Science.gov (United States)

    Roberts, Dana Aaron

    2012-01-01

    Fluctuations in the solar wind fields tend to not only have velocities and magnetic fields correlated in the sense consistent with Alfven waves traveling from the Sun, but they also have the magnitude of the magnetic field remarkably constant despite their being broadband. This paper provides, for the first time, a method for constructing fields with nearly constant magnetic field, zero divergence, and with any specified power spectrum for the fluctuations of the components of the field. Every wave vector, k, is associated with two polarizations the relative phases of these can be chosen to minimize the variance of the field magnitude while retaining the\\random character of the fields. The method is applied to a case with one spatial coordinate that demonstrates good agreement with observed time series and power spectra of the magnetic field in the solar wind, as well as with the distribution of the angles of rapid changes (discontinuities), thus showing a deep connection between two seemingly unrelated issues. It is suggested that using this construction will lead to more realistic simulations of solar wind turbulence and of the propagation of energetic particles.

  19. Concentrated solar thermal power - Now

    Energy Technology Data Exchange (ETDEWEB)

    Aringhoff, R.; Brakmann, G. [Solar Thermal Power Industry Association ESTIA, Avenue de la Fauconnerie 73, 1170 Brussels (Belgium); Geyer, M. [IEA SolarPACES Implementing Agreement, Avenida de la Paz 51, 04720 Aguadulce, Almeria (Spain); Teske, S. [Greenpeace International, Ottho Heldringstraat 5, 1066 AZ Amsterdam (Netherlands)

    2005-09-15

    This report demonstrates that there are no technical, economic or resource barriers to supplying 5% of the world's electricity needs from solar thermal power by 2040. It is written as practical blueprint to improve understanding of the solar thermal contribution to the world energy supply.

  20. Western Wind and Solar Integration Study Phase 3 – Frequency Response and Transient Stability

    Energy Technology Data Exchange (ETDEWEB)

    Miller, N. W. [GE Energy Management, Schenectady, NY (United States); Shao, M. [GE Energy Management, Schenectady, NY (United States); Pajic, S. [GE Energy Management, Schenectady, NY (United States); D' Aquila, R. [GE Energy Management, Schenectady, NY (United States)

    2014-12-01

    Power system operators and utilities worldwide have concerns about the impact of high-penetration wind and solar generation on electric grid reliability (EirGrid 2011b, Hydro-Quebec 2006, ERCOT 2010). The stability of North American grids under these conditions is a particular concern and possible impediment to reaching future renewable energy goals. Phase 3 of the Western Wind and Solar Integration Study (WWSIS-3) considers a 33% wind and solar annual energy penetration level that results in substantial changes to the characteristics of the bulk power system, including different power flow patterns, different commitment and dispatch of existing synchronous generation, and different dynamic behavior of wind and solar generation. WWSIS-3 evaluates two specific aspects of fundamental frequency system stability: frequency response and transient stability.

  1. Use of meteorological information in the risk analysis of a mixed wind farm and solar

    Science.gov (United States)

    Mengelkamp, H.-T.; Bendel, D.

    2010-09-01

    Use of meteorological information in the risk analysis of a mixed wind farm and solar power plant portfolio H.-T. Mengelkamp*,** , D. Bendel** *GKSS Research Center Geesthacht GmbH **anemos Gesellschaft für Umweltmeteorologie mbH The renewable energy industry has rapidly developed during the last two decades and so have the needs for high quality comprehensive meteorological services. It is, however, only recently that international financial institutions bundle wind farms and solar power plants and offer shares in these aggregate portfolios. The monetary value of a mixed wind farm and solar power plant portfolio is determined by legal and technical aspects, the expected annual energy production of each wind farm and solar power plant and the associated uncertainty of the energy yield estimation or the investment risk. Building an aggregate portfolio will reduce the overall uncertainty through diversification in contrast to the single wind farm/solar power plant energy yield uncertainty. This is similar to equity funds based on a variety of companies or products. Meteorological aspects contribute to the diversification in various ways. There is the uncertainty in the estimation of the expected long-term mean energy production of the wind and solar power plants. Different components of uncertainty have to be considered depending on whether the power plant is already in operation or in the planning phase. The uncertainty related to a wind farm in the planning phase comprises the methodology of the wind potential estimation and the uncertainty of the site specific wind turbine power curve as well as the uncertainty of the wind farm effect calculation. The uncertainty related to a solar power plant in the pre-operational phase comprises the uncertainty of the radiation data base and that of the performance curve. The long-term mean annual energy yield of operational wind farms and solar power plants is estimated on the basis of the actual energy production and it

  2. Solar Wind Associated with Near Equatorial Coronal Hole M ...

    Indian Academy of Sciences (India)

    2015-05-25

    May 25, 2015 ... pute coronal hole radiative energy near the earth and it is found to be of similar order as that of ... hole and energy due to solar wind, it is conjectured that solar wind might have originated around the ..... velocity Vsw (assuming wind velocity is constant throughout from the source to the place of observation) ...

  3. Challenges on wind power development in China

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Qianjin; Shi, Jingli

    2010-09-15

    Wind power has experienced exponential growth in China in the past five years, which exceeds the most optimistic expectations. The increasing penetration and aggressive future plan are arousing big concerns about its impact on operation and security of existing power networks. This paper introduces present condition of wind power development in China and the challenges on both grid integration and regulations. Most of these challenges are economical rather than technical. Feed-in tariff policies and grid code are the key countermeasures. Accurate wind forecast and economical mass energy storage are needed to guarantee compliance of wind power to the grid.

  4. A survey on wind power ramp forecasting.

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, C.; Gama, J.; Matias, L.; Botterud, A.; Wang, J. (Decision and Information Sciences); (INESC Porto)

    2011-02-23

    The increasing use of wind power as a source of electricity poses new challenges with regard to both power production and load balance in the electricity grid. This new source of energy is volatile and highly variable. The only way to integrate such power into the grid is to develop reliable and accurate wind power forecasting systems. Electricity generated from wind power can be highly variable at several different timescales: sub-hourly, hourly, daily, and seasonally. Wind energy, like other electricity sources, must be scheduled. Although wind power forecasting methods are used, the ability to predict wind plant output remains relatively low for short-term operation. Because instantaneous electrical generation and consumption must remain in balance to maintain grid stability, wind power's variability can present substantial challenges when large amounts of wind power are incorporated into a grid system. A critical issue is ramp events, which are sudden and large changes (increases or decreases) in wind power. This report presents an overview of current ramp definitions and state-of-the-art approaches in ramp event forecasting.

  5. Wind power in Norway; Vindkraft i Norge

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-01

    This report analyses business costs and socio-economic costs in the development of wind power in Norway and policy instruments to encourage such a development. It is founded on an analysis of the development of wind power in other countries, notably U.S.A, Denmark, Germany, the Netherlands and Britain. The report describes the institutional background in each country, the policy instruments that have been used and still are and the results achieved. The various cost components in Norwegian wind power development and the expected market price of wind power are also discussed. The discussion of instruments distinguishes between investment oriented and production oriented instruments. 8 refs., 9 figs., 3 tabs.

  6. Analysis of the power system impacts and value of wind power ...

    African Journals Online (AJOL)

    Present electricity grids are predominantly thermal (coal, gas), hydro and nuclear based. Conventional power planning involves hydro-thermal scheduling and merit order dispatch. In the future, modern renewables (wind, solar, biomass) are likely to have a significant share in the power sector. This paper presents a method ...

  7. Association Between the Solar Wind Speed, Interplanetary Magnetic ...

    Indian Academy of Sciences (India)

    Meena Pokharia

    2017-11-27

    Nov 27, 2017 ... Abstract. The purpose of the present study is to investigate the association of the cosmic ray intensity (CRI) and interplanetary magnetic field (IMF) with high speed solar wind streams (HSSWS) and slow speed solar wind streams (SSSWS) for solar cycle −23 and 24. We have found very interesting and ...

  8. Association Between the Solar Wind Speed, Interplanetary Magnetic ...

    Indian Academy of Sciences (India)

    The purpose of the present study is to investigate the association of the cosmic ray intensity (CRI) and interplanetary magnetic field (IMF) with high speed solar wind streams (HSSWS) and slow speed solar wind streams (SSSWS) for solar cycle −23 and 24. We have found very interesting and adequate results where CRI ...

  9. Wind Turbine and Wind Power Plant Modelling Aspects for Power System Stability Studies

    DEFF Research Database (Denmark)

    Altin, Müfit; Hansen, Anca Daniela; Göksu, Ömer

    2014-01-01

    is not reasonable regarding the focus of the study. Therefore the power system operators should be aware of the modelling aspects of the wind power considering the related stability study and implement the required model in the appropriate power system toolbox. In this paper, the modelling aspects of wind turbines...... and wind power plants are reviewed for power system stability studies. Important remarks of the models are presented by means of simulations to emphasize the impact of these modelling details on the power system.......Large amount of wind power installations introduce modeling challenges for power system operators at both the planning and operational stages of power systems. Depending on the scope of the study, the modeling details of the wind turbine or the wind power plant are required to be different. A wind...

  10. Wind power generation and dispatch in competitive power markets

    Science.gov (United States)

    Abreu, Lisias

    Wind energy is currently the fastest growing type of renewable energy. The main motivation is led by more strict emission constraints and higher fuel prices. In addition, recent developments in wind turbine technology and financial incentives have made wind energy technically and economically viable almost anywhere. In restructured power systems, reliable and economical operation of power systems are the two main objectives for the ISO. The ability to control the output of wind turbines is limited and the capacity of a wind farm changes according to wind speeds. Since this type of generation has no production costs, all production is taken by the system. Although, insufficient operational planning of power systems considering wind generation could result in higher system operation costs and off-peak transmission congestions. In addition, a GENCO can participate in short-term power markets in restructured power systems. The goal of a GENCO is to sell energy in such a way that would maximize its profitability. However, due to market price fluctuations and wind forecasting errors, it is essential for the wind GENCO to keep its financial risk at an acceptable level when constituting market bidding strategies. This dissertation discusses assumptions, functions, and methodologies that optimize short-term operations of power systems considering wind energy, and that optimize bidding strategies for wind producers in short-term markets. This dissertation also discusses uncertainties associated with electricity market environment and wind power forecasting that can expose market participants to a significant risk level when managing the tradeoff between profitability and risk.

  11. Changing wind-power landscapes

    DEFF Research Database (Denmark)

    Möller, Bernd

    2006-01-01

    After more than 25 years of continuous development, Danish wind-energy landscapes are due for face changes. On-shore construction has ceased and necessary re-powering schemes have not been introduced as yet. Regional planning is discouraging, while conditions for erecting new turbines have become...... more stringent. One of the factors inhibiting development seems to be uncertainty in planning about the future impact on landscapes. Visual impact has rarely been an issue so far, but ever-increasing turbine size and less local involvement may change this. This paper presents a deterministic approach...... of determining the likely visual-impact on landscapes and population, taking into account that there is no clear threshold for perceived adverse visual-impact. A geographical information system (GIS) has been used to build a regional landscape model for Northern Jutland County, which is used to assess visibility...

  12. How wind power landscapes change

    DEFF Research Database (Denmark)

    Möller, Bernd

    2006-01-01

    viewsheds are computed for a variety of thresholds of visual impact, and since overlaid with population and land use data. The results indicate that the construction of new turbines replacing 40% of the old turbine stock and raising the installed capacity by 20% will not add to the comparative impact......Following 25 years of continuous development, Danish wind energy landscapes are going to face changes. Ceased on-shore construction, unresolved re-powering and stalled regional planning characterize the situation overshadowed by off-shore development. One of the factors inhibiting development...... appears to be planning uncertainty regarding the future impact on landscapes. Visual impact has seldom been an issue so far, but growing turbine size and less local involvement may change this. This paper presents a deterministic approach of quantifying percieved visual impact on landscapes and population...

  13. Wind Power: The Economic Impact of Intermittency

    OpenAIRE

    G. Cornelis van Kooten

    2009-01-01

    Wind is the fastest growing renewable energy source for generating electricity, but economic research lags behind. In this study, therefore, we examine the economics of integrating large-scale wind energy into an existing electrical grid. Using a simple grid management model to investigate the impact of various levels of wind penetration on grid management costs, we show that costs of reducing CO2 emissions by relying more on wind power depend on the generation mix of the existing electrical ...

  14. Wind Power Prediction Considering Nonlinear Atmospheric Disturbances

    OpenAIRE

    Yagang Zhang; Jingyun Yang; Kangcheng Wang; Zengping Wang

    2015-01-01

    This paper considers the effect of nonlinear atmospheric disturbances on wind power prediction. A Lorenz system is introduced as an atmospheric disturbance model. Three new improved wind forecasting models combined with a Lorenz comprehensive disturbance are put forward in this study. Firstly, we define the form of the Lorenz disturbance variable and the wind speed perturbation formula. Then, different artificial neural network models are used to verify the new idea and obtain better wind spe...

  15. Solar wind rare gas analysis: Trapped solar wind helium and neon in Surveyor 3 material

    Science.gov (United States)

    Buehler, F.; Eberhardt, P.; Geiss, J.; Schwarzmueller, J.

    1972-01-01

    The He-4 and Ne-20 contents in sections of the Surveyor 3 support strut samples were determined by optical and scanning electron microscopy and are compared to the results of the Apollo solar wind composition (SWC) experiments. The He-4/Ne-20 ratio in the samples from the sunlit side of the strut was approximately 300; the ratios determined in Apollo 12 lunar fines and SWC foil were below 100. The He-4/He-3 ratios were also determined, and the ratio obtained from Surveyor 3 material is higher than those found with Apollo 11 and 12 SWC experiments. The effects of spallation by cosmic rays or solar protons, stripping by cosmic ray or energetic solar alpha particles, recycling of solar wind He and radiogenic Ne, He from terrestrial atmosphere, mass discrimination near the moon, mass dependence of trapping probability, diffusion, and contamination by lunar dust are considered.

  16. On the Origins of the Intercorrelations Between Solar Wind Variables

    Science.gov (United States)

    Borovsky, Joseph E.

    2018-01-01

    It is well known that the time variations of the diverse solar wind variables at 1 AU (e.g., solar wind speed, density, proton temperature, electron temperature, magnetic field strength, specific entropy, heavy-ion charge-state densities, and electron strahl intensity) are highly intercorrelated with each other. In correlation studies of the driving of the Earth's magnetosphere-ionosphere-thermosphere system by the solar wind, these solar wind intercorrelations make determining cause and effect very difficult. In this report analyses of solar wind spacecraft measurements and compressible-fluid computer simulations are used to study the origins of the solar wind intercorrelations. Two causes are found: (1) synchronized changes in the values of the solar wind variables as the plasma types of the solar wind are switched by solar rotation and (2) dynamic interactions (compressions and rarefactions) in the solar wind between the Sun and the Earth. These findings provide an incremental increase in the understanding of how the Sun-Earth system operates.

  17. Solar thermal and concentrated solar power barometer

    International Nuclear Information System (INIS)

    2013-01-01

    The European concentrated solar power plant market is steeling itself for tough time ahead. The number of projects under construction is a pittance compared with 2012 that was an excellent year for installations (an additional 802.5 MW of capacity recorded). This drop is the result of the moratorium on renewable energy power plants introduced by the Spanish government. The European solar thermal market is hardly any more encouraging . EurObserv'ER holds that it slipped for the fourth year in a row (it dropped 5.5% between 2011 and 2012). The newly-installed solar thermal collector surface area in the EU now stands at 3.4 million m 2 , far short of its 2008 installation record of 4.6 million m 2 . The EU's solar thermal base to date at the end of 2012 is 29.6 GWth with 2.4 GWth installed during the year 2012. This article gives tables gathering the figures of the production for every European country for 2012 and describes the market and the general trend for every EU member

  18. Realities and myths of wind power

    International Nuclear Information System (INIS)

    Juanico, Luis

    2001-01-01

    In the last ten years we have seen an impressive growth of electrical generation by wind power. However this increase cannot be explained by an advance of the technology or by the improvement of the economic factors. The explanation of the boom is based mostly on environmental aspects instead of strategic considerations on energy supply. In Argentina wind power is promoted as a kind of economically viable panacea based on four myths: the explosive growth of wind power, the decrease of costs as a function of the power increase, the wind power potential of Patagonia, the analogy with conventional technologies. The analysis of these myths shows that the global wind power production is very low and it is concentrated in few developed countries, it is supported by environmental interests and protected by important subsidies. In Argentina this support cannot be justified neither by environmental considerations nor by economic reasons

  19. Power Quality Issues on Wind Power Installations in Denmark

    DEFF Research Database (Denmark)

    Sørensen, Poul Ejnar; Cutululis, Nicolaos Antonio; Lund, Torsten

    2007-01-01

    offshore wind farms connected at transmission level. In this perspective, the power quality issues are divided into local issues particularly related to the voltage quality in the distribution systems and global issues related to the power system control and stability. Power quality characteristics of wind......This paper introduces the power quality issues of wind power installations in a historic perspective, as the development from a few small wind turbines connected directly to the low voltage grid, to the present system with high penetration on the medium voltage distribution grids and two large...

  20. Turbulent Transport in a Three-dimensional Solar Wind

    Energy Technology Data Exchange (ETDEWEB)

    Shiota, D. [Institute for Space-Earth Environmental Research, Nagoya University, Nagoya, Aichi 464-8601 (Japan); Zank, G. P.; Adhikari, L.; Hunana, P. [Center for Space Plasma and Aeronomic Research (CSPAR), Department of Space Science, University of Alabama in Huntsville, Huntsville, AL 35805 (United States); Telloni, D. [INAF—Astrophysical Observatory of Torino, Via Osservatorio 20, I-10025 Pino Torinese (Italy); Bruno, R., E-mail: shiota@isee.nagoya-u.ac.jp [INAF-IAPS Istituto di Astrofisica e Planetologia Spaziali, Via del Fosso del Cavaliere 100, I-00133 Roma (Italy)

    2017-03-01

    Turbulence in the solar wind can play essential roles in the heating of coronal and solar wind plasma and the acceleration of the solar wind and energetic particles. Turbulence sources are not well understood and thought to be partly enhanced by interaction with the large-scale inhomogeneity of the solar wind and the interplanetary magnetic field and/or transported from the solar corona. To investigate the interaction with background inhomogeneity and the turbulence sources, we have developed a new 3D MHD model that includes the transport and dissipation of turbulence using the theoretical model of Zank et al. We solve for the temporal and spatial evolution of three moments or variables, the energy in the forward and backward fluctuating modes and the residual energy and their three corresponding correlation lengths. The transport model is coupled to our 3D model of the inhomogeneous solar wind. We present results of the coupled solar wind-turbulence model assuming a simple tilted dipole magnetic configuration that mimics solar minimum conditions, together with several comparative intermediate cases. By considering eight possible solar wind and turbulence source configurations, we show that the large-scale solar wind and IMF inhomogeneity and the strength of the turbulence sources significantly affect the distribution of turbulence in the heliosphere within 6 au. We compare the predicted turbulence distribution results from a complete solar minimum model with in situ measurements made by the Helios and Ulysses spacecraft, finding that the synthetic profiles of the turbulence intensities show reasonable agreement with observations.

