WorldWideScience

Sample records for wind plasma parameters

  1. Intermittency, scaling, and the Fokker-Planck approach to fluctuations of the solar wind bulk plasma parameters as seen by the WIND spacecraft.

    Science.gov (United States)

    Hnat, Bogdan; Chapman, Sandra C; Rowlands, George

    2003-05-01

    The solar wind provides a natural laboratory for observations of magnetohydrodynamic (MHD) turbulence over extended temporal scales. Here, we apply a model independent method of differencing and rescaling to identify self-similarity in the probability density functions (PDF) of fluctuations in solar wind bulk plasma parameters as seen by the WIND spacecraft. Whereas the fluctuations of speed v and interplanetary magnetic field (IMF) magnitude B are multifractal, we find that the fluctuations in the ion density rho, energy densities B2 and rhov(2) as well as MHD-approximated Poynting flux vB(2) are monoscaling on the time scales up to 26 hr. The single curve, which we find to describe the fluctuations PDF of all these quantities up to this time scale, is non-Gaussian. We model this PDF with two approaches--Fokker-Planck, for which we derive the transport coefficients and associated Langevin equation, and the Castaing distribution that arises from a model for the intermittent turbulent cascade.

  2. Continuous supersonic plasma wind tunnel

    DEFF Research Database (Denmark)

    Andersen, S.A.; Jensen, Vagn Orla; Nielsen, P.

    1969-01-01

    The normal magnetic field configuration of a Q device has been modified to obtain a 'magnetic Laval nozzle'. Continuous supersonic plasma 'winds' are obtained with Mach numbers ~3. The magnetic nozzle appears well suited for the study of the interaction of supersonic plasma 'winds' with either...

  3. Wind Climate Parameters for Wind Turbine Fatigue Load Assessment

    DEFF Research Database (Denmark)

    Toft, Henrik Stensgaard; Svenningsen, Lasse; Moser, Wolfgang

    2016-01-01

    established from the on-site distribution functions of the horizontal mean wind speeds, the 90% quantile of turbulence along with average values of vertical wind shear and air density and the maximum flow inclination. This paper investigates the accuracy of fatigue loads estimated using this equivalent wind...... climate required by the current design standard by comparing damage equivalent fatigue loads estimated based on wind climate parameters for each 10 min time-series with fatigue loads estimated based on the equivalent wind climate parameters. Wind measurements from Boulder, CO, in the United States...... and Høvsøre in Denmark have been used to estimate the natural variation in the wind conditions between 10 min time periods. The structural wind turbine loads have been simulated using the aero-elastic model FAST. The results show that using a 90% quantile for the turbulence leads to an accurate assessment...

  4. Wind Resource Parameters Acquisition and Transmission System

    Directory of Open Access Journals (Sweden)

    ZHOU Xiao-Min

    2014-01-01

    Full Text Available Wind power generation is more mature and has good prospects for commercial development in the field of new energy technology. The wind parameters such as wind speed, wind direction, temperature, humidity, barometric pressure are required stably in the process of preliminary construction and operation of wind farms. This paper describes a set of wind measure system which achieves real-time data acquisition, storage and transmission reliably. The whole measure system consists of the core module, GPRS remote module, interface module and other components, in which the GPRS remote transmission module is accomplished through email attachments based on SMTP protocol. In the prototype test, the system operates accurately and reliably according to the analysis on the returned data. In addition, this paper processes the raw data for characteristic parameters with statistical methods, on the basis of which it simply sums up the characteristics of wind resource.

  5. Wind Farm Decentralized Dynamic Modeling With Parameters

    DEFF Research Database (Denmark)

    Soltani, Mohsen; Shakeri, Sayyed Mojtaba; Grunnet, Jacob Deleuran

    2010-01-01

    Development of dynamic wind flow models for wind farms is part of the research in European research FP7 project AEOLUS. The objective of this report is to provide decentralized dynamic wind flow models with parameters. The report presents a structure for decentralized flow models with inputs from...... local models. The results of this report are especially useful, but not limited, to design a decentralized wind farm controller, since in centralized controller design one can also use the model and update it in a central computing node....... a set of spatially distributed measurements from wind turbines. The information has to be communicated only within neighboring wind turbines. This will both reduce the calculation load by distributing them on all turbines and make the infrastructure more robust against faults and uncertainties. Moreover...

  6. Optimum Operational Parameters for Yawed Wind Turbines

    Directory of Open Access Journals (Sweden)

    David A. Peters

    2011-01-01

    Full Text Available A set of systematical optimum operational parameters for wind turbines under various wind directions is derived by using combined momentum-energy and blade-element-energy concepts. The derivations are solved numerically by fixing some parameters at practical values. Then, the interactions between the produced power and the influential factors of it are generated in the figures. It is shown that the maximum power produced is strongly affected by the wind direction, the tip speed, the pitch angle of the rotor, and the drag coefficient, which are specifically indicated by figures. It also turns out that the maximum power can take place at two different optimum tip speeds in some cases. The equations derived herein can also be used in the modeling of tethered wind turbines which can keep aloft and deliver energy.

  7. WIND TURBINE OPERATION PARAMETER CHARACTERISTICS AT A GIVEN WIND SPEED

    Directory of Open Access Journals (Sweden)

    Zdzisław Kamiński

    2014-06-01

    Full Text Available This paper discusses the results of the CFD simulation of the flow around Vertical Axis Wind Turbine rotor. The examined rotor was designed following patent application no. 402214. The turbine operation is characterised by parameters, such as opening angle of blades, power, torque, rotational velocity at a given wind velocity. Those parameters have an impact on the performance of entire assembly. The distribution of forces acting on the working surfaces in the turbine can change, depending on the angle of rotor rotation. Moreover, the resultant force derived from the force acting on the oncoming and leaving blades should be as high as possible. Accordingly, those parameters were individually simulated over time for each blade in three complete rotations. The attempts to improve the performance of the entire system resulted in a new research trend to improve the performance of working turbine rotor blades.

  8. Variation of plasma parameters in a modified mode of plasma ...

    Indian Academy of Sciences (India)

    grounded target and produce plasma there. The plasma parameters can be controlled by varying the voltages applied to the source magnetic cage and the separation grid of the device. Keywords. Plasma parameters; double plasma device; filament discharge; multidipole magnetic cage. PACS Nos 52.75.Xx; 52.25.

  9. Plasma diagnostics discharge parameters and chemistry

    CERN Document Server

    Auciello, Orlando

    1989-01-01

    Plasma Diagnostics, Volume 1: Discharge Parameters and Chemistry covers seven chapters on the important diagnostic techniques for plasmas and details their use in particular applications. The book discusses optical diagnostic techniques for low pressure plasmas and plasma processing; plasma diagnostics for electrical discharge light sources; as well as Langmuir probes. The text also describes the mass spectroscopy of plasmas, microwave diagnostics, paramagnetic resonance diagnostics, and diagnostics in thermal plasma processing. Electrical engineers, nuclear engineers, microwave engineers, che

  10. Shock heating of the solar wind plasma

    Science.gov (United States)

    Whang, Y. C.; Liu, Shaoliang; Burlaga, L. F.

    1990-01-01

    The role played by shocks in heating solar-wind plasma is investigated using data on 413 shocks which were identified from the plasma and magnetic-field data collected between 1973 and 1982 by Pioneer and Voyager spacecraft. It is found that the average shock strength increased with the heliocentric distance outside 1 AU, reaching a maximum near 5 AU, after which the shock strength decreased with the distance; the entropy of the solar wind protons also reached a maximum at 5 AU. An MHD simulation model in which shock heating is the only heating mechanism available was used to calculate the entropy changes for the November 1977 event. The calculated entropy agreed well with the value calculated from observational data, suggesting that shocks are chiefly responsible for heating solar wind plasma between 1 and 15 AU.

  11. Continuous supersonic plasma wind tunnel

    DEFF Research Database (Denmark)

    Andersen, S.A.; Jensen, Vagn Orla; Nielsen, P.

    1968-01-01

    The B field configuration of a Q-device has been modified into a magnetic Laval nozzle. Continuous supersonic plasma flow is observed with M≈3......The B field configuration of a Q-device has been modified into a magnetic Laval nozzle. Continuous supersonic plasma flow is observed with M≈3...

  12. Uncertainty in wind climate parameters and their influence on wind turbine fatigue loads

    DEFF Research Database (Denmark)

    Toft, Henrik Stensgaard; Svenningsen, Lasse; Sørensen, John Dalsgaard

    2016-01-01

    Highlights • Probabilistic framework for reliability assessment of site specific wind turbines. • Uncertainty in wind climate parameters propagated to structural loads directly. • Sensitivity analysis to estimate wind climate parameters influence on reliability.......Highlights • Probabilistic framework for reliability assessment of site specific wind turbines. • Uncertainty in wind climate parameters propagated to structural loads directly. • Sensitivity analysis to estimate wind climate parameters influence on reliability....

  13. Assessment of Wind Parameter Sensitivity on Ultimate and Fatigue Wind Turbine Loads: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, Amy N [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sethuraman, Latha [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Jonkman, Jason [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-02-13

    Wind turbines are designed using a set of simulations to ascertain the structural loads that the turbine could encounter. While mean hub-height wind speed is considered to vary, other wind parameters such as turbulence spectra, sheer, veer, spatial coherence, and component correlation are fixed or conditional values that, in reality, could have different characteristics at different sites and have a significant effect on the resulting loads. This paper therefore seeks to assess the sensitivity of different wind parameters on the resulting ultimate and fatigue loads on the turbine during normal operational conditions. Eighteen different wind parameters are screened using an Elementary Effects approach with radial points. As expected, the results show a high sensitivity of the loads to the turbulence standard deviation in the primary wind direction, but the sensitivity to wind shear is often much greater. To a lesser extent, other wind parameters that drive loads include the coherence in the primary wind direction and veer.

  14. Evaluation of wind capacity credit considering key system parameters

    Energy Technology Data Exchange (ETDEWEB)

    Hu, P.; Karki, R.; Billinton, R. [Saskatchewan Univ., Saskatoon, SK (Canada). Power Systems Research Group

    2008-07-01

    This paper discussed the importance of considering the capacity credit of wind sources given that wind power penetration in power generation continues to increase. The capacity credit of a wind source is the amount of conventional capacity that can be replaced by wind energy without the loss of system reliability. As such, the reliability benefit of adding a wind energy conversion system to a power system must be analyzed. A quantitative index was used to examine the effect of key system variables on system reliability in order to estimate wind capacity credit as a function of wind penetration in electric power systems. The size and the composition of the generating system were among the parameters examined along with the wind regime at the wind farm locations and the wind power penetration level. The method for evaluating the adequacy of a power system includes separate steps for wind data modeling, wind turbine generator (WTG) modeling, combined wind and conventional generation unit modeling, load modeling and convolution of generation and load models to obtain the system risk indices. The loss of load expectation (LOLE) was also used as the risk index for reliability evaluation. The different factors that affect the capacity credit of WTG were combined to obtain the general relationship between the effective capacity ratio (ECR) and the wind penetration level (WPL). The study showed that WTG capacity credit is highly influenced by the WPL, and the wind regime at the wind farm location. The size and composition of the system and the generating units, and the LOLE reliability criterion did not have much influence on the ECR of wind sources. The obtained results were combined to produce a general approximate relationship between the wind capacity credit and the wind penetration. It was concluded that the general approximation of capacity credit of wind sources presented in this study could prove useful in determining the capacity credit of wind sources at different

  15. Correlation Between the Magnetic Field and Plasma Parameters at 1 AU

    Science.gov (United States)

    Yang, Zicai; Shen, Fang; Zhang, Jie; Yang, Yi; Feng, Xueshang; Richardson, Ian G.

    2018-02-01

    The physical parameters of the solar wind observed in-situ near 1 AU have been studied for several decades, and relationships between them, such as the positive correlation between the solar wind plasma temperature, T, and velocity, V, and the negative correlation between density, N, and velocity, V, are well known. However, the magnetic field intensity, B, does not appear to be well correlated with any individual plasma parameter. In this article, we discuss previously under-reported correlations between B and the combined plasma parameters √{N V2} as well as between B and √{NT}. These two correlations are strong during periods of corotating interaction regions and high-speed streams, and moderate during intervals of slow solar wind. The results indicate that the magnetic pressure in the solar wind is well correlated both with the plasma dynamic pressure and the thermal pressure.

  16. Recording Spatially Resolved Plasma Parameters in Microwave-Driven Plasmas

    Science.gov (United States)

    Gerhard, Franz; Florian, Schamberger; Igor, Krstev; Stefan, Umrath

    2013-01-01

    In an almost cubical reactor 90 l in volume which is intended to deposit organic polymers by plasma-enhanced chemical vapor deposition (PECVD), microwave power is coupled into the volume via a quartz window which extends to approximately 1/10 of the sidewall area. Since the plasma is excited locally, plasma parameters like electron temperature and plasma density are expected to exhibit a spatial variation. The compilation of these plasma quantities has been accomplished with a bendable single Langmuir probe. To isolate the tungsten wire against its grounded housing tube, it was coated with polyparylene. After having compared this construction with our Langmuir probe, which has been now in use for more than a decade, we have taken data of more than half the volume of the reactor with argon and have found a definitive radial inhomogenity for all plasma parameters. To investigate whether this conduct can be determined applying optical emission spectroscopy, we improved our spectrometer which had been used for endpoint detection purposes and plasma diagnostics in chlorine-containing ambients where we could detect also a spatial dependence. This behavior is discussed in terms of Lieberman's global model.

  17. Hybrid Model of Inhomogeneous Solar Wind Plasma Heating by Alfven Wave Spectrum: Parametric Studies

    Science.gov (United States)

    Ofman, L.

    2010-01-01

    Observations of the solar wind plasma at 0.3 AU and beyond show that a turbulent spectrum of magnetic fluctuations is present. Remote sensing observations of the corona indicate that heavy ions are hotter than protons and their temperature is anisotropic (T(sub perpindicular / T(sub parallel) >> 1). We study the heating and the acceleration of multi-ion plasma in the solar wind by a turbulent spectrum of Alfvenic fluctuations using a 2-D hybrid numerical model. In the hybrid model the protons and heavy ions are treated kinetically as particles, while the electrons are included as neutralizing background fluid. This is the first two-dimensional hybrid parametric study of the solar wind plasma that includes an input turbulent wave spectrum guided by observation with inhomogeneous background density. We also investigate the effects of He++ ion beams in the inhomogeneous background plasma density on the heating of the solar wind plasma. The 2-D hybrid model treats parallel and oblique waves, together with cross-field inhomogeneity, self-consistently. We investigate the parametric dependence of the perpendicular heating, and the temperature anisotropy in the H+-He++ solar wind plasma. It was found that the scaling of the magnetic fluctuations power spectrum steepens in the higher-density regions, and the heating is channeled to these regions from the surrounding lower-density plasma due to wave refraction. The model parameters are applicable to the expected solar wind conditions at about 10 solar radii.

  18. Sensitivity of transient synchrotron radiation to tokamak plasma parameters

    Energy Technology Data Exchange (ETDEWEB)

    Fisch, N.J.; Kritz, A.H.

    1988-12-01

    Synchrotron radiation from a hot plasma can inform on certain plasma parameters. The dependence on plasma parameters is particularly sensitive for the transient radiation response to a brief, deliberate, perturbation of hot plasma electrons. We investigate how such a radiation response can be used to diagnose a variety of plasma parameters in a tokamak. 18 refs., 13 figs.

  19. Anisotropy in solar wind plasma turbulence

    Science.gov (United States)

    Oughton, S.; Matthaeus, W. H.; Wan, M.; Osman, K. T.

    2015-01-01

    A review of spectral anisotropy and variance anisotropy for solar wind fluctuations is given, with the discussion covering inertial range and dissipation range scales. For the inertial range, theory, simulations and observations are more or less in accord, in that fluctuation energy is found to be primarily in modes with quasi-perpendicular wavevectors (relative to a suitably defined mean magnetic field), and also that most of the fluctuation energy is in the vector components transverse to the mean field. Energy transfer in the parallel direction and the energy levels in the parallel components are both relatively weak. In the dissipation range, observations indicate that variance anisotropy tends to decrease towards isotropic levels as the electron gyroradius is approached; spectral anisotropy results are mixed. Evidence for and against wave interpretations and turbulence interpretations of these features will be discussed. We also present new simulation results concerning evolution of variance anisotropy for different classes of initial conditions, each with typical background solar wind parameters. PMID:25848082

  20. Performance analysis of wind turbine systems under different parameters effect

    Energy Technology Data Exchange (ETDEWEB)

    Salih, Salih Mohammed; Taha, Mohammed Qasim; Alawsaj, Mohammed K. [College of Engineering, University of Anbar (Iraq)

    2012-07-01

    In this paper, simulation models are used to study the performance of small power systems based on different weather parameters. The results are extracted using Matlab software program for analyzing the performance of two wind turbines: Whisper-500 3.2KW and NY-WSR1204 600W which have the same type of permanent magnetic alternators (three phase and 16 poles). Different parameters can affect on the performance of wind turbines which are: the wind speed air density, air pressure, temperature and the length of blades for wind generators. The mathematical results related the previous mentioned parameters are analyzed in order to determine the sensitivity of input power on the output of wind generators.

  1. Atomic Physics of Shocked Plasma in Winds of Massive Stars

    Science.gov (United States)

    Leutenegger, Maurice A.; Cohen, David H.; Owocki, Stanley P.

    2012-01-01

    High resolution diffraction grating spectra of X-ray emission from massive stars obtained with Chandra and XMM-Newton have revolutionized our understanding of their powerful, radiation-driven winds. Emission line shapes and line ratios provide diagnostics on a number of key wind parameters. Modeling of resolved emission line velocity profiles allows us to derive independent constraints on stellar mass-loss rates, leading to downward revisions of a factor of a few from previous measurements. Line ratios in He-like ions strongly constrain the spatial distribution of Xray emitting plasma, confirming the expectations of radiation hydrodynamic simulations that X-ray emission begins moderately close to the stellar surface and extends throughout the wind. Some outstanding questions remain, including the possibility of large optical depths in resonance lines, which is hinted at by differences in line shapes of resonance and intercombination lines from the same ion. Resonance scattering leads to nontrivial radiative transfer effects, and modeling it allows us to place constraints on shock size, density, and velocity structure

  2. Fault Detection of Wind Turbines with Uncertain Parameters

    DEFF Research Database (Denmark)

    Tabatabaeipour, Seyed Mojtaba; Odgaard, Peter Fogh; Bak, Thomas

    2012-01-01

    In this paper a set-membership approach for fault detection of a benchmark wind turbine is proposed. The benchmark represents relevant fault scenarios in the control system, including sensor, actuator and system faults. In addition we also consider parameter uncertainties and uncertainties...... on the torque coefficient. High noise on the wind speed measurement, nonlinearities in the aerodynamic torque and uncertainties on the parameters make fault detection a challenging problem. We use an effective wind speed estimator to reduce the noise on the wind speed measurements. A set-membership approach...... is used generate a set that contains all states consistent with the past measurements and the given model of the wind turbine including uncertainties and noise. This set represents all possible states the system can be in if not faulty. If the current measurement is not consistent with this set, a fault...

  3. Comparison of plasma sheet ion composition with the IMF and solar wind plasma

    Science.gov (United States)

    Lennartsson, W.

    1988-01-01

    Plasma sheet energetic ion data (0.1- to 16 keV/e) obtained by the Plasma Composition Experiment on ISEE-1 between 10 and 23 earth radii are compared with concurrent IMF and solar wind plasma data. The densities of H(+) and He(++) ions in the plasma sheet are found to be the highest, and the most nearly proportional to the solar wind density, when the IMF B(z) is not northward. The density of terrestrial O(+) ions increases strongly with increasing magnitude of the IMF, in apparent agreement with the notion that the IMF plays a fundamental role in the electric coupling between the solar wind and the ionosphere.

  4. Determination of performance parameters of vertical axis wind turbines in wind tunnel

    Directory of Open Access Journals (Sweden)

    Nguyen Van Bang

    2017-01-01

    Full Text Available The paper deals with the determination of the performance parameters of a small vertical axis wind turbines (VAWT, which operate by the utilization of drag forces acting on the blades of the turbine. The performance was evaluated by investigating the electrical power output and torque moment of the wind machine. Measurements were performed on the full-scale model and the experimental data are assessed and compared to other types of wind turbines, with respect to its purpose.

  5. Dst Prediction Based on Solar Wind Parameters

    Directory of Open Access Journals (Sweden)

    Yoon-Kyung Park

    2009-12-01

    Full Text Available We reevaluate the Burton equation (Burton et al. 1975 of predicting Dst index using high quality hourly solar wind data supplied by the ACE satellite for the period from 1998 to 2006. Sixty magnetic storms with monotonously decreasing main phase are selected. In order to determine the injection term (Q and the decay time (tau of the equation, we examine the relationships between Dst* and VB_s, Delta Dst* and VB_s, and Delta Dst* and Dst* during the magnetic storms. For this analysis, we take into account one hour of the propagation time from the ACE satellite to the magnetopause, and a half hour of the response time of the magnetosphere/ring current to the solar wind forcing. The injection term is found to be Q({nT}/h=-3.56VB_s for VB_s>0.5mV/m and Q({nT}/h=0 for VB_s leq0.5mV/m. The tau (hour is estimated as 0.060 Dst* + 16.65 for Dst*>-175nT and 6.15 hours for Dst* leq -175nT. Based on these empirical relationships, we predict the 60 magnetic storms and find that the correlation coefficient between the observed and predicted Dst* is 0.88. To evaluate the performance of our prediction scheme, the 60 magnetic storms are predicted again using the models by Burton et al. (1975 and O'Brien & McPherron (2000a. The correlation coefficients thus obtained are 0.85, the same value for both of the two models. In this respect, our model is slightly improved over the other two models as far as the correlation coefficients is concerned. Particularly our model does a better job than the other two models in predicting intense magnetic storms (Dst* lesssim -200nT.

  6. Compressibility in Solar Wind Plasma Turbulence

    Science.gov (United States)

    Chapman, S. C.; Hnat, B.; Rowlands, G.

    2005-12-01

    Incompressible magnetohydrodynamics is often assumed to describe solar wind turbulence. We use extended self-similarity to reveal scaling in the structure functions of density fluctuations in the solar wind as seen by the ACE spacecraft. The obtained scaling is then compared with that found in the inertial range of quantities identified previously as passive scalars in other turbulent systems. We find that these are not coincident. This implies that either solar wind turbulence is compressible or that straightforward comparison of structure functions does not adequately capture its inertial range properties.

  7. Stellar and wind parameters of massive stars from spectral analysis

    Science.gov (United States)

    Araya, Ignacio; Curé, Michel

    2017-11-01

    The only way to deduce information from stars is to decode the radiation it emits in an appropriate way. Spectroscopy can solve this and derive many properties of stars. In this work we seek to derive simultaneously the stellar and wind characteristics of a wide range of massive stars. Our stellar properties encompass the effective temperature, the surface gravity, the stellar radius, the micro-turbulence velocity, the rotational velocity and the Si abundance. For wind properties we consider the mass-loss rate, the terminal velocity and the line-force parameters α, k and δ (from the line-driven wind theory). To model the data we use the radiative transport code Fastwind considering the newest hydrodynamical solutions derived with Hydwind code, which needs stellar and line-force parameters to obtain a wind solution. A grid of spectral models of massive stars is created and together with the observed spectra their physical properties are determined through spectral line fittings. These fittings provide an estimation about the line-force parameters, whose theoretical calculations are extremely complex. Furthermore, we expect to confirm that the hydrodynamical solutions obtained with a value of δ slightly larger than ~ 0.25, called δ-slow solutions, describe quite reliable the radiation line-driven winds of A and late B supergiant stars and at the same time explain disagreements between observational data and theoretical models for the Wind-Momentum Luminosity Relationship (WLR).

  8. Stellar and wind parameters of massive stars from spectral analysis

    Science.gov (United States)

    Araya, I.; Curé, M.

    2017-07-01

    The only way to deduce information from stars is to decode the radiation it emits in an appropriate way. Spectroscopy can solve this and derive many properties of stars. In this work we seek to derive simultaneously the stellar and wind characteristics of A and B supergiant stars. Our stellar properties encompass the effective temperature, the surface gravity, the stellar radius, the micro-turbulence velocity, the rotational velocity and, finally, the chemical composition. For wind properties we consider the mass-loss rate, the terminal velocity and the line-force parameters (α, k and δ) obtained from the standard line-driven wind theory. To model the data we use the radiative transport code Fastwind considering the newest hydrodynamical solutions derived with Hydwind code, which needs stellar and line-force parameters to obtain a wind solution. A grid of spectral models of massive stars is created and together with the observed spectra their physical properties are determined through spectral line fittings. These fittings provide an estimation about the line-force parameters, whose theoretical calculations are extremely complex. Furthermore, we expect to confirm that the hydrodynamical solutions obtained with a value of δ slightly larger than ˜ 0.25, called δ-slow solutions, describe quite reliable the radiation line-driven winds of A and late B supergiant stars and at the same time explain disagreements between observational data and theoretical models for the Wind-Momentum Luminosity Relationship (WLR).

  9. Kinetic Signatures and Intermittent Turbulence in the Solar Wind Plasma

    CERN Document Server

    Osman, K T; Hnat, B; Chapman, S C

    2012-01-01

    A connection between kinetic processes and intermittent turbulence is observed in the solar wind plasma using measurements from the Wind spacecraft at 1 AU. In particular, kinetic effects such as temperature anisotropy and plasma heating are concentrated near coherent structures, such as current sheets, which are non-uniformly distributed in space. Furthermore, these coherent structures are preferentially found in plasma unstable to the mirror and firehose instabilities. The inhomogeneous heating in these regions, which is present in both the magnetic field parallel and perpendicular temperature components, results in protons at least 3--4 times hotter than under typical stable plasma conditions. These results offer a new understanding of kinetic processes in a turbulent regime, where linear Vlasov theory is not sufficient to explain the inhomogeneous plasma dynamics operating near non-Gaussian structures.

  10. Kinetic Signatures and Intermittent Turbulence in the Solar Wind Plasma

    Science.gov (United States)

    Osman, K. T.; Matthaeus, W. H.; Hnat, B.; Chapman, S. C.

    2012-06-01

    A connection between kinetic processes and intermittent turbulence is observed in the solar wind plasma using measurements from the Wind spacecraft at 1 A.U. In particular, kinetic effects such as temperature anisotropy and plasma heating are concentrated near coherent structures, such as current sheets, which are nonuniformly distributed in space. Furthermore, these coherent structures are preferentially found in plasma unstable to the mirror and firehose instabilities. The inhomogeneous heating in these regions, which is present in both the magnetic field parallel and perpendicular temperature components, results in protons at least 3-4 times hotter than under typical stable plasma conditions. These results offer a new understanding of kinetic processes in a turbulent regime, where linear Vlasov theory is not sufficient to explain the inhomogeneous plasma dynamics operating near non-Gaussian structures.

  11. Dependence of pedestal properties on plasma parameters

    Science.gov (United States)

    Kim, S. K.; Na, Y.-S.; Saarelma, S.; Kwon, O.

    2018-01-01

    We have numerically investigated the dependence of pedestal properties such as the pedestal height and the pedestal width on various global parameters using the EURO-DEMO as the reference equilibrium. We have used EPED, a predictive model of the edge pedestal. Among global parameters, we have chosen to vary the triangularity, δ , the elongation, κ , and the poloidal beta, {{β }p} , which have larger effects on the pedestal properties. Improvement of pedestal properties can be achieved for more shaped plasma boundary. However, the increase in the pedestal height and the width with δ saturates around δ ∼ 0.6. Also, the pedestal width saturates and the pedestal temperature starts to decrease for κ >1.9 . Improvement of the pedestal properties due to δ is larger at higher poloidal beta. The pedestal width slightly increases with the electron density at the pedestal top and the effective charge number.

  12. On density and pressure variations in the solar wind plasma

    OpenAIRE

    Jonson, Martin

    2007-01-01

    A study of ACE solar wind data at lAU, for the period from 1998 to early 2005, was conducted. This was done in order to find sudden solar wind pressure enhancements accounting for plasma transfer through the magnetopause. In order to get information about the extent and orientation of the structures found, a correlation of found events to data from the Wind satellite was done. The enhancements considered are those with a relative increase exceeding unity. These are found by applying a 1-hour ...

  13. Tsallis non-extensive statistics and solar wind plasma complexity

    Science.gov (United States)

    Pavlos, G. P.; Iliopoulos, A. C.; Zastenker, G. N.; Zelenyi, L. M.; Karakatsanis, L. P.; Riazantseva, M. O.; Xenakis, M. N.; Pavlos, E. G.

    2015-03-01

    This article presents novel results revealing non-equilibrium phase transition processes in the solar wind plasma during a strong shock event, which took place on 26th September 2011. Solar wind plasma is a typical case of stochastic spatiotemporal distribution of physical state variables such as force fields (B → , E →) and matter fields (particle and current densities or bulk plasma distributions). This study shows clearly the non-extensive and non-Gaussian character of the solar wind plasma and the existence of multi-scale strong correlations from the microscopic to the macroscopic level. It also underlines the inefficiency of classical magneto-hydro-dynamic (MHD) or plasma statistical theories, based on the classical central limit theorem (CLT), to explain the complexity of the solar wind dynamics, since these theories include smooth and differentiable spatial-temporal functions (MHD theory) or Gaussian statistics (Boltzmann-Maxwell statistical mechanics). On the contrary, the results of this study indicate the presence of non-Gaussian non-extensive statistics with heavy tails probability distribution functions, which are related to the q-extension of CLT. Finally, the results of this study can be understood in the framework of modern theoretical concepts such as non-extensive statistical mechanics (Tsallis, 2009), fractal topology (Zelenyi and Milovanov, 2004), turbulence theory (Frisch, 1996), strange dynamics (Zaslavsky, 2002), percolation theory (Milovanov, 1997), anomalous diffusion theory and anomalous transport theory (Milovanov, 2001), fractional dynamics (Tarasov, 2013) and non-equilibrium phase transition theory (Chang, 1992).

  14. Kinetic Processes and Intermittent Turbulence in the Solar Wind Plasma

    Science.gov (United States)

    Osman, K.; Matthaeus, W. H.; Hnat, B.; Chapman, S. C.

    2012-12-01

    A connection between intermittent turbulence and kinetic processes in the solar wind is presented using measurements from the Wind spacecraft. Temperature anisotropy is found to be concentrated near coherent structures, such as current sheets, which are non-uniformly distributed in space. Hence, these structures are preferentially found in plasma that is unstable to temperature anisotropy-driven mirror and firehose instabilities. The coherent structures heat the plasma, resulting in protons at least 3-4 times hotter than under typical stable plasma conditions. These results offer a new understanding of kinetic processes in a turbulent regime, where linear Vlasov theory is insufficient to explain the inhomogeneous plasma dynamics operating near non-Gaussian structures.

  15. Plasma Processes: Sheath and plasma parameters in a magnetized ...

    Indian Academy of Sciences (India)

    The variation of electron temperature and plasma density in a magnetized 2 plasma is studied experimentally in presence of a grid placed at the middle of the system. Plasma leaks through the negatively biased grid from the source region into the diffused region. It is observed that the electron temperature increases with ...

  16. Plasma Aerodynamic Control Effectors for Improved Wind Turbine Performance

    Energy Technology Data Exchange (ETDEWEB)

    Mehul P. Patel; Srikanth Vasudevan; Robert C. Nelson; Thomas C. Corke

    2008-08-01

    Orbital Research Inc is developing an innovative Plasma Aerodynamic Control Effectors (PACE) technology for improved performance of wind turbines. The PACE system is aimed towards the design of "smart" rotor blades to enhance energy capture and reduce aerodynamic loading and noise using flow-control. The PACE system will provide ability to change aerodynamic loads and pitch distribution across the wind turbine blade without any moving surfaces. Additional benefits of the PACE system include reduced blade structure weight and complexity that should translate into a substantially reduced initial cost. During the Phase I program, the ORI-UND Team demonstrated (proof-of-concept) performance improvements on select rotor blade designs using PACE concepts. Control of both 2-D and 3-D flows were demonstrated. An analytical study was conducted to estimate control requirements for the PACE system to maintain control during wind gusts. Finally, independent laboratory experiments were conducted to identify promising dielectric materials for the plasma actuator, and to examine environmental effects (water and dust) on the plasma actuator operation. The proposed PACE system will be capable of capturing additional energy, and reducing aerodynamic loading and noise on wind turbines. Supplementary benefits from the PACE system include reduced blade structure weight and complexity that translates into reduced initial capital costs.

  17. Variation of plasma parameters in a modified mode of plasma ...

    Indian Academy of Sciences (India)

    Research Articles Volume 74 Issue 3 March 2010 pp 399-409 ... the hot electron emitting filaments are present only in the source and the magnetic cage of this is kept at a negative bias such that due to the repulsion of the cage bias, the primary electrons can go to the grounded target and produce plasma there. The plasma ...

  18. MATHEMATICAL MODELING OF FLOW PARAMETERS FOR SINGLE WIND TURBINE

    Directory of Open Access Journals (Sweden)

    2016-01-01

    to adequatelycalculate the flow parameters for a single wind turbine.

  19. Parameters of atmospheric plasmas produced by electrosurgical devices

    Science.gov (United States)

    Keidar, Michael; Shashurin, Alexey; Canady, Jerome

    2013-10-01

    Electrosurgical systems are extensively utilized in general surgery, surgical oncology, plastic and reconstructive surgery etc. In this work we study plasma parameters created by electrosurgical system SS-200E/Argon 2 of US Medical Innovations. The maximal length of the discharge plasma column at which the discharge can be sustained was determined as function of discharge power and argon flow rate. Electrical parameters including discharge current and voltage were measured. Recently proposed Rayleigh microwave scattering method for temporally resolved density measurements of small-size atmospheric plasmas was utilized. Simultaneously, evolution of plasma column was observed using intensified charge-coupled device (ICCD) camera.

  20. Interplanetary plasma scintillation parameters measurements retrieved from the spacecraft observations.

    Science.gov (United States)

    Molera Calvés, Guifré; Pogrebenko, S. V.; Wagner, J.; Maccaferri, G.; Colucci, G.; Kronschnabl, G.; Scilliro, F.; Bianco, G.; Pérez Ayúcar, M.; Cosmovici, C. B.

    2010-05-01

    Measurement of the Interplanetary Scintillations (IPS) of radio signals propagating through the plasma in the Solar System by the radio astronomical instruments is a powerful tool to characterise and study the spatial and temporal variation of the electron density in the Solar wind. Several techniques based on the observation of natural and artificial radio sources have been developed during the last 50 years. Here we report our results of the IPS parameters measurement based on the multi-station observations of the planetary mission spacecraft. The ESA Venus Express spacecraft was observed at X-band (8.4 GHz) by several European VLBI stations - Metsähovi Radio Observatory (Aalto University , FI), Medicina (INAF-RA, IT), Matera (ASI, IT), Wettzell (BKG, DE), Noto (INAF-IRA, IT) and Yebes (OAN-IGN, ES) during a 2008-2010 campaign in a framework of the PRIDE (Planetary Radio Interferometry and Doppler Experiments) project as a preparatory stage for the European Radio Astronomy VLBI facilities participation in the planned ESA planetary missions (EJSM, TESM, EVE and others). Observational data were processed at Metsähovi Radio Observatory with the on-purpose developed high performance, ultra-high spectral resolution and spacecraft tracking capable software spectrometer-correlator and analysed at the Joint Institute for VLBI in Europe (JIVE, NL). High quality of acquired and analysed data enables us to study and define several parameters of the S/C signal and accompanying "ranging" tones with milli-Hz accuracy, among which the phase fluctuations of the spacecraft signal carrier line can be used to characterise the interplanetary plasma density fluctuations along the signal propagation line at different spatial and temporal scales at different Solar elongations and which exhibits a near-Kolmogorov spectrum. Such essential parameters as the phase scintillation index and bandwidth of scintillations and their dependence on the solar elongation, distance to the target

  1. Statistical Properties of Geomagnetic Activity Indices and Solar Wind Parameters

    Directory of Open Access Journals (Sweden)

    Jung-Hee Kim

    2014-06-01

    Full Text Available As the prediction of geomagnetic storms is becoming an important and practical problem, conditions in the Earth’s magnetosphere have been studied rigorously in terms of those in the interplanetary space. Another approach to space weather forecast is to deal with it as a probabilistic geomagnetic storm forecasting problem. In this study, we carry out detailed statistical analysis of solar wind parameters and geomagnetic indices examining the dependence of the distribution on the solar cycle and annual variations. Our main findings are as follows: (1 The distribution of parameters obtained via the superimposed epoch method follows the Gaussian distribution. (2 When solar activity is at its maximum the mean value of the distribution is shifted to the direction indicating the intense environment. Furthermore, the width of the distribution becomes wider at its maximum than at its minimum so that more extreme case can be expected. (3 The distribution of some certain heliospheric parameters is less sensitive to the phase of the solar cycle and annual variations. (4 The distribution of the eastward component of the interplanetary electric field BV and the solar wind driving function BV2, however, appears to be all dependent on the solar maximum/minimum, the descending/ascending phases of the solar cycle and the equinoxes/solstices. (5 The distribution of the AE index and the Dst index shares statistical features closely with BV and BV2 compared with other heliospheric parameters. In this sense, BV and BV2 are more robust proxies of the geomagnetic storm. We conclude by pointing out that our results allow us to step forward in providing the occurrence probability of geomagnetic storms for space weather and physical modeling.

  2. Selected plasma biochemical parameters in improved indigenous ...

    African Journals Online (AJOL)

    This study was to assess the biochemical parameters of apparently healthy NIGERHYB pigs and comparison of age and sex related differences in these parameters. One hundred and thirty five NIGERHYB pigs (35 boar, 35 sow, 30 weaned boar piglets and 35 weaned gilt piglets) obtained from intensively managed pig ...

  3. Dependence of Lunar Surface Charging on Solar Wind Plasma Conditions and Solar Irradiation

    Science.gov (United States)

    Stubbs, T. J.; Farrell, W. M.; Halekas, J. S.; Burchill, J. K.; Collier, M. R.; Zimmerman, M. I.; Vondrak, R. R.; Delory, G. T.; Pfaff, R. F.

    2014-01-01

    The surface of the Moon is electrically charged by exposure to solar radiation on its dayside, as well as by the continuous flux of charged particles from the various plasma environments that surround it. An electric potential develops between the lunar surface and ambient plasma, which manifests itself in a near-surface plasma sheath with a scale height of order the Debye length. This study investigates surface charging on the lunar dayside and near-terminator regions in the solar wind, for which the dominant current sources are usually from the pohotoemission of electrons, J(sub p), and the collection of plasma electrons J(sub e) and ions J(sub i). These currents are dependent on the following six parameters: plasma concentration n(sub 0), electron temperature T(sub e), ion temperature T(sub i), bulk flow velocity V, photoemission current at normal incidence J(sub P0), and photo electron temperature T(sub p). Using a numerical model, derived from a set of eleven basic assumptions, the influence of these six parameters on surface charging - characterized by the equilibrium surface potential, Debye length, and surface electric field - is investigated as a function of solar zenith angle. Overall, T(sub e) is the most important parameter, especially near the terminator, while J(sub P0) and T(sub p) dominate over most of the dayside.

  4. Spectral Analysis of Geomagnetic Activity Indices and Solar Wind Parameters

    Directory of Open Access Journals (Sweden)

    Jung-Hee Kim

    2014-06-01

    Full Text Available Solar variability is widely known to affect the interplanetary space and in turn the Earth’s electromagnetical environment on the basis of common periodicities in the solar and geomagnetic activity indices. The goal of this study is twofold. Firstly, we attempt to associate modes by comparing a temporal behavior of the power of geomagnetic activity parameters since it is barely sufficient searching for common peaks with a similar periodicity in order to causally correlate geomagnetic activity parameters. As a result of the wavelet transform analysis we are able to obtain information on the temporal behavior of the power in the velocity of the solar wind, the number density of protons in the solar wind, the AE index, the Dst index, the interplanetary magnetic field, B and its three components of the GSM coordinate system, BX, BY, BZ. Secondly, we also attempt to search for any signatures of influence on the space environment near the Earth by inner planets orbiting around the Sun. Our main findings are as follows: (1 Parameters we have investigated show periodicities of ~ 27 days, ~ 13.5 days, ~ 9 days. (2 The peaks in the power spectrum of BZ appear to be split due to an unknown agent. (3 For some modes powers are not present all the time and intervals showing high powers do not always coincide. (4 Noticeable peaks do not emerge at those frequencies corresponding to the synodic and/or sidereal periods of Mercury and Venus, which leads us to conclude that the Earth’s space environment is not subject to the shadow of the inner planets as suggested earlier.

  5. Optimizing pulsed current micro plasma arc welding parameters to ...

    African Journals Online (AJOL)

    This paper reveals the influences of pulsed current parameters namely peak current, back current, pulse and pulse width on the ultimate tensile strength of Micro Plasma Arc Welded Inconel 625 sheets. Mathematical model is developed to predict ultimate tensile strength of pulsed current micro plasma arc welded Inconel ...

  6. Solar Wind Strahl Broadening by Self-Generated Plasma Waves

    Science.gov (United States)

    Pavan, J.; Vinas, A. F.; Yoon, P. H.; Ziebell, L. F.; Gaelzer, R.

    2013-01-01

    This Letter reports on the results of numerical simulations which may provide a possible explanation for the strahl broadening during quiet solar conditions. The relevant processes involved in the broadening are due to kinetic quasi-linear wave-particle interaction. Making use of static analytical electron distribution in an inhomogeneous field, it is found that self-generated electrostatic waves at the plasma frequency, i.e., Langmuir waves, are capable of scattering the strahl component, resulting in energy and pitch-angle diffusion that broadens its velocity distribution significantly. The present theoretical results provide an alternative or complementary explanation to the usual whistler diffusion scenario, suggesting that self-induced electrostatic waves at the plasma frequency might play a key role in broadening the solar wind strahl during quiet solar conditions.

  7. SOLAR WIND STRAHL BROADENING BY SELF-GENERATED PLASMA WAVES

    Energy Technology Data Exchange (ETDEWEB)

    Pavan, J.; Gaelzer, R. [UFPEL, Pelotas (Brazil); Vinas, A. F. [NASA GSFC, Greenbelt, MD 20771 (United States); Yoon, P. H. [IPST, UMD, College Park, MD (United States); Ziebell, L. F., E-mail: joel.pavan@ufpel.edu.br, E-mail: rudi@ufpel.edu.br, E-mail: adolfo.vinas@nasa.gov, E-mail: yoonp@umd.edu, E-mail: luiz.ziebell@ufrgs.br [UFRGS, Porto Alegre (Brazil)

    2013-06-01

    This Letter reports on the results of numerical simulations which may provide a possible explanation for the strahl broadening during quiet solar conditions. The relevant processes involved in the broadening are due to kinetic quasi-linear wave-particle interaction. Making use of static analytical electron distribution in an inhomogeneous field, it is found that self-generated electrostatic waves at the plasma frequency, i.e., Langmuir waves, are capable of scattering the strahl component, resulting in energy and pitch-angle diffusion that broadens its velocity distribution significantly. The present theoretical results provide an alternative or complementary explanation to the usual whistler diffusion scenario, suggesting that self-induced electrostatic waves at the plasma frequency might play a key role in broadening the solar wind strahl during quiet solar conditions.

  8. LANGMUIR WAVE DECAY IN INHOMOGENEOUS SOLAR WIND PLASMAS: SIMULATION RESULTS

    Energy Technology Data Exchange (ETDEWEB)

    Krafft, C. [Laboratoire de Physique des Plasmas, Ecole Polytechnique, F-91128 Palaiseau Cedex (France); Volokitin, A. S. [IZMIRAN, Troitsk, 142190, Moscow (Russian Federation); Krasnoselskikh, V. V., E-mail: catherine.krafft@u-psud.fr [Laboratoire de Physique et Chimie de l’Environnement et de l’Espace, 3A Av. de la Recherche Scientifique, F-45071 Orléans Cedex 2 (France)

    2015-08-20

    Langmuir turbulence excited by electron flows in solar wind plasmas is studied on the basis of numerical simulations. In particular, nonlinear wave decay processes involving ion-sound (IS) waves are considered in order to understand their dependence on external long-wavelength plasma density fluctuations. In the presence of inhomogeneities, it is shown that the decay processes are localized in space and, due to the differences between the group velocities of Langmuir and IS waves, their duration is limited so that a full nonlinear saturation cannot be achieved. The reflection and the scattering of Langmuir wave packets on the ambient and randomly varying density fluctuations lead to crucial effects impacting the development of the IS wave spectrum. Notably, beatings between forward propagating Langmuir waves and reflected ones result in the parametric generation of waves of noticeable amplitudes and in the amplification of IS waves. These processes, repeated at different space locations, form a series of cascades of wave energy transfer, similar to those studied in the frame of weak turbulence theory. The dynamics of such a cascading mechanism and its influence on the acceleration of the most energetic part of the electron beam are studied. Finally, the role of the decay processes in the shaping of the profiles of the Langmuir wave packets is discussed, and the waveforms calculated are compared with those observed recently on board the spacecraft Solar TErrestrial RElations Observatory and WIND.

  9. Comparison of drift velocities of nighttime equatorial plasma depletions with ambient plasma drifts and thermospheric neutral winds

    NARCIS (Netherlands)

    Liu, G.; England, S.L.; Frey, H.U.; Immel, T.J.; Lin, C.S.; Pacheco, E.E.; Häusler, K.; Doornbos, E.N.

    2013-01-01

    This is the first study to compare plasma depletion drifts with the ambient plasma drifts and neutral winds in the post sunset equatorial ionosphere using global-scale satellite observations. The local time and latitude variations of the drift velocities of O+ plasma depletions at 350–400?km

  10. Turbulence, selective decay, and merging in the SSX plasma wind tunnel

    Science.gov (United States)

    Gray, Tim; Brown, Michael; Flanagan, Ken; Werth, Alexandra; Lukin, V.

    2012-10-01

    A helical, relaxed plasma state has been observed in a long cylindrical volume. The cylinder has dimensions L = 1 m and R = 0.08 m. The cylinder is long enough so that the predicted minimum energy state is a close approximation to the infinite cylinder solution. The plasma is injected at v >=50 km/s by a coaxial magnetized plasma gun located at one end of the cylindrical volume. Typical plasma parameters are Ti= 25 eV, ne>=10^15 cm-3, and B = 0.25 T. The relaxed state is rapidly attained in 1--2 axial Alfv'en times after initiation of the plasma. Magnetic data is favorably compared with an analytical model. Magnetic data exhibits broadband fluctuations of the measured axial modes during the formation period. The broadband activity rapidly decays as the energy condenses into the lowest energy mode, which is in agreement to the minimum energy eigenstate of ∇xB = λB. While the global structure roughly corresponds to the minimum energy eigenstate for the wind tunnel geometry, the plasma is high beta (β= 0.5) and does not have a flat λ profile. Merging of two plasmoids in this configuration results in noticeably more dynamic activity compared to a single plasmoid. These episodes of activity exhibit s

  11. Solar wind dependent models for the shapes of the Martian plasma boundaries based on Mars Express measurements

    Science.gov (United States)

    Ramstad, Robin; Barabash, Stas; Futaana, Yoshifumi; Holmstrom, Mats

    2016-10-01

    The long operational life (2003-) of Mars Express (MEX) has allowed the spacecraft to make plasma measurements in the Martian environment over a wide range of upstream conditions. We have analyzed ~5000 MEX orbits, covering three orders of magnitude in solar wind dynamic pressure, with data from the on-board Analyzer of Space Plasmas and Energetic Particles (ASPERA-3) package, mapping the locations where MEX crosses the main plasma boundaries; induced magnetosphere boundary (IMB), ionosphere boundary (IB) and bow shock (BS). A coincidence scheme was employed, where data from the Ion Mass Analyzer (IMA) and the Electron Spectrometer (ELS) had to agree for a positive boundary identification, which resulted in crossings from 882 orbit segments that were used to create dynamic 2-parameter (solar wind density, nsw, and velocity vsw dependent global dynamic models for the IMB, IB and BS. The modeled response is found to be individual to each boundary; the BS is stationary for all but extremely thin and slow solar wind, the IMB scales solely dependent on dynamic pressure and the IB changes morphology with different trends for nsw and vsw. We find no significant trend in IMB location with changing EUV intensities when the upstream solar wind is constrained to nominal conditions. Finally, the IMB model is used to extrapolate the solar wind stand-off distance in the ancient (0.7 Ga old) solar wind.

  12. Slow ions in plasma wind tunnels. [satellite-ionosphere interaction

    Science.gov (United States)

    Oran, W. A.; Stone, N. H.; Samir, U.

    1976-01-01

    One of the limitations of simulation experiments for the study of interaction between a satellite and its space environment is the background of slow ions in the plasma chamber. These ions appear to be created by charge exchange between the beam ions and residual neutral gas and may affect measurements of the current and potential in the wake. Results are presented for a plasma wind tunnel experiment to study the effect of slow ions on both the ion and electron current distribution and the electron temperature in the wake of a body in a streaming plasma. It is shown that the effect of slow ions for beam ion density not exceeding 3 is not significant for measurements of ion current variations in the wake zone. This is not the case when studies are aimed at the quantitative examination of electron current and temperature variations in the near wake zone. In these instances, the measurements of electron properties in the wake should be done at very low system pressures or over a range of system pressures in order to ascertain the influence of slow ions.

  13. VizieR Online Data Catalog: Stellar parameters and assumed wind parameters (Cazorla+, 2017)

    Science.gov (United States)

    Cazorla, C.; Morel, T.; Naze, Y.; Rauw, G.; Semaan, T.; Daflon, S.; Oey, S.

    2017-03-01

    Stellar parameters derived for the stars in our sample and assumed wind parameters for our hotter stars. Because macroturbulent velocities cannot be determined reliably for fast rotators (Sect. 4.2), all values in column 6 are upper limits. Column 7 provides the multiplicity status (see Sect. 4.1 for the classification criterion and Appendix C for the RV studies of each individual object). The runaway status is based on literature studies (references are given on a star-to-star basis in Appendix C). Columns 15, 16, and 17 of the table presenting the results for the hotter stars list the assumed wind parameters. For stars with the lowest temperatures (typically B0.5 stars), the carbon abundance cannot be firmly determined due to the weakness of the CIII lines at these temperatures. Besides, NII lines may also be very weak for the hottest stars studied with DETAIL/SURFACE. In these cases, we provide upper limits for both carbon and nitrogen abundances. They correspond to predicted lines becoming detectable, i.e., having a depth significantly exceeding the local noise. Similarly, CMFGEN fits may converge towards very high or very low CNO abundances. In both cases, the upper or lower limits were determined from the chi2 curves and correspond to the limit of their flat minimum. Since the CNO abundances are measured relative to the hydrogen content (assumed to be constant in our study), a correction should in principle be applied to the CNO abundances of stars that exhibit a very high helium abundance (and therefore have a reduced hydrogen abundance). However, we found this correction to be negligible (<~0.1dex) even for the most He-rich stars. The 1σ errors on the parameters are given in dedicated columns. (2 data files).

  14. Recent progress in astrophysical plasma turbulence from solar wind observations

    CERN Document Server

    Chen, C H K

    2016-01-01

    This paper summarises some of the recent progress that has been made in understanding astrophysical plasma turbulence in the solar wind, from in situ spacecraft observations. At large scales, where the turbulence is predominantly Alfvenic, measurements of critical balance, residual energy, and 3D structure are discussed, along with comparison to recent models of strong Alfvenic turbulence. At these scales, a few percent of the energy is also in compressive fluctuations, and their nature, anisotropy, and relation to the Alfvenic component is described. In the small scale kinetic range, below the ion gyroscale, the turbulence becomes predominantly kinetic Alfven in nature, and measurements of the spectra, anisotropy, and intermittency of this turbulence are discussed with respect to recent cascade models. One of the major remaining questions is how the turbulent energy is dissipated, and some recent work on this question, in addition to future space missions which will help to answer it, are briefly discussed.

  15. Plasma Beta Dependence of Magnetic Compressibility in Solar Wind Turbulence

    Science.gov (United States)

    Chapman, S. C.; Hnat, B.; Kiyani, K. H.; Sahraoui, F.

    2014-12-01

    The turbulent signature of MHD scales in the near-Earth solar wind are known to be primarily incompressible which manifests itself in magnetic field fluctuation vector components to be aligned primarily perpendicular to the background magnetic field -- so-called "Variance Anisotropy". This, and other facts, have been seen as evidence for a majority Alfvenic turbulence cascade; with a small component (10%) of compressible fluctuations. When one approaches scales on the order of the ion-inertial length and the Larmor radius, this behaviour changes and it is now becoming increasingly evident that the spectral break at these scales is also accompanied by an increase in magnetic compressibility. This has been attributed to a phase change in the physics at these scales -- from fluid to kinetic -- and in particular to the dominant role of the Hall-effect at sub-ion scales. We will be presenting results from the Cluster mission to show how this increase in the compressibility is dependent on the ion plasma beta and what implications this has for the physics at sub-ion scales in the context of prominent theories and models for kinetic plasma turbulence.

  16. Empirically modelled Pc3 activity based on solar wind parameters

    Directory of Open Access Journals (Sweden)

    B. Heilig

    2010-09-01

    Full Text Available It is known that under certain solar wind (SW/interplanetary magnetic field (IMF conditions (e.g. high SW speed, low cone angle the occurrence of ground-level Pc3–4 pulsations is more likely. In this paper we demonstrate that in the event of anomalously low SW particle density, Pc3 activity is extremely low regardless of otherwise favourable SW speed and cone angle. We re-investigate the SW control of Pc3 pulsation activity through a statistical analysis and two empirical models with emphasis on the influence of SW density on Pc3 activity. We utilise SW and IMF measurements from the OMNI project and ground-based magnetometer measurements from the MM100 array to relate SW and IMF measurements to the occurrence of Pc3 activity. Multiple linear regression and artificial neural network models are used in iterative processes in order to identify sets of SW-based input parameters, which optimally reproduce a set of Pc3 activity data. The inclusion of SW density in the parameter set significantly improves the models. Not only the density itself, but other density related parameters, such as the dynamic pressure of the SW, or the standoff distance of the magnetopause work equally well in the model. The disappearance of Pc3s during low-density events can have at least four reasons according to the existing upstream wave theory: 1. Pausing the ion-cyclotron resonance that generates the upstream ultra low frequency waves in the absence of protons, 2. Weakening of the bow shock that implies less efficient reflection, 3. The SW becomes sub-Alfvénic and hence it is not able to sweep back the waves propagating upstream with the Alfvén-speed, and 4. The increase of the standoff distance of the magnetopause (and of the bow shock. Although the models cannot account for the lack of Pc3s during intervals when the SW density is extremely low, the resulting sets of optimal model inputs support the generation of mid latitude Pc3 activity predominantly through

  17. Optimization of plasma flow parameters of the magnetoplasma compressor

    Science.gov (United States)

    Dojcinovic, I. P.; Kuraica, M. M.; Obradovc, B. M.; Cvetanovic, N.; Puric, J.

    2007-02-01

    Optimization of the working conditions of the magnetoplasma compressor (MPC) has been performed through analysing discharge and compression plasma flow parameters in hydrogen, nitrogen and argon at different pressures. Energy conversion rate, volt-ampere curve exponent and plasma flow velocities have been studied to optimize the efficiency of energy transfer from the supply source to the plasma. It has been found that the most effective energy transfer from the supply to the plasma is in hydrogen as a working gas at 1000 Pa pressure. It was found that the accelerating regime exists for hydrogen up to 3000 Pa pressures, in nitrogen up to 2000 Pa and in argon up to 1000 Pa pressure. At higher pressures MPC in all the gases works in the decelerating regime. At pressures lower than 200 Pa, high cathode erosion is observed. MPC plasma flow parameter optimization is very important because this plasma accelerating system may be of special interest for solid surface modification and other technology applications.

  18. Solar wind plasma interaction with solar probe plus spacecraft

    Directory of Open Access Journals (Sweden)

    S. Guillemant

    2012-07-01

    Full Text Available 3-D PIC (Particle In Cell simulations of spacecraft-plasma interactions in the solar wind context of the Solar Probe Plus mission are presented. The SPIS software is used to simulate a simplified probe in the near-Sun environment (at a distance of 0.044 AU or 9.5 RS from the Sun surface. We begin this study with a cross comparison of SPIS with another PIC code, aiming at providing the static potential structure surrounding a spacecraft in a high photoelectron environment. This paper presents then a sensitivity study using generic SPIS capabilities, investigating the role of some physical phenomena and numerical models. It confirms that in the near- sun environment, the Solar Probe Plus spacecraft would rather be negatively charged, despite the high yield of photoemission. This negative potential is explained through the dense sheath of photoelectrons and secondary electrons both emitted with low energies (2–3 eV. Due to this low energy of emission, these particles are not ejected at an infinite distance of the spacecraft and would rather surround it. As involved densities of photoelectrons can reach 106 cm−3 (compared to ambient ions and electrons densities of about 7 × 103 cm−3, those populations affect the surrounding plasma potential generating potential barriers for low energy electrons, leading to high recollection. This charging could interfere with the low energy (up to a few tens of eV plasma sensors and particle detectors, by biasing the particle distribution functions measured by the instruments. Moreover, if the spacecraft charges to large negative potentials, the problem will be more severe as low energy electrons will not be seen at all. The importance of the modelling requirements in terms of precise prediction of spacecraft potential is also discussed.

  19. Measurements of egg shell plasma parameters using laser-induced ...

    Indian Academy of Sciences (India)

    Measurements of 1064 nm laser-induced egg shell plasma parameters are presented in this paper. Of special interests were its elemental identification and the determination of spectroscopic temperature and electron density. The electron temperature of 5956 K was inferred using an improved iterative Boltzmann plot ...

  20. The Parameters Affect on Power Coefficient Vertical Axis Wind Turbine

    Directory of Open Access Journals (Sweden)

    Ahmed Y. Qasim

    2012-04-01

    Full Text Available ABSTRACT: This study describes the design of a special type of vertical axis rotor wind turbine with moveable vertically positioned vanes. The novel design increases the torque in the left side of the wind turbine by increasing the drag coefficient. It also reduces the negative torque of the frame which rotates contrary to the wind in the other side. Two different types of models, having different vane shapes (flat vane and cavity shaped vane, were fabricated. Each type consisted of two models with varying number of frames (three and four frames. The models were tested in a wind tunnel with variable wind speed in order to understand the effect of shape, weight, and number of frames on the power coefficient of the wind turbine. ABSTRAK: Di dalam kajian ini, rotor turbin angin berpaksi vertikel sebagai rangka khusus telah direkabentuk dengan lokasi vertikel mudahalih oleh bilah kipas. Rekabentuk ini meningkatkan tork di bahagian kiri turbin angin dengan meningkatkan pekali seretan dan mengurangkan tork negatif rangka yang berputar berlawanan dengan angin pada bahagian lain. Dua jenis model berbentuk berlainan telah difabrikasi (bilah kipas rata dan bilah kipas berbentuk kaviti, dengan setiap jenis mempunyai dua model dengan bilangan rangka yang berlainan (berangka tiga dan berangka empat. Model-model telah diuji di dalam terowong angin dengan kelajuan angin yang berbeza bagi mendapatkan kesan rekabentuk, berat dan bilangan rangka ke atas pekali kuasa.KEYWORDS: design; wind turbine; drag coefficient; vane

  1. Free flight wind tunnel tests for parameter identification

    OpenAIRE

    Nowack, Jan; Alles, Wolfgang

    2009-01-01

    The Chair of Flight Dynamics at the RWTH Aachen University is conducting research on a method for identification of flight mechanical characteristics on free flying models in a wind tunnel. The main goal is to create a eproducible free flight environment for cost effective identification of important values even in an early design stage. The method will combine the advantages of free flight with wind tunnel techniques as it takes the free flight into a reproducible environment under laborator...

  2. Interaction of energetic particles with waves in strongly inhomogeneous solar wind plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Krafft, C. [Laboratoire de Physique des Plasmas, Ecole Polytechnique, F-91128 Palaiseau Cedex (France); Volokitin, A. S. [Space Research Institute, 84/32 Profsoyuznaya Str., 117997 Moscow (Russian Federation); Krasnoselskikh, V. V., E-mail: catherine.krafft@u-psud.fr [Laboratoire de Physique et Chimie de l' Environnement et de l' Espace, 3A Av. de la Recherche Scientifique, F-45071 Orléans Cedex 2 (France)

    2013-12-01

    Observations performed in the solar wind by different satellites show that electron beams accelerated in the low corona during solar flares can propagate up to distances around 1 AU, that Langmuir waves' packets can be clumped into spikes with peak amplitudes three orders of magnitude above the mean, and that the average level of density fluctuations can reach several percents. A Hamiltonian model is built describing the properties of Langmuir waves propagating in a plasma with random density fluctuations by the Zakharov's equations and the beam by means of particles moving self-consistently in the fields of the waves. Numerical simulations, performed using parameters relevant to solar type III conditions at 1 AU, show that when the average level of density fluctuations is sufficiently low, the beam relaxation and the wave excitation processes are very similar to those in a homogeneous plasma and can be described by the quasilinear equations of the weak turbulence theory. On the contrary, when the average level of density fluctuations overcomes some threshold depending on the ratio of the thermal velocity to the beam velocity, the plasma inhomogeneities crucially influence the characteristics of the Langmuir turbulence and the beam-plasma interaction.

  3. The Dependence of the Strength and Thickness of Field-Aligned Currents on Solar Wind and Ionospheric Parameters

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Jay R. [PPPL; Wing, Simon [Johns Hopkins University

    2014-08-01

    Sheared plasma flows at the low-latitude boundary layer correlate well with early afternoon auroral arcs and eld-aligned currents [Sonnerup, 1980; Lundin and Evans, 1985]. We present a simple analytic model that relates solar wind and ionospheric parameters to the strength and thickness of field-aligned currents in a region of sheared velocity, such as the low latitude boundary layer. We compare the predictions of the model with DMSP observations and nd remarkably good scaling of the currents with solar wind and ionospheric parameters. The sheared boundary layer thickness is inferred to be around 3000km consistent with observational studies. The analytic model provides a simple way to organize data and to infer boundary layer structures from ionospheric data.

  4. Laboratory Simulations of CME-Solar Wind Interactions Using a Coaxial Gun and Background Plasma

    Science.gov (United States)

    Wallace, B. H.; Zhang, Y.; Fisher, D.; Gilmore, M.

    2016-12-01

    Understanding and predicting solar coronal mass ejections (CMEs) is of critical importance for mitigating their disruptive behavior on ground- and space-based technologies. While predictive models of CME propagation and evolution have relied primarily on sparse in-situ data along with ground and satellite images for validation purposes, emerging laboratory efforts have shown that CME-like events can be created with parameters applicable to the solar regime that may likewise aid in predictive modeling. A modified version of the coaxial plasma gun from the Plasma Bubble Expansion Experiment (PBEX) [A. G. Lynn, Y. Zhang, S. C. Hsu, H. Li, W. Liu, M. Gilmore, and C. Watts, Bull. Amer. Phys. Soc. 52, 53 (2007)] will be used in conjunction with the Helicon-Cathode (HelCat) basic plasma science device in order to observe the magnetic characteristics of CMEs as they propagate through the solar wind. The evolution of these interactions will be analyzed using a multi-tip Langmuir probe array, a 33-position B-dot probe array, and a high speed camera. The results of this investigation will be used alongside the University of Michigan's BATS-R-US 3-D MHD numerical code, which will be used to perform simulations of the coaxial plasma gun experiment. The results of these two approaches will be compared in order to validate the capabilities of the BATS-R-US code as well as to further our understanding of magnetic reconnection and other processes that take place as CMEs propagate through the solar wind. The details of the experimental setup as well as the analytical approach are discussed.

  5. Permutation entropy and statistical complexity analysis of turbulence in laboratory plasmas and the solar wind

    Science.gov (United States)

    Weck, P. J.; Schaffner, D. A.; Brown, M. R.; Wicks, R. T.

    2015-02-01

    The Bandt-Pompe permutation entropy and the Jensen-Shannon statistical complexity are used to analyze fluctuating time series of three different turbulent plasmas: the magnetohydrodynamic (MHD) turbulence in the plasma wind tunnel of the Swarthmore Spheromak Experiment (SSX), drift-wave turbulence of ion saturation current fluctuations in the edge of the Large Plasma Device (LAPD), and fully developed turbulent magnetic fluctuations of the solar wind taken from the Wind spacecraft. The entropy and complexity values are presented as coordinates on the CH plane for comparison among the different plasma environments and other fluctuation models. The solar wind is found to have the highest permutation entropy and lowest statistical complexity of the three data sets analyzed. Both laboratory data sets have larger values of statistical complexity, suggesting that these systems have fewer degrees of freedom in their fluctuations, with SSX magnetic fluctuations having slightly less complexity than the LAPD edge Isat. The CH plane coordinates are compared to the shape and distribution of a spectral decomposition of the wave forms. These results suggest that fully developed turbulence (solar wind) occupies the lower-right region of the CH plane, and that other plasma systems considered to be turbulent have less permutation entropy and more statistical complexity. This paper presents use of this statistical analysis tool on solar wind plasma, as well as on an MHD turbulent experimental plasma.

  6. Tuning of the PI Controller Parameters of a PMSG Wind Turbine to Improve Control Performance under Various Wind Speeds

    Directory of Open Access Journals (Sweden)

    Yun-Su Kim

    2015-02-01

    Full Text Available This paper presents a method to seek the PI controller parameters of a PMSG wind turbine to improve control performance. Since operating conditions vary with the wind speed, therefore the PI controller parameters should be determined as a function of the wind speed. Small-signal modeling of a PMSG WT is implemented to analyze the stability under various operating conditions and with eigenvalues obtained from the small-signal model of the PMSG WT, which are coordinated by adjusting the PI controller parameters. The parameters to be tuned are chosen by investigating participation factors of state variables, which simplifies the problem by reducing the number of parameters to be tuned. The process of adjusting these PI controller parameters is carried out using particle swarm optimization (PSO. To characterize the improvements in the control method due to the PSO method of tuning the PI controller parameters, the PMSG WT is modeled using the MATLAB/SimPowerSystems libraries with the obtained PI controller parameters.

  7. Wind-Ramp-Forecast Sensitivity to Closure Parameters in a Boundary-Layer Parametrization Scheme

    Science.gov (United States)

    Jahn, David E.; Takle, Eugene S.; Gallus, William A.

    2017-09-01

    Wind ramps are relatively large changes in wind speed over a period of a few hours and present a challenge for electric utilities to balance power generation and load. Failures of boundary-layer parametrization schemes to represent physical processes limit the ability of numerical models to forecast wind ramps, especially in a stable boundary layer. Herein, the eight "closure parameters" of a widely used boundary-layer parameterization scheme are subject to sensitivity tests for a set of wind-ramp cases. A marked sensitivity of forecast wind speed to closure-parameter values is observed primarily for three parameters that influence in the closure equations the depth of turbulent mixing, dissipation, and the transfer of kinetic energy from the mean to the turbulent flow. Reducing the value of these parameters independently by 25% or by 50% reduces the overall average in forecast wind-speed errors by at least 24% for the first two parameters and increases average forecast error by at least 63% for the third parameter. Doubling any of these three parameters increases average forecast error by at least 67%. Such forecast sensitivity to closure parameter values provides motivation to explore alternative values in the context of a stable boundary layer.

  8. Effects of solar wind ultralow-frequency fluctuations on plasma sheet electron temperature: Regression analysis with support vector machine

    Science.gov (United States)

    Wang, Chih-Ping; Kim, Hee-Jeong; Yue, Chao; Weygand, James M.; Hsu, Tung-Shin; Chu, Xiangning

    2017-04-01

    To investigate whether ultralow-frequency (ULF) fluctuations from 0.5 to 8.3 mHz in the solar wind and interplanetary magnetic field (IMF) can affect the plasma sheet electron temperature (Te) near geosynchronous distances, we use a support vector regression machine technique to decouple the effects from different solar wind parameters and their ULF fluctuation power. Te in this region varies from 0.1 to 10 keV with a median of 1.3 keV. We find that when the solar wind ULF power is weak, Te increases with increasing southward IMF Bz and solar wind speed, while it varies weakly with solar wind density. As the ULF power becomes stronger during weak IMF Bz ( 0) or northward IMF, Te becomes significantly enhanced, by a factor of up to 10. We also find that mesoscale disturbances in a time scale of a few to tens of minutes as indicated by AE during substorm expansion and recovery phases are more enhanced when the ULF power is stronger. The effect of ULF powers may be explained by stronger inward radial diffusion resulting from stronger mesoscale disturbances under higher ULF powers, which can bring high-energy plasma sheet electrons further toward geosynchronous distance. This effect of ULF powers is particularly important during weak southward IMF or northward IMF when convection electric drift is weak.

  9. A statistical study on the correlations between plasma sheet and solar wind based on DSP explorations

    Directory of Open Access Journals (Sweden)

    G. Q. Yan

    2005-11-01

    Full Text Available By using the data of two spacecraft, TC-1 and ACE (Advanced Composition Explorer, a statistical study on the correlations between plasma sheet and solar wind has been carried out. The results obtained show that the plasma sheet at geocentric distances of about 9~13.4 Re has an apparent driving relationship with the solar wind. It is found that (1 there is a positive correlation between the duskward component of the interplanetary magnetic field (IMF and the duskward component of the geomagnetic field in the plasma sheet, with a proportionality constant of about 1.09. It indicates that the duskward component of the IMF can effectively penetrate into the near-Earth plasma sheet, and can be amplified by sunward convection in the corresponding region at geocentric distances of about 9~13.4 Re; (2 the increase in the density or the dynamic pressure of the solar wind will generally lead to the increase in the density of the plasma sheet; (3 the ion thermal pressure in the near-Earth plasma sheet is significantly controlled by the dynamic pressure of solar wind; (4 under the northward IMF condition, the ion temperature and ion thermal pressure in the plasma sheet decrease as the solar wind speed increases. This feature indicates that plasmas in the near-Earth plasma sheet can come from the magnetosheath through the LLBL. Northward IMF is one important condition for the transport of the cold plasmas of the magnetosheath into the plasma sheet through the LLBL, and fast solar wind will enhance such a transport process.

  10. determination of weibull parameters and analysis of wind power

    African Journals Online (AJOL)

    HOD

    abundant renewable energy sources. For instance, a study on sustainably meeting the energy needs of. Nigeria: the renewable energy option was carried out by. [6] and the conclusion was that Nigeria was sustainably rich and ought not to be lacking power. Regarding the country's wind energy potential and its viability for.

  11. Interaction of the solar wind with Venus. [plasma measurements by Mariner space probes

    Science.gov (United States)

    Bridge, H. S.; Lazarus, A. J.; Siscoe, G. L.; Hartle, R. E.; Ogilvie, K. W.; Scudder, J. D.; Yeates, C. M.

    1976-01-01

    Two topics related to the interaction of the solar wind with Venus are considered. First, a short review of the experimental evidence with particular attention to plasma measurements carried out on Mariner-5 and Mariner-10 is given. Secondly, the results of some recent theoretical work on the interaction of the solar wind with the ionosphere of Venus are summarized.

  12. Simulation of Mini-Magnetospheric Plasma Propulsion (M2P2) Interacting with an External Plasma Wind

    Science.gov (United States)

    Winglee, R. M.; Euripides, P.; Ziemba, T.; Slough, J.; Giersch, L.

    2003-01-01

    Substantial progress has been made over the last year in the development of the laboratory Mini-Magnetospheric Plasma Propulsion (M2P2) prototype. The laboratory testing has shown that that the plasma can be produced at high neutral gas efficiency, at high temperatures (a few tens of eV) with excellent confinement up to the point where chamber wall interactions dominate the physics. This paper investigates the performance of the prototype as it is opposed by an external plasma acting as a surrogate for the solar wind. The experiments were performed in 5ft diameter by 6ft long vacuum chamber at the University of Washington. The solar wind source comprised of a 33 kWe arc jet attached to a 200 kWe inductively generated plasma source. The dual plasma sources allow the interaction to be studied for different power levels, shot duration and production method. It is shown that plasma from the solar wind source (SWS) is able to penetrate the field of the M2P2 magnetic when no plasma is present. With operation of the M2P2 plasma source at only 1.5 kWe, the penetration of the SWS even at the highest power of operation at 200 kWe is stopped. This deflection is shown to be greatly enhanced over that produced by the magnet alone. In addition it is shown that with the presence of the SWS, M2P2 is able to produce enhanced magnetized plasma production out to at least 10 magnet radii where the field strength is only marginally greater than the terrestrial field. The results are consistent with the initial predictions that kWe M2P2 systems would be able to deflect several hundred kWe plasma winds to produce enhanced propulsion for a spacecraft.

  13. Solar wind dependence of ion parameters in the Earth's magnetospheric region calculated from CLUSTER observations

    Directory of Open Access Journals (Sweden)

    M. H. Denton

    2008-03-01

    Full Text Available Moments calculated from the ion distributions (~0–40 keV measured by the Cluster Ion Spectrometry (CIS instrument are combined with data from the Cluster Flux Gate Magnetometer (FGM instrument and used to characterise the bulk properties of the plasma in the near-Earth magnetosphere over five years (2001–2005. Results are presented in the form of 2-D xy, xz and yz GSM cuts through the magnetosphere using data obtained from the Cluster Science Data System (CSDS and the Cluster Active Archive (CAA. Analysis reveals the distribution of ~0–40 keV ions in the inner magnetosphere is highly ordered and highly responsive to changes in solar wind velocity. Specifically, elevations in temperature are found to occur across the entire nightside plasma sheet region during times of fast solar wind. We demonstrate that the nightside plasma sheet ion temperature at a downtail distance of ~12 to 19 Earth radii increases by a factor of ~2 during periods of fast solar wind (500–1000 km s−1 compared to periods of slow solar wind (100–400 km s−1. The spatial extent of these increases are shown in the xy, xz and yz GSM planes. The results from the study have implications for modelling studies and simulations of solar-wind/magnetosphere coupling, which ultimately rely on in situ observations of the plasma sheet properties for input/boundary conditions.

  14. Estimates of boundary layer parameters using measured wind and temperature profile near the ground

    Science.gov (United States)

    Popov, Z.; Rajkovic, B.

    2009-09-01

    In almost every application related to planetary boundary layer, PBL, two parameters are of the most relevance, "friction" velocity and PBL height. The first is connected to near surface processes, while the second one appears in the problems related to the whole BL or its substantial portions. One of the most famous parametrizations of the of the PBL height is h ~u*o- f. This paper looks into this formulation for different stability classes and mean daily variation of wind and these parameters, using the approach made by Holstlag (1984), to estimate diabatic wind profile where zo is independent of stability, but depends on wind direction. The second procedure used here is the one suggested by Kramm (1989), where zo is a function of stability and u*o depends on zo and L, the Monin-Obukhov length scale, and all of them, u_*o, zo and L, are simultaneously calculated through the least square method. From these parameters two methods for wind extrapolations with height are analyzed, Beljaars and Holstlag (1990), and Grining amd Batchvarova (2007). The wind data came form the Caubauw wind mast 1987, while the second set is wind and temperature gradient from the Panonian region, synoptic weather station 13168 near the city of Novi Sad, Serbia. Finally we analyze the difference between extrapolated and measured wind speed at Caubauw mast for different values of friction velocity, roughness length and Obukhov length.

  15. The role of compressibility in solar wind plasma turbulence

    OpenAIRE

    Hnat, Bogdan; Chapman, Sandra C.; Rowlands, George

    2004-01-01

    Incompressible Magnetohydrodynamics is often assumed to describe solar wind turbulence. We use extended self similarity to reveal scaling in structure functions of density fluctuations in the solar wind. Obtained scaling is then compared with that found in the inertial range of quantities identified as passive scalars in other turbulent systems. We find that these are not coincident. This implies that either solar wind turbulence is compressible, or that straightforward comparison of structur...

  16. An Approach to Determine the Weibull Parameters for Wind Energy Analysis: The Case of Galicia (Spain

    Directory of Open Access Journals (Sweden)

    Camilo Carrillo

    2014-04-01

    Full Text Available The Weibull probability density function (PDF has mostly been used to fit wind speed distributions for wind energy applications. The goodness of fit of the results depends on the estimation method that was used and the wind type of the analyzed area. In this paper, a study on a particular area (Galicia was performed to test the performance of several fitting methods. The goodness of fit was evaluated by well-known indicators that use the wind speed or the available wind power density. However, energy production must be a critical parameter in wind energy applications. Hence, a fitting method that accounts for the power density distribution is proposed. To highlight the usefulness of this method, indicators that use energy production values are also presented.

  17. Modal Parameter Identification of New Design of Vertical Axis Wind Turbine

    DEFF Research Database (Denmark)

    Chougule, Prasad; Nielsen, Søren R.K.

    2013-01-01

    Vertical axis wind turbines have lower power efficiency than the horizontal axis wind turbines. However vertical axis wind turbines are proven to be economical and noise free on smaller scale. A new design of three bladed vertical axis wind turbine by using two airfoils in construction of each...... blade has been proposed to improve power efficiency. The purpose of two airfoils in blade design of vertical axis wind turbine is to create high lift which in turns gives higher power output. In such case the structural parameter identification is important to understand the system behavior due to its...... first kind of design before experimental analysis. Therefore a study is carried out to determine the natural frequency to avoid unstable state of the system due to rotational frequency of rotor. The present paper outlines a conceptual design of vertical axis wind turbine and a modal analysis by using...

  18. Optimum Parameters of a Tuned Liquid Column Damper in a Wind Turbine Subject to Stochastic Load

    Science.gov (United States)

    Alkmim, M. H.; de Morais, M. V. G.; Fabro, A. T.

    2017-12-01

    Parameter optimization for tuned liquid column dampers (TLCD), a class of passive structural control, have been previously proposed in the literature for reducing vibration in wind turbines, and several other applications. However, most of the available work consider the wind excitation as either a deterministic harmonic load or random load with white noise spectra. In this paper, a global direct search optimization algorithm to reduce vibration of a tuned liquid column damper (TLCD), a class of passive structural control device, is presented. The objective is to find optimized parameters for the TLCD under stochastic load from different wind power spectral density. A verification is made considering the analytical solution of undamped primary system under white noise excitation by comparing with result from the literature. Finally, it is shown that different wind profiles can significantly affect the optimum TLCD parameters.

  19. Tritium Plasma Experiment (TPE) - parameters and potentials for fusion plasma-wall interaction studies

    Energy Technology Data Exchange (ETDEWEB)

    Masashi Shimada; Robert D. Kolasinski; J. Phillip Sharpe; Rion A. Causey

    2011-08-01

    The Tritium plasma experiment (TPE) is a unique facility devoted to experiments on the behavior of deuterium/tritium in toxic (e.g. beryllium) and radioactive materials for fusion plasma-wall interaction (PWI) studies. A Langmuir probe was added to the system to characterize the plasma conditions in TPE. With this new diagnostic, we found the achievable electron temperature ranged from 5.0 to 10.0 eV, the electron density varied from 5.0 x 10{sup 16} to 2.5 x 10{sup 18} m{sup -3}, and the ion flux density varied between 5.0 x 10{sup 20} to 2.5 x 10{sup 22} m{sup -2}s{sup -1} along the centerline of the plasma. A comparison of these plasma parameters with the conditions expected for the plasma facing components (PFCs) in ITER shows that TPE is capable of achieving most (approximately 800 m{sup 2} of 850 m{sup 2} total PFCs area) of the expected ion flux density and electron density conditions.

  20. Monitoring and control of rf electrical parameters near plasma loads

    Science.gov (United States)

    Rummel, Paul

    1991-03-01

    Today''s semiconductor processing equipment demands accurate and repeatable controls to obtain improved yields of increasingly complex chemistries and smaller geometries. Electrical control of RF induced plasmas has sadly lacked the precision of modern gas flow pressure and chemistry control and hence is a major limiting factor to process repeatability and diagnostics. Present technology which is decades old maintains a constant indicated forward power at the RF source regardless of mismatch reflections transmission line losses non-repeatable impedance matching losses reactor feed losses and RF envelope modulation due to plasma load non-linearities interacting with power source instabilities. Process diagnostics is often reduced to a guessing game once gas flow and pressure controls are checked against each other. Comdel Inc. has produced a new product to remove some of the ''black art'' from RE control and analysis. The RPM-l (Real Power Monitor) is intended to become center of the RE delivery system. Consisting of a sensor unit and a processor unit the RPM-i controls the RE power source based upon real power RF voltage RF current or DC bias at the point where the sensor unit is installed regardless of the load impedance. The user interface to control and read these RE electrical parameters is an ASCII terminal or host computer via an RS- 232 serial port on the processor unit. The RPM-l also calculates and displays on the terminal the plasma load impedance

  1. CLINDAMYCIN: EFFECTS ON PLASMA LIPID PROFILE AND PEROXIDATION PARAMETERS IN RABBIT BLOOD PLASMA.

    Science.gov (United States)

    Devbhuti, Pritesh; Saha, Achintya; Sengupta, Chandana

    2015-01-01

    Alteration of plasma lipid profile and induction of lipid peroxidation may take place due to drug effect, which may be correlated with adverse drug reactions and drug-induced toxicity. Considering this fact, the present in vivo study was carried out to evaluate the effect of clindamycin on plasma lipid profile and peroxidation parameters alone and in combination with ascorbic acid, a promising antioxidant. After administering drug and antioxidant alone and in combination in rabbit, it was found that clindamycin had mild lipid peroxidation induction and profile alteration capacity, which can be arrested on co-administration of ascorbic acid.

  2. Solar wind- and EUV-dependent models for the shapes of the Martian plasma boundaries based on Mars Express measurements

    Science.gov (United States)

    Ramstad, Robin; Barabash, Stas; Futaana, Yoshifumi; Holmström, Mats

    2017-07-01

    The long operational life (2003-present) of Mars Express (MEX) has allowed the spacecraft to make plasma measurements in the Martian environment over a wide range of upstream conditions. We have analyzed ˜7000 MEX orbits, covering three orders of magnitude in solar wind dynamic pressure, with data from the on board Analyzer of Space Plasmas and Energetic Particles (ASPERA-3) package, mapping the locations where MEX crosses the main plasma boundaries, induced magnetosphere boundary (IMB), ionosphere boundary (IB), and bow shock (BS). A coincidence scheme was employed, where data from the Ion Mass Analyzer (IMA) and the Electron Spectrometer (ELS) had to agree for a positive boundary identification, which resulted in crossings from 1083 orbit segments that were used to create dynamic two-parameter (solar wind density, nsw, and velocity vsw) dependent global dynamic models for the IMB, IB, and BS. The modeled response is found to be individual to each boundary. The IMB scales mainly dependent on solar wind dynamic pressure and EUV intensity. The BS location closely follows the location of the IMB at the subsolar point, though under extremely low nsw and vsw the BS assumes a more oblique shape. The IB closely follows the IMB on the dayside and changes its nightside morphology with different trends for nsw and vsw. We also investigate the influence of extreme ultraviolet (EUV) radiation on the IMB and BS, finding that increased EUV intensity expands both boundaries.

  3. Real-time 3-D hybrid simulation of Titan's plasma interaction during a solar wind excursion

    Directory of Open Access Journals (Sweden)

    S. Simon

    2009-09-01

    Full Text Available The plasma environment of Saturn's largest satellite Titan is known to be highly variable. Since Titan's orbit is located within the outer magnetosphere of Saturn, the moon can leave the region dominated by the magnetic field of its parent body in times of high solar wind dynamic pressure and interact with the thermalized magnetosheath plasma or even with the unshocked solar wind. By applying a three-dimensional hybrid simulation code (kinetic description of ions, fluid electrons, we study in real-time the transition that Titan's plasma environment undergoes when the moon leaves Saturn's magnetosphere and enters the supermagnetosonic solar wind. In the simulation, the transition between both plasma regimes is mimicked by a reversal of the magnetic field direction as well as a change in the composition and temperature of the impinging plasma flow. When the satellite enters the solar wind, the magnetic draping pattern in its vicinity is reconfigured due to reconnection, with the characteristic time scale of this process being determined by the convection of the field lines in the undisturbed plasma flow at the flanks of the interaction region. The build-up of a bow shock ahead of Titan takes place on a typical time scale of a few minutes as well. We also analyze the erosion of the newly formed shock front upstream of Titan that commences when the moon re-enters the submagnetosonic plasma regime of Saturn's magnetosphere. Although the model presented here is far from governing the full complexity of Titan's plasma interaction during a solar wind excursion, the simulation provides important insights into general plasma-physical processes associated with such a disruptive change of the upstream flow conditions.

  4. Influences of some parameters on the performance of a small vertical axis wind turbine

    Directory of Open Access Journals (Sweden)

    Dumitrache Alexandru

    2016-01-01

    Full Text Available The effects of various parameters on the performance of a straight bladed vertical axis wind turbine, using the vortex model, have been numerically investigated. A vortex model has been used to evaluate the performance of a vertical axis wind turbine, by means of aerodynamic characteristics of different airfoils for Reynolds numbers between 105 and 106. Parameters such as the thickness and the camber of the blade airfoil, the solidity, the type of blade profile, the number of blades and the pitch angle, which influence the power coefficient, CP, and the start-up regime. This study can be used in the designing an optimal vertical axis wind turbine in a specific location, when the prevailed wind regime is known.

  5. Dependence of Weibull distribution parameters on the CNR threshold i wind lidar data

    DEFF Research Database (Denmark)

    Gryning, Sven-Erik; Batchvarova, Ekaterina; Floors, Rogier Ralph

    2015-01-01

    The increase in height and area swept by the blades of wind turbines that harvest energy from the air flow in the lower atmosphere have raised a need for better understanding of the structure of the profiles of the wind, its gusts and the monthly to annual long-term, statistical distribution...... a higher concentration of dust and aerosols driven by changes of near-surface wind speed. The height of the maximum in the profile of the shape parameter in the Weibull distribution (so-called reversal height) was found to depend on the applied CNR threshold; it is found to be lower at small CNR threshold...

  6. Reliability Estimation of Parameters of Helical Wind Turbine with Vertical Axis

    Science.gov (United States)

    Dumitrascu, Adela-Eliza; Lepadatescu, Badea; Dumitrascu, Dorin-Ion; Nedelcu, Anisor; Ciobanu, Doina Valentina

    2015-01-01

    Due to the prolonged use of wind turbines they must be characterized by high reliability. This can be achieved through a rigorous design, appropriate simulation and testing, and proper construction. The reliability prediction and analysis of these systems will lead to identifying the critical components, increasing the operating time, minimizing failure rate, and minimizing maintenance costs. To estimate the produced energy by the wind turbine, an evaluation approach based on the Monte Carlo simulation model is developed which enables us to estimate the probability of minimum and maximum parameters. In our simulation process we used triangular distributions. The analysis of simulation results has been focused on the interpretation of the relative frequency histograms and cumulative distribution curve (ogive diagram), which indicates the probability of obtaining the daily or annual energy output depending on wind speed. The experimental researches consist in estimation of the reliability and unreliability functions and hazard rate of the helical vertical axis wind turbine designed and patented to climatic conditions for Romanian regions. Also, the variation of power produced for different wind speeds, the Weibull distribution of wind probability, and the power generated were determined. The analysis of experimental results indicates that this type of wind turbine is efficient at low wind speed. PMID:26167524

  7. Reliability Estimation of Parameters of Helical Wind Turbine with Vertical Axis

    Directory of Open Access Journals (Sweden)

    Adela-Eliza Dumitrascu

    2015-01-01

    Full Text Available Due to the prolonged use of wind turbines they must be characterized by high reliability. This can be achieved through a rigorous design, appropriate simulation and testing, and proper construction. The reliability prediction and analysis of these systems will lead to identifying the critical components, increasing the operating time, minimizing failure rate, and minimizing maintenance costs. To estimate the produced energy by the wind turbine, an evaluation approach based on the Monte Carlo simulation model is developed which enables us to estimate the probability of minimum and maximum parameters. In our simulation process we used triangular distributions. The analysis of simulation results has been focused on the interpretation of the relative frequency histograms and cumulative distribution curve (ogive diagram, which indicates the probability of obtaining the daily or annual energy output depending on wind speed. The experimental researches consist in estimation of the reliability and unreliability functions and hazard rate of the helical vertical axis wind turbine designed and patented to climatic conditions for Romanian regions. Also, the variation of power produced for different wind speeds, the Weibull distribution of wind probability, and the power generated were determined. The analysis of experimental results indicates that this type of wind turbine is efficient at low wind speed.

  8. Reliability Estimation of Parameters of Helical Wind Turbine with Vertical Axis.

    Science.gov (United States)

    Dumitrascu, Adela-Eliza; Lepadatescu, Badea; Dumitrascu, Dorin-Ion; Nedelcu, Anisor; Ciobanu, Doina Valentina

    2015-01-01

    Due to the prolonged use of wind turbines they must be characterized by high reliability. This can be achieved through a rigorous design, appropriate simulation and testing, and proper construction. The reliability prediction and analysis of these systems will lead to identifying the critical components, increasing the operating time, minimizing failure rate, and minimizing maintenance costs. To estimate the produced energy by the wind turbine, an evaluation approach based on the Monte Carlo simulation model is developed which enables us to estimate the probability of minimum and maximum parameters. In our simulation process we used triangular distributions. The analysis of simulation results has been focused on the interpretation of the relative frequency histograms and cumulative distribution curve (ogive diagram), which indicates the probability of obtaining the daily or annual energy output depending on wind speed. The experimental researches consist in estimation of the reliability and unreliability functions and hazard rate of the helical vertical axis wind turbine designed and patented to climatic conditions for Romanian regions. Also, the variation of power produced for different wind speeds, the Weibull distribution of wind probability, and the power generated were determined. The analysis of experimental results indicates that this type of wind turbine is efficient at low wind speed.

  9. Observations of Plasma Turbulence and Heating from the Solar Wind and Simulations

    Science.gov (United States)

    Wicks, R. T.

    2015-12-01

    The cascade of energy by plasma turbulence has been shown to occur in, and heat, the solar wind. Recent work in the study of solar wind turbulence has focussed, in the most part, on advanced data analysis techniques, such as third moment structure functions, wavelets, conditional data sampling, multi-spacecraft observations and reconstruction of 2D k-spectra with tomography, and statistical studies from long time series of spacecraft observations. These techniques are complex and contain different assumptions about the qualities of the data underpinning the measurements. Here, we will review recent advances and discoveries in the study of plasma turbulence from solar wind data analysis and discuss how benchmarking of techniques against one another could be pursued and how simulations can be used to aid in the understanding of the results of solar wind data analysis, in particular in the framework of the "Turbulence Dissipation Challenge" (Parashar et al., Journal of Plasma Physics, Volume 81, Issue 05, 905810513, 2015). We will pay particular attention to observing two different heating mechanisms: stochastic heating and resonant wave-particle interactions. The magnetic helicity of the solar wind is shown to separate into two distinct components, one originating from pseudo-Alfvenic (k may have a component parallel to the magnetic field) and one from the Alfvenic fluctuations (k is strictly perpendicular). The solar wind results are compared with "pseudo-spacecraft" data from large 3D PIC simulations.

  10. 3D, Multi-fluid, MHD Calculations of the Solar Wind Interaction with Mars and the Associated Plasma Escape.

    Science.gov (United States)

    Najib, D.; Nagy, A.; Toth, G.; Ma, Y.-J.

    2009-04-01

    We have used our new 3D, multi-fluid, MHD model to study the interaction of the solar wind with Mars. Our lower boundary is set at 100 km and we have a radial grid resolution of about 10 km in the ionosphere. We consider both photo and electron impact ionization, as well as charge exchange processes. We compare a number of calculated and measured parameters, such as bow shock and MPB locations. We also calculate the plasma escape fluxes, for a variety of solar and upstream conditions. We compare our calculated escape fluxes with the published, measured values obtained by the ASPERA instrument carried by Mars Express.

  11. Revisiting linear plasma waves for finite value of the plasma parameter

    Science.gov (United States)

    Grismayer, Thomas; Fahlen, Jay; Decyk, Viktor; Mori, Warren

    2010-11-01

    We investigate through theory and PIC simulations the Landau-damping of plasma waves with finite plasma parameter. We concentrate on the linear regime, γφB, where the waves are typically small and below the thermal noise. We simulate these condition using 1,2,3D electrostatic PIC codes (BEPS), noting that modern computers now allow us to simulate cases where (nλD^3 = [1e2;1e6]). We study these waves by using a subtraction technique in which two simulations are carried out. In the first, a small wave is initialized or driven, in the second no wave is excited. The results are subtracted to provide a clean signal that can be studied. As nλD^3 is decreased, the number of resonant electrons can be small for linear waves. We show how the damping changes as a result of having few resonant particles. We also find that for small nλD^3 fluctuations can cause the electrons to undergo collisions that eventually destroy the initial wave. A quantity of interest is the the life time of a particular mode which depends on the plasma parameter and the wave number. The life time is estimated and then compared with the numerical results. A surprising result is that even for large values of nλD^3 some non-Vlasov discreteness effects appear to be important.

  12. Plasma β Scaling of Anisotropic Magnetic Field Fluctuations in the Solar Wind Flux Tube

    Science.gov (United States)

    Sarkar, Aveek; Bhattacharjee, Amitava; Ebrahimi, Fatima

    2014-03-01

    Based on various observations, it has been suggested that at 1 AU, solar wind consists of "spaghetti"-like magnetic field structures that have the magnetic topology of flux tubes. It is also observed that the plasma fluctuation spectra at 1 AU show a plasma β dependence. Reconciling these two sets of observations and using the Invariance Principle, Bhattacharjee et al. suggested that the plasma inside every flux tube may become unstable with respect to pressure-driven instabilities and gives rise to fluctuation spectra that depend on the local plasma β. The present work is the first direct numerical simulation of such a flux tube. We solve the full magnetohydrodynamic equations using the DEBS code and show that if the plasma inside the flux tube is driven unstable by spatial inhomogeneities in the background plasma pressure, the observed nature of the fluctuating power spectra agrees reasonably well with observations, as well as the analytical prediction of Bhattacharjee et al.

  13. Plasma β scaling of anisotropic magnetic field fluctuations in the solar wind flux tube

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, Aveek [Space Science Center, University of New Hampshire, Durham, NH 03824 (United States); Bhattacharjee, Amitava; Ebrahimi, Fatima, E-mail: aveek.sarkar@unh.edu, E-mail: amitava@princeton.edu, E-mail: ebrahimi@princeton.edu [Department of Astrophysical Sciences and Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States)

    2014-03-10

    Based on various observations, it has been suggested that at 1 AU, solar wind consists of 'spaghetti'-like magnetic field structures that have the magnetic topology of flux tubes. It is also observed that the plasma fluctuation spectra at 1 AU show a plasma β dependence. Reconciling these two sets of observations and using the Invariance Principle, Bhattacharjee et al. suggested that the plasma inside every flux tube may become unstable with respect to pressure-driven instabilities and gives rise to fluctuation spectra that depend on the local plasma β. The present work is the first direct numerical simulation of such a flux tube. We solve the full magnetohydrodynamic equations using the DEBS code and show that if the plasma inside the flux tube is driven unstable by spatial inhomogeneities in the background plasma pressure, the observed nature of the fluctuating power spectra agrees reasonably well with observations, as well as the analytical prediction of Bhattacharjee et al.

  14. Polar Wind in the Context of the Auroral Plasma Fountain for 2 to 8 RE

    Science.gov (United States)

    Moore, T. E.; Giles, B. L.; Chandler, M. O.; Chappell, C. R.; Craven, P. D.; Su, Y.-J.; Horwitz, J. L.; Pollock, C. J.

    1997-01-01

    Operations of the POLAR Plasma Source Instrument have provided adequate observing time with controlled spacecraft potential to begin a 3D characterization of the polar wind as it exists in the context of the auroral plasma fountain. The principal periods of such polar wind observation to date have been 15-18 Apr. 96, 28 may 96, 14 Jun. - 6 Sep. 96, 17-29 Mar. 97, 29 May - 12 Jun. 97, 13-27 Aug. 97. Separate observations have been made near 2 RE geocentric in the south polar perigee passes and between 6-8 RE geocentric in the north polar apogee passes. Analyses of data from the Thermal Ion Dynamics Experiment during these periods are used to characterize the altitude, local time, and invariant latitude distribution of the polar wind. Data from these and other periods are used to establish the auroral plasma heating context within which the polar wind outflows exist. The available data will be used to address the temporal variability of the polar wind during the period of operations to date. Comparisons between the observations and a coupled fluid-semikinetic model are used to interpret the observed spatial structure and temporal variability.

  15. Robust and Fault-Tolerant Linear Parameter-Varying Control of Wind Turbines

    DEFF Research Database (Denmark)

    Sloth, Christoffer; Esbensen, Thomas; Stoustrup, Jakob

    2011-01-01

    a robust controller (RC). This controller is able to take into account model uncertainties in the aerodynamic model. The controllers are based on output feedback and are scheduled on an estimated wind speed to manage the parameter-varying nature of the model. Furthermore, the AFTC relies on information...

  16. A study of evolution/suppression parameters of equatorial postsunset plasma instability

    Directory of Open Access Journals (Sweden)

    O. S. Oyekola

    2009-01-01

    Full Text Available Evening equatorial pre-reversal vertical ion E×B drift (VZP and the peak of the ionospheric F2 maximum altitude (hmF2P of the postsunset equatorial F-layer, which are the essential parameters requisite for the generation or inhibition of postsunset bottomside equatorial irregularities were deduced from ionosonde observations made in the Africa region (Ouagadougou: ~3° N dip latitude between January 1987 and December 1990 for solar activity minimum, medium, and maxima (F10.7=85, 141, 214, and 190, respectively for quiet geomagnetic conditions. We investigate variations of evening equatorial pre-reversal drift and the corresponding altitude at four levels of solar activity. Our observations show strong variations with solar variability. Correlation analysis between these parameters indicates that the correlation coefficient value between hmF2P versus VZP decreases considerably with increasing solar flux value. There seems to be no significant link between these parameters under high solar activity, especially for solar intensity F10.7>200 units. We conclude that meridional neutral wind in the F-region contributes substantially to the variations of the pre-reversal vertical plasma drifts enhancement and the peak hmF2, particularly the electrodynamics during twilight high solar flux conditions.

  17. Sheath-limited unipolar induction in the solar wind. [plasma interactions with solar system bodies

    Science.gov (United States)

    Srnka, L. J.

    1975-01-01

    A model of the steady-state interaction between the solar wind and an electrically conducting body having neither an atmosphere nor an intrinsic magnetic field sufficient enough to deflect the plasma flow is presented which considers some effects of a plasma surface sheath on unipolar induction. The Sonett-Colburn (1967, 1968) unipolar dynamo model is reviewed, and it is noted that the unipolar dynamo response of an electrically conducting body in the solar wind's motional field can be controlled by sheath effects in certain cases where the body radius is less than a certain critical value. It is shown that sheath effects do not limit the unipolar response of the moon or Mercury since their body radii are much larger than their critical radii. Sheath effects are also considered for asteroids, the Martian satellites, the irregular Jovian satellites, the outer satellites of Saturn, and meteorite parent bodies in a primordial enhanced solar wind.

  18. Coastal Boundary Layer Characteristics of Wind, Turbulence, and Surface Roughness Parameter over the Thumba Equatorial Rocket Launching Station, India

    Directory of Open Access Journals (Sweden)

    K. V. S. Namboodiri

    2014-01-01

    Full Text Available The study discusses the features of wind, turbulence, and surface roughness parameter over the coastal boundary layer of the Peninsular Indian Station, Thumba Equatorial Rocket Launching Station (TERLS. Every 5 min measurements from an ultrasonic anemometer at 3.3 m agl from May 2007 to December 2012 are used for this work. Symmetries in mesoscale turbulence, stress off-wind angle computations, structure of scalar wind, resultant wind direction, momentum flux (M, Obukhov length (L, frictional velocity (u*, w-component, turbulent heat flux (H, drag coefficient (CD, turbulent intensities, standard deviation of wind directions (σθ, wind steadiness factor-σθ relationship, bivariate normal distribution (BND wind model, surface roughness parameter (z0, z0 and wind direction (θ relationship, and variation of z0 with the Indian South West monsoon activity are discussed.

  19. Fatigue life prediction for wind turbines: A case study on loading spectra and parameter sensitivity

    Science.gov (United States)

    Sutherland, H. J.; Veers, P. S.; Ashwill, T. D.

    Wind turbines are fatigue-critical machines used to produce electrical energy from the wind. These rotating machines are subjected to environmental loadings that are highly irregular in nature. Historical examples of fatigue problems in both research and commercial wind turbine development are presented. Some example data on wind turbine environments, loadings and material properties are also shown. Before a description of how the authors have chosen to attack the cumulative damage assessment, questions are presented for the reader's reflection. The solution technique used by the authors is then presented, followed by a case study applying the procedures to an actual wind turbine blade joint. The wind turbine is the 34-meter diameter vertical axis wind turbine (VAWT) erected by Sandia National Laboratories near Bushland, Texas. The case study examines parameter sensitivities for realistic uncertainties in inputs defining the turbine environment, stress response and material properties. The fatigue lifetimes are calculated using a fatigue analysis program, called LIFE2, which was developed at Sandia. The LIFE2 code, described in some detail in an appendix, is a PC-based, menu-driven package that leads the user through the steps required to characterize the loading and material properties, then uses Miner's rule or a linear crack propagation rule to numerically calculate the time to failure. Only S-n based cumulative damage applications are illustrated here. The LIFE2 code is available to educational institutions for use as a case study in describing complicated loading histories and for use by students in examining, hands on, parameter sensitivity of fatigue life analysis.

  20. Hierarchical parameter estimation of DFIG and drive train system in a wind turbine generator

    Science.gov (United States)

    Pan, Xueping; Ju, Ping; Wu, Feng; Jin, Yuqing

    2017-09-01

    A new hierarchical parameter estimation method for doubly fed induction generator (DFIG) and drive train system in a wind turbine generator (WTG) is proposed in this paper. Firstly, the parameters of the DFIG and the drive train are estimated locally under different types of disturbances. Secondly, a coordination estimation method is further applied to identify the parameters of the DFIG and the drive train simultaneously with the purpose of attaining the global optimal estimation results. The main benefit of the proposed scheme is the improved estimation accuracy. Estimation results confirm the applicability of the proposed estimation technique.

  1. Mars plasma system response to solar wind disturbances during solar minimum

    Science.gov (United States)

    Sánchez-Cano, B.; Hall, B. E. S.; Lester, M.; Mays, M. L.; Witasse, O.; Ambrosi, R.; Andrews, D.; Cartacci, M.; Cicchetti, A.; Holmström, M.; Imber, S.; Kajdič, P.; Milan, S. E.; Noschese, R.; Odstrcil, D.; Opgenoorth, H.; Plaut, J.; Ramstad, R.; Reyes-Ayala, K. I.

    2017-06-01

    This paper is a phenomenological description of the ionospheric plasma and induced magnetospheric boundary (IMB) response to two different types of upstream solar wind events impacting Mars in March 2008, at the solar minimum. A total of 16 Mars Express orbits corresponding to five consecutive days is evaluated. Solar TErrestrial RElations Observatory-B (STEREO-B) at 1 AU and Mars Express and Mars Odyssey at 1.644 AU detected the arrival of a small transient interplanetary coronal mass ejection (ICME-like) on the 6 and 7 of March, respectively. This is the first time that this kind of small solar structure is reported at Mars's distance. In both cases, it was followed by a large increase in solar wind velocity that lasted for 10 days. This scenario is simulated with the Wang-Sheeley-Arge (WSA) - ENLIL + Cone solar solar wind model. At Mars, the ICME-like event caused a strong compression of the magnetosheath and ionosphere, and the recovery lasted for 3 orbits ( 20 h). After that, the fast stream affected the upper ionosphere and the IMB, which radial and tangential motions in regions close to the subsolar point are analyzed. Moreover, a compression in the Martian plasma system is also observed, although weaker than after the ICME-like impact, and several magnetosheath plasma blobs in the upper ionosphere are detected by Mars Express. We conclude that, during solar minimum and at aphelion, small solar wind structures can create larger perturbations than previously expected in the Martian system.

  2. Fault Detection of Wind Turbines with Uncertain Parameters: A Set-Membership Approach

    Directory of Open Access Journals (Sweden)

    Thomas Bak

    2012-07-01

    Full Text Available In this paper a set-membership approach for fault detection of a benchmark wind turbine is proposed. The benchmark represents relevant fault scenarios in the control system, including sensor, actuator and system faults. In addition we also consider parameter uncertainties and uncertainties on the torque coefficient. High noise on the wind speed measurement, nonlinearities in the aerodynamic torque and uncertainties on the parameters make fault detection a challenging problem. We use an effective wind speed estimator to reduce the noise on the wind speed measurements. A set-membership approach is used generate a set that contains all states consistent with the past measurements and the given model of the wind turbine including uncertainties and noise. This set represents all possible states the system can be in if not faulty. If the current measurement is not consistent with this set, a fault is detected. For representation of these sets we use zonotopes and for modeling of uncertainties we use matrix zonotopes, which yields a computationally efficient algorithm. The method is applied to the wind turbine benchmark problem without and with uncertainties. The result demonstrates the effectiveness of the proposed method compared to other proposed methods applied to the same problem. An advantage of the proposed method is that there is no need for threshold design, and it does not produce positive false alarms. In the case where uncertainty on the torque lookup table is introduced, some faults are not detectable. Previous research has not addressed this uncertainty. The method proposed here requires equal or less detection time than previous results.

  3. A Parameter Selection Method for Wind Turbine Health Management through SCADA Data

    Directory of Open Access Journals (Sweden)

    Mian Du

    2017-02-01

    Full Text Available Wind turbine anomaly or failure detection using machine learning techniques through supervisory control and data acquisition (SCADA system is drawing wide attention from academic and industry While parameter selection is important for modelling a wind turbine’s condition, only a few papers have been published focusing on this issue and in those papers interconnections among sub-components in a wind turbine are used to address this problem. However, merely the interconnections for decision making sometimes is too general to provide a parameter list considering the differences of each SCADA dataset. In this paper, a method is proposed to provide more detailed suggestions on parameter selection based on mutual information. First, the copula is proven to be capable of simplifying the estimation of mutual information. Then an empirical copulabased mutual information estimation method (ECMI is introduced for application. After that, a real SCADA dataset is adopted to test the method, and the results show the effectiveness of the ECMI in providing parameter selection suggestions when physical knowledge is not accurate enough.

  4. The solar wind plasma density control of night-time auroral particle precipitation

    Directory of Open Access Journals (Sweden)

    V. G. Vorobjev

    2004-03-01

    Full Text Available DMSP F6 and F7 spacecraft observations of the average electron and ion energy, and energy fluxes in different night-time precipitation regions for the whole of 1986 were used to examine the precipitation features associated with solar wind density changes. It was found that during magnetic quietness |AL|<100nT, the enhancement of average ion fluxes was observed at least two times, along with the solar wind plasma density increase from 2 to 24cm–3. More pronounced was the ion flux enhancement that occurred in the b2i–b4s and b4s–b5 regions, which are approximately corresponding to the statistical auroral oval and map to the magnetospheric plasma sheet tailward of the isotropy boundary. The average ion energy decrease of about 2–4kev was registered simultaneously with this ion flux enhancement. The results verify the occurrence of effective penetration of the solar wind plasma into the magnetospheric tail plasma sheet. Key words. Ionosphere (auroral ionosphere, particle precipitation – Magnetospheric physics (solar windmagnetosphere interaction

  5. Synthesis of Single Wall Carbon Nanotubes by Plasma Arc: Role of Plasma Parameters

    Science.gov (United States)

    Farhart, Samir; Scott, Carl D.

    2000-01-01

    Single wall carbon nanotubes (SWNT) are porous objects on the molecular scale and have a low density, which gives them potential applications as adsorbent for molecular hydrogen. Their H2 absorption capacity published in the literature varies from 4 to 10% by mass according to the purity of the materials and storage conditions. Optimization of production methods of SWNTs should permit improving these new materials for storage of hydrogen. In this article, we show the potential of using SWNTs in hydrogen storage. In particular, we pose problems associated with synthesis, purification, and opening up of the nanotubes. We present an electric arc process currently used at laboratory scale to produce single wall carbon nanotubes. We discuss, in particular, operating conditions that permit growth of nanotubes and some plasma parameters that assure control of the material. Analysis of the process is carried out with the aid of local measurements of temperature and scanning and transmission electron microscopy of the materials.

  6. Spectral tensor parameters for wind turbine load modeling from forested and agricultural landscapes

    DEFF Research Database (Denmark)

    Chougule, Abhijit S.; Mann, Jakob; Segalini, A.

    2015-01-01

    A velocity spectral tensor model was evaluated from the single-point measurements of wind speed. The model contains three parameters representing the dissipation rate of specific turbulent kinetic energy, a turbulence length scale and the turbulence anisotropy. Sonic anemometer measurements taken...... over a forested and an agricultural landscape were used to calculate the model parameters for neutral, slightly stable and slightly unstable atmospheric conditions for a selected wind speed interval. The dissipation rate above the forest was nine times that at the agricultural site. No significant...... differences were observed in the turbulence length scales between the forested and agricultural areas. Only a small difference was observed in the turbulence anisotropy at the two sites, except near the surface, where the forest turbulence was more isotropic. The turbulence anisotropy remained more or less...

  7. Plasma Wind Tunnel Investigation of European Ablators in Nitrogen/Methane Using Emission Spectroscopy

    Directory of Open Access Journals (Sweden)

    Ricarda Wernitz

    2013-01-01

    Full Text Available For atmospheric reentries at high enthalpies ablative heat shield materials are used, such as those for probes entering the atmosphere of Saturn’s moon Titan, such as Cassini-Huygens in December, 2004. The characterization of such materials in a nitrogen/methane atmosphere is of interest. A European ablative material, AQ60, has been investigated in plasma wind tunnel tests at the IRS plasma wind tunnel PWK1 using the magnetoplasma dynamic generator RD5 as plasma source in a nitrogen/methane atmosphere. The dimensions of the samples are 45 mm in length with a diameter of 39 mm. The actual ablator has a thickness of 40 mm. The ablator is mounted on an aluminium substructure. The experiments were conducted at two different heat flux regimes, 1.4 MW/m2 and 0.3 MW/m2. In this paper, results of emission spectroscopy at these plasma conditions in terms of plasma species’ temperatures will be presented, including the investigation of the free-stream species, N2 and N2+, and the major erosion product C2, at a wavelength range around 500 nm–600 nm.

  8. MHD Model Results of Solar Wind Plasma Interaction with Mars and Comparison with MAVEN Observations

    Science.gov (United States)

    Ma, Y. J.; Russell, C. T.; Nagy, A. F.; Toth, G.; Halekas, J. S.; Connerney, J. E. P.; Espley, J. R.; Mahaffy, P. R.

    2015-01-01

    The crustal remnant field on Mars rotates constantly with the planet, varying the magnetic field configuration interacting with the solar wind. It has been found that ion loss rates slowly vary with the subsolar longitude, anticorrelating with the intensity of the dayside crustal field source, with some time delay, using a time-dependent multispecies MHD model. In this study, we investigate in detail how plasma properties are influenced locally by the crustal field and its rotation. Model results will be compared in detail with plasma observations from MAVEN.

  9. Spontaneous emission of magnetic field fluctuations in Solar wind-like suprathermal plasmas

    Science.gov (United States)

    Navarro, R.; Munoz, V.; Araneda, J. A.; Vinas, A. F.; Valdivia, J. A.

    2013-12-01

    Heavy ions in solar wind have been observed to flow faster than protons, with temperatures exceeding the mass proportionality respect to protons. The identification and explanation of the physical processes responsible for ion heating may provide the key to explain why the temperature of the outer solar atmosphere and expanding corona forming the solar wind is several orders of magnitude higher than that of the photosphere. Possible explanations of the preferential acceleration and heating of ions often involve linear kinetic theory, which allows for a wide number of heavily damped waves (or higher-order modes), which could play a secondary role in the energization of solar wind plasmas. Also, linear theory predicts instability thresholds in the temperature distribution of protons which are consistent with data from the Solar Wind Experiment (SWE). However, it has also been observed that proton velocity distributions appear to be strongly anisotropic, displaying a pronounced non-Maxwellian profile of particles exceeding thermal energies. These velocity distributions are often modeled with a family of specific functional describing both the low-energy Maxwellian core and the high-energy power-law tails, popularly known in the literature as kappa-distributions. Furthermore, short wavelength magnetic fluctuations with small amplitude are present even in the absence of plasma instabilities. These spontaneous fluctuations are intimately linked to the linear response of perturbations via the fluctuation-dissipation theorem. The various collective modes of fluctuations are constrained by the structure of the higher-order modes determined by the electromagnetic kinetic dispersion relation. In this work, we examine the propagation and excitation of parallel Alfvén-cyclotron waves in a suprathermal proton solar wind-like plasma, as described by a kappa-like distribution function, by taking care of the often ignored higher-order modes which modify the structure of the

  10. Modal Parameters from a Wind Turbine Wing by Operational Modal Analysis

    DEFF Research Database (Denmark)

    Herlufsen, H.; Møller, N.; Brincker, Rune

    2002-01-01

    Operational Modal Analysis also known as Ambient Modal Analysis has an increasing interest in mechanical engineering. Especially on big structures where the excitation and not less important the determination of the forces is most often a problem. In a structure like a wind turbine wing where...... the modes occur both close in frequency and bidirectional the Ambient excitation has big advantages. In this paper modal parameters are identified from the wing by operational modal analysis. For the parameter identification both parametric and non-parametric techniques are used. Advantages...

  11. Electron instability thresholds of solar wind magnetic fluctuations in non-thermal anisotropic kappa distribution plasmas: Survey of Wind-SWE-VEIS observations

    Science.gov (United States)

    Vinas, A. F.; Adrian, M. L.; Moya, P. S.; Wendel, D. E.

    2015-12-01

    The solar wind electron velocity distribution function (eVDF) displays a great variety of non-thermal features (e.g., core, halo and strahl electron populations; with superposition of different temperatures, thermal anisotropies, suprathermal tails, beam-like features, etc.) that deviate from thermal equilibrium. These electron nonthermal deviations provide a local source for whistler-cyclotron and firehose instabilities electromagnetic fluctuations that are commonly observed. We present clear observational evidence that the temperature anisotropy whistler instability threshold, of a nonthermal kappa distribution plasma, marginally bounds solar wind magnetic fluctuations — when the full electron distribution is considered, without regard of separation of the various electron components during slow solar wind periods. Analysis seems to suggest that during slow solar wind periods, collisional effects are dominant. During fast solar wind periods, magnetic fluctuations and solar wind anisotropies are enhanced above the parallel whistler anisotropic threshold boundary and collisional effects are drastically reduced. Preliminary calculations further show that the oblique electron whistler mirror anisotropic instability bounds both the slow and fast solar wind. Regardless of solar wind speed, the solar wind electron thermal anisotropy appears globally bounded by the parallel electron firehose instability for anisotropies Te⊥ / Te|| < 1 indicative of a firehose-stable electron plasma. Preliminary analysis suggests that skew-kappa nonthermal distributions also shows marginally stable threshold boundaries when considering electron heat flux instability thresholds. The results of our analysis suggests that the slow solar wind electron plasma, when considered globally as a single eVDF, is only marginally stable with respect to nonthermal skew kappa distributions and parallel propagating instabilities.

  12. A study of evolution/suppression parameters of equatorial postsunset plasma instability

    Directory of Open Access Journals (Sweden)

    O. S. Oyekola

    2009-01-01

    Full Text Available Evening equatorial pre-reversal vertical ion E×B drift (VZP and the peak of the ionospheric F2 maximum altitude (hmF2P of the postsunset equatorial F-layer, which are the essential parameters requisite for the generation or inhibition of postsunset bottomside equatorial irregularities were deduced from ionosonde observations made in the Africa region (Ouagadougou: ~3° N dip latitude between January 1987 and December 1990 for solar activity minimum, medium, and maxima (F10.7=85, 141, 214, and 190, respectively for quiet geomagnetic conditions. We investigate variations of evening equatorial pre-reversal drift and the corresponding altitude at four levels of solar activity. Our observations show strong variations with solar variability. Correlation analysis between these parameters indicates that the correlation coefficient value between hmF2P versus VZP decreases considerably with increasing solar flux value. There seems to be no significant link between these parameters under high solar activity, especially for solar intensity F10.7>200 units. We conclude that meridional neutral wind in the F-region contributes substantially to the variations of the pre-reversal vertical plasma drifts enhancement and the peak hmF2, particularly the electrodynamics during twilight high solar flux conditions.

  13. Information Theory Approach to Evaluate the Geomagnetic and Ionospheric Response to Solar Wind Parameters

    Science.gov (United States)

    Seemala, G. K.; R, S.; Bhaskara, V.; Ramesh, D. S.

    2014-12-01

    The importance of space weather and understanding onset o geomagnetic storms is increasing day by day as the space missions increase. It is known from the ground-based and space-borne observations that a geomagnetic storm is a temporary disturbance of earth's magnetosphere caused by a solar wind and/or solar eruptions. Geomagnetic storms are more disruptive now than in the past because of our greater dependence on technical systems that can be affected by electric currents and energetic particles high in the Earth's magnetosphere. It is known that number of phenomena occurs during the space weather events; and there are many un-solved questions like solar wind coupling with magnetosphere and ionosphere, relationship between geomagnetic storms & sub-storms etc. To evaluate contribution of various interplanetary parameters that have major role in the geomagnetic storm/geomagnetic variations, the information theory approach is used. In information theory, the measure of uncertainty or randomness of a signal can be quantified by using Shannon entropy or entropy for short. And Transfer entropy is capable of quantifying the directional flow of information between two signals. Thus the Transfer entropy is capable of distinguishing effectively driving and responding signals. In this study, we use Transfer entropy function on Solar wind parameters and ground magnetic data to derive the drivers and relations between them, and also study their contributed effect on ionospheric TEC. In this presentation, we will evaluate and present the results obtained, and discuss about the driving forces on the geomagnetic field disturbances.

  14. Optimal supplementary frequency controller design using the wind farm frequency model and controller parameters stability region.

    Science.gov (United States)

    Toulabi, Mohammadreza; Bahrami, Shahab; Ranjbar, Ali Mohammad

    2018-02-03

    In most of the existing studies, the frequency response in the variable speed wind turbines (VSWTs) is simply realized by changing the torque set-point via appropriate inputs such as frequency deviations signal. However, effective dynamics and systematic process design have not been comprehensively discussed yet. Accordingly, this paper proposes a proportional-derivative frequency controller and investigates its performance in a wind farm consisting of several VSWTs. A band-pass filter is deployed before the proposed controller to avoid responding to either steady state frequency deviations or high rate of change of frequency. To design the controller, the frequency model of the wind farm is first characterized. The proposed controller is then designed based on the obtained open loop system. The stability region associated with the controller parameters is analytically determined by decomposing the closed-loop system's characteristic polynomial into the odd and even parts. The performance of the proposed controller is evaluated through extensive simulations in MATLAB/Simulink environment in a power system comprising a high penetration of VSWTs equipped with the proposed controller. Finally, based on the obtained feasible area and appropriate objective function, the optimal values associated with the controller parameters are determined using the genetic algorithm (GA). Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  15. Optimizing pulsed current micro plasma arc welding parameters to ...

    African Journals Online (AJOL)

    user

    Fusion welding generally involves joining of metals by application of heat for melting of metals to be joined. Almost all the conventional .... Prasad et al. / International Journal of Engineering, Science and Technology, Vol. 3, No. 6, 2011, pp. 226-236. 228. Table 3 Welding conditions. Power source. Secheron Micro Plasma ...

  16. Measurements of egg shell plasma parameters using laser-induced ...

    Indian Academy of Sciences (India)

    improved iterative Boltzmann plot method with six calcium atomic emission lines, and the electron number density of 6.1 × 1016 ... once-ionized calcium line at 393.37 nm. Based on the experimental ... beam from the plasma can be neglected and the inverse bremsstrahlung (IB) absorption was the dominant mechanism of ...

  17. Optimizing pulsed current micro plasma arc welding parameters to ...

    African Journals Online (AJOL)

    user

    tensile strength of pulsed current micro plasma arc welded Inconel 625 sheets. Four factors, five level, central composite rotatable design matrix is used to optimize the number of experiments. The mathematical model has been developed by using. Response Surface Method. The adequacy of the developed model is ...

  18. Controller design for wind turbine load reduction via multiobjective parameter synthesis

    Science.gov (United States)

    Hoffmann, A. F.; Weiβ, F. A.

    2016-09-01

    During the design process for a wind turbine load reduction controller many different, sometimes conflicting requirements must be fulfilled simultaneously. If the requirements can be expressed as mathematical criteria, such a design problem can be solved by a criterion-vector and multi-objective design optimization. The software environment MOPS (Multi-Objective Parameter Synthesis) supports the engineer for such a design optimization. In this paper MOPS is applied to design a multi-objective load reduction controller for the well-known DTU 10 MW reference wind turbine. A significant reduction in the fatigue criteria especially the blade damage can be reached by the use of an additional Individual Pitch Controller (IPC) and an additional tower damper. This reduction is reached as a trade-off with an increase of actuator load.

  19. Parameters of solar wind electron heat-flux pitch-angle distributions and IMF topologies

    Science.gov (United States)

    Feuerstein, W. M.; Larson, D. E.; Luhmann, J. G.; Lin, R. P.; Kahler, S. W.; Crooker, N. U.

    2004-11-01

    Pitch-angle distributions (PADs) of solar wind heat-flux (HF) electrons are used as a proxy for interplanetary magnetic field (IMF) topology. Unidirectional PADs yield IMF solar polarities, and bidirectional electron (BDE) PADs are interpreted as signatures of closed fields. A general perception exists that the directionalities are easily distinguished, clearly defining open and closed IMFs. We quantify PADs with the ratios of the HF parallel and anti-parallel to the IMF to that perpendicular to the IMF plotting these parameters against each other in a directionality distribution for six years of electron data from the 3DP experiment on the Wind satellite. This bimodal plot clearly shows the unidirectional populations, but shows no evidence for a separate bidirectional HF population. A similar plot of magnetic clouds is double-banded with no evidence of a bifurcation between bidirectional and unidirectional regimes. In conclusion, this basic parameterization shows no distinction between open and closed field topologies.

  20. Plasma depletion layer: its dependence on solar wind conditions and the Earth dipole tilt

    Directory of Open Access Journals (Sweden)

    Y. L. Wang

    2004-12-01

    Full Text Available The plasma depletion layer (PDL is a layer on the sunward side of the magnetopause with lower plasma density and higher magnetic field compared to their corresponding upstream magnetosheath values. It is believed that the PDL is controlled jointly by conditions in the solar wind plasma and the (IMF. In this study, we extend our former model PDL studies by systematically investigating the dependence of the PDL and the slow mode front on solar wind conditions using global MHD simulations. We first point out the difficulties for the depletion factor method and the plasma β method for defining the outer boundary of the plasma depletion layer. We propose to use the N/B ratio to define the PDL outer boundary, which can give the best description of flux tube depletion. We find a strong dependence of the magnetosheath environment on the solar wind magnetosonic Mach number. A difference between the stagnation point and the magnetopause derived from the open-closed magnetic field boundary is found. We also find a strong and complex dependence of the PDL and the slow mode front on the IMF Bz. A density structure right inside the subsolar magnetopause for higher IMF Bz;might be responsible for some of this dependence. Both the IMF tilt and clock angles are found to have little influence on the magnetosheath and the PDL structures. However, the IMF geometry has a much stronger influence on the slow mode fronts in the magnetosheath. Finally, the Earth dipole tilt is found to play a minor role for the magnetosheath geometry and the PDL along the Sun-Earth line. A complex slow mode front geometry is found for cases with different Earth dipole tilts. Comparisons between our results with those from some former studies are conducted, and consistencies and inconsistencies are found.

    Key words. Magnetospheric physics (magnetosheath, solar wind-magnetosphere interactions – Space plasma physics (numerical

  1. Dependence of the source performance on plasma parameters at the BATMAN test facility

    Science.gov (United States)

    Wimmer, C.; Fantz, U.

    2015-04-01

    The investigation of the dependence of the source performance (high jH-, low je) for optimum Cs conditions on the plasma parameters at the BATMAN (Bavarian Test MAchine for Negative hydrogen ions) test facility is desirable in order to find key parameters for the operation of the source as well as to deepen the physical understanding. The most relevant source physics takes place in the extended boundary layer, which is the plasma layer with a thickness of several cm in front of the plasma grid: the production of H-, its transport through the plasma and its extraction, inevitably accompanied by the co-extraction of electrons. Hence, a link of the source performance with the plasma parameters in the extended boundary layer is expected. In order to characterize electron and negative hydrogen ion fluxes in the extended boundary layer, Cavity Ring-Down Spectroscopy and Langmuir probes have been applied for the measurement of the H- density and the determination of the plasma density, the plasma potential and the electron temperature, respectively. The plasma potential is of particular importance as it determines the sheath potential profile at the plasma grid: depending on the plasma grid bias relative to the plasma potential, a transition in the plasma sheath from an electron repelling to an electron attracting sheath takes place, influencing strongly the electron fraction of the bias current and thus the amount of co-extracted electrons. Dependencies of the source performance on the determined plasma parameters are presented for the comparison of two source pressures (0.6 Pa, 0.45 Pa) in hydrogen operation. The higher source pressure of 0.6 Pa is a standard point of operation at BATMAN with external magnets, whereas the lower pressure of 0.45 Pa is closer to the ITER requirements (p ≤ 0.3 Pa).

  2. Dependence of the source performance on plasma parameters at the BATMAN test facility

    Energy Technology Data Exchange (ETDEWEB)

    Wimmer, C.; Fantz, U. [Max-Planck-Institut für Plasmaphysik, Boltzmannstr. 2, 85748 Garching (Germany)

    2015-04-08

    The investigation of the dependence of the source performance (high j{sub H{sup −}}, low j{sub e}) for optimum Cs conditions on the plasma parameters at the BATMAN (Bavarian Test MAchine for Negative hydrogen ions) test facility is desirable in order to find key parameters for the operation of the source as well as to deepen the physical understanding. The most relevant source physics takes place in the extended boundary layer, which is the plasma layer with a thickness of several cm in front of the plasma grid: the production of H{sup −}, its transport through the plasma and its extraction, inevitably accompanied by the co-extraction of electrons. Hence, a link of the source performance with the plasma parameters in the extended boundary layer is expected. In order to characterize electron and negative hydrogen ion fluxes in the extended boundary layer, Cavity Ring-Down Spectroscopy and Langmuir probes have been applied for the measurement of the H{sup −} density and the determination of the plasma density, the plasma potential and the electron temperature, respectively. The plasma potential is of particular importance as it determines the sheath potential profile at the plasma grid: depending on the plasma grid bias relative to the plasma potential, a transition in the plasma sheath from an electron repelling to an electron attracting sheath takes place, influencing strongly the electron fraction of the bias current and thus the amount of co-extracted electrons. Dependencies of the source performance on the determined plasma parameters are presented for the comparison of two source pressures (0.6 Pa, 0.45 Pa) in hydrogen operation. The higher source pressure of 0.6 Pa is a standard point of operation at BATMAN with external magnets, whereas the lower pressure of 0.45 Pa is closer to the ITER requirements (p ≤ 0.3 Pa)

  3. New methodologies for calculation of flight parameters on reduced scale wings models in wind tunnel =

    Science.gov (United States)

    Ben Mosbah, Abdallah

    In order to improve the qualities of wind tunnel tests, and the tools used to perform aerodynamic tests on aircraft wings in the wind tunnel, new methodologies were developed and tested on rigid and flexible wings models. A flexible wing concept is consists in replacing a portion (lower and/or upper) of the skin with another flexible portion whose shape can be changed using an actuation system installed inside of the wing. The main purpose of this concept is to improve the aerodynamic performance of the aircraft, and especially to reduce the fuel consumption of the airplane. Numerical and experimental analyses were conducted to develop and test the methodologies proposed in this thesis. To control the flow inside the test sections of the Price-Paidoussis wind tunnel of LARCASE, numerical and experimental analyses were performed. Computational fluid dynamics calculations have been made in order to obtain a database used to develop a new hybrid methodology for wind tunnel calibration. This approach allows controlling the flow in the test section of the Price-Paidoussis wind tunnel. For the fast determination of aerodynamic parameters, new hybrid methodologies were proposed. These methodologies were used to control flight parameters by the calculation of the drag, lift and pitching moment coefficients and by the calculation of the pressure distribution around an airfoil. These aerodynamic coefficients were calculated from the known airflow conditions such as angles of attack, the mach and the Reynolds numbers. In order to modify the shape of the wing skin, electric actuators were installed inside the wing to get the desired shape. These deformations provide optimal profiles according to different flight conditions in order to reduce the fuel consumption. A controller based on neural networks was implemented to obtain desired displacement actuators. A metaheuristic algorithm was used in hybridization with neural networks, and support vector machine approaches and their

  4. Solar wind dependence of ion parameters in the Earth's magnetospheric region calculated from CLUSTER observations

    Directory of Open Access Journals (Sweden)

    M. H. Denton

    2008-03-01

    Full Text Available Moments calculated from the ion distributions (~0–40 keV measured by the Cluster Ion Spectrometry (CIS instrument are combined with data from the Cluster Flux Gate Magnetometer (FGM instrument and used to characterise the bulk properties of the plasma in the near-Earth magnetosphere over five years (2001–2005. Results are presented in the form of 2-D xy, xz and yz GSM cuts through the magnetosphere using data obtained from the Cluster Science Data System (CSDS and the Cluster Active Archive (CAA. Analysis reveals the distribution of ~0–40 keV ions in the inner magnetosphere is highly ordered and highly responsive to changes in solar wind velocity. Specifically, elevations in temperature are found to occur across the entire nightside plasma sheet region during times of fast solar wind. We demonstrate that the nightside plasma sheet ion temperature at a downtail distance of ~12 to 19 Earth radii increases by a factor of ~2 during periods of fast solar wind (500–1000 km s−1 compared to periods of slow solar wind (100–400 km s−1. The spatial extent of these increases are shown in the xy, xz and yz GSM planes. The results from the study have implications for modelling studies and simulations of solar-wind/magnetosphere coupling, which ultimately rely on in situ observations of the plasma sheet properties for input/boundary conditions.

  5. On-Line Flutter Prediction Tool for Wind Tunnel Flutter Testing using Parameter Varying Estimation Methodology Project

    Data.gov (United States)

    National Aeronautics and Space Administration — ZONA Technology, Inc. (ZONA) proposes to develop an on-line flutter prediction tool for wind tunnel model using the parameter varying estimation (PVE) technique to...

  6. Characterization of PEOS Plasma Parameters and Conduction Phase Properties

    Science.gov (United States)

    1987-12-31

    schematic of the experiment is shown in Fig. 1. The electrodes were made up of a 70-80• optically transmitting brass screen and an Aerodag coated...into the gun reached = 40 kA in 0.5 Ws. 2 "V4 Il0I TEST APPARATUS GEOMETRY y PLASMA % GUN S~FARADAY 7.5 cm.- -• CUP .2.5c , PLATE SCREEN ( AERODAG COATED

  7. Before–after field study of effects of wind turbine noise on polysomnographic sleep parameters

    Directory of Open Access Journals (Sweden)

    Leila Jalali

    2016-01-01

    Full Text Available Wind is considered one of the most advantageous alternatives to fossil energy because of its low operating cost and extensive availability. However, alleged health-related effects of exposure to wind turbine (WT noise have attracted much public attention and various symptoms, such as sleep disturbance, have been reported by residents living close to wind developments. Prospective cohort study with synchronous measurement of noise and sleep physiologic signals was conducted to explore the possibility of sleep disturbance in people hosting new industrial WTs in Ontario, Canada, using a pre and post-exposure design. Objective and subjective sleep data were collected through polysomnography (PSG, the gold standard diagnostic test, and sleep diary. Sixteen participants were studied before and after WT installation during two consecutive nights in their own bedrooms. Both audible and infrasound noises were also concurrently measured inside the bedroom of each participant. Different noise exposure parameters were calculated (LAeq, LZeq and analyzed in relation to whole-night sleep parameters. Results obtained from PSG show that sleep parameters were not significantly changed after exposure. However, reported sleep qualities were significantly (P = 0.008 worsened after exposure. Average noise levels during the exposure period were low to moderate and the mean of inside noise levels did not significantly change after exposure. The result of this study based on advanced sleep recording methodology together with extensive noise measurements in an ecologically valid setting cautiously suggests that there are no major changes in the sleep of participants who host new industrial WTs in their community. Further studies with a larger sample size and including comprehensive single-event analyses are warranted.

  8. Before-after field study of effects of wind turbine noise on polysomnographic sleep parameters.

    Science.gov (United States)

    Jalali, Leila; Bigelow, Philip; Nezhad-Ahmadi, Mohammad-Reza; Gohari, Mahmood; Williams, Diane; McColl, Steve

    2016-01-01

    Wind is considered one of the most advantageous alternatives to fossil energy because of its low operating cost and extensive availability. However, alleged health-related effects of exposure to wind turbine (WT) noise have attracted much public attention and various symptoms, such as sleep disturbance, have been reported by residents living close to wind developments. Prospective cohort study with synchronous measurement of noise and sleep physiologic signals was conducted to explore the possibility of sleep disturbance in people hosting new industrial WTs in Ontario, Canada, using a pre and post-exposure design. Objective and subjective sleep data were collected through polysomnography (PSG), the gold standard diagnostic test, and sleep diary. Sixteen participants were studied before and after WT installation during two consecutive nights in their own bedrooms. Both audible and infrasound noises were also concurrently measured inside the bedroom of each participant. Different noise exposure parameters were calculated (LAeq, LZeq) and analyzed in relation to whole-night sleep parameters. Results obtained from PSG show that sleep parameters were not significantly changed after exposure. However, reported sleep qualities were significantly (P = 0.008) worsened after exposure. Average noise levels during the exposure period were low to moderate and the mean of inside noise levels did not significantly change after exposure. The result of this study based on advanced sleep recording methodology together with extensive noise measurements in an ecologically valid setting cautiously suggests that there are no major changes in the sleep of participants who host new industrial WTs in their community. Further studies with a larger sample size and including comprehensive single-event analyses are warranted.

  9. Before–After Field Study of Effects of Wind Turbine Noise on Polysomnographic Sleep Parameters

    Science.gov (United States)

    Jalali, Leila; Bigelow, Philip; Nezhad-Ahmadi, Mohammad-Reza; Gohari, Mahmood; Williams, Diane; McColl, Steve

    2016-01-01

    Wind is considered one of the most advantageous alternatives to fossil energy because of its low operating cost and extensive availability. However, alleged health-related effects of exposure to wind turbine (WT) noise have attracted much public attention and various symptoms, such as sleep disturbance, have been reported by residents living close to wind developments. Prospective cohort study with synchronous measurement of noise and sleep physiologic signals was conducted to explore the possibility of sleep disturbance in people hosting new industrial WTs in Ontario, Canada, using a pre and post-exposure design. Objective and subjective sleep data were collected through polysomnography (PSG), the gold standard diagnostic test, and sleep diary. Sixteen participants were studied before and after WT installation during two consecutive nights in their own bedrooms. Both audible and infrasound noises were also concurrently measured inside the bedroom of each participant. Different noise exposure parameters were calculated (LAeq, LZeq) and analyzed in relation to whole-night sleep parameters. Results obtained from PSG show that sleep parameters were not significantly changed after exposure. However, reported sleep qualities were significantly (P=0.008) worsened after exposure. Average noise levels during the exposure period were low to moderate and the mean of inside noise levels did not significantly change after exposure. The result of this study based on advanced sleep recording methodology together with extensive noise measurements in an ecologically valid setting cautiously suggests that there are no major changes in the sleep of participants who host new industrial WTs in their community. Further studies with a larger sample size and including comprehensive single-event analyses are warranted. PMID:27569407

  10. Probability Distributions for Cyclone Key Parameters and Cyclonic Wind Speed for the East Coast of Indian Region

    Directory of Open Access Journals (Sweden)

    Pradeep K. Goyal

    2011-09-01

    Full Text Available This paper presents a study conducted on the probabilistic distribution of key cyclone parameters and the cyclonic wind speed by analyzing the cyclone track records obtained from India meteorological department for east coast region of India. The dataset of historical landfalling storm tracks in India from 1975–2007 with latitude /longitude and landfall locations are used to map the cyclone tracks in a region of study. The statistical tests were performed to find a best fit distribution to the track data for each cyclone parameter. These parameters include central pressure difference, the radius of maximum wind speed, the translation velocity, track angle with site and are used to generate digital simulated cyclones using wind field simulation techniques. For this, different sets of values for all the cyclone key parameters are generated randomly from their probability distributions. Using these simulated values of the cyclone key parameters, the distribution of wind velocity at a particular site is obtained. The same distribution of wind velocity at the site is also obtained from actual track records and using the distributions of the cyclone key parameters as published in the literature. The simulated distribution is compared with the wind speed distributions obtained from actual track records. The findings are useful in cyclone disaster mitigation.

  11. Alteration of Lysophosphatidylcholine-Related Metabolic Parameters in the Plasma of Mice with Experimental Sepsis.

    Science.gov (United States)

    Ahn, Won-Gyun; Jung, Jun-Sub; Kwon, Hyeok Yil; Song, Dong-Keun

    2017-04-01

    Plasma concentration of lysophosphatidylcholine (LPC) was reported to decrease in patients with sepsis. However, the mechanisms of sepsis-induced decrease in plasma LPC levels are not currently well known. In mice subjected to cecal ligation and puncture (CLP), a model of polymicrobial peritoneal sepsis, we examined alterations in LPC-related metabolic parameters in plasma, i.e., the plasma concentration of LPC-related substances (i.e., phosphatidylcholine (PC) and lysophosphatidic acid (LPA)), and activities or levels in the plasma of some enzymes that can be involved in the regulation of plasma LPC concentration (i.e., secretory phospholipase A2 (sPLA2), lecithin:cholesterol acyltransferase (LCAT), acyl-CoA:lysophosphatidylcholine acyltransferase (LPCAT), and autotaxin (ATX)), as well as plasma albumin concentration. We found that levels of LPC and albumin and enzyme activities of LCAT, ATX, and sPLA2 were decreased, whereas levels of PC, LPA, and LPCAT1-3 were increased in the plasma of mice subjected to CLP. Bacterial peritonitis led to alterations in all the measured LPC-related metabolic parameters in the plasma, which could potentially contribute to sepsis-induced decrease in plasma LPC levels. These findings could lead to the novel biomarkers of sepsis.

  12. Analyses of plasma parameter profiles in JT-60U

    Energy Technology Data Exchange (ETDEWEB)

    Shirai, Hiroshi; Shimizu, Katsuhiro; Hayashi, Nobuhiko [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; Itakura, Hirofumi; Takase, Keizou [CSK Co. Ltd., Tokyo (Japan)

    2001-01-01

    The methods how diagnostics data are treated as the surface quantity of magnetic surface and processed to the profile data in the JT-60U plasmas are summarized. The MHD equilibrium obtained by solving Grad-Shafranov equation on the MHD equilibrium calculation and registration software FBEQU are saved shot by shot as a database. Various experimental plasma data measured at various geometrical positions on JT-60 are mapped onto the MHD equilibrium and treated as functions of the volume averaged minor radius {rho} on the experimental data time slice monitoring software SLICE. Experimental data are integrated and edited on SLICE. The experimental data measured as the line integral values are transformed by Able inversion. The mapped data are fitted to a functional form and saved to the profile database MAP-DB. SLICE can also read data from MAP-DB and redisplay and transform them. In addition, SLICE can generate the profile data TOKRD as run data for orbit following Monte-Carlo (OFMC) code, analyzer for current drive consistent with MHD equilibrium (ACCOME) code and tokamak predictive and interpretive code system (TOPICS). (author)

  13. On-line state and parameter estimation for condition monitoring of stator winding of induction motor

    Science.gov (United States)

    Huang, Weili; Du, Wei

    2008-10-01

    In order to improve the performance of heat protection for induction motor, a novel method for temperature monitoring of stator winding is presented. The occurring instants of the signal change can be localized by wavelet transform in time-frequency domains. The accuracy of the estimated stator and rotor temperature is mainly determined by the accuracy of the employed model and the involved machine parameters. By means of motor mathematical model, the stator resistance is identified and the wavelet network is utilized for motor speed estimation. The wavelet network determines the mapping relationship between the stator voltage, stator current, power factor angle and the rotor speed. For completing the network parameter initialization, the improved least squares algorithm is used in training procedure. According to the principle that the metal resistance depends on its temperature, the stator temperature can be calculated on-line. The simulation and experiment results show that the proposed technology improves heat stability for asynchronous motors.

  14. Aerodynamic Parameters of High Performance Aircraft Estimated from Wind Tunnel and Flight Test Data

    Science.gov (United States)

    Klein, Vladislav; Murphy, Patrick C.

    1998-01-01

    A concept of system identification applied to high performance aircraft is introduced followed by a discussion on the identification methodology. Special emphasis is given to model postulation using time invariant and time dependent aerodynamic parameters, model structure determination and parameter estimation using ordinary least squares an mixed estimation methods, At the same time problems of data collinearity detection and its assessment are discussed. These parts of methodology are demonstrated in examples using flight data of the X-29A and X-31A aircraft. In the third example wind tunnel oscillatory data of the F-16XL model are used. A strong dependence of these data on frequency led to the development of models with unsteady aerodynamic terms in the form of indicial functions. The paper is completed by concluding remarks.

  15. Biochemical Nutritional Parameters in Breast-milk and Plasma of ...

    African Journals Online (AJOL)

    Undernourishment in HIV infected individuals exacerbates immunosuppression, acceleration of HIV replication and CD4 + T cell depletion. The production of human milk (lactogenesis) is dependent on factors in the blood therefore deranged blood parameters in HIV patients are expected to reflect in the components of ...

  16. Statistical study of the substorm onset: its dependence on solar wind parameters and solar illumination

    Directory of Open Access Journals (Sweden)

    H. Wang

    2005-09-01

    Full Text Available Based on 1829 well-defined substorm onsets in the Northern Hemisphere, observed during a 2-year period by the FUV Imager on board the IMAGE spacecraft, a statistical study is performed. From the combination of solar wind parameter observations by ACE and magnetic field observations by the low altitude satellite CHAMP, the location of auroral breakups in response to solar illumination and solar coupling parameters are studied. Furthermore, the correspondence of the onset location with prominent large-scale field-aligned currents and electrojets are investigated. Solar illumination and the related ionospheric conductivity have significant effects on the most probable substorm onset latitude and local time. In sunlight, substorm onsets tend to occur 1h earlier in local time and 1.5° more poleward than in darkness. The solar wind input, represented by the merging electric field, integrated over 1h prior to the substorm, correlates well with the latitude of the breakup. Most poleward latitudes of the onsets are found to range around 73° magnetic latitude during very quiet times. Field-aligned and Hall currents observed concurrently with the onset are consistent with the signature of a westward travelling surge evolving out of the Harang discontinuity. The observations suggest that the ionospheric conductivity has an influence on the location of the precipitating energetic electron which causes the auroral break-up signature. Keywords. Ionosphere (Auroral ionosphere – Magnetospheric Physics (Current systems; Magnetosphereionosphere interactions

  17. Real-time 3-D hybrid simulation of Titan's plasma interaction during a solar wind excursion

    Directory of Open Access Journals (Sweden)

    S. Simon

    2009-09-01

    Full Text Available The plasma environment of Saturn's largest satellite Titan is known to be highly variable. Since Titan's orbit is located within the outer magnetosphere of Saturn, the moon can leave the region dominated by the magnetic field of its parent body in times of high solar wind dynamic pressure and interact with the thermalized magnetosheath plasma or even with the unshocked solar wind. By applying a three-dimensional hybrid simulation code (kinetic description of ions, fluid electrons, we study in real-time the transition that Titan's plasma environment undergoes when the moon leaves Saturn's magnetosphere and enters the supermagnetosonic solar wind. In the simulation, the transition between both plasma regimes is mimicked by a reversal of the magnetic field direction as well as a change in the composition and temperature of the impinging plasma flow. When the satellite enters the solar wind, the magnetic draping pattern in its vicinity is reconfigured due to reconnection, with the characteristic time scale of this process being determined by the convection of the field lines in the undisturbed plasma flow at the flanks of the interaction region. The build-up of a bow shock ahead of Titan takes place on a typical time scale of a few minutes as well. We also analyze the erosion of the newly formed shock front upstream of Titan that commences when the moon re-enters the submagnetosonic plasma regime of Saturn's magnetosphere. Although the model presented here is far from governing the full complexity of Titan's plasma interaction during a solar wind excursion, the simulation provides important insights into general plasma-physical processes associated with such a disruptive change of the upstream flow conditions.