  1. Danish Wind Power Export and Cost

    DEFF Research Database (Denmark)

    Lund, Henrik; Hvelplund, Frede; Alberg Østergaard, Poul

    In a normal wind year, Danish wind turbines generate the equivalent of approx. 20 percent of the Danish electricity demand. This paper argues that only approx. 1 percent of the wind power production is exported. The rest is used to meet domestic Danish electricity demands. The cost of wind power......, a study made by the Danish think tank CEPOS claimed the opposite, i.e. that most of the Danish wind power has been exported in recent years. However, this claim is based on an incorrect interpretation of statistics and a lack of understanding of how the international electricity markets operate...... is paid solely by the electricity consumers and the net influence on consumer prices was as low as 1-3 percent on average in the period 2004-2008. In 2008, the net influence even decreased the average consumer price, although only slightly. In Denmark, 20 percent wind power is integrated by using both...

  2. Attitudes towards wind power development in Denmark

    DEFF Research Database (Denmark)

    Ladenburg, Jacob

    is preferred to land based development, which indicates that the wind power development should be taken off-shore. But, the results also point out that the land-based opportunities for wind power development are not exhausted. On a more detailed level, the results denote that the attitude towards both land...... based and off-shore wind power vary with age of the respondents and experience with wind turbines. Younger respondents are more positive towards wind power than older respondents, pointing towards an increase in acceptance in the future. The attitude was also found to covariate negatively......The present paper analyses the attitudes towards existing and future land-based turbines and off-shore wind farms. The analysis is carried out using a probit model to elicit systematic characteristics determining the attitude of the population. The analyses show that off-shore development...

  3. Wind Turbine Power Curve Design for Optimal Power Generation in Wind Farms Considering Wake Effect

    DEFF Research Database (Denmark)

    Tian, Jie; Zhou, Dao; Su, Chi

    2017-01-01

    In modern wind farms, maximum power point tracking (MPPT) is widely implemented. Using the MPPT method, each individual wind turbine is controlled by its pitch angle and tip speed ratio to generate the maximum active power. In a wind farm, the upstream wind turbine may cause power loss to its...... downstream wind turbines due to the wake effect. According to the wake model, downstream power loss is also determined by the pitch angle and tip speed ratio of the upstream wind turbine. By optimizing the pitch angle and tip speed ratio of each wind turbine, the total active power of the wind farm can...... be increased. In this paper, the optimal pitch angle and tip speed ratio are selected for each wind turbine by the exhausted search. Considering the estimation error of the wake model, a solution to implement the optimized pitch angle and tip speed ratio is proposed, which is to generate the optimal control...

  4. Unit commitment and system reliability in electric utility systems with independent wind and solar generation

    Science.gov (United States)

    Schooley, David Christopher

    Concerns about the environmental impacts of fossil fuels and changes in government regulations concerning electric utilities are likely to lead to increased use of wind and solar energy in the generation mix. In many cases, the wind and solar energy conversion systems will be owned by small, independent power producers that sell power to electric utilities. The output of wind and solar energy conversion systems is highly random; therefore, a method is necessary to determine the effects of these sources on the system reliability. This dissertation discusses a method of integrating the behavior of small power producing facilities (SPPFS) into the generation mix. The research method integrates models of wind and solar energy conversion systems with a model of the small power producers. The SPPF model is then integrated into the electric utility unit commitment procedure. System reliability indices such as the loss of load expectation (LOLE ) and the expected unserved energy (EUE) can be calculated once the SPPFs have been integrated into the generation mix. This dissertation demonstrates the procedure and provides results for a large electric utility with SPPFS located in Atlanta, Georgia; Bismark, North Dakota; and Oklahoma City, Oklahoma. Various combinations of wind and/or solar energy conversion systems are studied. The results include comparisons of the effective utilization of the wind and solar energy conversion systems at the different sites and of the effects on the system reliability.

  5. Eigenmode Structure in Solar Wind Langmuir Waves

    Science.gov (United States)

    Malaspina, D. M.; Ergun, R.; Bougeret, J.; Kaiser, M. L.; Bale, S.; Cairns, I. H.; Cattell, C. A.; Kellogg, P. J.; Newman, D. L.

    2007-12-01

    Bursty Langmuir waves associated with space plasma phenomena including type II and type III solar radio bursts, auroral field-aligned electrons, and radiation from shocks often exhibit localized beat-type waveforms. A consensus view on the modulation mechanism remains elusive. Current theories include multi-wave interactions, turbulence, or non-linear growth such as kinetic localization. Most of these theories start with the assumption that the density of the background plasma is near-uniform, in spite of numerous observations to the contrary. An alternative approach is to start with the assumption that density perturbations pre-exist. We construct an analytical electric field solution, describing Langmuir waves as a combination of trapped eigenmodes within a parabolic density well. This hypothesis is supported by discreet frequency structure in auroral Langmuir wave observations observed to be associated with density fluctuations, and by the high degree of localization observed in solar wind borne Langmuir waves. This simple, one-dimensional model can reproduce waveform and frequency structure of localized Langmuir waves observed by STEREO/SWAVES. The waveforms can be reasonably reproduced using linear combinations of only a few low-mode eigenmode solutions. The eigenmode solutions are sensitive to plasma environmental parameters such as the electron temperature and solar wind velocity. The trapped-eigenmode solutions can form a theoretical basis to explore the non-linear behavior of Langmuir waves which may allow for efficient conversion and escape of electromagnetic emissions and second harmonic production.

  6. Spectral Analysis of Geomagnetic Activity Indices and Solar Wind Parameters

    Directory of Open Access Journals (Sweden)

    Jung-Hee Kim

    2014-06-01

    Full Text Available Solar variability is widely known to affect the interplanetary space and in turn the Earth’s electromagnetical environment on the basis of common periodicities in the solar and geomagnetic activity indices. The goal of this study is twofold. Firstly, we attempt to associate modes by comparing a temporal behavior of the power of geomagnetic activity parameters since it is barely sufficient searching for common peaks with a similar periodicity in order to causally correlate geomagnetic activity parameters. As a result of the wavelet transform analysis we are able to obtain information on the temporal behavior of the power in the velocity of the solar wind, the number density of protons in the solar wind, the AE index, the Dst index, the interplanetary magnetic field, B and its three components of the GSM coordinate system, BX, BY, BZ. Secondly, we also attempt to search for any signatures of influence on the space environment near the Earth by inner planets orbiting around the Sun. Our main findings are as follows: (1 Parameters we have investigated show periodicities of ~ 27 days, ~ 13.5 days, ~ 9 days. (2 The peaks in the power spectrum of BZ appear to be split due to an unknown agent. (3 For some modes powers are not present all the time and intervals showing high powers do not always coincide. (4 Noticeable peaks do not emerge at those frequencies corresponding to the synodic and/or sidereal periods of Mercury and Venus, which leads us to conclude that the Earth’s space environment is not subject to the shadow of the inner planets as suggested earlier.

  7. Advanced Control of Photovoltaic and Wind Turbines Power Systems

    DEFF Research Database (Denmark)

    Yang, Yongheng; Chen, Wenjie; Blaabjerg, Frede

    2014-01-01

    Much more efforts have been made on the integration of renewable energies into the grid in order to meet the imperative demand of a clean and reliable electricity generation. In this case, the grid stability and robustness may be violated due to the intermittency and interaction of the solar...... and wind renewables. Thus, in this chapter, advanced control strategies, which can enable the power conversion efficiently and reliably, for both photovoltaic (PV) and wind turbines power systems are addressed in order to enhance the integration of those technologies. Related grid demands have been...

  8. Space Solar Power: Satellite Concepts

    Science.gov (United States)

    Little, Frank E.

    1999-01-01

    Space Solar Power (SSP) applies broadly to the use of solar power for space related applications. The thrust of the NASA SSP initiative is to develop concepts and demonstrate technology for applying space solar power to NASA missions. Providing power from satellites in space via wireless transmission to a receiving station either on earth, another celestial body or a second satellite is one goal of the SSP initiative. The sandwich design is a satellite design in which the microwave transmitting array is the front face of a thin disk and the back of the disk is populated with solar cells, with the microwave electronics in between. The transmitter remains aimed at the earth in geostationary orbit while a system of mirrors directs sunlight to the photovoltaic cells, regardless of the satellite's orientation to the sun. The primary advantage of the sandwich design is it eliminates the need for a massive and complex electric power management and distribution system for the satellite. However, it requires a complex system for focusing sunlight onto the photovoltaic cells. In addition, positioning the photovoltaic array directly behind the transmitting array power conversion electronics will create a thermal management challenge. This project focused on developing designs and finding emerging technology to meet the challenges of solar tracking, a concentrating mirror system including materials and coatings, improved photovoltaic materials and thermal management.

  9. Development of Danish Wind Power Market

    DEFF Research Database (Denmark)

    Meyer, Niels I

    2007-01-01

    The modern phase of Danish wind power started after the oil crisis in 1973. During the eighties technological development resulted in increased cost efficiency. In the early nineties favourable feed-in tariffs were introduced together with easy access to the grid. As a result wind power was booming...

  10. Mitigation of Power System Oscillation Caused by Wind Power Fluctuation

    DEFF Research Database (Denmark)

    Su, Chi; Hu, Weihao; Chen, Zhe

    2013-01-01

    Wind power is increasingly integrated in modern power grids, which brings new challenges to the power system operation. Wind power is fluctuating because of the uncertain nature of wind, whereas wind shear and tower shadow effects also cause periodic fluctuations. These may lead to serious forced...... oscillation when the frequencies of the periodic fluctuations are close to the natural oscillation frequencies of the connected power system. By using modal analysis and time-domain simulations, this study studies the forced oscillation caused by the wind shear and tower shadow effects. Three forced...... oscillation mitigation controllers are proposed and compared. A model of direct-drive-full-convertor-based wind farm connected to the IEEE 10-machine 39-bus system is adopted as the test system. The calculations and simulations are conducted in DIgSILENT PowerFactory 14.0. Results are presented to show...

  11. Calculation of Wind Power Limit adjusting the Continuation Power Flow

    International Nuclear Information System (INIS)

    Santos Fuentefria, Ariel; Castro Fernández, Miguel; Martínez García, Antonio

    2012-01-01

    The wind power insertion in the power system is an important issue and can create some instability problems in voltage and system frequency due to stochastic origin of wind. Know the Wind Power Limit is a very important matter. Existing in bibliography a few methods for calculation of wind power limit. The calculation is based in static constrains, dynamic constraints or both. In this paper is developed a method for the calculation of wind power limit using some adjust in the continuation power flow, and having into account the static constrains. The method is complemented with Minimal Power Production Criterion. The method is proved in the Isla de la Juventud Electric System. The software used in the simulations was the Power System Analysis Toolbox (PSAT). (author)

  12. Wind power forecasting: IEA Wind Task 36 & future research issues

    DEFF Research Database (Denmark)

    Giebel, Gregor; Cline, J.; Frank, Helmut Paul

    2016-01-01

    , MetOffice, met.no, DMI,...), operational forecaster and forecast users.The Task is divided in three work packages: Firstly, a collaboration on the improvement of the scientific basis for the wind predictions themselves. This includes numerical weather prediction model physics, but also widely......Bench. Thirdly, we will be engaging end users aiming at dissemination of the best practice in the usage of wind power predictions. As first results, an overview of current issues for research in short-term forecasting of wind power is presented....

  13. Concentrating solar power

    International Nuclear Information System (INIS)

    Metelli, Enzo; Vignolini, Mauro

    2005-01-01

    Solar energy can be used instead of fossil fuels to produce high-temperature heat for use in many industrial processes and in electricity generation. If carried out on a large scale, the replacement would make it possible to reduce harmful emissions and stabilise the global climate over the long term. ENEA has an innovative project in this sector [it

  14. Reactive power control methods for improved reliability of wind power inverters under wind speed variations

    DEFF Research Database (Denmark)

    Ma, Ke; Liserre, Marco; Blaabjerg, Frede

    2012-01-01

    temperature fluctuation in the most stressed devices of 3L-NPC wind power inverter under severe wind speed variations can be significantly stabilized, and the reliability of the power converter can thereby be improved while the increased stress of the other devices in the same power converter......The thermal cycling of power switching devices may lead to failures that compromise the reliability of power converters. Wind Turbine Systems (WTS) are especially subject to severe thermal cycling which may be caused by the wind speed variations or power grid faults. This paper proposes a control...... method to relieve the thermal cycling of power switching devices under severe wind speed variations, by circulating reactive power among the parallel power converters in a WTS or among the WTS's in a wind park. The amount of reactive power is adjusted to limit the junction temperature fluctuation...

  15. Stability and control of wind farms in power systems

    DEFF Research Database (Denmark)

    Jauch, Clemens

    The Ph.D. project ‘Stability and Control of Wind Farms in Power Systems’ deals with some selected problems related to wind power in power systems. With increasing wind power penetration, wind turbines substitute the power production of conventional powerplants. Therefore, wind turbines also have ...

  16. The sun, the solar wind, and the heliosphere

    CERN Document Server

    Miralles, Mari Paz

    2011-01-01

    This volume presents a concise, up-to-date overview of current research on the observations, theoretical interpretations, and empirical and physical descriptions of the Sun, the Solar Wind, and the Heliosphere, from the solar interior outward to the planets.

  17. Wind Generators and Market Power

    DEFF Research Database (Denmark)

    Misir, Nihat

    Electricity production from wind generators holds significant importance in European Union’s 20% renewable energy target by 2020. In this paper, I show that ownership of wind generators affects market outcomes by using both a Cournot oligopoly model and a real options model. In the Cournot...... oligopoly model, ownership of the wind generators by owners of fossil-fueled (peakload) generators decreases total peakload production and increases the market price. These effects increase with total wind generation and aggregate wind generator ownership. In the real options model, start up and shut down...

  18. Solar Wind Disturbances Related to Geomagnetic Storms

    Science.gov (United States)

    Tan, A.; Lyatsky, W. B.

    2001-12-01

    We used the superposed epoch method to reconstruct a typical behavior of solar wind parameters before and during strong isolated geomagnetic storms. For this analysis we used 130 such geomagnetic storms during the period of 1966-2000. The results obtained show that a typical disturbance in the solar wind responsible for geomagnetic storm generation is associated with the propagation of high-speed plasma flow compressing ambient solar wind plasma and interplanetary magnetic field (IMF) ahead of this high-speed flow. This gives rise to enhanced magnetic field, plasma density, plasma turbulence and temperature, which start to increase several hours before geomagnetic storm onset. However, the IMF Bz (responsible for geomagnetic storm onset) starts to increase significantly later (approximately 6-7 hours after maximal variations in plasma density and IMF By). The time delay between peaks in IMF Bz and plasma density (and IMF By) may be a result of draping of high-speed plasma streams with ambient magnetic field in the (z-y) plane as discussed by some authors. This leads to an increase first in plasma density and IMF By ahead of a high-speed flow, which is followed by an increase in IMF Bz. This simple model allows us to predict that the probability for geomagnetic storm generation should depend on which edge of a high-speed flow encounters the Earth's magnetosphere. The probability for geomagnetic storm generation is expected to be maximal when the flow encounters the magnetosphere by its north-west edge for negative IMF By and south-west edge for positive IMF By.

  19. Validation of Sodar Measurements for Wind Power

    DEFF Research Database (Denmark)

    Hansen, Kurt Schaldemose

    2006-01-01

    A ground-based SODAR has been tested for 1½ years together with a traditional measurement set-up consisting of cups and vanes for measuring wind data for wind power assessment at a remote location. Many problems associated to the operation of a remote located SODAR have been solved during...... the project and a new remote power system has been designed. A direct comparison between SODAR and cup measurements revealed a limitation for the SODAR measurements during different weather conditions, especially since the SODAR was not able to measure wind speeds above 15 m/s due to an increasing back......-ground noise. Instead, using the SODAR as a profiler to establish representative wind speed profiles was successful. These wind speed profiles are combined with low height reference measurements to establish reliable hub height wind speed distributions. Representative wind speed profiles can be establish...

  20. Simulation experiments and solar wind sputtering

    International Nuclear Information System (INIS)

    Griffith, J.E.; Papanastassiou, D.A.; Russell, W.A.; Tombrello, T.A.; Weller, R.A.

    1978-01-01

    In order to isolate the role played by solar wind sputtering from other lunar surface phenomena a number of simulation experiments were performed, including isotope abundance measurements of Ca sputtered from terrestrial fluorite and plagioclase by 50-keV and 130-keV 14 N beams, measurement of the energy distribution of U atoms sputtered with 80-keV 40 Ar, and measurement of the fraction of sputtered U atoms which stick on the surfaces used to collect these atoms. 10 references

  1. Genesis Solar Wind Samples: Update of Availability

    Science.gov (United States)

    Gonzalez, C. P.; Allums, K. K.; Allton, J. H.

    2015-01-01

    The Genesis mission collected solar wind atoms for 28 months with a variety of collectors. The array wafer collector availability is displayed in the online catalog. The purpose of this report is to update the community on availability of array wafer samples and to preview other collectors which are in the process of being added to the online catalog. A total of fifteen pure materials were selected based on engineering and science requirements. Most of the materials were semiconductor wafers which were mounted on the arrays.