  18. Observation of turbulent intermittency scaling with magnetic helicity in an MHD plasma wind tunnel.

    Science.gov (United States)

    Schaffner, D A; Wan, A; Brown, M R

    2014-04-25

    The intermittency in turbulent magnetic field fluctuations has been observed to scale with the amount of magnetic helicity injected into a laboratory plasma. An unstable spheromak injected into the MHD wind tunnel of the Swarthmore Spheromak Experiment displays turbulent magnetic and plasma fluctuations as it relaxes into a Taylor state. The level of intermittency of this turbulence is determined by finding the flatness of the probability distribution function of increments for magnetic pickup coil fluctuations B˙(t). The intermittency increases with the injected helicity, but spectral indices are unaffected by this variation. While evidence is provided which supports the hypothesis that current sheets and reconnection sites are related to the generation of this intermittent signal, the true nature of the observed intermittency remains unknown.

  19. The Ion Acoustic Solitary Waves and Double Layers in the Solar Wind Plasma

    Directory of Open Access Journals (Sweden)

    C. R. Choi

    2006-09-01

    Full Text Available Ion acoustic solitary wave in a plasma consisting of electrons and ions with an external magnetic field is reinvestigated using the Sagdeev's potential method. Although the Sagdeev potential has a singularity for n<1, where n is the ion number density, we obtain new solitary wave solutions by expanding the Sagdeev potential up to δ n^4 near n=1. They are compressiv (rarefactive waves and shock type solitary waves. These waves can exist all together as a superposed wave which may be used to explain what would be observed in the solar wind plasma. We compared our theoretical results with the data of the Freja satellite in the study of Wu et al.(1996. Also it is shown that these solitary waves propagate with a subsonic speed.

  20. Improvement of electrical blood hematocrit measurements under various plasma conditions using a novel hematocrit estimation parameter.

    Science.gov (United States)

    Kim, Myounggon; Kim, Ayoung; Kim, Sohee; Yang, Sung

    2012-05-15

    This paper presents an electrical method for measurement of Hematocrit (HCT) using a novel HCT estimation parameter. Particularly in the case of electrical HCT measurements, the measurement error generally increases with changes in the electrical conditions of the plasma such as conductivity and osmolality. This is because the electrical properties of blood are a function not only of HCT, but also of the electrical conditions in the plasma. In an attempt to reduce the measurement errors, we herein propose a novel HCT estimation parameter reflecting the characteristics of both the changes in volume of red blood cells (RBCs) and electrical conditions of plasma, simultaneously. In order to characterize the proposed methods under various electrical conditions of plasma, we prepared twelve blood samples such as four kinds of plasma conditions (hypotonic, isotonic, two kinds of hypertonic conditions) at three different HCT levels. Using linear regression analysis, we confirmed that the proposed parameter was highly correlated with reference HCT (HCT(ref.)) values measured by microcentrifugation. Thus, the HCT measurement error was less than 4%, despite considerable variations in the conductivity and osmolality of the plasma at conditions of the HCT(ref.) of 20%. Multiple linear regression analysis showed that the proposed HCT estimation parameter also yielded a lower measurement error (1%) than the other parameter previously used for the same purpose. Thus, these preliminary results suggest that proposed method could be used for accurate, fast, easy, and reproducible HCT measurements in medical procedures. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Evidence for impulsive solar wind plasma penetration through the dayside magnetopause

    Directory of Open Access Journals (Sweden)

    R. Lundin

    2003-02-01

    Full Text Available This paper presents in situ observational evidence from the Cluster Ion Spectrometer (CIS on Cluster of injected solar wind "plasma clouds" protruding into the day-side high-latitude magnetopause. The plasma clouds, presumably injected by a transient process through the day-side magnetopause, show characteristics implying a generation mechanism denoted impulsive penetration (Lemaire and Roth, 1978. The injected plasma clouds, hereafter termed "plasma transfer events", (PTEs, (Woch and Lundin, 1991, are temporal in nature and relatively limited in size. They are initially moving inward with a high velocity and a magnetic signature that makes them essentially indistinguishable from regular magnetosheath encounters. Once inside the magnetosphere, however, PTEs are more easily distinguished from magnetopause encounters. The PTEs may still be moving while embedded in an isotropic background of energetic trapped particles but, once inside the magnetosphere, they expand along magnetic field lines. However, they frequently have a significant transverse drift component as well. The drift is localised, thus constituting an excess momentum/motional emf generating electric fields and currents. The induced emf also acts locally, accelerating a pre-existing cold plasma (e.g. Sauvaud et al., 2001. Observations of PTE-signatures range from "active" (strong transverse flow, magnetic turbulence, electric current, local plasma acceleration to "evanescent" (weak flow, weak current signature. PTEs appear to occur independently of Interplanetary Magnetic Field (IMF Bz in the vicinity of the polar cusp region, which is consistent with observations of transient plasma injections observed with mid- and high-altitude satellites (e.g. Woch and Lundin, 1992; Stenuit et al., 2001. However the characteristics of PTEs in the magnetosphere boundary layer differ for southward and northward IMF. The Cluster data available up to now indicate that PTEs penetrate deeper into the

  2. Evidence for impulsive solar wind plasma penetration through the dayside magnetopause

    Directory of Open Access Journals (Sweden)

    R. Lundin

    Full Text Available This paper presents in situ observational evidence from the Cluster Ion Spectrometer (CIS on Cluster of injected solar wind "plasma clouds" protruding into the day-side high-latitude magnetopause. The plasma clouds, presumably injected by a transient process through the day-side magnetopause, show characteristics implying a generation mechanism denoted impulsive penetration (Lemaire and Roth, 1978.

    The injected plasma clouds, hereafter termed "plasma transfer events", (PTEs, (Woch and Lundin, 1991, are temporal in nature and relatively limited in size. They are initially moving inward with a high velocity and a magnetic signature that makes them essentially indistinguishable from regular magnetosheath encounters. Once inside the magnetosphere, however, PTEs are more easily distinguished from magnetopause encounters. The PTEs may still be moving while embedded in an isotropic background of energetic trapped particles but, once inside the magnetosphere, they expand along magnetic field lines. However, they frequently have a significant transverse drift component as well. The drift is localised, thus constituting an excess momentum/motional emf generating electric fields and currents. The induced emf also acts locally, accelerating a pre-existing cold plasma (e.g. Sauvaud et al., 2001. Observations of PTE-signatures range from "active" (strong transverse flow, magnetic turbulence, electric current, local plasma acceleration to "evanescent" (weak flow, weak current signature.

    PTEs appear to occur independently of Interplanetary Magnetic Field (IMF Bz in the vicinity of the polar cusp region, which is consistent with observations of transient plasma injections observed with mid- and high-altitude satellites (e.g. Woch and Lundin, 1992; Stenuit et al., 2001. However the characteristics of PTEs in the magnetosphere boundary layer differ for southward and northward IMF. The Cluster data

  3. Theoretical study to investigate the impact of plasma parameters on the catalyst nanoparticle growth

    Science.gov (United States)

    Gupta, R.; Sharma, S. C.; Gupta, N.

    2017-05-01

    The plasma kinetics based model is adopted to elucidate the effect of plasma parameters on the nucleation and growth mechanism of catalyst nanoparticle. The present model considers the plasma processing of thin catalyst film, power equalization at the film surface, flux and kinetics of plasma species (electrons, ions, and neutrals). In our investigation, it is found that catalyst nanoparticle diameter decreases with increase in ion number density in plasma. Moreover, it is also found that catalyst film thickness significantly affect the catalyst nanoparticle size i.e., catalyst nanoparticle diameter increases with catalyst film thickness. In addition, it is observed that the substrate temperature increases during the plasma processing and finally achieve saturation. Our theoretical results are in good agreement with the experimental results.

  4. Medical Meteorology: the Relationship between Meteorological Parameters (Humidity, Rainfall, Wind, and Temperature and Brucellosis in Zanjan Province

    Directory of Open Access Journals (Sweden)

    Yousefali Abedini

    2016-06-01

    Full Text Available Background: Brucellosis (Malta fever is a major contagious zoonotic disease, with economic and public health importance. Methods To assess the effect of meteorological (temperature, rainfall, humidity, and wind and climate parameters on incidence of brucellosis, brucellosis distribution and meteorological zoning maps of Zanjan Province were prepared using Inverse Distance Weighting (IDW and Kriging technique in Arc GIS medium. Zoning maps of mean temperature, rainfall, humidity, and wind were compared to brucellosis distribution maps. Results: Correlation test showed no relationship between the mean number of patients with brucellosis and any of the four meteorological parameters. Conclusion: It seems that in Zanjan province there is no correlation between brucellosis and meteorological parameters.

  5. Method for selecting parameters and assessing efficiency of wind-diesel power plants for autonomous electrical supply systems

    Science.gov (United States)

    Obukhov, S. G.; Plotnikov, I. A.; Masolov, V. G.

    2018-01-01

    The article presents an original technique for selecting parameters and evaluating the efficiency of wind-diesel power plants for isolated power supply systems. The initial data to perform energy calculations are simulation models of electric load and wind speed. The load is simulated using typical schedules of electric loads of a decentralized consumer, taking into account a random component for each hour of the day. To create a simulation model of the wind, a typical climatic series of wind speeds at a prospective site of the power plant has been constructed according to the data of long-term meteorological observations. The proposed technique was verified through the example of choosing a wind-diesel power plant for the village of Ust-Olenyok of the Republic of Sakha (Yakutia).

  6. The Effect of Blade Aeroelasticity and Turbine Parameters on Wind Turbine Noise

    OpenAIRE

    Wu, Daniel

    2017-01-01

    In recent years, the demand for wind energy has dramatically increased as well as the number and size of commercial wind turbines. These large turbines are loud and can cause annoyance to nearby communities. Therefore, the prediction of large wind turbine noise over long distances is critical. The wind turbine noise prediction is a very complex problem since it has to account for atmospheric conditions (wind and temperature), ground absorption, un-even terrain, turbine wake, and blade deforma...

  7. Increasing Plasma Parameters using Sheared Flow Stabilization of a Z-Pinch

    Science.gov (United States)

    Shumlak, Uri

    2016-10-01

    Recent experiments on the ZaP Flow Z-Pinch at the University of Washington have been successful in compressing the plasma column to smaller radii, producing the predicted increases in plasma density (1018 cm-3), temperature (200 eV), and magnetic fields (4 T), while maintaining plasma stability for many Alfven times (over 40 μs) using sheared plasma flows. These results indicate the suitability of the device as a discovery science platform for astrophysical and high energy density plasma research, and keeps open a possible path to achieving burning plasma conditions in a compact fusion device. Long-lived Z-pinch plasmas have been produced with dimensions of 1 cm radius and 100 cm long that are stabilized by sheared axial flows for over 1000 Alfven radial transit times. The observed plasma stability is coincident with the presence of a sheared flow as measured by time-resolved multi-chord ion Doppler spectroscopy applied to impurity ion radiation. These measurements yield insights into the evolution of the velocity profile and show that the stabilizing behavior of flow shear agrees with theoretical calculations and 2-D MHD computational simulations. The flow shear value, extent, and duration are shown to be consistent with theoretical models of the plasma viscosity, which places a design constraint on the maximum axial length of a sheared flow stabilized Z-pinch. Measurements of the magnetic field topology indicate simultaneous azimuthal symmetry and axial uniformity along the entire 100 cm length of the Z-pinch plasma. Separate control of plasma acceleration and compression have increased the accessible plasma parameters and have generated stable plasmas with radii below 0.5 cm, as measured with a high resolution digital holographic interferometer. This work was supported by Grants from U.S. DOE, NNSA, and ARPA-E.

  8. HF Radar Observations of Current, Wave and Wind Parameters in the South Australian Gulf

    Science.gov (United States)

    Middleditch, A.; Cosoli, S.

    2016-12-01

    The Australian Coastal Ocean Radar Network (ACORN) has been measuring metocean parameters from an array of HF radar systems since 2007. Current, wave and wind measurements from a WERA phased-array radar system in the South Australian Gulf are evaluated using current meter, wave buoy and weather station data over a 12-month period. The spatial and temporal scales of the radar deployment have been configured for the measurement of surface currents from the first order backscatter spectra. Quality control procedures are applied to the radar currents that relate to the geometric configurations, statistical properties, and diagnostic variables provided by the analysis software. Wave measurements are obtained through an iterative inversion algorithm that provides an estimate of the directional frequency spectrum. The standard static configurations and data sampling strategies are not optimised for waves and so additional signal processing steps need to be implemented in order to provide reliable estimates. These techniques are currently only applied in offline mode but a real-time approach is in development. Improvements in the quality of extracted wave data are found through increased averaging of the raw radar data but the impact of temporal non-stationarity and spatial inhomogeneities in the WERA measurement region needs to be taken into account. Validations of wind direction data from a weather station on Neptune Island show the potential of using HF radar to combat the spread of bushfires in South Australia.

  9. Comparative Study of Plasma Parameters in Olive Ridley (Lepidochelys Olivacea and Hawksbill (Eretmochelys Imbricata During Nesting

    Directory of Open Access Journals (Sweden)

    A.Y.A. Alkindi

    2002-06-01

    Full Text Available The aim of this study is to investigate the role of plasma level parameters during nesting activity and provide data potentially useful to future studies on the dynamics of reproductive and stress hormones in the most endangered sea turtle species in the world. Plasma parameters in the sea turtles, olive ridley (Lipodochelys oliveacea and hawksbill (Eretmochelys imbricata from Masirah Island, Oman, were analyzed relative to nesting stress. To date, no study has been conducted on plasma parameter levels in sea turtles during nesting. Field observations were conducted under ideal temperature conditions. At the time of sampling, there was no significant difference for cloacal, sand, air or water temperature for the two species. Electrolytes (Cl¯, Ca++, K+, Na+ and Mg++, cholesterol, urea, uric acid and osmolarity were measured during nesting. Both species were observed to spend between 1.5 and 2.00 hours on the nesting grounds. Some had successful oviposition and completed all nesting phases, while others with incomplete nesting phases failed to oviposit their  eggs. Under both conditions, the turtles of both species had an exhaustive and stressful nesting exercise. Plasma parameter values, both intra-specifically and inter-specifically, were not significantly different for oviposited and non-oviposited turtles. This may indicate that both species have the same physiological adjustment relative to plasma parameters whether or not the turtles oviposited their eggs.

  10. Effect of magnetic barrier on the plasma parameters in a Trimix-M galatea

    Science.gov (United States)

    Morozov, A. I.; Bugrova, A. I.; Bishaev, A. M.; Lipatov, A. S.; Kozintseva, M. V.

    2006-11-01

    The parameters of plasma trapped in a Trimix-M galatea with increased values of the magnetic barrier and the energy of a hydrogen plasma bunch injected in the trap have been determined. For a barrier magnetic field of B b ˜ 0.1 T, the plasma confinement time in the trap is τp ≈ 300 μs (which agrees with estimates obtained using formulas describing the classical transfer), the maximum electron density is n e ˜ 5 × 1013 cm-3, and the electron and ion temperatures are T e ≈ 20 eV and T i ˜ 2T e, respectively. The energy of trapped plasma is ˜110 J, and the ratio of the gaskinetic to magnetic pressure in the plasma is β0 ˜ 0.2.

  11. Nonlinear plasma sheath potential in the ASDEX Upgrade 3-strap antenna: a parameter scan

    Science.gov (United States)

    Tierens, W.; Jacquot, J.; Bobkov, V.; Noterdaeme, J. M.; Colas, L.; The ASDEX Upgrade Team

    2017-11-01

    In this paper we use the SSWICH-SW software to calculate the (nonlinear) plasma potential near the ASDEX Upgrade 3-strap antenna for various operating parameters, and compare it with the (linear) parallel electric field strength and the (linear) RF potential. It is believed that the plasma potential is the cause of ion sputtering and additional heat loads on the antenna, and that the parallel electric field strength (as calculated by linear codes without sheath boundary conditions) is a good proxy for the plasma potential, and our results confirm the latter.

  12. Influence of kinetic effects on a sheath potential and divertor plasma parameters in ITER

    Energy Technology Data Exchange (ETDEWEB)

    Krasheninnikov, S.I.; Soboleva, T.K.; Igitkhanov, Yu.L.; Runov, A.M. (Kurchatov Institute, Moscow (Russian Federation))

    1991-01-01

    It was already noted that strong inhomogeneity of ITER divertor plasma parameters may be a reason of a pronounced deviation of a sheath potential U[sub d] at a plasma-divertor plate contact from the local value U[sub d][approx]3.5T[sub d] (T[sub d] is an electron temperature in a vicinity of the divertor plate). This effect may badly influence the divertor plates sputtering resulting in a plasma contamination. (author) 6 refs., 5 figs.

  13. The distinct character of anisotropy and intermittency in inertial and kinetic range solar wind plasma turbulence

    Science.gov (United States)

    Kiyani, Khurom; Chapman, Sandra; Osman, Kareem; Sahraoui, Fouad; Hnat, Bogdan

    2014-05-01

    The anisotropic nature of the scaling properties of solar wind magnetic turbulence fluctuations is investigated scale by scale using high cadence in situ magnetic field measurements from the Cluster, ACE and STEREO spacecraft missions in both fast and slow quiet solar wind conditions. The data span five decades in scales from the inertial range to the electron Larmor radius. We find a clear transition in scaling behaviour between the inertial and kinetic range of scales, which provides a direct, quantitative constraint on the physical processes that mediate the cascade of energy through these scales. In the inertial (magnetohydrodynamic) range the statistical nature of turbulent fluctuations are known to be anisotropic, both in the vector components of the magnetic field fluctuations (variance anisotropy) and in the spatial scales of these fluctuations (wavevector or k-anisotropy). We show for the first time that, when measuring parallel to the local magnetic field direction, the full statistical signature of the magnetic and Elsasser field fluctuations is that of a non-Gaussian globally scale-invariant process. This is distinct from the classic multi-exponent statistics observed when the local magnetic field is perpendicular to the flow direction. These observations suggest the weakness, or absence, of a parallel magnetofluid turbulence energy cascade. In contrast to the inertial range, there is a successive increase toward isotropy between parallel and transverse power at scales below the ion Larmor radius, with isotropy being achieved at the electron Larmor radius. Computing higher-order statistics, we show that the full statistical signature of both parallel, and perpendicular fluctuations at scales below the ion Larmor radius are that of an isotropic globally scale-invariant non-Gaussian process. Lastly, we perform a survey of multiple intervals of quiet solar wind sampled under different plasma conditions (fast, slow wind; plasma beta etc.) and find that the

  14. Before-after field study of effects of wind turbine noise on polysomnographic sleep parameters

    National Research Council Canada - National Science Library

    Leila Jalali; Philip Bigelow; Mohammad-Reza Nezhad-Ahmadi; Mahmood Gohari; Diane Williams; Steve McColl

    2016-01-01

    .... However, alleged health-related effects of exposure to wind turbine (WT) noise have attracted much public attention and various symptoms, such as sleep disturbance, have been reported by residents living close to wind developments...

  15. Measurement of the aerothermodynamic state in a high enthalpy plasma wind-tunnel flow

    Science.gov (United States)

    Hermann, Tobias; Löhle, Stefan; Zander, Fabian; Fasoulas, Stefanos

    2017-11-01

    This paper presents spatially resolved measurements of absolute particle densities of N2, N2+, N, O, N+ , O+ , e- and excitation temperatures of electronic, rotational and vibrational modes of an air plasma free stream. All results are based on optical emission spectroscopy data. The measured parameters are combined to determine the local mass-specific enthalpy of the free stream. The analysis of the radiative transport, relative and absolute intensities, and spectral shape is used to determine various thermochemical parameters. The model uncertainty of each analysis method is assessed. The plasma flow is shown to be close to equilibrium. The strongest deviations from equilibrium occur for N, N+ and N2+ number densities in the free stream. Additional measurements of the local mass-specific enthalpy are conducted using a mass injection probe as well as a heat flux and total pressure probe. The agreement between all methods of enthalpy determination is good.

  16. Sheath parameters for non-Debye plasmas: Simulations and arc damage

    Directory of Open Access Journals (Sweden)

    I. V. Morozov

    2012-05-01

    Full Text Available This paper describes the surface environment of the dense plasma arcs that damage rf accelerators, tokamaks, and other high gradient structures. We simulate the dense, nonideal plasma sheath near a metallic surface using molecular dynamics (MD to evaluate sheaths in the non-Debye region for high density, low temperature plasmas. We use direct two-component MD simulations where the interactions between all electrons and ions are computed explicitly. We find that the non-Debye sheath can be extrapolated from the Debye sheath parameters with small corrections. We find that these parameters are roughly consistent with previous particle-in-cell code estimates, pointing to densities in the range 10^{24}–10^{25}  m^{-3}. The high surface fields implied by these results could produce field emission that would short the sheath and cause an instability in the time evolution of the arc, and this mechanism could limit the maximum density and surface field in the arc. These results also provide a way of understanding how the properties of the arc depend on the properties (sublimation energy, for example of the metal. Using these results, and equating surface tension and plasma pressure, it is possible to infer a range of plasma densities and sheath potentials from scanning electron microscope images of arc damage. We find that the high density plasma these results imply and the level of plasma pressure they would produce is consistent with arc damage on a scale 100 nm or less, in examples where the liquid metal would cool before this structure would be lost. We find that the submicron component of arc damage, the burn voltage, and fluctuations in the visible light production of arcs may be the most direct indicators of the parameters of the dense plasma arc, and the most useful diagnostics of the mechanisms limiting gradients in accelerators.

  17. Weibull Wind-Speed Distribution Parameters Derived from a Combination of Wind-Lidar and Tall-Mast Measurements Over Land, Coastal and Marine Sites

    DEFF Research Database (Denmark)

    Gryning, Sven-Erik; Floors, Rogier Ralph; Peña, Alfredo

    2016-01-01

    are often filtered out as the uncertainty in the wind-speed measurements increases. For a pulsed heterodyne Doppler lidar, use of the traditional –22 dB CNR threshold value at all measuring levels up to 600 m results in a ≈7 % overestimation in the long-term mean wind speed over land, and a ≈12......Wind-speed observations from tall towers are used in combination with observations up to 600 m in altitude from a Doppler wind lidar to study the long-term conditions over suburban (Hamburg), rural coastal (Høvsøre) and marine (FINO3) sites. The variability in the wind field among the sites...... in the suburban (high roughness) than in the rural (low roughness) area. In coastal areas the reversal height is lower than that over land and relates to the internal boundary layer that develops downwind from the coastline. Over the sea the shape parameter increases towards the sea surface. A parametrization...

  18. Plasma and wave phenomena induced by neutral gas releases in the solar wind

    Directory of Open Access Journals (Sweden)

    H. Laakso

    2002-01-01

    Full Text Available We investigate plasma and wave disturbances generated by nitrogen (N2 gas releases from the cooling system of an IR-camera on board the Vega 1 and Vega 2 spacecraft, during their flybys of comet Halley in March 1986. N2 molecules are ionized by solar UV radiation at a rate of ~ 7 · 10-7 s-1 and give rise to a plasma cloud expanding around the spacecraft. Strong disturbances due to the interaction of the solar wind with the N+2 ion cloud are observed with a plasma and wave experiment (APV-V instrument. Three gas releases are accompanied by increases in cold electron density and simultaneous decreases of the spacecraft potential; this study shows that the spacecraft potential can be monitored with a reference sensor mounted on a short boom. The comparison between the model and observations suggests that the gas expands as an exhaust plume, and approximately only 1% of the ions can escape the beam within the first meters. The releases are also associated with significant increases in wave electric field emission (8 Hz–300 kHz; this phenomenon lasts for more than one hour after the end of the release, which is most likely due to the temporary contamination of the spacecraft surface by nitrogen gas. DC electric fields associated with the events are complex but interesting. No magnetic field perturbations are detected, suggesting that no significant diamagnetic effect (i.e. magnetic cavity is associated with these events.Key words. Ionosphere (planetary ionosphere – Space plasma physics (active perturbation experiments; instruments and techniques

  19. Plasma and wave phenomena induced by neutral gas releases in the solar wind

    Directory of Open Access Journals (Sweden)

    H. Laakso

    Full Text Available We investigate plasma and wave disturbances generated by nitrogen (N2 gas releases from the cooling system of an IR-camera on board the Vega 1 and Vega 2 spacecraft, during their flybys of comet Halley in March 1986. N2 molecules are ionized by solar UV radiation at a rate of ~ 7 · 10-7 s-1 and give rise to a plasma cloud expanding around the spacecraft. Strong disturbances due to the interaction of the solar wind with the N+2 ion cloud are observed with a plasma and wave experiment (APV-V instrument. Three gas releases are accompanied by increases in cold electron density and simultaneous decreases of the spacecraft potential; this study shows that the spacecraft potential can be monitored with a reference sensor mounted on a short boom. The comparison between the model and observations suggests that the gas expands as an exhaust plume, and approximately only 1% of the ions can escape the beam within the first meters. The releases are also associated with significant increases in wave electric field emission (8 Hz–300 kHz; this phenomenon lasts for more than one hour after the end of the release, which is most likely due to the temporary contamination of the spacecraft surface by nitrogen gas. DC electric fields associated with the events are complex but interesting. No magnetic field perturbations are detected, suggesting that no significant diamagnetic effect (i.e. magnetic cavity is associated with these events.

    Key words. Ionosphere (planetary ionosphere – Space plasma physics (active perturbation experiments; instruments and techniques

  20. Experimental assessment of the performance of ablative heat shield materials from plasma wind tunnel testing

    Science.gov (United States)

    Löhle, S.; Hermann, T.; Zander, F.

    2017-12-01

    A method for assessing the performance of typical heat shield materials is presented in this paper. Three different material samples, the DLR material uc(Zuram), the Airbus material uc(Asterm) and the carbon preform uc(Calcarb) were tested in the IRS plasma wind tunnel PWK1 at the same nominal condition. State of the art diagnostic tools, i.e., surface temperature with pyrometry and thermography and boundary layer optical emission spectroscopy were completed by photogrammetric surface recession measurements. These data allow the assessment of the net heat flux for each material. The analysis shows that the three materials each have a different effect on heat flux mitigation with ASTERM showing the largest reduction in surface heat flux. The effect of pyrolysis and blowing is clearly observed and the heat flux reduction can be determined from an energy balance.

  1. Evolution of large amplitude Alfven waves in solar wind plasmas: Kinetic-fluid models

    Science.gov (United States)

    Nariyuki, Y.

    2014-12-01

    Large amplitude Alfven waves are ubiquitously observed in solar wind plasmas. Mjolhus(JPP, 1976) and Mio et al(JPSJ, 1976) found that nonlinear evolution of the uni-directional, parallel propagating Alfven waves can be described by the derivative nonlinear Schrodinger equation (DNLS). Later, the multi-dimensional extension (Mjolhus and Wyller, JPP, 1988; Passot and Sulem, POP, 1993; Gazol et al, POP, 1999) and ion kinetic modification (Mjolhus and Wyller, JPP, 1988; Spangler, POP, 1989; Medvedev and Diamond, POP, 1996; Nariyuki et al, POP, 2013) of DNLS have been reported. Recently, Nariyuki derived multi-dimensional DNLS from an expanding box model of the Hall-MHD system (Nariyuki, submitted). The set of equations including the nonlinear evolution of compressional wave modes (TDNLS) was derived by Hada(GRL, 1993). DNLS can be derived from TDNLS by rescaling of the variables (Mjolhus, Phys. Scr., 2006). Nariyuki and Hada(JPSJ, 2007) derived a kinetically modified TDNLS by using a simple Landau closure (Hammet and Perkins, PRL, 1990; Medvedev and Diamond, POP, 1996). In the present study, we revisit the ion kinetic modification of multi-dimensional TDNLS through more rigorous derivations, which is consistent with the past kinetic modification of DNLS. Although the original TDNLS was derived in the multi-dimensional form, the evolution of waves with finite propagation angles in TDNLS has not been paid much attention. Applicability of the resultant models to solar wind turbulence is discussed.

  2. Sensitivity of Turbine-Height Wind Speeds to Parameters in Planetary Boundary-Layer and Surface-Layer Schemes in the Weather Research and Forecasting Model

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ben; Qian, Yun; Berg, Larry K.; Ma, Po-Lun; Wharton, Sonia; Bulaevskaya, Vera; Yan, Huiping; Hou, Zhangshuan; Shaw, William J.

    2016-07-21

    We evaluate the sensitivity of simulated turbine-height winds to 26 parameters applied in a planetary boundary layer (PBL) scheme and a surface layer scheme of the Weather Research and Forecasting (WRF) model over an area of complex terrain during the Columbia Basin Wind Energy Study. An efficient sampling algorithm and a generalized linear model are used to explore the multiple-dimensional parameter space and quantify the parametric sensitivity of modeled turbine-height winds. The results indicate that most of the variability in the ensemble simulations is contributed by parameters related to the dissipation of the turbulence kinetic energy (TKE), Prandtl number, turbulence length scales, surface roughness, and the von Kármán constant. The relative contributions of individual parameters are found to be dependent on both the terrain slope and atmospheric stability. The parameter associated with the TKE dissipation rate is found to be the most important one, and a larger dissipation rate can produce larger hub-height winds. A larger Prandtl number results in weaker nighttime winds. Increasing surface roughness reduces the frequencies of both extremely weak and strong winds, implying a reduction in the variability of the wind speed. All of the above parameters can significantly affect the vertical profiles of wind speed, the altitude of the low-level jet and the magnitude of the wind shear strength. The wind direction is found to be modulated by the same subset of influential parameters. Remainder of abstract is in attachment.

  3. Shelter Index and a simple wind speed parameter to characterize vegetation control of sand transport threshold and Flu

    Science.gov (United States)

    Gillies, J. A.; Nield, J. M.; Nickling, W. G.; Furtak-Cole, E.

    2014-12-01

    Wind erosion and dust emissions occur in many dryland environments from a range of surfaces with different types and amounts of vegetation. Understanding how vegetation modulates these processes remains a research challenge. Here we present results from a study that examines the relationship between an index of shelter (SI=distance from a point to the nearest upwind vegetation/vegetation height) and particle threshold expressed as the ratio of wind speed measured at 0.45 times the mean plant height divided by the wind speed at 17 m when saltation commences, and saltation flux. The results are used to evaluate SI as a parameter to characterize the influence of vegetation on local winds and sediment transport conditions. Wind speed, wind direction, saltation activity and point saltation flux were measured at 35 locations in defined test areas (~13,000 m2) in two vegetation communities: mature streets of mesquite covered nebkhas and incipient nebkhas dominated by low mesquite plants. Measurement positions represent the most open areas, and hence those places most susceptible to wind erosion among the vegetation elements. Shelter index was calculated for each measurement position for each 10° wind direction bin using digital elevation models for each site acquired using terrestrial laser scanning. SI can show the susceptibility to wind erosion at different time scales, i.e., event, seasonal, or annual, but in a supply-limited system it can fail to define actual flux amounts due to a lack of knowledge of the distribution of sediment across the surface of interest with respect to the patterns of SI.

  4. Interplanetary Field Enhancements: The Interaction between Solar Wind and Interplanetary Dusty Plasma Released by Interplanetary Collisions

    Science.gov (United States)

    Lai, Hairong

    Interplanetary field enhancements (IFEs) are unique large-scale structures in the solar wind. During IFEs, the magnetic-field strength is significantly enhanced with little perturbation in the solar-wind plasma. Early studies showed that IFEs move at nearly the solar-wind speed and some IFEs detected at 0.72AU by Pioneer Venus Orbiter (PVO) are associated with material co-orbiting with asteroid Oljato. To explain the observed IFE features, we develop and test an IFE formation hypothesis: IFEs result from interactions between the solar wind and clouds of nanoscale charged dust particles released in interplanetary collisions. This hypothesis predicts that the magnetic field drapes and the solar wind slows down in the upstream. Meanwhile the observed IFE occurrence rate should be comparable with the detectable interplanetary collision rate. Based on this hypothesis, we can use the IFE occurrence to determine the spatial distribution and temporal variation of interplanetary objects which produce IFEs. To test the hypothesis, we perform a systematic survey of IFEs in the magnetic-field data from many spacecraft. Our datasets cover from 1970s to present and from inner than 0.3AU to outer than 5 AU. In total, more than 470 IFEs are identified and their occurrences show clustering features in both space and time. We use multi-spacecraft simultaneous observations to reconstruct the magnetic-field geometry and find that the magnetic field drapes in the upstream region. The results of a superposed epoch study show that the solar wind slows down in the upstream and there is a plasma depletion region near the IFE centers. In addition, the solar-wind slowdown and plasma depletion feature are more significant in larger IFEs. The mass contained in IFEs can be estimated by balancing the solar-wind pressure force exerted on the IFEs against the solar gravity. The solar-wind slowdown resultant from the estimated mass is consistent with the result in superposed epoch study. The

  5. Influence of proton bunch and plasma parameters on the AWAKE experiment

    Science.gov (United States)

    Moreira, Mariana; Vieira, Jorge; Muggli, Patric

    2017-10-01

    The Proton Driven Plasma Wakefield Acceleration Experiment (AWAKE) at CERN will test the concept underlying plasma wakefield acceleration using long proton beams that undergo the self-modulation instability. The effectiveness of the experiment hinges on the successful and predictable development of this instability, which fragments the initial proton bunch into smaller beamlets with lengths of the order of the plasma wavelength. Since the initial parameters of the experiment inevitably vary from event to event, this work will aim to understand the correlation between these variations and the resulting wakefield. Using both theoretical models and numerical particle-in-cell simulations, the influence of variations in initial bunch charge, bunch dimensions, bunch energy and plasma density profile on the excited accelerating gradients and on the final energies reached by the witness particles will be investigated. In addition, further options in the experiment setup will be explored with the aim of optimizing the results.

  6. Improving adhesion of powder coating on PEEK composite: Influence of atmospheric plasma parameters

    Science.gov (United States)

    Dupuis, Aurélie; Ho, Thu Huong; Fahs, Ahmad; Lafabrier, Aurore; Louarn, Guy; Bacharouche, Jalal; Airoudj, Aissam; Aragon, Emmanuel; Chailan, Jean-François

    2015-12-01

    In aeronautic industries, powder coatings are increasingly used because of environmental considerations. During the deposition of such a coating on a substrate piece, the main objective is to obtain a good coating/substrate adhesion. In this study, the targeted substrate is a Poly-(Ether EtherKetone)-(PEEK) based composite material. Due to the poor surface energy of PEEK, a surface treatment is necessary in order to enhance its adhesion with the coating. In this purpose, atmospheric plasma treatment has been chosen and the influence of plasma parameters has been studied. Four scan speed nozzles and three gases (Air, N2 and Argon) plasma has been tested. The increase of adhesion with increasing wettability, polarity and nanoroughness has been evidenced. A particular study of the type of grafted polar functionalities according to gas nature allowed to better understand the plasma mechanism and the cross-impact of polarity and nanoroughness in adhesion enhancement.

  7. Lindhard's polarization parameter and atomic sum rules in the local plasma approximation

    DEFF Research Database (Denmark)

    Cabrera-Trujillo, R.; Apell, P.; Oddershede, J.

    2017-01-01

    In this work, we analyze the effects of Lindhard polarization parameter, χ, on the sum rule, Sp, within the local plasma approximation (LPA) as well as on the logarithmic sum rule Lp = dSp/dp, in both cases for the system in an initial excited state. We show results for a hydrogenic atom with nuc...

  8. Optical emission diagnostics for plasma parameters in pulse-modulated argon capacitively-coupled discharges

    Science.gov (United States)

    Wang, Shicong; Boffard, John B.; Lin, Chun C.; Wendt, Amy E.

    2014-10-01

    Pulsing of discharge power in low pressure rf plasmas is a means to improve materials processing outcomes. Plasma-surface interactions depend on the relative fluxes of ions, reactive neutrals and photons, which can be controlled by adjusting pulse frequency and duty cycle, due their effect on plasma properties, particularly the electron energy distribution. We report on an optical emission spectroscopy (OES) based plasma diagnostic to characterize the time evolution of plasma properties within the pulse cycle for two systems: a pulsed capacitively-coupled plasma (CCP), and a pulsed CCP in combination with a continuous-wave (cw) inductively coupled plasma (ICP); Typical conditions: 30 mTorr Ar, 13.56 MHz rf power (400 W peak CCP and 500 W ICP) and 1 kHz pulse frequency. We quantify the trade off between time resolution versus uncertainty in measured OES intensities. Because only a small fraction of CCP rf power contributes to electron heating, the method is limited by relatively low absolute OES intensities for the CCP-only case, and small incremental changes in intensity when the pulsed CCP is combined with the cw ICP. Nevertheless, with sufficient signal averaging, even subtle changes in parameters induced by the CCP in the latter case can be quantified. This work was supported in part by NSF Grant PHY-1068670.

  9. THE CHARACTERISTICS OF THE OPERATING PARAMETERS OF THE VERTICAL AXIS WIND TURBINE FOR THE SELECTED WIND SPEED

    Directory of Open Access Journals (Sweden)

    Zbigniew Czyż

    2017-03-01

    Full Text Available The article presents the results of examining a wind turbine on the vertical axis of rotation. The study was conducted in an open circuit wind tunnel Gunt HM 170 in the laboratory of the Department of Thermodynamics, Fluid Mechanics and Aviation Propulsion Systems in Lublin University of Technology. The subject of research was a rotor based on the patent PL 219985. The research object in the form of rotor consists of blades capable of altering the surface of the active area (receiving kinetic energy of the wind. The study was performed on appropriately scaled and geometrically similar models with maintaining, relevant to the type of research, the criterion numbers. Research objects in the form of rotors with different angles of divergence of blades were made using a 3D powder printer ZPrinter® 450. The results of the research conducted were carried out at the selected flow velocity of 6.5 m/s for three angles of divergence, ie. 30°, 60°, and 90° at variable rotational speed. The applied research station allows braking of the turbine to the required speed, recording velocity and torque, which allows to obtain characteristics of torque and power as a function of rotor speed.

  10. Experimental and simulation investigation of electrical and plasma parameters in a low pressure inductively coupled argon plasma

    Science.gov (United States)

    Jian, YANG; Angjian, WU; Xiaodong, LI; Yang, LIU; Fengsen, ZHU; Zhiliang, CHEN; Jianhua, YAN; Ruijuan, CHEN; Wangjun, SHEN

    2017-11-01

    The electrical and plasma parameters of a low pressure inductively coupled argon plasma are investigated over a wide range of parameters (RF power, flow rate and pressure) by diverse characterizations. The external antenna voltage and current increase with the augment of RF power, whereas decline with the enhancement of gas pressure and flow rate conversely. Compared with gas flow rate and pressure, the power transfer efficiency is significantly improved by RF power, and achieved its maximum value of 0.85 after RF power injected excess 125 W. Optical emission spectroscopy (OES) provides the local mean values of electron excited temperature and electron density in inductively coupled plasma (ICP) post regime, which vary in a range of 0.81 eV to 1.15 eV and 3.7× {10}16 {{{m}}}-3 to 8.7× {10}17 {{{m}}}-3, respectively. Numerical results of the average magnitudes of electron temperature and electron density in two-dimensional distribution exhibit similar variation trend with the experimental results under different operating condition by using COMSOL Multiphysics. By comprehensively understanding the characteristics in a low pressure ICP, optimized operating conditions could be anticipated aiming at different academic and industrial applications.

  11. Relation of zonal plasma drift and wind in the equatorial F region as derived from CHAMP observations

    Directory of Open Access Journals (Sweden)

    J. Park

    2013-06-01

    Full Text Available In this paper we estimate zonal plasma drift in the equatorial ionospheric F region without counting on ion drift meters. From June 2001 to June 2004 zonal plasma drift velocity is estimated from electron, neutral, and magnetic field observations of Challenging Mini-satellite Payload (CHAMP in the 09:00–20:00 LT sector. The estimated velocities are validated against ion drift measurements by the Republic of China Satellite-1/Ionospheric Plasma and Electrodynamics Instrument (ROCSAT-1/IPEI during the same period. The correlation between the CHAMP (altitude ~ 400 km estimates and ROCSAT-1 (altitude ~ 600 km observations is reasonably high (R ≈ 0.8. The slope of the linear regression is close to unity. However, the maximum westward drift and the westward-to-eastward reversal occur earlier for CHAMP estimates than for ROCSAT-1 measurements. In the equatorial F region both zonal wind and plasma drift have the same direction. Both generate vertical currents but with opposite signs. The wind effect (F region wind dynamo is generally larger in magnitude than the plasma drift effect (Pedersen current generated by vertical E field, thus determining the direction of the F region vertical current.

  12. Perception of temperature and wind by users of public outdoor spaces: relationships with weather parameters and personal characteristics

    Science.gov (United States)

    Andrade, Henrique; Alcoforado, Maria-João; Oliveira, Sandra

    2011-09-01

    We aim to understand the relationship between people's declared bioclimatic comfort, their personal characteristics (age, origin, clothing, activity and motivation, etc.) and the atmospheric conditions. To attain this goal, questionnaire surveys were made concurrently with weather measurements (air temperature, relative humidity, solar and long-wave radiation and wind speed) in two open leisure areas of Lisbon (Portugal), during the years 2006 and 2007. We analysed the desire expressed by the interviewees to decrease, maintain or increase the values of air temperature and wind speed, in order to improve their level of comfort. Multiple logistic regression was used to analyse the quantitative relation between preference votes and environmental and personal parameters. The preference for a different temperature depends on the season and is strongly associated with wind speed. Furthermore, a general decrease of discomfort with increasing age was also found. Most people declared a preference for lower wind speed in all seasons; the perception of wind shows significant differences depending on gender, with women declaring a lower level of comfort with higher wind speed. It was also found that the tolerance of warmer conditions is higher than of cooler conditions, and that adaptive strategies are undertaken by people to improve their level of comfort outdoors.

  13. Role of Parallel and Oblique Ion-Cyclotron Waves in Heating Ions in an Inhomogeneous Expanding Solar Wind Plasma

    Science.gov (United States)

    Ofman, L.; Ozak, N. O.; Vinas, A. F.

    2014-12-01

    In-situ observations of fast solar wind streams at distances of 0.29 AU and beyond by Helios and recently by MESSENGER, and at ~1 AU by STEREO, ACE, and Wind spacecraft provide direct evidence for the presence of turbulent Alfvén wave spectrum and of left-hand polarized ion-cyclotron waves as well as He++ - proton drift in the solar wind plasma. The waves and the super-Alfvénic drift can produce temperature anisotropies by resonant absorption and perpendicular heating of the ions. Measurements indicate that proton velocity distributions are generally non-Maxwellian with evidence for beams, while remote sensing observations of coronal holes have shown that heavy ions are hotter than protons with a temperature anisotropy greater than one (Ti,perp> Ti,||). In addition to the anisotropy, it is expected that the solar wind will be inhomogeneous on decreasing scales approaching the Sun. Here we use a 2.5 D hybrid code and extend previous work to study the heating of solar wind ions (H+, He+) in an inhomogeneous plasma background. We explore the effects of an initial ion drift and of a turbulent wave spectrum on the perpendicular ion heating and cooling and on the spectrum of the magnetic fluctuations in the inhomogeneous background solar wind. Using the 2D hybrid model we find that inhomogeneities in the plasma generate significant power of oblique waves in the solar wind plasma, in addition to enhanced heating compared to the homogenous solar wind case. We find that the cooling effect due to the solar wind expansion is only significant when sub-Alfvénic drifts are explored. On the other hand, the cooling is not significant in the presence of a super-Alfvénic drift, and it is even less significant when we include an inhomogeneous background density. We are able to reproduce the ion temperature anisotropy seen in observations and previous models and find that small-scale inhomogeneities in the inner heliosphere can have a significant impact on resonant wave ion

  14. Before?After Field Study of Effects of Wind Turbine Noise on Polysomnographic Sleep Parameters

    OpenAIRE

    Jalali, Leila; Bigelow, Philip; Nezhad-Ahmadi, Mohammad-Reza; Gohari, Mahmood; Williams, Diane; McColl, Steve

    2016-01-01

    Wind is considered one of the most advantageous alternatives to fossil energy because of its low operating cost and extensive availability. However, alleged health-related effects of exposure to wind turbine (WT) noise have attracted much public attention and various symptoms, such as sleep disturbance, have been reported by residents living close to wind developments. Prospective cohort study with synchronous measurement of noise and sleep physiologic signals was conducted to explore the pos...

  15. Multi-objective Optimization of Large Wind Farm Parameters for Harmonic Instability and Resonance Conditions

    DEFF Research Database (Denmark)

    Ebrahimzadeh, Esmaeil; Blaabjerg, Frede; Wang, Xiongfei

    2016-01-01

    wind farms in order to reduce the resonance probability and guarantee harmonic stability. In fact, a general multiobjective optimization procedure based on the genetic algorithm is proposed to set the poles of the wind farm in a desired location in order to minimize the number of the resonance...... frequencies and to improve the harmonic stability. Time-domain simulations of a 400-MW wind farm in the PSCAD/EMTDC environment demonstrate the effectiveness of the proposed design technique....

  16. Blade Fault Diagnosis in Small Wind Power Systems Using MPPT with Optimized Control Parameters

    Directory of Open Access Journals (Sweden)

    Jui-Ho Chen

    2015-08-01

    Full Text Available A systematic experiment verification of Chaos Embedded Sliding Mode Extremum Seeking Control for maximum power point tracking and a method for detecting possible faults in small wind turbine systems in advance are proposed in this paper. The chaotic logistic map is used to replace the random function in the particle swarm optimization algorithm for faster searching the optimal control parameter . From the experimental results, it is verified that the Chaos Embedded Sliding Mode Extremum Seeking Control scheme has a better dynamic response than traditional Extremum Seeking Control scheme and Hill-Climbing Search scheme for maximum power point tracking. In the proposed scheme for fault detection, a chaotic synchronization method is used to transform the maximum power point tracking signal into a chaos synchronization error distribution diagram. It is then taken as the characteristic for fault diagnosis purposes. Finally, an extension theory pattern recognition technique is applied to diagnose the fault. Notably, the use of the chaotic dynamic errors as the fault diagnosis characteristic reduces the number of extracted features required, and therefore greatly reduces both the computation time and the hardware implementation cost. From the experimental results, it is shown that the fault diagnosis rate of the proposed method exceeds 98% not only in non-real-time but also in real-time of faults detection of the blades.

  17. Determining the parameters of Weibull function to estimate the wind power potential in conditions of limited source meteorological data

    Science.gov (United States)

    Fetisova, Yu. A.; Ermolenko, B. V.; Ermolenko, G. V.; Kiseleva, S. V.

    2017-04-01

    We studied the information basis for the assessment of wind power potential on the territory of Russia. We described the methodology to determine the parameters of the Weibull function, which reflects the density of distribution of probabilities of wind flow speeds at a defined basic height above the surface of the earth using the available data on the average speed at this height and its repetition by gradations. The application of the least square method for determining these parameters, unlike the use of graphical methods, allows performing a statistical assessment of the results of approximation of empirical histograms by the Weibull formula. On the basis of the computer-aided analysis of the statistical data, it was shown that, at a fixed point where the wind speed changes at different heights, the range of parameter variation of the Weibull distribution curve is relatively small, the sensitivity of the function to parameter changes is quite low, and the influence of changes on the shape of speed distribution curves is negligible. Taking this into consideration, we proposed and mathematically verified the methodology of determining the speed parameters of the Weibull function at other heights using the parameter computations for this function at a basic height, which is known or defined by the average speed of wind flow, or the roughness coefficient of the geological substrate. We gave examples of practical application of the suggested methodology in the development of the Atlas of Renewable Energy Resources in Russia in conditions of deficiency of source meteorological data. The proposed methodology, to some extent, may solve the problem related to the lack of information on the vertical profile of repeatability of the wind flow speeds in the presence of a wide assortment of wind turbines with different ranges of wind-wheel axis heights and various performance characteristics in the global market; as a result, this methodology can become a powerful tool for

  18. On the focused beam parameters of an electron gun with a plasma emitter

    Science.gov (United States)

    Kornilov, S.; Rempe, N.; Beniyash, A.; Murray, N.

    2014-11-01

    The report presents the measurement results of the focused beam brightness in the electron gun with plasma emitter. The beam brightness was approximately 1010 A·m-2·sr-1 under the beam power up to 4 kW and an electron energy of 60 keV at the focal distance of 0.5 m. Qualitative assessment of the beam parameters was performed by welding test pieces. The results describing the possibility in principle of using the guns with a plasma emitter in nonvacuum technological devices are presented.

  19. On the focused beam parameters of an electron gun with a plasma emitter

    OpenAIRE

    S. Kornilov; Rempe, N.; Beniyash, Alexander; Murray, Nils

    2014-01-01

    The report presents the measurement results of the focused beam brightness in the electron gun with plasma emitter. The beam brightness was approximately 1010 A·m-2·sr-1 under the beam power up to 4 kW and an electron energy of 60 keV at the focal distance of 0.5 m. Qualitative assessment of the beam parameters was performed by welding test pieces. The results describing the possibility in principle of using the guns with a plasma emitter in nonvacuum technological devices are presented.

  20. Dynamic Reliability Analysis of Gear Transmission System of Wind Turbine in Consideration of Randomness of Loadings and Parameters

    Directory of Open Access Journals (Sweden)

    Lei Wang

    2014-01-01

    Full Text Available A dynamic model of gear transmission system of wind turbine is built with consideration of randomness of loads and parameters. The dynamic response of the system is obtained using the theory of random sampling and the Runge-Kutta method. According to rain flow counting principle, the dynamic meshing forces are converted into a series of luffing fatigue load spectra. The amplitude and frequency of the equivalent stress are obtained using equivalent method of Geber quadratic curve. Moreover, the dynamic reliability model of components and system is built according to the theory of probability of cumulative fatigue damage. The system reliability with the random variation of parameters is calculated and the influence of random parameters on dynamic reliability of components is analyzed. In the end, the results of the proposed method are compared with that of Monte Carlo method. This paper can be instrumental in the design of wind turbine gear transmission system with more advantageous dynamic reliability.

  1. Dynamic Analysis of Fluid Power Drive-trains for Variable Speed Wind Turbines : A Parameter Study

    NARCIS (Netherlands)

    Jarquin Laguna, A.; Diepeveen, N.F.B.

    2013-01-01

    In the pursuit of making wind energy technology more economically attractive, the application of fluid power technology for the transmission of wind energy is being developed by several parties all over the world. This paper presents a dynamic model of a fluid power transmission for variable speed

  2. Improving Wind Predictions in the Marine Atmospheric Boundary Layer through Parameter Estimation in a Single-Column Model

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jared A.; Hacker, Joshua P.; Delle Monache, Luca; Kosović, Branko; Clifton, Andrew; Vandenberghe, Francois; Rodrigo, Javier Sanz

    2016-12-14

    A current barrier to greater deployment of offshore wind turbines is the poor quality of numerical weather prediction model wind and turbulence forecasts over open ocean. The bulk of development for atmospheric boundary layer (ABL) parameterization schemes has focused on land, partly due to a scarcity of observations over ocean. The 100-m FINO1 tower in the North Sea is one of the few sources worldwide of atmospheric profile observations from the sea surface to turbine hub height. These observations are crucial to developing a better understanding and modeling of physical processes in the marine ABL. In this study, we use the WRF single column model (SCM), coupled with an ensemble Kalman filter from the Data Assimilation Research Testbed (DART), to create 100-member ensembles at the FINO1 location. The goal of this study is to determine the extent to which model parameter estimation can improve offshore wind forecasts.

  3. Optimization of Weld Bead Parameters of Nickel Based Overlay Deposited by Plasma Transferred Arc Surfacing with Adequacy Test

    OpenAIRE

    Bhaskarananda Dasgupta; Pinaky Bhadury

    2014-01-01

    Plasma Transferred Arc surfacing is a kind of Plasma Transferred Arc Welding process. Plasma Transferred Arc surfacing (PTA) is increasingly used in applications where enhancement of wear, corrosion and heat resistance of materials surface is required. The shape of weld bead geometry affected by the PTA Welding process parameters is an indication of the quality of the weld. In this paper the analysis and optimization of weld bead parameters, during deposition of a Nickel based...

  4. Rosetta and Mars Express observations of the influence of high solar wind pressure on the Martian plasma environment

    Directory of Open Access Journals (Sweden)

    N. J. T. Edberg

    2009-12-01

    Full Text Available We report on new simultaneous in-situ observations at Mars from Rosetta and Mars Express (MEX on how the Martian plasma environment is affected by high pressure solar wind. A significant sharp increase in solar wind density, magnetic field strength and turbulence followed by a gradual increase in solar wind velocity is observed during ~24 h in the combined data set from both spacecraft after Rosetta's closest approach to Mars on 25 February 2007. The bow shock and magnetic pileup boundary are coincidently observed by MEX to become asymmetric in their shapes. The fortunate orbit of MEX at this time allows a study of the inbound boundary crossings on one side of the planet and the outbound crossings on almost the opposite side, both very close to the terminator plane. The solar wind and interplanetary magnetic field (IMF downstream of Mars are monitored through simultaneous measurements provided by Rosetta. Possible explanations for the asymmetries are discussed, such as crustal magnetic fields and IMF direction. In the same interval, during the high solar wind pressure pulse, MEX observations show an increased amount of escaping planetary ions from the polar region of Mars. We link the high pressure solar wind with the observed simultaneous ion outflow and discuss how the pressure pulse could also be associated with the observed boundary shape asymmetry.

  5. Rosetta and Mars Express observations of the influence of high solar wind pressure on the Martian plasma environment

    Directory of Open Access Journals (Sweden)

    N. J. T. Edberg

    2009-12-01

    Full Text Available We report on new simultaneous in-situ observations at Mars from Rosetta and Mars Express (MEX on how the Martian plasma environment is affected by high pressure solar wind. A significant sharp increase in solar wind density, magnetic field strength and turbulence followed by a gradual increase in solar wind velocity is observed during ~24 h in the combined data set from both spacecraft after Rosetta's closest approach to Mars on 25 February 2007. The bow shock and magnetic pileup boundary are coincidently observed by MEX to become asymmetric in their shapes. The fortunate orbit of MEX at this time allows a study of the inbound boundary crossings on one side of the planet and the outbound crossings on almost the opposite side, both very close to the terminator plane. The solar wind and interplanetary magnetic field (IMF downstream of Mars are monitored through simultaneous measurements provided by Rosetta. Possible explanations for the asymmetries are discussed, such as crustal magnetic fields and IMF direction. In the same interval, during the high solar wind pressure pulse, MEX observations show an increased amount of escaping planetary ions from the polar region of Mars. We link the high pressure solar wind with the observed simultaneous ion outflow and discuss how the pressure pulse could also be associated with the observed boundary shape asymmetry.

  6. Mercury's Solar Wind Interaction as Characterized by Magnetospheric Plasma Mantle Observations With MESSENGER

    Science.gov (United States)

    Jasinski, Jamie M.; Slavin, James A.; Raines, Jim M.; DiBraccio, Gina A.

    2017-12-01

    We analyze 94 traversals of Mercury's southern magnetospheric plasma mantle using data from the MESSENGER spacecraft. The mean and median proton number densities in the mantle are 1.5 and 1.3 cm-3, respectively. For sodium number density these values are 0.004 and 0.002 cm-3. Moderately higher densities are observed on the magnetospheric dusk side. The mantle supplies up to 1.5 × 108 cm-2 s-1 and 0.8 × 108 cm-2 s-1 of proton and sodium flux to the plasma sheet, respectively. We estimate the cross-electric magnetospheric potential from each observation and find a mean of 19 kV (standard deviation of 16 kV) and a median of 13 kV. This is an important result as it is lower than previous estimations and shows that Mercury's magnetosphere is at times not as highly driven by the solar wind as previously thought. Our values are comparable to the estimations for the ice giant planets, Uranus and Neptune, but lower than Earth. The estimated potentials do have a very large range of values (1-74 kV), showing that Mercury's magnetosphere is highly dynamic. A correlation of the potential is found to the interplanetary magnetic field (IMF) magnitude, supporting evidence that dayside magnetic reconnection can occur at all shear angles at Mercury. But we also see that Mercury has an Earth-like magnetospheric response, favoring -BZ IMF orientation. We find evidence that -BX orientations in the IMF favor the southern cusp and southern mantle. This is in agreement with telescopic observations of exospheric emission, but in disagreement with modeling.

  7. Evaluation of the impact of adjusting the angle of the axis of a wind turbine rotor relative to the flow of air stream on operating parameters of a wind turbine model

    Directory of Open Access Journals (Sweden)

    Gumuła Stanisław

    2017-01-01

    Full Text Available The aim of this study was to determine the effect of regulation of an axis of a wind turbine rotor to the direction of wind on the volume of energy produced by wind turbines. A role of an optimal setting of the blades of the wind turbine rotor was specified, as well. According to the measurements, changes in the tilt angle of the axis of the wind turbine rotor in relation to the air stream flow direction cause changes in the use of wind energy. The publication explores the effects of the operating conditions of wind turbines on the possibility of using wind energy. A range of factors affect the operation of the wind turbine, and thus the volume of energy produced by the plant. The impact of design parameters of wind power plant, climatic factors or associated with the location seismic challenges can be shown from among them. One of the parameters has proved to be change settings of the rotor axis in relation to direction of flow of the air stream. Studies have shown that the accurate determination of the optimum angle of the axis of the rotor with respect to flow of air stream strongly influences the characteristics of the wind turbine.

  8. Competing mechanisms of plasma transport in inhomogeneous configurations with velocity shear: the solar-wind interaction with earth's magnetosphere.

    Science.gov (United States)

    Faganello, M; Califano, F; Pegoraro, F

    2008-01-11

    Two-dimensional simulations of the Kelvin-Helmholtz instability in an inhomogeneous compressible plasma with a density gradient show that, in a transverse magnetic field configuration, the vortex pairing process and the Rayleigh-Taylor secondary instability compete during the nonlinear evolution of the vortices. Two different regimes exist depending on the value of the density jump across the velocity shear layer. These regimes have different physical signatures that can be crucial for the interpretation of satellite data of the interaction of the solar wind with the magnetospheric plasma.

  9. Sensitivity Analysis of Wind Plant Performance to Key Turbine Design Parameters: A Systems Engineering Approach; Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Dykes, K.; Ning, A.; King, R.; Graf, P.; Scott, G.; Veers, P.

    2014-02-01

    This paper introduces the development of a new software framework for research, design, and development of wind energy systems which is meant to 1) represent a full wind plant including all physical and nonphysical assets and associated costs up to the point of grid interconnection, 2) allow use of interchangeable models of varying fidelity for different aspects of the system, and 3) support system level multidisciplinary analyses and optimizations. This paper describes the design of the overall software capability and applies it to a global sensitivity analysis of wind turbine and plant performance and cost. The analysis was performed using three different model configurations involving different levels of fidelity, which illustrate how increasing fidelity can preserve important system interactions that build up to overall system performance and cost. Analyses were performed for a reference wind plant based on the National Renewable Energy Laboratory's 5-MW reference turbine at a mid-Atlantic offshore location within the United States.

  10. Adaptive control and parameter identification of a doubly-fed induction generator for wind power

    OpenAIRE

    Orfanos-Pepainas, Stamatios

    2011-01-01

    Approved for public release; distribution is unlimited. The use of Doubly-Fed Induction Generators (DFIG) for wind energy conversion is addressed in this thesis. It is well known that when the stator is connected to the electric grid, the rotor voltage can control both mechanical torque and reactive electric power. To guarantee efficient wind energy conversion, it is important to research and design more advanced control schemes. In this thesis, we first review the basic theory behind ...

  11. IMPACT STUDY OF ANISOTROPIC OPTICAL FIBERS WINDING WITH DIFFERENT TENSION VALUE ON THE H-PARAMETER INVARIANCE DEGREE

    Directory of Open Access Journals (Sweden)

    A. B. Mukhtubayev

    2015-09-01

    Full Text Available Subject of Research. We have investigated the effect of anisotropic optical fibers winding with an elliptical sheath subjecting to stress on the H-parameter invariance degree. This type of optical fiber is used in the manufacture of fiber loop in fiber-optic gyroscopes. Method of Research. The method of research is based on the application of Michelson polarization scanning interferometer as a measuring device. Superluminescent diode with a central wavelength of 1575 nm and a half-width of the spectrum equal to 45 nm is used as a radiation source. The studies were carried out with anisotropic optical fiber with 50 m long elliptical sheath subjecting to stress. The fiber was wound with one layer turn to turn on the coil with a diameter of 18 cm, which is used in the design of fiber-optic gyroscope. The tension force of the optical fiber was controlled during winding on a special machine. Main Results. It was found that at the increase of tension force from 0.05 N to 0.8 H the value of H-parameter increases from 7×10-6 1/m up to 178×10-6 1/m, respectively; i.e. the coupling coefficient of orthogonal modes in the test fiber is being increased. Thus, it is necessary to consider the longitudinal tension force of fiber in the design and manufacture of the fiber-optic sensors of high accuracy class: the less the fiber winding power, the higher invariance degree of distributed H-parameter. The longitudinal tension force of anisotropic optical fiber with elliptical sheath subjecting to stress equal to 0.2 N is recommended in the process of designing fiber-optic gyroscopes. Practical Relevance. The proposed method of Michelson scanning interferometer is usable in the production process for quality determination of the optical fiber winding: no local defects, value controlling of fiber H-parameter.

  12. Intrahippocampal Infusion of Crotamine Isolated from Crotalus durissus terrificus Alters Plasma and Brain Biochemical Parameters

    Science.gov (United States)

    Gonçalves, Rithiele; Vargas, Liane S.; Lara, Marcus V. S.; Güllich, Angélica; Mandredini, Vanusa; Ponce-Soto, Luis; Marangoni, Sergio; Dal Belo, Cháriston A.; Mello-Carpes, Pâmela B.

    2014-01-01

    Crotamine is one of the main constituents of the venom of the South American rattlesnake Crotalus durissus terrificus. Here we sought to investigate the inflammatory and toxicological effects induced by the intrahippocampal administration of crotamine isolated from Crotalus whole venom. Adult rats received an intrahippocampal infusion of crotamine or vehicle and were euthanized 24 h or 21 days after infusion. Plasma and brain tissue were collected for biochemical analysis. Complete blood count, creatinine, urea, glutamic oxaloacetic transaminase (GOT), glutamic pyruvic transaminase (GPT), creatine-kinase (CK), creatine kinase-muscle B (CK-MB) and oxidative parameters (assessed by DNA damage and micronucleus frequency in leukocytes, lipid peroxidation and protein carbonyls in plasma and brain) were quantified. Unpaired and paired t-tests were used for comparisons between saline and crotamine groups, and within groups (24 h vs. 21 days), respectively. After 24 h crotamine infusion promoted an increase of urea, GOT, GPT, CK, and platelets values (p ≤ 0.01), while red blood cells, hematocrit and leukocytes values decreased (p ≤ 0.01). Additionally, 21 days after infusion crotamine group showed increased creatinine, leukocytes, TBARS (plasma and brain), carbonyl (plasma and brain) and micronucleus compared to the saline-group (p ≤ 0.01). Our findings show that crotamine infusion alter hematological parameters and cardiac markers, as well as oxidative parameters, not only in the brain, but also in the blood, indicating a systemic pro-inflammatory and toxicological activity. A further scientific attempt in terms of preserving the beneficial activity over toxicity is required. PMID:25380458

  13. Intrahippocampal Infusion of Crotamine Isolated from Crotalus durissus terrificus Alters Plasma and Brain Biochemical Parameters

    Directory of Open Access Journals (Sweden)

    Rithiele Gonçalves

    2014-11-01

    Full Text Available Crotamine is one of the main constituents of the venom of the South American rattlesnake Crotalus durissus terrificus. Here we sought to investigate the inflammatory and toxicological effects induced by the intrahippocampal administration of crotamine isolated from Crotalus whole venom. Adult rats received an intrahippocampal infusion of crotamine or vehicle and were euthanized 24 h or 21 days after infusion. Plasma and brain tissue were collected for biochemical analysis. Complete blood count, creatinine, urea, glutamic oxaloacetic transaminase (GOT, glutamic pyruvic transaminase (GPT, creatine-kinase (CK, creatine kinase-muscle B (CK-MB and oxidative parameters (assessed by DNA damage and micronucleus frequency in leukocytes, lipid peroxidation and protein carbonyls in plasma and brain were quantified. Unpaired and paired t-tests were used for comparisons between saline and crotamine groups, and within groups (24 h vs. 21 days, respectively. After 24 h crotamine infusion promoted an increase of urea, GOT, GPT, CK, and platelets values (p ≤ 0.01, while red blood cells, hematocrit and leukocytes values decreased (p ≤ 0.01. Additionally, 21 days after infusion crotamine group showed increased creatinine, leukocytes, TBARS (plasma and brain, carbonyl (plasma and brain and micronucleus compared to the saline-group (p ≤ 0.01. Our findings show that crotamine infusion alter hematological parameters and cardiac markers, as well as oxidative parameters, not only in the brain, but also in the blood, indicating a systemic pro-inflammatory and toxicological activity. A further scientific attempt in terms of preserving the beneficial activity over toxicity is required.

  14. Intrahippocampal infusion of crotamine isolated from Crotalus durissus terrificus alters plasma and brain biochemical parameters.

    Science.gov (United States)

    Gonçalves, Rithiele; Vargas, Liane S; Lara, Marcus V S; Güllich, Angélica; Mandredini, Vanusa; Ponce-Soto, Luis; Marangoni, Sergio; Dal Belo, Cháriston A; Mello-Carpes, Pâmela B

    2014-11-05

    Crotamine is one of the main constituents of the venom of the South American rattlesnake Crotalus durissus terrificus. Here we sought to investigate the inflammatory and toxicological effects induced by the intrahippocampal administration of crotamine isolated from Crotalus whole venom. Adult rats received an intrahippocampal infusion of crotamine or vehicle and were euthanized 24 h or 21 days after infusion. Plasma and brain tissue were collected for biochemical analysis. Complete blood count, creatinine, urea, glutamic oxaloacetic transaminase (GOT), glutamic pyruvic transaminase (GPT), creatine-kinase (CK), creatine kinase-muscle B (CK-MB) and oxidative parameters (assessed by DNA damage and micronucleus frequency in leukocytes, lipid peroxidation and protein carbonyls in plasma and brain) were quantified. Unpaired and paired t-tests were used for comparisons between saline and crotamine groups, and within groups (24 h vs. 21 days), respectively. After 24 h crotamine infusion promoted an increase of urea, GOT, GPT, CK, and platelets values (p ≤ 0.01), while red blood cells, hematocrit and leukocytes values decreased (p ≤ 0.01). Additionally, 21 days after infusion crotamine group showed increased creatinine, leukocytes, TBARS (plasma and brain), carbonyl (plasma and brain) and micronucleus compared to the saline-group (p ≤ 0.01). Our findings show that crotamine infusion alter hematological parameters and cardiac markers, as well as oxidative parameters, not only in the brain, but also in the blood, indicating a systemic pro-inflammatory and toxicological activity. A further scientific attempt in terms of preserving the beneficial activity over toxicity is required.

  15. Useful and universal tools for the investigation of heliogeophysical plasma processes: dimensionless parameters and scaling

    Science.gov (United States)

    Veselovsky, I.

    Study of universal plasma processes in space around us is one of main aims of the scientific program of the International Heliophysical Year IHY Dimensionless parameters allow quantitative representation and characterization of the similarity and diversity degree They are also useful for the overall qualitative evaluation of known physical situations for the better understanding what is important and what is not They are needed for the correct physical problem position in the case of new phenomena and when more detailed theoretical approaches are hindered by complicity of obtaining the unique solutions and the experimental information is not sufficiently complete ill posed problems The talk presents the complete sets of dimensionless parameters met in fundamental kinetic and macroscopic approaches Magneto-hydrodynamics MHD with dissipation and radiation generates well known parameters like Mach Mach-Alfven Strouhal and several other numbers They play the important role in MHD descriptions and often used in literature but others like velocity-emission ratios Trieste and Faraday numbers are still not so common and remain poorly evaluated in the solar-terrestrial physics We demonstrate several examples when these new parameters respectively allow clear quantitative delimitation and classification of flare-like and CME-like events on the Sun physically open and closed systems against the energy momentum and mass transports in the case of quiescent and eruptive prominences inductive and Coulomb dominated plasma regimes in electric and

  16. Reconstruction of the ion plasma parameters from the current measurements: mathematical tool

    Directory of Open Access Journals (Sweden)

    E. Séran

    2003-05-01

    Full Text Available Instrument d’Analyse du Plasma (IAP is one of the instruments of the newly prepared ionospheric mission Demeter. This analyser was developed to measure flows of thermal ions at the altitude of ~ 750 km and consists of two parts: (i retarding potential analyser (APR, which is utilised to measure the energy distribution of the ion plasma along the sensor look direction, and (ii velocity direction analyser (ADV, which is used to measure the arrival angle of the ion flow with respect to the analyser axis. The necessity to obtain quick and precise estimates of the ion plasma parameters has prompted us to revise the existing mathematical tool and to investigate different instrumental limitations, such as (i finite angular aperture, (ii grid transparency, (iii potential depression in the space between the grid wires, (iv losses of ions during their passage between the entrance diaphragm and the collector. Simple analytical expressions are found to fit the currents, which are measured by the APR and ADV collectors, and show a very good agreement with the numerical solutions. It was proven that the fitting of the current with the model functions gives a possibility to properly resolve even minor ion concentrations and to find the arrival angles of the ion flow in the multi-species plasma. The discussion is illustrated by an analysis of the instrument response in the ionospheric conditions which are predicted by the International Reference Ionosphere (IRI model.Key words. Ionosphere (plasma convection; instruments and techniques – Space plasma physics (experimental and mathematical techniques

  17. Investigating the role of the entropy parameter in plasma sheet dynamics

    Science.gov (United States)

    Yang, J.; Toffoletto, F.; Wolf, R. A.; Sazykin, S.; Hu, B.; Raeder, J.

    2011-12-01

    Representing a combination of mass and entropy, the entropy parameter PV5/3 is approximately conserved for plasma sheet flux tubes and proves very useful for understanding plasma sheet dynamics. (Here P is plasma pressure and V is the volume of a flux tube containing one unit of magnetic flux). Under quasi-static-equilibrium conditions, PV5/3 determines Birkeland currents and interchange instability. It is consequently a key parameter for physical interpretation of results from RCM and RCM-E. The appropriate generalization of PV5/3 for conditions when P is not constant along a field line is the 5/3 power of the flux-tube integral of P3/5. That parameter is conserved in ideal MHD and is useful in physical interpretation of MHD simulations of the magnetosphere. We present recent computer experiments to investigate how the values of PV5/3 in the plasma sheet can affect the plasma transport and field configuration during various geomagnetic active times. A comparative study of RCM-E simulations shows that persistent steady magnetospheric convection during strong polar cap potential drops is possible if the flux tubes in the magnetotail are substantially depleted along a sector with very wide local times; otherwise, the magnetic field will gradually become highly stretched if the inner magnetosphere is fed with relatively high entropy plasma, resembling the substorm growth phase. In the end of the growth phase, resistive MHD simulations using OpenGGCM indicate that the violation of frozen-in-flux condition can give rise to the formation of a bubble (lower PV5/3 than its neighbors) earthward of a blob (higher PV5/3 than its neighbors). Both OpenGGCM and RCM-E results show that the earthward motion of the bubble and the tailward motion of the blob lead to a reduction of the normal magnetic field between them, which thins the current sheet rapidly. Substorm injection simulations are carried out using RCM-E by placing bubbles on the tailward boundary for both non-storm and

  18. DYNAMIC OF CHANGES OF BLOOD PLASMA ENERGY METABOLISM PARAMETERS IN SUCKLING COWS DURING CALVING INTERVAL

    Directory of Open Access Journals (Sweden)

    Ales Pavlik

    2015-02-01

    Full Text Available In this study, effect of environmental condition changes during gazing period on energy metabolism parameters was investigated. Totally 40 Aberdeen Angus cows were selected for observation. Calving all of cows was situated into March. The feeding ration for the animals was comprised by pasture during the grazing period and corn silage, hay and granulated distiller’s grains during the winter period. At average age 9 days before calving, and subsequently 10, 81, 151, 189 and 273 days after calving, blood was sampled and analysed for glucose and NEFA (non-esterified fatty acid concentrations on KONELAB T20xt automatic analyser (Thermo Fisher Scientific, Finland and currently available commercial kits (Biovendor-Laboratorni medicina, Czech Republic. A rapid increase (p < 0.05 of glucose concentration was detected in blood plasma of cows in period before calving to 81 days post partum. Average value of glucose concentration at 273 days postpartum was significant (p < 0.05 lower comparing to day 189. The highest concentrations of NEFA in blood plasma of cows were found at 10 day postpartum. After that, during the persisted higher temperature period the NEFA concentration decreased significantly (p < 0.01 till 189 days postpartum. At the end of monitored period concentration of NEFA in blood plasma significantly decreased (p < 0.05. Changes of hot and cold season during the grazing period probably according to forage quality and had significant effects on blood plasma NEFA and glucose concentrations.

  19. Scaling properties of the solar wind driver and the Akasofu's ɛ parameter at solar maximum.

    Science.gov (United States)

    Hnat, B.; Chapman, S. C.; Kiyani, K.; Rowlands, G.; Watkins, N. W.

    2007-12-01

    Earth magnetosphere is constantly driven by turbulent and intermittent solar wind. Observations suggest that the multi-scale nature of this coupling is a fundamental aspect of magnetospheric dynamics. We examine the statistical properties of fluctuations in Akasofu's ɛ, which represents the energy input from the solar wind into the magnetosphere, and the magnetic field energy density of the solar wind at solar maximum. Previous studies suggested that, at solar maximum, these fluctuations are approximately self-similar and their probability distributions have similar functional form. We examine scaling properties of these quantities in detail, obtain values of their scaling exponents and examine a fractional Lévy walk as a possible model for their statistics.

  20. The statistical dependence of auroral absorption on geomagnetic and solar wind parameters

    Directory of Open Access Journals (Sweden)

    A. J. Kavanagh

    2004-03-01

    Full Text Available Data from the Imaging Riometer for Ionospheric Studies (IRIS at Kilpisjärvi, Finland, have been compiled to form statistics of auroral absorption based on seven years of observations. In a previous study a linear relationship between the logarithm of the absorption and the Kp index provided a link between the observations of precipitation with the level of geomagnetic activity. A better fit to the absorption data is found in the form of a quadratic in Kp for eight magnetic local time sectors. Past statistical investigations of absorption have hinted at the possibility of using the solar wind velocity as a proxy for the auroral absorption, although the lack of available satellite data made such an investigation difficult. Here we employ data from the solar wind monitors, WIND and ACE, and derive a linear relationship between the solar wind velocity and the cosmic noise absorption at IRIS for the same eight magnetic local time sectors. As far as the authors are aware this is the first time that in situ measurements of the solar wind velocity have been used to create a direct link with absorption on a statistical basis. The results are promising although, it is clear that some other factor is necessary in providing reliable absorption predictions. Due to the substorm related nature of auroral absorption, this is likely formed by the recent time history of the geomagnetic activity, or by some other indicator of the energy stored within the magnetotail. For example, a dependence on the southward IMF (interplanetary magnetic field is demonstrated with absorption increasing with successive decreases in Bz; a northward IMF appears to have little effect and neither does the eastward component, By. Key words. Magnetospheric physics (energetic particles, precipitating; solar wind-magnetosphere interactions – Ionosphere (modeling and forecasting

  1. The statistical dependence of auroral absorption on geomagnetic and solar wind parameters

    Directory of Open Access Journals (Sweden)

    A. J. Kavanagh

    2004-03-01

    Full Text Available Data from the Imaging Riometer for Ionospheric Studies (IRIS at Kilpisjärvi, Finland, have been compiled to form statistics of auroral absorption based on seven years of observations. In a previous study a linear relationship between the logarithm of the absorption and the Kp index provided a link between the observations of precipitation with the level of geomagnetic activity. A better fit to the absorption data is found in the form of a quadratic in Kp for eight magnetic local time sectors. Past statistical investigations of absorption have hinted at the possibility of using the solar wind velocity as a proxy for the auroral absorption, although the lack of available satellite data made such an investigation difficult. Here we employ data from the solar wind monitors, WIND and ACE, and derive a linear relationship between the solar wind velocity and the cosmic noise absorption at IRIS for the same eight magnetic local time sectors. As far as the authors are aware this is the first time that in situ measurements of the solar wind velocity have been used to create a direct link with absorption on a statistical basis. The results are promising although, it is clear that some other factor is necessary in providing reliable absorption predictions. Due to the substorm related nature of auroral absorption, this is likely formed by the recent time history of the geomagnetic activity, or by some other indicator of the energy stored within the magnetotail. For example, a dependence on the southward IMF (interplanetary magnetic field is demonstrated with absorption increasing with successive decreases in Bz; a northward IMF appears to have little effect and neither does the eastward component, By.

    Key words. Magnetospheric physics (energetic particles, precipitating; solar wind-magnetosphere interactions – Ionosphere (modeling and forecasting

  2. Temporal evolution of the spectral lines emission and temperatures in laser induced plasmas through characteristic parameters

    Energy Technology Data Exchange (ETDEWEB)

    Bredice, F., E-mail: faustob@ciop.unlp.edu.ar [Centro de Investigaciones Ópticas, P.O. Box 3 C. P.1897 Gonnet, La Plata (Argentina); Pacheco Martinez, P. [Grupo de Espectroscopía Óptica de Emisión y Láser, Universidad del Atlántico, Barranquilla (Colombia); Sánchez-Aké, C.; Villagrán-Muniz, M. [Laboratorio de Fotofísica, Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, Apartado Postal 70-186, México D.F. 04510 (Mexico)

    2015-05-01

    In this work, we propose an extended Boltzmann plot method to determine the usefulness of spectral lines for plasma parameter calculations. Based on the assumption that transient plasmas are under ideal conditions during an specific interval of time Δt, (i.e. thin, homogeneous and in local thermodynamic equilibrium (LTE)), the associated Boltzmann plots describe a surface in the space defined by the coordinates X = Energy, Y = Time and Z = ln (λ{sub jl}I{sub j}/g{sub j}A{sub jl}), where I{sub j} is the integrated intensity of the spectral line, g{sub j} is the statistical weight of the level j, λ{sub jl} is the wavelength of the considered line and A{sub jl} is its transition rate. In order to express the Boltzmann plot surface in terms of a reduced set of constants B{sub i}, and δ{sub i}, we developed as a power series of time, the logarithm of I{sub n}(t)/I{sub n}(t{sub 0}), where I{sub n}(t) is the integrated intensity of any spectral line at time t, and I{sub n}(t{sub 0}) at initial time. Moreover, the temporal evolution of the intensity of any spectral line and consequently the temperature of the plasma can be also expressed with these constants. The comparison of the temporal evolution of the line intensity calculated using these constants with their experimental values, can be used as a criterion for selecting useful lines in plasma analysis. Furthermore, this method can also be applied to determine self-absorption or enhancement of the spectral lines, to evaluate a possible departure of LTE, and to check or estimate the upper level energy value of any spectral line. An advantage of this method is that the value of these constants does not depend on the spectral response of the detection system, the uncertainty of the transition rates belonging to the analyzed spectral lines or any other time-independent parameters. In order to prove our method, we determined the constants B{sub i} and δ{sub i} and therefore the Boltzmann plot surface from the temporal

  3. Sensitivity of Turbine-Height Wind Speeds to Parameters in Planetary Boundary-Layer and Surface-Layer Schemes in the Weather Research and Forecasting Model

    Science.gov (United States)

    Yang, Ben; Qian, Yun; Berg, Larry K.; Ma, Po-Lun; Wharton, Sonia; Bulaevskaya, Vera; Yan, Huiping; Hou, Zhangshuan; Shaw, William J.

    2017-01-01

    We evaluate the sensitivity of simulated turbine-height wind speeds to 26 parameters within the Mellor-Yamada-Nakanishi-Niino (MYNN) planetary boundary-layer scheme and MM5 surface-layer scheme of the Weather Research and Forecasting model over an area of complex terrain. An efficient sampling algorithm and generalized linear model are used to explore the multiple-dimensional parameter space and quantify the parametric sensitivity of simulated turbine-height wind speeds. The results indicate that most of the variability in the ensemble simulations is due to parameters related to the dissipation of turbulent kinetic energy (TKE), Prandtl number, turbulent length scales, surface roughness, and the von Kármán constant. The parameter associated with the TKE dissipation rate is found to be most important, and a larger dissipation rate produces larger hub-height wind speeds. A larger Prandtl number results in smaller nighttime wind speeds. Increasing surface roughness reduces the frequencies of both extremely weak and strong airflows, implying a reduction in the variability of wind speed. All of the above parameters significantly affect the vertical profiles of wind speed and the magnitude of wind shear. The relative contributions of individual parameters are found to be dependent on both the terrain slope and atmospheric stability.

  4. Dust coupling parameter of radio-frequency-discharge complex plasma under microgravity conditions

    Science.gov (United States)

    Zhukhovitskii, D. I.; Naumkin, V. N.; Khusnulgatin, A. I.; Molotkov, V. I.; Lipaev, A. M.

    2017-10-01

    Oscillation of particles in a dust crystal formed in a low-pressure radio-frequency gas discharge under microgravity conditions is studied. Analysis of experimental data obtained in our previous study shows that the oscillations are highly isotropic and nearly homogeneous in the bulk of a dust crystal; oscillations of the neighboring particles are significantly correlated. We demonstrate that the standard deviation of the particle radius vector along with the local particle number density fully define the coupling parameter of the particle subsystem. The latter proves to be of the order of 100, which is two orders of magnitude lower than the coupling parameter estimated for the Brownian diffusion of particles with the gas temperature. This means significant kinetic overheating of particles under stationary conditions. A theoretical interpretation of the large amplitude of oscillation implies the increase of particle charge fluctuations in the dust crystal. The theoretical estimates are based on the ionization equation of state for the complex plasma and the equation for the plasma perturbation evolution. They are shown to match the results of experimental data processing. Estimated order of magnitude of the coupling parameter accounts for the existence of the solid-liquid phase transition observed for similar systems in experiments.

  5. Rate bounded linear parameter varying control of a wind turbine in full load operation

    DEFF Research Database (Denmark)

    Østergaard, Kasper Zinck; Stoustrup, Jakob; Brath, Per

    2008-01-01

    This paper considers the control of wind turbines using an LPV design technique. The controller design is done by a combination of a method that uses elimination of controller variables and a method using a congruent transformation followed by a change of variables. An investigation is performed ...

  6. Effect of a Damage to Modal Parameters of a Wind Turbine Blade

    DEFF Research Database (Denmark)

    Larsen, Gunner Chr.; Berring, Peter; Tcherniak, Dmitri

    2014-01-01

    This study reports structural dynamic characteristics obtained experimentally from an extensive testing campaign on a 34m long wind turbine blade mounted on a test-rig under laboratory conditions. Further, these experimental results have been compared with analog numerical results obtained from...

  7. Lumped-Parameter Models for Wind-Turbine Footings on Layered Ground

    DEFF Research Database (Denmark)

    Andersen, Lars; Liingaard, Morten

    2007-01-01

    The design of modern wind turbines is typically based on lifetime analyses using aeroelastic codes. In this regard, the impedance of the foundations must be described accurately without increasing the overall size of the computational model significantly. This may be obtained by the fitting of a ...

  8. Annoyance of wind-turbine noise as a function of amplitude-modulation parameters

    DEFF Research Database (Denmark)

    Ioannidou, Christina; Santurette, Sébastien; Jeong, Cheol-Ho

    Amplitude modulation (AM) has been suggested as an important factor for the perceived annoyance of wind-turbine noise (WTN). Two AM types, typically referred to as “normal AM” and “other AM,” depending on the AM extent and frequency region, have been proposed to characterize WTN AM. The extent...

  9. PERFORMANCE ANALYSIS OF METHODS FOR ESTIMATING WEIBULL PARAMETERS FOR WIND SPEED DISTRIBUTION IN THE DISTRICT OF MAROUA

    Directory of Open Access Journals (Sweden)

    D. Kidmo Kaoga

    2014-12-01

    Full Text Available In this study, five numerical Weibull distribution methods, namely, the maximum likelihood method, the modified maximum likelihood method (MLM, the energy pattern factor method (EPF, the graphical method (GM, and the empirical method (EM were explored using hourly synoptic data collected from 1985 to 2013 in the district of Maroua in Cameroon. The performance analysis revealed that the MLM was the most accurate model followed by the EPF and the GM. Furthermore, the comparison between the wind speed standard deviation predicted by the proposed models and the measured data showed that the MLM has a smaller relative error of -3.33% on average compared to -11.67% on average for the EPF and -8.86% on average for the GM. As a result, the MLM was precisely recommended to estimate the scale and shape parameters for an accurate and efficient wind energy potential evaluation.

  10. Effect of charge imbalance parameter on LEKW in ion-implanted quantum semiconductor plasmas

    Science.gov (United States)

    Chaudhary, Sandhya; Yadav, Nishchhal; Ghosh, S.

    2015-07-01

    In this study we present an analytical investigation on the propagation characteristics of electro-kinetic wave modified through quantum correction term and charge imbalance parameter using quantum hydrodynamic model for an ion-implanted semiconductor plasma. The dispersion relation has been analyzed in two distinct velocity regimes. We found that as the number of negative charges resides on the colloids increases, their role become increasing effective. The present investigation is important for understanding of wave and instability phenomena and can be put to various interesting applications.

  11. Forecasting Kp from solar wind data: input parameter study using 3-hour averages and 3-hour range values

    Science.gov (United States)

    Wintoft, Peter; Wik, Magnus; Matzka, Jürgen; Shprits, Yuri

    2017-11-01

    We have developed neural network models that predict Kp from upstream solar wind data. We study the importance of various input parameters, starting with the magnetic component Bz, particle density n, and velocity V and then adding total field B and the By component. As we also notice a seasonal and UT variation in average Kp we include functions of day-of-year and UT. Finally, as Kp is a global representation of the maximum range of geomagnetic variation over 3-hour UT intervals we conclude that sudden changes in the solar wind can have a big effect on Kp, even though it is a 3-hour value. Therefore, 3-hour solar wind averages will not always appropriately represent the solar wind condition, and we introduce 3-hour maxima and minima values to some degree address this problem. We find that introducing total field B and 3-hour maxima and minima, derived from 1-minute solar wind data, have a great influence on the performance. Due to the low number of samples for high Kp values there can be considerable variation in predicted Kp for different networks with similar validation errors. We address this issue by using an ensemble of networks from which we use the median predicted Kp. The models (ensemble of networks) provide prediction lead times in the range 20-90 min given by the time it takes a solar wind structure to travel from L1 to Earth. Two models are implemented that can be run with real time data: (1) IRF-Kp-2017-h3 uses the 3-hour averages of the solar wind data and (2) IRF-Kp-2017 uses in addition to the averages, also the minima and maxima values. The IRF-Kp-2017 model has RMS error of 0.55 and linear correlation of 0.92 based on an independent test set with final Kp covering 2 years using ACE Level 2 data. The IRF-Kp-2017-h3 model has RMSE = 0.63 and correlation = 0.89. We also explore the errors when tested on another two-year period with real-time ACE data which gives RMSE = 0.59 for IRF-Kp-2017 and RMSE = 0.73 for IRF-Kp-2017-h3. The errors as function

  12. Oxytocin treatment does not change cardiovascular parameters, hematology and plasma electrolytes in parturient horse mares.

    Science.gov (United States)

    Nagel, Christina; Trenk, Lisa; Wulf, Manuela; Ille, Natascha; Aurich, Jörg; Aurich, Christine

    2017-03-15

    In mares, foaling is associated with changes in hematology, plasma electrolytes, blood pressure and heart rate and it has been hypothesized that these are induced by oxytocin. To test this hypothesis, mares (n = 8-14/group) were treated with oxytocin (OT; 20 I.U.) or saline (CON) at 1 h (test A) and 12 h after foaling (test B) and during first postpartum diestrus (test C). Heart rate, heart rate variability (HRV), atrioventricular blocks, salivary cortisol concentration, blood pressure, plasma electrolytes and blood count were determined. Heart rate decreased from test A to C (P oxytocin. Cortisol concentration decreased from test A to C (P Oxytocin induced a cortisol release in test B (time x treatment P Oxytocin treatment had no effect on skin temperature. In conclusion, except for a limited effect on cortisol release, oxytocin was without effect and the hypothesis of oxytocin-induced alterations in cardiac parameters, plasma electrolytes and hematology of foaling mares was not verified. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Mercury-free electrodeless discharge lamp: effect of xenon pressure and plasma parameters on luminance

    Science.gov (United States)

    Ahmad, Nazri Dagang; Kondo, Akira; Motomura, Hideki; Jinno, Masafumi

    2009-05-01

    Since there is much concern about environmental preservation, the authors have paid attention to the uses of mercury in lighting application. They have focused on the application of the xenon low-pressure inductively coupled plasma (ICP) discharge in developing cylindrical type mercury-free light sources. ICP can be operated at low filling gas pressures and demonstrates significant potential in producing high density plasma. Xenon pressure was varied from 0.1 to 100 Torr and the lamp luminance was measured. The gas pressure dependence shows an increase in luminance at pressures below 1 Torr. In order to clarify this behaviour, measurement of plasma parameters was carried out using the double probe method and its relation to lamp luminance is discussed. As the gas pressure is decreased (from 1 to 0.01 Torr), the electron temperature increases while the electron density decreases while at the same time the lamp luminance increases. There are several factors that are believed to contribute to the increase in luminance in the very low pressure region. Increases in luminance are considered to be due to the electron-ion recombination process which brings a strong recombination radiation in continuum in the visible region and also due to the effect of stochastic heating.

  14. Spatial distributions of plasma parameters in inductively coupled hydrogen discharges with an expansion region

    Science.gov (United States)

    Gao, Fei; Zhang, Yu-Ru; Li, Hong; Liu, Yang; Wang, You-Nian

    2017-07-01

    Spatial distributions of plasma parameters have been investigated by a Langmuir probe in a hydrogen inductively coupled plasma with an expansion region. The influence of the gas pressure and the radio-frequency power on the electron energy probability function (EEPF), electron density, and electron temperature has been presented. The results indicate that the EEPF evolves from a bi-Maxwellian distribution in the discharge driver region to a Maxwellian distribution in the expansion region at low pressures, whereas it is always characterized by a Maxwellian distribution at high pressures. Moreover, the electron density exhibits a bell-shaped profile in the driver region, while the electron temperature shows a relatively uniform distribution there, and they decrease to low values in the expansion region. In order to verify the experimental results, we use the COMSOL simulation software to calculate the electron density and electron temperature at different powers at 2 Pa. The simulated and measured axial distributions of the plasma properties agree well except for the absolute value, i.e., the calculated electron temperature is higher at all the RF powers, and the calculated electron density is underestimated at 2 kW, while a better agreement is obtained at low RF power.

  15. Mercury-free electrodeless discharge lamp: effect of xenon pressure and plasma parameters on luminance

    Energy Technology Data Exchange (ETDEWEB)

    Nazri Dagang Ahmad; Kondo, Akira; Motomura, Hideki; Jinno, Masafumi, E-mail: nazri@mayu.ee.ehime-u.ac.j [Department of Electrical and Electronic Engineering, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577 (Japan)

    2009-05-07

    Since there is much concern about environmental preservation, the authors have paid attention to the uses of mercury in lighting application. They have focused on the application of the xenon low-pressure inductively coupled plasma (ICP) discharge in developing cylindrical type mercury-free light sources. ICP can be operated at low filling gas pressures and demonstrates significant potential in producing high density plasma. Xenon pressure was varied from 0.1 to 100 Torr and the lamp luminance was measured. The gas pressure dependence shows an increase in luminance at pressures below 1 Torr. In order to clarify this behaviour, measurement of plasma parameters was carried out using the double probe method and its relation to lamp luminance is discussed. As the gas pressure is decreased (from 1 to 0.01 Torr), the electron temperature increases while the electron density decreases while at the same time the lamp luminance increases. There are several factors that are believed to contribute to the increase in luminance in the very low pressure region. Increases in luminance are considered to be due to the electron-ion recombination process which brings a strong recombination radiation in continuum in the visible region and also due to the effect of stochastic heating.

  16. Upward lightning attachment analysis on wind turbines and correlated current parameters

    DEFF Research Database (Denmark)

    Vogel, Stephan; Ishii, M.; Saito, M.

    2017-01-01

    . The dataset of video recordings and current measurements originates from the Japanese New Energy and Industrial Technology Development Organization Furthermore (NEDO) measurement campaign (2008 – 2013) which documented lightning incidences on wind turbines mainly during the winter season at the Sea of Japan....... for intense upward lightning activity. 172 video recordings of lightning discharges on rotating wind turbines are analysed and attachment angle, detachment angle, and the resulting angular displacement were determined. A classification between self-initiated and other-triggered upward lightning events...... is performed by means of video analysis. The results reveal that the majority of discharges are initiated on vertical blades; however, also attachments to horizontal blades are reported. Horizontal attachment (or a slightly inclined blade state) is often related with a triggered lightning event prior...

  17. Linear parameter varying control of wind turbines covering both partial load and full load conditions

    DEFF Research Database (Denmark)

    Østergaard, Kasper Zinck; Stoustrup, Jakob; Brath, Per

    2009-01-01

    operations tend to be ill-conditioned. The paper proposes a controller construction algorithm together with various remedies for improving the numerical conditioning the algorithm.The proposed algorithm is applied to the design of a LPV controller for wind turbines, and a comparison is made with a controller...... designed using classical techniques to conclude that an improvement in performance is obtained for the entire operating envelope....

  18. Synthetic thermosphere winds based on CHAMP neutral and plasma density measurements

    NARCIS (Netherlands)

    Gasperini, F; Forbes, J. M.; Doornbos, E.N.; Bruinsma, S. L.

    2016-01-01

    Meridional winds in the thermosphere are key to understanding latitudinal coupling and thermosphere-ionosphere coupling, and yet global measurements of this wind component are scarce. In this work, neutral and electron densities measured by the Challenging Minisatellite Payload (CHAMP) satellite

  19. Corrections for variable plasma parameters in laser induced breakdown spectroscopy: Application on archeological samples

    Science.gov (United States)

    Lazic, V.; Trujillo-Vazquez, A.; Sobral, H.; Márquez, C.; Palucci, A.; Ciaffi, M.; Pistilli, M.

    2016-08-01

    The final scope of this work was to determine the elemental composition of different types of decorative layers present on ancient ceramic fragments through depth profiling by laser induced breakdown spectroscopy (LIBS). The measurements were performed by a stand-off LIBS system at distance of 10.5 m, by employing ns laser pulses at 1064 nm and an Echelle spectrometer. The detected plume intensity strongly differs from one sample/coating to another and changes importantly also in repeated measurements on the almost homogeneous bulk materials. Furthermore, the plasma intensity and its parameters widely change during the depth profiling, as evident from the ratio of here monitored Fe I and Fe II spectral lines. Averaging the line intensities over six repeated measurements, also on the bulk material and for a selected consecutive shot number, produces the errors up to 60% around the mean value and this makes impossible to compare composition of the ceramic body with its decorative layers. To overcome this problem, we developed a theoretically supported procedure for the spectral line corrections in presence of variable plasma parameters, which considers the relative changes among a sufficiently large data set. This method allowed improving the measurement precision up to five times, obtaining a flat response during the depth profiling, and measuring composition of the surface layers. The correction factors are specific for one analytical line of the considered element. The proposed procedure could be universally applied for increasing the LIBS precision in repeated samplings or during the depth profiling, without time consuming calculations of the plasma temperature and the electron density, which also suffer from large measurement errors.

  20. Effect of plasma welding parameters on the flexural strength of Ti-6Al-4V alloy.

    Science.gov (United States)

    Lyra e Silva, João Paulo; Fernandes Neto, Alfredo Júlio; Raposo, Luís Henrique Araújo; Novais, Veridiana Resende; de Araujo, Cleudmar Amaral; Cavalcante, Luisa de Andrade Lima; Simamoto Júnior, Paulo Cezar

    2012-01-01

    The aim of this study was to assess the effect of different plasma arc welding parameters on the flexural strength of titanium alloy beams (Ti-6Al-4V). Forty Ti-6Al-4V and 10 NiCr alloy beam specimens (40 mm long and 3.18 mm diameter) were prepared and divided into 5 groups (n=10). The titanium alloy beams for the control group were not sectioned or subjected to welding. Groups PL10, PL12, and PL14 contained titanium beams sectioned and welded at current 3 A for 10, 12 or 14 ms, respectively. Group NCB consisted of NiCr alloy beams welded using conventional torch brazing. After, the beams were subjected to a three-point bending test and the values obtained were analyzed to assess the flexural strength (MPa). Statistical analysis was carried out by one-way ANOVA and Tukey's HSD test at 0.05 confidence level. Significant difference was verified among the evaluated groups (pplasma welded groups (p>0.05). The NCB group showed the lowest flexural strength, although it was statistically similar to the PL 14 group (p>0.05). The weld depth penetration was not significantly different among the plasma welded groups (p=0.05). Three representative specimens were randomly selected to be evaluated under scanning electron microcopy. The composition of the welded regions was analyzed by energy dispersive X-ray spectroscopy. This study provides an initial set of parameters supporting the use of plasma welding during fabrication of titanium alloy dental frameworks.

  1. Relationship between Lipids Levels of Serum and Seminal Plasma and Semen Parameters in 631 Chinese Subfertile Men.

    Directory of Open Access Journals (Sweden)

    Jin-Chun Lu

    Full Text Available This prospective study was designed to investigate the relationship between lipids levels in both serum and seminal plasma and semen parameters.631 subfertile men were enrolled. Their obesity-associated markers were measured, and semen parameters were analyzed. Also, seminal plasma and serum TC, TG, HDL and LDL and serum FFA, FSH, LH, total testosterone (TT, estradiol (E2 and SHBG levels were detected.Seminal plasma and serum TG, TC and LDL levels were positively related to age. Serum TC, TG and LDL were positively related to obesity-associated markers (P < 0.001, while only seminal plasma TG was positively related to them (P < 0.05. For lipids levels in serum and seminal plasma, only TG level had slightly positive correlation between them (r = 0.081, P = 0.042. There was no significant correlation between serum lipids levels and semen parameters. However, seminal plasma TG, TC, LDL and HDL levels were negatively related to one or several semen parameters, including semen volume (SV, sperm concentration (SC, total sperm count (TSC, sperm motility, progressive motility (PR and total normal-progressively motile sperm counts (TNPMS. Moreover, seminal plasma TG, TC, LDL and HDL levels in patients with oligospermatism, asthenospermia and teratozoospermia were higher than those with normal sperm concentration, motility or morphology. After adjusting age and serum LH, FSH, TT, E2 and SHBG levels, linear regression analysis showed that SV was still significantly correlated with seminal plasma LDL (P = 0.012, both of SC and TSC with seminal plasma HDL (P = 0.028 and 0.002, and both of PR and sperm motility with seminal plasma TC (P = 0.012 and 0.051.The abnormal metabolism of lipids in male reproductive system may contribute to male factor infertility.

  2. Seminal plasma proteins of adult boars and correlations with sperm parameters.

    Science.gov (United States)

    González-Cadavid, Verónica; Martins, Jorge A M; Moreno, Frederico B; Andrade, Tiago S; Santos, Antonio C L; Monteiro-Moreira, Ana Cristina O; Moreira, Renato A; Moura, Arlindo A

    2014-09-15

    The present study was conducted to identify the major seminal plasma protein profile of boars and its associations with semen criteria. Semen samples were collected from 12 adult boars and subjected to evaluation of sperm parameters (motility, morphology, vitality, and percent of cells with intact acrosome). Seminal plasma was obtained by centrifugation, analyzed by two-dimensional SDS-PAGE, and proteins identified by mass spectrometry (electrospray ionization quadrupole time-of-flight). We tested regression models using spot intensities related to the same proteins as independent variables and semen parameters as dependent variables (P ≤ 0.05). One hundred twelve spots were identified in the boar seminal plasma gels, equivalent to 39 different proteins. Spermadhesin porcine seminal protein (PSP)-I and PSP-II, as well as spermadhesins AQN-1, AQN-3 and AWN-1 represented 45.2 ± 8% of the total intensity of all spots. Other proteins expressed in the boar seminal plasma included albumin, complement proteins (complement factor H precursor, complement C3 precursor and adipsin/complement factor D), immunoglobulins (IgG heavy chain precursor, IgG delta heavy chain membrane bound form, IgG gamma-chain, Ig lambda chain V-C region PLC3, and CH4 and secreted domains of swine IgM), IgG-binding proteins, epididymal-specific lipocalin 5, epididymal secretory protein E1 precursor, epididymal secretory glutathione peroxidase precursor, transferrin, lactotransferrin and fibronectin type 1 (FN1). On the basis of the regression analysis, the percentage of sperm with midpiece defects was related to the amount of CH4 and secreted domains of swine IgM and FN1 (r² = 0.58, P = 0.006), IgG-binding protein (r² = 0.41, P = 0.024), complement factor H precursor (r² = 0.61, P = 0.014) and lactadherin (r² = 0.45, P = 0.033). The percentage of sperm with tail defects was also related to CH4 and secreted domains of swine IgM and FN1 (r² = 0.40, P = 0.034), IgG-binding protein (r² = 0

  3. Influence of the Determination Methods of K and C Parameters on the Ability of Weibull Distribution to Suitably Estimate Wind Potential and Electric Energy

    Directory of Open Access Journals (Sweden)

    Ruben M. Mouangue

    2014-05-01

    Full Text Available The modeling of the wind speed distribution is of great importance for the assessment of wind energy potential and the performance of wind energy conversion system. In this paper, the choice of two determination methods of Weibull parameters shows theirs influences on the Weibull distribution performances. Because of important calm winds on the site of Ngaoundere airport, we characterize the wind potential using the approach of Weibull distribution with parameters which are determined by the modified maximum likelihood method. This approach is compared to the Weibull distribution with parameters which are determined by the maximum likelihood method and the hybrid distribution which is recommended for wind potential assessment of sites having nonzero probability of calm. Using data provided by the ASECNA Weather Service (Agency for the Safety of Air Navigation in Africa and Madagascar, we evaluate the goodness of fit of the various fitted distributions to the wind speed data using the Q – Q plots, the Pearson’s coefficient of correlation, the mean wind speed, the mean square error, the energy density and its relative error. It appears from the results that the accuracy of the Weibull distribution with parameters which are determined by the modified maximum likelihood method is higher than others. Then, this approach is used to estimate the monthly and annual energy productions of the site of the Ngaoundere airport. The most energy contribution is made in March with 255.7 MWh. It also appears from the results that a wind turbine generator installed on this particular site could not work for at least a half of the time because of higher frequency of calm. For this kind of sites, the modified maximum likelihood method proposed by Seguro and Lambert in 2000 is one of the best methods which can be used to determinate the Weibull parameters.

  4. Black Sea's wind wave parameters derived from numerical simulations driven by NCEP/NCAR and NCEP CFSR reanalyses

    Science.gov (United States)

    Gippius, Fedor; Myslenkov, Stanislav; Stoliarova, Elena; Arkhipkin, Victor

    2017-04-01

    This study is focused on typical features of spatiotemporal distribution of wind wave parameters on the Black Sea. These parameters were calculated during two experiments using the third-generation spectral wind wave model SWAN. During the first run a 5x5 km rectangular grid covering the entire Black Sea was used. Forcing parameters - wind speed and direction - were derived from the NCEP/NCAR reanalysis for the period between 1948 and 2010. During the second run high resolution wind fields form the NCEP-CFSR reanalysis were used as forcing for the period from 1979 till 2010. For the period form 2011 till 2015 the second version of this reanalysis was used. The computations were performed on an unstructured computational grid with cell size depending on the sea depth. The distance between grid points varies from 10—15 km in deep-water regions till 500 m in coastal areas. Calculated values of significant wave heights (SWH) obtained during both runs were validated against instrumental measurements data. In the first case we used satellite altimetry data from the AVISO project. It turned out that calculated SWH values are typically lower than observed ones - the deviation between them was 0.3 m on the average, its maximum was of 1.67 m. Therefore, an empirical formula was applied to correct the modeling results obtained during the first experiment. For the second experiment in situ measurements performed by a Datawell buoy installed 7 km off the city Gelendzhik were used for validation. The comparison of measured and modelled values of SWH shows a good agreement between these parameters in this case. No correction was applied to the results of the second experiment. We applied the results of the NCEP/NCAR experiment to assess various features of the wave climate of the entire Black Sea. Thus, maximal SWH are observed in winter and autumn in two areas in the southwestern and northeastern parts of the sea; SWH values in these areas exceed 9 m. To define areas with most

  5. Kinetic approach to the formation of 3D electromagnetic structures in flows of expanding plasma coronas. II. flow anisotropy parameters

    Science.gov (United States)

    Gubchenko, V. M.

    2015-12-01

    The formation of magnetic structures in moving hot solar coronal plasma and hot collisionless laser-produced plasma, as determined by nonlinear criteria for weak and strong magnetization on the basis of the friction parameter Γ B and Alfven number M A, is considered within the Vlasov and Maxwell equations in the second part of the work. The flow velocities are lower then the thermal electron velocity. The energy and pulse anisotropy parameters of a flow, which determine its electromagnetic properties in the Cherenkov resonance line, are calculated by shape of particle distribution function (PDF). The ratio of these parameters is the Q-factor G V ; it characterizes the electromagnetic properties of a plasma flow and is expressed via the ratio of diamagnetic and resistive current densities or via the ratio of irregular and diamagnetic plasma scales. A particle flow is similar to a conductive medium at G V ≪ 1 and a diamagnetic medium at G V ≫ 1. The following cases are considered. (1) A plasma flow is specified by an isotropic PDF and interacts with distributed magnetization. Expressions for anisotropy parameters are derived, 3D field structures in the tail wake are found, and a possibility of topological reconstruction into a compact state under variation in the parameter G V is shown. (2) A plasma flow is specified by an isotropic PDF; a steady-state diamagnetic current layer, characterized by an anisotropic PDF, is immersed inside it. The system is in the diamagnetic state G ≫ 1. The generalized anisotropy parameter is calculated and a possibility of the excitation of three types of diamagnetic structures with low resistive currents is shown. (3) The nonlinear dynamics of anisotropic quasi-current-free plasma ( G =-1), in which the diamagnetic and resistive current densities locally compensate each other in the phase space of particle velocities, is studied. This dynamics is implemented in the long wavelength limit in plasma with an anisotropic PDF.

  6. Relationships between organohalogen contaminants and blood plasma clinical–chemical parameters in chicks of three raptor species from Northern Norway

    DEFF Research Database (Denmark)

    Sonne, Christian; Bustnes, Jan Ove; Herzke, Dorte

    2010-01-01

    Organohalogen contaminants (OHCs) may affect various physiological parameters in birds including blood chemistry. We therefore examined blood plasma clinical-chemical parameters and OHCs in golden eagle, white-tailed eagle and goshawk chicks from Northern Norway. Correlation analyses on pooled data...

  7. Measurements of wind turbulence parameters by a conically scanning coherent Doppler lidar in the atmospheric boundary layer

    Science.gov (United States)

    Smalikho, Igor N.; Banakh, Viktor A.

    2017-11-01

    The method and results of lidar studies of spatiotemporal variability of wind turbulence in the atmospheric boundary layer are reported. The measurements were conducted by a Stream Line pulsed coherent Doppler lidar (PCDL) with the use of conical scanning by a probing beam around the vertical axis. Lidar data are used to estimate the kinetic energy of turbulence, turbulent energy dissipation rate, integral scale of turbulence, and momentum fluxes. The dissipation rate was determined from the azimuth structure function of radial velocity within the inertial subrange of turbulence. When estimating the kinetic energy of turbulence from lidar data, we took into account the averaging of radial velocity over the sensing volume. The integral scale of turbulence was determined on the assumption that the structure of random irregularities of the wind field is described by the von Kármán model. The domain of applicability of the used method and the accuracy of the estimation of turbulence parameters were determined. Turbulence parameters estimated from Stream Line lidar measurement data and from data of a sonic anemometer were compared.

  8. Energy dependence of jet transport parameter and parton saturationin quark-gluon plasma

    Energy Technology Data Exchange (ETDEWEB)

    Casalderrey-Solana, Jorge; Wang, Xin-Nian

    2007-06-24

    We study the evolution and saturation of the gluondistribution function in the quark-gluon plasma as probed by apropagating parton and its effect on the computation of jet quenching ortransport parameter $\\hat q $. For thermal partons, the saturation scale$Q2_s$ is found to be proportional to the Debye screening mass $\\mu_D2$.For hard probes, evolution at small $x=Q2_s/6ET$ leads to jet energydependence of hat q. We study this dependence for both a conformal gaugetheory in weak and strong coupling limit and for (pure gluon) QCD. Theenergy dependence can be used to extract the shear viscosity $\\eta$ ofthe medium since $\\eta$ can be related to the transport parameter forthermal partons in a transport description. We also derive upper boundson the transport parameter for both energetic and thermal partons. Thelater leads to a lower bound on shear viscosity-to-entropy density ratiowhich is consistent with the conjectured lower bound $\\eta/s\\geq 1/4\\pi$.Implications on the study of jet quenching at RHIC and LHC and the bulkproperties of the dense matter are discussed.

  9. Relationship between Lipids Levels of Serum and Seminal Plasma and Semen Parameters in 631 Chinese Subfertile Men.

    Science.gov (United States)

    Lu, Jin-Chun; Jing, Jun; Yao, Qi; Fan, Kai; Wang, Guo-Hong; Feng, Rui-Xiang; Liang, Yuan-Jiao; Chen, Li; Ge, Yi-Feng; Yao, Bing

    2016-01-01

    This prospective study was designed to investigate the relationship between lipids levels in both serum and seminal plasma and semen parameters. 631 subfertile men were enrolled. Their obesity-associated markers were measured, and semen parameters were analyzed. Also, seminal plasma and serum TC, TG, HDL and LDL and serum FFA, FSH, LH, total testosterone (TT), estradiol (E2) and SHBG levels were detected. Seminal plasma and serum TG, TC and LDL levels were positively related to age. Serum TC, TG and LDL were positively related to obesity-associated markers (P lipids levels in serum and seminal plasma, only TG level had slightly positive correlation between them (r = 0.081, P = 0.042). There was no significant correlation between serum lipids levels and semen parameters. However, seminal plasma TG, TC, LDL and HDL levels were negatively related to one or several semen parameters, including semen volume (SV), sperm concentration (SC), total sperm count (TSC), sperm motility, progressive motility (PR) and total normal-progressively motile sperm counts (TNPMS). Moreover, seminal plasma TG, TC, LDL and HDL levels in patients with oligospermatism, asthenospermia and teratozoospermia were higher than those with normal sperm concentration, motility or morphology. After adjusting age and serum LH, FSH, TT, E2 and SHBG levels, linear regression analysis showed that SV was still significantly correlated with seminal plasma LDL (P = 0.012), both of SC and TSC with seminal plasma HDL (P = 0.028 and 0.002), and both of PR and sperm motility with seminal plasma TC (P = 0.012 and 0.051). The abnormal metabolism of lipids in male reproductive system may contribute to male factor infertility.

  10. Relationship between Lipids Levels of Serum and Seminal Plasma and Semen Parameters in 631 Chinese Subfertile Men

    Science.gov (United States)

    Yao, Qi; Fan, Kai; Wang, Guo-Hong; Feng, Rui-Xiang; Liang, Yuan-Jiao; Chen, Li; Ge, Yi-Feng; Yao, Bing

    2016-01-01

    Objective This prospective study was designed to investigate the relationship between lipids levels in both serum and seminal plasma and semen parameters. Methods 631 subfertile men were enrolled. Their obesity-associated markers were measured, and semen parameters were analyzed. Also, seminal plasma and serum TC, TG, HDL and LDL and serum FFA, FSH, LH, total testosterone (TT), estradiol (E2) and SHBG levels were detected. Results Seminal plasma and serum TG, TC and LDL levels were positively related to age. Serum TC, TG and LDL were positively related to obesity-associated markers (P lipids levels in serum and seminal plasma, only TG level had slightly positive correlation between them (r = 0.081, P = 0.042). There was no significant correlation between serum lipids levels and semen parameters. However, seminal plasma TG, TC, LDL and HDL levels were negatively related to one or several semen parameters, including semen volume (SV), sperm concentration (SC), total sperm count (TSC), sperm motility, progressive motility (PR) and total normal-progressively motile sperm counts (TNPMS). Moreover, seminal plasma TG, TC, LDL and HDL levels in patients with oligospermatism, asthenospermia and teratozoospermia were higher than those with normal sperm concentration, motility or morphology. After adjusting age and serum LH, FSH, TT, E2 and SHBG levels, linear regression analysis showed that SV was still significantly correlated with seminal plasma LDL (P = 0.012), both of SC and TSC with seminal plasma HDL (P = 0.028 and 0.002), and both of PR and sperm motility with seminal plasma TC (P = 0.012 and 0.051). Conclusion The abnormal metabolism of lipids in male reproductive system may contribute to male factor infertility. PMID:26726884

  11. Determination of enzyme activity in rabbit seminal plasma and its relationship with quality semen parameters

    Directory of Open Access Journals (Sweden)

    M.P. Viudes de Castro

    2015-12-01

    Full Text Available The objective of this study was to determine rabbit seminal plasma enzyme activity. Furthermore, correlations between semen parameters and enzyme activity and male age were examined. The study was performed using 17 New Zealand White males from 5 to 9 mo old. Overall, 252 semen samples were collected from bucks from May to September. Semen characteristics were analysed and the seminal plasma was obtained by centrifugation. The activities of alanyl aminopeptidase (APN, aspartate transaminase (AST, alanine aminotransferase (ALT, γ-glutamyl transpeptidase (GGT, lactate dehydrogenase (LDH and alkaline phosphatase (ALKP in the seminal plasma fluid were measured. Significant differences between males were found in APN, GGT, LDH, ALKP and ALT activities (P<0.05. No significant differences between enzyme activity and male age were found. We also observed significant positive correlations between male age and sperm concentration (r=0.26, progressive motility (r=0.17 and amplitude of lateral head displacement (r=0.21, and negative ones between male age and average path velocity (r=–0.56, velocity of the sperm head along its actual curvilinear path (r=–0.61, straight line velocity (r=–0.50, linearity index (r=–0.13, and cytoplasmic droplet (r=–0.33. Furthermore, a significant negative correlation between APN activity and the status of the acrosome (r=–0.20 and significant positive correlations between APN activity and the sperm abnormalities (r=0.21, GGT activity and sperm concentration (r=0.34 and the status of the acrosome (r=0.31, and ALKP activity and sperm concentration were observed (r=0.41. In our study, APN and GGT seem to be the most predictive enzymes for rabbit semen quality.

  12. Short-Term Wind Speed Forecasting Using the Data Processing Approach and the Support Vector Machine Model Optimized by the Improved Cuckoo Search Parameter Estimation Algorithm

    Directory of Open Access Journals (Sweden)

    Chen Wang

    2016-01-01

    Full Text Available Power systems could be at risk when the power-grid collapse accident occurs. As a clean and renewable resource, wind energy plays an increasingly vital role in reducing air pollution and wind power generation becomes an important way to produce electrical power. Therefore, accurate wind power and wind speed forecasting are in need. In this research, a novel short-term wind speed forecasting portfolio has been proposed using the following three procedures: (I data preprocessing: apart from the regular normalization preprocessing, the data are preprocessed through empirical model decomposition (EMD, which reduces the effect of noise on the wind speed data; (II artificially intelligent parameter optimization introduction: the unknown parameters in the support vector machine (SVM model are optimized by the cuckoo search (CS algorithm; (III parameter optimization approach modification: an improved parameter optimization approach, called the SDCS model, based on the CS algorithm and the steepest descent (SD method is proposed. The comparison results show that the simple and effective portfolio EMD-SDCS-SVM produces promising predictions and has better performance than the individual forecasting components, with very small root mean squared errors and mean absolute percentage errors.

  13. Observation of Chorus Waves by the Van Allen Probes: Dependence on Solar Wind Parameters and Scale Size

    Science.gov (United States)

    Aryan, Homayon; Sibeck, David; Balikhin, Michael; Agapitov, Oleksiy; Kletzing, Craig

    2016-01-01

    Highly energetic electrons in the Earths Van Allen radiation belts can cause serious damage to spacecraft electronic systems and affect the atmospheric composition if they precipitate into the upper atmosphere. Whistler mode chorus waves have attracted significant attention in recent decades for their crucial role in the acceleration and loss of energetic electrons that ultimately change the dynamics of the radiation belts. The distribution of these waves in the inner magnetosphere is commonly presented as a function of geomagnetic activity. However, geomagnetic indices are nonspecific parameters that are compiled from imperfectly covered ground based measurements. The present study uses wave data from the two Van Allen Probes to present the distribution of lower band chorus waves not only as functions of single geomagnetic index and solar wind parameters but also as functions of combined parameters. Also the current study takes advantage of the unique equatorial orbit of the Van Allen Probes to estimate the average scale size of chorus wave packets, during close separations between the two spacecraft, as a function of radial distance, magnetic latitude, and geomagnetic activity, respectively. Results show that the average scale size of chorus wave packets is approximately 13002300 km. The results also show that the inclusion of combined parameters can provide better representation of the chorus wave distributions in the inner magnetosphere and therefore can further improve our knowledge of the acceleration and loss of radiation belt electrons.

  14. Observation of chorus waves by the Van Allen Probes: dependence on solar wind parameters and scale size

    Science.gov (United States)

    Aryan, H.; Sibeck, D. G.; Balikhin, M. A.; Agapitov, O. V.; Kletzing, C.

    2016-12-01

    Highly energetic electrons in the Earth's Van Allen radiation belts can cause serious damage to spacecraft electronic systems, and affect the atmospheric composition if they precipitate into the upper atmosphere. Whistler mode chorus waves have attracted significant attention in recent decades for their crucial role in the acceleration and loss of energetic electrons that ultimately change the dynamics of the radiation belts. The distribution of these waves in the inner magnetosphere is commonly presented as a function of geomagnetic activity. However, geomagnetic indices are non-specific parameters that are compiled from imperfectly covered ground based measurements. The present study uses wave data from the two Van Allen Probes to present the distribution of lower band chorus waves not only as functions of single geomagnetic index and solar wind parameters, but also as functions of combined parameters. Also the current study takes advantage of the unique equatorial orbit of the Van Allen Probes to estimate the average scale size of chorus wave packets, during close separations between the two spacecraft, as a function of radial distance, magnetic latitude, and geomagnetic activity respectively. Results show that the average scale size of chorus wave packets is approximately 1300 - 2300 km. The results also show that the inclusion of combined parameters can provide better representation of the chorus wave distributions in the inner magnetosphere, and therefore can further improve our knowledge of the acceleration and loss of radiation belt electrons.

  15. Note on one-fluid modeling of low-frequency Alfvénic fluctuations in a solar wind plasma with multi-ion components

    Energy Technology Data Exchange (ETDEWEB)

    Nariyuki, Y. [Faculty of Human Development, University of Toyama, 3190, Toyama City, Toyama 930-8555 (Japan); Umeda, T. [Solar-Terrestrial Environment Laboratory, Nagoya University, Nagoya, Aichi 464-8601 (Japan); Suzuki, T. K. [Department of Physics, Nagoya University, Furo-cho, Nagoya, Aichi 464-8602 (Japan); Hada, T. [Department of Earth System Science and Technology, Kyushu University, 6-1, Kasuga City, Fukuoka 816-8580 (Japan)

    2015-12-15

    A simple point of view that non-zero Alfvén ratio (residual energy) appears as a consequence of one-fluid modeling of uni-directional Alfvén waves in a solar wind plasma is presented. Since relative speeds among ions are incorporated into the one-fluid model as a pressure anisotropy, the Alfvén ratio can be finite due to the decrease in the phase velocity. It is shown that a proton beam component typically found in the solar wind plasma can contribute to generating non-zero Alfvén ratio observed in the solar wind plasma. Local equilibrium velocity distribution functions of each ion component are also discussed by using maximum entropy principle.

  16. Internal oscillating current-sustained RF plasmas: Parameters, stability, and potential for surface engineering

    DEFF Research Database (Denmark)

    Ostrikov, K.; Tsakadze, E.L.; Tsakadze, Z.L.

    2005-01-01

    . Moreover, under certain conditions, the plasma becomes unstable due to spontaneous transitions between low-density (electrostatic, E) and high-density (electromagnetic, H) operating modes. Excellent uniformity of high-density plasmas makes the plasma reactor promising for various plasma processing...... applications and surface engineering. (c) 2005 Elsevier B.V. All rights reserved....

  17. Impact of hydrofluorocarbon molecular structure parameters on plasma etching of ultra-low-K dielectric

    Energy Technology Data Exchange (ETDEWEB)

    Li, Chen [Department of Physics and Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 20742 (United States); Gupta, Rahul; Pallem, Venkateswara [American Air Liquide, Newark, Delaware 19702 (United States); Oehrlein, Gottlieb S., E-mail: oehrlein@umd.edu [Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742 and Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 20742 (United States)

    2016-05-15

    The authors report a systematic study aimed at evaluating the impact of molecular structure parameters of hydrofluorocarbon (HFC) precursors on plasma deposition of fluorocarbon (FC) films and etching performance of a representative ultra-low-k material, along with amorphous carbon. The precursor gases studied included fluorocarbon and hydrofluorocarbon gases whose molecular weights and chemical structures were systematically varied. Gases with three different degrees of unsaturation (DU) were examined. Trifluoromethane (CHF{sub 3}) is the only fully saturated gas that was tested. The gases with a DU value of one are 3,3,3-trifluoropropene (C{sub 3}H{sub 3}F{sub 3}), hexafluoropropene (C{sub 3}F{sub 6}), 1,1,3,3,3-pentafluoro-1-propene (C{sub 3}HF{sub 5}), (E)-1,2,3,3,3-pentafluoropropene (C{sub 3}HF{sub 5} isomer), heptafluoropropyl trifluorovinyl ether (C{sub 5}F{sub 10}O), octafluorocyclobutane (C{sub 4}F{sub 8}), and octafluoro-2-butene (C{sub 4}F{sub 8} isomer). The gases with a DU value of two includes hexafluoro-1,3-butadiene (C{sub 4}F{sub 6}), hexafluoro-2-butyne (C{sub 4}F{sub 6} isomer), octafluorocyclopentene (C{sub 5}F{sub 8}), and decafluorocyclohexene (C{sub 6}F{sub 10}). The work was performed in a dual frequency capacitively coupled plasma reactor. Real-time characterization of deposition and etching was performed using in situ ellipsometry, and optical emission spectroscopy was used for characterization of CF{sub 2} radicals in the gas phase. The chemical composition of the deposited FC films was examined by x-ray photoelectron spectroscopy. The authors found that the CF{sub 2} fraction, defined as the number of CF{sub 2} groups in a precursor molecule divided by the total number of carbon atoms in the molecule, determines the CF{sub 2} optical emission intensity of the plasma. CF{sub 2} optical emission, however, is not the dominant factor that determines HFC film deposition rates. Rather, HFC film deposition rates are determined by the number of

  18. The most intense electrical currents in the solar wind: Comparisons between single-spacecraft measurements and plasma turbulence simulations

    Science.gov (United States)

    Podesta, John J.; Roytershteyn, Vadim

    2017-07-01

    Three-dimensional hybrid simulations of solar wind turbulence near the orbit of the Earth are used to investigate the plasma current density over the range of scales from 0.5 proton inertial lengths to hundreds of proton inertial lengths. The data are analyzed along a simulated spacecraft trajectory in order to directly compare the results against single-spacecraft measurements. The most intense current densities are identified using an amplitude threshold technique and the properties of 5σ events identified in the true current density are compared to the properties of 5σ events identified using a proxy for the current density designed for studies of single-spacecraft solar wind measurements. The proxy is proportional to the magnitude of the directional derivative of the magnetic field along the spacecraft trajectory. The results from the simulation show that the average properties of 5σ events observed in the proxy are quantitatively similar to those observed in the true current density, properties such as the spatial size of the events, the nearest neighbor distance, and the peak current density of the events. This provides some justification for the use of the proxy for the statistical analysis of solar wind data even though the simulation indicates that the occurrence times of large-amplitude events in the proxy are not always a reliable indicator of the occurrence times of large-amplitude events in the true current density. The physical properties of 5σ events in simulated spacecraft data show remarkable quantitative agreement with the properties of 5σ events observed in solar wind data.

  19. Serum zinc, plasma ghrelin, leptin levels, selected biochemical parameters and nutritional status in malnourished hemodialysis patients.

    Science.gov (United States)

    Sahin, H; Uyanik, F; Inanç, N; Erdem, O

    2009-03-01

    This study was performed to investigate the serum zinc (Zn), plasma ghrelin, leptin levels and nutritional status, and to evaluate the potential association between malnutrition and these investigated parameters in malnourished hemodialysis (HD) patients. Fifteen malnourished HD patients, aged 42.9 +/- 2.11 years, who underwent the HD for 46.44 +/- 7.1 months and 15 healthy volunteers, aged 41.0 +/- 2.17 years, were included in this study. The nutritional status of the subjects was determined by the subjective global assessment (SGA). Anthropometric measurements were taken by bioelectrical impedance after HD. Blood samples were collected for the analysis of zinc (Zn), ghrelin, leptin, and selected blood parameters. The HD patients consumed less energy and nutrients than controls. In HD patients, body weight, body mass index (BMI) (p sodium (Na) (p leptin levels. There were positive correlations for body weight-fasting glucose and body weight-leptin (p leptin (p leptin, and BMI-body fat (p < 0.05); albumin-hemoglobin and albumin-insulin (p < 0.05). Negative correlation was found for SGA score-ghrelin (p < 0.05). Malnutrition in HD patients may result from inadequate energy and nutrient intake and low Zn and ghrelin levels. Zinc supplementation to the diets of HD patients may be of value to prevent the malnutrition.

  20. Study of the operating parameters of a helicon plasma discharge source using PIC-MCC simulation technique

    Science.gov (United States)

    Jaafarian, Rokhsare; Ganjovi, Alireza; Etaati, Gholamreza

    2018-01-01

    In this work, a Particle in Cell-Monte Carlo Collision simulation technique is used to study the operating parameters of a typical helicon plasma source. These parameters mainly include the gas pressure, externally applied static magnetic field, the length and radius of the helicon antenna, and the frequency and voltage amplitude of the applied RF power on the helicon antenna. It is shown that, while the strong radial gradient of the formed plasma density in the proximity of the plasma surface is substantially proportional to the energy absorption from the existing Trivelpiece-Gould (TG) modes, the observed high electron temperature in the helicon source at lower static magnetic fields is significant evidence for the energy absorption from the helicon modes. Furthermore, it is found that, at higher gas pressures, both the plasma electron density and temperature are reduced. Besides, it is shown that, at higher static magnetic fields, owing to the enhancement of the energy absorption by the plasma charged species, the plasma electron density is linearly increased. Moreover, it is seen that, at the higher spatial dimensions of the antenna, both the plasma electron density and temperature are reduced. Additionally, while, for the applied frequencies of 13.56 MHz and 27.12 MHz on the helicon antenna, the TG modes appear, for the applied frequency of 18.12 MHz on the helicon antenna, the existence of helicon modes is proved. Moreover, by increasing the applied voltage amplitude on the antenna, the generation of mono-energetic electrons is more probable.

  1. On the relation between radiation belt electrons and solar wind parameters/geomagnetic indices: dependence on the first adiabatic invariant and L*

    OpenAIRE

    Zhao, H.; Baker, D. N.; Jaynes, A. N.; Li, X.; Elkington, S. R.; Kanekal, S. G.; Spence, H. E.; Boyd, A. J.; Huang, C-L; Forsyth, C.

    2017-01-01

    The relation between radiation belt electrons and solar wind/magnetospheric processes is of particular interest due to both scientific and practical needs. Though many studies have focused on this topic, electron data from Van Allen Probes with wide L shell coverage and fine energy resolution, for the first time, enabled this statistical study on the relation between radiation belt electrons and solar wind parameters/geomagnetic indices as a function of first adiabatic invariant μ and L*. Goo...

  2. Three parameters, plasma thrombopoietin levels, plasma glycocalicin levels and megakaryocyte culture, distinguish between different causes of congenital thrombocytopenia

    NARCIS (Netherlands)

    van den Oudenrijn, Sonja; Bruin, Marrie; Folman, Claudia C.; Bussel, James; de Haas, Masja; von dem Borne, Albert E. G. Kr

    2002-01-01

    Fourteen children with congenital thrombocytopenia were analysed in order to unravel the mechanisms underlying their thrombocytopenia and to evaluate the value of new laboratory tests, namely measurement of plasma thrombopoietin (Tpo) and glycocalicin (GC) levels and analysis of megakaryocytopoiesis

  3. ICE SOLAR WIND PLASMA ELECTRON ANALYSER DATA V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — These data were obtained from the LANL plasma experiment on ICE (Principal Investigator: S.J. Bame assistance from K. Sofaly and S. Kedge). The instrument measures...

  4. Influence of the initial parameters of the magnetic field and plasma on the spatial structure of the electric current and electron density in current sheets formed in helium

    Energy Technology Data Exchange (ETDEWEB)

    Ostrovskaya, G. V., E-mail: galya-ostr@mail.ru [Russian Academy of Sciences, Ioffe Physical Technical Institute (Russian Federation); Markov, V. S.; Frank, A. G., E-mail: annfrank@fpl.gpi.ru [Russian Academy of Sciences, Prokhorov General Physics Institute (Russian Federation)

    2016-01-15

    The influence of the initial parameters of the magnetic field and plasma on the spatial structure of the electric current and electron density in current sheets formed in helium plasma in 2D and 3D magnetic configurations with X-type singular lines is studied by the methods of holographic interferometry and magnetic measurements. Significant differences in the structures of plasma and current sheets formed at close parameters of the initial plasma and similar configurations of the initial magnetic fields are revealed.

  5. Effect of basic physical parameters to control plasma meniscus and beam halo formation in negative ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, K. [Naruto University of Education, 748 Nakashima, Takashima, Naruto-cho, Naruto-shi, Tokushima 772-8502 (Japan); Okuda, S.; Nishioka, S.; Hatayama, A. [Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan)

    2013-09-14

    Our previous study shows that the curvature of the plasma meniscus causes the beam halo in the negative ion sources: the negative ions extracted from the periphery of the meniscus are over-focused in the extractor due to the electrostatic lens effect, and consequently become the beam halo. In this article, the detail physics of the plasma meniscus and beam halo formation is investigated with two-dimensional particle-in-cell simulation. It is shown that the basic physical parameters such as the H{sup −} extraction voltage and the effective electron confinement time significantly affect the formation of the plasma meniscus and the resultant beam halo since the penetration of electric field for negative ion extraction depends on these physical parameters. Especially, the electron confinement time depends on the characteristic time of electron escape along the magnetic field as well as the characteristic time of electron diffusion across the magnetic field. The plasma meniscus penetrates deeply into the source plasma region when the effective electron confinement time is short. In this case, the curvature of the plasma meniscus becomes large, and consequently the fraction of the beam halo increases.

  6. WIND TURBINES FOR WIND POWER INSTALLATIONS

    Directory of Open Access Journals (Sweden)

    Barladean A.S.

    2008-04-01

    Full Text Available The problem of wind turbine choice for wind power stations is examined in this paper. It is shown by comparison of parameters and characteristics of wind turbines, that for existing modes and speeds of wind in territory of Republic of Moldova it is necessary to use multi-blade small speed rotation wind turbines of fan class.

  7. Effect of dietary protein sources on production performance, egg quality, and plasma parameters of laying hens

    Directory of Open Access Journals (Sweden)

    Xiaocui Wang

    2017-03-01

    Full Text Available Objective This study was conducted to evaluate the effects of dietary protein sources (soybean meal, SBM; low-gossypol cottonseed meal, LCSM; double-zero rapeseed meal, DRM on laying performance, egg quality, and plasma parameters of laying hens. Methods A total of 432 32-wk-old laying hens were randomly divided into 6 treatments with 6 replicates of 12 birds each. The birds were fed diets containing SBM, LCSM100, or DRM100 individually or in combination with an equal amount of crude protein (CP (LCSM50, DRM50, and LCSM50-DRM50. The experimental diets, which were isocaloric (metabolizable energy, 11.11 MJ/kg and isonitrogenous (CP, 16.5%, had similar digestible amino acid profile. The feeding trial lasted 12 weeks. Results The daily egg mass was decreased in the LCSM100 and LCSM50-DRM50 groups (p0.05 and showed increased yolk color at the end of the trial (p0.05. Conclusion Together, our results suggest that the LCSM100 or DRM100 diets may produce the adverse effects on laying performance and egg quality after feeding for 8 more weeks. The 100.0 g/kg LCSM diet or the148.7 g/kg DRM diet has no adverse effects on laying performance and egg quality.

  8. Study of the fundamental plasma parameters by HG ICP-OES with a dual hydride generation system

    Directory of Open Access Journals (Sweden)

    Nereida Carrión

    2011-12-01

    Full Text Available The effect of hydrogen from hydrides generation in a radially-viewed inductively coupled plasma optical emission spectroscopy with a dual hydride-generator system on plasma excitation characteristic was studied. The effects of the acid concentration and reductant solution flow rate on the fundamental parameters were evaluated. Results showed an improvement on the plasma excitation conditions compared to standard nebulization. The excitation temperature, the electron number density and the ionic-to-atomic lines Mg(II/Mg(I ratio increased significantly when the system was operated in the dual mode, even at very low reductant flow. These parameters increased in magnitude when increased reductant flow rate and acid concentration

  9. Development of plasma diagnostics technologies - Measurement of transport= parameters in tokamak edge plasma by using electric transport probes

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Kyu Sun; Chang, Do Hee; Sim, Yeon Gun; Kim, Jin Hee [Hanyang University, Seoul (Korea, Republic of)

    1995-08-01

    Electric transport probe system is developed for the measurement of electron temperature, floating potential, plasma density and flow velocity of= edge plasmas in the KT-2 medium size tokamak. Experiments have been performed in KT-1 small size tokamak. Electric transport probe is composed of a single probe(SP) and a Mach probe (MP). SP is used for the measurements of electron density, floating potential, and plasma density and measured values are {approx} 3*10{sup 11}/cm{sup -3}, -20 volts, 15 {approx} 25 eV. For the most discharges, respectively. MP is for the measurements of toroidal(M{sub T}) and poloidal(M{sub P}) flow velocities, and density, which are M{sub T} {approx_equal} .0.85, M{sub P} {approx_equal}. 0.17, n. {approx_equal} 2.1*10{sup 11} cm{sup -3}, respectively. A triple probe is also developed for the direct reading of T{sub e} and n{sub e}, and is used for DC, RF, and RF+DC plasma in APL of Hanyang university. 38 refs., 36 figs. (author)

  10. Effects of Dietary Supplementation of Some Antioxidants on Liver Antioxidant Status and Plasma Biochemistry Parameters of Heat-Stressed Quail

    Directory of Open Access Journals (Sweden)

    Senay Sarıca

    2017-07-01

    Full Text Available This study aimed to compare the dietary supplementation of oleuropein (O and α-tocopherol acetate (TA alone or with organic selenium (Se on liver antioxidant status and some plasma biochemistry parameters in Japanese quails reared under heat stress (HS. A total of 800, two-weeks old quails were kept in wire cages in the temperature-controlled rooms at either 22°C or 34°C for 8 h/d and fed on a basal diet (NC or the diets supplemented with TA (TA200 or O (O200 at 200 mg/kg alone or with OSe (TA200+OSe and O200+OSe to the NC diet. HS decreased the total antioxidant status (TAS and increased the total oxidative stress (TOS and oxidative stress index (OSI of liver compared to thermoneutral temperature (TN. The TA200, O200, TA200+OSe and O200+OSe diets increased TAS and decreased TOS of liver compared to those of quails fed NC. OSI was decreased by the TA200, O200 and TA200+OSe diets compared to NC and O200+OSe diets. HS reduced plasma albumin (A and total protein (TP concentrations, on the other hand, increased plasma glucose (G, total cholesterol (CHO and triglyceride (TG levels compared to TN. The TA200, O200, TA200+OSe and O200+OSe diets reduced plasma total CHO and TG levels and increased plasma A level. The TA200 and TA200+OSe diets reduced plasma G level and increased plasma TP levels compared to those of quails fed the other diets. In conclusion, dietary supplementation of vitamin E and oleuropein alone or with organic selenium is necessary to remove the negative effects of heat stress on liver antioxidant status and some plasma parameters of quails.

  11. Influence of laser design parameters on the hydrodynamics of microfusion plasmas; Influencia de los parametros basicos del laser sobre la hidrodinamica de plasmas para microfusion

    Energy Technology Data Exchange (ETDEWEB)

    Sanmartin, J. A.; Barrero, A.

    1976-07-01

    The quasi neutral, one dimensional motion generated in a cold, infinite, uniform plasma of density n{sub 0}, by the absorption, In a given plane, of a linear pulse of energy per unit time and area {phi} - {phi}{sub 0}t/{tau}, 0< t {<=} {tau}, is considered; the analysis allows for thermal conduction and viscosity of ions and electrons, their energy exchange, and an electron thermal flux limiter. The motion is found to be self similar and governed by single non dimensional parameter {alpha} similar{sub t}o(n{sup 2}{sub 0} {tau}/{phi}{sub 0}){sup 2}/3. Detailed asymptotic results are obtained for both {alpha}<<1and {alpha}>>1; the general (behaviour of the solution for arbitrary {alpha} is discussed. The analysis can be easily extended to the case of a plasma initially occupying a half-space, and throws light on the hydrodynamics of laser fusion plasmas. (Author) 51 refs.

  12. Induced emission of Alfvén waves in inhomogeneous streaming plasma: implications for solar corona heating and solar wind acceleration.

    Science.gov (United States)

    Galinsky, V L; Shevchenko, V I

    2013-07-05

    The results of a self-consistent kinetic model of heating the solar corona and accelerating the fast solar wind are presented for plasma flowing in a nonuniform magnetic field configuration of near-Sun conditions. The model is based on a scale separation between the large transit or inhomogeneity scales and the small dissipation scales. The macroscale instability of the marginally stable particle distribution function compliments the resonant frequency sweeping dissipation of transient Alfvén waves by their induced emission in inhomogeneous streaming plasma that provides enough energy for keeping the plasma temperature decaying not faster than r(-1) in close agreement with in situ heliospheric observations.

  13. Evaluation of the Trajectory Sensitivity Analysis of the DFIG Control Parameters in Response to Changes in Wind Speed and the Line Impedance Connection to the Grid DFIG

    Directory of Open Access Journals (Sweden)

    Mehdi Fooladgar

    2015-01-01

    Full Text Available Economic and environmental conditions often make large stations and transmission lines, restrictions are placed. Small and medium-sized production units connected to existing systems as a strategy is in progress. These units are usually near the center of the load placed and distributed generators (DG famous are the DG are allowed types vary, such as induction generators rack squirrel-connected wind turbines, generators fed induction double mounted wind turbines, fuel cells connected to the system by power electronic converters or synchronous generator connected to the turbine combustion [10]. This way sensitivity analysis in systems of distributed generation (DG is assessed. It is shown that the method can detect the effect of control parameters listed wind turbine connected to a double-fed induction generator (DFIG Badoou the impedance of the changing the speed of on the stability of the transmission line useful system invested. The control parameters of the importance of influencing the behavior of DFIG are divided.

  14. Simulation of Main Plasma Parameters of a Cylindrical Asymmetric Capacitively Coupled Plasma Micro-Thruster using Computational Fluid Dynamics

    Directory of Open Access Journals (Sweden)

    Amelia eGreig

    2015-01-01

    Full Text Available Computational fluid dynamics (CFD simulations of a radio-frequency (13.56 MHz electro-thermal capacitively coupled plasma (CCP micro-thruster have been performed using the commercial CFD-ACE+ package. Standard operating conditions of a 10 W, 1.5 Torr argon discharge were used to compare with previously obtained experimental results for validation. Results show that the driving force behind plasma production within the thruster is ion-induced secondary electrons ejected from the surface of the discharge tube, accelerated through the sheath to electron temperatures up to 33.5 eV. The secondary electron coefficient was varied to determine the effect on the discharge, with results showing that full breakdown of the discharge did not occur for coefficients coefficients less than or equal to 0.01.

  15. Measuring the parameters of a high flux plasma in Proto-MPEX

    Science.gov (United States)

    Skeen, C.; Biewer, T. M.; Cantrell, C. L.; Klemm, J. C.; Musick, R. A.; Nunley, G.; Salazar Sanchez, J. S.; Sawyer, D. J.; Ray, H.; Shaw, G.; Showers, M.

    2016-10-01

    The Prototype Material Plasma Exposure Experiment (Proto-MPEX) is a linear, magnetically confined plasma production device, utilizing a helicon antenna. The plasma column interacts with a material target at the end of the device, creating plasma-material interaction conditions that are relevant to the conditions that are expected in future fusion reactors. Moreover, helicon antenna plasma sources have been proposed as propulsion devices for spacecraft. It has been observed that in some circumstances the Proto-MPEX plasma exerts sufficient force on the target plate to cause the target to recoil. A ballistic probe has been designed to measure the force and heat flux profile of the plasma. The probe response has been calibrated, using scales, thermocouples, and fast camera imaging. The ballistic probe has been inserted into Proto-MPEX plasmas and the heat flux profile of the plasma has been measured. Also the maximum force that is exerted on the probe has been estimated. This work was supported by the US. D.O.E. contract DE-AC05-00OR22725, and the Oak Ridge Associated Universities ARC program.

  16. On the relation between radiation belt electrons and solar wind parameters/geomagnetic indices: Dependence on the first adiabatic invariant and L*

    Science.gov (United States)

    Zhao, H.; Baker, D. N.; Jaynes, A. N.; Li, X.; Elkington, S. R.; Kanekal, S. G.; Spence, H. E.; Boyd, A. J.; Huang, C.-L.; Forsyth, C.

    2017-02-01

    The relation between radiation belt electrons and solar wind/magnetospheric processes is of particular interest due to both scientific and practical needs. Though many studies have focused on this topic, electron data from Van Allen Probes with wide L shell coverage and fine energy resolution, for the first time, enabled this statistical study on the relation between radiation belt electrons and solar wind parameters/geomagnetic indices as a function of first adiabatic invariant μ and L*. Good correlations between electron phase space density (PSD) and solar wind speed, southward IMF Bz, SYM-H, and AL indices are found over wide μ and L* ranges, with higher correlation coefficients and shorter time lags for low-μ electrons than high-μ electrons; the anticorrelation between electron PSD and solar wind proton density is limited to high-μ electrons at high L*. The solar wind dynamic pressure has dominantly positive correlation with low-μ electrons and negative correlation with high-μ electrons at different L*. In addition, electron PSD enhancements also correlate well with various solar wind/geomagnetic parameters, and for most parameters this correlation is even better than that of electron PSD while the time lag is also much shorter. Among all parameters investigated, AL index is shown to correlate the best with electron PSD enhancements, with correlation coefficients up to 0.8 for low-μ electrons (time lag 0 day) and 0.7 for high-μ electrons (time lag 1-2 days), suggesting the importance of seed and source populations provided by substorms in radiation belt electron PSD enhancements.