  2. Wind power production: from the characterisation of the wind resource to wind turbine technologies

    International Nuclear Information System (INIS)

    Beslin, Guy; Multon, Bernard

    2016-01-01

    Illustrated by graphs and tables, this article first describes the various factors and means related to the assessment of wind resource in the World, in Europe, and the factors which characterize a local wind resource. In this last respect, the authors indicate how local topography is taken into account to calculate wind speed, how time variations are taken into account (at the yearly, seasonal or daily level), the different methods used to model a local wind resource, how to assess the power recoverable by a wind turbine with horizontal axis (notion of Betz limit). In the second part, the authors present the different wind turbines, their benefits and drawbacks: vertical axis, horizontal axis (examples of a Danish-type wind turbine, of wind turbines designed for extreme conditions). Then, they address the technology of big wind turbines: evolution of technology and of commercial offer, aerodynamic characteristics of wind turbine and benefit of a varying speed (technological solutions, importance of the electric generator). They describe how to choose a wind turbine, how product lines are organised, how the power curve and energy capacity are determined. The issue of integration of wind energy into the power system is then addressed. The next part addressed the economy of wind energy production (annualized production cost, order of magnitude of wind electric power production cost). Future trends are discussed and offshore wind energy production is briefly addressed

  3. Assessment of solar and wind energy potentials for three free economic and industrial zones of Iran

    International Nuclear Information System (INIS)

    Mohammadi, Kasra; Mostafaeipour, Ali; Sabzpooshani, Majid

    2014-01-01

    This paper aims to evaluate the potential of renewable energy sources of solar and wind in three free economic and industrial zones of Chabahar, Kish and Salafchegan in Iran. Feasibility of harnessing solar energy was investigated by using key solar parameters like monthly mean global, beam and diffuse solar radiation as well as clearness index. It was found that all locations had great potentials for utilizing different solar energy systems. Additionally, the monthly, seasonal, semi-yearly and yearly optimum tilt angles of south-facing solar surfaces were determined. For all zones, adjusting the tilt angle twice a year or in other words, the semi-yearly tilt adjustment for two periods of warm (April–September) and cold (October–March) were highly recommended, since it offers almost the same level of annual solar energy gain (SEG) as those of monthly and seasonal adjustments. Weibull Distribution Function (WDF) was performed for analyzing the wind potentials at different heights. It was found that Chabahar was not suitable for wind energy development, but Kish and Salafchegan with yearly wind powers of 111.28 W/m 2 and 114.34 W/m 2 , respectively ranked in class 2 which are considered marginal for wind power development. Three different wind turbine models were proposed for Kish and Salafchegan. - Highlights: • Feasibility of solar and wind energy for three locations of Iran was investigated. • All locations were suitable for solar energy utilization. • The optimum tilt angles of solar surfaces were determined. • Chabahar was unsuitable, but Kish and Salafchegan were marginal for wind purpose

  4. Power Quality Improvements in Wind Diesel Power Generation System

    Directory of Open Access Journals (Sweden)

    Omar Feddaoui

    2015-08-01

    Full Text Available Generation of electricity using diesel is costly for small remote isolated communities. At remote location electricity generation from renewable energy such as wind can help reduce the overall operating costs by reducing the fuel costs. However, the penetration of wind power into small diesel-based grids is limited because of its effect on power quality and reliability. This paper focuses on the combination of Wind Turbine and Diesel Generator systems for sustained power generation, to improve the power quality of wind generation system. The performances of the optimal control structure are assessed and discussed by means of a set of simulations.

  5. Power Electronics in Wind Turbine Systems

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Chen, Zhe; Teodorescu, Remus

    2006-01-01

    the conventional, fossil (and short term) based energy sources to renewable energy resources. The other is to use high efficient power electronics in power systems, power production and end-user application. This paper discuss the most emerging renewable energy source, wind energy, which by means of power...... electronics is changing from being a minor energy source to be acting as an important power source in the energy system. By that wind power is also getting an added value in the power system operation....

  6. Genesis Solar Wind Science Canister Components Curated as Potential Solar Wind Collectors and Reference Contamination Sources

    Science.gov (United States)

    Allton, J. H.; Gonzalez, C. P.; Allums, K. K.

    2016-01-01

    The Genesis mission collected solar wind for 27 months at Earth-Sun L1 on both passive and active collectors carried inside of a Science Canister, which was cleaned and assembled in an ISO Class 4 cleanroom prior to launch. The primary passive collectors, 271 individual hexagons and 30 half-hexagons of semiconductor materials, are described in. Since the hard landing reduced the 301 passive collectors to many thousand smaller fragments, characterization and posting in the online catalog remains a work in progress, with about 19% of the total area characterized to date. Other passive collectors, surfaces of opportunity, have been added to the online catalog. For species needing to be concentrated for precise measurement (e.g. oxygen and nitrogen isotopes) an energy-independent parabolic ion mirror focused ions onto a 6.2 cm diameter target. The target materials, as recovered after landing, are described in. The online catalog of these solar wind collectors, a work in progress, can be found at: http://curator.jsc.nasa.gov/gencatalog/index.cfm This paper describes the next step, the cataloging of pieces of the Science Canister, which were surfaces exposed to the solar wind or component materials adjacent to solar wind collectors which may have contributed contamination.

  7. Model predictive control for wind power gradients

    DEFF Research Database (Denmark)

    Hovgaard, Tobias Gybel; Boyd, Stephen; Jørgensen, John Bagterp

    2015-01-01

    We consider the operation of a wind turbine and a connected local battery or other electrical storage device, taking into account varying wind speed, with the goal of maximizing the total energy generated while respecting limits on the time derivative (gradient) of power delivered to the grid. We...... wind data and modern wind forecasting methods. The simulation results using real wind data demonstrate the ability to reject the disturbances from fast changes in wind speed, ensuring certain power gradients, with an insignificant loss in energy production....... ranges. The system dynamics are quite non-linear, and the constraints and objectives are not convex functions of the control inputs, so the resulting optimal control problem is difficult to solve globally. In this paper, we show that by a novel change of variables, which focuses on power flows, we can...

  8. Active Power Controls from Wind Power: Bridging the Gaps

    Energy Technology Data Exchange (ETDEWEB)

    Ela, E. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Gevorgian, V. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Fleming, P. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Zhang, Y. C. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Singh, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Muljadi, E. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Scholbrook, A. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Aho, J. [Univ. of Colorado, Boulder, CO (United States); Buckspan, A. [Univ. of Colorado, Boulder, CO (United States); Pao, L. [Univ. of Colorado, Boulder, CO (United States); Singhvi, V. [Electric Power Research Inst. (EPRI), Palo Alto, CA (United States); Tuohy, A. [Electric Power Research Inst. (EPRI), Palo Alto, CA (United States); Pourbeik, P. [Electric Power Research Inst. (EPRI), Palo Alto, CA (United States); Brooks, D. [Electric Power Research Inst. (EPRI), Palo Alto, CA (United States); Bhatt, N. [Electric Power Research Inst. (EPRI), Palo Alto, CA (United States)

    2014-01-01

    This paper details a comprehensive study undertaken by the National Renewable Energy Laboratory, Electric Power Research Institute, and the University of Colorado to understand how the contribution of wind power providing active power control (APC) can benefit the total power system economics, increase revenue streams, improve the reliability and security of the power system, and provide superior and efficient response while reducing any structural and loading impacts that may reduce the life of the wind turbine or its components. The study includes power system simulations, control simulations, and actual field tests using turbines at NREL's National Wind Technology Center (NWTC). The study focuses on synthetic inertial control, primary frequency control, and automatic generation control, and analyzes timeframes ranging from milliseconds to minutes to the lifetime of wind turbines, locational scope ranging from components of turbines to large wind plants to entire synchronous interconnections, and additional topics ranging from economics to power system engineering to control design.

  9. Solar powered dehumidifier apparatus

    Science.gov (United States)

    Jebens, Robert W.

    1980-12-30

    A thermally insulated light transmitting housing forms a chamber containing a desiccant and having a first gas port open to the ambient and a second gas port connected by a two way valve to a volume to be dried. Solar energy transmitted through the housing heats and dries the desiccant. The increased air pressure due to the heating of the volume to be dried causes the air from the volume to be expelled through the valve into the chamber. The desiccant is then cooled by shielding it from solar energy before the volume cools thereby increasing its moisture absorbing capacity. Then the volume is allowed to cool drawing dehumidified air through the desiccant and the valve into the volume to be dried. This cycle is then repeated.

  10. Hexagon solar power panel

    Science.gov (United States)

    Rubin, I. (Inventor)

    1978-01-01

    A solar energy panel support is described upon which silicon cells are arrayed. The cells are wafer thin and of two geometrical types, both of the same area and electrical rating, namely hexagon cells and hourglass cells. The hourglass cells are composites of half hexagons. A near perfect nesting relationship of the cells achieves a high density packing whereby optimum energy production per panel area is achieved.

  11. Hexagon solar power panel

    Science.gov (United States)

    Rubin, Irwin

    1978-01-01

    A solar energy panel comprises a support upon which silicon cells are arrayed. The cells are wafer thin and of two geometrical types, both of the same area and electrical rating, namely hexagon cells and hourglass cells. The hourglass cells are composites of half hexagons. A near perfect nesting relationship of the cells achieves a high density packing whereby optimum energy production per panel area is achieved.

  12. Nanotechnology and nanoscience for wind power

    Energy Technology Data Exchange (ETDEWEB)

    Wei, B.

    2011-07-01

    Currently, wind power is one of the best forms of green energy for humans to pursue a sustainable energy supply, and plays an increasingly essential role in energy systems. However, the efficiency and cost of wind energy is relatively higher than other types of energy resources, which make it less competitive. In this paper, I will analyze the usage of materials in wind energy equipment to understand the scope of improvement for wind energy materials, and utilize Nanotechnology and Nano science to propose performance improvement of wind energy devices. (Author)

  13. A New Look at Some Solar Wind Turbulence Puzzles

    Science.gov (United States)

    Roberts, Aaron

    2006-01-01

    Some aspects of solar wind turbulence have defied explanation. While it seems likely that the evolution of Alfvenicity and power spectra are largely explained by the shearing of an initial population of solar-generated Alfvenic fluctuations, the evolution of the anisotropies of the turbulence does not fit into the model so far. A two-component model, consisting of slab waves and quasi-two-dimensional fluctuations, offers some ideas, but does not account for the turning of both wave-vector-space power anisotropies and minimum variance directions in the fluctuating vectors as the Parker spiral turns. We will show observations that indicate that the minimum variance evolution is likely not due to traditional turbulence mechanisms, and offer arguments that the idea of two-component turbulence is at best a local approximation that is of little help in explaining the evolution of the fluctuations. Finally, time-permitting, we will discuss some observations that suggest that the low Alfvenicity of many regions of the solar wind in the inner heliosphere is not due to turbulent evolution, but rather to the existence of convected structures, including mini-clouds and other twisted flux tubes, that were formed with low Alfvenicity. There is still a role for turbulence in the above picture, but it is highly modified from the traditional views.

  14. Solar wind structure out of the ecliptic plane over solar cycles

    Science.gov (United States)

    Sokol, J. M.; Bzowski, M.; Tokumaru, M.

    2017-12-01

    Sun constantly emits a stream of plasma known as solar wind. Ground-based observations of the solar wind speed through the interplanetary scintillations (IPS) of radio flux from distant point sources and in-situ measurements by Ulysses mission revealed that the solar wind flow has different characteristics depending on the latitude. This latitudinal structure evolves with the cycle of solar activity. The knowledge on the evolution of solar wind structure is important for understanding the interaction between the interstellar medium surrounding the Sun and the solar wind, which is responsible for creation of the heliosphere. The solar wind structure must be taken into account in interpretation of most of the observations of heliospheric energetic neutral atoms, interstellar neutral atoms, pickup ions, and heliospheric backscatter glow. The information on the solar wind structure is not any longer available from direct measurements after the termination of Ulysses mission and the only source of the solar wind out of the ecliptic plane is the IPS observations. However, the solar wind structure obtained from this method contains inevitable gaps in the time- and heliolatitude coverage. Sokół et al 2015 used the solar wind speed data out of the ecliptic plane retrieved from the IPS observations performed by Institute for Space-Earth Environmental Research (Nagoya University, Japan) and developed a methodology to construct a model of evolution of solar wind speed and density from 1985 to 2013 that fills the data gaps. In this paper we will present a refined model of the solar wind speed and density structure as a function of heliographic latitude updated by the most recent data from IPS observations. And we will discuss methods of extrapolation of the solar wind structure out of the ecliptic plane for the past solar cycles, when the data were not available, as well as forecasting for few years upward.

  15. Temporal and spatial complementarity of the wind and the solar resources in the Iberian Peninsula

    Science.gov (United States)

    Jerez, Sonia; Trigo, Ricardo M.; Sarsa, Antonio; Lorente-PLazas, Raquel; Pozo-Vázquez, David; Montávez, Juan Pedro

    2013-04-01

    Both Iberian countries (Portugal and Spain) are investing considerably in new wind and solar power plants to achieve a sustainable future, both in environmental and economic terms. Resource evaluation, aimed at optimizing the power generation according to the energy demand, is a mandatory requisite for the success of such a large amount of investments. However, this aim is difficult to attain due to the lack of lengthy and reliable observational datasets, implying poor spatial coverage. Hence, here we rely on a hindcast simulation spanning the period 1959-2007 and covering the whole Iberian Peninsula with resolution of 10 km, to retrieve the primary meteorological variables from which estimations of wind and solar power are done. Based on that, we have investigated the temporal (at the monthly timescale) and spatial complementarity of the wind and the solar resources in the Iberian Peninsula. The annual cycle of energy demand in Iberia shows two maxima centered in winter and summer and relatively smaller loads during the transitional seasons, with both the shape and the monthly values of this cycle having experienced small changes in the recent years. Since the annual cycle of wind (solar) power presents a clear maximum in winter (summer), it is immediate to infer that both cycles could be combined in order to achieve the shape required by the annual cycle of energy demand. Interannually, both resources show large variability in the winter months. Nevertheless, our results indicate that the monthly series of wind and solar power are strongly anticorrelated during winter and thus, both series could be also combined in order to achieve minimum interannual variability in the resulting wind-plus-solar production output. Moreover we found that this interannual complementarity is related, at least partially, to the multiple influence of the three main large-scale modes of climatic variability affecting Europe (NAO, EA and SCAND) since while their positive phases enhance

  16. Wind Generators and Market Power

    DEFF Research Database (Denmark)

    Misir, Nihat

    Electricity production from wind generators holds significant importance in European Union’s 20% renewable energy target by 2020. In this paper, I show that ownership of wind generators affects market outcomes by using both a Cournot oligopoly model and a real options model. In the Cournot...... oligopoly model, ownership of the wind generators by owners of fossil-fueled (peakload) generators decreases total peakload production and increases the market price. These effects increase with total wind generation and aggregate wind generator ownership. In the real options model, start up and shut down...... price thresholds are significantly higher when the monopolist at the peakload level owns both types of generators. Furthermore, when producing electricity with the peakload generator, the monopolist can avoid facing prices below marginal cost by owning a certain share of the wind generators....

  17. Wind power bidding in electricity markets with high wind penetration

    International Nuclear Information System (INIS)

    Vilim, Michael; Botterud, Audun

    2014-01-01

    Highlights: • We analyze the pricing systems and wind power trading in electricity markets. • We propose a model that captures the relation between market prices and wind power. • A probabilistic bidding model can increase profits for wind power producers. • Profit maximizing bidding strategies carry risks for power system operators. • We conclude that modifications of current market designs may be needed. - Abstract: Objective: The optimal day-ahead bidding strategy is studied for a wind power producer operating in an electricity market with high wind penetration. Methods: A generalized electricity market is studied with minimal assumptions about the structure of the production, bidding, or consumption of electricity. Two electricity imbalance pricing schemes are investigated, the one price and the two price scheme. A stochastic market model is created to capture the price effects of wind power production and consumption. A bidding algorithm called SCOPES (Supply Curve One Price Estimation Strategy) is developed for the one price system. A bidding algorithm called MIMICS (Multivariate Interdependence Minimizing Imbalance Cost Strategy) is developed for the two price system. Results: Both bidding strategies are shown to have advantages over the assumed “default” bidding strategy, the point forecast. Conclusion: The success of these strategies even in the case of high deviation penalties in a one price system and the implicit deviation penalties of the two price system has substantial implications for power producers and system operators in electricity markets with a high level of wind penetration. Practice implications: From an electricity market design perspective, the results indicate that further penalties or regulations may be needed to reduce system imbalance

  18. Impact of integrating wind power in the Norwegian power system

    International Nuclear Information System (INIS)

    Tande, John Olav

    2006-04-01

    Wind power may in the future constitute a significant part of the Norwegian electricity supply. 20 TWh annual wind generation is a realistic goal for 2020 assuming wind farms on-land and offshore. The development of grid codes for wind farms is sound. It is recognising that large wind farms are basically power plants and may participate in securing efficient and stable power system operation. Modern wind farms may control the reactive power or voltage as any other power plant, and may also control active power or frequency as long as wind conditions permits. Grid code requirements must however be carefully assessed and possibly adjusted over time aiming for overall least cost solutions. Development of wind farms are today to some degree hindered by conservative assumptions being made on operation of wind farms in areas with limited power transfer capacity. By accepting temporary grid congestions, however, a large increase installed wind power is viable. For grid congestion that appears a few hours per year only, the cost of lost generation will be modest and may be economic over the alternatives of limiting wind farm capacities or increasing the grid transfer capacity. Wind generation impact on power system operation and adequacy will be overall positive. Combining wind and hydro provides for a more stable annual energy supply than hydro alone, and wind generation will generally be higher in the winter period than in the summer. Wind will replace the generation with the highest operating cost, and reduce the average Nord Pool spot market price. 20 TWh wind will reduce price with about 3 oere/kWh and CO 2 emissions by 12-14 million tons for the case of replacing coal, and about 6 million tons for replacing natural gas. Wind impact on need for balancing power is small, i.e. the extra balancing cost is about 0,8 oere per kWh wind, and about half if investment in new reserve capacity is not needed. In summary this report demonstrates options for large scale integration

  19. Solar-Powered Refrigeration System

    Science.gov (United States)

    Ewert, Michael K. (Inventor); Bergeron, David J., III (Inventor)

    2001-01-01

    A solar powered vapor compression refrigeration system is made practicable with thermal storage and novel control techniques. In one embodiment, the refrigeration system includes a photovoltaic panel, a variable speed compressor, an insulated enclosure. and a thermal reservoir. The photovoltaic (PV) panel converts sunlight into DC (direct current) electrical power. The DC electrical power drives a compressor that circulates refrigerant through a vapor compression refrigeration loop to extract heat from the insulated enclosure. The thermal reservoir is situated inside the insulated enclosure and includes a phase change material. As heat is extracted from the insulated enclosure, the phase change material is frozen, and thereafter is able to act as a heat sink to maintain the temperature of the insulated enclosure in the absence of sunlight. The conversion of solar power into stored thermal energy is optimized by a compressor control method that effectively maximizes the compressor's usage of available energy. A capacitor is provided to smooth the power voltage and to provide additional current during compressor start-up. A controller monitors the rate of change of the smoothed power voltage to determine if the compressor is operating below or above the available power maximum, and adjusts the compressor speed accordingly. In this manner, the compressor operation is adjusted to convert substantially all available solar power into stored thermal energy.