  17. Wind Magnetic Clouds for 2010-2012: Model Parameter Fittings, Associated Shock Waves, and Comparisons to Earlier Periods

    Science.gov (United States)

    Lepping, R. P.; Wu, C.-C.; Berdichevsky, D. B.; Szabo, A.

    2015-01-01

    We fitted the parameters of magnetic clouds (MCs) as identified in the Wind spacecraft data from early 2010 to the end of 2012 using the model of Lepping, Jones, and Burlaga (J. Geophys. Res. 95, 1195, 1990). The interval contains 48 MCs and 39 magnetic cloud-like (MCL) events. This work is a continuation of MC model fittings of the earlier Wind sets, including those in a recent publication, which covers 2007 to 2009. This period (2010 - 2012) mainly covers the maximum portion of Solar Cycle 24. Between the previous and current interval, we document 5.7 years of MCs observations. For this interval, the occurrence frequency of MCs markedly increased in the last third of the time. In addition, over approximately the last six years, the MC type (i.e. the profile of the magnetic-field direction within an MC, such as North-to-South, South-to-North, all South) dramatically evolved to mainly North-to-South types when compared to earlier years. Furthermore, this evolution of MC type is consistent with global solar magnetic-field changes predicted by Bothmer and Rust (Coronal Mass Ejections, 139, 1997). Model fit parameters for the MCs are listed for 2010 - 2012. For the 5.7 year interval, the observed MCs are found to be slower, weaker in estimated axial magnetic-field intensity, and shorter in duration than those of the earlier 12.3 years, yielding much lower axial magnetic-field fluxes. For about the first half of this 5.7 year period, i.e. up to the end of 2009, there were very few associated MC-driven shock waves (distinctly fewer than the long-term average of about 50 % of MCs). But since 2010, such driven shocks have increased markedly, reflecting similar statistics as the long-term averages. We estimate that 56 % of the total observed MCs have upstream shocks when the full interval of 1995 - 2012 is considered. However, only 28 % of the total number of MCLs have driven shocks over the same period. Some interplanetary shocks during the 2010 - 2012 interval are seen

  18. Performance Evaluation of Nose Cap to Silica Tile Joint of RLV-TD under the Simulated Flight Environment using Plasma Wind Tunnel Facility

    Science.gov (United States)

    Pillai, Aravindakshan; Krishnaraj, K.; Sreenivas, N.; Nair, Praveen

    2017-12-01

    Indian Space Research Organisation, India has successfully flight tested the reusable launch vehicle through launching of a demonstration flight known as RLV-TD HEX mission. This mission has given a platform for exposing the thermal protection system to the real hypersonic flight thermal conditions and thereby validated the design. In this vehicle, the nose cap region is thermally protected by carbon-carbon followed by silica tiles with a gap in between them for thermal expansion. The gap is filled with silica fibre. Base material on which the C-C is placed is made of molybdenum. Silica tile with strain isolation pad is bonded to aluminium structure. These interfaces with a variety of materials are characterised with different coefficients of thermal expansion joined together. In order to evaluate and qualify this joint, model tests were carried out in Plasma Wind Tunnel facility under the simultaneous simulation of heat flux and shear levels as expected in flight. The thermal and flow parameters around the model are determined and made available for the thermal analysis using in-house CFD code. Two tests were carried out. The measured temperatures at different locations were benign in both these tests and the SiC coating on C-C and the interface were also intact. These tests essentially qualified the joint interface between C-C and molybdenum bracket and C-C to silica tile interface of RLV-TD.

  19. Differences in peripartal plasma parameters related to calcium homeostasis of dairy sheep and goats in comparison with cows.

    Science.gov (United States)

    Wilkens, Mirja R; Liesegang, Annette; Richter, Julia; Fraser, David R; Breves, Gerhard; Schröder, Bernd

    2014-08-01

    Recently it has been demonstrated that there are differences between sheep and goats in respect to adaptation to a calcium-restricted diet. It was the aim of the present study to evaluate whether species-specific peculiarities also occur when calcium homoeostasis is challenged by lactation. Therefore, we investigated the time courses of plasma parameters related to calcium homoeostasis (calcium, phosphate, calcitriol, the bone resorption marker CrossLaps and the bone formation marker osteocalcin) during the transition period in multiparous animals of both species and compared the results to data from a former study carried out with dairy cows. As in cows, plasma calcium and the ratio of bone formation to bone resorption decreased at parturition in goats while plasma calcitriol increased. On day 10 post partum the bone parameters of goats reached prepartum values again, which was not the case in cows. Sheep were found to experience a challenge of calcium homoeostasis already 10 d before parturition, reflected by a very low ratio of bone formation to bone resorption, which was not accompanied by an increase in plasma calcitriol. Additionally, sheep and goats which had been in milk for 3 months were sampled, dried-off and sampled again 6 weeks later. In dried-off animals there were no detectable differences in parameters of bone metabolism. In conclusion we could show that the contribution of bone mobilisation to the compensation for the enhanced calcium demand due to lactation differs between the three ruminant species.

  20. Laser-plasma SXR/EUV sources: adjustment of radiation parameters for specific applications

    Science.gov (United States)

    Bartnik, A.; Fiedorowicz, H.; Fok, T.; Jarocki, R.; Kostecki, J.; Szczurek, A.; Szczurek, M.; Wachulak, P.; Wegrzyński, Ł.

    2014-12-01

    In this work soft X-ray (SXR) and extreme ultraviolet (EUV) laser-produced plasma (LPP) sources employing Nd:YAG laser systems of different parameters are presented. First of them is a 10-Hz EUV source, based on a double-stream gaspuff target, irradiated with the 3-ns/0.8J laser pulse. In the second one a 10 ns/10 J/10 Hz laser system is employed and the third one utilizes the laser system with the pulse shorten to approximately 1 ns. Using various gases in the gas puff targets it is possible to obtain intense radiation in different wavelength ranges. This way intense continuous radiation in a wide spectral range as well as quasi-monochromatic radiation was produced. To obtain high EUV or SXR fluence the radiation was focused using three types of grazing incidence collectors and a multilayer Mo/Si collector. First of them is a multfoil gold plated collector consisted of two orthogonal stacks of ellipsoidal mirrors forming a double-focusing device. The second one is the ellipsoidal collector being part of the axisymmetrical ellipsoidal surface. Third of the collectors is composed of two aligned axisymmetrical paraboloidal mirrors optimized for focusing of SXR radiation. The last collector is an off-axis ellipsoidal multilayer Mo/Si mirror allowing for efficient focusing of the radiation in the spectral region centered at λ = 13.5 ± 0.5 nm. In this paper spectra of unaltered EUV or SXR radiation produced in different LPP source configurations together with spectra and fluence values of focused radiation are presented. Specific configurations of the sources were assigned to various applications.

  1. Diagnostic Tools for Plasma Wind Tunnels and Reentry Vehicles at the IRS

    Science.gov (United States)

    2000-04-01

    sample. If the front surface temperature is possible when the sensor nature of the surface encourages recombination, then is dsiged s athemocuple Hee...V_ (h_ -hw) ( herewith to the water circulation will be greatly Another investigation leads to nearly identical results reduced which makes itself...delays in high speed plasmas. By the electrode results in a deformation of the potential performing an FFTF -cross-correlation with the two sheath

  2. The effect of processing parameters on the synthesis of tungsten oxide nanomaterials by a modified plasma arc gas condensation technique.

    Science.gov (United States)

    Su, Cherng-Yuh; Lin, Hsuan-Ching; Yang, Tsung-Kun; Lin, Chung-Kwei

    2010-08-01

    In the present study, tungsten oxide nanomaterials were synthesized by a modified plasma arc gas condensation technique. The effects of processing parameters (plasma current ranged from 70-90 A and chamber pressure ranged from 200-600 torr) on the preparation of tungsten oxide nanomaterials were investigated. X-ray diffraction results showed that all of the nanomaterials synthesized in the present study exhibited W5O14 phase. Field emission scanning electron microscopy and transmission electron microscopy examinations revealed that the tungsten oxide nanomaterials were equiaxed when prepared at a relatively low plasma current of 70 A, and turned into rod-like nanoparticles with increasing plasma current (80 or 90 A). Generally, the relative amount, diameter, and length of tungsten oxide nanorods increased with increasing plasma currents or chamber pressures. The aspect ratio of the as-prepared tungsten oxide nanorods reached a maximum of 12.7 when a plasma current of 90 A and a chamber pressure of 400 torr were used. A growth mechanism for tungsten oxide nanorods was proposed.

  3. Using numerical simulations to extract parameters of toroidal electron plasmas from experimental data

    DEFF Research Database (Denmark)

    Ha, B. N.; Stoneking,, M. R.; Marler, Joan

    2009-01-01

    Measurements of the image charge induced on electrodes provide the primary means of diagnosing plasmas in the Lawrence Non-neutral Torus II (LNT II) [Phys. Rev. Lett. 100, 155001 (2008)]. Therefore, it is necessary to develop techniques that determine characteristics of the electron plasma from f...

  4. Effect of applying static electric field on the physical parameters and dynamics of laser-induced plasma

    Directory of Open Access Journals (Sweden)

    Asmaa Elhassan

    2010-04-01

    Full Text Available In order to improve the performance of the LIBS technique – in particular its sensitivity, reproducibility and limit of detection – we studied the effect of applying a static electric field with different polarities on the emission spectra obtained in a typical LIBS set-up. The physical parameters of the laser-induced plasma, namely the electron density Ne and the plasma temperature Te, were studied under such circumstances. In addition to the spectroscopic analysis of the plasma plume emission, the laser-induced shock waves were exploited to monitor the probable changes in the plasma plume dynamics due to the application of the electric field. The study showed a pronounced enhancement in the signal-to-noise (S/N ratio of different Al, neutral and ionic lines under forward biasing voltage (negative target and positive electrode. On the other hand, a clear deterioration of the emission line intensities was observed under conditions of reversed polarity. This negative effect may be attributed to the reduction in electron-ion recombinations due to the stretched plasma plume. The plasma temperature showed a constant value in the average with the increasing electric field in both directions. This effect may be due to the fact that the measured values of Te were averaged over the whole plasma emission volume. The electron density was observed to decrease slightly in the case of forward biasing while no significant effect was noticed in the case of reversed biasing. This slight decrease in Ne can be interpreted in view of the increase in the rate of electron–ion recombinations due to the presence of the electric field. No appreciable effects of the applied electric field on the plasma dynamics were noticed.

  5. Characteristics of electron velocity distribution functions in the solar wind derived from the Helios plasma experiment

    Science.gov (United States)

    Pilipp, W. G.; Muehlhaeuser, K.-H.; Miggenrieder, H.; Montgomery, M. D.; Rosenbauer, H.

    1987-01-01

    The details of the shapes of three typical electron distribution functions observed by the Helios 1 and 2 probes in the solar wind between 0.3 AU and 1 AU are analyzed and compared with theoretical predictions. These are (1) a distribution function with a narrow 'strahl' (narrow beam), which is extremely anisotropic and skewed with respect to the magnetic field direction at particle energies above 100 eV; (2) a distribution function with a broad 'strahl', less anisotropic and skewed; and (3) a nearly isotropic distribution function. For each distribution function, a sudden change in the slope was discerned, separating the 'core' at lower energies from the 'halo' at higher energies. The most obvious differences of the analyzed electron distribution functions were observed at energies above 50-100 eV. The possible origins for the observed features of the distribution functions are discussed.

  6. Partial Variance of Increments Method in Solar Wind Observations and Plasma Simulations

    Science.gov (United States)

    Greco, A.; Matthaeus, W. H.; Perri, S.; Osman, K. T.; Servidio, S.; Wan, M.; Dmitruk, P.

    2018-02-01

    The method called "PVI" (Partial Variance of Increments) has been increasingly used in analysis of spacecraft and numerical simulation data since its inception in 2008. The purpose of the method is to study the kinematics and formation of coherent structures in space plasmas, a topic that has gained considerable attention, leading the development of identification methods, observations, and associated theoretical research based on numerical simulations. This review paper will summarize key features of the method and provide a synopsis of the main results obtained by various groups using the method. This will enable new users or those considering methods of this type to find details and background collected in one place.

  7. Interchange Reconnection Associated with a Confined Filament Eruption: Implications for the Source of Transient Cold-dense Plasma in Solar Winds

    Science.gov (United States)

    Zheng, Ruisheng; Chen, Yao; Wang, Bing; Li, Gang; Xiang, Yongyuan

    2017-05-01

    The cold-dense plasma is occasionally detected in the solar wind with in situ data, but the source of the cold-dense plasma remains illusive. Interchange reconnections (IRs) between closed fields and nearby open fields are known to contribute to the formation of solar winds. We present a confined filament eruption associated with a puff-like coronal mass ejection (CME) on 2014 December 24. The filament underwent successive activations and finally erupted, due to continuous magnetic flux cancelations and emergences. The confined erupting filament showed a clear untwist motion, and most of the filament material fell back. During the eruption, some tiny blobs escaped from the confined filament body, along newly formed open field lines rooted around the south end of the filament, and some bright plasma flowed from the north end of the filament to remote sites at nearby open fields. The newly formed open field lines shifted southward with multiple branches. The puff-like CME also showed multiple bright fronts and a clear southward shift. All the results indicate an intermittent IR existed between closed fields of the confined erupting filament and nearby open fields, which released a portion of filament material (blobs) to form the puff-like CME. We suggest that the IR provides a possible source of cold-dense plasma in the solar wind.

  8. Plasma parameters effects on the properties, aging and stability behaviors of allylamine plasma coated ultra-high molecular weight polyethylene (UHMWPE) films

    Energy Technology Data Exchange (ETDEWEB)

    Aziz, Gaelle, E-mail: gaelle.aziz@ugent.be; Thukkaram, Monica; De Geyter, Nathalie; Morent, Rino

    2017-07-01

    Highlights: • Medium to atmospheric pressure DBD is used to deposit amino rich films. • Process parameters affect the films’ surface chemical and physical properties. • High deposition rates can be reached by varying the power and/or monomer flow rate. • High amino selectivity (NH{sub 2}/N in %) is obtained at low powers and high monomer concentration. • Aging and stability behaviors of the deposited coatings can be controlled by carefully choosing the plasma parameters. - Abstract: In this work, a dielectric barrier discharge (DBD) operated at medium to atmospheric pressure has been used for the deposition of thin polyallylamine (PAA) films on ultra-high molecular weight polyethylene (UHMWPE) substrates. The effect of treatment time (1–5 min), discharge power (5.7–24.0 W), monomer concentration (1–2 g/h) and pressure (10–100 kPa) on the films properties, aging and stability behaviors have been investigated. The used characterization techniques are X-ray photoelectron spectroscopy, water contact angle and optical reflectance spectroscopy. In this paper, it is shown that plasma treatment time does not affect the coatings chemistry; whereas plasma power, monomer concentration and pressure control the coatings properties. It is also shown that the deposition rate of the deposited films changes with varying W/FM values. At low W/FM values, high deposition rates of up to 2 nm/s are observed. Plasma treatments were also characterized by their amino efficiency ([NH{sub 2}]/[C] in %) and amino selectivity ([NH{sub 2}]/[N] in %). Depending on the used parameters, these varied between 12.3% and 20% and between 71.2% and 91.1%, respectively. For the aging study, coatings that preserved most of their hydrophilicity were obtained at power ≤11.3 W, monomer concentration ≥1.5 g/h and pressure ≥50 kPa. For the stability study, coatings that showed the highest [N] (%) and lowest percentage of thickness decrease were obtained at ≤2 min, 24.0 W, 1 g/h and

  9. Parameter Estimation of Actuators for Benchmark Active Control Technology (BACT) Wind Tunnel Model with Analysis of Wear and Aerodynamic Loading Effects

    Science.gov (United States)

    Waszak, Martin R.; Fung, Jimmy

    1998-01-01

    This report describes the development of transfer function models for the trailing-edge and upper and lower spoiler actuators of the Benchmark Active Control Technology (BACT) wind tunnel model for application to control system analysis and design. A simple nonlinear least-squares parameter estimation approach is applied to determine transfer function parameters from frequency response data. Unconstrained quasi-Newton minimization of weighted frequency response error was employed to estimate the transfer function parameters. An analysis of the behavior of the actuators over time to assess the effects of wear and aerodynamic load by using the transfer function models is also presented. The frequency responses indicate consistent actuator behavior throughout the wind tunnel test and only slight degradation in effectiveness due to aerodynamic hinge loading. The resulting actuator models have been used in design, analysis, and simulation of controllers for the BACT to successfully suppress flutter over a wide range of conditions.

  10. Real time measurement of plasma macroscopic parameters on RFX-mod using a limited set of sensors

    Science.gov (United States)

    Kudlacek, Ondrej; Zanca, Paolo; Finotti, Claudio; Marchiori, Giuseppe; Cavazzana, Roberto; Marrelli, Lionello

    2015-10-01

    A method to estimate the plasma boundary and global parameters such as βp+li/2 and the edge safety factor q95 is described. The method is based on poloidal flux extrapolation in the vacuum region between the plasma and the magnetic measurements, and it is efficient and accurate even if a limited set of sensors is used. The discrepancy between the plasma boundary provided by this method and the boundary computed by the Grad-Shafranov solver MAXFEA is lower than 8 mm in all the considered cases. Moreover, the method is robust against the noise level present in the RFX-mod measurements. The difference between the estimated global parameters and the MAXFEA simulation results is lower than 4%. The method was finally implemented in the RFX-mod shape control system, working at 5 kHz cycle frequency, to provide a reliable set of plasma-wall distances (gaps) used as feedback signals. Experimental results obtained in one year of RFX-mod operation are shown.

  11. Multichannel boxcar-averaged measurements of plasma parameters made using a digital storage scope

    Science.gov (United States)

    Sheridan, T. E.; Hayes, M. A.

    1988-07-01

    A technique for rapidly acquiring time-resolved, ensemble-averaged Langmuir probe characteristics is presented. Fifty probe characteristics are acquired using a digital storage oscilloscope in the time it would take to acquire a one-probe characteristic using a single-channel boxcar averager. A single Langmuir probe is used, and the probe bias is swept quite slowly, so that the probe is always in equilibrium with the plasma. A method for the automatic extraction of electron temperature, electron density, and the plasma potential from the acquired probe characteristics is described. This technique for acquisition and analysis is applied to the study of plasma decay and the effects of rf excitation in a pulsed, strongly magnetized plasma.

  12. Noninvasive, real-time measurements of plasma parameters via optical emission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Wang Shicong; Wendt, Amy E. [Department of Electrical and Computer Engineering, University of Wisconsin, Madison, Wisconsin 53706 (United States); Boffard, John B.; Lin, Chun C. [Department of Physics, University of Wisconsin, Madison, Wisconsin 53706 (United States); Radovanov, Svetlana; Persing, Harold [Varian Semiconductor Equipment, Applied Materials Inc., Gloucester, Massachusetts 01939 (United States)

    2013-03-15

    Plasma process control applications require acquisition of diagnostic data at a rate faster than the characteristic timescale of perturbations to the plasma. Diagnostics based on optical emission spectroscopy of intense emission lines permit rapid noninvasive measurements with low-resolution ({approx}1 nm), fiber-coupled spectrographs, which are included on many plasma process tools for semiconductor processing. Here the authors report on rapid analysis of Ar emissions with such a system to obtain electron temperatures, electron densities, and metastable densities in argon and argon/mixed-gas (Ar/N{sub 2}, Ar/O{sub 2}, Ar/H{sub 2}) inductively coupled plasmas. Accuracy of the results (compared to measurements made by Langmuir probe and white-light absorption spectroscopy) are typically better than {+-}15% with a time resolution of 0.1 s, which is more than sufficient to capture the transient behavior of many processes, limited only by the time response of the spectrograph used.

  13. Dayside ionosphere of Titan: Impact on calculated plasma densities due to variations in the model parameters

    Science.gov (United States)

    Mukundan, Vrinda; Bhardwaj, Anil

    2018-01-01

    A one dimensional photochemical model for the dayside ionosphere of Titan has been developed for calculating the density profiles of ions and electrons under steady state photochemical equilibrium condition. We concentrated on the T40 flyby of Cassini orbiter and used the in-situ measurements from instruments onboard Cassini as input to the model. An energy deposition model is employed for calculating the attenuated photon flux and photoelectron flux at different altitudes in Titan's ionosphere. We used the Analytical Yield Spectrum approach for calculating the photoelectron fluxes. Volume production rates of major primary ions, like, N2+, N+ , CH4+, CH3+, etc due to photon and photoelectron impact are calculated and used as input to the model. The modeled profiles are compared with the Cassini Ion Neutral Mass Spectrometer (INMS) and Langmuir Probe (LP) measurements. The calculated electron density is higher than the observation by a factor of 2 to 3 around the peak. We studied the impact of different model parameters, viz. photoelectron flux, ion production rates, electron temperature, dissociative recombination rate coefficients, neutral densities of minor species, and solar flux on the calculated electron density to understand the possible reasons for this discrepancy. Recent studies have shown that there is an overestimation in the modeled photoelectron flux and N2+ ion production rates which may contribute towards this disagreement. But decreasing the photoelectron flux (by a factor of 3) and N2+ ion production rate (by a factor of 2) decreases the electron density only by 10 to 20%. Reduction in the measured electron temperature by a factor of 5 provides a good agreement between the modeled and observed electron density. The change in HCN and NH3 densities affects the calculated densities of the major ions (HCNH+ , C2H5+, and CH5+); however the overall impact on electron density is not appreciable ( < 20%). Even though increasing the dissociative

  14. Influence of oregano extract on the intestine, some plasma parameters and growth performance in chickens

    OpenAIRE

    Levkut M.; Marcin A.; Revajová Viera; Lenhardt L'.; Danielovič I.; Hecl J.; Blanár J.; Levkutová Mária; Pistl J.

    2011-01-01

    The effect of oregano essential oil on growth performance, intestinal alkaline phosphatase (IAP) level, enterocyte proliferative ability, plasma proteins, and plasma minerals (calcium and magnesium) were studied in 1 day-old Ross 308 hybrid broiler chickens under commercial conditions during 42 experiment. Chickens fed oregano oil supplemented diet (0.707 g.kg-1) had significantly higher body weight gain (BWG) in the grower (19-29 d) and finisher (30-42 d) ...

  15. Kinetic parameters and intraindividual fluctuations of ochratoxin A plasma levels in humans

    Energy Technology Data Exchange (ETDEWEB)

    Studer-Rohr, I. [Inst. of Toxicology, Swiss Federal Inst. of Tech. and Univ. of Zurich, Schwerzenbach (Switzerland); Dept. of Food Science, Swiss Federal Inst. of Tech., Zurich (Switzerland); Schlatter, J. [Toxicology Section, Div. of Food Science, Swiss Federal Office of Public Health, Zurich (Switzerland); Dietrich, D.R. [Dept. of Environmental Toxicology, Univ. of Konstanz, Konstanz (Germany); Inst. of Toxicology, Swiss Federal Inst. of Tech. and Univ. of Zurich, Schwerzenbach (Switzerland)

    2000-11-01

    The mycotoxin ochratoxin A (OTA) is a rodent carcinogen produced by species of the ubiquitous fungal genera Aspergillus and Penicillium. OTA is found in a variety of food items and as a consequence is also found in human plasma (average concentrations found in this study: 0.1-1 ng OTA/ml plasma). To improve the scientific basis for cancer risk assessment the toxicokinetic profile of OTA was studied in one human volunteer following ingestion of 395 ng {sup 3}H-labeled OTA (3.8 {mu}Ci). A two-compartment open model consisting of a central compartment was found to best describe the in vivo data. This two-compartment model consisted of a fast elimination and distribution phase (T{sub 1/2} about 20 h) followed by a slow elimination phase (renal clearance about 0.11 ml/min.) and a calculated plasma half-life of 35.55 days. This half-life was approximately eight times longer than that determined previously in rats. In addition, the intraindividual fluctuation of OTA plasma levels was investigated in eight individuals over a period of 2 months. The concentrations determined ranged between 0.2 and 0.9 ng OTA/ml plasma. The plasma levels in some individuals remained nearly constant over time, while others varied considerably (e.g. increase of 0.4 ng/ml within 3 days, decrease of 0.3 ng/ml within 5 days) during the observation period. This intraindividual fluctuation in OTA plasma levels, which may represent differences in OTA exposure and/or metabolism, as well as the large difference in plasma half-life in humans compared to rats must be taken into consideration when the results of rat cancer study data are extrapolated to humans for risk assessment purposes. (orig.)

  16. Relationship between the growth of the ring current and the interplanetary quantity. [solar wind energy-magnetospheric coupling parameter correlation with substorm AE index

    Science.gov (United States)

    Akasofu, S.-I.

    1979-01-01

    Akasofu (1979) has reported that the interplanetary parameter epsilon correlates reasonably well with the magnetospheric substorm index AE; in the first approximation, epsilon represents the solar wind coupled to the magnetosphere. The correlation between the interplanetary parameter, the auroral electrojet index and the ring current index is examined for three magnetic storms. It is shown that when the interplanetary parameter exceeds the amount that can be dissipated by the ionosphere in terms of the Joule heat production, the excess energy is absorbed by the ring current belt, producing an abnormal growth of the ring current index.

  17. Plasma parameters effects on the properties, aging and stability behaviors of allylamine plasma coated ultra-high molecular weight polyethylene (UHMWPE) films

    Science.gov (United States)

    Aziz, Gaelle; Thukkaram, Monica; De Geyter, Nathalie; Morent, Rino

    2017-07-01

    In this work, a dielectric barrier discharge (DBD) operated at medium to atmospheric pressure has been used for the deposition of thin polyallylamine (PAA) films on ultra-high molecular weight polyethylene (UHMWPE) substrates. The effect of treatment time (1-5 min), discharge power (5.7-24.0 W), monomer concentration (1-2 g/h) and pressure (10-100 kPa) on the films properties, aging and stability behaviors have been investigated. The used characterization techniques are X-ray photoelectron spectroscopy, water contact angle and optical reflectance spectroscopy. In this paper, it is shown that plasma treatment time does not affect the coatings chemistry; whereas plasma power, monomer concentration and pressure control the coatings properties. It is also shown that the deposition rate of the deposited films changes with varying W/FM values. At low W/FM values, high deposition rates of up to 2 nm/s are observed. Plasma treatments were also characterized by their amino efficiency ([NH2]/[C] in %) and amino selectivity ([NH2]/[N] in %). Depending on the used parameters, these varied between 12.3% and 20% and between 71.2% and 91.1%, respectively. For the aging study, coatings that preserved most of their hydrophilicity were obtained at power ≤11.3 W, monomer concentration ≥1.5 g/h and pressure ≥50 kPa. For the stability study, coatings that showed the highest [N] (%) and lowest percentage of thickness decrease were obtained at ≤2 min, 24.0 W, 1 g/h and pressure ≤50 kPa. One can therefore control the deposition rate as well as the properties, aging and stability behaviors of the deposited coating by carefully choosing the plasma parameters.

  18. Turbulence in the solar wind

    CERN Document Server

    Bruno, Roberto

    2016-01-01

    This book provides an overview of solar wind turbulence from both the theoretical and observational perspective. It argues that the interplanetary medium offers the best opportunity to directly study turbulent fluctuations in collisionless plasmas. In fact, during expansion, the solar wind evolves towards a state characterized by large-amplitude fluctuations in all observed parameters, which resembles, at least at large scales, the well-known hydrodynamic turbulence. This text starts with historical references to past observations and experiments on turbulent flows. It then introduces the Navier-Stokes equations for a magnetized plasma whose low-frequency turbulence evolution is described within the framework of the MHD approximation. It also considers the scaling of plasma and magnetic field fluctuations and the study of nonlinear energy cascades within the same framework. It reports observations of turbulence in the ecliptic and at high latitude, treating Alfvénic and compressive fluctuations separately in...

  19. Combined effects of ULF, VLF, and EMIC Waves, Substorms, and Solar Wind Parameters on Relativistic Electron Flux: Multiple Regression Analysis

    Science.gov (United States)

    Simms, L. E.; Engebretson, M. J.; Rodger, C. J.; Gjerloev, J. W.; Lessard, M.; Clilverd, M. A.; Pilipenko, V.; Reeves, G. D.

    2016-12-01

    Relativistic electron flux may be influenced by energy inputs from the solar wind (velocity, number density, and IMF Bz), substorm activity, source and seed electron populations (tens of keV and hundreds of keV, respectively), as well as by the ULF, VLF, and EMIC waves triggered by these factors. As all these variables are intercorrelated, we use multiple regression analyses to determine which are most influential when other factors are controlled. For the years 2005-2011, we use daily averages of LANL geostationary orbit electron data (three high energy channels, as well as source and seed electrons), number of substorms per day from the SUPERMAG substorm list, a ULF index from ground magnetometers, lower band whistler mode chorus power (VLF) observed by the DEMETER satellite, and EMIC (support several hypotheses. ULF and VLF waves enhance the 1.8-3.5 MeV electron flux but their effect falls off (or becomes negative) on higher energy fluxes (3.5-6.0 and 6.0-7.8 MeV). EMIC waves reduce high energy electron flux mainly in the highest energy channel (6.0-7.8 MeV); their effect on the lower 1.8-3.5 MeV channel is minimal. A higher number of substorms in a day also enhance relativistic electron flux, with more impact at higher energy channels. We explore the relations between these parameters using path analysis to determine the mechanisms driving wave power which subsequently impact flux levels. We also assess the predictive ability of these models in forecasting flux.

  20. Statistical analysis of solar wind parameters and geomagnetic indices during HILDCAA/HILDCAA∗ occurrences between 1998 and 2007

    Science.gov (United States)

    Prestes, Alan; Klausner, Virginia; González, Arian Ojeda; Serra, Silvio Leite

    2017-10-01

    In this paper, we investigated the interplanetary conditions during 124 less strict high-intensity, long-duration, continuous AE activity (HILDCAA∗) events between the years of 1998 and 2007. The HILDCAA∗ events were chosen by following three ;traditional; criteria of high-intensity, long-duration, continuous AE activity (HILDCAA) events which are characterized with peak of AE intensities equal or greater than 1000 nT; and a minimum of 2 days length where AE values occur outside the main phase of geomagnetic storms. However, we include a small modification in the following criterion: ;the AE values should not drop below 200 nT for more than 2 h at a time;. This criterion is modified by changing ;2; to ;4 h at a time; in which the AE values should not drop below 200 nT. Our results shows that the temporal distribution of HILDCAA∗ events during the solar cycle presents a pattern of double peak, where the first peak is seen around the rising phase and the maximum of the sunspot cycle 23, with the second peak in its descending phase. This kind of temporal behavior is also observed in HILDCAAs in earlier studies. After the definition of HILDCAA∗ events, a comparison of solar wind parameters and geomagnetic indices among HILDCAAs, HILDCAAs∗, and the background condition is performed using a statistical approach. It is shown that interplanetary causes of HILDCAAs and HILDCAA∗s are the same. The advantage of the usage of HILDCAA∗s is that the number of events available for study will be ∼3 times higher.

  1. An analysis of offshore wind farm SCADA measurements to identify key parameters influencing the magnitude of wake effects

    Science.gov (United States)

    Mittelmeier, N.; Blodau, T.; Steinfeld, G.; Rott, A.; Kühn, M.

    2016-09-01

    Atmospheric conditions have a clear influence on wake effects. Stability classification is usually based on wind speed, turbulence intensity, shear and temperature gradients measured partly at met masts, buoys or LiDARs. The objective of this paper is to find a classification for stability based on wind turbine Supervisory Control and Data Acquisition (SCADA) measurements in order to fit engineering wake models better to the current ambient conditions. Two offshore wind farms with met masts have been used to establish a correlation between met mast stability classification and new aggregated statistical signals based on multiple measurement devices. The significance of these new signals on power production is demonstrated for two wind farms with met masts and validated against data from one further wind farm without a met mast. We found a good correlation between the standard deviation of active power divided by the average power of wind turbines in free flow with the ambient turbulence intensity when the wind turbines were operating in partial load.

  2. Ablation behavior and mechanism of 3D Cf/ZrC-SiC composites in a plasma wind tunnel environment

    Directory of Open Access Journals (Sweden)

    Qinggang Li

    2015-12-01

    Full Text Available Three-dimensional needle-like Cf/ZrC-SiC composites were successfully fabricated by polymer infiltration and pyrolysis combined with ZrC precursor impregnation. The ablation properties of the composites were tested in a plasma wind tunnel environment at different temperatures and different times. The microstructure and morphology of the composites were examined after ablation by scanning electron microscopy, and their composition was confirmed by energy dispersive spectroscopy. The composites exhibited good configurational stability with a surface temperature of greater than 2273 K over a 300–1000 s period. The formation of ZrSiO4 and SiO2 melts on the surface of the 3D Cf/ZrC-SiC composites contributed significantly to improvement in their ablation properties. However, these composites exhibited serious ablation when the temperature was increased to 2800 K. The 3D Cf/ZrC-SiC composites obtained after ablation showed three different layers attributed to the temperature and pressure gradients: the ablation central region, the ablation transition region, and the unablation region.

  3. Investigation of operating parameters on CO2 splitting by dielectric barrier discharge plasma

    Science.gov (United States)

    Pan, CHEN; Jun, SHEN; Tangchun, RAN; Tao, YANG; Yongxiang, YIN

    2017-12-01

    Experiments of CO2 splitting by dielectric barrier discharge (DBD) plasma were carried out, and the influence of CO2 flow rate, plasma power, discharge voltage, discharge frequency on CO2 conversion and process energy efficiency were investigated. It was shown that the absolute quantity of CO2 decomposed was only proportional to the amount of conductive electrons across the discharge gap, and the electron amount was proportional to the discharge power; the energy efficiency of CO2 conversion was almost a constant at a lower level, which was limited by CO2 inherent discharge character that determined a constant gap electric field strength. This was the main reason why CO2 conversion rate decreased as the CO2 flow rate increase and process energy efficiency was decreased a little as applied frequency increased. Therefore, one can improve the CO2 conversion by less feed flow rate or larger discharge power in DBD plasma, but the energy efficiency is difficult to improve.

  4. Characterization of Nuclease Activity in Human Seminal Plasma and its Relationship to Semen Parameters, Sperm DNA Fragmentation and Male Infertility.

    Science.gov (United States)

    Fernandez-Encinas, Alba; García-Peiró, Agustí; Ribas-Maynou, Jordi; Abad, Carlos; Amengual, María José; Navarro, Joaquima; Benet, Jordi

    2016-01-01

    Some studies have shown that complementary biomarkers are needed in semen analysis to provide a more accurate diagnosis for couples with infertility problems. To our knowledge no study has been done to determine the relationships among nuclease activity in seminal plasma, semen parameters, sperm DNA fragmentation and male infertility. A total of 94 semen samples were collected according to WHO 2010 semen analysis parameters. Samples were analyzed using the single radial enzyme diffusion method for nuclease activity in seminal plasma, and alkaline and neutral Comet assay for sperm DNA fragmentation. Samples were obtained from 11 fertile donors with proven fertility, 17 patients with normozoospermia in an infertile couple, and 16 patients with asthenozoospermia, 19 with teratozoospermia, 21 with asthenoteratozoospermia and 10 with azoospermia. Nuclease activity analyzed in seminal plasma was higher in patients than in controls. It correlated with sperm motility and morphology, and sperm DNA fragmentation measured by the alkaline Comet assay. No correlation with sperm DNA fragmentation was measured by the neutral Comet assay. ROC curves to determine male infertility revealed 0.658 sensitivity, 0.727 specificity and 0.705 cm(2) AUC for the single radial enzyme diffusion method, 0.918, 1 and 0.994 cm(2) for the alkaline Comet assay, and 0.917, 0.250 and 0.373 cm(2), respectively, for the neutral Comet assay. Nuclease activity in seminal plasma corrected by sperm count is a good variable to predict male infertility. Results indicate that it could be a useful complementary parameter for male infertility diagnosis. Copyright © 2016 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  5. Solar wind and magnetosphere plasma diagnostics by spacecraft electrostatic potential measurements

    Directory of Open Access Journals (Sweden)

    A. Pedersen

    1995-02-01

    Full Text Available Several satellites (GEOS-1, GEOS-2, ISEE-1, Viking and CRRES carried electric field experiments on which probes were driven by a current from the satellite to be close to the plasma potential. The potential difference between an electric field probe and its spacecraft (with conductive surfaces can be used to determine the ambient electron density and/or electron flux with limited accuracy but with high time resolution, of the order of 10-100 ms. It is necessary for the development of this diagnostic method to understand the photoemission characteristics of probes and satellites. According to the electric field experiments on the above-mentioned satellites, all materials develop very similar photoemission properties when they are beyond the influence of atmospheric oxygen. The photoelectron yield steadily increases over the first few months in space and reaches values well above those measured on clean surfaces in the laboratory. The method can be used for solar radiation levels corresponding to distances from 0.4 to 5 AU from the Sun.

  6. Experimental data on load test and performance parameters of a LENZ type vertical axis wind turbine in open environment condition

    Directory of Open Access Journals (Sweden)

    Seralathan Sivamani

    2017-12-01

    Full Text Available Performance and load testing data of a three bladed two stage LENZ type vertical axis wind turbine from the experiments conducted in an open environment condition at Hindustan Institute of Technology and Science, Chennai (location 23.2167°N, 72.6833°E are presented here. Low-wind velocity ranging from 2 to 11 m/s is available everywhere irrespective of climatic seasons and this data provides the support to the researchers using numerical tool to validate and develop an enhanced Lenz type design. Raw data obtained during the measurements are processed and presented in the form so as to compare with other typical outputs. The data is measured at different wind speeds prevalent in the open field condition ranging from 3 m/s to 9 m/s. Keywords: Vertical axis wind turbine, Lenz type, Performance, Two-stage, Open environment measurement

  7. The role of nonlinear Landau damping and the bounced motion of protons in the formation of dissipative structures in the solar wind plasma

    Directory of Open Access Journals (Sweden)

    M. Prakash

    1999-01-01

    Full Text Available The present work examines the effects arising from the nonlinear Landau damping and the bounced motion of protons (trapped in the mirror geometry of the geomagnetic field in the formation of nonlinear Alfvénic structures. These structures are observed at distances 1-5AU in the solar wind plasma (with ß ~ 1. The dynamics of formation of these structures can be understood using kinetic nonlinear Schrodinger (KNLS model. The structures emerge due to balance of nonlinear steepening (of large amplitude Alfvén waves by the linear Landau damping of ion-acoustic modes in a finite ß solar wind plasma. The ion-acoustic mode is driven nonlinearly by the large amplitude Alfvén waves. At the large amplitudes of Alfvén wave, the effects due to nonlinear Landau damping become important. These nonlinear effects are incorporated into the KNLS model by modifying the heat flux dissipation coefficient parallel to the ambient magnetic field. The effects arising from the bounced motion (of mirroring protons are studied using a one-dimensional Vlasov equation. The bounced motion of the protons can lead to growth of the ion-acoustic mode, propagating in the mirror geometry of the geomagnetic field. The significance of these studies in the formation of dissipative quasistationary structures observed in solar wind plasma is discussed.

  8. Experimental Simulation of Meteorite Ablation during Earth Entry Using a Plasma Wind Tunnel

    Energy Technology Data Exchange (ETDEWEB)

    Loehle, Stefan; Zander, Fabian; Hermann, Tobias; Eberhart, Martin; Meindl, Arne; Oefele, Rainer [High Enthalpy Flow Diagnostics Group, Institut für Raumfahrtsysteme, Universität Stuttgart, Pfaffenwaldring 29, D-70569 Stuttgart (Germany); Vaubaillon, Jeremie; Colas, Francois [Institut de Mécanique Céleste et de Calcul des Éphémerides, Observatoire de Paris, Av. de l’Observatoire, Paris (France); Vernazza, Pierre; Drouard, Alexis [Laboratoire d’Astrophysique de Marseille, Aix Marseille Univ, CNRS, LAM, Marseille (France); Gattacceca, Jerome [CNRS, Aix-Marseille Univ, IRD, Coll France, CEREGE, Aix-en-Provence,France, Avenue Louis Philibert, 13545 Aix-en-Provence (France)

    2017-03-10

    Three different types of rocks were tested in a high enthalpy air plasma flow. Two terrestrial rocks, basalt and argillite, and an ordinary chondrite, with a 10 mm diameter cylindrical shape were tested in order to observe decomposition, potential fragmentation, and spectral signature. The goal was to simulate meteoroid ablation to interpret meteor observation and compare these observations with ground based measurements. The test flow with a local mass-specific enthalpy of 70 MJ kg{sup −1} results in a surface heat flux at the meteorite fragment surface of approximately 16 MW m{sup −2}. The stagnation pressure is 24 hPa, which corresponds to a flight condition in the upper atmosphere around 80 km assuming an entry velocity of 10 km s{sup −1}. Five different diagnostic methods were applied simultaneously to characterize the meteorite fragmentation and destruction in the ground test: short exposure photography, regular video, high-speed imaging with 10 kHz frame rate, thermography, and Echelle emission spectroscopy. This is the first time that comprehensive testing of various meteorite fragments under the same flow condition was conducted. The data sets indeed show typical meteorite ablation behavior. The cylindrically shaped fragments melt and evaporate within about 4 s. The spectral data allow the identification of the material from the spectra which is of particular importance for future spectroscopic meteor observations. For the tested ordinary chondrite sample a comparison to an observed meteor spectra shows good agreement. The present data show that this testing methodology reproduces the ablation phenomena of meteoritic material alongside the corresponding spectral signatures.

  9. Evolution of the plasma parameters in the expanding laser ablation plume of silver

    DEFF Research Database (Denmark)

    Christensen, Bo Toftmann; Schou, Jørgen; Hansen, T.N.

    2002-01-01

    The angular and radial variation of the ion density and electron temperature in the plasma plume produced by laser ablation of silver at fluences of 0.8-1.3 J cm(-2) at 355 nm have been studied using a time-resolving Langmuir probe. The angular dependence of the electron temperature...

  10. The effect of plasma fluctuations on parallel transport parameters in the SOL

    DEFF Research Database (Denmark)

    Havlíčková, E.; Fundamenski, W.; Naulin, Volker

    2011-01-01

    in the scrape-off layer (SOL) taking into account these fluctuations is presented. Plasma transport in the SOL along the magnetic field between two targets is calculated by a one-dimensional fluid code in order to estimate the response to transient conditions along the SOL and the attention is given...

  11. Laser trapped single fine particle as a probe of plasma parameters

    Science.gov (United States)

    Yamashita, Daisuke; Soejima, Masahiro; Ito, Teppei; Seo, Hyunwoong; Itagaki, Naho; Koga, Kazunori; Shiratani, Masaharu

    2015-09-01

    Here we report evaluation of electron density and temperature using optically trapped single fine particle. Experiments were carried out with a radio frequency low pressure plasma reactor, where we set two quartz windows as top and bottom flanges to irradiate an infrared laser light of 1064 nm wavelength from the bottom side. Ar plasmas were generated between a powered ring-electrode set at the bottom of the reactor and a grounded mesh placed at the center of the reactor at 100 Pa by applying 13.56 MHz voltage. The particles injected into the plasmas were monodisperse methyl methacrylate-polymer spheres of 10 μm in diameter. A negatively charged particle, which is suspended plasma sheath boundary, was trapped at the focal point of the irradiated laser light due to the transfer of momentum from the scattering of incident photons. At the beginning of the trapping, particle of 10 μm in size was trapped above 505 μm from the bottom window. After 230 min, the size and position were 9.56 μm and 520 μm, respectively. From the results, the electron density and temperature are deduced to be 1.7×109 cm-3 and 1.9 eV.

  12. Association of Irisin Plasma Levels with Anthropometric Parameters in Children with Underweight, Normal Weight, Overweight, and Obesity

    Directory of Open Access Journals (Sweden)

    Leticia Elizondo-Montemayor

    2017-01-01

    Full Text Available The correlations between irisin levels, physical activity, and anthropometric measurements have been extensively described in adults with considerable controversy, but little evidence about these relationships has been found in children. The objective of this study is to correlate the plasma levels of irisin in underweight, normal weight, overweight, and obese children with anthropometric parameters and physical activity levels. A cross-sample of 40 children was divided into the following groups on the basis of body mass index (BMI percentile. The correlations of plasma irisin levels with physical activity, anthropometric, and metabolic measurements were determined. Plasma irisin levels (ng/mL were lower for the underweight group (164.2 ± 5.95 than for the normal weight and obese groups (182.8 ± 5.58; p<0.05. Irisin levels correlated positively with BMI percentile (0.387, waist circumference (0.373, and fat-free mass (0.353; p<0.05, but not with body muscle mass (−0.027. After a multiple linear regression analysis, only BMI percentile (0.564; p<0.008 showed a positive correlation with irisin. Our results indicated no association with metabolic parameters. A negative correlation with physical activity was observed. Interrelationships among body components might influence irisin levels in children.

  13. Optimization of process parameters in the RF-DC plasma N2-H2 for AISI420 molds and dies

    Science.gov (United States)

    Herdianto, Hengky; Djoko, D. J.; Santjojo, H.; Masruroh

    2017-11-01

    The RF-DC plasma N2-H2 was used to make precise AISI420 molds and dies have complex textured geometry. The quality of the molds and dies directly affect the quality of the produced parts. The excellent examples of molds were used for injection molding lenses and dies used for the precision forging of automotive drive train components. In this study, a temperature, DC bias, and duration as process parameters of the RF-DC plasma N2-H2 have been optimized for molds and dies fabrication. The mask-less micro-patterned method was utilized to draw the initial 2D micro patterns directly onto the AISI420 substrate surface. The unprinted substrate surfaces were selectively nitrided by the RF-DC plasma N2-H2 at 673 K for 5400 s by 70 Pa with hollow cathode device. Energy Dispersive X-ray was utilized to describe the nitrogen content distribution at the vicinity of the border between the unprinted surfaces. This exclusive nitrogen mapping proves that only the unprinted parts of the substrate have high content nitrogen solutes. XRD analysis was performed to investigate whether the iron nitrides were precipitated by RF-DC plasma N2-H2 in the AISI420.

  14. Effects of Supplemental Glutamine on Growth Performance, Plasma Parameters and LPS-induced Immune Response of Weaned Barrows after Castration

    Directory of Open Access Journals (Sweden)

    C. B. Hsu

    2012-05-01

    Full Text Available Two experiments were conducted to investigate the effects of supplemental glutamine on growth performance, plasma parameters and LPS-induced immune response of weaned barrows after castration. In experiment 1, forty-eight weaned male piglets were used and fed maize and soybean meal diets supplemented with 0 (Control or 2% L-Gln (Gln+ for 25 days. The results indicated that the Gln+ group tended to increase average daily gain compared to control in stages of days 7 to 14 and 0 to 25. The Gln+ had significantly better feed efficiency than the control group did during days 14 to 25 and 0 to 25. The plasma blood urea nitrogen and alkaline phosphatase contents of Gln+ group were higher than those of the control group on day 14 post-weaning. In experiment 2, sixteen weaned male piglets were injected with E. coli K88+ lipopolysaccharide (LPS on day 14 post-weaning. The results showed that the Gln+ group had lower concentrations of plasma adrenocorticotrophic hormone and cortisol than the control group on day 14 pre-LPS challenge. In addition, Gln+ group had higher plasma IgG concentration than the control group for pre- or post-LPS challenged on day 14 post-weaning. In summary, dietary supplementation of Gln was able to alleviate the stressful condition and inflammation associated with castration in weaned barrows, and to improve their immunity and growth performance in the early starter stage.

  15. Effects of supplemental glutamine on growth performance, plasma parameters and LPS-induced immune response of weaned barrows after castration.

    Science.gov (United States)

    Hsu, C B; Lee, J W; Huang, H J; Wang, C H; Lee, T T; Yen, H T; Yu, B

    2012-05-01

    Two experiments were conducted to investigate the effects of supplemental glutamine on growth performance, plasma parameters and LPS-induced immune response of weaned barrows after castration. In experiment 1, forty-eight weaned male piglets were used and fed maize and soybean meal diets supplemented with 0 (Control) or 2% L-Gln (Gln+) for 25 days. The results indicated that the Gln+ group tended to increase average daily gain compared to control in stages of days 7 to 14 and 0 to 25. The Gln+ had significantly better feed efficiency than the control group did during days 14 to 25 and 0 to 25. The plasma blood urea nitrogen and alkaline phosphatase contents of Gln+ group were higher than those of the control group on day 14 post-weaning. In experiment 2, sixteen weaned male piglets were injected with E. coli K88+ lipopolysaccharide (LPS) on day 14 post-weaning. The results showed that the Gln+ group had lower concentrations of plasma adrenocorticotrophic hormone and cortisol than the control group on day 14 pre-LPS challenge. In addition, Gln+ group had higher plasma IgG concentration than the control group for pre- or post-LPS challenged on day 14 post-weaning. In summary, dietary supplementation of Gln was able to alleviate the stressful condition and inflammation associated with castration in weaned barrows, and to improve their immunity and growth performance in the early starter stage.

  16. THE EFFECTS OF PLASMA SPRAY PARAMETERS ON THE MICROSTRUCTURE AND PHASE COMPOSITION OF THERMAL BARRIER COATINGS MADE BY SPPS PROCESS

    Directory of Open Access Journals (Sweden)

    Z. Valefi

    2017-06-01

    Full Text Available In this paper the effect of plasma spray parameters, atomizing gas and substrate preheat temperature on microstructure and phase composition of YSZ coatings produced by SPPS process have been investigated. The experimental results showed that increasing the power of plasma, using hydrogen as the precursor atomizing gas and increasing substrate preheat temperature decrease the amount of non-pyrolyzed precursor in the coatings. At low plasma power most of the deposited precursor is in non-pyrolyzed state, and consequently the applied coatings are defective. The increase in substrate temperature beyond 800oC either by preheating or heat transfer from plasma torch to the substrate, prevent the coating formation. In SPPS coating formation, up to a special spray distance the optical microscopy image of the coatings showed a snowy like appearance. XRD analysis showed that in this situation the amount of un-pyrolyzed precursor is low. Beyond this spray distance, spherical particles, are obtained and XRD analysis showed that most of the precursor is in un-pyrolyzed state.

  17. A study of principal hull parameters for a Spar buoy foundation for a vertical axis wind turbine in the MW-class

    OpenAIRE

    Nilsen, Sølve

    2016-01-01

    Master's thesis in Offshore technology: Marine and subsea technology This thesis analyses a vertical axis wind turbine (VAWT) in the MW-class used in relation with a floating Spar buoy. The objective was to study the effect of varying principal hull parameters including diameter and draft on the overall system’s hydrostatic and hydrodynamic performance. First, a spreadsheet was constructed, containing certain engineering simplifications to evaluate a number of floating geometries ...

  18. Lupin seeds lower plasma lipid concentrations and normalize antioxidant parameters in rats

    Directory of Open Access Journals (Sweden)

    Osman, M.

    2011-06-01

    Full Text Available This study was designed to test bitter and sweet lupin seeds for lipid-lowering and for their antioxidative activities in hypercholesterolemic rats. The levels of plasma lipid, malondialdehyde (MDA and whole blood reduced glutathione (GSH, as well as the activities of transaminases (ALT and AST, lactate dehydrogenase (LDH in plasma, superoxide dismutase (SOD, glutathione peroxidase (GPx in erythrocytes and plasma glutathione reductase (GR, glutathione-S-transferase (GST and catalase (CAT were examined. A hypercholesterolemia-induced diet manifested in the elevation of total lipids (TL, total cholesterol (TC, triglycerides (TG, LDL-C and MDA levels, ALT, AST, LDH activities and the depletion of GSH and enzymic antioxidants. The supplementation of a hypercholesterolemia-induced diet with bitter and sweet lupin seeds significantly lowered the plasma levels of TL, TC, TG and LDL-C. ALT, AST and LDH activities slightly decreased in treated groups compared with the hypercholesterolemic group (HC. Furthermore, the content of GSH significantly increased while MDA significantly decreased in treated groups compared with the HC group. In addition, the bitter lupin seed group improved enzymic antioxidants compared with the HC group. In general, the results indicated that the bitter lupin seed supplements are better than those containing sweet lupin seeds. These results suggested that the hypocholesterolemic effect of bitter and sweet lupin seed supplements might be due to their abilities to lower the plasma cholesterol level as well as to slow down the lipid peroxidation process and to enhance the antioxidant enzyme activity.

    Este estudio fue diseñado para evaluar semillas de altramuces dulces y amargas como agentes que bajan los lípidos y estudiar su efecto en la actividad antioxidante en ratas hipercolesterolémicas. El nivel de lípidos en plasma, malondialdehido (MDA y glutatión reducido (GSH, así como la actividad transaminasa (ALT y AST

  19. Long-Term Profiles of Wind and Weibull Distribution Parameters up to 600 m in a Rural Coastal and an Inland Suburban Area

    DEFF Research Database (Denmark)

    Gryning, Sven-Erik; Batchvarova, Ekaterina; Floors, Rogier Ralph

    2014-01-01

    at a flat rural coastal site in western Denmark and at an inland suburban area near Hamburg in Germany. Simulations with the weather research and forecasting numerical model were carried out in both forecast and analysis configurations. The scatter between measured and modelled wind speeds expressed...... distributions are different their variances are nearly the same. It is suggested to use the shape parameter for climatological mesoscale model evaluation. Based on the new measurements, a parametrization of the shape parameter for practical applications is suggested....

  20. Modulation of Jupiter's plasma flow, polar currents, and auroral precipitation by solar wind-induced compressions and expansions of the magnetosphere: a simple theoretical model

    Directory of Open Access Journals (Sweden)

    S. W. H. Cowley

    2007-06-01

    Full Text Available We construct a simple model of the plasma flow, magnetosphere-ionosphere coupling currents, and auroral precipitation in Jupiter's magnetosphere, and examine how they respond to compressions and expansions of the system induced by changes in solar wind dynamic pressure. The main simplifying assumption is axi-symmetry, the system being modelled principally to reflect dayside conditions. The model thus describes three magnetospheric regions, namely the middle and outer magnetosphere on closed magnetic field lines bounded by the magnetopause, together with a region of open field lines mapping to the tail. The calculations assume that the system is initially in a state of steady diffusive outflow of iogenic plasma with a particular equatorial magnetopause radius, and that the magnetopause then moves rapidly in or out due to a change in the solar wind dynamic pressure. If the change is sufficiently rapid (~2–3 h or less the plasma angular momentum is conserved during the excursion, allowing the modified plasma angular velocity to be calculated from the radial displacement of the field lines, together with the modified magnetosphere-ionosphere coupling currents and auroral precipitation. The properties of these transient states are compared with those of the steady states to which they revert over intervals of ~1–2 days. Results are shown for rapid compressions of the system from an initially expanded state typical of a solar wind rarefaction region, illustrating the reduction in total precipitating electron power that occurs for modest compressions, followed by partial recovery in the emergent steady state. For major compressions, however, typical of the onset of a solar wind compression region, a brightened transient state occurs in which super-rotation is induced on closed field lines, resulting in a reversal in sense of the usual magnetosphere-ionosphere coupling current system. Current system reversal results in accelerated auroral electron

  1. Modulation of Jupiter's plasma flow, polar currents, and auroral precipitation by solar wind-induced compressions and expansions of the magnetosphere: a simple theoretical model

    Directory of Open Access Journals (Sweden)

    S. W. H. Cowley

    2007-06-01

    Full Text Available We construct a simple model of the plasma flow, magnetosphere-ionosphere coupling currents, and auroral precipitation in Jupiter's magnetosphere, and examine how they respond to compressions and expansions of the system induced by changes in solar wind dynamic pressure. The main simplifying assumption is axi-symmetry, the system being modelled principally to reflect dayside conditions. The model thus describes three magnetospheric regions, namely the middle and outer magnetosphere on closed magnetic field lines bounded by the magnetopause, together with a region of open field lines mapping to the tail. The calculations assume that the system is initially in a state of steady diffusive outflow of iogenic plasma with a particular equatorial magnetopause radius, and that the magnetopause then moves rapidly in or out due to a change in the solar wind dynamic pressure. If the change is sufficiently rapid (~2–3 h or less the plasma angular momentum is conserved during the excursion, allowing the modified plasma angular velocity to be calculated from the radial displacement of the field lines, together with the modified magnetosphere-ionosphere coupling currents and auroral precipitation. The properties of these transient states are compared with those of the steady states to which they revert over intervals of ~1–2 days. Results are shown for rapid compressions of the system from an initially expanded state typical of a solar wind rarefaction region, illustrating the reduction in total precipitating electron power that occurs for modest compressions, followed by partial recovery in the emergent steady state. For major compressions, however, typical of the onset of a solar wind compression region, a brightened transient state occurs in which super-rotation is induced on closed field lines, resulting in a reversal in sense of the usual magnetosphere-ionosphere coupling current system. Current system reversal results in accelerated auroral

  2. Time-domain parameter identification of aeroelastic loads by forced-vibration method for response of flexible structures subject to transient wind

    Science.gov (United States)

    Cao, Bochao

    Slender structures representing civil, mechanical and aerospace systems such as long-span bridges, high-rise buildings, stay cables, power-line cables, high light mast poles, crane-booms and aircraft wings could experience vortex-induced and buffeting excitations below their design wind speeds and divergent self-excited oscillations (flutter) beyond a critical wind speed because these are flexible. Traditional linear aerodynamic theories that are routinely applied for their response prediction are not valid in the galloping, or near-flutter regime, where large-amplitude vibrations could occur and during non-stationary and transient wind excitations that occur, for example, during hurricanes, thunderstorms and gust fronts. The linear aerodynamic load formulation for lift, drag and moment are expressed in terms of aerodynamic functions in frequency domain that are valid for straight-line winds which are stationary or weakly-stationary. Application of the frequency domain formulation is restricted from use in the nonlinear and transient domain because these are valid for linear models and stationary wind. The time-domain aerodynamic force formulations are suitable for finite element modeling, feedback-dependent structural control mechanism, fatigue-life prediction, and above all modeling of transient structural behavior during non-stationary wind phenomena. This has motivated the developing of time-domain models of aerodynamic loads that are in parallel to the existing frequency-dependent models. Parameters defining these time-domain models can be now extracted from wind tunnel tests, for example, the Rational Function Coefficients defining the self-excited wind loads can be extracted using section model tests using the free vibration technique. However, the free vibration method has some limitations because it is difficult to apply at high wind speeds, in turbulent wind environment, or on unstable cross sections with negative aerodynamic damping. In the current

  3. Parameters of the plasma of a dc pulsating discharge in a supersonic air flow

    Energy Technology Data Exchange (ETDEWEB)

    Shibkov, V. M., E-mail: shibkov@phys.msu.ru; Shibkova, L. V.; Logunov, A. A. [Moscow State University, Faculty of Physics (Russian Federation)

    2017-03-15

    A dc discharge in a cold (T = 200 K) supersonic air flow at a static pressure of 200–400 Torr was studied experimentally. The excited unsteady pulsating discharge has the form of a thin plasma channel with a diameter of ≤1 mm, stretched downstream the flow. Depending on the discharge current, the pulsation frequency varies from 800 to 1600 Hz and the electron temperature varies from 8000 to 15000 K.

  4. Effects of density fluctuations on nonlinear evolution of low-frequency Alfven waves in solar wind plasmas

    Science.gov (United States)

    Nariyuki, Y.; Seough, J.

    2015-12-01

    It is well known that low-frequency Alfven waves are unstable to parametric instabilities, in which these waves are nonlinearly coupled with density fluctuations [e.g, Nariyuki+Hada, JGR, 2007 and references therein]. In solar wind plasmas, low-frequency fluctuations with non-zero cross-helicity are frequently observed [e.g., Bruno+Carbone, Living Rev. Solar Phys. (2013) and references therein]. When the absolute values of normalized cross helicities are close to the unity, the fluctuations may be composed of uni-directionally (anti-sunward) propagating Alfven waves. The derivative nonlinear Schrodinger equation (DNLS) has been known as the mode of modulational instabilities of unidirectional Alfven waves [Mio et al, JPSJ, 1976; Mjolhus, JPP, 1976]. In the DNLS, the density fluctuations are assumed to be the quasi-static state, which is determined according to the ponderomotive force of envelope-modulated Alfven waves. The DNLS was extended to include the obliquely propagating, compressional component of magnetic field by Mjolhus and Wyller (JPP, 1988). The kinetically modified DNLS (KDNLS) has also been discussed by many authors [Rogister, POF, 1971; Mjolhus and Wyller, Phys. Scr, 1986; JPP, 1988; Spangler, POF B, 1989; 1990; Medvedev+Diamond, POP, 1996; Nariyuki et al, POP, 2013]. On the other hand, ion acoustic modes [Hada, 1993], large scale inhomogeneity of plasmas [Buti et al, APJ, 1999; Nariyuki, POP, 2015] and random density fluctuations [Ruderman, POP, 2002] can also affect nonlinear evolution of Alfven waves. At the present time, combined effects of these effects are not fully understood. In this presentation, we discuss two models: one of them is the model including both ion kinetic effects and ion acoustic mode and another is the model including finite thermal effects and random density fluctuations. In the former case, ion kinetic effects on both longitudinal [Nariyuki+Hada, JPSJ, 2007] and transverse modulational instabilities are discussed, while the

  5. Effects of magnesium on erythrocyte sodium-lithium countertransport and some of plasma biochemical parameters in rabbit

    Directory of Open Access Journals (Sweden)

    Samad Akbarzadeh

    2009-02-01

    Full Text Available Background: Magnesium acts as an essential cofactor for the activity of many enzymes. It regulates the work of cardiovascular system. The activity of sodium–lithium countertransport (SLC and the concentrations of plasma biochemical parameters such as VLDL, LDL-cholesterol, HDL-cholesterol, sodium, potassium, urea and creatinine are changed in cardiovascular diseases. The aim of this study was to determine the effects of magnesium on SLC activity and some of the plasma biochemical parameters. Methods: New Zealand white rabbits (weighed 1350 ± 50g were chosen for these experiments. This study was conducted through two in vitro and in vivo techniques. Through in vitro method, the effects of different concentrations of magnesium on SLC activity were investigated. In order to conduct in vivo method, the rabbits were divided into two groups (5 /group. One group was treated by MgSo4 (40 mg/kg body weight through peritoneum for two weeks. For the second group, deionized water was used. The activity of SLC and mentioned biochemical parameters were determined. Results: The results of both in vitro and in vivo studies showed that magnesium can significantly decrease the SLC activity and also causes an increase in Km and decreased Vmax/Km of the system and plasma concentrations of VLDL, LDL-cholesterol, total cholesterol and triglycerides were significantly decreased. Conclusion: Magnesium may cause a reduction in blood pressure through decreasing the SLC activity and affecting the concentrations of VLDL, LDL-cholesterol, total cholesterol and triglycerides and so improvement the cardiovascular diseases.

  6. Modelling Wind for Wind Farm Layout Optimization Using Joint Distribution of Wind Speed and Wind Direction

    OpenAIRE

    Ju Feng; Wen Zhong Shen

    2015-01-01

    Reliable wind modelling is of crucial importance for wind farm development. The common practice of using sector-wise Weibull distributions has been found inappropriate for wind farm layout optimization. In this study, we propose a simple and easily implementable method to construct joint distributions of wind speed and wind direction, which is based on the parameters of sector-wise Weibull distributions and interpolations between direction sectors. It is applied to the wind measurement data a...

  7. Effects of Supplemental Glutamine on Growth Performance, Plasma Parameters and LPS-induced Immune Response of Weaned Barrows after Castration

    OpenAIRE

    Hsu, C. B.; Lee, J. W.; Huang, H. J.; Wang, C. H.; Lee, T. T.; Yen, H. T.; Yu, B.

    2012-01-01

    Two experiments were conducted to investigate the effects of supplemental glutamine on growth performance, plasma parameters and LPS-induced immune response of weaned barrows after castration. In experiment 1, forty-eight weaned male piglets were used and fed maize and soybean meal diets supplemented with 0 (Control) or 2% L-Gln (Gln+) for 25 days. The results indicated that the Gln+ group tended to increase average daily gain compared to control in stages of days 7 to 14 and 0 to 25. The Gln...

  8. The ionosphere plasma structural parameters investigation by a Langmuir cylindrical probe eliminating the spacecraft floating potential influence

    Science.gov (United States)

    Gousheva, Mariana; Angelov, Plamen; Hristov, Plamen; Kirov, Boyan; Georgieva, Katya

    The paper presents an analysis of some problems due to the influence of the spacecraft floating potential as well as the analyzing voltage at the ionosphere plasma structural parameters investigation by cylindrical Langmuir probe. A computer simulation using a new high-precision method for periodical measurement of the Langmuir cylindrical probe floating potential when measuring the probe collector current is presented. The advantages of the presented method, which is suitable for measurement of all parts of the V-A probe curve, are discussed.

  9. Determination of reference ranges for full blood count parameters in neonatal cord plasma in Hilla, Babil, Iraq

    Directory of Open Access Journals (Sweden)

    Al-Marzoki JM

    2012-10-01

    Full Text Available Jasim M Al-Marzoki1, Zainab W Al-Maaroof2, Ali H Kadhum31Department of Pediatrics, 2Department of Pathology, Babylon Medical College, 3Babylon Gynecology and Pediatric Teaching Hospital, Hilla, IraqBackground: The health of an individual is known to vary in different countries, in the same country at different times, and in the same individuals at different ages. This means that the condition of individuals must be related to or compared with reference data. Determination of a reference range for the healthy term newborn is clinically important in terms of various complete blood count parameters. The purpose of this study was to establish a local reference range for full blood count parameters in neonatal cord plasma in Hilla, Babil, Iraq.Methods: A total of 220 mothers and their neonates were enrolled in this cross-sectional study from February 2011 to January 2012. Maternal inclusion criteria were age 15–45 years, an uneventful pregnancy, and hemoglobin ≥ 10 g. Neonatal inclusion criteria were full term (37–42 weeks and normal birth weight. The umbilical cord was immediately clamped after delivery of the baby; 3 mL of cord blood was then taken from the umbilical vein and collected in a tube containing ethylenediamine tetra-acetic acid, its plasma was analyzed for full blood count parameters by standard Coulter gram, and the differential leukocyte count was done manually.Results: Mean neonatal hemoglobin was 13.88 ± 1.34 (range 11–17.3 g/dL and mean white cell count was 10.12 ± 2.8 (range 3.1–21.6 × 109/L. Mean platelet count was 267.63 ± 60.62 (range 152–472 × 109/L. No significant differences in red cell, white cell, or platelet counts were found between males and females, except for neutrophil count. The current study shows lower levels of hemoglobin, white cells, and red cells compared with other studies, and there is agreement with some studies and disagreement with others concerning platelet count.Conclusion: Most results

  10. Numerical Analysis of a Small-Size Vertical-Axis Wind Turbine Performance and Averaged Flow Parameters Around the Rotor

    Directory of Open Access Journals (Sweden)

    Rogowski Krzysztof

    2017-06-01

    Full Text Available Small-scale vertical-axis wind turbines can be used as a source of electricity in rural and urban environments. According to the authors’ knowledge, there are no validated simplified aerodynamic models of these wind turbines, therefore the use of more advanced techniques, such as for example the computational methods for fluid dynamics is justified. The paper contains performance analysis of the small-scale vertical-axis wind turbine with a large solidity. The averaged velocity field and the averaged static pressure distribution around the rotor have been also analyzed. All numerical results presented in this paper are obtained using the SST k-ω turbulence model. Computed power coeffcients are in good agreement with the experimental results. A small change in the tip speed ratio significantly affects the velocity field. Obtained velocity fields can be further used as a base for simplified aerodynamic methods.

  11. Experimental data on load test and performance parameters of a LENZ type vertical axis wind turbine in open environment condition.

    Science.gov (United States)

    Sivamani, Seralathan; T, Micha Premkumar; Sohail, Mohammed; T, Mohan; V, Hariram

    2017-12-01

    Performance and load testing data of a three bladed two stage LENZ type vertical axis wind turbine from the experiments conducted in an open environment condition at Hindustan Institute of Technology and Science, Chennai (location 23.2167°N, 72.6833°E) are presented here. Low-wind velocity ranging from 2 to 11 m/s is available everywhere irrespective of climatic seasons and this data provides the support to the researchers using numerical tool to validate and develop an enhanced Lenz type design. Raw data obtained during the measurements are processed and presented in the form so as to compare with other typical outputs. The data is measured at different wind speeds prevalent in the open field condition ranging from 3 m/s to 9 m/s.

  12. INTERACTION OF LASER RADIATION WITH MATTER. LASER PLASMA: Spectroscopic investigation of thermodynamic parameters of a plasma plume formed by the action of cw CO2 laser radiation on a metal substrate

    Science.gov (United States)

    Vasil'chenko, Zh V.; Azharonok, V. V.; Filatova, I. I.; Shimanovich, V. D.; Golubev, V. S.; Zabelin, A. M.

    1996-09-01

    Emission spectroscopy methods were used in an investigation of thermodynamic parameters of a surface plasma formed by the action of cw CO2 laser radiation of (2-5)×106 W cm-2 intensity on stainless steel in a protective He or Ar atmosphere. The spatiotemporal structure and pulsation characteristics of the plasma plume were used to determine the fields of the plasma electron density and temperature.

  13. Soluble FAS and FAS ligand levels in seminal plasma: association with basic parameters of semen analysis.

    Science.gov (United States)

    Passadaki, Theoktisti; Asimakopoulos, Byron; Zeginiadou, Theodosia; Nikolettos, Nikos

    2013-01-01

    Binding of FAS ligand (FASL) to its physiological receptor FAS, induces the activation of caspase-8, which triggers cell death. The FAS-FASL system regulates germ cell death. In this study, the role of the FAS-FASL system in male infertility was examined. 72 samples were used (age=38.76 ± 9.06 years). Basic semen analysis was performed according to the WHO Laboratory Manual. Soluble (s) forms of FAS and FASL were measured in seminal plasma using commercially available immunoassay kits. Among the examined samples, 24 were normal and 48 abnormal, as evaluated by basic semen analysis. sFAS and sFASL levels in abnormal samples were slightly higher than in the normal ones. In all samples, sFAS correlated negatively with pH. In normal samples, sFAS was positively correlated with sperm concentration. In abnormal samples, sFAS strongly correlated with sFASL. Both factors of the FAS system were detected in seminal plasma. Further studies are necessary to shed light into the possible role of FAS-FASL system in male infertility.

  14. Optimization of plasma parameters for the production of silicon nano-crystals

    CERN Document Server

    Chaabane, N; Vach, H; Cabarrocas, P R I

    2003-01-01

    We use silane-hydrogen plasmas to synthesize silicon nano-crystals in the gas phase and thermophoresis to collect them onto a cooled substrate. To distinguish between nano-crystals formed in the plasma and those grown on the substrate, as a result of surface and subsurface reactions, we have simultaneously deposited films on a conventional substrate heated at 250 deg. C and on a second substrate cooled down to 90 deg. C. A series of samples deposited at various discharge pressures, in the range of 400 mTorr to 1.2 Torr, have been characterized by Raman spectroscopy and ellipsometry. At low pressure (400-500 mTorr), the films are amorphous on the cold substrate and micro-crystalline on the hot one. As pressure increases, gas phase reactions lead to the formation of nano-crystalline particles which are attracted by the cold substrate due to thermophoresis. Consequently, we obtain nano-crystalline silicon thin films on the cold substrate and amorphous thin films on the heated one in the pressure range of 600-900...

  15. Ion Events Observed by Wind far Upstream From the Bow Shock and by Geotail / Imp-8 Near the Bow Shock and Within the Plasma Sheet

    Science.gov (United States)

    Anagnostopoulos, G.; Efthymiadis, D.; Sarris, E. T.; Krimigis, S. M.

    2002-12-01

    Mason et al. (1996) reported characteristics of short duration energetic (>~30 keV/neucleon) heavy ion enhancements observed by the WIND spacecraft at large distances upstream from the bow shock during two periods of high speed streams (Jan. 20, 1995 - Feb. 19, 1995) and Desai et al (2000) extended their study and presented results from a statistical analysis of upstream events rich in CNO species as observed by the WIND spacecraft between 1994 day 325 to 1999 day 92. Desai et al. suggested that some ion characteristics (as for instance, the fact that the majority of the events were observed in the dawn-noon sector, the solar-wind-like ion composition and the heavy ion dominance of the total energy ion spectrum above ~0.5 MeV) appear to pose severe problems for the leakage model, while other characteristics appear to pose serious challenges for the Fermi acceleration model. In this paper we compare the statistical results of Desai et al. with the results from previous statistical and case studies and we show that the Wind observations are in general consistent with the leakage model. Furthermore, we examine simultaneous multispacecraft observations during time periods of some typical events presented by the authors (Mason et al., 1996; Desai et al., 2000) and we compare them with predictions from the leakage and bow shock acceleration models. In particular: (a) we present observations by WIND far upstream from the bow shock and by Geotail and IMP-8 within the magnetosphere and we infer that particle acceleration within the plasma sheet and subsequent leakage to the upstream region are responsible for the generation of these upstream ion events, and (b) we compare the upstream WIND observations with observations obtained by Geotail and IMP-8 near the bow shock, and we infer that the near bow shock observations do not fit with major predictions of Fermi acceleration models.

  16. Operating parameters and observation modes for individual droplet analysis by inductively coupled plasma-atomic emission spectrometry

    Science.gov (United States)

    Chan, George C.-Y.; Zhu, Zhenli; Hieftje, Gary M.

    2012-10-01

    Several operating parameters for single-droplet analysis by inductively coupled plasma-atomic emission spectrometry were investigated and optimized. Two plasma observation modes, both of which measure the plasma side-on, were compared. In the "whole-vertical" mode, the entire vertical emission pattern of the center portion of the central channel was spatially integrated, whereas in the "lateral" mode emission from a thin horizontal slice of the vertical plasma image was measured. The limits of detection (LOD) as well as measurement precision attainable by these two observation modes were found to be practically identical. However, the lateral mode is preferred because emission is then more insensitive to a small drift in carrier-gas flow than in the vertical mode. Precision was found to degrade at carrier-gas flows that yield maximum sensitivities in both observation modes. As a result, the best precision and lowest LODs cannot be achieved under the same plasma operating conditions and a compromise is needed. In this study, precision was given a higher priority than LOD because each individual droplet is regarded as a new sample in single-droplet analysis and each such sample can be measured only once. For best precision, the observation region should be 3 mm downstream of the atomization site to avoid the adverse local plasma cooling effect of the vaporizing particle. Under optimized conditions, the best precision is about 3-4% and the absolute detection limits for eleven elements (Ag, B, Ca, Cd, Cu, Fe, Mg, Ni, Pb, Sr, and Zn) range from sub-single to hundreds of femtograms, which corresponds to 106 to 109 atoms for single-droplet analysis. In addition, a new synchronization trigger method for droplet analysis was developed. This method is based on Hα emission collected between the first and second lowest turns of the load coil. This trigger signal fires while the droplet is still intact, resides inside the lowest portion of the load coil, and is typically

  17. Pre-Analytical Parameters Affecting Vascular Endothelial Growth Factor Measurement in Plasma: Identifying Confounders.

    Directory of Open Access Journals (Sweden)

    Johanna M Walz

    Full Text Available Vascular endothelial growth factor-A (VEGF-A is intensively investigated in various medical fields. However, comparing VEGF-A measurements is difficult because sample acquisition and pre-analytic procedures differ between studies. We therefore investigated which variables act as confounders of VEGF-A measurements.Following a standardized protocol, blood was taken at three clinical sites from six healthy participants (one male and one female participant at each center twice one week apart. The following pre-analytical parameters were varied in order to analyze their impact on VEGF-A measurements: analyzing center, anticoagulant (EDTA vs. PECT / CTAD, cannula (butterfly vs. neonatal, type of centrifuge (swing-out vs. fixed-angle, time before and after centrifugation, filling level (completely filled vs. half-filled tubes and analyzing method (ELISA vs. multiplex bead array. Additionally, intrapersonal variations over time and sex differences were explored. Statistical analysis was performed using a linear regression model.The following parameters were identified as statistically significant independent confounders of VEGF-A measurements: analyzing center, anticoagulant, centrifuge, analyzing method and sex of the proband. The following parameters were no significant confounders in our data set: intrapersonal variation over one week, cannula, time before and after centrifugation and filling level of collection tubes.VEGF-A measurement results can be affected significantly by the identified pre-analytical parameters. We recommend the use of CTAD anticoagulant, a standardized type of centrifuge and one central laboratory using the same analyzing method for all samples.

  18. Effect of transient scrotal hyperthermia on sperm parameters, seminal plasma biochemical markers, and oxidative stress in men

    Directory of Open Access Journals (Sweden)

    Meng Rao

    2015-01-01

    Full Text Available In this experimental prospective study, we aimed to analyze the effect of transient scrotal hyperthermia on the male reproductive organs, from the perspective of sperm parameters, semen plasma biochemical markers, and oxidative stress, to evaluate whether different frequencies of heat exposure cause different degrees of damage to spermatogenesis. Two groups of volunteers (10 per group received testicular warming in a 43°C water bath 10 times, for 30 min each time: group 1: 10 consecutive days; group 2: once every 3 days. Sperm parameters, epididymis and accessory sex gland function, semen plasma oxidative stress and serum sex hormones were tested before treatment and in the 16-week recovery period after treatment. At last, we found an obvious reversible decrease in sperm concentration (P = 0.005 for Group 1 and P= 0.008 for Group 2 when the minimums were compared with baseline levels, the same below, motility (P = 0.009 and 0.021, respectively, the hypoosmotic swelling test score (P = 0.007 and 0.008, respectively, total acrosin activity (P = 0.018 and 0.009, respectively, and an increase in the seminal plasma malondialdehyde concentration (P = 0.005 and 0.017, respectively. The decrease of sperm concentration was greater for Group 2 than for Group 1 (P = 0.031. We concluded that transient scrotal hyperthermia seriously, but reversibly, negatively affected the spermatogenesis, oxidative stress may be involved in this process. In addition, intermittent heat exposure more seriously suppresses the spermatogenesis compared to consecutive heat exposure. This may be indicative for clinical infertility etiology analysis and the design of contraceptive methods based on heat stress.

  19. Investigation of plasma parameters at BATMAN for variation of the Cs evaporation asymmetry and comparing two driver geometries

    Science.gov (United States)

    Wimmer, C.; Fantz, U.; Aza, E.; Jovović, J.; Kraus, W.; Mimo, A.; Schiesko, L.

    2017-08-01

    The Neutral Beam Injection (NBI) system for fusion devices like ITER and, beyond ITER, DEMO requires large scale sources for negative hydrogen ions. BATMAN (Bavarian Test Machine for Negative ions) is a test facility attached with the prototype source for the ITER NBI (1/8 source size of the ITER source), dedicated to physical investigations due to its flexible access for diagnostics and exchange of source components. The required amount of negative ions is produced by surface conversion of hydrogen atoms or ions on caesiated surfaces. Several diagnostic tools (Optical Emission Spectroscopy, Cavity Ring-Down Spectroscopy for H-, Langmuir probes, Tunable Diode Laser Absorption Spectroscopy for Cs) allow the determination of plasma parameters in the ion source. Plasma parameters for two modifications of the standard prototype source have been investigated: Firstly, a second Cs oven has been installed in the bottom part of the back plate in addition to the regularly used oven in the top part of the back plate. Evaporation from the top oven only can lead to a vertically asymmetric Cs distribution in front of the plasma grid. Using both ovens, a symmetric Cs distribution can be reached - however, in most cases no significant change of the extracted ion current has been determined for varying Cs symmetry if the source is well-conditioned. Secondly, BATMAN has been equipped with a much larger, racetrack-shaped RF driver (area of 32×58 cm2) instead of the cylindrical RF driver (diameter of 24.5 cm). The main idea is that one racetrack driver could substitute two cylindrical drivers in larger sources with increased reliability and power efficiency. For the same applied RF power, the electron density is lower in the racetrack driver due to its five times higher volume. The fraction of hydrogen atoms to molecules, however, is at a similar level or even slightly higher, which is a promising result for application in larger sources.

  20. Plasma thrombopoietin level after liver transplantation: relationship to cold ischemia time and coagulation parameters.

    Science.gov (United States)

    Dobado-Berrios, P M; López-Pedrera, C; Soriano, F; de la Mata, M; Guerrero, R; Torres, A; Velasco, F

    2000-06-01

    To determine the relation between thrombopoietin (Tpo) levels following orthotopic liver transplantation (OLT), cold ischemia time and postoperative peripheral blood platelet count and prothrombin activity. Prospective clinical study. Intensive care unit. Fourteen patients with uncomplicated postoperative course after OLT. Plasma Tpo, as quantified by enzyme immunoassay, rose significantly from 194.9 +/- 45.7 pg/ml on day 1 after OLT to a peak value of 500.7 +/- 94.1 pg/ml on day 5 while platelet count was below normal values. Then the platelet count increased and reached normal values while Tpo decreased to normal. The rise of Tpo levels was associated with normalization of prothrombin time but peak Tpo concentrations were in inverse correlation with cold ischemia times. The extent of production of Tpo in the liver graft following OLT is affected by cold ischemia time. This observation may be applicable in the prevention of bleeding complications associated with postoperative thrombocytopenia.

  1. Active Stall Control of Horizontal Axis Wind Turbines : A dedicated study with emphasis on DBD plasma actuators

    NARCIS (Netherlands)

    Balbino Dos Santos Pereira, R.

    2016-01-01

    The contribution of sustainable Wind Energy (WE) to the global energy scenario has been
    steadily increasing over the past decades. In the process, Horizontal Axis Wind Turbines
    (HAWT) became the most widespread and largest WE harvesting machines. Nevertheless,
    significant challenges

  2. Influence of atmospheric plasma spray parameters on YSZ coatings obtained from micro and nano structured feedstocks; Influencia de los parametros de proyeccion por plasma atmosferico en recubrimientos de YSZ obtenidos a partir de polvos micro y nanoestructurados

    Energy Technology Data Exchange (ETDEWEB)

    Carpio, P.; Bannier, E.; Borrell, A.; Salvador, M. d.; Sanchez, E.

    2014-07-01

    In the present work, the influence of atmospheric plasma spray (APS) parameters on the deposition of two commercial YSZ feedstocks, one conventional and one non-conductor's, has been studied. First the study focused on how the variability of the different parameters affects the particle behaviour during spraying. For this purpose, a sensor which enables to measure the particle temperature and velocity inside the plasma was used. Once the spraying parameters influence was known, both powders were deposited by APS onto stainless steel substrates modifying the higher influencing parameters. These coatings have been characterised and the influence of the particle behaviour on the coating microstructure and properties has been analysed. This work concludes the spraying parameters variation affects on the particle velocity and temperature inside the plasma plume and this behaviour influences, in turn but in a different way, on the final coating characteristics when using different powders (micro- and nano structured). (Author)

  3. Influence of process parameters on plasma electrolytic surface treatment of tantalum for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Sowa, Maciej, E-mail: maciej.sowa@polsl.pl [Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego Street 6, 44-100 Gliwice (Poland); Woszczak, Maja; Kazek-Kęsik, Alicja [Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego Street 6, 44-100 Gliwice (Poland); Dercz, Grzegorz [Institute of Materials Science, University of Silesia, 75 Pułku Piechoty Street 1A, 41-500 Chorzów (Poland); Korotin, Danila M. [M.N. Mikheev Institute of Metal Physics of the Ural Branch of Russian Academy of Sciences, S. Kovalevskoi Street 18, 620990 Yekaterinburg (Russian Federation); Institute of Physics and Technology, Ural Federal University, Mira Street 19, 620002 Yekaterinburg (Russian Federation); Zhidkov, Ivan S. [Institute of Physics and Technology, Ural Federal University, Mira Street 19, 620002 Yekaterinburg (Russian Federation); Kurmaev, Ernst Z. [M.N. Mikheev Institute of Metal Physics of the Ural Branch of Russian Academy of Sciences, S. Kovalevskoi Street 18, 620990 Yekaterinburg (Russian Federation); Institute of Physics and Technology, Ural Federal University, Mira Street 19, 620002 Yekaterinburg (Russian Federation); Cholakh, Seif O. [Institute of Physics and Technology, Ural Federal University, Mira Street 19, 620002 Yekaterinburg (Russian Federation); Basiaga, Marcin [Faculty of Biomedical Engineering, Silesian University of Technology, Gen. de Gaulle’a Street 66, 41-800 Zabrze (Poland); Simka, Wojciech, E-mail: wojciech.simka@polsl.pl [Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego Street 6, 44-100 Gliwice (Poland)

    2017-06-15

    Highlights: • 2-step plasma electrolytic oxidation (PEO) of tantalum was investigated. • PEO coatings surface composition were reflected by the composition of anodizing baths. • Hydrophobic surfaces were obtained from acetate and formate containing baths. • Bioactive phases were identified. - Abstract: This work aims to quantify the effect of anodization voltage and electrolyte composition used during DC plasma electrolytic oxidation (PEO), operated as a 2-step process, on the surface properties of the resulting oxide coatings on tantalum. The first step consisted of galvanostatic anodization (150 mA cm{sup −2}) of the tantalum workpiece up to several limiting voltages (200, 300, 400 and 500 V). After attaining the limiting voltage, the process was switched to voltage control, which resulted in a gradual decrease of the anodic current density. The anodic treatment was realized in a 0.5 M Ca(H{sub 2}PO{sub 2}){sub 2} solution, which was then modified by the addition of 1.15 M Ca(HCOO){sub 2} as well as 1.15 M and 1.5 M Mg(CH{sub 3}COO){sub 2}. The increasing voltage of anodization led to the formation of thicker coatings, with larger pores and enriched with electrolytes species to a higher extent. The solutions containing HCOO{sup −} and CH{sub 3}COO{sup −} ions caused the formation of coatings which were slightly hydrophobic (high contact angle). In the case of the samples anodized up to 500 V, scattered crystalline deposits were observed. Bioactive phases, such as hydroxyapatite, were detected in the treated oxide coatings by XRD and XPS.

  4. Prebiotics, Prosynbiotics and Synbiotics: Can They Reduce Plasma Oxidative Stress Parameters? A Systematic Review.

    Science.gov (United States)

    Salehi-Abargouei, Amin; Ghiasvand, Reza; Hariri, Mitra

    2017-03-01

    This study assessed the effectiveness of presybiotics, prosybiotics and synbiotics on reducing serum oxidative stress parameters. PubMed/Medline, Ovid, Google Scholar, ISI Web of Science and SCOPUS were searched up to September 2016. English language randomized clinical trials reporting the effect of presybiotics, prosybiotics or synbiotic interventions on serum oxidative stress parameters in human adults were included. Twenty-one randomized clinical trials met the inclusion criteria for systematic review. Two studies investigated prebiotics, four studies synbiotics and fifteen studies probiotics. According to our systematic review, prebiotic could decrease malondialdehyde and increase superoxidative dismutase, but evidence is not enough. In comparison with fructo-oligosaccharide, inulin is much more useful for oxidative stress reduction. Using probiotics with dairy products could reduce oxidative stress significantly, but probiotic in form of supplementation did not have any effect on oxidative stress. There is limited but supportive evidence that presybiotics, prosybiotics and synbiotics are effective for reducing oxidative stress parameters. Further randomized clinical trials with longer duration of intervention especially on population with increased oxidative stress are needed to provide more definitive results before any recommendation for clinical use of these interventions.

  5. Bacterial inactivation by high-voltage atmospheric cold plasma: influence of process parameters and effects on cell leakage and DNA.

    Science.gov (United States)

    Han, L; Lu, H; Patil, S; Keener, K M; Cullen, P J; Bourke, P

    2014-04-01

    This study investigated a range of atmospheric cold plasma (ACP) process parameters for bacterial inactivation with further investigation of selected parameters on cell membrane integrity and DNA damage. The effects of high voltage levels, mode of exposure, gas mixture and treatment time against Escherichia coli and Listeria monocytogenes were examined. 10(8) CFU ml(-1) E. coli ATCC 25922, E. coli NCTC 12900 and L. monocytogenes NCTC11994 were ACP-treated in 10 ml phosphate-buffered saline (PBS). Working gas mixtures used were air (gas mix 1), 90% N2 + 10% O2 (gas mix 2) and 65% O2 + 30% CO2 + 5% N2 (gas mix 3). Greater reduction of viability was observed for all strains using higher voltage of 70 kVRMS and with working gas mixtures with higher oxygen content in combination with direct exposure. Indirect ACP exposure for 30 s inactivated below detection level both E. coli strains. L. monocytogenes inactivation within 30 s was irrespective of the mode of exposure. Leakage was assessed using A260 absorbance, and DNA damage was monitored using PCR and gel electrophoresis. Membrane integrity was compromised after 5 s, with noticeable DNA damage also dependent on the target cell after 30 s. Plasma treatment was effective for inactivation of challenge micro-organisms, with a greater sensitivity of L. monocytogenes noted. Different damage patterns were observed for the different bacterial strains attributed to the membrane structure and potential resistance mechanisms. Using atmospheric air as working gas resulted in useful inactivation by comparison with high nitrogen or high oxygen mix. The mechanism of inactivation was a function of treatment duration and cell membrane characteristics, thus offering potential for optimized process parameters specific to the microbial challenge. © 2013 The Society for Applied Microbiology.

  6. Effect of Selection of Design Parameters on the Optimization of a Horizontal Axis Wind Turbine via Genetic Algorithm

    Science.gov (United States)

    Alpman, Emre

    2014-06-01

    The effect of selecting the twist angle and chord length distributions on the wind turbine blade design was investigated by performing aerodynamic optimization of a two-bladed stall regulated horizontal axis wind turbine. Twist angle and chord length distributions were defined using Bezier curve using 3, 5, 7 and 9 control points uniformly distributed along the span. Optimizations performed using a micro-genetic algorithm with populations composed of 5, 10, 15, 20 individuals showed that, the number of control points clearly affected the outcome of the process; however the effects were different for different population sizes. The results also showed the superiority of micro-genetic algorithm over a standard genetic algorithm, for the selected population sizes. Optimizations were also performed using a macroevolutionary algorithm and the resulting best blade design was compared with that yielded by micro-genetic algorithm.

  7. Effects of fat supplementations on milk production and composition, ruminal and plasma parameters of dairy cows

    Directory of Open Access Journals (Sweden)

    L. Bailoni

    2010-04-01

    Full Text Available The effects on milk yield and quality caused by the same amount (325 g/d/cow of lipids provided by 3 different fat sources (hydrogenate palm fat, HF; calcium salt palm fat, CaSF; full-fat toasted soybean, TS, top dressed to a common total mixed ration, were investigated. Supplementations did not affect feed intake and milk yield, but markedly changed the acidic profile of milk fat. CaSF and TS significantly increased the proportions of unsaturated fatty acids of milk fat with respect to control and to HF. The 3 fat sources did not affect the concentrations of ammonia and VFA of rumen fluid. TS only slightly increased (P<0.10 plasma urea content because of a higher dietary protein supply, with respect to the other treatments. The use of a low amount of toasted and cracked full fat soybean seem to be interesting to increase the energy concentration of diets in replacement to commercial fat products and it can be use to modify the milk fat quality increasing the fraction with benefit effects on human health.

  8. Influence of the arc plasma parameters on the weld pool profile in TIG welding

    Science.gov (United States)

    Toropchin, A.; Frolov, V.; Pipa, A. V.; Kozakov, R.; Uhrlandt, D.

    2014-11-01

    Magneto-hydrodynamic simulations of the arc and fluid simulations of the weld pool can be beneficial in the analysis and further development of arc welding processes and welding machines. However, the appropriate coupling of arc and weld pool simulations needs further improvement. The tungsten inert gas (TIG) welding process is investigated by simulations including the weld pool. Experiments with optical diagnostics are used for the validation. A coupled computational model of the arc and the weld pool is developed using the software ANSYS CFX. The weld pool model considers the forces acting on the motion of the melt inside and on the surface of the pool, such as Marangoni, drag, electromagnetic forces and buoyancy. The experimental work includes analysis of cross-sections of the workpieces, highspeed video images and spectroscopic measurements. Experiments and calculations have been performed for various currents, distances between electrode and workpiece and nozzle diameters. The studies show the significant impact of material properties like surface tension dependence on temperature as well as of the arc structure on the weld pool behaviour and finally the weld seam depth. The experimental weld pool profiles and plasma temperatures are in good agreement with computational results.

  9. Relationship between periodontal parameters and plasma cytokine profiles in pregnant woman with preterm birth or low birth weight.

    Science.gov (United States)

    Mesa, Francisco; Pozo, Elena; O'Valle, Francisco; Puertas, Alberto; Magan-Fernandez, Antonio; Rosel, Eva; Bravo, Manuel

    2016-05-01

    The aim was to determine whether clinical periodontal parameters are associated with plasma anti- and/or pro-inflammatory cytokines in pregnant woman with preterm birth (PB) or low birth weight (LBW) neonates. An observational case-control study was performed in 131 puerperal women: mothers of PB/LBW neonates (cases, n = 67) and mothers of full-term normal-weight neonates (controls, n = 64). Sociodemographic and periodontal data was gathered from all participants, and interleukin (IL)-1β, IL-6, IL-8, IL-10, IL-17, IL-23, and tumor necrosis factor alpha (TNF-α) were determined in plasma. In multiple linear regression models, clinical attachment loss was associated with TNF-α (0.28 ± 0.14; 95% confidence interval (CI) [0.006, 0.553]) and IL-1β (0.43 ± 0.21; 95%CI [0.018, 0.842]), independent of group membership. IL-1β (-1.67 ± 0.27, 95%CI [-2.199, -1.141]), IL-6 (-0.86 ± 0.27; 95%CI [-1.389, -0.331]), and IL-8 (-3.84 ± 0.50, 95%CI [-4.820, -2.860]) were lower, and IL-10 (0.86 ± 0.26; 95%CI [0.350, 1.370]) was higher in cases versus controls after adjusting for potential confounders. Clinical attachment loss was associated with plasma TNF-α and IL-1β levels. No plasma cytokine profiles suggestive of systemic inflammatory response were observed in the pregnant women with PB/LBW neonates. Clinical attachment loss, as the main periodontal measure, is associated with TNF-α and IL-1β plasma levels in pregnant women. No relationship was found between PB/LBW and the markers of systemic inflammatory response assessed in this study.

  10. Hematological and plasma biochemical parameters in a wild population of Naja naja (Linnaeus, 1758) in Sri Lanka.

    Science.gov (United States)

    Dissanayake, Duminda S B; Thewarage, Lasanthika D; Manel Rathnayake, Rathnayake M P; Kularatne, Senanayake A M; Ranasinghe, Jamburagoda G Shirani; Jayantha Rajapakse, Rajapakse P V

    2017-01-01

    Hematological studies of any animal species comprise an important diagnostic method in veterinary medicine and an essential tool for the conservation of species. In Sri Lanka, this essential technique has been ignored in studies of many species including reptiles. The aim of the present work was to establish a reference range of hematological values and morphological characterization of wild spectacled cobras (Naja naja) in Sri Lanka in order to provide a diagnostic tool in the assessment of health condition in reptiles and to diagnose diseases in wild populations. Blood samples were collected from the ventral caudal vein of 30 wild-caught Naja naja (18 males and 12 females). Hematological analyses were performed using manual standard methods. Several hematological parameters were examined and their mean values were: red blood cell count 0.581 ± 0.035 × 106/μL in males; 0.4950 ± 0.0408 × 106/μL in females; white blood cell count 12.45 ± 1.32 × 103/μL in males; 11.98 ± 1.62 × 103/μL in females; PCV (%) in males was 30.11 ± 1.93 and in females was 23.41 ± 1.67; hemoglobin (g/dL) was 7.6 ± 0.89 in males and 6.62 ± 1.49 in females; plasma protein (g/dL) was 5.11 ± 0.75 in males and 3.25 ± 0.74 in females; whereas cholesterol (mg/mL) was 4.09 ± 0.12 in males and 3.78 ± 0.42 in females. There were no significant differences in hematological parameters between the two genders except for erythrocyte count, thrombocyte count, hematocrit, hemoglobin, plasma protein, percentage of azurophil and heterophil. Intracellular parasites were not found in any of the studied specimens. Hematological and plasma biochemical parameters indicated a difference between geographically isolated populations and some values were significantly different between the two genders. These hematological results provide a reference range for Sri Lankan population of adult Naja naja.

  11. Determination of reference ranges for full blood count parameters in neonatal cord plasma in Hilla, Babil, Iraq.

    Science.gov (United States)

    Al-Marzoki, Jasim M; Al-Maaroof, Zainab W; Kadhum, Ali H

    2012-01-01

    The health of an individual is known to vary in different countries, in the same country at different times, and in the same individuals at different ages. This means that the condition of individuals must be related to or compared with reference data. Determination of a reference range for the healthy term newborn is clinically important in terms of various complete blood count parameters. The purpose of this study was to establish a local reference range for full blood count parameters in neonatal cord plasma in Hilla, Babil, Iraq. A total of 220 mothers and their neonates were enrolled in this cross-sectional study from February 2011 to January 2012. Maternal inclusion criteria were age 15-45 years, an uneventful pregnancy, and hemoglobin ≥ 10 g. Neonatal inclusion criteria were full term (37-42 weeks) and normal birth weight. The umbilical cord was immediately clamped after delivery of the baby; 3 mL of cord blood was then taken from the umbilical vein and collected in a tube containing ethylenediamine tetra-acetic acid, its plasma was analyzed for full blood count parameters by standard Coulter gram, and the differential leukocyte count was done manually. Mean neonatal hemoglobin was 13.88 ± 1.34 (range 11-17.3) g/dL and mean white cell count was 10.12 ± 2.8 (range 3.1-21.6) × 109/L. Mean platelet count was 267.63 ± 60.62 (range 152-472) × 109/L. No significant differences in red cell, white cell, or platelet counts were found between males and females, except for neutrophil count. The current study shows lower levels of hemoglobin, white cells, and red cells compared with other studies, and there is agreement with some studies and disagreement with others concerning platelet count. Most results in the current study were within the reference range. The hematological reference values for Iraqi neonatal cord plasma need to be confirmed by larger numbers of blood samples and by collecting samples from different areas in Iraq.

  12. Production of aerosols by optical catapulting: Imaging, performance parameters and laser-induced plasma sampling rate

    Science.gov (United States)

    Abdelhamid, M.; Fortes, F. J.; Fernández-Bravo, A.; Harith, M. A.; Laserna, J. J.

    2013-11-01

    Optical catapulting (OC) is a sampling and manipulation method that has been extensively studied in applications ranging from single cells in heterogeneous tissue samples to analysis of explosive residues in human fingerprints. Specifically, analysis of the catapulted material by means of laser-induced breakdown spectroscopy (LIBS) offers a promising approach for the inspection of solid particulate matter. In this work, we focus our attention in the experimental parameters to be optimized for a proper aerosol generation while increasing the particle density in the focal region sampled by LIBS. For this purpose we use shadowgraphy visualization as a diagnostic tool. Shadowgraphic images were acquired for studying the evolution and dynamics of solid aerosols produced by OC. Aluminum silicate particles (0.2-8 μm) were ejected from the substrate using a Q-switched Nd:YAG laser at 1064 nm, while time-resolved images recorded the propagation of the generated aerosol. For LIBS analysis and shadowgraphy visualization, a Q-switched Nd:YAG laser at 1064 nm and 532 nm was employed, respectively. Several parameters such as the time delay between pulses and the effect of laser fluence on the aerosol production have been also investigated. After optimization, the particle density in the sampling focal volume increases while improving the aerosol sampling rate till ca. 90%.

  13. Optimization of Tape Winding Process Parameters to Enhance the Performance of Solid Rocket Nozzle Throat Back Up Liners using Taguchi's Robust Design Methodology

    Science.gov (United States)

    Nath, Nayani Kishore

    2017-08-01

    The throat back up liners is used to protect the nozzle structural members from the severe thermal environment in solid rocket nozzles. The throat back up liners is made with E-glass phenolic prepregs by tape winding process. The objective of this work is to demonstrate the optimization of process parameters of tape winding process to achieve better insulative resistance using Taguchi's robust design methodology. In this method four control factors machine speed, roller pressure, tape tension, tape temperature that were investigated for the tape winding process. The presented work was to study the cogency and acceptability of Taguchi's methodology in manufacturing of throat back up liners. The quality characteristic identified was Back wall temperature. Experiments carried out using L 9 ' (34) orthogonal array with three levels of four different control factors. The test results were analyzed using smaller the better criteria for Signal to Noise ratio in order to optimize the process. The experimental results were analyzed conformed and successfully used to achieve the minimum back wall temperature of the throat back up liners. The enhancement in performance of the throat back up liners was observed by carrying out the oxy-acetylene tests. The influence of back wall temperature on the performance of throat back up liners was verified by ground firing test.

  14. Simulated solar wind plasma interaction with the Martian exosphere: influence of the solar EUV flux on the bow shock and the magnetic pile-up boundary

    Directory of Open Access Journals (Sweden)

    R. Modolo

    2006-12-01

    Full Text Available The solar wind plasma interaction with the Martian exosphere is investigated by means of 3-D multi-species hybrid simulations. The influence of the solar EUV flux on the bow shock and the magnetic pile-up boundary is examined by comparing two simulations describing the two extreme states of the solar cycle. The hybrid formalism allows a kinetic description of each ions species and a fluid description of electrons. The ionization processes (photoionization, electron impact and charge exchange are included self-consistently in the model where the production rate is computed locally, separately for each ionization act and for each neutral species. The results of simulations are in a reasonable agreement with the observations made by Phobos 2 and Mars Global Surveyor spacecraft. The position of the bow shock and the magnetic pile-up boundary is weakly dependent of the solar EUV flux. The motional electric field creates strong asymmetries for the two plasma boundaries.

  15. Study on the effect of hydrogen addition on the variation of plasma parameters of argon-oxygen magnetron glow discharge for synthesis of TiO2 films

    Directory of Open Access Journals (Sweden)

    Partha Saikia

    2016-04-01

    Full Text Available We report the effect of hydrogen addition on plasma parameters of argon-oxygen magnetron glow discharge plasma in the synthesis of H-doped TiO2 films. The parameters of the hydrogen-added Ar/O2 plasma influence the properties and the structural phases of the deposited TiO2 film. Therefore, the variation of plasma parameters such as electron temperature (Te, electron density (ne, ion density (ni, degree of ionization of Ar and degree of dissociation of H2 as a function of hydrogen content in the discharge is studied. Langmuir probe and Optical emission spectroscopy are used to characterize the plasma. On the basis of the different reactions in the gas phase of the magnetron discharge, the variation of plasma parameters and sputtering rate are explained. It is observed that the electron and heavy ion density decline with gradual addition of hydrogen in the discharge. Hydrogen addition significantly changes the degree of ionization of Ar which influences the structural phases of the TiO2 film.

  16. Production of aerosols by optical catapulting: Imaging, performance parameters and laser-induced plasma sampling rate

    Energy Technology Data Exchange (ETDEWEB)

    Abdelhamid, M. [National Institute of Laser Enhanced Science, NILES, Cairo University, Giza (Egypt); Fortes, F.J.; Fernández-Bravo, A. [Department of Analytical Chemistry, Faculty of Sciences, University of Malaga, 29071 Malaga (Spain); Harith, M.A. [National Institute of Laser Enhanced Science, NILES, Cairo University, Giza (Egypt); Laserna, J.J., E-mail: laserna@uma.es [Department of Analytical Chemistry, Faculty of Sciences, University of Malaga, 29071 Malaga (Spain)

    2013-11-01

    Optical catapulting (OC) is a sampling and manipulation method that has been extensively studied in applications ranging from single cells in heterogeneous tissue samples to analysis of explosive residues in human fingerprints. Specifically, analysis of the catapulted material by means of laser-induced breakdown spectroscopy (LIBS) offers a promising approach for the inspection of solid particulate matter. In this work, we focus our attention in the experimental parameters to be optimized for a proper aerosol generation while increasing the particle density in the focal region sampled by LIBS. For this purpose we use shadowgraphy visualization as a diagnostic tool. Shadowgraphic images were acquired for studying the evolution and dynamics of solid aerosols produced by OC. Aluminum silicate particles (0.2–8 μm) were ejected from the substrate using a Q-switched Nd:YAG laser at 1064 nm, while time-resolved images recorded the propagation of the generated aerosol. For LIBS analysis and shadowgraphy visualization, a Q-switched Nd:YAG laser at 1064 nm and 532 nm was employed, respectively. Several parameters such as the time delay between pulses and the effect of laser fluence on the aerosol production have been also investigated. After optimization, the particle density in the sampling focal volume increases while improving the aerosol sampling rate till ca. 90%. - Highlights: • Aerosol generation by optical catapulting has been successfully optimized. • We study the evolution and dynamics of solid aerosols produced by OC. • We use shadowgraphy visualization as a diagnostic tool. • Effects of temporal conditions and laser fluence on the elevation of the aerosol cloud have been investigated. • The observed LIBS sampling rate increased from 50% reported before to approximately 90%.

  17. Modeling the Influence of the Penetration Channel’s Shape on Plasma Parameters When Handling Highly Concentrated Energy Sources

    Directory of Open Access Journals (Sweden)

    Dmitriy N. Trushnikov

    2017-01-01

    Full Text Available In our work to formulate a scientific justification for process control methods when processing materials using concentrated energy sources, we develop a model that can calculate plasma parameters and the magnitude of the secondary waveform of a current from a non-self-sustained discharge in plasma as a function of the geometry of the penetration channel, thermal fields, and the beam’s position within the penetration channel. We present the method and a numeric implementation whose first stage involves the use of a two-dimensional model to calculate the statistical probability of the secondary electrons’ passage through the penetration channel as a function of the interaction zone’s depth. Then, the discovered relationship is used to numerically calculate how the secondary current changes as a distributed beam moves along a three-dimensional penetration channel. We demonstrate that during oscillating electron beam welding the waveform has the greatest magnitude during interaction with the upper areas of the penetration channel and diminishes with increasing penetration channel depth in a way that depends on the penetration channel’s shape. When the surface of the penetration channel is approximated with a Gaussian function, the waveform decreases nearly exponentially.

  18. Optical characteristics and parameters of gas-discharge plasma in a mixture of mercury dibromide vapor with neon

    Energy Technology Data Exchange (ETDEWEB)

    Malinina, A. A., E-mail: alexandr_malinin@rambler.ru; Malinin, A. N. [Uzhhorod National University (Ukraine)

    2013-12-15

    Results are presented from studies of the optical characteristics and parameters of plasma of a dielectric barrier discharge in a mixture of mercury dibromide vapor with neon—the working medium of a non-coaxial exciplex gas-discharge emitter. The electron energy distribution function, the transport characteristics, the specific power losses for electron processes, the electron density and temperature, and the rate constants for the processes of elastic and inelastic electron scattering by the working mixture components are determined as functions of the reduced electric field. The rate constant of the process leading to the formation of exciplex mercury monobromide molecules is found to be 1.6 × 10{sup −14} m{sup 3}/s for a reduced electric field of E/N = 15 Td, at which the maximum emission intensity in the blue-green spectral region (λ{sub max} = 502 nm) was observed in this experiment.

  19. Influence of structural parameters on dynamic characteristics and wind-induced buffeting responses of a super-long-span cable-stayed bridge

    Science.gov (United States)

    Wang, Hao; Chen, Chunchao; Xing, Chenxi; Li, Aiqun

    2014-09-01

    A 3D finite element (FE) model for the Sutong cable-stayed bridge (SCB) is established based on ANSYS. The dynamic characteristics of the bridge are analyzed using a subspace iteration method. Based on recorded wind data, the measured spectra expression is presented using the nonlinear least-squares regression method. Turbulent winds at the bridge site are simulated based on the spectral representation method and the FFT technique. The influence of some key structural parameters and measures on the dynamic characteristics of the bridge are investigated. These parameters include dead load intensity, as well as vertical, lateral and torsional stiffness of the steel box girder. In addition, the influence of elastic stiffness of the connection device employed between the towers and the girder on the vibration mode of the steel box girder is investigated. The analysis shows that all of the vertical, lateral and torsional buffeting displacement responses reduce gradually as the dead load intensity increases. The dynamic characteristics and the structural buffeting displacement response of the SCB are only slightly affected by the vertical and torsional stiffness of the steel box girder, and the lateral and torsional buffeting displacement responses reduce gradually as the lateral stiffness increases. These results provide a reference for dynamic analysis and design of super-long-span cable-stayed bridges.

  20. TIME EVOLUTION OF PLASMA PARAMETERS DURING THE RISE OF A SOLAR PROMINENCE INSTABILITY

    Energy Technology Data Exchange (ETDEWEB)

    Orozco Suárez, D.; Asensio Ramos, A.; Trujillo Bueno, J. [Instituto de Astrofísica de Canarias, E-38205 La Laguna, Tenerife (Spain); Díaz, A. J., E-mail: dorozco@iac.es [Departament de Física, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain)

    2014-04-10

    We present high-spatial resolution spectropolarimetric observations of a quiescent hedgerow prominence taken in the He I 1083.0 nm triplet. The observation consisted of a time series in sit-and-stare mode of ∼36 minutes duration. The spectrograph's slit crossed the prominence body and we recorded the time evolution of individual vertical threads. Eventually, we observed the development of a dark Rayleigh-Taylor plume that propagated upward with a velocity, projected onto the plane of the sky, of 17 km s{sup –1}. Interestingly, the plume apex collided with the prominence threads pushing them aside. We inferred Doppler shifts, Doppler widths, and magnetic field strength variations by interpreting the He I Stokes profiles with the HAZEL code. The Doppler shifts show that clusters of threads move coherently while individual threads have oscillatory patterns. Regarding the plume we found strong redshifts (∼9-12 km s{sup –1}) and large Doppler widths (∼10 km s{sup –1}) at the plume apex when it passed through the prominence body and before it disintegrated. We associate the redshifts with perspective effects while the Doppler widths are more likely due to an increase in the local temperature. No local variations of the magnetic field strength associated with the passage of the plume were found; this leads us to conclude that the plumes are no more magnetized than the surroundings. Finally, we found that some of the threads' oscillations are locally damped, what allowed us to apply prominence seismology techniques to infer additional prominence physical parameters.

  1. ITER PF6 double pancakes winding line

    Energy Technology Data Exchange (ETDEWEB)

    Du, Shuangsong [Institute of Plasma Physics, Chinese Academy of Science, Hefei (China); University of Science and Technology of China, Hefei (China); Wen, Wei, E-mail: wenwei@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Science, Hefei (China); Chen, Jin; Wu, Weiyue; Song, Yuntao; Shen, Guang [Institute of Plasma Physics, Chinese Academy of Science, Hefei (China)

    2017-03-15

    Highlights: • ITER PF6 double pancakes “two-in-hand” winding line layout and main parameters were introduced, main winding sequences were also included. • Main features of each winding unit include de-spooling unit, straightening unit, sandblasting and cleaning unit, bending unit, turn insulation wrapping head, rotary table and automatic control system were depicted. • PF6 double pancake winding line was commissioned with PF5 empty jacket conductor after the installation and testing of each unit, ±0.5 mm turn positioning and ±2 turn to turn deviations were achieved. - Abstract: The Poloidal Field (PF) coils are one of the main sub-systems of the ITER magnets. The PF6 coil is being manufactured by the Institute of Plasma Physics, Chinese Academy of Sciences (ASIPP) as per the Poloidal Field coils cooperation agreement signed between ASIPP and Fusion for Energy (F4E).The ITER PF6 winding pack is composed by stacking of 9 double pancakes. Each double pancake is wound with a “two-in-hand” configuration. This paper describes the ITER PF6 double pancakes winding line, including layout and main parameters of the winding line, features of main units and the commissioning trial with PF5 empty jacket conductor.

  2. On-Line Flutter Prediction Tool for Wind Tunnel Flutter Testing using Parameter Varying Estimation Methodology Project

    Data.gov (United States)

    National Aeronautics and Space Administration — ZONA Technology, Inc. (ZONA) proposes to develop an on-line flutter prediction tool using the parameter varying estimation (PVE) methodology, called the PVE Toolbox,...

  3. Influence of plasma parameters and substrate temperature on the structural and optical properties of CdTe thin films deposited on glass by laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Quiñones-Galván, J. G.; Santana-Aranda, M. A.; Pérez-Centeno, A. [Departamento de Física, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Boulevard Marcelino García Barragán 1421, Guadalajara, Jalisco C.P. 44430 (Mexico); Camps, Enrique [Departamento de Física, Instituto Nacional de Investigaciones Nucleares, Apartado Postal 18-1027, D.F., C.P. 11801 (Mexico); Campos-González, E.; Guillén-Cervantes, A.; Santoyo-Salazar, J.; Zelaya-Angel, O. [Departamento de Física, CINVESTAV-IPN, Apartado Postal 14-740, D. F. C.P. 07360 (Mexico); Hernández-Hernández, A. [Escuela Superior de Apan, Universidad Autónoma del Estado de Hidalgo, Calle Ejido de Chimalpa Tlalayote s/n Colonia Chimalpa, Apan Hidalgo (Mexico); Moure-Flores, F. de [Facultad de Química, Materiales, Universidad Autónoma de Querétaro, Querétaro C.P. 76010 (Mexico)

    2015-09-28

    In the pulsed laser deposition of thin films, plasma parameters such as energy and density of ions play an important role in the properties of materials. In the present work, cadmium telluride thin films were obtained by laser ablation of a stoichiometric CdTe target in vacuum, using two different values for: substrate temperature (RT and 200 °C) and plasma energy (120 and 200 eV). Structural characterization revealed that the crystalline phase can be changed by controlling both plasma energy and substrate temperature; which affects the corresponding band gap energy. All the thin films showed smooth surfaces and a Te rich composition.

  4. Global parameter optimization of a Mather-type plasma focus in the framework of the Gratton-Vargas two-dimensional snowplow model

    Science.gov (United States)

    Auluck, S. K. H.

    2014-12-01

    Dense plasma focus (DPF) is known to produce highly energetic ions, electrons and plasma environment which can be used for breeding short-lived isotopes, plasma nanotechnology and other material processing applications. Commercial utilization of DPF in such areas would need a design tool that can be deployed in an automatic search for the best possible device configuration for a given application. The recently revisited (Auluck 2013 Phys. Plasmas 20 112501) Gratton-Vargas (GV) two-dimensional analytical snowplow model of plasma focus provides a numerical formula for dynamic inductance of a Mather-type plasma focus fitted to thousands of automated computations, which enables the construction of such a design tool. This inductance formula is utilized in the present work to explore global optimization, based on first-principles optimality criteria, in a four-dimensional parameter-subspace of the zero-resistance GV model. The optimization process is shown to reproduce the empirically observed constancy of the drive parameter over eight decades in capacitor bank energy. The optimized geometry of plasma focus normalized to the anode radius is shown to be independent of voltage, while the optimized anode radius is shown to be related to capacitor bank inductance.

  5. Semen parameters and seminal plasma protein and biochemical profiles of dogs with benign prostatic hyperplasia after botulinum toxin type A intraprostatic injection

    Directory of Open Access Journals (Sweden)

    Tathiana Ferguson Motheo

    2014-06-01

    Full Text Available This study aimed to determine the effects of different concentrations of botulinum toxin type A (BT-A on semen parameters, and seminal plasma biochemical and protein profiles of dogs with benign prostatic hyperplasia (BPH. Eighteen sexually intact male dogs with BPH were randomly divided in three groups, and received an intraprostatic injection of saline solution (control group - CG, 250UI (GI or 500UI (GII of BT-A under transabdominal ultrasound guidance. Semen was collected at baseline, 2, 4 and 8 weeks after treatment. Semen parameters were determined and seminal plasma pH, total protein (TP, total chlorides (TC, calcium (Ca, potassium (K, and sodium (Na concentrations were assessed. One-dimensional sodium dodecyl sulfatepolyacrilamide gel eletrophoresis (SDS- PAGE was performed to determine seminal plasma protein profile. Sperm parameters and seminal plasma pH, TP, TC, Ca and K mean values did not change significantly at any time point and among treated groups (P>0.05. The SDS-PAGE analysis of the pooled fractions identified 31 protein bands with molecular weights ranging from 3.9 to 106.2kDA in all treatment groups during the entire evaluation period. Regardless the used dose, intraprostatic BT-A injection do not alter semen parameters and seminal plasma biochemical and protein profiles of dogs with BPH.

  6. Correlation of Seminal Plasma Total Antioxidant Capacity and Malondialdehyde Levels With Sperm Parameters in Men With Idiopathic Infertility

    Directory of Open Access Journals (Sweden)

    Fazeli

    2016-01-01

    Full Text Available Background Oxidative stress is the result of an imbalance between the production and scavenging of reactive oxygen species (ROS. Recently, oxidative stress has been introduced as a major cause of male infertility. Objectives The aim of the present study was to determine the correlation between total antioxidant capacity (TAC and malondialdehyde (MDA as markers of oxidative stress in relation to idiopathic male infertility and sperm parameters. Patients and Methods This case control study was conducted using 35 men with idiopathic infertility and 34 men with proven fertility. Seminal plasma TAC and MDA were measured by ferric reducing ability of plasma (FRAP and thiobarbituric acid (TBA reaction methods, respectively. Results Seminal TAC levels were significantly lower and seminal MDA levels were significantly higher in men with idiopathic infertility than in fertile men (P < 0.0001 and P = 0.004, respectively. A positive correlation was shown between sperm motility, sperm morphology, and TAC levels in men with idiopathic infertility (P = 0.002 and P = 0.002, respectively. In addition, there was a correlation between sperm motility and TAC levels in fertile men (P = 0.005. There was no correlation between sperm count and TAC levels in either men with idiopathic infertility or in fertile men. Negative correlations were observed between MDA levels and sperm motility, morphology, and sperm count only in men with idiopathic infertility (P = 0.003, P = 0.001, and P = 0.006, respectively. Conclusions Our results show that oxidative stress could play an important role in male infertility as well as in sperm motility and sperm morphology.

  7. The effects of electrical stunning voltage on meat quality, plasma parameters, and protein solubility of broiler breast meat.

    Science.gov (United States)

    Huang, J C; Yang, J; Huang, M; Chen, K J; Xu, X L; Zhou, G H

    2017-03-01

    This study was designed to compare the effects of different stunning voltages of pulsed direct current on meat quality of broilers. For this purpose, plasma parameters, blood loss, carcass damage, and meat water holding capacity, color, shear force, pH, and protein solubility were analyzed. A total of 400 broilers were divided into 5 treatment groups and stunned with 5, 15, 25, 35, and 45 V at 750 Hz and 10 s, respectively. Blood samples were collected immediately after cutting the neck. Pectoralis major muscles were removed from the carcass after chilling and placed on ice. Breast muscle pH and meat color were determined at both 2 and 24 h postmortem. Dripping loss, cooking loss, pressing loss, and cooked breast meat shear values were determined after 24 h postmortem. The 5 V treatment significantly increased (P < 0.05) blood plasma corticosterone and lactate concentration compared with the other groups. The carcass damage of wings, Pectoralis major, and Pectoralis minor was significant in the 5, 35, and 45 V groups. The pH of 2 h postmortem in the 5 and 45 V groups was significantly lower (P < 0.05) than in the 15 and 25 V groups. In the 5 and 45 V groups, the protein solubility and shear force value were significantly lower (P < 0.05) and dripping loss was significantly higher (P < 0.05) than the other groups. © 2016 Poultry Science Association Inc.

  8. Evaluation of hydration status by urine, body mass variation and plasma parameters during an official half-marathon.

    Science.gov (United States)

    Pereira, Emerson R; de Andrade, Marcelo T; Mendes, Thiago T; Ramos, Guilherme P; Maia-Lima, André; Melo, Eliney S; Carvalho, Moisés V; Wilke, Carolina F; Prado, Luciano S; Silami-Garcia, Emerson

    2017-11-01

    The aim of this study was to verify the agreement of urine, body mass variations and plasma parameters to determine the hydration status of 14 male runners (29±4 years and 54.3±5.5 mLO2/kg/min) in an official 21.1 km road race. The mean dry-bulb temperature and air relative humidity during the road race were 25.1±2.1 °C and 54.7±2.2%, respectively. The volume of water ingested by the runners was monitored using marked volumetric plastic bottles provided at the hydration stations located at 0, 2.5, 5.0, 7.5, 10.5, 14.0, 16.0 and 18.5 km from the starting line. Hydration status was assessed using urine specific gravity (USG), urine osmolality (UOSM) and plasma osmolality (POSM). Furthermore, body mass variation (∆BM) was assessed by comparing body mass (BM) immediately prior and after the race. Total sweat was estimated by ∆BM, added water volume ingested and deducted blood volume collected. The sweat rate was calculated through total sweat and total exercise time. The mean water intake was 0.82±0.40 L, and the mean sweat rate and total sweating were 1440.11±182.13 mL/h and 2.67±0.23 L. After the race, the BM reduced by 1.7±0.4 kg. The ∆BM was -2.41±0.47%, and the plasma volume variation was -9.79±4.6% between pre- and post-running measurements. Despite the POSM increased post-race compared to pre-race, the UOSM and USG did not change. No significant correlations were found between POSM variation with UOSM variation (r=-0.08; P=0.71), USG variation (r=-0.11; P=0.78) or ∆BM (r=0.09; P=0.77). In conclusion, this study shows that both ∆BM and ∆POSM indicated a hypohydration state after exercise even though the ∆BM did not correlate significantly with ∆POSM. These results demonstrate that ∆BM is a practical method and can be sufficiently sensitive to evaluate the hydration state, but it should be utilized with caution.

  9. Liver morphology and morphometry and plasma biochemical parameters of Wistar rats that received leaf infusion of Rudgea viburnoides Benth. (Rubiaceae

    Directory of Open Access Journals (Sweden)

    Juliana Castro Monteiro

    2009-04-01

    Full Text Available Rudgea viburnoides leaves are widely used in popular Brazilian medicine as a diuretic, antirheumatic, hypotensive and blood depurative tea. The present study was carried out to investigate the effects of this infusion on the liver and on the plasma biochemical parameters of Wistar rats. Two groups received the R. viburnoides leaf infusion at a daily dose of 10 or 20g dry-leaves/L water, during 40 days. The histopathological analysis did not show degenerated areas or infiltration of leucocytes. Hepatic morphometry showed accumulation of fat in the hepatocytes of the treated groups. There was no significant change in the plasma levels of urea, creatinin, uric acid, direct bilirubin, cholesterol, total proteins, albumin, gamma glutamyl tranferase (gamma-GT, alanine transaminase (ALT, aspartate transaminase (AST, chlorine, phosphate and calcium. A significant reduction in the plasma levels of triacylglycerol (TAG occurred in the group that received the higher dose.As folhas de Rudgea viburnoides Benth. são utilizadas na medicina popular como diuréticas, hipotensoras, anti-reumáticas, depurativas do sangue e em regimes de emagrecimento. O presente estudo foi delineado para avaliar o efeito da infusão das folhas de R. viburnoides nos parâmetros bioquímicos plasmáticos e na morfologia e morfometria hepática de ratos Wistar adultos. Dois grupos receberam a infusão das folhas, diariamente, nas dosagens de 10 e 20 g de folhas secas/L de água, durante 40 dias. O grupo controle recebeu a mesma quantidade de água. As análises histopatológicas não mostraram áreas degeneradas e infiltrados inflamatórios. A morfometria hepática mostrou acúmulo significativo de gordura nos hepatócitos dos animais tratados, principalmente no grupo que recebeu a maior dose da infusão (8,75% de gotículas lipídicas, comparado com 0,25% delas encontradas nos animais controles. Não foram observadas alterações nos níveis plasmáticos de uréia, creatinina,

  10. Modelling Wind for Wind Farm Layout Optimization Using Joint Distribution of Wind Speed and Wind Direction

    DEFF Research Database (Denmark)

    Feng, Ju; Shen, Wen Zhong

    2015-01-01

    quite well in terms of the coefficient of determination R-2. Then, the best of these joint distributions is used in the layout optimization of the Horns Rev 1 wind farm and the choice of bin sizes for wind speed and wind direction is also investigated. It is found that the choice of bin size for wind......Reliable wind modelling is of crucial importance for wind farm development. The common practice of using sector-wise Weibull distributions has been found inappropriate for wind farm layout optimization. In this study, we propose a simple and easily implementable method to construct joint...... distributions of wind speed and wind direction, which is based on the parameters of sector-wise Weibull distributions and interpolations between direction sectors. It is applied to the wind measurement data at Horns Rev and three different joint distributions are obtained, which all fit the measurement data...

  11. Extended Self Similarity in Solar Wind Turbulence

    Science.gov (United States)

    Rowlands, G.; Chapman, S. C.; Hnat, B.

    2005-12-01

    The solar wind provides a natural laboratory for observations of MHD turbulence over extended temporal scales. A hallmark of turbulence is scaling- and scaling in the Probability Density Functions (PDF) of fluctuations in certain solar wind in- situ bulk plasma parameters has been established from WIND and ACE observations on `short' timescales up to a few hours. On longer timescales there is a crossover in scaling to uncorrelated behaviour. The intermittency of the system is expressed in these parameters through the non-Gaussian nature of the fluctuations PDF up to this timescale. Here we apply a generic approach to turbulence- that of Extended Self Similarity (ESS)- to the analysis of solar wind observations. We find that ESS can extend the range of scaling and for some parameters reveals two distinct scaling regions for the `short' and long timescales, whereas for others, a single scaling encompasses the behaviour over the full range of timescales. That certain parameters, and conditions, can be distinguished via ESS may provide physical insight into the turbulent solar wind.

  12. Prioritization for Downlink of Scientific Observations for the Magnetospheric Multiscale Mission Using Trigger Parameters from the Fast Plasma Instrumentation

    Science.gov (United States)

    Paterson, W. R.; Barrie, A. C.; Boardsen, S. A.; Giles, B. L.; Ergun, R.; Avanov, L. A.; Chandler, M. O.; Coffey, V. N.; Dorelli, J.; Gershman, D. J.; Lavraud, B.; Mackler, D. A.; Moore, T. E.; Pollock, C.; Rager, A. C.; Saito, Y.; Smith, S. E.; Burch, J. L.; Russell, C. T.; Strangeway, R. J.; Torbert, R. B.

    2016-12-01

    The Magnetospheric Multiscale Mission (MMS) acquires measurements of charged particles and electric and magnetic fields from 4 spacecraft observatories for the purpose of understanding magnetic reconnection. High temporal resolution measurements from the instrument suite are required for resolving physical processes within the electron and ion reconnection diffusion regions, which are small and typically moving at high speed with respect to the spacecraft. Telemetry is limited, though, and ultimately just a small fraction of the high-rate data can be transmitted to the ground. For that reason, it is necessary to prioritize observations for storage on the spacecraft and subsequent downlink based on limited information. To facilitate selection of measurements, the Fast Plasma Instrumentation (FPI) produces a set of trigger parameters that partially characterize the measurements and are sufficiently compact that they can be sent to the ground at full temporal resolution. In this presentation, we report on the use of these data and complementary data from other instruments for selection of intervals with high potential for addressing the scientific objectives of the mission.

  13. Relationship between Plasma Parameters and Carbon Atom Coordination in a-C:H Films Prepared by RF Glow Discharge Decomposition

    Science.gov (United States)

    Yamamoto, Kenji; Ichikawa, Yosuke; Nakayama, Takehisa; Tawada, Yoshihisa

    1988-08-01

    Amorphous C:H films were prepared by rf glow discharge decomposition from CH4 using a permanent magnet system to apply a static magnetic field perpendicular to the rf electric field. The structure and properties of a-C:H films have been investigated systematically with respect to the hydrogen content, hardness and coordination of carbon atoms as a function of rf power (self-bias voltage). The coordination of carbon atoms has been determined by solid-state 13C magic angle spinning nuclear magnetic resonance measurements. It is found that the fraction of graphitic (sp2) versus tetrahedral (sp3) bonding increases with increasing rf power (negative self-bias voltage). Film hardness is understood in terms of the balance between the incorporated hydrogen and the fraction of graphitic (sp2) versus tetrahedral (sp3) bonding. The production of ionic and neutral species from a glow discharge has also been monitored by mass spectroscopy and optical emission spectroscopy to investigate the relation between plasma parameters and carbon atom coordination. Using these measurements and negative self-bias measurements, it is shown that the coordination of carbon atoms is determined not only by the energy of impinging ions on the substrate but also by the type of active species. In addition, the neutral and ionic C2H2 related species are thought to be some of the species which increase the fraction of graphitic (sp2) versus tetrahedral (sp3) bonding.

  14. Optical characteristics and parameters of gas-discharge plasma in a mixture of mercury dibromide vapor with argon

    Energy Technology Data Exchange (ETDEWEB)

    Malinina, A. A., E-mail: alexandr-malinin@rambler.ru; Malinin, A. N. [Uzhhorod National University (Ukraine)

    2015-03-15

    Results are presented from studies of the optical characteristics and parameters of the plasma of a dielectric barrier discharge in a mixture of mercury dibromide vapor with argon—the working medium of an exciplex gas-discharge emitter. It is established that the partial pressures of mercury dibromide vapor and argon at which the average and pulsed emission intensities in the blue—green spectral region (λ{sub max} = 502 nm) reach their maximum values are 0.6 and 114.4 kPa, respectively. The electron energy distribution function, the transport characteristics, the specific power spent on the processes involving electrons, the electron density and temperature, and the rate constants for the processes of elastic and inelastic electron scattering from the molecules and atoms of the working mixture are determined by numerical simulation, and their dependences on the reduced electric field strength are analyzed. The rate constant of the process leading to the formation of exciplex mercury monobromide molecules for a reduced electric field of E/N = 20 Td, at which the maximum emission intensity in the blue—green spectral region was observed in this experiment, is found to be 8.1 × 10{sup −15} m{sup 3}/s.

  15. Determination of volumetric plasma parameters from spectroscopic N II and N III line ratio measurements in the ASDEX Upgrade divertor

    Science.gov (United States)

    Henderson, S. S.; Bernert, M.; Brezinsek, S.; Carr, M.; Cavedon, M.; Dux, R.; Lipschultz, B.; O’Mullane, M. G.; Reimold, F.; Reinke, M. L.; The ASDEX Upgrade Team; The MST1 Team

    2018-01-01

    The diagnosis of tokamak divertor plasmas is limited in the ability to understand the behaviour and role of impurities, central to the overall understanding of how the divertor plasma can be utilised to control the power exhaust. New methods have been developed to extract the N concentration as well as plasma characteristics; the use of three visible N II lines has been shown to provide a unique solution of the background plasma density and temperature. Those techniques are applied to data from two sightlines sampling horizontally across the outer divertor plasma. The plasma densities obtained from the N II line ratios during a scan of the divertor temperature in a partially detached H-mode plasma suggest that, as the temperature drops, the plasma density decreases further up the divertor leg while closer to the strike point the plasma density increases. The former is consistent with the emission zone moving from the private flux region into the scrape-off-layer plasma, and therefore sampling two different density regimes, while the latter is consistent with electron pressure conservation along a field line. With an approximate model of the length of the emission region, the N II divertor concentration is calculated in this discharge to be  ≈5-25% . The single N III line ratio measurement available within the same spectral range is dependent on temperature and density and therefore cannot provide a unique solution of both.

  16. Noise and noise disturbances from wind power plants - Tests with interactive control of sound parameters for more comfortable and less perceptible sounds; Buller och bullerstoerningar fraan vindkraftverk - Foersoek med interaktiv styrning av ljudparametrar foer behagligare och mindre maerkbara ljud

    Energy Technology Data Exchange (ETDEWEB)

    Persson-Waye, K.; Oehrstroem, E.; Bjoerkman, M.; Agge, A. [Goeteborg Univ. (Sweden). Dept. of Environmental Medicine

    2001-12-01

    In experimental pilot studies, a methodology has been worked out for interactively varying sound parameters in wind power plants. In the tests, 24 persons varied the center frequency of different band-widths, the frequency of a sinus-tone and the amplitude-modulation of a sinus-tone in order to create as comfortable a sound as possible. The variations build on the noise from the two wind turbines Bonus and Wind World. The variations were performed with a constant dba level. The results showed that the majority preferred a low-frequency tone (94 Hz and 115 Hz for Wind World and Bonus, respectively). The mean of the most comfortable amplitude-modulation varied between 18 and 22 Hz, depending on the ground frequency. The mean of the center-frequency for the different band-widths varied from 785 to 1104 Hz. In order to study the influence of the wind velocity on the acoustic character of the noise, a long-time measurement program has been performed. A remotely controlled system has been developed, where wind velocity, wind direction, temperature and humidity are registered simultaneously with the noise. Long-time registrations have been performed for four different wing turbines.

  17. Test-bed and Full-Scale Demonstration of Plasma Flow Control for Wind Turbines. Phase 1

    Science.gov (United States)

    2013-07-15

    period. The individual cost components include initial capital costs, fuel costs, fixed and variable operations and maintenance (O&M) costs...financing costs, and utilization rate for each plant type. For alternative energy sources, such as wind and solar, the fuel is free and the levelized...is given by the expression (6-58) where 0 is the permittivity of free space (0=8.854x10-12 amp-s4/kg-m3), a is the dielectric coefficient

  18. Current state-of-the-art for the measurement of non-Maxwellian plasma parameters with the EISCAT UHF Facility

    Directory of Open Access Journals (Sweden)

    D. Hubert

    Full Text Available New results on the information that can be extracted from simulated non-Maxwellian incoherent radar spectra are presented. The cases of a pure ionosphere and of a composite ionosphere typical of a given altitude of the auroral F region are considered. In the case of a pure ionosphere of NO+ or O+ ions it has been shown that the electron temperature and the electron density can be derived from a Maxwellian analysis of radar spectra measured at aspect angles of 0° or 21° respectively; the ion temperature and ion temperature anisotropy can be derived from a non- constraining model such as the 1D Raman fitting of a complementary measurement made at an aspect angle larger than 0° for the NO+ ions, or at an aspect angle larger than 21° for the O+ ions. Moreover with such measurements at large aspect angles, the shape of the velocity ion distribution functions can simultaneously be inferred. The case of a composite ionosphere of atomic O+ and molecular NO+ ions is a difficult challenge which requires simultaneously a complementary measurement of the electron temperature to provide the ion composition and the electron density from the incoherent radar spectra at a specific aspect angle of 21°; hence, a model dependent routine is necessary to derive the ion temperatures and ion temperature anisotropies. In the case where the electron temperature is not given, a routine which depends on ion distribution models is required first: the better the ion distribution models are, the more accurately derived the plasma parameters will be. In both cases of a composite ionosphere, the 1D Raman fitting can be used to keep a check on the validity of the results provided by the ion distribution model dependent routine.

  19. Electromagnetic Cyclotron Waves in the Solar Wind: Wind Observation and Wave Dispersion Analysis

    Science.gov (United States)

    Jian, L. K.; Moya, P. S.; Vinas, A. F.; Stevens, M.

    2016-01-01

    Wind observed long-lasting electromagnetic cyclotron waves near the proton cyclotron frequency on 11 March 2005, in the descending part of a fast wind stream. Bi-Maxwellian velocity distributions are fitted for core protons, beam protons, and alpha-particles. Using the fitted plasma parameters we conduct kinetic linear dispersion analysis and find ion cyclotron and/or firehose instabilities grow in six of 10 wave intervals. After Doppler shift, some of the waves have frequency and polarization consistent with observation, thus may be correspondence to the cyclotron waves observed.

  20. Organohalogen contaminants and blood plasma clinical-chemical parameters in three colonies of North Atlantic Great skua (Stercorarius skua)

    DEFF Research Database (Denmark)

    Sonne, Christian; Riget, Frank Farsø; Leat, Eliza H. K.

    2013-01-01

    The present study compares blood plasma clinical-chemical parameters (BCCPs) in birds from three geographically distinct North Atlantic Great skua (Stercorarius skua) colonies. Birds from these sites bioaccumulate different POP (persistent organic pollutant) concentrations and that enabled us...... at Bjørnøya (n=42), Iceland (n=57) and Shetland (n=15). Specimens from Bjørnøya had the highest blood plasma concentrations of all contaminant groups followed by Iceland and Shetland birds, respectively (ANOVA: p0.05). Therefore correlation analyses of these seven BCCPs vs. POPs were done on the combined...

  1. Airborne Wind Profiling Algorithm for Doppler Wind LIDAR

    Science.gov (United States)

    Beyon, Jeffrey Y. (Inventor); Koch, Grady J. (Inventor); Kavaya, Michael J. (Inventor)

    2015-01-01

    Systems, methods, and devices of the present invention enable airborne Doppler Wind LIDAR system measurements and INS/GPS measurements to be combined to estimate wind parameters and compensate for instrument misalignment. In a further embodiment, the wind speed and wind direction may be computed based on two orthogonal line-of-sight LIDAR returns.

  2. Theory of wind accretion

    Directory of Open Access Journals (Sweden)

    Shakura N.I.

    2014-01-01

    Full Text Available A review of wind accretion in high-mass X-ray binaries is presented. We focus attention to different regimes of quasi-spherical accretion onto the neutron star: the supersonic (Bondi accretion, which takes place when the captured matter cools down rapidly and falls supersonically toward NS magnetospghere, and subsonic (settling accretion which occurs when plasma remains hot until it meets the magnetospheric boundary. Two regimes of accretion are separated by an X-ray luminosity of about 4 × 1036 erg/s. In the subsonic case, which sets in at low luminosities, a hot quasi-spherical shell must be formed around the magnetosphere, and the actual accretion rate onto NS is determined by ability of the plasma to enter the magnetosphere due to Rayleigh-Taylor instability. We calculate the rate of plasma entry the magnetopshere and the angular momentum transfer in the shell due to turbulent viscosity appearing in the convective differentially rotating shell. We also discuss and calculate the structure of the magnetospheric boundary layer where the angular momentum between the rotating magnetosphere and the base of the differentially rotating quasi-spherical shell takes place. We show how observations of equilibrium X-ray pulsars Vela X-1 and GX 301-2 can be used to estimate dimensionless parameters of the subsonic settling accretion theory, and obtain the width of the magnetospheric boundary layer for these pulsars.

  3. The solar wind structure that caused a large-scale disturbance of the plasma tail of comet Austin

    Science.gov (United States)

    Kozuka, Yukio; Konno, Ichishiro; Saito, Takao; Numazawa, Shigemi

    1992-01-01

    The plasma tail of Comet Austin (1989c1) showed remarkable disturbances because of the solar maximum periods and its orbit. Figure 1 shows photographs of Comet Austin taken in Shibata, Japan, on 29 Apr. 1990 UT, during about 20 minutes with the exposure times of 90 to 120 s. There are two main features in the disturbance; one is many bowed structures, which seem to move tailwards; and the other is a large-scale wavy structure. The bowed structures can be interpreted as arcade structures brushing the surface of both sides of the cometary plasma surrounding the nucleus. We identified thirteen structures of the arcades from each of the five photographs and calculated the relation between the distance of each structure from the cometary nucleus, chi, and the velocity, upsilon. The result is shown. This indicates that the velocity of the structures increases with distance. This is consistent with the result obtained from the observation at the Kiso Observatory.

  4. High-performance liquid chromatographic determination of plasma triglyceride type composition in a normal population of Barcelona. Relationship with age, sex and other plasma lipid parameters.

    Science.gov (United States)

    Parreño, M; Castellote, A I; Codony, R

    1993-11-26

    A coupled TLC-HPLC procedure is proposed for the separation and determination of plasma triglycerides. The method was tested by application to plasma samples corresponding to a normal population of Barcelona (Spain). Eighteen different triglyceride types were identified and their relative proportions were established, in order to give a "normal profile" for men and women. Sex-related differences (p LOPa). A correlation study showed that palmitodiolein and total cholesterol levels increase with age, whereas LLP-LOPa decreases in men and palmitolinoleoolein + palmitooleopalmitolein in women.

  5. Estimation of Flow Channel Parameters for Flowing Gas Mixed with Air in Atmospheric-pressure Plasma Jets

    Science.gov (United States)

    Yambe, Kiyoyuki; Saito, Hidetoshi

    2017-12-01

    When the working gas of an atmospheric-pressure non-equilibrium (cold) plasma flows into free space, the diameter of the resulting flow channel changes continuously. The shape of the channel is observed through the light emitted by the working gas of the atmospheric-pressure plasma. When the plasma jet forms a conical shape, the diameter of the cylindrical shape, which approximates the conical shape, defines the diameter of the flow channel. When the working gas flows into the atmosphere from the inside of a quartz tube, the gas mixes with air. The molar ratio of the working gas and air is estimated from the corresponding volume ratio through the relationship between the diameter of the cylindrical plasma channel and the inner diameter of the quartz tube. The Reynolds number is calculated from the kinematic viscosity of the mixed gas and the molar ratio. The gas flow rates for the upper limit of laminar flow and the lower limit of turbulent flow are determined by the corresponding Reynolds numbers estimated from the molar ratio. It is confirmed that the plasma jet length and the internal plasma length associated with strong light emission increase with the increasing gas flow rate until the rate for the upper limit of laminar flow and the lower limit of turbulent flow, respectively. Thus, we are able to explain the increasing trend in the plasma lengths with the diameter of the flow channel and the molar ratio by using the cylindrical approximation.

  6. Plasma total homocysteine levels in children with type 1 diabetes: relationship with vitamin status, methylene tetrahydrofolate reductase genotype, disease parameters and coronary risk factors.

    Science.gov (United States)

    Dinleyici, E C; Kirel, Birgul; Alatas, Ozkan; Muslumanoglu, Hamza; Kilic, Zubeyir; Dogruel, Nesrin

    2006-08-01

    The objectives of this study were: to determine plasma total homocysteine tHcy levels and the prevalence of hyperhomocysteinemia in children with type 1 diabetes, to determine correlates of plasma tHcy levels with nutritional factor such as serum folic acid and vitamin B12 levels, genetic factors as methylenetetrahydrofolate reductase MTHFR gene polymorphism (C677T and A1298C), to attempt to identify possible dependencies between tHcy and the degree of metabolic control, the duration of the disease and presence of complications, and also to determine the relationship between other coronary risk factors. Plasma tHcy levels and other related parameters performed in 32 children with type 1 diabetes and 23 age-sex matched healthy children. Median tHcy level was higher in the patient group (11.38, 3.28 to 66.01 micromol/l) than the control group (8.78, 1.06 to 13.66 mol/l) (p cholesterol, triglyceride, apolipoprotein B, systolic blood pressure, blood urea nitrogen and creatinine levels and lower folate, apolipoprotein A1 levels and glomerular filtration rate values than the control group. Plasma tHcy levels were higher in diabetic children with poor metabolic control. Because of hyperhomocysteinemia is common in diabetic children and plasma tHcy levels correlated with early onset of the disease and disease duration, we recommend the usage of plasma tHcy levels as a risk indicator parameter with other coronary risk factor for detecting and preventing cardiovascular disease in diabetic children.

  7. Multifractality and intermittency in the solar wind

    Directory of Open Access Journals (Sweden)

    W. M. Macek

    2007-11-01

    Full Text Available Within the complex dynamics of the solar wind's fluctuating plasma parameters, there is a detectable, hidden order described by a chaotic strange attractor which has a multifractal structure. The multifractal spectrum has been investigated using Voyager (magnetic field data in the outer heliosphere and using Helios (plasma data in the inner heliosphere. We have also analyzed the spectrum for the solar wind attractor. The spectrum is found to be consistent with that for the multifractal measure of the self-similar one-scale weighted Cantor set with two parameters describing uniform compression and natural invariant probability measure of the attractor of the system. In order to further quantify the multifractality, we also consider a generalized weighted Cantor set with two different scales describing nonuniform compression. We investigate the resulting multifractal spectrum depending on two scaling parameters and one probability measure parameter, especially for asymmetric scaling. We hope that this generalized model will also be a useful tool for analysis of intermittent turbulence in space plasmas.