  20. Solar-Powered Refrigeration System

    Science.gov (United States)

    Ewert, Michael K. (Inventor); Bergeron, David J., III (Inventor)

    2002-01-01

    A solar powered vapor compression refrigeration system is made practicable with thermal storage and novel control techniques. In one embodiment, the refrigeration system includes a photovoltaic panel, a variable speed compressor, an insulated enclosure, and a thermal reservoir. The photovoltaic (PV) panel converts sunlight into DC (direct current) electrical power. The DC electrical power drives a compressor that circulates refrigerant through a vapor compression refrigeration loop to extract heat from the insulated enclosure. The thermal reservoir is situated inside the insulated enclosure and includes a phase change material. As heat is extracted from the insulated enclosure, the phase change material is frozen, and thereafter is able to act as a heat sink to maintain the temperature of the insulated enclosure in the absence of sunlight. The conversion of solar power into stored thermal energy is optimized by a compressor control method that effectively maximizes the compressor's usage of available energy. A capacitor is provided to smooth the power voltage and to provide additional current during compressor start-up. A controller monitors the rate of change of the smoothed power voltage to determine if the compressor is operating below or above the available power maximum, and adjusts the compressor speed accordingly. In this manner, the compressor operation is adjusted to convert substantially all available solar power into stored thermal energy.

  1. Dynamic Models for Wind Turbines and Wind Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Singh, M.; Santoso, S.

    2011-10-01

    The primary objective of this report was to develop universal manufacturer-independent wind turbine and wind power plant models that can be shared, used, and improved without any restrictions by project developers, manufacturers, and engineers. Manufacturer-specific models of wind turbines are favored for use in wind power interconnection studies. While they are detailed and accurate, their usages are limited to the terms of the non-disclosure agreement, thus stifling model sharing. The primary objective of the work proposed is to develop universal manufacturer-independent wind power plant models that can be shared, used, and improved without any restrictions by project developers, manufacturers, and engineers. Each of these models includes representations of general turbine aerodynamics, the mechanical drive-train, and the electrical characteristics of the generator and converter, as well as the control systems typically used. To determine how realistic model performance is, the performance of one of the models (doubly-fed induction generator model) has been validated using real-world wind power plant data. This work also documents selected applications of these models.

  2. Improving wind power quality with energy storage

    DEFF Research Database (Denmark)

    Rasmussen, Claus Nygaard

    2009-01-01

    The results of simulation of the influence of energy storage on wind power quality are presented. Simulations are done using a mathematical model of energy storage. Results show the relation between storage power and energy, and the obtained increase in minimum available power from the combination...... probability. The amount of storage capacity necessary for significant wind power quality improvement in a given period is found to be 20 to 40% of the energy produced in that period. The necessary power is found to be 80 to 100% of the average power of the period....

  3. Power Oscillation Damping Controller for Wind Power Plant Utilizing Wind Turbine Inertia as Energy Storage

    DEFF Research Database (Denmark)

    Knüppel, Thyge; Nielsen, Jørgen Nygård; Jensen, Kim Høj

    2011-01-01

    For a wind power plant (WPP) the upper limit for active power output is bounded by the instantaneous wind conditions and therefore a WPP must curtail its power output when system services with active power are delivered. Here, a power oscillation damping controller (POD) for WPPs is presented...... induced on the synchronous generators from the POD. These are supplemented with nonlinear time domain simulations with and without an auxiliary POD for the WPP. The work is based on a nonlinear, dynamic model of the 3.6 MW Siemens Wind Power wind turbine....

  4. Bidirectional solar wind electron heat flux events

    International Nuclear Information System (INIS)

    Gosling, J.T.; Baker, D.N.; Bame, S.J.; Feldman, W.C.; Zwickl, R.D.; Smith, E.J.

    1987-01-01

    Normally the approx. >80-eV electrons which carry the solar wind electron heat flux are collimated along the interplanetary magnetic field (IMF) in the direction pointing outward away from the sun. Occasionally, however, collimated fluxes of approx. >80-eV electrons are observed traveling both parallel and antiparallel to the IMF. Here we present the results of a survey of such bidirectional electron heat flux events as observed with the plasma and magnetic field experiments aboard ISEE 3 at times when the spacecraft was not magnetically connected to the earth's bow shock. The onset of a bidirectional electron heat flux at ISEE 3 usually signals spacecraft entry into a distinct solar wind plasma and field entity, most often characterized by anomalously low proton and electron temperatures, a strong, smoothly varying magnetic field, a low plasma beta, and a high total pressure. Significant field rotations often occur at the beginning and/or end of bidirectional heat flux events, and, at times, the large field rotations characteristic of ''magnetic clouds'' are present. Approximately half of all bidirectional heat flux events are associated with and follow interplanetary shocks, while the other events have no obvious shock associations

  5. Electric conductivity of plasma in solar wind

    Science.gov (United States)

    Chertkov, A. D.

    1995-01-01

    One of the most important parameters in MHD description of the solar wind is the electric conductivity of plasma. There exist now two quite different approaches to the evaluation of this parameter. In the first one a value of conductivity taken from the most elaborated current theory of plasma should be used in calculations. The second one deals with the empirical, phenomenological value of conductivity. E.g.: configuration of interplanetary magnetic field, stretched by the expanding corona, depends on the magnitude of electrical conductivity of plasma in the solar wind. Knowing the main empirical features of the field configuration, one may estimate the apparent phenomenological value of resistance. The estimations show that the electrical conductivity should be approximately 10(exp 13) times smaller than that calculated by Spitzer. It must be noted that the empirical value should be treated with caution. Due to the method of its obtaining it may be used only for 'large-scale' description of slow processes like coronal expansion. It cannot be valid for 'quick' processes, changing the state of plasma, like collisions with obstacles, e.g., planets and vehicles. The second approach is well known in large-scale planetary hydrodynamics, stemming from the ideas of phenomenological thermodynamics. It could formulate real problems which should be solved by modern plasma physics, oriented to be adequate for complicated processes in space.

  6. Concentrated Solar Thermoelectric Power

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Gang [MIT; Ren, Zhifeng [University of Houston

    2015-07-09

    The goal of this project is to demonstrate in the lab that solar thermoelectric generators (STEGs) can exceed 10% solar-to-electricity efficiency, and STEGs can be integrated with phase-change materials (PCM) for thermal storage, providing operation beyond daylight hours. This project achieved significant progress in many tasks necessary to achieving the overall project goals. An accurate Themoelectric Generator (TEG) model was developed, which included realistic treatment of contact materials, contact resistances and radiative losses. In terms of fabricating physical TEGs, high performance contact materials for skutterudite TE segments were developed, along with brazing and soldering methods to assemble segmented TEGs. Accurate measurement systems for determining device performance (in addition to just TE material performance) were built for this project and used to characterize our TEGs. From the optical components’ side, a spectrally selective cermet surface was developed with high solar absorptance and low thermal emittance, with thermal stability at high temperature. A measurement technique was also developed to determine absorptance and total hemispherical emittance at high temperature, and was used to characterize the fabricated spectrally selective surfaces. In addition, a novel reflective cavity was designed to reduce radiative absorber losses and achieve high receiver efficiency at low concentration ratios. A prototype cavity demonstrated that large reductions in radiative losses were possible through this technique. For the overall concentrating STEG system, a number of devices were fabricated and tested in a custom built test platform to characterize their efficiency performance. Additionally, testing was performed with integration of PCM thermal storage, and the storage time of the lab scale system was evaluated. Our latest testing results showed a STEG efficiency of 9.6%, indicating promising potential for high performance concentrated STEGs.

  7. Wind power: public policies; Energia eolica: politicas publicas

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Henrique Tavares; Faga, Murilo Tadeu Werneck [Universidade de Sao Paulo (USP), SP (Brazil). Inst. de Eletrotecnica e Energia. Programa Interunidades de Pos-graduacao em Energia]. E-mail: henrique@iee.usp.br; murfaga@iee.usp.br

    2006-07-01

    This paper presents the incentive models to the wind power applied in Germany and Denmark, two countries with great participation of wind power in their energetic matrixes, analysing the barriers found to the wind power development.

  8. Solar Power System Design for the Solar Probe+ Mission

    Science.gov (United States)

    Landis, Geoffrey A.; Schmitz, Paul C.; Kinnison, James; Fraeman, Martin; Roufberg, Lew; Vernon, Steve; Wirzburger, Melissa

    2008-01-01

    Solar Probe+ is an ambitious mission proposed to the solar corona, designed to make a perihelion approach of 9 solar radii from the surface of the sun. The high temperature, high solar flux environment makes this mission a significant challenge for power system design. This paper summarizes the power system conceptual design for the solar probe mission. Power supplies considered included nuclear, solar thermoelectric generation, solar dynamic generation using Stirling engines, and solar photovoltaic generation. The solar probe mission ranges from a starting distance from the sun of 1 AU, to a minimum distance of about 9.5 solar radii, or 0.044 AU, from the center of the sun. During the mission, the solar intensity ranges from one to about 510 times AM0. This requires power systems that can operate over nearly three orders of magnitude of incident intensity.

  9. Solar Power Use Claims

    Science.gov (United States)

    The U.S. EPA's Green Power Partnership is a voluntary program designed to reduce the environmental impact of electricity generation by promoting renewable energy. EPA evaluates partnership metrics annually to determine progress toward programmatic goals.

  10. Characteristics of Solar Wind Density Depletions During Solar Cycles 23 and 24

    Directory of Open Access Journals (Sweden)

    Keunchan Park

    2017-06-01

    Full Text Available Solar wind density depletions are phenomena that solar wind density is rapidly decreased and keep the state. They are generally believed to be caused by the interplanetary (IP shocks. However, there are other cases that are hardly associated with IP shocks. We set up a hypothesis for this phenomenon and analyze this study. We have collected the solar wind parameters such as density, speed and interplanetary magnetic field (IMF data related to the solar wind density depletion events during the period from 1996 to 2013 that are obtained with the advanced composition explorer (ACE and the Wind satellite. We also calculate two pressures (magnetic, dynamic and analyze the relation with density depletion. As a result, we found total 53 events and the most these phenomena’s sources caused by IP shock are interplanetary coronal mass ejection (ICME. We also found that solar wind density depletions are scarcely related with IP shock’s parameters. The solar wind density is correlated with solar wind dynamic pressure within density depletion. However, the solar wind density has an little anti-correlation with IMF strength during all events of solar wind density depletion, regardless of the presence of IP shocks. Additionally, In 47 events of IP shocks, we find 6 events that show a feature of blast wave. The quantities of IP shocks are weaker than blast wave from the Sun, they are declined in a short time after increasing rapidly. We thus argue that IMF strength or dynamic pressure are an important factor in understanding the nature of solar wind density depletion. Since IMF strength and solar wind speed varies with solar cycle, we will also investigate the characteristics of solar wind density depletion events in different phases of solar cycle as an additional clue to their physical nature.

  11. 77 FR 31839 - Wind and Water Power Program

    Science.gov (United States)

    2012-05-30

    ... DEPARTMENT OF ENERGY Office of Energy Efficiency and Renewable Energy Wind and Water Power Program... projects. The 2012 Wind and Water Power Program, Wind Power Peer Review Meeting will review wind technology... portfolio. The 2012 Wind Power Peer Review Meeting will be held June 19 through June 21, 2012, in Alexandria...

  12. The solar wind in the third dimension

    International Nuclear Information System (INIS)

    Neugebauer, M.

    1996-01-01

    For many years, solar-wind physicists have been using plasma and field data acquired near the ecliptic plane together with data on the scintillation of radio sources and remote sensing of structures in the solar corona to estimate the properties of the high-latitude solar wind. Because of the highly successful Ulysses mission, the moment of truth is now here. This paper summarizes the principal agreements and differences between the Ulysses observations and expectations. The speed of the high-latitude solar wind was even greater than anticipated. The strength of the radial component of the interplanetary magnetic field was found to be independent of latitude. The tilt of the heliospheric current sheet caused reverse corotating shocks to be observed to higher latitudes than forward corotating shocks. The energetic particles accelerated in these shocks were detected well poleward of the latitudes at which Ulysses observed the interaction regions themselves. As anticipated, there was a strong flux of outward propagating Alfven waves throughout the polar flow. Those waves were probably largely responsible for the smaller-than-anticipated increase of galactic cosmic rays with increasing latitude. As expected, the charge state or ionization temperature of heavy ions was lower in the polar flow than in low-latitude interstream flows. What was not anticipated was the correlation of elemental abundances with ionization temperatures; the Ulysses data revealed a connection between the first ionization time in the upper chromosphere and the final ionization state in the corona. As expected, transient events were detected to ∼60 deg. latitude, but the properties of those high latitude transient flows held some surprises. At high latitudes, the speeds of the transient interplanetary plasma clouds were approximately the same as the speed of the ambient plasma and the expansion of the clouds drove forward and reverse shock pairs that had never been seen at low latitudes. At high

  13. Wind power development. Status and perspectives

    International Nuclear Information System (INIS)

    Morthorst, P.E.

    1998-09-01

    This is the final report on the status and long-term perspectives for the development of wind power, contributing to the Macro Task E1 on production cost for fusion and alternative technologies, part of the programme for Socio-Economic Research on Fusion. The report concentrates on the development of the production costs for wind power, limited to turbines connected to the public grid. The report shows status and perspectives for production costs for wind turbines until the year 2020-30. In general two trends have dominated the grid-connected wind turbine development until now: The average size of the turbines sold at the market place has increased substantially, while at the same time the efficiency of turbine electricity production has increased steadily. Together these trends have increased the cost-effectiveness of wind power by almost 45% over a time span of 9-10 years. Looking at perspectives, a substantial cut in wind power cost per kWh can be expected within the next 20-30 years. A survey performed for a number of long-term forecasts for the wind power technology in general shows a decrease in production costs of 2-2.5% p.a., which implies that the cost of wind-generated electricity would be halved by the year 2030, probably making it fully competitive to conventional fossil fuel based electricity production. (au)

  14. Mini Solar and Sea Current Power Generation System

    Science.gov (United States)

    Almenhali, Abdulrahman; Alshamsi, Hatem; Aljunaibi, Yaser; Almussabi, Dheyab; Alshehhi, Ahmed; Hilal, Hassan Bu

    2017-07-01

    The power demand in United Arab Emirates is increased so that there is a consistent power cut in our region. This is because of high power consumption by factories and also due to less availability of conventional energy resources. Electricity is most needed facility for the human being. All the conventional energy resources are depleting day by day. So we have to shift from conventional to non-conventional energy resources. In this the combination of two energy resources is takes place i.e. wind and solar energy. This process reviles the sustainable energy resources without damaging the nature. We can give uninterrupted power by using hybrid energy system. Basically this system involves the integration of two energy system that will give continuous power. Solar panels are used for converting solar energy and wind turbines are used for converting wind energy into electricity. This electrical power can utilize for various purpose. Generation of electricity will be takes place at affordable cost. This paper deals with the generation of electricity by using two sources combine which leads to generate electricity with affordable cost without damaging the nature balance. The purpose of this project was to design a portable and low cost power system that combines both sea current electric turbine and solar electric technologies. This system will be designed in efforts to develop a power solution for remote locations or use it as another source of green power.

  15. Reactive power management of power networks with wind generation

    CERN Document Server

    Amaris, Hortensia; Ortega, Carlos Alvarez

    2012-01-01

    As the energy sector shifts and changes to focus on renewable technologies, the optimization of wind power becomes a key practical issue. Reactive Power Management of Power Networks with Wind Generation brings into focus the development and application of advanced optimization techniques to the study, characterization, and assessment of voltage stability in power systems. Recent advances on reactive power management are reviewed with particular emphasis on the analysis and control of wind energy conversion systems and FACTS devices. Following an introduction, distinct chapters cover the 5 key

  16. Integrating wind power in the (French) power system

    International Nuclear Information System (INIS)

    Pellen, A.

    2007-03-01

    RTE and EDF have no other technological option than to restrain the contribution of the French wind power fleet to base-load generation where it comes in direct competition with the nuclear power plants. The author aims to explain this situation and answer the following questions. Why the fossil fueled reactor fleet in France will not be affected by an evolution of the wind power capacity? Why, in France electric power generation-demand SYSTEM wind power cannot be a substitute for fossil fueled thermal units? (A.L.B.)

  17. The new IEA Wind Task 36 on Wind Power Forecasting

    DEFF Research Database (Denmark)

    Giebel, Gregor; Cline, Joel; Frank, Helmut

    Wind power forecasts have been used operatively for over 20 years. Despite this fact, there are still several possibilities to improve the forecasts, both from the weather prediction side and from the usage of the forecasts. The new International Energy Agency (IEA) Task on Forecasting for Wind...... Energy tries to organise international collaboration, among national weather centres with an interest and/or large projects on wind forecast improvements (NOAA, DWD, …), operational forecaster and forecast users. The Task is divided in three work packages: Firstly, a collaboration on the improvement...... forecasts, including probabilistic forecasts. This WP will also organise benchmarks, in cooperation with the IEA Task WakeBench. Thirdly, we will be engaging end users aiming at dissemination of the best practice in the usage of wind power predictions....

  18. Local ownership, smart energy systems and better wind power economy

    DEFF Research Database (Denmark)

    Hvelplund, Frede; Möller, Bernd; Sperling, Karl

    2013-01-01

    Increasing wind power shares enhances the need to integrate wind power into the energy system and to improve its economy. In this study we propose two ways of achieving this end. One is to increase the value of wind power by integrating the heat and power markets, and thus ensures that wind power...... the acceptance rate of onshore wind. The economy of wind power is thus improved by both increasing its value and reducing its costs....

  19. Concentrators Enhance Solar Power Systems

    Science.gov (United States)

    2013-01-01

    "Right now, solar electric propulsion is being looked at very seriously," says Michael Piszczor, chief of the photovoltaic and power technologies branch at Glen Research Center. The reason, he explains, originates with a unique NASA mission from the late 1990s. In 1998, the Deep Space 1 spacecraft launched from Kennedy Space Center to test a dozen different space technologies, including SCARLET, or the Solar Concentrator Array with Refractive Linear Element Technology. As a solar array that focused sunlight on a smaller solar cell to generate electric power, SCARLET not only powered Deep Space 1 s instruments but also powered its ion engine, which propelled the spacecraft throughout its journey. Deep Space 1 was the first spacecraft powered by a refractive concentrator design like SCARLET, and also utilized multi-junction solar cells, or cells made of multiple layers of different materials. For the duration of its 38-month mission, SCARLET performed flawlessly, even as Deep Space 1 flew by Comet Borrelly and Asteroid Braille. "Everyone remembers the ion engine on Deep Space 1, but they tend to forget that the SCARLET array powered it," says Piszczor. "Not only did both technologies work as designed, but the synergy between the two, solar power and propulsion together, is really the important aspect of this technology demonstration mission. It was the first successful use of solar electric propulsion for primary propulsion." More than a decade later, NASA is keenly interested in using solar electric propulsion (SEP) for future space missions. A key issue is cost, and SEP has the potential to substantially reduce cost compared to conventional chemical propulsion technology. "SEP allows you to use spacecraft that are smaller, lighter, and less costly," says Piszczor. "Even though it might take longer to get somewhere using SEP, if you are willing to trade time for cost and smaller vehicles, it s a good trade." Potentially, SEP could be used on future science missions

  20. Source Surface Models and Their Impact on Solar Wind Research

    Science.gov (United States)

    Sokolov, I. V.; Roussev, I. I.; Gombosi, T. I.; Liu, Y.

    2005-05-01

    To perform realistic modeling of the important processes in the solar corona, such as coronal mass ejections, flares, as well as the acceleration of solar particles, one needs to incorporate into the physical models any complicated pattern of the coronal magnetic field. The coronal magnetic field topology is determined by the helmet streamers (with closed field lines), the coronal holes (with open field lines) as well as the fine, but crucially important, details of the small-scale active regions. The standard practice to recover the global 3-D structure of the solar magnetic field from observations is to use the source surface model, in which the field is assumed to be potential, i.e., current-free. This approach ignores any volumetric current there may be present in the corona, and also neglects the existence of the equatorial current sheet, which starts from a height of 3-5 Rs above the solar surface. The fully potential solar magnetic field would have only closed field lines, not allowing for the solar wind to exist. In our Solar Corona model, incorparated into the Space Weather Modelling Framework, the solar magnetic field is split into two constituitive parts: one potential part which is recovered from the magnetic field data (e.g., from WSO, MWO, or MDI data) using the source surface method; and, one other non-potential part. For the potential field, we keep only the spherical harmonics decreasing with distance from the Sun or, equivalently, we use a very large value of the source surface radius. For the non-potential field, we solve the time-dependent induction equation with zero boundary condition at the solar surface. The full set of conservation laws for the MHD system is solved numerically using the BATS-R-US code. To power the solar wind in our model, we use a phenomenological turbulence model described in an earlier paper. The resulting steady-state MHD solution includes the well-resolved current sheet and helmet streamers. The modeled structure of

  1. Solar and Wind Technologies for Hydrogen Production Report to Congress

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2005-12-01

    DOE's Solar and Wind Technologies for Hydrogen Production Report to Congress summarizes the technology roadmaps for solar- and wind-based hydrogen production. Published in December 2005, it fulfills the requirement under section 812 of the Energy Policy Act of 2005.

  2. Chaos in the solar wind flow near Earth

    Indian Academy of Sciences (India)

    We have done a time series analysis of daily average data of solar wind velocity, density and temperature at 1 AU measured by ACE spacecraft for a period of nine years. We have used the raw data without filtering to give a faithful representation of the nonlinear behaviour of the solar wind flow which is a novel one.

  3. Chaos in the solar wind flow near Earth

    Indian Academy of Sciences (India)

    Abstract. We have done a time series analysis of daily average data of solar wind velocity, density and temperature at 1 AU measured by ACE spacecraft for a period of nine years. We have used the raw data without filtering to give a faithful representation of the nonlinear behaviour of the solar wind flow which is a novel one ...

  4. Remote Sensing of the Heliospheric Solar Wind using Radio ...

    Indian Academy of Sciences (India)

    tribpo

    Abstract. The ground-based radio astronomy method of interplanetary scintillations (IPS) and spacecraft observations have shown, in the past. 25 years, that while coronal holes give rise to stable, recurring high speed solar wind streams during the minimum of the solar activity cycle, the slow speed wind seen more during ...

  5. Remote Sensing of the Heliospheric Solar Wind using Radio ...

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... The ground-based radio astronomy method of interplanetary scintillations (IPS) and spacecraft observations have shown, in the past 25 years, that while coronal holes give rise to stable, recurring high speed solar wind streams during the minimum of the solar activity cycle, the slow speed wind seen more ...

  6. Solar dynamic power module design

    Science.gov (United States)

    Secunde, Richard R.; Labus, Thomas L.; Lovely, Ronald G.

    1989-01-01

    Studies have shown that the use of solar dynamic (SD) power for the growth areas of the Space Station Freedom program will result in life cycle cost savings when compared to power supplied by photovoltaic sources. In the SD power module, a concentrator collects and focuses solar energy into a heat receiver which has integral thermal energy storage. A Power Conversion Unit (PCU) based on the closed Brayton cycle removes thermal energy from the receiver and converts that energy to electrical energy. Since the closed Brayton cycle is a single phase gas cycle, the conversion hardware (heat exchangers, turbine, compressor, etc.) can be designed for operation in low earth orbit, and tested with confidence in test facilities on earth before launch into space. The concentrator subassemblies will be aligned and the receiver/PCU/radiator combination completely assembled and charged with gas and cooling liquid on earth before launch to, and assembly on, orbit.

  7. Alfvénic fluctuations in "newborn"' polar solar wind

    Directory of Open Access Journals (Sweden)

    B. Bavassano

    2005-06-01

    Full Text Available The 3-D structure of the solar wind is strongly dependent upon the Sun's activity cycle. At low solar activity a bimodal structure is dominant, with a fast and uniform flow at the high latitudes, and slow and variable flows at low latitudes. Around solar maximum, in sharp contrast, variable flows are observed at all latitudes. This last kind of pattern, however, is a relatively short-lived feature, and quite soon after solar maximum the polar wind tends to regain its role. The plasma parameter distributions for these newborn polar flows appear very similar to those typically observed in polar wind at low solar activity. The point addressed here is about polar wind fluctuations. As is well known, the low-solar-activity polar wind is characterized by a strong flow of Alfvénic fluctuations. Does this hold for the new polar flows too? An answer to this question is given here through a comparative statistical analysis on parameters such as total energy, cross helicity, and residual energy, that are of general use to describe the Alfvénic character of fluctuations. Our results indicate that the main features of the Alfvénic fluctuations observed in low-solar-activity polar wind have been quickly recovered in the new polar flows developed shortly after solar maximum. Keywords. Interplanetary physics (MHD waves and turbulence; Sources of the solar wind – Space plasma physics (Turbulence

  8. The variable nature of the solar wind

    Science.gov (United States)

    Jackson, B. V.; Yu, H. S.; Buffington, A.; Hick, P. P.

    2017-12-01

    When analyzing LASCO C2 and STEREO SECCHI COR2 coronagraph images, and using UCSD-developed two-dimensional (2D) correlation-tracking techniques, we found that the observed outflow is not a static well-ordered motion, but instead has highly variable speed structures. This outward motion of structures is also observed over the entire high-resolution STEREO HI-1 field of view, whether or not a CME is present. We have recently exploited the correlation-tracking techniques to measure the optical flow on HI-1A images. The analysis yields a wealth of information about the outward motion of large- and fine-scale structures in the heliosphere. These include the 2D speed of features, the level of the correlation, the brightness of the feature measured, and the structure non-radial 2D motion. Here we present the analysis of a well-observed fast-moving CME and the speed of different structures within it. The preliminary results of the heliospheric velocity determination using HI-1A images show the nature of the solar wind within the CME that is organized into a fast and patchy high-speed front followed by a slower internal region. From this we conclude that the Parker Solar Probe and ESA Solar Orbiter will measure this highly-variable structure in situ within CMEs, and we speculate that these structures will also show abundance and magnetic field differences related to this high variability.

  9. Peak Power Markets for Satellite Solar Power

    Science.gov (United States)

    Landis, Geoffrey A.

    2002-01-01

    This paper introduces first Indonesia, comprises 15,000 islands, has land area of two millions square kilometers. Extending from 95 to 141 degrees East longitude and from 6 degrees North to 11 degrees South latitude. Further the market of the Space Solar Power/SPS must be worldwide, including Indonesia. As we know, it can provide electricity anywhere in the world from the Earth's orbit, mostly Indonesia an equator country. We have to perform case studies of various countries to understand their benefits and disadvantages provided by the SSP, because each country has much different condition on energy from other countries. We are at the moment starting the international collaboration between Indonesia and Japan to carry out the case study for Indonesia. We understand that in Indonesia itself each province has much different micro-climate between one province compared to the other. In Japan, METI (Ministry of Economy, Trade and Industry) has already organized a committee to investigate the feasibility of Space Solar Power and to make a plan to launch a space demonstration of the SPS. While, Indonesia is quickly developing economy and increasing their energy demand. We are investigating the detailed energy conditions of Indonesia, the benefits and disadvantages of the Space Solar Power for Indonesia. Especially, we will perform the investigation on the receiving system for the Japanese pilot Space Power Satellite.

  10. Wind energy in the electric power system

    DEFF Research Database (Denmark)

    Polinder, H.; Peinke, J.; Kramer, O.

    2016-01-01

    have to behave when connected to the power system. In this way, they already incorporate basic ancillary services. However, frequency control is normally not provided as a regular reserve, because this would require reserving parts of the available wind capacity as stand-by capacity. Within R......The ongoing increase in renewable power generation causes a parallel overall decrease in conventional power generation from, in particular, fossil and nuclear power plants. Apart from providing market-based active power schedules, these power plants are crucial for offering ancillary services...... in order to guarantee a reliable stable power supply at any instant in time. Substituting these plants with renewable generation units requires the latter to be capable of providing these ancillary services. The state of the art is that grid codes are used to define the way wind turbines and wind farms...

  11. THE ACTORS OF A WIND POWER CLUSTER: A CASE OF A WIND POWER CAPITAL

    Directory of Open Access Journals (Sweden)

    Jari M. Sarja

    2013-01-01

    Full Text Available Raahe is a medium-sized Finnish town on the western coast of Northern Finland. It has declared itself to become the wind power capital of Finland. The aim of this paper is to find out what being a wind power capital can mean in practice and how it can advance the local industrial business. First, the theoretical framework of this systematic review study was formed by searching theoretical information about the forms of industrial clusters, and it was then examined what kinds of actors take part in these types of clusters. Finally, the actors of the case area were studied. The core companies of wind power clusters are the wind turbine manufacturers, component manufacturers, developers of the wind farms, wind power operators, and service and maintenance organizations. Understanding of the wind power cluster structure may help decision makers to develop the best possible conditions for the emergence of clusters.

  12. THE ACTORS OF A WIND POWER CLUSTER: A CASE OF A WIND POWER CAPITAL

    Directory of Open Access Journals (Sweden)

    Jari M. Sarja

    2013-06-01

    Full Text Available Raahe is a medium-sized Finnish town on the western coast of Northern Finland. It has declared itself to become the wind power capital of Finland. The aim of this paper is to find out what being a wind power capital can mean in practice and how it can advance the local industrial business. First, the theoretical framework of this systematic review study was formed by searching theoretical information about the forms of industrial clusters, and it was then examined what kinds of actors take part in these types of clusters. Finally, the actors of the case area were studied. The core companies of wind power clusters are the wind turbine manufacturers, component manufacturers, developers of the wind farms, wind power operators, and service and maintenance organizations. Understanding of the wind power cluster structure may help decision makers to develop the best possible conditions for the emergence of clusters.

  13. Wind Power - A Power Source Enabled by Power Electronics

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Chen, Zhe

    2004-01-01

    The global electrical energy consumption is still rising and there is a steady demand to increase the power capacity. The production, distribution and the use of the energy should be as technological efficient as possible and incentives to save energy at the end-user should be set up. The deregul......The global electrical energy consumption is still rising and there is a steady demand to increase the power capacity. The production, distribution and the use of the energy should be as technological efficient as possible and incentives to save energy at the end-user should be set up....... The deregulation of energy has lowered the investment in bigger power plants, which means the need for new electrical power sources may be very high in the near future. Two major technologies will play important roles to solve the future problems. One is to change the electrical power production sources from...... the conventional, fossil (and short term) based energy sources to renewable energy sources. The other is to use high efficient power electronics in power systems, power production and end-user application. This paper discuss the most emerging renewable energy source, wind energy, which by means of power...

  14. Power Transmission from Large Offshore Wind Farms

    DEFF Research Database (Denmark)

    Pedersen, Jørgen Kaas

    1999-01-01

    The major part of the coming wind farms in Denmark will be placed offshore. If the location is near a grid with a high short circuit level the power can be transmitted as AC.If the wind farm is far away from the grid and the grid perhaps has a low short circuit level, the best solution for transm...

  15. Probabilistic Harmonic Modeling of Wind Power Plants

    DEFF Research Database (Denmark)

    Guest, Emerson; Jensen, Kim H.; Rasmussen, Tonny Wederberg

    2017-01-01

    A probabilistic sequence domain (SD) harmonic model of a grid-connected voltage-source converter is used to estimate harmonic emissions in a wind power plant (WPP) comprised of Type-IV wind turbines. The SD representation naturally partitioned converter generated voltage harmonics into those...

  16. Wind power: breakthrough to global dimensions

    International Nuclear Information System (INIS)

    Horrighs, W.

    1996-01-01

    The beginning of the 1980s saw the start of wind-turbine manufacture. Soon it had become a booming industrial sector, thanks mainly to the spirit of some young entrepreneurs and political support in many countries. But the wind-power market has assumed global dimensions and major structural changes have to be faced. (author)

  17. Is This the Only Hope for Reversing Global Warming? Transitioning Each Country's All-Purpose Energy to 100% Electricity Powered by Wind, Water, and Solar

    Science.gov (United States)

    Jacobson, M. Z.

    2016-12-01

    Global warming, air pollution, and energy insecurity are three of the most significant problems facing the world today. Can these problems be solved with existing technologies implemented on a large scale or do we need to wait for a miracle technology? This talk discusses the development of technical and economic plans to convert the energy infrastructure of each of 139 countries of the world to those powered by 100% wind, water, and sunlight (WWS) for all purposes using existing technology along with efficiency measures. All purposes includes electricity, transportation, heating/cooling, industry, and agriculture/forestry/fishing. The roadmaps propose using existing WWS generator technologies along with existing electrical transportation, heating/cooling, and industrial devices and appliances, plus existing electricity storage technologies, (CSP with storage, pumped hydroelectric storage, and existing hydroelectric power) and existing heat/cold storage technologies (water, ice, and rocks) for the transitions. They envision 80% conversion to WWS by 2030 and 100% by 2050. WWS not only replaces business-as-usual (BAU) power, but also reduces 2050 BAU demand due to the higher work to energy ratio of WWS electricity over combustion, the elimination of energy for mining, transporting, and processing fuels, and improvements in end-use efficiency beyond BAU. The study examines job creation versus loss, land use requirements, air pollution mortality and morbidity cost differences, and global warming cost differences due to the conversion in each country. Results suggest that implementing these roadmaps will stabilize energy prices because fuel costs are zero; reduce international conflict by creating energy-independent countries; reduce energy poverty; reduce power disruption by decentralizing power; and avoid exploding CO2 levels. Thus, the study concludes that a 100% WWS transition provides at least one solution to global warming Please see http

  18. Reliability and cost/worth evaluation of generating systems utilizing wind and solar energy

    Science.gov (United States)

    Bagen

    The utilization of renewable energy resources such as wind and solar energy for electric power supply has received considerable attention in recent years due to adverse environmental impacts and fuel cost escalation associated with conventional generation. At the present time, wind and/or solar energy sources are utilized to generate electric power in many applications. Wind and solar energy will become important sources for power generation in the future because of their environmental, social and economic benefits, together with public support and government incentives. The wind and sunlight are, however, unstable and variable energy sources, and behave far differently than conventional sources. Energy storage systems are, therefore, often required to smooth the fluctuating nature of the energy conversion system especially in small isolated applications. The research work presented in this thesis is focused on the development and application of reliability and economic benefits assessment associated with incorporating wind energy, solar energy and energy storage in power generating systems. A probabilistic approach using sequential Monte Carlo simulation was employed in this research and a number of analyses were conducted with regards to the adequacy and economic assessment of generation systems containing wind energy, solar energy and energy storage. The evaluation models and techniques incorporate risk index distributions and different operating strategies associated with diesel generation in small isolated systems. Deterministic and probabilistic techniques are combined in this thesis using a system well-being approach to provide useful adequacy indices for small isolated systems that include renewable energy and energy storage. The concepts presented and examples illustrated in this thesis will help power system planners and utility managers to assess the reliability and economic benefits of utilizing wind energy conversion systems, solar energy conversion

  19. Hybrid Model of Inhomogeneous Solar Wind Plasma Heating by Alfven Wave Spectrum: Parametric Studies

    Science.gov (United States)

    Ofman, L.

    2010-01-01

    Observations of the solar wind plasma at 0.3 AU and beyond show that a turbulent spectrum of magnetic fluctuations is present. Remote sensing observations of the corona indicate that heavy ions are hotter than protons and their temperature is anisotropic (T(sub perpindicular / T(sub parallel) >> 1). We study the heating and the acceleration of multi-ion plasma in the solar wind by a turbulent spectrum of Alfvenic fluctuations using a 2-D hybrid numerical model. In the hybrid model the protons and heavy ions are treated kinetically as particles, while the electrons are included as neutralizing background fluid. This is the first two-dimensional hybrid parametric study of the solar wind plasma that includes an input turbulent wave spectrum guided by observation with inhomogeneous background density. We also investigate the effects of He++ ion beams in the inhomogeneous background plasma density on the heating of the solar wind plasma. The 2-D hybrid model treats parallel and oblique waves, together with cross-field inhomogeneity, self-consistently. We investigate the parametric dependence of the perpendicular heating, and the temperature anisotropy in the H+-He++ solar wind plasma. It was found that the scaling of the magnetic fluctuations power spectrum steepens in the higher-density regions, and the heating is channeled to these regions from the surrounding lower-density plasma due to wave refraction. The model parameters are applicable to the expected solar wind conditions at about 10 solar radii.

  20. Optimal electricity market for wind power

    International Nuclear Information System (INIS)

    Holttinen, H.

    2005-01-01

    This paper is about electricity market operation when looking from the wind power producers' point of view. The focus in on market time horizons: how many hours there is between the closing and delivering the bids. The case is for the Nordic countries, the Nordpool electricity market and the Danish wind power production. Real data from year 2001 was used to study the benefits of a more flexible market to wind power producer. As a result of reduced regulating market costs from better hourly predictions to the market, wind power producer would gain up to 8% more if the time between market bids and delivery was shortened from the day ahead Elspot market (hourly bids by noon for 12-36 h ahead). An after sales market where surplus or deficit production could be traded 2 h before delivery could benefit the producer almost as much, gaining 7%

  1. The wind power reaches the city

    International Nuclear Information System (INIS)

    Marandet, L.