  8. Effect of aluminum plasma parameters on the physical properties of Ti-Al-N thin films deposited by reactive crossed beam pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Escobar-Alarcón, L., E-mail: luis.escobar@inin.gob.mx [Departamento de Física, Instituto Nacional de Investigaciones Nucleares, Apdo. Postal 18-1027, México DF 11801 (Mexico); Solís-Casados, D.A. [Centro Conjunto de Investigación en Química Sustentable UAEM-UNAM, Carretera Toluca-Atlacomulco Km 14.5, Unidad San Cayetano, Toluca, Estado de México 50200 (Mexico); Romero, S. [Departamento de Física, Instituto Nacional de Investigaciones Nucleares, Apdo. Postal 18-1027, México DF 11801 (Mexico); Fernández, M. [Departamento de Aceleradores, Instituto Nacional de Investigaciones Nucleares, Apdo. Postal 18-1027, México DF 11801 (Mexico); Pérez-Álvarez, J. [Departamento de Física, Instituto Nacional de Investigaciones Nucleares, Apdo. Postal 18-1027, México DF 11801 (Mexico); Centro Conjunto de Investigación en Química Sustentable UAEM-UNAM, Carretera Toluca-Atlacomulco Km 14.5, Unidad San Cayetano, Toluca, Estado de México 50200 (Mexico); Haro-Poniatowski, E. [Departamento de Física, Universidad Autónoma Metropolitana Iztapalapa, Apdo. Postal 55-534, México DF (Mexico)

    2013-10-15

    This work reports on the preparation and characterization of Ti-Al-N thin films deposited by reactive crossed beam pulsed laser deposition (RCBPLD). The elemental composition, vibrational properties and hardness of the deposited films were investigated as a function of the plasma parameters, that is, the Al{sup +} mean kinetic energy and plasma density. The composition of the thin films was determined from X-ray photoelectron spectroscopy (XPS) measurements as well as by Rutherford backscattering spectroscopy (RBS). The structural modifications of the deposited materials due to Al incorporation were characterized by Raman spectroscopy. The hardness of the deposited films was determined by nanoindentation. It was found that by using this experimental configuration the aluminum content in the deposited films was incorporated in a controlled way, from 2.2 to 31.7 at.% (XPS measurements), by varying the Al{sup +} mean kinetic energy and the plasma density. Raman results suggest that at low aluminum concentrations a solid solution of Ti(Al, N) is produced, whereas at higher aluminum concentrations a nanocomposite formed of TiAlN and AlN is obtained. Ti-Al-N films with hardnesses up to 28.8 GPa, which are suitable for many mechanical applications, were obtained. These results show that the properties of the deposited material are controlled, at least partially, by the aluminum plasma parameters used for thin film growth.

  9. Wind tunnel experiments on flow separation control of an Unmanned Air Vehicle by nanosecond discharge plasma aerodynamic actuation

    Science.gov (United States)

    Kang, Chen; Hua, Liang

    2016-02-01

    Plasma flow control (PFC) is a new kind of active flow control technology, which can improve the aerodynamic performances of aircrafts remarkably. The flow separation control of an unmanned air vehicle (UAV) by nanosecond discharge plasma aerodynamic actuation (NDPAA) is investigated experimentally in this paper. Experimental results show that the applied voltages for both the nanosecond discharge and the millisecond discharge are nearly the same, but the current for nanosecond discharge (30 A) is much bigger than that for millisecond discharge (0.1 A). The flow field induced by the NDPAA is similar to a shock wave upward, and has a maximal velocity of less than 0.5 m/s. Fast heating effect for nanosecond discharge induces shock waves in the quiescent air. The lasting time of the shock waves is about 80 μs and its spread velocity is nearly 380 m/s. By using the NDPAA, the flow separation on the suction side of the UAV can be totally suppressed and the critical stall angle of attack increases from 20° to 27° with a maximal lift coefficient increment of 11.24%. The flow separation can be suppressed when the discharge voltage is larger than the threshold value, and the optimum operation frequency for the NDPAA is the one which makes the Strouhal number equal one. The NDPAA is more effective than the millisecond discharge plasma aerodynamic actuation (MDPAA) in boundary layer flow control. The main mechanism for nanosecond discharge is shock effect. Shock effect is more effective in flow control than momentum effect in high speed flow control. Project supported by the National Natural Science Foundation of China (Grant Nos. 61503302, 51207169, and 51276197), the China Postdoctoral Science Foundation (Grant No. 2014M562446), and the Natural Science Foundation of Shaanxi Province, China (Grant No. 2015JM1001).

  10. Effects of RF plasma parameters on the growth of InGaN/GaN heterostructures using plasma-assisted molecular beam epitaxy

    CERN Document Server

    Shim Kyu Ha; Kim, K H; Hong, S U; Cho, K I; Lee, H G; Kim, J

    1999-01-01

    The effects of rf plasma power on the structural/optical properties of GaN-based nitride epilayers grown by plasma-assisted molecular beam epitaxy have been investigated. Atomic force microscopy and high-resolution x-ray diffraction analyses revealed that the sharp interface of In sub 0 sub . sub 2 Ga sub 0 sub . sub 8 N/GaN heterostructures could be obtained by suppressing the surface roughening at high rf power. photoluminescence data suggest that the formation of damaged subsurface due to energetic particles was alleviated in the InGaN growth in comparison with the GaN growth. In our experimental set-up, the rf power of 400 W appeared to properly suppress the 3D island formation without causing defects at the subsurface of In sub 0 sub . sub 2 Ga sub 0 sub . sub 8 N. The phenomena associated with the indium incorporation could be explained by an inequality with two kinetic processes of the surface diffusion and the plasma stimulated desorption.

  11. Regularities of solar wind parameter changes based on spaced measurements at near-Earth orbit during cycles 20-24 as a basis for prediction of solar activity and space weather

    Science.gov (United States)

    Kuznetsova, Tamara

    Here we discuss parameters of the solar wind streams as consequences of activity of solar cycles 20-24. We use in the report results of our study of connection between solar wind parameters (IMF B, solar wind velocity V, concentration N, electric field Е = [V,B]) and IMF longitude angle U during period of SC20-24. We have used for the study data base of B, V, N, measured at 1 a.u. near ecliptic plane for period of 1963 - 2013.The azimuth component of IMF spiral corresponds to east-west component By (GSE) which plays important role in reconnection on magnetopause and in progress of geomagnetic activity. Resulting from the conducted study, main regularities determining relationship between solar wind parameters in each from SC20-24 have been derived. In particular, it was shown that E for By>0 has its maxima in each solar cycle at average U=80 deg, herewith the maxima for odd cycles (21, 23) are considerably larger than ones for even cycles (20, 22). Besides, the value of E for 23 cycle has the absolute maximum for By>0 among SC20-24! So, relative low value of maximum of sunspot number Wm=121 of SC23 is a parameter, which does not determine strength of solar wind electric field E and consequently geomagnetic activity. Geomagnetic index Dst(U) shows also absolute maximum of depression for cycle 23 at near the same U=80 deg. (By>0). B(U) is larger, Wm is larger for all U except interval for By>0, where B for odd cycles 21, 23 is higher than B for even ones 20,22. It should be noted that V (U) for SC with minimal Wm (20,23) has the highest maximum for By>0; maximum of V for Byminimum (near 2020) similar to Dalton minimum (near 1820).

  12. Extreme wind estimate for Hornsea wind farm

    DEFF Research Database (Denmark)

    Larsén, Xiaoli Guo

    The purpose of this study is to provide estimation of the 50-year winds of 10 min and 1-s gust value at hub height of 100 m, as well as the design parameter shear exponent for the Hornsea offshore wind farm. The turbulence intensity required for estimating the gust value is estimated using two...... approaches. One is through the measurements from the wind Doppler lidar, WindCube, which implies serious uncertainty, and the other one is through similarity theory for the atmospheric surface layer where the hub height is likely to belong to during strong storms. The turbulence intensity for storm wind...... strength is taken as 0.1. The shear exponents at several heights were calculated from the measurements. The values at 100 m are less than the limit given by IEC standard for all sectors. The 50-year winds have been calculated from various global reanalysis and analysis products as well as mesoscale models...

  13. A Study on the Effect of Nudging on Long-Term Boundary Layer Profiles of Wind and Weibull Distribution Parameters in a Rural Coastal Area

    DEFF Research Database (Denmark)

    Gryning, Sven-Erik; Batchvarova, Ekaterina; Floors, Rogier

    2013-01-01

    By use of 1 yr of measurements performed with a wind lidar up to 600-m height, in combination with a tall meteorological tower, the impact of nudging on the simulated wind profile at a flat coastal site (Høvsøre) in western Denmark using the Advanced Research version of the Weather Research...

  14. Influence of operating parameters on surface properties of RF glow discharge oxygen plasma treated TiO{sub 2}/PET film for biomedical application

    Energy Technology Data Exchange (ETDEWEB)

    Pandiyaraj, K. Navaneetha, E-mail: dr.knpr@gmail.com [Surface Engineering Laboratory, Department of Physics, Sri Shakthi Institute of Engineering and Technology, L and T by pass, Chinniyam Palayam (post), Coimbatore 641062 (India); Deshmukh, R.R. [Department of Physics, Institute of Chemical Technology, Matunga, Mumbai 400 019 (India); Mahendiran, R. [Surface Engineering Laboratory, Department of Physics, Sri Shakthi Institute of Engineering and Technology, L and T by pass, Chinniyam Palayam (post), Coimbatore 641062 (India); Su, Pi-G [Department of Chemistry, Chinese Culture University, Taipei 111, Taiwan (China); Yassitepe, Emre; Shah, Ismat [Department of Physics and Astronomy, Department of Materials Science and Engineering, University of Delaware, 208 Dupont Hall, Newark (United States); Perni, Stefano [School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff (United Kingdom); Prokopovich, Polina [School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff (United Kingdom); Institute of Medical Engineering and Medical Physics, School of Engineering, Cardiff University (United Kingdom); Nadagouda, Mallikarjuna N., E-mail: Nadagouda.Mallikarjuna@epamail.epa.gov [The U.S. Environmental Protection Agency, ORD, NRMRL, WSWRD, 26W. Martin Luther King Drive, Cincinnati, OH 45268 (United States)

    2014-03-01

    In this paper, a thin transparent titania (TiO{sub 2}) film was coated on the surface of flexible poly(ethylene terephthalate) (PET) film using the sol–gel method. The surface properties of the obtained TiO{sub 2}/PET film were further improved by RF glow discharge oxygen plasma as a function of exposure time and discharge power. The changes in hydrophilicity of TiO{sub 2}/PET films were analyzed by contact angle measurements and surface energy. The influence of plasma on the surface of the TiO{sub 2}/PET films was analyzed by atomic force microscopy (AFM) as well as the change in chemical state and composition that were investigated by X-ray photo electron spectroscopy (XPS). The cytotoxicity of the TiO{sub 2}/PET films was analyzed using human osteoblast cells and the bacterial eradication behaviors of TiO{sub 2}/PET films were also evaluated against Staphylococcus bacteria. It was found that the surface roughness and incorporation of oxygen containing polar functional groups of the plasma treated TiO{sub 2}/PET films increased substantially as compared to the untreated one. Moreover the increased concentration of Ti{sup 3+} on the surface of plasma treated TiO{sub 2}/PET films was due to the transformation of chemical states (Ti{sup 4+} → Ti{sup 3+}). These morphological and chemical changes are responsible for enhanced hydrophilicity of the TiO{sub 2}/PET films. Furthermore, the plasma treated TiO{sub 2}/PET film exhibited no citotoxicity against osteoblast cells and antibacterial activity against Staphylococcus bacteria which can find application in manufacturing of biomedical devices. - Graphical abstract: Mechanism of plasma treatment on the surface of TiO{sub 2}/PET films. - Highlights: • Investigated the surface properties of TiO{sub 2}/PET films modified by O{sub 2} plasma • Studied the effect of operating parameters on surface properties of TiO{sub 2}/PET films • Mechanism of the plasma treatment on TiO{sub 2}/PET was clearly investigated.

  15. Correlation of III/V semiconductor etch results with physical parameters of high-density reactive plasmas excited by electron cyclotron resonance

    Science.gov (United States)

    Gerhard, FRANZ; Ralf, MEYER; Markus-Christian, AMANN

    2017-12-01

    Reactive ion etching is the interaction of reactive plasmas with surfaces. To obtain a detailed understanding of this process, significant properties of reactive composite low-pressure plasmas driven by electron cyclotron resonance (ECR) were investigated and compared with the radial uniformity of the etch rate. The determination of the electronic properties of chlorine- and hydrogen-containing plasmas enabled the understanding of the pressure-dependent behavior of the plasma density and provided better insights into the electronic parameters of reactive etch gases. From the electrical evaluation of I(V) characteristics obtained using a Langmuir probe, plasmas of different compositions were investigated. The standard method of Druyvesteyn to derive the electron energy distribution functions by the second derivative of the I(V) characteristics was replaced by a mathematical model which has been evolved to be more robust against noise, mainly, because the first derivative of the I(V) characteristics is used. Special attention was given to the power of the energy dependence in the exponent. In particular, for plasmas that are generated by ECR with EM modes, the existence of Maxwellian distribution functions is not to be taken as a self-evident fact, but the bi-Maxwellian distribution was proven for Ar- and Kr-stabilized plasmas. In addition to the electron temperature, the global uniform discharge model has been shown to be useful for calculating the neutral gas temperature. To what extent the invasive method of using a Langmuir probe could be replaced with the non-invasive optical method of emission spectroscopy, particularly actinometry, was investigated, and the resulting data exhibited the same relative behavior as the Langmuir data. The correlation with etchrate data reveals the large chemical part of the removal process—most striking when the data is compared with etching in pure argon. Although the relative amount of the radial variation of plasma density and

  16. Effect of welding parameters of plasma transferred arc welding method on abrasive wear resistance of 12V tool steel deposit

    OpenAIRE

    Keränen, Marko

    2010-01-01

    In the plasma transferred arc, PTA, welding method the powder consumable makes it possible to weld wide variety of alloys. The dilution of the deposit is typically 3-10 % and, thus, the properties of the deposit can be achieved with one-layer deposit. The studied alloy was an iron-based 12V tool steel reinforced with primarily precipitating vanadium carbides. Wide deposits are welded by oscillating the plasma arc and overlapping the weld beads. The mobility of the molten pool of 12V tool...

  17. Plasma beta dependence of the ion-scale spectral break of solar wind turbulence: high-resolution 2D hybrid simulations

    CERN Document Server

    Franci, Luca; Matteini, Lorenzo; Verdini, Andrea; Hellinger, Petr

    2016-01-01

    We investigate properties of the ion-scale spectral break of solar wind turbulence by means of two-dimensional high-resolution hybrid particle-in-cell simulations. We impose an initial ambient magnetic field perpendicular to the simulation box and add a spectrum of in-plane, large-scale, magnetic and kinetic fluctuations. We perform a set of simulations with different values of the plasma beta, distributed over three orders of magnitude, from 0.01 to 10. In all the cases, once turbulence is fully developed, we observe a power-law spectrum of the fluctuating magnetic field on large scales (in the inertial range) with a spectral index close to -5/3, while in the sub-ion range we observe another power-law spectrum with a spectral index systematically varying with $\\beta$ (from around -3.6 for small values to around -2.9 for large ones). The two ranges are separated by a spectral break around ion scales. The length scale at which this transition occurs is found to be proportional to the ion inertial length, $d_i$...

  18. Blood plasma clinical-chemical parameters as biomarker endpoints for organohalogen contaminant exposure in Norwegian raptor nestlings

    DEFF Research Database (Denmark)

    Sonne, Christian; Bustnes, Jan O.; Herzke, Dorte

    2012-01-01

    ), golden eagle (n=12) and white-tailed eagle (n=36) nestlings during three consecutive breeding seasons. We found that blood plasma concentrations of calcium, sodium, creatinine, cholesterol, albumin, total protein, urea, inorganic phosphate, protein:creatinine, urea:creatinine and uric acid...

  19. The association between plasma homocysteine levels and bone quality and bone mineral density parameters in older persons

    NARCIS (Netherlands)

    Enneman, A. W.; Swart, K. M. A.; Zillikens, M. C.; van Dijk, S. C.; van Wijngaarden, J. P.; Brouwer-Brolsma, E. M.; Dhonukshe-Rutten, R. A. M.; Hofman, A.; Rivadeneira, F.; van der Cammen, T. J. M.; Lips, P.; de Groot, C. P. G. M.; Uitterlinden, A. G.; van Meurs, J. B. J.; van Schoor, N. M.; van der Velde, N.

    2014-01-01

    High plasma homocysteine levels have been associated with incident osteoporotic fractures, but the mechanisms underlying this association are still unknown. It has been hypothesized that homocysteine might interfere with collagen cross-linking in bone, thereby weakening bone structure. Therefore, we

  20. Influence of Plasma Transferred Arc Process Parameters on Structure and Mechanical Properties of Wear Resistive NiCrBSi-WC/Co Coatings

    Directory of Open Access Journals (Sweden)

    Eitvydas GRUZDYS

    2011-07-01

    Full Text Available Self-fluxing NiCrBSi and related coatings received considerable interest due to their good wear as well as corrosion resistance at moderate and elevated temperatures. Hard tungsten carbide (WC particles can be included in NiCrBSi for further increase of the coating hardness and abrasive wear resistance. Flame spray technique is widely used for fabrication of NiCrBSi films. However, in such a case, subsequent remelting of the deposited coatings by flame, arc discharge or high power laser beam is necessary. In present study NiCrBSi-WC/Co coatings were formed using plasma transferred arc process. By adjusting plasma parameters, such as current, plasma gas flow, shielding gas flow, a number of coatings were formed on steel substrates. Structure of the coatings was investigated using X-ray diffractometry. Microstructure of cross-sectioned coatings was examined using scanning electron microscopy. Hardness of the coating was evaluated by means of the Vickers hardness tests. Wear tests were also performed on specimens to determine resistance to abrasive wear. Acquired results allowed estimating the influence of the deposition process parameters on structure and mechanical properties of the coatings.http://dx.doi.org/10.5755/j01.ms.17.2.482

  1. Modelling Wind for Wind Farm Layout Optimization Using Joint Distribution of Wind Speed and Wind Direction

    Directory of Open Access Journals (Sweden)

    Ju Feng

    2015-04-01

    Full Text Available Reliable wind modelling is of crucial importance for wind farm development. The common practice of using sector-wise Weibull distributions has been found inappropriate for wind farm layout optimization. In this study, we propose a simple and easily implementable method to construct joint distributions of wind speed and wind direction, which is based on the parameters of sector-wise Weibull distributions and interpolations between direction sectors. It is applied to the wind measurement data at Horns Rev and three different joint distributions are obtained, which all fit the measurement data quite well in terms of the coefficient of determination . Then, the best of these joint distributions is used in the layout optimization of the Horns Rev 1 wind farm and the choice of bin sizes for wind speed and wind direction is also investigated. It is found that the choice of bin size for wind direction is especially critical for layout optimization and the recommended choice of bin sizes for wind speed and wind direction is finally presented.

  2. Dissipation of the striped pulsar wind

    Science.gov (United States)

    Cerutti, B.; Philippov, A. A.

    2017-11-01

    Context. Rapidly rotating neutron stars blow a relativistic, magnetized wind mainly composed of electron-positron pairs. The free expansion of the wind terminates far from the neutron star where a weakly magnetized pulsar wind nebula forms, implying efficient magnetic dissipation somewhere upstream. Aims: The wind current sheet that separates the two magnetic polarities is usually considered as the most natural place for magnetic dissipation via relativistic reconnection, but its efficiency remains an open question. Here, the goal of this work is to revisit this issue in light of the most recent progress in the understanding of reconnection and pulsar electrodynamics. Methods: We perform large two-dimensional particle-in-cell simulations of the oblique rotator to capture the multi-scale evolution of the wind. Our simulations are limited to the equatorial plane. Results: We find that the current sheet breaks up into a dynamical chain of magnetic islands separated by secondary thin current sheets. The sheet thickness increases linearly with radius while the Poynting flux decreases monotonically as reconnection proceeds. The radius of complete annihilation of the stripes is given by the plasma multiplicity parameter at the light cylinder. Current starvation within the sheets does not occur before complete dissipation as long as there is enough charges where the sheets form. Particles are efficiently heated up to a characteristic energy set by the magnetization parameter at the light cylinder. Energetic pulsed synchrotron emission peaks close to the light cylinder, and presents sub-pulse variability associated with the formation of plasmoids in the sheet. Conclusions: This study suggests that the striped component of the wind dissipates far before reaching the termination shock in isolated pulsars, even in very-high-multiplicity systems such as the Crab pulsar. Pulsars in binary systems may provide the best environments to study magnetic dissipation in the wind.

  3. Effects of chromium-enriched bacillus subtilis KT260179 supplementation on chicken growth performance, plasma lipid parameters, tissue chromium levels, cecal bacterial composition and breast meat quality.

    Science.gov (United States)

    Yang, Jiajun; Qian, Kun; Zhang, Wei; Xu, Yayuan; Wu, Yijing

    2016-11-08

    Both chromium (Cr) and probiotic bacillus own the virtues of regulating animal metabolism and meat quality. Purpose of this study was to evaluate the efficiency of supplemental Cr and bacillus in the form of chromium-enriched Bacillus subtilis KT260179 (CEBS) on chicken growth performance, plasma lipid parameters, tissue chromium levels, cecal bacterial composition and breast meat quality. Six hundred of 1-day-old Chinese Huainan Partridge chickens were divided into four groups randomly: Control, inorganic Cr, Bacillus subtilis, and CEBS. The feed duration was 56 days. After 28 days of treatment, broiler feed CEBS or normal B. subtilis had higher body weights than control broiler, and after 56 days, chickens given either CEBS or B. subtilis had greater body weights than control broiler or those given inorganic Cr. Plasma total cholesterol, triglycerides, and low density lipoprotein cholesterol levels declined significantly in the CEBS group compared with the control, whereas plasma high density lipoprotein cholesterol levels increased significantly. The concentration of Cr in blood and breast muscle increased after CEBS and inorganic Cr supplementation. B. subtilis and CEBS supplementation caused a significant increase in the numbers of Lactobacillus and Bifidobacterium in the caecum, while the numbers of Escherichia coli and Salmonella decreased significantly compared to the control. Feed adding CEBS increased the lightness, redness, and yellowness of breast meat, improved the water-holding capacity, decreased the shear force and cooking loss. In all, CEBS supplementation promoted body growth, improved plasma lipid parameters, increased tissue Cr concentrations, altered cecal bacterial composition and improved breast meat quality.

  4. Laser and Plasma Parameters for Laser Pulse Amplification by Stimulated Brillouin Backscattering in the Strong Coupling Regime

    Science.gov (United States)

    Gangolf, Thomas; Blecher, Marius; Bolanos, Simon; Lancia, Livia; Marques, Jean-Raphael; Cerchez, Mirela; Prasad, Rajendra; Aurand, Bastian; Loiseau, Pascal; Fuchs, Julien; Willi, Oswald

    2017-10-01

    In the ongoing quest for novel techniques to obtain ever higher laser powers, plasma amplification has drawn much attention, benefiting from the fact that a plasma can sustain much higher energy densities than a solid state amplifier. As a plasma process, Stimulated Brillouin Backscattering in the strong coupling regime (sc-SBS) can be used to transfer energy from one laser pulse (pump) to another (seed), by a nonlinear ion oscillation forced by the pump laser. Here, we report on experimental results on amplification by sc-SBS using the ARCTURUS Ti:Sapphire multi-beam laser system at the University of Duesseldorf, Germany. Counter-propagating in a supersonic Hydrogen gas jet target, an ultrashort seed pulse with a pulse duration between 30 and 160 fs and an energy between 1 and 12 mJ was amplified by a high-energy pump pulse (1.7 ps, 700 mJ). For some of the measurements, the gas was pre-ionized with a separate laser pulse (780 fs, 460 mJ). Preliminary analysis shows that the amplification was larger for the longer seed pulses, consistent with theoretical predictions.

  5. The impact of lead and cadmium on selected motility, prooxidant and antioxidant parameters of bovine seminal plasma and spermatozoa.

    Science.gov (United States)

    Tvrdá, Eva; Kňažická, Zuzana; Lukáčová, Jana; Schneidgenová, Monika; Goc, Zofia; Greń, Agnieszka; Szabó, Csaba; Massányi, Peter; Lukáč, Norbert

    2013-01-01

    The aim of this study was to investigate the effects of lead (Pb) and cadmium (Cd) content on basic motility characteristics (motility-MOT, progressive motility-PROG) as well as selected markers of the prooxidant-antioxidant balance (catalase-CAT, glutathione-GSH, malondialdehyde-MDA) in bovine seminal plasma and spermatozoa. Twenty five semen samples were collected from breeding bulls and used in the study. Motility analysis was carried out using the Computer Assisted Sperm Analysis (CASA) system. The samples were centrifuged, fractions of seminal plasma and spermatozoa were separated, lysates were prepared from the sperm cell fractions. Pb and Cd concentrations were determined by the voltametric method (ASV), antioxidants and MDA were analyzed by UV/Vis spectrophotometry. The analysis showed that the average concentration of Pb in the seminal plasma was 0.23 ± 0.02 μg/mL, while its amount in the sperm cells was significantly higher (0.41 ± 0.07 μg/mL; P 0.05). The correlation analysis revealed that both heavy metals were significantly negatively correlated with MOT and PROG (P male fertility.

  6. Effect of calcium and cholecalciferol supplementation on several parameters of calcium status in plasma and urine of captive Asian (Elephas maximus) and African elephants (Loxodonta africana).

    Science.gov (United States)

    van Sonsbeek, Gerda R; van der Kolk, Johannes H; van Leeuwen, Johannes P T M; Everts, Hendrik; Marais, Johan; Schaftenaar, Willem

    2013-09-01

    The aim of the current study was to assess the effect of oral calcium and cholecalciferol supplementation on several parameters of calcium status in plasma and urine of captive Asian (Elephas maximus; n=10) and African elephants (Loxodonta africana; n=6) and to detect potential species differences. Calcium and cholecalciferol supplementation were investigated in a feeding trial using a crossover design consisting of five periods of 28 days each in summer. From days 28-56 (period 2), elephants were fed the Ca-supplemented diet and from days 84-112, elephants were fed the cholecalciferol-supplemented diet (period 4). The control diet was fed during the other periods and was based on their regular ration, and the study was repeated similarly during winter. Periods 1, 3, and 5 were regarded as washout periods. This study revealed species-specific differences with reference to calcium and cholecalciferol supplementation. Asian elephants showed a significant increase in mean plasma total calcium concentration following calcium supplementation during summer, suggesting summer-associated subclinical hypocalcemia in Western Europe. During winter, no effect was seen after oral calcium supplementation, but a significant increase was seen both in mean plasma, total, and ionized calcium concentrations after cholecalciferol supplementation in Asian elephants. In contrast, evidence of subclinical hypocalcemia could be demonstrated neither in summer nor in winter in African elephants, although 28 days of cholecalciferol supplementation during winter reversed the decrease in plasma 1,25(OH)2-cholecalciferol and was followed by a significant increase in mean plasma total calcium concentration. Preliminary findings indicate that the advisable permanent daily intake for calcium in Asian elephants and cholecalciferol in both elephant species at least during winter might be higher than current guidelines. It is strongly recommended to monitor blood calcium concentrations and, if

  7. The ratio of specific heats for postshock plasmas of a detached bow shock - An MHD model. [in solar wind-earth interaction

    Science.gov (United States)

    Chao, J. K.; Wiskerchen, M. J.

    1974-01-01

    The empirical relationship between the standoff distance of a detached bow shock (generated by the flow of a supersonic gas past an impenetrable obstacle), the size of the obstacle, the Mach number of the gas, and the ratio of specific heats has been generalized to include the magnetic field. The value of the ratio of specific heats (gamma-prime) in the postshock plasma has been calculated in terms of the preshock Alfvenic and sonic Mach numbers and orientation of the magnetic field. The empirical relationship is further generalized by taking into consideration the normal momentum and energy flux due to waves and/or turbulence and/or heat flow in association with high Mach number shocks. The computed value of gamma prime is substantially modified in comparison with that given by the MHD or the gas dynamic model. For this generalized model the computed gamma prime can be considered to be a more precise thermodynamic quantity, since the macroscopic parameters of the plasma have been separated out. Application of this empirical relationship to the earth's bow shock has been given.

  8. Activated Charcoal Hemoperfusion in the Treatment of Experimental Amitriptyline Poisoning in Pigs - The Effect on Amitriptyline Plasma Concentration and Hemodynamic Parameters

    DEFF Research Database (Denmark)

    Jansen, Tejs; Petersen, Henrik; Malskaer, Cecilie M

    2017-01-01

    aimed at quantifying the efficacy of modern CAC-HP as an adjunctive treatment of AT intoxication compared to standard care alone. Fourteen female Danish landrace pigs were randomized to either standard care or standard care plus 4 hr of CAC-HP. The pigs were anaesthetized and vital parameters were...... continuously recorded. Amitriptyline infusion (7.5 mg/kg) was completed in 20 min. Thirty minutes following AT infusion, activated charcoal was instilled orally in both groups. In the intervention group, CAC-HP was initiated 60 min. after AT infusion. Blood and urine samples were collected as were vital...... group were found when analysing for differences in AT levels in plasma at any time point. Furthermore, significant differences between the control and intervention group in regard to vital parameters could not be found either. In our animal model, the addition of CAC-HP did not improve the clearance...

  9. Optimization Of Pulsed Current Parameters To Minimize Pitting Corrosion İn Pulsed Current Micro Plasma Arc Welded Aısı 304l Sheets Using Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Kondapalli Siva Prasad

    2013-06-01

    Full Text Available Austenitic stainless steel sheets have gathered wide acceptance in the fabrication of components, which require high temperature resistance and corrosion resistance, such as metal bellows used in expansion joints in aircraft, aerospace and petroleum industry. In case of single pass welding of thinner sections of this alloy, Pulsed Current Micro Plasma Arc Welding (PCMPAW was found beneficial due to its advantages over the conventional continuous current process. This paper highlights the development of empirical mathematical equations using multiple regression analysis, correlating various process parameters to pitting corrosion rates in PCMPAW of AISI 304L sheets in 1 Normal HCl. The experiments were conducted based on a five factor, five level central composite rotatable design matrix. A Genetic Algorithm (GA was developed to optimize the process parameters for minimizing the pitting corrosion rates.

  10. Effects of Hypertonic Saline Solution on Clinical Parameters, Serum Electrolytes and Plasma Volume in the Treatment of Haemorrhagic Septicaemia in Buffaloes

    Directory of Open Access Journals (Sweden)

    M. Arif Zafar*, G. Muhammad, Zafar Iqbal1 and M. Riaz2

    2010-04-01

    Full Text Available This study was conducted to determine the efficacy of hypertonic saline solution (HSS along with antibiotic (ceftiofur HCl and non-steroidal anti-inflammatory drug (ketoprofen in the treatment of haemorrhagic septicaemia in buffaloes. For this purpose, 50 buffaloes suffering from haemorrhagic septicaemia were randomly divided in two equal groups A and B. Group A served as control and was treated with ceftiofur HCl (IM and ketoprofen (IV @ 6 and 2 mg/Kg BW, respectively, for five days. Buffaloes of group B were administered with rapid intravenous infusion of hypertonic saline solution (7.5% NaCl @ 4 ml/Kg BW once in combination with ceftiofur HCl and ketoprofen. Animals were monitored for 24 hours after initiation of treatment. Clinical parameters, serum electrolytes, plasma volume and survival index were recorded at different intervals after treatment. Survival rate (80% in group B was significantly higher (P<0.05 than 48% in group A. The heart rate and respiration rate recovered more effectively in the buffaloes administered with treatment protocol B. Plasma volume was 98% which was almost normal within 24 hours after the infusion of hypertonic saline solution to the animals of group B. It was concluded from the study that hypertonic saline solution as an adjunct to antibiotic and a non-steroidal anti-inflammatory drug more efficiently improved respiration and heart rates and effectively restored plasma volume in resuscitating the buffaloes from haemorrhagic septicaemia than the conventional treatment.

  11. The effects of N-acetylcysteine and deferoxamine on plasma cytokine and oxidative damage parameters in critically ill patients with prolonged hypotension: a randomized controlled trial.

    Science.gov (United States)

    Fraga, Cassiana Mazon; Tomasi, Cristiane Damiani; Biff, Daiane; Topanotti, Maria Fernanda Locks; Felisberto, Francine; Vuolo, Francieli; Petronilho, Fabricia; Dal-Pizzol, Felipe; Ritter, Cristiane

    2012-09-01

    Reactive oxygen species and inflammation have been implicated in renal tubule cell injury. However, there is some controversy concerning whether antioxidants might attenuate oxidative damage and inflammation in humans after hypotension in the setting of critical illness. This study was a prospective, randomized, double-blinded, placebo-controlled study that included patients with hypotension. Patients were randomized to receive either N-acetylcysteine (NAC; 50 mg/kg by 4 hours followed by 100 mg/kg/d for 48 hours diluted in 5% glucose) and deferoxamine (DFX; at a single dose of 1000 mg diluted in 5% glucose) or placebo. The primary study outcome was the serum levels of markers of oxidative damage and inflammatory response. Secondary outcomes included the incidence of acute renal failure, serum creatinine at hospital discharge, intensive care unit length of stay, and length of hospital stay. Thirty patients were enrolled in the study. The use of NAC plus DFX decreased the oxidative damage parameters but not plasma interleukin-6 levels. In contrast, plasma nitrite levels increased 24 hours after NAC plus DFX administration. On analysis of secondary outcomes, it was observed that creatinine levels at hospital discharge were lower in patients receiving NAC plus DFX when compared with placebo. NAC plus DFX administration was able to decrease plasma markers of oxidative damage and creatinine levels at hospital discharge.

  12. Reagent-free monitoring of multiple clinically relevant parameters in human blood plasma using a mid-infrared quantum cascade laser based sensor system.

    Science.gov (United States)

    Brandstetter, Markus; Sumalowitsch, Tamara; Genner, Andreas; Posch, Andreas E; Herwig, Christoph; Drolz, Andreas; Fuhrmann, Valentin; Perkmann, Thomas; Lendl, Bernhard

    2013-07-21

    We present a semi-automated point-of-care (POC) sensor approach for the simultaneous and reagent-free determination of clinically relevant parameters in blood plasma. The portable sensor system performed direct mid-infrared (MIR) transmission measurements of blood plasma samples using a broadly tunable external-cavity quantum cascade laser source with high spectral power density. This enabled the use of a flow cell with a long path length (165 μm) which resulted in high signal-to-noise ratios and a rugged system, insensitive to clogging. Multivariate calibration models were built using well established Partial-Least-Squares (PLS) regression analysis. Selection of spectral pre-processing procedures was optimized by an automated evaluation algorithm. Several analytes, including glucose, lactate, triglycerides, cholesterol, total protein as well as albumin, were successfully quantified in routinely taken blood plasma samples from 67 critically ill patients. Although relying on a spectral range from 1030 cm(-1) to 1230 cm(-1), which is optimal for glucose and lactate but rather unusual for protein analysis, it was possible to selectively determine the albumin and total protein concentrations with sufficient accuracy for POC application.

  13. Influence of plasma parameters on the chemical composition of steady-state fluorocarbon films deposited on carbon-doped low-k dielectric layers during etching

    Science.gov (United States)

    Reid, I.; Hughes, G.

    2006-09-01

    This study investigates the fluorocarbon-based plasma etching (FBPE) of low dielectric constant (ULK) carbon-doped oxide (CDO) films, which have a dielectric constant (k) value of 2.4. The effects of different ion density and ion energy power settings on the chemical composition of the fluorocarbon layer deposited during the etch process were investigated. X-ray photoelectron spectroscopy (XPS) was used to analyse the chemical composition of the post-etched low-k CDO films while spectroscopic ellipsometry (SE) was used to determine the overall film thickness. XPS spectra of the C1s core levels reveal that the relative concentration of CFx species in the fluorocarbon films reduced as ion density source power and ion energy power levels were increased, and this can be correlated with a higher etch rate and thinner fluorocarbon layer. Plasma conditions which led to the deposition of a thick fluorocarbon film significantly inhibited the etch rate. This work demonstrates that the chemical composition and the thickness of the fluorocarbon film can be controlled by the plasma power parameters, and this has implications for the etching of ULK CDO layers.

  14. Selected complete blood cell count and plasma protein electrophoresis parameters in pet psittacine birds evaluated for illness.

    Science.gov (United States)

    Briscoe, Jeleen A; Rosenthal, Karen L; Shofer, Frances S

    2010-06-01

    Veterinarians rely on results of both the complete blood cell count (CBC) and plasma protein electrophoresis (EPH) in conjunction with the results of the plasma biochemical analysis to evaluate the health status of avian patients. Because the CBC and protein EPH measure different aspects of the immune response to disease, both tests are recommended in avian patients to rule out infectious or inflammatory disease. To evaluate results of the CBC and protein EPH in pet psittacine birds, the records of 144 pet psittacine birds, comprising 11 genera, that were presented for suspected illness were reviewed. Results of the CBC (total white blood cell count and packed cell volume) and protein EPH (alpha, beta, and gamma globulin concentrations) from submitted blood samples from each bird were evaluated. Of the 144 birds, 63 (43.8%) had abnormal CBC results, and 25 (17.4%) had abnormal EPH measurements. Results of the CBC and protein EPH were within reference ranges in 73 birds (50.7%). Abnormal results of the CBC in conjunction with normal EPH results were present in 46 birds (31.9%), compared with 8 birds (5.6%) with normal results of the CBC and abnormal EPH results. The findings of this study could aid practitioners in evaluating psittacine patients and prioritizing the value of individual diagnostic tests.

  15. Effects of the non-extensive parameter on the propagation of ion acoustic waves in five-component cometary plasma system

    Science.gov (United States)

    Mahmoud, Abeer A.

    2018-01-01

    Some important evolution nonlinear partial differential equations are derived using the reductive perturbation method for unmagnetized collisionless system of five component plasma. This plasma system is a multi-ion contains negatively and positively charged Oxygen ions (heavy ions), positive Hydrogen ions (lighter ions), hot electrons from solar origin and colder electrons from cometary origin. The positive Hydrogen ion and the two types of electrons obey q-non-extensive distributions. The derived equations have three types of ion acoustic waves, which are soliton waves, shock waves and kink waves. The effects of the non-extensive parameters for the hot electrons, the colder electrons and the Hydrogen ions on the propagation of the envelope waves are studied. The compressive and rarefactive shapes of the three envelope waves appear in this system for the first order of the power of the nonlinearity strength with different values of non-extensive parameters. For the second order, the strength of nonlinearity will increase and the compressive type of the envelope wave only appears.

  16. Synthesis of gram quantities of C60 by plasma discharge in a modified round-bottomed flask. Key parameters for yield optimization and purification. Technical report

    Energy Technology Data Exchange (ETDEWEB)

    Scrivens, W.A.; Tours, J.M.

    1993-11-22

    Described is the fabrication of a plasma discharge reactor constructed from a 1 L round-bottomed flask that allows for the preparation of gram-quantities Of C60 in an eight hour period. The modified reactor design (1) is inexpensive (2) requires almost no machining (3) has high thru-put (4) affords high yields of fullerenes (5) allows one to have near continuous feed of graphite rods and (6) permits control over four major reaction parameters important for the clean formation of fullerenes. The four major reaction parameters necessary to control for the high yield of fullerenes are the absolute pressure, the rate of helium gas flow through the reactor, the current level of the arc as determined by the setting on the arc welding unit, and the arc gap maintained by monitoring the current on a clip-on digital AC current meter. Since the apparatus described can allow for easy adjustment of all four major reaction parameters, this design could also be used to study the changes in fulleroid content based on parameter modification. Also detailed is the efficacy of a procedure for the purification of the crude fullerene mixtures using activated charcoal as a chromatographic stationary phase.

  17. Plasma leptin levels in children with cyanotic and acyanotic congenital heart disease and correlations with growth parameters.

    Science.gov (United States)

    Hallioglu, Olgu; Alehan, Dursun; Kandemir, Nurgun

    2003-11-01

    Leptin has been shown to be an integral component of energy homeostasis and regulation of body weight. Leptin regulates adipose tissue mass and correlates with the fat mass, however the circulating levels are altered by energy intake. Research on the physiological function of leptin has primarily focused on its role in the pathogenesis of obesity. However, its role in the negative energy imbalance is unclear. Increased energy expenditure is a primary factor in the reduced growth in infants with cyanotic congenital heart disease. The objective of this study was to examine the possible role of leptin on growth and nutrition in children with cyanotic and acyanotic congenital heart disease. In this study, plasma leptin levels, nutritional and growth status were evaluated in 28 cyanotic and 20 acyanotic patients with congenital heart disease. Although standard deviation (S.D.) of height (Pheart disease.

  18. Scaling properties of intermittent solar wind turbulence and their solar cycle dependence.

    Science.gov (United States)

    Hnat, B.; Chapman, S. C.; Rowlands, G.

    Quantifying the properties of solar wind turbulence is important for our understanding of the fundamentals of MHD turbulence the evolution of the solar wind and for the propagation of energetic particles A hallmark of turbulence is scaling in statistical measures of fluctuations in the flow In data this is quantified by testing for scaling in the Probability Density Functions PDF of fluctuations either directly or via structure function analysis Comparisons can then be made at least in principle with turbulence phenomenologies Having determined the scaling exponents from the data we can also derive a Fokker-Planck model along with the associated Langevin equation- this provides a stochastic dynamical equation for the fluctuations in the time series of in- situ plasma parameters Differences in the scaling exponents found for different plasma parameters constructed to more closely track distinct phenomenologies Alvenic or compressive may reflect both local and nonlocal processes with implications for our understanding of the evolving solar wind

  19. Parallel path nebulizer: Critical parameters for use with microseparation techniques combined with inductively coupled plasma mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Yanes, Enrique G. [United States Department of Agriculture, Agricultural Research Service, Beltsville Human Nutrition Research Center, Food Composition Laboratory, Beltsville, MD 20705 (United States)]. E-mail: enrigy@yahoo.com; Miller-Ihli, Nancy J. [United States Department of Agriculture, Agricultural Research Service, Beltsville Human Nutrition Research Center, Food Composition Laboratory, Beltsville, MD 20705 (United States)]. E-mail: miller-ihli@msn.com

    2005-04-30

    Four different, low flow parallel path Mira Mist CE nebulizers were evaluated and compared in support of an ongoing project related to the use of microseparation techniques interfaced to inductively coupled plasma mass spectrometry for the quantification of cobalamin species (Vitamin B12). For the characterization of the different Mira Mist CE nebulizers, the nebulizer orientation as well as the effect of methanol on analytical response was the focus of the study. The position of the gas outlet on the nebulizer which consistently provided the maximum signal was when it was rotated to the 11 o'clock position when the nebulizer is viewed end-on. With this orientation the increased signal may be explained by the fact that the cone angle of the aerosol is such that the largest percentage of the aerosol is directed to the center of the spray chamber and consequently into the plasma. To characterize the nebulizer's performance, the signal response of a multielement solution containing elements with a variety of ionization potentials was used. The selection of elements with varying ionization energies and degrees of ionization was essential for a better understanding of observed increases in signal enhancement when methanol was used. Two different phenomena contribute to signal enhancement when using methanol: the first is improved transport efficiency and the second is the 'carbon enhancement effect'. The net result was that as much as a 30-fold increase in signal was observed for As and Mg when using a make-up solution of 20% methanol at a 15 {mu}L/min flow rate which is equivalent to a net volume of 3 {mu}L/min of pure methanol.

  20. Protective effect of ascorbic acid on netilmicin-induced lipid profile and peroxidation parameters in rabbit blood plasma.

    Science.gov (United States)

    Devbhuti, Pritesh; Sikdar, Debasis; Saha, Achintya; Sengupta, Chandana

    2011-01-01

    A drug may cause alteration in blood-lipid profile and induce lipid peroxidation phenomena on administration in the body. Antioxidant may play beneficial role to control the negative alteration in lipid profile and lipid peroxidation. In view of this context, the present in vivo study was carried out to evaluate the role of ascorbic acid as antioxidant on netilmicin-induced alteration of blood lipid profile and peroxidation parameters. Rabbits were used as experimental animals and blood was collected to estimate blood-lipid profiles, such as total cholesterol (TCh), high density lipoprotein cholesterol (HDL-Ch), low density lipoprotein cholesterol (LDL-Ch), very low density lipoprotein cholesterol (VLDL-Ch), triglycerides (Tg), phospholipids (PL), and total lipids (TL), as well as peroxidation parameters, such as malondialdehyde (MDA), 4-hydroxy-2-nonenal (HNE), reduced glutathione (GSH) and nitric oxide (NO). The results revealed that netilmicin caused significant enhancement of MDA, HNE, TCh, LDL-Ch, VLDL-Ch, Tg levels and reduction in GSH, NO, HDL-Ch, PL, TL levels. On co-administration, ascorbic acid was found to be effective in reducing netilmicin-induced negative alterations of the above parameters.

  1. Labotratory Simulation Experiments of Cometary Plasma

    OpenAIRE

    MINAMI, S.; Baum, P. J.; Kamin, G.; White, R. S.; 南, 繁行

    1986-01-01

    Laboratory simulation experiment to study the interaction between a cometary plasma and the solar wind has been performed using the UCR-T 1 space simulation facility at the Institute of Geophysics and Planetary Physics, the University of California, Riverside. Light emitting plasma composed of Sr, Ba and/or C simulating cometary coma plasma is produced by a plasma emitter which interacts with intense plasma flow produced by a co-axial plasma gun simulating the solar wind. The purpose of this ...

  2. Synthesis of graphene by cobalt-catalyzed decomposition of methane in plasma-enhanced CVD: Optimization of experimental parameters with Taguchi method

    Energy Technology Data Exchange (ETDEWEB)

    Mehedi, H.-A.; Baudrillart, B.; Gicquel, A.; Farhat, S., E-mail: samir.farhat@lspm.cnrs.fr [Laboratoire des Sciences des Procédés et des Matériaux, CNRS, LSPM – UPR 3407, Université Paris 13, PRES Sorbonne-Paris-Cité, Villetaneuse 93430 (France); Alloyeau, D.; Mouhoub, O.; Ricolleau, C.; Pham, V. D.; Chacon, C.; Lagoute, J. [Laboratoire Matériaux et Phénomènes Quantiques, CNRS, UMR 7162, Université Paris Diderot, Bâtiment Condorcet, Paris 75205 (France)

    2016-08-14

    This article describes the significant roles of process parameters in the deposition of graphene films via cobalt-catalyzed decomposition of methane diluted in hydrogen using plasma-enhanced chemical vapor deposition (PECVD). The influence of growth temperature (700–850 °C), molar concentration of methane (2%–20%), growth time (30–90 s), and microwave power (300–400 W) on graphene thickness and defect density is investigated using Taguchi method which enables reaching the optimal parameter settings by performing reduced number of experiments. Growth temperature is found to be the most influential parameter in minimizing the number of graphene layers, whereas microwave power has the second largest effect on crystalline quality and minor role on thickness of graphene films. The structural properties of PECVD graphene obtained with optimized synthesis conditions are investigated with Raman spectroscopy and corroborated with atomic-scale characterization performed by high-resolution transmission electron microscopy and scanning tunneling microscopy, which reveals formation of continuous film consisting of 2–7 high quality graphene layers.

  3. Effects of dietary copper on elemental balance, plasma minerals and serum biochemical parameters of growing-furring male mink (Mustela vison

    Directory of Open Access Journals (Sweden)

    Xuezhuang Wu

    2015-03-01

    Full Text Available The objectives of this study were to study the effects of different levels of dietary copper on copper and zinc balance, plasma minerals and serum biochemical parameters of mink in the growing-furring periods. One hundred and five standard dark male mink were randomly assigned to seven groups with the following dietary treatments: basal diet with no supplemental Cu (Control; basal diet supplemented with either 6, 12, 24, 48, 96, or 192 mg/kg Cu from copper sulfate, respectively. The average daily gain (ADG linearly (P = 0.0026, P = 0.0006 responded to increasing levels of Cu; maximal growth was seen in the Cu24 group. Feed efficiency tended to improve with the increase of dietary copper level (linear P = 0.0010, quad, P = 0.0011. Fecal copper, urinary copper, retention copper responded in a linear (P < 0.05 fashion with increasing level of Cu. The effect of level of Cu was linear (P < 0.001 for plasma Cu concentration. The serum glutamic-oxalacetic transaminase (GOT and glutamic-pyruvic transaminase (GPT activities were increased linearly (P < 0.05 with dose of Cu, but serum total protein (TP and albumin (ALB concentrations decreased linearly (P < 0.05 as dietary copper levels increased. Effect of level of Cu was linear (P < 0.001 for serum ceruloplasmin (CER concentration or Cu-Zn superoxide dismutase (Cu-Zn SOD activity. Supplemental dose of Cu linearly decreased serum triglyceride (TG (P = 0.011 and total cholesterol (TC (P = 0.007. Our results indicated that the activity of Cu-dependent enzymes was enhanced by increasing dietary Cu concentration and that supplementation of Cu in the diet of mink could alter the plasma lipid profile and copper concentration.

  4. RECONSTRUCTING THE SOLAR WIND FROM ITS EARLY HISTORY TO CURRENT EPOCH

    Energy Technology Data Exchange (ETDEWEB)

    Airapetian, Vladimir S.; Usmanov, Arcadi V., E-mail: vladimir.airapetian@nasa.gov, E-mail: avusmanov@gmail.com [NASA Goddard Space Flight Center, Greenbelt, MD (United States)

    2016-02-01

    Stellar winds from active solar-type stars can play a crucial role in removal of stellar angular momentum and erosion of planetary atmospheres. However, major wind properties except for mass-loss rates cannot be directly derived from observations. We employed a three-dimensional magnetohydrodynamic Alfvén wave driven solar wind model, ALF3D, to reconstruct the solar wind parameters including the mass-loss rate, terminal velocity, and wind temperature at 0.7, 2, and 4.65 Gyr. Our model treats the wind thermal electrons, protons, and pickup protons as separate fluids and incorporates turbulence transport, eddy viscosity, turbulent resistivity, and turbulent heating to properly describe proton and electron temperatures of the solar wind. To study the evolution of the solar wind, we specified three input model parameters, the plasma density, Alfvén wave amplitude, and the strength of the dipole magnetic field at the wind base for each of three solar wind evolution models that are consistent with observational constrains. Our model results show that the velocity of the paleo solar wind was twice as fast, ∼50 times denser and 2 times hotter at 1 AU in the Sun's early history at 0.7 Gyr. The theoretical calculations of mass-loss rate appear to be in agreement with the empirically derived values for stars of various ages. These results can provide realistic constraints for wind dynamic pressures on magnetospheres of (exo)planets around the young Sun and other active stars, which is crucial in realistic assessment of the Joule heating of their ionospheres and corresponding effects of atmospheric erosion.

  5. Load Extrapolation During Operation for Wind Turbines

    DEFF Research Database (Denmark)

    Toft, Henrik Stensgaard; Sørensen, John Dalsgaard

    2008-01-01

    In the recent years load extrapolation for wind turbines has been widely considered in the wind turbine industry. Loads on wind turbines during operations are normally dependent on the mean wind speed, the turbulence intensity and the type and settings of the control system. All these parameters...

  6. Optical characteristics and parameters of the plasma of a barrier discharge excited in a mixture of mercury dibromide vapor with nitrogen and helium

    Science.gov (United States)

    Malinina, A. A.; Guivan, N. N.; Shimon, L. L.; Shuaibov, A. K.

    2010-09-01

    Results are presented from experimental and theoretical studies of the optical characteristics and parameters of the plasma of an atmospheric-pressure barrier discharge excited in a HgBr2: N2: He mixture, which was used as the working medium of a small-size (with a radiation area of 8 cm2) exciplex gas-discharge radiation source. The mean radiation power of 87 mW was achieved at the radiation wavelength λmax = 502 nm. The electron energy distribution function, the transport characteristics, the specific energy lost in the processes involving electrons, the electron temperature and density, and the rate constants of elastic and inelastic electron scattering by the components of the working mixture were calculated as functions of the reduced field E/ N. The plasma of a discharge excited in a HgBr2: N2: He mixture can be used as the working medium of a small-size blue-green radiation source. Such a source can find application in biotechnology, photonics, and medicine and can also be used to manufacture gas-discharge display panels.

  7. Description of cardiovascular remodeling parameters and osteopontin plasma level in dynamics of the candesartan therapy in patients with chronic kidney disease on the stage before dialysis

    Directory of Open Access Journals (Sweden)

    V. A. Vizir

    2015-04-01

    Full Text Available Aim. To examine the cardiovascular remodeling parameters and osteopontin plasma level in dynamics of the candesartan therapy in patients with chronic kidney disease on the stage before dialysis Methods and results. Peculiarities of the cardiovascular remodeling were studied in 52 patients with chronic kidney disease III, IV, and V stage. Echocardiography, carotid dopplerography, and immunoassay detection of the osteopontin level were done. The predominant type of pathological left ventricular geometry was concentric hypertrophy, its prevalence increased with worsening of the renal function. The maximum level of IMT was observed at stage V of the CKD. The chronic kidney disease progression was accompanied by increased plasma levels of the osteopontin. Conclusion. Direct correlation between the concentration of the protein and the index of left ventricular mass and the intima-media thickness were detected. The therapy with candesartan during 12 weeks leads to the significant reduction of osteopontin, which can be considered as a marker of cardiovascular remodeling in patients with CKD.

  8. Acute effects of chemically dispersed crude oil on gill ion regulation, plasma ion levels and haematological parameters in tambaqui (Colossoma macropomum).

    Science.gov (United States)

    Duarte, Rafael Mendonça; Honda, Rubens Tomio; Val, Adalberto Luis

    2010-04-15

    The main goal of this study was to investigate the toxicological effects of the chemical dispersant Corexit 9500, crude oil and the combination of the two components in the form of chemically dispersed crude oil (CO+DIS) on the ion regulation of the tropical fish tambaqui (Colossoma macropomum). Gill ion regulation was evaluated on the basis of unidirectional flux measurements (influx-J(in), efflux-J(out) and net flux-J(net)) of Na(+), Cl(-) and K(+). Plasma ion composition, haematocrit, haemoglobin and glucose concentrations in the blood of tambaqui were determined by classical methods. The exposure of fish to chemically dispersed crude oil promoted a significant increase in J(out) Na(+) across the gills, which, together with the inability of fish to stimulate Na(+) uptake to compensate for these losses resulted in significantly higher J(net) Na(+) outward, particularly within the first 3h of exposure. Increased outward J(net) Cl(-) was also seen in fish that were exposed to dispersed crude oil, whereas outward J(net) K(+) was only increased at crude oil dispersed in higher concentration of Corexit 9500. Plasma Na(+) and Cl(-) concentrations decreased between 6 and 12h of exposure, whereas Ca(2+) concentrations remained significantly lower than those of the control group over the entire experimental period. There were significant increases in plasma K(+) concentrations and in the haematocrit after 6 and 24h of exposure to dispersed crude oil, suggesting significant changes in the permeability of the erythrocytic membrane. Collectively, our results suggest that chemically dispersed crude oil promotes a more extensive impairment of gill ion regulation, in addition to changes in plasma ion levels and blood parameters, in tambaqui compared with exposure to Urucu crude oil or Corexit 9500 alone. Thus, in the event of an oil spill in Amazonian waters, the chemical dispersion of Urucu crude oil could represent a great risk to tambaqui, challenging their ability to

  9. Effect of solar dynamics parameters on the formation of substorm activity

    Science.gov (United States)

    Barkhatov, N. A.; Vorob'ev, V. G.; Revunov, S. E.; Yagodkina, O. I.

    2017-05-01

    An algorithm for retrieving the AL index dynamics from the parameters of solar-wind plasma and the interplanetary magnetic field (IMF) has been developed. Along with other geoeffective parameters of the solar wind, an integral parameter in the form of the cumulative sum Σ[N* V 2] is used to determine the process of substorm formation. The algorithm is incorporated into a framework developed to retrieve the AL index of an Elman-type artificial neural network (ANN) containing an additional layer of neurons that provides an "internal memory" of the prehistory of the dynamical process to be retrieved. The ANN is trained on data of 70 eight-hour-long time intervals, including the periods of isolated magnetospheric substorms. The efficiency of this approach is demonstrated by numerical neural-network experiments on retrieving the dynamics of the AL index from the of solar wind and IMF parameters during substorms.

  10. Wind Resource Estimation using QuikSCAT Ocean Surface Winds

    DEFF Research Database (Denmark)

    Xu, Qing; Zhang, Guosheng; Cheng, Yongcun

    2011-01-01

    In this study, the offshore wind resources in the East China Sea and South China Sea were estimated from over ten years of QuikSCAT scatterometer wind products. Since the errors of these products are larger close to the coast due to the land contamination of radar backscatter signal...... and the complexity of air-sea interaction processes, an empirical relationship that adjusts QuikSCAT winds in coastal waters was first proposed based on vessel measurements. Then the shape and scale parameters of Weibull function are determined for wind resource estimation. The wind roses are also plotted. Results...

  11. Strong winds and waves offshore

    DEFF Research Database (Denmark)

    Larsén, Xiaoli Guo

    2016-01-01

    This report is prepared for Statoil, with the intention to introdu e DTU Wind Energy's ongoing resear h a tivities on o shore extreme wind and wave onditions. The purpose is to share our re ent ndings and to establish possible further ollaboration with Statoil. The fo us of this report is on the ......This report is prepared for Statoil, with the intention to introdu e DTU Wind Energy's ongoing resear h a tivities on o shore extreme wind and wave onditions. The purpose is to share our re ent ndings and to establish possible further ollaboration with Statoil. The fo us of this report...... is on the meteorologi al and o eani onditions related to storm winds and waves over the North Sea. With regard to the o shore wind energy appli ation, the parameters addressed here in lude: extreme wind and extreme waves, storm wind and waves and turbulen e issues for o shore onditions....

  12. Optimization of the Cathode Arc Plasma Deposition Processing Parameters of ZnO Film Using the Grey-Relational Taguchi Method

    Directory of Open Access Journals (Sweden)

    Shuo-Fu Hsu

    2014-01-01

    Full Text Available We deposited undoped ZnO films on the glass substrate at a low temperature (<70°C using cathode arc plasma deposition (CAPD and the grey-relational Taguchi method was used to determine the processing parameters of ZnO thin films. The Taguchi method with an L9 orthogonal array, signal-to-noise (S/N ratio, and analysis of variance (ANOVA is employed to investigate the performances in the deposition operations. The effect and optimization of deposition parameters, comprising the Ar : O2 gas flow ratio of 1 : 6, 1 : 8, and 1 : 10, the arc current of 50 A, 60 A, and 70 A, and the deposition time of 5 min, 10 min, and 15 min, on the electrical resistivity and optical transmittance of the ZnO films are studied. The results indicate that, by using the grey-relational Taguchi method, the optical transmittance of ZnO thin films increases from 88.17% to 88.82% and the electrical resistivity decreases from 5.12×10-3Ω-cm to 4.38×10-3Ω-cm, respectively.

  13. Changes of selected morphotic parameters and blood plasma proteins in blood of divers after a single short-time operational heliox exposure.

    Science.gov (United States)

    Olszański, Romuald; Konarski, Maciej; Kierznikowicz, Brunon

    2002-01-01

    In the Polish Navy, deep-water dives, performed for the needs of the maritime industry, are conducted using our own national technology and trimix as a breathing medium. In this paper are presented the results obtained during a short-time deep-water diving test using the principles of US Navy technology, combined with the use of diving equipment type AF-2 and heliox-type breathing mixture in the open circuit. In the performed examinations changes in clinical parameters were assessed viz.: blood morphology, hematocrit level, concentration of C3c, C4, IgG, IgA, IgM, CRP, concentration of fibrinogen and factor XII level, obtained 30 minutes prior to commencement, immediately after completion, and 24 hours after termination of the exposure. The results thus generated were subjected to a preliminary analysis by the description of trends observed. It was revealed that the diving technology employed did not generate substantial changes in the examined parameters of blood in divers, and the increase of neutrophils, blood platelets and fibrinogen concentration in the blood plasma immediately after diving is of temporary character, being a typical reaction observed during diving.

  14. Investigating the origin of cyclical wind variability in hot massive stars - II. Hydrodynamical simulations of corotating interaction regions using realistic spot parameters for the O giant ξ Persei

    Science.gov (United States)

    David-Uraz, A.; Owocki, S. P.; Wade, G. A.; Sundqvist, J. O.; Kee, N. D.

    2017-09-01

    OB stars exhibit various types of spectral variability historically associated with wind structures, including the apparently ubiquitous discrete absorption components (DACs). These features have been proposed to be caused either by magnetic fields or non-radial pulsations. In this second paper of this series, we revisit the canonical phenomenological hydrodynamical modelling used to explain the formation of DACs by taking into account modern observations and more realistic theoretical predictions. Using constraints on putative bright spots located on the surface of the O giant ξ Persei derived from high precision space-based broad-band optical photometry obtained with the Microvariability and Oscillations of Stars (MOST) space telescope, we generate 2D hydrodynamical simulations of corotating interaction regions in its wind. We then compute synthetic ultraviolet (UV) resonance line profiles using Sobolev Exact Integration and compare them with historical timeseries obtained by the International Ultraviolet Explorer (IUE) to evaluate if the observed behaviour of ξ Persei's DACs is reproduced. Testing three different models of spot size and strength, we find that the classical pattern of variability can be successfully reproduced for two of them: the model with the smallest spots yields absorption features that are incompatible with observations. Furthermore, we test the effect of the radial dependence of ionization levels on line driving, but cannot conclusively assess the importance of this factor. In conclusion, this study self-consistently links optical photometry and UV spectroscopy, paving the way to a better understanding of cyclical wind variability in massive stars in the context of the bright spot paradigm.

  15. Wind Turbines Adaptation to the Variability of the Wind Field

    Science.gov (United States)

    Ulianov, Yuriy; Martynenko, Gennadii; Misaylov, Vitaliy; Soliannikova, Iuliia

    2010-05-01

    WIND TURBINES ADAPTATION TO THE VARIABILITY OF THE WIND FIELD The subject of our scientific research is wind power turbines (WPT) with the horizontal axis which were now common in the world. Efficient wind turbines work is largely determined by non-stationarity of the wind field, expressed in its gustiness, the presence of vertical and horizontal shifts of wind speed and direction. At critical values of the wind parameters WPT has aerodynamic and mechanical overload, leading to breakdowns, premature wear and reduce the life of the wind turbine. To prevent accidents at the peak values of wind speed it is used the regulatory system of windwheels. WPT control systems provide a process orientation of the wind turbine rotor axis in the line of the mean wind. Wind turbines are also equipped with braking device used to protect against breakdowns when a significant increase in the wind. In general, all these methods of regulation are not always effective. Thus, in practice there may be situations when the wind speed is many times greater than the stated limit. For example, if there are microbursts in the atmospheric boundary layer, low-level wind shears caused by its gust front, storms, etc. It is required for a wind power turbine adaptation to intensive short-term wind impulses and considerable vertical wind shifts that the data about them shall be obtained ahead of time. To do this it is necessary to have the information on the real structure of the wind field in the area of the blade sweep for the minimum range against the wind that is determined by the mean speed and the system action time. The implementation of acoustic and laser traditional wind sounding systems is limited by ambient acoustic noise, by heavy rain, snowfall and by fog. There are free of these disadvantages the inclined radioacoustic sounding (IRASS) technique which works for a system of remote detection and control of wind gusts. IRASS technique is realized as low-potential Doppler pulse radar

  16. Wind Structure and Wind Loading

    DEFF Research Database (Denmark)

    Brorsen, Michael

    The purpose of this note is to provide a short description of wind, i.e. of the flow in the atmosphere of the Earth and the loading caused by wind on structures. The description comprises: causes to the generation of windhe interaction between wind and the surface of the Earthhe stochastic nature...... of windhe interaction between wind and structures, where it is shown that wind loading depends strongly on this interaction...

  17. Assimilating Storm-time Neutral Winds in Ionospheric-Thermospheric State Estimation

    Science.gov (United States)

    Datta-Barua, S.; Miladinovich, D.; Makela, J. J.; Bust, G. S.

    2015-12-01

    During geomagnetic storms at mid-latitudes both electrodynamic disturbances and neutral composition variations contribute to time evolving and localized variations in the plasma content of the ionosphere. While the most plentiful data are typically Global Navigation Satellite System (GNSS) based measurements of total electron content (TEC), assimilation of measurements of the ionospheric-thermospheric state itself, i.e., neutral winds, can improve the fidelity of the result. Fabry-Perot interferometers (FPIs) measure emissions of thermospheric oxygen, giving line-of-sight wind speeds. During storm-times however, these FPI measurements may also detect a non-thermal oxygen source, yielding a measurement that is not strictly of the thermospheric wind [Makela et al., 2014]. The sign of non-thermal oxygen is in the apparent large 50 to 100 m/s vertical winds. This raises the question: what happens when we try to assimilate direct measurements of the wind but some of those measurements are "contaminated" by a non-thermal source? We present results of a Kalman Filtered data assimilative experiment ingesting neutral wind measurements made by a 630.0 nm FPI sited in the mid-latitude U.S. during the geomagnetic storm of October 25, 2011. Ionospheric Data Assimilation 4-Dimensional (IDA4D) estimates time-varying plasma densities from GNSS TEC. These densities are ingested without, and with, respectively, FPI neutral wind data into Estimating Model Parameters with Ionospheric Reverse Engineering (EMPIRE). EMPIRE uses background electric potential and neutral wind models, to produce an optimized estimate of both ExB drift and neutral wind based on the data ingested. We compare the estimated horizontal neutral wind at the FPI measurement locations at about 250 km altitude, first using electron densities without ingesting FPI data. Then plasma densities plus half the FPI data are ingested to estimate neutral winds. These wind estimates are then compared to the FPI data that were

  18. Effect of dietary lipid on growth performance, body composition, plasma biochemical parameters and liver fatty acids content of juvenile yellow drum Nibea albiflora

    Directory of Open Access Journals (Sweden)

    Ligai Wang

    2016-11-01

    Full Text Available A feeding trial was conducted to determine the dietary lipid requirement and its effects on body composition, plasma biochemical parameters and liver fatty acids content in juvenile yellow drum Nibea albiflora. Six animal groups (initial weights, 17.7 ± 0.20 g were fed isonitrogenous diets formulated with increasing lipid levels (52, 70, 94, 111, 129 and 153 g kg−1, labeled as L50, L70, L90, L110, L130, L150, respectively using menhaden oil, twice daily to apparent satiation, for 8 weeks. The results showed that the weight gain and specific growth rate (SGR of fish fed L130 and L150 lipid diets were significantly higher than those of the animals on the L50 lipid diet. The feed conversion rate (FCR of fish fed the L130 lipid diet was significantly lower compared with the values obtained for the other groups. Hepatosomatic index (HSI of fish fed the L90 lipid diet was significantly higher than that of animals on L150 lipid. Whole body and muscle lipid contents increased with increasing dietary lipid level, and the dietary fatty acid profile was reflected in liver tissue. Liver eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA contents in fish fed with the L150 diet were significantly higher compared with the values recorded in the other groups. Total highly-unsaturated fatty acid (HUFA content in liver showed an increasing trend, whereas total saturated fatty acid (SFA and mono-unsaturated fatty acid (MUFA contents in liver tended to decrease with increasing dietary lipid levels. The plasma triglyceride and cholesterol contents of juvenile N. albiflora increased with the increasing dietary lipid level. Analysis by the broken-line model of percent weight gain indicated the optimal dietary lipid level in juvenile N. albiflora to be 120 g kg−1 of the diet.

  19. Generic Type 3 Wind Turbine Model Based on IEC 61400-27-1: Parameter Analysis and Transient Response under Voltage Dips

    National Research Council Canada - National Science Library

    Alberto Lorenzo-Bonache; Andres Honrubia-Escribano; Francisco Jimenez-Buendía; angel Molina-García; Emilio Gómez-Lazaro

    2017-01-01

    .... The evolution of both active power and rotational speed is discussed in detail when some of the most relevant control parameters, included in the mechanical, active power and pitch control models, are modified...

  20. Some challenges of wind modelling for modern wind turbines: The Weibull distribution

    DEFF Research Database (Denmark)

    Gryning, Sven-Erik; Batchvarova, Ekatarina; Floors, Rogier

    2012-01-01

    Wind power assessments, as well as forecast of wind energy production, are key issues in wind energy and grid related studies. However the hub height of today’s wind turbines is well above the surface layer. Wind profiles studies based on mast data show that the wind profile above the surface layer...... and the turning of the wind direction with height will be touched upon, but we mainly will discuss the long term distribution of the wind speed, which is often represented by a Weibull distribution. It was found that above 100 meters both the measured scale (A) and shape (k) parameter are larger than predicted...

  1. Solar wind heating by an embedded quasi-isothermal pick-up ion fluid

    Directory of Open Access Journals (Sweden)

    H. J. Fahr

    2002-10-01

    Full Text Available It is well known that the solar wind plasma consists of primary ions of solar coronal origin and secondary ions of interstellar origin. Interstellar H-atoms penetrate into the inner heliosphere and when ionized there are converted into secondary ions. These are implanted into the magnetized solar wind flow and are essentially enforced to co-move with this flow. By nonlinear interactions with wind-entrained Alfvén waves the latter are processed in the co-moving velocity space. This pick-up process, however, also causes actions back upon the original solar wind flow, leading to a deceleration, as well as a heating of the solar wind plasma. The resulting deceleration is not only due to the loading effect, but also due to the action of the pressure gradient. To calculate the latter, it is important to take into account the stochastic acceleration that suffers at their convection out of the inner heliosphere by the quasi-linear interactions with MHD turbulences. Only then can the presently reported VOYAGER observations of solar wind decelerations and heatings in the outer heliosphere be understood in terms of the current, most likely values of interstellar gas parameters. In a consistent view of the thermodynamics of the solar wind plasma, which is composed of secondary ions and solar wind protons, we also derive that the latter are globally heated at their motion to larger solar distances. The arising heat transfer is due to the action of suprathermal ions which drive MHD waves that are partially absorbed by solar wind protons and thereby establish their observed quasi-polytropy. We obtain a quantitative expression for the solar wind proton pressure as a function of solar distance. This expression clearly shows the change from an adiabatic to a quasi-polytropic behaviour with a decreasing polytropic index at increasing distances, as has been observed by the VOYAGERS. This also allows one to calculate the average percentage of the intitial energy

  2. Solar wind heating by an embedded quasi-isothermal pick-up ion fluid

    Directory of Open Access Journals (Sweden)

    H. J. Fahr

    Full Text Available It is well known that the solar wind plasma consists of primary ions of solar coronal origin and secondary ions of interstellar origin. Interstellar H-atoms penetrate into the inner heliosphere and when ionized there are converted into secondary ions. These are implanted into the magnetized solar wind flow and are essentially enforced to co-move with this flow. By nonlinear interactions with wind-entrained Alfvén waves the latter are processed in the co-moving velocity space. This pick-up process, however, also causes actions back upon the original solar wind flow, leading to a deceleration, as well as a heating of the solar wind plasma. The resulting deceleration is not only due to the loading effect, but also due to the action of the pressure gradient. To calculate the latter, it is important to take into account the stochastic acceleration that suffers at their convection out of the inner heliosphere by the quasi-linear interactions with MHD turbulences. Only then can the presently reported VOYAGER observations of solar wind decelerations and heatings in the outer heliosphere be understood in terms of the current, most likely values of interstellar gas parameters. In a consistent view of the thermodynamics of the solar wind plasma, which is composed of secondary ions and solar wind protons, we also derive that the latter are globally heated at their motion to larger solar distances. The arising heat transfer is due to the action of suprathermal ions which drive MHD waves that are partially absorbed by solar wind protons and thereby establish their observed quasi-polytropy. We obtain a quantitative expression for the solar wind proton pressure as a function of solar distance. This expression clearly shows the change from an adiabatic to a quasi-polytropic behaviour with a decreasing polytropic index at increasing distances, as has been observed by the VOYAGERS. This also allows one to calculate the average percentage of the intitial energy

  3. An Appropriate Wind Model for Wind Integrated Power Systems Reliability Evaluation Considering Wind Speed Correlations

    Directory of Open Access Journals (Sweden)

    Rajesh Karki

    2013-02-01

    Full Text Available Adverse environmental impacts of carbon emissions are causing increasing concerns to the general public throughout the world. Electric energy generation from conventional energy sources is considered to be a major contributor to these harmful emissions. High emphasis is therefore being given to green alternatives of energy, such as wind and solar. Wind energy is being perceived as a promising alternative. This source of energy technology and its applications have undergone significant research and development over the past decade. As a result, many modern power systems include a significant portion of power generation from wind energy sources. The impact of wind generation on the overall system performance increases substantially as wind penetration in power systems continues to increase to relatively high levels. It becomes increasingly important to accurately model the wind behavior, the interaction with other wind sources and conventional sources, and incorporate the characteristics of the energy demand in order to carry out a realistic evaluation of system reliability. Power systems with high wind penetrations are often connected to multiple wind farms at different geographic locations. Wind speed correlations between the different wind farms largely affect the total wind power generation characteristics of such systems, and therefore should be an important parameter in the wind modeling process. This paper evaluates the effect of the correlation between multiple wind farms on the adequacy indices of wind-integrated systems. The paper also proposes a simple and appropriate probabilistic analytical model that incorporates wind correlations, and can be used for adequacy evaluation of multiple wind-integrated systems.