    2007-01-01

    With the first steps in the town, the wind power is confronted with the technical, administrative and financial difficulties of the emerging energies. The sector, some architectural projects, and the regulation are presented. (A.L.B.)

  2. Assessing Capacity Value of Wind Power

    Energy Technology Data Exchange (ETDEWEB)

    Frew, Bethany A.

    2017-04-18

    This presentation provides a high-level overview of assessing capacity value of wind power, including Impacts of multiple-year data sets, impacts of transmission assumptions, and future research needs.

  3. Wind power: valuation and finance

    International Nuclear Information System (INIS)

    Aastrand, C.; Mose, O.; Sorensen, B.

    1996-01-01

    The past 20 years of wind energy experience in Denmark has primarily been based upon three financing schemes, tailored to individually owned, guild owned and utility owned wind turbines. The merits of and problems with these schemes are discussed, as well as their relations to specific legislation regarding e.g. taxation. It is finally explored, whether new forms of organisation, valuation and financing may be needed. (author)

  4. The impact of wind power on electricity prices

    Energy Technology Data Exchange (ETDEWEB)

    Brancucci Martinez-Anido, Carlo; Brinkman, Greg; Hodge, Bri-Mathias

    2016-08-01

    This paper investigates the impact of wind power on electricity prices using a production cost model of the Independent System Operator - New England power system. Different scenarios in terms of wind penetration, wind forecasts, and wind curtailment are modeled in order to analyze the impact of wind power on electricity prices for different wind penetration levels and for different levels of wind power visibility and controllability. The analysis concludes that electricity price volatility increases even as electricity prices decrease with increasing wind penetration levels. The impact of wind power on price volatility is larger in the shorter term (5-min compared to hour-to-hour). The results presented show that over-forecasting wind power increases electricity prices while under-forecasting wind power reduces them. The modeling results also show that controlling wind power by allowing curtailment increases electricity prices, and for higher wind penetrations it also reduces their volatility.

  5. Husum wind `97. Amiable and powerful. Proceedings; Husum Wind `97. Liebenswert und leistungsstark. Kongressband

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    The Husum Fair and Congress on Wind Energy 97 wants to inform on and demonstrate the state of the art of wind energy and its potentials of development. This conference volume contains 21 papers in seven sections: Wind energy - society and environment; forum of the wind power plant manufacturers represented at the Husum Wind 97; foreign markets for wind power plants; development prospects for wind power; wind power in retrospective and relevant operating experience; panel discussion ``The amendment to the act on remuneration for power fed into the mains - wind power in the lull``; excursion to the test field WINDTEST, Kaiser-Wilhelm-Koog. (AKF)

  6. Directly driven generators for wind power applications

    Energy Technology Data Exchange (ETDEWEB)

    Lampola, P. [Helsinki Univ. of Technology, Espoo (Finland). Lab. of Electromechanics

    1995-12-31

    The article deals with an analysis of directly driven, low-speed wind generators. The generators studied were a permanent-magnet synchronous machine and an asynchronous machine. The machines were compared with a typical generator of a wind power plant. The electromagnetic optimization of the machines was done by the finite element method. The rated power of the generators was 500 kW and the rotational speed was 40 rpm. (author)

  7. Wind power and the conditions at a liberalized power market

    International Nuclear Information System (INIS)

    Morthorst, P.E.

    2003-01-01

    Wind power is undergoing a rapid development nationally as well as globally and in a number of countries covers an increasing part of the power supply. At the same time an ongoing liberalization of power markets is taking place and to an increasing extent the owners of wind power plants will themselves have to be responsible for trading the power at the spot market and financially handling the balancing. In the western part of Denmark (Jutland/Funen area), wind-generated power from time to time covers almost 100% of total power consumption. Therefore some examples are chosen from this area to analyse in more detail how well large amounts of wind power in the short-term are handled at the power spot market. It turns out that there is a tendency that more wind power in the system in the short run leads to relatively lower spot prices, while less wind power implies relatively higher spot prices, although, with the exception of December 2002, in general no strong relationship is found. A stronger relationship is found at the regulating market, where there is a fairly clear tendency that the more wind power produced, the higher is the need for down-regulation, and, correspondingly, the less wind power produced, the higher is the need for up-regulation. In general for the Jutland/Funen area the average cost of down-regulation is calculated as 1 2 c euros/kWh regulated for 2002, while the cost of up-regulation amounts to 0 7 c euros/kWh regulated. (author)

  8. Wind Power: A Renewable Energy Source for Mars Transit Vehicle

    Science.gov (United States)

    Flynn, Michael; Kohout, Lisa; Kliss, Mark (Technical Monitor)

    1998-01-01

    The Martian environment presents significant design challenges for the development of power generation systems. Nuclear-based systems may not be available due to political and safety concerns. The output of photovoltaics are limited by a solar intensity of 580 W/sqm as compared to 1353 W/sqm on Earth. The presence of dust particles in the Mars atmosphere will further reduce the photovoltaic output. Also, energy storage for a 12-hour night period must be provided. In this challenging environment, wind power generation capabilities may provide a viable option as a Martian power generation system. This paper provides an analysis of the feasibility of such a system.

  9. Polar solar wind and interstellar wind properties from interplanetary Lyman-alpha radiation measurements

    Science.gov (United States)

    Witt, N.; Blum, P. W.; Ajello, J. M.

    1981-01-01

    The analysis of Mariner 10 observations of Lyman-alpha resonance radiation shows an increase of interplanetary neutral hydrogen densities above the solar poles. This increase is caused by a latitudinal variation of the solar wind velocity and/or flux. Using both the Mariner 10 results and other solar wind observations, the values of the solar wind flux and velocity with latitude are determined for several cases of interest. The latitudinal variation of interplanetary hydrogen gas, arising from the solar wind latitudinal variation, is shown to be most pronounced in the inner solar system. From this result it is shown that spacecraft Lyman-alpha observations are more sensitive to the latitudinal anisotropy for a spacecraft location in the inner solar system near the downwind axis.

  10. High Power Density Power Electronic Converters for Large Wind Turbines

    DEFF Research Database (Denmark)

    Senturk, Osman Selcuk

    In large wind turbines (in MW and multi-MW ranges), which are extensively utilized in wind power plants, full-scale medium voltage (MV) multi-level (ML) voltage source converters (VSCs) are being more preferably employed nowadays for interfacing these wind turbines with electricity grids. For the......In large wind turbines (in MW and multi-MW ranges), which are extensively utilized in wind power plants, full-scale medium voltage (MV) multi-level (ML) voltage source converters (VSCs) are being more preferably employed nowadays for interfacing these wind turbines with electricity grids....... For these VSCs, high power density is required due to limited turbine nacelle space. Also, high reliability is required since maintenance cost of these remotely located wind turbines is quite high and these turbines operate under harsh operating conditions. In order to select a high power density and reliability...... VSC solution for wind turbines, first, the VSC topology and the switch technology to be employed should be specified such that the highest possible power density and reliability are to be attained. Then, this qualitative approach should be complemented with the power density and reliability...

  11. Wind power investment within a market environment

    International Nuclear Information System (INIS)

    Baringo, L.; Conejo, A.J.

    2011-01-01

    Highlights: → The interaction of a wind power investor and the pool is represented via an MPEC. → The considered electricity pool is cleared through a network constrained auction. → Uncertainty of load and wind production is characterized by a moderate number of scenarios. → The investment model can be recast as a mixed integer linear programming problem. → Large instances of the considered model are computationally tractable. - Abstract: Within an existing transmission network, this paper considers the problem of identifying the wind power plants to be built by a wind power investor to maximize its profit. For this analysis a future target year is considered and the loads at different buses are represented by stepwise load-duration curves. The stochastic nature of both load and wind is represented via scenarios. The considered electric energy system operates under a pool-market arrangement and each producer/consumer is paid/pays the Local Marginal Price (LMP) of the bus at which it is located. The higher the wind penetration is, the lower the resulting LMPs. To tackle this problem a stochastic bilevel model is proposed, whose upper-level represents the wind investment and operation decisions with the target of maximizing profits; and its lower-level represents the market clearing under differing load and wind conditions and provides LMPs. This model can be recast as a mixed-integer linear programming problem solvable using commercially available branch-and-cut solvers. The proposed model is illustrated using an example and two case studies.

  12. Review of Power System Stability with High Wind Power Penetration

    DEFF Research Database (Denmark)

    Hu, Rui; Hu, Weihao; Chen, Zhe

    2015-01-01

    This paper presents an overview of researches on power system stability with high wind power penetration including analyzing methods and improvement approaches. Power system stability issues can be classified diversely according to different considerations. Each classified issue has special...... analyzing methods and stability improvement approaches. With increasing wind power penetration, system balancing and the reduced inertia may cause a big threaten for stable operation of power systems. To mitigate or eliminate the wind impacts for high wind penetration systems, although the practical...... and reliable choices currently are the strong outside connections or sufficient reserve capacity constructions, many novel theories and approaches are invented to investigate the stability issues, looking forward to an extra-high penetration or totally renewable resource based power systems. These analyzing...

  13. Two wind power prognosis criteria and regulating power costs

    DEFF Research Database (Denmark)

    Nielsen, Claus S.; Ravn, Hans F.; Schaumburg-Müller, Camilla

    2003-01-01

    . Basically, the choice is between focusing on predicting the energy content of the wind and focusing on the cost of buying regulating power to compensate for the prognosis errors. It will be shown that it can be expected that the two power curves thus estimated will differ, and that therefore also the hourly...... wind power production predicted will differ. In turn this will influence the operation and economics of the system. The consequences of this are illustrated by application to the integration of wind power in the Danish parts of the Nordpool area, using recent data. Using a regression analysis......The objective of the present work is to investigate the consequences of the choice of criterion in short-term wind power prognosis. This is done by investigating the consequences of choice of objective function in relation to the estimation of the power curve that is applied in the prognoses...

  14. Dynamic Influences of Wind Power on The Power System

    DEFF Research Database (Denmark)

    Rosas, Pedro Andrè Carvalho

    2004-01-01

    . The flicker and frequency deviations are the main power quality parameters presented. The power system stability concentrates on the voltage stability and on the power system oscillations. From the cases studies, voltage and thefrequency variations were smaller than expected from the large-scale wind power...

  15. Wind Powering America FY06 Activities Summary

    Energy Technology Data Exchange (ETDEWEB)

    2007-02-01

    The Wind Powering America FY06 Activities Summary reflects the accomplishments of our state wind working groups, our programs at the National Renewable Energy Laboratory, and our partner organizations. The national WPA team remains a leading force for moving wind energy forward in the United States. WPA continues to work with its national, regional, and state partners to communicate the opportunities and benefits of wind energy to a diverse set of stakeholders. WPA now has 29 state wind working groups (welcoming New Jersey, Indiana, Illinois, and Missouri in 2006) that form strategic alliances to communicate wind's benefits to the state stakeholders. More than 120 members of national and state public and private sector organizations from 34 states attended the 5th Annual WPA All-States Summit in Pittsburgh in June.

  16. San Cristobal Galapagos wind power project

    Energy Technology Data Exchange (ETDEWEB)

    Tolan, J. [Sgurr Energy, Glasgow (United Kingdom)

    2009-07-01

    The San Cristobal Galapagos wind power project was described. With its unique endemic flora and fauna, the Galapagos Islands were declared a world heritage site and marine reserve. The San Cristobal wind project was initiated in 1999 to reduce the environmental impacts of energy use on the island, and has been operational since 2007. Three 800 kW wind turbines have been installed in order to reduce 52 per cent of the island's diesel generation. The project's high penetration wind-diesel hybrid system included 300 kW diesel generators, a 13.2 kV utility distribution system, and six 300 kW wind turbines. The project is located outside of Galapagos Petrel flight paths and nesting areas. Turbines from a factory in Spain were used. The wind turbine foundation was constructed from concrete sand and stone mined on the island. Photographs of the installation process were included. tabs., figs.

  17. Solar Powered Electronic Trash Can

    OpenAIRE

    Engr. Joan P. Lazaro; Engr. Alexis John M. Rubio

    2014-01-01

    The purpose of this study is to create an improvement of a normal trash can using an embedded systemintegrated with a solar panel that aims to improve the disposal practices of schoolchildren and improve the awareness of the students about the emerging capability of solar power. To use the system, the user needs to scan the material of the garbage then the chamber opens depending on what type of material was scanned. As the chamber opens, the user throws the trash inside the chamb...

  18. Modular Solar Electric Power (MSEP) Systems (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Hassani, V.

    2000-06-18

    This presentation discusses the development and deployment of Modular Solar Electric Power (MSEP) systems, the feasibility of application of existing binary power cycles to solar trough technology, and identification of next action items.

  19. Dst Prediction Based on Solar Wind Parameters

    Directory of Open Access Journals (Sweden)

    Yoon-Kyung Park

    2009-12-01

    Full Text Available We reevaluate the Burton equation (Burton et al. 1975 of predicting Dst index using high quality hourly solar wind data supplied by the ACE satellite for the period from 1998 to 2006. Sixty magnetic storms with monotonously decreasing main phase are selected. In order to determine the injection term (Q and the decay time (tau of the equation, we examine the relationships between Dst* and VB_s, Delta Dst* and VB_s, and Delta Dst* and Dst* during the magnetic storms. For this analysis, we take into account one hour of the propagation time from the ACE satellite to the magnetopause, and a half hour of the response time of the magnetosphere/ring current to the solar wind forcing. The injection term is found to be Q({nT}/h=-3.56VB_s for VB_s>0.5mV/m and Q({nT}/h=0 for VB_s leq0.5mV/m. The tau (hour is estimated as 0.060 Dst* + 16.65 for Dst*>-175nT and 6.15 hours for Dst* leq -175nT. Based on these empirical relationships, we predict the 60 magnetic storms and find that the correlation coefficient between the observed and predicted Dst* is 0.88. To evaluate the performance of our prediction scheme, the 60 magnetic storms are predicted again using the models by Burton et al. (1975 and O'Brien & McPherron (2000a. The correlation coefficients thus obtained are 0.85, the same value for both of the two models. In this respect, our model is slightly improved over the other two models as far as the correlation coefficients is concerned. Particularly our model does a better job than the other two models in predicting intense magnetic storms (Dst* lesssim -200nT.

  20. Solar photovoltaic power generation system and understanding of green energy

    International Nuclear Information System (INIS)

    Yoo, Chun Sik

    2004-03-01

    This book introduces sunlight generation system and green energy, which includes new and renewable energy such as photovoltaic power generation, solar thermal, wind power, bio energy, waste energy, geothermal energy, ocean energy and fuel cell photovoltaic industry like summary, technology trend, market trend, development strategy of the industry in Korea, and other countries, design of photovoltaic power generation system supporting policy and related business of new and renewable energy.

  1. Large scale wind power penetration in Denmark

    DEFF Research Database (Denmark)

    Karnøe, Peter

    2013-01-01

    he Danish electricity generating system prepared to adopt nuclear power in the 1970s, yet has become the world's front runner in wind power with a national plan for 50% wind power penetration by 2020. This paper deploys a sociotechnical perspective to explain the historical transformation...... of "networks of power" via the interactions of politics, the techno-physics of electrons, and the market setting. The Danish case is about how an assemblage of new agencies has reorganized and reshaped society by building a new sociotechnical network. This has rendered developments highly unpredictable...

  2. Electrifying Greece with solar and wind energy

    Directory of Open Access Journals (Sweden)

    Mentis Dimitris

    2014-01-01

    Full Text Available Ensuring energy security, reducing GHG emissions and boosting the competitiveness of a country’s economy by attracting investments and technical knowhow are of paramount importance considering the targets of “20-20-20” set by the European community. Being the cradle of civilization, Greece appears today as a country caught in a prolonged hard economic and social crisis, the way out of which its citizens are looking forward as well as the entire European Union. Establishment of the leading renewable energy sources like solar and wind in Greece will not only increase the independence of its own electrification but will also provide with a foundation for developing the market of international trade of “green” energy. This paper initially highlights the current status of photovoltaics and wind turbines in Greece. Furthermore, this study evaluates whether a higher penetration of the above mentioned green energy sources would have positive impact in the economy of the country or not and in what extent they could decline the CO2 emissions until 2020, comparing to the corresponding levels in 2010.

  3. Wind Farms’ Spatial Distribution Effect on Power System Reserves Requirements

    DEFF Research Database (Denmark)

    Sørensen, Poul Ejnar; Cutululis, Nicolaos Antonio

    2010-01-01

    The wind power development during last millennium was typically based on small wind turbines dispersed over large areas, leading to a significant smoothing of the wind power fluctuations in a power system balancing area. The present development goes towards much larger wind farms, concentrated...... in smaller areas, which causes the total wind power fluctuations in power system areas to increase significantly. The impact of future large wind farms spatial distribution with respect to the power system reserve requirements is analyzed in this paper. For this purpose, Correlated Wind (CorWind) power time...... series simulation model developed to simulate wind power variability over a large area is used. As a study case, two scenarios for short term offshore wind power development in the West Danish power system region are used. The first scenario assumes that all the wind farms are built in the region...

  4. Electric Vehicles in Power Systems with 50% Wind Power Penetration

    DEFF Research Database (Denmark)

    Østergaard, Jacob; Foosnæs, Anders; Xu, Zhao

    2009-01-01

    will be an important balancing measure to enable the Danish government’s energy strategy, which implies 50% wind power penetration in the electric power system. An EV will be a storage device for smoothing power fluctuations from renewable resources especially wind power and provide valuable system services...... for a reliable power system operation. Cost-benefit analysis shows that intelligent bidirectional charging – vehicle to grid (V2G) – provides a socio-economic profit of 150 million Euro/year in the Danish electric power system in 2025 assuming that 15% of the Danish road transport need is supplied by electricity....... This paper analyse the potential for using EVs in Denmark and identify the benefits of the electric power system with high wind power generation by intelligent charging of the EVs. Based on the analysis important technology gabs are identified, and the corresponding research and development initiatives...

  5. Saturation wind power potential and its implications for wind energy.

    Science.gov (United States)

    Jacobson, Mark Z; Archer, Cristina L

    2012-09-25

    Wind turbines convert kinetic to electrical energy, which returns to the atmosphere as heat to regenerate some potential and kinetic energy. As the number of wind turbines increases over large geographic regions, power extraction first increases linearly, but then converges to a saturation potential not identified previously from physical principles or turbine properties. These saturation potentials are >250 terawatts (TW) at 100 m globally, approximately 80 TW at 100 m over land plus coastal ocean outside Antarctica, and approximately 380 TW at 10 km in the jet streams. Thus, there is no fundamental barrier to obtaining half (approximately 5.75 TW) or several times the world's all-purpose power from wind in a 2030 clean-energy economy.

  6. Are local wind power resources well estimated?

    Science.gov (United States)

    Lundtang Petersen, Erik; Troen, Ib; Jørgensen, Hans E.; Mann, Jakob

    2013-03-01

    Planning and financing of wind power installations require very importantly accurate resource estimation in addition to a number of other considerations relating to environment and economy. Furthermore, individual wind energy installations cannot in general be seen in isolation. It is well known that the spacing of turbines in wind farms is critical for maximum power production. It is also well established that the collective effect of wind turbines in large wind farms or of several wind farms can limit the wind power extraction downwind. This has been documented by many years of production statistics. For the very large, regional sized wind farms, a number of numerical studies have pointed to additional adverse changes to the regional wind climate, most recently by the detailed studies of Adams and Keith [1]. They show that the geophysical limit to wind power production is likely to be lower than previously estimated. Although this problem is of far future concern, it has to be considered seriously. In their paper they estimate that a wind farm larger than 100 km2 is limited to about 1 W m-2. However, a 20 km2 off shore farm, Horns Rev 1, has in the last five years produced 3.98 W m-2 [5]. In that light it is highly unlikely that the effects pointed out by [1] will pose any immediate threat to wind energy in coming decades. Today a number of well-established mesoscale and microscale models exist for estimating wind resources and design parameters and in many cases they work well. This is especially true if good local data are available for calibrating the models or for their validation. The wind energy industry is still troubled by many projects showing considerable negative discrepancies between calculated and actually experienced production numbers and operating conditions. Therefore it has been decided on a European Union level to launch a project, 'The New European Wind Atlas', aiming at reducing overall uncertainties in determining wind conditions. The

  7. Proceedings of the Canadian Wind Energy Association's 2009 wind matters conference : wind and power systems

    International Nuclear Information System (INIS)

    2009-01-01

    This conference provided a forum for wind energy and electric power industry experts to discuss issues related to wind and power systems. An overview of wind integration studies and activities in Canada and the United States was provided. New tools and technologies for facilitating the integration of wind and improve market conditions for wind energy developers were presented. Methods of increasing wind penetration were evaluated, and technical issues related to wind interconnections throughout North America were reviewed. The conference was divided into the following 5 sessions: (1) experiences with wind integration, and lessons learned, (2) update on ongoing wind integration initiatives in Canada and the United States, (3) initiatives and tools to facilitate wind integration and market access, (4) developments in wind interconnection and grid codes, (5) wind energy and cold weather considerations, and (6) challenges to achieving the 20 per cent WindVision goal in Canada. The conference featured 21 presentations, of which 13 have been catalogued separately for inclusion in this database. refs., tabs., figs

  8. Wind power integration connection and system operational aspects

    CERN Document Server

    Fox, Brendan

    2014-01-01

    Wind Power Integration provides a wide-ranging discussion on all major aspects of wind power integration into electricity supply systems. This second edition has been fully revised and updated to take account of the significant growth in wind power deployment in the past few years. New discussions have been added to describe developments in wind turbine generator technology and control, the network integration of wind power, innovative ways to integrate wind power when its generation potential exceeds 50% of demand, case studies on how forecasting errors have affected system operation, and an update on how the wind energy sector has fared in the marketplace. Topics covered include: the development of wind power technology and its world-wide deployment; wind power technology and the interaction of various wind turbine generator types with the utility network; and wind power forecasting and the challenges faced by wind energy in modern electricity markets.

  9. CONDITIONED ANALYSIS OF HIGH-LATITUDE SOLAR WIND INTERMITTENCY

    International Nuclear Information System (INIS)

    D'Amicis, R.; Consolini, G.; Bavassano, B.; Bruno, R.

    2012-01-01

    The solar wind is a turbulent medium displaying intermittency. Its intermittent features have been widely documented and studied, showing how the intermittent character is different in fast and slow wind. In this paper, a statistical conditioned analysis of the solar wind intermittency for a period of high-latitude fast solar wind is presented. In particular, the intermittent features are investigated as a function of the Alfvénic degree of fluctuations at a given scale. The results show that the main contribution to solar wind intermittency is due to non-Alfvénic structures, while Alfvénic increments are found to be characterized by a smaller level of intermittency than the previous ones. Furthermore, the lifetime statistics of Alfvénic periods are discussed in terms of a multiscale texture of randomly oriented flux tubes.

  10. Generation of Kappa Distributions in Solar Wind at 1 au

    Science.gov (United States)

    Livadiotis, G.; Desai, M. I.; Wilson, L. B., III

    2018-02-01

    We examine the generation of kappa distributions in the solar wind plasma near 1 au. Several mechanisms are mentioned in the literature, each characterized by a specific relationship between the solar wind plasma features, the interplanetary magnetic field (IMF), and the kappa index—the parameter that governs the kappa distributions. This relationship serves as a signature condition that helps the identification of the mechanism in the plasma. In general, a mechanism that generates kappa distributions involves a single or a series of stochastic or physical processes that induces local correlations among particles. We identify three fundamental solar wind plasma conditions that can generate kappa distributions, noted as (i) Debye shielding, (ii) frozen IMF, and (iii) temperature fluctuations, each one prevailing in different scales of solar wind plasma and magnetic field properties. Moreover, our findings show that the kappa distributions, and thus, their generating mechanisms, vary significantly with solar wind features: (i) the kappa index has different dependence on the solar wind speed for slow and fast modes, i.e., slow wind is characterized by a quasi-constant kappa index, κ ≈ 4.3 ± 0.7, while fast wind exhibits kappa indices that increase with bulk speed; (ii) the dispersion of magnetosonic waves is more effective for lower kappa indices (i.e., further from thermal equilibrium); and (iii) the kappa and polytropic indices are positively correlated, as it was anticipated by the theory.

  11. Wind power and market power in competitive markets

    International Nuclear Information System (INIS)

    Twomey, Paul; Neuhoff, Karsten

    2010-01-01

    Average market prices for intermittent generation technologies are lower than for conventional generation. This has a technical reason but can be exaggerated in the presence of market power. When there is much wind smaller amounts of conventional generation technologies are required, and prices are lower, while at times of little wind prices are higher. This effect reflects the value of different generation technologies to the system. But under conditions of market power, conventional generators with market power can further depress the prices if they have to buy back energy at times of large wind output and can increase prices if they have to sell additional power at times of little wind output. This greatly exaggerates the effect. Forward contracting does not reduce the effect. An important consequence is that allowing market power profit margins as a support mechanism for generation capacity investment is not a technologically neutral policy.

  12. Optimal Power Flow Management Control for Grid Connected Photovoltaic/Wind turbine/Diesel generator (GCPWD) Hybrid System with Batteries

    OpenAIRE

    Murugan, Bala; S., Manoharan

    2016-01-01

    This paper proposes a Optimal Power Flow Management control for Grid Connected Photovoltaic/Wind turbine/ Diesel generator (GCPWD) Hybrid System with hybrid storage system. The energy system having a photo voltaic (PV) panel, wind turbine (WT) and diesel generator (DG) for continuous power flow management. A diesel generator is added to ensure uninterrupted power supply due to the discontinuous nature of solar and wind resources. The developed Grid Connected Photovoltaic/Wind turbine/ Diesel ...

  13. Western Wind and Solar Integration Study Phase 3A: Low Levels of Synchronous Generation

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Nicholas W. [GE Energy Management, Atlanta, GA (United States); Leonardi, Bruno [GE Energy Management, Atlanta, GA (United States); D' Aquila, Robert [GE Energy Management, Atlanta, GA (United States); Clark, Kara [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-11-17

    The stability of the North American electric power grids under conditions of high penetrations of wind and solar is a significant concern and possible impediment to reaching renewable energy goals. The 33% wind and solar annual energy penetration considered in this study results in substantial changes to the characteristics of the bulk power system. This includes different power flow patterns, different commitment and dispatch of existing synchronous generation, and different dynamic behavior from wind and solar generation. The Western Wind and Solar Integration Study (WWSIS), sponsored by the U.S. Department of Energy, is one of the largest regional solar and wind integration studies to date. In multiple phases, it has explored different aspects of the question: Can we integrate large amounts of wind and solar energy into the electric power system of the West? The work reported here focused on the impact of low levels of synchronous generation on the transient stability performance in one part of the region in which wind generation has displaced synchronous thermal generation under highly stressed, weak system conditions. It is essentially an extension of WWSIS-3. Transient stability, the ability of the power system to maintain synchronism among all elements following disturbances, is a major constraint on operations in many grids, including the western U.S. and Texas systems. These constraints primarily concern the performance of the large-scale bulk power system. But grid-wide stability concerns with high penetrations of wind and solar are still not thoroughly understood. This work focuses on 'traditional' fundamental frequency stability issues, such as maintaining synchronism, frequency, and voltage. The objectives of this study are to better understand the implications of low levels of synchronous generation and a weak grid on overall system performance by: 1) Investigating the Western Interconnection under conditions of both high renewable

  14. Charge States of Krypton and Xenon in the Solar Wind

    Science.gov (United States)

    Bochsler, Peter; Fludra, Andrzej; Giunta, Alessandra

    2017-09-01

    We calculate charge state distributions of Kr and Xe in a model for two different types of solar wind using the effective ionization and recombination rates provided from the OPEN_ADAS data base. The charge states of heavy elements in the solar wind are essential for estimating the efficiency of Coulomb drag in the inner corona. We find that xenon ions experience particularly low Coulomb drag from protons in the inner corona, comparable to the notoriously weak drag of protons on helium ions. It has been found long ago that helium in the solar wind can be strongly depleted near interplanetary current sheets, whereas coronal mass ejecta are sometimes strongly enriched in helium. We argue that if the extraordinary variability of the helium abundance in the solar wind is due to inefficient Coulomb drag, the xenon abundance must vary strongly. In fact, a secular decrease of the solar wind xenon abundance relative to the other heavier noble gases (Ne, Ar, Kr) has been postulated based on a comparison of noble gases in recently irradiated and ancient samples of ilmenite in the lunar regolith. We conclude that decreasing solar activity and decreasing frequency of coronal mass ejections over the solar lifetime might be responsible for a secularly decreasing abundance of xenon in the solar wind.

  15. The Potential of hybrid solar-wind electricity generation in Ghana

    International Nuclear Information System (INIS)

    Tibiru, Ayirewura Vitus

    2013-07-01

    In this work the potential of harnessing electricity from solar and wind sources in Ghana is evaluated both quantitatively and qualitatively. In this regard solar, wind and other relevant data were collected (over a period of one year) from various parts of Ghana. Detailed assessment of the capacity or potential of power production from hybrid solar-wind sources is done with the use of empirical mathematical formulae and the PRO VITUS model incorporated in the 'ENERGY X' software. The various characteristics of wind, solar and available energy resources for the five locations over a one year period have been studied too. The annual mean wind speed at a height of 10 m above ground level for five locations namely Accra, Kumasi, Takoradi, Sunyani and Tamale are 2.38 ms -1 ± 0.05, 2.39 ms -1 ± 0.05, 2.38 ms -1 ± 0.06, 2.18 ms -1 ± 0.05 and 2.47 ± ms -1 respectively and their corresponding annual mean solar radiations are 228.71 Wm -2 ± 9.81, 187.69 Wm -2 ± 9.60, 236.58 Wm -2 ± 10.39, 200.99 Wm -2 ± 9.88 and 231.63 Wm -2 . Thus, the five sites hold potential for hybrid solar-wind energy exploitation. (au)

  16. Enhancing information for solar and wind energy technology deployment in Brazil

    International Nuclear Information System (INIS)

    Ramos Martins, Fernando; Pereira, Enio Bueno

    2011-01-01

    Brazil's primary energy matrix is based on more than 47% of renewables, and more than 85% of its electricity is generated by hydro power sources. Despite this large fraction of renewable energy resources, less than 0.3% of the national energy supply comes from solar or wind sources. This paper presents a diagnostic review on the penetration of the solar and wind energy technologies in Brazil. It also includes a survey of the latest government policies and incentives for renewable energies deployment by entrepreneurs, industry and commercial and residential consumers. In addition, the paper analyses how to best meet the requirements for policy support and information technology to boost the deployment of solar technology and wind energy in Brazil. This study was mostly based on results of a widely distributed survey covering key issues, and also by personal interviews carried out with key stakeholders in order to better understand the issues highlighted in the survey responses. The study pointed out some of the main obstacles to effectively promote and improve government policies and actions for investment in solar and wind energy market in Brazil. - Highlights: → Current status on the solar and wind energy deployment in Brazil is presented. → Policy framework required to support solar and wind energy was discussed. → Study was based on responses for consultations with key stakeholders. → Worthiness Index was established to rank the stakeholders outlooks. → Energy price, human resources and tax reductions were indicated as priority.

  17. Enhancing information for solar and wind energy technology deployment in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Ramos Martins, Fernando, E-mail: fernando.martins@inpe.br [Centro de Ciencia do Sistema Terrestre-Instituto Nacisonal de Pesquisas Espaciais (Earth System Center-National Institute for Space Research), P.O. Box 515, 12245-970, Sao Jose dos Campos (Brazil); Pereira, Enio Bueno, E-mail: enio.pereira@inpe.br [Centro de Ciencia do Sistema Terrestre-Instituto Nacisonal de Pesquisas Espaciais (Earth System Center-National Institute for Space Research), P.O. Box 515, 12245-970, Sao Jose dos Campos (Brazil)

    2011-07-15

    Brazil's primary energy matrix is based on more than 47% of renewables, and more than 85% of its electricity is generated by hydro power sources. Despite this large fraction of renewable energy resources, less than 0.3% of the national energy supply comes from solar or wind sources. This paper presents a diagnostic review on the penetration of the solar and wind energy technologies in Brazil. It also includes a survey of the latest government policies and incentives for renewable energies deployment by entrepreneurs, industry and commercial and residential consumers. In addition, the paper analyses how to best meet the requirements for policy support and information technology to boost the deployment of solar technology and wind energy in Brazil. This study was mostly based on results of a widely distributed survey covering key issues, and also by personal interviews carried out with key stakeholders in order to better understand the issues highlighted in the survey responses. The study pointed out some of the main obstacles to effectively promote and improve government policies and actions for investment in solar and wind energy market in Brazil. - Highlights: > Current status on the solar and wind energy deployment in Brazil is presented. > Policy framework required to support solar and wind energy was discussed. > Study was based on responses for consultations with key stakeholders. > Worthiness Index was established to rank the stakeholders outlooks. > Energy price, human resources and tax reductions were indicated as priority.

  18. Sharing wind power forecasts in electricity markets: A numerical analysis

    DEFF Research Database (Denmark)

    Exizidis, Lazaros; Pinson, Pierre; Kazempour, Jalal

    2016-01-01

    In an electricity pool with significant share of wind power, all generators including conventional and wind power units are generally scheduled in a day-ahead market based on wind power forecasts. Then, a real-time market is cleared given the updated wind power forecast and fixed day-ahead decisi...

  19. LCA of electricity systems with high wind power penetration

    DEFF Research Database (Denmark)

    Turconi, Roberto; O' Dwyer, C. O.; Flynn, D.

    capacity, and decreased with the addition of storage. However, a consequence of adding storage was the increased use of base load coal power plants, ultimately leading to an increase in total emissions from the Irish electricity system. Consequently, the present study indicates that while investing in new......Electricity systems are shifting from being based on fossil fuels towards renewable sources to enhance energy security and mitigate climate change. However, by introducing high shares of variable renewables - such as wind and solar - dispatchable power plants are required to vary their output...... to fulfill the remaining electrical demand, potentially increasing their environmental impacts [1,2]. In this study the environmental impacts of potential short-term future electricity systems in Ireland with high shares of wind power (35-50% of total installed capacity) were evaluated using life cycle...

  20. Particle acceleration via reconnection processes in the supersonic solar wind

    International Nuclear Information System (INIS)

    Zank, G. P.; Le Roux, J. A.; Webb, G. M.; Dosch, A.; Khabarova, O.

    2014-01-01

    An emerging paradigm for the dissipation of magnetic turbulence in the supersonic solar wind is via localized small-scale reconnection processes, essentially between quasi-2D interacting magnetic islands. Charged particles trapped in merging magnetic islands can be accelerated by the electric field generated by magnetic island merging and the contraction of magnetic islands. We derive a gyrophase-averaged transport equation for particles experiencing pitch-angle scattering and energization in a super-Alfvénic flowing plasma experiencing multiple small-scale reconnection events. A simpler advection-diffusion transport equation for a nearly isotropic particle distribution is derived. The dominant charged particle energization processes are (1) the electric field induced by quasi-2D magnetic island merging and (2) magnetic island contraction. The magnetic island topology ensures that charged particles are trapped in regions where they experience repeated interactions with the induced electric field or contracting magnetic islands. Steady-state solutions of the isotropic transport equation with only the induced electric field and a fixed source yield a power-law spectrum for the accelerated particles with index α = –(3 + M A )/2, where M A is the Alfvén Mach number. Considering only magnetic island contraction yields power-law-like solutions with index –3(1 + τ c /(8τ diff )), where τ c /τ diff is the ratio of timescales between magnetic island contraction and charged particle diffusion. The general solution is a power-law-like solution with an index that depends on the Alfvén Mach number and the timescale ratio τ diff /τ c . Observed power-law distributions of energetic particles observed in the quiet supersonic solar wind at 1 AU may be a consequence of particle acceleration associated with dissipative small-scale reconnection processes in a turbulent plasma, including the widely reported c –5 (c particle speed) spectra observed by Fisk and Gloeckler

  1. Solar wind plasma interaction with solar probe plus spacecraft

    Directory of Open Access Journals (Sweden)

    S. Guillemant

    2012-07-01

    Full Text Available 3-D PIC (Particle In Cell simulations of spacecraft-plasma interactions in the solar wind context of the Solar Probe Plus mission are presented. The SPIS software is used to simulate a simplified probe in the near-Sun environment (at a distance of 0.044 AU or 9.5 RS from the Sun surface. We begin this study with a cross comparison of SPIS with another PIC code, aiming at providing the static potential structure surrounding a spacecraft in a high photoelectron environment. This paper presents then a sensitivity study using generic SPIS capabilities, investigating the role of some physical phenomena and numerical models. It confirms that in the near- sun environment, the Solar Probe Plus spacecraft would rather be negatively charged, despite the high yield of photoemission. This negative potential is explained through the dense sheath of photoelectrons and secondary electrons both emitted with low energies (2–3 eV. Due to this low energy of emission, these particles are not ejected at an infinite distance of the spacecraft and would rather surround it. As involved densities of photoelectrons can reach 106 cm−3 (compared to ambient ions and electrons densities of about 7 × 103 cm−3, those populations affect the surrounding plasma potential generating potential barriers for low energy electrons, leading to high recollection. This charging could interfere with the low energy (up to a few tens of eV plasma sensors and particle detectors, by biasing the particle distribution functions measured by the instruments. Moreover, if the spacecraft charges to large negative potentials, the problem will be more severe as low energy electrons will not be seen at all. The importance of the modelling requirements in terms of precise prediction of spacecraft potential is also discussed.