  4. Wind Data Analysis and Wind Flow Simulation Over Large Areas

    Directory of Open Access Journals (Sweden)

    Terziev Angel

    2014-03-01

    Full Text Available Increasing the share of renewable energy sources is one of the core policies of the European Union. This is because of the fact that this energy is essential in reducing the greenhouse gas emissions and securing energy supplies. Currently, the share of wind energy from all renewable energy sources is relatively low. The choice of location for a certain wind farm installation strongly depends on the wind potential. Therefore the accurate assessment of wind potential is extremely important. In the present paper an analysis is made on the impact of significant possible parameters on the determination of wind energy potential for relatively large areas. In the analysis the type of measurements (short- and long-term on-site measurements, the type of instrumentation and the terrain roughness factor are considered. The study on the impact of turbulence on the wind flow distribution over complex terrain is presented, and it is based on the real on-site data collected by the meteorological tall towers installed in the northern part of Bulgaria. By means of CFD based software a wind map is developed for relatively large areas. Different turbulent models in numerical calculations were tested and recommendations for the usage of the specific models in flows modeling over complex terrains are presented. The role of each parameter in wind map development is made. Different approaches for determination of wind energy potential based on the preliminary developed wind map are presented.

  5. Introduction to wind energy systems

    Science.gov (United States)

    Wagner, H.-J.

    2017-07-01

    This article presents the basic concepts of wind energy and deals with the physics and mechanics of operation. It describes the conversion of wind energy into rotation of turbine, and the critical parameters governing the efficiency of this conversion. After that it presents an overview of various parts and components of windmills. The connection to the electrical grid, the world status of wind energy use for electricity production, the cost situation and research and development needs are further aspects which will be considered.

  6. New stratagies for modelling and forecasting the background solar wind

    Science.gov (United States)

    Pinto, Rui; Rouillard, Alexis; Brun, Sacha

    2017-04-01

    The large-scale solar wind speed distribution varies in time in response to the cyclic variations of the strength and geometry of the magnetic field of the corona. Semi-empirical predictive laws (such as in the widely-used WSA law) parametrise the asymptotic solar wind speed via simple parameters describing the geometry of the coronal magnetic field. In practice, such scaling laws require ad-hoc corrections and empirical fits to in-situ spacecraft data, and a predictive law based solely on physical principles is still missing. I will discuss improvements to this kind of laws based on the analysis of very large samples of wind acceleration profiles in open flux-tubes (both from MHD simulations and potential-field extrapolations), and show that flux-tube expansion effectively control the locations of the slow and fast wind flows (as in WSA), but that the actual asymptotic wind speeds attained - specially those of the slow wind - are also dependent on field-line inclination. I will furthermore present a new solar wind model - MULTI-VP - which takes a coronal magnetic field map as input (past data or forecast), and computes a collection of solar wind profiles (1 to 30 Rsun) spanning a region of interest of the solar atmosphere (up to a full synoptic map) at any instant desired in quasi-real time, while keeping a good description the plasma heating and cooling mechanisms. MULTI-VP provides full sets of inner boundary conditions for heliospheric propagation models (such as ENLIL; see https://stormsweb.irap.omp.eu/doku.php?id=windmaptable), bypassing the need to rely on semi-empirical approaches. I will fully discuss the predictive capabilities of the model (synthetic imagery and in-situ time series) and its suitability to real-time space-weather applications. This is work is supported by the FP7 project #606692 (HELCATS).

  7. Offshore wind speed and wind power characteristics for ten ...

    Indian Academy of Sciences (India)

    At Athos and Mykonos, increasing linear trends were estimated. At all the stations the chosen wind turbine could produce energy for more than 70% of the time. The wind speed distribution was found to be well represented by Weibull parameters obtained using Maximum likelihood method compared to WAsP and Method of ...

  8. [Influence of Heat-reinforcing Needling on Expression of Plasma Atp 5 O mRNA and Atp 6 V 1 B 2 mRNA in Patients with Rheumatoid Arthritis of Wind-cold-damp Retention Type].

    Science.gov (United States)

    Du, Xiao-Zheng; Wang, Jin-Hai; Zhang, Xing-Hua; Tian, Jie-Xiang; Qin, Xiao-Guang; Fang, Xiao-Li; Tian, Liang; Yuan, Bo

    2016-08-25

    To observe influences of heat-reinforcing needling (HRN) on scores of traditional Chinese medicine (TCM) symptoms and expression of plasma ATP synthase subunit O (Atp 5 O) mRNA and lysosomal V 1 subunit B 2 (Atp 6 V 1 B 2) mRNA in patients with wind-cold-damp retention type rheumatoid arthritis (RA), so as to investigate its biological mechanisms in "heat production". Sixty wind-cold-damp retention type RA patients were randomly allocated to HRN group (n=30) and control group (n=30). Guanyuan (CV 4), Qihai (CV 6), bilateral Zusanli (ST 36), and local acupoints near the knee-joint were selected for needling stimulation. Patients of the HRN group were treated by manipulating the acupuncture needle with HRN, and those of the control group treated by manipulating the needle with uniform reinforcing-reducing method. The treatments were performed once daily, 5 days a week, and two weeks altogether. The other 30 healthy volunteers were recruited as the normal control group. The TCM symptom scoring system (0-31 points, 11 items as the severities of pain, swelling and tenderness of the knee-joint) was used to evaluate the status of RA, and quantitative real-time PCR (RT-PCR) was used to detect the expression of plasma Atp 5 O mRNA and Atp 6 V 1 B 2 mRNA following removal of red blood cells. After the treatment, the TCM scores of both the HRN and control groups were significantly decreased (PB 2 mRNA in RA patients were significantly lower than those of the normal group (PB 2 mRNA were significantly increased in both HRN and control groups compared to pre-treatment in the same one group (PB 2 mRNA levels were remarkably higher in the control group than in the HRN group (PB 2 mRNA.

  9. Electric solar wind sail mass budget model

    Directory of Open Access Journals (Sweden)

    P. Janhunen

    2013-02-01

    Full Text Available The electric solar wind sail (E-sail is a new type of propellantless propulsion system for Solar System transportation, which uses the natural solar wind to produce spacecraft propulsion. The E-sail consists of thin centrifugally stretched tethers that are kept charged by an onboard electron gun and, as such, experience Coulomb drag through the high-speed solar wind plasma stream. This paper discusses a mass breakdown and a performance model for an E-sail spacecraft that hosts a mission-specific payload of prescribed mass. In particular, the model is able to estimate the total spacecraft mass and its propulsive acceleration as a function of various design parameters such as the number of tethers and their length. A number of subsystem masses are calculated assuming existing or near-term E-sail technology. In light of the obtained performance estimates, an E-sail represents a promising propulsion system for a variety of transportation needs in the Solar System.

  10. Effect of a microbial phytase on growth performance, plasma parameters and apparent ileal amino acid digestibility in Youxian Sheldrake fed a low-phosphorus corn-soybean diet

    Science.gov (United States)

    He, Shaoping; Medrano, R. F.; Yu, Qifang; Cai, Yixin; Dai, Qiuzhong; He, Jianhua

    2017-01-01

    Objective This study investigated the effect of microbial phytase supplementation on growth performance, tibia ash, plasma parameters, apparent ileal digestibility (AID) of amino acid (AA) and apparent digestibility of nutrients in Youxian Sheldrakes fed with low-phosphorus (P) corn-soybean diets. Methods A total of 350 Youxian Sheldrakes (7d old) were randomly divided into 5 treatment groups: positive control (PC) group has adequate available P diet (0.42% and 0.38%, starter and grower), negative control (NC) group were deficient in available P (0.32% and 0.28%, starter and grower) and NC diet was supplemented with 3 levels of microbial phytase (500, 750, and 1,000 U/kg). Results Dietary supplementation of phytase in NC diet improved the average daily gain, increased the levels of serum calcium (Ca), tibia Ca and P, AID of AA and apparent digestibility of energy and Ca in starter stage (pdigestibility of dry matter, crude protein, energy, P and Ca, and reduced (p<0.05) feed to gain ratio (F/G) and the levels of serum alkaline phosphatase in grower stage. Likewise, an increase (p<0.001) in the utilization of P was noticed from 12.6% to 17.2%. Supplement phytase at 750 U/kg improved the AID of His, Thr, Asp, Cys, Pro, and Ser (p<0.05). Conclusion The microbial phytase supplement could improve growth performance, AID of some AA and apparent utilization of other nutrients in Youxian Sheldrakes, and reduce excreta P load to environment. PMID:28231702

  11. Site-specific design optimization of wind turbines

    DEFF Research Database (Denmark)

    Fuglsang, P.; Bak, C.; Schepers, J.G.

    2002-01-01

    advantage of high-wind-speed sites. It was not possible to design a single wind turbine for all wind climates investigated, since the differences in the design loads were too large. Multiple-site wind turbines should be designed for generic wind conditions, which cover wind parameters encountered at flat...... terrain sites with a high mean wind speed. Site-specific wind turbines should be designed for low-mean-wind-speed sites and complex terrain. Copyright © 2002 John Wiley & Sons, Ltd....

  12. Modeling wind speed and wind power distributions in Rwanda

    Energy Technology Data Exchange (ETDEWEB)

    Safari, Bonfils [Department of Physics, National University of Rwanda, P.O. Box 117, Huye District, South Province (Rwanda)

    2011-02-15

    Utilization of wind energy as an alternative energy source may offer many environmental and economical advantages compared to fossil fuels based energy sources polluting the lower layer atmosphere. Wind energy as other forms of alternative energy may offer the promise of meeting energy demand in the direct, grid connected modes as well as stand alone and remote applications. Wind speed is the most significant parameter of the wind energy. Hence, an accurate determination of probability distribution of wind speed values is very important in estimating wind speed energy potential over a region. In the present study, parameters of five probability density distribution functions such as Weibull, Rayleigh, lognormal, normal and gamma were calculated in the light of long term hourly observed data at four meteorological stations in Rwanda for the period of the year with fairly useful wind energy potential (monthly hourly mean wind speed anti v{>=}2 m s{sup -1}). In order to select good fitting probability density distribution functions, graphical comparisons to the empirical distributions were made. In addition, RMSE and MBE have been computed for each distribution and magnitudes of errors were compared. Residuals of theoretical distributions were visually analyzed graphically. Finally, a selection of three good fitting distributions to the empirical distribution of wind speed measured data was performed with the aid of a {chi}{sup 2} goodness-of-fit test for each station. (author)

  13. Solar wind implication on dust ion acoustic rogue waves

    Energy Technology Data Exchange (ETDEWEB)

    Abdelghany, A. M., E-mail: asmaaallah20@yahoo.com; Abd El-Razek, H. N., E-mail: hosam.abdelrazek@yahoo.com; El-Labany, S. K., E-mail: skellabany@hotmail.com [Theoretical Physics Group, Department of Physics, Faculty of Science, Damietta University, New Damietta 34517 (Egypt); Moslem, W. M., E-mail: wmmoslem@hotmail.com [Department of Physics, Faculty of Science, Port Said University, Port Said 42521 (Egypt); Centre for Theoretical Physics, The British University in Egypt (BUE), El-Shorouk City, Cairo (Egypt)

    2016-06-15

    The relevance of the solar wind with the magnetosphere of Jupiter that contains positively charged dust grains is investigated. The perturbation/excitation caused by streaming ions and electron beams from the solar wind could form different nonlinear structures such as rogue waves, depending on the dominant role of the plasma parameters. Using the reductive perturbation method, the basic set of fluid equations is reduced to modified Korteweg-de Vries (KdV) and further modified (KdV) equation. Assuming that the frequency of the carrier wave is much smaller than the ion plasma frequency, these equations are transformed into nonlinear Schrödinger equations with appropriate coefficients. Rational solution of the nonlinear Schrödinger equation shows that rogue wave envelopes are supported by the present plasma model. It is found that the existence region of rogue waves depends on the dust-acoustic speed and the streaming temperatures for both the ions and electrons. The dependence of the maximum rogue wave envelope amplitude on the system parameters has been investigated.

  14. Wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Yeoman, J.C. Jr.

    1978-12-01

    This evaluation of wind turbines is part of a series of Technology Evaluations of possible components and subsystems of community energy systems. Wind turbines, ranging in size from 200 W to 10 MW, are discussed as candidates for prime movers in community systems. Estimates of performance characteristics and cost as a function of rated capacity and rated wind speed are presented. Data concerning material requirements, environmental effects, and operating procedures also are given and are represented empirically to aid computer simulation.

  15. Uncertainty Sets For Wind Power Generation

    OpenAIRE

    Dvorkin, Yury; Lubin, Miles; Backhaus, Scott; Chertkov, Michael

    2015-01-01

    As penetration of wind power generation increases, system operators must account for its stochastic nature in a reliable and cost-efficient manner. These conflicting objectives can be traded-off by accounting for the variability and uncertainty of wind power generation. This letter presents a new methodology to estimate uncertainty sets for parameters of probability distributions that capture wind generation uncertainty and variability.

  16. Wind Energy

    Energy Technology Data Exchange (ETDEWEB)

    Ganley, Jason; Zhang, Jie; Hodge, Bri-Mathias

    2016-03-15

    Wind energy is a variable and uncertain renewable resource that has long been used to produce mechanical work, and has developed into a large producer of global electricity needs. As renewable sources of energy and feedstocks become more important globally to produce sustainable products, many different processes have started adopting wind power as an energy source. Many times this is through a conversion to hydrogen through electrolysis that allows for a more continuous process input. Other important pathways include methanol and ammonia. As the demand for sustainable products and production pathways increases, and wind power capital costs decrease, the role of wind power in chemical and energy production seems poised to increase significantly.

  17. 3D Global MHD Simulation of Titan's interaction with its surrounding plasma

    Science.gov (United States)

    Ma, Y.; Nagy, A. F.; Toth, G.; Najib, D.; Cravens, T. E.; Crary, F.; Coates, A. J.; Bertucci, C.; Neubauer, F. M.

    2006-12-01

    The interaction of Titan's ionosphere with its surrounding plasma flow is more complex than analogous solar wind-planet interactions, because of Titan's varying relative location in the Sun-Saturn system. We have studied the role of the angle between the direction of the solar radiation and the corotating plasma flow using our 3D multi-species MHD model. We also present results from a comparison between our model simulations and the observations corresponding to the T9 flyby of Cassini, using the measured upstream plasma parameters.

  18. The use of cold plasma generators in medicine

    Directory of Open Access Journals (Sweden)

    Kolomiiets R.O.

    2017-04-01

    Full Text Available Cold plasma treatment of wounds is a modern area of therapeutic medicine. We describe the physical mechanisms of cold plasma, the principles of therapeutic effects and design of two common types of cold plasma generators for medical use. This work aims at disclosing the basic principles of construction of cold atmospheric plasma generators in medicine and prospects for their further improvement. The purpose of this work is to improve the existing cold atmospheric plasma generators for use in medical applications. Novelty of this work consists in the application of new principles of construction of cold atmospheric plasmas medical apparatus, namely the combination of the gas discharge chamber, electrodes complex shape forming device and plasma flow in a single package. This helps to achieve a significant reduction in the size of the device, and a discharge chamber design change increases the therapeutic effect. The design of cold atmospheric plasma generator type «pin-to-hole», which is able to control parameters using the plasma current (modulation fluctuations in the primary winding and mechanically (using optional rotary electrode. It is also possible to combine some similar generators in the set, which will increase the surface area of the plasma treatment. We consider the basic principles of generating low atmospheric plasma flow, especially the formation of the plasma jet, changing its shape and modulation stream. The features of cold plasma generator design and information about prospects for further application, and opportunities for further improvement are revealed. The recommendations for further use of cold atmospheric plasma generators in medicine are formulated.

  19. The Plasma Environment at Mercury

    Science.gov (United States)

    Raines, James M.; Gershman, Daniel J.; Zurbuchen, Thomas H.; Gloeckler, George; Slavin, James A.; Anderson, Brian J.; Korth, Haje; Krimigis, Stamatios M.; Killen, Rosemary M.; Sarantos, Menalos; hide

    2011-01-01

    Mercury is the least explored terrestrial planet, and the one subjected to the highest flux of solar radiation in the heliosphere. Its highly dynamic, miniature magnetosphere contains ions from the exosphere and solar wind, and at times may allow solar wind ions to directly impact the planet's surface. Together these features create a plasma environment that shares many features with, but is nonetheless very different from, that of Earth. The first in situ measurements of plasma ions in the Mercury space environment were made only recently, by the Fast Imaging Plasma Spectrometer (FIPS) during the MESSENGER spacecraft's three flybys of the planet in 2008-2009 as the probe was en route to insertion into orbit about Mercury earlier this year. Here. we present analysis of flyby and early orbital mission data with novel techniques that address the particular challenges inherent in these measurements. First. spacecraft structures and sensor orientation limit the FIPS field of view and allow only partial sampling of velocity distribution functions. We use a software model of FIPS sampling in velocity space to explore these effects and recover bulk parameters under certain assumptions. Second, the low densities found in the Mercury magnetosphere result in a relatively low signal-to-noise ratio for many ions. To address this issue, we apply a kernel density spread function to guide removal of background counts according to a background-signature probability map. We then assign individual counts to particular ion species with a time-of-flight forward model, taking into account energy losses in the carbon foil and other physical behavior of ions within the instrument. Using these methods, we have derived bulk plasma properties and heavy ion composition and evaluated them in the context of the Mercury magnetosphere.

  20. Effect of the solar wind and interplanetary magnetic field parameter variations to the enhancement and dynamics of auroral electrojet during superstrong magnetic storms

    Science.gov (United States)

    Solovyev, Stepan; Boroev, Roman; Moiseyev, Alexey; Du, Aimin; Yumoto, Kiyohumi

    According to the global ground geomagnetic observations in the six meridian chains and analysis of satellite measurements the auroral elektrojet features at various conditions in the solar wind (SW) and the IMF: during a sharp rise of dynamic pressure up to 15-60 nPa and variations in the intensity and sign of the IMF Bz-component to -40 --50 nT. The data obtained during super strong magnetic storms of October 29-30, 2003, November 20-21, 2003, November 07-08, 2004 and November 09-10, 2004 (Dst = -300 --400 nT) are analysed. The following scientific results are obtained: • It is shown that a sharp increase of the SW dynamic pressure (Pd) and the excitation of a sudden impulse (SC) during IMF Bz negative (Bzcurrent system and the intensity of the western elec-trojet (Jw) in a broad sector of longitudes and expansion of Jw to the pole up to the polar cap latitudes with the velocity of VN = 1-3 km/s. • It is found that during the sharp rise of Pd up to 60 nPa for IMF Bz positive (Bz>0) 35 nT is the amplification of eastward magnetopause currents and DP2 current system are observed. Strengthening and dynamics of the westward electrojet is not observed. • We find that during periods of intensity growth of negative values of IMF Bz to -50 nT within a few hours there is a shift of the centers of auroral electrojet to the equator up to latitudes about 10-20 degrees along the meridian with a speed of 1-4 km/s with a simultaneous amplifications of Jw repeated in 1-2 hours with a duration of 1-2 hours at latitudes from low to auroral latitudes and with a possible extension to electrojets up to the polar cap latitudes and the abrupt extension of the subsequent Jw electrojets localization region by azimuth. • It is shown that after the electrojet displacement to the equator during southward direc-tion of IMF Bz and enhancement of the SW electric field the IMF Bz turning to the north accompanied by the poleward expansion of Jw electrojet at a speed of 1 km/s in a wide

  1. Model Predictive Control of Wind Turbines

    DEFF Research Database (Denmark)

    Henriksen, Lars Christian

    Wind turbines play a major role in the transformation from a fossil fuel based energy production to a more sustainable production of energy. Total-cost-of-ownership is an important parameter when investors decide in which energy technology they should place their capital. Modern wind turbines...... the need for maintenance of the wind turbine. Either way, better total-cost-of-ownership for wind turbine operators can be achieved by improved control of the wind turbines. Wind turbine control can be improved in two ways, by improving the model on which the controller bases its design or by improving...

  2. Wind Resource Assessment in Abadan Airport in Iran

    OpenAIRE

    Nedaei, Mojtaba

    2012-01-01

    Renewable energies have potential for supplying of relatively clean and mostly local energy. Wind energy generation is expected to increase in the near future and has experienced dramatic growth over the past decade in many countries. Wind speed is the most important parameter in the design and study of wind energy conversion systems. Probability density functions such as Weibull and Rayleigh are often used in wind speed and wind energy analyses. This paper presents an assessment of wind ener...

  3. Unusual electron distribution functions in the solar wind derived from the Helios plasma experiment - Double-strahl distributions and distributions with an extremely anisotropic core

    Science.gov (United States)

    Pilipp, W. G.; Muehlhaeuser, K.-H.; Miggenrieder, H.; Montgomery, M. D.; Rosenbauer, H.

    1987-01-01

    Electron distribution functions with unusual features, which have been observed on rare occasions in the solar wind by the Helios probes, are presented. Two examples show a strong symmetric bidirectional anisotropy in the energy regime of the halo up to particle energies of 800 eV (double-strahl distributions). Another example shows an unusually strong bidirectional anisotropy in the energy regime of the core (below 150 eV). The infrequently observed double-strahl distributions provide evidence that magnetic field loops can exist in the solar wind where electrons are trapped. In addition, they provide evidence that in the case of electrons trapped in closed magnetic field structures the break in the energy spectrum separating the core from the halo is produced only by collisions. On the other hand, the class of distribution functions with strongly anisotropic cores indicates that in the case of 'open' magnetic field lines the break between core and halo is largely determined both by the interplanetary electrostatic potential and by collisions.

  4. Signatures of Slow Solar Wind Streams from Active Regions in the Inner Corona

    Science.gov (United States)

    Slemzin, V.; Harra, L.; Urnov, A.; Kuzin, S.; Goryaev, F.; Berghmans, D.

    2013-08-01

    The identification of solar-wind sources is an important question in solar physics. The existing solar-wind models ( e.g., the Wang-Sheeley-Arge model) provide the approximate locations of the solar wind sources based on magnetic field extrapolations. It has been suggested recently that plasma outflows observed at the edges of active regions may be a source of the slow solar wind. To explore this we analyze an isolated active region (AR) adjacent to small coronal hole (CH) in July/August 2009. On 1 August, Hinode/EUV Imaging Spectrometer observations showed two compact outflow regions in the corona. Coronal rays were observed above the active-region coronal hole (ARCH) region on the eastern limb on 31 July by STEREO-A/EUVI and at the western limb on 7 August by CORONAS- Photon/TESIS telescopes. In both cases the coronal rays were co-aligned with open magnetic-field lines given by the potential field source surface model, which expanded into the streamer. The solar-wind parameters measured by STEREO-B, ACE, Wind, and STEREO-A confirmed the identification of the ARCH as a source region of the slow solar wind. The results of the study support the suggestion that coronal rays can represent signatures of outflows from ARs propagating in the inner corona along open field lines into the heliosphere.

  5. Method and apparatus for wind turbine braking

    Science.gov (United States)

    Barbu, Corneliu [Laguna Hills, CA; Teichmann, Ralph [Nishkayuna, NY; Avagliano, Aaron [Houston, TX; Kammer, Leonardo Cesar [Niskayuna, NY; Pierce, Kirk Gee [Simpsonville, SC; Pesetsky, David Samuel [Greenville, SC; Gauchel, Peter [Muenster, DE

    2009-02-10

    A method for braking a wind turbine including at least one rotor blade coupled to a rotor. The method includes selectively controlling an angle of pitch of the at least one rotor blade with respect to a wind direction based on a design parameter of a component of the wind turbine to facilitate reducing a force induced into the wind turbine component as a result of braking.

  6. Lipid and protein oxidation levels in spermatozoa and seminal plasma of Asian Elephants (Elephas maximus) and their relationship with semen parameters.

    Science.gov (United States)

    Satitmanwiwat, S; Promthep, K; Buranaamnuay, K; Mahasawangkul, S; Saikhun, K

    2017-04-01

    Peroxidation damage to spermatozoa and seminal plasma has an important role in sperm quality. Thus, the objective of this study was to determine the levels of lipid and protein oxidation in spermatozoa and seminal plasma of Asian elephants (Elephas maximus) with varying percentage of progressive motility. Lipid and protein oxidation was measured by the thiobarbituric acid-reactive species (TBARS) assay and the 2, 4-dinitrophenylhydrazine (DNPH) carbonyl groups assay, respectively. Fresh semen samples were collected from Asian elephants and classified according to the percentage of motile spermatozoa into good (>60%) and poor (≤20%) motility. Results revealed that seminal plasma malondialdehyde (MDA) and seminal plasma protein carbonyls (PCs) were significantly higher in poor motility than in good motility (p elephants. © 2017 Blackwell Verlag GmbH.

  7. GRAVIMETRIC-DETERMINATION OF THE WATER CONCENTRATION IN WHOLE-BLOOD, PLASMA AND ERYTHROCYTES AND CORRELATIONS WITH HEMATOLOGICAL AND CLINICOCHEMICAL PARAMETERS

    NARCIS (Netherlands)

    LIJNEMA, TH; HUIZENGA, [No Value; JAGER, J; MACKOR, AJ; GIPS, CH

    1993-01-01

    We have assessed gravimetric methods for determination of intravascular water, established whole blood-, plasma- and erythrocyte water reference values in a healthy volunteer group (n = 97, 48 females) and correlated these variables with 30 simultaneous hematological, clinicochemical and body

  8. Effect of a microbial phytase on growth performance, plasma parameters and apparent ileal amino acid digestibility in Youxian Sheldrake fed a low-phosphorus corn-soybean diet

    Directory of Open Access Journals (Sweden)

    Shaoping He

    2017-10-01

    Full Text Available Objective This study investigated the effect of microbial phytase supplementation on growth performance, tibia ash, plasma parameters, apparent ileal digestibility (AID of amino acid (AA and apparent digestibility of nutrients in Youxian Sheldrakes fed with low-phosphorus (P corn-soybean diets. Methods A total of 350 Youxian Sheldrakes (7d old were randomly divided into 5 treatment groups: positive control (PC group has adequate available P diet (0.42% and 0.38%, starter and grower, negative control (NC group were deficient in available P (0.32% and 0.28%, starter and grower and NC diet was supplemented with 3 levels of microbial phytase (500, 750, and 1,000 U/kg. Results Dietary supplementation of phytase in NC diet improved the average daily gain, increased the levels of serum calcium (Ca, tibia Ca and P, AID of AA and apparent digestibility of energy and Ca in starter stage (p<0.05. There was an increased (p<0.001 in the utilization of P from 17.3% to 23.9%. Phytase supplementation (1,000 U/kg has shown that the AID of His, Thr, Val, indispensable AA, Glu, Pro, and dispensable AA was higher (p<0.05 than that of NC. Moreover, phytase supplementation improved (p<0.05 serum and tibia Ca and P, AID of AA and apparent digestibility of dry matter, crude protein, energy, P and Ca, and reduced (p<0.05 feed to gain ratio (F/G and the levels of serum alkaline phosphatase in grower stage. Likewise, an increase (p<0.001 in the utilization of P was noticed from 12.6% to 17.2%. Supplement phytase at 750 U/kg improved the AID of His, Thr, Asp, Cys, Pro, and Ser (p<0.05. Conclusion The microbial phytase supplement could improve growth performance, AID of some AA and apparent utilization of other nutrients in Youxian Sheldrakes, and reduce excreta P load to environment.

  9. Composition of fatty acids in the maternal and umbilical cord plasma of adolescent and adult mothers: relationship with anthropometric parameters of newborn.

    Science.gov (United States)

    Oliveira, Olívia R C; Santana, Michelle G; Santos, Flávia S; Conceição, Felipe D; Sardinha, Fátima L C; Veiga, Glória V; Tavares do Carmo, Maria G

    2012-11-15

    Considering the importance of long chain polyunsaturated fatty acids to fetal development and the lack of studies that have compared the status of fatty acids between adolescents and adults mothers, the purpose of this study was to evaluate the composition of fatty acids in maternal and umbilical cord plasma from adolescent and adults mothers. Forty pregnant adolescents and forty pregnant adults were selected to assess the distribution profile of fatty acids in the maternal and umbilical cord plasma. Quantification of fatty acids in the total lipids of the sample groups was performed through the use of gas-liquid chromatography. The maternal and umbilical cord plasma of the adolescents showed a greater concentration of AA than did that of the adults (P cord plasma of the adults (P plasma of the adolescent mothers correlated positively to birth weight and head circumference. This suggests that in situations of greater nutritional risk, as in adolescent pregnancy, n-3PUFA concentrations have a greater influence on the proper development of newborns. Moreover, variations in fatty acid concentrations in the maternal and cord plasma of adolescents and adults may indicate that pregnancy affects the LC-PUFA status of adults and adolescents in distinct ways.

  10. Physics of Plasmas

    CERN Document Server

    Woods, Leslie Colin

    2003-01-01

    A short, self-sufficient introduction to the physics of plasma for beginners as well as researchers in a number of fields. The author looks at the dynamics and stability of magnetoplasma and discusses wave and transport in this medium. He also looks at such applications as fusion research using magnetic confinement of Deuterium plasma, solar physics with its plasma loops reaching high into the corona, sunspots and solar wind, engineering applications to metallurgy, MHD direct generation of electricity, and railguns, finally touching on the relatively new and difficult subject of dusty plasmas.

  11. Effect of stellar wind induced magnetic fields on planetary obstacles of non-magnetized hot Jupiters

    Science.gov (United States)

    Erkaev, N. V.; Odert, P.; Lammer, H.; Kislyakova, K. G.; Fossati, L.; Mezentsev, A. V.; Johnstone, C. P.; Kubyshkina, D. I.; Shaikhislamov, I. F.; Khodachenko, M. L.

    2017-10-01

    We investigate the interaction between the magnetized stellar wind plasma and the partially ionized hydrodynamic hydrogen outflow from the escaping upper atmosphere of non-magnetized or weakly magnetized hot Jupiters. We use the well-studied hot Jupiter HD 209458b as an example for similar exoplanets, assuming a negligible intrinsic magnetic moment. For this planet, the stellar wind plasma interaction forms an obstacle in the planet's upper atmosphere, in which the position of the magnetopause is determined by the condition of pressure balance between the stellar wind and the expanded atmosphere, heated by the stellar extreme ultraviolet radiation. We show that the neutral atmospheric atoms penetrate into the region dominated by the stellar wind, where they are ionized by photoionization and charge exchange, and then mixed with the stellar wind flow. Using a 3D magnetohydrodynamic (MHD) model, we show that an induced magnetic field forms in front of the planetary obstacle, which appears to be much stronger compared to those produced by the solar wind interaction with Venus and Mars. Depending on the stellar wind parameters, because of the induced magnetic field, the planetary obstacle can move up to ≈0.5-1 planetary radii closer to the planet. Finally, we discuss how estimations of the intrinsic magnetic moment of hot Jupiters can be inferred by coupling hydrodynamic upper planetary atmosphere and MHD stellar wind interaction models together with UV observations. In particular, we find that HD 209458b should likely have an intrinsic magnetic moment of 10-20 per cent that of Jupiter.

  12. Modelling the solar wind interaction with Mercury by a quasi-neutral hybrid model

    Directory of Open Access Journals (Sweden)

    E. Kallio

    2003-11-01

    Full Text Available Quasi-neutral hybrid model is a self-consistent modelling approach that includes positively charged particles and an electron fluid. The approach has received an increasing interest in space plasma physics research because it makes it possible to study several plasma physical processes that are difficult or impossible to model by self-consistent fluid models, such as the effects associated with the ions’ finite gyroradius, the velocity difference between different ion species, or the non-Maxwellian velocity distribution function. By now quasi-neutral hybrid models have been used to study the solar wind interaction with the non-magnetised Solar System bodies of Mars, Venus, Titan and comets. Localized, two-dimensional hybrid model runs have also been made to study terrestrial dayside magnetosheath. However, the Hermean plasma environment has not yet been analysed by a global quasi-neutral hybrid model. In this paper we present a new quasi-neutral hybrid model developed to study various processes associated with the Mercury-solar wind interaction. Emphasis is placed on addressing advantages and disadvantages of the approach to study different plasma physical processes near the planet. The basic assumptions of the approach and the algorithms used in the new model are thoroughly presented. Finally, some of the first three-dimensional hybrid model runs made for Mercury are presented. The resulting macroscopic plasma parameters and the morphology of the magnetic field demonstrate the applicability of the new approach to study the Mercury-solar wind interaction globally. In addition, the real advantage of the kinetic hybrid model approach is to study the property of individual ions, and the study clearly demonstrates the large potential of the approach to address these more detailed issues by a quasi-neutral hybrid model in the future.Key words. Magnetospheric physics (planetary magnetospheres; solar wind-magnetosphere interactions – Space plasma

  13. LIDAR wind speed measurements at a Taiwan onshore wind park

    Science.gov (United States)

    Wu, Yu-Ting; Lin, Ta-Hui; Hsuan, Chung-Yao; Li, Yu-Cheng; Yang, Ya-Fei; Tai, Tzy-Hwan; Huang, Chien-Cheng

    2016-04-01

    Measurements of wind speed and wind direction were carried out using a Leosphere Windcube LIDAR system at a Taiwan onshore wind park. The Lidar shot a total of five laser beams to the atmosphere to collect the light-of-sight (LOS) velocity. Four beams were sent successively in four cardinal directions along a 28° scanning cone angle, followed by a fifth, vertical beam. An unchangeable sampling rate of approximately 1.2 Hz was set in the LIDAR system to collect the LOS velocity. The supervisory control and data acquisition (SCADA) data from two GE 1.5 MW wind turbines near the LIDAR deployment site were acquired for the whole measuring period from February 4 to February 16 of 2015. The SCADA data include the blade angular velocity, the wind velocity measured at hub height from an anemometer mounted on the nacelle, the wind turbine yaw angle, and power production; each parameter was recorded as averages over 1-min periods. The data analysis involving the LIDAR measurements and the SCADA data were performed to obtain the turbulent flow statistics. The results show that the turbine power production has significant dependence to the wind speed, wind direction, turbulence intensity and wind shear.

  14. Doppler Lidar Wind Value-Added Product

    Energy Technology Data Exchange (ETDEWEB)

    Newsom, R. K. [DOE ARM Climate Research Facility, Washington, DC (United States); Sivaraman, C. [DOE ARM Climate Research Facility, Washington, DC (United States); Shippert, T. R. [DOE ARM Climate Research Facility, Washington, DC (United States); Riihimaki, L. D. [DOE ARM Climate Research Facility, Washington, DC (United States)

    2015-07-01

    Wind speed and direction, together with pressure, temperature, and relative humidity, are the most fundamental atmospheric state parameters. Accurate measurement of these parameters is crucial for numerical weather prediction. Vertically resolved wind measurements in the atmospheric boundary layer are particularly important for modeling pollutant and aerosol transport. Raw data from a scanning coherent Doppler lidar system can be processed to generate accurate height-resolved measurements of wind speed and direction in the atmospheric boundary layer.

  15. On hurricane parametric wind and applications in storm surge modeling

    Science.gov (United States)

    Lin, Ning; Chavas, Daniel

    2012-05-01

    This study revisits the parametric modeling of the hurricane surface wind field composed of the storm vortex and the environmental background flow. First, we investigate the parametric representation of the surface background wind by analyzing its empirical relationship with storm movement. A marked deceleration and counter-clockwise rotation of the surface background wind from the storm translation vector is detected, a result predicted by the Ekman theory but rarely applied in wind and surge modeling. Then, we examine the various parameters used to model the wind field and, through numerical simulations, quantify their induced uncertainties in the extreme wind and surge estimates at two coastal sites. Our analyses show that, over the range of accepted values and methods in the literature, the local wind and surge estimates are most sensitive to uncertainties in the surface wind reduction factor and storm wind profile but less sensitive to uncertainties in other wind parameters, such as inflow angle and surface background wind (varying in the observed range). The surge is more sensitive than the wind to uncertainties in the wind parameters, and these sensitivities are comparable to the sensitivity of the surge to the uncertainty in the sea surface drag coefficient. We also find that some commonly used wind parameters unsupported by theory or observations can induce significant errors in the wind and surge estimates. The results of this study provide new insights and references for future hurricane wind and surge analysis.

  16. Wind noise under a pine tree canopy.

    Science.gov (United States)

    Raspet, Richard; Webster, Jeremy

    2015-02-01

    It is well known that infrasonic wind noise levels are lower for arrays placed in forests and under vegetation than for those in open areas. In this research, the wind noise levels, turbulence spectra, and wind velocity profiles are measured in a pine forest. A prediction of the wind noise spectra from the measured meteorological parameters is developed based on recent research on wind noise above a flat plane. The resulting wind noise spectrum is the sum of the low frequency wind noise generated by the turbulence-shear interaction near and above the tops of the trees and higher frequency wind noise generated by the turbulence-turbulence interaction near the ground within the tree layer. The convection velocity of the low frequency wind noise corresponds to the wind speed above the trees while the measurements showed that the wind noise generated by the turbulence-turbulence interaction is near stationary and is generated by the slow moving turbulence adjacent to the ground. Comparison of the predicted wind noise spectrum with the measured wind noise spectrum shows good agreement for four measurement sets. The prediction can be applied to meteorological estimates to predict the wind noise under other pine forests.

  17. Coastal Ohio Wind Project

    Energy Technology Data Exchange (ETDEWEB)

    Gorsevski, Peter [Bowling Green State Univ., OH (United States); Afjeh, Abdollah [Univ. of Toledo, OH (United States); Jamali, Mohsin [Univ. of Toledo, OH (United States); Bingman, Verner [Bowling Green State Univ., OH (United States)

    2014-04-04

    to collect additional monitoring parameters such as passage rates, flight paths, flight directions, and flight altitudes of nocturnal migrating species. Our work focused on the design and development of custom built marine radar that used t-bar and parabolic dish antennas. The marine radar used in the project was Furuno (XANK250) which was coupled with a XIR3000B digitizing card from Russell Technologies for collection of the radar data. The radar data was processed by open source radR processing software using different computational techniques and methods. Additional data from thermal IR imaging cameras were collected to detect heat emitted from objects and provide information on movements of birds and bats, data which we used for different animal flight behavior analysis. Lastly, the data from the acoustic recorders were used to provide the number of bird calls for assessing patterns and peak passage rates during migration. The development of the geospatial database included collection of different data sources that are used to support offshore wind turbine development. Many different data sets were collected and organized using initial version of web-based repository software tools that can accommodate distribution of rectified pertinent data sets such as the lake depth, lake bottom engineering parameters, extent of ice, navigation pathways, wind speed, important bird habitats, fish efforts and other layers that are relevant for supporting robust offshore wind turbine developments. Additional geospatial products developed during the project included few different prototypes for offshore wind farm suitability which can involve different stakeholders and participants for solving complex planning problems and building consensus. Some of the prototypes include spatial decision support system (SDSS) for collaborative decision making, a web-based Participatory Geographic Information System (PGIS) framework for evaluating importance of different decision alternatives

  18. Evaluation of hemostasis parameters and the role of the oxidative damage to plasma proteins in the modulation of hemostasis in patients with nephrolithiasis before and after extracorporeal shock wave lithotripsy.

    Science.gov (United States)

    Woźniak, Paweł; Kontek, Bogdan; Różański, Waldemar; Olas, Beata

    2017-01-01

    Extracorporeal shock wave lithotripsy (ESWL) is a commonly-used method in urology, which may modulate hemostasis and may induce lipid peroxidation in patients with nephrolithiasis. However, previous studies only examine changes occurring in patients 30-240 min after ESWL. The main aim of the present study was to determine whether oxidative stress may modulate the hemostatic activity of plasma in patients with nephrolithiasis before ESWL and the day after treatment ESWL. This will be performed by measuring selected parameters of hemostasis in these patients, both before ESWL and the following day, and assessing the level of oxidative damage to plasma proteins in these patients by measuring two biomarkers. Twelve patients with nephrolithiasis and 10 healthy participants were included. The following parameters of hemostasis were measured: the activated partial thromboplastin time (APTT), prothrombin time (PT), and thrombin time (TT) of plasma, the level of fibrinogen, the level of D-dimer and blood platelet count. In addition, two selected biomarkers of oxidative stress were measured: protein carbonylation level and the number of protein thiol groups. No difference was observed between patients with nephrolithiasis before and after ESWL and healthy controls with regard to PT, TT or APTT. Fibrinogen concentration and blood platelet count were lower in the nephrolithiasis patients in the period after ESWL than before ESWL. The nephrolithiasis patients demonstrated elevated D-dimer concentration after ESWL. However, although oxidative damage was observed in the plasma proteins in the nephrolithiasis patients, this was not influenced by ESWL. Oxidative stress may induce changes of hemostasis in patients with nephrolithiasis, both before and after ESWL. In addition, changes of hemostasis parameters such as fibrinogen, blood platelet count and D-dimer level can be observed in these patients, especially after ESWL, and this may suggest that ESWL modulates hemostasis. By

  19. World Wind

    Data.gov (United States)

    National Aeronautics and Space Administration — World Wind allows any user to zoom from satellite altitude into any place on Earth, leveraging high resolution LandSat imagery and SRTM elevation data to experience...

  20. 78 FR 29364 - Exelon Corporation, Exelon Wind 1, LLC, Exelon Wind 2, LLC, Exelon Wind 3, LLC, Exelon Wind 4...

    Science.gov (United States)

    2013-05-20

    ...-005, QF07-257-004] Exelon Corporation, Exelon Wind 1, LLC, Exelon Wind 2, LLC, Exelon Wind 3, LLC, Exelon Wind 4, LLC, Exelon Wind 5, LLC, Exelon Wind 6, LLC, Exelon Wind 7, LLC, Exelon Wind 8, LLC, Exelon Wind 9, LLC, Exelon Wind 10, LLC, Exelon Wind 11, LLC, High Plains Wind Power, LLC v. Xcel Energy...

  1. Calm winds

    Science.gov (United States)

    Ólafsson, Haraldur

    2017-04-01

    Knowledge of calm winds is of societal importance in connection with distribution pollution from natural sources (dust, volcanic gases and ash) as well as antropogenic sources. Time series from a multitude of automatic weather stations in Iceland have been explored and the climatology of calmness is established. This climatology underlines the importancec of not only abscence of large scale winds, but more importantly, the presence of surface inversions. Calmness is most frequent in summer, with secondary maxima in autumn and winter. The autumn calmness coincides with a period when frequency of synoptic scale cyclones does not increase, while the frequency of surface inversions increases rapidly. There is a very strong diurnal cycle in frequency of calm winds in the summer. The data indiates strongly that the nocturnal calmness is a result of a surface inversion, not the abscence of sea breeze. The frequency of calm winds is not only low at the coast, but also in the mountains, in spite of higher surface roughness away from the sea. The frequency of calm winds is much greater inside valleys and fjords than anywhere else. There are indications that open water in fjords has limited effect on the frequecy of calm winds along the fjord.

  2. Stratified magnetically driven accretion-disk winds and their relations to jets

    Energy Technology Data Exchange (ETDEWEB)

    Fukumura, Keigo [University of Maryland, Baltimore County (UMBC/CRESST), Baltimore, MD 21250 (United States); Tombesi, Francesco; Kazanas, Demosthenes; Shrader, Chris [Astrophysics Science Division, NASA/Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Behar, Ehud [Department of Physics, Technion, Haifa 32000 (Israel); Contopoulos, Ioannis, E-mail: fukumukx@jmu.edu [Research Center for Astronomy, Academy of Athens, Athens 11527 (Greece)

    2014-01-10

    We explore the poloidal structure of two-dimensional magnetohydrodynamic (MHD) winds in relation to their potential association with the X-ray warm absorbers (WAs) and the highly ionized ultra-fast outflows (UFOs) in active galactic nuclei (AGNs), in a single unifying approach. We present the density n(r, θ), ionization parameter ξ(r, θ), and velocity structure v(r, θ) of such ionized winds for typical values of their fluid-to-magnetic flux ratio, F, and specific angular momentum, H, for which wind solutions become super-Alfvénic. We explore the geometrical shape of winds for different values of these parameters and delineate the values that produce the widest and narrowest opening angles of these winds, quantities necessary in the determination of the statistics of AGN obscuration. We find that winds with smaller H show a poloidal geometry of narrower opening angles with their Alfvén surface at lower inclination angles and therefore they produce the highest line of sight (LoS) velocities for observers at higher latitudes with the respect to the disk plane. We further note a physical and spatial correlation between the X-ray WAs and UFOs that form along the same LoS to the observer but at different radii, r, and distinct values of n, ξ, and v consistent with the latest spectroscopic data of radio-quiet Seyfert galaxies. We also show that, at least in the case of 3C 111, the winds' pressure is sufficient to contain the relativistic plasma responsible for its radio emission. Stratified MHD disk winds could therefore serve as a unique means to understand and unify the diverse AGN outflows.

  3. Stratified Magnetically Driven Accretion-Disk Winds and Their Relations To Jets

    Science.gov (United States)

    Fukumura, Keigo; Tombesi, Francesco; Kazanas, Demosthenes; Shrader, Chris; Behar, Ehud; Contopoulos, Ioannis

    2013-01-01

    We explore the poloidal structure of two-dimensional magnetohydrodynamic (MHD) winds in relation to their potential association with the X-ray warm absorbers (WAs) and the highly ionized ultra-fast outflows (UFOs) in active galactic nuclei (AGNs), in a single unifying approach. We present the density n(r, theta), ionization parameter xi(r, theta), and velocity structure v(r, theta) of such ionized winds for typical values of their fluid-to-magnetic flux ratio, F, and specific angular momentum, H, for which wind solutions become super-Alfvenic. We explore the geometrical shape of winds for different values of these parameters and delineate the values that produce the widest and narrowest opening angles of these winds, quantities necessary in the determination of the statistics of AGN obscuration. We find that winds with smaller H show a poloidal geometry of narrower opening angles with their Alfv´en surface at lower inclination angles and therefore they produce the highest line of sight (LoS) velocities for observers at higher latitudes with the respect to the disk plane. We further note a physical and spatial correlation between the X-ray WAs and UFOs that form along the same LoS to the observer but at different radii, r, and distinct values of n, xi, and v consistent with the latest spectroscopic data of radio-quiet Seyfert galaxies. We also show that, at least in the case of 3C 111, the winds' pressure is sufficient to contain the relativistic plasma responsible for its radio emission. Stratified MHD disk winds could therefore serve as a unique means to understand and unify the diverse AGN outflows.

  4. Influence of Operating Parameters on Surface Properties of RF Glow Discharge Oxygen Plasma Treated TiO2/PET Film for Biomedical Application

    Science.gov (United States)

    Thin transparent titania (TiO2) films were coated on the surface of flexible poly (ethylene terephthalate) (PET) surface using standard sol gel techniques. The TiO2/PET thin film surfaces were further modified by exposing the films to a RF glow discharge oxygen plasma. The exposu...

  5. Plasma concentrations of salbutamol in the treatment of acute asthma in a pediatric emergency. Could age be a parameter of influence?

    Science.gov (United States)

    Rotta, Eloni T; Amantéa, Sérgio L; Froehlich, Pedro E; Becker, Adriana

    2010-06-01

    The objective was to determine if the plasma concentrations of salbutamol, obtained during inhalation treatment of infantile acute asthma, are influenced by age range and by the aerosol system used. A randomized clinical trial was conducted in 46 children (1-5 years of age) with a diagnosis of acute asthma crisis, established in an emergency room pediatric service. Twenty-five children received salbutamol using a pressurized metered-dose inhaler with spacer (50 microg/kg), and 21 children received salbutamol by nebulization (150 microg/kg),three times during a 1-h period. At the end of the treatment, one blood sample was drawn and the plasma was stored for later determination of salbutamol concentration (liquid chromatography). Salbutamol plasma concentrations were compared in two age groups (2 years of age). The type of device used (pressurized metered-dose inhaler or nebulizer) and the need of hospitalization were also tested. The Mann-Whitney U test was used with the level of significance set at 5% (P 2 years vs patients vs. 4.65 (2.77-10.10) ng/mL], demonstrating a significance difference (P = 0.05). Salbutamol plasma concentrations were influenced by age group of the patients submitted to inhalation therapy, even with doses adjusted for body weight. After correcting for the differences in the biovailabilities of the delivery systems, the concentrations were independent of the aerosol delivery device used.

  6. Composition of fatty acids in the maternal and umbilical cord plasma of adolescent and adult mothers: relationship with anthropometric parameters of newborn

    Directory of Open Access Journals (Sweden)

    Oliveira Olívia RC

    2012-11-01

    Full Text Available Abstract Background Considering the importance of long chain polyunsaturated fatty acids to fetal development and the lack of studies that have compared the status of fatty acids between adolescents and adults mothers, the purpose of this study was to evaluate the composition of fatty acids in maternal and umbilical cord plasma from adolescent and adults mothers. Methods Forty pregnant adolescents and forty pregnant adults were selected to assess the distribution profile of fatty acids in the maternal and umbilical cord plasma. Quantification of fatty acids in the total lipids of the sample groups was performed through the use of gas-liquid chromatography. Results The maternal and umbilical cord plasma of the adolescents showed a greater concentration of AA than did that of the adults (P  Conclusions This suggests that in situations of greater nutritional risk, as in adolescent pregnancy, n-3PUFA concentrations have a greater influence on the proper development of newborns. Moreover, variations in fatty acid concentrations in the maternal and cord plasma of adolescents and adults may indicate that pregnancy affects the LC-PUFA status of adults and adolescents in distinct ways.

  7. Kinetic Theory and Fast Wind Observations of the Electron Strahl

    Science.gov (United States)

    Horaites, Konstantinos; Boldyrev, Stanislav; Wilson, Lynn B., III; Viñas, Adolfo F.; Merka, Jan

    2018-02-01

    We develop a model for the strahl population in the solar wind - a narrow, low-density and high-energy electron beam centred on the magnetic field direction. Our model is based on the solution of the electron drift-kinetic equation at heliospheric distances where the plasma density, temperature and the magnetic field strength decline as power laws of the distance along a magnetic flux tube. Our solution for the strahl depends on a number of parameters that, in the absence of the analytic solution for the full electron velocity distribution function (eVDF), cannot be derived from the theory. We however demonstrate that these parameters can be efficiently found from matching our solution with observations of the eVDF made by the Wind satellite's SWE strahl detector. The model is successful at predicting the angular width (FWHM) of the strahl for the Wind data at 1 au, in particular by predicting how this width scales with particle energy and background density. We find that the strahl distribution is largely determined by the local temperature Knudsen number γ ∼ |T dT/dx|/n, which parametrizes solar wind collisionality. We compute averaged strahl distributions for typical Knudsen numbers observed in the solar wind, and fit our model to these data. The model can be matched quite closely to the eVDFs at 1 au; however, it then overestimates the strahl amplitude at larger heliocentric distances. This indicates that our model may be improved through the inclusion of additional physics, possibly through the introduction of 'anomalous diffusion' of the strahl electrons.

  8. Increased component isotropy and plasma magnetic compression at sub-ion Larmor scale turbulence in the solar wind as seen by Cluster

    Science.gov (United States)

    Kiyani, K.; Sahraoui, F.; Hnat, B.; Chapman, S. C.; Fauvarque, O.; Khotyaintsev, Y. V.

    2012-12-01

    The anisotropic nature of solar wind magnetic turbulence fluctuations is investigated scale-by-scale using high cadence in-situ magnetic field measurements from the Cluster and ACE spacecraft missions. The data span five decades in scales from the inertial range to the electron Larmor radius. In contrast to the inertial range, there is a successive increase towards isotropy between parallel and transverse power at scales below the ion Larmor radius, with isotropy being achieved at the electron Larmor radius. In the context of wave-mediated theories of turbulence, we show that this enhancement in magnetic fluctuations parallel to the local mean background field is qualitatively consistent with the magnetic compressibility signature of kinetic Alfvén wave solutions of the linearized Vlasov equation. More generally, we discuss how these results may arise naturally due to the prominent role of the Hall term at sub-ion Larmor scales. Furthermore, computing higher-order statistics, we show that the full statistical signature of the fluctuations at scales below the ion Larmor radius is that of a single isotropic globally scale-invariant process distinct from the anisotropic statistics of the inertial range.(Upper panel) PSD (from Cluster) of the transverse and parallel components spanning the inertial and dissipation ranges. (Lower panel) Ratio of parallel over transverse PSD. Horizontal dot-dashed line indicates a ratio of 1/3 where isotropy in power occurs. Vertical dashed and dashed-dotted lines indicate the ion and electron gyro-radii respectively, Doppler-shifted to spacecraft frequency using the Taylor hypothesis.

  9. Verification and Calibration of a Reduced Order Wind Farm Model by Wind Tunnel Experiments

    Science.gov (United States)

    Schreiber, J.; Nanos, E. M.; Campagnolo, F.; Bottasso, C. L.

    2017-05-01

    In this paper an adaptation of the FLORIS approach is considered that models the wind flow and power production within a wind farm. In preparation to the use of this model for wind farm control, this paper considers the problem of its calibration and validation with the use of experimental observations. The model parameters are first identified based on measurements performed on an isolated scaled wind turbine operated in a boundary layer wind tunnel in various wind-misalignment conditions. Next, the wind farm model is verified with results of experimental tests conducted on three interacting scaled wind turbines. Although some differences in the estimated absolute power are observed, the model appears to be capable of identifying with good accuracy the wind turbine misalignment angles that, by deflecting the wake, lead to maximum power for the investigated layouts.

  10. 77 FR 29633 - Alta Wind VII, LLC, Alta Wind IX, LLC, Alta Wind X, LLC, Alta Wind XI, LLC, Alta Wind XII, LLC...

    Science.gov (United States)

    2012-05-18

    ... Wind VII, LLC, Alta Wind IX, LLC, Alta Wind X, LLC, Alta Wind XI, LLC, Alta Wind XII, LLC, Alta Wind XIII, LLC, Alta Wind XIV, LLC, Alta Wind XV, LLC, Alta Windpower Development, LLC, TGP Development... 385.207, Alta Wind VII, LLC, Alta Wind IX, LLC, Alta Wind X, LLC, Alta Wind XI, LLC, Alta Wind XII...

  11. Estimating the solar wind pressure at comet 67P from Rosetta magnetic field measurements

    Science.gov (United States)

    Nemeth, Z.; Dósa, M.; Goetz, C.; Madanian, H.; Opitz, A.; Richter, I.; Szego, K.; Timar, A.

    2017-09-01

    The solar wind pressure is an important parameter of planetary space weather, which plays a crucial role in the interaction of the solar wind with the planetary plasma environment. Unfortunately, it is not always possible to measure its value at every locations where it would be useful or needed. Spacecraft observing the internal dynamics of a planetary magnetosphere, for example, would benefit greatly from solar wind pressure data, but as the solar wind does not penetrate to their locations, direct measurements are impossible. It is well known that the maximum of the magnetic field in the pile-up region of a magnetosphere is proportional to the square root of the solar wind pressure. Recent investigation of Rosetta data revealed that the maximum of the magnetic field in the pile-up region can be approximated by magnetic field measurements performed in the inner regions of the cometary magnetosphere close to the boundary of the diamagnetic cavity. This relationship holds for several months spanning from June 2015 to January 2016. Here we investigate the possibility to use this relationship to determine a solar wind pressure proxy for this time interval using magnetic field data measured by the Rosetta Magnetometer. This pressure proxy would be useful not only for other Rosetta related studies, but could also serve as a new independent input database for space weather propagation to other locations in the Solar System.

  12. Aeroservoelasticity of wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Skovmose Kallesoee, B.

    2007-12-14

    This thesis deals with the fundamental aeroelastic interaction between structural motion, Pitch action and control for a wind turbine blade. As wind turbines become larger, the interaction between pitch action, blade motion, aerodynamic forces, and control become even more important to understand and address. The main contribution of this thesis is the development of an aeroelastic blade model which on the one hand includes the important effects of steady state blade deformation, gravity and pitch action, and on the other it is transparent, suitable for analytical analysis and parameter studies, and furthermore linear and therefore suitable for control design. The development of the primary aeroelastic blade model is divided into four steps: 1) Nonlinear partial differential equations (PDEs) of structural blade motion are derived together with equations of pitch action and rotor speed; the individual terms in these equations are discussed and given physical interpretations; 2) Steady state blade deformation and induced velocities are computed by combining the PDEs with a steady state aerodynamic model; 3) Aeroelastic modes of motion are computed by combining the linearized PDEs with a linear unsteady aerodynamic model; this model is used to analyze how blade deformation effects the modes of motion; and 4) the linear aeroelastic blade model is derived by a modal expansion of the linearized PDEs combined with a linear unsteady aerodynamic model. The aeroelastic blade model has many similarities to a 2D blade section model, and it can be used instead of this in many applications, giving a transparent connection to a real wind turbine blade. In this work the aeroelastic blade model is used to analyze interaction between pitch action, blade motion and wind speed variations. Furthermore the model is used to develop a state estimator for estimating the wind speed and wind shear, and to suggest a load reducing controller. The state estimator estimates the wind shear very

  13. Wind farm power optimization including flow variability

    DEFF Research Database (Denmark)

    Herp, Jürgen; Poulsen, Uffe Vestergaard; Greiner, Martin

    2015-01-01

    A model-based optimisation approach is used to investigate the potential gain of wind-farm power with a cooperative control strategy between the wind turbines. Based on the Jensen wake model with the Katic wake superposition rule, the potential gain for the Nysted offshore wind farm is calculated...... an optimized wind-farm control strategy, derived from a fixed wake parameter, is facing this flow variability, the potential gain reduces to 0.3–0.5%. An omnipotent control strategy, which has real-time knowledge of the actual wake flow, would be able to increase the gain in wind-farm power to 4.9%....

  14. Introduction to wind energy systems

    Directory of Open Access Journals (Sweden)

    Wagner H.-J.

    2013-06-01

    Full Text Available This article presents the basic concepts of wind energy and deals with the physics and mechanics of operation. It describes the conversion of wind energy into rotation of turbine, and the critical parameters governing the efficiency of this conversion. After that it presents an overview of various parts and components of windmills. The connection to the electrical grid, the world status of wind energy use for electricity production, the cost situation and research and development needs are further aspects which will be considered.

  15. Introduction to wind energy systems

    Directory of Open Access Journals (Sweden)

    Wagner H.-J.

    2015-01-01

    Full Text Available This article presents the basic concepts of wind energy and deals with the physics and mechanics of operation. It describes the conversion of wind energy into rotation of turbine, and the critical parameters governing the efficiency of this conversion. After that it presents an overview of various parts and components of windmills. The connection to the electrical grid, the world status of wind energy use for electricity production, the cost situation and research and development needs are further aspects which will be considered.

  16. Introduction to wind energy systems

    Directory of Open Access Journals (Sweden)

    Wagner H.-J.

    2017-01-01

    Full Text Available This article presents the basic concepts of wind energy and deals with the physics and mechanics of operation. It describes the conversion of wind energy into rotation of turbine, and the critical parameters governing the efficiency of this conversion. After that it presents an overview of various parts and components of windmills. The connection to the electrical grid, the world status of wind energy use for electricity production, the cost situation and research and development needs are further aspects which will be considered.

  17. Determination of mean residence time of drug in plasma and the influence of the initial drug elimination and distribution on the calculation of pharmacokinetic parameters.

    Science.gov (United States)

    Berezhkovskiy, Leonid M

    2009-02-01

    The equation for the calculation of mean residence time of drug in plasma, t(p), is obtained. It is shown that the previously suggested calculation of t(p) considerably overestimates the true value in most cases. It is suggested that due to the possible initial (before establishing the uniform drug mixing in plasma) fast elimination of drug, the commonly calculated total body clearance (Cl = D/AUC) may substantially overestimate the clearance in the linear range of elimination of well-stirred drug. This would result in the high in vivo Cl values that are not supported by the in vitro studies of drug metabolism and stability in tissues. It is shown that the mean residence time of drug in the body, volumes of distribution, oral bioavailability and distribution clearance estimated with the account of initial drug distribution and elimination, may substantially deviate from the values obtained by the traditional calculations.

  18. Statistical Study of the Lunar Plasma Wake Outer Boundary

    Science.gov (United States)

    Ames, W. F.; Brain, D. A.; Poppe, A.; Halekas, J. S.; McFadden, J. P.; Glassmeier, K.; Angelopoulos, V.

    2012-12-01

    . We investigate how the wake boundary changes in response to solar wind parameters such as plasma beta, ion velocity, ion temperature, and magnetic field cone and clock angles. These results are compared with earlier wake crossing studies and computational modeling.

  19. Wind turbine

    Science.gov (United States)

    Cheney, Jr., Marvin C.

    1982-01-01

    A wind turbine of the type having an airfoil blade (15) mounted on a flexible beam (20) and a pitch governor (55) which selectively, torsionally twists the flexible beam in response to wind turbine speed thereby setting blade pitch, is provided with a limiter (85) which restricts unwanted pitch change at operating speeds due to torsional creep of the flexible beam. The limiter allows twisting of the beam by the governor under excessive wind velocity conditions to orient the blades in stall pitch positions, thereby preventing overspeed operation of the turbine. In the preferred embodiment, the pitch governor comprises a pendulum (65,70) which responds to changing rotor speed by pivotal movement, the limiter comprising a resilient member (90) which engages an end of the pendulum to restrict further movement thereof, and in turn restrict beam creep and unwanted blade pitch misadjustment.

  20. Global dynamic evolution of the cold plasma inferred with neural networks

    Science.gov (United States)

    Zhelavskaya, Irina; Shprits, Yuri; Spasojevic, Maria

    2017-04-01

    The electron number density is a fundamental parameter of plasmas and is critical for the wave-particle interactions. Despite its global importance, the distribution of cold plasma and its dynamic dependence on solar wind conditions remains poorly quantified. Existing empirical models present statistical averages based on static geomagnetic parameters, but cannot reflect the dynamics of the highly structured and quickly varying plasmasphere environment, especially during times of high geomagnetic activity. Global imaging provides insights on the dynamics but quantitative inversion to electron number density has been lacking. We propose an empirical model for reconstruction of global dynamics of the cold plasma density distribution based only on solar wind data and geomagnetic indices. We develop a neural network that is capable of globally reconstructing the dynamics of the cold plasma density distribution for L shells from 2 to 6 and all local times. We utilize the density database obtained using the NURD algorithm [Zhelavskaya et al., 2016] in conjunction with solar wind data and geomagnetic indices to train the neural network. This study demonstrates how the global dynamics can be reconstructed from local in-situ observations by using machine learning tools. We describe aspects of the validation process in detail and discuss the selected inputs to the model and their physical implication.

  1. Profiles of plasma parameters and density of negative hydrogen ions by laser detachment measurements in RF-driven ion sources; Profile der Plasmaparameter und Dichte negativer Wasserstoffionen mittels Laserdetachmentmessungen in HF-angeregten Ionenquellen

    Energy Technology Data Exchange (ETDEWEB)

    Christ-Koch, Sina

    2007-12-20

    This work shows the application of the Laserdetachment method for spatially resolved measurements of negative Hydrogen/Deuterium ion density. It was applied on a high power low pressure RF-driven ion source. The Laser detachment method is based on the measurement of electron currents on a positively biased Langmuir probe before and during/after a laser pulse. The density ratio of negative ions to electrons can be derived from the ratio of currents to the probe. The absolute density of negative ions can be obtained when the electron density is measured with the standard Langmuir probe setup. Measurements with the Langmuir probe additionally yield information about the floating and plasma potential, the electron temperature and the density of positive ions. The Laser detachment setup had to be adapted to the special conditions of the RF-driven source. In particular the existence of RF fields (1 MHz), high source potential (-20 kV), magnetic fields ({proportional_to} 7 mT) and caesium inside the source had to be considered. The density of negative ions could be identified in the range of n(H{sup -})=1.10{sup 17} 1/m{sup 3}, which is in the same order of magnitude as the electron density. Only the application of the Laser detachment method with the Langmuir probe measurements will yield spatially resolved plasma parameters and H- density profiles. The influence of diverse external parameters, such as pressure, RF-power, magnetic fields on the plasma parameters and their profiles were studied and explained. Hence, the measurements lead to a detailed understanding of the processes inside the source. (orig.)

  2. Remote Sensing Wind and Wind Shear System.

    Science.gov (United States)

    Contents: Remote sensing of wind shear and the theory and development of acoustic doppler; Wind studies; A comparison of methods for the remote detection of winds in the airport environment; Acoustic doppler system development; System calibration; Airport operational tests.

  3. Wind Energy Japan

    Energy Technology Data Exchange (ETDEWEB)

    Komatsubara, Kazuyo [Embassy of the Kingdom of the Netherlands, Tokyo (Japan)

    2012-06-15

    An overview is given of wind energy in Japan: Background; Wind Energy in Japan; Japanese Wind Energy Industry; Government Supports; Useful Links; Major Japanese Companies; Profiles of Major Japanese Companies; Major Wind Energy Projects in Japan.

  4. Global dynamic evolution of the cold plasma inferred with neural networks

    Science.gov (United States)

    Zhelavskaya, I. S.; Shprits, Y. Y.; Spasojevic, M.

    2016-12-01

    The electron number density is a fundamental parameter of plasmas and a critical parameter in the wave-particle interactions. However, the distribution of cold plasma and its dynamic dependence on solar wind conditions remains poorly quantified. Existing empirical models provide us with statistical averages based on static geomagnetic parameters, but cannot reflect the dynamics of the highly structured and quickly varying plasmasphere environment, especially during times of high geomagnetic activity. Global imaging provides insights on the dynamics but does not provide quantitative estimates of number density. Accurately calculating the evolving distribution from first principles has also proven elusive due to the sheer number of physical processes involved.In this study, we propose an empirical model for reconstruction of global dynamics of the cold plasma density distribution based only on solar wind data and geomagnetic indices. We develop a neural network that is capable of globally reconstructing the dynamics of the cold plasma density distribution for L shells from 2 to 6 and all local times. First, we derive a plasma density database by using the NURD algorithm to identify the upper hybrid resonance band in plasma wave observations from Van Allen Probes [Zhelavskaya et al., 2016]. Then, we utilize the density database in conjunction with solar wind data and geomagnetic indices to train the neural network. To validate and test the model, we choose validation and test sets independently from the density database. We validate and test the neural network by measuring its performance on these sets and also by comparing the model predicted global evolution with global images of the He+ distribution in the Earth's plasmasphere from the IMAGE extreme ultraviolet (EUV) instrument.The present study demonstrates how we can reconstruct the global dynamics from local in-situ observations by using machine learning tools. We describe aspects of the validation process in

  5. Adaptive Extremum Control and Wind Turbine Control

    DEFF Research Database (Denmark)

    Ma, Xin

    1997-01-01

    This thesis is divided into two parts, i.e., adaptive extremum control and modelling and control of a wind turbine. The rst part of the thesis deals with the design of adaptive extremum controllers for some processes which have the behaviour that process should have as high e ciency as possible...... in parameters, and thus directly lends itself to parameter estimation and adaptive control. The extremum control law is derived based on static optimization of a performance function. For a process with nonlinearity at output the intermediate signal between the linear part and nonlinear part plays an important...... role. If it can be emphasis on control design. The models have beenvalidated by experimental data obtained from an existing wind turbine. The e ective wind speed experienced by the rotor of a wind turbine, which is often required by some control methods, is estimated by using a wind turbine as a wind...

  6. Variability of the Wind Turbine Power Curve

    Directory of Open Access Journals (Sweden)

    Mahesh M. Bandi

    2016-09-01

    Full Text Available Wind turbine power curves are calibrated by turbine manufacturers under requirements stipulated by the International Electrotechnical Commission to provide a functional mapping between the mean wind speed v ¯ and the mean turbine power output P ¯ . Wind plant operators employ these power curves to estimate or forecast wind power generation under given wind conditions. However, it is general knowledge that wide variability exists in these mean calibration values. We first analyse how the standard deviation in wind speed σ v affects the mean P ¯ and the standard deviation σ P of wind power. We find that the magnitude of wind power fluctuations scales as the square of the mean wind speed. Using data from three planetary locations, we find that the wind speed standard deviation σ v systematically varies with mean wind speed v ¯ , and in some instances, follows a scaling of the form σ v = C × v ¯ α ; C being a constant and α a fractional power. We show that, when applicable, this scaling form provides a minimal parameter description of the power curve in terms of v ¯ alone. Wind data from different locations establishes that (in instances when this scaling exists the exponent α varies with location, owing to the influence of local environmental conditions on wind speed variability. Since manufacturer-calibrated power curves cannot account for variability influenced by local conditions, this variability translates to forecast uncertainty in power generation. We close with a proposal for operators to perform post-installation recalibration of their turbine power curves to account for the influence of local environmental factors on wind speed variability in order to reduce the uncertainty of wind power forecasts. Understanding the relationship between wind’s speed and its variability is likely to lead to lower costs for the integration of wind power into the electric grid.

  7. Production of the Finnish Wind Atlas

    DEFF Research Database (Denmark)

    Tammelin, Bengt; Vihma, Timo; Atlaskin, Evgeny

    2013-01-01

    The Finnish Wind Atlas was prepared applying the mesoscale model AROME with 2.5 km horizontal resolution and the diagnostic downscaling method Wind Atlas Analysis and Application Programme (WAsP) with 250 m resolution. The latter was applied for areas most favourable for wind power production: a 30......) the parameterization method for gust factor was extended to be applicable at higher altitudes; and (vii) the dissemination of the Wind Atlas was based on new technical solutions. The AROME results were calculated for the heights of 50, 75, 100, 125, 150, 200, 300 and 400 m, and the WAsP results for the heights of 50......, 75, 100, 125 and 150 m. In addition to the wind speed, the results included the values of the Weibull distribution parameters, the gust factor, wind power content and the potential power production, which was calculated for three turbine sizes. The Wind Atlas data are available for each grid point...

  8. Supplementation of arachidonic acid-enriched oil increases arachidonic acid contents in plasma phospholipids, but does not increase their metabolites and clinical parameters in Japanese healthy elderly individuals: a randomized controlled study

    Directory of Open Access Journals (Sweden)

    Kakutani Saki

    2011-12-01

    Full Text Available Abstract Background The importance of arachidonic acid (ARA among the elderly has recently gained increased attention. The effects of ARA supplementation in the elderly are not fully understood, although ARA is considered to be associated with various diseases. We investigate whether ARA su