  2. Generator Rescheduling under Congested Power System with Wind Integrated Competitive Power Market

    Directory of Open Access Journals (Sweden)

    Sadhan Gope

    2017-02-01

    Full Text Available Integration of renewable energy like wind or solar energy creates a huge pressure to the system operator (SO to ensure the congestion free transmission network under deregulated power market. Congestion Management (CM with integration of wind farm in double auction electricity market are described in this work to minimize fuel cost, system losses and locational marginal price (LMP of the system. Location of Wind Farm (WF is identified based by using Bus sensitivity factor (BSF, which is also used for selection of load bus for double auction bidding (DAB. The impacts of wind farm in congested power system under deregulated environment have been investigated in this work. Modified 39-bus New England test system is used for demonstrate the effectiveness of the presented approach by using Sequential Quadratic Programming (SQP.

  3. Estimation of power system variability due to wind power

    NARCIS (Netherlands)

    Papaefthymiou, G.; Verboomen, J.; Van der Sluis, L.

    2007-01-01

    The incorporation of wind power generation to the power system leads to an increase in the variability of the system power flows. The assessment of this variability is necessary for the planning of the necessary system reinforcements. For the assessment of this variability, the uncertainty in the

  4. Variability in large-scale wind power generation: Variability in large-scale wind power generation

    Energy Technology Data Exchange (ETDEWEB)

    Kiviluoma, Juha [VTT Technical Research Centre of Finland, Espoo Finland; Holttinen, Hannele [VTT Technical Research Centre of Finland, Espoo Finland; Weir, David [Energy Department, Norwegian Water Resources and Energy Directorate, Oslo Norway; Scharff, Richard [KTH Royal Institute of Technology, Electric Power Systems, Stockholm Sweden; Söder, Lennart [Royal Institute of Technology, Electric Power Systems, Stockholm Sweden; Menemenlis, Nickie [Institut de recherche Hydro-Québec, Montreal Canada; Cutululis, Nicolaos A. [DTU, Wind Energy, Roskilde Denmark; Danti Lopez, Irene [Electricity Research Centre, University College Dublin, Dublin Ireland; Lannoye, Eamonn [Electric Power Research Institute, Palo Alto California USA; Estanqueiro, Ana [LNEG, Laboratorio Nacional de Energia e Geologia, UESEO, Lisbon Spain; Gomez-Lazaro, Emilio [Renewable Energy Research Institute and DIEEAC/EDII-AB, Castilla-La Mancha University, Albacete Spain; Zhang, Qin [State Grid Corporation of China, Beijing China; Bai, Jianhua [State Grid Energy Research Institute Beijing, Beijing China; Wan, Yih-Huei [National Renewable Energy Laboratory, Transmission and Grid Integration Group, Golden Colorado USA; Milligan, Michael [National Renewable Energy Laboratory, Transmission and Grid Integration Group, Golden Colorado USA

    2015-10-25

    The paper demonstrates the characteristics of wind power variability and net load variability in multiple power systems based on real data from multiple years. Demonstrated characteristics include probability distribution for different ramp durations, seasonal and diurnal variability and low net load events. The comparison shows regions with low variability (Sweden, Spain and Germany), medium variability (Portugal, Ireland, Finland and Denmark) and regions with higher variability (Quebec, Bonneville Power Administration and Electric Reliability Council of Texas in North America; Gansu, Jilin and Liaoning in China; and Norway and offshore wind power in Denmark). For regions with low variability, the maximum 1 h wind ramps are below 10% of nominal capacity, and for regions with high variability, they may be close to 30%. Wind power variability is mainly explained by the extent of geographical spread, but also higher capacity factor causes higher variability. It was also shown how wind power ramps are autocorrelated and dependent on the operating output level. When wind power was concentrated in smaller area, there were outliers with high changes in wind output, which were not present in large areas with well-dispersed wind power.

  5. Testing Active Power Control from Wind Power at the National Wind Technology Center (NWTC) (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Ela, E.

    2011-05-01

    In order to keep the electricity grid stable and the lights on, the power system relies on certain responses from its generating fleet. This presentation evaluates the potential for wind turbines and wind power plants to provide these services and assist the grid during critical times.

  6. Coordinated Frequency Control of Wind Turbines in Power Systems with High Wind Power Penetration

    DEFF Research Database (Denmark)

    Tarnowski, Germán Claudio

    generation were studied considering a large share of wind power in the system. Results show the abilities of the architectures to manage the variability of the generated wind power, reducing the impact on the grid frequency and providing suitable frequency regulation service when required. The coordination...

  7. Financial analysis of wind power projects

    International Nuclear Information System (INIS)

    Juanico, Luis E.; Bergallo, Juan E.

    1999-01-01

    In this work a financial assessment of the economic competitiveness of wind power projects in Argentina compared with other no CO 2 emission sources, such as nuclear, was developed. Argentina has a market driven electrical grid system, and no greenhouse gas emissions penalty taxes, together with a very low natural gas cost and a sustained nuclear development program. For the financial analysis an average wind velocity source of 8 m/s, on several wind farms (from 2 machines to 60) built with new technology wind generators (750 kilowatts power, 900 dollar/kilowatt cost) operating over 20 years, was considered. The leveled cost obtained is decreasing while the number of machines is increasing, from 0,130 dollar/kilowatt-hour to 0,090 dollar/kilowatts-hour. This poor performance can be partially explained considering the higher interest rates in the argentine financial market (15%) than the ones in developed countries

  8. On wind power in the Nordic countries

    International Nuclear Information System (INIS)

    Nilsson, Lars J.

    1993-01-01

    The purpose of this article is to discuss the prospects for a large scale introduction of wind power in the Nordic countries especially with respect to the consequences for small independent power producers of the ongoing and planned deregulation of the electricity sector. The recoverable wind resources are great and integration costs are small due to the good load following capability of the existing Swedish and Norwegian hydroelectric capacity. The structure of the present electricity system and the current principles for electricity trade are reviewed. To what extent wind power will be the technology of choice for capacity replacement and expansion depends on how intermittent power will be valued on the future electricity market. In a deregulated market, wind power may be priced below its value unless appropriate pricing mechanisms are developed. Market reforms should therefore include consideration of the large contribution that wind energy must make in a future electricity system which, in addition to being economically efficient, is compatible with broader societal goals. 47 refs, 2 figs

  9. Transient flows of the solar wind associated with small-scale solar activity in solar minimum

    Science.gov (United States)

    Slemzin, Vladimir; Veselovsky, Igor; Kuzin, Sergey; Gburek, Szymon; Ulyanov, Artyom; Kirichenko, Alexey; Shugay, Yulia; Goryaev, Farid

    The data obtained by the modern high sensitive EUV-XUV telescopes and photometers such as CORONAS-Photon/TESIS and SPHINX, STEREO/EUVI, PROBA2/SWAP, SDO/AIA provide good possibilities for studying small-scale solar activity (SSA), which is supposed to play an important role in heating of the corona and producing transient flows of the solar wind. During the recent unusually weak solar minimum, a large number of SSA events, such as week solar flares, small CMEs and CME-like flows were observed and recorded in the databases of flares (STEREO, SWAP, SPHINX) and CMEs (LASCO, CACTUS). On the other hand, the solar wind data obtained in this period by ACE, Wind, STEREO contain signatures of transient ICME-like structures which have shorter duration (<10h), weaker magnetic field strength (<10 nT) and lower proton temperature than usual ICMEs. To verify the assumption that ICME-like transients may be associated with the SSA events we investigated the number of weak flares of C-class and lower detected by SPHINX in 2009 and STEREO/EUVI in 2010. The flares were classified on temperature and emission measure using the diagnostic means of SPHINX and Hinode/EIS and were confronted with the parameters of the solar wind (velocity, density, ion composition and temperature, magnetic field, pitch angle distribution of the suprathermal electrons). The outflows of plasma associated with the flares were identified by their coronal signatures - CMEs (only in few cases) and dimmings. It was found that the mean parameters of the solar wind projected to the source surface for the times of the studied flares were typical for the ICME-like transients. The results support the suggestion that weak flares can be indicators of sources of transient plasma flows contributing to the slow solar wind at solar minimum, although these flows may be too weak to be considered as separate CMEs and ICMEs. The research leading to these results has received funding from the European Union’s Seventh Programme

  10. Different magnetospheric modes: solar wind driving and coupling efficiency

    Directory of Open Access Journals (Sweden)

    N. Partamies

    2009-11-01

    Full Text Available This study describes a systematic statistical comparison of isolated non-storm substorms, steady magnetospheric convection (SMC intervals and sawtooth events. The number of events is approximately the same in each group and the data are taken from about the same years to avoid biasing by different solar cycle phase. The very same superposed epoch analysis is performed for each event group to show the characteristics of ground-based indices (AL, PCN, PC potential, particle injection at the geostationary orbit and the solar wind and IMF parameters. We show that the monthly occurrence of sawtooth events and isolated non-stormtime substorms closely follows maxima of the geomagnetic activity at (or close to the equinoxes. The most strongly solar wind driven event type, sawtooth events, is the least efficient in coupling the solar wind energy to the auroral ionosphere, while SMC periods are associated with the highest coupling ratio (AL/EY. Furthermore, solar wind speed seems to play a key role in determining the type of activity in the magnetosphere. Slow solar wind is capable of maintaining steady convection. During fast solar wind streams the magnetosphere responds with loading–unloading cycles, represented by substorms during moderately active conditions and sawtooth events (or other storm-time activations during geomagnetically active conditions.

  11. Grid code requirements for wind power generation

    International Nuclear Information System (INIS)

    Djagarov, N.; Filchev, S.; Grozdev, Z.; Bonev, M.

    2011-01-01

    In this paper production data of wind power in Europe and Bulgaria and plans for their development within 2030 are reviewed. The main characteristics of wind generators used in Bulgaria are listed. A review of the grid code in different European countries, which regulate the requirements for renewable sources, is made. European recommendations for requirements harmonization are analyzed. Suggestions for the Bulgarian gird code are made

  12. Optimal prediction intervals of wind power generation

    DEFF Research Database (Denmark)

    Wan, Can; Wu, Zhao; Pinson, Pierre

    2014-01-01

    direct optimization of both the coverage probability and sharpness to ensure the quality. The proposed method does not involve the statistical inference or distribution assumption of forecasting errors needed in most existing methods. Case studies using real wind farm data from Australia have been...... penetration beforehand. This paper proposes a novel hybrid intelligent algorithm approach to directly formulate optimal prediction intervals of wind power generation based on extreme learning machine and particle swarm optimization. Prediction intervals with Associated confidence levels are generated through...

  13. The global structure of the solar wind in June 1991

    Science.gov (United States)

    Usmanov, A. V.

    1993-12-01

    A numerical simulation of the global solar wind structure for Carrington rotation 1843 (31 May 28 June, 1991) is performed based on a fully three-dimensional, steady-state MHD model of the solar wind (Usmanov, 1993b). A self-consistent solution for 3-D MHD equations is constructed for the spherical shell extending from the solar photosphere up to 10 AU. Solar magnetic field observations are used to prescribe boundary conditions. The computed distribution of the magnetic field is compared with coronal hole observations and with the IMF measurements made by IMP-8 spacecraft at the Earth's orbit.

  14. Wind Powering America FY07 Activities Summary

    Energy Technology Data Exchange (ETDEWEB)

    2008-02-01

    The Wind Powering America FY07 Activities Summary reflects the accomplishments of our state wind working groups, our programs at the National Renewable Energy Laboratory, and our partner organizations. The national WPA team remains a leading force for moving wind energy forward in the United States. WPA continues to work with its national, regional, and state partners to communicate the opportunities and benefits of wind energy to a diverse set of stakeholders. WPA now has 30 state wind working groups (welcoming Georgia and Wisconsin in 2007) that form strategic alliances to communicate wind's benefits to the state stakeholders. More than 140 members of national and state public and private sector organizations from 39 U.S. states and Canada attended the 6th Annual WPA All-States Summit in Los Angeles in June. WPA's emphasis remains on the rural agricultural sector, which stands to reap the significant economic development benefits of wind energy development. Additionally, WPA continues its program of outreach, education, and technical assistance to Native American communities, public power entities, and regulatory and legislative bodies.

  15. Orbit Limited Theory in the Solar Wind - kappa Distributions

    Science.gov (United States)

    Martinović, M. M.

    2016-06-01

    When a solid object is immersed into ionized gas it gets brought to a certain value of electrostatic potential and surrounded by a space charge region called `plasma sheath'. Through this region, particles are attracted or repelled from the surface of the charge collecting object. For collisionless plasma, this process is described by the so-called orbit limited theory, which explains how the collection of particles is determined by the collector geometry and plasma velocity distribution function (VDF). In this article, we provide explicit orbit-limited currents expressions for generalized Lorentzian (κ) distributions. This work is useful to describe the charging processes of objects in non-collisional plasmas like the solar wind, where the electrons VDF is often observed to exhibit quasi power-law populations of suprathermal particles. It is found that these 'suprathermals' considerably increase the charge collection. Since the surface charging process that determines the value of electrostatic potential is also affected by the plasma VDF, calculation of the collector potential in the solar wind is described along with some quantitative predictions.

  16. Orbit limited theory in the solar wind - κ distributions

    Directory of Open Access Journals (Sweden)

    Martinović M.M.

    2016-01-01

    Full Text Available When a solid object is immersed into ionized gas it gets brought to a certain value of electrostatic potential and surrounded by a space charge region called ‘plasma sheath’. Through this region, particles are attracted or repelled from the surface of the charge collecting object. For collisionless plasma, this process is described by the so-called orbit limited theory, which explains how the collection of particles is determined by the collector geometry and plasma velocity distribution function (VDF. In this article, we provide explicit expressions for orbit-limited currents for generalized Lorentzian (κ distributions. This work is useful to describe the charging processes of objects in non-collisional plasmas like the solar wind, where the electrons VDF is often observed to exhibit quasi power-law populations of suprathermal particles. It is found that these ‘suprathermals’ considerably increase the charge collection. Since the surface charging process that determines the value of electrostatic potential is also affected by the plasma VDF, calculation of the collector potential in the solar wind is described along with some quantitative predictions. [Projekat Ministarstva nauke Republike Srbije, br. 176002

  17. Offshore wind power: does France remain ashore?

    International Nuclear Information System (INIS)

    Bongrain, T.

    2015-01-01

    France benefits from favorable geographical conditions for offshore wind power but the development of a dedicated industrial sector is slow. 6 projects of wind power farms where turbines are rooted in the seabed are expected to operate progressively from 2018, they represent a cumulated power capacity of 2920 MW. A call for projects has been launched by French authorities for floating offshore wind farms off Brittany and in the mediterranean sea but it will not be sufficient to help to fulfill the declared goal of 40% of the electricity produced in France should be of renewable origin. The main weakness is the cost and countries like Germany benefit from the shallow waters of the North sea to install wind farms at lower costs. The solution could be the development in France of an industrial sector dedicated to floating wind turbines that are easier to install in deep water and can be settled farther off the coast to meet the demand of environmentalists for seascape preservation. More sites could become available for floating wind turbines than for seabed-rooted ones and as the consequence the market for floating systems may become more important. (A.C.)

  18. Short time ahead wind power production forecast

    International Nuclear Information System (INIS)

    Sapronova, Alla; Meissner, Catherine; Mana, Matteo

    2016-01-01

    An accurate prediction of wind power output is crucial for efficient coordination of cooperative energy production from different sources. Long-time ahead prediction (from 6 to 24 hours) of wind power for onshore parks can be achieved by using a coupled model that would bridge the mesoscale weather prediction data and computational fluid dynamics. When a forecast for shorter time horizon (less than one hour ahead) is anticipated, an accuracy of a predictive model that utilizes hourly weather data is decreasing. That is because the higher frequency fluctuations of the wind speed are lost when data is averaged over an hour. Since the wind speed can vary up to 50% in magnitude over a period of 5 minutes, the higher frequency variations of wind speed and direction have to be taken into account for an accurate short-term ahead energy production forecast. In this work a new model for wind power production forecast 5- to 30-minutes ahead is presented. The model is based on machine learning techniques and categorization approach and using the historical park production time series and hourly numerical weather forecast. (paper)

  19. A peaking-regulation-balance-based method for wind & PV power integrated accommodation

    Science.gov (United States)

    Zhang, Jinfang; Li, Nan; Liu, Jun

    2018-02-01

    Rapid development of China’s new energy in current and future should be focused on cooperation of wind and PV power. Based on the analysis of system peaking balance, combined with the statistical features of wind and PV power output characteristics, a method of comprehensive integrated accommodation analysis of wind and PV power is put forward. By the electric power balance during night peaking load period in typical day, wind power installed capacity is determined firstly; then PV power installed capacity could be figured out by midday peak load hours, which effectively solves the problem of uncertainty when traditional method hard determines the combination of the wind and solar power simultaneously. The simulation results have validated the effectiveness of the proposed method.

  20. Keys to success for wind power in isolated power systems

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, J.C.; Lundsager, P.; Bindner, H.; Hansen, L.; Frandsen, S. [Risoe National Lab., Wind Energy and Atmospheric Physics Dept., Roskilde (Denmark)

    1999-03-01

    It is generally expected that wind power could contribute significantly to the electricity supply in power systems of small and medium sized isolated communities. The market for such applications of wind power has not yet materialized. Wind power in isolated power systems have the main market potentials in developing countries. The money available world-wide for this technological development is limited and the necessary R and D and pilot programmes have difficult conditions. Consequently, technology developed exclusively for developing countries rarely becomes attractive for consumers, investors and funding agencies. A Danish research project is aimed at studying development of methods and guidelines rather than `universal solutions` for the use of wind energy in isolated communities. This paper report on the findings of the project regarding barriers removal and engineering methods development, with a focus on analysis and specification of user demand and priorities, numerical modeling requirements as well as wind power impact on power quality and power system operation. Input will be provided on these subjects for establishing of common guidelines on relevant technical issues, and thereby enabling the making of trustworthy project preparation studies. (au) EFP-97. 12 refs.